
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Stoyan Stefanov

JavaScript for PHP Developers

www.allitebooks.com

http://www.allitebooks.org

JavaScript for PHP Developers

by Stoyan Stefanov

Copyright © 2013 Stoyan Stefanov. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler

Production Editor: Kara Ebrahim

Copyeditor: Amanda Kersey

Proofreader: Jasmine Kwityn

Indexer: Meghan Jones, WordCo Indexing

Cover Designer: Randy Comer

Interior Designer: David Futato

Illustrator: Rebecca Demarest

April 2013: First Edition

Revision History for the First Edition:

2013-04-24: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320195 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. JavaScript for PHP Developers, the image of an eastern gray squirrel, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32019-5

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320195
http://www.allitebooks.org

To Nathalie, Zlatina, and Eva

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Acknowledgments. ix
Preface. xi

1. Introduction. 1
Scope of This Book 2
The Language 3
Learning Environment 4

Browsers 4
JavaScriptCore 5
Node.js and Rhino 6

Longer Examples 7
Let’s Get Started 7

2. JavaScript Syntax. 9
Variables 9

What Does $ Do in JavaScript? 10
Values 11

typeof Introspection 12
null and undefined 13

Arrays 13
Associative Arrays 15

Conditions 15
Ternary Operator 16
Strict Comparison 16
switch 18
try-catch 18

while and for Loops 19
for-in Loops 20
Miscellaneous Operators 21

v

www.allitebooks.com

http://www.allitebooks.org

in 22
String Concatenation 23
Type Casting 23
void 24
Comma Operator 24

3. Functions. 27
Default Parameters 27
Any Number of Arguments 28
arguments.length Trick 29
Return Values 29
Functions Are Objects 30
A Different Syntax 31
Scope 32
Hoisting 33

Hoisting Functions 34
Closures 35

Closures in PHP 35
Scope Chain 37

The Scope Chain in the WebKit Console 39
Retaining the Scope 43
Retaining References, Not Values 44
Closures in a Loop 45
Exercise: onclick Loop 47

Immediate Functions 47
Initialization 49
Privacy 49

Passing and Returning Functions 50
Callbacks Are Not Strings 52

4. Object-Oriented Programming. 55
Constructors and Classes 55

Returning Objects 56
More on This 57
Enforcing Constructors 58

Prototypes 59
Object Literals 60

Accessing Properties 61
Confusing Dots 62
Methods in Object Literals 62

Fancy Arrays 63
Own Properties 64

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

__proto__ 65
this or prototype 66

Inheritance 66
Inheritance via the Prototype 67
Inheritance via Copying Properties 68
Beget Object 69
“Classical” extend() 70
Borrowing Methods 71
Conclusion 72

5. The Built-In API. 73
The Global Object 73
Global Properties 74
Global Functions 74

Numbers 75
Encoding URLs 76

Built-In Constructors 76
Object 77
Array 81
RegExp 87
Function 90
String 91
Number 95
Boolean 96
Math 96
Error 97
Date 97

Constructors Review 99

6. ECMAScript 5. 101
Strict Mode 101
Property Attributes 102
New Object APIs 103

Object.create() 103
Object.getOwnPropertyDescriptor() 104
Object.defineProperty() and Object.defineProperties() 104
Restricting Object Mutations 105
Looping Alternatives 106
Object.getPrototypeOf() 107

Array Additions 107
Array.isArray() 107
indexOf() and lastIndexOf() 108

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Walking the Array Elements 108
Filtering 109
Testing the Array Content 109
Map/Reduce 109

String Trimming 110
New in Date 111
Function.prototype.bind() 111
JSON 112
Shims 112

7. JavaScript Patterns. 113
Private Properties 113

Private Methods 114
Exposing Private Objects 115
Returning Private Arrays 116
Deep Copy via JSON 117

Revealing Pattern 119
Constants 120
Namespaces 121
Modules 123
CommonJS Modules 124

Defining a CommonJS Module 124
Using a CommonJS Module 125
Using an Agnostic Module 126

AMD 127
Design Patterns 128

Singleton 128
Factory 130
Decorator 131

Documentation and Testing 133
Manual 133
Documenting Your Code 134
Unit Testing 134
JSLint 135
Linting This Book 135

Index. 137

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

First and foremost, big thanks and gratitude to my second-time reviewers who helped
me with JavaScript Patterns before, the Three Musketeers and d’Artagnan: the ever-so-
amazing Andrea Giammarchi, Asen Bozhilov, Dmitry Soshnikov, and Juriy “kangax”
Zaytsev. As with the previous book, they helped me tremendously with their deep
knowledge and experience with JavaScript, their attention to detail, and their determi‐
nation to have technical accuracy above all. They would often comment on some of my
bold general statements with: “Hmm, this is not entirely correct and not always true,
because….” I am forever in debt to these four ridiculously talented developers who also
happen to be great and friendly people.

Many thanks to Chris Shiflett and Sean Coates. They made sure the PHP side of things
made sense, but what’s more, this whole book started as a post on their PHPAdvent
(now WebAdvent.org) blog, followed by a talk at the ConFoo conference, which Sean
helps organize.

Next, thanks to the Facebook engineers who hang out in the JavaScript group. I posted
an early draft there asking for comments. Three people even went through the whole
thing and gave me invaluable feedback and further nitpicking, which is the best quality
in a technical reviewer. Thanks to Alok Menghrajani, James Ide, and Alex Himel.

Finally, thanks to Randy Owens who read the “early release” of the book and meticu‐
lously filed tens of errata reports.

—Stoyan Stefanov
Los Angeles, April 2013

ix

Preface

JavaScript is the language of the browser. It’s also the language that allows you to build
increasingly diverse types of client, server, desktop, mobile, and shell applications.
HTML5 continues the trend of allowing you to build rich applications (formerly known
as RIA, Ajax, and DHTML) with new features such as local storage, databases on the
client, geolocation, image, and audio and video APIs—all exposed and scriptable with
JavaScript. Fluency in JavaScript is a must for every web developer today.

This book is for the PHP developer who’s learning JavaScript from the ground up. Both
languages look deceptively close because they both share the similar C-like syntax. But
they differ in many concepts, such as object creation, classes, and prototypes, which are
critical to mastering each language. The book draws on your previous experience and
so it won’t put you to sleep explaining the most trivial topics such as conditions and
loops. At the same time, the book is a complete reference: all the important information
is here, emphasizing the differences with PHP and glossing over the similarities.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xi

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “JavaScript for PHP Developers by Stoyan
Stefanov (O’Reilly). Copyright 2013 Stoyan Stefanov, 978-1-449-32019-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/javascript-php.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/javascript-php
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

JavaScript has had a bad reputation for years. Many developers consider writing in
JavaScript a pain because the programs behave so unpredictably. Once done coding,
they open another browser to test, only to be greeted with an unhelpful error message
(Figure 1-1). Thus, developers often simply refuse to bother studying the language.

Figure 1-1. JavaScript errors gone wild

1

As it turns out, most of the problems have historically been (and let’s be honest, still
are) due to browser differences in the implementation of DOM and BOM, and to a
much smaller extent, the JavaScript language itself.

DOM stands for Document Object Model. It’s an API (application programming inter‐
face) for working with structured documents such as those written in XML, XHTML,
and HTML. DOM is a language-independent API that also exists in PHP. In JavaScript,

this API is easily spotted: anything that starts with document. has to do with the DOM.
As a point of historical interest, DOM started in JavaScript and was later standardized
by the World Wide Web Consortium (W3C) as an API independent of JavaScript or
any other language. These days, you can still unearth remnants of that primordial DOM

(now called DOM0)—things like document.images (all images on a page) and docu

ment.links (all links), which were replaced in DOM version 1 with more generic

methods such as document.getElementById() and document.getElementsByTag

Name().

BOM stands for Browser Object Model. It’s a nice name for something that’s not formally
defined. It’s a collection of browser-related properties and methods, such as available
screen size or the status bar. Most of these properties are available as globals such as

innerWidth, although you most often see them used as properties of the window object

(e.g., window.innerWidth). BOM hasn’t been standardized for a long time, so as you
can imagine, there are some differences across browsers. HTML5 started to codify
common behavior among browsers, including the common BOM objects.

Another term you need to know is ECMAScript. This is the core JavaScript language
when you strip out the DOM and BOM. It’s the language that deals with syntax, loops,
functions, objects, and so on. JavaScript started as a Netscape innovation, but was later
copied by other browser vendors, raising the need for this language to establish a stan‐
dard to which all implementors (browser vendors and others) would need to conform.
This standard was defined by the European Computer Manufacturers Association (EC‐
MA), now Ecma International, and called ECMAScript. These days, JavaScript should
technically mean Mozilla’s implementation of ECMAScript (there’s also JScript, which
is Microsoft’s implementation), but that’s not what people mean when they say “Java‐
Script.”

All in all, when people talk about JavaScript, they may mean an array of topics, including
DOM, BOM, and ECMAScript. So:

JavaScript = ECMAScript + DOM + BOM

Scope of This Book
A good thing that has happened since the early days of the Web is that now there is a
wide availability of high-quality JavaScript libraries, such as jQuery and YUI (Yahoo!

2 | Chapter 1: Introduction

http://php.net/dom

User Interface Library). These libraries take the pain out of development by providing
an API layer that abstracts the differences in the browser implementations of DOM and
BOM—and sometimes ECMAScript itself.

The scope of this book is ECMAScript, the language itself. DOM is something you’re
probably already familiar with from PHP, and BOM is not really that interesting (it’s
just a collection of global variables and functions). Plus, you can always use a library to
abstract the DOM and BOM. This book is independent of any particular JavaScript
library, allowing you to focus on the core language and pick a library of your choice
when you need one.

The book uses the term JavaScript to mean ECMAScript because using “ECMAScript”
is uncommon and just plain awkward. The focus is on the most popular version of the
language, ECMAScript 3 (ES3). The standards body skipped version 4 and the latest
version at the time of this book’s publication is ECMAScript 5.1, which is also referred
to as ES5. Although ES5 is already widely available, you cannot rely on it if you want to
support older browsers, such as Internet Explorer before version 9. Chapter 6 details
what’s new and different in ES5, and will help you to decide whether or not to use it. It
works even in old browsers via a “shim,” or “polyfill,” as you’ll see in “Shims” on page 112.

The Language
Once you strip out all the DOM/BOM browser hell, what you have left is JavaScript—
a beautiful, small language with a familiar C-like syntax and just a handful of built-in
objects.

It’s a popular language that’s practically everywhere: on the client, server, mobile phones,

desktop, and shell. Even inside PHP you can embed JavaScript using the V8Js PHP class.
It’s actually harder to find an environment where you cannot run JavaScript, which
means you can learn one language and use it everywhere.

It’s also an odd language when you approach it from the perspective of a PHP developer.
Here are some things to be aware of early on and look for as you progress through this
book:

• Functions in JavaScript are objects. Arrays and regular expressions are objects, too.

• Functions provide scope, and local variable scope is achieved by wrapping the code
in a function.

• Closures are used heavily. Although closures have existed in PHP since version 5.3,
they are not yet commonly used in PHP. In JavaScript, they are everywhere.

• Prototypes are an important concept in JavaScript for which there is no equivalent
in PHP. It’s one of the ways JavaScript accomplishes code reuse and inheritance.

The Language | 3

• JavaScript doesn’t have a concept of classes. This is really odd from a PHP perspec‐
tive and will be discussed in detail.

Learning Environment
(((“environment"To keep things simple, you don’t need to get bogged down with creating
and maintaining a user interface. JavaScript doesn’t have a concept of input and output.
I/O is provided by the environment that JavaScript programs run in. The most common
environment is the web browser, where the responsibility for a user interface falls to
HTML. You don’t need all that to study the language, so let’s just use the I/O provided
by a JavaScript console.

A console lets you quickly type pieces of code and see them run, just like the interactive
PHP shell you invoke on the command line:

$ php -a

Interactive shell

php > echo "hi";

hi

There are many JavaScript consoles to pick from and use for studying. The most ac‐
cessible consoles are those provided by browsers.

Browsers
In a desktop WebKit browser (e.g., Chrome or Safari), simply load a page, right-click
anywhere, and select “Inspect element” from the menu. This brings up the Web In‐
spector. Click the Console tab and you’re ready to go (Figure 1-2).

In newer Firefox versions, you get to a console by going to the Menu Bar and selecting
Tools→Web Developer→Web Console. Alternatively, you can also install the Firebug
extension, which works in any Firefox version.

Internet Explorer (since IE8) has F12 Developer Tools with a console under the Script
tab.

4 | Chapter 1: Introduction

www.allitebooks.com

http://www.allitebooks.org

Figure 1-2. Web Inspector console

JavaScriptCore
If you’re on a Mac, it already comes with a JavaScript interpreter capable of running
shell scripts. Windows has a built-in command-line JavaScript interpreter, too, but lacks
a console.

The JavaScript command-line interpreter on a Mac is a program called JavaScriptCore,
which can be found in /System/Library/Frameworks/JavaScriptCore.framework/
Versions/Current/Resources/jsc.

You can make an alias to it so that it’s easier to find:

1. Launch the Terminal application (e.g., by typing “terminal” in Spotlight).

2. Type the following:

alias jsc='/System/Library/Frameworks/JavaScriptCore.framework/Versions/

 Current/Resources/jsc'

3. Now you can launch the console by typing jsc (Figure 1-3).

Learning Environment | 5

Figure 1-3. JavaScriptCore console

Note that this is an even more pristine environment than the browser’s console because
it has no concept of BOM and DOM, just the core JavaScript language.

Feel free to add the alias line to your ~/.profile so that it’s always there when you
need it.

The JavaScriptCore engine is used in WebKit-based browsers, but not
in Chrome, which has its own JavaScript engine called V8.

Node.js and Rhino
If you install Node.js or Rhino on your computer, you can use their consoles, which
have the benefit of working on any operating system.

Node.js is based on Google’s V8 JavaScript engine. After you install it, you can type node
in the Terminal to get the console (Figure 1-4).

Figure 1-4. Node.js console

Rhino is a JavaScript interpreter by Mozilla written in Java. After you download the
rhino.jar file and save it where you find appropriate (in my case, the home directory),
you can bring up the console (Figure 1-5) by typing:

$ java -jar ~/rhino.jar

6 | Chapter 1: Introduction

http://nodejs.org
http://www.mozilla.org/rhino/

Figure 1-5. Rhino console

If you have a choice, use Node.js. You’ll notice its REPL (read-evaluate-print loop) is

similar to using php -a (if not better) for exploring and experimenting with the
language.

Longer Examples
Using JavaScriptCore, Node.js, or Rhino, you can create longer examples and store them
in separate files. In fact, this is how you can write your own shell scripts in JavaScript.
You run external files by passing them as arguments:

$ jsc test.js

$ node test.js

$ java -jar ~/rhino.jar test.js

Let’s Get Started
Armed with a handy JavaScript console, you’re ready to embark on a journey in Java‐
Script land. To start, Chapter 2 examines JavaScript syntax, focusing on similarities with
and differences from PHP.

Longer Examples | 7

CHAPTER 2

JavaScript Syntax

Just like PHP, JavaScript has a C-like syntax, so you’ll find it immediately familiar. This
chapter goes over the basics, highlighting what’s similar and what’s different about vari‐
ables, arrays, loops, conditions, and some miscellaneous (and slightly strange)
operators.

Variables
To define a variable in PHP, you’d write:

// PHP

$n = 1;

The equivalent in JavaScript is:

// JavaScript

var n = 1;

There’s no dollar sign, just the name of the variable. Like in PHP, you don’t define variable

types because the type is derived from the value. You use var for all types.

If you need a numeric type, you give your variable a numeric value. The same applies
to booleans and strings:

var n = 1; // number

var b = true; // boolean

var s = "hello"; // string

You have the option of declaring a variable without initializing it with a value. In such

cases, the variable is assigned the special value undefined:

var a;

a; // `a` has the special value `undefined`

9

Redeclaring an existing variable doesn’t set the variable value back to

undefined:

var a = 1;

var a;

// `a` is still 1

You can declare (and optionally initialize with a value) several variables with one var
statement as long as you separate them with a comma and end with a semicolon:

var pi = 3.14,

 yeps = true,

 nopes,

 hi = "hello",

 wrrrld = "world";

Technically, var is optional. But unless the variable was defined higher
up in the scope chain (discussed in more detail in Chapter 3), if you

skip var, you end up with a global variable. And you’ve learned, prob‐
ably the hard way, that global namespace pollution is a sin. Additionally,
there are some subtle differences if you declare a global variable with

and without var. To cut a long story short, resist this temptation and

always use var to declare your variables.

Variables can be named using letters, numbers, underscore, and the dollar sign. You
cannot start with a number, though:

var _1v; // Valid

var v1; // Valid

var v_1; // Valid

var 1v; // Invalid

What Does $ Do in JavaScript?
This is sort of a trick question sometimes asked at interviews. The short answer is:
nothing.

You can name variables using $ anywhere in the name. Earlier ECMAScript standard

editions recommended that $ should only be used in auto-generated code, a suggestion

commonly ignored by developers. In reality, $ is often used as the name of a function
that selects a DOM node in an HTML document.

Let’s say you have this HTML markup:

<div id="myid"></div>

10 | Chapter 2: JavaScript Syntax

To get a reference to that DOM element, the DOM method getElementById() can be
used:

var mydiv = document.getElementById("myid");

However, this is a lot of typing for something so commonly used in client-side pro‐
gramming. Thus, many libraries define a similar function, as follows:

function $(id) {

 return document.getElementById(id);

}

You can then do the following:

$("myid").innerHTML = "hello world";

The trick $ question lets the interviewer check if the candidate has any JavaScript ex‐

perience outside of a specific library. Answering "$ selects a DOM element” is true for
many libraries as well as browser consoles, but not for JavaScript itself.

In most browser consoles, such as the Web Inspector and Firebug, the $()
function exists for your convenience and quick access to DOM nodes. There’s

also $$(), which maps to document.querySelectorAll() and lets you find
DOM elements by using a CSS selector, like so:

// List of DOM nodes that are children of an element with ID "menu"

$$('#menu li');

Values
There are five primitive value types in JavaScript. Everything else is an object. The
primitive types are:

• string

• boolean

• number

• null

• undefined

Anything between single or double quotes is a string value. Unlike PHP, there’s no
difference between single and double quotes.

The literals true and false without quotes create boolean values.

As far as numbers are concerned in JavaScript, there are no floats, ints, doubles, and so

on; they are all numbers. You use a . to define a floating point value (e.g., 3.14).

Values | 11

Prefixing the value with a 0 results in an octal value:

var a = 012;

a === 10; // true

Octal literals are now deprecated and disallowed in “strict mode” in ES5.
(See Chapter 6 for more details on strict mode.)

Prefixing the value with a 0x gives you a hexadecimal value:

var a = 0xff;

a === 255; // true

You can also use scientific notation:

var a = 5e3; // 5 with three zeros

a === 5000; // true

var b = 5E-3; // Moving the . three digits to the left of 5

b === 0.005; // true

typeof Introspection
You can use the operator typeof to find the type of value you’re working with:

var a = "test";

typeof a; // "string"

typeof 0xff; // "number"

typeof false; // "boolean"

Sometimes typeof is used as a function (e.g., typeof(a)), but that’s not really recom‐

mended. Remember that typeof is not a function, but an operator. The reason that

typeof() works as a function is because in this context, () is also an operator, called a
grouping operator, which is usually used to override operator precedence, as in:

3 * (2 + 1); // 9

// versus

3 * 2 + 1; // 7

JavaScript’s typeof(a) is to typeof a as PHP’s echo($a); is to echo

$a; (although for different reasons). Same for include($a) versus in

clude $a; in PHP. Even though it works, it’s considered a bad practice
because it looks like something it is not.

12 | Chapter 2: JavaScript Syntax

null and undefined
So far, you’ve seen three of the five primitive types: string, boolean, and number. The
other two are the types null and undefined.

The undefined type has only one value—the value undefined. When you declare a

variable but do not initialize it, it’s initialized with undefined. Also, when you have a

function that doesn’t return a value explicitly, it returns undefined:

var a;

typeof a; // "undefined"

var b = 1;

b = undefined;

typeof b; // "undefined"

Note that the typeof operator always returns a string. In the previous example, b has

the value undefined, but typeof b returns the string "undefined". It’s common for

newcomers to confuse the string "undefined" and the value undefined. Consider these
differences:

var b;

b === undefined; // true

b === "undefined"; // false

typeof b === "undefined"; // true

typeof b === undefined; // false

The null type has only one value—the value null. It’s rarely useful, but can be passed in
function calls when calling functions that take a lot of arguments or when you want to
make an explicit differentiation between undeclared and uninitialized variables, since

undefined may mean either of those.

Surprisingly, typeof returns "object" when used with a null value:

var a = null;

typeof a; // "object"

You can expect typeof null to return "null" in one of the next versions
of ECMAScript.

Arrays
In PHP, you define an array using:

// PHP

$a = array(1, 2, 3);

In JavaScript, you drop array and use square brackets:

Arrays | 13

// JavaScript

var a = [1, 2, 3];

PHP version 5.4 adds support for short array syntax, so it becomes just
like JavaScript:

// PHP

$a = [1, 2, 3];

These also work in JavaScript:

// JavaScript

var arr = Array(1, 2, 3);

var arrgh = new Array("a", "b", "c");

arr; // [1, 2, 3]

arrgh; // ["a", "b", "c"]

There’s more about this syntax later, but keep in mind that the square
bracket notation (array literal) is preferred.

Just like in PHP, you can mix any type of values in an array, including other arrays:

// JavaScript

var a = [1, "yes", false, null, undefined, [1, 2, 3]];

Arrays in JavaScript are objects:

typeof a; // "object"

You’ll find discussions of the properties and methods of array objects later in this book,
but just to give you a flavor:

var a = [1, 2, 3];

a.length; // 3, like count() in PHP

Unfortunately, you cannot add an element using a[] as you do in PHP. You need to pass
the index of the element you’re adding:

a[3] = 4;

Or, more commonly, you use the length as the next index:

a[a.length] = "five";

Alternatively, there’s the push() method, similar to PHP’s array_push() function:

a.push(6);

The end result of executing all of these statements is:

a; // [1, 2, 3, 4, "five", 6]

You access elements using their index, just as you’d expect:

var b = a[4];

b; // "five"

14 | Chapter 2: JavaScript Syntax

www.allitebooks.com

http://www.allitebooks.org

Associative Arrays
There are no associative arrays in JavaScript. When you need one, use an object.

If you want to do this:

// PHP

$assoc = array('one' => 1, 'two' => 2);

in JavaScript, you’d write:

// JavaScript

var assoc = {'one': 1, 'two': 2};

So the difference is just about using : instead of => and wrapping the values in curly

brackets {}.

The quotes around the keys—let’s call them properties because they are indeed properties
of an object—are commonly omitted. When the keys are valid identifiers (meaning they
can be used as variable names), quotes are optional:

var assoc = {one: 1, two: 2};

Adding more to this associative array/object/dictionary:

assoc.three = 3;

To remove properties, use the delete operator:

delete assoc.two;

In ES3, there is no easy way to count the number of properties in an object other than

going through all properties in a for-in loop. You’ll see how in more detail later.

To access the properties of an object, use the dot notation:

assoc.one; // 1

Alternatively, use the square bracket notation, which looks more like an array in PHP:

assoc["one"]; // 1

Conditions
The if syntax is equivalent to the one in PHP:

var a, b;

if (a === "hello") {

 b = "world";

} else if (a === "goodbye") {

 b = "bye";

} else {

 b = "what?";

}

Conditions | 15

While PHP has several alternative syntax options for if-then-else control structures, in
JavaScript, there’s only one (not counting the ternary operator). Thus, you can’t, for

example, use elseif instead of else if.

Ternary Operator
The short conditional syntax known as a ternary operator (because it’s an operator that
takes three operands) looks familiar, too:

var num = 11;

var whatisit = (num % 2) ? "odd" : "even";

num + " is " + whatisit; // "11 is odd"

You’ve probably already learned to avoid stacking more than one ternary operator
without parentheses, as it’s tricky to read. Another reason is that it works differently in
JavaScript. For example:

// PHP

echo true ? "a" : true ? "b" : "c"; // "b"

// Same as

echo (true ? "a" : true) ? "b" : "c"; // "b"

echo ("a") ? "b" : "c"; // "b"

It’s the same syntax in JavaScript, but with a different result, because of the different
order of evaluation:

// JavaScript

true ? "a" : true ? "b" : "c"; // "a"

// Same as

true ? "a" : "I'm ignored"; // "a"

Strict Comparison
Have you noticed the triple equals sign === that all code examples used so far? Com‐
parison works similar to PHP:

• Three equals signs mean strict comparison (the expressions are compared by both
value and type).

• Two equals signs mean loose comparison (only values are compared and, if needed,
one expression is cast to the type of the other to perform type comparison).

In order to make debugging easier, it’s always preferable to know the types you’re com‐

paring, so using === is good practice. It’s easier because you can catch errors while
developing and before the program runs “in the wild” where values can be unpredictable.
You also don’t need to remember the casting rules and oddities, which are not exactly
like those in PHP.

16 | Chapter 2: JavaScript Syntax

In general, there are a handful of falsy values (values that cast to false in nonstrict
comparisons):

• Empty string ""

• The number 0

• The value false

• null

• undefined

• Special numeric value NaN, which means “not a number,” like PHP’s NAN constant

These might trip you in nonstrict comparisons:

null == undefined; // true

"" == 0; // true

but

null === undefined; // false

0 === ""; // false

because

typeof null === typeof undefined; // false, "object" !== "undefined"

typeof 0 === typeof ""; // false, "number" !== "string"

All objects are truthy. And since arrays are objects, they always cast to true in loose
comparisons. This is different from PHP, where empty arrays are falsy:

// PHP

if (array()) {

 echo "hello";

 // Not reachable in PHP

}

// JavaScript

if ([]) {

 console.log('hello');

 // Reachable in JavaScript

}

Not all falsy values are nonstrict equal to one another:

undefined == null; // true

undefined == 0; // false

To recap, you can make your life and the lives of those around you easier by always using

strict comparison with ===. You don’t need to remember the casting rules and their
differences with PHP.

Conditions | 17

switch
The switch control statement works just like in PHP, with only one difference. The cases
are evaluated using strict comparison:

// JavaScript

var a = "";

var result = "";

switch (a) {

case false:

 result = "a is false";

 break;

case a + "hello": // Expressions are allowed here

 result = "what?";

 break;

case "": // Strict comparison

 result = "a is an empty string";

 break;

default:

 result = "@#$";

}

The result here is "a is an empty string", where similar code in PHP would give you

"a is false".

try-catch
Try-catch blocks are also pretty much identical to PHP. Here’s an example in PHP:

// PHP

try {

 throw new Exception('ouch');

} catch (Exception $e) {

 $msg = $e->getMessage();

}

And here it is in JavaScript:

// JavaScript

var msg = "";

try {

 throw new Error("ouch");

} catch (e) {

 msg = e.message;

}

msg; // "ouch"

The few noticeable differences are the following:

• An Error object is thrown, not an Exception

• Type is not declared when catching

18 | Chapter 2: JavaScript Syntax

• A message property is accessed as opposed to calling a getMessage() method

In JavaScript, there’s also finally (which exists in PHP as well, since version 5.5.), but
it is rare to see in practice, especially considering there are some bugs in IE with it:

var msg = "";

try {

 throw new Error("ouch");

} catch (e) {

 msg += e.message;

} finally {

 msg += " - finally";

}

msg; // "ouch - finally"

As you can see, the statements in the finally block are always executed, regardless of

whether or not the try block threw an error.

You’ll see more about variable scope later, but note that the catch block
is an exception to the rule, the rule being: no block scope, just function

scope. In the example just shown, e is only visible inside the catch block.

However, the error object e is the only exception; if you define other

variables inside the catch block, they bleed outside of it:

try {

 throw new Error();

} catch (e) {

 var oops = 1;

}

typeof e; // "undefined"

typeof oops; // "number"

Try-catch has some performance implications when the catch block is executed, and
should be avoided in performance-critical code paths (i.e., you should move it outside
loops).

while and for Loops
The while, do-while, and for loops work exactly the same in JavaScript as PHP, both
languages copying C syntax. Let’s have some fun and take a look at an example that
calculates the sum of the numbers from 1 to 100.

The code in this section runs in both languages, but in JavaScript, you should start with
the following:

var $i, $sum;

while and for Loops | 19

It’s not required, but emphasizes the good habit of always declaring your variables. If

you skip this line, the code still works, but $i and $sum become global variables. The $
in front of the variable name is an uncommon but absolutely valid part of a name.

And here’s the cross-language while loop example:

$i = 1;

$sum = 0;

while ($i <= 100) {

 $sum += $i++;

}

$sum; // 5050

$i; // 101

$sum is now 5050.

Similarly, here’s a cross-language example of a do-while loop:

$i = 1;

$sum = 0;

do {

 $sum += $i++;

} while ($i <= 100);

$sum; // 5050

The for loop is also the same in PHP, and the following example works in both languages
as well:

$i = 1;

$sum = 0;

for ($i = 1, $sum = 0; $i <= 100; $i++) {

 $sum += $i;

}

$sum; // 5050

In all these examples, $i ends up being 101, not 100. Can you answer why?

for-in Loops
In JavaScript, when you need an associative array, you use an object. And you iterate

over objects not in a foreach loop but in a for-in loop.

Let’s say you have defined the following array in PHP:

// PHP

$clothes = array(

20 | Chapter 2: JavaScript Syntax

 'shirt' => 'black',

 'pants' => 'jeans',

 'shoes' => 'none', // Trailing comma OK, even recommended

);

The same data in JavaScript looks like this:

// JavaScript

var clothes = {

 shirt: 'black',

 pants: 'jeans',

 shoes: 'none' // Trailing comma not OK, because of old IEs

};

In PHP, you iterate over the data as follows:

// PHP

$out = '';

foreach ($clothes as $key => $value) {

 $out .= $key . ': ' . $value . '\n';

}

In JavaScript, you use the for-in loop:

// JavaScript

var out = '';

for (var key in clothes) {

 out += key + ': ' + clothes[key] + "\n";

}

You don’t have direct access to the next property’s value inside the loop, so you get the

value by using the square bracket notation clothes[key].

Also note that the order in which the properties are enumerated is not guaranteed and

depends on implementations. In other words, shoes may appear before shirt, although
in the definition it’s later. If you want to maintain the order, you need to use a regular
array to store the data.

And just for illustration purposes, if you forget for a moment that in PHP you have

access to => in foreach, you can do the following on PHP to mimic JavaScript’s for-in:

$out = '';

foreach (array_keys($clothes) as $key) {

 $out .= $key . ': ' . $clothes[$key] . '\n';

}

Miscellaneous Operators
Before you dive into the important topic of functions, let’s examine a few stranger Java‐
Script operators.

Miscellaneous Operators | 21

in
In the previous section, the in operator was used to iterate over the properties of an
object. It can also be used to check whether a property exists in an object:

if ("shirt" in clothes) { // true

 // Do something

}

if ("hat" in clothes) { // false

}

You can also do a check using the following:

if (clothes['shirt']) { // true

 // Do something

}

Or, more commonly, using the dot notation:

if (clothes.shirt) { // true

 // Do something

}

The difference is that in only tests for the presence of the property; it doesn’t look at the

value at all. Testing with clothes.shirt returns true only if the property exists and it
has a non-falsy value.

As an example, if you add a new property:

clothes.jacket = undefined;

then:

"jacket" in clothes; // true

but:

!!clothes.jacket; // false

because clothes.jacket has the undefined value, which is falsy and casts to false.

This is similar to the difference between isset() and !empty() in PHP.

Alternatively, and more verbosely, you can check for presence but not value using the

typeof operator:

typeof clothes.jacket !== "undefined" // true

// But watch out for false positives when a property is given `undefined` value

clothes.i_am_undefined = undefined;

typeof clothes.i_am_undefined === typeof clothes.i_dont_exist; // true

A shorter version of this is to compare to the undefined value:

22 | Chapter 2: JavaScript Syntax

clothes.jacket !== undefined // true

String Concatenation
When looking at the for-in loop example, you may have noticed that the + operator is
used to concatenate strings:

var alphabet = "a" + "b" + "c";

alphabet; // "abc"

It may seem strange, but the + operator is used for both adding numbers as well as
concatenating strings:

var numbers = "1" + "2" + "3";

var sum = 1 + 2 + 3;

numbers; // "123"

sum; // 6

How do you know which operation will be performed? That depends on the type of the
operands.

Needless to say, the + operator is a common source of errors, so it’s important to keep
the variable types in mind.

An alternative way to concatenate strings is to append to an array, and once done, join
its elements. This concatenation even performs better in ancient IE versions (version 7
and earlier):

['R', 2, '-', 'D', 2].join(''); // "R2-D2"

And finally, there’s also the concat() method for strings, which doesn’t require you to
create throwaway array objects just for concatenation:

"".concat('R', 2, '-', 'D', 2); // "R2-D2"

String.prototype.concat('R', 2, '-', 'D', 2); // "R2-D2"

Type Casting
Because + can do both addition and string concatenation, you can also use + to quickly
change the types of variables:

+"1"; // Converts the string "1" to the number 1

"" + 1; // Converts the number 1 to the string "1"

Speaking of type casting, you can use !! to convert to a boolean:

!!1; // true

!!""; // false

The first ! negates and returns a boolean true if the value is falsy, and the second !
negates again to give you the desired result of converting to a boolean. Additionally,

Miscellaneous Operators | 23

built-in constructors, which you’ll see later in detail, can also be used to perform type
casting:

Number("1") === 1; // true

String(100) === "100"; // true

Boolean(0) === false; // true

Boolean(100) === true; // true

void
Another operator you may come across is void. It takes any expression as an operand

and returns undefined:

var a = void 1;

typeof a === "undefined"; // true

The void operator is rarely useful, but is sometimes used as an href in links. As with

the typeof operator, people often misuse it together with the grouping operator () so
it looks like a function call:

<!-- not a good practice -->

click and nothing happens

This bad practice looks innocent enough, but when you think about it, it’s as silly as it
is common. Here’s what happens:

1. The user clicks, and a JavaScript expression is evaluated.

2. The literal value 0 is sent as an operand to the grouping operator ().

3. The grouping operator returns the last value in the group, 0.

4. 0 is now sent to the void operator.

5. void, being the black hole that it is, takes the operand and returns undefined.

Ignoring for a moment the broken semantics of having links that do nothing, people

might just as well make the href be javascript:undefined.

Comma Operator
The comma operator is another slightly odd one. It’s the lowest precedence operator in
JavaScript. It simply returns the value of the last operand passed to it:

var a = ("hello", "there");

a; // "there"

var a = ("hello", "there", "young", "one");

a; // "one"

It’s similar to && and ||, but while these stop evaluating the expression when the outcome
is clear, the comma operator keeps going:

24 | Chapter 2: JavaScript Syntax

www.allitebooks.com

http://www.allitebooks.org

0 && 7 && 1; // 0

0 || 7 || 1; // 7

0, 7, 1; // 1

The comma operator is useful when you want to sneak in another expression where
JavaScript expects only one.

Did you notice in the previous example that && and || don’t always
return a boolean as they do in PHP? They return the value of the ap‐
propriate expression instead. This may be a little confusing, especially
in the following common pattern of dealing with defaults in JavaScript:

// JavaScript

var a = 100;

var b = a || 200;

b; // 100

// PHP

$a = 100;

$b = $a || 200;

var_dump($b); // bool(true)

Miscellaneous Operators | 25

CHAPTER 3

Functions

Functions are an important topic in JavaScript because the language has many uses for
them. In their most basic form, they look like a PHP function:

// Works in both languages

function sum($a, $b) {

 return $a + $b;

}

sum(3, 5); // 8

Default Parameters
There’s no syntax that allows you to have a default value of a function parameter, as is
often done in PHP. This is scheduled for a future version of ECMAScript, but for now
you have to take care of this yourself inside the body of your function. Let’s say you want
the second parameter to default to 2:

// PHP

function sum($a, $b = 2) {

 return $a + $b;

}

// JavaScript

function sum(a, b) {

 b = b || 2;

 // Also sometimes written as

 // b || (b = 2)

 return a + b;

}

This is a short syntax that works fine in many cases, but it’s a little naive in this particular

example because b || 2 is a loose comparison for b. If you pass 0 as an argument, the

comparison evaluates to false and b becomes 2:

27

sum(3); // 5

sum(3, 0); // 5, not what you'd expect

A longer version is to use typeof:

function sum(a, b) {

 b = typeof b === "undefined" ? 2 : b;

 return a + b;

}

sum(3, 0); // 3

sum(3); // 5

Any Number of Arguments
You don’t have to pass all the arguments that a function expects, and JavaScript won’t
complain. In other words, there are no required parameters. If you need to make a
parameter required, you need to enforce this in the body of your function.

You can also pass more arguments than a function expects, and these are happily ignored
without any errors:

sum(); // NaN (not a number)

sum(1, 2); // 3

sum(1, 2, 100, 999); // 3

You can prepare for receiving any number of arguments and handle this case gracefully.

In PHP, you can use func_get_args(), which returns an array of arguments passed to

your function. In JavaScript, you use the arguments array-like object. It’s an object
available to your function’s body. It’s dubbed “array-like” because its properties are enu‐

merated starting from index 0, and it also has a length property, just like an array:

function sum(/* nothing here */) {

 for (var i = 0, result = 0; i < arguments.length; i++) {

 result += arguments[i];

 }

 return result;

}

sum(); // 0

sum(111); // 111

sum(1, 2); // 3

sum(1, 2, 3); // 6

sum(1, 10, 2, 9, 3, 8); // 33

Remember that although it looks like an array, arguments is in fact an object, and it

doesn’t have array methods such as push(), pop(), etc. However, you can easily convert
this array-like object to an array. Brace yourself for something new that’s related to

prototype, which will be explained in detail later:

28 | Chapter 3: Functions

function sum() {

 var args = Array.prototype.slice.call(arguments);

 typeof arguments.push; // "undefined"

 typeof args.push; // "function"

}

sum();

The typeof operator returns the string "function" when used with
functions.

arguments.length Trick
A clever approach to handling optional parameters is the one suggested by Andrea

Giammarchi that uses the arguments object:

// Here you have a function with all four default

// parameters, mimicking PHP's declaration:

// function sum($a = 1, $b = 2, $c = 3, $d = 4) ...

function sum(a, b, c, d) {

 // Note: no `break` needed

 switch (arguments.length) {

 case 0: a = 1;

 case 1: b = 2;

 case 2: c = 3;

 case 3: d = 4;

 }

 return a + b + c + d;

}

// test

sum(); // 10

sum(1); // 10

sum(11); // 20

sum(1, 2, 3, 24); // 30

sum(11, 22); // 40

Return Values
Functions always return a value. If the function doesn’t use return, then the value

undefined is returned implicitly:

// Explicit `return`

function iReturn() {

 return 101;

}

iReturn() === 101; // true

arguments.length Trick | 29

typeof iReturn() === "number"; // true

// Implicit `return`

function noReturn() {

// Nothing

}

noReturn() === undefined; // true

typeof noReturn() === "undefined"; // true

Functions Are Objects
It’s important to understand that functions in JavaScript are objects. They come with
some properties and methods of their own.

For example, take a look at this simple function:

function sum(a, b) {

 return a + b;

}

The length property of a function object tells you how many formal parameters are

listed in the () part of the function definition, or in other words, how many arguments
the function expects:

sum.length; // 2

The methods call() and apply() of the function objects offer an alternative way to
call the function:

sum.call(null, 3, 4); // 7

sum.apply(null, [3, 4]); // 7

The difference between the two is that apply() takes the arguments to pass to the func‐
tion as an array, as opposed to one by one. These two methods are similar to what you
can do in PHP using the following:

// PHP

call_user_func('sum', 3, 4);

call_user_func_array('sum', array(3, 4));

The fact that functions are objects means that you can add properties and methods to
the function objects. This can be useful, for example, to cache the results of a function
invocation to avoid duplicate work.

If you’re wondering about the first parameter null passed to call()

and apply(), you can ignore it for now. You’ll find out more about it

later. Spoiler: it’s an object that the sum() function can refer to as this
inside its body if it so desires.

30 | Chapter 3: Functions

A Different Syntax
Functions are objects, so they can be assigned to variables just like all other data types.
The following snippet shows a perfectly valid and commonly used syntax:

var sum = function (a, b) {

 return a + b;

};

sum(2, 2); // 4

This syntax shows what is called a function expression, as opposed to the other syntax
you’re familiar with, which is called a function declaration. The function declaration is
the more common syntax, and the only one available in PHP before version 5.3.

There’s a semantic difference in the meaning of the function keyword
depending on the context. In a function expression, it’s an operator. In
a function declaration, it’s a statement.

Note the trailing semicolon in the function expression. Unlike function declarations,
function expressions require a semicolon.

JavaScript has a semicolon insertion mechanism where the interpreter
adds the semicolons for you if you forget them. However, it’s always
preferable to add the semicolons yourself to avoid ambiguities. It also
proves helpful when you minify your code in order to reduce its size in
production, because with minification, all the code is pretty much on
one line.

There is one more syntax you may encounter called named function expression (NFE).
It looks like this:

var sum = function plum(a, b) {

 return a + b;

};

sum(21, 21); // 42

plum(21, 21); // Error: plum() is not defined

This sort of syntax can be helpful while debugging when the debugger reads the non‐

standard but commonly available name property of the function object:

sum.name; // "plum"

A Different Syntax | 31

This syntax is called a named function expression because you assign a name to the
function. If you don’t, which is much more common, you end up with an unnamed
function expression, or simply called a function expression or an anonymous function.

Setting the name (identifier) of the expression to something other than the variable you

assign it to (as with plum and sum in the preceding example) is not recommended. It’s
confusing to read, and in many IE versions, it mistakenly creates two symbols (variables)

in the enclosing scope. In other words, typeof plum will be "undefined" in modern

browsers and "function" in older IEs. So it’s best to set the name matching to the
variable you assign it to, like:

var sum = function sum(a, b) {

 return a + b;

};

This is useful for debugging and a good minifier should strip the name if it detects it’s
not used in the body of the function.

Scope
There’s no block scope in JavaScript, only function scope.

Any variables you define inside of a function are local to the function and not visible
outside it. Global variables are those defined outside of any function:

if (true) {

 // Global even if in a curly braces block

 var true_global = 1;

}

if (false) {

 var false_global = 1;

}

var sum = function () {

 var local = 1;

 is_it_local = 1;

 return true_global + local + is_it_local;

};

true_global; // 1

false_global; // undefined

local; // ReferenceError: local is not defined

is_it_local; // ReferenceError: is_it_local is not defined

sum(); // 3

true_global; // 1

false_global; // undefined

32 | Chapter 3: Functions

local; // ReferenceError: local is not defined

is_it_local; // 1

Things to note in the previous snippet:

• true_global is always available.

• Even inside of a nonexecuted block of code, false_global is always declared, al‐

though not initialized. Using it returns undefined (which is the default value for
all variables), and is not an error.

• local is never available outside of the function sum(); it’s local to the function.
Trying to use it outside its local environment is an error.

• is_it_local was not declared before using the sum() function, and was causing

an error. Calling sum() assigns a value to is_it_local and puts it in the global

scope because of the missing var statement. This is something you should avoid in
order to prevent global namespace pollution.

Some exceptions of the blanket statement “there’s no block scope”:

• Block scope is planned for the next version of ECMAScript by us‐

ing let instead of var

• The error object in a catch block is scoped to its block:

try {

 throw new Error("Yuck!");

} catch (err) {

 err.message; // "Yuck!"

}

typeof err; // "undefined"

Hoisting
When the program execution enters a new scope (e.g., in a new function, the global

scope, or eval()), all the variables defined anywhere in the function are moved, or
hoisted, to the top of the scope. This is something to be aware of, as it can be a little
confusing:

var a = 1;

function hoistingTest() {

 console.log(a);

 var a = 2;

 console.log(a);

}

hoistingTest(); // Logs "undefined", then 2

Hoisting | 33

You might expect that the first console.log() would see the global a value of 1. But

instead, you get undefined because the declaration of the local a was hoisted to the top.
Only the declaration was hoisted, but not the assignment to 2. It’s as if the function was
written like this:

function hoistingTest() {

 var a;

 console.log(a);

 a = 2;

 console.log(a);

}

To prevent confusion, many developers adopt the convention of always declaring all
variables at the top, regardless of where they are used. This can be thought of as an
annoying manual hoisting because, after all, that’s just the way things work, and hoisting
is the JavaScript interpreter’s job. But it can make the code more explicit and easier to
read. The other option—defining variables where you need them—results in mental
hoisting you need to do every time you read a (potentially long) function:

function mine() {

 // Declare all, once at the top

 var a, b = 2, c = 3;

 // Use later, anywhere

 // ...

 a = b;

 // ...

 return c + a;

}

You can think of “single var goes at the top of the function” rule as similar to defining
a PHP class and putting all properties at the top of the class, as opposed to sprinkled
among the methods.

Hoisting Functions
Functions are just objects assigned to a variable, so it’s to be expected that they are
hoisted, too. There’s a difference, though, depending on the way they were defined.

Consider the following example:

// Global scope

function declare() {}

var express = function () {};

(function () {

 // Local scope

 console.log(typeof declare); // "function"

 console.log(typeof express); // "undefined"

 function declare() {}

34 | Chapter 3: Functions

www.allitebooks.com

http://www.allitebooks.org

 var express = function () {};

 console.log(typeof declare); // "function"

 console.log(typeof express); // "function"

}());

Both local functions declare() and express() are “shadowing” the global variables
with the same names because they are hoisted to the top of the function, although they

are defined later. But in the case of the function expression express(), only the var is

hoisted while the function declaration (declare()) is hoisted together with its value
(implementation). With hoisting in mind, the function acts as if written like so:

// Global scope

function declare() {}

var express = function () {};

(function () {

 // Local scope

 function declare() {} // Declared and given a value

 var express = undefined; // Declared here

 console.log(typeof declare); // "function"

 console.log(typeof express); // "undefined"

 express = function () {}; // Implemented here

 console.log(typeof declare); // "function"

 console.log(typeof express); // "function"

}());

Closures
A closure is a function together with its environment of nonlocal variables. In JavaScript,
every function is a closure, so there’s nothing special about closures—they are just
functions. But you should understand the behavior of functions, because failing to do
so will cause a lot of debugging headaches.

Closures in PHP
Closures exist in PHP, too, starting with PHP 5.3.

You already know this common syntax to define a function in JavaScript using a function
expression:

// JavaScript

var sum = function (a, b) {

Closures | 35

http://php.net/manual/en/functions.anonymous.php

 return a + b;

};

And here’s a similar syntax in PHP (version 5.3 and above):

// PHP

$sum = function ($a, $b) {

 return $a + $b;

};

$sum(9, 11); // 20

Unlike in JavaScript, PHP functions don’t have automatic access to the global or parent
environments. If you need to make a variable from the parent scope available inside the

closure, you need to declare your intentions with use:

// PHP

$global_ten = 10;

function papa() {

 global $global_ten; // Localize the global

 $hundred_more = 100;

 $sum = function ($a, $b) use ($global_ten, $hundred_more){

 return $a + $b + $global_ten + $hundred_more;

 };

 return $sum(9, 11);

}

echo papa(); // 130

In JavaScript, use doesn’t exist, and the behavior where the inner function has access to
the variables of its environment is automatic:

// JavaScript

var global_ten = 10;

function papa() {

 var hundred_more = 100;

 var sum = function (a, b) {

 return a + b + global_ten + hundred_more;

 };

 return sum(9, 11);

}

papa(); // 130

papa() has access to the variables of the environment in which it was defined. In this

case, it’s the global environment and its global_ten variable.

sum() has access to the parent’s papa() environment, so it can access hundred_more.

Also, by extension, sum() can also see all the variables the parent can see, meaning sum()

has access to global_ten, too.

These parent-child relationships form a chain you can call the scope chain.

36 | Chapter 3: Functions

In PHP, when you capture interesting variables with use, you have the
option to pass them by reference or by value (as in the example). In
JavaScript, you always have references to the variables in closure scope.

Scope Chain
Every time the JavaScript interpreter enters a new function, it looks around to see what
local variables are available. It gathers those and puts them in a special variables object.

If there’s another function defined inside the first and the interpreter enters its body,
another variables object is created for the inner function. The inner function also gets
a special scope property, which points to the variables object of the outer function. The
outer function is where the inner function was defined, as if in a dictionary. That’s why
you hear the term “lexical” (“lexical definition” being synonymous with “dictionary
definition”) to highlight the difference between definition of a function and its execu‐
tion. The scope property is set during the function definition, not execution.

The variables object and the scope property are invisible from the programmer’s per‐

spective, but the following snippets use __variables and __scope for illustration.

(__scope is known as [[Scope]] in the ECMAScript specs.)

If your function is not defined inside another, it’s in the global space (the global scope).
This place in the Universe also has a variables object containing all the variables in the
global scope. So the scope property of the global function will hold a reference to the
global variables object.

Consider a global function:

var global_ten = 10;

// __variables object contains all global variables

// {

// global_ten: 10,

// papa: function () {...},

// ... all other globals

// }

function papa() {

 var hundred_more = 100;

 // __variables object has {hundred_more: 100}

 // __scope proprerty points to the variable object of the outer

 // Lexical environment (in other words, the global __variables object)

}

Here’s the relationship represented in a linked list:

papa.__scope -> global __variables

Let’s take a look at the previous code sample again, this time with line numbers:

Scope Chain | 37

 1. var global_ten = 10;

 2.

 3. function papa() {

 4. var hundred_more = 100;

 5. var sum = function (a, b) {

 6. return a + b + global_ten + hundred_more;

 7. };

 8. return sum(9, 11);

 9. }

10.

11. papa(); // 130

Starting on line 1 (the program code), the interpreter has its hidden __variables object

with all variables (e.g., global_ten and papa).

Because one of these is a function, it needs a __scope property. papa.__scope points to

the global __variables.

Should the interpreter need to look up a variable’s value, the lookup is really easy, because
there’s only one place to look:

[global __variables] global_ten, papa

Next thing you know, the interpreter is on line 11. It enters the function papa() and

finds itself on line 4. It looks around and creates another __variables object that con‐

tains hundred_more and sum. You see now why hoisting is needed: the interpreter has
to find all variables sprinkled throughout the function body and keep them handy in

one place. Moving on to line 5, it turns out sum is also a function, so it needs a __scope

property. Now sum.__scope should point to papa() __variables, as this is where sum()
is lexically defined. The linked list (chain) of scopes becomes:

sum.__scope -> papa's __variables -> global __variables

Now if the interpreter needs to look up a variable, it looks in the local __variables of

papa(). If the variable is not found, then the interpreter will follow this sequence: “OK,

I’m inside the function papa(), and there’s no local variable with that name. Let me see

where papa.__scope points to. Oh, lookie, another __variables thing, full of more
variables; I’d better check what’s in there!”

[papa() local __variables] hundred_more, sum

[global __variables] global_ten, papa

Next, on line 8, the code calls sum(), so the interpreter enters this function and finds

itself on line 6. There it creates yet another __variables object containing a and b.

These are not declared with var but are declared by way of being used as the function’s
formal parameters.

What used to be a local scope now becomes a closure scope, as there’s now another
immediate local scope at hand:

38 | Chapter 3: Functions

[sum() local __variables] a, b

[papa() closure __variables] hundred_more, sum

[global __variables] global_ten, papa

When the interpreter has to perform the arithmetic operation on line 6, it starts looking
for values to replace the variables. You can imagine the interpreter thinking something
along these lines:

a // Got it in the [local] scope, we're good.

b // Also in the [local] scope, excellent.

global_ten // Hm, not in [local], let me dig deeper.

 // What's sum()'s __scope? I see, a [closure]!

 // Meh, not in [closure] either, let's keep going.

 // [closure] is papa()'s __variables object. So what's papa.__scope?

 // It's the [global __variables].

 // I found `global_ten` in [global] scope, yay me!

 // This was the last chance, otherwise I would

 // need to throw an error.

hundred_more // Not in [local], but found in [closure], all fine.

You see now how a chain (the scope chain) is created in the form of a linked list where

each function knows its lexical __scope. When the interpreter needs a variable and
doesn’t find it locally, it starts following the chain of linked scopes, looking for that
variable.

The Scope Chain in the WebKit Console
When debugging in the WebKit console (in either Chrome or Safari), you can look at
the scope objects and what they contain. I’ve created an HTML file you can practice
with. Here’s how:

1. Load the file in a WebKit browser.

2. Right-click anywhere and select “Inspect element” to bring up the Web Inspector.

3. Click the Scripts tab.

4. Insert breakpoints by clicking on line numbers 8 and 21.

You should see see something like what is shown in Figure 3-1.

Scope Chain | 39

http://www.jspatterns.com/js4php/scope.html

Figure 3-1. Breakpoints in the Web Inspector

Now refresh the page and you’ll see the code execution stop at line 8. Look at the right‐

hand menu, in the Scope Variables section. You’ll clearly see the chain consisting of

Global, Closure, and Local sections, and the variables available inside (Figure 3-2).

40 | Chapter 3: Functions

Figure 3-2. Reaching the breakpoint in Chrome

The Global section is really big, but if you scroll down, you’ll find the global_ten.

You might notice that sum is missing from the Closure in Figure 3-2. It should be there;
it’s just a question of displaying it in the Web Inspector in the version of Chrome this
screenshot was taken with. If you do the same in Safari, you can see a different picture

that includes sum and also the arguments object (Figure 3-3).

Scope Chain | 41

Figure 3-3. Reaching the first breakpoint in Safari

Now if you click the Play button in the debugger to continue execution, you’ll reach the

second breakpoint on line 21. It has two Closure sections in the scope list because the

function innerSum() is defined inside sum() and it creates yet another link in the scope
chain (Figure 3-4).

42 | Chapter 3: Functions

Figure 3-4. Reaching the second breakpoint

Retaining the Scope
As you know now, local functions have access to the scope of the environment where

they were defined. When the execution moves out of a local function such as inner

Sum() or sum(), the local scope of this function (its __variables object) is no longer
available and can be destroyed and garbage collected unless there’s someone who still
needs it. This is interesting, and is as powerful as it is error prone.

Let’s say that sum() wasn’t a local function, but a global one. It is still defined in a local

environment, but the variable sum was declared in the global scope:

var global_ten = 10;

var sum;

function papa() {

 var hundred_more = 100;

 sum = function (a, b) {

 return a + b + global_ten + hundred_more;

 };

 return sum(9, 11);

}

papa(); // 130

Scope Chain | 43

Now after papa() was called, you have a brand new sum() function available to call from

the global scope. When you call sum(), it has access to all global variables such as

global_ten (without special syntax such as PHP’s $GLOBAL). But it also, maybe sur‐

prisingly, has access to hundred_more and can see its value:

sum(9, 11); // 130

What happened here? After papa() returns, what happens to its local scope? In the

previous example, when sum() was local, then the local scope is just released, as no one

needs it. But when sum() is global and it’s defined in papa(), then sum.__scope refers

to the local scope of papa(). Therefore, this scope needs to be retained for future use

and cannot be destroyed. sum.__scope holds a reference to it.

This is important to understand and keep in mind about JavaScript closures (functions):
they retain the referencing environment, which is the environment they were defined
in and is also called the lexical environment.

The function papa() also retains its referencing environment, but it happens to be the
global scope, which is always around anyway.

Retaining References, Not Values
It’s also important to understand that only references to the environment are retained,
not specific values. Let’s see an example:

var global_ten = 10;

var sum;

function papa() {

 var hundred_more = 100;

 sum = function (a, b) {

 return a + b + global_ten + hundred_more;

 };

 hundred_more = 100000; // This is different from the previous example

}

papa(); // No explicit return value this time

sum(9, 11); // 100030

At the time sum() was defined, hundred_more had the value 100, but later, it became

100000. At the time papa() returns, its local scope was updated with the new 100000

value. This is the scope that sum() has access to. sum() will see the latest state of the
referencing environment.

Note the difference with PHP when you “localize” a variable with use:

$hundred_more = 100;

$sum = function ($a, $b) use ($hundred_more) {

44 | Chapter 3: Functions

www.allitebooks.com

http://www.allitebooks.org

 return $a + $b + $hundred_more;

};

$hundred_more = 100000;

echo $sum(0, 0); // 100

The same thing in JavaScript returns 100,000 because only the reference to hun

dred_more would be retained, not its value:

var hundred_more = 100;

var sum = function (a, b) {

 return a + b + hundred_more;

};

hundred_more = 100000;

sum(0, 0); // 100000

Closures in a Loop
Let’s see another example where this difference becomes even more obvious. Let’s define
an array of functions:

var fns = [];

function definer() {

 for (var i = 0; i < 5; i++) {

 fns.push(function () {

 return i;

 });

 }

}

definer();

Here you loop from 0 to 4, defining five functions. You can call these functions like so:

fns[0]();

fns[1]();

fns[2]();

fns[3]();

fns[4]();

If you haven’t read the previous section, you might naively think that each of these

function calls returns the value of i at the time of each function definition. But all the
five functions were defined in the same environment and have access to the same local
scope.

When definer() returns, i has the value 5, not 4, because at the last iteration there was

one final i++. This is the value that exists in the retained environment, and all five

functions see it. So all five functions return 5:

fns[0](); // 5

fns[1](); // 5

fns[2](); // 5

Scope Chain | 45

fns[3](); // 5

fns[4](); // 5

And what if you do want all functions to return an incremented value? You use another

closure to “localize” the value of i into a local_i:

var fns = [];

function definer() {

 for (var i = 0; i < 5; i++) {

 fns.push(function (local_i) {

 return function () {

 return local_i;

 };

 }(i));

 }

}

definer();

Another scope object was introduced here. In this new scope, there’s a local variable

local_i. It’s initialized with the current value of i and retained. In fact, now each of the
five functions has its own environment, different from the other four.

This is now more like what you’d expect:

fns[0](); // 0

fns[1](); // 1

fns[2](); // 2

fns[3](); // 3

fns[4](); // 4

How about a small improvement: simplifying the loop inside definer()? You can in‐

troduce a utility binder() function that returns a new function with the local i value:

var fns = [];

function binder(i) {

 return function () {

 return i;

 };

}

function definer() {

 for (var i = 0; i < 5; i++) {

 fns.push(binder(i));

 }

}

definer();

// Test

fns[0](); // 0

46 | Chapter 3: Functions

fns[1](); // 1

fns[2](); // 2

fns[3](); // 3

fns[4](); // 4

Exercise: onclick Loop
Let’s see a more practical example that demonstrates the same idea that referencing
environment variables are retained by reference, not values.

Say you have three buttons on an HTML page with incrementing ID attributes:

<button id="button-1">one</button>

<button id="button-2">two</button>

<button id="button-3">three</button>

Then you assign click event handlers in a loop:

<script>

for (var i = 1; i <= 3; i++) {

 document.getElementById('button-' + i).onclick = function () {

 alert("This is button: " + i);

 };

}

</script>

Again, this code may look like it should work fine, but any button you click always gives
you:

"This is button: 4"

You can play with the example online.

As an exercise, think about how to modify the loop so that the three buttons return
respectively:

This is button: 1

This is button: 2

This is button: 3

Immediate Functions
In the definer() function earlier, a bit of new syntax that wasn’t mentioned previously

was introduced: the trailing (). It instructs the interpreter to take the function that was
just defined and execute it immediately:

var immediate_one = function () {

 return 1;

}();

immediate_one; // 1

Immediate Functions | 47

http://www.jspatterns.com/js4php/closure-dom-loop.html

Here you see a call to a one-off function that runs and returns a value, which you then

assign to the variable immediate_one.

If the example were:

var immediate_one = function () {

 return 1;

};

then immediate_one would be a function, not the return value of a function invocation,
and it wouldn’t run, but be simply defined.

And how about this syntax?

// Syntax error

function myfunc() {

 return 1;

}();

This is not valid syntax because myfunc() was defined using the function declaration
syntax, not the function expression syntax. The difference sometimes may not be no‐
ticeable unless you take into account where the code is in the program.

You can fix this syntax error by passing the function as an operand to the grouping
operator:

// Valid syntax

(function myfunc() {

 return 1;

})();

All you need to do is wrap the function in parentheses. How is that different? Well, in
this case, the function is no longer in the main program code, but is passed as an operand

to an operator—the grouping operator ()—which simply returns the function. This

turns the function declaration into a function expression, and the () that follows exe‐
cutes the function. Function declarations cannot be operands; therefore, the interpreter
can disambiguate the syntax and treat this function as a function expression.

This is also a valid placement of the grouping operator’s parentheses:

// Still valid syntax

(function myfunc() {

 return 1;

}());

Immediate functions are a useful and common construct to deal with the way variable
scope works in JavaScript. Immediate functions are also sometimes called self-
executing or self-invoking functions, although this is confusing, as it may mean a re‐
cursive function. They are also called IIFE (immediately-invoked function expressions),
but that’s a bit of a mouthful.

48 | Chapter 3: Functions

The grouping operator () is also commonly used even when not required, for read‐

ability. In the following example, hardtoread and easytoread both have value 1, but

the presence of the opening (signals to the reader of the code that there is something

going on here (otherwise, it’s easy to confuse hardtoread to be a function and not the
returned value of a function):

var hardtoread = function () {

 return 1;

}();

var easytoread = (function () {

 return 1;

})();

hardtoread === easytoread; // true

Initialization
One use for immediate functions is one-off initialization. Often, you want to do some
initialization without leaving global variables behind. If this initialization is complex
enough that it needs temporary variables, you can wrap all your initialization code in
an immediate function to clean up after yourself.

The following code that assigns click event handlers to buttons is a good candidate:

(function () {

 for (var i = 1; i <= 3; i++) {

 document.getElementById('button-' + i).onclick = function () {

 // ...

 };

 }

}());

If there was no immediate function, the variable i would remain in the global scope.

As you can see, the function closes over variables used in the piece of code, hence the
name closure.

Privacy
Immediate function are also often used to achieve privacy. You can have global functions
that are defined in the closure of another function and share this closure’s local scope.

Here’s a simple iterator implementation:

var next, previous, rewind; // Globals

(function () {

 // Private data

 var index = -1;

Immediate Functions | 49

 var data = ['eeny', 'meeny', 'miny', 'moe'];

 var count = data.length;

 next = function () {

 if (index < count) {

 index++;

 }

 return data[index];

 };

 previous = function () {

 if (index >= 0) {

 index--;

 }

 return data[index];

 };

 rewind = function () {

 index = -1;

 };

}());

In this example index, data and count are private since the users of this iterator only
need the methods to go back and forth, and probably shouldn’t have access to the data
and the pointer, should they decide to mess them up.

Testing going back and forth:

next(); // "eeny"

next(); // "meeny"

previous(); // "eeny"

More testing: rewind and start over:

var a;

rewind();

while (a = next()) {

 // Do something with `a`

}

Passing and Returning Functions
You already saw examples of passing functions around, but it’s worth mentioning again:
you can pass functions as arguments to other functions, and you can also have functions

return other functions as their return values.

Previously, there was a function that returned a whole array of five functions. There’s
no reason why it cannot return just one function.

50 | Chapter 3: Functions

Functions are objects, and like any other objects, they can be passed as arguments. Here’s
an example that demonstrates all of this:

function goForIt(a, b, what) {

 return function () {

 return what(a, b);

 };

}

This function takes the parameter named what, which is expected to be a function. You

could also call the function assigned to what a callback function. The goForIt() function
returns a different (anonymous) function which in turn returns the result of executing
the callback:

var sumOneAndTwo = goForIt(1, 2, function (one, two) {

 return one + two;

});

What is the value of sumOneAndTwo? It’s not 3, but it’s a function that returns 3:

sumOneAndTwo(); // 3

Note the line that executes the callback:

return what(a, b);

It can also be written as:

what.call(null, a, b);

or:

what.apply(null, [a, b]);

(You’ll see more about the null argument in just a bit.)

You can define the callback function on the spot, like this:

var sumOneAndTwo = goForIt(1, 2, function (one, two) {

 return one + two;

});

This is just like you’d pass a closure as a callback in PHP.

But you can also reuse a different function you already have laying around:

function sum(a, b) {

 return a + b;

}

var mysum = goForIt(1, 99, sum);

mysum(); // 100

// Also

goForIt(1, 99, sum)(); // 100

Passing and Returning Functions | 51

Callbacks Are Not Strings
Note that you don’t wrap the callback in quotes, meaning you don’t pass it as a string:

// No-no

goForIt(11, 22, "sum")(); // TypeError: not a function

In the previous snippet, sum is a function object, not a string, so wrapping it in quotes
means it will try to execute a string as a function, which won’t work.

In PHP, traditionally the callbacks were defined using function names

as strings passed to call_user_func(), for example, but since the lan‐
guage has adopted closures, this is getting increasingly less common.

There are, however, some browser functions (e.g., setTimeout()) that accept callbacks,
and are nice enough to deal with cases where people do pass a string.

Say you have this function that tells time:

function showTime() {

 alert(new Date());

}

You can schedule it to execute in 1 second (1,000 milliseconds):

setTimeout(showTime, 1000);

You can also see people doing things like this:

setTimeout("showTime()", 1000);

This works, too, but it feels wrong because you’re expected to pass a function value, not

a string. It works because setTimeout() checks what you’re passing, and if it’s a string,
evaluates it. A sample implementation would be roughly something like this:

function setTimeout(callback, when) {

 // ... when the time is right ...

 if (typeof callback === "string") {

 (function () {

 eval(callback);

 }());

 } else {

 callback();

 }

}

52 | Chapter 3: Functions

To sum up, you pass the function value as a callback without quotes and without ()
because you’re not executing the function at the time of passing it; you want it called
back later, when it’s appropriate.

Last note: did you notice you can execute a function returned by another function
immediately by adding parentheses?

goForIt(11, 22, sum)(); // 33

Passing and Returning Functions | 53

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Object-Oriented Programming

This chapter discusses the object-oriented features of JavaScript, including objects,
constructor functions, and prototypes. It also talks about code reuse and inheritance.

Constructors and Classes
In PHP, if you have a Dog class, you create a $fido instance of this class using:

// PHP

$fido = new Dog();

JavaScript has a similar syntax:

// JavaScript

var fido = new Dog();

One important difference is that Dog is not a class in JavaScript because there are no

classes in the language. Dog is just a function. But functions that are meant to create
objects are called constructor functions.

Syntactically, there is no difference between a regular function and a constructor func‐
tion. The difference is in the intent. Thus, for readability purposes, it’s a common con‐
vention to capitalize the first letter in constructor function names.

When you call a function with the new operator, it always returns an object. The object

is known as this inside the body of the function. That’s what happens even if you don’t
do anything special in the function. Remember that otherwise (when called without

new) every function without an explicit return returns undefined:

function Dog() {

 this.name = "Fido";

 this.sayName = function () {

 return "Woof! " + this.name;

 };

55

}

var fido = new Dog();

fido.sayName(); // "Woof! Fido"

In JavaScript, just as in PHP, parentheses are optional when you’re not

passing arguments to the constructor, so this is also valid: var fido =

new Dog;

If you type fido in the console, you’ll see that it has two properties: name and sayName.

Some consoles also show you a special property called __proto__, but you can ignore
it for now.

Take a look at the sayName property. It points to a function. Since functions are objects
in JavaScript, they can be assigned to properties, in which case you can also call them
methods. There’s really no difference between properties and methods in JavaScript.
Methods are just callable properties.

Returning Objects
When you call any function with new, the following happens:

1. An “empty” object referenced via this is created automatically behind the scenes:

var this = {}; // Pseudocode, would be a syntax error if you use it

2. The programmer adds properties to this at will:

this.name = "Fido";

3. this is implicitly returned at the end of the function:

return this; // Not an error, but you don't need to use it

The programmer can interfere with step 3 by returning a different object:

function Dog() {

 var notthis = {

 noname: "Anonymous"

 };

 this.name = "Fido";

 return notthis;

}

var fido = new Dog();

fido.name; // undefined

fido.noname; // "Anonymous"

56 | Chapter 4: Object-Oriented Programming

In this example, whatever you add to this is simply destroyed when the function re‐
turns. You might as well remove it, in which case you don’t really need the magic pro‐

vided by new and you can call the function as a regular function and achieve the same
effect:

function Dog() {

 return {

 noname: "Anonymous"

 };

}

var fido = Dog(); // No `new` but `()` is needed this time

fido.name; // undefined

fido.noname; // "Anonymous"

Note, however, that returning something other than this causes the instanceof op‐

erator and the constructor property to not work as expected:

function Dog() {

 return {

 noname: "Anonymous"

 };

}

var fido = new Dog();

fido instanceof Dog; // false

fido.constructor === Object; // true

When you use new you can return a custom object (not this), but it has to be an object.
Trying to return a nonobject (a scalar value) results in your return value being ignored,

and you still get this at the end:

function Dog() {

 this.name = "Fido";

 return 1;

}

var fido = new Dog();

typeof fido; // "object"

fido.name; // "Fido"

More on This
As you know now, there’s no difference between constructor functions and regular

functions other than their usage intent. So what happens if you add properties to this
in a nonconstructor function? In other words, what happens when you call a constructor

function (which adds to this) and forget to call it with new?

function Dog() {

 this.thisIsTheName = "Fido";

 return 1;

Constructors and Classes | 57

}

var fido = new Dog();

var one = Dog();

// fido is a regular object:

typeof fido; // "object"

fido.thisIsTheName; // "Fido"

// one is 1, as returned from a nonconstructor function

typeof one; // "number"

one.thisIsTheName; // undefined

// What?!

thisIsTheName; // "Fido"

The surprise here is that by calling Dog() without new, the global variable thisIsThe

Name gets created. That’s because skipping new means this is a regular function invocation

and now this refers to the global object. And properties added to the global object can
be used as global variables. (There’s more about the global object later.)

This is dangerous behavior because you don’t want to pollute the global namespace.

That’s why it’s important to use new when it’s meant to be used. It’s also important to
follow the convention of naming constructors with a capital letter so you send a hint
about their intended purpose to the reader of the code:

function Request() {} // Ahaa!, it's a constructor

function request() {} // Just a function

This dangerous behavior is fixed in ECMAScript 5’s strict mode.

Enforcing Constructors
If you are extra paranoid, you can make sure programmatically that your constructors

always behave as constructors even when the callers forget new. You can use the instan

ceof operator, which takes an object and a constructor function reference and returns

true or false:

fido instanceof Dog; // true

Here’s one way to implement the self-enforcing constructor:

function Dog() {

 // Check if the caller forgot `new`

 if (!(this instanceof Dog)) {

 return new Dog(); // Re-call properly

58 | Chapter 4: Object-Oriented Programming

 }

 // Real work starts...

 this.thisIsTheName = "Fido";

 // real work ends

 // Implicitly at the end ...

 // return this;

}

var newfido = new Dog();

var fido = Dog();

newfido.thisIsTheName; // "Fido"

fido.thisIsTheName; // "Fido"

The line this instanceof Dog checks if the newly created this object was created by

Dog. The line var fido = Dog(); didn’t use new, so this points to the global object.

The global object was definitely not created by Dog. After all, it was around even before

Dog, so the check fails and the line return new Dog(); is reached.

You don’t really know exactly which constructor was used to create the
global object because it’s an internal implementation dependent on the
environment.

Another way to introspect and ask “Who created you?” is to use the constructor
property that all objects have. It’s also a writable property, so it’s not really reliable, as
the following example shows:

function Dog() {}

var fido = new Dog();

fido.constructor === Dog; // true, as expected

fido.constructor = "I like potatoes";

fido.constructor === Dog; // false, ... wait, what?!

fido.constructor; // "I like potatoes"

Prototypes
The concept of prototypes doesn’t exist in PHP but is an important concept in JavaScript.

Let’s take a look at an example:

function Dog(name) { // Constructor

 this.name = name;

}

// Add a member to the `prototype` property

Prototypes | 59

Dog.prototype.sayName = function () {

 return this.name;

};

var fido = new Dog("Fluffy");

fido.sayName(); // "Fluffy"

What happened here?

1. There’s a normal function Dog, obviously created with the intent to be a constructor

function because it starts with a capital D and refers to this inside its body.

2. Behind the scenes, the Dog() function, like any other function, automatically gets

a property called prototype. (You know that functions are objects, so they can have

properties.) The prototype property is always created for each function, construc‐
tor or otherwise.

3. You add a new property to the prototype property, called sayName. This property
happens to be a function, so you can say it’s a method.

4. sayName() has access to this.

5. Creating a fido object with new Dog() gives fido access to all the properties added

to the prototype property. Otherwise, if you call Dog() without new, the proto

type and everything in it is ignored.

6. fido.sayName() works fine even though sayName is not a property of the fido
object.

An object can access properties and methods that don’t belong to it but instead to the

object referred to as prototype of the constructor function that created the object.

Let this sink in a bit; there’s more on prototypes coming up.

Object Literals
You’ve already seen the use of object literals at several occasions in this book (e.g., when
talking about representing PHP’s associative arrays in JavaScript).

Object literals are simply key-value pairs, delimited with commas and wrapped in curly
braces:

var obj = {

 name: "Fluffy",

 legs: 4,

 tail: 1

};

60 | Chapter 4: Object-Oriented Programming

It’s not OK to leave the trailing comma after the last property because
some environments (earlier Internet Explorer versions) cannot handle
it and raise an error.

You can also start with some properties (or no properties at all) and add more later:

var obj = {};

obj.name = "Fluffy";

obj.legs = 4;

obj.tail = 1;

Accessing Properties
Having created an object using the object literal notation, you can access the properties
using the dot notation:

var desc = obj.name + " has " + obj.legs + " legs and " + obj.tail + " tail(s)";

desc; // "Fluffy has 4 legs and 1 tail(s)"

Alternatively, you can use the square bracket notation to access properties:

var desc = obj["name"] + " has " + obj["legs"] + " legs and " +

 obj["tail"] + " tail(s)";

desc; // "Fluffy has 4 legs and 1 tail(s)"

This is not too common, because it’s longer and a little clumsy to be passing property
names as strings. However, it is useful when you don’t know the property name in
advance and need a variable. For example, when iterating over all properties:

var all = [];

for (var property in obj) {

 all.push(property + ": " + obj[property]);

}

var desc = all.join(', ');

desc; // "name: Fluffy, legs: 4, tail: 1"

Or, as another example, when the property name is evaluated at runtime:

var obj = {

 foo: "Foo",

 bar: "Bar",

 foobar: "Foo + Bar = BFF"

};

var fprop = "foo", bprop = "bar";

obj[fprop]; // "Foo"

Object Literals | 61

obj[bprop]; // "Bar"

obj[fprop + bprop]; // "Foo + Bar = BFF"

Square bracket notation is required when the property is not a valid identifier (same for
quotes around property names in an object literal):

var fido = {};

fido.number-of-paws = 4; // ReferenceError

fido['number-of-paws'] = 4; // This is OK

Confusing Dots
Dots in JavaScript are used to access properties, but in PHP, they concatenate strings.
When you’re mentally in PHP mode but you’re writing in JavaScript, you can often
confuse the purpose of the dot out of habit:

// JavaScript

var world = "wrrrld";

var result = "hello " . world;

Funny enough, this is not a syntax error in JavaScript. The result contains the value

undefined. This is because the space around the dot is optional, so it works like this:

"hello".world; // undefined

In other words, you’re accessing the property world of the string object "hello". String

literals are converted to objects behind the scenes, as if you did new String("hel

lo") (more about this coming soon). Since this object doesn’t have such a property, the

result is undefined.

Methods in Object Literals
Can you add methods to an object using object literal notation? Absolutely—methods
are just properties, which happen to point to function objects:

var obj = {

 name: "Fluffy",

 legs: 4,

 tail: 1,

 getDescription: function () {

 return obj.name + " has " + obj.legs + " legs and " + obj.tail + " tail(s)";

 }

};

obj.getDescription(); // "Fluffy has 4 legs and 1 tail(s)"

In getDescription(), you can substitute obj with this.

62 | Chapter 4: Object-Oriented Programming

You can add methods to an existing object at a later time:

obj.getAllProps = function () {

 var all = [];

 for (var property in obj) {

 if (typeof obj[property] !== "function") {

 all.push(property + ": " + obj[property]);

 }

 }

 return all.join(', ');

};

obj.getAllProps(); // "name: Fluffy, legs: 4, tail: 1"

Did you notice some properties were filtered out using the following?

typeof obj[property] !== "function"

Most likely, you don’t want functions showing up in the list of properties, but because
functions are just like all other properties, they will show up if you don’t filter them out.
You can try removing this filter to see what happens.

Spoiler alert: accessing a function object in a string concatenation con‐
text converts the function object to a string. This happens by calling the

toString() method, which all objects that inherit Object respond to.

Function objects implement toString() by returning the source code
of the function, although this is not standard and implementations vary
among engines in terms of new lines and spacing.

Fancy Arrays
Overall, the obj now looks like a fancy array, or like a PHP associative array that has
some of its properties acting as functions. In fact, early PHP versions didn’t have the
concept of objects at all. When objects were added later, they were dubbed fancy ar‐
rays. To this day, it’s easy to go back and forth between an object and an associative array
in PHP:

// PHP

$mutt = array(

 'name' => "Fluffy",

 'legs' => 4,

 'tail' => 1,

);

echo $mutt['name']; // "Fluffy"

var_dump($mutt->name); // NULL, this is not an object

Fancy Arrays | 63

Here $mutt is an array, so accessing name as a property doesn’t work. However, you can

convert $mutt to an object:

// PHP

$mutt = (object)$mutt; // $mutt is now an object

echo $mutt['name']; // Fatal error, this is not an array anymore

echo $mutt->name; // "Fluffy"

As you can see, associative arrays and objects are so close that JavaScript decided to go
with using only objects to express both concepts.

To continue the PHP/JavaScript analogy, you can imagine JavaScript’s object literals as
being associative arrays converted to objects behind the scenes. Just as if you do the
following in PHP:

// PHP

$mutt = (object)array(

 "name" => "Fluffy"

);

echo $mutt->name; // "Fluffy"

The same in JavaScript:

// JavaScript

var mutt = {

 name: "Fluffy"

};

mutt.name; // "Fluffy"

Own Properties
In JavaScript, there is a distinction between properties owned by an object and prop‐

erties that are inherited from a prototype object. The syntax for accessing either of
those is the same, but sometimes you need to know if a property belongs to your object
or if it came from someplace else.

Own properties are those added to an object using the object literal notation or via an
assignment:

var literal = {

 mine: "I pwn you"

};

literal.mine; // "I pwn you"

var assigned = {};

assigned.mine = "I pwn you";

Own properties are also those added to this and returned by constructor functions:

64 | Chapter 4: Object-Oriented Programming

function Builder(what) {

 this.mine = what;

}

var constructed = new Builder("pwned");

constructed.mine; // "pwned"

Notice, however, that these two objects have access to a toString() method that neither
of them defined:

literal.toString(); // "[object Object]"

constructed.toString(); // "[object Object]"

The method toString() is not an own method for either of the two objects. It’s some‐

thing that came from a prototype.

If you want to tell the difference between own properties and prototype properties, you

can use another method called hasOwnProperty(), which takes a name of a property/
method as a string:

literal.hasOwnProperty('mine'); // true

constructed.hasOwnProperty('mine'); // true

literal.hasOwnProperty('toString'); // false

constructed.hasOwnProperty('toString'); // false

literal.hasOwnProperty('hasOwnProperty'); // false

Let’s do some more introspection. Where did that toString() come from? How can
you find out which is the prototype?

__proto__
Objects have prototypes, but they don’t have a prototype property—only functions do.

However, many environments offer a special __proto__ property for each object. __pro

to__ is not available everywhere, so it’s useful only for debugging and learning.

__proto__ is a property that exposes the secret link between the object and the proto

type property of the constructor that created the object:

constructed.prototype; // undefined, objects don't have this property

constructed.constructor === Builder; // true, "who's your constructor?"

// Secret link - exposed!

constructed.constructor.prototype === constructed.__proto__; // true

Chaining __proto__ calls lets you get to the bottom of things. And the bottom is the

built-in Object() constructor function.

Object.prototype is the mother of all objects. All objects inherit from it. That’s where

toString() was defined:

Own Properties | 65

Object.prototype.hasOwnProperty('toString'); // true

You can trace down toString from the constructed object:

constructed.__proto__.__proto__.hasOwnProperty('toString'); // true

What about the literal object? Its chain is one link shorter:

literal.__proto__.hasOwnProperty('toString'); // true

This is because literal wasn’t created by a custom constructor, which means it was

created by Object() behind the scenes, not by something (e.g., Builder()) that inherits

from Object().

When you need a simple object temporarily, you can use ({}), and the following syntax
also works:

({}).__proto__.hasOwnProperty('toString'); // true

It was previously mentioned that object literals like var o = {} create
“empty” objects. The word “empty” is in quotes because the objects are
not really empty or blank. Every object, even if it doesn’t have any own
properties, has some properties and methods already available—the
ones that come from its prototype chain.

this or prototype
When using constructor functions, you can add properties to this or to the construc‐

tor’s prototype. You may be wondering which one you should use.

Adding to the prototype is more efficient and takes less memory because the properties
and functions are created only once and reused by all objects created with the same

constructor. Anything you add to this will be created every time you instantiate a new
object.

Therefore, any members you plan to reuse and share among instances should be added

to the prototype, and any properties that have different values in each instance should

be own properties added to this. Most commonly, methods go to the prototype and

properties to this, unless they are constant among the instances.

And talking about code reuse brings about the following question: Can you reuse code
using inheritance?

Inheritance
So far you have learned:

66 | Chapter 4: Object-Oriented Programming

• How to create objects with literal notation or with constructor functions

• What a prototype is (a property of each function)

• Own versus prototype properties

• Objects inherit properties from their prototypes and their prototypes’ prototypes,
and so on

Now let’s talk a bit more about inheritance, because you’re probably wondering how do
inheritance works in a language that doesn’t have classes. It turns out there’s more than
one option to implement inheritance, depending on your goals and preferences.

Inheritance via the Prototype
The default way to implement inheritance is to use prototypes. You create one object
using a parent constructor and set it as a prototype of the child constructor.

Here’s a constructor function that will be the parent:

function NormalObject() {

 this.name = 'normal';

 this.getName = function () {

 return this.name;

 };

}

And a second constructor:

function PreciousObject() {

 this.shiny = true;

 this.round = true;

}

And the inheritance part:

PreciousObject.prototype = new NormalObject();

Voila! Now you can create precious objects with all the functionality of the normal
objects:

var crystal_ball = new PreciousObject();

crystal_ball.name = 'Ball, Crystal Ball.';

crystal_ball.round; // true

crystal_ball.getName(); // "Ball, Crystal Ball."

Instead of the usual Car extends Vehicle, the examples in this chapter
are inspired by Jim Bumgardner’s blog post “Theory of the Precious
Object”. It’s a fun read that suggests that treasured objects, such as J. R.
R. Tolkien’s fictional One Ring or an iPhone, have certain common
qualities.

Inheritance | 67

http://krazydad.com/blog/2008/07/31/theory-of-the-precious-object/
http://krazydad.com/blog/2008/07/31/theory-of-the-precious-object/

Notice how you need to create an object with new NormalObject() and assign it to the

prototype property of the PreciousObject function because the prototype is just an
object. If you think in terms of classes, you know that a class inherits from another. And
if you carry that thought to JavaScript, you’d expect that a constructor inherits from a
constructor. But that’s not the case. In JavaScript, you inherit an object.

If you have several constructor functions that inherit NormalObject objects, you may

create new NormalObject() every time, but it’s not necessary. You can create one normal

object and reuse it as a prototype of the children. Even the whole NormalObject con‐
structor may not be needed to begin with. Since you inherit an object, all you need is
one object, regardless of how it’s created.

Another way to do the same is to create one (singleton) normal object using the object
literal notation and use it as a base for the other objects:

var normal = {

 name: 'normal',

 getName: function () {

 return this.name;

 }

};

Then the objects created by PreciousObject() can inherit normal like this:

PreciousObject.prototype = normal;

Inheritance via Copying Properties
Since inheritance is all about reusing code, another way to implement it is to simply
copy over properties from one object to another.

Imagine you have these objects:

var shiny = {

 shiny: true,

 round: true

};

var normal = {

 name: 'name me',

 getName: function () {

 return this.name;

 }

};

How can shiny get the properties of normal? Here’s a simple extend() function that
loops through and copies properties:

function extend(parent, child) {

 for (var i in parent) {

 if (parent.hasOwnProperty(i)) {

68 | Chapter 4: Object-Oriented Programming

 child[i] = parent[i];

 }

 }

}

extend(normal, shiny); // Inherit

shiny.getName(); // "name me"

Copying properties may look like overhead and something that can hurt performance,
but for many tasks it’s just fine. You can also see that this is an easy way to implement
mixins and multiple inheritance.

With this pattern, instanceof and isPrototypeOf() do not work as
expected.

Beget Object
Douglas Crockford, a JavaScript luminary and creator of JSON, popularized another
way to implement inheritance by using a temporary constructor just to be able to set its
prototype:

function begetObject(o) {

 function F() {}

 F.prototype = o;

 return new F();

}

You create a new object, but instead of starting fresh, you inherit some functionality
from another, already existing, object.

For example, say you have the following parent object:

var normal = {

 name: 'name me',

 getName: function () {

 return this.name;

 }

};

You can then have a new object that inherits from the parent:

var shiny = begetObject(normal);

The new object can be augmented with additional functionality:

shiny.round = true;

shiny.preciousness = true;

As you can see, there’s no property copying, nor any constructors in sight. A new object
inherits from an existing one. This was actually embraced by the community as a good

Inheritance | 69

idea, and is now part of ECMAScript 5 in the form of Object.create(), as you’ll see
in Chapter 6.

As an exercise in closures and optimization, can you change begetObject() so that F()
is not created every time?

“Classical” extend()
Let’s wrap up with yet another way to implement inheritance, which is probably the
closest to PHP because it looks like a constructor function inheriting from another
constructor function; hence, it looks a bit like a class inheriting from a class.

Here’s the gist:

function extend(Child, Parent) {

 var F = function () {};

 F.prototype = Parent.prototype;

 Child.prototype = new F();

}

With this method, you pass two constructor functions to extend(). After extend() is
done, any new objects created with the first constructor (the child) get all the properties

and methods of the second (the parent) via the prototype property.

This method is often referred to as “classical” in quotes because it looks
the closest to the idea of classes.

There are only two small things to add to extend():

1. Have the child keep a reference to the parent, just in case.

2. Reset the constructor property of the child to point to the child’s constructor, in
case this is needed for introspection (you’ll see some more about this property in
Chapter 5):

function extend(Child, Parent) {

 var F = function () {};

 F.prototype = Parent.prototype;

 Child.prototype = new F();

 Child.prototype.parent = Parent;

 Child.prototype.constructor = Child;

}

In this method, there’s no instance of new Parent() involved. This means that own

properties added to this inside the parent constructor will not be inherited. Only the

70 | Chapter 4: Object-Oriented Programming

properties added to the prototype of the parent will be inherited. And this is OK in many
scenarios. In general, you add the properties you want to reuse to the prototype.

Consider this setup:

function Parent() {

 this.name = "Papa";

}

Parent.prototype.family = "Bear";

function Child() {}

extend(Child, Parent);

The property name is not inherited, but the family is:

new Child().name; // undefined

new Child().family; // "Bear"

And the child has access to the parent:

Child.prototype.parent === Parent; // true

Borrowing Methods
Using call() and apply() gives you an opportunity to reuse code without having to
deal with inheritance at all. After all, inheritance is meant to help us reuse code.

If you see a method you like, you can temporarily borrow it, passing your own object

to be bound to this:

var object = {

 name: "normal",

 sayName: function () {

 return "My name is " + this.name;

 }

};

var precious = {

 shiny: true,

 name: "iPhone"

};

If precious wants to benefit from object.sayName() without extending anything, it
can simply do the following:

object.sayName.call(precious); // "My name is iPhone"

If you combine method borrowing and classical inheritance, you can also get both own

and prototype properties:

function Parent(name) {

 this.name = name;

}

Parent.prototype.family = "Bear";

Inheritance | 71

function Child() {

 Child.prototype.parent.apply(this, arguments);

}

extend(Child, Parent);

All this properties become own properties of the child. And via the magic of argu

ments and apply(), you can also have arguments passed to the constructors, if you so
desire:

var bear = new Child("Cub");

bear.name; // "Cub"

bear.family; // "Bear"

bear.hasOwnProperty('name'); // true

bear.hasOwnProperty('family'); // false

Conclusion
As you can see, there are many options available for implementing inheritance. You can
pick and choose depending on the task at hand, personal preferences, or team prefer‐
ences. You can even build your own solution or use one that comes with your library
of choice. Note, however, that deep inheritance chains are not too common in JavaScript
projects because the language allows you to simply copy properties and methods of
other objects or “borrow” them to achieve your task. Or, as the Gang of Four’s Design
Patterns (Addison-Wesley, 1994) says: “Prefer object composition to class inheritance.”

72 | Chapter 4: Object-Oriented Programming

CHAPTER 5

The Built-In API

JavaScript has a small built-in API, and this chapter takes a look at pretty much all of
it. There are only three global properties, nine global functions, and a handful of global
objects, most of which are constructor functions. Most of the useful stuff is in the pro‐
totypes of the constructors or directly as properties of the constructors.

The Global Object
You already know about the global object, but let’s revisit it. Each JavaScript environment

has a global object, something like the $GLOBALS array in PHP.

Some environments, but not all, have a global variable that refers to the global object.

Browsers call it window. You can access it using this in global program code or in a

function, as long as the function is not called with new and you’re not in ES5 strict mode
—more on this later.

You can also think of global variables as being properties of the global object, with the
only difference that you cannot delete them. Try the following in a browser:

// Create a global variable

var john = "Jo";

john; // "Jo"

window.john; // "Jo", works as a property too

// Create a property of the global object

window.jane = "JJ";

jane; // "JJ", works as a variable too

window.jane; // "JJ"

// Delete them

delete window.john; // false

delete window.jane; // true

73

john; // "Jo"

jane; // undefined

this === window; // true

When you see BOM properties used with window.something, you can

shorten them to just something (e.g., window.navigator is the same as

navigator). Unless, of course, you have a local variable with the same
name.

Global Properties
There are three built-in properties of the global object:

• NaN is a special value you get as a result of a math operation gone wrong:

1 * 'a'; // NaN

• Infinity is what you get when you divide by 0:

1 / 0; // Infinity

• And you already know about undefined.

The fact that these three special values are properties of the global object is of little
interest. But a curious problem exists in ES3 (fixed in ES5)—you can overwrite them

(e.g., Infinity = 1). This is, of course, a terrible idea, but it happens “in the wild.” Here’s
a pattern that libraries adopt to prevent people from shooting themselves in the foot:

// Global program code

(function(window, undefined) {

 // window and undefined are what they should be

 // ... library goes here ...

}(this /*, no second parameter */));

Global Functions
There are nine global functions (four of these are related to numbers, another four are

related to encoding/decoding URLs, and then there’s eval()). Just like in PHP, eval()
takes a string and evaluates it as code. Unfortunately, it’s commonly used in dangerous
and insecure ways, while the truth is that it’s rarely needed.

74 | Chapter 5: The Built-In API

Numbers
The four number-related functions are the following:

isNaN()

Tells you if the argument is the NaN value. PHP has is_nan().

isFinite()

Tells you if the argument is not the Infinity value. PHP has similar is_finite().

parseInt()

Takes a string and returns an integer value, similar to intval() in PHP.

parseFloat()

Parses strings as floats, like PHP’s floatval().

You use isNaN() to determine if the result of an arithmetic operation was successful,

because the NaN value doesn’t compare to anything, including itself:

NaN === NaN; // false

1 * 'two' === NaN; // false

isNaN(1 * 'two'); // true

parseInt() takes an argument to parse and a second argument, which specifies how

you want the string to be parsed. You can always pass 10 to make sure your input is
treated as a decimal; otherwise, the interpreter would have to guess:

parseInt(08); // 8

parseInt("08"); // 0

parseInt("08", 10); // 8

In strict mode, ES5 parseInt("08") now returns 8.

Let’s see another example of using parseInt(). Say you want to convert CSS hexadec‐

imal color definitions to rgb():

var red = '#ff0000', r, g, b;

r = red[1] + red[2]; // "ff"

g = red[3] + red[4]; // "00"

b = red[5] + red[6]; // "00"

r = parseInt(r, 16); // Parse as hexadecimal

g = parseInt(g, 16); // hex

b = parseInt(b, 16); // hex

"rgb(" + r + ", " + g + ", " + b + ")"; // "rgb(255, 0, 0)"

Global Functions | 75

Array access to strings (e.g., red[1]) is defined in ES5 and doesn’t work
in old IEs.

Another example: the geeky joke that Halloween is actually Christmas because every‐
body knows Oct 31 = Dec 25. Using a JavaScript console, you can check if you got the
joke. October = Oct = Octal = 8, December = Dec = Decimal = 10, and so:

parseInt(31, 8) === parseInt(25, 10); // true

Encoding URLs
The other four of the global functions deal with URL encodings:

encodeURIComponent() and decodeURIComponent()

These two functions are like PHP’s urlencode() and urldecode().

encodeURI() and decodeURI()

These are similar to encodeURIComponent() and decodeURIComponent() but they
produce valid URLs while encoding only the part that needs encoding, leaving

things like http:// untouched:

var url = 'http://phpied.com/?search=js php';

encodeURIComponent(url); // "http%3A%2F%2Fphpied.com%2F%3Fsearch%3Djs%20php"

encodeURI(url); // "http://phpied.com/?search=js%20php"

Note that encodeURI() doesn’t encode “&”, which may be a problem or a feature de‐
pending on what you’re trying to do with query strings:

var qs = 'hello=world&jello=m o o n';

encodeURIComponent(qs); // "hello%3Dworld%26jello%3Dm%20o%20o%20n"

encodeURI(qs); // "hello=world&jello=m%20o%20o%20n"

You may also come across the functions escape() and unescape().
These are not part of ECMAScript; they come from BOM. They work

slightly differently than encodeURI() and encodeURIComponent(), and
should not be used.

Built-In Constructors
Most of the built-in, ready-to-use functionality in JavaScript is implemented in its global
constructor functions and two “other” global objects: either as properties and methods

of the constructor functions themselves or as part of their prototype properties. The
constructors can be split into four groups:

76 | Chapter 5: The Built-In API

Object(), Array(), RegExp(), and Function()
These are rarely used to create objects, because they have shorter literal syntax
versions. However, their prototypes are full of useful properties, no matter how you
create the object.

String(), Number(), and Boolean()
These are also rarely used directly to create objects, because they are just wrappers
around primitive types. In JavaScript, you can jump easily between the primitive
type and its objectified wrapper, and you can call methods directly on the primitive.

Date()

Has tons of methods to work with dates.

Error()

Creates error objects. Error objects are simple and you can opt in for throwing your

own error objects and forget all about the Error() constructor. Error() is generic,

there are also more specific error constructors (e.g., SyntaxError(), ReferenceEr

ror(), etc.).

There are two more global objects worth mentioning:

Math

This is not a constructor (so you cannot do var m = new Math();), but is a global
object where you can find a number of useful math-related properties and methods.
For example:

Math.min(3, 5); // 3

Math.E; // 2.718281828459045

JSON

This is not a constructor either, but is rather an object that holds methods for en‐
coding/decoding JSON strings. It’s a new addition to ECMAScript 5, and you’ll read
more about it in Chapter 6.

Let’s examine all these constructors in more detail.

Object
The Object constructor creates objects like so:

var o = new Object();

This is equivalent to the object literal notation:

var o = {};

Given that the literal is shorter, there’s no reason to use the constructor directly.

Built-In Constructors | 77

new can be omitted when using Object(), so var o = Object(); is the

same as var o = new Object();.

The Object constructor also accepts an argument. Based on the argument type, Ob

ject() works as a factory and delegates the object creation to another constructor (e.g.,

String() or Boolean()):

var s = new Object('hello');

s.constructor === String; // true

And that is another reason to avoid calling new Object() directly. Sometimes you just
don’t know what type of object you’ll get back.

toString()

The method toString() exists on the Object.prototype, so you can use it like so:

var o = {};

o.toString(); // "[object Object]"

Or also:

var o = {};

Object.prototype.toString.call(o); // "[object Object]"

This method gives you a string representation of the object.

The string "[object Object]" is the same for any object, so:

Object.prototype.toString({}) === Object.prototype.toString({a: 1}); // true

The method toString() is commonly used to test whether an object is an array. As it
turns out, it’s a little tricky to test if something is an array or not (after all, arrays are
objects). Although it may appear a little hacky, a good and robust pattern is to use

toString().

Consider the following:

var a = [];

var array_like = {

 length: 1,

 0: 1

};

If you test with:

if ('length' in array_like) {}

or

if (array_like.hasOwnProperty('0')) {}

78 | Chapter 5: The Built-In API

or a similar “duck typing” pattern, you may get a false positive if it happens that the

array_like object has the same properties. Duck typing means guessing the type based
on some expected properties. As the saying goes, “If it walks like a duck and quacks like
a duck, it must be a duck.”

Another option is to use the instanceof operator. It works in most cases, but gets
confused in IE when iframes are involved:

a instanceof Array; // true

array_like instanceof Array; // false

Using toString(), you can disambiguate:

function isArray(a) {

 return Object.prototype.toString.call(a) === "[object Array]";

}

isArray(a); // true

isArray(array_like); // false

Note the use of toString() as a member of Object.prototype, not of Array.proto

type. This is because arrays have their own customized toString() that returns a string
representation of the array:

var a = [1, 2, 'a'];

a.toString(); // "1,2,a"

toString() returns the internal class used to create an object. Here it’s used to
tell arrays from objects, but you can use it for more detailed introspection when

typeof is not enough. For example:

typeof (/[a-z]/); // "object"

({}).toString.call(/[a-z]/); // "[object RegExp]"

// Introspect DOM objects

({}).toString.call(document.images); // "[object HTMLCollection]"

({}).toString.call(document.querySelectorAll('*')); // "[object NodeList]"

// Tell native JSON from a "shim" implementation

// "[object JSON]" (native)

// "[object Object]" (user-land)

({}).toString.call(JSON); // "[object JSON]"

toLocaleString()

The method toLocaleString() is the same as toString(), only it returns the string in
the current locale:

({}).toLocaleString(); // "[object Object]"

Built-In Constructors | 79

valueOf()

This method depends on the type of object. For regular objects such as arrays, regular
expressions, and functions, it returns the object itself:

var o = {}, a = [];

o.valueOf() === o; // true

a.valueOf() === a; // true

For objects created by the primitive wrappers Number(), Boolean(), and String(), it

returns the primitive value. For Date objects, it returns a timestamp (same as the get

Time() method):

new Number(9).valueOf() === 9; // true

new String("boo").valueOf() === "boo"; // true

typeof (new Date()).valueOf(); // "number"

hasOwnProperty()

You already know a bit about the method hasOwnProperty(). It lets you differentiate
between own methods and methods that have come down the prototype chain:

({}).hasOwnProperty('toString'); // false

({}).constructor.prototype.hasOwnProperty('toString'); // true

Or another example using your own objects:

var papa = {name: "Papa"};

var KiddoConstructor = function () {};

KiddoConstructor.prototype = papa;

var kiddo = new KiddoConstructor();

kiddo.name; // "Papa"

kiddo.hasOwnProperty('name'); // false

papa.hasOwnProperty('name'); // true

propertyIsEnumerable()

The method propertyIsEnumerable() lets you introspect an object and see if a property

will come up in a for-in loop.

For example, arrays have a length property that doesn’t show up in a for-in loop:

[].hasOwnProperty('length'); // true

[].propertyIsEnumerable('length'); // false

To avoid confusion when iterating with a for-in loop, it’s a common practice to check

hasOwnProperty() inside the loop just to make sure you don’t get any unexpected

properties (e.g., properties that are added to Object.prototype):

var obj = {};

for (var prop in obj) {

80 | Chapter 5: The Built-In API

 if (!obj.hasOwnProperty(prop)) {

 continue; // Filter out

 }

 // Real work here ...

}

isPrototypeOf()

As the name suggests, the method isPrototypeOf() helps you introspect objects:

Array.isPrototypeOf({}); // false

Array.prototype.isPrototypeOf({}); // false

Array.prototype.isPrototypeOf([]); // true

This method also follows the inheritance chain:

Object.prototype.isPrototypeOf([]); // true

 // Arrays are objects

constructor

As illustrated previously, constructor is a property that lets you figure out which con‐
structor function was used to create the object:

({}).constructor === Object; // true

({}).constructor === Array; // false

Since only one specific constructor was used to create the object, you cannot use the

constructor property to look up the inheritance chain the way you’d do with isProto

typeOf():

([]).constructor === Array; // true

([]).constructor === Object; // false

This wraps up the discussion of the base Object() constructor. Now on to arrays.

Array
The Array() constructor creates arrays using the arguments passed to it as elements of
the array:

var a = new Array(1, 2, "boom!");

a.length; // 3

a[0]; // 1

a[1]; // 2

a[2]; // "boom!"

Omitting new also works:

var a = Array(1, 2);

a.length; // 2

Built-In Constructors | 81

If you pass only one argument, and this argument is an integer, you’ll get an array where

the length equals the numeric value of the argument:

var a = new Array(12);

a.length; // 12

a[0]; // undefined

Passing a float causes an error:

var a = new Array(1.2); // RangeError: Invalid array length

Passing a string works as usual:

var a = new Array("12");

a.length; // 1

a[0]; // "12"

Instead of using new Array(), you’re much better off using the array literal. It’s shorter
and avoids ambiguity when creating an array with one element:

var a = []; // Array with no elements

var a = [1, 2, "boom"]; // Three elements

var a = [12]; // One element

So when translating from PHP in your mind, think that:

// PHP < 5.4

$a = array(1, 2);

// PHP 5.4

$a = [1, 2];

// JavaScript

var a = [1, 2];

Let’s take a look at the properties and methods provided by Array.prototype.

length

Similar to count() in PHP, the length property gives you the number of elements:

[1, 2, 3, 4].length; // 4

But be aware that length is mutable:

var a = [1, 2, 3, 4];

a.length; // 4

a.length = 100;

a.length; // 100

In this case, elements a[4] through a[99] don’t exist, and you’ll get undefined if you

ask for their values, for example, in a loop from 0 to a.length.

Consider the following:

var a = [1, 2, 3, 4];

a.length = 100;

82 | Chapter 5: The Built-In API

a[10]; // undefined

99 in a; // false

Somewhat similar is this example:

var a = [1, 2, 3, 4];

a[99] = undefined;

a.length; // 100

The difference is that here the element a[99] exists because you’ve created it, even if it

has the undefined value. All other elements a[4] through a[98] do not exist:

var a = [1, 2, 3, 4];

a[99] = undefined;

99 in a; // true

98 in a; // false

a.length; // 100

Note the difference with PHP. Implementing the preceding code in PHP gives you five

elements and doesn’t change the value that count($a) returns:

// PHP

$a = array(1, 2, 3, 4);

$a[99] = null;

echo count($a); // 5

push()

Just like array_push() in PHP, Array.prototype.push() appends an element to the
end of the array:

// PHP

$a = array(1, 2);

array_push($a, 3, 4);

// JavaScript

var a = [1, 2];

a.push(3, 4);

a.toString(); // "1,2,3,4"

Array.prototype.push() returns the length of the updated array:

[1, 2].push("a", "b"); // 4

pop()

The opposite of push() is pop(). It removes the last element from the array and returns
it:

// PHP

$a = array(1, 2, 3);

$what = array_pop($a);

echo count($a); // 2

echo $what; // 3

Built-In Constructors | 83

// JavaScript

var a = [1, 2, 3];

var what = a.pop();

a.toString(); // "1,2"

what; // 3

unshift()

Array.prototype.unshift() is like Array.prototype.push() but adds the new ele‐
ment to the beginning of the array. It also returns the new length. The PHP equivalent

is array_unshift():

// PHP

$a = array(1, 2);

$count = array_unshift($a, 3, 4);

print_r($a); // Array ([0] => 3 [1] => 4 [2] => 1 [3] => 2)

echo $count; // 4

// JavaScript

var a = [1, 2];

var count = a.unshift(3, 4);

a.toString(); // "3,4,1,2"

count; // 4

shift()

shift() is the opposite of unshift(). It removes the first element of the array and

returns it. It’s JavaScript’s equivalent of PHP’s array_shift():

// PHP

$a = array(1, 2, 3);

$first = array_shift($a);

print_r($a); // Array ([0] => 2 [1] => 3)

echo $first; // 1

// JavaScript

var a = [1, 2, 3];

var first = a.shift();

a.toString(); // "2,3"

first; // 1

concat()

Array.prototype.concat() is similar to PHP’s array_merge(). It creates a new array
by appending the elements of one array to the end of another. Both input arrays remain
unchanged:

var a = [1, 2, 3];

var b = ['one', 'two', 'three'];

var c = a.concat(b);

a.toString(); // "1,2,3"

84 | Chapter 5: The Built-In API

b.toString(); // "one,two,three"

c.toString(); // "1,2,3,one,two,three"

You can pass multiple arguments to concat(). If they are not arrays, they are treated as
if they were arrays with a single value:

var c = a.concat(b, "boo", ["boom", "vroom"], "oink");

c.toString(); // "1,2,3,one,two,three,boo,boom,vroom,oink"

sort()

In PHP, there are many functions you can use to sort arrays, but in JavaScript, there’s

only one: Array.prototype.sort(). It takes a function callback that allows you to im‐
plement your custom sorting:

var a = ["Paul", "John", "Ringo", "George"];

a.sort().toString(); // "George,John,Paul,Ringo"

A common task that sort() doesn’t address out of the box is sorting numbers:

var nums = [1, 9, 10, 2, 11];

nums.sort().toString(); // "1,10,11,2,9"

Probably not what you expected: the numbers were sorted as strings. As if you used

SORT_STRING in PHP’s sort():

// PHP

$nums = array(1, 9, 10, 2, 11);

sort($nums, SORT_STRING);

print_r($nums); // Array ([0] => 1 [1] => 10 [2] => 11 [3] => 2 [4] => 9)

If you need the equivalent of SORT_NUMERIC, you need to implement your callback
function in JavaScript:

var nums = [1, 9, 10, 2, 11];

nums.sort(function (a, b) {

 return a - b;

});

nums.toString(); // "1,2,9,10,11"

As you can see, the callback works like a callback you’d pass to usort() in PHP. It returns:

• 0 if the two elements passed to it are equal

• A positive number if the first argument is considered larger than the second

• A negative number if the first argument is considered smaller than the second

How about shuffling, or randomizing, an array? PHP has array_shuffle(), but there’s
no equivalent in JavaScript. Since randomizing can be thought of as sorting but in ran‐

dom order, it means you can provide a callback that returns a random result. Math.ran

dom() returns a random number between 0 and 1, but you need negative numbers, too,

Built-In Constructors | 85

so you can just subtract the random number from 0.5 to have an equal probability of
getting a positive or a negative result:

var nums = [1, 2, 9, 10, 11];

nums.sort(function (a, b) {

 return 0.5 - Math.random();

});

nums.toString(); // "11,1,9,2,10"

slice()

Array.prototype.slice() returns a new array created by cutting a piece of the original
array between a given start and end index:

var a = ['one', 'and', 'two', 'and', 'three', 'and', 'four'];

var b = a.slice(2, 5);

b.toString(); // "two,and,three"

Array.prototype.slice() is similar to PHP’s array_slice() but not

exactly equivalent because PHP’s array_slice() takes a start index and
a length, not an end index.

If you omit the second argument when calling slice(), it defaults to the length:

var a = ['one', 'and', 'two', 'and', 'three', 'and', 'four'];

var b = a.slice(2);

b.toString(); // "two,and,three,and,four"

If you pass a negative index i, the value of this argument becomes a.length + i. So, if
you need the last three elements, you can do the following:

var a = ['one', 'and', 'two', 'and', 'three', 'and', 'four'];

a.slice(-3).toString(); // "three,and,four"

This is because the a.length is 7, and so the argument becomes 7 + (-3).

So it’s equivalent to:

var a = ['one', 'and', 'two', 'and', 'three', 'and', 'four'];

a.slice(4).toString(); // "three,and,four"

splice()

Array.prototype.splice() is a powerful method for working with arrays. It’s a good
idea to play around with it.

The splice() method can add and remove elements at the same time. It removes ele‐
ments by given start index and length. Then, in the “vacuum” created by the missing
elements, you can insert other ones.

86 | Chapter 5: The Built-In API

It’s similar to PHP’s array_splice().

Note the difference with Array.prototype.slice(), however. splice() takes a start

index and a length (number of elements) to remove, while slice() takes start and end
index:

// PHP

$input = array("red", "green", "blue", "yellow", "purple");

$slice = array_splice($input, 2, 2, "orange");

print_r($input); // "red", "green", "orange", "purple"

print_r($slice); // "blue", "yellow"

// JavaScript

var input = ["red", "green", "blue", "yellow", "purple"];

var slice = input.splice(2, 2, "orange");

input.toString(); // "red,green,orange,purple"

slice.toString(); // "blue,yellow"

You can add as many new elements to replace the sliced out ones and, if they are not
arrays, they’ll be treated as arrays with one element:

var input = ["red", "green", "blue", "yellow", "purple"];

input.splice(2, 2, "orange", ["black", "white"], "grey");

input.toString(); // "red,green,orange,black,white,grey,purple"

reverse()

As the name suggests, Array.prototype.reverse() reverses the order of the array

elements (the last element becomes the first, etc.), similar to PHP’s array_reverse():

[1, 2, 3].reverse().toString(); // "3,2,1"

join()

Array.prototype.join() is like PHP’s implode(). It returns a string made of the ele‐
ments of the array, delimited by a string. The default delimiter is comma:

[5, 4, 3].join(' > '); // "5 > 4 > 3"

[5, 4, 3].join(); // "5,4,3"

 // same as toString()

[5, 4, 3].join(''); // "543"

In PHP, the opposite of implode() is explode(), and in JavaScript, the opposite of

Array.prototype.join() is String.prototype.split(), which you’ll see in a bit.

At this point, you’re done with arrays. Let’s consider regular expressions next.

RegExp
The RegExp constructor creates regular expression objects. It can be used with and

without new. It also has an alternative syntax that uses a regular expression literal:

Built-In Constructors | 87

var re = new RegExp('[a-z]'); // Constructor

var re = RegExp('[a-z]'); // Constructor without `new`

var re = /[a-z]/; // Literal

As you see, the literal is shorter and easier. You only need to use the constructor when
creating the regex pattern on the fly by concatenating strings.

In ES3, regular expression objects defined with the literal notation are
created only once during the parsing stage:

function gimme() {

 return /a-z/;

}

var a = gimme();

var b = gimme();

a === b; // false, but true in ES3

You can also specify any of the three regex modifiers:

• global (using g)—match all occurrences, not just the first

• multiline (using m)

• ignoreCase (i)

You can set them in any order. They are all false by default:

var re = new RegExp('[a-z]', 'gmi');

var re = /[a-z]/ig;

// test

re.ignoreCase; // true

re.multiline; // false

test() and properties

After you’ve created the regex object, you can use exec() and test() to match strings.

exec() returns matches, while test() only returns true/false if at least one match was
found:

re.exec("somestring"); // Returns matches

re.test("somestring"); // Returns true|false

Additional properties of the regex object are as follows:

re.lastIndex; // The index of the last match

re.source; // The regex pattern as a string (e.g., "[a-z]")

re.global; // Whether the `g` flag was set

re.multiline; // Whether the `m` flag was set

re.ignoreCase; // Whether the `i` flag was set

88 | Chapter 5: The Built-In API

exec()

When you use re.exec(), the return value is an array of matches plus two more prop‐

erties: input and index, which are respectively the input string to be matched and the
index of the match.

Let’s see an example in more detail:

var re = /([dn])(o+)/;

var result = re.exec("doodle noodle");

result.join(', '); // "doo, d, oo"

As you can see, result is an array. It contains the full match (doo) and the matches of

the grouping () within the regex pattern. You can also see that the result array has the

extra properties input and index:

result.input; // "doodle noodle"

result.index; // 0

Arrays are objects, so it’s OK for them to have additional properties
besides the numeric ones 0, 1, 2…

If you call re.exec() again, you’ll get the exact same result. But the regex pattern is

supposed to also match “noo.” To get all matches, you need the g modifier:

var re = /([dn])(o+)/g;

Then you call exec() in a loop and get the next match. With every match, the property

re.lastIndex gets updated with the index character where the match ends. When

re.exec() returns null (which also causes re.lastIndex to become 0 again), that’s
your signal that there are no more matches:

var re = /([dn])(o+)/g;

var str = "doodle noodle";

re.lastIndex; // 0

re.exec(str); // ["doo", "d", "oo"]

re.lastIndex; // 3

re.exec(str); // ["noo", "n", "oo"]

re.lastIndex; // 10

re.exec(str); // null

re.lastIndex; // 0

The same example as a loop:

Built-In Constructors | 89

var re = /([dn])(o+)/g;

var str = "doodle noodle";

var match;

while (match = re.exec(str)) {

 // Do something with `match` or `re.lastIndex`

 console.log(match);

 console.log(re.lastIndex);

}

Function
You can use the Function constructor to create function objects:

var f = new Function('a, b', 'return a + b');

f(4, 5); // 9

As you can see, this way of creating functions is cumbersome and smells of eval(), so

it should be avoided as much as possible. Although Function() can be used wisely for
some metaprogramming tasks, for most common problems, JavaScript is dynamic
enough so you rarely need to write code as a string.

One use of Function() is to replace eval() because Function() creates a local scope
and doesn’t bleed variables after the evaluation. Consider:

var code = "var tmp = 1; console.log(tmp);";

Function(code)(); // Logs 1

typeof tmp; // undefined

eval(code); // Logs 1

typeof tmp; // "number"

As you can see, you can omit new with Function, too.

Function() not only doesn’t bleed variables into the global space, but it also has nothing
in its scope chain except the global scope:

// Global namespace

var globe = "round";

(function () {

 var globe = "flat";

 (new Function("return globe;"))(); // "round"

 eval("return globe;"); // "flat"

}());

Function properties

You already know about all properties and methods of the function object:

90 | Chapter 5: The Built-In API

length

Expected number of arguments

name

Name of the function, not part of the ECMAScript standard

call()

Executes a function passing individual arguments

apply()

Executes a function passing all arguments as an array

An example:

// Define a function

function sum() {

 var res = 0;

 for (var i = 0; i < arguments.length; i++) {

 res += arguments[i];

 }

 return res;

}

// Test properties

sum.length; // 0

sum.name; // "sum"

// Test methods

sum.call(null, 1, 2, 3); // 6

sum.apply(null, [2, 2, 2, 2]); // 8

The first argument passed to call() and apply() is the object to be assigned to this

inside the body of the function. When you don’t care about this, you pass null.

String
String() used as a constructor with new creates string objects. String() used as a

function without new casts the argument to a primitive string. String objects are different
from string primitives, but you can access properties and methods of a primitive string
(and boolean and number) as if it were an object. There’s not much reason to use the

new String() constructor directly:

// Constructor, creates string objects

var s = new String("hello");

typeof s; // "object"

// Without `new` it creates string primitives

var s = String("hello");

typeof s; // "string"

// Best used as a primitive

Built-In Constructors | 91

var s = "hello";

typeof s; // "string"

// You can call methods and properties on primitives too

s.length; // 5

"hi".length; // 2

// You can't add properties to primitives though

var sp = "primitive";

sp.likes_caves = true;

sp.length; // 9

sp.likes_caves; // undefined

Table 5-1 lists the basic properties and methods of String.prototype by comparing
them with PHP functions.

Table 5-1. Methods of String.prototype compared to PHP’s functions

JavaScript PHP Result

var s = "JavaScript"; $s = "JavaScript";

s.length; echo strlen($s); 10

s.indexOf("a"); echo strpos($s, 'a'); 1

s.lastIndexOf("a"); echo strrpos($s, 'a'); 3

s.charAt(0); echo $s[0]; "J"

s.charCodeAt(0); echo ord($s[0]); 74

s.toLowerCase(); echo strtolower($s); "javascript"

s.toLocaleLowerCase();

s.toUpperCase(); echo strtoupper($s); "JAVASCRIPT"

s.toLocaleUpperCase();

s.concat(" rulz", "!"); echo $s . " rulz" . "!"; "JavaScript rulz!"

These were the simplest methods; now let’s discuss the others in some more detail.

substring()

There are three methods that allow you to extract a piece of a string:

var s = "JavaScript";

s.slice(4, 7); // "Scr"

s.substring(4, 7); // "Scr"

s.substr(4, 3); // "Scr", nonstandard

The first two, slice() and substring(), are similar to PHP’s substr(), only they take

a start and end index as opposed to start index and length. The nonstandard substr()

in JavaScript takes start and length, so it’s just like substr() in PHP.

92 | Chapter 5: The Built-In API

localeCompare()

String.prototype.localeCompare() is like PHP’s strcmp(). It allows you to compare
strings based on how they would be sorted:

"JavaScript".localeCompare("Java") > 0; // true

It returns 0 if the two strings are equal, a positive integer if the argument is smaller
(meaning it will be sorted before the original string), and a negative integer otherwise.
The exact value of the integer varies between JavaScript interpreters.

"JavaScript".localeCompare("JavaScripz") < 0; // true

split()

String.prototype.split() is similar to PHP’s explode(). It splits the string into an
array based on a delimiter string:

"a,b,c".split(','); // ["a", "b", "c"]

It also allows the delimiter to be a regular expression:

var s = "JavaScript";

s.split(/a/); // ["J", "v", "Script"]

A regular expression can help you parse sloppily spaced CSV (comma-separated values)
data. For example:

"a, b , c".split(/\s*,\s*/); // ["a", "b", "c"]

search()

As the name suggests, String.prototype.search() finds an occurrence of a string

within a string. It’s similar in purpose to PHP’s strstr(), but the implementation is

closer to PHP’s strpos():

var s = "JavaScript";

s.search(/ava/); // 1

s.search("Java"); // 0

Two things to point out here:

• You can search using either a regular expression or a string.

• Be careful with 0 results—this is a match at index 0. If a match is not found, you’ll

get -1:

// BAD

if (!s.search('Java')) {

 // false negative, this is executed

 alert('not found!');

}

Built-In Constructors | 93

// better

if (s.search('Java') === -1) {

 alert('not found!');

}

replace()

PHP has str_replace() and JavaScript has String.prototype.replace() to search
and replace contents of strings. They work differently though.

First of all, replace() takes a regular expression to search for:

"JavaScript".replace(/a/g, "@"); // "J@v@Script"

If you only pass a string, its content is used as a pattern of a regular expression. But

because in this case you cannot set the g modifier of the regular expression pattern, only
the first occurrence is replaced:

"JavaScript".replace("a", "@"); // "J@vaScript"

This is a common source of errors. Always using a regular expression “needle” to search
for is a good habit, even if you only mean to replace the first occurrence.

Second, replace() doesn’t take arrays as inputs as PHP does, so you’ll have to chain
method calls:

// PHP

$s = "JavaScript";

$s = str_replace(array("a", "S"), array("@", "$"), $s);

echo $s; // "J@v@$cript"

// JavaScript

var s = "JavaScript";

s = s.replace(/a/g, "@").replace(/s/gi, '$');

s; // "J@v@$cript"

And lastly, replace() can take a callback function instead of a literal string as a re‐
placement. The match, the index of the match, and the original input string are passed
as arguments to the callback function, and the callback can do interesting and condi‐
tional replacements based on the match.

The following example substitutes lowercase letters with HTML entity codes:

var ents = "JavaScript".replace(/[a-z]/g, function (match, index, input) {

 // `match` is a, then v, then a, and so on

 // `index` is the index of the match: 1, 2, 3, 5, 6...

 // `input` is "JavaScript"

 return "&#".concat(match.charCodeAt(0), ";");

});

The result is:

ents; // "JavaScript"

94 | Chapter 5: The Built-In API

match()

String.prototype.match() matches a regular expression pattern, similar to PHP’s

preg_match() and preg_match_all():

// PHP

$s = "JavaScript";

preg_match("/[A-Z]/", $s, $matches);

preg_match_all("/[A-Z]/", $s, $matches_all);

print_r($matches); // matches J

print_r($matches_all); // matches J and S

// JavaScript

var s = "JavaScript";

s.match(/[A-Z]/); // ["J"]

s.match(/[A-Z]/g); // ["J", "S"]

When the regular expression doesn’t use the global g modifier, the method works the

same as the exec() method of the regular expression objects:

"string".match(/[a-z]/); // ["s"]

/[a-z]/.exec("string"); // ["s"]

When no match is found, you get null back, not an empty array:

"string".match(/[0-9]/); // null

/[0-9]/.exec("string"); // null

Number
The Number() constructor wraps the primitive number type. It can be used to convert
strings to numbers:

Number("1.1"); // 1.1

It’s less forgiving than parseInt() or parseFloat():

Number("3,14"); // NaN

parseInt("3,14", 10); // 3

parseFloat("3,14", 10); // 3

As with String(), new Number() creates number objects, while Number() without new
returns primitive numbers:

typeof Number("1.1"); // "number"

typeof new Number("1.1"); // "object"

There are few constants defined as properties of the Number() function:

Number.MAX_VALUE; // 1.7976931348623157e+308

Number.MIN_VALUE; // 5e-324

Number.POSITIVE_INFINITY; // Infinity

Number.NEGATIVE_INFINITY; // -Infinity

Number.NaN; // NaN

Built-In Constructors | 95

And finally, there are three methods of Number.prototype:

Number(123).toFixed(2); // "123.00"

(1000000000000).toExponential(); // "1e+12"

(1000000000000).toPrecision(3); // "1.00e+12"

As you can see, methods of the primitive numbers can be called as if they were objects.
Wrap them in parentheses (grouping operator) when you need to work with literal
numbers.

Boolean
Boolean() is the most useless of the three primitive wrapper constructors. It has no

additional properties or methods. It can also be confusing—new Boolean() returns an
object, and all objects are truthy:

!!new Boolean(true); // true

!!new Boolean(false); // true

Math
Math is not a constructor but an object (a property of the global object) that’s used as a
namespace to contain useful constants and methods.

Constants are the following:

Math.E; // 2.718281828459045

Math.LN2; // 0.6931471805599453

Math.LN10; // 2.302585092994046

Math.LOG2E; // 1.4426950408889634

Math.LOG10E; // 0.4342944819032518

Math.PI; // 3.141592653589793

Math.SQRT1_2; // 0.7071067811865476

Math.SQRT2; // 1.4142135623730951

And the methods are pretty self-explanatory:

// Rounding

Math.round(5.6); // 6

Math.floor(5.6); // 5

Math.ceil(5.1); // 6

// Geometry

Math.sin(); Math.cos(); Math.tan();

Math.asin(); Math.acos(); Math.atan(); Math.atan2();

// min/max

Math.max(1, 2, 3, -1); // 3

Math.min(1, 2, 3, -1); // -1

// Powers and roots

Math.sqrt(49); // 7

96 | Chapter 5: The Built-In API

Math.pow(7, 2); // 49

// Random number between 0 and 1

Math.random(); // 0.17569443793036044

// log/exp

Math.exp();

Math.log();

Error
You can throw your own errors with new Error() or any of the other error constructors.
These objects have only two standard cross-browser properties that you can rely on:

name and message.

The name property contains the name of the constructor (as a string)—for example,

"Error", "ReferenceError", and so on.

You might as well forget all about the built-in error constructors and throw your own
objects:

if (2 + 2 > 4) {

 throw {

 name: "CrazyError",

 message: "It's the end of the world as we know it"

 };

}

For completeness, here are the other error constructors:

• EvalError

• RangeError

• ReferenceError

• SyntaxError

• TypeError

• URIError

Date
Date() creates date objects:

var d = new Date(2013, 11, 31); // December 31, 2013

You can also specify the optional hour, minute, second, and millisecond:

new Date(2013, 11, 31, 23, 59, 59, 999); // One millisecond before 2014

Built-In Constructors | 97

Alternatively, you can create a date object from a timestamp or a string:

new Date(0); // Dec 31, 1969

new Date("December 31, 1969");

Passing a string is similar in purpose to PHP’s strtotime(), although not as powerful.

Two methods exist as properties of the Date() constructor:

• parse()

• UTC()

parse() is the same as passing a string to new Date() only it returns a timestamp, not

an object. Date.UTC() is like the Date() constructor with the long list of arguments

(year, month, and optionally day, hour, minute, second, millisecond), only UTC() returns
a timestamp in universal time, as opposed to an object in local time.

Then there are many methods on the Date.prototype. They are self-explanatory, so
there’s no point of discussing them in detail. The full list is as follows:

var d = new Date(0); // Dec 31, 1969, local

// Local on my computer time is PST,

// meaning 8 hours (480 minutes) behind UTC

d.getTimezoneOffset(); // 480

// get/set date

d.setYear(2020); // 1609459200000

d.getYear(); // 120, year counted from 1900

d.setFullYear(2020); // 1609459200000

d.setUTCFullYear(2020); // 1577836800000

d.getFullYear(); // 2019, local time

d.getUTCFullYear(); // 2020

d.setMonth(11); // 1577836800000

d.setUTCMonth(11); // 1606780800000

d.getMonth(); // 10 , November, because it's local

d.getUTCMonth(); // 11, December, as set

d.setDate(31); // 1606867200000

d.setUTCDate(31); // 1609372800000

d.getDate(); // 30, local

d.getUTCDate(); // 31

// At this point, the date has become

// "Wed Dec 30 2020" local

// "Thu, 31 Dec 2020" UTC

d.getDay(); // 3, because 0: Sunday, 1: Monday... 3: Wednesday

d.getUTCDay(); // 4, Thursday

98 | Chapter 5: The Built-In API

d.setHours(0); // 1609315200000

d.setUTCHours(0); // 1609286400000

d.getHours(); // 16, because 24 - 8 = 16

d.getUTCHours(); // 0

d.setMinutes(30); // 1609288200000

d.setUTCMinutes(30); // 1609288200000

d.getMinutes(); // 30

d.getUTCMinutes(); // 30

d.setSeconds(30); // 1609288230000

d.setUTCSeconds(30); // 1609288230000

d.getSeconds(); // 30

d.getUTCSeconds(); // 30

// 1000 ms is 1 second, so setting to 1000 moves the

// date 1 second ahead

d.setMilliseconds(1000); // 1609288231000

d.setUTCMilliseconds(1000); // 1609288232000

d.getMilliseconds(0);

d.getUTCMilliseconds(0);

d.setTime(0); // Unix timestamp

d.getTime(); // 0

// Miscellaneous toString variations

d.toString(); // "Wed Dec 31 1969 16:00:00 GMT-0800 (PST)"

d.toLocaleString(); // "Wed Dec 31 1969 16:00:00 GMT-0800 (PST)"

d.toUTCString(); // "Thu, 01 Jan 1970 00:00:00 GMT"

d.toGMTString(); // "Thu, 01 Jan 1970 00:00:00 GMT"

d.toDateString(); // "Wed Dec 31 1969"

d.toLocaleDateString(); // "Wednesday, December 31, 1969"

d.toTimeString(); // "16:00:00 GMT-0800 (PST)"

d.toLocaleTimeString(); // "16:00:00"

Casting a date object to a number (e.g., using Number() or an arithmetic operation) gives

you the Unix timestamp, like just like getTime():

var d = new Date();

Number(d) === d.getTime(); // true

new Date().getTime() === +new Date(); // true

Constructors Review
At this point, you’ve seen of JavaScript’s constructors, as well as their properties and the
properties of their prototypes. It doesn’t make sense to use most of them directly as

Constructors Review | 99

constructors because there are shorter literal versions that are as good or better. Here’s
a quick cheat sheet:

Object()

It’s better to use the object literal {} instead.

Array()

Use literal [] instead.

RegExp()

Use literal /[a-z]/ when the pattern is static.

Function()

Use a function declaration or a function expression instead.

String()

Just define a regular primitive "string" and use this constructor only for type
casting.

Number()

Use only for type casting; otherwise, numbers are better defined as primitives.

Boolean()

Useless; just use true and false literally.

Error()

Just throw your own errors (e.g., SyntaxError(), etc.).

Date()

The only constructor you can’t get without.

Math

Not a constructor, but a useful namespace for math constants and static methods.

JSON

Also not a constructor, but a global object you’ll see again in Chapter 6.

100 | Chapter 5: The Built-In API

CHAPTER 6

ECMAScript 5

This book has mostly talked about ECMAScript 3 because it’s the most widely dis‐
tributed version of the language. However, the latest standard is ECMAScript 5.1 (ver‐
sion 4 was a dead-end branch that was eventually scrapped). Most modern browsers
support ES5. You should know about what’s new in ES5 even if you currently have to
support legacy browsers.

The three main areas of updates are:

• Introduction of strict mode

• Object and property attributes

• Some new APIs

Strict Mode
Strict mode is not backward compatible, and is therefore an opt-in feature. Once per
function or once per program you can opt into strict mode by using:

"use strict";

Since this is just a string statement, old browsers won’t complain and will simply ignore
it. But an engine that understands strict mode will treat your code more strictly, disal‐
lowing some JavaScript features and constructs which, over the years, have proven to
be more trouble than they’re worth. This book doesn’t teach any of these shady practices,
so there’s nothing for you to unlearn.

Examples of features that trigger an error in strict mode are:

• The use of the with statement

• Use of undeclared variables

101

• Use of arguments.callee or arguments.caller

• Attempts to assign to read-only properties (e.g., window.Infinity = 0;)

• Attempts to delete nonconfigurable properties (you will see what configurable
means in a bit)

• Object literals with duplicate properties

• Function parameters with duplicate names (because, surprisingly, function (a,

a, a) {} is OK in ES3)

Here’s a simple example that illustrates how strict and nonstrict modes differ:

// Nonstrict

var obj = (function () {

 return {a: 1, a: 2};

})();

obj; // {a: 2}

// Strict

var obj = (function () {

 "use strict";

 return {a: 1, a: 2};

})(); // SyntaxError: duplicate property

Property Attributes
The second area of changes in ES5 is the introduction of property attributes. In fact,
these attributes have always been around, only they were not available to the program‐
mer to tweak.

A property can have a value attribute as well as three boolean attributes, which define
whether the property is:

• Enumerable

• Writable

• Configurable

You can define the attributes of a property in special objects called descriptors. Here’s
an example:

var stealth_descriptor = {

 value: "can't touch this",

 enumerable: false, // Won't show up in for-in loops

 writable: false, // Can't change my value

 configurable: false // Can't delete me or change my attributes

};

102 | Chapter 6: ECMAScript 5

Nonconfigurable properties can only have their writable attribute set
to nonwritable.

Property descriptors give you more control over the mutability of the property. They
let you, for example, create nondeletable properties with constant values. While many
of the ES5 APIs can be implemented in ES3, property descriptors are something that
cannot. In ES3, all the properties you create are mutable.

You’ll see more details and examples of using property descriptors in the next section.

New Object APIs
Let’s take a look at the new APIs that let you play with property attributes, namely:

• Object.create()

• Object.defineProperty()

• Object.defineProperties()

• Object.getOwnPropertyDescriptor()

Object.create()
This method can be used to create a new object and at the same time:

• Define the inheritance

• Define the properties of the object

• Define the attributes of the properties

Consider the following snippet:

var human = {name: "John"};

var programmer = Object.create(

 human,

 {

 secret: stealth_descriptor,

 skill: {value: "Code ninja"}

 }

);

The programmer object inherits from the human object by way of __proto__, so it has

(but does not own) a name property:

New Object APIs | 103

programmer.name; // "John"

programmer.hasOwnProperty('name'); // false

programmer.__proto__.hasOwnProperty('name'); // true

The other two properties are own properties:

programmer.hasOwnProperty('secret'); // true

programmer.hasOwnProperty('skill'); // true

A full descriptor was used for the secret property: the stealth_descriptor which sets
the value, as well as the three attributes.

The skill property only defines a value. This means that all the attributes are set to

their default values, which are all false.

If you simply set a property without a descriptor, all attributes are true, as the case is
with ES3:

programmer.likes = ['pizza', 'beer', 'coffee'];

Object.create() is similar to begetObject() (discussed in “Inheri‐
tance” on page 66) plus the addition of the descriptors.

Earlier in this book, it was explained that “empty” objects (e.g., var o = {};) are not

really empty, because they inherit methods such as toString() from Object.proto

type. Well, in ES5, you can create truly empty objects using:

var o = Object.create(null); // Inherit nothing

typeof o.toString; // "undefined"

Object.getOwnPropertyDescriptor()
The getOwnPropertyDescriptor() method lets you examine the descriptor objects:

Object.getOwnPropertyDescriptor(programmer, 'secret').configurable; // false

Object.getOwnPropertyDescriptor(programmer, 'likes').configurable; // true

Object.defineProperty() and Object.defineProperties()
The two methods Object.defineProperty() and Object.defineProperties() allow
you to define properties with a descriptor at a later time, after the object was created:

Object.defineProperty(programmer, 'hello', stealth_descriptor);

Object.defineProperties(programmer, {

 goodbye: stealth_descriptor,

 bye: stealth_descriptor

});

104 | Chapter 6: ECMAScript 5

Restricting Object Mutations
In ES3, all objects are mutable, with a few exceptions found in the built-in objects.
Sometimes this is not a good idea because users of your objects can change them beyond
repair. In ES5, you can restrict access to your objects. For example, you can make selected

properties read-only by setting their writable attribute to false.

But you can restrict access to the whole object by:

• Preventing extensions (i.e., don’t allow new properties)

• “Sealing” an object, which means making all properties nonconfigurable (cannot
delete them) on top of making the object nonextensible

• “Freezing” an object, which is like sealing but with the additional step of setting all
properties to nonwritable

Consider this regular object:

var pizza = {

 tomatoes: true,

 cheese: true

};

You can always add more properties:

pizza.pepperoni = 'lots';

You can change and delete properties, because they are all configurable and writable:

pizza.cheese = 'mozzarella';

delete pizza.pepperoni; // true

However, if you prevent extensions, you’ll no longer be able to add properties. You can

check for extensibility with Object.isExtensible() and disallow extensions (irrever‐

sibly) with Object.preventExtensions():

Object.isExtensible(pizza); // true

Object.preventExtensions(pizza); // Returns the `pizza` object

Object.isExtensible(pizza); // false

pizza.broccoli = 'eww'; // Error, cannot add properties anymore

typeof pizza.broccoli; // "undefined"

Additionally, you can prevent deletions with seal():

Object.isSealed(pizza); // false

Object.seal(pizza); // Returns the `pizza` object

Object.isSealed(pizza); // true

delete pizza.cheese; // Error, can't delete

pizza.cheese; // "mozzarella"

You can still change a property value though:

New Object APIs | 105

pizza.cheese = 'ricotta';

But once you freeze() an object, that’s it, all properties become nonwritable:

Object.isFrozen(pizza); // false

Object.freeze(pizza); // Returns the `pizza` object

Object.isFrozen(pizza); // true

pizza.cheese = "gorgonzola"; // Error, `cheese` is read-only

pizza.cheese; // "ricotta"

So, in review:

• freeze() does what seal() does plus sets the writable attribute to false for all
properties.

• seal() does what preventExtensions() does plus sets the configurable attribute

to false for all properties.

• preventExtensions() doesn’t set any attributes, but it doesn’t let you add more
properties afterward.

• None of these actions can be turned back on (i.e., there’s no unfreeze(), de

frost(), allowExtensions(), etc.).

Looping Alternatives
In ES3, if you want to get a list of all properties (like array_keys() in PHP), then you

have to do a for-in loop. In ES5, you can use Object.keys() or Object.getOwnPro

pertyNames(). The keys() method gives you all enumerable properties (those that will

show up in a for-in loop), while getOwnPropertyNames() returns all own properties,
enumerable or not.

Both methods are the same if you don’t use descriptors to set the enumerable attributes:

var pizza = {tomatoes: true, cheese: true};

Object.keys(pizza); // ["tomatoes", "cheese"]

Object.getOwnPropertyNames(pizza); // ["tomatoes", "cheese"]

Both methods work with own properties only, they will not return anything inherited

from the prototype. Let’s create an object pizza_v20 that inherits pizza and adds some
new properties:

var pizza_v20 = Object.create(pizza, {

 salami: {value: "lots", enumerable: true},

 sauce: {value: "secret"}

});

keys() will not return sauce because it’s not enumerable, but getOwnProperty

Names() will return all properties:

106 | Chapter 6: ECMAScript 5

Object.keys(pizza_v20); // ["salami"]

Object.getOwnPropertyNames(pizza_v20); // ["sauce", "salami"]

Both don’t return any of the pizza properties, because those properties are inherited:

pizza_v20.cheese; // true

pizza_v20.__proto__ === pizza; // true

Object.getPrototypeOf()
Wrapping up the novelties in Object() in ES5, let’s take a look at the getPrototy

peOf() method. In ES3, you can only inspect with isPrototypeOf(), in which case you
need to suspect an object and ask if that is indeed the prototype.

In ES5, you can directly ask, “Who is your prototype?”

Object.getPrototypeOf(pizza_v20) === pizza; // true

As you can see, this is the same as using __proto__, but remember that __proto__ is
not standard (and doesn’t exist in IE). ES5 admits there’s a need for at least a readable

version of __proto__ and introduces getPrototypeOf() as a replacement (a writable
version is still a topic for heated debate).

Array Additions
In ES5, there are quite a few methods added to Array.prototype as well as one added

to the Array constructor.

Array.isArray()
Array.isArray() gives you a nonhacky way to distinguish between arrays and objects
(remember arrays are objects) in JavaScript.

If you want to shim the method and use it in ES3 as well, you can use the Object.pro

totype.toString() trick, as illustrated previously in this book:

if (!Array.isArray) {

 Array.isArray = function (candidate) {

 return Object.prototype.toString.call(candidate) === '[object Array]';

 };

}

Array.isArray([]); // true

This method is the equivalent of is_array() in PHP.

Array Additions | 107

indexOf() and lastIndexOf()
The two new methods Array.prototype.indexOf() and Array.prototype.lastIn

dexOf() offer more ways to search in an array.

Array.prototype.indexOf() returns the index of the first occurrence of an element:

var a = ['one', 'and', 'two', 'and', 'three', 'and', 'four'];

a.indexOf('three'); // 4

This is close to PHP’s array_search().

While Array.prototype.indexOf() returns the first occurrence, Array.proto

type.lastIndexOf() returns the last:

var a = ['one', 'and', 'two', 'and', 'three', 'and', 'four'];

a.indexOf("and"); // 1

a.lastIndexOf("and"); // 5

The search for elements uses strict comparison to find matches:

[1, 2, 100, "100"].indexOf("100"); // 3

[1, 2, 100, "100"].indexOf(100); // 2

You can also specify start position in indexOf() or end position in lastIndexOf() to
begin the search:

var arr = [100, 1, 2, 100];

arr.indexOf(100); // 0

arr.indexOf(100, 2); // 3

arr.lastIndexOf(100); // 3

arr.lastIndexOf(100, 2); // 0

Walking the Array Elements
ES5 adds Array.prototype.forEach(), which allows you to loop over all array ele‐
ments without a loop construct. It takes a callback function in which you can do an
operation with each element or with the whole array.

Here’s a quick example that logs the arguments passed to the callback function:

["a", "b", "c"].forEach(function () {

 console.log(arguments);

});

The result in the console will be:

["a", 0, Array[3]]

["b", 1, Array[3]]

["c", 2, Array[3]]

As you see, the format is:

108 | Chapter 6: ECMAScript 5

[the element, its index, the whole array]

Filtering
ES5 adds Array.prototype.filter(), which, just like PHP’s array_filter(), lets you

execute a callback function on every array element. If the callback returns true, the
elements gets pushed to a new array, which is returned at the end:

function testVowels(char) {

 return (/[aeiou]/i).test(char);

}

var input = ["a", "b", "c", "d", "e"];

var output = input.filter(testVowels);

output.join(', '); // "a, e"

Testing the Array Content
Two new methods, every() and some(), let you iterate over all array elements and return
a boolean, whether or not the array elements satisfy a check you provide in a callback.

Say you want to check if an array contains even numbers. The check will be:

function isEven(num) {

 return num % 2 === 0;

}

And the tests:

// Are *all* of the numbers even?

[1, 2, 4].every(isEven); // false

// Are at least some (or even one) of the numbers even?

[1, 2, 4].some(isEven); // true

Map/Reduce
Similar to PHP’s array_map() and array_reduce(), in ES5 you have Array.proto

type.map() and Array.prototype.reduce(), plus one more Array.prototype.re

duceRight().

map() returns a new array where each element has been changed by your custom call‐
back function.

Here’s a function that turns a character into its HTML entity form:

function entity(char) {

 return "&#" + char.charCodeAt(0) + ";";

}

Array Additions | 109

Now let’s apply it to all elements of an array:

var input = ['a', 'b', 'c'];

var out = input.map(entity);

out; // ["a", "b", "c"]

Array.prototype.reduce() takes an array and reduces it to a single value, using a
callback function.

Say you want to sum all numbers in an array and add 100 to the result. So you start with
100 and iteratively add the next value to the running sum:

function sum(running_sum, value, index, array) {

 console.log(arguments);

 return running_sum + value;

}

[1, 2, 3].reduce(sum, 100); // 106

During the iteration, you’ll see in the console:

[100, 1, 0, Array[3]]

[101, 2, 1, Array[3]]

[103, 3, 2, Array[3]]

Array.prototype.reduceRight() is the same, only it loops the array elements from
right to left, meaning it starts with the last elements and moves down.

In this example, the result is the same, but you see different output in the console:

[1, 2, 3].reduceRight(sum, 100); // 106

And the output is:

[100, 3, 2, Array[3]]

[103, 2, 1, Array[3]]

[105, 1, 0, Array[3]]

String Trimming
Similar to PHP’s trim() function, ES5 introduces String.prototype.trim():

" hello ".trim(); // "hello"

And this is the only addition in ES5 related to strings.

Some environments also offer trimLeft() and trimRight(), but these
are not part of the standard.

110 | Chapter 6: ECMAScript 5

New in Date
Three new methods are added to working with dates.

Date.now() is a shorter way to do (new Date()).getTime() or +new Date(). It returns
the current timestamp:

Date.now(); // 1327943271496

Date.now() === +new Date(); // true

Date.prototype.toISOString() is another string formatting function:

var date = new Date(2012, 11, 31);

date.toDateString(); // "Mon Dec 31 2012"

date.toISOString(); // "2012-12-31T08:00:00.000Z"

toISOString() is handy for representing dates in JSON format and is used by

JSON.stringify(), which you’ll see later. In fact, there is Date.prototype.toJSON(),

which returns the same as toISOString():

var today = new Date();

today.toJSON() === today.toISOString(); // true

Function.prototype.bind()
Since functions are objects that can be passed around, and this inside a function de‐

pends on how the function is called, it makes it somewhat risky to use this with a
certainty that it is what you expect it to be. Consider this example:

var breakfast = {

 drink: "coffee",

 eat: "bacon",

 my: function () {

 return this.drink + " & " + this.eat;

 }

};

breakfast.my(); // "coffee & bacon"

No surprises here. However, you may want a new reference, say:

var morning = breakfast.my;

morning(); // "undefined & undefined"

In this case, this is the global object and there are no drink or eat properties. But you

can bind my() method to the breakfast object and have it work as expected:

var morning = breakfast.my.bind(breakfast);

morning(); // "coffee & bacon"

New in Date | 111

JSON
To wrap up the discussion of ECMAScript 5, let’s take a look at the JSON object. It’s an
addition to ES5 that standardizes what’s already implemented in all browsers, including
IE8+. JSON stands for “JavaScript Object Notation” and is a data exchange format that
uses JavaScript object and array literals to encode arbitrary data.

JSON has two (unfortunately named) methods—stringify() and parse()—which

correspond to PHP’s json_encode() and json_decode():

JSON.stringify({hello: "world"}); // '{"hello":"world"}'

JSON.parse('{"hello":"world"}').hello; // "world"

In environments that don’t support JSON natively, you can use the shim available here.

Shims
“Shims,” or “polyfills,” are a way to support new APIs in older environments. Since in
JavaScript you can change built-in objects and prototypes, you can emulate the new
APIs. Here’s an example of a shim:

if (!Date.now) {

 Date.now = function () {

 return new Date().getTime();

 };

}

or:

// source:

// https://developer.mozilla.org/en-US/docs/JavaScript/Reference/

// Global_Objects/String/Trim

if (!String.prototype.trim) {

 String.prototype.trim = function () {

 return this.replace(/^\s+|\s+$/g, '');

 };

}

As you can see, the shims are often small, and you can have them load before your first
line of code, thus enabling legacy browsers to handle the new and shiny features.

Be aware that there are some features you can’t shim (e.g., strict mode and all methods
that deal with property descriptors).

To check which features are supported among browsers, consult this site.

112 | Chapter 6: ECMAScript 5

http://json.org
http://kangax.github.com/es5-compat-table/

CHAPTER 7

JavaScript Patterns

Now that you know about JavaScript’s syntax and built-in APIs, as well as the special
treatment of functions and the existence of prototypes, let’s take a look at some common
JavaScript patterns. These are not necessarily the design patterns from the Gang of Four’s
book (although there are a few at the end, for good measure), but mostly patterns specific
to organizing your code when creating a larger application.

For example, JavaScript doesn’t have namespaces, modules, or private properties, but
these are all features that are easy to replicate.

You’ll notice that most of the time, the solutions to a lot of problems boil down to
interesting uses of functions, which is why understanding functions, closures, and scope
is critical to mastering JavaScript.

Private Properties
In ES5, you can use property descriptors to limit access to certain properties, but you
can’t do anything like this in ES3. So how do you create private properties that no one
is allowed to touch?

The solution is to use a closure and not expose the variables you want to keep private.
These will not be exactly private properties of an object, but they will be private never‐
theless.

An example of using a closure for privacy was discussed in “Immediate Functions” on
page 47. But the topic is worth reviewing and expanding. A common pattern of using
a closure to define an object is like this:

var my = (function () {

 return {

 hi: 1,

 bye: 2

 };

113

}());

my.hi; // 1

At first sight, the end result is not different than doing the following:

var my = {

 hi: 1,

 bye: 2

};

my.hi; // 1

For simple objects, the two examples are the same. But with the first one, you can hide
important data inside the closure:

var my = (function () {

 var hidden_private = 42;

 return {

 hi: 1 + hidden_private,

 bye: 2 + hidden_private

 };

}());

my.bye; // 44

Here the hidden_private variable is tucked inside the closure (the immediate function)
and there’s no access to it from the outside. For all intents and purposes, it can be

considered a private property of the object my.

Private Methods
Just like with regular variables, you can also put functions inside the closure. They have
access to everything inside it, so they can access the publicly returned properties as well
as the local (private) variables. You can consider using such functions as you would use
PHP’s private methods.

Here’s an example where you have a special() function, which can access both the

value of hidden_private as well as the public_api object, which is returned and ac‐
cessible outside the closure:

var my = (function () {

 var hidden_private = 42;

 function special() {

 return Number(public_api.hi) + hidden_private;

 }

 var public_api = {

 hi: 1,

 get: function () {

 return special();

114 | Chapter 7: JavaScript Patterns

 }

 };

 return public_api;

}());

my.hi; // 1

my.get(); // 43

my.hi = 100; // 100

my.get(); // 142

As you can see, the property hi can be modified outside the closure, and the method

get(), which internally calls special(), will still work with the updated value.

Exposing Private Objects
In the example in the previous section, the private function special() was given public
access:

var public_api = {

 hi: 1,

 get: function () {

 return special();

 }

};

Another way to do so is as follows:

var public_api = {

 hi: 1,

 get: special

};

The second example is simpler and works fine for most use cases, but it does come with

a certain risk. Since special() is a function, it’s also an object, and because objects are
passed by reference, this means that code outside the closure can modify the properties
of that object.

Let’s consider a simpler example:

var my = (function () {

 function special() {

 return "ohai";

 }

 var public_api = {

 get: special

 };

 return public_api;

}());

Private Properties | 115

You can call the get() method directly or by using its call method:

my.get(); // "ohai"

my.get.call(); // "ohai"

However, it’s completely legal to overwrite the call method with something else, which
is not even a method:

my.get.call = "not so special";

The next time you try call(), you’ll get an error because it’s no longer callable:

my.get.call(); // TypeError: call is not a function

So you have to be careful when you expose private objects publicly.

Returning Private Arrays
The previous example showed how to expose a function, but you can expose arrays (also
objects) or other objects.

Say you have a private array and you want to give read (but not write) access to it. Doing
the following looks like it should be a good enough protection:

var my = (function () {

 var days = ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"];

 return {

 getDays: function () {

 return days;

 }

 };

}());

Outside the closure, you get the days just fine, and you don’t have a direct way to access

the private days variable:

my.getDays(); // ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"]

However, you get indirect access because the array is an object and it’s passed by refer‐
ence, which you can use to add another element to the array:

my.getDays().push('Js'); // We need one JavaScript day each week!

And it works!

my.getDays(); // ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su", "Js"]

A way to protect the array is not to return it directly, but to return a copy of it. Using

the fact that slice() will return a new array, you can use it as a general copy-making
tool:

116 | Chapter 7: JavaScript Patterns

var my = (function () {

 var days = ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"];

 return {

 getDays: function () {

 return days.slice();

 }

 };

}());

An attempt to sneak in an extra day in the weekend will now be unsuccessful:

my.getDays().push('Js');

my.getDays(); // ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"]

If days were not an array but an object with some unknown properties (some properties
may be other objects, some may be arrays), you would need to create a deep copy of it
and return it.

Deep Copy via JSON
The simplest way to create a deep copy is to JSON-encode then decode the object. This
may not be the most efficient way, especially in browsers that don’t support JSON na‐
tively, but it’s certainly short:

var my = (function () {

 var stuff = {

 a: {

 b: [1, 2]

 }

 };

 return {

 getStuff: function () {

 return JSON.parse(JSON.stringify(stuff));

 }

 };

}());

Accessing stuff for reading, but not writing:

my.getStuff().a.b.toString(); // "1,2"

// change

my.getStuff().a.b.push(3);

my.getStuff().a.c = "Ch-ch-changin";

// test changes?

my.getStuff().a.b.toString(); // "1,2"

typeof my.getStuff().a.c; // "undefined"

Private Properties | 117

To make getStuff() more efficient, you can use an immediate function that precom‐

putes the JSON encode/decode and returns a snapshot of stuff at the time of definition:

var my = (function () {

 var stuff = {

 a: {

 b: [1, 2]

 }

 };

 return {

 getStuff: function () {

 var snap = JSON.parse(JSON.stringify(stuff));

 return function () {

 return snap;

 };

 }(),

 getRealStuff: function () {

 return JSON.parse(JSON.stringify(stuff));

 }

 };

}());

Here you have an immediate anonymous function (notice the () at the end of get

Stuff()) that clones stuff into snap. Then this function returns a new function that

simply returns the existing snap. Later, when you do my.getStuff(), it’s the inner

function that is executed, and it has access to snap because both snap and the inner
function were created inside the closure created by the immediate (wrapper) function.

Now calls to getStuff() return snap, which is not protected via a clone. Therefore,

snap can be tampered with, but the important stuff stays safe:

my.getStuff().a.b.push(3);

my.getStuff().a.b.toString(); // "1,2,3"

my.getRealStuff().a.b.toString(); // "1,2"

Of course, since in ES3 everything is mutable, nothing really prevents you from over‐

writing or even wiping out completely the public API getStuff() and getReal

Stuff() and destroying all your hard work of carefully protecting private properties
and methods. In other words, if you want to shoot yourself in the foot, there are certainly
easy ways to do so:

my.getRealStuff = function () {

 return "or don't!";

};

delete my.getStuff; // true

my.getRealStuff(); // "or don't!"

my.getStuff(); // Error: no such method

118 | Chapter 7: JavaScript Patterns

Revealing Pattern
Related to the question of privacy is the so-called revealing pattern. The idea is that when
you provide an object, you make everything private by default and at the end you decide
which parts to reveal by making them public.

If you were to rewrite the previous example using the revealing pattern, you would end
up with something similar to the following snippet:

var my = (function () {

 var stuff = {

 a: {

 b: [1, 2]

 }

 };

 function encodeStuff() {

 return JSON.parse(JSON.stringify(stuff));

 }

 var getStuff = function () {

 var snap = encodeStuff();

 return function () {

 return snap;

 };

 }();

 // Revelation happens here

 return {

 getStuff: getStuff,

 getRealStuff: encodeStuff

 };

}());

Some things to note here:

• Everything is private until the very last return statement, where you decide how
much you want to reveal in the form of a public API.

• You don’t need to use the same function names for public/private—the public

getRealStuff is actually the private encodeStuff.

• One private function can use another private function internally.

• It’s up to you to decide how to treat the name property of the functions you reveal.

Testing:

// getStuff was defined with anonymous function expression

my.getStuff.name; // ""

Revealing Pattern | 119

// encodeStuff was defined with a function declaration, so it bleeds

// into the public API, which may or may not be a concern

my.getRealStuff.name; // "encodeStuff"

A drawback of that pattern is that it is difficult to discern the private from the public
methods while reading the code. You have to scroll down to see which methods are
exposed. Possible solutions include exposing right after creating the function or using
comments to signal your intention to make the function a public one.

Constants
Some JavaScript environments provide the special const statement, which can be used

instead of var:

const PI = 3.14;

But even in ES5 there is no such thing as a constant. You can work around this limitation
by either using a convention or introducing a utility. However, both of these options
have drawbacks (a convention is not enforceable, and a utility is overkill for most tasks).
If you’re considering a convention, be aware that the common convention is to use

ALLCAPS for constant names. If you go with a constant utility, you can use a closure
where you define your own private repository for all your constants.

Let’s create an object constant that implements the following methods (mimicking the
PHP’s functions that deal with constants):

• define()

• defined()

• constant()

var constant = (function () {

 var constants = {}, // All constants go here

 ownProp = Object.prototype.hasOwnProperty, // Shorthand

 allowed = { // Only primitive types accepted

 string: 1,

 number: 1,

 boolean: 1

 };

 return {

 define: function (name, value) {

 if (this.defined(name)) {

 return false;

 }

 if (!ownProp.call(allowed, typeof value)) {

 return false;

 }

120 | Chapter 7: JavaScript Patterns

 constants[name] = value;

 return true;

 },

 defined: function (name) {

 return ownProp.call(constants, name);

 },

 constant: function (name) {

 if (this.defined(name)) {

 return constants[name];

 }

 return null;

 }

 };

}());

Using the constants object:

constant.constant('hi'); // null, it doesn't exist

constant.defined('hi'); // false

constant.define('hi', 'ho'); // true

// Attempt to redefine a constant should fail

constant.define('hi', 'hoho'); // false

constant.constant('hi'); // "ho"

define() checks the type of value to be stored as a constant and only allows primitive
types. That makes it easier not to deal with the cloning and matches PHP where you
cannot have an object or an array stored as a constant.

Namespaces
There are no namespaces in JavaScript, but you can simply use properties of an object
for this purpose.

A common approach is to define a single global variable in your application or library.
Then everything else you do becomes a property of that global object.

Let’s call the global APP.

Using uppercase is a convention you can adopt for global variables to
make them stand out. That conflicts with PHP’s convention to use
uppercase for constants.

If you want to define constants and my, make them properties of APP:

Namespaces | 121

var APP = {};

// Define my

APP.my = {

 // ...

};

// Constants

APP.constant = {

 define: function () {

 // ...

 }

 // ...

};

// Something else

APP.my.more = {

 // ...

};

Since APP.my and APP.constant are distinct, potentially big chunks of functionality, it
would be wise to implement them in different files for simplicity. (Your build process
will then merge the files and minify them for performance purposes in production.)
These chunks of code may be included dynamically under different circumstances, and

you may not know if constant, for example, wasn’t already defined. If you blindly do

APP.constant = {}, then you wipe out any other previously created property with the
same name (and in this case, you lose all your constants). That why it’s important to
check before you add a big new property:

if (!APP.constant) {

 APP.constant = {

 // ..

 };

}

But since this can quickly become tedious, especially for deeply nested properties, it

would be nice to have a general-purpose namespace() function:

// Argh!

if (APP && APP.my && !APP.my.more) {

 APP.my.more = {};

}

// Better

APP.namespace('APP.my.more');

Here’s an example implementation of a generic namespace() function:

var APP = {

 namespace: function (ns) {

 var parts = ns.split('.'),

 parent = APP,

122 | Chapter 7: JavaScript Patterns

 i;

 // Strip redundant global

 if (parts[0] === "APP") {

 parts = parts.slice(1);

 }

 for (i = 0; i < parts.length; i++) {

 // Create a property if it doesn't exist

 if (typeof parent[parts[i]] === "undefined") {

 parent[parts[i]] = {};

 }

 parent = parent[parts[i]];

 }

 return parent;

 }

};

Now you can do:

var my = APP.namespace('APP.my');

my === APP.my; // true

APP.namespace('my.more');

typeof APP.my.more; // "object"

Modules
There is no concept of modules in JavaScript, but the name module pattern is often used
to refer to a combination of several things already discussed in the chapter, namely:

• Namespaces to define each module as a property of a single global object.

• An immediate function that wraps the whole module definition and provides pri‐
vacy, if required, as well as a place for any temporary variables used to define and
initialize the module.

• The immediate function returns an object (or a constructor function if you’re so
inclined), which reveals a public API.

The overall skeleton of a new module would look like this:

APP.namespace('my.shiny').module = (function () {

 // Short names for dependencies

 var shiny = APP.my.shiny;

 // Local/private variables

 var i, j;

 // Private functions

 function hidden() {}

Modules | 123

 // Public API

 return {

 willYouUseMe: function () {

 return "Yups";

 }

 };

}());

Using the new module:

APP.my.shiny.module.willYouUseMe(); // "Yups"

CommonJS Modules
Another approach to organizing your code into modules is provided by the CommonJS
specification. CommonJS is not a standard established by a standards body such as Ecma
International or W3C, but is a community-driven project aiming to have developers
agree on common practices for writing cross-environment JavaScript. The modules
specification is just one (albeit the most popular) of the subprojects within CommonJS.

There are currently no browsers that implement CommonJS modules natively, but there
are environments and frameworks that provide module support. One of the most
prominent environments with CommonJS support is NodeJS.

Defining a CommonJS Module
The following snippet is a definition of a bare-bones CommonJS module:

// Private variables

var i, j;

// Private functions

function hidden() {}

// Public API

exports.sayHi = function () {

 return "hi!";

};

What do you have here?

• There’s no need for an immediate function wrapper.

• Private variables and functions are simply defined as you would define a global.
However, the CommonJS implementation takes care of making these variables lo‐
cal, so everything you do is local by default.

124 | Chapter 7: JavaScript Patterns

• You add properties to a special exports object. Anything you add to exports
becomes your module’s publicly accessible API.

Using a CommonJS Module
How do you use this module from your program or from another module? In NodeJS,
the filename of the module serves as a module identifier. So if you save the definition
from the previous snippet in a file called hi.js, you can then use it like so:

var hi = require("./hi.js");

hi.sayHi(); // "hi!"

As you can see, the other CommonJS magic (in addition to exports) is the function

called require(). It takes a module identifier, finds and evaluates the required module,

and returns the exports object from that module (Figure 7-1).

Figure 7-1. Defining and using a CommonJS module in NodeJS console

Depending on the environment, you may be able to specify the module

identifier in a different manner (e.g., in NodeJS, the .js is optional). In
others, the module identifier may just be a string, not a file path. When

you define your module with exports, you have the object module as

well, and you can specify a module.id to identify the module.

CommonJS Modules | 125

Using require(), you get the module’s exports object and assign it to a local variable,
which doesn’t need to have the same name. This is also fine:

var bye = require("./hi");

You can export several properties and get a handle to a specific property when you use

require(). For example, you can assign the sayHi() directly to a variable:

var hey = require("./hi").sayHi;

hey(); // "hi!"

As you can see, using CommonJS is much simpler and friendlier than the module pat‐
tern’s namespaces and closures. All the hassle is taken care of for you, and you have at

your disposal the require() function and the exports object.

Using an Agnostic Module
If you want to create a portable piece of JavaScript (say, an open source library) and you
don’t know whether it will be used in a CommonJS environment or not, you can still
support both by:

• Defining a simple namespace/object

• Adding all your stuff there

• Checking for exports and making your public API a property of exports

For example, here is how you would do it:

// Single global/namespace

var JS4PHP = JS4PHP || {};

// Define the functionality of your `utils` module

JS4PHP.utils = {

 isOdd: function (num) {

 return num % 2 !== 0;

 }

};

// CommonJS?

if (typeof exports === "object") {

 exports.utils = JS4PHP.utils;

}

This way, non-CommonJS environments can simply load your code and use the longer
namespaced method call:

JS4PHP.utils.isOdd(10); // false

This sort of namespacing is longer than just utils.isOdd(), but it provides some degree

of certainty that the user of your JS4PHP utility doesn’t already have a variable with the
same name in their code.

126 | Chapter 7: JavaScript Patterns

In CommonJS environments, your module can be used without worrying about globals
and namespaces. For example:

require('./utils').utils.isOdd(11); // true

AMD
Another idea of implementing modules in JavaScript is called AMD, or Asynchronous

Module Definition. It’s similar to CommonJS in the way it uses a require() function
to include a module inside another module or program.

But while CommonJS doesn’t bother with the details of how a module is defined (it’s

the environment’s task), the AMD pattern describes a function called define().

So defining a module looks like:

define('hi', ['hello'], function () {

 // Private variables

 var i, j;

 // Private functions

 function hidden() {}

 // Public API

 return {

 sayHi: function () {

 return "hi!";

 }

 };

});

The function that defines the module is the same as with CommonJS, only you simply

return the public API instead of assigning it to an exports object.

The first argument to define() is the new module name and the second is an array of
dependencies (other modules the new module needs).

Using the hi module in your program looks like:

require(['hi'], function (hi) {

 hi.sayHi(); // "hi!"

});

The first argument to require() is a list of modules you need; the second is a callback
function that is called when this module is available.

“When available” because AMD worries about loading modules asynchronously (the A
in the name). Imagine you load a page that only needs three modules. Then the user
interacts with the page, and your program requires another module that is not currently
loaded. Your AMD helper library takes care of fetching your additional module and
invoking your callback when the module is available.

AMD | 127

The most popular open source AMD utility at the time of writing is RequireJS.

Design Patterns
For dessert, let’s consider a few design patterns from the Gang of Four’s book. Bear in
mind that patterns designed for static, strongly typed, class-based languages could be
trivial to implement or unnecessary in a language such as JavaScript.

Singleton
The singleton pattern ensures that there’s only one object of a certain class and provides
a single global access to it. JavaScript doesn’t have classes, so a single instance of a class
doesn’t make sense. Additionally, all objects are unique, so the term singleton in Java‐
Script can be just another name for an object:

var singleton = {a: 1};

var another = {a: 1};

singleton === another; // false

As you can see, singleton is already a unique object.

Sometimes when people say “singleton” in JavaScript they mean an ob‐
ject created using the module pattern.

Singletons with constructors

But what if your team is so attached to the concept of classes that they want to create all
the objects with constructor functions? In other words, you’re looking for something
that behaves like this:

function Single() {

 // magic!

}

var a = new Single();

var b = new Single();

a === b; // true

Since the goal is to have a single hidden instance (object), you can get a little help from
an old friend—the closure created by an immediate function:

var Single = (function () {

 var instance;

 function Single() {

 // Own properties

 this.say_what = "Hi";

128 | Chapter 7: JavaScript Patterns

http://requirejs.org

 }

 // Prototype properties

 Single.prototype.say = function () {

 return this.say_what;

 };

 return function () {

 if (!instance) {

 instance = new Single();

 }

 return instance;

 };

}());

Here the instance is protected inside a closure. The same closure contains the local

Single constructor function, which works like a regular constructor where you can add

properties either to this or to Single.prototype. It doesn’t really matter which way
you choose: the benefit of the prototype is a single definition for all instances, but in
this case you only have a single instance anyway.

The immediate function returns a function that is assigned to the global Single variable.

Then you can call this this global with new:

// Get an instance

var a = new Single();

a.say(); // "Hi"

Only the first call to new Single creates a new object. From then on, the private in

stance is returned:

// Get another instance, which should be the same

var b = new Single();

b.say(); // "Hi"

// Check if the singleton worked

a === b; // true

a.say === b.say; // true

For simplicity, there was a global Single, but it doesn’t need to be global; you can always

create the constructor in a namespace like APP.Single:

APP.Single = (function () {

 //

}());

var mysingle = new APP.Single();

mysingle.say(); // "Hi"

Design Patterns | 129

Factory
The factory method pattern allows you to defer the object creation to more specific
subclasses/constructors. This allows you to decide at runtime which class/constructor

you’ll use to create an object. You usually pass a string to a static factory() or build()
method, and this method takes care of finding the right class to instantiate.

In PHP, you commonly use a prefix to namespace your classes, or, in newer versions,
use a real namespace. For example:

// PHP

// Specific implementations

class Polygon_Triangle {}

class Polygon_Square {}

class Polygon_Circle {}

// Where the factory lives

class Polygon {

 static function factory($name) {

 $class = "Polygon_" . ucfirst(strtolower($name));

 if (class_exists($class)) {

 return new $class;

 }

 throw new Exception($class . " doesn't exist");

 }

}

// Usage

$tri = Polygon::factory('triangle');

echo get_class($tri); // "Polygon_Triangle"

// Throws an Exception, there's no Polygon_Rectangle

$rect = Polygon::factory('rectangle');

The most important part here is return new $class;. PHP allows you to create in‐
stances of classes that are not known in advance. In other languages, you might need to

have a long switch statement listing all known classes.

In JavaScript, you can make Polygon an object and use it as a namespace as well as a

place to keep your static factory() method:

// JavaScript

var Polygon = {

 factory: function (name) {

 var constr = name.charAt(0).toUpperCase() + name.slice(1).toLowerCase();

 if (Polygon[constr]) {

 return new Polygon[constr]();

 }

 throw new Error("Polygon." + name + " doesn't exist");

 }

130 | Chapter 7: JavaScript Patterns

};

// Specific implementations

Polygon.Triangle = function () {};

Polygon.Square = function () {};

Polygon.Circle = function () {};

// Usage

var tri = Polygon.factory('triangle');

tri instanceof Polygon.Triangle; // true

new Polygon.factory('Rectangle'); // Error: Polygon.Rectangle doesn't exist

There’s no special trick or syntax here; it’s about simply accessing a property using the
square bracket notation. And since you know this property is a constructor function,

you can return a new object with new Polygon[constr].

Decorator
The decorator pattern lets you augment an object’s functionality at runtime while pre‐
serving the interface. It’s yet another alternative to inheritance.

Imagine you need some text-handling objects created by a Text() constructor that deals
with user input:

function Text(txt) {

 this.input = txt;

}

Text.prototype.get = function () {

 return this.input;

};

Using this constructor is simple:

var my = new Text('hello,_world_!wassup?');

my.get(); // "hello,_world_!wassup?"

The returned text doesn’t look too pretty though. It could use some decoration.

Decoration API

The decoration API looks like this:

my.decorate('punctuation'); // Fix spaces after punctuation

my.decorate('italics'); // Turn _ into <i>

my.get(); // "hello, <i>world</i>! wassup? "

Using the decorators, your program can decide at any time which decoration is appro‐

priate for the given task and enhance the object my with extra functionality. Also, the

Design Patterns | 131

order of the decoration may be important (e.g., a decorator that escapes HTML should

run before the one that adds HTML tags such as <i>).

In effect, your program chains decorators one after the other. Each decorator should
therefore work with the result of the previous decorator in the chain.

Adding decorators

Let’s use Text() as a namespace and add all the decorators there:

Text.decorators = {};

The first decorator adds missing spaces after punctuation:

Text.decorators.punctuation = {

 get: function (text) {

 return text.replace(/([;,!\?])\s*/g, '$1 ');

 }

};

Here you have a punctuation object with a single method. This method receives the
output of the decorator that comes before it in the call chain and further modifies the
text.

Same for the italics object:

Text.decorators.italics = {

 get: function (text) {

 return text.replace(/(_)(.*?)(_)/g, '<i>$2</i>');

 }

};

And finally, an escape object:

Text.decorators.escape = {

 get: function (text) {

 return text.replace(/&/g, '&').

 replace(/</g, '<').

 replace(/>/g, '>');

 }

};

decorate() and get()

Now that the API is clear and the decorators exist, it’s time for the decorate() method.

First, you need to slightly modify the Text() constructor so it maintains a list of deco‐
rators currently requested:

function Text(txt) {

 this.input = txt;

 this.decorators_list = [];

}

132 | Chapter 7: JavaScript Patterns

The decorate() method is actually simply appending to the list of required decorators:

Text.prototype.decorate = function (decorator) {

 this.decorators_list.push(decorator);

};

The most intelligence will be hidden in the core get() method, which you rewrite to
look like so:

Text.prototype.get = function () {

 var txt = this.input,

 max = this.decorators_list.length,

 name;

 for (var i = 0; i < max; i++) {

 name = this.decorators_list[i];

 txt = Text.decorators[name].get(txt);

 }

 return txt;

};

As you can see, this method loops over all requested decorators and calls each one’s

get(), passing the result of the previous.

More testing:

my.input = "_hi_,ho,_ho_";

my.get(); // "<i>hi</i>, ho, <i>ho</i>"

You can always add more decorators:

my.decorate('escape');

my.get(); // "<i>hi</i>, ho, <i>ho</i>"

This was just one example implementation of the decorator pattern. It didn’t use any
inheritance, but you can have another implementation that sets up an inheritance chain,
as opposed to a call chain.

Documentation and Testing
Let’s wrap up this chapter and the book with a few words about documentation and
testing in JavaScript.

Manual
One of the really strong points of PHP is its great manual, especially with all the user-
contributed comments. No exact equivalent exists for JavaScript. Still, the Mozilla De‐
veloper Network (MDN) has an excellent online resource you can consult. Even though
it’s about Mozilla and Firefox, there are often notes about IE and other browsers where
necessary.

For IE-specific flavors, your best resource is the MSDN site.

Documentation and Testing | 133

http://php.net
https://developer.mozilla.org/en/JavaScript/Reference/
http://msdn.microsoft.com/

And, of course, you can always consult the ECMA-262 specs.

Documenting Your Code
If you’re familiar with PHPDoc or JavaDoc, you’ll be happy to learn that you can use
the same idea for inline commenting in JavaScript:

/**

 * Sums two numbers

 *

 * @param {Number} a First number

 * @param {Number} b Second number

 * @return {Number} The sum

 */

function sum(a, b) {

 return a + b;

}

There are several tools you can use to generate documentation from comments, in‐
cluding JSDoc Toolkit and YUIDoc.

In JavaScript, where you have more than one choice to do certain tasks (e.g., inheri‐
tance), the documentation system may not be able to deduce the purpose of a piece of

code, so it usually provides you with special new tags such as @inherits, @class, or

@constructor that you can use to declare your intentions.

Unit Testing
There are several projects that help you unit test your JavaScript code. One example is
Jasmine, which has a plain-English type of API.

Let’s say you want to unit test the following constructor function:

function Text(txt) {

 this.input = txt;

}

Text.prototype.get = function () {

 return this.input;

};

Your unit test file would look like this:

describe("Text", function () {

 // first test

 it("creates objects", function () {

 expect(new Text("wee").input).toBe("wee");

 });

 // second test

134 | Chapter 7: JavaScript Patterns

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://code.google.com/p/jsdoc-toolkit/
http://yuilibrary.com/projects/yuidoc/
http://pivotal.github.com/jasmine/

 it("can get back the input", function () {

 // setup

 var t = new Text("hello");

 // multiple assertions

 expect(t.get).toBeDefined();

 expect(t.put).toBeUndefined();

 expect(t.get()).toBe('hello');

 });

});

Besides Jasmine, you have more options to pick from when it comes to unit testing.

For testing user interactions in a browser, you can use Selenium.

There’s also a tool called JSCoverage, which you can run to instrument your code before
running the unit tests and then get an idea of the code coverage of your tests.

JSLint
JSLint is tool that inspects your code statically to look for potentially dangerous patterns
as well as simple things like indentation and missing semicolons. Since JavaScript is not
compiled, some errors are easily masked, and JSLint helps you uncover some of these
before the code goes to production.

JSLint has been ported to many environments, and is available as a plug-in to many
IDEs and text editors. You can easily integrate it with your text editor and run it on
every file save, which will give you a greater confidence in the quality of your code.

Some developers consider JSLint too restrictive and opinionated, but it has quite a few
options, so you can tweak and turn off specific checks you disagree with. A similar tool
called JSHint allows finer-grained control over which checks you want to turn on. An‐
other linter is JavaScript Lint, based on Mozilla’s SpiderMonkey JavaScript engine.

Linting This Book
All of the examples in this book were continuously run through JSHint to assure high
quality of the code samples and prevent regressions in late-stage tweaks. However, since
there are some intentional errors and bad practices for educational purposes, there are
some JSHint checks that were turned off. Now that you know so much about JavaScript,
you’ll find these behind-the-scenes glimpses interesting. Here is the full list of JSHint
options used for checking the book samples:

var lintopts = {

 indent: 2, // Two spaces for indentation

 plusplus: false, // Allows ++ and --

 browser: true, // Assumes some common browser globals exist,

 // such as `document`

Documentation and Testing | 135

http://seleniumhq.org/
http://siliconforks.com/jscoverage/
http://jslint.com
http://jshint.com
http://www.javascriptlint.com/

 node: true, // Assumes the code can run in node.js

 // and globals such as `global` are defined

 expr: true, // OK to have expressions that seemingly do nothing,

 // such as `a; // true`, which the samples use to show

 // result values

 loopfunc: true, // Allows definition of a function in a loop

 // for educational purposes (in the part about closures)

 newcap: false, // Allows calling constructors (capitalized functions)

 // without `new`—again, just for educational purposes

 proto: true // Allows using `__proto__`, which is great for understanding

 // prototypes, although it's not supported in all browsers

};

For more details on how the code snippets in the book were unit tested
and lint checked, see this blog post.

136 | Chapter 7: JavaScript Patterns

http://www.jspatterns.com/unit-testing-in-asciidoc/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
!! operator, 23
" (double quote), 11
$$() function, 11
$() function, 10
$GLOBALS (PHP), equivalent of, 73
&& operator, 24
' (single quote), 11
() operator, 47–50
+ operator

string concatenation and, 23
type casting with, 23

. (dot) notation, 15
object properties and, 62

; (semicolon) operator, 31
== operator, 16
=== operator, 16–17
__proto__ property, 65
|| operator, 24

A
AMD, 127–128
anonymous function, 32
apply() method, 30

inheritance and, 71
arguments

functions as, 50–53
optional, 29

unknown number of, 28–29
arguments array-like object

func_get_args() method (PHP) vs., 28
Array prototype, 81–87

every() method, 109
filter() method, 108
forEach() method, 108
indexOf() method, 108
length property, 82
map() method, 109
reduce() method, 109
reduceRight() method, 109
some() method, 109

Array.prototype
isArray() method, 107
lastIndexOf() method, 108

arrays, 13–15
. (dot) notation and, 15
adding elements to, 14
associative, 15
declaring, 13
delete operator, 15
properties of objects in, 15
returning private, 116–117
testing elements of, 109
transversing with for-in loops, 20
walking elements of, 108

array_filter() function (PHP), 109
array_map() function (PHP), 109

137

array_merge() method (PHP), 84
array_pop() method (PHP), 83
array_push() function (PHP), 14
array_push() method (PHP), 83
array_reduce() function (PHP), 109
array_reverse() method (PHP), 87
array_shift() method (PHP), 84
array_shuffle() method (PHP), 85
array_splice() method (PHP), 86
array_unshift() method (PHP), 84
associative arrays, 15

for-in loops and, 20
object literals as, 64

B
best programming practices

for constructors, 55
manual hoisting, 34
typeof operator and, 12
void operator and, 24

block scope, 32
BOM, 2–4
boolean values

!! operator and, 23
declaring, 11

Boolean() constructor, 96
browsers

console access in, 4
global objects in, 73
shims and building in support for older, 112
supporting older, 3

built-in constructors, 23

C
call() method, 30

exposing private objects with, 116
inheritance and, 71

call_user_func() method (PHP), 52
Chrome, 4

debugging scope chain in, 39–42
V8 JavaScript engine in, 6

classes
constructors vs., 55–59
in JavaScript, 4

closures, 3, 35–37
in JavaScript, 36
in loops, 45–46
in PHP, 35

private arrays in, 116
private methods in, 114–115
private variables in, 113
singleton patterns constructors and, 129
variable scope and, 44

CommonJS module, 124–127
agnostic, 126
defining, 124
usage, 125

concat() method, 23
concat() method (Array.prototypes), 84
conditional statements, 15–19

== operator, 16
=== operator, 16–17
falsy values and, 17
if-then-else control structure, 15
switch control statement, 18
ternary operators, 16
truthy values, 17
try-catch blocks, 18–19

consoles, launching, 6–7
constants, implementing, 120–121
constructor property (Object constructor), 81
constructors

Array constructors, 81–87
Boolean(), 96
built-in, 76–100
classes vs., 55–59
Date(), 97–99
enforcing, 58–59
Error(), 97
functions, 90–91
functions vs., 57–58
Math objects, 96
Number(), 95–96
Object, 77–81
prototypes, inheritance and, 67
RegExp prototype, 87–89
singleton pattern design and, 128–129
strings, 91–95

count() method (PHP), 82
Crockford, Douglas, 69

D
Date objects (ES5), 111
debugging

NFEs and, 31
scope chain in WebKit console, 39–42

decodeURI() global function, 76

138 | Index

decodeURIComponent() global function, 76
decorators, 131–133

adding, 132
define() method (AMD), 127–128
delete operator (arrays), 15
descriptor objects (properties), 102
document.querySelectorAll(), 11
documentation, 133–134

generating from comments, 134
$() function, 10
DOM, 2–4
DOM0, 2
. (dot) notation, 15
&& operator, 24
!! operator, 23
|| operator, 24
$$() function, 10
" double quote, 11
== operator, 16

E
ECMA JavaScript standards, 134
ECMAScript, 2–4
ECMAScript 3 (ES3), 3
ECMAScript 5, 101–112

Array functionality in, 107–110
date() functionality in, 111
function prototype in, 111
JSON, 112
Object APIs in, 103–107
property attributes in, 102–103
shims, 112
strict mode of, 101–102
string trimming in, 110

ECMAScript 5.1 (ES5), 3
encodeURI() global function, 76
encodeURIComponent() global function, 76
error object (try-catch blocks), 18
Error() constructors, 97
escape() global function (BOM), 76
European Computer Manufacturers Association

(ECMA), 2
eval() method vs. function constructors, 90
every() method (Array.prototype), 109
exceptions, 18
exec() method (RegExp.prototype), 89
explode() function (PHP), 93
exports object (CommonJS), 125
extend() method, 70

F
factory pattern design, 130–131
falsy values, 17
files, running JavaScript from, 7
filter() method (Array.prototype), 108
finally block (try-catch blocks), 19
Firebug extension (Firefox), 4
Firefox, 4
floatval() function (PHP), equivalent of, 75
for loops, 20
for-in loops, 20
foreach loops, 20
forEach() method (Array.prototype), 108
function constructors, 90–91

properties of, 90
function declaration

hoisting functions and, 35
immediate functions and, 47–50

function expression, 31–32
hoisting functions and, 35
immediate functions and, 48

functions, 27–53
alternate syntax for, 31–32
as objects, 30
closures, 35–37
constructors vs., 57–58
default parameters for, 27–28
handling arguments for, 28–29
hasOwnProperty() method, 65
hoisting, 34–35
hoisting variables, 33–34
immediate, 47–50
methods as properties of, 56
optional parameters, handling, 29
passing/returning, as objects, 50–53
required parameters for, 28
return values of, 29
scope chain in, 37–47
variable scope in, 32–33

func_get_args() method (PHP), 28

G
get() method, 116
getElementById() method (document), 2
getElementsByTagName() method (document),

2
getMessage() method, 19
Giammarchi, Andrea, 29

Index | 139

global functions, 74–76
encoding URLs with, 76
numbers, 75–76

global objects
as namespaces, implementing, 121–123
Math objects and, 96
properties of, 74

$GLOBALS (PHP), equivalent of, 73
grouping () operator, 48

H
hasOwnProperty() method, 65

Object constructor and, 80
hexadecimal number values, 12
hoisting

functions, 34–35
variables, 33–34

HTML, 2

I
if-then-else control structure, 15
immediate functions, 47–50

private data and, 49
implode() method (PHP), 87
in operator, 22
indexOf() method (Array.prototype), 108
Infinity property (global object), 74
inheritance, 66–72

apply() method and, 71
begetting objects, 69
call() method and, 71
copying properties, 68
extend() method and, 70
via prototype, 66–72

instanceof operator, 58
Internet Explorer, 4

finally blocks and, 19
JavaScript manuals for, 134
object literals in older versions of, 61
string concatenation in older versions of, 23

intval() function (PHP), equivalent of, 75
isArray() method (Array.prototype), 107
isFinite() global function, 75
isNaN() global function, 75
isPrototypeOf() method (Object constructor),

81
is_finite() function (PHP), equivilant of, 75
is_nan() function (PHP), equivilant of, 75

J
Jasmine, 134–135
JavaScript API, 73–100

constructors, built-in, 76–100
global functions, 74–76
global objects, 73
global properties, 74

JavaScript Lint (Mozilla), 135
JavaScriptCore, 5–6
join() method (Array.prototypes), 87
jQuery, 2
jsc (JavaScript command-line interpreter), 5
JSCoverage, 135
JScript, 2
JSDoc Toolkit, 134
JSHint, 135
JSLint, 135
JSON, 69, 112

deep copying with, 117–118

L
language independent API, 2
lastIndexOf() method (Array.prototype), 108
length property (Array.prototypes), 82
length property (functions), 30
localeCompare() method (String.prototype), 93
loops, 19–21

closures in, 45–46

M
Mac OS, built-in JavaScript support, 5–6
manual for JavaScript, 133–134
manual hoisting, 34
map() method (Array.prototype), 109
match() method (String.prototype), 95
Math objects, 96
mental hoisting, 34
message property (try-catch blocks), 19
methods, 56

in object literals, 62
private, 114–115

module pattern, 123–124
modules

AMD, 127–128
CommonJS, 124–127

Mozilla, 6

140 | Index

N
named function expression, 31
namespaces

agnostic modules and, 126
classes, in PHP, 130
implementing, 121–123

NaN property (global object), 74
new operator, 55
NFE, 31
Node, 6–7
NodeJS environment, 124
null value type, 13
number values

declaring, 11
hexadecimal, 12
octal, 12
scientific notation, 12
typeof operator and, 12

Number() constructor, 95–96

O
Object API (ES5), 103–107

create() method, 103
defineProperties() method, 104
defineProperty() method, 104
getOwnPropertyDescriptor() method, 104
getPrototypeOf() method, 107
looping, 106
mutations, restricting, 105

object literals, 60–63
accessing properties of, 61
as associative arrays, 64
methods in, 62

object oriented programming, 55–72
constructors/classes, 55–59
fancy arrays, 63–64
inheritance, 66–72
object literals, 60–63
own properties, 64–66
prototypes, 59–60

Object prototype, 77–81
constructor property of, 81
hasOwnProperty() method, 80
isPrototypeOf() method, 81
propertyIsEnumerable() method, 80
toLocaleString() method, 79
toString() method and, 78
valueOf() method, 80

objects
begetting, 69
private, exposing, 115–116
__proto__ property, 65

octal number values, 12
operators, 21–25

P
parameters, default, 27–28
() operator, 47–50
parseFloat() global function, 75
parseInt() global function, 75
pattern design, 128–133

decorator, 131–133
factory, 130–131
singleton, 128–129

patterns, 113–136
AMD modules, 127–128
CommonJS module, 124–127
constants, 120–121
designing, 128–133
documentation, 133–134
module, 123–124
namespaces, implementing as, 121–123
revealing, 119–120
testing, 134–136

performance, 19
php -a and node REPL, 7
polyfils, 112
pop() method (Array.prototypes), 83
preg_match() function (PHP), 95
preg_match_all() function (PHP), 95
private properties, 113–118

deep copying with JSON, 117–118
exposing objects, 115–116
methods, 114–115
returning private arrays, 116–117

properties
copying for inheritance, 68
descriptor objects for, 102
private, 113–118

propertyIsEnumerable() method (Object con‐
structor), 80

__proto__ property, 65
prototypes, 3

inheritance via, 66–72
own properties vs. properties from, 64–66
this operator vs., 66

push() method (Array.prototypes), 14, 83

Index | 141

R
reduce() method (Array.prototype), 109
reduceRight() method (Array.prototype), 109
RegExp prototype, 87–89

exec() method, 89
modifiers for, 88
property list for, 88
test()method, 88

regular expressions, 87–89
replace() method (String.prototype), 94
require() method (CommonJS), 125
return values

functions as, 50–53
objects as, 56–57

revealing pattern, 119–120
reverse() method (Array.prototypes), 87
Rhino, 6–7

S
Safari, 4
Safari, debugging scope chain in, 39–42
scientific notation, declaring number values

with, 12
scope chain, 37–47
scope property, 37
search() method (String.prototype), 93
Selenium, 135
; (semicolon) operator, 31
shift() method (Array.prototypes), 84
shims, 112
' (single quote), 11
singleton pattern design, 128–129

with constructors, 128–129
slice() method (Array.prototypes), 86

copying private arrays using, 116
some() method (Array.prototype), 109
sort() method (Array.prototypes), 85
sort() method (PHP), 85
SpiderMonkey JavaScript engine (Mozilla), 135
splice() method (Array.prototypes), 86
split() method (String.prototype), 93
strcmp() function (PHP), 93
strict mode (ECMAScript 5), 101–102
string constructors, 91–95
string(s)

concat() method, 23
concatenating, 23
declaring, 11

functions in PHP, analogs for, 92
strstr() function (PHP), 93
strtotime() function (PHP), 98
str_replace() function (PHP), 94
substr() function (PHP), 92
substring() method (String.prototype), 92
switch control statement, 18
syntax, 9–25

$ operator, 10
alternate, for functions, 31–32
arrays, 13–15
conditional statements, 15–19
for loops, 20
loops, 19–21
operators, 21–25
value types, 11–13
variables, 9

T
ternary operators, 16
test()method (RegExp.prototype), 88
testing, 134–136

JavaScript Lint (Mozilla), 135
JSHint, 135
JSLint, 135

this operator, 55
prototype vs., 66

toLocaleString() method, 79
toString() method

function implementation of, 63
Object constructor and, 78

trim() function (PHP), 110
=== operator, 16
truthy values, 17
try-catch blocks, 18–19

exceptions, 18
finally block, 19
getMessage() method, 19

type casting, 23
== vs. === operators and, 16–17

typeof operator, 12
functions and, 29

U
undefined property (global object), 74
undefined value type, 13
unescape() global function (BOM), 76
unit testing, 134–135

142 | Index

unshift() method (Array.prototypes), 84
urldecode() function (PHP), 76
urlencode() function (PHP), 76
URLs, encoding, 76
use keyword (PHP), equivilant to, 36
usort() method (PHP), 85

V
V8 JavaScript Engine (Google), 6
V8Js PHP class, 2–4
value types, 11–13

null, 13
number values, 11
type casting, 23
undefined, 13

valueOf() method, 80
var keyword, 9

variable scope and, 10
variables, 9

defining, 9
functions as, 31–32
hoisting, 33–34

references vs. values, retaining, 44
retaining scope, 43
scope and the var keyword, 10
scope chain of, 37–47
scope of, 32–33

variables object (functions), 37
void operator, 24

W
WebKit console, 39–42
Windows, built-in JavaScript interpreter for, 5

X
XHTML, 2
XML, 2

Y
YUI (Yahoo User Interface Library), 2
YUIDoc, 134

Index | 143

About the Author
Stoyan Stefanov is a Facebook engineer, ex-Yahoo, architect of the YSlow 2.0 perfor‐
mance tool, and creator of the smush.it image optimization tool.

He’s the author of JavaScript Patterns (O’Reilly), Object-Oriented JavaScript (Packt
Publishing), The Book of Speed (online), and a contributor to High Performance Java‐
Script (O’Reilly) and Even Faster Web Sites (O’Reilly).

Stoyan is a Zend-certified engineer, blogs at phpied.com and jspatterns.com, and speaks
at conferences and meetups around the world (Velocity, JSConf, Web Directions, and
Fronteers, among others).

A Bulgarian-Canadian, Stoyan lives in Los Angeles with his wife and daughters and
spends his time biking between home, office, the beach, band practice, flying lessons,
and kids’ birthday parties.

Colophon
The animal on the cover of JavaScript for PHP Developers is an eastern gray squirrel
(Sciurus carolinensis), which is a tree squirrel native to the eastern and midwestern
United States, and to the southern portions of the eastern provinces of Canada. The
genus, Sciurus, is derived from two Greek words: skia, meaning shadow, and oura,
meaning tail.

As the name suggests, the eastern gray squirrel has predominantly gray fur, but it can
also have a brownish color. It has a white underside and a large bushy tail. It is one of
very few mammalian species that can descend a tree head-first; it does this by turning
its feet so the claws of its hind paws point backward and can grip the tree bark.

Like many members of the Sciuridae family, the eastern gray squirrel is a scatter-hoarder:
it hoards food in numerous small caches for later recovery. Some caches are quite tem‐
porary, especially those made near the site of a sudden abundance of food that can be
retrieved within hours or days for reburial in a more secure site. Others are more per‐
manent and are not retrieved until months later. Each squirrel is estimated to make
several thousand caches each season. The squirrels have very accurate spatial memory
for the locations of these caches, and use distant and nearby landmarks to retrieve them.

As in most other mammals, communication among eastern gray squirrel individuals
involves both vocalizations and posturing. The species has a quite varied repertoire of
vocalizations, including a squeak similar to that of a mouse, a low-pitched noise, a
chatter, and a raspy sound. Other methods of communication include tail flicking.
Communications are mainly used in mating season and to ward off predators.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.phpied.com/
http://www.jspatterns.com/

	Copyright
	Table of Contents
	Acknowledgments
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introduction
	Scope of This Book
	The Language
	Learning Environment
	Browsers
	JavaScriptCore
	Node.js and Rhino

	Longer Examples
	Let’s Get Started

	Chapter 2. JavaScript Syntax
	Variables
	What Does $ Do in JavaScript?

	Values
	typeof Introspection
	null and undefined

	Arrays
	Associative Arrays

	Conditions
	Ternary Operator
	Strict Comparison
	switch
	try-catch

	while and for Loops
	for-in Loops
	Miscellaneous Operators
	in
	String Concatenation
	Type Casting
	void
	Comma Operator

	Chapter 3. Functions
	Default Parameters
	Any Number of Arguments
	arguments.length Trick
	Return Values
	Functions Are Objects
	A Different Syntax
	Scope
	Hoisting
	Hoisting Functions

	Closures
	Closures in PHP

	Scope Chain
	The Scope Chain in the WebKit Console
	Retaining the Scope
	Retaining References, Not Values
	Closures in a Loop
	Exercise: onclick Loop

	Immediate Functions
	Initialization
	Privacy

	Passing and Returning Functions
	Callbacks Are Not Strings

	Chapter 4. Object-Oriented Programming
	Constructors and Classes
	Returning Objects
	More on This
	Enforcing Constructors

	Prototypes
	Object Literals
	Accessing Properties
	Confusing Dots
	Methods in Object Literals

	Fancy Arrays
	Own Properties
	__proto__
	this or prototype

	Inheritance
	Inheritance via the Prototype
	Inheritance via Copying Properties
	Beget Object
	“Classical” extend()
	Borrowing Methods
	Conclusion

	Chapter 5. The Built-In API
	The Global Object
	Global Properties
	Global Functions
	Numbers
	Encoding URLs

	Built-In Constructors
	Object
	Array
	RegExp
	Function
	String
	Number
	Boolean
	Math
	Error
	Date

	Constructors Review

	Chapter 6. ECMAScript 5
	Strict Mode
	Property Attributes
	New Object APIs
	Object.create()
	Object.getOwnPropertyDescriptor()
	Object.defineProperty() and Object.defineProperties()
	Restricting Object Mutations
	Looping Alternatives
	Object.getPrototypeOf()

	Array Additions
	Array.isArray()
	indexOf() and lastIndexOf()
	Walking the Array Elements
	Filtering
	Testing the Array Content
	Map/Reduce

	String Trimming
	New in Date
	Function.prototype.bind()
	JSON
	Shims

	Chapter 7. JavaScript Patterns
	Private Properties
	Private Methods
	Exposing Private Objects
	Returning Private Arrays
	Deep Copy via JSON

	Revealing Pattern
	Constants
	Namespaces
	Modules
	CommonJS Modules
	Defining a CommonJS Module
	Using a CommonJS Module
	Using an Agnostic Module

	AMD
	Design Patterns
	Singleton
	Factory
	Decorator

	Documentation and Testing
	Manual
	Documenting Your Code
	Unit Testing
	JSLint
	Linting This Book

	Index
	About the Author

