
www.allitebooks.com

http:///
http://www.allitebooks.org

iPhone Location Aware Apps

by Example
Beginner's Guide

Build ive complete locaion-enabled apps from scratch—from
idea to implementaion!

Zeeshan Chawdhary

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

iPhone Location Aware Apps by Example
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmited in any form or by any means, without the prior writen permission of the
publisher, except in the case of brief quotaions embedded in criical aricles or reviews.

Every efort has been made in the preparaion of this book to ensure the accuracy of the
informaion presented. However, the informaion contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark informaion about all of the
companies and products menioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this informaion.

First published: March 2012

Producion Reference: 1160312

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-224-3

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author

Zeeshan Chawdhary

Reviewers

Sebasian Borggrewe

Taylor Jasko

Robb Lewis

Jose Luis Manners

Shuxuan Nie

Marin Selva

Alex Zaltsman

Acquisiion Editor

Alina Lewis

Lead Technical Editor

Susmita Panda

Technical Editors

Lubna Shaikh

LLewellyn Rosario

Project Coordinator

Leena Purkait

Proofreader

Mario Cecere

Copy Editor

Leonard D'silva

Indexer

Monica Ajmera

Graphics

Manu Joseph

Producion Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Zeeshan Chawdhary has been a keen developer for the last six years, and has worked
in the locaion-based space for the past ive years. He is currently the Chief Technology
Oicer of Wciies Inc, a San Francisco-based Locaion Content Provider. He is currently
experimening with PostGIS, PhoneGap, and iOS 5, and is currently trying his hand at
blogging again at http://justgeeks.in.

I would like to thank all the lovely people at PacktPub, especially Mary
Nadar for having introduced me to the PacktPub family.

A special thanks to Leena, Susmita, Lubna, and Llewellyn for working with
me irelessly on the book.

I would also thank Christopher D. Sloop from WeatherBug, Lauren Sperber
and Janine Iamunno from AOL Patch.com, Tim Breidigan, and Robert
Marindale from Evenful.com – for having allowed me to use their
respecive APIs in the book, you guys rock man!

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Sebasian Borggrewe, born and raised in Germany, is a computer science Master's
student at the University of Edinburgh/RWTH Aachen. Since he was 16, he has been
freelancing for several web and mobile agencies, and has founded his own agency.

Currently, he is the co-founder and CTO of Loyalli Ltd., a London-based startup, developing
mobile loyalty card soluions (http://www.loyalli.com).

When he is not coding, he is searching for new technology or ways to use technology to
make life even more fun. You will probably ind him hanging out with friends, hiing the
gym, cooking, or playing the guitar in his 60's band.

One of his goals in life, apart from working in a kick-ass oice in central London with an
"oice slide", is obtaining a pilot license.

More informaion about Sebasian, and his projects can be found at
http://www.sebastianborggrewe.de.

Taylor Jasko has been fascinated with technology ever since the day he laid his hands on
a Windows 95-based computer. Since then, now being eighteen years old, he has dived into
web design and development, computer programming, and even system administraion with
his favorite server-oriented operaing system, Debian Linux.

He founded the technology blog Tech Cores (http://techcores.com), and has been
working on it ever since it was created back in late 2008. Tech Cores is a great example of
his work; he designed and created it using the powerful WordPress content management
system, and with the help of his Wacom Intuos4 graphic tablet plus Adobe Photoshop.

While in school, he can be found freelancing graphic design and programming work. His
technical strengths include PHP, JavaScript (including libraries such as jQuery), AJAX, HTML,
CSS, Perl, Objecive-C, Linux/UNIX, MySQL, Apache, Nginx, and to inish it all of, a dab of
Python. Essenially, he is a programmer, system admin, and a designer!

He can be reached at taylor@taylorjasko.com.

www.allitebooks.com

http://techcores.com/
http:///
http://www.allitebooks.org

Jose Luis Manners is a seasoned IT professional with over 20 years of sotware
development experience, including project management, technical architecture, and full
life-cycle systems development. His sotware development experience includes enterprise
systems for Fortune 500 clients as well as federal, state, and local governments. Mr. Manners
has been recognized on several occasions by Microsot with their Most Valuable Professional
award for his outstanding work with .NET, and his contribuions to Microsot's product
teams. He specializes in .NET, iOS, and Android mobile development for clients in the
Washington, DC metropolitan area.

He can be reached at jose@josemanners.com.

Shuxuan Nie is a SOA Consultant, specializing in SOA and Java technologies. She has more
than 10 years of experience in the IT industry that includes SOA technologies, such as BPEL,
ESB, SOAP, XML, and Enterprise Java technologies, Eclipse plugins, and other areas, such as
C++ cross-plaform development.

Since 2010, Shuxuan has been working in Rubiconred, and has been helping customers
resolve integraion issues.

From 2007 to 2010, Shuxuan had been working in Oracle Global Customer Support team,
and focussed on helping customers solve their middleware/SOA integraion problems.

Before joining Orcale, Shuxuan had been working in IBM China Sotware Development Lab
for four years as staf sotware engineer, where she paricipated in several complex products
on IBM Lotus Workplace, Webshpere and Eclipse plaform, and then joined the Australia
Bureau of Meteorology Research Center, which is responsible for implementaion of
Automated Thunderstorm Interacive Forecast System for Aviaion and Defence.

Shuxuan holds an MS in the Computer Science degree from Beijing University of Aeronauics
and Astronauics.

www.allitebooks.com

http:///
http://www.allitebooks.org

Marin Selva heads the Gaming team at Hungama Digital Media Entertainment Pvt Ltd,
with over nine years of experience. His passion, experience, and experise have also helped
him develop a keen interest in Product Development for Online & Devices.

At Hungama, Marin is responsible for building a gaming portal called www.thegamebox.
com, and heads a Gaming Studio that comprises of iOS Developers, PHP Developers, Game
Designers, and Content Writers.

He can be reached at martin@hungama.com and martinselva@gmail.com.

Alex Zaltsman is the CEO and founder of Xcela Mobile, a sotware and mobile cloud
infrastructure hosing company that develops applicaions for mobile devices, such as the
iPhone, iPad, and Android. Prior to inding TourSpot, Alex was a co-founder and managing
partner of a technology services company. Alex has been in the technology ield for over 15
years. Prior to founding the technology services company, Mr. Zaltsman worked at Lucent
Technologies, AT&T Labs, and Johnson & Johnson, in technical and management capaciies.
Alex is also on the Board of Advisors of BizWorld, a non-proit organizaion that has created
curriculum for teaching entrepreneurship and money management to kids. Alex is on
the Board of Directors for the New Jersey chapter for Entrepreneurs Organizaion
(http://www.eonetwork.org).

www.allitebooks.com

mailto:martin@hungama.com
mailto:martinselva@gmail.com
http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to your book.

Did you know that Packt ofers eBook versions of every book published, with PDF and ePub iles
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are enitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collecion of free technical aricles, sign up for a range
of free newsleters and receive exclusive discounts and ofers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant soluions to your IT quesions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's enire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine enirely free books. Simply use your login credenials for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http:///
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: The Locaion-based World 7
Understanding Locaion-based Services 8
Time for acion – consuming Locaion-based Services with Google 9
Buzzwords in the Locaion-based Industry 11
Applicaion of LBS and common use cases 13

Military 13
Government 13
Commercial 13

How Apple uses LBS in the iPhone, iPad, and iPod devices 14
iOS locaion API 15

Time for acion – turning of Locaion Tracking in your iPhone 15
Behind LBS – GPS 17

User segment 17
Space segment 18
Control segment 18

Push and Pull methods of Locaion Services 18
Push Service 18
Pull Service 19

Life without GPS: Wi-Fi-based locaion detecion 19
Life without GPS: cell ID posiioning and cell tower triangulaion 21
Time for acion – using the SkyHook Wireless Loki framework to
determine your locaion 22
Life without GPS: Google Maps API 23
Understanding Indoor and Outdoor Navigaion 26
Summary 27

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: The Xcoder's World 29
Introducing Xcode 4 29
Xcode 4: Prerequisites and features 30

Prerequisites 30
Features 30

iOS 5 and Xcode 4.2: new and notable features 31
iOS 5 new features 32
Xcode 4.2's new features 33

Transiioning from Xcode3: What you need to know 34
Time for acion – installaion 36
Time for acion – Hello Locaion 38
Tools for the overnight coders: HTML5 46

PhoneGap 48
Time for acion – Using PhoneGap to build a Hello Locaion App 49
Time for acion – using Titanium Appcelerator for building the Hello Locaion app 54
Time for acion – Hello Locaion with Sencha Touch 59
Exploring locaion-based SDKs/APIs 63

Foursquare 63
Gowalla 64
Evenful and Last.fm API – some music is always good 65

Sill more tools: SimpleGeo and Factual 66
Other Notable APIs – YQL and Locaion Labs 66

Summary 67

Chapter 3: Using Locaion in your iOS Apps—Core Locaion 69
Core Locaion framework – an overview 70
Time for acion – locaion debugging 70
Core Locaion Services 72

Standard locaion 72
Signiicant change 73
Region monitoring 73
Geocoding and reverse Geocoding – CLGeocoder 74
Direcion using heading 75

Core Locaion Manager – CLLocaionManager 76
Time for acion – checking for locaion service availability 77

User authorizaion 80
Time for acion – using Core Locaion with user authorizaion 81
The CLLocaion object 84
Time for acion – receiving locaion updates in your applicaion 85
Time for acion – boundary monitoring with Locaion Manager 87
Extending Hello Locaion for nearby events 90

Important things to know before we begin 91

http:///

Table of Contents

[iii]

Time for acion – extending Hello Locaion for nearby events 91
Time for acion – Last.fm API in your app 97
What just happened? 98
Extending Hello Locaion for local search 99

Important things to know before we begin 100
Time for acion – building a local search app with foursquare 100
Summary 103

Chapter 4: Using Maps in your iOS apps—MapKit 105
Overview of the MapKit framework 105
Understanding map geometry 106
Time for acion – using MapKit in your app 108
Time for acion – using map gestures – panning and zooming 115
Annotaing Maps – an overview 117
Time for acion – adding annotaions to your maps 117
Time for acion – draggable annotaions 119
Time for acion – custom map annotaions 123
Map overlays – an overview 126
Time for acion – customizing map annotaions 126
User tracking modes 129
Bonus – oline maps in your app 130
Time for acion – using OpenStreetMaps with CloudMade API 131
Summary 134

Chapter 5: Weather App—WeatherPackt 135
Storing and retrieving the user's locaion with SQLite 136
Time for acion – storing and retrieving the user's locaion with SQLite 136
Convering locaion data into city name – using Geonames API 142

A bit on GeoNames 142
Time for acion – convering locaion data into city name 143
Consuming the WeatherBug API 148

Important things to know before we begin 148
Time for acion – using WeatherBug API 150
Building your Weather App: WeatherPackt 162

Start a new Xcode project 162
Deine the Home screen 165
Time for acion – deining the Home screen 165

Set up a default locaion 168
Formaing the Weather API for display 169
The seings page 169

Bonus: building WeatherPackt with PhoneGap 174
Bonus: text-to-speech 174
Summary 177

http:///

Table of Contents

[iv]

Chapter 6: Events App—PacktEvents 179
PacktEvents: Overview and architecture 180

Architecture of PacktEvents 180
Storing and Retrieving Events with SQLite 181
Time for acion – storing and retrieving events with SQLite 182
Ploing events on a map 191
Time for acion – ploing events on a map 192
Filtering Events display by Event Categories 197
Time for acion – iltering Events by categories 198
Using the Event Kit framework to add events to your iPhone calendar 205
Time for acion – adding events to your iPhone calendar 207
Using the Twiter framework 210
Time for acion – adding Twiter capabiliies to your iPhone app 210
Bonus: using the Layar Player API in your app: Augmented Reality 213
Time for acion – adding Augmented Reality to your iPhone app 213
PacktEvents: building the app 219
Summary 220

Chapter 7: Advanced Topics 221
Using direcions with locaion 222

Direcion using heading 222
Geing your app ready for direcion 222
Understanding heading using magnetometer 222

Time for acion – using heading for direcion in your app 223
Direcion using course 226

Time for acion – using course for direcion in your app 226
Core Moion: Moion Manager 229

How to use Core Moion 230
Time for acion – using MoionManager: accelerometer 231

Core Moion conclusion 235

Background app execuion 235
What apps can run in the background? 236
Background locaion 236
Push noiicaions - overview 240
Local noiicaions 241

Time for acion – using local noiicaions 241
Summary 246

Chapter 8: Local Search—PacktLocal 247
Consuming the foursquare venue API 248

Venue categories 248
Time for acion – consuming the foursquare venue API - categories 248
Recommended and popular venues 255

http:///

Table of Contents

[v]

Time for acion – recommended and popular venues 255
Search for venues 262
Time for acion – exploring the foursquare Search API 263
Building an UI for our local search app - PacktLocal 267
Saving venue informaion on the device 268
Building the app: PacktLocal 268
Time for acion – building the app - PacktLocal 269
Summary 282

Chapter 9: Locaion Aware News—PacktNews 283
Understanding the Patch News API – HyperLocal News 283

Authenicaion 284
Taxonomy 284

Verical 285
Format 285
Author 285

Finding stories by locaion 285
Find locaion by names 286

Time for acion – consuming the Patch News API 286
Adding the Geo Fencing support 295

Time for acion – adding the Geo Fencing support 296
Building our app - PacktNews 299

A bit on StoryBoard 299
Time for acion – building PacktNews 300
Summary 313

Chapter 10: Social Governance—TweetGovern 315
Social governance – an overview 316
TweetGovern – behind the scenes 316

Stackmob 318
Our approach: Twiter 319
Icons and images 322
SDKs and frameworks 322

 Time for acion – creaing the UI for TweetGovern 323
Time for acion – detecing the user locaion and showing nearby issues 326
Time for acion – creaing and voing for an issue 335
Summary 347

Appendix: Pop-Quiz Answers 349

Index 353

http:///

http:///

Preface
iPhone Locaion Aware Apps Beginner's Guide is probably the irst book from any technical
publisher that teaches you to build real world applicaions (ive of them). That's a bold step
from PacktPub - by undertaking more lively pracical examples, rather than 400 pages of
text! The book lays emphasis on locaion services, due to the ever-increasing role of locaion
in our day-to-day lives and increased geo-referenced content being produced/consumed on
the Internet and Mobiles. Be it news, sports or gossip, consumers no longer want to read/
search about content happening far of from their current locaion. If it is news – it has to
be local, similarly neighborhood gossip and news is more relevant to consumers seeking
informaion on their smartphones. Applicaions such as foursquare conirm this behavior.

This book will help you learn locaion based techniques using iOS 5 as well as soluions to
common locaion and mapping problems, ranging from simple locaion usage to caching
user's last posiion, from simple Google maps examples to using OpenStreetMaps. Find ive
full working apps as a part of the book (along with the source code and business logic).

In this book, we have covered everything to make your next killer app, from app design to
using free icons and background from the Internet (of course with due atribuion to the
author/designers), from integraing Twiter in your iOS 5 app to using the Nuance Speech
SDK. This book is a pracical beginners guide for new comers to the Apple iOS world.
Happy Reading.

What this book covers
Chapter 1, The Locaion-Based World, explains locaion-based services, how it works, and
the role of GPS in Locaion Services. We also learn how Apple uses locaion-based Services
in iOS. Buzzwords in the industry are also explored.

Chapter 2, The Xcoder's World, explains the Xcode tool, introducion to HTML5 with
Phonegap, Appcelerator Titanium, and Sencha Touch. We also have a look at a couple
of locaion-based APIs/ SDK including FourSquare, EventFul, and Last.fm.

http:///

Preface

[2]

Chapter 3, Using Locaion in your iOS Apps—Core Locaion, explains a number of techniques
used to read locaion informaion from your iPhone. This includes reading locaion
informaion on an event, and receiving locaion updates in your app automaically. We also
look at Region monitoring with Core Locaion framework. Example apps using Foursquare,
Evenful, and Last.fm are also included.

Chapter 4, Using Maps in your iOS apps—MapKit, brings us to Maps—We learn to use
the MapKit Framework in our app. We go behind the scenes with a small review of Map
Geometry. We also explore annotaions and overlays along with their customizaions.

Chapter 5, Weather App—WeatherPackt, builds a complete Weather App using WeatherBug
API. It also provides a Seings page in the app to customize the Weather display. As a bonus
to the readers, we also included the Nuance Speech SDK for reading out the weather!

Chapter 6, Events App—PacktEvents, builds an Events app that shows us nearby events,
concerts, and gigs by Arists, by using the excellent Evenful.com API. This chapter also shows
how to use the Twiter API in iOS 5, and gives us a taste of Augmented Reality with the Layar
Player SDK.

Chapter 7, Advanced Topics, teaches us using direcions with locaion background services
including background locaion. It also explores the Moion Manager in iOS SDK, along with
Push and Local noiicaions.

Chapter 8, Local Search—PacktLocal, works with the foursquare API to build a local search
app, with geo-fencing support.

Chapter 9, Locaion Aware News—PacktNews, uses the AOL's Patch News API to build a
hyperlocal news app. It uses the new iOS 5 Storyboarding feature in this applicaion, with
support for oline content using SQLite.

Chapter 10, Social Governance—TweetGovern. Twiter provides the backbone for this
chapter and the accompanying app. We use Twiter and hashtags for building the business
logic for our social governance app itled tweetgovern. We learn to use the twiter
re-tweeing concept as well, building upon our business logic.

What you need for this book
To run the examples and apps provided in the book, you will need a Mac running on Intel
Architecture with Xcode 4.2 or higher and iOS 5 installed on your iPhone or iPad.

Some examples need an API key, which is duly menioned at the beginning of the
chapter/topic.

http:///

Preface

[3]

Who this book is for
Novice to professional level iOS programmers, who want to master locaion awareness and
augmented reality. Build ive pracical locaion-based iOS Apps from scratch, a irst for any
book, convering learning into actual implementaion.

Conventions
In this book, you will ind a number of styles of text that disinguish between diferent
kinds of informaion. Here are some examples of these styles, and an explanaion of
their meaning.

Code words in text are shown as follows: "Wriing a simple Hello Location app in Xcode
and Objecive C."

A block of code is set as follows:

if(range.location == NSNotFound)

 {

deviceType =@"iPad";

 }

else

 {

deviceType =@"iPhone";

 }

When we wish to draw your atenion to a paricular part of a code block, the relevant lines
or items are set in bold:

for(NSInteger i=0;i<count;i++)

{

 NSString *venueName = [[[items

 objectAtIndex:0]objectAtIndex:i]objectForKey:@"name"];

 if(![venues containsObject:venueName])

 {

 [venues addObject:venueName];

 }

 }

}

http:///

Preface

[4]

Any command-line input or output is writen as follows:

2011-09-04 16:40:09.421 Hello Location GeoNames[3896:f803] Location
Inserted Cupertino

2011-09-04 16:40:33.977 Hello Location GeoNames[3896:f803] Location
Inserted Soho

2011-09-04 16:40:42.230 Hello Location GeoNames[3896:f803] Location
Inserted Wadala

2011-09-04 16:40:48.889 Hello Location GeoNames[3896:f803] Location
Inserted Cupertino

2011-09-04 16:40:55.913 Hello Location GeoNames[3896:f803] Location
Inserted Financial District

2011-09-04 16:41:04.692 Hello Location GeoNames[3896:f803] Location
Inserted Sydney CBD

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Enter Hotels in San

Francisco as the search key and hit Enter".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop itles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
menion the book itle through the subject of your message.

If there is a topic that you have experise in and you are interested in either wriing or
contribuing to a book, see our author guide on www.packtpub.com/authors.

http:///

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the iles e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustraion and help us improve subsequent versions of this book. If you
ind any errata, please report them by visiing http://www.packtpub.com/support,
selecing your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are veriied, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of exising errata, under the Errata
secion of that itle.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protecion of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the locaion
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecing our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http:///
http://www.allitebooks.org

http:///

1
The Location-based World

Locaion-Based Services will be worth $10 Billion by 2016 – GigaOm

Locaion-Based Services (LBS) are a revoluionary, but sill fresh from the oven,
breed of services that has grown tremendously to carve itself as a new industry
in just a few years.

Locaion-Based Services is the next step in the evoluion for search, on the web
and mobile, adding the Locaion Context (where am I or things around me) for
search. To quote from Wikipedia on the deiniion of LBS:

A Locaion-Based Services (LBS) is an informaion or entertainment service,
accessible with mobile devices through the mobile network and uilizing the
ability to make use of the geographical posiion (read Geocodes or Laitude/

Longitude) of the mobile device.

You may have already used LBS when on Twiter, Facebook, Foursquare,
Groupon, or visit hyperlocal web pages such as Wcities.com, Yelp.com,
Qype.co.uk, and Eventful.com to ind the top venues in the city or events
happening in your city.

Want to know how the locaion is determined? Coninue reading the chapter to
understand the diferent locaion detecion methods and which one is the right
choice for you.

In this chapter, we shall understand:

 � Locaion-Based Services
 � Buzz words in the LBS Industry
 � Applicaions of LBS and common use cases
 � How Apple uses LBS in iOS devices
 � GPS – Global Posiioning System
 � Indoor and outdoor navigaion with GPS

http:///

The Locaion-based World

[8]

So let's get on with it...

Understanding Location-based Services

The concept of Locaion-Based Services (LBS used as reference henceforth in the rest of
the book) refers to services that integrate a mobile device's locaion with other topical
informaion to provide added value to users.

Consider a weather app that shows weather informaion for all of the ciies in the United
States of America. For a user living in San Francisco, this behemoth of informaion is not
very helpful, unless he can see the exact weather informaion for his city. This is achieved
by mashing up the weather informaion with the user's locaion (generally obtained using
a GPS system).

Another example of LBS are local search websites such as Wcities.com that present a
user with hyper local (read local, nearby or neighborhood-centered) informaion on hotels,
restaurants, shopping, and entertainment venues that makes a user feel connected with the
type of informaion shown to him/her.

The core requirement for LBS is GPS (covered in more detail shortly), a space-based satellite
navigaion system developed and maintained by the United States of America. Other
countries have similar systems too; Russia has Russian Global Navigaion Satellite System

(GLONASS), Europe has the Galileo Posiioning System, India and China are working on their
own posiioning system as well, but GPS remains the most popular and preferred choice for
device makers and applicaion developers worldwide.

Anyone can use GPS freely by using either a Personal Navigaion Device (Garmin, TomTom),
or an In-Car Navigaion System (Ford Sync), or by using a Smart Phone.

On the mobile front, LBS also use Google Maps and other cartographic API services
extensively (even in cases where the device does not support GPS). This is done using rich
map data and Geocoding services. Using Geocoding and smart algorithms, a user's posiion
can be guessed or approximated. Mobile Operaing Systems, such as Android, further the
cause of LBS by integraing locaions into the Core OS, where the locaion can be fetched,
used, and updated by all applicaions.

Apple iOS leads the pack with the best sotware API support, coupled with excellent
hardware and posiioning system integrated in the Apple Eco System. It also has
network-based Assisted GPS (AGPS) that uses the network's data connecion in the
case of weak GPS signals as well as Apple's own Wi-Fi locaion database. iOS developers
have a plethora of locaion tools and API to work with.

http:///

Chapter 1

[9]

In short, LBS can be described as a combinaion of two components, Locaion Providers

and Locaion Consumers, with GPS, AGPS, iOS API, and Google Maps API as the locaion
providers and GPS receivers, mobile phones, and websites as the consumers of locaion data.

Time for action – consuming Location-based Services with
Google

To understand how LBS work behind the scenes, let's take an example of the most common
use of LBS, that is, how Google.com uses LBS for its search.

1. Fire up your Safari Browser and navigate to http://google.com.

2. Enter Hotels in San Francisco as the search key and hit Enter.

3. You are presented with results from the Google Places database, as shown in the
following screenshot:

http:///

The Locaion-based World

[10]

4. You get similar (but formated) results from the iPhone browser search, as follows:

5. Scroll further down the page to see the actual results (following screenshot). The
preceding screenshot is an ad-supported display that shows up on each search
query (that's how Google makes money).

http:///

Chapter 1

[11]

What just happened?
When you searched for Hotels in San Francisco on Google, Google irst presented you with
the hotels in its database (Google Places database) that matched the query for hotels as well
as for San Francisco; this is done by Geocoding those hotels and storing it in a Geographic
Informaion System (GIS)-aware database.

The mobile search on Google via the iPhone makes it more relevant to the user as it presents
a nice map with the hotels ploted on the map and the hotels' details below (as seen in the
preceding screenshots). Other mobile-opimized websites present similar content based on
the locaion detected from the mobile phone.

Buzzwords in the Location-based Industry

As the book deals with iPhone locaion-aware apps, it is a good ime now to understand the
buzzwords and key terms used in the Locaion-Based Industry, so that term such as Check-In,
GPS, AGPS, Geocoding, Reverse Geocoding, Geo fencing are made familiar to the reader.

GPS: Global Posiioning System – A set of satellite systems that provides global navigaion
data including locaion and ime.

http:///

The Locaion-based World

[12]

GLONASS: Global Navigaion Satellite System – Russian Navigaion System.

AGPS: Assisted GPS – Mobile network-assisted GPS system, which uses the mobile network
as a fall back in areas of poor GPS coverage.

GIS: Geographic Informaion System – A system for storing, processing, and retrieving
geographically-aware data. It uses the user interface (usually Raster Map Images) for
easier management. A GIS typically involves both hardware and sotware.

Spaial Database: A database management system that is used for storing, querying,
and fetching geographically-aware databases and is used in conjuncion with GIS for
data management.

Geocodes: The laitude and longitude pair used to refer to a point on the earth's surface.

Geocoding: The process of convering a text address to Geocodes using Geocoding services
such as GeoNames or Google Maps API.

Reverse Geocoding: The process of convering Geocodes to a text address.

Geo Fencing: Geo Fencing refers to the process of device-based alerts or noiicaions
when entering a virtual geographical area. This geographic area can be a block, a lane,
a neighborhood, a city, and so on, based on the applicaion logic.

Check-ins: Made popular by start-up companies such as Foursquare and Foofeed,
check-ins refers to the process of conirming that you actually entered/checked-in
to a place via a mobile phone app.

GeoTagging: GeoTagging is the process of assigning Geocodes (laitude-longitude pair
values) to any news aricle, blog post, twiter tweet, photo, or any other web resource,
so that locaion-based searches can be performed on them.

Locaion-Based Adverising (LBA): Locaion-based adverising is a new paradigm in web
and mobile ads, which are triggered by the locaion of the mobile device. Locaion-speciic
adverts for deals, events, movies, shopping, and restaurants ofers are all possible with LBA.

Augmented Reality (AR): Augmented Reality is an exciing visual manipulaion
(augmentaion) of the real-world environment (usually captured via a mobile phone camera)
combined with computer generated (locaion-based) mulimedia elements (pictures, audio,
videos, 3D animaion) usually in real ime, giving the user a percepion of superimposiion of
computer-generated elements onto the real world.

HTML5: HTML5 is the new version of the Hypertext Mark-up Language that is under heavy
development at W3C and browser companies such as Mozilla, Apple, Google, and Microsot.
HTML5 is poised to bring in a new and beter way of wriing HTML pages using standardized
tags that not only help the web developers maintain code reusability, but also makes it easy
for search engines to semanically extract informaion from such HTML5 websites.

http:///

Chapter 1

[13]

Application of LBS and common use cases
The primary use of LBS combined with GPS was and will remain the same, that is, navigaion.
There are new and exciing (and someimes crazy!!) ideas being implemented in LBS every
other day. Research and markets (http://www.researchandmarkets.com/) has
predicted a market forecast of US $10 billion for the LBS industry in 2015, from $2.8 billion in
2010. Gigaom (http://gigaom.com), which is a technology blog by a Silicon Valley veteran
Om Malik, has similar views on the LBS industry.

Government and military, navigaion, and commercial industries such as adverising, social
networks, and web portals are the primary consumers of LBS. GPS, in fact, was funded by the
US Department of Defense (DOD) and sill is maintained by DOD. It was iniially designed for
military use. In the late 1980s and early 1990s, it was opened up for civilian use. Let's review
the common use cases:

Military
The US military uses GPS for navigaion purposes including troops' movements. Target
tracking weapons use GPS to track their targets. Military aircrats and missiles use GPS
in various forms.

Government
The government uses GPS for emergency services such as the US 911 service, which uses
GPS to pinpoint the caller's locaion for faster pinpoining of the user and for providing
emergency service on ime.

Commercial
Navigaional GPS units that provide car owners with direcions to desinaions are the
biggest commercial users of GPS. Air traic control, seaport control, freight management,
car and transport tracking, and Yellow pages data management (local search) are other
commercial uses of GPS.

Interesingly, GPS is also used for ime synchronizaion. The precision provided
by GPS improves the ime data by 40 billionths of a second.

If you have the new iPhone 4S and are overwhelmed by Siri and its
intelligence, then you should know that GPS and/or other locaion-detecion
methods play an important role in making the intelligent decisions.

http:///

The Locaion-based World

[14]

How Apple uses LBS in the iPhone, iPad, and iPod devices
The Apple iPhone is a revoluionary Smartphone launched by Apple on June 29 2007. Since
its launch, it has gone on to become the most popular Smartphone, carving a new market for
itself. It has also seen revisions almost every year, with the current version being the iPhone
4S, launched in October 2011.

Besides the iPhone, Apple has other products, now branched together as iOS devices, which
include iPod Touch and iPad 2, and they have all the features of the iPhone besides the fact
that you cannot make calls with them. Apple has provisioned the iPhone 4 with the following
locaion-supported hardware that helps the device establish locaion posiioning for the core
OS and apps:

 � AGPS

 � Digital compass

 � Wi-Fi

 � Cellular locaion

The iPod Touch uses Wi-Fi (Apple's locaion database) and the Maps applicaion to
approximate the user's locaion. The iPad uses Wi-Fi and the compass for locaion,
while the iPad 3G uses AGPS, Digital Compass, Wi-Fi, and Cellular locaions, just like the
iPhone 4. The following table summarizes the locaion features in all the iOS devices:

Device AGPS Digital compass Wi-Fi Cellular

iPhone 4 Yes Yes Yes Yes

iPod Touch No No Yes No

iPad No Yes Yes No

iPad 3G Yes Yes Yes Yes

Apple uses this hardware for locaion detecion of the user on the sotware side; Apple's
new adverising product iAd may also be used for locaion tracking of the user.

However, for the safe keeping of the user's locaion data, the user has to opt-in for the
locaion tracking, so that iOS and third-party applicaions can use his/her locaion. Most
apps show an alert message asking for user conirmaion to use their locaion data. The
iAd network also has an opion where users can elect to share their data with the service
via http://oo.apple.com

http:///

Chapter 1

[15]

iOS location API
The Core Locaion API in the Apple iOS SDK is used for communicaing with device hardware
to get user locaion informaion. We will cover Core Locaion in the forthcoming chapters.

Core Locaion also supports direcion-related API calls, the magnetometer in the iOS
device reports the direcion in which a device is poining. Besides the heading, the GPS
hardware can also return where the device is moving; this is known as its course. This is
used by navigaion apps to show coninuous user movement. The Core Locaion framework
contains various classes to handle the heading and course informaion. More details on this
as we move along the course of the book!

Time for action – turning off Location Tracking in your iPhone
To turn on or of the Locaion Tracking by inbuilt and third-party apps in your iPhone (for iOS
version 5), carry out the following steps on your iPhone:

1. Go to Seings | Locaion Services.

2. Select the apps that you want to allow usage of your locaion informaion.

3. To reset the Locaion Warnings made by applicaions such as Camera or Compass,
go to Seings | General | Reset and select Reset Locaion Warnings.

www.allitebooks.com

http:///
http://www.allitebooks.org

The Locaion-based World

[16]

4. In iOS 5, you can also switch locaion tracking for System Services, including iAds,
Compass, Traic, Time Zone Seings and Diagnosics, and Usage. These seings
can be found at Seings | Locaion Services | System Services.

Note that this works for iOS version 5 (tested on iOS 5). For
iOS 4.x, please refer to the oicial Apple documentaion at
http://support.apple.com/kb/HT1975

What just happened?
iOS versions prior to iOS 4.3.3 had a bug with the locaion seings, where the user's
locaion informaion was stored on the iPhone, backed up to iTunes, and was open to hacks
by third-party applicaions. Apple removed these bugs in version iOS 4.3.3, ater a lot of hue
and cry from security watchdogs. With the new release, the user's locaion history is deleted
every ime the user switches the locaion services of. Apple also reduced the cache size
so less locaion informaion of the user will be cached on the device. In iOS 5, the locaion
history of the user is encrypted, so third-party applicaions will not be able to read locaion
informaion without the right authorizaion.

http:///

Chapter 1

[17]

Behind LBS – GPS
Let's learn a bit more about GPS, as it powers all the current LBS implementaions. If you
are building the next generaion navigaion sotware or your own mapping applicaions, it's
the right ime to know more about GPS and how it works, so that it can help you make key
decisions for your applicaion.

GPS has three major components, as depicted in the following diagram, the user segment
(GPS receivers, mobile phones, car navigaion units), the space segment (24 satellites in
orbit), and the GPS control segment having its base on Earth, with the Master Control

Staion (MCS) in Colorado Springs, Colorado (so now you know where to head to get a
clear signal!).

User segment
The user segment comprises the GPS receivers embedded in millions of military equipment,
almost all cell phones these days, aircrat, and car navigaion systems.

http:///

The Locaion-based World

[18]

Space segment
Space segment comprises the satellites orbiing the earth. The 24 satellites move on six
diferent orbits around the earth at a distance of 20,200 km.

The satellites move in a manner that at every point of the earth's surface, at least ive and at
most 11 satellites are visible over the horizon for maximum accuracy.

Control segment
The control segment is the base on Earth that controls the funcioning of the GPS satellites
and passes on the administraive commands such as correcing the satellite orbit and
internal data. Several monitoring staions receive the satellite signals based on their locaion;
they are synced with atomic clocks to calculate the correcion data. This corrected data is
then sent to the Master Control Staion.

Push and Pull methods of Location Services
LBS implementaion is based on Push Services or Pull Services, depending on the way
locaion informaion is retrieved.

Push Service
Push Services imply that the user receives locaion informaion without having to acively or
coninuously keep requesing for it. However, the user consent is acquired beforehand. For
example, the navigaion sotware in your car will require your consent to use your locaion
informaion when you switch it on. However, as you drive your car around town, your new
locaion will automaically be acquired via Push Services.

Some more examples of Push Service include Emergency Alert System (in case of terror
atacks), locaion-based adverising apps on your phone that noify you with deals,
messages, and alerts on entering a new city or town.

http:///

Chapter 1

[19]

Pull Service
Pull Services work on the on-demand principle. Your apps would request locaion
informaion from the network on demand, usually on applicaion load, but is not limited to
other stages in the app. For example, a Restaurant Search app on your iPhone would request
locaion informaion when it loads, and you can change the locaion via the seings page
of the app. In this way, the applicaion pulls locaion informaion when needed and not
coninuously in the background.

In the forthcoming chapters, we will be building apps by mostly using the Pull Services,
including a local search app and an events app that will pull locaion informaion on
demand and mash it with informaion retrieved via Web Services.

Note that this type of locaion retrieval is also good for the batery power
consumpion of your phone, as GPS posiioning does involve a signiicant
amount of batery power.

Life without GPS: Wi-Fi-based location detection
There are alternaive ways to detect the locaion through mobile phone devices using their
Wi-Fi MAC addresses (access points that connect to the Internet) to determine the locaion.
Wi-Fi-based posiioning returns the approximate locaion, which may not be the exact
laitude-longitude pair, but it would be the closest.

Companies such as SkyHook Wireless, and Google (with Google Laitude) were the irst to
provide this service. Apple launched a similar service in April 2010 with its own Locaion
Database for devices having iOS version 3.2 and above.

Skyhook Wireless' locaion is prety much public, with provisions for end users to add
their locaion data to its database via a web interface, which is then available to all
implementaions of SkyHook wireless API users. Their database uses over 250 million
Wi-Fi access points and cellular tower informaion for locaion analysis. Skyhook deploys
data collecion vehicles to conduct the access point survey, much similar to the manner
Google Street views cars. The accuracy provided by SkyHook Wireless is ten meters. To
know more about SkyHook Wireless coverage, visit http://www.skyhookwireless.com/
howitworks/coverage.php

http:///

The Locaion-based World

[20]

Google Laitude uses a mix of Wi-Fi, GPS, and cell tower-based locaion-posiioning
methods. It is ightly integrated with Google's Mobile Operaing System – Android, and its
Google Maps applicaion. It works on PCs, Laptops, and mobiles alike. The Google Laitude
app for iPhone is available from the Apple app Store from http://itunes.apple.com/
us/app/google-latitude/id306586497; it supports automaic locaion detecion
coupled with automaic check-ins to nearby places, as you move around.

http:///

Chapter 1

[21]

Life without GPS: cell ID positioning and cell tower
triangulation

Low cost or price-sensiive mobile phones oten come without GPS and Wi-Fi. These
phones are meant to do what mobile phones are intended to be used for – Talk. However,
the locaion of the user can sill be detected on such phones using cellular towers. Cell ID
Posiioning and cell tower triangulaion are two diferent ways to get locaion informaion
from cell towers. Cell ID result accuracy is only 200-1000 meters, hence it is used as the last
opion for most locaion detecion methodologies.

Cell ID Posiioning uses your mobile network's cell tower to ind your locaion. This
involves the nearest tower your phone connects to in order to let you place calls. Cell
tower triangulaion, on the other hand, uses all the Cellular Towers around you to calculate
your posiion based on the signal strength your phone receives from each of the towers.
Triangulaion is more accurate, but a slower process.

The iOS SDK has a region monitoring API that we will discuss in later chapters. This API is
CLRegion, which monitors the iPhone locaion and triggers an alert if you enter or leave
a region. It works by using the Cellular Tower posiion as the trigger. When the iOS device
detects a diferent Cellular Tower using the Triangulaion technique to ascertain that the
user has indeed crossed or entered a region, it triggers an alert to the applicaion. This is
an eicient way of locaion tracking without using GPS (and hence, more batery juice).

It is important to acknowledge privacy and security issues for end users while
developing your applicaions and choosing the type of locaion detecion and
storage. In April 2011, it was discovered that Apple kept an unencrypted locaion
database on your iPhones, even if the Locaion Seing was turned of. This ile
could tell any hacker where you have been and the iming details. Apple reciied
this with a sotware upgrade, but it has been an eye opener for user privacy and
security concerns.

http:///

The Locaion-based World

[22]

Time for action – using the SkyHook Wireless Loki framework to
determine your location

Loki is a SkyHook Wireless product targeted at website owners to help them locate their
visitors. It is a JavaScript implementaion done using the same SkyHook algorithms as on
the mobile devices.

1. Go to http://loki.com/findme with your favorite browser.

2. You will get a permission request from a Java Applet, as shown in the
following screenshot:

http:///

Chapter 1

[23]

3. Wait for a few seconds and you should see your locaion detected.

4. If your Wi-Fi is not registered with SkyHook wireless, then you can do so by
adding the same on http://www.skyhookwireless.com/howitworks/
submit_ap.php

What just happened?
Loki.com uses a proprietary JavaScript code and uses a Wi-Fi Posiioning system to
determine your locaion. Users can also submit their Wi-Fi MAC ID to be included in
the Loki database.

Loki also has a developer API that can be used by website developers to integrate a locaion
in their websites.

Life without GPS: Google Maps API
Google Maps API is the most powerful mapping and Geocoding API, used by millions of
developers to integrate locaions and maps in their Web and mobile applicaions. It provides
a rich set of APIs for Direcions, Maps, and Geocoding. We will focus on the Geocoding API in
Google Maps Version 3, as that is what we are interested with in this book; the rest is beyond
the scope of this book.

Geocoding, as described earlier, is a process of convering addresses into geographic
coordinates (laitude and longitude pair). Google Maps uses these co-ordinates to plot them
on a map. Google Maps API provides opions for both Geocoding and Reverse Geocoding.

The Geocoding API is a RESTful API that can be consumed with the following API call
http://maps.googleapis.com/maps/api/geocode/output?parameters where
the output can be json/xml and the parameters can use any one of the following:

address (required) or latlng (required)

bounds

region

language

sensor (required)

http:///

The Locaion-based World

[24]

An example of a Geocoding request for South Park in San Francisco, CA, USA is constructed
as follows:

http://maps.googleapis.com/maps/api/geocode/json?address=South+Park,+

San+Francisco&sensor=false

This returns the following results:

{
 "results" : [
 {
 "address_components" : [
 {
 "long_name" : "South Park",
 "short_name" : "South Park",
 "types" : ["neighborhood", "political"]
 },
 {
 "long_name" : "San Francisco",
 "short_name" : "SF",
 "types" : ["locality", "political"]
 },
 {
 "long_name" : "San Francisco",
 "short_name" : "San Francisco",
 "types" : ["administrative_area_level_3",
 "political"]
 },
 {
 "long_name" : "San Francisco",
 "short_name" : "San Francisco",
 "types" : ["administrative_area_level_2",
 "political"]
 },
 {
 "long_name" : "California",
 "short_name" : "CA",
 "types" : ["administrative_area_level_1",
 "political"]
 },
 {
 "long_name" : "United States",
 "short_name" : "US",
 "types" : ["country", "political"]
 },
 {
 "long_name" : "94107",
 "short_name" : "94107",
 "types" : ["postal_code"]
 }

http:///

Chapter 1

[25]

],
 "formatted_address" : "South Park, San Francisco, CA
 94107, USA",
 "geometry" : {
 "location" : {
 "lat" : 37.78160380,
 "lng" : -122.39389940
 },
 "location_type" : "APPROXIMATE",
 "viewport" : {
 "northeast" : {
 "lat" : 37.7904220,
 "lng" : -122.3778920
 },
 "southwest" : {
 "lat" : 37.77278450,
 "lng" : -122.40990680
 }
 }
 },
 "types" : ["neighborhood", "political"]
 }
],
 "status" : "OK"
}

Downloading the example code

You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and
register to have the iles e-mailed directly to you.

The values in bold are the ones of real importance to us, that is, the geometry | locaion |
lat and the geometry | locaion | lng values. We will also be using the Geocoder provided in
the iOS SDK in the coming chapters. If you are developing your apps in HTML5 for web and
mobile, then you can check the Google Maps API at http://code.google.com/apis/
maps/, as the W3C Geolocaion standard has been implemented in Google Maps API.

Apple iOS Map Kit API uses Google Maps as the underlying technology to Geocode and
reverse Geocode. We will cover Map Kit extensively in Chapter 4, Using Maps – Mapkit, but
now is a good ime to play with Google Maps API to get an overview of how things work.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http:///
http://www.allitebooks.org

The Locaion-based World

[26]

Understanding Indoor and Outdoor Navigation

Navigaion funcionaliies in cars, airplanes, rail, and mobile phones are mostly opimized
for on-the-move funcionality, it assumes that the user of such services tends to exhibit
movement from one place to another with ime; this is classiied as Outdoor Navigaion,
implying navigaion done outside homes, oices, malls, any place not conined to a building
or large area.

This is where Indoor Navigaion sets in, while GPS and other posiioning systems have high
coverage and accuracy, they fail when you are indoors, in a mail or a shopping complex,
even airport lounges, stadiums, oice complexes, as the radio signals from GPS transmiters
cannot penetrate walls. Indoor Navigaion works in such places, using techniques dissimilar
to outdoor navigaion; in short, no GPS for Indoor Navigaion.

There are various implementaions of Indoor Navigaion, some using Infrared techniques,
some using Radio signals (RFID), and another implementaion using Ultrasound. Companies
such as VisioGlobe (http://visioglobe.com) ofer an SDK for Indoor Navigaional
purposes. Another company – WiFiSLAM is building a Wi-Fi-based soluion. While the
market for Indoor Navigaion is quite big and the outlook for growth is very posiive, the
implementaion and standardizaion is at a very nascent stage, partly due to the fact that
a generic soluion that its all is not possible for Indoor navigaion. Addiionally, interacive
kiosks at malls, airports, convenion centers solve the problem of informaion management
for visitors.

Google Maps on Android now include Indoor Navigaion that allows you to navigate
through loor plans for Airports, Shopping Malls, and Retail Stores. More informaion at
http://googleblog.blogspot.com/2011/11/new-frontier-for-google-maps-

mapping.html

Pop quiz – play safe with location!
1. What are the various methods of locaion detecion?

a. Detect and Store

b. Push and Pull

c. Device hardware and sotware

2. To conserve device batery consumpion, what method of locaion detecion will you
employ and why?

a. No Locaion

b. Pull methods

c. Push methods

http:///

Chapter 1

[27]

3. In case there is no source of locaion detecion, either via GPS, WIFI, or Cell ID
triangulaion, how will you model your Locaion-based app?

a. I am out of luck; need to remove the locaion feature completely

b. I will assume locaion informaion

c. I will ask the user and convert the user input to relevant locaion values,
based on pre-set rules

Summary

In this introductory chapter, we have ideniied how LBS work—the buzzwords behind all
things locaion and the importance of GPS.

Speciically, we discovered:

 � LBS, and its applicaions in the real world

 � How Apple uses Locaion in its iOS devices

 � GPS – how it works

 � Non-GPS-based soluions for locaion

We also discussed new potenials in LBS markets—that of Indoor Navigaion.

Now that we've got our feet grounded in locaion, we can move to the next chapter that
introduces Apple's Xcode IDE and HTML5-based app development tools.

http:///

http:///

2
The Xcoder's World

Apple Xcode (the latest version is 4.2) is a complete Integrated Development
Environment (IDE) for MacOS X and Apple iOS program development. It
includes all the tools necessary to build, debug, test, and deploy apps for Mac
OS, iPhone, iPad, and iTouch devices.

In this chapter, we shall:

 � Learn about Xcode 4's prerequisites and features

 � Learn about the new iOS 5 SDK and the new features introduced

 � Install Xcode 4 and understanding the new features in it

 � Build a Hello Locaion app

 � Introduce you to HTML5-based app Authoring Tools

 � Explore Locaion-Based APIs and SDKs

So let's get on with it...

Introducing Xcode 4

Xcode is a set of developer tools packaged in a nice IDE, which brings together all of
Apple's developer goodies under one umbrella. If you have used Eclipse or NetBeans
before, then you will ind Xcode to be quite similar in terms of IDE funcionaliies. Xcode
not only supports making apps for iPhone, but it also supports Mac OS app development.

http:///

The Xcoder's World

[30]

The Xcode toolkit includes the Xcode IDE, Interface builder, Apple LLVM Compiler, Debugger,
and the Instruments analysis tool. This makes it a complete tool to design, code, test, debug,
and submit your apps to the Apple Store, everything right under one tool. Not to forget the
great iOS Simulator that lets you test your iPhone and iPad apps within the simulator, in case
you do not have muliple devices to test your apps. The iOS 5 SDK now includes locaion
simulaion, so you don't have to run outside to test your apps for locaion tesing! Let's
explore the features and tools of Xcode in more granularity.

Note: The iOS simulator cannot simulate the Accelerometer or the
Camera on your iOS device. You will need to test yours apps on a
real device, in case you intend to use either the accelerometer or
camera in your app.

Xcode 4: Prerequisites and features
The top feature of Xcode 4, from a developer's point of view, is the built-in support for Git,
the popular sotware version control system. Another notable feature is distributed building
of source code via muliple computers using the Bonjour Protocol.

Prerequisites
Xcode 4 requires an Intel-based (x86-based processors) Mac running Mac OS X 10.6.7 and
higher; support for development for PowerPC arch has been removed. You also need to be a
member of Mac or the iOS Developer program to download Xcode 4. Alternaively, you can
download Xcode 4 from the Mac App Store (Version 4.1.1 is now available for free on the
Mac App Store).

Features
Besides a brand new, single window worklow interface, Xcode 4 has the following features:

1. Interface Builder – fully-integrated graphical tool for UI designing

2. Assistant Editor – inds and opens related iles

3. iOS Simulator with Locaion Simulaion (iOS 5 and Xcode 4.2 only)

4. C, C++, and Objecive-C compiler opimized for muliple core processors

5. Dashcode – A Rapid Applicaion Development (RAD) – tool for Dashboard widgets
creaion and web applicaion development

http:///

Chapter 2

[31]

6. Instruments tool with Data recording and visual comparison

7. Integrated Build System – for simpler app builds and on-device installaion

8. Live Fix it – ixes your symbol names and code syntax as you type, with a single
keyboard shortcut

9. Completed integrated documentaion

10. Version Editor – Compare code revisions with SCM, use SVN or GIT, or both to
manage your source code.

11. LLDB Debugger – Based on LLVM, it is a new debugger introduced to enhance
performance and reduce memory consumpion.

12. Miscellaneous tools for Audio, OpenGL, and Quartz for Animaion

You can ind a full set of features at http://developer.apple.com/technologies/
toolsfeatures.html

To summarize the features and tools available in Xcode, with respect to the full applicaion
life cycle, you use the Xcode IDE to create a new project, the workspace window provides
you with access to all the tools needed to build your applicaion. The applicaion user design
is handled by Interface Builder, which allows you to posiion your UI elements as well as
helps you connect the UI elements to actual code via outlets and acions. Ater which, you
test the applicaion on the iOS simulator to see if it works as intended; the simulator gives
an almost real-world usage behavior. With iOS 5.0, you can also simulate locaion, and that
was not possible before. The Instruments Applicaion is used to analyze the performance of
your applicaion. Finally, with the build funcionality in Xcode 4, you can get your app
ready for distribuion.

iOS 5 and Xcode 4.2: new and notable features
iOS 5 is the next increment in the iOS SDK line-up. It has been upgraded with 200 new
features and some new never-before-seen features in iOS. Some of the biggest new
features in iOS 5 are as follows:

 � iCloud - Apple's cloud service

 � iMessage - Apple's answer to blackberry messenger

 � Twiter - Integraion in the iOS base system

iTunes version 10.5 or higher is needed to acivate iOS 5 on your iPhone.

http:///

The Xcoder's World

[32]

iOS 5 new features
With iOS 5, Apple has introduced features that have been requested for a long ime,
both from the developer community as well as the consumers. Let us explore the
notable features:

1. Noiicaion center: All noiicaions, be it SMS, e-mail, or app alerts are now shown
in one convenient locaion (usually on the top of your iPhone screen). This is quite
similar to Android OS noiicaion.

2. Reminders: Reminders are to-do lists with dates and locaions enabled. The
locaion reminder feature is a great way to show a reminder alert when you
reach a paricular locaion.

3. Computer-free operaion: You no longer need a Mac or PC to work around with
your iPhone, iPad, or iTouch. All the tasks can now be done wirelessly, with backup
and restore funcionality added via the iCloud service.

4. Wi-Fi Sync: No cables needed to sync your iTunes library.

5. Newsstand: The newspaper industry is now friends with Apple and introduced
newsstand. All newspaper and magazine subscripions are now handled by this one
applicaion. There is also a newsstand store integrated, so you can search for and
subscribe to new services.

6. Camera and photo enhancements: It has easy photo capture, autofocus, and
gridlines for the camera app and crop, rotate, enhance and red eye removal for
the Photo app. It also has some nity iCloud features.

7. Safari: The Safari browser has been enhanced with a reading list that lets you save
aricles to read later. Tabbed browsing on the iPad and a cluter free reading mode
are pleasant addiions. For developers, Apple has brought the Nitro Engine to Home
Screen Web apps.

8. Air Play Mirroring for iPad 2: Stream HD content from your iPad 2 to your HDTV via
Apple TV. It is very useful for classroom and board meeings.

9. Game Center, mail, calendar, mulitasking gestures for iPad are some other
enhancements added in iOS 5.

10. Twiter Integraion: You no longer need to sign in to muliple twiter-enabled
applicaions every ime you use the applicaions or switch from one applicaion to
another. Just sign-in once via your iPhone seings and use the twiter services from
any applicaion or service—no more muliple oAuth and login. Tweeing can happen
via Safari, Photos, YouTube, or Maps without re-entering your credenials. Same
with third-party applicaions.

http:///

Chapter 2

[33]

11. iMessage: iMessage is a new messaging plaform that works over Wi-Fi or 3G,
enabling you to send unlimited text messages. Group messages, sending images and
videos, reading receipts, Google chat such as keyboard updates, like 'xyz is typing…',
are other features in iMessage

12. iCloud: All the new apps added in iOS 5, be it Twiter or Reminders, as well as
exising apps such as photos and e-mail, are all iCloud enabled. This creates a good
way of sharing your data across your iOS devices – iPhone, iPad, or iTouch.

13. Speech Recogniion (Siri): Apple has added Speech-to-Text and Text-to-Speech
funcionality in iOS 5, which is only compaible with iPhone 4S. In collaboraion with
Nuance, the feature is known as Siri, which is poised as an intelligent assistant to
iPhone users. It can schedule appointments, read out text messages and e-mails, as
well as send out e-mails by transcribing your voice to text. It is sill in the beta stage,
but is a revoluionary step for mobile phone users.

Xcode 4.2's new features
The iOS 5 SDK includes a new version of Xcode 4.2 that is needed to develop apps on iOS 5.
Some of the improvements done in Xcode 4.2 include the following:

1. Locaion Simulaion: You can now simulate locaion data for your app from
within Xcode.

2. Storyboard: Storyboarding is a new feature added in the Interface builder to
manage the transiions between diferent views in your app.

3. Automaic Reference Couning (ARC): ARC eases the developer's pain of memory
management, which is oten the toughest and most brain whacking exercise in app
development. With ARC, the LLVM compiler takes care of the memory retain or
release cycle.

4. LLVM compiler: The LLVM compiler is the default compiler now.

5. OpenGL ES Debugging: Frame capturing from OpenGL ES-based apps is
now possible.

6. New Instruments tools: The Instruments tools have added some new instruments:

 � Network Connecions Instrument: Understand the data low from TCP/IP
and UDP connecions for your app; seek latency imes and other staisics
with this tool.

 � System Trace: Proile system calls, thread scheduling, and VM operaions
with Dtrace.

 � Automaion: This is a nice and much-needed instrument to test your iOS
Applicaion's UI, done via JavaScript. Imagine running User interacion
scripts on your app UI and geing logs back from the Automaion Tool.

http:///

The Xcoder's World

[34]

Besides these, there are more new features added, as well as enhancements done to exising
funcionaliies. New frameworks include the Twiter, OpenGL framework, and Image and
Accounts framework. Enhancements have been done in the UIKit, EventKit, MapKit, Game

Kit, Core Data (with iCloud support), Core Moion, and Core Locaion frameworks.

Another very big feature for developers is the ability to download your
applicaion data from an iOS device and automaically restore that
data when debugging or tesing in the iOS simulator or even on a new
device. This is a boon to developers, especially in circumstances when
everything works ine on the simulator but crashes on the device.

Transitioning from Xcode3: What you need to know
You can open Xcode 3 projects in Xcode 4. The major new feature of Xcode 4 is the
workspace, which is a container for all the iles in your project or muliple projects as well.

Working with external libraries is diferent in Xcode 4. In order to add libraries to your build
target, you need to browse to Project | Targets | Select the Target | Build Phases and then
manage the libraries from the Link Binary with Libraries group.

http:///

Chapter 2

[35]

The compiler has been changed from GCC in Xcode 3 to LLVM in Xcode 4, the features of
which we have discussed in text before. The target | build | execute coniguraion
has been revamped in Xcode 4 by introducing a new concept called scheme. It speciies
which targets to build for, what build coniguraion to use, and which executable to run, all
speciied in a scheme. You can edit a scheme via the Scheme Editor from the Product Menu
in Xcode 4, as shown in the following screenshot:

www.allitebooks.com

http:///
http://www.allitebooks.org

The Xcoder's World

[36]

There are tons of new enhancements added in Xcode4, detailing them all is beyond the
scope of this book. Apple has a good transiion guide available at the Apple developer
website itled Xcode 4 Transiion Guide, which details the transiion from Xcode 3. We
will cover the related tools and features of Xcode 4, as we build our apps and understand
locaion-based services throughout the course of the book. Let's get started with installing
the iOS SDK 5 and tesing some locaion features with our Hello Location example.

Time for action – installation
You need to sign up for the Apple Phone Developer Program to download Xcode and iOS SDK
and to submit your apps to apple iTunes store. It is a 99$ per year program (if you choose
the standard iOS Developer program, then there is an Enterprise developer program as well).
Alternately, you can now download Xcode 4 from the Mac App Store. Here is how you can
obtain the right iOS SDK from Apple's Developer site:

1. Go to http://developer.apple.com/ios to sign up for an
iOS Developer Account.

2. If you have an Apple ID, use that; else you need to create one.

3. If you are using Snow Leopard, then download Xcode 4.2 for Snow Leopard. If you
have upgraded to Mac OS X Lion, then you need to download Xcode 4.2.1 for Lion.

http:///

Chapter 2

[37]

Installaion of the iOS SDK is prety straighforward; double-click on the download ile and
follow the instrucions.

Make sure you have enough free disk space; the complete installaion takes around 8.5 GB of
disk space. If everything went well with the installaion, then you will ind Xcode and other
tools in the /Developer/Applications folder on your Mac.

What just happened?
We downloaded and installed Xcode IDE from the Apple Developer site. Make sure you
download the right DMG package, as there are two versions of the SDK now: one for
Mac OS X Lion and another for Mac OS X Snow Leopard. So, depending on what version
of the Mac OS you have, download the appropriate package.

Furthermore, make sure you download the updated iTunes version and have the latest iOS
image ile for your iPhone, iPad, or iPod Touch to use the device for development.

http:///

The Xcoder's World

[38]

Time for action – Hello Location
Now that you have installed Xcode 4, let us quickly build a Hello Location app that
detects your posiion and shows it (laitude and longitude pair) on the iPhone screen. Don't
worry if you do not understand everything right away; we will explore more over the course
of this book.

1. In Xcode, go to File | New Project, and select Single View Applicaion.

2. Name the product as Hello Location and the company ideniier as your
company names; in this case, we are using com.packt. Coninue to save the
project on your disk.

http:///

Chapter 2

[39]

3. Now that your project is created, it is ime to add a label to the
Hello_LocationViewController.xib ile, which holds your projects'
main UI. Select the Hello_LocationViewController nib ile in the
workspace and add a Label control from the Library Pane. Double-click
on the Label to set its text to Your Location is.

4. Similarly, add two more Labels below the irst one and change the text to
Latitude and Longitude. These labels are the placeholders for our locaion
values retrieved from the device.

5. Next, add two Text Fields next to the labels deined above (one for holding the
laitude value and the other for the longitude value).

http:///

The Xcoder's World

[40]

6. Lastly, add a Round Rect buton and change the itle to Detect Location.
Your UI should like the following screenshot:

7. Now let's add the code to detect the user's locaion and add it to the laitude and
longitude text ields added in step 5.

8. Open Hello_LocationViewController.h and add the CoreLocationManager
Delegate direcive just ater the Hello_LocationViewController class
deiniion. Next, deine two Outlets, namely, UITextField *latitudeText

and UITextField *longitudeText. These outlets serve as the connector to
your UI texfields created earlier.

9. Do not forget to import the CoreLocation header ile by using the
#import <CoreLocation/CoreLocation.h> direcive.

http:///

Chapter 2

[41]

10. Now deine the properies of these outlets, so we can reuse these objects in our
class implementaion.

11. We also deine an acion called locationDetect that is ired when
the Detect Locaion buton is pressed. Here is the complete code for
the Hello_locationViewController.h ile:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Hello_LocationViewController : UIViewController
<CLLocationManagerDelegate>
{
 IBOutlet UITextField *latitudeText;
 IBOutlet UITextField *longitudeText;
 CLLocationManager *locMgr;
}

@property (retain,nonatomic) IBOutlet UITextField *latitudeText;
@Property (retain,nonatomic) IBOutlet UITextField *longitudeText;

- (IBAction)locationDetect:(id)sender;

@end

12. In the Hello_LocationViewController.m ile, add the following line:

@synthsize latitudeText,longitudeText;

13. In the viewDidLoad funcion, add the following lines ater the [super
viewDidLoad] statement:

locMgr = [[CLLocationManager alloc]init];
[locMgr startUpdatingLocation];

14. We created a LocationManager object and started the locaion update process
by using the startUpdatingLocation method. Now we implement the
locaionDetect funcion deined in Hello_LocationViewController.h:

- (IBAction)locationDetect:(id)sender
{
 NSString *latitudeTextData = [[NSString
 alloc]initWithFormat:@"%g",locMgr.location.coordinate.latitude];

 NSString *longitudeTextData =[[NSString alloc]
 initWithFormat:@"%g",locMgr.location.coordinate.longitude];

 latitudeText.text = latitudeTextData;
 longitudeText.text = longitudeTextData;}

http:///

The Xcoder's World

[42]

15. We capture the locaion values retrieved from the LocationManager Object and
convert it to a Double value, and then inally, change the textbox values with the
corresponding laitude and longitude values obtained.

16. Now open the Hello_LocationViewController.xib ile to connect the outlets
and acion, deined above. Press and hold the Ctrl key and click on the File's Owner

item and drop it on the UITextfield, which we designed to hold the Laitude
value, as shown in the following screenshot, and select the latitudeText outlet.

17. Similarly, we connect to the longitudeText outlet from the File's Owner item.

http:///

Chapter 2

[43]

18. Now let's connect the Detect Locaion buton to its acion – locationDetect; this
is done by holding the Ctrl key, clicking on the UIButon (Detect Locaion) buton,
and dropping it on the File's Owner item. Note that connecing the Acions is a
complete reverse of the way we connect the Outlets.

http:///

The Xcoder's World

[44]

19. You need to add the CoreLocation Library in your Build Path. To do so,
navigate to Target | Build Phases | Link Binary with Libraries and add the
Core Location Library.

20. Build and run the applicaion on the IOS Simulator (simulate the locaion by using
the new Locaion Simulator feature of Xcode), or on the iPhone4, you should see an
output, as shown in the following screenshot:

http:///

Chapter 2

[45]

What just happened?
To summarize the Hello Location applicaion, we created a Single View-based
applicaion, quickly added the UILabels and UITextBoxes to the UI, and created a
UIButton that is used to trigger the locaion values and display on the textboxes created.

When the applicaion is loaded, we start the Locaion Manager Update method to start
reporing the locaion update values to the applicaion. On buton press event of the Show
Location buton, we ire an event that obtains the locaion values (laitude and longitude
pair) and renders them on the textboxes.

www.allitebooks.com

http:///
http://www.allitebooks.org

The Xcoder's World

[46]

The complete code for this applicaion can be found on the book page at PacktPub's website
http://www.packtpub.com/iphone-location-aware-apps-beginners-guide/

book in a project named Hello Location.

Tools for the overnight coders: HTML5
If you have been following mobile apps development recently, then you might have heard
about HTML5 and how it is being used for mobile apps development. Products such as
PhoneGap, Appcelerator Titanium, and Adobe Dreamweaver ofer the web designers a
quick way for rapid mobile apps development using their exising Web Development skills.

HTML5 combined with CSS3 and JavaScript has become the killer combinaion for
easy-to-develop web-naive apps for iPhone and Android. There are quiet discussions
on the web on naive apps versus web apps, but it seems web apps are the future.
Technologies such as WebGL, oline storage are bridging the gap between naive
and web apps.

HTML5 is a new standard of Web Programming geared to make the Web more semanic and
syntax aware. It also strives to have a common toolsets for all browsers, so as to remove the
cross-browser issues. In short, HTML5 makes a developer's life easier, as it has been clearly
thought of, considering decades of HTML usage and its drawbacks.

The major features of HTML5 are the addiion of the Canvas element, Video element,
Geolocaion standard, Drag and Drop, Animaions, Web Sockets (No more Ajax!!), and Oline
storage. HTML5 also introduces new tags to easily structure the page; these are as follows:

 � <header>

 � <nav>

 � <article>

 � <section>

 � <aside>

 � <footer>

To illustrate how these tags are used for describing the structure and semanics of an HTML5
page, let us visualize an HTML5 page, which uses these new tags, as follows:

http:///

Chapter 2

[47]

<nav>

<article>

<aside> <section>

<footer>

<header>

<article>

<section> <section>

<section> <section> <section>

The HTML5 markup for such a page would be as follows:

<!DOCTYPE html>
<head>
<meta charset="UTF-8">
<title>HTML5 - Hello Location</title>
</head>
<body>
 <header>This is the header</header>
 <nav>Navigation Links and Menus here</nav>
 <aside>Ads, Sitemap and more links</aside>
 <article>This is Article 1 </article>
 <article>This is Article 2 </article>
 <section>
 <article> This is Article 3 </article>
 </section>
 <section>
 <article> This is Article 4 </article>
 </section>
 <section>
 <article> This is Article 5 </article>
 </section>
 <footer>Footer comes here</footer>
</body>

http:///

The Xcoder's World

[48]

The W3C – Worldwide Web Consorium has proposed a inal deadline of 2014 for the
complete speciicaion and standardizaion of the HTML5 standard. However, most modern
browsers already support HTML5 including Safari, Chrome, and Firefox. There are excellent
write-ups on the net for HTML5 with examples and demos; here are some important links to
get more details:

http://www.html5rocks.com - From Google

https://developer.mozilla.org/en/HTML/HTML5 - Mozilla Foundaion

http://www.apple.com/html5/ - From Apple

The ease of use, naive phone UI, and excellent new features of HTML5, as well as avoiding
the steep learning curve for iPhone and Android app development, has made HTML5 a
rich contender for building mobile phone applicaions over the past year. Products such as
PhoneGap and Appcelerator Titanium are the front-runners in this space, each ofering
diferent soluions, centered around HTML5 and CSS3.

PhoneGap
PhoneGap is an open-source product that helps build cross-plaform mobile apps for iOS,
Android, BlackBerry, Nokia – Symbian, and HP-Palm WebOS plaforms. The same HTML5,
CSS, and JavaScript code can work on all the plaforms, so no more tearing your hair poring
your app from one plaform to another. So it brings true the Write Once, Run Anywhere

funcionality to modern day mobile app development.

PhoneGap allows web developers to access the mobile camera, GPS, accelerometer,
and contacts without wriing plaform-speciic code, thus allowing true cross-plaform
development. Let's not waste ime and dive directly into installing PhoneGap and wriing
our Hello Location app with it.

http:///

Chapter 2

[49]

Time for action – using PhoneGap to build a Hello Location App
1. Go to http://phonegap.com and download the PhoneGap archive (version 1.2.0,

as of this wriing)

2. Unzip the PhoneGap ZIP ile and traverse to the iOS folder in the unzipped folder
(see following screenshot). Double-clicking on the PhoneGap-1.2.0.dmg ile
will mount the PhoneGap-1.2.0 folder on your desktop containing PhoneGap-
1.2.0.pkg. Double-click on the .pkg ile to run the phonegap add-in installer
for Xcode 4.

http:///

The Xcoder's World

[50]

3. Start Xcode 4 and set up a new phonegap project by selecing File | New | New

Project from the File menu and then selecing PhoneGap-based Applicaion.

4. Name your project Hello Locaion-Using PhoneGap and complete the creaion of
your project.

5. Build your project to generate the www folder, where your HTML code and JavaScript
iles will reside.

6. Browse to the folder where your project resides and drag-and-drop the www folder
to add it to the project.

http:///

Chapter 2

[51]

7. You will be prompted to add the www folder to the project in a couple of ways.
Select create folder references for any added folders and inish adding the folder
to the project.

8. The index.html ile in the www folder is where all the PhoneGap acion begins.
To detect the user's locaion, PhoneGap has the Geolocation object. To get the
user's current posiion, we will the use the geolocation.getCurrentPosition

of the PhoneGap API.

9. In index.html generated from the Xcode PhoneGap Plugin, we modify the
onDeviceReady funcion to call the geolocation getCurrentPosition

funcion when the device is ready to listen for the PhoneGap

speciic API calls. The code for which is navigator.geolocation.
getCurrentPosition(onSuccess, onError); where onSuccess is the
callback funcion when the getCurrentPosition succeeds in execuion and the
onError ires when the getCurrentPosition returns errors while execuing.

http:///

The Xcoder's World

[52]

10. Now, we deine the onSuccess and onError funcions, as shown in the following
code snippet:

function onSuccess(position){

 document.getElementById('latitude').innerHTML =
 position.coords.latitude ;

 document.getElementById('longitude').innerHTML =
 position.coords.longitude ;

}

function onError(error){

 alert('message: ' + error.message + '\n'); }

11. Let's use the iOS 5 Locaion Simulaion in our app! Go to Product | Edit Scheme in
Xcode, with your Hello Location project open. From the Run | Opions Seings
Pane, select the locaion you want to simulate, in our case, I choose Mumbai.

http:///

Chapter 2

[53]

12. Modify the index.html <body> tag with the following content, which will receive
the locaion values from the preceding onSuccess funcion:

<h1>You are located at </h1>

<div id='latitude'>Latitude Not Detected.</div>

<div id='longitude'>Longitude Not Detected</div>

13. Run your app in the iPhone 5.0 Simulator. You will be presented with the laitude
and longitude values of your simulated locaion, in this case Mumbai, as shown in
the following screenshot:

http:///

The Xcoder's World

[54]

What just happened?
We wrote a simple PhoneGap applicaion using the Xcode plugin for PhoneGap and
simulated the locaion using the new locaion simulaion feature in Xcode 4.2 and iOS
5. The index.html ile is the main ile that runs in a PhoneGap applicaion. When
the index.html loads, we iniialized PhoneGap framework on page load using <body

onload="onBodyLoad()">, the deviceready is the PhoneGap funcion which is called
when PhoneGap loads successfully. Next, we ire the geolocation.getCurrentPosition

PhoneGap method to talk to the device hardware and get us the device's current posiion.
This is returned via two funcions, onSuccess and onError, which are prety self–
explanatory. The complete code for this applicaion can be found on the book page at
PacktPub's website http://www.packtpub.com/iphone-location-aware-apps-
beginners-guide/book – in a project itled Hello Locaion-Using PhoneGap.

PhoneGap supports a JQuery Mobile JavaScript framework and Sencha Touch, which
provides ready-to-use mobile-speciic API calls such as Swipe, Touch, Zoom, Tap, Pinch
to Zoom, Shake, and so on. The combinaion of PhoneGap and any of these frameworks
makes mobile app development with HTML5 a breeze. Look no further for more informaion
on PhoneGap because PacktPub has a dedicated book for the same; visit http://www.
packtpub.com/phonegap-beginners-guide/book to read more and buy the book.

Time for action – using Titanium Appcelerator for building the
Hello Location app

While PhoneGap is a good tool to build cross-plaform mobile apps using HTML5 and CSS3
standards, the drawback of PhoneGap is that it is sill a web-app wrapped in a naive app. So,
basically, it is non-naive mobile app development. The controls and UI are all HTML-based.
You don't get the naive app look-and-feel for PhoneGap-based apps.

This is where Titanium Appcelerator excels; it converts your HTML5/CSS3/JS app into a
complete naive app through its extensive compilaion and opimizaions process. So the end
result is a naive UI look-and-feel for your app. As it is compiled to the device's architecture,
it also performs faster. So let's get started with Appcelerator!

1. Go to http://www.appcelerator.com/ and download the Titanium Studio
community version for free (version 1.0, as of this wriing). You will need to create
an account at appcelerator.com before downloading. Select the Mac OS X
version, as shown in the following screenshot:

http://www.packtpub.com/phonegap-beginners-guide/book
http://www.packtpub.com/phonegap-beginners-guide/book
http:///

Chapter 2

[55]

2. Double-click on the downloaded Titanium Studio.dmg and drag-and-drop the
Titanium Studio folder into your Applications folder on your Mac. The Titanium
Studio is an Eclipse such as IDE that has all the plugins necessary for mobile
development. Run the TitaniumStudio executable to start the IDE. On Launch,
you will be presented with a Dashboard having links to examples, documentaion,
blog posts, and so on.

www.allitebooks.com

http:///
http://www.allitebooks.org

The Xcoder's World

[56]

3. To create a new mobile project with Titanium Studio, go to File | New | New
Titanium Project, as shown in the following screenshot. Deselect the Create

project from Template checkbox.

The Resources directory within the project folder holds
the code and other iles. The app.js ile is the entry point
of your Titanium applicaion.

http:///

Chapter 2

[57]

4. We begin by creaing a new Window by using the Titanium.UI.createWindow

method, which is part of the UI API provided by Titanium.

var win = Ti.UI.createWindow();

5. Next, we create a view using the Ti.UI.createView method

var view = Ti.UI.createView({backgroundColor:"white"});

6. We then add the view to the Window object and open it.

win.add(view); win.open();

7. Next, we call the Ti.Geolocation.getCurrentPosition method to determine
the locaion of the user and the laitude and longitude values are displayed on the
screen by adding two labels to the view created in step 6. Now the complete code
for app.js is as follows:

var win = Ti.UI.createWindow();

var view= Ti.UI.createView({backgroundColor:"white"});

win.add(view);

Ti.Geolocation.getCurrentPosition(function(e) {

if (e.error) { Ti.API.error('geo - current position' +
e.error); return; }

var latitude = e.coords.latitude;

var longitude = e.coords.longitude;

var label1 = Titanium.UI.createLabel({

color:'#999',

text:'Latitude is '+latitude,

 font:{fontSize:20,fontFamily:'Helvetica Neue'},

 width:'auto', bottom:300});

 var label2 = Titanium.UI.createLabel({

 color:'#999',

 text:'Longitude is '+longitude,

 font:{fontSize:20,fontFamily:'Helvetica Neue'},

 width:'auto', bottom:150}

);

win.add(label1);

win.add(label2);

});

win.open();

http:///

The Xcoder's World

[58]

8. Your app should look similar to the following on the iPhone Simulator:

What just happened?
Titanium Appcelerator follows a structured programming (or top-down programming)
approach. We begin the app by creaing a Main Window derived from the Titanium UI
framework (Ti.UI) and then adding a view to the Window, having three labels to display the
content. The GeoLocaion values are obtained via the Titanium GeoLocaion framework and
eventually passed onto the labels for display.

The beauty of JavaScript programming is that you do not have to worry about type
conversion, so the GeoLocaion values obtained can be easily applied to the labels
with minimum code and without worrying about the data type of the GeoLocaion
values obtained.

As with PhoneGap, PacktPub also has a book dedicated to Appcelerator Titanium; head to
http://www.packtpub.com/appcelerator-titanium-mobile-applications-

development-for-smartphone-iphone-android-cookbook/book to buy the book.

http://www.packtpub.com/appcelerator-titanium-mobile-applications-development-for-smartphone-iphone-android-cookbook/book
http://www.packtpub.com/appcelerator-titanium-mobile-applications-development-for-smartphone-iphone-android-cookbook/book
http://www.packtpub.com/appcelerator-titanium-mobile-applications-development-for-smartphone-iphone-android-cookbook/book
http:///

Chapter 2

[59]

Time for action – Hello Location with Sencha Touch
Sencha Touch is a mobile web app framework, developed and maintained by the
company behind the Ext JavaScript framework. It is built with HTML5, CSS3 with inbuilt
data integraion that allows developers to easily bind Data from XML, and JSON for HTML
visual components. Sencha Touch also has enhanced touch events or swipe, double tap,
pinch and zoom, rotate – all done with JavaScript.

Sencha Touch works very well with PhoneGap. It can also work for standalone HTML5
web apps.

1. Go to http://www.sencha.com/ and download the Sencha Touch 1.1.0 web
framework. Unzip the sencha-touch-1.1.0.zip folder.

2. You don't need to use all the iles from this unzipped folder. Create a new folder for
your applicaion, let's say Hello Location-Using Sencha Touch, and copy
resources and sencha-touch.js from the Sencha installaion folder to this
new folder.

3. You can copy the startup splash images from any of the examples. This can be
used for your iPhone and iPad Builds. Copy the phone_startup.png and
tablet_startup.png to the Hello Location-Using Sencha Touch folder.

4. Lastly, create a new index.html, which will hold your applicaion code. Make sure
your directory structure looks similar to the following screenshot:

http:///

The Xcoder's World

[60]

5. In index.html, add the following code:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Hello Location</title>

 <link href="resources/css/sencha-touch.css"
 rel="stylesheet" type="text/css">

 <script src="sencha-touch.js"></script>

 <script type="text/javascript"
 src="http://code.google.com/apis/gears/gears_init.js">

 </script>

 <script
 src="http://maps.google.com/maps/api/js?sensor=false">

 </script>

 <style>

 card1, .card2 {

 background-color: #376daa;

 text-align: center;

 color: #204167;

 text-shadow: #3F80CA 0 1px 0;

 font-size: 22px;

 padding-top: 100px;

 }

 </style>

 </head>

 <body>

 <script type="text/javascript">

 var latitude = "...";

 var longitude = "...";

 Ext.setup({

 tabletStartupScreen: 'tablet_startup.png',

 phoneStartupScreen: 'phone_startup.png',

 icon: 'icon.png',

 glossOnIcon: false,

 onReady: function()

 {

 var geo = new Ext.util.GeoLocation({

 autoUpdate: false,

 listeners: {

 locationupdate: function (geo) {

 latitude = geo.latitude;

 longitude= geo.longitude;

http://code.google.com/apis/gears/gears_init.js
http://code.google.com/apis/gears/gears_init.js
http://code.google.com/apis/gears/gears_init.js
http://maps.google.com/maps/api/js?sensor=false
http:///

Chapter 2

[61]

 document.getElementById('latitude')
 .innerHTML=latitude;

 document.getElementById('longitude')
 .innerHTML=longitude;

 },

 locationerror: function (geo,

 bTimeout,

 bPermissionDenied,

 bLocationUnavailable,

 message)

 {

 if(bTimeout){

 alert('Timeout occurred.');

 }

 else

 {

 alert('Error occurred.');

 }

 }

 }

 });

 geo.updateLocation();

 new Ext.TabPanel({

 fullscreen: true,

 type: 'dark',

 sortable: true,

 items: [{

 title: 'Hello Location',

 html: "You are located at :
 "+latitude
 + "" + ",
<span
 id='longitude'>"+longitude+"" ,

 cls: 'card2'

 },

 {

 title: 'Settings',

 html: 'Will be added soon!',

 cls: 'card2'

 }]

 });

 }

 });

 </script>

 </body>

</html>

http:///

The Xcoder's World

[62]

6. Now let's create a new PhoneGap Applicaion and wrap this code in a
PhoneGap applicaion.

7. Once again, you will ind the code on the book's website at http://packtpub.com.
Here is how the applicaion will look when run on the iOS simulator (note that iOS
locaion simulaion was used here as well):

What just happened?
We used the Sencha Touch library to create a geolocation object using the Sencha
Ext.util.GeoLocation package to determine the user's locaion and pass it on to
a tab panel widget.

http:///

Chapter 2

[63]

The same HTML code also works well on the browsers supporing the W3C GeoLocaion
API speciicaions. You can learn more about Sencha Touch at http://www.sencha.com/;
don't forget to play around with the kitchen sink and sample apps to get a feel of the power
of HTML5.

Exploring location-based SDKs/APIs

In the last four to ive years, a lot of locaion-based startups have launched their products.
Some of them have become a rage and a benchmark for current and future locaion-based
applicaions. Foursquare, Gowalla, Yelp, and Wciies are some examples of companies that
are looked upon for locaion-based places informaion.

On the entertainment side, Evenful, Last.fm, Wciies, Plancast, and Zvents are companies
that provide locaion-based events and entertainment guides. For Movies, Fandango and
Roten Tomatoes are some good examples. Groupon and BView are good locaion-based
deal providers. Another niche locaion-based company is SeeClickFix.com for providing
social-governance funcionality.

Almost all locaion-based companies these days have a locaion-based API to provide
applicaion developers with a geographical applicaion interface to integrate these
services into their own apps/websites.

Some companies, such as SimpleGeo, Factual, Locaion Labs, and SkyHook wireless, also
provide the backend infrastructure necessary for startups to create and launch their
products faster into the market, using their locaion experise, oten in a cloud-based
Sotware-as-a-Service (SAAS) model. Oten these companies provide an iOS/Android SDK,
as well as RESTful APIs to integrate their services in third-party developer applicaions. Let's
explore some popular locaion-based SDKs and APIs and understand how we can use them in
our iOS applicaions.

Some open source projects such as openstreetmaps.org and creaive commons-based
GeoNames.org provide excellent community-driven eforts for Maps and Geo-Tagged
informaion. We will use them soon, so keep reading.

Foursquare
Foursquare is a locaion-based social network that incorporates gaming elements and
techniques for users and venue owners to create a new experience. Users check-in to a
venue (bar, hotel, mall, airport lounge) and share their locaion with friends. The number
of check-ins drive the user's badge from being a newbie to Mayor for a paricular venue, the
Mayors of these venues are oten given free beer, pizzas, or hotel stays for socially promoing
their venues on foursquare and among the user's friends.

http:///

The Xcoder's World

[64]

Foursquare is available on the iPhone, Android, Blackberry, and other plaforms including
Symbian. On the developer side of things, foursquare has a rich API (V2 as of now) that
provides a lot of funcionality through the Web Service channel. There is also an Objecive-C
library developed by the foursquare API community members. We are concerned with the
HTTP-based API calls, as we want to have beter control and also learn as we build the same.

A visit to the foursquare developer's page at https://developer.foursquare.com/

opens up three diferent APIs for developers, which are as follows:

1. Foursquare API V2

 This is the generic HTTP-based and OAuth2-only RESTful API that any web, mobile
app can use.

2. Foursquare Venues Project (in Beta)

 This is intended to be used as a locaion database.

3. Client Resources

 URIs for deep linking into the naive iPhone app, so your iPhone app can link to a
foursquare venue and clicking on it will open the foursquare iPhone app.

A typical use case for foursquare API consumpion would be as follows:

 � Search for Venues Nearby (using device locaion) or by Name

 � Display the Venue lists and Venue details on selecion

 � Allow users to check-in to that venue and provide an interface for the users to leave
ips (comments) or upload images

 � Add photos and friends

A list of funcions supported can be found at
https://developer.foursquare.com/docs/index_docs.html

Gowalla
Gowalla is quite similar to foursquare, with the addiion of Trips, beter eye candy and
real-ime updates for Spots (read Venues) via XMPP or PubSubHubbub protocols that
follow a push patern for Venue updates/check-ins.

Gowalla API also provides a Custom URL Scheme for direct linking within your iPhone app.
This works like hyperlinks, but instead of webpages, it opens a pre-determined applicaion;
in this case, the Gowalla iPhone app, foursquare, works the same way as well.

http:///

Chapter 2

[65]

Eventful and Last.fm API – some music is always good
Now let's move our focus to events and music APIs, namely, Evenful and Last.fm, which
provide events and a music guide by locaion.

Evenful provides an extensive concert and event API via http://api.eventful.com,
which allows third-party developers to:

 � Integrate the rich and unique events into their apps

 � Create and edit new events via the API

 � Add images and comments

 � Create, edit, or modify a venue

 � Search for venues and events

 � Get user informaion: user-created venues, events, events atended by the user

 � Add/edit arists' informaion

 � Get a list of event categories

 � Search for demands and get the details of a demand

The demand feature is a unique concept for Evenful, which can be used by consumers to
demand that their favorite arists come to their ciies. The Events content is tagged in the
following ways:

1. Events are ied to a locaion with the laitude and longitude, and mapped to a
Venue(s) in a city.

2. Events are ied to Arists (if available).

3. Events are categorized into speciic pre-deined categories, such as concerts, jazz,
dance, and so on, however, with support for extra tags.

4. Events details include start date, end date, ime of the event, icket price, and so on.

The API is quite extensive. We will cover more details as we build our apps in the
coming chapters.

Last.fm (http://www.last.fm/api/) is a music recommendaion service that also
includes events, arists' informaion, and so on, but with a good recommendaion algorithm.
In addiion to the funcionaliies supported by Evenful API, last.fm also provides API calls
for Album, Chart, Library, Playlist, and Tracks objects. It is more extensive and also supports
XML-RPC in addiion to REST. Our interest lies in the Geo API Object that has provisions for
the following:

 � Retrieving events by locaion

 � Retrieving top arists by locaion

 � Retrieving top tracks by locaion

http:///

The Xcoder's World

[66]

We will explore more when we build the events app in Chapter 6, so stay tuned.

Still more tools: SimpleGeo and Factual

SimpleGeo (http://simplegeo.com) and Factual (http://factual.com) are
Sotware-as-a-Service (SAAS) model-based products that charge developers based
on the Data/API consumpion. Both ofer locaion-based services. SimpleGeo extends
its locaion service and ofers three services. They are as follows:

1. GIS-based cloud storage of locaion data

2. Contextual informaion of locaion such as weather and geographic boundaries

3. Locaion-based places informaion such as Foursquare and Gowalla

Factual, on the other hand, works on the model of tables – sets of data clubbed together by
locaion. So you can query for A list of all Restaurants in San Francisco and get a table as the
result. Now this table can be embedded in a web app, or the factual iPhone SDK, or can be
read as a REST JSON output, giving the developers a lot of lexibility.

Other Notable APIs – YQL and Location Labs
Yahoo! Query Language (YQL) provides a lot of small and quick locaion-based API calls,
including weather and events from upcoming.org, as well as inding out the geographic
details of a city, country, and its bounding boxes. Almost all the Yahoo! Geo Technologies
(http://developer.yahoo.com/geo/) are available in YQL under the Geo tables
heading. Also available in YQL is the Yahoo! Local Search API that works only for the
USA for now.

Locaion Labs is known for its Geo Fencing Product. The Locaion Labs iPhone SDK for
GeoFencing is provided as a 30 day trial. However, with the advent of iOS 5 locaion
reminders, the need for a third-party Geo Fencing is being weeded out. More on
Locaion Labs at https://geofence.locationlabs.com/index.html.

Pop quiz – so you think you can Xcode
1. Can Xcode 4 and higher work on the PowerPC architecture?

a. Yes

b. No

2. What is the default compiler in iOS 5 SDK?

a. GCC

b. LLVM

http://simplegeo.com
http://simplegeo.com
http://factual.com
https://geofence.locationlabs.com/index.html
https://geofence.locationlabs.com/index.html
http:///

Chapter 2

[67]

Summary

In this chapter, we learned about Xcode 4 and iOS 5 and how to be futureproof with ARC
memory management, as it is a major change in iOS5 SDK. Speciically, we covered:

 � Xcode – installaion and new features

 � iOS 5's new features

 � Wriing a simple Hello Location app in Xcode and Objecive C

 � HTML5: Its beauty and ease of development

 � PhoneGap, Appcelerator, and Sencha Touch – the Hello locaion app done in three
diferent ways

 � We also discussed foursquare, Gowalla, Last.fm, Evenful, and other important
Locaion APIs briely

We are now ready to dive deep into Xcode and Core Locaion, so keep turning the pages.

http:///

http:///

3
Using Location in your iOS Apps—

Core Location

Having played around with an introductory locaion app – Hello Location,
let us dive deeper into the iOS library that handles locaion – Core Locaion.
Core Locaion provides all the delegaions and funcions to detect locaion
via GPS, Wi-Fi, or Cell ID. However, the good part is that the end user need
not worry about which locaion method to employ; the Core Locaion library
handles it for the user.

In this chapter, we will examine the following topics:

 � Overview of Core Locaion

 � Staring and using the locaion service

 � Receiving locaion updates

 � Remembering a user's locaion with the core data

 � Extending the Hello Locaion app

 � Building an events app using the eventful.com and Last.fm API

 � Building a Local Search app using Foursquare API

 � Understanding the features of iOS 5 Locaion Simulator

So let's get on with it...

http:///

Using Locaion in your iOS Apps—Core Locaion

[70]

Core Location framework – an overview
The Core Locaion framework in the iOS SDK is an asynchronous API that uses delegaion
to report locaion informaion from the iOS device. Along with locaion informaion, Core
Locaion also reports the Heading informaion (Heading here implies the direcion in which
a device is pointed), as well as allowing you to deine geographic regions and monitor when
you cross those regional boundaries.

Core Locaion implements all the three methods of locaion detecion: GPS, Wi-Fi, and Cell
Tower Triangulaion. The developer can control locaion detecion by only specifying the
accuracy needed. Core Locaion then decides internally on which approach to use for actual
locaion detecion.

When creaing an applicaion that uses the Core Locaion framework, you need to irst add it
to your project in Xcode and include the <CoreLocation/Corelocation.h> header iles
in your .m or .h ile.

The new iOS SDK 5 and Xcode 4.2 includes a nity locaion simulaion and debugging
capability. We have already visited the Locaion Simulaion in the Hello Locaion examples in
Chapter 1. Now we will understand how the locaion debugging feature helps you test your
app by using diferent locaion values when your app is actually running in the simulator or a
connected device.

Time for action – location debugging
Open the Hello Locaion applicaion we created in Chapter 1 and run the applicaion.

1. If you are running your app on the iOS Simulator, then go to the Debug | Locaion
Menu opion where you can simulate muliple locaion inputs for your app, as
shown in the following screenshot:

http:///

Chapter 3

[71]

2. If you are running your app on a connected device, you need to go to the
Product | Debug | Simulate Locaion menu opion in the Xcode 4 menu bar.

3. Try changing to diferent locaions and tesing the app by clicking the Detect

Locaion buton in the app.

Locaion data is reported in your applicaion via the Core Locaion's Delegate object,
CLLocationManagerDelegate. Based on the locaion service type used in your app, the
corresponding Core Locaion Delegate funcion has to be implemented by your applicaion
to catch the appropriate locaion change event. We will look at it as we inspect the diferent
Core Locaion Services.

http:///

Using Locaion in your iOS Apps—Core Locaion

[72]

What just happened?
We simulated locaion informaion on our iPhone, using the new feature of "Locaion
Simulaion" in iOS 5 SDK and Xcode 4.2. This new feature helps us analyze our app's behavior
in diferent locaions. In the preceding example, we changed the locaion values one-by-one
and clicked on the Detect Location buton to echo the geo co-ordinates of our labels.
iOS 5 Locaion simulaion includes signiicant locaion updates, region monitoring, and
coninuous locaion updates via the GPX ile support (a GPX ile is an XML ile format that
contains a sequence of Geo Coordinates, typically for Tours or Navigaional purposes).

Core location services

The Core Locaion framework provides the following services:

 � Standard locaion

 � Signiicant change

 � Region monitoring

 � Geocoding and reverse Geocoding – CLGeocoder (Added in iOS 5 SDK)

 � Direcion using heading informaion

Standard location
Standard Locaion is the laitude and longitude informaion retrieved from Core Locaion.
The Core Locaion Manager (the CLLocationManager object in the iOS SDK) returns
this informaion in the CLLocation object. Recall from the Hello Locaion example in
Chapter 2, where we used the following code to retrieve the laitude informaion
(which is the most common way to grab a user's locaion).

NSString *latitudeTextData = [[NSString alloc]initWithFormat:
 @"%g",locMgr.location.coordinate.latitude];

Here the locaion object is an instance of the CLLocation object that contains the laitude
and longitude variables. Standard locaion service with the Core Locaion Manager is started
with the startUpdatingLocation funcion. You can tell the Locaion Manager to stop
updaing the locaion with the stopUpdatingLocation funcion.

distanceFilter and desiredAccuracy are two properies that deine how oten you
will receive the locaion updates and how much accuracy (in meters) is required by your app.

With distanceFilter, you will receive locaion informaion if the device has moved
distance equal to or more than the value speciied in the distanceFilter property.

http:///

Chapter 3

[73]

Accuracy of the locaion detecions can be chosen from the following desiredAccuracy

values:

Constant Value Deiniion
kCLLocationAccuracyBestForNavigation Standard Accuracy intended for

Navigaional apps
kCLLocationAccuracyBest Use highest accuracy available
kCLLocationAccuracyNearestTenMeters 10 meters accuracy
kCLLocationAccuracyHundredMeters 100 meters accuracy
kCLLocationAccuracyKilometer Accuracy up to 1 kilometer
kCLLocationAccuracyThreeKilometers Accuracy up to 3 kilometers

Use/Try to use the lowest accuracy possible (the lowest accuracy your
applicaion can work with) to avoid more batery power consumpion.

Signiicant change
With the Core Locaion framework, you can also request for locaion updates having
signiicant locaion value changes only. This method provides excellent power saving
opions, as well as the ability of the device to send locaion updates even when your
applicaion is not running. This method uses Cellular Radio to detect the device locaion.

To use the signiicant change locaion service in your app, you need to
use the startMonitoringSignificantLocationChanges and
stopMonitoringSignificantLocationChanges funcions.

Core Locaion framework caches the locaion data, it is a good idea
to get the imestamp on the measurement objects to make sure your
applicaion receives the correct and updated locaion informaion.

Region monitoring
With the Region monitoring services, you can deine geographical boundary-based tracking
for your apps. Consider a simple example of a Weather app that can use Region Monitoring
to detect the user's locaion based on physical boundaries and alert them if they cross a
paricular boundary, for example, if a user crosses a San Francisco city boundary towards
San Jose, the app can trigger a boundary alert for the user and show him the new San Jose
weather informaion.

https://developer.apple.com/library/ios/documentation/CoreLocation/Reference/CLLocationManager_Class/CLLocationManager/CLLocationManager.html#//apple_ref/occ/instm/CLLocationManager/stopMonitoringSignificantLocationChanges
https://developer.apple.com/library/ios/documentation/CoreLocation/Reference/CLLocationManager_Class/CLLocationManager/CLLocationManager.html#//apple_ref/occ/instm/CLLocationManager/stopMonitoringSignificantLocationChanges
http:///

Using Locaion in your iOS Apps—Core Locaion

[74]

The startMonitoringForRegion and stopMonitoringForRegion methods of
the locaion framework are used to start and stop region monitoring in your applicaion.
Boundary entering and exiing are monitored by locationManager:didEnterRegion

and locationManager:didExitRegion. Boundary crossing detecion also requires an
accuracy factor to determine the crossing factor needed to trigger the alert. This is done by
the startMonitoringForRegion:desiredAccuracy method.

As with the Signiicant Change service, Region monitoring also works even if your applicaion
is not running. The most important part is that you need to register the Regions to be
monitored with the device using the monitoredRegions property.

Use smart programming techniques to shut down locaion services when
not required in order to conserve batery power. Another good idea is to
turn of locaion if accuracy does not improve over a course of ime.

Geocoding and reverse Geocoding – CLGeocoder
The CLGeocoder along with the CLPlacemark object provide the Geocoding and Reverse

Geocoding funcions in the Core Locaion framework. Note that these are new APIs added in
the iOS 5.0 SDK.

The MKReverseGeocoder from the MapKit Framework (more on it in Chapter 4) has
been deprecated. The CLGeocode object now handles the same. CLGeocode features
as follows:

 � Requests are asynchronous and support only one operaion per request

 � Supports muliple languages

 � Supports Forward and Reverse Geocoding

 � Does not require results to be displayed on a map

 � Worldwide coverage

Geocoding is done by any of the following three methods:

1. geocodeAddressString:completionHandler: Geocodes a simple string,
for example, Mountain View, San Francisco.

2. geocodeAddressString:inRegion:completionHandler: Geocodes a
speciied string using regional informaion. Think of this as searching for the
String Market Street in region San Francisco.

3. geocodeAddressDictionary:completionHandler: Geocodes is a speciied
address dicionary. This is a more structured geocoding request, usually providing
the Address Street, Address City, and Address State ields in the AddressBook

format. The following is an example code snippet for this funcion:

http:///

Chapter 3

[75]

CLGeocoder *geocoder =[[CLGeocoder alloc]init];

NSDictionary *address=[NSDictionary dictionaryWithObjectsAndKeys:
 @"32 Lincoln RoadRoad",kABPersonAddressStreetKey,
 @"Birmingham",kABPersonAddressCityKey,nil];

[geocoder geocodeAddressDictionary:address
 completionHandler:^(NSArray *placemarks, NSError *error)

{

 for(CLPlacemark *placemark in placemarks)

 {

 NSLog(@"Placemark %@",placemark);

 }

}];

Don't forget to add the AddressBook framework in build phases in Xcode and import the
header iles required in your Hello_LocationViewController.m ile from the Hello
World example.

#import <AddressBook/AddressBook.h>

#import <AddressBook/ABPerson.h>

You can ind the code at the book's page at http://www.packtpub.com/iphone-
location-aware-apps-beginners-guide/book – in a project called Hello Location

– Geocode. Run the applicaion and click on the Detect Locaion buton and observe the
Debug Console in Xcode; you should see an output as follows:

Placemark 32 Lincoln Road, Solihull, England, B27 6, United Kingdom @
<+52.44378245,-1.81094734> +/- 100.00m

This is the result of the geocoding, along with the accuracy of 100 meters.

Reverse Geocoding is handled by the reverseGeocodeLocation:completionHandler

method in the CLGeocoder class.

The CLPlaceMark object is returned for both Forward and Reverse Geocoding.

Direction using heading
Heading informaion in the Core Locaion service signiies the direcion in which the device
is oriented. This informaion is very criical for augmented reality, navigaion, and gaming
applicaions. The direcion in which a device is poining, reported by iOS devices with a
magnetometer is known as heading, while direcion in which the iOS device is moving,
reported by the GPS hardware, is known as course.

http:///

Using Locaion in your iOS Apps—Core Locaion

[76]

The CLHeading object holds the heading data reported by the Locaion Manager. The
startUpdatingHeading method in the Locaion Manager is used to start the heading
update process, while stopUpdatingHeading is used to stop it.

The CLHeading object contains the following properies:

Property Descripion

magneicHeading Magneic heading in degrees, relaive to magneic north

trueHeading Heading in degrees, relaive to the true north

headingAccuracy The diference between the reported heading and true magneic
heading

imestamp Time at which the heading was obtained

x X-Axis diference from the magneic ields tracked by the device

y Y-Axis diference from the magneic ields tracked by the device

z Z-Axis diference from the magneic ields tracked by the device

Core Location Manager – CLLocationManager
The CLLocationManager class controls all the Core Locaion services discussed above. The
Core Locaion Manager class, CLLocationManager, handles all the locaion and heading-
related events for your applicaion.

Locaion and heading updates are delivered to associate delegate objects, which must
conform to the CLLocationManagerDelegate delegate protocol.

To assess the diferent locaion services available on an iOS device, Core Locaion manager
exposes the following methods in the CLLocationManager class:

 � locationServicesEnabled

 � authorizationStatus

 � significantLocationChangeMonitoringAvailable

 � headingAvailable

 � regionMonitoringAvailable

 � regionMonitoringEnabled

http:///

Chapter 3

[77]

Time for action – checking for location service availability
Before we start using the iOS locaion framework, it is important to know whether locaion
services are enabled on the user's device or not. If locaion is of, then we can prompt the
user to switch it on.

Let's reuse the Hello Location example to check for locaion service availability:

1. Open the Hello Location example and modify the viewDidLoad method in the
Hello_locationViewController.m ile to look like the following code snippet:

locMgr = [[CLLocationManager alloc]init];

if([CLLocationManager locationServicesEnabled])

{

 locMgr.startUpdatingLocation;

}

2. You can manage your iOS device's locaion seings at Seings | Locaion Services.
Staring with iOS 5, locaion services are not turned ON by default, but you can
choose to enable/disable it from the main phone's set up screens. We have kept it
ON, as can be seen in the following screenshot:

http:///

Using Locaion in your iOS Apps—Core Locaion

[78]

3. In iOS 5, you can also specify what system apps (apps that come inbuilt when you
buy the iPhone) can access the locaion informaion. This is done via the Seings |
System Services opion.

4. Let's turn it of to observe the Hello Location app's behavior now.

5. When you turn of the locaion seings and run the app, you will get a zero (0)
value in the Latitude and Longitude text ields, when you click the Detect

Locaion buton.

6. Now modify the code, as shown in the following code snippet:

if([CLLocationManager locationServicesEnabled]==TRUE)
{
 [locMgr startUpdatingLocation];
}
else
{
 [locMgr startUpdatingLocation];
}

7. Here, we call the Locaion Manager's startUpdatingLocation method, if
locaion services are enabled or disabled.

8. If Locaion is enabled, then you get the locaion values as before. However, if
Locaion is disabled and you sill run the startUpdatingLocation method, then
the applicaion prompts you to enable Locaion Services from the Seings opion,
as follows:

http:///

Chapter 3

[79]

9. With iOS 5, you can now easily idenify what services and apps use locaion; from
the Seings | Locaion Services | System Services, select the opion Status Bar Icon

and turn it ON. Now whenever an applicaion or service uses locaion informaion,
you will see a purple arrow in the header area of your iPhone, as shown in the
following screenshot:

http:///

Using Locaion in your iOS Apps—Core Locaion

[80]

The source code for this example can be found at the books page at http://www.
packtpub.com/iphone-location-aware-apps-beginners-guide/book,
in a project itled Hello Location - Location Settings.

It is a good idea to reset your locaion warnings from the Seings | General |
Reset opion in your iOS, while tesing your locaion-based applicaions.

What just happened?
In this example, we coninued on our Hello Locaion expediion and used the Locaion
Manager object's locationServicesEnabled method to check if locaion services
are enabled on the iPhone or not. If the locaion services are enabled, then we proceed
to detect the locaion and allow the applicaion to use the geocodes that were obtained.
However, if the locaion services are not enabled, then we prompt the user to enable it via
the System Seings and come back to our applicaion.

User authorization
Having understood how Locaion Seings can be enabled/disabled on the iOS device, let's
now move to User Authorizaion for Locaion.

So far, we have assumed that the user always allows the locaion pop-up in the applicaion.
For example, in our Hello Location applicaion, you would see the irst screen as follows:

http:///

Chapter 3

[81]

However, what happens when the user clicks on Don't Allow?

Such explicit applicaion authorizaion status can be obtained by using the
authorizationStatus method of the CLLocationManager class. It returns any of the
following statuses, depending on how the applicaion is authorized to use locaion services:

Status Deiniion
kCLAuthorizationStatusNotDetermined The user hasn't made a choice yet
kCLAuthorizationStatusRestricted The user is not authorized to use locaion

services
kCLAuthorizationStatusDenied The user has denied the use of locaion

services for your applicaion or all
applicaions

kCLAuthorizationStatusAuthorized The user has authorized your applicaion
for locaion services

Time for action – using Core Location with user authorization
Let's revise our Hello Locaion applicaion with support for User Authorizaion. If the user has
authorized your app for locaion, then the applicaion will show the user's detected locaion;
else we default it to Geocodes for San Francisco.

1. In your Hello Location applicaion, open the
Hello_LocationViewController.h ile and add a CLLocation

object –userLocation that stores the default San Francisco laitude
and longitude values and an NSString object – a message that will be
used to render custom user prompts based on the User Authorizaion
level set by the user.

CLLocation *userLocation;

NSString *message;

2. Next, open the Hello_LocationViewController.m ile and append the
following lines in the viewDidLoad method:

userLocation = [[CLLocation alloc] initWithLatitude:37.33
 longitude:- 122.03];

message = [[NSString alloc]initWithString:@""];

3. We iniialized the userLocation object with San Francisco's co-ordinates and
created a new string object message to hold the User Authorizaion messages.

http:///

Using Locaion in your iOS Apps—Core Locaion

[82]

4. Within the viewDidLoad method, we also check if locaion services are enabled
or disabled:

if([CLLocationManager locationServicesEnabled]==FALSE)

{

 message = @"Location cannot be initialized.

 Please check settings";

 [locMgr startUpdatingLocation];

}

else if([CLLocationManager locationServicesEnabled]==TRUE)

{

 [locMgr startUpdatingLocation];

}

5. Lastly, we modify the locationDetect funcion as follows:

- (IBAction)locationDetect:(id)sender
{
 latitudeText.text = @"0";
 longitudeText.text = @"0";

 if([CLLocationManager locationServicesEnabled]==TRUE)
 {
 if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusNotDetermined)
 {
 message = @"User hasn't made a choice
 yet. Defaulting to San Francisco";
 latitudeText.text = [[NSString alloc]
 initWithFormat:@"%g", userLocation.coordinate.latitude];

 longitudeText.text = [[NSString alloc]
 initWithFormat:@"%g", userLocation.coordinate.longitude];
 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusDenied)
 {
 message = @"User has denied use of location
 services for your application or all
 applications. Defaulting to San
 Francisco";
 latitudeText.text=[[NSString alloc]
 initWithFormat:@"%g", userLocation.coordinate.latitude];
 longitudeText.text=[[NSString alloc]
 initWithFormat:@"%g", userLocation.coordinate.longitude];
 }

http:///

Chapter 3

[83]

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusAuthorized)
 {
 message = @"User has authorized your
 application for location services.";
 latitudeTextData = [[NSString alloc]
 initWithFormat:@"%g",
 locMgr.location.coordinate.latitude];

 longitudeTextData = [[NSString alloc]
 initWithFormat:@"%g",
 locMgr.location.coordinate.longitude];

 latitudeText.text = latitudeTextData;
 longitudeText.text = longitudeTextData;

 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusRestricted)
 {
 message = @"Not authorized to user location
 services.Defaulting to San Francisco";
 latitudeText.text = [[NSString alloc]
 initWithFormat:@"%g", userLocation.coordinate.latitude];

 longitudeText.text = [[NSString alloc]
 initWithFormat:@"%g", userLocation.coordinate.longitude];

 }
 }
 else
 {
 if([CLLocationManager locationServicesEnabled]==FALSE)
 {
 message = @"Location cannot be initialized. Please check
 settings";
 }
 }

 UIAlertView *alert = [[UIAlertView
 alloc]initWithTitle:@"Location Authorization Tests"
 message:message
 delegate:self cancelButtonTitle:@"OK"
 otherButtonTitles:nil, nil];
 [alert show];
}

http:///

Using Locaion in your iOS Apps—Core Locaion

[84]

What just happened?
We begin with checking if the locaion services are enabled or disabled in the viewDidLoad

funcion. We start the Locaion updaing Service nevertheless, as it will return the locaion
informaion if locaion services are enabled and will prompt the user to enable locaion
services if it is disabled on app load.

Next, on the buton click funcion – locationDetect, we check for the various locaion
services that User Authorizaion states and display locaion informaion accordingly. Note
that if a locaion could not be retrieved, we have defaulted to San Francisco's co-ordinates, in
this case, the user of CLLocation object. If Locaion is detected via the Locaion Manager,
then we use the real device co-ordinates, change the UITextView values accordingly, and
show an alert prompt with the User Authorizaion values obtained before.

Code for the sample can be downloaded from the book's website, from a project itled
Hello Location - User Authorization.

The CLLocation object

The CLLocation object holds your locaion data; including the geographical co-ordinates
(laitude and longitude) as well as the alitude. For iOS Devices with Navigaion support, the
CLLocaion object also supports the speed and course property. Note, we have discussed the
diference between course and heading before and it would be a good ime to revisit it, if
you haven't already.

An important property of the CLLocation object is the imestamp property, which lets us
know the ime at which locaion informaion was last fetched. The imestamp property can
be used to make sure the device has the most updated value of the locaion. The imestamp
property can consitute the Smart Programming Technique we discussed before to save a
few locaion calls and conserve batery juice!

Laitude and longitude values are encased in the coordinate property, as seen in the
Hello Location example code as well. Two other properies of the CLLocation object
worth noing are horizontalAccuracy and vericalAccuracy. horizontalAccuracy is for
geing informaion about the accuracy of the laitude and longitude values fetched, while
verticalAccuracy provides accuracy informaion on the alitude.

http:///

Chapter 3

[85]

The methods (funcions) exposed by the CLLocation object are as follows:

Method Descripion
initWithLatitude:longitude: Iniialize a locaion object with speciied

lat/lon pair values
initWithCoordinate:altitude:horizont
alAccuracy:verticalAccuracy:timesta
mp:

Iniialize a locaion object with lat/
lon, alitude, horizontal and verical
Accuracy, along with the imestamp

initWithCoordinate:altitude:horizont
alAccuracy:verticalAccuracy:course:s
peed:timestamp:

Iniialize a locaion object with lat/
lon, alitude, horizontal and verical
Accuracy, imestamp, along with course
and speed values

distanceFromLocation Calculates the distance to a desinaion
locaion from the current locaion, in
meters

Time for action – receiving location updates in your application
So far, in all our sample code, we have been using Detect Location UIButton, along with
the locationDetect method to detect and use the locaion informaion from the device
in our Hello World applicaion. This was possible with the startUpdatingLocation

method in the CLLocationManager class.

However, the common use case for locaion-based apps is that the locaion keeps updaing
in the background or when there is a signiicant change in locaion. The applicaion should
be able to catch it and noify the user for acion to be taken.

The simplest way in which this can be done is by using the locationManager:didUpdate
ToLocation:fromLocation method of the CLLocationManager class.

Let's modify the Hello Location example to include the following method:

1. In your Hello_LocationViewController.m ile, add the following method
implementaion:

- (void) locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation fromLocation:
 (CLLocation *)oldLocation
{
 NSString *newLatitude = [[NSString
 alloc]initWithFormat:@"%g",newLocation.coordinate.latitude];

 NSString *newLongitude = [[NSString
 alloc]initWithFormat:@"%g",newLocation.coordinate.longitude];

http:///

Using Locaion in your iOS Apps—Core Locaion

[86]

 latitudeTextData = newLatitude;
 longitudeTextData = newLongitude;

 latitudeText.text = latitudeTextData;
 longitudeText.text = longitudeTextData;
}

2. In the viewDidLoad method, change the LocationManager object we created
before (locMgr) to the following:

locMgr = [[CLLocationManager alloc]init];

locMgr.desiredAccuracy= kCLLocationAccuracyBest;

locMgr.distanceFilter=1000.0f;

locMgr.delegate=self;

3. Run the applicaion in the iOS Simulator and try changing the Simulated Locaion
values from the Product | Debug | Simulate Locaion menu opion.

http:///

Chapter 3

[87]

4. As soon as you change the simulated values in Xcode, you will see the values of the
texfields objects change immediately.

What just happened?
1. We used the didUpdateToLocation method implementaion of the locaion

manager object to ire an event when new locaion informaion is available. If the
locaion manager cannot ind the locaion for whatever reason, then it ires the
didFailWithError event.

2. We also created an Info.plist ile and added the following properies to
coninuously monitor the locaion, even if the applicaion is running in the
background.

<key>UIBackgroundModes</key>

<array>

 <string>location</string>

</array>

Don't forget the battery life

performance hit by using location

services continuously in the

background.

3. More on info.plist in Chapter 7; download the code for this example from the
book's website, from the project itled Hello Location - Location Updates.

4. Note that we can also use the
startMonitoringSignificantLocationChanges method from the Locaion
Manager object to monitor locaion updates only when the locaion change is
signiicant enough. This is done by monitoring the cell tower associated with the
iPhone, as the user moves to a diferent locaion and the cell tower ID changes. It
then becomes a signiicant locaion update call to the locaion manager. Here again,
didUpdateToLocation is used to peruse the new locaion values obtained.

Time for action – boundary monitoring with Location Manager
Let's now move to the next Locaion Service provided by the iOS Locaion Manager –
Region/Boundary Monitoring. We use the CLRegion class and its method, namely,
didEnterRegion to monitor whether the user's posiion falls in the boundary.

1. Open the Hello Location project. In the Hello_locationViewController.h

ile, add the CLRegion deiniion as follows:

CLRegion *boundary;

http:///

Using Locaion in your iOS Apps—Core Locaion

[88]

2. In the Hello_LocationViewController.m ile, we create a circular boundary/
region centered around San Francisco geo co-ordinates, with a radius of 1000
meters. We iniialize the boundary variable as the following:

CLLocationCoordinate2D regionCords = CLLocationCoordinate2DMake
 (37.78 , -122.408);

boundary = [[CLRegion
 alloc]initCircularRegionWithCenter:regionCords
 radius:1000.0f identifier:@"San Francisco"];

3. Next in the viewDidLoad method, we tell the Locaion Manager to start monitoring
the region using the startMonitoringForRegion method as follows:

[locMgr startMonitoringForRegion:boundary];

4. To detect whether the device has entered the deined region, we implement the
didEnterRegion method and alert the user in case he has entered the region
(San Francisco boundary deined earlier)

- (void) locationManager:(CLLocationManager *)manager
 didEnterRegion:(CLRegion *)region

{

 UIAlertView *alert = [[UIAlertView alloc]initWithTitle:

 @"You Entered San Francisco"

 message:@"Welcome to San Francisco"

 delegate:self cancelButtonTitle:@"OK"

 otherButtonTitles:nil, nil];

 [alert show];

}

5. When you run the applicaion in the simulator and use locaion simulaion to pass
San Francisco co-ordinates to the applicaion, you get an output as shown in the
following screenshot:

http:///

Chapter 3

[89]

What just happened?
We created a region of 1000 meters around the San Francisco Geo co-ordinates and
monitored the user's device locaion against this. As soon as the user enters the speciic
region, an alert is displayed, welcoming the user to San Francisco.

For best results, start the applicaion by seing the Product | Seing | User Locaion to
say Moscow or Mumbai and then when running your applicaion on the iOS Simulator or the
iPhone, go to Product | Debug | Simulate Locaion and select San Francisco. You should see
the alert on your device immediately.

http:///

Using Locaion in your iOS Apps—Core Locaion

[90]

The didEnterRegion and didExitRegion method of the CLRegion class are used to
detect if the user's iPhone enters or leaves the region. This is the simplest form of Geo
Fencing that can be accomplished by core iOS APIs.

Have a go hero – remembering a user's location with Core Data
As we have discussed so far, Locaion calls on the iOS device can be taxing on the batery. It
is a good programming technique to store the user's last posiion on the device. It might be
an applicaion design requirement as well to store a user's locaion history, in case you are
building a Travel Trip applicaion or a Travelling Tour applicaion.

Core Data allows iOS developers to store, retrieve, and manage their applicaion's data
in an object-oriented manner. Think of it as an Object-relaional mapping (ORM) for
iOS development.

Core Data is based on the Model View Controller sotware development methodology. Let's
look at the key building blocks of Core Data:

 � Managed-object model: Similar to "Tables" in an RDBMS Schema

 � Managed-object context: Connector between the developer and the
managed objects

 � Persistent object stores: A single File or External Data store

 � Managed object: A "Row" in a table (in the RDBMS context)

iOS 5 brings some new features in Core Data, namely:

 � iCloud integraion

 � Incremental store

 � Data protecion (with encrypion)

 � Concurrency

 � UIManagedDocument

A complete analysis of Core Data framework is beyond the scope of this book. However, let's
use the iOS Core Data framework to store the user's locaion history on the iOS device. Try
out building an applicaion that uses Core Data to store the Locaion info.

Extending Hello Location for nearby events
The previous chapter introduced us to the Evenful events and also discussed its supported
features. Now, let us dive into building a locaion-enabled Events app using the Evenful
API (which is a third-party API. Read the API terms before you proceed with using it in your
applicaion). Let's explore the API a bit before we begin coding.

http:///

Chapter 3

[91]

Important things to know before we begin
1. An API key: Register for one at http://api.eventful.com/signup

2. XML Parsing know – how to consume XML with the NSXMLParser class in IOS SDK

3. Fetching nearby Events using the Events | Search method from the API

4. Fetching the XML from the API and using it in our app – Using the
NSURLConnection class

Time for action – extending Hello Location for nearby events
Let's begin wriing our app now. Using the Hello Location applicaion as the base of our
project, we add a UITableView, which will be used to show the nearby events.

1. Open the Hello Location project. In the Hello_locationViewController.h

ile, create a UITableView variable that will be used to display a Table View in
our app. We will also deine a variable for connecing to the Evenful API URL via
NSURLConnection. An XML Parser of the type NSXMLParer is created as well,
and lastly, a variable to store the XML content retrieved from Evenful of the type
NSMutableData is also created.

2. We also need to use the NSXMLParserDelegate in our class deiniion to
use the methods implemented by the NSXMLParser. Create an outlet for the
UITableView and name it myDataTable:

#import <UIKit/UIKit.h>

#import <CoreLocation/CoreLocation.h>

@interface Hello_LocationViewController : UIViewController
 CLLocationManagerDelegate, UITableViewDataSource,
 NSXMLParserDelegate>

{

 CLLocationManager *locMgr;

 CLLocation *userLocation;

 UITableView *myDataTable;

 NSURLConnection *urlConnection;

 NSXMLParser *xmlParser;

 NSMutableData *xmlContent;

}

@property (nonatomic, retain) IBOutlet UITableView *myDataTable;

@end

http://api.eventful.com/
http:///

Using Locaion in your iOS Apps—Core Locaion

[92]

3. In our Hello_LocationViewController.m ile, synthesize the myDatatable

variable. Create a MutableArray variable called events to store the events itle
received from Evenful API.

4. Create a MutableString variable, titleText, which will be used to parse
the XML and send an element value to the UITableView. Create another
string variable currentXMLTitle to store the current XML element name.

5. In the viewDidLoad method of our View Controller, we iniialize
the xmlContent and events variable. The following is what the
viewDidLoad method now looks like:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically
 from a nib.

 xmlContent = [[NSMutableData alloc]init];

 locMgr = [[CLLocationManager alloc]init];

 locMgr.desiredAccuracy= kCLLocationAccuracyKilometer;

 locMgr.distanceFilter=1000.0f;

 locMgr.delegate=self;

 userLocation = [[CLLocation alloc] initWithLatitude:37.33
 longitude:-122.03];

 if([CLLocationManager locationServicesEnabled]==FALSE)

 {

 [locMgr startUpdatingLocation];

 }

 if([CLLocationManager locationServicesEnabled]==TRUE)

 {

 [locMgr startUpdatingLocation];

 }

 events = [[NSMutableArray alloc]init];

}

http:///

Chapter 3

[93]

6. When the locaion gets updated, through the didUpdateToLocation method, we
call the Evenful API via NSURLCoonection and NSURLRequest. Note that you will
need your own Evenful API key to get this example running:

- (void) locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation

{

 xmlContent = [[NSMutableData alloc]init];

 events = [[NSMutableArray alloc]init];

 NSString *newLatitude = [[NSString
 alloc]initWithFormat:@"%g",newLocation.coordinate.latitude];

 NSString *newLongitude = [[NSString
 alloc]initWithFormat:@"%g",newLocation
 .coordinate.longitude];

 latitudeTextData = newLatitude;

 longitudeTextData = newLongitude;

 // Call EventFul API Now

 NSString *appKey = @"xxxxxxxxxxxxxxxx";

 NSString *url = [NSString

 stringWithFormat:@"http://api.eventful.com/rest/events/search?

 keywords=concerts&location=%@,%@&app_key=%@&within=10",

 newLatitude,newLongitude,appKey];

 NSURL *urlToRequest = [[NSURL
 alloc]initWithString:url];

 NSURLRequest *request = [NSURLRequest

 requestWithURL:urlToRequest];

 urlConnection = [[NSURLConnection alloc]

 initWithRequest:request

 delegate:self startImmediately:YES];

}

7. The NSURLConnection class calls the didRecieveData method when it receives
a response successfully from the web service that was called for.

http:///

Using Locaion in your iOS Apps—Core Locaion

[94]

8. In the didReceiveData method, we use the response data and pass it to an XML
Parser to parse the XML received as follows:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data

{

 [xmlContent appendData:data];

 xmlParser = [[NSXMLParser alloc]initWithData:xmlContent];

 xmlParser.delegate = self;

 [xmlParser parse];

}

9. The NSXMLParser class has three methods of traversing an XML, namely,
didStartElement, didEndElement, and foundCharacters. The XML
Parser calls the didStartElement method when it encounters a start of an
XML element; similarly, it calls the didEndElement when it encounters close
tags for an XML Element.

10. Between the StartElement and EndElement call, the parser calls the
foundCharacters if it inds textual content in the XML element. We use this
method to fetch the events from Evenful API. The XML element for the event name
is event, and the itle stores the event name. So we use the itle element of the
response as follows and add it to the UITableView:

if([currentXMLTitle isEqualToString:@"title"])

{

 [titleText appendString:string];

}

11. When the EndElement parser method is called, we add the itle received to the
UITableView via the events mutable array deined in the header, as shown in
the following code snippet:

-(void)parser:(NSXMLParser *)parser didEndElement:(NSString
 *)elementName namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName

{

 if([currentXMLTitle isEqualToString:@"title"])

 {

 if(![events containsObject:titleText])

 {

 [events addObject:titleText];

 titleText = [[NSMutableString alloc]init];

 }

 }

}

http:///

Chapter 3

[95]

12. When the XML Parser completes the parsing via the parser DidEndDocument

method, we reload the UITableView to relect the addiion of the event itles
in the same.

13. It is a good ime to get familiar with the UITableView. Open your NIB ile and add
the UITableview to it, as follows:

14. Don't forget to connect the UITableView with the ile's owner – dataSource and
delegate. The UITableViewDataSource contains the necessary methods to
construct and modify a UITableView.

http:///

Using Locaion in your iOS Apps—Core Locaion

[96]

15. Run the project in the simulator with Locaion Simulaion; you should see an output
as shown in the following screenshot:

The code for the Evenful API project can be found on the book's website, under
Chapter 3 – itled Hello Locaion – Evenful

What just happened?
We created a sample applicaion that uses Locaion along with XML Parsing and Web
Services API, as well as a UI TableView to display nearby events in our app. We used Evenful
events API to fetch informaion, by passing the user's locaion in the API URL, as soon as
there is an update in the user's locaion the API URL is called and the new events obtained.

http:///

Chapter 3

[97]

We then parse the XML and displayed it in a simple UI Tableview. In Chapter 6, we will
extend this example to create a complete Events app and even submit to the app Store!!

Time for action – Last.fm API in your app
Let's do a quick events call from the Last.fm API as well. From the Evenful API example, we
are using the code to hit Last.fm as well. The only change we need to do is change the API
URL to the following:

http://ws.audioscrobbler.com/2.0/?method=geo.getevents&lat=19.076&l
on=72.8562&lon=&api_key=xxxxxxxxxxxxxxxx (where xxxxxxxxxxxxxxxx is
your API key)

1. We added some UI Enhancements to the tableView by creaing a header using the
titleForHeaderinSection method of the tableView Delegate.

-(NSString *) tableView:(UITableView *)tableView

titleForHeaderInSection:(NSInteger)section

{

 return @"Events by Last.fm";

}

2. A Calendar event icon is also added using the UIImage class as follows:

UIImage *cellImage = [UIImage imageNamed:@"Calendar.png"];

cell.imageView.image = cellImage;

3. The UITableView didSelectRowAtIndexPath method has been implemented
to add interacivity to the applicaion. When the user selects a table row, we call an
alert box:

-(void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

 NSString *eventClicked = [events objectAtIndex:[indexPath
 row]];

 UIAlertView *alert = [[UIAlertView
 alloc]initWithTitle:@"You selected the following event "

 message:eventClicked

 delegate:self

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alert show];

}

http://ws.audioscrobbler.com/2.0/?method=geo.getevents&lat=19.076&lon
http://ws.audioscrobbler.com/2.0/?method=geo.getevents&lat=19.076&lon
http://ws.audioscrobbler.com/2.0/?method=geo.getevents&lat=19.076&lon
http:///

Using Locaion in your iOS Apps—Core Locaion

[98]

It is a good ime to get a hang of UITableView, NSURLConnection, and
the XMLParser classes to uilize the web services call and bind them to a
UITableview. A lot of locaion-based applicaions are built this way, although with
more features, which we will review in our sample apps in the forthcoming chapters.

4. The output now looks like the following screenshot:

What just happened?

We used the popular music website Last.fm as the source for our Events content this
ime and used the same logic as in the evenful example. However, this ime we created a
UITableView Cell Clicked event that shows an alert when a paricular row in the UI
TableView is clicked on. This can be useful to show more informaion from the API. Typically,
a mapView signiies the events locaion or more descripion of the event, including ickets,
sample songs, and so on.

http:///

Chapter 3

[99]

Extending Hello Location for local search
Having understood quite a few details about iOS Locaion APIs, let's move a bit further from
the Hello Locaion paradigm to a real-world applicaion usage scenario – local search.

Local search—implying locaion-based search for businesses including bars, cafés,
restaurants, shopping malls, gas staions, pizza outlets—is the most common usage
of locaion data, from simple content display apps to complex check-in, augmented
reality-based apps. If you have an iPhone, then you would have surely used the
foursquare applicaion or the Google Places applicaion.

Now let's dive into the foursquare developer site https://developer.foursquare.
com/docs/ and register your app at https://foursquare.com/oauth/ to start using
the foursquare API calls, as shown in the following screenshot:

Note down your Client ID and Client Secret. This will be required for the API calls in
our applicaion.

http:///

Using Locaion in your iOS Apps—Core Locaion

[100]

Important things to know before we begin
1. Client ID and Client Secret from Foursquare

2. NSJSONSerialization – New JSON API in iOS 5

3. NSDictionary and/or NSArray implementaion details

Time for action – building a local search app with foursquare
We use the example code from Evenful and the Last.fm example. However, this ime we do
not use XML; instead, we use JSON along with the new NSJSONSerialization class in iOS
5. The NSJSONSerialization class is useful to convert JSON-to-Core Foundaion objects
and Core Foundaion objects to JSON. In simpler words, you can convert JSON retrieved from
web services to NSArray. NSDictionary types easily and use in your applicaion.

1. We begin by creaing a UITableView in our Hello_LocationViewController.
xib ile and exposing an outlet, as in the Evenful example before.

2. Next in the didReceiveData method of NSURLConnection, we deine an object
of the type NSDictionary as NSDictionary *dictionary;, which will hold our
JSON data from the foursquare API. This is ater convering the received data into
JSON format. We also add the NSJSONReadingAllowFragments opion to allow
objects that are not of the types NSArray or NSDictionary to be converted into
an appropriate JSON format:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 NSError *jsonError;
 NSDictionary *dictionary;
 NSArray *items;

 dictionary= [NSJSONSerialization JSONObjectWithData:data
 options:NSJSONReadingAllowFragments error:&jsonError];

 items = [NSArray arrayWithObject:[[dictionary
 objectForKey:@"response"]objectForKey:@"groups"]];

 NSUInteger count = [[[[items objectAtIndex:0]
 objectAtIndex:0] objectForKey:@"items"]count];

 for(NSInteger i=0;i<count-1;i++)
 {

http:///

Chapter 3

[101]

 NSString *titleText = [[[[[items objectAtIndex:0]
 objectAtIndex:0] objectForKey:@"items"]objectAtIndex:i]
 objectForKey:@"name"];
 if(![venues containsObject:titleText])
 {
 [venues addObject:titleText];
 }
 }

 [myDataTable reloadData];
}

3. We created a dicionary object and converted the JSON data received into an array
for easier parsing and adding the name of the Nearest Venue to the UITableView via
the venues array.

4. The JSONObjectWithData method converts the data from the Foursquare API
(which is in JSON format) to a Foundaion object. In this case it is an instance of
NSDictionary, which we eventually convert into an array.

5. We then loop through the array of the items object (that holds the venue
informaion details) and use the name of the venue to pass on to the venue
array for the UITableView.

6. Run the applicaion in the iOS Simulator. You should see an output like the one in
the following screenshot:

http:///

Using Locaion in your iOS Apps—Core Locaion

[102]

What just happened?
We used the foursquare venues API to fetch nearby venues by passing the geo locaion
coordinates from our iPhone to the foursquare API. The result of the search is a JSON
payload, which we convert into Core Foundaion objects using the NSJSONSerialization

class in iOS 5.

Before iOS 5, JSON parsing was available via third-party add-ons, some of which are
JSONKit, JSON-framework. However, with the addiion of the NSJSONSerialization class,
third-party JSON frameworks are not required. The twiter framework in iOS 5 also uses
NSJSONSerialization. Find the code for this example on the book's website, in a project
itled Hello Locaion - Foursquare.

Pop quiz – Location, Location, and Location
1. What is the name of the class that holds the Locaion informaion in the Core

Locaion Framework?

a. CLLocaionManager

b. CLLocaion

2. Name the class responsible for forward and reverse Geocoding in iOS 5

a. CLLocaionManager

b. CLGeocoder

3. What is the method used to check whether locaion services are enabled on your
iOS device or not?

4. How do you enable background locaion in your app.

a. Keep the app running in the background by pressing the home buton

b. Enable Locaion from the iPhone's seings pages

c. Use UIBackgroundModes with the key 'locaion'

5. Name the JSON API in iOS 5 SDK

a. NSJSONSerializaion

b. JSONKit

http:///

Chapter 3

[103]

Summary

In this chapter, we learned how iOS SDK handles a locaion with the Core Locaion
framework, along with sample apps for showing nearby venues and events.

Speciically, we covered:

 � Staring the Locaion Manager to receive locaion data

 � Geing Locaion data updates in your applicaion

 � New iOS 5 API calls for Geocoding and Reverse Geocoding

 � Locaion Simulaion in the iOS 5 using Xcode 4.2

 � Region monitoring with Core Locaion

 � User Authorizaion for Locaion data security

We also discussed XMLParser and the new JSON API – NSJSONSerializaion. In total, we used
both the XMLParser and the JSON API to manipulate data from third-party APIs.

Now that we know how to handle Locaion in iOS 5, we now move further into the Maps
territory by using the MapKit API in the next chapter.

http:///

http:///

4
Using Maps in your iOS apps—MapKit

Maps provide a great visual experience for locaion-based services. Apple iOS
SDK includes a dedicated API for maps, via the MapKit framework.

In this chapter, we will have a look at the following topics:

 � Overview of the MapKit framework

 � Understanding map geometry

 � Working with map gestures – panning, zooming, and pinch zoom

 � Annotaing maps

 � Draggable and custom map annotaions in your apps

 � Map overlays

 � Working with the OpenStreetMaps-based CloudMade SDK for iOS

 � User tracking Modes – iOS 5's new features

So let's get on with it...

Overview of the MapKit framework
The MapKit framework provides iOS developers with the ability to display, annotate, and
overlay informaion on maps using Google maps data. Maps are now a default feature on most
locaion-based applicaions, as it provides a good graphical overview of the user's locaion and
his or her distance/nearness from the informaion he/she seeks in a locaion context.

http:///

Using Maps in your iOS apps—MapKit

[106]

With custom pin markers and direcions, it also helps users navigate to the desinaion easily.
Most importantly, maps give the user a feeling that this place is around the next block, north
from where I am standing, so decision-making happens quickly. Whether the user needs to
catch a taxi or a bus or if it is easier to walk, all of it happens quickly in the user's head. As
the map provides an intuiive informaion overlay that helps the user take this decision in a
fracion of the ime compared to analyzing texts of informaion that guide users to do step 1,
step 2, step 3, and so on.

This can be correlated with studies done on how the human mind works. It seems
Google Maps funcions similar to the way our brains process map informaion.
For the science geek, here is the link – http://www.sciencedaily.com/
releases/2009/10/091007081528.htm; no wonder people love Google Maps!

The iOS MapKit framework provides us with the following capabiliies:

 � Add a map view to your app (using MKMapView)

 � Add annotaions (read markers) with draggable, custom annotaions support

 � Show a user's locaion on a map

 � Overlays

 � Tracking modes (new in iOS 5)

Tracking modes is a new feature that speciies how the user's locaion updates
afect the map's posiioning. So if tracking modes are turned on, your map
display will always be updated with the user's current locaion. Another opion
also rotates the map display based on the heading values.

Understanding map geometry

Before we delve into the methods, acions, and outlets of MapKit, it is a good idea to get
acquainted with the background map geometry and how it works for Google maps. If
you have a background in Computer Science, then you would be aware of keywords such
as projecion, trajectory, co-ordinate systems, raster, and scalable graphics. In fact, most
of the Computer Graphics stuf you learned in school would relate here. If you are not
from a Computer Science background, then a basic understanding of the Google Maps
co-ordinate system will be good enough to begin working with MapKit. You can ind the
same at http://code.google.com/apis/maps/documentation/javascript/v2/
overlays.html#Google_Maps_Coordinates

http:///

Chapter 4

[107]

Google maps, and hence MapKit, use the Mercator projecion model of convering
the Earth's Sphere into a corresponding lat surface grid-based, parallel map. In such a
projecion, the longitude lines are parallel, and hence landmass further from the equator
tends to be distorted. However, Mercator projecion works well for navigaional purposes,
and therefore, despite the drawbacks, it is sill used today.

The following images should give you a good idea about the Mercator projecion:

Earth's surface as a sphere—Image courtesy - Michael Pidwirny from
http://www.eoearth.org/article/Maps and http://www.
physicalgeography.net/fundamentals/2a.html

http:///

Using Maps in your iOS apps—MapKit

[108]

Mercator projecion of the Earth's surface—Image courtesy - Michael Pidwirny
from http://www.eoearth.org/article/Maps and http://www.
physicalgeography.net/fundamentals/2a.html

MapKit supports three co-ordinate systems to point to a locaion on the map:

1. Map co-ordinate system: Regular laitude/longitude values

2. A map point: x and y values on the Mercator map projecion

3. A point: A unit associated with the co-ordinate system of a UIView Object

The Map co-ordinate system is the best, accurate, and portable way for storing locaion data.
We can convert from any of these co-ordinate systems, back and forth, using the MapKit
conversion funcions. Let's have a quick glance at them.

Conversion From Conversion To Conversion Funcions

Map Co-Ordinates Points convertCoordinate:toPointToView

convertRegion:toRectToView

MKMapview methods

Map Co-Ordinates Map Points MKMapPointForCoordinate

Map Points Map Co-Ordinates MKCoordinateForMapPoint

MKCoordinateRegionForMapRect

Map Points Points pointForMapPoint

rectForMapRect

MKOverLayView methods

Points Map Co-Ordinates convertPoint:toCoordinateFromView

convertRect:toRegionFromView

MKMapview methods

Points Map Points mapPointForPoint

mapRectForRect

MKOverlayView methods

Time for action – using MapKit in your app
We will use the Hello Location applicaion we saw in Chapter 3, the one that uses
locaion updates in our app, so that we can change the map display as the locaion
changes. The following diagram should give you an idea of our app behavior:

http:///

Chapter 4

[109]

App

Add an

UIView for

map

display

Add a

Navigation

Bar

Main View

(Hello

Location)

We modify the Hello_LocationViewController.xib ile to make our app look more
professional as follows:

1. Add a UINavigaionBar to your applicaion's NIB ile. Create another view by
dragging it from the Toolbox onto the NIB ile. Your app should now look like the
following screenshot; do not get confused with the UIView already present. What
we will be learning is superimposing another UIView (for this example, it will contain
the map) onto the Main UIView of the applicaion.

http:///

Using Maps in your iOS apps—MapKit

[110]

2. Now we map the Navigaion Bar's Show Map buton to the locationDetect acion.

3. In your Hello_LocationViewController.h ile, import the MapKit Framework

and deine the MKMapView object, as well as the Map View you deined in step 1.
Your code should now look like following snippet:

#import <UIKit/UIKit.h>

#import <CoreLocation/CoreLocation.h>

#import <MapKit/MapKit.h>

@interface Hello_LocationViewController : UIViewController

<CLLocationManagerDelegate>

{

 CLLocationManager *locMgr;

 CLLocation *userLocation;

 NSString *message;

 MKMapView *map;

 UIView *mapView;

http:///

Chapter 4

[111]

}

@property (retain,nonatomic) MKMapView *map;

@property (strong, nonatomic) IBOutlet UIView *mapView;

- (IBAction)locationDetect:(id)sender;

@end

4. In your Hello_LocationViewController.m ile, synthesize the map and
mapview objects:

@synthesize map;

@synthesize mapView;

5. Furthermore, create an MKCoordinateRegion object that will hold the porion of
the map to display as follows:

MKCoordinateRegion region;

6. In the viewDidLoad method, we create the map object and bind it to the new View
we created to hold the map; the map type is the default Google Maps standard
view, which is as follows:

map = [[MKMapView alloc]initWithFrame:self.mapView.bounds];

map.mapType = MKMapTypeStandard;

7. We deine the region to show on the map from the user's iniial locaion (San
Francisco, if the locaion is not found; the actual locaion otherwise). The zoom level
is controlled by the span variable of the region. Next, we enable the map zooming.
The complete viewDidLoad method is as shown in the following code snippet:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically
 from a nib.

 locMgr = [[CLLocationManager alloc]init];

 locMgr.desiredAccuracy= kCLLocationAccuracyBest;

 locMgr.distanceFilter=1000.0f;

 locMgr.delegate=self;

 userLocation = [[CLLocation alloc] initWithLatitude:37.33
 longitude:-122.03];

 message = [[NSString alloc]initWithString:@""];

 if([CLLocationManager locationServicesEnabled]==NO)

http:///

Using Maps in your iOS apps—MapKit

[112]

 {

 message=@"Location cannot be initialized. Please check
 settings";

 }

 [locMgr startUpdatingLocation];

 map = [[MKMapView alloc]
 initWithFrame:self.mapView.bounds];

 map.mapType = MKMapTypeStandard;

 region.center = userLocation.coordinate;

 region.span.latitudeDelta = 0.1;

 region.span.longitudeDelta = 0.1;

 map.zoomEnabled = TRUE;

 [map setRegion:region animated:TRUE];

}

8. When the locaion changes, we use the new locaion values and pass it to the region
variable and update the map in the Locaion Manager's didUpdateToLocation

method as follows:

(void) locationManager:(CLLocationManager *)
manager didUpdateToLocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation

{

 region.center = newLocation.coordinate;

 [map setRegion:region animated:TRUE];

}

9. On the Show Map buton click, we deined the locationDetect method to
be called. Based on the user's authorizaion, we deine the region of the map
accordingly, and then, inally updated the map. The map is not rendered on the
View unless we add it as a subView to the mapView we created in step 1, 2, and 3,
as follows:

[self.mapView addSubview:map];

10. The following is the updated locationDetect method:

- (IBAction)locationDetect:(id)sender

{

 if([CLLocationManager locationServicesEnabled]==TRUE)

 {

 if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusNotDetermined)

 {

 message = @"User hasn't made a choice yet.
 Defaulting to San Francisco";

http:///

Chapter 4

[113]

 region.center = userLocation.coordinate;

 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusDenied)

 {

 message = @"User has denied use of location
 services for your application or

 all applications.Defaulting to San Francisco";

 region.center = userLocation.coordinate;

 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusAuthorized)

 {

 message = @"User has authorized your
 application for location services.";

 region.center = locMgr.location.coordinate;

 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusRestricted)

 {

 message = @"Not authorized to user location
 services.Defaulting to San Francisco";

 region.center = userLocation.coordinate;

 }

 [map setRegion:region animated:TRUE];

 [self.mapView addSubview:map];

 }

 else if([CLLocationManager locationServicesEnabled]==FALSE)

 {

 message = @"Location cannot be initialized. Please check
 settings";

 }

}

http:///

Using Maps in your iOS apps—MapKit

[114]

11. Run the applicaion on the iOS simulator by using Locaion Simulaion. You
should see the following result when you click on the Show Map buton on
the navigaion bar:

What just happened?
We created a simple app that detected a user's locaion updates and displayed a map. We
combined Core Locaion and MapKit funcionality to do so. Try changing the locaion values
via the Locaion Simulaion feature in iOS 5 in the Product | Debug | Simulate Locaion

menu opion and see the map change to the simulated locaion. Note the map should be
rendered once to observe this change.

Do not forget to include the MapKit Library reference in your project. You can ind the code
for this example on the book's website, project itled Hello Locaion - With Maps.

http:///

Chapter 4

[115]

Time for action – using map gestures – panning and zooming
Panning and Zooming are two of the basic gestures on a Map. Panning on a MapView can be
achieved in two ways. They are as follows:

 � Use the centerCoordinate property of MKMapview

 � Use the setCenterCoordinate method

Similarly, zooming can be controlled by performing the following:

 � Modifying the span value in the region property of the MKMapView

 � Using the setRegion method

To make the map zoomable, we need to use the zoomEnabled property of MKMapView;
remember from our previous example where we used it as follows:

map.zoomEnabled = TRUE;

Zooming can be controlled by the region property of MKMapView and by the
setRegion:animated: method. We also used the region.center property before.
Now we will use the map.centerCoordinate to pan the map. The diference being that
the region.center property changes the zoom level of the map as well. However, the
map.centerCoordinate does not change the zoom level of the map, so it enables
true Panning.

1. From the last example, open the Hello_LocationViewController.m ile and
update the didUpdateLocation method of the locaion manager to use the
map.centerCoordinate method of panning the map to the new locaion
as follows:

- (void) locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 CLLocationCoordinate2D newCenter;
 newCenter.latitude = newLocation.coordinate.latitude;
 newCenter.longitude = newLocation.coordinate.longitude;
 map.centerCoordinate= newCenter;
}

2. Change the locationDetect method to:

-(IBAction)locationDetect:(id)sender
{
 CLLocationCoordinate2D newCenter;

 if([CLLocationManager locationServicesEnabled]==TRUE)
 {

http:///

Using Maps in your iOS apps—MapKit

[116]

 if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusNotDetermined)

 {

 message = @"User hasn't made a choice yet.Defaulting
 to San Francisco";

 newCenter.latitude = userLocation.coordinate.latitude;

 newCenter.longitude = userLocation.coordinate.longitude;

 map.centerCoordinate = newCenter;

 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusDenied)

 {

 message = @"User has denied use of location services
 for your application or all applications.

 Defaulting to San Francisco";

 newCenter.latitude = userLocation.coordinate.latitude;

 newCenter.longitude = userLocation.coordinate.longitude;

 map.centerCoordinate = newCenter;

 }

 else if([CLLocationManager authorizationStatus]==

 kCLAuthorizationStatusAuthorized)

 {

 message = @"User has authorized your application

 for location services.";

 newCenter.latitude = locMgr.location.coordinate.latitude;

 newCenter.longitude = locMgr.location.coordinate.longitude;

 map.centerCoordinate = newCenter;

 }

 else if([CLLocationManager authorizationStatus]==
 kCLAuthorizationStatusRestricted)

 {

 message = @"Not authorized to user location
 services.Defaulting to San Francisco";

 newCenter.latitude = userLocation.coordinate.latitude;

 newCenter.longitude = userLocation.coordinate.longitude;

 map.centerCoordinate = newCenter;

 }

 [self.mapView addSubview:map];

 }

http:///

Chapter 4

[117]

 else if([CLLocationManager locationServicesEnabled]==FALSE)

 {

 message = @"Location cannot be initialized. Please check
 settings";

 }

}

3. Run the applicaion in the simulator and zoom to a paricular locaion. Now change
the locaion via the Locaion Simulator to a diferent city or any custom locaion. You
will observe that the zoom level remains the same, only the map has been panned
to the new locaion.

The code for this example can be found on the book's website, in a project itled Hello

Locaion - Maps with Pan and Zoom.

Annotating Maps – an overview
Annotaions are to iOS SDK what markers are to Google Maps API. Annotaions are used to
display a single geocoded enity on a map; this enity could be a local restaurant, or a bus
stop, or a cinema hall. Annotaions such as the MapView are UIView elements that can be
rendered on the iOS device.

The MKAnnotationView class, along with the MKAnnotation protocol, is responsible for
managing annotaions on a map. MapKit allows the following funcionality for Annotaions:

 � Adding and Displaying Annotaions on the map

 � Draggable Annotaions

 � Custom Map Annotaions

Time for action – adding annotations to your maps
Let's begin extending the map applicaion we created before by showing an Annotaion
object on the map, signifying the user's current locaion on the map.

1. We begin by creaing an MKPointAnnotation object, deine it in the Hello_
LocationViewController.h ile as MKPointAnnotation *annotation;, and
expose it as a property @property (retain,nonatomic) MKPointAnnotation
*annotation;

http:///

Using Maps in your iOS apps—MapKit

[118]

2. In the Hello_LocationViewController.m ile, synthesize the annotaion object,
and in the viewDidLoad method, iniialize and add the annotaion to the map by
using the following code:

annotation = [[MKPointAnnotation alloc]init];

annotation.title = @"My Position";

annotation.coordinate = userLocation.coordinate;

[map addAnnotation:annotation];

3. This is a simple annotaion object added to the map. We change the annotaion's
posiion in the Locaion Manager's didUpdateToLocation method as
annotation.coordinate = newLocation.coordinate;

4. Similarly, we change the annotaion's co-ordinates in the locationDetect method

as well.

5. Run the applicaion; you should see an annotaion on the map, posiioned at
your locaion.

http:///

Chapter 4

[119]

The code for this example can be found on the book's website, in the project itled Hello

Locaion - Annotaions

We will now look at how to create draggable and custom annotaions. This ime, we will use
beter annotaion management techniques using the MKAnnotationView class.

Time for action – draggable annotations
We now look at adding draggable annotaions to our Maps.

1. We reuse the example from before, but rearrange the UI to look like the following
image. This ime, we add the mapView directly using the UI ToolBox.

http:///

Using Maps in your iOS apps—MapKit

[120]

2. We also create an IBOutlet as @property (strong, nonatomic) IBOutlet

MKMapView *mapView; and connect the mapView from the Nib ile to the outlet
by keeping Ctrl clicked and dragging the MapView to the outlet.

3. As before, we deine an MKPointAnnotation object annotation in our Hello_
LocationViewController.h ile. The following is the complete code:

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface Hello_LocationViewController : UIViewController
<CLLocationManagerDelegate,MKMapViewDelegate>
{
 CLLocationManager *locMgr;
 CLLocation *userLocation;
 NSString *message;
 MKPointAnnotation *annotation;
 MKMapView *mapView;
}

@property (retain,nonatomic) MKPointAnnotation *annotation;
@property (strong, nonatomic) IBOutlet MKMapView *mapView;

- (IBAction)locationDetect:(id)sender;

@end

http:///

Chapter 4

[121]

4. In the Hello_LocationViewController.m ile, we no longer need to create a
mapView and call it implicitly, when we added the mapView to the Nib ile via the
UI Toolbox. Xcode automaically adds the code to show the map accordingly.

5. We implement the mapView:viewForAnnotation

delegate funcion in our .m ile. In this funcion, we use the
dequeueReusableAnnotationViewWithIdentifier method of an
MKPinAnnotationView to check if the Annotaion View can be reused. If
not, then we create the new MKPinAnnotationView. We then make the
MKPinAnnotationView draggable and change the pin color to green.

 (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id <MKAnnotation>)annotation

{

MKPinAnnotationView *annotationView=(MKPinAnnotationView *)

[self.mapView dequeueReusableAnnotationViewWithIdentifier:

@"My Location"];

if (annotationView == nil)

{

 annotationView = [[MKPinAnnotationView alloc]
initWithAnnotation:self.annotation

 reuseIdentifier:@"My Location"];

}

else

{

 annotationView.annotation = self.annotation;

}

 annotationView.draggable=TRUE;

 annotationView.canShowCallout=YES;

 annotationView.pinColor = MKPinAnnotationColorGreen;

return annotationView;

}

6. The MapView calls the viewForAnnotation method when an annotaion is to be
displayed. The MKMapViewDelegate delegate of MKMapView does this; make sure
your class implements this delegate to use Annotaion Views.

http:///

Using Maps in your iOS apps—MapKit

[122]

7. Run the applicaion. You should see an output like one shown in the following
screenshot:

What just happened?
We created a simple UI with a MapView on the viewDidLoad funcion. We added an
annotaion to the map. As the annotaion was added to the mapView, the mapView called
the viewForAnnotation delegate method, wherein we checked to see if we could reuse
an exising AnnotationView. This is a good pracice for beter memory management. This
is helpful in scenarios when we have a large number of annotaions added to the mapView.
We then create or reuse the current AnnotationView with the annotaion object and make
the AnnotationView draggable and change the default red annotaion pin's color to green.
Find the code for this example on the book's website, in a project itled Hello Locaion -
Draggable Annotaions.

http:///

Chapter 4

[123]

Time for action – custom map annotations
Now that we have good hands-on experience with Annotaions and Annotaion Views, let's
explore the full power of Annotaion Views by creaing our own custom Marker. We will be
creaing lag-based markers for ciies, so if you create an annotaion with Mumbai's laitude
and longitude values, the annotaion will show the Indian Flag, and when we create an
Annotaion with a San Francisco co-ordinate, it will show the American lag.

1. We extend from the preceding example and declare one more Annotaion
object in our class. In the Hello_LocationViewController.h ile, add a
MKPointAnnotation object as MKPointAnnotation *mumbaiAnnotation; and
expose it as a property @property (retain,nonatomic) MKPointAnnotation
*mumbaiAnnotation;

2. Furthermore, add two lag PNG images to your project, one for the US lag and
another for the Indian Flag. Name them usa-flag.png and india-flag.png,
respecively.

3. In the viewDidLoad method of our Hello_LocationViewController.m ile,
we instaniate a Mumbai Locaion object that holds Mumbai's Geo co-ordinates, as
follows:

CLLocation *mumbaiLocation = [[CLLocation alloc]

 initWithLatitude:19.02 longitude:72.85];

4. Next, we set the itle and co-ordinates for the mumbaiAnnotation object and add
it to the mapView, as follows:

mumbaiAnnotation.title = @"Mumbai";

mumbaiAnnotation.coordinate=mumbaiLocation.coordinate;

[mapView addAnnotation:mumbaiAnnotation];

5. In the viewForAnnotation delegate method implementaion, this ime we use
the MKAnnotationView instead of the MKPinAnnotationView. We then check
the annotaion's itle and assign the lag images to them accordingly.

if([annotationMapView.title isEqualToString:@"Mumbai"])
{
 annotationView.image = [UIImage imageNamed:@"india-
 flag.png"];
 annotationView.draggable=TRUE;
 annotationView.canShowCallout=YES;
}
else if ([annotationMapView.title isEqualToString:@"Detected
 Location"])
{

http:///

Using Maps in your iOS apps—MapKit

[124]

 annotationView.image = [UIImage imageNamed:@"usa-flag.png"];

 annotationView.draggable=TRUE;

 annotationView.canShowCallout=YES;

}

6. Run the applicaion by having Locaion Simulaion set to "San Francisco". You should
see the following results:

http:///

Chapter 4

[125]

7. Scroll the applicaion to your right. You should also see the Mumbai Annotaion with
the Indian Flag, as shown in the following image:

http:///

Using Maps in your iOS apps—MapKit

[126]

What just happened?
We created two custom annotaions, displaying the country lags for two ciies, based on
their annotaion itle (Mumbai or Detected Locaion). Note, we purposely simulated this
applicaion with the San Francisco co-ordinates, but this app can run without any locaion
simulaion. All we need to do is change the if condiion where the annotaion itle is
compared.

The code for this example can be found at the book's website, in a project itled Hello

Locaion - Custom Annotaions.

Have a go hero – use CLRegion to detect a user's city
Remember our CLRegion example from Chapter 3, where we introduced a region of 1,000
meters around San Francisco? Use the same to detect if the user entered the San Francisco
region and show a map annotaion with the US lag; do the same for Mumbai.

Map overlays – an overview
An overlay is a layer of muliple map co-ordinates, used to represent acivity or informaion
over a signiicant geographical region. While annotaions are single map co-ordinates,
overlays are a group or set of co-ordinates layered on a map surface, their size being
connected to the zoom level of the map. Overlays help is analyzing a region for certain
behavior or accessing and represening staisical data on a region on the map.

Overlays can be used to show city boundaries on a map, a good way to check this in acion
is at Flickr's Geo API Explorer - http://www.flickr.com/places/info/12587707 for
San Francisco.

Overlays are quite similar to annotaions – in the sense that both are superimposed layers
on top of the map view. Our applicaion needs to provide an object that conforms to the
MKOverlay protocol and the MKOverlayView that draws the overlay on the map; this
is similar to the use of the MKAnnotation protocol and MKAnnotation used in our
annotaion examples earlier. iOS provides some built-in overlays that can be used to draw
a circle, polygon, or a polyline. These are subclasses of the MKOverlay protocol, namely,
MKCircle, MKPolygon, and MKPolyline. Similarly, MKOverlayView has the subclasses
MKCircleView, MKPolygonView, and MKPolylineView.

Time for action – customizing map annotations
Let us quickly see an example of an overlay in acion. We create a polygon overlay over the
San Francisco region. The values of the polygon are obtained from Google Maps, as shown
in the following image:

http://www.flickr.com/places/info/12587707
http://www.flickr.com/places/info/12587707
http:///

Chapter 4

[127]

1. From the earlier example, we are using the code for custom annotaions and adding
an overlay to the same. In the Hello_LocationViewController.h ile, declare
an MKPolygon that will hold our polygon values as MKPolygon *yourArea; and
expose it is as a property.

2. In the viewDidLoad method, we create an array of CLLocationCoordinate2D

that will hold our polygonal values. We then iniialize the array with the four
laitude/longitude values obtained from Google maps as follows:

CLLocationCoordinate2D area[4];

area[0]= CLLocationCoordinate2DMake(37.7750, -122.4195);

area[1]= CLLocationCoordinate2DMake(37.7765, -122.4175);

area[2]= CLLocationCoordinate2DMake(37.7733, -122.4134);

area[3]= CLLocationCoordinate2DMake(37.7724, -122.4185);

3. We create the MKPolygon with these coordinates, assign it a itle, and add it to the
map as follows:

yourArea = [MKPolygon polygonWithCoordinates:area count:4];

yourArea.title = @"San Francisco Central Area";

[mapView addOverlay:yourArea];

http:///

Using Maps in your iOS apps—MapKit

[128]

4. Next, we implement the viewForOverlay delegate method and ill the overlay
with the color red, adding some alpha component to make the layer a bit
transparent.

-(MKOverlayView *)mapView:(MKMapView *)mapView
viewForOverlay:(id<MKOverlay>)overlay
{
 MKPolygonView* overlayView = [[MKPolygonView alloc]
 initWithPolygon:(MKPolygon*)overlay];
 overlayView.fillColor = [[UIColor redColor]
 colorWithAlphaComponent:0.3];
 return overlayView;
}

5. Run the applicaion, this ime without locaion simulaion, as we are hardcoding the
polygon values, so it is a good idea to center it to a locaion we know to understand
the output. We have centered the map at San Francisco (37.77402, 122.4156). The
overlay on the map should be as shown in the following output:

http:///

Chapter 4

[129]

User tracking modes

One of the default behaviors of maps is detecing and showing the user's locaion. The
MKMapview component has an easy way of turning it on. When in the Interface builder

mode in Xcode, you can select the mapView component on your Nib ile and then navigate
to the Atributes inspector to enable the Show User Locaion checkbox.

iOS 5 also introduces User Tracking modes via mapView, using the setUserTrackingMode

method of MKMapview. This allows the MapView to track a user's locaion via two tracking
modes, which are as follows:

 � MKUserTrackingModeFollow – the map is updated as the user's locaion is
updated.

 � MKUserTrackingModeFollowWithHeading – the map updates its posiion from
the user's locaion and rotates based on the heading value.

http:///

Using Maps in your iOS apps—MapKit

[130]

Bonus – ofline maps in your app
Google maps, as well as Bing Maps, work well for network-connected iOS devices, but
there are no opions available yet (Oline Maps are available on Android, but not iOS).
Enter CloudMade - http://cloudmade.com/, a company ofering soluions for building
locaion-based map apps, using the OpenStreetMaps as the mapping soluion.

There are other apps for iOS using OpenStreetMaps. You can check out a comprehensive list
at http://wiki.openstreetmap.org/wiki/Apple_iOS. This should give you an idea
on how OpenStreetMaps data can be consumed in iOS apps. Coming back to CloudMade,
the company ofers a comprehensive suite of Mapping APIs and SDKs. Our interest lies in the
iPhone and iPad SDK – http://cloudmade.com/products/iphone-sdk.

The CloudMade iPhone SDK allows more funcionality than Google Maps, including support
for the following:

 � Oline maps

 � Customizable map styles

 � Vehicle and pedestrian rouing

 � Data Market Place, free and paid datasets to be consumed by map-based apps –
http://datamarket.cloudmade.com/

 � Forward and Reverse Geocoding

 � Locaion-based adverising

Developers need to sign up for access and get an API to begin building apps using
CloudMade iOS SDK. There are limitaions with the free API. A comparison of free and
paid services can be found at http://cloudmade.com/select/web. Ater you have
downloaded the iphone-sdk, a good place to start building your apps using CloudMade API
can be found at the following websites:

 � http://developers.cloudmade.com/wiki/iphone-sdk/Examples - Geing
started

 � http://support.cloudmade.com/forums/iphone-sdk/posts/104/show -
Oline maps

http://wiki.openstreetmap.org/wiki/Apple_iOS
http://wiki.openstreetmap.org/wiki/Apple_iOS
http://developers.cloudmade.com/wiki/iphone-sdk/Examples
http:///

Chapter 4

[131]

Time for action – using OpenStreetMaps with CloudMade API
Let's build a sample OpenStreetMaps-based app quickly using the CloudMade iPhone
Framework.

1. Before you can start using the CloudMade API in your iOS app, you need to
register for a key as well as download the CloudMade iPhone Library. See
http://developers.cloudmade.com/wiki/iphone-sdk/How_to_get_
development_environment_and_download_the_latest_version_the_
CloudMade_iPhone_Library

2. Next, we need to add this library to our Xcode project and set up Xcode to work
with the newly-added CloudMade Library. A detailed step-by-step guide is available
at http://developers.cloudmade.com/wiki/iphone-sdk/How_to_setup_
Xcode_to_work_with_CloudMade_iPhone_Library, don't tear your hair out if
you have diiculty compiling and coniguring the same, as you can always download
this example from the book's website.

3. We begin our app by using the geing started app from the CloudMade Wiki
http://developers.cloudmade.com/wiki/iphone-sdk/Creating_the_

simplest_application_displaying_the_map as the base for our app. We
also add our Hello Locaion process to the same.

4. We added two UIViews and changed the second UIView to the class type
RMMapView from the CloudMade library and this new MapView is superimposed
on our parent view. We also added an iAd placeholder to the mapView to show
relevant adverisement on the app (don't forget to include the iAd Framework in
your Project Build Seings). Our MapView now looks like the following screenshot:

http://developers.cloudmade.com/wiki/iphone-sdk/How_to_get_development_environment_and_download_the_latest_version_the_CloudMade_iPhone_Library
http://developers.cloudmade.com/wiki/iphone-sdk/How_to_get_development_environment_and_download_the_latest_version_the_CloudMade_iPhone_Library
http://developers.cloudmade.com/wiki/iphone-sdk/How_to_get_development_environment_and_download_the_latest_version_the_CloudMade_iPhone_Library
http://developers.cloudmade.com/wiki/iphone-sdk/How_to_setup_Xcode_to_work_with_CloudMade_iPhone_Library
http://developers.cloudmade.com/wiki/iphone-sdk/How_to_setup_Xcode_to_work_with_CloudMade_iPhone_Library
http://developers.cloudmade.com/wiki/iphone-sdk/How_to_setup_Xcode_to_work_with_CloudMade_iPhone_Library
http://developers.cloudmade.com/wiki/iphone-sdk/Creating_the_simplest_application_displaying_the_map
http://developers.cloudmade.com/wiki/iphone-sdk/Creating_the_simplest_application_displaying_the_map
http:///

Using Maps in your iOS apps—MapKit

[132]

5. In the Hello_Location_CloudMadeViewController.h ile, we declare the
CloudMade MapView as RMMapView* mapView;. To use this, we need to import
the appropriate class from the CloudMade library – #import "RMMapView.h"

6. In our implementaion, we change the viewDidLoad method and instaniate the
CloudMade MapView as follows:

id cmTilesource = [[RMCloudMadeMapSource alloc] initWithAccessKey:
 @"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" styleNumber:2];

[[RMMapContents alloc] initWithView:mapView tilesource:
 cmTilesource];

7. Replace xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx with your own key from
CloudMade.

8. The CloudMade MapView uses a simpler method to change its posiion and
zooming, which is based on popular JavaScript Map notaions (Google Maps JS API):

[mapView moveToLatLong: userLocation];

[mapView.contents setZoom: 16];

9. Run the applicaion on the iOS Simulator or on the iPhone. You should see an output
as follows:

http:///

Chapter 4

[133]

What just happened?
We used the CloudMade mapView class and rendered it in our applicaion using the
methods exposed by the same. We also created an iAd in our applicaion that can be used
to display locaion-based adverisements. Remember our discussion in Chapter 2? iAds can
also track a user's locaion to show relevant ads, thereby leading to more clicks and hence
revenues for the app developers.

CloudMade iPhone SDK has a lot more potenial than the basic example we saw earlier. For
more comprehensive examples of CloudMade iPhone SDK, visit http://developers.
cloudmade.com/wiki/iphone-sdk/Examples. A lot of companies have used the
CloudMade SDK to create compelling oline-based applicaions. Once again, you can ind the
code for this example on the book's website, in the project itled Hello-Locaion-CloudMade.

Have a go hero – creating an ofline map

Push yourself up to coach and try to make your app work oline by using oline maps. For a
start, see http://support.cloudmade.com/answers/offline-maps

The advantages of oline maps are aplenty. First of all, it is a great user experience and
provides an increase in loading speed. Secondly, it saves the user's mobile billing charges
by serving maps from the oline store. So no hits to the Google Maps API or Bing Maps API
to fetch a new map image. Thirdly, the app can work even in remote locaions where 3G or
other network connecions are sparse.

Pop quiz – Map Mania
1. Which projecion model does Google Maps use?

a. What is a projecion model?

b. Gall–Peters projecion

c. Mercator projecion

2. What is the diference between region.center and map.centerCoordinate properies?

a. No diference, both achieve the same result

b. The former changes the zoom level, but the later does not

3. What is the diference between MKPinAnnotaionView and MKAnnotaionView

a. MKAnnotaionView is used for custom markers, while
MKPinAnnotaionView does not support custom images for markers

b. MKPinAnnotaionView is the standard view and used for custom markers
for the Maps

http://support.cloudmade.com/answers/offline-maps
http://support.cloudmade.com/answers/offline-maps
http:///

Using Maps in your iOS apps—MapKit

[134]

Summary

In this chapter, we learned about the MapKit Framework of iOS SDK. We also understood
map geometry.

Speciically, we covered:

 � MapKit and maps geometry

 � Using MapKit in our applicaions

 � Adding annotaions, custom annotaions, and draggable annotaions

 � Adding Overlays on a map

 � Introducion to CloudMade SDK for Maps

Now that we know how to handle Locaion and Maps in iOS 5, let's create a real world
Weather app using all that we have learned so far.

http:///

5
Weather App—WeatherPackt

A Weather app is a nity app for mobile phone devices. It is a default app that
is bundled with most phones. We will learn how to build our own Weather

App for iOS devices, using the WeatherBug API. You need to register for a
key at the following URL: http://weather.weatherbug.com/desktop-
weather/api.html.

ProgrammableWeb lists a collecion of Weather APIs. You can choose any
Weather API provider from: http://www.programmableweb.com/apis/
directory/1?apicat=Weather&sort=date

In this chapter, we will cover the following topics:

 � Storing and retrieving the user's locaion data with SQLite

 � Convering locaion data into city name, using GeoNames API

 � Consuming the WeatherBug API in your app

 � Building your Weather app

 � Customizing Weather content display

 � App seings pages

 � Using PhoneGap to build WeatherPackt

 � Bonus: text to speech

So let's get on with it...

http:///

Weather App—WeatherPackt

[136]

Storing and retrieving the user's location with SQLite

We will use an SQLite database to store and retrieve the user's locaion. In addiion to this,
we will also store the place informaion through the GeoNames API. We can use the Core Data
framework of the iOS SDK for similar purposes, but since our data will not be overwhelmingly
large, SQLite is a good choice of storing the same. If you have used databases, such as
MySQL or Postgres before, you will ind the SQL statements among them to be similar. For
performance-based apps, you should read the Core Data Performance Guide at the Apple
developer site: http://developer.apple.com/library/ios/#documentation/
Cocoa/Conceptual/CoreData/Articles/cdPerformance.html.

This should help you best prepare for using Core Data versus SQLite in your applicaions.

Time for action – storing and retrieving the user's location
with SQLite

We use the Hello Location – Location update example from Chapter 3, Using Locaion

in your iOS Apps – Core Locaion, to demonstrate the SQLite funcionality.

1. Open the Hello Location – Location update example, and add the SQLite
library to your project. The library is named libsqlite3.0.dylib. Alternaively,
you can include the libsqlite3.dylib library (which is a symbolic link to the
libsqlite3.0.dylib library).

2. In the Hello_LocationViewController.h ile, we include the sqlite3 header
by imporing the sqlite3.h ile as follows:

#import <sqlite3.h>

3. Next, we declare a variable database of type sqlite3, and a string to hold the full
ilename with the following path:

sqlite3 *database;

NSString *sqliteFileName;

4. Next, we deine a method named getDatabaseFullPath that returns the full
path to the user's Document folder on his iPhone. This path will be used to store
the SQLite database that we will create and use in our applicaion.

-(NSString *) getDatabaseFullPath;

5. We then create an IBAction that will use the SQLite database to retrieve the user's
last posiion, by reading it from the SQLite database using the SQL statements.

-(IBAction)getSqliteLocation:(id)sender;

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreData/Articles/cdPerformance.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CoreData/Articles/cdPerformance.html
http:///

Chapter 5

[137]

6. In the Hello_LocationViewController.m ile, we declare a character variable
that holds the errors received by SQLite within our applicaion code.

char *sqliteError;

We also declare a variable to hold the database table name.

NSString *tableName = @"user_position";

7. Before creaing or using our database, we need to deine the full path where
the database ile will reside on the iOS device. For this purpose, we use
the NSDocumentDirectory foundaion data type, which is declared in
Foundation.h ile.

8. We deine the getDatabaseFullPath method as follows:

{

NSArray *directoryPath = NSSearchPathForDirectoriesInDomain
s(NSDocumentDirectory, NSUserDomainMask,TRUE);

NSString *documentsDirectory = [directoryPath objectAtIndex:0];

return [documentsDirectory stringByAppendingPathComponent:@"locati
on.db"];

}

9. The NSArray directoryPath variable contains the list of directory
search paths, in this case, the directory path of the user's Documents
directory, speciied by the NSDocumentDirectory parameter in the
NSSearchPathForDirectoriesInDomains method. We use this path,
and append the ilename of our SQLite database location.db, and return
it back to the calling method.

10. Next, in our didUpdateToLocation method, we open the SQLite ile, create the
table to store the user's locaion, and start insering rows (holding the user locaion
informaion variables newLatitude and newLongitude).

11. The sqlite3_open method is used to open a database. If the database is present,
this method will open the database, otherwise if there is no database, it will create
one and open it. The funcion will return a response type to indicate the status of
the database asked for. The results code also applies for other SQLite methods.

SQLITE_OK 0 Successful result

SQLITE_ERROR 1 SQL error or missing database

SQLITE_INTERNAL 2 Internal logic error in SQLite

SQLITE_PERM 3 Access permission denied

SQLITE_ABORT 4 Callback routine requested an abort

SQLITE_BUSY 5 The database file is locked

SQLITE_LOCKED 6 A table in the database is locked

http:///

Weather App—WeatherPackt

[138]

SQLITE_NOMEM 7 A malloc() failed

SQLITE_READONLY 8 Attempt to write a readonly database

SQLITE_INTERRUPT 9 Operation terminated by

 sqlite3_interrupt()

SQLITE_IOERR 10 Some kind of disk I/O error occurred

SQLITE_CORRUPT 11 The database disk image is malformed

SQLITE_NOTFOUND 12 Unknown opcode in sqlite3_file_control()

SQLITE_FULL 13 Insertion failed because database is full

SQLITE_CANTOPEN 14 Unable to open the database file

SQLITE_PROTOCOL 15 Database lock protocol error

SQLITE_EMPTY 16 Database is empty

SQLITE_SCHEMA 17 The database schema changed

SQLITE_TOOBIG 18 String or BLOB exceeds size limit

SQLITE_CONSTRAINT 19 Abort due to constraint violation

SQLITE_MISMATCH 20 Data type mismatch

SQLITE_MISUSE 21 Library used incorrectly

SQLITE_NOLFS 22 Uses OS features not supported on host

SQLITE_AUTH 23 Authorization denied

SQLITE_FORMAT 24 Auxiliary database format error

SQLITE_RANGE 25 2nd parameter to sqlite3_bind out of range

SQLITE_NOTADB 26 File opened that is not a database file

SQLITE_ROW 100 sqlite3_step() has another row ready

SQLITE_DONE 101 sqlite3_step() has finished executing

12. Once the database is created, we create a table called user_position, having
the following columns: position_id, latitude, longitude, and placeName.
We create this using the sqlite3_exec() method, and on success, we insert the
locaion values obtained through the locaion manager. Here is the code for the full
didUpdateToLocation method:

- (void) locationManager:(CLLocationManager *)
manager didUpdateToLocation:(CLLocation *)newLocation
fromLocation:(CLLocation *)oldLocation

{

 NSString *newLatitude =[[NSString alloc]initWithFormat:@"%g",

 newLocation.coordinate.latitude];

 NSString *newLongitude=[[NSString alloc]initWithFormat:@"%g",

 newLocation.coordinate.longitude];

http:///

Chapter 5

[139]

 latitudeTextData = newLatitude;

 longitudeTextData = newLongitude;

 latitudeText.text = latitudeTextData;

 longitudeText.text = longitudeTextData;

 if(sqlite3_open([sqliteFileName UTF8String],

 &database)==SQLITE_OK)

 {

 NSString *sql = [[NSString alloc]initWithFormat:

@"CREATE TABLE IF NOT EXISTS '%@' ('position_id' INTEGER PRIMARY

KEY,'latitude' DOUBLE, 'longitude' DOUBLE, 'placeName'

VARCHAR)",tableName];

 if(sqlite3_exec(database, [sql UTF8String], NULL, NULL,

 &sqliteError)==SQLITE_OK)

 {

 insertStatement = [[NSString alloc]initWithFormat:

 @"INSERT OR REPLACE INTO '%@'('%@','%@')

 VALUES('%@','%@')",tableName,@"latitude",@"longitude",

 newLatitude,newLongitude];

 if(sqlite3_exec(database, [insertStatement UTF8String],

 NULL, NULL, &sqliteError)==SQLITE_OK)

 {

 NSLog(@"Location Inserted");

 }

 }

 }

}

13. Now that we have successfully inserted the values in the database table, lets write
some code to retrieve these values.

http:///

Weather App—WeatherPackt

[140]

14. Open your Hello_LocationViewController.xib ile, create another
round rect buton, name it Read Sqlite Data, and connect it to IBAction

getSqliteLocation by pressing Control key, and clicking-and-dragging the
pointer to ile 's owner in the Interface Builder.

15. We declare the getSqliteLocation method as follows:

-(IBAction)getSqliteLocation:(id)sender

{

 NSString *sql = [[NSString alloc]initWithFormat:

 @"SELECT * FROM '%@' where position_id =

 (select max(position_id) from '%@')",tableName,tableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [sql UTF8String], -1,

 &sqlStatement, NULL)==SQLITE_OK)

 {

 while(sqlite3_step(sqlStatement)==SQLITE_ROW)

 {

 double latitudeData = sqlite3_column_double(sqlStatement, 1);

 double longitudeData= sqlite3_column_double(sqlStatement, 2);

http:///

Chapter 5

[141]

 NSString *returnLat = [NSString stringWithFormat:

 @"Your double value is %f", latitudeData];

 NSString *returnLon = [NSString stringWithFormat:

 @"Your

 double value is %f", longitudeData];

 NSLog(returnLat);

 NSLog(returnLon);

 }

 }

}

16. We retrieve the user's last locaion inserted in the table, by using a nested
SQL query that retrieves the last row. The combined sqlite3_prepare and
sqlite3_step methods are used to loop through the results of the SQL query.
The sqlite3_column_text method retrieves the column speciied. We use
the irst and second columns' values for retrieving the latitude and longitude

values. Note the table structure, since the column numbers (staring with index 0)

will be deined by the sequence of your SQL Create statement.

17. Run the app in the iOS simulator, try changing a couple of locaion values through
the Product | Debug | Simulate Locaion menu opion, and observe the values in
the Debug window.

2011-08-28 17:05:47.643 Hello Location Sqlite[1651:f203] Location
Inserted

2011-08-28 17:05:49.978 Hello Location Sqlite [1651:f203] 37.7874

2011-08-28 17:05:49.980 Hello Location Sqlite [1651:f203] -122.408

2011-08-28 17:05:59.681 Hello Location Sqlite [1651:f203] Location
Inserted

2011-08-28 17:06:01.626 Hello Location Sqlite [1651:f203] 19.0176

2011-08-28 17:06:01.628 Hello Location Sqlite [1651:f203] 72.8562

2011-08-28 17:06:15.131 Hello Location Sqlite [1651:f203] Location
Inserted

2011-08-28 17:06:17.145 Hello Location Sqlite [1651:f203] -33.8634

2011-08-28 17:06:17.147 Hello Location Sqlite [1651:f203] 151.211

Find the code for this example on the book's website: project itled Hello Locaion -
Locaion Updates - SQLite.

http:///

Weather App—WeatherPackt

[142]

What just happened?
We extended the Hello Locaion app again, and created a SQLite database - location.db

that resides on our iOS device user's Document directory, and holds the table called
user_position, which in turn, contains the user's raw locaion values.

When we read the SQLite database, we retrieve the user's last locaion, since this will be
the user's last and most updated posiion, and it makes good app behavior to coninue
from there.

Our approach to storing the locaion is similar to the consolidated.db approach that
Apple took with its locaion tracking Fiasco. This was detected by Pete Warden, and
published at: http://petewarden.github.com/iPhoneTracker/. It caused a lot
of security uproar for Apple, so it is a good idea to encrypt this ile, and keep it private
to your applicaion alone.

Converting location data into city name – using
Geonames API

Now that we have the user's locaion stored in our iOS device, we assume that the
user does not change his locaion oten, or does not oten move out of city. We use the
GeoNames API to convert the user's posiion into a meaningful city name or area name, as
returned by the GeoNames API. We could also use the reverse Geocoding method provided
by the new CLGeocoder class in iOS 5. Time to revisit the Geocoding example we did in
Chapter 3, where we covered forward geocoding. Now, we will look at reverse geocoding
and convering laitude/longitude values to meaningful address.

A bit on GeoNames
GeoNames is a worldwide geographical database, with a creaive common license, containing
more than 10 million geographical names that could include city, street, administraive areas,
mountains, lakes, canals, and so on . A full list is available at: http://www.geonames.org/
export/codes.html. The database is available for download, and there is a web service
as well.

http://petewarden.github.com/iPhoneTracker/
http://petewarden.github.com/iPhoneTracker/
http://www.geonames.org/export/codes.html
http:///

Chapter 5

[143]

Time for action – converting location data into city name
To display the city in which the user is interacing with our Weather applicaion, we need
to convert the laitude/longitude pairs to an appropriate city or local area name, so that it
makes visual sense to the end user.

1. Before we can use the GeoNames API, you need to register and get your own
username with GeoNames.org through http://www.geonames.org/login. The
documentaion for the web service can be found at: http://www.geonames.org/
export/ws-overview.html.

2. We begin extending the SQLite example discussed previously, by adding two
UILabels for city and country to our Hello_LocationViewController.xib

ile, as well as by adding two UITextFields that will be use to render the city and
country text values.

http://www.geonames.org/login
http://www.geonames.org/login
http:///

Weather App—WeatherPackt

[144]

3. We will need an XMLParser object to parse the XML response from GeoNames. We
created a similar example when we used the Last.FM API in Chapter 3, and we will
reuse most of the code here as well. Our Hello_LocationViewController.h

ile now looks as follows:

#import <UIKit/UIKit.h>

#import <CoreLocation/CoreLocation.h>

#import <sqlite3.h>

@interface Hello_LocationViewController : UIViewController

<CLLocationManagerDelegate,NSXMLParserDelegate>

{

IBOutletUITextField *latitudeText;

IBOutletUITextField *longitudeText;

CLLocationManager *locMgr;

CLLocation *userLocation;

NSString *message;

sqlite3 *database;

NSString *sqliteFileName;

NSXMLParser *xmlParser;

NSURLConnection *urlConnection;

}

@property (retain,nonatomic) IBOutletUITextField *latitudeText;

@property (retain,nonatomic) IBOutletUITextField *longitudeText;

@property (strong, nonatomic) IBOutletUITextField *area;

@property (strong, nonatomic) IBOutletUITextField *country;

-(NSString *) getDatabaseFullPath;

- (IBAction)locationDetect:(id)sender;

- (IBAction)getSqliteLocation:(id)sender;

@end

4. The area and country variables are required to hold the values of city and country,
respecively. The getSqliteLocation method will be used to retrieve the user's
last locaion and city/country values.

http:///

Chapter 5

[145]

5. In our Hello_LocationViewController.m ile, as soon as the
didUpdateToLocationevent is called when the device locaion is
updated, we do the following:

 � Call the GeoNames API through a NSURLRequest. We use the
http://api.geonames.org/findNearbyPlaceName GeoNames
API to ind the place nearest to the laitude/longitude values provided.

 � On success of the place nearest to the laitude/longitude values
provided, the XMLParser takes over, using the didStartElementand

didEndElement method, to parse the XML data for city and country
values contained in the ields name and countryName.

 � Ater the XML parsing inishes, we use the SQLite insert statements to
insert the user's laitude, longitude, place (read city), and country values
into the SQLite database table named user_position.

6. Open the XIB ile in Interface Builder, and Control+drag the mouse pointer
from the Get City from SQLite buton to the File's Owner, and select the event
getSqliteLocation.

7. We now deine the acions for getSqliteLocation as follows:

-(IBAction)getSqliteLocation:(id)sender

{

NSString *sql = @"SELECT * FROM user_position where position_id
=(select max(position_id) from user_position)";

sqlite3_stmt *sqlStatement;

if(sqlite3_prepare_v2(database, [sql UTF8String], -1,

 &sqlStatement, NULL)==SQLITE_OK)

{

while(sqlite3_step(sqlStatement)==SQLITE_ROW)

{

const unsignedchar *latitudeData =

sqlite3_column_text(sqlStatement, 1);

const unsignedchar *longitudeData =

sqlite3_column_text(sqlStatement, 2);

const unsigned char *placeData =

sqlite3_column_text(sqlStatement, 3);

http://api.geonames.org/findNearbyPlaceName
http:///

Weather App—WeatherPackt

[146]

NSString *returnLat = [[NSStringalloc]initWithFormat:

 @"",latitudeData];

NSString *returnLon = [[NSStringalloc]initWithUTF8String:

 longitudeData];

NSString *returnPlace = [[NSStringalloc]initWithUTF8String:

 placeData];

NSLog(returnLat);

NSLog(returnLon);

NSLog(returnPlace);

 }

 }

}

8. Run the app in the iOS simulator, and use a couple of locaion values to simulate
your app behavior. You should see the following response in the Debug window:

2011-09-04 16:40:09.421 Hello Location GeoNames[3896:f803]
Location Inserted Cupertino

2011-09-04 16:40:33.977 Hello Location GeoNames[3896:f803]
Location Inserted Soho

2011-09-04 16:40:42.230 Hello Location GeoNames[3896:f803]
Location Inserted Wadala

2011-09-04 16:40:48.889 Hello Location GeoNames[3896:f803]
Location Inserted Cupertino

2011-09-04 16:40:55.913 Hello Location GeoNames[3896:f803]
Location Inserted Financial District

2011-09-04 16:41:04.692 Hello Location GeoNames[3896:f803]
Location Inserted Sydney CBD

You can ind the code for this example on the book's website: project itled Hello

Locaion - Locaion Updates with GeoNames.

http:///

Chapter 5

[147]

The GeoNames API that we used (http://api.geonames.org/
findNearbyPlaceName), return to us the closest place, which need
not necessarily be a city name; it could be the name of a street, locality, or
another administraive area. If you need the city name compulsorily, then the
new CLGeocoder class in iOS 5, speciically the reverse geocoder would be
helpful. It does the same task as the GeoNames API, but returns a beter place
informaion through the CLPlacemark object.

http://api.geonames.org/findNearbyPlaceName
http://api.geonames.org/findNearbyPlaceName
http:///

Weather App—WeatherPackt

[148]

What just happened?
We enhanced the Hello Location SQLite example, by not only storing the user's laitude
and longitude pair, but also by convering the same into readable city and country values.
These values can further be used in our Weather App project.

We also extended the SQLite database by adding the place and country ields in the
user_position table. So, a row in the database table now contains the user's laitude,
longitude, place name, and country name.

You can verify the data inserted in this table, by using the Xcode | Organizer

tool. With the new features of iOS 5, you can download your app data, modify
it, and then re-insert it on your device. With your device selected in Organizer,
select the Applicaion name; in our example it should be Hello Location

Sqlite 1.0, and then in the Documents Tree View, you should see the
location.db ile.

Use the Download buton to download the ile on your desktop; the ile should
be named as com.packt.Hello-Location-Sqlite 2011-09-04
17.46.40.751.xcappdata. Open the ile by right-clicking the Context
Menu and selecing the Show Package Contents opion. Find the location.
db ile in the AppData | Documents folder, and modify it with the Firefox
SQLite manager (available at https://addons.mozilla.org/en-US/
firefox/addon/sqlite-manager/) or any SQLite database editor. Once
done, just upload the com.packt.Hello-Location-Sqlite 2011-
09-04 17.46.40.751.xcappdata ile to your iOS device again.

Consuming the WeatherBug API

Now that we have secured our foundaion for building the Weather app, it's ime to look at
the WeatherBug API, understand the API calls, and understand how we can build our app
around it. For the purpose of our Weather App, we are considered about the following
Weather API calls: Live Weather, Forecast, and Alerts. Let us look at how the WeatherBug

API solves our requirement for the three menioned Weather queries.

Important things to know before we begin
Register for the WeatherBug API at http://weather.weatherbug.com/desktop-
weather/api-register.html.

The documentaion can be found at http://weather.weatherbug.com/desktop-
weather/api-documents.html.

Keep the API key handy.

http://weather.weatherbug.com/desktop-weather/api-documents.html
http://weather.weatherbug.com/desktop-weather/api-documents.html
http:///

Chapter 5

[149]

The following Weather services are ofered by WeatherBug:

Locaion search Weather Camera search Live Weather

Compact Live Weather Forecast Weather Alerts

Weather Staion search

We will focus on the API calls for

 � Live Weather: http://api.wxbug.net/getLiveWeatherRSS.aspx?ACode=xx
xxxxxxxxx&lat=latitude&long=longitude&unittype=0|1

 � Forecast: http://api.wxbug.net/getForecastRSS.aspx?ACode=xxxxxxxx
xxx&lat=latitude&long=longitude&unittype=0|1

 � Weather Alerts: http://api.wxbug.net/getAlertsRSS.aspx?ACode=xxxxx
xxxxxx&lat=latitude&long=longitude

Here

 � xxxxxxxxxxx is the API key

 � latitude is our iOS device's laitude value

 � longitude is our iOS device's longitude value

 � unittype=0 is for Fahrenheit display

 � unittype=1 is for Celsius display

You can check out the API URLs in a browser. Since the API output is RSS, it should render
well on any browser; the idea is to get a rough image on how the output is organized. We ran
the API URL on Firefox to constantly monitor and compare it with the data that we receive in
the app. This helped us verify our applicaion logic as well.

http://api.wxbug.net/getLiveWeatherRSS.aspx?ACode=xxxxxxxxxxx&lat=latitude&long=longitude&unittype=0|1
http://api.wxbug.net/getLiveWeatherRSS.aspx?ACode=xxxxxxxxxxx&lat=latitude&long=longitude&unittype=0|1
http:///

Weather App—WeatherPackt

[150]

Time for action – using WeatherBug API
Let's create a barebones app that uses the three WeatherBug API discussed in the previous
secion. We will use the Hello Location example again, but this ime, we make the UI a bit
of a run-of-the-mill iOS app UI.

We will create an app that will detect the locaion, convert the locaion to city name, fetch
weather informaion, and forecast and display the same in a UITableView.

1. We begin declaring the variables that will be used in our app, open Hello_
LocationViewController.h, and add a variable, weatherTable, for the
UITableView - UITableView *weatherTable;

2. Next, we declare the variables that will be used to hold the Live Weather informaion:

NSString *weatherIcon;

NSString *weatherConditions;

NSString *weatherTemperature;

NSString *weatherTemperatureUnit;

NSString *weatherHumidity;

NSString *weatherHumidityUnit;

NSString *weatherWindSpeed;

NSString *weatherWindSpeedUnit;

NSString *weatherPressure;

NSString *weatherPressureUnit;

NSString *weatherDewPoint;

NSString *weatherDewPointUnit;

NSString *weatherGusts;

NSString *weatherGustsUnit;

NSString *weatherRainToday;

NSString *weatherRainTodayUnit;

http:///

Chapter 5

[151]

3. We then declare an array of the type NSMutableArray, which will hold the
weather informaion in an array format to be rendered on the UITableView.

NSMutableArray *weatherDataArray;

4. For the Forecast data, we declare the following variables:

NSString *dayTitle;

NSString *dayPrediction;

NSString *mondayForeCast;

NSString *tuesdayForeCast;

NSString *wednesdayForeCast;

NSString *thursdayForeCast;

NSString *fridayForeCast;

NSString *saturdayForeCast;

NSString *sundayForeCast;

5. We declare individual funcions for Live Weather, Forecast, and Alerts as follows:

 -(IBAction)showLiveWeather:(id)sender;

 -(IBAction)showForeCast:(id)sender;

 -(IBAction)showAlerts:(id)sender;

6. Do not forget to include the NSXMLParserDelegate and the
UITableViewDataSource delegate in your header ile.

7. Now, let's design our UI. Open the Hello_LocationViewController.xib ile.
To make our app visually appealing, we incorporate some icons. We have used
icons designed by Joseph Wain: http://glyphish.com. He has put up some nice
icons for both: the iPhone and the iPad applicaions. Download the free icons with
Creaive Commons License from http://glyphish.com/download/glyphish-
icons.zipand, and unzip it in your applicaion's main folder.

http:///

Weather App—WeatherPackt

[152]

8. Next, we create a toolbar at the header of the View, and add four bar buton items,
one buton each for refresh, Live Weather, forecast, and Alert, respecively. We also
place a UITableView that will hold our dynamic Weather data, as well as some
labels and textboxes to show the locaion informaion. Here is how our inal app
should look like:

9. Time to connect the dots; Control+drag the mouse pointer from the refresh buton
to the File's Owner, and select the getSqliteLocation acion. Similarly, connect
the Live Weather buton to the showLiveWeather acion, the Forecast buton to
the showForeCast acion, and Alert buton to the showAlerts acion. Noice the
Bar Item carefully, where we have used the icons we downloaded before. Xcode
automaically allows you to choose from the icons downloaded. So, for the Forecast
buton, we choose the 25-weather.png ile, and similarly for the other butons.

http:///

Chapter 5

[153]

10. Having created the UI, we now proceed to write the implementaion for the
showLiveWeather, showForeCast, and showAlert methods. Open the
Hello_LocationViewController.m ile to detect which method of the
Weather we are accessing. We create three Boolean variables to keep a track,
as well as add one variable for the WeatherBug API key.

NSString *apiCode=@"xxxxxxxxxxx";

bool inGeoNames = FALSE;

bool inLiveWeather = FALSE;

bool inForeCast = FALSE;

11. In the ViewDidLoad method, we iniialize the variables needed for the
weather display.

weatherIcon = [[NSString alloc]initWithString:@""];

12. In the didUpdateToLocation event method in the LocationManager, we make
a request to the WeatherBug API for Live Weather condiions. This is the default
home screen for our app. We iniiate UIActivityIndicatorView, to show the
loading… efect, while our app fetches the Weather Info over the Web service. We
also change its visibility to hidden, when we stop the loadingIcon ater our Web
service calls completes successfully.

loadingIcon.hidesWhenStopped=TRUE;

[loadingIconstartAnimating];

[selfshowLiveWeather:self];

13. In the showLiveWeather method, we iniialize the weatherDataArray, and set
the inLiveWeather lag to true. We then call the Weather Bug Live Weather

API, open a NSURLconnection, and proceed to complete the URL request.

-(IBAction)showLiveWeather:(id)sender

{

 [loadingIconstartAnimating];

 weatherDataArray = [[NSMutableArrayalloc]init];

 [weatherTablereloadData];

inGeoNames = FALSE;

inLiveWeather= TRUE;

weatherBugUrl= [[NSStringalloc] initWithFormat:

@"http://api.wxbug.net/getLiveWeatherRSS.aspx? ACode=%@&lat=%@&lon
g=%@&unittype=1",

apiCode,latitudeText.text,longitudeText.text];

NSURL *urlToRequest = [[NSURLalloc]

http:///

Weather App—WeatherPackt

[154]

initWithString:weatherBugUrl];

NSURLRequest *request = [NSURLRequest

requestWithURL:urlToRequest];

urlConnection = [[NSURLConnectionalloc]

initWithRequest:request

delegate:selfstartImmediately:YES];

}

14. We use the didStartElement, didEndElement, and foundCharacters

method of the NSXMLParser, to populate our variables used for the weather
display, and pass it on to the WeatherDataArray, which in turn renders it on
the UITableView.

-(void)parser:(NSXMLParser *)parser didStartElement:(NSString
*)elementName namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName attributes:(NSDictionary *)
attributeDict

{

currentXMLTitle=[elementName copy];

if([currentXMLTitleisEqualToString:@"name"]

{

 cityText = [[NSMutableStringalloc]init];

 }

if([currentXMLTitleisEqualToString:@"countryName"])

 {

 countryText = [[NSMutableStringalloc]init];

 }

// In Live Weather

if(inLiveWeather)

 {

 if([currentXMLTitleisEqualToString:@"aws:current-condition"])

 {

 currentConditionsText = [[NSMutableStringalloc]init];

 weatherIcon=[attributeDict objectForKey:@"icon"];

 }

 if([currentXMLTitleisEqualToString:@"aws:temp"])

 {

 weatherTemperatureUnit=[attributeDict objectForKey:@"units"];

http:///

Chapter 5

[155]

 weatherTemperatureUnit=[weatherTemperatureUnit

 stringByReplacingOccurrencesOfString:@"°"
withString:@"°"];

 }

…………

…………// Parse other RSS fields for humidity,wind-speed,etc

 }

// End of Live Weather

}

-(void)parser:(NSXMLParser *)parser didEndElement:(NSString
*)elementName namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName

{

if([currentXMLTitleisEqualToString:@"name"])

 {

area.text = cityText;

cityText = [[NSMutableStringalloc]init];

 }

if([currentXMLTitleisEqualToString:@"countryName"])

 {

country.text = countryText;

countryText = [[NSMutableStringalloc]init];

 }

if([currentXMLTitleisEqualToString:@"aws:current-condition"])

 {

currentConditionsText = [[NSMutableStringalloc]init];

 }

}

-(void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)
string

{

if([currentXMLTitleisEqualToString:@"name"])

 {

 [cityTextappendString:string];

http:///

Weather App—WeatherPackt

[156]

 }

if([currentXMLTitleisEqualToString:@"countryName"])

 {

 [countryTextappendString:string];

 }

// For Live Weather

if(inLiveWeather)

 {

inForeCast=FALSE;

if([currentXMLTitleisEqualToString:@"aws:current-condition"])

 {

weatherConditions=string;

 }

if([currentXMLTitleisEqualToString:@"aws:temp"])

 {

weatherTemperature=[string

stringByTrimmingCharactersInSet:[NSCharacterSet

whitespaceAndNewlineCharacterSet]];

 }

if([currentXMLTitleisEqualToString:@"aws:humidity"])

 {

weatherHumidity=[string

stringByTrimmingCharactersInSet:[NSCharacterSet

whitespaceAndNewlineCharacterSet]];;

 }

………..

 ………..

 }

// End of Live Weather

// In ForeCast

if(inForeCast)

 {

inLiveWeather=FALSE;

if([currentXMLTitleisEqualToString:@"aws:forecast"])

http:///

Chapter 5

[157]

 {

 }

if([currentXMLTitleisEqualToString:@"aws:title"])

 {

dayTitle = [string

stringByTrimmingCharactersInSet:[NSCharacterSet

whitespaceAndNewlineCharacterSet]];

 }

if([currentXMLTitleisEqualToString:@"aws:short-prediction"])

 {

dayPrediction=[string

stringByTrimmingCharactersInSet:[NSCharacterSet

whitespaceAndNewlineCharacterSet]];

if([dayTitleisEqualToString:@"Monday"])

 {

mondayForeCast =[[dayTitlestringByAppendingFormat:@": "]

stringByAppendingFormat:dayPrediction];

 }

if([dayTitleisEqualToString:@"Tuesday"])

 {

tuesdayForeCast =[[dayTitlestringByAppendingFormat:@":

"] stringByAppendingFormat:dayPrediction];

 }

 ………..

 ………..

 }

}

 // End of ForeCast

}

-(void)parserDidEndDocument:(NSXMLParser *)parser

{

 if(inLiveWeather)

 {

http:///

Weather App—WeatherPackt

[158]

 [loadingIconstartAnimating];

 NSString *temp = weatherConditions;

 if(![weatherDataArraycontainsObject:temp])

 {

 [weatherDataArrayaddObject:temp];

 }

 temp=[@"Temperature: "

stringByAppendingFormat:[weatherTemperature

stringByAppendingFormat:weatherTemperatureUnit]];

if(![weatherDataArraycontainsObject:temp] ||

![weatherTemperatureisEqualToString:@""])

 {

 [weatherDataArrayaddObject:temp];

 }

 temp=[@"Humidity: "stringByAppendingFormat:[weatherHumidi
ty

stringByAppendingFormat:weatherHumidityUnit]];

if(![weatherDataArraycontainsObject:temp] ||

![weatherHumidityisEqualToString:@""])

 {

 [weatherDataArrayaddObject:temp];

 }

// Prepare similar statement for Pressure, Wind Speed,etc

………..

[loadingIconstopAnimating];

 [weatherTablereloadData];

 }

if(inForeCast)

 {

 [loadingIconstopAnimating];

if(![mondayForeCastisEqualToString:@""])

 {

http:///

Chapter 5

[159]

 [weatherDataArrayaddObject:mondayForeCast];

 }

if(![tuesdayForeCastisEqualToString:@""])

 {

 [weatherDataArrayaddObject:tuesdayForeCast];

 }

 // Add forecast variables for wed, thurs, Friday, etc

………..

[loadingIconstopAnimating];

 [weatherTablereloadData];}

 }

15. And inally, we deine the showForeCast method that loads the forecast data from
the WeatherBug API as follows:

-(IBAction)showForeCast:(id)sender

{

inLiveWeather = FALSE;

weatherIcon = [[NSStringalloc]initWithString:@""];

weatherConditions = [[NSStringalloc]initWithString:@""];

weatherTemperature= [[NSStringalloc]initWithString:@""];

weatherTemperatureUnit = [[NSStringalloc]initWithString:@""];

weatherHumidity = [[NSStringalloc]initWithString:@""];

weatherHumidityUnit = [[NSStringalloc]initWithString:@""];

weatherWindSpeed = [[NSStringalloc]initWithString:@""];

weatherWindSpeedUnit = [[NSStringalloc]initWithString:@""];

weatherPressure = [[NSStringalloc]initWithString:@""];

weatherPressureUnit = [[NSStringalloc]initWithString:@""];

weatherDewPoint = [[NSStringalloc]initWithString:@""];

weatherDewPointUnit = [[NSStringalloc]initWithString:@""];

weatherGusts = [[NSStringalloc]initWithString:@""];

weatherGustsUnit = [[NSStringalloc]initWithString:@""];

weatherRainToday = [[NSStringalloc]initWithString:@""];

http:///

Weather App—WeatherPackt

[160]

weatherRainTodayUnit = [[NSStringalloc]initWithString:@""];

 [loadingIconstartAnimating];

weatherDataArray = [[NSMutableArrayalloc]init];

 [weatherTablereloadData];

inGeoNames = FALSE;

inForeCast = TRUE;

weatherBugUrl = [[NSString

 alloc]initWithFormat:@"http://api.wxbug.net/getForecastRSS.
aspx?

 ACode=%@&lat=%@&long=%@&unittype=1",apiCode,latitudeText.text,

 longitudeText.text];

NSURL *urlToRequest = [[NSURL

 alloc]initWithString:weatherBugUrl];

NSURLRequest *request = [NSURLRequest

requestWithURL:urlToRequest];

urlConnection = [[NSURLConnectionalloc]

initWithRequest:request

delegate:selfstartImmediately:YES];

}

16. Run the app in the emulator. Try changing a couple of locaion values through
the Locaion icon over the Debug window. Your output should be similar to the
following screenshot:

http:///

Chapter 5

[161]

What just happened?
We created a nity Weather app using GeoNames and WeatherBug. We also used some free
icons for our app UI. We learnt how to use the WeatherBug API calls for Live Weather and
Forecast, and how to call them dynamically.

We also learnt how to control the XML parsing with lags in our code. The inForeCast and
inLiveWeather lags used in the code, helps us keep track of the XML parsing for elements,
and help us parse the XML smartly. This does away the purpose of having tree-driven XML
parsing in our apps (which is memory hogging).

You can ind the code for this example on the book's website: project itled Hello

Location WeatherBug.

http:///

Weather App—WeatherPackt

[162]

Have a go hero – creating the Weather Alert function
Try your hands at adding the Weather Alert in the app. From our iniial discussion, use the
following API URL: http://api.wxbug.net/getAlertsRSS.aspx?ACode=xxxxxxxxxx
x&lat=latitude&long=longitude.

Building your Weather App: WeatherPackt
Having looked at the Live Weather and the Forecast API, and understanding how to parse the
XML response received from the WeatherBug API, let's use our previous example to build
our inal WeatherPackt applicaion. Once done building the app, we will also submit our
app to the Apple iTunes Store!!

For our WeatherPackt app, we will use the iOS 5 reverse geocoder as the primary source of
convering the laitude/longitude to city and country name. You can use the GeoNames API
as well, but the CLGeocoder class included in iOS 5 helps us obtain the same results easily,
in a beter-organized format.

Also, keep in mind the response format of the Weather API. Depending upon your country
or locaion, the appropriate metric of display (Celsius or Fahrenheit) should be used. We
accomplish this by using a Seings page in our app, which gets registered in the global
Settings app on your iOS device.

Start a new Xcode project
We begin our irst iOS app by creaing a new Xcode project, unlike reusing the Hello

Location template as before. We will also use the Google AdMob Ads iOS SDK to show
mobile ads in our applicaion. Follow the as-simple-as-always Google documentaion for the
same at: http://code.google.com/mobile/ads/docs/ios/fundamentals.html.

Before we begin our app coding, we need a couple of things to make our app presentable.
These include having a nice app Icon and a splash image, which will be used as the default
app launch image. We source our images from the World Wide Web, using the free-to-use
and Creaive Commons images in our app. Go through the image licenses carefully; we are
using images that are either Creaive Commons or free, and have the license to be modiied
and used commercially.

Images that we will use for our Weather app (henceforth referenced as WeatherPackt) are

as follows:

 � App icon: We use this image by Jackie Tran (http://365psd.com/day/2-139/),
and crop the PSD in Photoshop to include on the icon with the rainbow over it as the
main app icon. Make sure that each icon its the size deined by Apple for iPhone
display, iPhone reina display, and iPad display. Similarly, for the Splash iImages, you
need to have the right sizes and resoluion.

http://api.wxbug.net/getAlertsRSS.aspx?ACode=xxxxxxxxxxx&lat=latitude&long=longitude
http://api.wxbug.net/getAlertsRSS.aspx?ACode=xxxxxxxxxxx&lat=latitude&long=longitude
http://365psd.com/day/2-139/
http://365psd.com/day/2-139/
http://365psd.com/day/2-139/
http:///

Chapter 5

[163]

 � Default background images (launch images): We use the photo taken by Kevin

Dooley (http://www.flickr.com/photos/pagedooley/2511369048/). We
could use any other image, if needed. A Google advanced search for Clouds, gave
us Kevin's wonderful image, and it looks great for our app requirement.

http://www.flickr.com/photos/pagedooley/2511369048/
http:///

Weather App—WeatherPackt

[164]

A bit of image ediing experience would be required to crop the images, as
needed. The source code has the right sizes for the icons and the splash image,
both for iPad and iPhone, including reina display.

We will be using the Tabbed Applicaion template from the Xcode | New Project Area.
For our WeatherPackt applicaion, the irst tab will be uilized for the main Weather
informaion, the second tab will be used for app Seings. It is a good ime to try out the
Tabbed applicaion template, to get a hang of the project template and tabs management.
Our WeatherPackt app's Summary page in Xcode, should look as follows:

http:///

Chapter 5

[165]

The app icon should look similar to this iPhone Simulator:

Deine the Home screen
We create a new Tabbed applicaion with Xcode, however, the default template for the
Tabbed applicaion has only two screens. For our Weather app we need three screens: one
for the Live Weather, another for the Forecast, and the third for Weather Alerts. So, we add
another UIViewController subclass to our project, and name it ThirdViewController.
We also add an extra XIB ile for the iPad template, since the UIViewController subclass
addiion to our project only gives us the iPhone XIB ile.

Time for action – deining the Home screen
1. Open the AppDelegate.m ile in your newly created WeatherPackt applicaion

project. Modify the didFinishLaunchingWithOptions method to include the
third view controller in the TabBarController.

if ([[UIDevicecurrentDevice] userInterfaceIdiom] ==
UIUserInterfaceIdiomPhone)

{

 viewController1 = [[FirstViewControlleralloc] initWithNibN
ame:@"FirstViewController_iPhone"bundle:nil];

 viewController2 = [[SecondViewControlleralloc] initWithNib
Name:@"SecondViewController_iPhone"bundle:nil];

http:///

Weather App—WeatherPackt

[166]

 viewController3 = [[ThirdViewControlleralloc] initWithNibN
ame:@"ThirdViewController_iPhone"bundle:nil];

 }

else {

 viewController1 = [[FirstViewControlleralloc] initWithNibN
ame:@"FirstViewController_iPad"bundle:nil];

 viewController2 = [[SecondViewControlleralloc] initWithNib
Name:@"SecondViewController_iPad"bundle:nil];

 viewController3 = [[ThirdViewControlleralloc] initWithNibN
ame:@"ThirdViewController_iPad"bundle:nil];

 }

2. In each individual ViewController main ile, for example in your
SecondViewController.m ile, add the following code for the
AdMob ads integraion in your viewDidLoad method:

- (void)viewDidLoad

{

 [superviewDidLoad];

deviceType =@"iPhone";

NSString *model= [[UIDevicecurrentDevice] model];

NSRange range = [model rangeOfString:@"iPhone"];

if(range.location == NSNotFound)

 {

deviceType =@"iPad";

 }

else

 {

deviceType =@"iPhone";

 }

responseData = [[NSMutableDataalloc] init];

// AdMob Code Starts

// Create a view of the standard size at the bottom of the screen.

if([deviceTypeisEqualToString:@"iPhone"]){

bannerAdView = [[GADBannerViewalloc]

http:///

Chapter 5

[167]

initWithFrame:CGRectMake(0.0,43.0,

GAD_SIZE_320x50.width,GAD_SIZE_320x50.height)];

 }else{

bannerAdView = [[GADBannerViewalloc]

initWithFrame:CGRectMake(20.0,43.0,

GAD_SIZE_728x90.width,GAD_SIZE_728x90.height)];

 }

bannerAdView.adUnitID = @"xxxxxxxxxxxxxxx ";

bannerAdView.rootViewController = self;

 [self.viewaddSubview:bannerAdView];

// Initiate a generic request to load it with an ad.

 [bannerAdViewloadRequest:[GADRequestrequest]];

// AdMob Code Ends

}

Where xxxxxxxxxxxxxxx is your publisher ID from http://admob.com.

Based on the device type and the app UI, we adjust the AdMob code accordingly.

3. Time to use the icons for the tab bars in the SecondViewController.m ile.
Modify the initWithNibName method to include the icon images from
http://glyphish.com. Note that you also need to add the glyphish-icons

folder to your Xcode project.

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)
nibBundleOrNil

{

self = [superinitWithNibName:nibNameOrNil bundle:nibBundleOrNil];

if (self) {

self.title = NSLocalizedString(@"Forecast", @"Forecast");

self.tabBarItem.image = [UIImageimageNamed:@"99-umbrella"];

 }

returnself;

}

http://admob.com
http:///

Weather App—WeatherPackt

[168]

4. If all goes well, your Home screen should now look as the one shown in the
following screenshot:

5. We create a similar layout for the Forecast page in the SecondViewController_
iPhone.xib ile.

Set up a default location
To make sure that our app works well in case the user has not allowed the locaion
services or in case the user's locaion has not been determined or could not be determined,
we iniiate the app loading process with a default locaion; in this case, we load San

Francisco by using the following code:

newLatitude =@"37.33";

newLongitude =@"-122.03";

locationManager = [[CLLocationManageralloc]init];

locationManager.desiredAccuracy = kCLLocationAccuracyBest;

locationManager.distanceFilter = 1000.0f;

locationManager.delegate = self;

userLocation = [[CLLocationalloc] initWithLatitude:
[newLatitudedoubleValue] longitude:[newLongitudedoubleValue]];

http:///

Chapter 5

[169]

As the user's new locaion is detected, we update the userLocation variable to always
hold the updated values.

Formatting the Weather API for display
As we saw in the previous examples, we used the didStartElement, foundCharacters

, didEndElement ,and parserDidEndDocument methods of the XMLParser, to fetch
and display the weather informaion. However, the logic we used before was not perfect. It
assumed that the XML response is streamlined, and each method calls the subsequent method
sequenially. But in the real-world scenario, this would be a bit diferent. Depending upon your
NSURL and network connecions, the foundCharacters method of the NSXMLParser class

can be called muliple imes for the same XML tag. This would create problems in our earlier
examples, but we will refactor the code to take care of this issue as well.

In our foundCharacters method, we keep appending the string response received to a
temporary variable unil the didEndElementmethod conirms the end of the XML tag,
and resets the temporary variable.

-(void)parser:(NSXMLParser *)parser
 foundCharacters:(NSString *)string{
 if (!currentXMLValue)
 {
 currentXMLValue = [[NSMutableStringalloc]init];
 }
 [currentXMLValueappendString:string];
}

The settings page
We want our WeatherPackt app to have a seings page, registered in the main Settings

app of your iOS device, which can be used to lip the display from Celsius to Fahrenheit,
and vice versa. We do this by adding a Settings bundle to our applicaion. The Settings

bundle helps us manage preferences from within the Settings applicaion.

The NSUserDefaults class is used to access the seings/preference values. The type of
seings we can incorporate in our Settings page could be the following:

 � A slider

 � A text ield

 � A Title

 � A toggle switch (we will use this for Celsius display on/of)

 � A group

 � A child pane

 � A muli value

http:///

Weather App—WeatherPackt

[170]

More details can be found at Apple's rich documentaion available at:
http://developer.apple.com/library/ios/#DOCUMENTATION/iPhone/

Conceptual/iPhoneOSProgrammingGuide/Preferences/Preferences.html.

We will create a simple seings page for our app. Using the File | New File opion, and
selecing the Resources tab from the Modal window, we add the seing bundle, name the
ile as Settings Bundle, and save it in your project.

The Settings Bundle is just a collecion of two iles: Root.plist and Root.string.
Double-click on the Root.plist ile in Xcode, and open the Seings Property List editor,
where you can deine the Preference items for your Seings Page.

http:///

Chapter 5

[171]

Modify the Root.plist ile to look as follows:

We use the Toggle Switch with Ideniier as enabled_preference, to allow the users to
switch the Celsius display on/of. This ideniier is also used in our applicaion to fetch the
current value of its state, the code for which is as follows:

// Read the Settings

NSUserDefaults *settings = [NSUserDefaultsstandardUserDefaults];

celsiusValue= [settings stringForKey:@"enabled_preference"];

// End of Read Settings

http:///

Weather App—WeatherPackt

[172]

When we run the applicaion and open the main iOS device's Seings screen, we should see
the following opion for WeatherPackt:

And its associated Seings:

http:///

Chapter 5

[173]

The full code for the WeatherPackt app can be found on the book's website: project itled
WeatherPackt.

Have a go hero – adding the Alerts page to WeatherPackt
We showed you how to build a Live Weather and Forecast page. The app framework also
supports a third view for displaying Weather Alerts. We have made provisions for both the
iPhone and iPad View in the applicaion. Using your knowledge of what you have learnt so
far, complete the third page. Feel free to share the code; who knows your page could end up
in the inal app and on iTunes !!

Here is how the WeatherPackt app should look, when you run it in the iOS simulator:

http:///

Weather App—WeatherPackt

[174]

Bonus: building WeatherPackt with PhoneGap
As a bonus, also ind the WeatherPackt app done with PhoneGap on the book's website:
project itled WeatherPackt-PhoneGap. Here is how it looks:

Bonus: text-to-speech
In our WeatherPackt app, we add the Nuance Mobile SDK to enable text-to-speech
conversion within our app. You need to register with Nuance (http://dragonmobile.
nuancemobiledeveloper.com) to get a development and producion key to be used in
your applicaion. Here is how the text-to-speech funcion will look in our app.

http://dragonmobile.nuancemobiledeveloper.com
http:///

Chapter 5

[175]

Follow the easy to use documentaion at: http://dragonmobile.
nuancemobiledeveloper.com/public/Help/DragonMobileSDKReference_iOS/

Introduction.html, to start using the Nuance SDK. Here is how we ied the microphone
UIButton to a simple IBAction that has only two lines of code:

- (IBAction)speakText:(id)sender {

 NSString *stringToSpeak = [[NSString alloc]initWithFormat:
 @"Weather Today is %@",weatherConditions];

 [vocalizer speakString:stringToSpeak];

}

http://dragonmobile.nuancemobiledeveloper.com/public/Help/DragonMobileSDKReference_iOS/Introduction.html
http://dragonmobile.nuancemobiledeveloper.com/public/Help/DragonMobileSDKReference_iOS/Introduction.html
http://dragonmobile.nuancemobiledeveloper.com/public/Help/DragonMobileSDKReference_iOS/Introduction.html
http:///

Weather App—WeatherPackt

[176]

The conversion from text-to-speech from the user end to the Nuance server, and back, is
depicted as follows:

Text to

be read

aloud

Open

TCP Port

Transfer

text to

nuance

server

Nuance

server

converts

text to

audible

voice

Voice

returned

back to

user vi

TCP Port

The SpeechKit.framework from Nuance contains not only text-to-speech
funcions but speech-to-text funcions as well!

Pop quiz – Weather Alert
1. What does the following code do?

NSArray *directoryPath= NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask,TRUE);

a. Searches for user directory in an array

b. Searches for the current user's Document directory and returns an array

2. What is the XML parsing low using NSXMLParser class and delegates?

a. didStartElement -> didEndElement ->foundCharacters

b. didStartElement->foundCharacters->didEndElement

c. didStartElement->foundCharacters->didEndElement-
 >parserDidEndDocument

http:///

Chapter 5

[177]

Summary

In this chapter, we learned how to store locaion data into a SQLite database for oline
support. We also looked at GeoNames and WeatherBug API to build our WeatherPackt

applicaion. We also showed a PhoneGap Applicaion for WeatherPackt, so that we
can make HTML developers happy. The PacktPub website has an excellent cookbook for
building web applicaions with JavaScript, itled iPhone JavaScript Cookbook. Get it from
http://www.packtpub.com/iphone-javascript-cookbook/book.

Speciically, we covered:

 � SQLite.

 � GeoNames API.

 � WeatherBug API – Live Weather and Forecast.

 � Creaing a WeatherApp from scratch with seings.

 � Creaing a WeatherApp with PhoneGap.

In the next chapter, we will look at building an Events applicaion with the Eventful API.

http:///

http:///

6
Events App—PacktEvents

An events app is a good entertainment companion for your iOS device. By using
the events applicaion, a user can browse for nearby gigs, learn about his/her
favorite arists, and ind events happening at his/her favorite venue.

Eventful.com is the leading events and entertainment service that provides
real-ime events informaion to millions of users. Evenful's unique killer feature
is Demand it!—a service that empowers fans to get their favorite arists/
performers to come to their town. We will use Evenful's rich and extensive API
to build our events app – henceforth known as PacktEvents.

In this chapter, we will discuss the following topics:

 � PacktEvents – An overview of PacktEvents and a deiniion of the underlying
architecture

 � Storing and retrieving events with SQLite

 � Ploing events on a map

 � Using EventKit API to add events to the iOS calendar

 � Filtering events display by categories

 � Using Twiter integraion in iOS 5 to tweet an event

 � PacktEvents – Building the app

 � Bonus: Using Layar Augmented Reality player in PacktEvents.

So let's get on with it...

http:///

Events App—PacktEvents

[180]

PacktEvents: Overview and architecture
We looked at the Eventful.com API in Chapter 3 with a simple applicaion itled Hello

Locaion – Evenful.

Now we will build a complete app – PacktEvents, similar to WeatherPackt, which will be
based on the Tabbed Applicaion Xcode project template. However, we will extend it to
three tabs: one for Events, another for Venues, and a third one for Arists. Throughout
this chapter, we will show you the bits and pieces of the PacktEvents app. The readers
are encouraged to put together the examples and build the PacktEvents app themselves.
However, the full source code will be available from the book's page at packtpub.com

Architecture of PacktEvents
PacktEvents will be an Oline-Online app, with the app behavior controlled via the Seings

page. Why Oline-Online and not one of the two? The idea evolved with the recent
enhancements in Cloud Compuing, 3G, and now 4G Network services, and real-ime data
availability. It is quite cheap and easy to fetch the nearby events happening from a web
service these days. Storing events informaion (which tends to be very dynamic – consider
an arist breaking his leg before the gig, thereby canceling the event at the last hour) oline
does not make much sense, due to data integrity issues. However, it makes some sense to
store the user's recently-browsed events/venues/arists in the app, so the user can start
from where he/she let of (this could be due to a phone call interrupion or some other
event that causes our app to go to the background).

We will store up to 99 (Applesque number) events, venues, and arists oline on our
PacktEvents app and sill be real-ime by using smart algorithms – if the user changes his
locaion, the cache is cleared.

On the applicaion side, we will use the new iOS 5 Twiter integraion to tweet from any page
on the app. The tweets could be for the following:

 � Atending an event

 � Liking an arist

 � Tweeing about a venue

We will also use Nuance Speech Mobile SDK for iOS to implement Text-to-Speech and/or
speech recogniion in PacktEvents, so if you want to search for events by "Lady Gaga", you
don't have to type it in the search box. Just press the record buton and the Nuance Dragon
will convert your speech into text and hit the Evenful API for "Lady Gaga" Events. Cool huh!
 User-generated content can be handled by our app, but the data will be stored back at
Evenful. We will use SQLite for our oline data storage.

http:///

Chapter 6

[181]

For the design, we will use some free icons and background images for our app. We will use
the Evenful logo wherever applicable. As Evenful has been generous enough to give us the
API access to use in this book, it's ime to return the love. For the app icon, we have used the
free mobile-icon-set icons provided by WebIconSet.com.

Storing and Retrieving Events with SQLite

For PacktEvents, we will create a SQLite database called PacktEvents that will have ive
tables: events, venues, arists, events category, and user's locaion informaion, respecively.
We model our database using the SQLite Manager add-on for Firefox. Download the plugin
from https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/.

Our Events table's Create SQL statement looks like the following code snippet:

CREATE TABLE "events" ("id" VARCHAR PRIMARY KEY NOT NULL UNIQUE ,
 "title" VARCHAR NOT NULL UNIQUE , "description" TEXT, "start_time"
 DATETIME, "end_time" DATETIME, "venue_id" VARCHAR, "latitude"
 DOUBLE, "longitude" DOUBLE, "price" VARCHAR, "images" VARCHAR,
 "category_id" INTEGER)

Now, we create the Venues table as follows:

CREATE TABLE IF NOT EXISTS "venues" ("id" VARCHAR PRIMARY KEY NOT
 NULL UNIQUE , "title" VARCHAR NOT NULL UNIQUE , "description"
 VARCHAR UNIQUE , "type" VARCHAR, "address" TEXT, "city" VARCHAR,
 "zip" VARCHAR, "country" VARCHAR, "latitude" DOUBLE, "longitude"
 DOUBLE, "images" VARCHAR)

Time for the Arist table; we create it as follows:

CREATE TABLE IF NOT EXISTS "artists" ("id" VARCHAR PRIMARY KEY NOT
 NULL , "name" VARCHAR NOT NULL UNIQUE , "short_bio" TEXT,
 "long_bio" TEXT, "event_count" INTEGER, "images" VARCHAR)

The next table we create is the categories table, which is used just to look up the category ID
against a category name and vice versa, as follows:

CREATE TABLE IF NOT EXISTS "categories" ("id" VARCHAR PRIMARY KEY
 NOT NULL , "name" VARCHAR NOT NULL UNIQUE)

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http:///

Events App—PacktEvents

[182]

The last table we will create is the User Posiion table that we have used before to keep track
of the user's posiion, as shown in the following code snippet:

CREATE TABLE IF NOT EXISTS "user_position" ("position_id" INTEGER
 PRIMARY KEY,"latitude" DOUBLE, "longitude" DOUBLE, "city"
 VARCHAR,"country" VARCHAR)

Time for action – storing and retrieving events with SQLite
Now that we have deined how we will store the data received from Evenful API in SQLite,
let's create a new series for this chapter, itled Hello Events. Note that this ime we will
use the JSON API from Evenful and the new JSON framework in iOS 5.

1. Create a new Single View applicaion from within Xcode and name it Hello

Events-SQLite.

http:///

Chapter 6

[183]

2. Add the Core Locaion and SQLite libraries to your project. When creaing the
project, do no forget to name the class preix as Hello Events as well.

3. Our sample reading and wriing from/to an SQLite database example will work
as follows:

 � Create a database on the device or open it, if already exising

 � Read Evenful JSON API

 � Write events into the events table

 � Read from the events table and render it on a UITableView

4. Open the Hello_EventsViewController.h ile and declare variables for the
Core Locaion Manager, a locaion object of the type CLLocation (for storing
the user's latest posiion), a database object of the type sqlite3, and an
UITableView, as well as a NSJSONSerialization object for storing JSON data,
and one more variable for a NSURLConnection object for making the API Request
to Evenful.

5. We also declare funcion calls for iniializing the SQLite database (SQL create
statements) and reading from the SQLite database. While reading from the local
database is done with the readEventsFromLocal, the wriing to the SQLite
database is done via the Locaion Manager's didUpdateToLocation method,
which eventually triggers the NSURLConnection's didRecieveData and
connectionDidFinishLoading methods via our readEventFulApi method.
The JSON parsing and storing of events in the SQLite database is done in the
connectionDidFinishLoading method.

6. In our Hello_EventsViewController.m, we start with the viewDidLoad

method and iniialize our Core Locaion objects as before. Then we deine three
variables, one for storing our JSON data, the second for storing the events data in
an array, and the third one for storing our SQLite ilename.

jsonContent = [[NSMutableData alloc]init];

events = [[NSMutableArray alloc]init];

sqliteFileName = [self getDatabaseFullPath];

[self initializeDatabase];

7. Note these variables are declared along with the UITableView object in the
Hello_EventsViewController.h header ile as follows:

UITableView *myTableView;

NSMutableData *jsonContent;

NSMutableArray *events;

NSString *sqliteFileName;

http:///

Events App—PacktEvents

[184]

8. We then call the initializeDatabase method that creates/opens our database
and respecive tables. However, before we do that, we must declare ive variables
in our code, which will hold the respecive database table names. The following
statements are added to the start of our Hello_EventsViewController.m ile:

NSString *eventsTableName = @"events";

NSString *venuesTableName = @"venues";

NSString *artistsTableName = @"artists";

NSString *usersTableName = @"user_position";

NSString *categoriesTableName = @"categories";

9. Do not forget to add a UITableView to your XIB ile, connect the datasource and
delegate to the File's Owner placeholder, and connect the outlet myTableView
to the UITableView. Furthermore, implement the UITableViewDataSource

delegate in your class declaraion.

10. We also used some local variables in the implementaion of our class – Hello_
EventsViewController.m. These variables are required to parse JSON and
report a SQLite error as follows:

char *sqliteError;

NSMutableString *idText,*titleText,
 *descriptionText,*startTimeText,
 *endTimeText, *venueIdText,
 *latitudeText,*longitudeText,*priceText,
 *imagesText, *categoryText;

11. While some other variables are used for the SQLite database inserions:

NSString *insertStatement,*selectStatement;

NSString *events_sql ,*venues_sql ,*artists_sql,*user_sql
 ,*category_sql;

12. The initializeDatabase method is now deined as follows:

-(NSString *) initializeDatabase

{

 events_sql = [NSString stringWithFormat:@"CREATE TABLE IF
 NOT EXISTS '%@' ('id' VARCHAR PRIMARY KEY NOT NULL UNIQUE ,
 'title' VARCHAR NOT NULL UNIQUE , 'description' TEXT,
 'start_time' DATETIME, 'end_time' DATETIME, 'venue_id'
 VARCHAR, 'latitude' DOUBLE, 'longitude' DOUBLE, 'price'
 VARCHAR, 'images' VARCHAR, 'category_id'
 INTEGER)",eventsTableName];

 venues_sql = [NSString stringWithFormat:@"CREATE TABLE IF
 NOT EXISTS '%@' ('id' VARCHAR PRIMARY KEY NOT NULL UNIQUE ,
 'title' VARCHAR NOT NULL UNIQUE , 'description' VARCHAR

http:///

Chapter 6

[185]

 UNIQUE , 'type' VARCHAR, 'address' TEXT, 'city' VARCHAR, 'zip'
 VARCHAR, 'country' VARCHAR, 'latitude' DOUBLE, 'longitude'
 DOUBLE, 'images' VARCHAR)",venuesTableName];

 artists_sql = [NSString stringWithFormat:@"CREATE TABLE IF
 NOT EXISTS '%@' ('id' VARCHAR PRIMARY KEY NOT NULL , 'name'
 VARCHAR NOT NULL UNIQUE , 'short_bio' TEXT, 'long_bio' TEXT,
 'event_count' INTEGER, 'images' VARCHAR)",artistsTableName];

 user_sql = [NSString stringWithFormat:@"CREATE TABLE IF
 NOT EXISTS '%@' ('position_id' INTEGER PRIMARY KEY,'latitude'
 DOUBLE, 'longitude' DOUBLE, 'city' VARCHAR,'country'
 VARCHAR)",usersTableName];

 category_sql = [NSString stringWithFormat:@"CREATE TABLE '%@'
 ('id' VARCHAR PRIMARY KEY NOT NULL , 'name' VARCHAR NOT NULL
 UNIQUE)",categoriesTableName];

 if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)

 {

 if(sqlite3_exec(database, [events_sql UTF8String], NULL, NULL,
 &sqliteError)==SQLITE_OK)

 {

 NSLog(@"event table created");

 }

 if(sqlite3_exec(database, [venues_sql UTF8String], NULL, NULL,
 &sqliteError)==SQLITE_OK)

 {

 NSLog(@"venue table created");

 }

 if(sqlite3_exec(database, [artists_sql UTF8String], NULL, NULL,
 &sqliteError)==SQLITE_OK)

 {

 NSLog(@"artist table created");

 }

 if(sqlite3_exec(database, [user_sql UTF8String], NULL, NULL,
 &sqliteError)==SQLITE_OK)

 {

 NSLog(@"user table created");

 }

http:///

Events App—PacktEvents

[186]

 if(sqlite3_exec(database, [category_sql UTF8String], NULL, NULL,
 &sqliteError)==SQLITE_OK)

 {

 NSLog(@"category table created");

 }

 return @"Succesfully Created Database";

 }

 else

 {

 return @"Failed creating database";

 }

}

13. Now that the database is ready, we move onto calling the Evenful API via the
didUpdateToLocation delegate method. Ater we got the updated laitude and
longitude within this method, we invoke the readEventFulApi method as follows:

[self readEventFulApi];

14. The readEventFulApi method is prety straighforward; we construct an
NSURLRequest with the Evenful JSON API URL, pass it to an NSURLConnection,
and iniiate the request as follows:

-(void) readEventFulApi

{

 // Call EventFul API Now

 NSString *appKey = @"xxxxxxxxxxxxxxxxxx"; // Get your own key

 from api.eventful.com

 NSString *url = [NSString stringWithFormat:

 @"http://api.eventful.com/json/events/search?location=%@,%@

 &app_key=%@&within=10", newLatitude,newLongitude,appKey];

 NSURL *urlToRequest = [[NSURL
 alloc]initWithString:url];

 NSURLRequest *request = [NSURLRequest
 requestWithURL:urlToRequest];

 urlConnection = [[NSURLConnection alloc]
 initWithRequest:request

 delegate:self startImmediately:YES];

}

http:///

Chapter 6

[187]

15. As the request gets connected and we start receiving the data through the
NSURLConnection's delegate method – didReceiveData, where we keep
appending the data unil the URL connecion has completely received the
data. The didReceiveData might be called a number of imes (based on
your iOS device's network connecion). So it is a good pracice to append the
response in one variable and use the variable when the NSURLConnection's
connectionDidFinishLoading method is called, signaling the end of
received data:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data

{

 [jsonContent appendData:data];

}

16. When the URL connecion has completely received the data, the
connectionDidFinishLoading method is triggered. It is here where the crux of
our JSON parsing occurs. We iniialize an NSDictionary object from the JSON data
received by using the NSJSONSerialization class as follows:

dictionary= [NSJSONSerialization JSONObjectWithData:jsonContent
 options:NSJSONReadingAllowFragments error:&jsonError];

17. We then convert this dictionary into an array, so we can parse the JSON data:

items =[NSArray arrayWithObject:[dictionary
 objectForKey:@"events"]];

18. Once we are sure that enough events data has been retrieved from the Evenful
JSON API by checking if the received events count is at least ive, we purge the
events table from the database, so that the new ten events are inserted in the
same by using the following code snippet:

NSUInteger count=[[[items
 objectAtIndex:0]objectForKey:@"event"]count];

 if(count >= 5)

 {

 if(sqlite3_exec(database, [@"Delete from events" UTF8String],
 NULL, NULL, &sqliteError)==SQLITE_OK){

 NSLog(@"Events Purged");

 }

}

http:///

Events App—PacktEvents

[188]

19. We then proceed to extract the individual event atributes such as ID, Title,
Descripion, Start, and End ime from the JSON data array by using the
following code:

 idText = [[[[items objectAtIndex:0]objectForKey:@"event"]

objectAtIndex:i] objectForKey:@"id"];

 titleText = [[[[items objectAtIndex:0]objectForKey:@"event"]
 objectAtIndex:i] objectForKey:@"title"];

 NSString *title = [[NSString alloc] initWithFormat:titleText];

 title = [title stringByReplacingOccurrencesOfString:@"\""
 withString:@"'"];

20. The itle for events someimes has double quotes in it ("), so we replace that with
the escape double quotes, or else our SQL Insert statements will break.

21. Similarly, we retrieve all the other atributes on an event (subject to our database
design) and prepare an SQL Insert statement, shown as follows:

// Insert 10 nearby events in SQLite table events

if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)

{

 insertStatement = [[NSString alloc]initWithFormat:

 @"INSERT OR REPLACE INTO
 '%@'('%@','%@','%@','%@','%@','%@','%@','%@','%@','%@','%@')

 VALUES('%@',\"%@\",\"%@\",'%@','%@','%@','%@','%@','%@','%@',

 '%@')",eventsTableName,@"id",@"title",@"description",

 @"start_time",@"end_time",@"venue_id",
 @"latitude",@"longitude",

 @"price",@"images",@"category_id",idText,title,description,

 startTimeText,endTimeText,venueIdText,latitudeText,

 longitudeText,priceText,imagesText,categoryText];

 if(sqlite3_exec(database, [insertStatement UTF8String], NULL,
 NULL, &sqliteError)==SQLITE_OK)

 {

 NSLog(@"Events Inserted %@",title);

 }

 else

 {

 NSLog(@"Error :%@",insertStatement);

 }

}

// End of Insert 10 nearby events

http:///

Chapter 6

[189]

22. Once all the events are inserted, we call the readEventsFromLocal method to
read the inserted values from the database and pass them onto the UITableView

for display.

23. The readEventsFromLocal method is deined as follows:

-(void)readEventsFromLocal
{
 if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)
 {
 selectStatement = [[NSString alloc]initWithFormat:@"SELECT
* from %@ order by id desc",eventsTableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement UTF8String],
 -1,
 &sqlStatement, NULL)==SQLITE_OK)
 {
 while(sqlite3_step(sqlStatement)==SQLITE_ROW)
 {
 NSString *idDataText = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 0)];

 NSString *titleDataText = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 1)];

 NSString *descriptionDataText = [NSString
 stringWithUTF8String:(char *)sqlite3_column_text
 (sqlStatement, 2)];

 NSString *startTimeDataText=[NSString
 stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 3)];

 NSString *endTimeDataText [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 4)];

 if(![events containsObject:titleDataText]) //Check for
 Duplicates
 {
 [events addObject:titleDataText];
 }
 }//end of while
 } // End of SQLite prepared statement
 }// End of if of sqlite3 open

 [myTableView reloadData]; // reload the UITableView // display

}

http:///

Events App—PacktEvents

[190]

24. You can ind the complete code on the book's website, itled Hello Events-SQLite.

25. Running the applicaion produces the following result:

26. It is a good idea to check the database values and compare them with the actual
results; you can do so with the SQLite Manager add-on in Firefox.

27. The SQLite database is also created on the simulator, in your /Users/{USER_
NAME}/Library/Application Support/iPhone Simulator/5.0/

Applications/{Application ID}/Documents/packtevents.sqlite, as
seen in the following screenshot:

http:///

Chapter 6

[191]

What just happened?
The new JSON API in iOS 5 SDK, NSJSONSerialization, does the heavy work here. We
use it to convert JSON into naive Foundaion objects; namely Dicionary and then eventually
into arrays. We parse the array and retrieve the required atributes for an event by using
objectAtIndex and objectForKey on the array.

startTimeText = [[[[items objectAtIndex:0]objectForKey:@"event"]
 objectAtIndex:i] objectForKey:@"start_time"];

Once the parsing is done, we stored the events in a database and retrieved it to display on a
UITableView.

Plotting events on a map

In Chapter 4, we looked at the MapKit framework and understood how to add maps and
markers to our applicaion. We will now create a new example that uses the Hello Events

example we created already in this chapter to also show all the events on the map via
annotaions for each event. We will do this by creaing a new Tabbed Applicaion in Xcode.

http:///

Events App—PacktEvents

[192]

Time for action – plotting events on a map
1. Open Xcode and start a new project by selecing the Tabbed Applicaion template.

Name it Hello Events:Maps.

2. We use the last example, Hello Events, and create the irst tab as the Hello
Events:SQLite applicaion we saw before. We add the tab icon as a calendar, and
on the second tab, we add an image for the map view. These images are free to use,
as menioned earlier:

// Hello_EventsFirstViewController.m

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:

 (NSBundle *)nibBundleOrNil

{

 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {

 self.title = NSLocalizedString(@"Events", @"Events");

 self.tabBarItem.image = [UIImage imageNamed:
 @"Mobile-Icons/02_calendar_48.png"];

 }

 return self;

}

// Hello_EventsSecondViewController.m

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:

 (NSBundle *)nibBundleOrNil

{

 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {

 self.title = NSLocalizedString(@"Maps", @"Maps");

 self.tabBarItem.image = [UIImage imageNamed:
 @"Mobile-Icons/04_maps_48.png"];

 }

 return self;

}

http:///

Chapter 6

[193]

3. As we already have the events in the database on the device now, our Maps tab and
controller will just read it from the database and plot it on the maps.

4. The Hello_EventsSecondViewController.h and Hello_
EventsSecondViewController.m iles control the Maps tab. We reuse
the code and add only the required objects and properies here; we need
the variables for the mapView and the SQLite funcionality only. Our Hello_
EventsSecondViewController.h looks like the following code snippet:

#import <UIKit/UIKit.h>

#import <CoreLocation/CoreLocation.h>

#import <sqlite3.h>

#import <MapKit/MapKit.h>

@interface Hello_EventsSecondViewController : UIViewController

{

 sqlite3 *database;

 NSString *sqliteFileName;

 MKMapView *map;

 UIView *mapView;

 MKPointAnnotation *annotation;

}

@property (retain,nonatomic) MKMapView *map;

@property (strong, nonatomic) IBOutlet UIView *mapView;

@property (retain,nonatomic) MKPointAnnotation *annotation;

-(NSString *) getDatabaseFullPath;

-(void) readEventsFromLocal;

5. The code is prety straighforward; it is almost a mash up of our Maps Examples in
Chapter 4 and the Hello Events example.

http:///

Events App—PacktEvents

[194]

6. In the viewDidLoad method in Hello_EventsSecondViewController.h,
we create the Map object and deine the UIView for it. We also connect the same
from the Interface Builder (press down the Ctrl key and drag the mouse from
File's Owner to the View object and select the mapView outlet). We then call the
readEventsFromLocal method, as we are assuming that our applicaion has
already stored the same from Tab 1 – The Events tab.

7. In our readEventsFromLocal method, we have made some changes to create the
Annotaions (Markers) from the Events Data stored in the SQLite database using the
laitude/longitude columns in the events table:

CLLocationCoordinate2D coord =

{

 .latitude = eventLatitude ,

 .longitude= eventLongitude

};

8. Eventually we create the annotaions with the preceding coord variable:

annotation.coordinate = coord;

9. The complete code for the readEventsFromLocal method is now as follows:

-(void)readEventsFromLocal

{

 if(sqlite3_open([sqliteFileName UTF8String],&database)
 ==SQLITE_OK)

 {

 NSString *eventsTableName = @"events";

http:///

Chapter 6

[195]

 NSString *selectStatement = [[NSString alloc]initWithFormat:
 @"SELECT * from %@ order by id desc",eventsTableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement UTF8String],
 -1, &sqlStatement, NULL)==SQLITE_OK)

 {

 while(sqlite3_step(sqlStatement)==SQLITE_ROW)

 {

 NSString *idDataText = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 0)];

 NSString *titleDataText = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 1)];

 NSString *descriptionDataText= [NSString
 stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 2)];

 NSString *startTimeDataText= [NSString
 stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 3)];

 NSString *endTimeDataText =[NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 4)];

 double eventLatitude =
 sqlite3_column_double(sqlStatement, 6);

 double eventLongitude =
 sqlite3_column_double(sqlStatement, 7);

 //Annotations Started

 CLLocationCoordinate2D coord = {

 .latitude=eventLatitude,

 .longitude=eventLongitude };

 region.center = coord;

 region.span.latitudeDelta = 0.1;

 region.span.longitudeDelta = 0.1;

 [map setRegion:region animated:TRUE];

 annotation = [[MKPointAnnotation alloc]init];

 annotation.title = titleDataText;

 annotation.coordinate = coord;

 [map addAnnotation:annotation];

http:///

Events App—PacktEvents

[196]

 //Annotations Ended

 } // end of while loop

 } // end of if sqlite3 prepared statement

 }// end of if of sqlite3 open

}

10. Run the app in the iOS 5 Simulator with the locaion set to San Francisco. You should
see the following output:

http:///

Chapter 6

[197]

What just happened?
We created a simple maps display for showing locaion-based events retrieved from
eventful.com. The MKPointAnnotation object has been used in a loop to cycle
through the events list and to add annotaions to the map.

Find the example code for this example on the book's website, in the project itled
Hello Events/Maps.

Have a go hero – add more dynamics to the map
Push yourself to the challenge of adding a callout to the Annotaion, so when you click
on the Annotaion, it shows you more informaion about that event. Head to http://
developer.apple.com/library/ios/documentation/MapKit/Reference/
MKAnnotationView_Class/Reference/Reference.html#//apple_ref/occ/

instp/MKAnnotationView/leftCalloutAccessoryView for some quick ips!

Filtering Events display by Event Categories

Now that we have learned to show events on the maps, we move forward to iltering
events by categories. Customizaions that suit the end user's need make an app more useful.
So there may be users who are interested only in concert events, while another group of
users would prefer sports events. We resolve this by changing the home screen to displays
a list of categories, and then, based on the selecion and the user's locaion, we show
nearby events.

Evenful has a rich set of categories for covering all the breadth of events happening
around the globe. The following list shows the depth of event categories supported by
the Evenful API:

Category ID Category Name

music Concerts & Tour Dates

conference Conferences & Tradeshows

learning_educaion Educaion

family_fun_kids Kids & Family

fesivals_parades Fesivals

movies_ilm Film

food Food & Wine

fundraisers Fundraising & charity

art Art Galleries & Exhibits

http://developer.apple.com/library/ios/documentation/MapKit/Reference/MKAnnotationView_Class/Reference/Reference.html#//apple_ref/occ/instp/MKAnnotationView/leftCalloutAccessoryView
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MKAnnotationView_Class/Reference/Reference.html#//apple_ref/occ/instp/MKAnnotationView/leftCalloutAccessoryView
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MKAnnotationView_Class/Reference/Reference.html#//apple_ref/occ/instp/MKAnnotationView/leftCalloutAccessoryView
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MKAnnotationView_Class/Reference/Reference.html#//apple_ref/occ/instp/MKAnnotationView/leftCalloutAccessoryView
http:///

Events App—PacktEvents

[198]

Category ID Category Name

support Health & Wellness

books Library & Books

atracions Museums & Atracions

community Neighborhood

business Business & Networking

singles_social Nightlife & Singles

schools_alumni University & Alumni

clubs_associaion Organizaions & Meetups

outdoors_recreaion Outdoors & Recreaion

performing_arts Performing Arts

animals Pets

poliics_acivisim Poliics & Acivism

sales Sales & Retail

science Science

religion_spirituality Religion & Spirituality

sports Sports

technology Technology

Note: Most of the API call works by the Category ID. The category Name is for
display purpose; avoid it wherever possible. The category ID is preferred as it is
all lowercase, clean, and has no special character-based keyword.

Time for action – iltering Events by categories
We use the last example and extend it to irst show the list of categories, and based on user
selecion, we call the right Evenful API URL. The project is itled Hello Events-Filtering.

1. Open Hello_EventsFirstViewController.h and declare some more funcions
as well as modifying the readEventFulApi method so that it starts acceping the
Category ID as a parameter.

-(NSString *) getDatabaseFullPath;

-(NSString *) initializeDatabase;

-(void) readEventFulApi:categoryId;

http:///

Chapter 6

[199]

-(void) readEventsFromLocal;

-(NSString *) returnCategoryIdForName:categoryName;

-(void)readCategoriesFromApi;

-(void)readCategoriesFromLocal;

2. The methods in bold are new addiions. The returnCategoryIdForName:ca
tegoryName method is used to return the category ID, which is provided by the
category Name (refer to the Category ID to Category Name mapping table discussed
a litle earlier).

3. The readCategoriesFromApi and readCategoriesFromLocal methods are
used to parse the category data from the Evenful API, store it in the local SQLite
database, and inally read it on demand.

4. In the Hello_EventsFirstViewController.m ile, we deine a new variable of
the type NSMutableArray that will hold the categories data in an array and use it
to display the category list on the UITableView:

NSMutableArray *categories;

5. We also deine an NSString variable for the categories database TableName:

 NSString *categoryTableName = @"categories";

6. In our viewDidLoad method, we create the categories array and call the
readCategoriesFromApi method to start reading the category informaion
from Evenful and store it in our local database.

 categories = [[NSMutableArray alloc]init];

 sqliteFileName = [self getDatabaseFullPath];

 [self initializeDatabase];

 [self readCategoriesFromApi];

7. In the readCategoriesFromApi method, we set the inCategories lag to
TRUE; this is used to difereniate the current state of the app - between processing
categories informaion and processing the events informaion. We switch between
the two using the inCategories and inEvents lags. We then call the Evenful
API URL for the Category and coninue to process the JSON received:

NSString *url = [NSString stringWithFormat:
 @"http://api.evdb.com/json/categories/list?&app_key=%@",appKey];

http:///

Events App—PacktEvents

[200]

8. Once the API is called and the JSON is received, the
connectionDidFinishLoading is called. We modify this by checking the
inCategories and inEvents lag to perform processing accordingly. As we have
the inCategories lag set to TRUE by default, we irst process the categories
informaion and store it in the database as follows:

// Start of Categories Parsing
if(inCategories)
{
 items = [NSArray arrayWithObject:
 [dictionary objectForKey:@"category"]];
 NSUInteger count = [[items objectAtIndex:0]count];

 if(count >= 5)
 {
 if(sqlite3_exec(database, [@"Delete from categories"
 UTF8String], NULL, NULL, &sqliteError)==SQLITE_OK)
 {
 NSLog(@"Categories Purged");
 categories = [[NSMutableArray alloc]init];
 }
 }

 for(NSInteger i=0;i<count-1;i++)
 {
 categoryIdText= [[NSMutableString alloc]init];
 categoryIdName= [[NSMutableString alloc]init];

 categoryIdText=[[[items objectAtIndex:0]
 objectAtIndex:i]objectForKey:@"id"];
 categoryIdName=[[[items objectAtIndex:0]
 objectAtIndex:i]objectForKey:@"name"];

 if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)
 {
 insertStatement=[[NSString alloc] initWithFormat:
 @"INSERT OR REPLACE INTO '%@'('%@','%@')
 VALUES(\"%@\",\"%@\")",categoryTableName,@"id",
 @"name",categoryIdText,categoryIdName];

 if(sqlite3_exec(database, [insertStatement UTF8String],
 NULL, NULL, &sqliteError)==SQLITE_OK)
 {
 NSLog(@"Categories Inserted");
 }
 else
 {

http:///

Chapter 6

[201]

 NSLog(@"Error :%@",insertStatement);
 }
 }
 } // end of for loop
} // End of Categories Parsing

9. Once the categories have been parsed and inserted in the database, we call
the readCategoriesFromLocal method, which reads these newly inserted
values and stores the category in the categories array, deined earlier in the
code, and this category array is then passed onto the UITableView (via the
cellForRowAtIndexPath and the inCategories lag).

10. The readCategoriesFromLocal method is straighforward. By now, you should
be comfortable in understanding the usual SQLite table read process:

-(void)readCategoriesFromLocal
{
if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)
{
 selectStatement = [[NSString alloc]initWithFormat:
 @"SELECT * FROM %@",categoryTableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement UTF8String],
 -1, &sqlStatement, NULL)==SQLITE_OK)
 {
 while(sqlite3_step(sqlStatement)==SQLITE_ROW)
 {
 NSString *categoryIdDataText=[NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 0)];

 NSString *categoryNameDataText=[NSString
 stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 1)];

 categoryNameDataText=[categoryNameDataText
 stringByReplacingOccurrencesOfString:@"&"
 withString:@"&"];

 if(![categories containsObject:categoryNameDataText])
 {
 [categories addObject:categoryNameDataText];
 }

 }

 }

http:///

Events App—PacktEvents

[202]

 }// end of if of sqlite3 open

 [myTableView reloadData];

}

11. In the TableView's cellForRowAtIndexPath method, we assign diferent images
for the cells based on the informaion displayed. If events are being displayed, we
show the same calendar icon as before. However, if categories are being displayed,
we show a new icon this ime. This is again based on the inCategories and
inEvents lags; this is shown as follows:

if(inEvents)
{
 UIImage *newImage = [UIImage imageNamed:
 @"Mobile-Icons/02_calendar_48.png"];
 cell.imageView.image = newImage;
 cellContent = [events objectAtIndex:indexPath.row];
}

if(inCategories==TRUE)
{
 UIImage *newImage = [UIImage imageNamed:
 @"Mobile-Icons/08_settings_48.png"];
 cell.imageView.image = newImage;
 cellContent = [categories objectAtIndex:indexPath.row];
}

12. To give the Categories List some interacivity, we give it an accessory. This will show
more informaion when we click on the > sign. This much informaion is nothing
but our events being called based on the Category selected. So we deine the Cell's
accessory type in the cellForRowAtIndexPath method of the UITableView

delegate as follows:

cell.accessoryType=UITableViewCellAccessoryDetailDisclosureButton;

13. Now when we select any category from the UITableView, the
didSelectRowAtIndexPath method is called. So now we add the events API call
here, specifying the category selected (note that we will send the category ID, so we
get the same from the returnCategoryIdForName:categoryName method),
as follows:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *temp;
 if(inCategories)
 {

http:///

Chapter 6

[203]

 temp = [tableView
 cellForRowAtIndexPath:indexPath].textLabel.text;
 NSString *apiCatId = [self returnCategoryIdForName:temp];

 [self readEventFulApi:apiCatId];
 }
// now get a list of events for the particular category selected
 via the uitableview
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

14. Once we get the selected category, Name, we convert it into an appropriate
category ID using the returnCategoryIdForName method. We then call the
readEventFulApi: categoryId method to start fetching events from the
Evenful API based on the category ID supplied and then the JSON is parsed; events
stored in the database are then read and displayed on the UITableView as before.

15. Run the applicaion. You should see the start screen as follows:

http:///

Events App—PacktEvents

[204]

16. Now when you click on any of these categories, you will see that tableView is
illed with events related to that category. We have also changed the tableView's
header by using the lags again:

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section{
 if(inCategories)
 {
 return @"Category List";
 }
 return @"Events List";
}

17. We can also use the tableView:accessoryButtonTappedForRowWithInde
xPath method of the UITableView class to deine the acions for the accessory
added in our tableView (the blue arrow >).

What just happened?
Using the UITableView smartly, we are able to switch between Categories display and Events
display. We used the concept of lags to monitor the state of the applicaion and perform
acions accordingly.

We learnt how to use the Evenful Search API by passing category data.

http:///

Chapter 6

[205]

Using the Event Kit framework to add events to your
iPhone calendar

The Event Kit framework allows us to access the user's calendar and events informaion.
Event Kit has two components. They are as follows:

 � The Event Kit framework

 � The Event Kit UI framework

While the Event Kit framework allows us to programmaically access, create, delete, and
update the events on the iOS Device, the Event Kit UI framework provides easy-to-use
UI view controller classes that directly work with the iOS Calendar app, so kind of like
a GUI-driven calendar manipulaion.

We will look at the Event Kit UI framework and understand how to add events to our iOS
Device. It is a good idea now to add a Calendar account on your iPhone; you can do it from
your phone or from your Mac. On your Mac, open the iCal app and add your Google account
to it from the iCal | Preferences menu opion:

http:///

Events App—PacktEvents

[206]

You can then sync this new account from within iTunes by selecing the Info tab in iTunes and
navigaing to the Sync iCal Calendars.

Once you are done syncing, the new calendar should be visible under the Calendars secion
in the iCal app. Similarly, you can have a number of Calendars.

The EKEventStore is the main class in the Event Kit Framework that contains references to
the various Calendars available on the device, via the EKCalendar class. Each EKCalendar can
then have events (EKEvent class object) atached to it.

http:///

Chapter 6

[207]

Time for action – adding events to your iPhone calendar
We take the Hello Events (SQLite example) and extend it to add Events onto our iOS calendar
using EventKit and EventKit UI framework.

1. Add EventKit and EventKit UI framework to your project.

2. In your Hello_EventsViewController.h, deine the variables for the
EventStore, Event Calendar, and Event object as follows:

EKEventStore *eventStore;

EKCalendar *eventCalendar;

EKEvent *event;

NSMutableArray *eventList;

EKEventEditViewController *eventController;

3. We also deine an array to hold our events data (of the type EKEvent) in an array,
so we can parse through the events array and add it to the calendar on user input.

4. The EKEventEditViewController object allows us to use the core iOS Calendar
UI and acions to create a new event or edit an exising event.

5. In our Hello_EventsViewController.m ile, we deine an extra
global variable to hold the current Index of the event. This is needed in
EKEventEditViewController to point to the current event being added.

NSInteger currentIndex;

6. In the viewDidLoad method, we iniialize the Event Kit variables as follows:

eventStore = [[EKEventStore alloc]init];

eventCalendar = [eventStore defaultCalendarForNewEvents];

eventList = [[NSMutableArray alloc]init];

7. We modify the UITableView's cellForRowAtIndexPath method to add a new
accessory buton to it (similar to the earlier example), so that we can perform an
acion on the click of that buton; in this case, we will ire the Calendar's add event
UI via EKEventEditViewController as a modal pop-up:

 cell.accessoryType=UITableViewCell
 AccessoryDetailDisclosureButton;

http:///

Events App—PacktEvents

[208]

8. The callback for this accessory is where all the magic happens. As the user clicks a
cell, we capture the row number, ind the event at that row, and eventually pass it
on to the EventKit UI via the EKEventEditViewController as follows:

-(void)tableView:tableView accessoryButtonTappedFor
 RowWithIndexPath:(NSIndexPath *)indexPath

{

 currentIndex = indexPath.row;

 eventController = [[EKEventEditViewController alloc]
 init];

 eventController.eventStore= eventStore;

 eventController.event= [eventList objectAtIndex:currentIndex];

 eventController.editViewDelegate = self;

 [self presentModalViewController:eventController animated:YES];

}

9. Running the app (also bundled on the book's website, itled Hello Events-EventKit)
produces the following results:

10. On clicking the blue arrow >, the applicaion shows the same Calendar | Add Event

pop-up as you would get from the iCal app.

http:///

Chapter 6

[209]

11. Ater clicking on the Done buton at the top-right-hand corner, you should see the
event added to your calendar, as follows:

12. You can also add Alerts, Notes, or Invitees to the event.

http:///

Events App—PacktEvents

[210]

What just happened?
Using the EventKit and EventKit UI Framework, we quickly added a calendar and events to
our applicaion. We used the default EKEventEditViewController controller of the
Event Kit UI framework, which provides the default Add Events UI and funcionality to
our app.

Using the Twitter framework
We are inally at the stage of looking at the most exciing new feature in iOS 5 – Twiter
Integraion in the iOS framework and how we can easily use the same in our app.

The Twiter framework in iOS 5 is prety small and concise. It has just two main classes, and
they are as follows:

TWRequest.

TWTweetComposeViewController.

The TWRequest is synonymous with the Twiter HTTP API, where in you can make GET,
POST, and DELETE API calls. These are operaions that you can perform on behalf of the
user. A Twiter request is made up of the API URL (idenifying the actual acion to perform),
parameters, and the HTTP method (GET/POST). The initWithURL:parameters:request
Method: method of the Twiter framework in iOS 5 handles the Twiter request.

For our applicaion, we are concerned with the TWTweetComposeViewController class,
as this class provides an easy to use Modal view controller object that makes Tweeing from
within the app a breeze.

Time for action – adding Twitter capabilities to your iPhone app
We take the Hello Events – SQLite example and extend it to add tweets
for each Event from within our applicaion by using the iOS 5 Twiter framework;
TWTweetComposeViewController to be speciic.

1. Add the Twiter Framework to your project. Next, open the
Hello_EventsViewController.h ile and import the Twiter
Library in your code by using the following:

#import <Twitter/Twitter.h>

2. In our UITableView's cellForRowAtIndexPath method, add the accessoryType

buton, similar to what we did in the last example:

cell.accessoryType =

UITableViewCellAccessoryDetailDisclosureButton;

http:///

Chapter 6

[211]

3. In the Accessory buton tap method, we call the Twiter modal box and pass the
event itle as the tweet content. The TWTweetComposeViewControllerResult

is the result object returned from the Twiter Modal Box, which returns either of the
two values:

 � TWTweetComposeViewControllerResultCancelled - If the user
canceled the Twiter Modal Box

 � TWTweetComposeViewControllerResultDone - If the user successfully
coninued using the Twiter Modal Box to send out a tweet

-(void)tableView:tableView
 accessoryButtonTappedForRowWithIndexPath:
 (NSIndexPath *)indexPath

{

 currentIndex = indexPath.row;

 NSString *eventTitle = [events objectAtIndex:currentIndex];

 if([TWTweetComposeViewController canSendTweet])

 {

 TWTweetComposeViewController *tweetViewController =
 [[TWTweetComposeViewController alloc] init];

 [tweetViewController setInitialText:[[NSString
 alloc]initWithFormat:@"I am attending this event - %@
 #eventful",eventTitle]];

 [tweetViewController setCompletionHandler:^
 (TWTweetComposeViewControllerResult result)

 {

 NSString *tweetOutput;

 switch (result) {

 case TWTweetComposeViewControllerResultCancelled:

 tweetOutput = @"The user cancelled the tweet. ";

 break;

 case TWTweetComposeViewControllerResultDone:

 tweetOutput = @"You sent a tweet successfully";

 break;

 default:

 break;

 }

 [self dismissModalViewControllerAnimated:YES];

 }];

 [self presentModalViewController:tweetViewController
 animated:YES];

 } // end of if canSendTweet

}

http:///

Events App—PacktEvents

[212]

4. Before we send the tweet, we need to check if the device can send tweets.
This is checked against the Twiter account setup within the iOS 5 device. The
canSendTweet method is used to check if the user has set up his/her account
or not:

[TWTweetComposeViewController canSendTweet])

5. We retrieve the current cell and event itle from the events array used for the
UITableView rendering, as follows:

currentIndex = indexPath.row;

NSString *eventTitle = [events objectAtIndex:currentIndex];

6. We pass this event itle informaion to the Twiter object as the iniial text to be
tweeted, adding the hashtag # evenful.

7. The Twiter Modal Box is presented via the [self presentModalViewControlle

r:tweetViewcontroller animated:Yes] code. The setCompletionHandler

handles the result of the Tweet operaion. In our example, we keep it simple and
complete the acion by dismissing the Twiter ModalViewController ater the
acion is performed.

8. You can ind the code on the book's website in a project itled Hello Events- Twiter.

9. On running the example, you should get the following screen:

http:///

Chapter 6

[213]

What just happened?
Using the Twiter Framework on iOS 5 is a breeze. It is easy to set up and use in our apps. We
used the TWTweetComposeViewController to compose a Modal Tweet Box in our app
and send tweets for the event, tagged with a hashtag, and with the iniial text as the itle of
the event.

With the Twiter framework, not only can you send tweets, but you can also geotag them,
add images, and add URLs (Twiter framework uploads the images and shortens the URLs on
its own). Moreover, muliple Twiter accounts are also supported!

Bonus: using the Layar Player API in your app: Augmented
Reality

Layar (http://www.layar.com) is a popular Augmented Reality EcoSystem for iOS,
Android, Symbian, and BlackBerry plaforms. We say ecosystem, because not only does it
provide a standalone Augmented Reality (AR) app for the popular mobile plaforms, but
it also supports embedding AR into a general iPhone or Android app, through its various
APIs and SDKs. For iOS devices, Layar has the Layar Player, available through http://www.
layar.com/player/ that provides developers with pre-built libraries for iOS.

Now any iOS app can be made AR-Aware. Developers have to sign up (at http://
www.layar.com/development/) and create a layer (a set of standard geo-content
representaion format – readable by the layar player) for their content. The Layar Player then
embeds this layer into your iOS app. We move onto a quick example of integraing the Layar
player into our Hello Events example.

Time for action – adding Augmented Reality to your iPhone app
1. Download the Layar Player SDK from http://www.layar.com/player/ and set

up your exising app by imporing the required libraries into your Xcode project.
For this example, let's name it Hello Events-Augmented Reality. Follow the
documentaion available with the SDK to conigure your project; read more about
this at http://layar.pbworks.com/w/page/35051901/Layar-Player-on-
IPhone. The sample code will be available on the book's site, so you can use the
project template to play around with.

http://www.layar.com
http://www.layar.com/player/
http://www.layar.com/player/
http://www.layar.com/player/
http:///

Events App—PacktEvents

[214]

2. Build a layer at http://www.layar.com/publishing/ by signing up and
creaing a new Layer. In our case, we name this Layer PacktEvents.

3. Conigure the layer's seing. The following are of prime importance:

 � API endpoint URL

 � OAuth Consumer key

 � OAuth Consumer secret

http:///

Chapter 6

[215]

4. We point the API endpoint URL to the PHP script on our webserver that powers our
layer. The PHP script hits the Eventful.com API, based on the device's locaion and
converts the response into a Layar-recognized JSON format. The format for which
can be found at http://layar.pbworks.com/w/page/25427491/Tutorials
on creating a layer

5. Our PHP script looks like the following code snippet:

<?php

$layerName = $_REQUEST['layerName'];

$lat = $_REQUEST['lat'];

$lon = $_REQUEST['lon'];

$radius = $_REQUEST['radius'];

$eventfulUrl = "http://api.eventful.com/rest/events/
 search?location=$lat,$lon&app
 _key=xxxxxxxxxxxx&within=10";

$file = file_get_contents($eventfulUrl);

$eventsXML = simplexml_load_file($eventfulUrl);

$poi = array();

$hotspots = array();

$i = 0;

foreach ($eventsXML->events->event as $event)

{

 $poi['id'] = trim($event['id']);

 $poi['text']['title']= trim($event->title);

 $poi['anchor']['geolocation']['lat']=

 changetoFloat($event->latitude);

 $poi['anchor']['geolocation']['lon'] =

 changetoFloat($event->longitude);

 $poi['text']['description'] =

 htmlspecialchars($event->description);

 $hotspots[$i] = $poi;

 $i++;

}

$response = array();

$response['layer'] = 'packtevents';

$response['hotspots'] = $hotspots;

http://layar.pbworks.com/w/page/25427491/Tutorials
http:///

Events App—PacktEvents

[216]

if (!$response['hotspots']) {

 $response['errorCode'] = 20;

 $response['errorString'] = 'No POI found. Please adjust the
 range.';

}

else {

 $response['errorCode'] = 0;

 $response['errorString'] = 'ok';

}

$jsonresponse = json_encode($response);

header('Content-type: application/json; charset=utf-8');

echo $jsonresponse;

function changetoFloat($string) {

 if (strlen(trim($string)) != 0)

 return (float)$string;

 return NULL;

}

?>

6. Where xxxxxxxxxxxx is our API Key from Eventful.com. The PHP script is
included in the code download for this example.

7. Our main screen for this example will be the regular UITableView page with an
accessory buton, as seen in previous examples. On the accessory buton click, we
will load the Layar Player and iniialize our layer we created in step 2. Note that the
layer name, consumer key, and secret values must match the ones we used while
creaing the layer.

-(void)tableView:tableView accessoryButtonTappedForRowWithIndexPat
h:(NSIndexPath *)indexPath

{

 currentIndex = indexPath.row;

 NSString *eventTitle = [events objectAtIndex:currentIndex];

 NSString *layerName = @"packtevents";

 NSString *consumerKey = @"packtevents";

 NSString *consumerSecret = @"packtevents";

 NSArray *oauthKeys = [NSArray
 arrayWithObjects:LPConsumerKeyParameterKey,
 LPConsumerSecretParameterKey, nil];

 NSArray *oauthValues = [NSArray arrayWithObjects:consumerKey,
 consumerSecret, nil];

http:///

Chapter 6

[217]

 NSDictionary *oauthParameters = [NSDictionary
 dictionaryWithObjects:oauthValues forKeys:oauthKeys];

 NSArray *layerKeys = [NSArray arrayWithObject:@"radius"];

 NSArray *layerValues = [NSArray arrayWithObject:@"50000"];

 NSDictionary *layerFilters = [NSDictionary
 dictionaryWithObjects:layerValues forKeys:layerKeys];

 LPAugmentedRealityViewController *augmentedRealityViewController
 = [[LPAugmentedRealityViewController alloc] init];

 augmentedRealityViewController.delegate = self;

 [self presentModalViewController:augmentedRealityViewController
 animated:YES];

 [augmentedRealityViewController loadLayerWithName:layerName
 oauthParameters:oauthParameters layerFilters:layerFilters
 options:LPMapViewDisabled | LPListViewDisabled];

}

8. The rest of the code is the same as any of the examples we saw before. Run the
app on your iPhone. Trying to run the example on the iOS simulator will fail, as we
are using the Camera, OpenGL, and related classes here (within the Layar Player
libraries). You should get the following screenshot:

http:///

Events App—PacktEvents

[218]

9. Clicking on the blue arrow should load the Augmented Reality view, as shown in the
following screenshot:

10. You can also test your layers online, via the Layar Publishing Portal.

http:///

Chapter 6

[219]

What just happened?
By Using the Layar Player SDK for iOS, we saw how easy it was to integrate the Augmented
Reality feature in your iOS app. We also saw how to build a layer with a PHP script that
parses the Evenful API for events and converts it into a Layar-recognized format. Layar also
ofers Layar Vision, which allows for Image Recogniion capabiliies. Another cool feature
is the ability to load 3D Models within the Augmented Reality display. By now, you should
know where to go for more details!

PacktEvents: building the app
In Chapter 5 – we saw how to build the components on the WeatherPackt applicaion. We
also combined the components to build the app. In this chapter, we saw all the modules for
our PacktEvents app. Now it is ime for you, the reader, to build the app as an exercise.

However, do not fear if you sill cannot ill in the blocks; the code for PacktEvents will be put
up on the book's website along with the full source code and explanaion, along with the
voice recogniion module - courtesy Nuance Mobile SDK.

http:///

Events App—PacktEvents

[220]

Pop quiz – have a blast with events
1. What are the diferent API components available to add events to the iOS

device's calendar?

2. How can you determine whether your iOS 5 capable iOS device can send
tweets using the new Twiter Framework in iOS 5?

Summary

In this chapter, we learned how to consume the Evenful API (courtesy eventful.com)

and store events locally in the best way using SQLite. We also looked at iltering the events
by category.

We looked at how the EventKit framework can be used to add events to our calendar. The
new Twiter Framework in iOS 5 was also explored.

Speciically, we covered:

 � Evenful API – deep analysis

 � iOS EventKit framework

 � Twiter framework

 � Using the Layar Player (Bonus)

 � Building the PacktEvents app

We learned to build two real life iPhone applicaions in our last two chapters: a weather app
and an events app. Now it is ime to learn some advanced iOS concepts such as Core Moion
and Noiicaions. So let's move on to it.

http:///

7
Advanced Topics

Local and push noiicaions, augmented reality, and Geofencing are some
exciing features that lure the users back to your applicaions. Smart use of
these features can lead to extended app usage, thereby generaing more
revenues for the developer.

Smart push techniques combined with Geofencing, reduce the user's eforts
to open applicaions and search for content. Instead, the applicaion pushes
noiicaions and messages to the user, triggering the applicaion to launch
from background.

Background apps are another way to let your app work in the background,
and ire an event in case the user matches certain applicaion logic, thereby
bringing the user back to the app.

In this chapter, we will deal with the advanced topics for iOS 5:

•	 Using direcions with locaion

•	 Moion manager

•	 Running apps in the background, along with background locaion

•	 Push noiicaions and local noiicaions

So let's get on with it...

http:///

Advanced Topics

[222]

Using directions with location

So far, we have only used locaion values (laitude and longitude) from the iOS device, which
lets us know the user's posiion. iOS devices can also report the direcion of the user's phone
(very helpful for navigaion apps). The Core Location framework supports two methods of
determining direcion, using magnetometer and the device GPS.

Direction using heading
As discussed before, the direcion in which an iOS device is poining to is reported by the
device magnetometer. This informaion is known as heading. The device GPS hardware
reports the direcion in which an iOS device is moving. This informaion is know as course.

Getting your app ready for direction
Before we can use direcion informaion in our app, we need to include the
UIRequiredDeviceCapabilities key in our Info.plist ile. Depending on what we
need to use, heading or course, in our app, the accompanying strings should be added in the
UIRequiredDeviceCapabilitieskey.

Understanding heading using magnetometer

The magnetometer in the iOS device measures nearby magneic acivity. This helps in
determining the device orientaion. The heading values returned are relaive to true
north or magneic north; however, magneic north should be used for most applicaions,
since the magneic north keeps shiting each year (due to the movement of the earth's
crust). In simple words, true north is a theoreical concept, while magneic north is
more pracical-oriented. To receive the heading informaion in your app, you need
to do the following:

•	 Create a Core Locaion Manager Object

•	 Use the headingAvailable method to check for headingavailability on
the device

•	 Call the startupdatingHeading method.

The heading values are returned as a CLHeadingclass object. The CLHeading object
contains both, the true and magneic north values. So, in case you need to switch, you can
use the values accordingly.

HowStufWorks has a good aricle on true north and magneic north. Read
more about it at http://adventure.howstuffworks.com/outdoor-
activities/hiking/compass-or-gps2.htm.

http://adventure.howstuffworks.com/outdoor-activities/hiking/compass-or-gps2.htm
http://adventure.howstuffworks.com/outdoor-activities/hiking/compass-or-gps2.htm
http:///

Chapter 7

[223]

Time for action – using heading for direction in your app
We revisit the Hello Location - Location Updatesexample from Chapter 3,
Using Location in your iOS Apps – Core Location, and add the heading component to
our applicaion. Here is what we will achieve: Our applicaion will check for heading
informaion, and as we move the device let/right, we will adjust the on-screen slider
to relect the change in the direcion.

1. We begin with deining a UISlider object in our app in the Hello_
LocationViewController.h ile, and expose it as a property.

@property (strong, nonatomic) IBOutlet UISlider *XSlider;

2. We also declare three addiional properies of type UITextField that will hold the
X, Y, and Z values retrieved from the magnetometer. Of this, our interest lies in the
X value. We will use this to move the slider, as we move right /let.

@property (strong, nonatomic) IBOutlet UITextField *XVALUE;

@property (strong, nonatomic) IBOutlet UITextField *YVALUE;

@property (strong, nonatomic) IBOutlet UITextField *ZVALUE;

3. We modify the Hello_LocationViewController.xib ile to look as follows:

http:///

Advanced Topics

[222]

4. Do not forget to update your Info.plist ile with the following:

<key>UIRequiredDeviceCapabilities</key>

<array>

 <string>magnetometer</string>

</array>

5. Now, coming to the main acion in Hello_LocationViewController.m,
we check if heading services are available for the device or not, by using the
headingAvailable method, and staring the heading updates by using
startUpdatingHeading.

// Start heading Updates.

if ([CLLocationManagerheadingAvailable]) {
 locMgr.headingFilter = 5;
 [locMgrstartUpdatingHeading];
}

// End Heading Updates

6. Play around with headingFilter variable to deine how much sensiivity you need
in the app. The value passed here signiies how much change in degrees is required
to iniiate a heading change event.

7. Similar to the didUpdateToLocationmethod, Core Locaion Manager also
exposes the didUpdateHeadingmethod, which is ired when a heading
change event occurs.

8. We detect the X, Y, and Z values (signifying the horizontal, verical, and depth
deviaions) from the new heading informaion, and pass on the X values to the
UISlider, to update its value based on how much deviaion has occurred in the
X-axis (let or right side deviaion).

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 if (newHeading.headingAccuracy<0)
 {

http:///

Chapter 7

[223]

 return;

 }

 XVALUE.text =[[NSStringalloc]initWithFormat:@"%f",newHeading.x];

 YVALUE.text =[[NSStringalloc]initWithFormat:@"%f",newHeading.y];

 ZVALUE.text=[[NSStringalloc]initWithFormat:@"%f",newHeading.z];

 float value = [XVALUE.textfloatValue];

 XSlider.value = value;

 NSLog(@"Slide Value - %f",value);

}

9. That's it we are now ready to run the app. Make sure that you have a conigured
iOS device to test this demo, since it won't be possible to simulate the heading in
the iOS simulator easily. You can achieve that with the Instruments tool, albeit with
some coding. Here is how it works on an actual iPhone:

10. Don't forget to connect the UITextFields for X, Y, and Z to the XVALUE, YVALUE,
and ZVALUE outlets, respecively.

http:///

Advanced Topics

[222]

What just happened?
We used the heading informaion available from the locaion manager to detect the heading
informaion, speciically the X-axis deviaion, and used the real-ime informaion from the
device to control a Slider object in our main UI.

Note that even if you do not allow your app to use the locaion seings, the heading
informaion will sill be provided by the Core Locaion Manager. Find the code for this
example on the book's website: project itled Hello Location-Location Updates with Heading

We will look at more controls for device handling with Core Moion, which includes
parameters , such as gravity and user acceleraion.

Direction using course
The device's course informaion is returned in the CLLocation object, which we use to get
the user's locaion. Whenever the locaion is updated, Core Locaion also updates the course
and the speed values, as and when they become available. Remember that the course
informaion need not necessarily specify the direcion of the device; it could also signify the
direcion in which the device is moving. So, navigaional apps rely on the course values.

Time for action – using course for direction in your app
We modify the Hello Location - Location Updates example, to add course and speed
values in the Hello Location app.

1. Open the Hello_LocationViewController.h ile, and add two outlets, one for
the speed data and another for the course data.

@property (retain, nonatomic) IBOutlet UITextField *courseText;

@property (retain, nonatomic) IBOutlet UITextField *speedText;

2. We just need the speed and course informaion, so we add two labels and two
UITextFields in our XIB ile as shown in the following screenshot. Also, we
connect the same to the outlets created previously.

http:///

Chapter 7

[223]

3. In our ViewDidLoad method, we change the locaion manager's accuracy to
kCLLocationAccuracyBestForNavigation.

4. Next, in the didUpdateToLocation and locationDetect, we fetch the values of
speed and course from the CLLocation object.

courseText.text = [[NSString alloc]
 initWithFormat:@"%f",newLocation.course];

speedText.text = [[NSString alloc]
initWithFormat:@"%f",newLocation.speed];

The value for course could be as follows:

 � 0 for North

 � 90 degrees for East

 � 180 degrees for South

 � 270 degrees for West

http:///

Advanced Topics

[222]

5. Running the app in the simulator produces the following output:

A negaive value, usually -1, would imply that the course or speed value is not
available for your device.

Find the code example on the book's websites: projected itled Hello Location-

Location Updates with Course.

What just happened?
We successfully created a simple app that uses the course and speed values from the core
locaion object to signify the direcion of your iPhone, or direcion in which your iPhone is
travelling, along with its speed.

Note that it is a good idea to include GPS and locaion-services keys in the
UIRequiredDeviceCapabilitiesproperty in your Info.plist ile.

http:///

Chapter 7

[223]

Core Motion: Motion Manager
Core Moion primarily handles the accelerometer and gyroscope management for your
applicaion through the Core Moion Manager framework. Core Moion also runs in its
own thread. The beneits of running in its own thread implies that your applicaion does
not have to wait for the Core Moion Manager to send informaion, and can coninue
running as and when the Core Moion Manager sends values your applicaion thread can
consume, providing a beter user experience; as we all know – no one likes waiing for
informaion on their devices.

Staring with iOS 5, the Core Moion framework also includes the raw magnetometer data,
which was not available to users of iOS version 4.x. It also provides an opion to run in the
background and access the aitude data. Depending upon which iPhone sensor you are
interested in, the Core Moion Manager returns the appropriate Core Moion object.

•	 CMAccelerometerData: For the accelerometer data

•	 CMGyroData: For the gyroscope data

•	 CMMagnetometerData: For the magnetometer data

•	 CMDeviceMotion: For the north referenced aitude data

Let's deine each of the sensors to clearly understand their requirements and data
they return.

 � Accelerometer: The accelerometer is used to measure gravity and user acceleraion
on the iPhone. The CMAccelerometerData, returned by the Core Moion Manager
includes the X, Y, and Z axes acceleraion values (in gravitaional force uni.). It is
the most common sensor that can be found in almost all iOS devices from the irst
iPhone to the latest iPhone/iPad versions.

 � Gyroscope: The gyroscope measures the rate at which the device is rotaing with
respect to the earth's rotaion. So you not only get the X, Y, and Z values, but
also the rotaion happening in each of these three axes. Hence, accelerometer
+ gyroscope give you a six-axes moion control system, which is mostly useful in
gaming apps.

 � Magnetometer: The magnetometer measures the orientaion of the device by using
the nearby magneic ields. As discussed before, these are simple X, Y, and Z values.

 � Device Moion: The CMDeviceMotion contains the aitude, gravity, rotaion rate,
user acceleraion, and the magneic ields informaion within itself. This is derived
by combining the accelerometer and the gyroscope.

Aitude of the device is basically the device's orientaion in 3D space. It is a good ime to get
familiar with concepts, such as roll, yaw, and pitch.

http:///

Advanced Topics

[222]

How to use Core Motion
To use Core Moion in your app, you need to do the following:

•	 Start the Core Moion Manager.

•	 Deine the update interval.

•	 Stop the Core Moion Manager.

Core Moion supports both Push and Pull methods of retrieving the sensor data. By
specifying the interval, the associated block handle and an operaion queue with the
start method, the device pushes the sensor data at the speciied interval through the
block handler.

Periodically asking the Core Moion Manager for sensor data through the start method,
and accessing the respecive moion sensor property, we can pull the sensor data based on
our applicaion logic.

We will look at the pull-based approach of retrieving the sensor data from the Core Moion
Manager. Let's look at the methods, classes, and properies required for each of the sensors.

Start method Object returned Associated property

Accelerometer startAccelerometerUpdates CMAccelerometerData accelerometerData

Gyroscope startGyroUpdates CMGyroData gyroData

Magnetometer startMagnetometerUpdates CMMagnetometerData magnetometerData

Device Moion startDeviceMotionUpdates CMDeviceMotion deviceMotion

Before we start using these sensors, we need to detect whether these sensors are present
on the intended hardware or not. Each sensor has it associated property to determine its
availability, and determine whether it is acive or not.

The accelerometer has the accelerometerAvailable and accelerometerActive

properies to check for device compaibility. The gyroscope has gyroAvailable and
gyroActive properies. The magnetometer has the magnetometerAvailable

and magnetometerActive properies. Finally, the device moion has the
deviceMotionAvailable and deviceMotionActive properies.

When our applicaion is done processing the sensor data, it is ime to call the respecive
stop methods of the sensors. They are as follows:

•	 stopAccelerometerUpdates

•	 stopGyroUpdates

•	 stopMagnetometerUpdates

•	 stopDeviceMotionUpdates

http:///

Chapter 7

[223]

Time for action – using MotionManager: accelerometer
We have seen how to use the magnetometer data from the Core Locaion Manager object
before. Now we will use the Core Moion Manager to access the device's accelerometer
data. For the purpose of this example, we will create a new project named Hello Motion:

Accelerometer. We will also implement both the push and pull methods of geing data
from the moion manager.

1. Create a new project itled Hello Motion: Accelerometer , and add the Core
Moion Framework from the Targets | Hello Moion: Accelerometer | Build Phases

opion in Xcode.

2. In our ViewController.h ile, we import the <CoreMotion/CoreMotion.h>

header ile. We then declare the Moion Manager object, as well as a queue of type
NSOperationQueue. We also declare three UITextField variables that will hold
the X, Y, and Z acceleraion values. We expose them as outlet properies for the XIB
ile connecion. Another outlet that we create is to connect the UIButton.

3. Next, we declare two IBActions, one for geing the accelerometer data
through the pull method (getAccelerometerData), and another for
stopping the accelerometer updates on the device (stopAccelerometer).
Our ViewController.h ile should now look as follows:

#import<UIKit/UIKit.h>

#import<CoreMotion/CoreMotion.h>

@interface ViewController : UIViewController

{

 CMMotionManager *coreMotionManager;

 NSOperationQueue *coreMotionQueue;

 UITextField *accelerationX;

 UITextField *accelerationY;

 UITextField *accelerationZ;

}

@property (strong, nonatomic) IBOutletUIButton
 *showAccelerometerData;

@property (strong, nonatomic) IBOutletUITextField *accelerationX;

@property (strong, nonatomic) IBOutletUITextField *accelerationY;

@property (strong, nonatomic) IBOutletUITextField *accelerationZ;

- (IBAction)getAccelerometerData:(id)sender;

- (IBAction)stopAccelerometer:(id)sender;

@end

http:///

Advanced Topics

[222]

4. Open our iOS device XIB ile, and add some UI controls to display the labels and text
for the X, Y, and Z acceleraion values, as well as two butons for reading the values
on demand (Push), and stopping the accelerometer updates on the device. Your UI
should look as follows:

5. Open your ViewController.m ile. In the viewDidLoad method, we iniialize
the Core Moion object, and set its update interval to 1 second. We also
declare the block of code that will execute every ime the device triggers
an accelerometer update.

http:///

Chapter 7

[223]

6. The startAccelerometerUpdatesToQueue method is used to push the
accelerometer updates on an operaion queue. As the device accelerometer
becomes acive, we use the acceleraion values and assign it to the respecive
text ields.

coreMotionManager = [[CMMotionManageralloc]init];

coreMotionQueue = [[NSOperationQueuealloc]init];

if ([coreMotionManagerisAccelerometerAvailable])

 {

 coreMotionManager.accelerometerUpdateInterval= 1.0;

 [coreMotionManagerstartAccelerometerUpdatesToQueue:
 coreMotionQueuewithHandler:^(CMAccelerometerData
 *newAccelerometerData, NSError *error)

 {

 if([coreMotionManagerisAccelerometerActive])

 {

 accelerationX.text=[NSStringstringWithFormat:@"%f",
 newAccelerometerData.acceleration.x];

 accelerationY.text =[NSStringstringWithFormat:@"%f",
 newAccelerometerData.acceleration.y];

 accelerationZ.text =[NSStringstringWithFormat:@"%f",
 newAccelerometerData.acceleration.z];

 }

 }];

}

7. Now, for the pull-based approach of accessing the accelerometer data, we
deine the getAccelerometerData method, and use the Moion Manager's
startAccelerometerUpdates method, if the accelerometer is not acive. If it is
acive, we fetch the values from Core Moion Manager | accelerometer Data Object

| acceleraion property.

8. To stop the acceleraion updates, we call the stopAccelerometerUpdates

method under the stopAccelerometer funcion that is triggered when we hit
the Stop buton on the UI.

http:///

Advanced Topics

[222]

9. Running the applicaion produces results as shown in the following screenshot. Note
that this example will only run on the device. Tilt the device and wait for the device
to provide you with the update X, Y, and Z acceleraion values. If you hit the Stop

buton, and hit the Read Accelerometer buton again, it will only be a pull-based call
thereater, since we started the push-based process in the viewDidLoad method,
which will not be called unil the applicaion is reloaded again.

Find the code for this example on the book's website: project itled Hello Motion:

Accelerator.

What just happened?
By using the startAccelerometerUpdatesToQueue and
startAccelerometerUpdates methods of updaing the device accelerometer values,
we used the Core Moion framework to understand how the acceleraion values can be
obtained through the push and pull mechanism.

We used the NSOperationQueue to regulate the execuion of the acceleraion update
process. We also looked at the concept of blocks. Find more informaion about these
at http://developer.apple.com/library/mac/#documentation/Cocoa/
Reference/NSOperationQueue_class/Reference/Reference.html and
http://developer.apple.com/library/ios/#documentation/Miscellaneous/
Conceptual/iPhoneOSTechOverview/CoreServicesLayer/CoreServicesLayer.

html.

http:///

Chapter 7

[223]

Core Motion conclusion

Core Moion is a vast subject to explore. We looked at the accelerometer and the
magnetometer, and so far we had been using the raw data received from these sensors. You
can use the raw data, but unless you are a physics student, some of these data and terms
will be Greek to you. Thankfully, with iOS 5, Apple has made it simpler for developers to use
these sensors using the Device Moion Data (also known as Process Device Moion Data),
which reads raw moion data from the accelerometer and the Gyroscope, and generates
reined processed data for aitude, unbiased rotaion rate, the direcion of gravity, and the
user acceleraion on the device. In simple words, the calibraion and removal of error bias is
taken care of by the sensor fusion algorithms in Device Moion.

If you have used UIAccelerometer in your iOS app before, with iOS 5 the
following changes need to be done in your code. From UIAccelerometer,
transiion to CMMotionManager, and from UIAcceleration, transiion to
CMAccelerometer.

Background app execution

In our earlier chapters, we looked at enabling background locaion through the
UIBackgroundModes key in the Info.plist ile of our applicaion. Let's look deeper into
how background processing for our applicaions works. Background execuion of the code is
possible through the implementaion of mulitasking in iOS.

Why is background code execuion needed? Let's take up a scenario. You are a frequent
visitor to restaurants or bars, and you are interested in geing the best deals of such venues
nearby. Now, if you were using a regular applicaion that showed you nearby places having
discount, for say a Pizza meal, you would have to ire the app, hit the search buton, and
then locate the closest venue. What if the app does it all for you, so that as you move from
your home locaion to say four blocks away, the applicaion automaically calculates your
latest posiion, and based on your preferences, it can show you an alert for nearby deals at
restaurants and bars.

The most common use case for background app execuion is Background Location, so your
applicaions can keep a track of your posiion, even when running in the background. With
iOS 4 and higher versions, applicaions are no longer terminated when the iPhone's Home

buton is pressed. Instead, the applicaions are shited to a background suspended state,
where they are either removed from the memory, or based on the applicaion seings,
they can coninue running in the background.

http:///

Advanced Topics

[222]

What apps can run in the background?
Applicaions that use any of the following, can coninue to run in the background:

•	 The applicaion needs a quanifying amount of ime to perform some criical task

•	 The applicaion supports services that need the applicaion to run in the background

•	 The applicaion uses local noiicaions to show user alerts at pre-determined imes

As we saw before, we need to specify what background services we need in our app, by
specifying the same in the UIBackgroundModes key in the Info.list ile (or any .plist

ile for that mater). The values for UIBackgroundModes can be audio, location,
or VoIP.

With the introducion of iOS 5, Core Moion is now added as a supported background mode.

Background location
iOS supports the following background locaion tasks:

•	 Standard locaion service

•	 Signiicant locaion changes

•	 Coninuous locaion updates

We have discussed these services before in Chapter 3, Using Locaion in your iOS Apps – Core
Locaion. To use these services in the background, we just need to add locaion as a value in
the Info.plist ile's UIBackgroundModes key.

Besides background processing, iOS also includes opions to put the applicaion into
a suspended mode, when the user presses the Home buton the iPhone. When you
double-tap the Home buton and re open the app, the app resumes normal operaion. This
is done internally by iOS, by uilizing the memory eiciently. For most applicaions, you will
not need to change this behavior, but in case of memory-consuming apps or mission-criical
applicaions, you might need to understand how to efecively manage your applicaion code
around the various iOS applicaion states. Let's look a bit deeper into the various states of an
iOS applicaion.

Understanding the iOS application life cycle
The default behavior of iOS applicaions is intended to be Fast Launch, Short Use. A typical
user will pull out his/her iPhone, use an applicaion, such as weather, local search, e-mail, or
messaging, use it for a few minutes, and put it back in his/her pocket. Let's see the various
stages in the applicaion as the user carries out various tasks on his iPhone.

http:///

Chapter 7

[223]

The entry point of every iOS applicaion is the main funcion, such as any C program. Looking
back at our WeatherPackt applicaion, our main.m ile contains the following code:

#import<UIKit/UIKit.h>

#import "AppDelegate.h"

int main(int argc, char *argv[])

{

 @autoreleasepool

 {

 return UIApplicationMain(argc, argv, nil,

 NSStringFromClass([AppDelegate class]));

 }

}

The UIApplicationMain funcion is the core of the main method, taking four parameters.
The irst two being run-ime arguments, and the third parameter is the name of the
applicaion principal class, usually nil for the third parameter as it is the principal class itself,
the fourth being the applicaion's delegate class responsible for the overall integraion of our
code with the system, in our case it is the AppDelegate class. The UIApplicationMain

funcion also loads the main XIB ile through the UIApplication Delegate object. Open
the AppDelegate.h ile from our WeatherPackt applicaion, and you will ind that it
implements the UIApplication Delegate – UIApplicationDelegate.

The various states of an applicaion can be as follows:

State Descripion

Not running The applicaion has not been started or has been terminated by the system.
This could happen due to the system's automaic graceful terminaion of the
applicaion based on memory usage.

Inacive The applicaion is running in the foreground, but not receiving events,
may be because of an incoming phone call, or an SMS, or because the
device has auto-locked ater being idle for a few minutes. Another reason
for the inacive state to be enabled could be when the device transiions
from one state to another.

Acive Normal running state of the applicaion, responding to user inputs, and
updaing display.

Background The applicaion is in background (iOS 4 and above only).

Suspended The applicaion is suspended and no background code is being run.

http:///

Advanced Topics

[222]

The applicaion delegate contains the following methods to manage the transiion to/from
these states.

•	 application:didFinishLaunchingWithOptions:

•	 applicationDidBecomeActive:

•	 applicationWillResignActive:

•	 applicationDidEnterBackground:

•	 applicationWillEnterForeground:

•	 applicationWillTerminate:

Launching the applicaion calls the application:didFinishLaunchingWithOptions

method, from our WeatherPackt example. You will see that the various tab views' XIB iles
are associated with the respecive View controllers, and control is passed on to the main
tabBarController. You will also ind the code template for all the other states ready
within in the AppDelegate.m ile when you created the new project.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 {

 self.window = [[UIWindowalloc] initWithFrame:[[UIScreenmainScreen]
 bounds]];

 // Override point for customization after application launch.

 UIViewController *viewController1, *viewController2,
 *viewController3;

 if ([[UIDevicecurrentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone)

 {

 viewController1 = [[FirstViewControlleralloc]
 initWithNibName:@"FirstViewController_iPhone"bundle:nil];

 viewController2 = [[SecondViewControlleralloc]
 initWithNibName:@"SecondViewController_iPhone"bundle:nil];

 viewController3 = [[ThirdViewControlleralloc]
 initWithNibName:@"ThirdViewController_iPhone"bundle:nil];

 }

 else

 {

 viewController1 = [[FirstViewControlleralloc]
 initWithNibName:@"FirstViewController_iPad"bundle:nil];

http:///

Chapter 7

[223]

 viewController2 = [[SecondViewControlleralloc]
 initWithNibName:@"SecondViewController_iPad"bundle:nil];

 viewController3 = [[ThirdViewControlleralloc]
 initWithNibName:@"ThirdViewController_iPad"bundle:nil];

 }

 self.tabBarController = [[UITabBarControlleralloc] init];

 self.tabBarController.viewControllers =
 [NSArrayarrayWithObjects:viewController1,
 viewController2,viewController3, nil];

 self.window.rootViewController = self.tabBarController;

 [self.windowmakeKeyAndVisible];

 return YES;

}

- (void)applicationWillResignActive:(UIApplication *)application

{

 /*Sent when the application is about to move from active to
 inactive state. This can occur for certain types of temporary
 interruptions (such as an incoming phone call or SMS message), or
 when the user quits the application, and it begins the transition
 to the background state.

 Use this method to pause ongoing tasks, disable timers, and
 throttle down OpenGL ES frame rates. Games should use this method
 to pause the game.

 */

}

- (void)applicationDidEnterBackground:(UIApplication *)application

{

 /*Use this method to release shared resources, save user data,
 invalidate timers, and store enough application state information
 to restore your application to its current state in case it is
 terminated later.

 If your application supports background execution, then this
 method is called instead of applicationWillTerminate: when the
 user quits.

 */

}

- (void)applicationWillEnterForeground:(UIApplication *)application

{

http:///

Advanced Topics

[222]

 /*Called as part of the transition from the background to the
 inactive state; here you can undo many of the changes made on
 entering the background.

 */

}

- (void)applicationDidBecomeActive:(UIApplication *)application

{

 /*Restart any tasks that were paused (or not yet started) while the
 application was inactive. If the application was previously in
 the background, optionally refresh the user interface.

 */

}

- (void)applicationWillTerminate:(UIApplication *)application

{

 /*Called when the application is about to terminate.

 Save data if appropriate.

 See also applicationDidEnterBackground:.

 */

}

As we discussed before, for the most part of our applicaion development process, we will
most likely not be using these methods; however, in specialized cases, if the need arises,
we can extend the default behavior of our app – loading, pausing, resuming, and exiing, by
using these UIApplication methods, based on our business logic. Apple has an extensive
documentaion on this subject, which you can refer to at the following URL: http://
developer.apple.com/library/ios/#documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/CoreApplication/CoreApplication.html

Push notiications - overview
Push noiicaions are an easy means of noifying the user of a speciic event. It could be
as simple as an alert for your favorite stock price (if it exceeds a min/max price value in
a trading session) to a bit complex as a geo alert. If you enter a speciic region or a city,
remember our region monitoring example, which is a simple example of push noiicaions.

Push noiicaions originate from a server that processes the user's iOS device behavior or
state to send noiicaions to the device. Such noiicaions can be stored if the device is
oline. However, the general behavior is to store and forward the noiicaion.

http:///

Chapter 7

[223]

Local notiications
With iOS 4 and higher, we also have the ability to ire local noiicaions from within our
applicaion. An example of local noiicaion would be seing a local noiicaion for an
event happening at a future date.

The UILocalNotification class is needed by our app to schedule a local noiicaion. It
has the following three properies:

1. Scheduled ime: The date and ime for iOS to deliver the noiicaion

2. Noiicaion type: The noiicaion type could be a simple alert, applicaion icon
badge (for example, the number of e-mails you have unread in your mail app), or
playing a sound

3. Custom data: Locaion noiicaions could also include custom NSDictionary data

Each applicaion can only have a maximum 64 local noiicaions
scheduled. Anything greater than that will be discarded.

Time for action – using local notiications
We create a simple example of an app that uses local noiicaions. We also use the
application badge (the number that gets appended to your Email app on the iPhone,
signifying the unread e-mail messages or similar number on the Message App). We control
the applicaion badge with the new iOS 5 control UIStepper that is basically a UI control for
increasing or decreasing a value. In our case, it is the applicaion badge number.

1. We begin with creaing a new single View applicaion named Local

Notifications. In the ViewController.h ile, we declare a variable of type
UILocalNotification named localNotification that will be responsible for
controlling the local noiicaions in our app. We create a UIButton variable named
stopNotifications, which will be used to stop the noiicaions from happening.

2. We now create an object of class UIStepper named badgeStepper, which is
used to increase/ decrease the value of our applicaion badge. Another variable
badgeText of type UITextField, is used to render the value received from the
UIStepper object.

http:///

Advanced Topics

[222]

3. Next, we deine an IBAction - stepperChanged that will be called when the
value of UIStepper changes. We then create the IBOutlet for the variables
required to connect in our NIB ile.

@interface ViewController : UIViewController

{

 UILocalNotification *localNotification;

 IBOutletUIButton *stopNotifications;

 UIStepper *badgeStepper;

 UITextField *badgeText;

}

- (IBAction)stepperChanged:(id)sender;

@property (retain) IBOutlet UILocalNotification *localNotification;

@property (retain) IBOutlet UIStepper *badgeStepper;

@property (retain) IBOutlet UITextField *badgeText;

4. In our ViewController.m, we synthesize the property variables, and in our
viewDidLoad method, we proceed to iniialize the localNotification

object as follows:

localNotification = [[UILocalNotificationalloc] init];

NSDate *currentDate = [NSDatedate];

localNotification.fireDate=[currentDate
 dateByAddingTimeInterval:60];

localNotification.timeZone=[NSTimeZonedefaultTimeZone];

localNotification.alertAction=@"Open the App";

localNotification.alertBody=@"Daily Reminder - Minute by Minute ";

localNotification.repeatInterval = NSMinuteCalendarUnit;

localNotification.applicationIconBadgeNumber=10;

[[UIApplicationsharedApplication]
 scheduleLocalNotification:localNotification];

5. The fireDate property of UILocalNotification is very important. If it is not
deined, the noiicaions won't be ired. We deine it as an event happening at 60
seconds from the current date. So, the noiicaions will start 60 seconds from the
current date. Or one minute ater the applicaion is loaded.

http:///

Chapter 7

[223]

6. The repeatInterval property deines the interval at which the noiicaion will
be rescheduled. We deine it as 1 minute through the NSMinuteCalendarUnit

constant. Next, we set the applicaion badge to 10, by default.

7. To schedule the noiicaion, we call the application:scheduleLocalNot
ification method of UIApplication. The sharedApplication method

returns the singleton applicaion instance, which is the current applicaion
instance. We pass the localNotification object declared before to the
scheduleLocalNotificaton method. If we need to run the local noiicaion
immediately, we can call the presentLocalNotificationNow method.

8. To stop the noiicaions, we deine the stopNotifications acion as follows:

-(IBAction)stopNotifications:(id)sender

{

 [[UIApplicationsharedApplication]
 cancelLocalNotification:localNotification];

 [UIApplicationsharedApplication].applicationIconBadgeNumber=
 (NSInteger)badgeStepper.value;

}

9. The cancelLocalNotification method of UIApplication is called
to stop the local noiicaion. To cancel all the noiicaions, we can use the
cancelAllLocalNotifications method. We also update the applicaion
badge with the current value from the UIStepper object badgeStepper.

10. The stepperChanged IBAction is used to fetch the latest value from the
UIStepper object, and is passed to the badgeText UITextField:

- (IBAction)stepperChanged:(id)sender

{

 badgeText.text=[[NSStringalloc]initWithFormat:@"%.f",
 badgeStepper.value];

 [UIApplicationsharedApplication].
 applicationIconBadgeNumber=(NSInteger)badgeStepper.value;

}

http:///

Advanced Topics

[222]

11. We construct our UI in the NIB as shown in the following screenshot, and connect
the UIStepper to stepperChanged IBAction, Stop Local Noiicaion buton to
the stopNotificationsIBAction. Similarly, we connect the respecive outlets
for badgeText and badgeStepper.

12. Running the example on an iPhone with iOS 5 produces the following output:

http:///

Chapter 7

[223]

13. Change the value of the UIStepper to 5, and observe the applicaion badge.

14. Lastly, observe how the alerts show up when you are running some diferent
applicaions on your iPhone.

What just happened?
By using the local noiicaion, combined with the new noiicaion center in iOS 5, we are
able to engage the user at speciic intervals of ime, thereby increasing the user's visibility
of our applicaion and hence, increased business case for our iPhone app.

We also showed you how to create applicaion badges for your app that can quickly noify
the user of the tasks pending with respect to our applicaion. In the last chapter, Building a

Social Governance App, we can use this to signify the number of new social issues (ater our
last use of the applicaion) pending in our city.

http:///

Advanced Topics

[222]

Have a go hero – add local notiications to WeatherPackt
Another use of local noiicaions could be to display weather alerts to the user at speciic
intervals. In the case of our WeatherPackt applicaion, we could show a local noiicaion
every morning at six o'clock, by retrieving the forecast data.

Go ahead, make the change, and share the updated code with us. We would love to include
your code in the main app.

Pop quiz – the rocket science
1. The Core Moion manager runs in its own thread.

a. True

b. False

2. With iOS 5, Core Moion can run in the background mode using the
UIBackgroundModes Key

a. Yes

b. No

3. What is the maximum number of local noiicaions supported by an applicaion in
iOS 5?

a. 8

b. 16

c. 32

d. 64

Summary

In this chapter, we learned some advanced topics for iOS 5 including

•	 Using direcions with magnetometer and GPS

•	 Using the Moion Manager

•	 Understanding iOS applicaion life cycle and background apps

•	 Push messages

We will use some of these new learning in the apps that we will build in the
forthcoming chapters.

http:///

8
Local Search—PacktLocal

Local Search is the darling app on most mobile phones/smartphones these
days. Everyone loves to search for nearby pizza outlets or the nearest movie
theatres, restaurants to eat, nightclubs to spend a good evening/night, and so
on. Apps, such as foursquare, Gowalla, and Yelp, allow users to ind such
local content using their smartphones.

foursquare goes further with a gamiicaion strategy that beneits both the
end users and the venues owners (for example, a restaurant owner), by ofering
loyalty programs, discounts, and user badges to launt, depending upon how
many imes a user has checked-in to a venue.

In this chapter, we look at how the foursquare extensive API sets and builds a
local search app named PacktLocal.

In this chapter, we will deal with the following topics:

 � Consuming the foursquare venue API

 � Building a simple UI for local search

 � Saving venue informaion on the device (caching with SQLite)

 � Adding a geo-fencing support

 � Building the app with UI and code

So let's get on with it....

http:///

Local Search—PacktLocal

[248]

Consuming the foursquare venue API
In Chapter 3, Using Locaion in your iOS Apps – Core Locaion, we looked at a simple
locaion-based foursquare example (see the example named Hello Location –

Foursquare) that fetched nearby venues, based on the device locaion. However, there
are more venue endpoints in the foursquare API. An extensive list can be found at
https://developer.foursquare.com/docs/. For the purpose of our discussion
and our app – PacktLocal – we will focus on the venue API, and aspects related to it.

The foursquare venue API consists of the following API calls:

 � Add a venue

 � Get a list of venue categories

 � Explore the recommended and popular venues

 � Search for venues

 � Get trending venues

 � Get detailed venue informaion, including ips, photos, links, events, and the
number of people at a current venue right now

Most of the API endpoints do not need authenicaion, except for the Add venue, which
requires user authenicaion.

Venue categories
Let's begin exploring the API staring from the venue categories.

Time for action – consuming the foursquare venue
API - categories

1. Open Xcode, and start a new project named Hello foursquare, using the Tabbed

Application template.

2. Add a new header ile (.h extension) to your project, by selecing the
File | New | New File | C and C++ opion from Xcode ile menu. Name the new
ile as Configuration.h. This ile will hold the foursquare client ID and client
secret, and any other foursquare coniguraion that we might need in future. Keep
the coniguraion in one place, make the code more robust and easy-to-extend,
as anyone can start using the code by replacing the coniguraion values. You can
deine the values in the Configuration.h ile as follows:

#ifndef Hello_foursquare_Configuration_h

#define Hello_foursquare_Configuration_h

http:///

Chapter 8

[249]

#define CLIENT_ID @"XXXXXXXXXXXXXXXX"

#define CLIENT_SECRET @"YYYYYYYYYYYYYYYY"

#endif

Here, XXXX is your client ID, and YYYY is your client secret.

3. Next, add the Core Locaion, MapKit, Twiter, and SQLite framework to your project.
This is similar to our previous projects and examples. We will discuss more on how
these libraries are used, as we learn more over the course of this chapter. Rewind
back to Chapter 6, Events App - PacktEvents, for a quick look at some of these topics,
notably JSON parsing, Twiter, and SQLite.

4. In the Hello_foursquareFirstViewController.h and Hello_
foursquareFirstViewController.m iles, implement the Core Locaion
delegate and the Core Locaion manager's methods. We also use the region
monitoring through CLRegions for San Francisco, Mumbai, and New York.

CLLocationCoordinate2D regionCords =

 CLLocationCoordinate2DMake(37.33 , -122.03);

CLRegion *sanFranciscoBoundary = [[CLRegion alloc]

 initCircularRegionWithCenter:regionCords
 radius:5000
 identifier:@"San Francisco"];

regionCords = CLLocationCoordinate2DMake(40.71490, -74.00679);

CLRegion *newYorkBoundary = [[CLRegion alloc]

 initCircularRegionWithCenter:regionCords

 radius:5000

 identifier:@"New York"];

regionCords = CLLocationCoordinate2DMake(19.142472, 72.841198);

CLRegion *mumbaiBoundary = [[CLRegion alloc]

 initCircularRegionWithCenter:regionCords
 radius:5000
 identifier:@"Mumbai"];

[locationManager startUpdatingLocation];

[locationManager
 startMonitoringForRegion:sanFranciscoBoundary];

[locationManager startMonitoringForRegion:newYorkBoundary];

[locationManager startMonitoringForRegion:mumbaiBoundary];

http:///

Local Search—PacktLocal

[248]

5. Ater we are done with the locaion handling code, we call the
initializeDatabase method that is used to create our iniial tables.
For now, we create the categories table using the following table structure:

CREATE TABLE IF NOT EXISTS 'categories' ('id' VARCHAR PRIMARY
KEY NOT NULL , 'name' VARCHAR, 'type' VARCHAR, 'categoryid'
VARCHAR, 'subCategoryId' VARCHAR, 'icon' VARCHAR)

6. To get an idea on how we are going to store the category hierarchy, please see the
following screenshot, where we depict the response from the foursquare category
API, and our local SQLite database storage for the irst few category values:

7. Ater we are done with the database iniializaion, we call the
getfoursquareCategories method that does a NSURLConnection

call to the foursquare API, for retrieving categories informaion, as follows:

NSString *url = [NSString
 stringWithFormat:@"https://api.foursquare.com/v2
 /venues/categories?&client_id=%@&client_secret=%@",
 CLIENT_ID,CLIENT_SECRET];

Here CLIENT_ID and CLIENT_SECRET are values that we deined in
Configuration.h.

http:///

Chapter 8

[249]

8. Once the connecion inishes loading the data through the
connectionDidFinishLoading method, we parse the received JSON,
and retrieve the category informaion by convering the JSON data irst to an
NSDictionary, and thereater from an NSDictionary to NSArray, for easier
parsing. We then generate our INSERT statements, and populate the SQLite
database with the category informaion. Note that we also receive the category
icon from foursquare, which we have inserted in our table.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

{

NSError *jsonError;

NSDictionary *dictionary;

NSArray *items;

dictionary= [NSJSONSerialization JSONObjectWithData:jsonContent

options:NSJSONReadingAllowFragments error:&jsonError];

if([dictionary count]>0)

{

 items = [NSArray arrayWithObject:[[dictionary

 objectForKey:@"response"]objectForKey:@"categories"]];

 NSUInteger count = [[items objectAtIndex:0]count];

 for(NSInteger i=0;i<count;i++)

 {

 NSString *categoryId = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"id"];

 NSString *categoryName = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"name"];

 NSString *categoryIcon = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"icon"];

 NSString *categoryType = @"category";

 NSString *subCategories = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"categories"];

 NSString *icon = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"icon"];

http:///

Local Search—PacktLocal

[248]

NSString *insertStatement = [[NSString alloc] initWithFormat:

@"INSERT OR REPLACE INTO '%@'('%@','%@','%@','%@','%@') VALUES('%@
',\"%@\",\"%@\",'%@','%@')",categoriesTableName,@"id",@"name",@"ty
pe",@"categoryid",@"icon",categoryId,categoryName,categoryType,cat
egoryId,icon];

 if(sqlite3_open([sqliteFileName UTF8String],

 &database)==SQLITE_OK)

 {

if(sqlite3_exec(database, [insertStatement UTF8String],NULL,
NULL, &sqliteError)==SQLITE_OK)

 {

 NSLog(@"category table populated");

 }

 else

 {

 NSLog(@"%s",sqliteError);

 }

 }

 } // end of for loop

 [self showCategoriesFromLocal];

 }

}

9. Most categories in the foursquare category hierarchy also have more
subcategories within them, for example the Airport category has the following sub
categories: airport food court, airport gates, airport lounges, airport terminals,
and so on. Feel free to use them as your applicaion demands. For now, we have
captured the same in the subCategories variable.

10. We now deine one more method that reads the values from the locally stored
categories table. We name this funcion as showCategoriesFromLocal. A simple
select statement is executed here, which retrieves the category info from the local
SQLite database, and adds it to an NSArray variable that is used to render on a
UITableView.

- (void)showCategoriesFromLocal

{

 categories = [[NSMutableArray alloc]init];

http:///

Chapter 8

[249]

 if(sqlite3_open([sqliteFileName UTF8String],

 &database)==SQLITE_OK)

 {

 NSString *selectStatement =[[NSString alloc]initWithFormat:

 @"SELECT * from %@",categoriesTableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement UTF8String],

 -1, &sqlStatement, NULL)==SQLITE_OK)

 {

 while(sqlite3_step(sqlStatement)==SQLITE_ROW)

 {

 NSString *titleDataText=[NSString stringWithUTF8String:

(char *)sqlite3_column_text(sqlStatement, 1)];

 if(![categories containsObject:titleDataText])

 {

 [categories addObject:titleDataText];

 }

 }

 }

 }// end of if of sqlite3 open

 [myTableView reloadData];

}

11. Make sure you that use the right variable name in the cellForRowAtIndexPath

delegate method of the UITableView. In this case, the categories variable is
as follows:

 NSString *cellContent=[categories objectAtIndex:indexPath.row];

http:///

Local Search—PacktLocal

[248]

12. Running the applicaion should produce the following result. Note we leave the UI
design to the reader; we use storyboard here, which will be discussed in more detail
in Chapter 9, Locaion Aware News - PacktNews. You could choose to use the default
Tabbed Applicaion template, without selecing the Use Storyboard checkbox opion.
Note that storyboarding only helps in easier user interface management. So, if you
think you can handle the UI without storyboard, you can choose to not select it.

What just happened?

We consumed the foursquare venue category API using the JSON parsing API in iOS5,
and created a local table for storing the category informaion. foursquare recommends
purging the category informaion ater a week. But, for most apps, this is highly unlikely,
since the app is built around some of these popular categories. But, depending upon your
requirement, use the API and caching wisely.

We used the storyboard for our app, for which we will have a full-length explanaion coming
in the next chapters. We also used a separate coniguraion ile to keep the foursquare API
keys and Auth coniguraion values separate from the core app. A similar approach could be
used for region monitoring using CLRegion and custom map annotaions in separate iles,
to make the code low beter organized.

http:///

Chapter 8

[249]

Recommended and popular venues

The recommended and popular venues API from foursquare are experimental API endpoints
(API endpoints can be thought of as API URLs) that are added recently. So, be cauious to
use them in your long-term app approach. This endpoint is diferent from the trending
venues end point in the fact that the recommended and popular venue endpoint is more
socially relevant, since it ranks the venues based on you and your friends, while the trending
endpoint is more of an algorithmic count.

To learn more, and be updated on this API endpoints, keep an eye on
https://developer.foursquare.com/docs/venues/explore.html.

Time for action – recommended and popular venues
1. We coninue with the same example app (Hello foursquare) as before.

Open the project itled Hello foursquare, and open the iPhone storyboard
ile (MainStoryboard_iPhone.storyboard). In the second View controller
View, make the UI look as the one shown in the next screenshot, by adding a
UISegmentedControl and a UITableView instance to it. Make sure to type
the ideniier name for your Prototype Cells as Venue Cells.

http:///

Local Search—PacktLocal

[248]

2. Rename the segmented controls to Popular and Trending, for showing popular
venues and trending venues, respecively, according to the opion selected.

3. In the Hello_foursquareSecondViewController.h ile, expose the
UISegmentedControl and UITableView as properies.

@property(retain,nonatomic) IBOutlet UISegmentedControl
*venueTypeControl;

@property(retain,nonatomic) IBOutlet UITableView
*myVenueTableView;

4. Create an IBAction by Control+dragging from the UISegmentedControl in Interface
Builder, and dropping it on Hello_foursquareSecondViewController.h.

5. From the context menu that shows up, select Acion, and name your acion as
switchVenueType:

http:///

Chapter 8

[249]

6. Also declare two methods that we will use to fetch the popular and trending venues
from the foursquare API:

 - (void)showPopularVenues;

 - (void)showTrendingVenues;

7. Include the Core Locaion and coniguraion header iles in Hello_foursquar
eSecondViewController.h, besides including the necessary variables for the
NSURLConnection, and a variable of type NSMutableArray that will hold
the venues.

8. There are other ways to share variables between muliple views (from the irst View
controller to the second View controller). For example, sharing the userLocation

variable from the Hello_foursquareFirstViewController.h ile to the
Hello_foursquareSecondViewController.h ile, so that we can re-use the
locaion atributes. For our learning, we recreate the same code; however, the
readers are encouraged to use any other method they see it. One way would be to
store the user locaion in the SQLite database. Another way would be by storing the
applicaion seings through the NSUserDefaults class.

9. Your Hello_foursquareSecondViewController.h ile should now look
as follows:

#import <UIKit/UIKit.h>

#import "Configuration.h"

#import <CoreLocation/CoreLocation.h>

@interface Hello_foursquareSecondViewController : UIViewController

<CLLocationManagerDelegate>

{

 CLLocationManager *locationManager;

 CLLocation *userLocation;

 UISegmentedControl *venueTypeControl;

 NSMutableData *jsonContent;

 UITableView *myVenueTableView;

http:///

Local Search—PacktLocal

[248]

 NSJSONSerialization *nsJson;

 NSURLConnection *urlConnection;

 char *sqliteError;

 NSMutableArray *venues;

}

@property(retain,nonatomic) IBOutlet UISegmentedControl
*venueTypeControl;

@property(retain,nonatomic) IBOutlet UITableView
*myVenueTableView;

- (void)showPopularVenues;

- (void)showTrendingVenues;

- (IBAction)switchVenueType:(id)sender;

@end

10. In the class implementaion for your second View controller (Hello_foursquare
SecondViewController.m), we modify the viewDidLoad method to obtain the
locaion from the locaion manager (iniialized in the irst View controller) as follows:

userLocation = [[CLLocation alloc] initWithLatitude:location
Manager.location.coordinate.latitude longitude:locationManager.
location.coordinate.longitude];

11. Our UISegmentedControl is atached to a variable named venueTypeControl

(by Control+dragging the mouse from the second View controller onto the
UISegmentControl in the Interface Builder, and selecing the outlet as
venueTypeControl), and the default selected index is set to 0 – for popular
venues.

venueTypeControl.selectedSegmentIndex=0;

12. Next, we iniialize the venues and the JSON variable, and call the
showPopularVenue method, based on assumpion taken in point 10.

 venues = [[NSMutableArray alloc]init];

 jsonContent = [[NSMutableData alloc]init];

 [self showPopularVenues];

13. foursquare now requires versioning informaion to be passed through some of the
API URLs. This is to ensure that the client is up-to-date. The descripion for this can
be found at the following URL: https://developer.foursquare.com/docs/
overview.html#versioning

https://developer.foursquare.com/docs/overview.html#versioning
https://developer.foursquare.com/docs/overview.html#versioning
http:///

Chapter 8

[249]

14. We use the versioning parameter in the showPopularVenue, by using the NSDate

and NSDateFormatter class instances. foursquare requires the versioning date
format to be YYYYMMDD. Here is the code to achieve this:

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];

[dateFormatter setDateFormat:@"YYYYMMDD"];

 NSDate *now = [NSDate date];

 NSString *version = [[NSString alloc]

 initWithFormat:@"%@",[dateFormatter stringFromDate:now]];

15. The code [NSDate date];, returns the current date, which is then formated by
the dateFormatter, and stored back in the version variable.

16. The URL for the popular venue API call is then constructed, and the
NSURLConnection request is sent.

NSString *url = [NSString stringWithFormat:@"https://api.
foursquare.com/v2/venues/explore?&client_id=%@&client_
secret=%@&ll=%@,%@&v=%@",CLIENT_ID,CLIENT_SECRET,userLat,userLon,v
ersion];

17. The JSON parsing then occurs through the didReceiveData and
the connectionDidFinishLoading delegate methods. In the
connectionDidFinishLoading method , we check for the type of the
venue called for, by checking the value of the UISegmentedControl value,
since the foursquare api for popular venues and trending venues returns
diferent JSON payloads.

 if (venueTypeControl.selectedSegmentIndex==0)

18. We parse the JSON according to the type of venue called for, as well as the JSON pay
load received. Here is the full code for the connectionDidFinishingLoading

method:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

{

 NSError *jsonError;

 NSDictionary *dictionary;

 NSArray *items;

 dictionary= [NSJSONSerialization JSONObjectWithData:jsonContent

 options:NSJSONReadingAllowFragments error:&jsonError];

 if (venueTypeControl.selectedSegmentIndex==0)

 {

 if([dictionary count]>0)

http:///

Local Search—PacktLocal

[248]

 {

 items = [NSArray arrayWithObject:

 [[dictionary objectForKey:@"response"]
 objectForKey:@"groups"]];

 items = [[[items objectAtIndex:0]

 objectAtIndex:0]objectForKey:@"items"];

 NSUInteger count = [items count];

 for(NSInteger i=0;i<count;i++)

 {

 NSString *venueName = [[[items

 objectAtIndex:i]objectForKey:@"venue"] objectForKey:@"name"];

 if(![venues containsObject:venueName])

 {

 [venues addObject:venueName];

 }

 }

 // end of for loop

 }

 }

else

 {

 items = [NSArray arrayWithObject:[[dictionary

 objectForKey:@"response"]objectForKey:@"venues"]];

 NSUInteger count = [[items objectAtIndex:0] count];

for(NSInteger i=0;i<count;i++)

{

 NSString *venueName = [[[items

 objectAtIndex:0]objectAtIndex:i]objectForKey:@"name"];

 if(![venues containsObject:venueName])

 {

 [venues addObject:venueName];

 }

 }

}

[myVenueTableView reloadData];

}

http:///

Chapter 8

[249]

19. The showTrendingVenues method is almost similar to the showPopularVenues,
except for the change in the URL.

NSString *url = [NSString stringWithFormat:@"https://api.
foursquare.com/v2/venues/trending?&client_id=%@&client_
secret=%@&ll=%@,%@&v=%@",CLIENT_ID,CLIENT_SECRET,userLat,userLon,v
ersion];

20. Finally, the switchVenueType IBAction that is ired when we switch from the
popular venue to the trending venue through the UISegmentedControl is deined
as follows:

- (IBAction)switchVenueType:(id)sender {
 if (venueTypeControl.selectedSegmentIndex==0)
 {
 [self showPopularVenues];
 }else
 {
 [self showTrendingVenues];
 }
}

21. Running the app now, produces the following results; noice the diference in the
venues showing up in each of the segments; this one depicts the Popular venues:

http:///

Local Search—PacktLocal

[248]

While the screen shot below depicts the Trending venues:

What just happened?
We looked at two popular foursquare venue ideniier APIs – inding popular venues and
inding the nearby trending venues. We introduced the UISegmentedControl as a UI
display difereniaion method, as well as learned how to use it to control the applicaion
logic, through the selecive JSON parsing, based on the segment selected.

Search for venues
We now look at the Search API end point for venues. This would help us build our app, later
in the chapter. foursquare recently added the foursquare venue mapping to its API. What
it does is basically helps correlate foursquare venues with other venue providers, such
as yelp, wcities.com, tripadvisor, citysearch, menupages, or any other popular
HyperLocal venue informaion provider. Read more about it at https://developer.
foursquare.com/venues/mapping.html. This mapping is also exposed in the search

API - https://developer.foursquare.com/docs/venues/search.html.

http:///

Chapter 8

[249]

Time for action – exploring the foursquare Search API
1. Coninuing from where we let of from the Hello foursquare example, we add a

UISearchBar to our second View controller in the Interface Builder.

2. In the Hello_foursquareSecondViewController.h ile, we deine a
variable of the type UISearchBar in the class declaraion UISearchBar
*venuesSearchBar;, and expose it as a property.

@property(retain,nonatomic) IBOutlet UISearchBar *venuesSearchBar;

http:///

Local Search—PacktLocal

[248]

3. Connect the venuesSearchBar outlet to the Search bar in the Interface builder
by Control+dragging the mouse pointer from the second View controller to the
Search bar.

Drop the mouse pointer on the Search bar, and select venueSearchBar as
the outlet.

4. Connect the Search bar to the delegate (UISearchBarDelegate), by
Control+dragging the mouse pointer from the Search bar to the second
View controller delegate.

5. Add the UISearchBarDelegate delegate to the Hello_foursquareSecondVie
wController.h class. We also declare a Boolean variable in Search to control the
in-app search behavior, and JSON parsing accordingly.

http:///

Chapter 8

[249]

6. The method that will search the foursquare API is declared as follows:

 -(void)searchForVenues;

7. The UISearchBarDelegate protocol deines several methods for UISearchBar,
including searchBar:textDidChange, searchBarTextDidBeginEditing,
searchBarTextDidEndEditing, searchBarCancelButtonClicked,
searchBarSearchButtonClicked, besides some more. Of our interest,
are two of such methods, namely searchBarCancelButtonClicked and
searchBarSearchButtonClicked, which we will implement.

8. In the viewDidLoad method of the Hello_foursquareSecondViewControll
er.m ile, we iniialize the Search bar, and set the delegate to self. This is very
important, as without the delegate property set, the Search bar will not trigger
any acions.

venuesSearchBar = [[UISearchBar alloc]init];
venuesSearchBar.delegate=self;
inSearch = false;

9. Now, on the Search bar's Search buton-click, we hide the keyboard using
the resignFirstResponder method of the UIResponder class, which
is the superclass (from object-oriented paradigm) of UIApplication –
our main applicaion class. We then set the inSearch lag as TRUE, and
call the searchForVenues method. The search term is captured in our
venuesSearchBar.text property as shown in the following code:

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar
{
 [searchBar resignFirstResponder];
 inSearch = TRUE;
 venuesSearchBar.text=searchBar.text;
 [self searchForVenues];
}

10. The searchForVenues method is similar to the other methods that we used for
fetching foursquare venues – trending and popular. The only change we need
to do is change the calling URL to the following:

NSString *url = [NSString stringWithFormat:@"https://api.
foursquare.com/v2/venues/search?&query=%@&client_id=%@&client_secr
et=%@&ll=%@,%@&v=%@",venuesSearchBar.text,CLIENT_ID,CLIENT_SECRET,
userLat,userLon,version];

Here, we pass the Search bar text as a search parameter to the foursquare venue
search API.

http:///

Local Search—PacktLocal

[248]

11. Then, the connectionDidFinishLoading takes over; much of the code remains
the same, except for the inSearch lag checking and condiional JSON parsing of
the search response.

if (inSearch)
 {
 items = [NSArray arrayWithObject:[[dictionary
 objectForKey:@"response"]objectForKey:@"venues"]];
 NSUInteger count = [[items objectAtIndex:0] count];
 for(NSInteger i=0;i<count;i++)
 {
 NSString *venueName = [[[items
 objectAtIndex:0]objectAtIndex:i]objectForKey:@"name"];
 if(![venues containsObject:venueName])
 {
 [venues addObject:venueName];
 }
 }
 }

12. We then reset the inSearch lag to false, ater our table view has been updated.

[myVenueTableView reloadData];

inSearch=FALSE;

13. Run the applicaion in the iOS simulator, and then select the Venues tab. You should
see the following output for the keyword search for pizza:

http:///

Chapter 8

[249]

What just happened?
Search is an integral part of any mobile app. With contextual locaion, search becomes even
more powerful. foursquare understands these market and user expectaions, and handles
the venue search in an excellent manner, with its ever growing algorithms and metrics to
show the best result to its users. We learnt how to use the powerful foursquare search
API in our example.

We briely looked at a couple of foursquare endpoints. There are more endpoints
documented at https://developer.foursquare.com/docs/index_docs.html.
We will try to incorporate as many API endpoints in our next voyage building the
PacktLocal app!!

Find the code for this example and previous examples on the book's website: project itled
Hello foursquare.

Building an UI for our local search app - PacktLocal
A good and successful app needs the right ingredients: a cool UI Design, applicaion logic,
great backend, and killer features to disrupt the market. We have oten discussed the
importance of a good design. For a programmer, the applicaion logic, great backend, and
killer features are aspects that can be taken care of. The design should be a non-programmer
role, leaving it to the guys who know it the best. Throughout the book and various apps, we
have tried to get the best design (legit, or open source, or creaive commons images) that its
our app requirements, based on excellent communiies, such as http://www.dribble.
com, http://www.365psd.com, and the holy grail of design on the web - http://www.
smashingmagazine.com.

For PacktLocal, we will re-use the excellent app and design done by the guys at
http://zhephree.com/ for the Palm WebOS (now HP WebOS) version of the
foursquare app. The complete source code is available at https://github.com/
foursquare/foursquare-palmpre. Of interest to us is the excellent UI layouts and
icons, which we will import in our Xcode project, and re-use wherever applicable. For the
app icon, we will use a restaurant icon from http://www.ioandecean.info/2011/05/
restaurant-farfurie-tacamuri-free-psd/, since the focus of our app is hotels and
restaurants venues.

https://github.com/foursquare/foursquare-palmpre
http://www.ioandecean.info/2011/05/restaurant-farfurie-tacamuri-free-psd/
http://www.ioandecean.info/2011/05/restaurant-farfurie-tacamuri-free-psd/
http:///

Local Search—PacktLocal

[248]

We will use the Tabbed Applicaion template within Xcode to build PacktLocal with two
tabs - one for showing nearby venues and the other for search. A settings bundle will be
added in the app to allow for more customizaion.

Saving venue information on the device
Now that we have deined our UI, we move further to the implementaion of PacktLocal

in our Hello foursquare example. We saw how to fetch the popular and trending venues
for PacktLocal. We will use the same logic, but enhance it by caching the top 30 venues in
the local SQLite database.

We saw how to use SQLite in our WeatherPackt and PacktNews apps. For PacktLocal,
we will need two tables - one for storing the venue categories, and the other for storing the
30 venues fetched from the foursquare API. Further venue informaion, such as check-ins,
ips, and so on, will be handled on the ly due to the dynamic nature of the content. We use
the same category table structure as we saw in the Hello foursquare example.

CREATE TABLE "categories" ("id" VARCHAR PRIMARY KEY NOT NULL , "name"
VARCHAR, "type" VARCHAR, "categoryid" VARCHAR, "subCategoryId" VARCHAR)

For the venues, we use the following structure (loosely-based on the response got from the
venue search API):

CREATE TABLE "venues" ("id" VARCHAR PRIMARY KEY NOT NULL ,"title"
VARCHAR NOT NULL ,"address" TEXT,"city" VARCHAR,"zip" VARCHAR,"country"
VARCHAR,"latitude" DOUBLE,"longitude" DOUBLE,"images" VARCHAR,"category"
VARCHAR,"checkins" INTEGER,"userscount" INTEGER,"tipcount"
INTEGER,"phone" VARCHAR)

Building the app: PacktLocal
As menioned before, our PacktLocal app is heavily inluenced by the Palm pre-version
of the foursquare app (source code available at https://github.com/foursquare/
foursquare-palmpre).

http:///

Chapter 8

[249]

To give the reader an idea, here is a side-by-side comparison of the Palm version and the one
we are going to build:

Time for action – building the app - PacktLocal
1. Create a new project using the Tabbed Applicaion template. Name the applicaion

as PacktLocal.

2. Add the SQLite, MapKit, Twiter, and Core Locaion frameworks to your project.

3. Add a Settings.bundle to your project from the Xcode | File | New File |

Resource opion. We will use this to enable the oline/online support for our app.
to enable or disable the SQLite venue cache, as well as to store the access token
from foursquare authenicaion (more informaion on this topic can be found at
https://developer.foursquare.com/docs/oauth.html).

https://developer.foursquare.com/docs/oauth.html
https://developer.foursquare.com/docs/oauth.html
http:///

Local Search—PacktLocal

[248]

4. Conigure the App Icons and Launch Images as shown in the following screenshot.
We use the icon from http://www.ioandecean.info/2011/05/restaurant-
farfurie-tacamuri-free-psd/, and the splash image from the Palm Pre-source
code (ile named 4sq-login-scene.psd – you need to strip the other layers, and
just use the background image).

5. Add a new Objecive-C class to your project from File | New | New File | Cocoa

Touch opion named Venue. This class will hold the individual venue informaion
retrieved from foursquare, including venue id, venue name, venue address,
venue city, venue check-in count, and other atributes.

6. Extend the Venue Class by subclassing it from the UIViewController class. We
will come back to this class a bit later.

http://www.ioandecean.info/2011/05/restaurant-farfurie-tacamuri-free-psd/
http://www.ioandecean.info/2011/05/restaurant-farfurie-tacamuri-free-psd/
http:///

Chapter 8

[249]

7. Add a new UIViewController class to your project by selecing File | New | New

File | Cocoa Touch | UIViewController class opion named foursquareAuth.
We will need this to implement the foursquare user authenicaion that is needed
for the venue check-in operaion. We will learn more about this in the later secions.

8. Coming back to our main applicaion code, PacktLocalFirstViewController.
In the PacktLocalFirstViewController.h and
PacktLocalFirstViewController.m iles, add the code for the locaion
manager, region monitoring, as we have done in our previous apps. As well as,
iniialize the SQLite database.

9. Our main StoryBoard looks as follows:

http:///

Local Search—PacktLocal

[248]

10. We style the Home screen by digging the Palm Pre-source code, inspecing the
CSS, and idenifying the images needed. Programming gurus will know that
understanding someone else's code is a good way to test your programming
skills, and learn from other's code.

11. In our PacktLocalFirstViewController.m ile, ater the SQLite database is
iniialized, we fetch the list of venue categories from foursquare API, and store
it in the categories table. Now, as soon as the locaion is updated through the
didUpdatetoLocation method, we call the showNearbyVenues method that
hits the foursquare API, and fetches the nearby venues tagged by food. On success
of the API call through the connectionDidFinishLoading method, we store the
30 venues in our venues table (ater purging previous venues). This also makes our
app work well with the foursquare terms and condiions.

12. The cellForRowAtIndexPath method of the UITableView is something new
here. When we are processing the venue informaion (by using the inCategories

lag), we use the Venue class that we added to our project before, to hold the
venue informaion.

http:///

Chapter 8

[249]

13. This Venue class is used to create an array of all the 30 venues, by reading the
values stored in the venues table, and then creaing objects of type Venue in
the showVenuesFromLocal method.

- (void)showVenuesFromLocal

{

 categories = [[NSMutableArray alloc]init];

 if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)

 {

 NSString *selectStatement = [[NSString alloc]

 initWithFormat:@"SELECT * from %@",venuesTableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement UTF8String],

 -1, &sqlStatement, NULL)==SQLITE_OK)

 {

 while(sqlite3_step(sqlStatement)==SQLITE_ROW)

 {

 myVenue = [[Venue alloc]init];

 myVenue.id= [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 0)];

 myVenue.name = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 1)];

 myVenue.address = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement,4)];

 myVenue.city = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 5)];

 myVenue.country = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 7)];

 myVenue.zip = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 6)];

 myVenue.lat = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 8)];

 myVenue.lon = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 9)];

http:///

Local Search—PacktLocal

[248]

 myVenue.categoryId = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 11)];

 myVenue.phone = [NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 15)];

 myVenue.checkins = (int)[NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 12)];

 myVenue.usersCount = (int)[NSString stringWithUTF8String:

 (char *)sqlite3_column_text(sqlStatement, 13)];

 if(![venues containsObject:myVenue])

 {

 [venues addObject:myVenue];

 }

 }

 }

 }// end of if of sqlite3 open

 [loadingIcon stopAnimating];

 [myVenueTableView reloadData];

}

14. The venues array does not only hold the itle of the venues, but the full venue
hierarchy deined in the Venue class. The cellForRowAtIndexPaths uses the
Venue *myVenue; variable to fetch the venue informaion, and passes it to the
UITableView for display.

15. To summarize the Home screen of the app, irst iniialize the database, then get the
foursquare categories, render it (hence, the two prototype cells in the Interface
Builder), then call the foursquare nearby venues method (through the locaion
manager's didUpdateToLocation method), and display the nearby venues.

[self initializeDatabase];

[loadingIcon startAnimating];

[self getfoursquareCategories];

16. Now, when the user selects a venue from the UITableView, we ire the following
code to call the next view from the StoryBoard, venue details.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath
:(NSIndexPath *)indexPath

{

 venueDetailsView = [self.storyboard

 instantiateViewControllerWithIdentifier:@"Venue Details"];

http:///

Chapter 8

[249]

 myVenue = [venues

 objectAtIndex:indexPath.row];

 venueDetailsView.id = myVenue.id;

 venueDetailsView.name = myVenue.name;

 venueDetailsView.address = myVenue.address;

 venueDetailsView.city = myVenue.city;

 venueDetailsView.country = myVenue.country;

 [self.navigationController pushViewController:venueDetailsView

 animated:YES];

 [myVenueTableView deselectRowAtIndexPath:indexPath
animated:YES];

}

17. Do not forget to change the class in Interface Builder | Idenity Inspector | Class to
Venue. This binds the UIViewController in Interface Builder to the Venue class

that we added through Xcode.

http:///

Local Search—PacktLocal

[248]

18. Now, coming back to our venue class, it handles the check-in funcionality, gets the
individual venue informaion from foursquare venue API call, and renders the
venue ips on the UITableView.

19. The venue informaion is retrieved through the following code in the viewDidLoad

method:

NSString *url = [NSString stringWithFormat:

@"https://api.foursquare.com/v2/venues/%@?client_id=%@&client_
secret=%@&v=%@",id,CLIENT_ID,CLIENT_SECRET,version];

 NSURL *urlToRequest = [[NSURL alloc]initWithString:url];

 NSURLRequest *request = [NSURLRequest

 requestWithURL:urlToRequest];

20. Note the id parameter, which is iniialized in the code at point 16.

 venueDetailsView.id = myVenue.id;

21. We parse the venue JSON payload through the connectionDidFinishLoading

method, and render the ips on the UITableView.

22. The venue check-in is handled by the checkin IBAction, which is connected to
the UIButton (with text Check-in Here) in Interface Builder.

- (IBAction)checkin:(id)sender
{
 inCheckin = TRUE;
 NSString *url = [NSString stringWithFormat:
 @"https://api.foursquare.com/v2/checkins/add?
 venueId=%@&client_id=%@&client_secret=%@&oauth_token=%@",id,
 CLIENT_ID,CLIENT_SECRET,accessToken];

 NSURL *urlToRequest = [[NSURL
 alloc]initWithString:url];
 NSMutableURLRequest *request = [NSMutableURLRequest
 requestWithURL:urlToRequest];
 [request setHTTPMethod:@"POST"];

 venueNameLabel.text = name;
 venueAddressLabel.text = address;

 urlConnection = [[NSURLConnection alloc]
 initWithRequest:request
 delegate:self startImmediately:YES];

}

http:///

Chapter 8

[249]

23. Note that in the previous above, we need the accessToken, which is set only
ater a successful foursquare user authenicaion. This, as we menioned
before, is handled by the foursquareAuth class that we added before, which
loads a UIWebView, and passes on the control to foursquare, to do the
user authenicaion. On success of the user authenicaion, we retrieve the
accessToken, and also store it in the app's Seings page, using the key
access_token. Once the access_token is set in the app's Seings page,
we can use it in any code within our app.

- (void)viewDidLoad

{

 [super viewDidLoad];

 NSString *authenticateURLString =[[NSString alloc]
 initWithFormat:@"https://foursquare.com/oauth2/authenticate?

 client_id=%@&response_type=token&redirect_uri=%@",CLIENT_ID,
 REDIRECT_URL];

 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL

 URLWithString:authenticateURLString]];

 [webView loadRequest:request];

}

- (void)webViewDidFinishLoad:(UIWebView *)webView {

 NSString *URLString = [[self.webView.request URL]

 absoluteString];

 if ([URLString rangeOfString:@"access_token="].location !=

 NSNotFound)

 {

 accessToken = [[URLString componentsSeparatedByString:@"="]

 lastObject];

 NSUserDefaults *defaults = [NSUserDefaults

 standardUserDefaults];

 [defaults setObject:accessToken forKey:@"access_token"];

 [defaults synchronize];

 [self dismissModalViewControllerAnimated:YES];

 }

}

http:///

Local Search—PacktLocal

[248]

24. We also connect the UIButton to load the WebView, modally. This is done easily in
storyboard using the Segue.

25. Note the use of Boolean lags in our code, for example, in the Venue.m ile, we
use the inCheckin lag to keep track of the applicaion stage, whether the app is
displaying venue informaion (ips, address), or the user has clicked the check-in
buton. We thus complete our PacktLocal app.

26. Running the app in the iOS simulator should produce the following results:

http:///

Chapter 8

[249]

27. Click on the venue name to see the venue details and ips!

http:///

Local Search—PacktLocal

[248]

28. Clicking on the Check-in Here buton will lead you to the foursquare

authenicaion URL as shown in the following screenshot:

29. Sign-in with your foursquare username and password, and let the check-ins begin.

http:///

Chapter 8

[249]

30. Once you have signed-in with your foursquare username and password, you
should get the following screenshot, conirming your check-in at the venue:

31. Log on to http://www.foursquare.com and visit your proile page to view
your check-ins.

http:///

Local Search—PacktLocal

[248]

32. Note the last screen from the author's proile page on http://www.foursquare.
com; the check-ins are visible almost immediately.

Don't forget to check for NULL values while retrieving column values in SQLite. If
the columns are null and haven't been thought of in the code, the app will crash.
Use the following code to check each suspectable NULL column:

if(sqlite3_column_text(sqlStatement,13)!=NULL)

What just happened?
The navigaion controller provides an easier mechanism for providing applicaion low logic,
and also passing variables values from one View to another. We saw the usage of a WebView

to perform third-party authenicaion over the regular browser, and retrieving the Auth

token to be used in our app.

foursquare API provides a comprehensive API. We have used the popular ones to build
PacktLocal, the source code for which can be found on the book's website: project itled
PacktLocal. Feel free to extend the same, and add other features to the app. We have let
the integraion of the Search page to the readers.

Have a go hero - implement the add venue endpoint

We have showed you how to implement authenicaion as well as to consume the other
endpoints. Use your learning to implement the add venue endpoint in the app. See
https://developer.foursquare.com/docs/venues/add.html. Use the
Venue class to build the new Venue object, and pass it over to the foursquare API.

Summary

In this chapter, we learned how to build a local search app – PacktLocal, by using the
foursquare API. We also saw how to re-use the design from another open source project,
and implement an almost similar UI in our app.

Speciically, we covered:

 � Consuming the foursquare venue API

 � Performing foursquare authenicaion

 � Building the PacktLocal app

In the next chapter, we will look at building a news applicaion with AOL's Patch News API.

https://developer.foursquare.com/docs/venues/add.html
https://developer.foursquare.com/docs/venues/add.html
http:///

9
Location Aware News—PacktNews

HyperLocal applicaions and websites, such as AOL's Patch provide precise and
accurate news and informaion up to the neighborhood-level for a user. We
will learn how to build a Hyper Local app - PacktNews using the Patch

News API; however before you do that, you need to register for a key at
http://developers.patch.com/.

In this chapter, we will deal with the following topics:

 � Understanding the Patch News API – HyperLocal News

 � Consuming the Patch News API

 � Adding Geo-fencing support

 � Building our app – PacktNews

So let's get on with it...

Understanding the Patch News API – HyperLocal News
AOL's Patch.com is a HyperLocal News portal that provides a comprehensive and trusted
local content to the users. Patch has a huge editorial team (1000+ editors) that creates
original content, which is published to a network of more than 850+ sites. Patch covers local
content including news, events, business lising, photos, videos, and announcements. AOL
merged Outside.in – a news aggregaing service with AOL's Patch in March 2011, creaing a
unique combinaion of HyperLocal content, with News being the core product.

http:///

Locaion Aware News—PacktNews

[284]

Patch.com provides a Developer API at http://developers.patch.com/, which we
will use to build our own News app – PacktNews. Before we build the app, we will have a
detailed look at the API calls provided by Patch.com. The Patch News API has the following
four main components:

 � Authenicaion

 � Taxonomy (categories)

 � Finding stories by locaion

 � Finding locaions by name

Authentication
Any app or website that intends to use Patch News API must obtain authenicaion.
The authenicaion is a combinaion of your developer key, secret key, and the current
TimeStamp, combined together and converted to a MD5 hash key. If you have coded in
PHP before or sill do, you can ind the following script to generate the encrypted API URL
for inding nearby stories around San Francisco.

<?php

 $time = time();

 $key = "xxxxxxxxxxx";

 $secret = "xxxxxxxxxxx";

 $sig = md5($key.$secret.$time);

 $url = "http://news-api.patch.com/v1.1/nearby/37.785368,-
 122.441654/stories?dev_key=$key&sig=$sig";

?>

Encrypion methods for other languages, including Objecive-C (which we will use in our app)
can be found at https://github.com/outsidein/api-examples.

Taxonomy
Patch organizes the stories into three main taxonomy types:

Verical: Topic of the content

Format: Medium from which the content was found

Author: Who wrote the content - individual or business organizaions

http://developers.patch.com/
http://news-api.patch.com/v1.1/nearby/37.785368,-122.441654/stories?dev_key=$key&sig=$sig
http://news-api.patch.com/v1.1/nearby/37.785368,-122.441654/stories?dev_key=$key&sig=$sig
http://news-api.patch.com/v1.1/nearby/37.785368,-122.441654/stories?dev_key=$key&sig=$sig
http://news-api.patch.com/v1.1/nearby/37.785368,-122.441654/stories?dev_key=$key&sig=$sig
http://news-api.patch.com/v1.1/nearby/37.785368,-122.441654/stories?dev_key=$key&sig=$sig
http:///

Chapter 9

[285]

These taxonomies are further classiied as

Vertical

 � News

 � Lifestyle

 � Educaion

 � Business

 � Science and technology

 � Sports

Format

 � Stories

 � Reviews and raings

 � Event lisings

Author

 � Individuals

 � Businesses and organizaions

 � Educaional insituions

 � Government

 � Sharing and community sites

 � Independent news media

 � Mainstream media, such as cnn, nyimes

Finding stories by location
The Patch News API supports locaion-based search for stories, by using any of the following:

 � State

 � City

 � Zip code

 � Neighborhood

 � Nearby

 � Patch locaion UUID (Patch.com internal city/ state and neighborhood IDs),
which can be retrieved by the Find Locations by Name method, described
in the next secion

http:///

Locaion Aware News—PacktNews

[284]

Find location by names
Patch.com News API supports a locaion retrieval API call that accepts a text string, and
returns the well-formated locaion informaion, something similar to the Geonames API
or reverse geocoding that we saw before.

A comprehensive documentaion of all the available Patch News API methods and return
values can be found at http://developers.patch.com/docs/.

The Patch News API supports Cross-Origin Resource Sharing Requests

(CORS). CORS is the new W3C proposed mechanism for cross-site HTTP
requests. Read more about CORS at http://www.w3.org/TR/cors/.

Time for action – consuming the Patch News API
Having looked at the working of the Patch News API, let us ire some code to consume
the News services by user's locaion. We will use the locaion manager for managing the
user's locaion as before, SQLite for storing the taxonomy and news for oline usability,
and UITableView for the display.

As in the case of the events app, we will create the database structure for the following:

 � Storing the latest news entries

 � Storing the category or the taxonomy in the case of Patch News API

 � Storing the user's last known locaion

1. So, we create the news table in a database named packtnews.sqlite, as follows:

CREATE TABLE IF NOT EXISTS "news" ("uuid" VARCHAR UNIQUE ,
"title" VARCHAR, "summary" TEXT, "story_url" VARCHAR, "feed_title"
VARCHAR, "tags" TEXT, "source_verticals" TEXT, "source_formats"
TEXT, "source_author_types" VARCHAR, "location_lat" DOUBLE,
"location_lon" DOUBLE, "published_at" VARCHAR, "feed_url" VARCHAR)

2. Next, we create the taxonomy table. Since there is no API call to read and parse the
taxonomy data, we will create the taxonomy table, and also preill it with the values.

Taxonomy type Category Sub category

Verical news national

local

crime

politics-and-political-
analysis

http://developers.patch.com/docs/
http://developers.patch.com/docs/
http:///

Chapter 9

[285]

Taxonomy type Category Sub category
opinion

lifestyle activism

arts-ands-entertainment

crafts

fashion

food-and-restaurants

nightlife

shopping

real-estate

health

travel

recreation

parenting-family-and-children

personal

religion

community

education colleges-and-universities

high-schools

libraries

business finance

marketing

small-business

advertising

business-promotion

science-and-
technology

sports

Format stories blog-posts

news-articles

press-releases

reviews-and-ratings

event-listings

Author type mainstream-media

independent-new-media

sharing-and-
community-sites

http:///

Locaion Aware News—PacktNews

[284]

Taxonomy type Category Sub category
business-and-
organizations

corporations

small-businesses

real-estate-agents-and-brokers

non-profit-and-not-for-profit-
organizations

sports-teams

religious-institutions

political-parties

individuals general

celebrities

educational-
institutions

colleges-and-universities

high-schools

libraries

government

The SQL for this taxonomy table is

CREATE TABLE "taxonomy" ("type" VARCHAR, "category" VARCHAR,
"subcategory" VARCHAR)

3. We populate the taxonomy table with the data from the taxonomy table as follows:

INSERT INTO "taxonomy" VALUES('vertical','news','national');

INSERT INTO "taxonomy" VALUES('vertical','news','local');

INSERT INTO "taxonomy" VALUES('vertical','news','world');

INSERT INTO "taxonomy" VALUES('vertical','news','crime');

INSERT INTO "taxonomy" VALUES('vertical','news','politics-and-
political-analysis');

INSERT INTO "taxonomy" VALUES('format','stories','blog-posts');

INSERT INTO "taxonomy" VALUES('format','stories','news-articles');

INSERT INTO "taxonomy" VALUES('format','stories','press-
releases');

INSERT INTO "taxonomy" VALUES('author','mainstream-media','');

INSERT INTO "taxonomy" VALUES('author','independent-new-
media','');

INSERT INTO "taxonomy" VALUES('author','sharing-and-community-
sites','');

http:///

Chapter 9

[285]

4. Finally, we will create the user posiion table as we did in the PacktEvents app
as follows:

CREATE TABLE IF NOT EXISTS "user_position" ("position_id"
INTEGER PRIMARY KEY,"latitude" DOUBLE, "longitude" DOUBLE, "city"
VARCHAR,"country" VARCHAR)

5. Create a new Single View Applicaion project in Xcode and name it Hello News.
Also, add the class preix as Hello News, so that our View controllers are named
appropriately.

6. Add the SQLite3 library to your project from the Target-| Build Phases | Link

Binary with Libraries tab opion in your Xcode project worklow. Also, add the
Core Locaion framework.

7. The Patch API needs authenicaion (as discussed before), which is a combinaion of
your developer key, secret key, and the current TimeStamp, combined together, and
converted to a MD5 hash key. We have seen the PHP code before; however, for our
applicaion, we need the Objecive-C code. Thankfully, AOL provides the libraries to
do the same. Visit http://developers.patch.com to get the library, available
for a couple of languages.

8. We need the MD5.h and MD5.m iles. Drag these two iles, and add it to your project
in Xcode.

9. Our Hello News example will simply hit the Patch API with the user's locaion,
get the news (in JSON format), and render it on a UITableView. This is similar to
the examples that we have seen for Last.fm (Hello Location - Last.fm from
Chapter 3, Using Locaion in your iOS Apps – Core Locaion) or EventFul.com

(Hello Location – Eventful from Chapter 3) before. The only addiion we now
have is that we are storing the news oline as well.

10. In our Hello_NewsViewController.h ile, we declare the necessary variables
and funcions as follows:

#import <UIKit/UIKit.h>

#import <CoreLocation/CoreLocation.h>

#import <sqlite3.h>

@interface Hello_NewsViewController : UIViewController

<CLLocationManagerDelegate>

{

 CLLocationManager *locationManager;

 CLLocation *userLocation;

 NSURLConnection *urlConnection;

 sqlite3 *database;

 NSString *sqliteFileName;

http://developers.patch.com/
http:///

Locaion Aware News—PacktNews

[284]

 UITableView *myTableView;

 NSMutableData *jsonContent;

 NSJSONSerialization *nsJson;

}

@property(retain,nonatomic) IBOutlet UITableView *myTableView;

-(NSString *) getDatabaseFullPath;

-(NSString *) initializeDatabase;

-(void)readNews;

-(void)readNewsFromLocal;

@end

11. Our Hello_NewsViewController.m ile is where most of the acion is. We begin
by including the MD5.h ile, and declaring the variables for the news, the user, and
the taxonomy tables that we deined earlier.

12. In our viewDidLoad method, we iniialize a variable news that will hold the ten
nearest News items' itles in an array. We then call the initializeDatabase

method that creates the required database tables for news, user, and the
taxonomy table. Then we can call the readNews method that reads the
Patch News API, and stores the news values in the database through the JSON
connectionDidFinishLoading method. Finally, we read the values in the
database, and render it to a UITableView.

 news = [[NSMutableArray alloc]init];

 sqliteFileName = [self getDatabaseFullPath];

 jsonContent = [[NSMutableData alloc]init];

 [self initializeDatabase];

 [self readNews];

 [self readNewsFromLocal];

13. The initializeDatabase method is something new here. We have the taxonomy
informaion from the Patch News API, so it does make sense to hit the API again and
insert it in the database, rather we just insert it with the values we know. This helps
in saving a precious HTTP call through a user's mobile device.

-(NSString *) initializeDatabase

{

 NSString *success = @"FALSE";

 NSString *taxonomy_insert_sql = @"

INSERT INTO taxonomy VALUES('vertical','news','national');

INSERT INTO taxonomy VALUES('format','stories','blog-posts');

http:///

Chapter 9

[285]

INSERT INTO taxonomy VALUES('author','mainstream-media', NULL);

// Please see full source code on the books page at packtpub.com

news_sql = @"CREATE TABLE IF NOT EXISTS 'news' ('uuid'
VARCHAR UNIQUE , 'title' VARCHAR, 'summary' TEXT, 'story_url'
VARCHAR, 'feed_title' VARCHAR, 'tags' TEXT, 'source_verticals'
TEXT, 'source_formats' TEXT, 'source_author_types' VARCHAR,
'location_lat' DOUBLE, 'location_lon' DOUBLE, 'published_at'
VARCHAR, 'feed_url' VARCHAR)";

taxonomy_sql =@"CREATE TABLE 'taxonomy' ('type' VARCHAR,
'category' VARCHAR, 'subcategory' VARCHAR)";

user_sql =@"CREATE TABLE IF NOT EXISTS 'user_position'
('position_id' INTEGER PRIMARY KEY,'latitude' DOUBLE, 'longitude'
DOUBLE, 'city' VARCHAR,'country' VARCHAR)";

if(sqlite3_open([sqliteFileName UTF8String],

 &database)==SQLITE_OK)

{

 if(sqlite3_exec(database, [news_sql UTF8String], NULL, NULL,

 &sqliteError)==SQLITE_OK)

 {

 //do something or echo

 }

 if(sqlite3_exec(database, [taxonomy_sql UTF8String], NULL,

 NULL, &sqliteError)==SQLITE_OK)

 {

 //do something or echo

 }

 if(sqlite3_exec(database, [user_sql UTF8String], NULL, NULL,

 &sqliteError)==SQLITE_OK)

 {

 NSLog(@"user table created");

 }

 if(sqlite3_open([sqliteFileName UTF8String],

 &database)==SQLITE_OK)

 {

 if(sqlite3_exec(database, [@"Delete from taxonomy"

 UTF8String], NULL, NULL, &sqliteError)==SQLITE_OK)

http:///

Locaion Aware News—PacktNews

[284]

 {
 NSLog(@"taxonomy Purged");
 }

 if(sqlite3_exec(database, [taxonomy_insert_sql
 UTF8String], NULL, NULL, &sqliteError)==SQLITE_OK)
 {
 NSLog(@"taxonomy Inserted");
 }
 }
 success=@"TRUE";
 }

 return success;
}

14. The readNews method generates the MD5 signature needed by the Patch API, using
the md5hex method deined in the MD5.h ile. This MD5 signature is then passed to
the NSURLConnection object as follows:

-(void) readNews
{
 NSString *appKey = @"xxxxxxx"; // Get your own key from
 developer.patch.com
 NSString *secret = @"xxxxxxx";
 long time= (long)[[NSDate date]
 timeIntervalSince1970];
 NSString *signature=[MD5 md5hex:[NSString
 stringWithFormat:@"%@%@%d", appKey, secret, time]];
 NSString *userLat=[[NSString alloc]
 initWithFormat:@"%g",userLocation.coordinate.latitude];
 NSString *userLon=[[NSString alloc]
 initWithFormat:@"%g",userLocation.coordinate.longitude];

NSString *url = [NSString stringWithFormat:@"http://news-api.
patch.com/v1.1/nearby/%@,%@/stories?dev_key=%@&sig=%@&radius=5000&
include-locations=true",userLat,userLon,appKey,signature];

NSURL *urlToRequest=[[NSURL alloc]initWithString:url];
NSURLRequest *request=[NSURLRequest requestWithURL:urlToRequest];

urlConnection =[[NSURLConnection alloc] initWithRequest:request
 delegate:self startImmediately:YES];

}

http:///

Chapter 9

[285]

15. Once the JSON data is received with the connectionDidFinishLoading method,
we parse the individual news items and parent JSON tag as stories. The insert

statement for a new story is as follows:

insertStatement = [[NSString alloc]initWithFormat:@"INSERT OR
REPLACE INTO
'%@'('%@','%@','%@','%@','%@','%@','%@','%@','%@','%@','%@','%@',
'%@')
VALUES('%@',\"%@\",\"%@\",'%@','%@','%@','%@','%@','%@','%@','%@'
,'%@','%@')",newsTableName,@"uuid",@"title",@"summary",
@"story_url",@"feed_title",@"tags",@"source_verticals",
@"source_formats",@"source_author_types",@"location_lat",
@"location_lon",@"published_at",@"feed_url",news_uuid,news_title,
news_summary,new_story_url,news_feed_title,news_tags,
news_source_verticals,news_source_formats,
news_source_author_types,news_latitude,news_longitude,
news_published_at,news_feed_url];

16. Finally, we read from the Local SQLite database table, and render it on the
UITableView as follows:

-(void) readNewsFromLocal
{
 if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)
 {
 selectStatement = [[NSString alloc]initWithFormat:
 @"SELECT * from %@ order by uuid desc",newsTableName];

 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement
 UTF8String],
 -1, &sqlStatement, NULL)==SQLITE_OK)
 {
 while(sqlite3_step(sqlStatement)==SQLITE_ROW)
 {
 NSString *titleDataText = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 1)];

 if(![news containsObject:titleDataText])
 {
 [news addObject:titleDataText];
 }
 }
 }
 }// end of if of sqlite3 open
 [myTableView reloadData];
}

http:///

Locaion Aware News—PacktNews

[284]

17. Running the example produces the following result:

Note that we added an Informaion Image icon to add some zeal. Download the full
sample from the book's website: project itled Hello News.

http:///

Chapter 9

[285]

What just happened?
We created a simple news example that reads a locaion-based news API from AOL's Patch.
com, and stores the top ten news stories in an SQLite database, which can then be re-used
anywhere in our applicaion.

We also saw how to hash our API call with the key and imestamp values, using the MD5

library from the Patch News API. This ensures that the API returns us the latest news entries,
based on the ime we make the call. This makes fresh content available to the user, every
ime the app is used. Such smart use of technology makes an app appealing to the end users,
and ensures good sales and/or gets us the user's love.

With iOS5 and the new Xcode version 4.2, all new projects also
include the NIB ile for iPad. The previous example works in a
similar way on the iPad as well.

Adding the Geo Fencing support
We have discussed Geo Fencing a couple of imes before, as well as we did a small example
in Chapter 3. Remember the Hello Location – Boundary Monitoring example, where
we deine a circular region for San Francisco. We use the same logic here, but this ime, we
create a couple of regions for San Francisco, New York, and Mumbai.

Although there are couple of APIs, such as Location Labs - https://geofence.
locationlabs.com and GeoLoqi - https://developers.geoloqi.com/
geofencing-api, which help integrate Geo Fencing easily into your iOS apps, technically
they are no diferent than the funcionality provided by CLRegion, since the concept of
Geo Fencing in each of these approaches is the same; every geo-fencing approach needs
a laitude/longitude pair and the radius to monitor.

The best and accurate method of Geo Fencing is more GIS inclined, using a soluion such as
PostGIS, where the exact physical boundary of a region (city/metro/state/country) can be
deined using a polygon, rather then just laitude/longitude pairs, and the user's posiion
matched against this polygon boundary.

http:///

Locaion Aware News—PacktNews

[284]

The following screenshot shows the physical boundary of the city of San Francisco, while
the marker in the center could be the user's posiion. As the marker moves to a diferent
locaion, its posiion can be checked to determine whether it is within the boundary or
outside the boundary. This can be easily accomplished with the new Geography data
type in PostGIS. For more informaion, visit - http://postgis.refractions.net/.

Time for action – adding the Geo Fencing support
Coming back to the example, we extend the Hello News example, and add three
CLRegions for monitoring in the same.

1. Open the Hello_NewsViewController.m ile. In the viewDidLoad method, we
create the three regions with a boundary of 5000 meters as follows:

CLLocationCoordinate2D regionCords =

 CLLocationCoordinate2DMake(37.33 , -122.03);

CLRegion *sanFranciscoBoundary =

 [[CLRegion alloc]initCircularRegionWithCenter:regionCords

 radius:5000

 identifier:@"San Francisco"];

http://postgis.refractions.net/
http:///

Chapter 9

[285]

regionCords=CLLocationCoordinate2DMake(40.71490, -74.00679);

CLRegion *newYorkBoundary =

[[CLRegion alloc]initCircularRegionWithCenter:regionCords

 radius:5000

 identifier:@"New York"];

 regionCords=CLLocationCoordinate2DMake(19.142472, 72.841198);

 CLRegion *mumbaiBoundary=

[[CLRegion alloc]initCircularRegionWithCenter:regionCords
 radius:5000

 identifier:@"Mumbai"];

2. We then tell the locaion Manager to start monitoring for these regions.

 [locationManager startUpdatingLocation];

 [locationManager
 startMonitoringForRegion:sanFranciscoBoundary];

 [locationManager startMonitoringForRegion:newYorkBoundary];

 [locationManager startMonitoringForRegion:mumbaiBoundary];

3. As the user enters or exits any of these regions, a corresponding message is alerted
to the user, using the didEnterRegion and didExitRegion delegate methods.

- (void) locationManager:(CLLocationManager *)manager
didEnterRegion:(CLRegion *)region

{

 UIAlertView *alert = [[UIAlertView alloc]initWithTitle:
 [[NSString alloc]initWithFormat:
 @"You Entered %@",region.identifier]
 message:[[NSString alloc]initWithFormat:@"Welcome to
 %@",region.identifier]

 delegate:self cancelButtonTitle:@"OK"

 otherButtonTitles:nil, nil];

 [alert show];

}

-(void) locationManager:(CLLocationManager *)manager
didExitRegion:(CLRegion *)region

{

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:[[NSString alloc]
 initWithFormat:@"Thanks you for visiting
 %@",region.identifier]

 message:[[NSString alloc]initWithFormat:
 @"Hope you come back to

http:///

Locaion Aware News—PacktNews

[284]

 %@",region.identifier]

 delegate:self cancelButtonTitle:@"OK"

 otherButtonTitles:nil, nil];

 [alert show];

}

4. You can use any applicaion logic in these funcions to do some smart processing
when a user enters or exits a city, maybe purged to the local database?

5. Running the example produces the following result, when we change the locaion
through the iOS simulator's Locaion Simulaion opion:

http:///

Chapter 9

[285]

What just happened?
We added Geo Fences in our Hello News example to monitor three ciies for user's enter

and exit trigger. Any number of Geo Fences can be added in our applicaion. However, we
should try to keep the alerts to a minimum, so that the users are not irked with too many
pop-up alerts.

Also note, we used the region.identifier property to idenify the city name, thereby
making our code shorter and manageable. Code for this example is also available on the
book's website: project itled Hello News Geo Fencing.

Building our app - PacktNews

Now that we have looked at the Patch News API briely, it is ime to assemble all our tricks
that we learned so far, and to build the app.

For the app icon, we used a free-for-commercial use icon from
http://findicons.com/icon/169293/news?id=376465.

We have also used the Google AdMob SDK as in the case of the Weather app, as well the
opion provided in the app to tweet a news story, using the Twiter Framework of iOS 5
(iPad only for now, due to design constraints). We have used the Tabbed Applicaion

template for our app, but it has been modiied using the new StoryBoard feature in iOS 5.

A bit on StoryBoard
As we discussed in Chapter 2, The Xcoder's World, Storyboarding is a new feature added
in Interface Builder to manage the transiions between diferent views in your app. These
transiions are called as segues. From a developer's point of view, you can compare a
StoryBoard to an enity-relaionship diagram from the database world.

A StoryBoard comprises of a sequence of scenes (of the type UIViewController), and
these scenes are connected by the segue objects.

http://findicons.com/icon/169293/news?id=376465
http://findicons.com/icon/169293/news?id=376465
http:///

Locaion Aware News—PacktNews

[284]

Time for action – building PacktNews
1. We begin by creaing a new project itled PacktNews, using the Tabbed Applicaion

template. From the project seings, make sure you select the Use StoryBoard

checkbox

http:///

Chapter 9

[285]

2. Once you project creaion is complete, you will ind two iles in your project with
a .storyboard extension, one for the iPhone and another for iPad. Files will be
named as MainStoryboard_iPhone.storyboard and MainStoryboard_
iPad.storyboard. Double-click on the iPhone storyboard, and you should see
the following storyboard for our Tabbed Applicaion template:

3. It works as follows: The main scene is your Tab Bar Controller, by default, it has two
tab bar items in the footer, since the template contains two UIViewControllers.
The arrows you see from the Tab Bar Controller to the First View and Second View

controllers are segues.

http:///

Locaion Aware News—PacktNews

[284]

4. From the Xcode uiliies area, add one more ViewController to your project,
Control+drag from your main screen to the third ViewController, and select
Relaionship – viewControllers from the menu opion.

This will add one more tab in your footer area, automaically!!

5. Ok, so now we know how Storyboards works. This layout was just an example. The
inal layout for PactkNews is as follows:

http:///

Chapter 9

[285]

6. We added a Navigaion Controller and a Table View Controller. The First View

Controller is now the TableView controller, which will be used to show up to
twenty nearby news items. The Second View Controller is used to display the
detailed news on selecion from the UITableView from the First View Controller.

7. The Navigaion Controller is the parent scene here. Note that we haven't connected
the Second View Controller to the Navigaion Controller (hence, only one tab bar
item in the footer). We call the Second View Controller programmaically though
the didSelectRowAtIndexPath method of the UITableView as follows:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath
 :(NSIndexPath *)indexPath

{

 detailNews = [self.storyboard

 instantiateViewControllerWithIdentifier:@"Details"];

 [self.navigationController pushViewController:detailNews

 animated:YES];

 [self getNewsDetails:[news objectAtIndex:indexPath.row]];

 [tableView deselectRowAtIndexPath:indexPath animated:YES];

}

http:///

Locaion Aware News—PacktNews

[284]

8. Do not forget to name your ViewControllers in Interface Builder | Atributes

Inspector. We name the First View Controller as News and the Second View

Controller as Details:

9. The pushViewController method of the Navigaion Controller pushes the
Second View Controller – Details View to the main scene. Note that the Back

buton is added automaically, which takes the user to the main screen, which is
the First View Controller.

10. Coming to the design part, we menioned the First View Controller as being a
TableView controller, which adds a Row template to the TableView. We can style
the Row using the Atributes Inspector again. In our case, we add a news_icon and
a Right Detail atribute to each cell in the Table. The Right Detail atribute signiies
that the row/cell contains more details, which can be obtained ater clicking on the
same. This is user interacion perspecive to making your apps easier for end-users.
We also select the accessory as Detail Disclosure with Blue as the selecion. Try
changing these atributes as you might see it it.

http:///

Chapter 9

[285]

11. In our Details View Controller (also known as the Second View Controller), we
add a Bar Buton to the navigaion bar, named Read More that navigates the user
to the external news URL, so that the users can read the original story from the
parent source.

12. We add two UITextView elements, one for the News Title and another for the
News Summary. We could have used a Text ield for the News Title, but someimes
the itles seem to be long, so a UITextView does more jusice.

http:///

Locaion Aware News—PacktNews

[284]

13. We also add a MapView component, which shows the user posiion as well the
locaion of the News Story on the map. From the Atributes Inspector, we enable
the Shows User Locaion for the MapView component.

Our Details page is where we also show an Ad from the Admob

framework, the placement of which is the blank space between
the News Title and the News Summary. This can change as per
the app design, however be careful to change this in the Ad

Integraion code as well.

14. The iPad UI is more interesing, since it has ample amount of space to add much
more features, such as the Twiter Integraion and bigger Map View. The Twiter
buton is actually an UIButton styled with background image (twitter.png in the
project). We connect this buton with an IBAction named sendTweet, which will
iniiate the TweetComposeViewController modally, and pre-populate the tweet
text as the News Title, and then link back to the News (from the Patch News API).

-(IBAction)sendTweet:(id)sender
{
 if([TWTweetComposeViewController canSendTweet])
 {
 TWTweetComposeViewController *tweetViewController =
 [[TWTweetComposeViewController alloc] init];
 [tweetViewController addURL:[NSURL URLWithString:storyUrl]];
 [tweetViewController setInitialText:[[NSString
 alloc]initWithFormat:@"%@ #patchnews",titleView.text]];
 [tweetViewController

http:///

Chapter 9

[285]

 setCompletionHandler:^(TWTweetComposeViewControllerResult
 result)
 {
 NSString *tweetOutput;
 switch (result) {
 case TWTweetComposeViewControllerResultCancelled:
 // The cancel button was tapped.
 tweetOutput = @"The user cancelled the tweet. ";
 break;
 case TWTweetComposeViewControllerResultDone:
 // The tweet was sent.
 tweetOutput = @"You sent a tweet successfully";
 break;
 default:
 break;
 }
 [self dismissModalViewControllerAnimated:YES];
 }];
 [self presentModalViewController:tweetViewController
 animated:YES];
 } // end of if canSendTweet
}

http:///

Locaion Aware News—PacktNews

[284]

15. The code is prety much the same as the Hello News and Hello News –

Geofencing examples, with the addiion of the StoryBoard and the Tweeing
opions. The FirstViewController.h and FirstViewController.m

iles from the project handle the iniial new display with up to 20 news items
in the UITableView. The new method that we have deined here is the
getNewsDetails:newsTitle; method, which takes in the News Title as input,
and queries the local database for all the related details, which are then passed on
to the Second View Controller instance variable detailNews.

16. We iniialize the UI elements of the Details page with the new values obtained from
the local SQLite database, for a selected news itle as follows:

-(void)getNewsDetails:newsTitle
{
 if(sqlite3_open([sqliteFileName UTF8String],
 &database)==SQLITE_OK)
 {
 selectStatement = [[NSString alloc]initWithFormat:
 @"SELECT * from %@ where
 title=\"%@\"",newsTableName,newsTitle];
 sqlite3_stmt *sqlStatement;

 if(sqlite3_prepare_v2(database, [selectStatement UTF8String],
 -1, &sqlStatement, NULL)==SQLITE_OK)
 {
 while(sqlite3_step(sqlStatement)==SQLITE_ROW)
 {
 NSString *titleDataText=[NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 1)];
 NSString *summaryDataText= [NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 2)];
 NSString *storyDataText=[NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 3)];
 NSString *latitudeDataText=[NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 9)];
 NSString *longitudeDataText=[NSString stringWithUTF8String:
 (char *)sqlite3_column_text(sqlStatement, 10)];

 CLLocationCoordinate2D pinlocation =
 detailNews.map.userLocation.coordinate;
 pinlocation.latitude = [latitudeDataText doubleValue];
 pinlocation.longitude =[longitudeDataText doubleValue];

 [detailNews.titleView setText:titleDataText];
 [detailNews.descView setText:summaryDataText];
 detailNews.storyUrl=storyDataText;
 detailNews.map.zoomEnabled = TRUE;
 detailNews.map.centerCoordinate = pinlocation;

http:///

Chapter 9

[285]

 MKPointAnnotation *annotation = [[MKPointAnnotation alloc]init];
 annotation.title = titleDataText;
 annotation.coordinate = pinlocation;
 [detailNews.map addAnnotation:annotation];

 detailNews.map.region =
 MKCoordinateRegionMakeWithDistance(pinlocation, 1000, 1000);
 }
 }
 }// end of if of sqlite3 open
}

17. Running the project with San Francisco's simulated locaion on the iPad produces
the following results:

http:///

Locaion Aware News—PacktNews

[284]

18. Clicking on the Detail accessory item loads more informaion about the news
item selected.

http:///

Chapter 9

[285]

19. Check the twiter integraion (on iPad build only) by clicking on the Tweet buton.
Make sure that you have enabled your Twiter account on your iOS device.

http:///

Locaion Aware News—PacktNews

[284]

20. Check your Twiter page on the web, and you should see the news story posted with
the hash tag - #Patchnews.

21. When tweeing from the TweetComposeViewController, we can also tweet our
own locaion by using the Add Locaion opion from the same. The result is what
you can see from this screenshot. Your tweets get tagged with your locaion! Click
on the marker on the tweet to see the map on http://www.twitter.com.

What just happened?
We created a Geo Aware News Applicaion: PacktNews, using the Patch News API – An
AOL product, using some cool iOS 5 APIs – StoryBoard, Twiter Integraion, and the new
NSJSONSerialization class.

The instantiateViewControllerWithIdentifier method of the storyboard helps
us iniialize the Details page, and passes it to the Storyboard (as the current scene). The
pushViewController method of the UINavigationController class updates the
display to the passed View Controller, in our case, the Details View Controller (Second

View Controller).

The Ads from the Admob Ad Network are controlled through the
SecondViewController.m ile's viewDidLoad method. You can change
the placement of the ads by modifying the following line of code:

bannerAdView = [[GADBannerView alloc]

 initWithFrame:CGRectMake(0.0,45.0,

 GAD_SIZE_320x50.width,

 GAD_SIZE_320x50.height)];

http:///

Chapter 9

[285]

Summary

In this chapter, we learned how to use AOL's Patch News API that empowers us to build
News apps similar to patch.com . We also did some smart applicaion UI modeling using
Storyboards in the Interface Builder.

Speciically, we covered the following topics:

 � Consuming the Patch News API

 � Storing news oline in SQLite

 � Adding Geo Fences in our apps

 � Understanding Storyboard and key terms

 � Building the PacktNews – News app

In the next chapter, we will build our inal app for the book – TweetGovern: Social

Governance.

http:///

http:///

10
Social Governance—TweetGovern

The year 2011 saw a lot of world-wide revoluions fuelled by open speech and
technology, especially Twiter and Facebook. In fact, the role of Twiter has
been greatly acknowledged to a great extent, someimes being able to deliver
news faster than tradiional news media and radio. The Twiter integraion
in Apple's iOS devices brought about by iOS 5, makes building Twiter-based
applicaions for iOS devices, as easy as a breeze.

In this chapter, we set out to create a Twiter-based app (and hopefully a
revoluion) that helps local residents submit complaints about their society and
neighborhood. It could be a simple request from garbage clearance to safety
complaints about streetlights or traic lights.

In this chapter, we will deal with the following topics:

 � Social governance – an overview

 � TweetGovern – behind the scenes

 � Building the home screen

 � Showing nearby issues

 � Submiing an issue

 � Voing for an issue

 � Building the app

So let's get on with it...

http:///

Social Governance—TweetGovern

[316]

Social governance – an overview
The use of social media tools, such as Twiter, Facebook, and so on, for governance along
with free and open government data through iniiaives, such as http://datasf.org

and http://www.data.gov/, has led to a global movement termed Gov 2.0 and/or
Social Governance.

Using technology for the beterment of society should be the ulimate goal for technology.
Organizaions and governments over the world are now coming forward to bring about this
revoluion through social governance.

From a simple developer's point of view, it means building apps and consuming free public
data to present the right informaion to the users and authoriies, and present a way to
resolve issues. The ability to vote an issue as important or non-criical lies in the hands
of the denizens; they can choose to vote an issue up to the highest priority.

There are companies that have a successful business around this model, where these
companies charge for the technology and apps, while keeping the data public and free.
SeeClickFix (http://seeclickfix.com) is one such company that has a successful
business model around social governance. While municipaliies and city civic bodies pay
a monthly or annual subscripion charge for the service, consumers/users/denizens are
provided with free website and mobile apps to report issues, vote for an issue, and get their
complaints ixed. The issues that are voted to the top are ixed irst. Data collected through
such iniiaives has helped ix as much as 50 percent of the local issues reported.

A note of cauion while designing such websites or mobile apps - some users, if not most
users, will want to remain anonymous while submiing requests, due to fear of reprisal
acion by some authoriies. So, while developing your apps, you need to provide a plaform
to allow anonymous submissions of request. But at the same ime, it also means more spam,
so there is a trade of here, for simple applicaions, such as TweetGovern – we assume that
the issues submited by users are day-to-day essenial problems faced by the public, so
anonymity is not a big problem. However, if we were to involve police acion, smuggling,
or drug traicking, it deinitely needs the user's idenity management.

TweetGovern – behind the scenes
It takes a lot more to build a successful iOS app product, the product being the iPhone/iPad
app in the iTunes store, while the backend (LAMP, Java, Ruby on Rails, or even Microsot's .Net)
provides the data and communicaion interface to our app, oten through a REST interface or
a Web Service API. A very important aspect of your app is also its design and layout. Smashing
magazine has a very nice aricle on How to create your irst iPhone applicaion at http://
coding.smashingmagazine.com/2009/08/11/how-to-create-your-first-iphone-

application/, which covers the complete app-development life cycle from concept to
wireframes, from tools to market research, and inally, submiing the app to the iTunes store.

http://datasf.org
http://www.data.gov/
http://seeclickfix.com
http:///

Chapter 10

[317]

Coming back to TweetGovern, we need to idenify how the backend of our app will work,
since we need to be able to to the following:

 � Submit an issue

 � Vote for an issue

 � Search for issues by category

 � Display issues by the user's locaion

 � Allow the app to capture the user's idenity

While working on the book, I invesigated a couple of approaches for the TweetGovern
backend, including a PHP + PostgreSQL + PostGIS backend, for creaing a mini CMS
for TweetGovern, using a third-party API provider for mobile apps, StackMob

(http://stackmob.com/), and the last opion being the great Twiter Integraion
and API available in iOS 5. We will move with the Twiter approach to building
TweetGovern, for the following reasons:

 � It works seamlessly with Twiter, no user database is needed

 � No backend or CMS is needed, hence no API is required, which reduces the ime
to market

 � Twiter has an excellent Geo Search API for tweets

 � Worldwide coverage on launch

 � Twiter love!!

However, unless any of our readers wants to take a diferent approach, we propose the
following database schema for storing the issues and issue categories structure.

The following database schema represents the Issues table:

issue_id (integer) issue_image

issue_title(text or varchar) issue_votes

issue_category(varchar or integer) issue_created_date

issue_lat issue_modified_date

issue_lon issue_status

issue_description

http:///

Social Governance—TweetGovern

[316]

The following database schema represents the Category table:

category_id (integer)

category_name(text or varchar)

Stackmob
Stackmob is a new startup that provides the data middleware for the mobile applicaions.
It has been called the Heroku for Mobile, providing API, OAuth, push noiicaions, analyics,
and social integraion for mobile apps developers through their own web console and iOS/
Android SDKs. We were lucky to get a beta invite, and tried creaing the database structure
for TweetGovern as discussed previously. You can get access to the service by signing up at
http://www.stackmob.com/.

We created two objects, one named category that holds all the categories of issues that we
plan to incorporate in our app, and the second object being a collecion for issues for San
Francisco. Note that our goal through the StackMob approach is to create city buckets for
issues, so that an object for San Francisco, the other for New York, and so on. The quesion
here is Why? The buckets approach is taken to circumvent the Geo Search API, since there
is none provided by StackMob, so here, we are using the best approach of creaing diferent
objects for each city, so that searching for issues based on regions becomes easier for us, on
the Objecive-C side.

http:///

Chapter 10

[317]

The city-based Issues object is deined as follows:

Our approach: Twitter
As we discussed before, we will make our social governance app using Twiter as the
backend. However, some quesions arise, for example: how will we idenify the type of an
issue? Whether it is a pothole complaint or graii alert? The soluion to these quesions is
the Twiter Search API. All our issues will be hash tagged with the issue category and will be
directed to a Twiter account that we created just for TweetGovern (@tweetgovern).

http:///

Social Governance—TweetGovern

[316]

Here is an example: We created a simple example app that uses a simple
TWTweetComposeViewController dialog-box to tweet about issues, by using
the @tweetgovern handle and a #graffiti hash tag, and we added our locaion.

Once you added some text and tweeted it, the tweet appears on your twiter imeline
as follows:

http:///

Chapter 10

[317]

Now, we can access these tweets by using the Search API from Twiter with the
following URL:

https://search.twitter.com/search.json?q=graffiti%20to:tweetgovern%20
geocode:37.781157,-122.398720,5mi

http:///

Social Governance—TweetGovern

[316]

We use the following categories and associated hash tags for our TweetGovern app:

Category name Hash tag
Potholes #potholes

Graii #graffiti

Garbage #garbage

Street light #streetlight

Drainage #drainage

Health hazard #healthhazard

Noise #noise

Traic light #trafficlight

Street cleaning #streetcleaning

Damaged parking #damagedparking

Others #others

We begin building our app by assembling all the toolkits, SDK's, icons, images, and so on, and
staring with the home screen.

Icons and images
For the app icon, we choose the avatar icon from http://www.smashingmagazine.
com/2008/11/05/dressup-avatars-icon-set/ - designed by Dante Michael

Afrondoza (http://www.iconka.com).

Modify the image for iPhone, iPhone Reina, and iPad by using a size of 57x57, 114x114,
and 72x72, respecively.

The applicaion background images have been sourced from http://allur.co/blog/
rounded-pricing-info-callouts-psd/ They have been resized for iPhone Landscape,
iPhone Landscape Reina, iPad Landscape, and iPad portrait sizes with resoluions of
320x480, 640x960, 1024x748, and 768x1004, respecively, and added to the project
through Xcode.

We also add the glyphish-icons, as we used in the WeatherPackt app before.

SDKs and frameworks
We add the Google AdMob SDK and included the Twiter and MapKit framework in our project.

http://allur.co/blog/rounded-pricing-info-callouts-psd/
http://allur.co/blog/rounded-pricing-info-callouts-psd/
http:///

Chapter 10

[317]

 Time for action – creating the UI for TweetGovern
1. From Xcode, create a new project by selecing the Tabbed Applicaion template.

Name it TweetGovern, and class preix as TweetGovern too.

2. Check the Use StoryBoard opion to enable storyboarding in your app.

3. Open MainStoryboard_iPhone.storyboard add a UIImageView to the main
View. This will be our app background image, which is similar to the loading image.

4. Then add a UINavigationBar object, with a UINavigationItem item itled
TweetGovern.

5. Next, add a UITableView from the Atributes Inspector | View opion. Set the
Background opion to View Flipside background color, and change the table style to
Grouped. Select the Table View Cell (prototype cells in Interface Builder – that acts
a template for all cell rows in the table view), and change its ideniier in Atributes

Inspector to HomeCells, Selecion as Blue, and Accessory to Detail Accessory.
Finally, select the tags images (15-tags.png) from the glyphish icon set in the
Image opion.

6. Your home screen in Xcode should now look as follows:

http:///

Social Governance—TweetGovern

[316]

7. Now that we have the UI for the TableView done, we add the relevant links to
the home screen through code. We create a simple array and add its items to the
TableView through the cellForRowAtIndexPath UITableView delegate
method. Add the following code in your viewDidLoad method (in the TweetGover
nFirstViewController.m ile)

 homeItems = [[NSMutableArray alloc]init];

 NSString *createIssue =@"Create an Issue";

 NSString *nearbyIssue =@"Show Nearby Issues";

 NSString *searchIssue =@"Search for Issues";

 NSString *aboutTweetGovern =@"About TweetGovern";

 [homeItems addObject:createIssue];

 [homeItems addObject:nearbyIssue];

 [homeItems addObject:searchIssue];

 [homeItems addObject:aboutTweetGovern];

8. In your cellforRowAtIndexPath method, add the array deined in the cell of
TableView.

-(UITableViewCell *)tableView:(UITableView *)tableView cellForRowA
tIndexPath:(NSIndexPath *)indexPath

{

 NSString *cellId = @"HomeCells";

 UITableViewCell *cell = [tableView dequeueReusableCellWith
Identifier:cellId];

 if(cell==nil)

 {

 cell = [[UITableViewCell alloc]initWithStyle:

 UITableViewCellStyleValue1 reuseIdentifier:cellId];

 }

 NSString *cellContent = [homeItems
 objectAtIndex:indexPath.row];

 cell.textLabel.text = cellContent;

 return cell;

}

http:///

Chapter 10

[317]

9. The total count of the cells for your TableView is controlled by the
numberOfRowsInSection delegate method, where we pass the array count as the
number for cells in our TableView. Try adding one more value in the array, and that
should relect in your UI immediately.

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSecti
on:(NSInteger)section

{

 return [homeItems count];

}

10. If everything goes ine, your app should look similar to the following screenshot on
the iOS simulator:

What just happened?
We created the home page of our TweetGovern app by using a Tabbed Applicaion template,
some free icons and background images and integrated Google Admob SDK within the app.

Having deined the home screen, we now move forward to integraing user locaion in the
app and other funcionaliies for the app.

http:///

Social Governance—TweetGovern

[316]

Time for action – detecting the user location and showing
nearby issues

We begin adding locaion support in our app and quickly showing nearby issues by querying
the Twiter imeline.

1. We modify our project by incorporaing a Navigaion Controller in our main UI low.
This is done in the Interface Builder, by dragging a UINaviationController

object from the Object Library. This helps us control the applicaion navigaion
low easily.

2. Connect a segue from the Navigaion Controller to the home screen
UIViewController, by control dragging your mouse pointer from the
Navigaion Controller to the home screen View, and selecing Relaionship –

rootViewController from the pop-up menu.

3. On the home View UI (First View Controller), name the view controller as Home, and
the ideniier as home. We will need these View ideniier names later on to call each
View on demand.

http:///

Chapter 10

[317]

4. In the place where we want an adverisement, we place a dummy UIImageView,
and modify our viewDidLoad method to use the bounds (area) of this region for
the ads placement. This UIImageView needs to be paired with a corresponding
variable in our class declaraion. We deine that variable as follows:

 UIImageView *bannerImage;

The code to use this variable in the ads placement is as follows:

if([deviceType isEqualToString:@"iPhone"])

 {

 bannerAdView = [[GADBannerView alloc]

 initWithFrame:bannerImage.bounds];

 }

5. We want the home screen to be more informaive, by showing the user's detected
locaion in the footer. We use a UIImageView and a UILabel to show this
informaion, by showing a Location icon on the UIImageView, and the text
Detecing Locaion... on the UILabel. The icon is sourced from the glyphish-
icons set.

6. Your home screen should now look similar to the following screenshot:

http:///

Social Governance—TweetGovern

[316]

7. We use the new Reverse Geocoding class in iOS5 CLGeocoder to convert the
laitude/longitude values to address, street name, and city name, by using the
following code in our didUpdateToLocation method.

// Get City Name, Address with Reverse Geocoding

 geocoder =[[CLGeocoder alloc]init];

 [geocoder reverseGeocodeLocation:userLocation

 completionHandler:^(NSArray *placemarks, NSError *error)

 {

 for(CLPlacemark *placemark in placemarks)

 {

 currentCity = placemark.locality;

 currentStreet = placemark.thoroughfare;

 currentAddress = placemark.subThoroughfare;

 if(currentStreet)

 {

 currentLocationLabel.text = [currentCity

 stringByAppendingFormat:@",%@",currentStreet];

 }

 else

 {

 currentLocationLabel.text = currentCity;

 }

 }

 }];

8. currentLocationLabel is the variable which is paired to the UILabel for
Detecing Locaion….

http:///

Chapter 10

[317]

9. Now, we move forward to show the nearby issues. For this, we use the
simple Twiter search API - https://search.twitter.com/search.
json?q=to:tweetgovern geocode:37.7874,-122.408,5mi, where
geocode contains the locaion detected from the iPhone. We will use this API call
and its variaion to query the Twiter imeline as per our app requirement. For
example, to search only for graii issues, we modify the above API to https://
search.twitter.com/search.json?q=graffiti%20to:tweetgovern%20

geocode:37.7874,-122.408,5mi, which provides us the following result:

https://search.twitter.com/search.json?q=graffiti to:tweetgovern geocode:37.7874,-122.408,5mi
https://search.twitter.com/search.json?q=graffiti to:tweetgovern geocode:37.7874,-122.408,5mi
http:///

Social Governance—TweetGovern

[316]

10. Our View Controller that handles the nearby issues display is the NearbyIssues

View Controller. We add a UITableView to it, and style the Prototype Cell

Row (with ideniier as tweetcell), by adding a marker icon to it (again from
glyphish) and changing the text font to System Bold 12.0. This View should
look as follows:

11. This View will be loaded when the user clicks on the Show Nearby Issues opion
from the app's home screen. This is controlled by the didSelectRowAtIndexPath

method of the UITableView, which is deined in TweetGovernFirstViewContr
oller.m ile as follows:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath
:(NSIndexPath *)indexPath
{
 if (indexPath.row==1)
 {
 nearbyIssuesView = [self.storyboard
 instantiateViewControllerWithIdentifier:@"NearbyIssues"];

 nearbyIssuesView.userLocation = userLocation;
 [self.navigationController pushViewController:nearbyIssuesView
 animated:YES];
 }

 else if (indexPath.row==0)

http:///

Chapter 10

[317]

 {

 nearbyIssuesView = [self.storyboard

 instantiateViewControllerWithIdentifier:@"createview"];

 [self.navigationController pushViewController:nearbyIssuesView

 animated:YES];

 }

 else if (indexPath.row==3)

 {

 nearbyIssuesView = [self.storyboard

 instantiateViewControllerWithIdentifier:@"about"];

 [self.navigationController

 pushViewController:nearbyIssuesView animated:YES];

 }

 [tableView deselectRowAtIndexPath:indexPath animated:YES];

}

12. This is where all the views are loaded according to the opion selected by the user.
In the Nearby Issues opion, note that we have created another CLLocation object
in the TweetGovernSecondViewController class, to pass the value of the current
locaion from the home screen to the second, which will eventually be passed onto
the Twiter Search API.

13. When the NearbyIssues View loads, its viewDidLoad method is called. Here is
where the Twiter Search API is called as follows:

 jsonContent = [[NSMutableData alloc]init];

 tweets = [[NSMutableArray alloc]init];

 tweetsIds = [[NSMutableArray alloc]init];

 [self showNearByTweets];

14. The jsonContent variable holds the raw JSON received from NSURLConnection,
while the tweets array contains the tweet's text, and tweetsIds contains the
corresponding tweet id (this tweet id is needed for voing - also known as retweet).
The showNearByTweets is deined as follows:

-(void)showNearByTweets

{

 NSString *userLat =[[NSString alloc]

 initWithFormat:@"%g",userLocation.coordinate.latitude];

 NSString *userLon = [[NSString alloc]

http:///

Social Governance—TweetGovern

[316]

 initWithFormat:@"%g",userLocation.coordinate.longitude];

 NSString *url = [NSString stringWithFormat:

 @"https://search.twitter.com/search.json?q=to:tweetgovern

 geocode:%@,%@,5mi",userLat,userLon];

 url = [url
 stringByAddingPercentEscapesUsingEncoding:
 NSUTF8StringEncoding];

 NSURL *urlToRequest = [[NSURL
 alloc]initWithString:url];

 NSURLRequest *request = [NSURLRequest

 requestWithURL:urlToRequest];

 urlConnection = [[NSURLConnection alloc]

 initWithRequest:request delegate:self startImmediately:YES];

}

15. By now, you would be familiar with the JSON parsing, as we have done
it in the examples before. So, we will not go into the details; however,
the important line of code here is the parsing of the tweet text and
tweet id in the connectionDidFinishLoading method:

 NSString *tweetTitle = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"text"];

 NSString *tweetId = [[[items objectAtIndex:0]

 objectAtIndex:i]objectForKey:@"id_str"];

if(![tweets containsObject:tweetTitle])

 {

 [tweets addObject:tweetTitle];

 }

if(![tweetsIds containsObject:tweetId])

 {

 [tweetsIds addObject:tweetId];

 }

http:///

Chapter 10

[317]

16. We created two simple arrays to hold the tweet text and tweet id, but you are free
to use any other logic, maybe a muli-dimensional array or a full-blown class to hold
all the tweet informaion.

17. The tweets array is then used in the cellForRowAtIndexPath method of the
UITableView, which renders the tweets on the tableView.

-(UITableViewCell *)tableView:(UITableView *)tableView cellForRowA
tIndexPath:(NSIndexPath *)indexPath

{

 NSString *cellId = @"tweetcells";

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:cellId];

 if(cell==nil)

 {

 cell = [[UITableViewCell alloc]

 initWithStyle:UITableViewCellStyleValue1
 reuseIdentifier:cellId];

 }

 NSString *cellContent = [tweets objectAtIndex:indexPath.row];

 cell.textLabel.text = cellContent;

return cell;

}

18. Note that from our discussion about the use of the cell ideniier in Interface
Builder, we named it tweetcell. In our code here, we use the same, so that the UI
modeled in Interface Builder is applied to the table row cells that we are using in the
code. If you choose a diferent name, you can noice the diference in the visual UI
when you run the app.

19. The UITableView in the TweetGovernSecondViewContoller class is named
myTweetTable. Do not forget to add this outlet in Interface Builder to the table
View, and the datasource and delegate outlet from the table View to the main
controller. Also, use the delegates in your class declaraion with <UITableViewDat
aSource,UITableViewDelegate>.

http:///

Social Governance—TweetGovern

[316]

20. Running the app now produces the following result. Note some dummy
tweets/issues that were created to understand the app worklow:

What just happened?
Storyboards are an exciing new feature in iOS5. We used it successfully to model our
home and nearby issues screen, all on the same page in Interface Builder. The zoom-in and
zoom-out feature helps navigate the larger landscape in storyboarding, but the idea of all the
app screens on the same page is awesome and helpful to keep a consistent design across the
app UI.

http:///

Chapter 10

[317]

We looked at using Twiter eco system for the logic of our app. This is a smart way of
problem solving as well. We used Twiter since it ited all our requirements perfectly, so we
didn't need to create a backend, an API, and other management hassle. Anyone working or
has worked in a tech startup before would know.

We learned about StoryBoard View management by using the [self.storyboard ins
tantiateViewControllerWithIdentifier:@"xxxxxxx"]; line of code, where xxxxx

is the View ideniier. The source code of the full app is available on the book's website:
project itled TweetGovern.

Now we look at using the Twiter re-tweet logic to build a voing soluion for our
TweetGovern app.

Time for action – creating and voting for an issue
Our main screen for the app is the Create Issue screen, where we will allow the user to
choose from a list of issue categories, and allow them to proceed to create an issue with
the hashTag associated with the said issue category.

1. Add a new ViewController to your project, by selecing the
UIViewControllersubclass opion from the File | New | New File. Name it
CreateIssueViewController, and add it to your project. Do not select any of
the Targeted for iPad or With XIB for user interface opions, since we will use the
Storyboard for user interface.

2. We use a UIPickerView to display a category picker, which allows the user to
select any of the issue categories, which will be added to the UIPickerView

though an array called issuesCategory. We will need an IBAction to show the
tweet-box for creaing an issue. Open the CreateIssueViewController.h, and
add the following code:

#import <UIKit/UIKit.h>
#import <Twitter/Twitter.h>
#import <Accounts/Accounts.h>

@interface CreateIssueViewController : UIViewController
{
 UIPickerView *pickIssues;
 NSMutableArray *issuesCategory;
 NSString *hashTag;
}

@property (retain,nonatomic) IBOutlet UIPickerView *pickerView;

- (IBAction)createIssue:(id)sender;

@end

http:///

Social Governance—TweetGovern

[316]

3. Now in the viewDidLoad method of the CreateIssueViewController.m ile,
we add the list of categories that we want to enable in our applicaion:

 issuesCategory = [[NSMutableArray alloc] init];

 hashTag = [[NSString alloc]init];

 [issuesCategory addObject:@"PotHoles"];

 [issuesCategory addObject:@"Graffiti"];

 [issuesCategory addObject:@"Garbage"];

 [issuesCategory addObject:@"Street Light"];

 [issuesCategory addObject:@"Drainage"];

 [issuesCategory addObject:@"Health Hazard"];

 [issuesCategory addObject:@"Noise"];

 [issuesCategory addObject:@"Traffic Light"];

 [issuesCategory addObject:@"Street Cleaning"];

 [issuesCategory addObject:@"Damaged Parking Meter"];

 [issuesCategory addObject:@"Others"];

4. The array of categories deined in the previous step are added to the
UIPickerView by the titleForRow method of the UIPickerView, where we
pass each array from the issuesCategory array to the UIPickerView object.

(NSString *)pickerView:(UIPickerView *)thePickerView
titleForRow:(NSInteger)row forComponent:(NSInteger)component

{

 return [issuesCategory objectAtIndex:row];

}

5. The numberOfRowsInComponent method of the UIPickerView also plays an
important role in assigning the categories to the UIPickerView, by telling the
UIPickerView the number of rows expected in its View. Depending on this
count, the titleForRow will run x number of imes, where x is the count.

(NSInteger)pickerView:(UIPickerView *)thePickerView numberOfRowsIn
Component:(NSInteger)component

{

 return [issuesCategory count];

}

6. Finally, when any row of the UIPickerView is selected, the didSelectRow

method is called. Here we iniialize the right Twiter hashTag to be tweeted,
based on the category selected as follows:

- (void)pickerView:(UIPickerView *)thePickerView
didSelectRow:(NSInteger)row inComponent:(NSInteger)component {

 if([[issuesCategory objectAtIndex:row]

http:///

Chapter 10

[317]

isEqualToString:@"PotHoles"])

{

 hashTag =@"#potholes";

}

if([[issuesCategory objectAtIndex:row]
isEqualToString:@"Graffiti"])

{

 hashTag =@"#graffiti";

}

if([[issuesCategory objectAtIndex:row]
isEqualToString:@"Garbage"])

{

 hashTag =@"#garbage";

}

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Street

 Light"])

{

 hashTag =@"#streetlight";

}

if([[issuesCategory objectAtIndex:row]
isEqualToString:@"Drainage"])

 {

 hashTag =@"#drainage";

 }

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Health
 Hazard"])

 {

 hashTag =@"#healthhazard";

 }

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Noise"])

 {

 hashTag =@"#noise";

 }

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Traffic

 Light"])

 {

 hashTag =@"#trafficlight";

http:///

Social Governance—TweetGovern

[316]

 }

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Street
 Cleaning"])
 {
 hashTag =@"#streetcleaning";
 }

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Damaged
 Parking"])
 {
 hashTag =@"#damagedparking";
 }

if([[issuesCategory objectAtIndex:row] isEqualToString:@"Others"])
 {
 hashTag =@"#others";
 }
}

7. Open your Storyboard, and create another UIViewController on it. Change its
ideniier to createview, and add a UIPickerView object from the object library,
as well as a UILabel and UIButton. Change the text on the UIButton to Next,
and connect it to the IBAction – createIssue model on the UI as shown in the
following screenshot:

http:///

Chapter 10

[317]

8. Now, when we click on the Next buton, the createIssue IBAction is ired. Here
we show the inbuilt tweet modal pop-up, and preill it with the @tweetgovern tag

and the hashTag for the category.

- (IBAction)createIssue:(id)sender {

 if([TWTweetComposeViewController canSendTweet])

 {

 TWTweetComposeViewController *tweetViewController =

 [[TWTweetComposeViewController alloc] init];

 [tweetViewController setInitialText:[[NSString

 alloc]initWithFormat:@"@tweetgovern %@",hashTag]];

 [tweetViewController

 setCompletionHandler:^(TWTweetComposeViewControllerResult result)

 {

 NSString *tweetOutput;

 switch (result) {

 case TWTweetComposeViewControllerResultCancelled:

 tweetOutput = @"Tweet sending Cancelled by User ";

 break;

 case TWTweetComposeViewControllerResultDone:

 tweetOutput = @"Tweet sent successfully";

 break;

 default:

 break;

 }

 [self dismissModalViewControllerAnimated:YES];

 }];

 [self presentModalViewController:tweetViewController
animated:YES];

 } // end of if canSendTweet

}

9. The users can add more informaion to the tweet they like, although it should be
within 140 characters. Note the Add Locaion opion in the tweet box; we will need
this to be used always, so that we can determine the locaion of the tweet while
searching, voing, and for other aspects of our TweetGovern app.

http:///

Social Governance—TweetGovern

[316]

10. Coming back to the voing part, we missed adding a vote buton to the
UITableView in TweetGovernSecondViewController, which handles the view
for the nearby issues View. Open the TweetGovernSecondViewController.m

ile, and within the cellForRowAtIndexPath method, add the following code to
add a UIButton the table cell, and ire an event when the buton is clicked.

UIButton *cellButton = [UIButton

 buttonWithType:UIButtonTypeRoundedRect];

 [cellButton setFrame:CGRectMake(260.0,30.0,45.0,20.0)];

 [cellButton setTitle:@"Vote" forState:UIControlStateNormal];

 [cellButton addTarget:self

 action:@selector(voteForTweet:event:)

 forControlEvents:UIControlEventTouchUpInside];

 [cell addSubview:cellButton];

11. Note the CGRectMake funcion, which deines the placement of your buton on the
table view cell. You can play around with the values if you wish to. The following line
of code is important here, since it deines a method voteForTweet that will be
ired on the buton-click using the UIControlEventTouchUpInside deiniion.

addTarget:self action:@selector(voteForTweet:event:)
 forControlEvents:UIControlEventTouchUpInside

What is the voteForTweet method, and how does it help us for voing ? Read on...

12. Every tweet has an API with Twiter, which shows its full informaion, where it was
tweeted from and by whom, as well as the retweet count. We use the retweet count
as the basis for our vote. Every ime a user clicks on the vote buton, he is in fact
retweeing the said tweet. This increments the retweet count, and hence forms the
basis of our voing algorithm.

13. For example, the following Twiter API URL shows the retweet count for one of our
sample issues created, which returns a retweet count of 2, since we retweeted by
two diferent twiter accounts to check its validity: http://api.twitter.com/1/
statuses/show.json?id=129341559333339136

http://api.twitter.com/1/statuses/show.json?id=129341559333339136
http://api.twitter.com/1/statuses/show.json?id=129341559333339136
http:///

Chapter 10

[317]

14. Another beauty of the Twiter API is that you can retweet a tweet only once!, which
solves another issue for our app – SPAM and increasing vote counts. If you try voing
a number of imes, you should see the following message in your Debug Window:

{"errors":"sharing is not permissable for this status (Share
validations failed)\nsharing is not permissable for this status
(Share validations failed)\nsharing is not permissable for this
status (Share validations failed)"}

15. Now the voteForTweet IBAcion is deined as follows:

- (IBAction)voteForTweet:(id)sender event:(id)event

{

 NSSet *touches = [event allTouches];

 UITouch *touch = [touches anyObject];

 CGPoint currentTouchPosition = [touch

 locationInView:self.myTweetTable];

http:///

Social Governance—TweetGovern

[316]

NSIndexPath *indexPath = [self.myTweetTable
 indexPathForRowAtPoint: currentTouchPosition];

NSString *currentTweetId = [tweetsIds
 objectAtIndex:indexPath.row];

// Make sure to import the Accounts.h file (iOS 5 Twitter API),

// #import <Accounts/Accounts.h>

ACAccountStore *accountStore = [[ACAccountStore alloc] init];

ACAccountType *accountType = [accountStore
 accountTypeWithAccountTypeIdentifier:
 ACAccountTypeIdentifierTwitter];

[accountStore requestAccessToAccountsWithType:accountType
withCompletionHandler:^(BOOL accessGranted, NSError *error)

{

 if(accessGranted)

 {

 NSArray *accountsArray = [accountStore
 accountsWithAccountType:accountType];

 if ([accountsArray count] > 0)

 {

// Use the first Twitter account from your iOS device

 ACAccount *twitterAccount = [accountsArray
 objectAtIndex:0];

 NSString *url = [NSString stringWithFormat:
 @"http://api.twitter.com/1/statuses/retweet/%@.json",
 currentTweetId];

TWRequest *postRequest = [[TWRequest alloc] initWithURL:[NSURL
URLWithString:url] parameters:nil requestMethod:TWRequestMethodPO
ST];

 [postRequest setAccount:twitterAccount];

 [postRequest signedURLRequest];

 [postRequest performRequestWithHandler:^(NSData *responseData,

 NSHTTPURLResponse *urlResponse, NSError *error)

 {

 NSString *output = [[NSString alloc] initWithData:responseData

 encoding:NSUTF8StringEncoding];

http:///

Chapter 10

[317]

 NSLog(@"%@",output);

 [self performSelectorOnMainThread:@selector(self)
 withObject:output
 waitUntilDone:NO];

 }];

 }

 } // end of if accessGranted

 }];

}

16. The irst four lines on the previous code convert the user's touch into a
corresponding table row ID by using a combinaion of the UITouch and the
CGPoint classes. The CGPoint currentTouchPosition = [touch
locationInView:self.myTweetTable]; code gets us the current posiion of
the touch locaion, with respect to our tweet table; note this is in the x and the y

co – ordinate system. The NSIndexPath *indexPath = [self.myTweetTable
indexPathForRowAtPoint: currentTouchPosition]; code converts this
x and y posiion to a corresponding table cell row posiion, which will then we be
used to determine the tweet Id of the said associated vote buton as follows:

NSString *currentTweetId = [tweetsIds objectAtIndex:indexPath.row];

17. Next, we create a Twiter Account Store Object (new in iOS5), and use the irst
available and enabled Twiter account informaion on the iPhone or any other iOS
device as the main Twiter account (since there can be muliple Twiter accounts
enabled in your iPhone now).

18. We then create a TWRequest object, which is basically an HTTP encapsulaion of
the Twiter HTTP API, and call the Re-Tweet API for that Tweet ID, passing the Tweet
ID obtained earlier to this API call.

19. Before doing so, we need to sign the API call by using [postRequest
signedURLRequest];, which allows our applicaion to use the device-enabled
Twiter account informaion on the user's behalf. We then retweet the tweet with
the performRequestWithHandler method. For now, we are just logging the
output of this request, but we can extend it to show a visual conirmaion of the
vote to the end-user.

http:///

Social Governance—TweetGovern

[316]

20. Running the applicaion now gives the following result:

21. Clicking on Next ater making an issue-type selecion shows the next page, which is
basically a Twiter modal box.

http:///

Chapter 10

[317]

22. Ater you are done tweeing about an issue, go back to the home screen, and select
Show Nearby Issues. This should load the following screen:

23. On the About TweetGovern page, we show some Twiter love, by using the oicial
twiter logo from https://twitter.com/about/resources/logos.

http:///

Social Governance—TweetGovern

[316]

What just happened?
We complete our app by adding the Create an Issue and Voing opion in our app. We used
the Twiter API extensively throughout the various stages of the app, so the last View is a
tribute to Twiter with their oicial logo.

We learnt a new trick of determining a UI element from X and Y values on the screen, using
indexPathForRowAtPoint method of the UITablewView class. We also looked at the
two new features of iOS5 Twiter integraion: Tweet Box and the TWRequest class.

The source code for the full app is available on the book's website, the author's blog
(http://justgeeks.in), and Github account (https://github.com/imzeeshan). So
any of our readers can fork it, contribute to it and hopefully add new exciing features to
TweetGovern, and maybe see those changes on the iTunes Store, since we will submit the
app to the Apple iTunes Store, hoping that we are in.

Have a go hero - adding search to TweetGovern

You will noice that we modeled our home screen with four opions: Create an Issue, Show

Nearby Issues, About TweetGovern, and Search for Issues. While we discussed the irst
three in quite detail, we leave the fourth one – Search for Issues – as an exercise to the
users. Add your own UIViewController, and add search capability to the app.

Use simple JSON and NSURL requests to the Twiter API for search calls
that do not need authenicaion. For calls that need authenicaion, use
the TWRequest class.

We are eager to put your code in our app!!

Pop quiz

1. How does one go about coniguring his/her Twiter account in the iPhone, so that
the new iOS 5 Twiter APIs can be used in our apps?

a. Install the Twiter app from iTunes store.

b. Through the Seings page on your iOS device.

2. Can you use muliple twiter accounts within your iOS applicaions?

a. Yes.

b. No

3. How do you perform a request against the Twiter API?

a. HTTP request through NSURLRequest

b. TWRequest

http://justgeeks.in
http:///

Chapter 10

[317]

Summary

In this chapter, we learned how to use the new iOS 5 Twiter integraion to build a complete
iPhone app from scratch, using Twiter API as the core of the app and smart programming
logic to enable the app behavor as needed, making our app socially aware by default!

Mobile app developers should keep the following two golden rules in mind while developing
or staring their next big iPhone app:

 � Design is the key

 � Simplicity while choosing the applicaion logic

In our case, had we chosen to build a TweetGovern website/backend/CMS irst, API
thereater, and business logic for our app later on, we would have never completed the app
in ime. So, we chose the other way round, and used Twiter as our driving force for both,
backend and social.

Speciically, we covered:

 � Building a home screen for our app

 � Detecing the user's locaion, and showing nearby issues

 � Creaing and voing for issues

 � Building the TweetGovern – social governance app

That concludes our last chapter for iPhone Locaion Aware Apps – Beginner's Guide. By now
you should have a irm grip on building locaion-based applicaions for iOS 5, with locaion,
maps, oline storage, Twiter integraion, and speech recogniion APIs from Nuance. It has
been my sincere efort to teach the readers of this book, how to use the readily available
technology to make revenue-generaing iOS apps. Companies such as StackMob.com also
helps avoid the back-end work for new start-ups by providing the back-end infrastructure
to store the business logic. All that the developers have to do now is build a great app
and scale.

This book is not the end of our learning. I will be maintaining a forum for this book at
http://books.justgeeks.in, where I will be updaing the source code for our
ive apps discussed in the book, as well as discussions, suggesions, and errata.

http://books.justgeeks.in
http:///

http:///

Pop-Quiz Answers

Chapter 1, The Location-Based World

Pop quiz – play safe with location !
1 b

2 b (Pull method, since it queries for locaion informaion only
on demand and not coninuously, thereby saving power)

3 b,

Chapter 2, The Xcoder’s World

Pop quiz – so you think you can Xcode
1 b (No, only Intel-based Macs are supported)

2 b (LLVM)

http:///

Pop-Quiz Answers

[350]

Chapter 3, Using Location in your iOS Apps – Core
Location

Pop quiz – location, location, and location
1 b

2 b

3 [CLLocationManager
locationServicesEnabled]

4 c

5 b

Chapter 4, Using Maps in your iOS apps - MapKit

Pop quiz – map mania
1 c

2 b

3 a

Chapter 5, Weather App - WeatherPackt

Pop quiz – weather alert
1 b

2 c

http:///

Appendix

[351]

Chapter 6, Events App - PacktEvents

Pop quiz – have a blast with events
1 Event Kit Framework and Event Kit UI Framework

2 By using the canSendTweet method from
the TWTweetComposeViewController
-[TWTweetComposeViewController
canSendTweet])

Chapter 7, Advanced Topics

Pop quiz – the rocket science
1 a

2 a

3 d

Chapter 10, Social Governance - TweetGovern

Pop quiz

1 b

2 a

3 b

http:///

http:///

Index

Symbols

#damagedparking hash tag 322
#drainage hash tag 322
#garbage hash tag 322
#graii hash tag 320, 322
#healthhazard hash tag 322
#noise hash tag 322
#others hash tag 322
#potholes hash tag 322
#streetcleaning hash tag 322
#streetlight hash tag 322
#traiclight hash tag 322
@tweetgovern handle 320
@tweetgovern tag 339

A

About TweetGovern page 345
accelerometer

about 229, 230
accelerometerAcive properies 230
accelerometerAvailable properies 230
data accessing, moion manager used 231-234

accelerometerAcive properies 230
accelerometerAvailable properies 230
acive, state 237
Add Locaion opion 339
AddressBook format 74
AGPS 8, 12
airport category, foursquare category hierarchy

airport food court 252
airport gates 252

airport lounges 252
airport terminals 252

annotaions
about 117
adding, to maps 117-119
custom map annotaions 123-125
draggable annotaions 119-121

AnnotaionView draggable 122
AOL

Patch.com 283
API endpoints

URL 255
API key

URL 91
AppDelegate class 237
App icon 162
Apple iPhone 14
Apple’s rich documentaion

URL 170
applicaion

didFinishLaunchingWithOpions: method 238
scheduleLocalNoiicaion method 243

applicaion badge 241
applicaionDidBecomeAcive: method 238
applicaionDidEnterBackground: method 238
applicaionWillEnterForeground: method 238
applicaionWillResignAcive: method 238
applicaionWillTerminate: method 238
AR

about 12, 213
adding, to iPhone app 213-219

ARC 33

http:///

[354]

assistant editor 30
Assisted GPS. See AGPS

Augmented Reality. See AR

Auth coniguraion value 254
authenicaion, Patch News API 284
authorizaionStatus method 81
author, taxonomy type 284, 285
author type, taxonomy type 287, 288
Automaic Reference Couning. See ARC

avatar icon 322

B
background app execuion

about 235
iOS applicaion life cycle 236-240
local noiicaions 241
local noiicaions, using 241-245
locaion 236
push noiicaions 240
UILocalNoiicaion class 241

background, state 237
badgeStepper object 241

C

camera enhancement 32
cancelAllLocalNoiicaions method 243
cancelLocalNoiicaion method 243
canSendTweet method 212
category_id (integer) 318
category_name(text or varchar) 318
cellForRowAtIndexPath delegate method 253
cellForRowAtIndexPath method 202, 207, 272,

324, 333, 340
cellForRowAtIndexPath UITableView delegate

method 324
cell ID posiioning 21
cell tower triangulaion 21
change event 224
Check-in Here buton 280
checkin IBAcion 276
check-ins 12
city name

locaion data, convering into 142
CLGeocode object 74
CLGeocoder

about 74

MKReverseGeocoder 74
CLGeocoder class 75
CLHeadingclass object 222
CLHeading object 76, 222
CLLocaionManager class 76, 81, 85
CLLocaionManagerDelegate delegate protocol

76
CLLocaionManager object 72
CLLocaion object

about 72, 81, 84, 85, 226, 227
coordinate property 84
course property 84
horizontalAccuracy property 84
locaion updates, receiving in applicaion 85-87
methods 85
speed property 84
imestamp property 84
user locaion, with core data 90
vericalAccuracy property 84

CloudMade

support for 130
URL 130

CloudMade API

OpenStreetMaps, using 131-133
used, for building apps 130

CLPlacemark object 74, 75, 147
CLRegion class 87, 90
CMAccelerometerData object 229
CMDeviceMoion object 229
CMGyroData object 229
CMMagnetometerData object 229
connecionDidFinishingLoading method 259
connecionDidFinishLoading delegate method

259
connecionDidFinishLoading method 183, 187,

251, 259, 272, 276, 290, 293, 332
control segment, GPS 18
coordinate property 84
coord variable 194
Core Locaion API 15
core locaion framework

about 70
course 75
device GPS method 222
direcion, heading informaion used 75
geocoding 74
heading 75

http:///

[355]

locaion debugging 70, 71
magnetometer method 222
region monitoring 73, 74
reverse geocoding 74, 75
services 72
signiicant change 73
standard locaion 72, 73

core locaion manager
about 76
GPS, used by commercial 13
GPS, used by government 13
GPS, used by US military 13
locaion service availability, checking for 77-79
methods 76
user authorizaion, using 80, 81

CoreLocaionManager Delegate direcive 40
core moion

about 229
accelerometer 229, 230
CMAccelerometerData object 229
CMDeviceMoion object 229
CMGyroData object 229
CMMagnetometerData object 229
conclusion 235
device moion 229, 230
device moion data 235
gyroscope 229, 230
magnetometer 229, 230
manager framework 229
pull method 230
push method 230
using, steps 230

CORS
about 286
URL 286

course

about 75, 222
used, for direcion 226
used, for direcion in app 226-228

course property 84
Cross-Origin Resource Sharing Requests. See

CORS
currentLocaionLabel variable 328
custom data, property 241
custom map annotaions 123-125

D

damaged parking category
hash tag 322

dashcode 30
Delegate funcion 71
Department of Defense. See DOD
desiredAccuracy properies 72
desiredAccuracy values 73
detailNews, Second View Controller instance

variable 308
Detect Locaion buton 43, 72, 75, 78
device moion

about 229, 230
deviceMoionAcive properies 230
deviceMoionAvailable properies 230

deviceMoionAcive properies 230
deviceMoionAvailable properies 230
device moion data 235
DidEndDocument method 95
didEndElement method 154, 169
didEnterRegion delegate method 297
didEnterRegion method 88, 90
didExitRegion delegate method 297
didExitRegion method 90
didFailWithError event 87
didFinishLaunchingWithOpions method 165
didReceiveData method 94, 100
didSelectRowAtIndexPath method 202, 303, 330
didStartElement method 94, 154, 169
didUpdateHeadingmethod 224
didUpdateLocaion method 115
didUpdateToLocaion delegate method 186
didUpdateToLocaion event method 153
didUpdateToLocaion method 87, 93, 112, 137,

138, 183, 227, 272, 274, 328
didUpdateToLocaionmethod 224
direcion, course used

about 226
in app 226-228

direcion, heading used
about 222
app, preparing for direcion 222
in app 223, 224, 225
magnetometer 222

http:///

[356]

direcions
using, with locaions 222

distanceFilter properies 72
distanceFilter property 72
distanceFromLocaion method 85
Documents Tree View 148
DOD 13
Download buton 148
draggable annotaions 119-122
drainage category

hash tag 322

E
EKCalendar class 206
EKEvent class 206
EKEventEditViewController controller 210
EKEventEditViewController object 207
EKEventStore class 206
Email app 241
EndElement call 94
EndElement parser method 94
event categories

events display, iltering by 197-204
evenful

about 65
categories 197, 198
features 65

evenful.com 179
event kit framework

used, for adding events to iPhone calendar
205-209

Event Kit UI framework 205
events

adding to iPhone calendar, event kit framework
used 205-209

ploing, on map 191-196
retrieving, with SQLite 181-190
storing, with SQLite 181-190

Events:SQLite applicaion 192
events app 179
events display

iltering, by event categories 197-204
events variable 92
exit trigger 299
Ext.uil.GeoLocaion package 62

F
Factual

URL 66
ireDate property 242
Firefox SQLite manager

URL 148
FirstViewController.h ile 308
FirstViewController.m ile 308
forecast

URL 149
format, taxonomy type 284, 285, 287
foundCharacters method 154, 169
Foursquare

about 63, 247
API consumpion, use case 64
developers page, URL 64
funcions supported, URL 64
HP Web OS 267
user authenicaion 277

foursquare API. See foursquare venue API

foursquareAuth class 277
foursquare authenicaion 269
foursquare client ID 248
foursquare search API 263-266
foursquare venue API

airport category 252
API calls, list 248
categories 248
categories, consuming 248-254
connecionDidFinishLoading method 251
consuming 248
gefoursquareCategories method 250
iniializeDatabase method 250
INSERT statement 251
NSURLConnecion call 250
popular venues 255-261
recommended venues 255-261
showCategoriesFromLocal funcion 252
UISegmentedControl instance 255
UITableView instance 255
venues, searching for 262

G

Galileo Posiioning System 8
gamiicaion strategy 247

http:///

[357]

garbage category
hash tag 322

Geo API Object 65
geocodeAddressDicionary:compleionHandler

method 74
geocodeAddressString:compleionHandler

method 74
geocodeAddressString:inRegion

compleionHandler method 74
geocodes 12
geocoding

about 12, 23, 74
geocodeAddressDicionary:compleionHandler

method 74
geocodeAddressString:compleionHandler

method 74
geocodeAddressString:inRegion

completionHandler method 74
methods 74

Geocoding API
URL 23

geo fencing 12
Geo Fencing support

adding 295-298
Geographic Informaion System. See GIS

geolocaion getCurrentPosiion funcion 51
geolocaion.getCurrentPosiion PhoneGap

method 54
Geolocaion object 51
GeoNames API

about 136, 142
CLPlacemark object 147
Documents Tree View 148
Download buton 148
Firefox SQLite manager, URL 148
Hello Locaion SQLite example 148
Show Package Contents opion 148
SQLite database editor, URL 148
URL 147
used, for covering locaion data into city name

142-146
user_posiion table 148
Weather App project 148

GeoTagging 12
getAccelerometerData method 233
getDatabaseFullPath method 137
gefoursquareCategories method 250

getNewsDetails:newsTitle; method 308
getSqliteLocaion acion 152
getSqliteLocaion method 140
Gigaom

URL 13
GIS 11, 12
Git 30
Global Posiioning System. See GPS

GLONASS 8, 12
glyphish-icons set 327
Google

locaion based services, consuming 9-11
Google Maps

URL 26
Google Maps API

using, to detect locaion 23-25
Gowalla 64
GPS

about 8, 11, 17
used, by commercial 13
used, by government 13
used, by US military 13

GPS, components
control segment 17, 18
space segment 17, 18
user segment 17

graii category
hash tag 322

gyroAcive properies 230
gyroAvailable properies 230
gyroscope

about 229, 230
gyroAcive properies 230
gyroAvailable properies 230

H

heading
about 75, 222
used, for direcion in app 223-225

headingAccuracy property 76
headingAvailable method 222
headingFilter variable 224
health hazard category

hash tag 322
Hello_EventsViewController.h ile 183

http:///

[358]

Hello_foursquareFirstViewController.h ile
249, 257

Hello_foursquareFirstViewController.m ile 249
Hello_foursquareSecondViewController.h class

257, 264
Hello_foursquareSecondViewController.h ile

256, 257
hello locaion

building, PhoneGap used 49-53
building, Titanium Appcelerator used 54-57
extending, for local search 99
extending, for nearby events 90-95
with Sencha Touch 59

Hello Locaion SQLite example 148
Hello_LocaionViewController class deiniion

40
Hello_LocaionViewController.xib ile 223
Hello_NewsViewController.h ile 289
Hello_NewsViewController.m ile 290
Heroku for Mobile 318
Home buton 235
home screen

default locaion, seing up 168, 169
deining 165
didFinishLaunchingWithOpions method 165
initWithNibName method 167
ViewController main ile 166
viewDidLoad method 166

horizontalAccuracy property 84
HP Web OS 267
HTML5

about 12, 46
by Apple, URL 48
by Google, URL 48
by Mozilla Foundaion, URL 48
features 46
markup 47
tags 46

hyper local applicaion 283
HyperLocal News

about 283
Outside.in 283

I

IBAcion 256
iCloud 31, 33

IDE 29
id parameter 276
iMessage 31, 33
inacive, state 237
inCategories lag 200, 202, 272
inCheckin lag 278
indexPathForRowAtPoint method 346
indoor navigaion 26
inEvents lag 202
Info.plist ile 222, 224, 235
inForeCast lags 161
iniializeDatabase method 184, 250, 290
initWithCoordinate:alitude

horizontalAccuracy:vericalAccuracy:course:spe
ed:imestamp: 85

initWithCoordinate:alitude:horizontalAccuracy:
vericalAccuracy:imestamp: 85

initWithLaitude
longitude: method 85

initWithNibName method 167
initWithURL:parameters:requestMethod: 210
inLiveWeather lags 161
inSearch lag 265, 266
insert statement 293
instaniateViewControllerWithIdeniier method

312
instruments tools

about 31, 33, 225
automaion 33
network connecions instrument 33
system trace 33

integrated build system 31
Integrated Development Environment. See IDE
interface builder 30
iOS 5

about 31
features 31

iOS 5, features
air play, mirroring for iPad 2 32
calendar 32
camera and photo enhancements 32
computer-free operaion 32
game center 32
iCloud 31, 33
iMessage 31, 33
mail 32
mulitasking gestures 32

http:///

[359]

newsstand 32
noiicaion center 32
reminders 32
safari 32
Speech Recogniion (Siri) 33
Twiter 31
twiter integraion 32
Wi-Fi Sync 32

iOS 5 SDK
and Xcode 4.2, new features 33, 34
new features 32, 33

iOS applicaion life cycle
about 236-240
acive, state 237
applicaion

didFinishLaunchingWithOptions: method
238

applicaionDidBecomeAcive: method 238
applicaionDidEnterBackground: method 238
applicaionWillEnterForeground: method 238
applicaionWillResignAcive: method 238
applicaionWillTerminate: method 238
background, state 237
inacive, state 237
methods 238
not running, state 237
states 237
suspended, state 237

iOS device
background locaion tasks 236

iOS SDK
core locaion framework 70
downloading, from Apples Developer Site 36

iOS simulator 30
iPhone

locaion track, turning of 15, 16
iPhone app

AR, adding 213-219
Twiter capabiliies, adding 210-212

iPhone calendar

events adding, event kit framework used
205-209

iphone-sdk 130
issue_category(varchar or integer) 317
issue_descripion 317
issue_id (integer) 317
issue_lat 317

issue_lon 317
issuesCategory array 336
issue_itle(text or varchar) 317
items object 101

J

jsonContent variable 331
JSONObjectWithData method 101
JSON request 346

K
kCLAuthorizaionStatusAuthorized status 81
kCLAuthorizaionStatusDenied status 81
kCLAuthorizaionStatusNotDetermined status

81
kCLAuthorizaionStatusRestricted status 81
kCLLocaionAccuracyBest, constant value 73
kCLLocaionAccuracyBestForNavigaion, con-

stant value 73
kCLLocaionAccuracyHundredMeters, constant

value 73
kCLLocaionAccuracyKilometer, constant value

73
kCLLocaionAccuracyNearestTenMeters, con-

stant value 73
kCLLocaionAccuracyThreeKilometers, constant

value 73

L

Last.fm API 65, 97, 98
Laitude text ield 78
laitudeText outlet 42
Layar

about 213
URL 213

Layar Player 213
Layar Player SDK

URL, for downloading 213
LBA 12
LBS

about 7, 8
consuming, with Google 9-11
example 8
requisites 8
used, in iPod Touch 14

http:///

[360]

uses 13
libsqlite3.0.dylib library 136
live ix it 31
live weather

URL 149
LLDB Debugger 31
LLVM compiler 33
loadingIcon 153
localNoiicaion object 242, 243
local noiicaions

about 241
adding, to WeatherPackt applicaion 246
UILocalNoiicaion class 241
using 241-245

local search 247
local search app

building, with foursquare 100-102
hello locaion, extending 99

Locaion-Based Adverising. See LBA
locaion-based

APIs 63
applicaions 63
events and entertainment 63
SDKs 63
search, for stories 285

Locaion-Based Services. See LBS
locaion data

convering, into city name 142
locaionDetect 227
locaionDetect funcion 82
locaion detecion

Skyhook Wireless’ locaion 19
through Google Maps API 23-25
through SkyHook Wireless Loki framework

22, 23
through Wi-Fi 19

locaionDetect method 85, 112, 115, 118
Locaion Labs

about 66
URL 66

locaionManager:didEnterRegion 74
locaionManager:didExitRegion 74
locaionManager:didUpdateToLocaion:fromLoc

aion method 85
LocaionManager object 41, 86
locaion, Patch News API

name-based search 286

locaion services
pull service 19
push service 18

locaionServicesEnabled method 80
locaion tracking

in iPhone, turning of 15, 16
Loki.com 23
Longitude text ield 78

M

magneicHeading property 76
magnetometer

about 222, 229
magnetometerAcive properies 230
magnetometerAvailable properies 230

magnetometer 230
magnetometerAcive properies 230
magnetometerAvailable properies 230
map

dynamics, adding 197
events, ploing 191-196

map annotaions
customizing 126-128

map.centerCoordinate method 115
Map Co-Ordinates

to Map Points 108
to Points 108

map geometry 106, 107
MapKit framework

about 105
capabiliies 106
conversion funcions 108
co-ordinates 108
Map co-ordinate system 108
map geometry 106, 107
Mercator projecion 107
using, in app 108-[114

map overlays

about 126
map annotaions, customizing 126-128
uses 126

Map Points

to Map Co-Ordinates 108
to Points 108

maps

annotaing 117

http:///

[361]

annotaions, adding 117-119
panning 115
zooming 115

mapView:viewForAnnotaion delegate funcion
121

mapView class 133
MapView component 306
Master Control Staion. See MCS

MCS 17
MD5 signature 292
Mercator projecion model 107
Message App 241
Michael Pidwirny 107, 108
MKAnnotaion protocol 117, 126
MKAnnotaionView class 117, 119
MKCircleView 126
MKCoordinateRegion object 111

MKMapview component 129
MKMapViewDelegate delegate 121
MKMapView object 110
MKOverlayView, subclasses

MKCircleView 126
MKPolygonView 126
MKPolylineView 126

MKPointAnnotaion object 117, 120, 197
MKPolygonView 126
MKPolylineView 126
MKReverseGeocoder 74
MKUserTrackingModeFollow 129
MKUserTrackingModeFollowWithHeading 129
monitoredRegions property 74
moion manager

using, to access accelerometer data 231-234
MutableString variable 92

N

names-based search
for locaion 286

network connecions instrument 33
newsstand 32
noise category

hash tag 322
no-special character based keyword 198
noiicaion center 32
noiicaion type, property 241

not running, state 237
NSArray directoryPath variable 137
NSArray variable 252
NSDateFormater class instances 259
NSDocumentDirectory parameter 137
NSJSONReadingAllowFragments opion 100
NSJSONSerializaion class 100, 102, 312
NSJSONSerializaion object 183
NSString object 81
NSString variable 199
NSURLconnecion 153
NSURLConnecion call 250
NSURLConnecion class 91, 93, 98
NSURLConnecion object 183, 292
NSURLConnecion request 259
NSURLCoonecion 93
NSURLRequest 93
NSUserDefaults class 169
NSXMLParser class 91, 94, 169
Nuance Mobile SDK 174

documentaion, URL 175
NULL value 282
numberOfRowsInComponent method 336
numberOfRowsInSecion delegate method 325

O
objectAtIndex 191
objectForKey 191
Object-relaional mapping. See ORM
oline map

about 130
creaing 133

oline-online app 180
onDeviceReady funcion 51
onError funcion 52
onSuccess funcion 52
OpenGL ES Debugging 33
OpenStreetMaps

using, with CloudMade API 131-133
ORM 90
others category

hash tag 322
outdoor navigaion 26
Outside.in 283

http:///

[362]

P

PacktEvents
about 179, 180
app, building 219
architecture 180
events, retrieving with SQLite 181-190
events, storing with SQLite 181-190
Nuance Speech Mobile SDK using 180
oline-online app 180
tabs 180

PacktLocal app

about 278
add venue endpoint, implemening 282
building 268-282
UI, building 267
venue informaion, saving on device 268

PacktNews applicaion
building 299-312

Palm WebOS. See HP WebOS
panning

achieving, ways 115
parserDidEndDocument method 169
Patch.com 284
Patch News API

about 283
author type, taxonomy type 287, 288
components 284
consuming 286-294
format, taxonomy type 287
HyperLocal News 283
verical, taxonomy type 286, 287

Patch News API, components
authenicaion 284
stories, inding by locaion 285
stories, inding by names 286
taxonomy 284

performRequestWithHandler method 343
PhoneGap

about 48
used, for building WeatherPackt applicaion

174
using, to build hello locaion app 49-53

photo enhancement 32
Points

to Map Co-Ordinates 108
to Map Points 108

PostGIS

URL 296
potholes category;hash tag 322
presentLocalNoiicaionNow method 243
process device moion data. See device moion

data

ProgrammableWeb
about 135
URL 135

Pull method 230
pull service 19
Push method 230
push noiicaions 240
push service 18
pushViewController method 304, 312

R

RAD 30
Radio signals. See RFID
Rapid Applicaion Development. See RAD

Read Accelerometer buton 234
readCategoriesFromApi method 199
readCategoriesFromLocal method 199, 201
readEventFulApi method 183, 186, 198
readEventsFromLocal method 189, 194
readNews method 290, 292
region.center property 115
region.ideniier property 299
region monitoring

about 73, 74
locaionManager:didEnterRegion 74
locaionManager:didExitRegion 74
monitoredRegions property 74
startMonitoringForRegion:desiredAccuracy

method 74
startMonitoringForRegion method 74
stopMonitoringForRegion method 74

reminders 32
repeatInterval property 243
Research and markets

URL 13
resignFirstResponder method 265
returnCategoryIdForName:categoryName

method 199
returnCategoryIdForName:categoryName

method 202

http:///

[363]

returnCategoryIdForName method 203
retweet 331
reverseGeocodeLocaion:compleionHandler

method 75
reverse geocoding

about 12, 74, 75
CLGeocoder class 75
reverseGeocodeLocaion:compleionHandler

method 75
RFID 26
Right Detail atribute 304
Root.plist ile 170
Root.string ile 170
Round Rect Buton 40
Russian Global Navigaion Satellite System. See

GLONASS

S

SAAS 63
Safari 32
scheduled ime, property 241
scheduleLocalNoiicaton method 243
scheme 35
science geek

URL 106
Search API 262
searchBar:textDidChange method 265
searchBarCancelButonClicked method 265
searchBarSearchButonClicked method 265
searchBarTextDidBeginEdiing method 265
searchBarTextDidEndEdiing method 265
searchForVenues method 265
Second View Controller instance variable 308
SeeClickFix

URL 316
segues 299
select statement 252
Sencha Touch

about 59
for standalone HTML5 web apps 59-63
URL 63

setCenterCoordinate method 115
setRegion:animated method 115
setRegion method 115
Seings Bundle 170
setUserTrackingMode method 129

sharedApplicaion method 243
showAlert method 153
showCategoriesFromLocal funcion 252
showForeCast method 153, 159
showLiveWeather acion 152
showLiveWeather method 153
Show Map buton 110
showNearbyVenues method 272
Show Package Contents opion 148
showPopularVenue method 258
showTrendingVenues method 261
showVenuesFromLocal method 273
signiicant change locaion service

about 73
startMonitoringSigniicantLocaionChanges

funcion 73
stopMonitoringSigniicantLocaionChanges

funcion 73
SimpleGeo

services 66
URL 66

Siri 33
SkyHook Wireless coverage

URL 19
Skyhook Wireless’ locaion 19
SkyHook Wireless Loki framework

using, to detect locaion 22, 23
Slider object 226
social governance 316
Sotware-as-a-Service. See SAAS

space segment, GPS 18
spaial database 12
Speech Recogniion. See Siri

speed property 84
SQLite

events, retrieving with 181-190
events, storing with 181-190

sqlite3_exec() method 138
sqlite3_open method 137
sqlite3_step method 141
SQLite database

used, to retrieve user locaion 140, 141
used, to store user locaion 136-140

SQLite database editor
URL 148

Stackmob

about 318

http:///

[364]

city-based Issues object 319
StackMob

URL 317
Stackmob, city-based Issues object 319
standalone HTML5 web apps

Sencha Touch for 59-63
standard locaion

about 72, 73
CLLocaionManager object 72
CLLocaion object 72
desiredAccuracy values 73
distanceFilter property 72
startUpdaingLocaion funcion 72
stopUpdaingLocaion funcion 72

startAccelerometerUpdates method 233, 234
startAccelerometerUpdatesToQueue method

233, 234
StartElement call 94
startMonitoringForRegion:desiredAccuracy

method 74
startMonitoringForRegion method 88
startMonitoringSigniicantLocaionChanges

funcion 73
startMonitoringSigniicantLocaionChanges

method 87
startUpdaingHeading method 76
startUpdaingLocaion funcion 72
startUpdaingLocaion method 41, 78, 85
stepperChanged IBAcion 243
stopAccelerometer funcion 233
stopAccelerometerUpdates method 230, 233
Stop buton 234
stopDeviceMoionUpdates 230
stopGyroUpdates 230
stopMagnetometerUpdates 230
stop methods

about 230
stopAccelerometerUpdates 230
stopDeviceMoionUpdates 230
stopGyroUpdates 230
stopMagnetometerUpdates 230

stopMonitoringForRegion method 74
stopMonitoringSigniicantLocaionChanges

funcion 73
stopNoiicaions acion 243
stopNoiicaions, UIButon variable 241
stopUpdaingHeading 76

stories, Patch News API
locaion-based search 285

storyboarding
about 33, 254, 299
PacktNews applicaion, building 300-312

storyboards 334
street cleaning category

hash tag 322
street light category

hash tag 322
subCategories variable 252
suspended, state 237
switchVenueType 256
switchVenueType IBAcion 261
system trace 33

T

Tabbed Applicaion template 164, 248, 323
TableView controller 303, 304
taxonomy, Patch News API

about 284
author type 284
format type 284
verical type 284

taxonomy table 290
Ti.Geolocaion.getCurrentPosiion method 57
imestamp property 76, 84
Titanium Appcelerator

used, for building hello locaion 54-57
Titanium.UI.createWindow method 57
Titanium UI framework (Ti.UI) 58
itleForHeaderinSecion method 97
itleForRow method 336
Ti.UI.createView method 57
tracking modes

about 129
MKUserTrackingModeFollow 129
MKUserTrackingModeFollowWithHeading 129

traic light category
hash tag 322

trueHeading property 76
TweetGovern

about 316
avatar icon 322
categories 322
category table 318
Google AdMob SDK, adding 322

http:///

[365]

hash tag 322
icon 322
issue, creaing 335-345
issues table 317
issue, voing for 335-345
MapKit framework, including 322
nearby issues, showing 326-333
search, adding 346
twiter approach used 317
UI, creaing 323-325
user locaion, detecing 326-333

TweetGovern, category table
category_id (integer) 318
category_name(text or varchar) 318

TweetGovern, issues table
issue_category(varchar or integer) 317
issue_descripion 317
issue_id (integer) 317
issue_lat 317
issue_lon 317
issue_itle(text or varchar) 317

TweetGovernSecondViewController class 331,
333

tweets array 333
Twiter

about 31
capabiliies, adding to iPhone app 210-212

Twiter Account Store Object 343
twiter framework

about 210
in iOS 5 210
TWRequest class 210
TWTweetComposeViewController class 210

Twiter Search API 319
@tweetgovern handle 320
TWTweetComposeViewController dialog-box

320
URL 321

TWRequest class 210, 346
TWRequest object 343
TWTweetComposeViewController class 210
TWTweetComposeViewController dialog-box

320
TWTweetComposeViewControllerResultCan-

celled 211
TWTweetComposeViewControllerResultDone

211

U

Ui

creaing, for TweetGovern 323-325
UIApplicaion Delegate object 237
UIApplicaionMain funcion 237
UIApplicaion method 240
UIBackgroundModes key 235, 236
UIButon variable

stopNoiicaions 241
UIImage class 97
UILocalNoiicaion class

custom data, property 241
noiicaion type, property 241
properies 241
scheduled ime, property 241

UINavigaionBar object 323
UINavigaionController class 312
UINavigaionItem item 323
UIPickerView object 336, 338
UIRequiredDeviceCapabiliieskey 222
UIResponder class 265
UISearchBarDelegate protocol 265
UISearchBar variable 263
UISegmentControl 258
UISegmentedControl instance 255, 258
UISlider object 223
UIStepper object 241, 243
UITableView Cell Clicked event 98
UITableView class 98
UITableViewDataSource delegate 151, 184
UITableView didSelectRowAtIndexPath method

97
UITableView instance 255
UITableView object 183
UITableView variable 91
UITablewView class 346
UITextField variable 231
UITextView elements 305
UIViewController class 271
UIViewControllersubclass opion 335
user authorizaion

authorizaionStatus method 81
CLLocaionManager class 81
using, for locaion 80, 81

user locaion
detecing 326-333

http:///

[366]

didUpdateToLocaion method 137, 138
GeoNames API 136
getDatabaseFullPath method 137
getSqliteLocaion method 140
laitude value 141
libsqlite3.0.dylib library 136
Locaion update example 136
longitude value 141
NSArray directoryPath variable 137
NSDocumentDirectory parameter 137
retrieving, SQLite database used 140, 141
sqlite3_exec() method 138
sqlite3_open method 137
sqlite3_step method 141
storing, SQLite database used 136-140

userLocaion object 81
userLocaion variable 257
user_posiion table 148
User Posiion table 182
user segment, GPS 17
Use StoryBoard opion 323

V

venue API 248
Venue class 272-275
venues

about 262
URL 262

venuesSearchBar.text property 265
venueTypeControl 258
vericalAccuracy property 84
verical, taxonomy type 284-286
ViewController main ile 166
ViewController.m ile 232
viewDidLoad funcion 41, 84, 122
viewDidLoad method 77, 81, 82, 86, 88, 92, 111,

118, 123, 127, 132, 153, 166, 183, 199,
227, 232, 234, 242, 258, 265, 276, 290,
296, 312, 327, 331, 336

ViewDidLoad method 153, 227
viewForAnnotaion delegate method 123
viewForAnnotaion method 121
viewForOverlay delegate method 128
View object 194

vote buton 340
voteForTweet IBAcion 341
voteForTweet method 340

W

W3C 48
Weather Alert funcion

URL, for creaing 162
weather alerts

URL 149
weather app

about 135
URL 135

Weather App project 148
WeatherBug API

about 148
app, running in emulator 160
array, declaring 151
didEndElement method 154
didStartElement method 154
didUpdateToLocaion event method 153
documentaion, URL 148
forecast, URL 149
foundCharacters method 154
funcions, declaring 151
getSqliteLocaion acion 152
inForeCast lags 161
inLiveWeather lags 161
live weather, URL 149
loadingIcon 153
NSURLconnecion 153
registraion, URL 148
showAlert method 153
showAlerts acion 152
showForeCast method 153
showForeCast method, deining 159
showLiveWeather acion 152
showLiveWeather method 153
UITableViewDataSource delegate 151
using 150-154, 160
variables, declaring 150
variables, declaring for forecast variables 151
ViewDidLoad method 153
weather alert funcion creaing, URL 162
weather alerts, URL 149

http:///

[367]

Weather Bug Live Weather API, calling 153
Weather queries 148
weather services 149

Weather Bug Live Weather API, calling 153
WeatherPackt applicaion

about 162
alerts page, adding 173
App icon 162
Apple’s rich documentaion, URL 170
building, with PhoneGap 174
default background images (launch images) 163
didEndElement method 169
didStartElement method 169
enabled_preference 171
foundCharacters method 169
IBAcion 175
local noiicaions, adding 246
NSUserDefaults class 169
NSXMLParser class 169
Nuance Mobile SDK, adding 174
parserDidEndDocument method 169
Root.plist ile 170
Root.string ile 170
Seings Bundle 170
seings page 169
Tabbed Applicaion template 164
text-to-speech 174-176
UIButon 175
weather API, formaing for display 169

WebGL 46
Wi-Fi

using, to detect locaion 19
WiFiSLAM 26
Wi-Fi Sync 32
Worldwide Web Consorium. See W3C

X

X-axis deviaion 226
Xcode

interface builder 31
toolkit 30
workspace window 31
Xcode IDE 31

Xcode3, transiioning from
about 34-36
hello locaion app, building 38-45
iOS Developer Account, signing up for 36
iOS SDK, installaion 37
Xcode 4.2 for Snow Leopard, downloading 36
Xcode, installaion 36

Xcode 4
about 29
features 30, 31
prerequisites 30

Xcode 4.2
and iOS 5 SDK, new features 33, 34

Xcode 4.2, features
about 33
ARC 33
instruments tools 33
LLVM compiler 33
locaion simulaion 33
OpenGL ES Debugging 33
storyboard 33

Xcode 4, features
assistant editor 30
build system, integrated 31
DashCode 30
instruments tool 31
integrated documentaion 31
interface builder 30
iOS Simulator, with Locaion Simulaion 30
live ix it 31
LLDB Debugger 31
tools 31
URL 31
version editor 31

Xcode IDE 31
Xcode project

App icon 162
default background images (launch images) 163
staring 162
Tabbed Applicaion template 164

xmlContent method 92
x property 76
XVALUE outlet 225

http:///

[368]

Y

Yahoo! Query Language. See YQL
y property 76
YQL 66
YVALUE outlet 225

Z

zoomEnabled property 115
zoom- in feature 334
zooming

about 115-117
controlling 115

zoom-out feature 334
z property 76
ZVALUE outlet 225

http:///

Thank you for buying
iPhone Locaion Aware Apps by Example
Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Efecive MySQL
Management" in April 2004 and subsequently coninued to specialize in publishing highly focused
books on speciic technologies and soluions.

Our books and publicaions share the experiences of your fellow IT professionals in adaping and
customizing today's systems, applicaions, and frameworks. Our soluion-based books give you the
knowledge and power to customize the sotware and technologies you're using to get the job done.
Packt books are more speciic and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused informaion, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cuing-edge
books for communiies of developers, administrators, and newbies alike. For more informaion, please
visit our website: www.PacktPub.com.

Wriing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is sill at an early stage and you would like to discuss
it irst before wriing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no wriing
experience, our experienced editors can help you develop a wriing career, or simply get some
addiional reward for your experise.

http:///

iPhone Applicaions Tune-Up
ISBN: 978-1-84969-034-8 Paperback: 256 pages

High performance tuning guide for real-world iOS projects

1. Tune up every aspect of your iOS applicaion for
greater levels of stability and performance

2. Improve the users' experience by boosing the
performance of your app

3. Learn to use Xcode's powerful naive features to
increase producivity

4. Proile and measure every operaion of your
applicaion for performance

Xcode 4 iOS Development
Beginner's Guide
ISBN: 978-1-84969-130-7 Paperback: 432 pages

Use the powerful Xcode 4 suite of tools to build
applicaions for the iPhone and iPad from scratch

1. Learn how to use Xcode 4 to build simple, yet
powerful applicaions with ease

2. Each chapter builds on what you have learned
already

3. Learn to add audio and video playback to your
applicaions

4. Pleniful step-by-step examples, images, and
diagrams to get you up to speed in no ime with
helpful hints along the way

Please check www.PacktPub.com for information on our titles

http:///

iPhone JavaScript Cookbook
ISBN: 978-1-84969-108-6 Paperback: 328 pages

Clear and pracical recipes for building web applicaions
using JavaScript and AJAX without having to learn
Objecive-C or Cocoa

1. Build web applicaions for iPhone with a naive
look feel using only JavaScript, CSS, and XHTML

2. Develop applicaions faster using frameworks

3. Integrate videos, sound, and images into your
iPhone applicaions

4. Work with data using SQL and AJAX

5. Write code to integrate your own applicaions
with famous websites such as Facebook, Twiter,
and Flickr

Core Data iOS Essenials
ISBN: 978-1-84969-094-2 Paperback: 340 pages

A fast-paced, example-driven guide to data-driven iPhone,
iPad, and iPod Touch applicaions

1. Covers the essenial skills you need for working with
Core Data in your applicaions

2. Paricularly focused on developing fast, light weight
data-driven iOS applicaions

3. Builds a complete example applicaion. Every
technique is shown in context

4. Completely pracical with clear, step-by-step
instrucions

Please check www.PacktPub.com for information on our titles

http:///

http:///

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:The Location-based World
	Understanding Location-based Services
	Time for action – consuming Location-based Services with Google
	Buzzwords in the Location-Based Industry
	Application of LBS and common use cases
	Military
	Government
	Commercial

	How Apple uses LBS in the iPhone, iPad, and iPod devices
	iOS location API

	Time for action – turning off Location Tracking in your iPhone
	Behind LBS – GPS
	User segment
	Space segment
	Control segment

	Push and Pull methods of Location Services
	Push Service
	Pull Service

	Life without GPS: Wi-Fi-based location detection
	Life without GPS: cell ID positioning and cell tower
triangulation
	Time for action – using the SkyHook Wireless Loki framework to determine your location
	Life without GPS: Google Maps API
	Understanding Indoor and Outdoor Navigation
	Summary

	Chapter 2 :The Xcoder's World
	Introducing Xcode 4
	Xcode 4: Prerequisites and features
	Prerequisites
	Features

	iOS 5 and Xcode 4.2: new and notable features
	iOS 5 new features
	Xcode 4.2's new features

	Transitioning from Xcode3: What you need to know
	Time for action – installation
	Time for action – Hello Location
	Tools for the overnight coders: HTML5
	PhoneGap

	Time for action – Using PhoneGap to build a Hello Location App
	Time for action – using Titanium Appcelerator for building the Hello Location app
	Time for action – Hello Location with Sencha Touch
	Exploring location-based SDKs/APIs
	Foursquare
	Gowalla
	Eventful and Last.fm API – some music is always good

	Still more tools: SimpleGeo and Factual
	Other Notable APIs – YQL and Location Labs

	Summary

	Chapter 3: Using Location in your iOS Apps— Core Location
	Core Location framework – an overview
	Time for action – location debugging
	Core location services
	Standard location
	Significant change
	Region monitoring
	Geocoding and reverse Geocoding – CLGeocoder
	Direction using heading

	Core Location Manager – CLLocationManager
	Time for action – checking for location service availability
	User Authorization

	Time for action – Using Core Location with user authorization
	The CLLocation object
	Time for action – receiving location updates in your application
	Time for action – boundary monitoring with Location Manager
	Extending Hello Location for nearby events
	Important things to know before we begin

	Time for action – extending Hello Location for nearby events
	Time for action – Last.FM API in your app
	What just happened?
	Extending Hello Location for local search
	Important things to know before we begin

	Time for action – building a local search app with foursquare
	Summary

	Chapter 4:Using Maps in your iOS apps - MapKit
	Overview of the MapKit framework
	Understanding map geometry
	Time for action – Using MapKit in your app
	Time for action – using map gestures – Panning and zooming
	Annotating Maps – an overview
	Time for action – adding annotations to your maps
	Time for action – draggable annotations
	Time for action – custom map annotations
	Map overlays – an overview
	Time for action – customizing map annotations
	User tracking modes
	Bonus – offline maps in your app
	Time for action – using OpenStreetMaps with CloudMade API
	Summary

	Chapter 5:Weather App - WeatherPackt
	Storing and retrieving the user's location with SQLite
	Time for action – storing and retrieving the user's location
with SQLite
	Converting location data into city name – using
Geonames API
	A bit on GeoNames

	Time for action – converting location data into city name
	Consuming the WeatherBug API
	Important things to know before we begin

	Time for action – using WeatherBug API
	Building your Weather App: WeatherPackt
	Start a new Xcode project

	Define the Home screen
	Time for action – define the Home screen
	Set up a default location
	Formatting the Weather API for display
	The settings page

	Bonus: building WeatherPackt with PhoneGap
	Bonus: text-to-speech
	Summary

	Chapter 6:Events App - PacktEvents
	PacktEvents: Overview and architecture
	Architecture of PacktEvents

	Storing and Retrieving Events with SQLite
	Time for action – storing and retrieving events with SQLite
	Plotting events on a map
	Time for action – plotting events on a map
	Filtering Events display by Event Categories
	Time for action – filtering Events by categories
	Using the Event Kit framework to add events to your
iPhone calendar
	Time for action – adding events to your iPhone calendar
	Using the Twitter framework
	Time for action – adding Twitter capabilities to your iPhone app
	Bonus: using the Layar Player API in your app: Augmented Reality
	Time for action – adding Augmented Reality to your iPhone app
	PacktEvents: building the app
	Summary

	Chapter 7:Advanced Topics
	Using directions with location
	Direction using heading
	Getting your app ready for direction
	Understanding heading using magnetometer

	Time for action – using heading for direction in your app
	Direction using course

	Time for action – using course for direction in your app
	Core Motion: Motion Manager
	How to use Core Motion

	Time for action – using MotionManager: accelerometer
	Core Motion conclusion

	Background app execution
	What apps can run in the background?
	Background location
	Push notifications - overview
	Local notifications

	Time for action – using local notifications
	Summary

	Chapter 8:Local Search - PacktLocal
	Consuming the foursquare venue API
	Venue categories

	Time for action – consuming the foursquare venue
API - categories
	Recommended and popular venues
	Time for action – recommended and popular venues
	Search for venues
	Time for action – exploring the foursquare Search API
	Building an UI for our local search app - PacktLocal
	Saving venue information on the device
	Building the app: PacktLocal
	Time for action – building the app - PacktLocal
	Summary

	Chapter 9:Location Aware News - PacktNews
	Understanding the Patch News API – HyperLocal News
	Authentication
	Taxonomy
	Vertical
	Format
	Author

	Finding Stories by Location
	Find location by names

	Time for action – consuming the Patch News API
	Adding the Geo Fencing support

	Time for action – adding the Geo Fencing support
	Building our app - PacktNews
	A bit on StoryBoard

	Time for action – building PacktNews
	Summary

	Chapter 10:Social Governance - TweetGovern
	Social governance – an overview
	TweetGovern – behind the scenes
	Stackmob
	Our approach: Twitter
	Icons and images
	SDKs and frameworks

	 Time for action – creating the UI for TweetGovern
	Time for action – detecting the user location and showing nearby issues
	Time for action – creating and voting for an issue
	Summary

	Appendix:Pop-Quiz Answers
	Index

