
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

JavaScript Web Applications

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

JavaScript Web Applications

Alex MacCaw

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

JavaScript Web Applications
by Alex MacCaw

Copyright © 2011 Alex MacCaw. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Holly Bauer
Copyeditor: Marlowe Shaeffer
Proofreader: Stacie Arellano

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. JavaScript Web Applications, the image of a Long-eared owl, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30351-8

[LSI]

1313086859

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . xi

1. MVC and Classes . 1
Early Days 1
Adding Structure 2
What Is MVC? 2

The Model 3
The View 4
The Controller 5

Toward Modularity, Creating Classes 6
Adding Functions to Classes 7
Adding Methods to Our Class Library 8
Class Inheritance Using Prototype 10
Adding Inheritance to Our Class Library 11
Function Invocation 12
Controlling Scope in Our Class Library 14
Adding Private Functions 16
Class Libraries 16

2. Events and Observing . 19
Listening to Events 19
Event Ordering 20
Canceling Events 21
The Event Object 21
Event Libraries 23
Context Change 24
Delegating Events 24
Custom Events 25
Custom Events and jQuery Plug-Ins 25
Non-DOM Events 27

v

www.allitebooks.com

http://www.allitebooks.org

3. Models and Data . 31
MVC and Namespacing 31
Building an ORM 32

Prototypal Inheritance 33
Adding ORM Properties 34
Persisting Records 35

Adding ID Support 36
Addressing References 37
Loading in Data 38

Including Data Inline 39
Loading Data with Ajax 39
JSONP 43
Security with Cross-Domain Requests 43

Populating Our ORM 44
Storing Data Locally 44
Adding Local Storage to Our ORM 46
Submitting New Records to the Server 47

4. Controllers and State . 49
Module Pattern 50

Global Import 50
Global Export 50

Adding a Bit of Context 51
Abstracting into a Library 52
Loading Controllers After the Document 53
Accessing Views 55
Delegating Events 56

State Machines 58
Routing 60

Using the URL’s Hash 60
Detecting Hash Changes 61
Ajax Crawling 62
Using the HTML5 History API 63

5. Views and Templating . 65
Dynamically Rendering Views 65
Templates 66

Template Helpers 68
Template Storage 69

Binding 70
Binding Up Models 71

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

6. Dependency Management . 73
CommonJS 74

Declaring a Module 74
Modules and the Browser 75

Module Loaders 76
Yabble 76
RequireJS 77

Wrapping Up Modules 78
Module Alternatives 79

LABjs 80
FUBCs 80

7. Working with Files . 81
Browser Support 81
Getting Information About Files 81
File Inputs 82
Drag and Drop 83

Dragging 84
Dropping 85
Cancel Default Drag/Drop 86

Copy and Paste 87
Copying 87
Pasting 88

Reading Files 89
Blobs and Slices 90

Custom Browse Buttons 91
Uploading Files 91

Ajax Progress 93
jQuery Drag and Drop Uploader 95

Creating a Drop Area 95
Uploading the File 95

8. The Real-Time Web . 97
Real Time’s History 97
WebSockets 98

Node.js and Socket.IO 101
Real-Time Architecture 103
Perceived Speed 105

9. Testing and Debugging . 107
Unit Testing 109

Assertions 109
QUnit 110

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Jasmine 113
Drivers 115
Headless Testing 118

Zombie 119
Ichabod 121

Distributed Testing 121
Providing Support 122
Inspectors 122

Web Inspector 123
Firebug 124

The Console 125
Console Helpers 126

Using the Debugger 127
Analyzing Network Requests 128
Profile and Timing 129

10. Deploying . 133
Performance 133
Caching 134
Minification 136
Gzip Compression 137
Using a CDN 138
Auditors 138
Resources 139

11. The Spine Library . 141
Setup 141
Classes 142

Instantiation 142
Extending Classes 143
Context 144

Events 145
Models 145

Fetching Records 147
Model Events 147
Validation 148
Persistence 148

Controllers 150
Proxying 151
Elements 152
Delegating Events 152
Controller Events 153
Global Events 153

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Render Pattern 154
The Element Pattern 154

Building a Contacts Manager 156
Contact Model 157
Sidebar Controller 158
Contacts Controller 160
App Controller 163

12. The Backbone Library . 165
Models 165

Models and Attributes 166
Collections 167

Controlling a Collection’s Order 169
Views 169

Rendering Views 170
Delegating Events 170
Binding and Context 171

Controllers 172
Syncing with the Server 174

Populating Collections 175
On the Server Side 175
Custom Behavior 176

Building a To-Do List 178

13. The JavascriptMVC Library . 185
Setup 186
Classes 186

Instantiation 186
Calling Base Methods 187
Proxies 187
Static Inheritance 187
Introspection 188
A Model Example 188

Model 189
Attributes and Observables 189
Extending Models 191
Setters 191
Defaults 192
Helper Methods 192
Service Encapsulation 193
Type Conversion 196
CRUD Events 196

Using Client-Side Templates in the View 197

Table of Contents | ix

Basic Use 197
jQuery Modifiers 198
Loading from a Script Tag 198
$.View and Subtemplates 198
Deferreds 199
Packaging, Preloading, and Performance 199

$.Controller: The jQuery Plug-in Factory 200
Overview 202
Controller Instantiation 202
Event Binding 203
Templated Actions 204

Putting It All Together: An Abstract CRUD List 205

A. jQuery Primer . 207

B. CSS Extensions . 217

C. CSS3 Reference . 223

Index . 243

x | Table of Contents

Preface

JavaScript has come a long way from its humble beginnings in 1995 as part of the
Netscape browser, to the high-performance JIT interpreters of today. Even just five
years ago developers were blown away by Ajax and the yellow fade technique; now,
complex JavaScript apps run into the hundreds of thousands of lines.

In the last year, a new breed of JavaScript applications has appeared, giving an expe-
rience people were used to on the desktop, but that was unheard of on the Web. Gone
are the slow page requests every time a user interacts with an application; instead,
JavaScript engines are now so powerful we can keep state client side, giving a much
more responsive and improved experience.

It’s not just JavaScript engines that have improved; CSS3 and HTML5 specs haven’t
finished the drafting stage, but they are already widely supported by modern browsers
such as Safari, Chrome, Firefox, and—to some extent—IE9. Beautiful interfaces can
be coded in a fraction of the time previously required, and without all that notorious
image cutting and splicing. Support for HTML5 and CSS3 is getting better every day,
but you’ll need to decide—based on your client base—whether to use these
technologies.

Moving state to the client side is no simple task. It requires a completely different
development approach to server-side applications. You need to think about structure,
templating, communicating with the server, frameworks, and much more. That’s where
this book comes in; I’ll take you through all the steps necessary to create state-of-the-
art JavaScript applications.

Who Is This Book For?
This book isn’t for JavaScript newbies, so if you’re unfamiliar with the basics of the
language, I advise you to pick up one of the many good books on the subject, such as
JavaScript: The Good Parts by Douglas Crockford (O’Reilly). This book is aimed at
developers with some JavaScript experience, perhaps using a library like jQuery, who
want to get into building more advanced JavaScript applications. Additionally, many

xi

http://oreilly.com/catalog/9780596517748

sections of the book—especially the appendixes—will also be a useful reference for
experienced JavaScript developers.

How This Book Is Organized
Chapter 1

The chapter starts with a discussion of JavaScript’s history and covers some of the
underlying influences of its current implementation and community. We then give
you an introduction to the MVC architectural pattern, in addition to exploring
JavaScript’s constructor functions, prototypal inheritance, and how to create your
own class library.

Chapter 2
This chapter gives you a brief primer on browser events, including their history,
API, and behavior. We’ll cover how to bind to events with jQuery, use delegation,
and create custom events. We’ll also explore using non-DOM events with the
PubSub pattern.

Chapter 3
This chapter explains how to use MVC models in your application, as well as for
loading and manipulating remote data. We’ll explain why MVC and namespacing
are important and then build our own ORM library to manage model data. Next,
we’ll cover how to load in remote data using JSONP and cross-domain Ajax. Fi-
nally, you’ll learn how to persist model data using HTML5 Local Storage and sub-
mitting it to a RESTful server.

Chapter 4
This chapter demonstrates how to use a controller pattern to persist state on the
client side. We’ll discuss how to use modules to encapsulate logic and prevent
global namespace pollution, then we’ll cover how to cleanly interface controllers
with views, listening to events and manipulating the DOM. Finally, we’ll discuss
routing, first using the URL’s hash fragment, and then using the newer HTML5
History API, making sure to explain the pros and cons of both approaches.

Chapter 5
This is where we cover views and JavaScript templating. We cover the different
ways of dynamically rendering views, as well as various templating libraries and
where to actually store the templates (inline in the page, in script tags, or with
remote loading). Then, you’ll learn about data binding—connecting your model
controllers and views to dynamically synchronize model data and view data.

Chapter 6
In this chapter, we’ll get into the details of JavaScript dependency management
using CommonJS modules. You’ll learn the history and thinking behind the Com-
monJS movement, how to create CommonJS modules in the browser, and various
module loader libraries to help you with this, such as Yabble and RequireJS.
Next, we’ll discuss how to automatically wrap up modules server side, increasing

xii | Preface

performance and saving time. Finally, we’ll cover various alternatives to Com-
monJS, such as Sprockets and LABjs.

Chapter 7
Here, we’ll get into some of the benefits HTML5 gives us: the File API. We’ll cover
browser support, multiple uploads, receiving files that are dragged onto the
browser, and files from clipboard events. Next, we’ll explore reading files using
blobs and slices, and displaying the result in the browser. We’ll cover uploading
files in the background using the new XMLHttpRequest Level 2 specification, and
finally, we’ll show you how to give your users live upload progress bars and how
to integrate uploads with jQuery’s Ajax API.

Chapter 8
We’ll take a look at some of the exciting developments with real-time applications
and WebSockets. First, the chapter covers real time’s rather turbulent history and
its current support in the browsers. Then, we’ll get into the details of WebSockets
and their high-level implementation, browser support, and JavaScript API. Next,
we’ll demonstrate a simple RPC server that uses WebSockets to connect up servers
and clients. We’ll then take a look at Socket.IO and learn how real time fits into
applications’ architecture and user experience.

Chapter 9
This chapter covers testing and debugging, a crucial part of JavaScript web appli-
cation development. We’ll look at the issues surrounding cross-browser testing,
which browsers you should test in, and unit tests and testing libraries, such as
QUnit and Jasmine. Next, we’ll take a look at automated testing and continuous
integration servers, such as Selenium. We’ll then get into the debugging side of
things, exploring Firefox and WebKit’s Web Inspectors, the console, and using the
JavaScript debugger.

Chapter 10
This chapter covers another important—but often neglected—part of JavaScript
web applications: deployment. Chiefly, we’ll consider performance and how to use
caching, minification, gzip compression, and other techniques to decrease your
application’s initial load time. Finally, we’ll briefly cover how to use CDNs to serve
static content on your behalf, and how to use the browser’s built-in auditor, which
can be immensely helpful in improving your site’s performance.

Chapter 11
The next three chapters give you an introduction to some popular JavaScript li-
braries for application development. Spine is a lightweight MVC-compliant library
that uses many of the concepts covered in the book. We’ll take you through the
core parts of the library: classes, events, models, and controllers. Finally, we’ll build
an example contacts manager application that will demonstrate what we’ve learned
from the chapter.

Preface | xiii

Chapter 12
Backbone is an extremely popular library for building JavaScript applications, and
this chapter will give you a thorough introduction. We’ll take you through the core
concepts and classes of Backbone, such as models, collections, controllers, and
views. Next, we’ll explore syncing model data with the server using RESTful JSON
queries and how to respond to Backbone appropriately server side. Finally, we’ll
build an example to-do list application that will demonstrate much of the library.

Chapter 13
This chapter explores the JavaScriptMVC library, a popular jQuery-based
framework for building JavaScript web applications. You’ll learn all the basics of
JavaScriptMVC, such as classes, models, and controllers, as well as using client-
side templates to render views. The chapter ends with a practical CRUD list ex-
ample, demonstrating how easy it is to create abstract, reusable, memory-safe
widgets with JavaScriptMVC.

Appendix A
This appendix provides a brief introduction to jQuery, which is useful if you feel
you need to brush up on the library. Most of the book’s examples use jQuery, so
it’s important to be familiar with it. We’ll cover most of the core API, such as
traversing the DOM, manipulating the DOM, and event binding, triggering, and
delegating. Next, we’ll approach jQuery’s Ajax API, making GET and POST JSON
requests. We’ll then cover jQuery extensions and how to use encapsulation to
ensure you’re being a good web citizen. Finally, we’ll take a look at a practical
example: creating a Growl jQuery plug-in.

Appendix B
Appendix B covers Less, a superset of CSS that extends its syntax with variables,
mixins, operations, and nested rules. Less can really reduce the amount of CSS you
need to write—especially when it comes to CSS3 vendor–specific rules. This ap-
pendix covers Less’s major syntax enhancements and how to use the command
line’s tools and JavaScript library to compile Less files down to CSS.

Appendix C
The last appendix is a CSS3 reference. It provides a bit of background on CSS3,
explains vendor prefixes, and then takes you through the major additions to the
specification. Among other CSS3 features, this appendix covers rounded corners,
rgba colors, drop shadows, gradients, transitions, and transformations. It ends with
a discussion about graceful degradation using Modernizr and a practical example
of using the new box-sizing specification.

xiv | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, and events.

Constant width

Indicates computer code in a broad sense, including commands, arrays, elements,
statements, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, event
handlers, XML tags, HTML tags, macros, the contents of files, and the output from
commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Accompanying Files
This book’s accompanying files are hosted on GitHub. You can view them online or
download a zip locally. All the assets are separated by chapter, and any required libraries
are also included. Most examples in this book are also available as standalone files.

Whenever a particular asset is referenced inside a chapter, it will be in the form of assets/
chapter_number/name.

Preface | xv

https://github.com/maccman/book-assets
https://github.com/maccman/book-assets/zipball/master

Code Conventions
Throughout this book we’ll use the assert() and assertEqual() functions to demon-
strate the value of variables or the result of a function call. assert() is just shorthand
for indicating that a particular variable resolves to true; it is a common pattern that’s
especially prevalent in automated testing. assert() takes two arguments: a value and
an optional message. If the value doesn’t equal true, the function will throw an error:

var assert = function(value, msg) {
 if (!value)
 throw(msg || (value + " does not equal true"));
};

assertEqual() is shorthand for indicating that one variable equals another. It works
similarly to assert(), but it accepts two values. If the two values aren’t equal, the as-
sertion fails:

var assertEqual = function(val1, val2, msg) {
 if (val1 !== val2)
 throw(msg || (val1 + " does not equal " + val2));
};

Using the two functions is very straightforward, as you can see in the example below.
If the assertion fails, you’ll see an error message in the browser’s console:

assert(true);

// Equivalent to assertEqual()
assert(false === false);

assertEqual(1, 1);

I’ve slightly sugar-coated assertEqual() since, as it stands, object comparison will fail
unless the objects share the same reference in memory. The solution is a deep com-
parison, and we’ve included an example of this in assets/ch00/deep_equality.html.

jQuery Examples
A lot of the examples in this book rely on jQuery, an extremely popular JavaScript
library that simplifies events, DOM traversing, manipulation, and Ajax. I’ve decided
this for various reasons, but it’s mostly because jQuery greatly clarifies examples, and
it is closer to the JavaScript most people write in the real world.

If you haven’t used jQuery, I strongly advise you to check it out. It has an excellent API
that provides a good abstraction over the DOM. A brief jQuery primer is included in
Appendix A.

xvi | Preface

http://jquery.com

Holla
Built as a companion to this book, Holla is a JS group chat application. Holla is a good
example application because it encompasses various best practices covered in this
book. Among other things, Holla will show you how to:

• Use CSS3 and HTML5 to create beautiful interfaces

• Drag and drop to upload files

• Lay out your code using Sprockets and Less

• Use WebSockets to push data to clients

• Create a stateful JavaScript application

Clone the code from Holla’s GitHub repository and take a look. Many of the examples
in this book have been taken from Holla’s source; see Figure P-1.

Figure P-1. Holla, an example chat application

Author’s Note
I wrote this book as I traveled around the world for a year. I wrote some parts in African
huts without electricity and Internet, others in Japanese washitsus overlooking temples

Preface | xvii

http://github.com/maccman/holla
http://github.com/maccman/holla

and blossoming trees, and some even on remote Cambodian islands. In short, I had a
great time writing this, and I hope reading it gives you just as much pleasure.

Some people deserve their share of the blame. Thanks go to Stuart Eccles, Tim Malbon,
Ben Griffins, and Sean O’Halpin for giving me the chances and opportunity to find my
passion; and to James Adam, Paul Battley, and Jonah Fox for mentoring and putting
up with my asininities.

Thanks also to the technical reviewers, who really helped shape the book: Henrik Jor-
eteg, Justin Meyer, Lea Verou, Addy Osmani, Alex Barbara, Max Williams, and Julio
Cesar Ody.

Most importantly, thanks to my parents for their unwavering support.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449303518

To comment or ask technical questions about this book, send email to:

xviii | Preface

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449303518
http://www.allitebooks.org

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xix

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

MVC and Classes

Early Days
JavaScript development has changed markedly from how it looked when it was first
conceived. It’s easy to forget how far the language has come from its initial implemen-
tation in Netscape’s browser, to the powerful engines of today, such as Google’s V8.
It’s been a rocky path involving renaming, merging, and the eventual standardization
as ECMAScript. The capabilities we have today are beyond the wildest dreams of those
early innovators.

Despite its success and popularity, JavaScript is still widely misunderstood. Few people
know that it’s a powerful and dynamic object-oriented language. They’re surprised to
learn about some of its more advanced features, such as prototypal inheritance, mod-
ules, and namespaces. So, why is JavaScript so misunderstood?

Part of the reason is due to previous buggy JavaScript implementations, and part of it
is due to the name—the Java prefix suggests it’s somehow related to Java; in reality,
it’s a totally different language. However, I think the real reason is the way most de-
velopers are introduced to the language. With other languages, such as Python and
Ruby, developers usually make a concerted effort to learn the language with the help
of books, screencasts, and tutorials. Until recently, though, JavaScript wasn’t given that
endorsement. Developers would get requests to add a bit of form validation—maybe
a lightbox or a photo gallery—to existing code, often on a tight schedule. They’d use
scripts they’d find on the Internet, calling it a day with little understanding of the lan-
guage behind it. After that basic exposure, some of them might even add JavaScript to
their resumes.

Recently, JavaScript engines and browsers have become so powerful that building full-
blown applications in JavaScript is not only feasible, but increasingly popular. Appli-
cations like Gmail and Google Maps have paved the way to a completely different way
of thinking about web applications, and users are clamoring for more. Companies are
hiring full-time JavaScript developers. No longer is JavaScript a sublanguage relegated

1

to simple scripts and a bit of form validation—it is now a standalone language in its
own right, realizing its full potential.

This influx of popularity means that a lot of new JavaScript applications are being built.
Unfortunately, and perhaps due to the language’s history, many of them are construc-
ted very poorly. For some reason, when it comes to JavaScript, acknowledged patterns
and best practices fly out the window. Developers ignore architectural models like the
Model View Controller (MVC) pattern, instead blending their applications into a messy
soup of HTML and JavaScript.

This book won’t teach you much about JavaScript as a language—other books are
better suited for that, such as Douglas Crockford’s JavaScript: The Good Parts (O’Re-
illy). However, this book will show you how to structure and build complex JavaScript
applications, allowing you to create incredible web experiences.

Adding Structure
The secret to making large JavaScript applications is to not make large JavaScript ap-
plications. Instead, you should decouple your application into a series of fairly inde-
pendent components. The mistake developers often make is creating applications with
a lot of interdependency, with huge linear JavaScript files generating a slew of HTML
tags. These sorts of applications are difficult to maintain and extend, so they should be
avoided at all costs.

Paying a bit of attention to an application’s structure when you start building it can
make a big difference to the end result. Ignore any preconceived notions you have about
JavaScript and treat it like the object-oriented language that it is. Use classes, inheri-
tance, objects, and patterns the same way you would if you were building an application
in another language, such as Python or Ruby. Architecture is critical to server-side
applications, so why shouldn’t the same apply to client-side apps?

The approach this book advocates is the MVC pattern, a tried and tested way of ar-
chitecting applications that ensures they can be effectively maintained and extended.
It’s also a pattern that applies particularly well to JavaScript applications.

What Is MVC?
MVC is a design pattern that breaks an application into three parts: the data (Model),
the presentation layer (View), and the user interaction layer (Controller). In other
words, the event flow goes like this:

1. The user interacts with the application.

2. The controller’s event handlers trigger.

3. The controller requests data from the model, giving it to the view.

4. The view presents the data to the user.

2 | Chapter 1: MVC and Classes

http://oreilly.com/catalog/9780596517748

Or, to give a real example, Figure 1-1 shows how sending a new chat message would
work with Holla.

Figure 1-1. Sending a new chat message from Holla

1. The user submits a new chat message.

2. The controller’s event handlers trigger.

3. The controller creates a new Chat Model record.

4. The controller then updates the view.

5. The user sees his new chat message in chat log.

The MVC architectural pattern can even be implemented without libraries or frame-
works. The key is to divide up the responsibilities of the MVC components into clearly
defined sections of code, keeping them decoupled. This allows for independent devel-
opment, testing, and maintenance of each component.

Let’s explore the components of MVC in detail.

The Model
The model is where all the application’s data objects are stored. For example, we might
have a User Model that contains a list of users, their attributes, and any logic associated
specifically with that model.

A model doesn’t know anything about views or controllers. The only thing a model
should contain is data and the logic associated directly with that data. Any event han-
dling code, view templates, or logic not specific to that model should be kept well clear
of it. You know an application’s MVC architecture is violated when you start seeing
view code in the models. Models should be completely decoupled from the rest of your
application.

When controllers fetch data from servers or create new records, they wrap them in
model instances. This means that our data is object oriented, and any functions or logic
defined on the model can be called directly on the data.

What Is MVC? | 3

So, rather than this:

var user = users["foo"];
destroyUser(user);

We can do something like this:

var user = User.find("foo");
user.destroy();

The first example is not namespaced or object oriented. If we have another destroy
User() function defined in our application, the two will conflict. Global variables and
functions should always be kept to an absolute minimum. In the second example, the
destroy() function is namespaced behind User instances, as are all the stored records.
This is ideal, since we’re keeping global variables to a minimum, exposing fewer areas
to potential conflicts. The code is cleaner and can take advantage of inheritance so
functions like destroy() don’t have be defined separately on every model.

Models are explored in much more depth in Chapter 3, which covers topics such as
loading in data from servers and creating object-relational mappers (ORMs).

The View
The view layer is what’s presented to the user and is what she interacts with. In a
JavaScript application, the view would be made up mostly of HTML, CSS, and Java-
Script templates. Apart from simple conditional statements in templates, the views
shouldn’t contain any logic.

In fact, like models, views should also be decoupled from the rest of the application.
Views shouldn’t know anything about controllers and models—they should be inde-
pendent. Mixing up views with logic is one of the surest paths to disaster.

That isn’t to say MVC doesn’t allow for presentational logic—as long as it’s not defined
inside views. Presentational logic resides in what are called helpers: scripts solely for
small utility functions related to the view.

The example below, which includes logic inside views, is something you shouldn’t do:

// template.html
<div>
 <script>
 function formatDate(date) {
 /* ... */
 };
 </script>
 ${ formatDate(this.date) }
</div>

In the code above, we’re inserting the formatDate() function directly into the view,
which violates MVC, resulting in an unmaintainable mess of tag soup. By separating
out presentational logic into helpers, as with the example below, we’re avoiding that
problem and keeping our application’s structure MVC-compliant.

4 | Chapter 1: MVC and Classes

// helper.js
var helper = {};
helper.formatDate = function(){ /* ... */ };

// template.html
<div>
 ${ helper.formatDate(this.date) }
</div>

In addition, all presentational logic is namespaced under the helper variable, preventing
conflicts and keeping the code clean and extendable.

Don’t worry too much about specifics regarding views and templates—we cover them
extensively in Chapter 5. The aim of this section is to familiarize you with how views
relate to the MVC architectural pattern.

The Controller
Controllers are the glue between models and views. Controllers receive events and input
from views, process them (perhaps involving models), and update the views accord-
ingly. The controller will add event listeners to views when the page loads, such as those
detecting when forms are submitted or buttons are clicked. Then, when the user in-
teracts with your application, the events trigger actions inside the controllers.

You don’t need any special libraries or frameworks to implement controllers; here’s an
example using plain old jQuery:

var Controller = {};

// Use a anonymous function to enscapulate scope
(Controller.users = function($){

 var nameClick = function(){
 /* ... */
 };

 // Attach event listeners on page load
 $(function(){
 $("#view .name").click(nameClick);
 });

})(jQuery);

We’re creating a users Controller that is namespaced under the Controller variable.
Then, we’re using an anonymous function to encapsulate scope, preventing variable
pollution of the global scope. When the page loads, we’re adding a click event listener
to a view element.

As you can see, controllers don’t require a library or framework. However, to comply
with MVC’s architectural requirements, they must be separated from Models and
Views. Controllers and states are covered in more detail in Chapter 4.

What Is MVC? | 5

Toward Modularity, Creating Classes
Before we get to the nitty-gritty of MVC, we’re going to cover some preliminary con-
cepts, such as JavaScript classes and events. This will give you a solid foundation before
moving on to some of the more advanced concepts.

JavaScript object literals are fine for static classes, but it’s often useful to create classical
classes with inheritance and instances. It’s important to emphasize that JavaScript is a
prototype language, and as such doesn’t include a native class implementation. How-
ever, support can be emulated fairly easily.

Classes in JavaScript often get a bad rap, criticized for not being part of the “JavaScript
Way,” a term that means essentially nothing. jQuery is effectively neutral when it comes
to structural methodology or inheritance patterns. This can lead JavaScript developers
to believe they shouldn’t consider structure—i.e., that classes aren’t available or
shouldn’t be used. In reality, classes are just another tool, and as a pragmatist, I believe
they’re as useful in JavaScript as in any other modern language.

Rather than class definitions, JavaScript has constructor functions and the new opera-
tor. A constructor function can specify an object’s initial properties and values when it
is instantiated. Any JavaScript function can be used as a constructor. Use the new op-
erator with a constructor function to create a new instance.

The new operator changes a function’s context, as well as the behavior of the return
statement. In practice, using new and constructors is fairly similar to languages with
native class implementations:

var Person = function(name) {
 this.name = name;
};

// Instantiate Person
var alice = new Person('alice');

// Check instance
assert(alice instanceof Person);

By convention, constructor functions are upper camel-cased to differentiate them from
normal functions. This is important because you don’t ever want to call a constructor
function without the new prefix.

// Don't do this!
Person('bob'); //=> undefined

The function will just return undefined, and since the context is the window (global)
object, you’ve unintentionally created a global variable, name. Always call constructor
functions using the new keyword.

When a constructor function is called with the new keyword, the context switches from
global (window) to a new and empty context specific to that instance. So, the this

6 | Chapter 1: MVC and Classes

keyword refers to the current instance. Although it might sound complicated, in prac-
tice, you can treat it like native class implementations in other languages.

By default, if you don’t return anything from a constructor function, this—the current
context—will be returned. Otherwise, you can return any nonprimitive type. For ex-
ample, we could return a function that would set up a new class, the first step in building
our own class emulation library:

var Class = function(){
 var klass = function(){
 this.init.apply(this, arguments);
 };
 klass.prototype.init = function(){};
 return klass;
};

var Person = new Class;

Person.prototype.init = function(){
 // Called on Person instantiation
};

// Usage:
var person = new Person;

Confusingly, due to a JavaScript 2 specification that was never implemented, class is
a reserved keyword. The common convention is instead to name class variables as
_class or klass.

Adding Functions to Classes
Adding class functions to a constructor function is the same as adding a property onto
any object in JavaScript:

Person.find = function(id){ /*...*/ };

var person = Person.find(1);

To add instance functions to a constructor function, you need to use the constructor’s
prototype:

Person.prototype.breath = function(){ /*...*/ };

var person = new Person;
person.breath();

A common pattern is to alias a class’ prototype to fn, which is a bit less verbose:

Person.fn = Person.prototype;

Person.fn.run = function(){ /*...*/ };

In fact, you’ll see this pattern throughout jQuery plug-ins, which essentially just add
functions to jQuery’s prototype, aliased to jQuery.fn.

Adding Functions to Classes | 7

http://www.mozilla.org/js/language/js20-1999-02-18/classes.html

Adding Methods to Our Class Library
Currently, our class library includes functionality for instantiating and initializing in-
stances. Adding properties to classes is the same as adding properties to constructor
functions.

Properties set directly on the class will be equivalent to static members:

var Person = new Class;

// Static functions are added directly on the class
Person.find = function(id){ /* ... */ };

// And now we can call them directly
var person = Person.find(1);

And properties set on the class’ prototype are also available on instances:

var Person = new Class;

// Instance functions are on the prototype
Person.prototype.save = function(){ /* ... */ };

// And now we can call them on instances
var person = new Person;
person.save();

However, in my opinion, that syntax is a little convoluted, impractical, and repetitive.
It’s difficult to see, at a glance, a list of your class’ static and instance properties. Instead,
let’s create a different way of adding properties to our classes using two functions,
extend() and include():

var Class = function(){
 var klass = function(){
 this.init.apply(this, arguments);
 };

 klass.prototype.init = function(){};

 // Shortcut to access prototype
 klass.fn = klass.prototype;

 // Shortcut to access class
 klass.fn.parent = klass;

 // Adding class properties
 klass.extend = function(obj){
 var extended = obj.extended;
 for(var i in obj){
 klass[i] = obj[i];
 }
 if (extended) extended(klass)
 };

 // Adding instance properties

8 | Chapter 1: MVC and Classes

www.allitebooks.com

http://www.allitebooks.org

 klass.include = function(obj){
 var included = obj.included;
 for(var i in obj){
 klass.fn[i] = obj[i];
 }
 if (included) included(klass)
 };

 return klass;
};

In the improved class library above, we’re adding an extend() function to generated
classes, which accepts an object. The object’s properties are iterated through and copied
directly onto the class:

var Person = new Class;

Person.extend({
 find: function(id) { /* ... */ },
 exists: functions(id) { /* ... */ }
});

var person = Person.find(1);

The include() function works in exactly the same way, except properties are copied
onto the class’ prototype, rather than directly onto the class. In other words, the prop-
erties are on the class’ instance, rather than statically on the class.

var Person = new Class;

Person.include({
 save: function(id) { /* ... */ },
 destroy: functions(id) { /* ... */ }
});

var person = new Person;
person.save();

We’re also implementing support for extended and included callbacks. If these prop-
erties are present on the passed object, they’ll be invoked:

Person.extend({
 extended: function(klass) {
 console.log(klass, " was extended!");
 }
});

If you’ve used classes in Ruby, this should all look very familiar. The beauty of this
approach is that we’ve now got support for modules. Modules are reusable pieces of
code, and they can be used as an alternative to inheritance for sharing common prop-
erties among classes.

var ORMModule = {
 save: function(){
 // Shared function

Adding Methods to Our Class Library | 9

 }
};

var Person = new Class;
var Asset = new Class;

Person.include(ORMModule);
Asset.include(ORMModule);

Class Inheritance Using Prototype
We’ve been using the prototype property a lot, but it hasn’t really been explained yet.
Let’s take a closer look at what it is exactly and how to use it to implement a form of
inheritance in our classes.

JavaScript is a prototype-based language and—rather than make distinctions between
classes and instances—it has the notions of a prototypical object: an object used as a
template from which to get the initial properties for a new object. Any object can be
associated as a prototype of another object, sharing its properties. In practice, you can
look at this as a form of inheritance.

When you fetch a property on an object, JavaScript will search the local object for the
property. If it isn’t found, JavaScript will start searching the object’s prototype and
continue up the prototype tree, eventually reaching Object.prototype. If the property
is found, its value is returned; otherwise, undefined will be returned.

In other words, if you start adding properties to Array.prototype, they’ll be reflected
across every JavaScript array.

To subclass a class and inherit its properties, you need to first define a constructor
function. Then, you need to assign a new instance of the parent class as the prototype
for your constructor function. It looks like this:

var Animal = function(){};

Animal.prototype.breath = function(){
 console.log('breath');
};

var Dog = function(){};

// Dog inherits from Animal
Dog.prototype = new Animal;

Dog.prototype.wag = function(){
 console.log('wag tail');
};

Now, we can check to see whether the inheritance works:

10 | Chapter 1: MVC and Classes

var dog = new Dog;
dog.wag();
dog.breath(); // Inherited property

Adding Inheritance to Our Class Library
Let’s add inheritance to our custom class library. We’ll pass through an optional parent
class when creating a new class:

var Class = function(parent){
 var klass = function(){
 this.init.apply(this, arguments);
 };

 // Change klass' prototype
 if (parent) {
 var subclass = function() { };
 subclass.prototype = parent.prototype;
 klass.prototype = new subclass;
 };

 klass.prototype.init = function(){};

 // Shortcuts
 klass.fn = klass.prototype;
 klass.fn.parent = klass;
 klass._super = klass.__proto__;

 /* include/extend code... */

 return klass;
};

If a parent is passed to the Class constructor, we make sure any subclasses share the
same prototype. This little dance around creating a temporary anonymous function
prevents instances from being created when a class is inherited. The caveat here is that
only instance properties, not class properties, are inherited. There isn’t yet a cross-
browser way of setting an object’s __proto__;. Libraries like Super.js get around this
problem by copying the properties, rather than implementing proper dynamic inheri-
tance.

Now, we can perform simple inheritance by passing parent classes to Class:

var Animal = new Class;

Animal.include({
 breath: function(){
 console.log('breath');
 }
});

var Cat = new Class(Animal)

Adding Inheritance to Our Class Library | 11

http://github.com/maccman/super.js

// Usage
var tommy = new Cat;
tommy.breath();

Function Invocation
Like everything else in JavaScript, functions are just objects. However, unlike other
objects, they can be invoked. The context inside the function—i.e., the value of this—
depends on where and how it’s invoked.

Apart from using brackets, there are two other ways to invoke a function: apply() and
call(). The difference between them has to do with the arguments you want to pass
to the function.

The apply() function takes two parameters: a context and an array of arguments. If the
context is null, the global context is used. For example:

function.apply(this, [1, 2, 3])

The call() function has exactly the same behavior, yet it is used differently. The first
argument is the context, while each subsequent argument is delegated to the invoca-
tion. In other words, you use multiple arguments—rather than an array like with
apply()—to pass arguments to the function.

function.call(this, 1, 2, 3);

Why would you want to change the context? This is a valid question because other
languages get on fine without allowing explicit context changes. JavaScript uses context
changes to share state, especially during event callbacks. (Personally, I feel this was a
mistake in the design of the language, as it can be confusing for beginners and introduce
bugs. However, it’s too late to change it now, so you need to learn how it works.)

jQuery takes advantage of apply() and call() throughout its API to change context—
for example, when using event handlers or iterating using each(). This can be confusing
at first, but it’s useful when you understand what’s happening:

$('.clicky').click(function(){
 // 'this' refers to the element
 $(this).hide();
});

$('p').each(function(){
 // 'this' refers to the current iteration
 $(this).remove();
});

To access the original context, a common pattern stores the value of this in a local
variable. For example:

var clicky = {
 wasClicked: function(){
 /* ... */

12 | Chapter 1: MVC and Classes

 },

 addListeners: function(){
 var self = this;
 $('.clicky').click(function(){
 self.wasClicked()
 });
 }
};

clicky.addListeners();

However, we can use apply to make this much cleaner, wrapping the callback within
another anonymous function, which preserves the original context:

var proxy = function(func, thisObject){
 return(function(){
 return func.apply(thisObject, arguments);
 });
};

var clicky = {
 wasClicked: function(){
 /* ... */
 },

 addListeners: function(){
 var self = this;
 $('.clicky').click(proxy(this.wasClicked, this));
 }
};

So, in the above example, we specify the context to be used inside the click callback;
the context jQuery invokes the function in is ignored. In fact, jQuery’s API includes
something to do just this—you guessed it, jQuery.proxy():

$('.clicky').click($.proxy(function(){ /* ... */ }, this));

There are other useful reasons to use apply() and call(), such as delegating. We can
delegate calls from one function to another, and even alter the passed arguments:

var App {
 log: function(){
 if (typeof console == "undefined") return;

 // Turn arguments into a proper array
 var args = jQuery.makeArray(arguments);

 // Insert a new argument
 args.unshift("(App)");

 // Delegate to the console
 console.log.apply(console, args);
 }
};

Function Invocation | 13

Above, we’re making an array of arguments and then adding our own. Finally, the call
is delegated to console.log(). If you’re not familiar with the arguments variable, it’s set
by the interpreter and contains an array of arguments with which the current scope was
called. It’s not a true array though—for example, it’s not mutable—so we have to
convert it to something usable with jquery.makeArray().

Controlling Scope in Our Class Library
The proxy function described in the previous section is such a useful pattern that we
should add it to our class library. We’ll add a proxy function on both classes and in-
stances, allowing us to keep the class’ scope when handing functions off to event han-
dlers and the like:

var Class = function(parent){
 var klass = function(){
 this.init.apply(this, arguments);
 };
 klass.prototype.init = function(){};
 klass.fn = klass.prototype;

 // Adding a proxy function
 klass.proxy = function(func){
 var self = this;
 return(function(){
 return func.apply(self, arguments);
 });
 }

 // Add the function on instances too
 klass.fn.proxy = klass.proxy;

 return klass;
};

We can now use the proxy() function to wrap up functions, making sure they’re in-
voked in the right scope:

var Button = new Class;

Button.include({
 init: function(element){
 this.element = jQuery(element);

 // Proxy the click function
 this.element.click(this.proxy(this.click));
 },

 click: function(){ /* ... */ }
});

14 | Chapter 1: MVC and Classes

If we didn’t wrap the click() callback with a proxy, it would be called within the
context of this.element, rather than Button, causing all sorts of problems. A new spec-
ification of JavaScript—ECMAScript, 5th Edition (ES5)—has also added support for
controlling invocation scope with the bind() function. bind() is called on a function,
making sure the function is called in the context of the specified this value. For exam-
ple:

Button.include({
 init: function(element){
 this.element = jQuery(element);

 // Bind the click function
 this.element.click(this.click.bind(this));
 },

 click: function(){ /* ... */ }
});

This example is equivalent to our proxy() function, and it makes sure the click()
function is called with the correct context. Older browsers don’t support bind() but,
luckily, support can be shimmed easily and implemented manually if needed. A shim
basically implements a compatibility layer on legacy browsers, directly extending the
relevant object’s prototypes, allowing you to use features of ES5 today without wor-
rying about older browsers. For example, a shim that would support bind() would look
like this:

if (!Function.prototype.bind) {
 Function.prototype.bind = function(obj) {
 var slice = [].slice,
 args = slice.call(arguments, 1),
 self = this,
 nop = function () {},
 bound = function () {
 return self.apply(this instanceof nop ? this : (obj || {}),
 args.concat(slice.call(arguments)));
 };

 nop.prototype = self.prototype;

 bound.prototype = new nop();

 return bound;
 };
}

Function’s prototype is only overwritten if the feature doesn’t already exist: newer
browsers will continue to use their native implementations. Shimming is especially
useful for arrays, which have had a bunch of new features added in recent JavaScript
versions. I personally use the es5-shim project because it covers as many of the new
features in ES5 as possible.

Controlling Scope in Our Class Library | 15

http://en.wikipedia.org/wiki/ECMAScript#ECMAScript.2C_5th_Edition
https://github.com/kriskowal/es5-shim

Adding Private Functions
So far, any property we’ve added to our classes has been open to the world and can be
changed at any time. Let’s now explore how to add private properties to our classes.

A lot of developers end up prefixing private properties with an underscore (_). Although
these can still be changed, it makes it obvious that they’re part of a private API. I try to
steer clear of this approach because it looks rather ugly.

JavaScript does have support for immutable properties; however, this isn’t implemen-
ted across the main browsers, so we’ll have to wait before using this method. Instead,
we’ll use JavaScript anonymous functions to create a private scope, which can only be
accessed internally:

var Person = function(){};

(function(){

 var findById = function(){ /* ... */ };

 Person.find = function(id){
 if (typeof id == "integer")
 return findById(id);
 };

})();

We’re wrapping all our class’ properties in an anonymous function, then creating local
variables (findById), which can only be accessed in the current scope. The Person var-
iable is defined in the global scope, so it can be accessed from anywhere.

Never define a variable without using the var operator, since it always creates a global
variable. If you need to define a global variable, do so in the global scope or as a property
on window:

(function(exports){
 var foo = "bar";

 // Expose variable
 exports.foo = foo;
})(window);

assertEqual(foo, "bar");

Class Libraries
As with a lot of concepts in this book, it’s good to understand the theory behind classes,
but often in practice, you’ll use a library. jQuery doesn’t include class support natively,
but it can easily be added with a plug-in like HJS. HJS lets you define classes by passing
a set of properties to $.Class.create:

16 | Chapter 1: MVC and Classes

http://plugins.jquery.com/project/HJS

var Person = $.Class.create({
 // constructor
 initialize: function(name) {
 this.name = name;
 }
});

To inherit classes, pass their parent as an argument when creating them:

var Student = $.Class.create(Person, {
 price: function() { /* ... */ }
});

var alex = new Student("Alex");
alex.pay();

To add class properties, set them directly on the class:

Person.find = function(id){ /* ... */ };

HJS’ API also includes a few utility functions, such as clone() and equal():

var alex = new Student("Alex");
var bill = alex.clone();

assert(alex.equal(bill));

HJS isn’t your only option; Spine also has a class implementation. To use it, just include
spine.js in the page:

<script src="http://maccman.github.com/spine/spine.js"> </script>
<script>
 var Person = Spine.Class.create();

 Person.extend({
 find: function() { /* ... */ }
 });

 Person.include({
 init: function(atts){
 this.attributes = atts || {};
 }
 });

 var person = Person.init();
</script>

Spine’s class library has a similar API to the library we’ve been building throughout this
chapter. Use extend() to add class properties and include() to add instance properties.
To inherit from them, pass parent classes to the Spine.Class instantiator.

If you’re widening your gaze beyond jQuery, Prototype is definitely worth checking
out. It has an excellent class API that was the inspiration for a lot of other libraries.

jQuery’s John Resig has an interesting post on implementing classical inheritance with
the library. It’s well worth reading, especially if you’re interested in the nitty-gritty
behind the JavaScript prototype system.

Class Libraries | 17

http://maccman.github.com/spine
http://maccman.github.com/spine/spine.js
http://prototypejs.org
http://prototypejs.org/learn/class-inheritance
http://ejohn.org/blog/simple-javascript-inheritance
http://ejohn.org/blog/simple-javascript-inheritance

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Events and Observing

Events are at the core of your JavaScript application, powering everything and providing
the first point of contact when a user interacts with your application. However, this is
where JavaScript’s unstandardized birth rears its ugly head. At the height of the browser
wars, Netscape and Microsoft purposely chose different, incompatible event models.
Although they were later standardized by the W3C, Internet Explorer kept its different
implementation until its latest release, IE9.

Luckily, we have great libraries like jQuery and Prototype that smooth over the mess,
giving you one API that will work with all the event implementations. Still, it’s worth
understanding what’s happening behind the scenes, so I’m going to cover the W3C
model here before showing examples for various popular libraries.

Listening to Events
Events revolve around a function called addEventListener(), which takes three argu-
ments: type (e.g., click), listener (i.e., callback), and useCapture (we’ll cover useCap
ture later). Using the first two arguments, we can attach a function to a DOM element,
which is invoked when that particular event, such as click, is triggered on the element:

var button = document.getElementById("createButton");

button.addEventListener("click", function(){ /* ... */ }, false);

We can remove the listener using removeEventListener(), passing the same arguments
we gave addEventListener(). If the listener function is anonymous and there’s no ref-
erence to it, it can’t be removed without destroying the element:

var div = document.getElementById("div");

var listener = function(event) { /* ... */ };
div.addEventListener("click", listener, false);
div.removeEventListener("click", listener, false);

19

As its first argument, the listener function is passed an event object, which you can use
to get information about the event, such as timestamp, coordinates, and target. It also
contains various functions to stop the event propagation and prevent the default action.

As for event types, the supported ones vary from browser to browser, but all modern
browsers have the following:

• click

• dblclick

• mousemove

• mouseover

• mouseout

• focus

• blur

• change (for form inputs)

• submit (for forms)

Check out Quirksmode, which has a full event compatibility table.

Event Ordering
Before we go any further, it’s important to discuss event ordering. If an element and
one of its ancestors have an event handler for the same event type, which one should
fire first when the event is triggered? Well, you won’t be surprised to hear that Netscape
and Microsoft had different ideas.

Netscape 4 supported event capturing, which triggers event listeners from the top-most
ancestor to the element in question—i.e., from the outside in.

Microsoft endorsed event bubbling, which triggers event listeners from the element,
propagating up through its ancestors—i.e., from the inside out.

Event bubbling makes more sense to me, and it is likely to be the model used in day-
to-day development. The W3C compromised and stipulated support for both event
models in their specification. Events conforming to the W3C model are first captured
until they reach the target element; then, they bubble up again.

You can choose the type of event handler you want to register, capturing or bubbling,
which is where the useCapture argument to addEventListener() comes into the picture.
If the last argument to addEventListener() is true, the event handler is set for the cap-
turing phase; if it is false, the event handler is set for the bubbling phase:

20 | Chapter 2: Events and Observing

http://www.quirksmode.org/dom/events/index.html

// Use bubbling by passing false as the last argument
button.addEventListener("click", function(){ /* ... */ }, false);

The vast majority of the time, you’ll probably be using event bubbling. If in doubt, pass
false as the last argument to addEventListener().

Canceling Events
When the event is bubbling up, you can stop its progress with the stopPropagation()
function, located on the event object. Any handlers on ancestor elements won’t be
invoked:

button.addEventListener("click", function(e){
 e.stopPropagation();
 /* ... */
}, false);

Additionally, some libraries like jQuery support a stopImmediatePropagation() func-
tion, preventing any further handlers from being called at all—even if they’re on the
same element.

Browsers also give default actions to events. For example, when you click on a link, the
browser’s default action is to load a new page, or when you click on a checkbox,
the browser checks it. This default action happens after all the event propagation phases
and can be canceled during any one of those. You can prevent the default action with
the preventDefault() function on the event object. Alternatively, you can just return
false from the handler:

form.addEventListener("submit", function(e){
 /* ... */
 return confirm("Are you super sure?");
}, false);

If the call to confirm() returns false—i.e., the user clicks cancel in the confirmation
dialog—the event callback function will return false, canceling the event and form
submission.

The Event Object
As well as the aforementioned functions—stopPropagation() and preventDefault()—
the event object contains a lot of useful properties. Most of the properties in the W3C
specification are documented below; for more information, see the full specification.

Type of event:

bubbles
A boolean indicating whether the event bubbles up through the DOM

The Event Object | 21

http://www.w3.org/TR/DOM-Level-2-Events/

Properties reflecting the environment when the event was executed:

button

A value indicating which, if any, mouse button(s) was pressed

ctrlKey

A boolean indicating whether the Ctrl key was pressed

altKey

A boolean indicating whether the Alt key was pressed

shiftKey

A boolean indicating whether the Shift key was pressed

metaKey

A boolean indicating whether the Meta key was pressed

Properties specific to keyboard events:

isChar

A boolean indicating whether the event has a key character

charCode

A unicode value of the pressed key (for keypress events only)

keyCode

A unicode value of a noncharacter key

which

A unicode value of the pressed key, regardless of whether it’s a character

Where the event happened:

pageX, pageY
The event coordinates relative to the page (i.e., viewport)

screenX, screenY
The event coordinates relative to the screen

Elements associated with the event:

currentTarget

The current DOM element within the event bubbling phase

target, originalTarget
The original DOM element

relatedTarget

The other DOM element involved in the event, if any

These properties vary in browsers, especially among those that are not W3C-compliant.
Luckily, libraries like jQuery and Prototype will smooth out any differences.

22 | Chapter 2: Events and Observing

Event Libraries
In all likelihood you’ll end up using a JavaScript library for event management; other-
wise, there are just too many browser inconsistencies. I’m going to show you how to
use jQuery’s event management API, although there are many other good choices, such
as Prototype, MooTools, and YUI. Refer to their respective APIs for more in-depth
documentation.

jQuery’s API has a bind() function for adding cross-browser event listeners. Call this
function on jQuery instances, passing in an event name and handler:

jQuery("#element").bind(eventName, handler);

For example, you can register a click handler on an element like so:

jQuery("#element").bind("click", function(event) {
 // ...
});

jQuery has some shortcuts for event types like click, submit, and mouseover. It looks
like this:

$("#myDiv").click(function(){
 // ...
});

It’s important to note that the element must exist before you start adding events to
it—i.e., you should do so after the page has loaded. All you need to do is listen for the
window’s load event, and then start adding listeners:

jQuery(window).bind("load", function() {
 $("#signinForm").submit(checkForm);
});

However, there’s a better event to listen for than the window’s load, and that’s
DOMContentLoaded. It fires when the DOM is ready, but before the page’s images and
stylesheets have downloaded. This means the event will always fire before users can
interact with the page.

The DOMContentLoaded event isn’t supported in every browser, so jQuery abstracts
it with a ready() function that has cross-browser support:

jQuery.ready(function($){
 $("#myForm").bind("submit", function(){ /* ... */ });
});

In fact, you can skip the ready() function and pass the handler straight to the jQuery
object:

jQuery(function($){
 // Called when the page is ready
});

Event Libraries | 23

http://www.prototypejs.org
http://mootools.net
http://developer.yahoo.com/yui

Context Change
One thing that’s often confusing about events is how the context changes when the
handler is invoked. When using the browser’s native addEventListener(), the context
is changed from the local one to the targeted HTML element:

new function(){
 this.appName = "wem";

 document.body.addEventListener("click", function(e){
 // Context has changed, so appName will be undefined
 alert(this.appName);
 }, false);
};

To preserve the original context, wrap the handler in an anonymous function, keeping
a reference to it. We covered this pattern in Chapter 1, where we used a proxy function
to maintain the current context. It’s such a common pattern that jQuery includes a
proxy() function—just pass in the function and context in which you want it to be
invoked:

$("signinForm").submit($.proxy(function(){ /* ... */ }, this));

Delegating Events
It may have occurred to you that since events bubble up, we could just add a listener
on a parent element, checking for events on its children. This is exactly the technique
that frameworks like SproutCore use to reduce the number of event listeners in the
application:

// Delegating events on a ul list
list.addEventListener("click", function(e){
 if (e.currentTarget.tagName == "li") {
 /* ... */
 return false;
 }
}, false);

jQuery has a great way of doing this; simply pass the delegate() function a child se-
lector, event type, and handler. The alternative to this approach would be to add a
click event to every li element. However, by using delegate(), you’re reducing the
number of event listeners, improving performance:

// Don't do this! It adds a listener to every 'li' element (expensive)
$("ul li").click(function(){ /* ... */ });

// This only adds one event listener
$("ul").delegate("li", "click", /* ... */);

24 | Chapter 2: Events and Observing

http://www.sproutcore.com

Another advantage to event delegation is that any children added dynamically to the
element would still have the event listener. So, in the above example, any li elements
added to the list after the page loaded would still invoke the click handler.

Custom Events
Beyond events that are native to the browser, you can trigger and bind them to your
own custom events. Indeed, it’s a great way of architecting libraries—a pattern a lot of
jQuery plug-ins use. The W3C spec for custom events has been largely ignored by the
browser vendors; you’ll have to use libraries like jQuery or Prototype for this feature.

jQuery lets you fire custom events using the trigger() function. You can namespace
event names, but namespaces are separated by full stops and reversed. For example:

// Bind custom event
$(".class").bind("refresh.widget", function(){});

// Trigger custom event
$(".class").trigger("refresh.widget");

And to pass data to the event handler, just pass it as an extra parameter to trigger().
The data will be sent to callbacks as extra arguments:

$(".class").bind("frob.widget", function(event, dataNumber){
 console.log(dataNumber);
});

$(".class").trigger("frob.widget", 5);

Like native events, custom events will propagate up the DOM tree.

Custom Events and jQuery Plug-Ins
Custom events, often used to great effect in jQuery plug-ins, are a great way to architect
any piece of logic that interacts with the DOM. If you’re unfamiliar with jQuery plug-
ins, skip ahead to Appendix B, which includes a jQuery primer.

If you’re adding a piece of functionality to your application, always consider whether
it could be abstracted and split out in a plug-in. This will help with decoupling and
could leave you with a reusable library.

For example, let’s look at a simple jQuery plug-in for tabs. We’re going to have a ul
list that will respond to click events. When the user clicks on a list item, we’ll add an
active class to it and remove the active class from the other list items:

<ul id="tabs">
 <li data-tab="users">Users
 <li data-tab="groups">Groups

<div id="tabsContent">

Custom Events and jQuery Plug-Ins | 25

 <div data-tab="users"> ... </div>
 <div data-tab="groups"> ... </div>
</div>

In addition, we have a tabsContent div that contains the actual contents of the tabs.
We’ll also be adding and removing the active class from the div’s children, depending
on which tab was clicked. The actual displaying and hiding of the tabs will be done by
CSS—our plug-in just toggles the active class:

jQuery.fn.tabs = function(control){
 var element = $(this);
 control = $(control);

 element.find("li").bind("click", function(){
 // Add/remove active class from the list-item
 element.find("li").removeClass("active");
 $(this).addClass("active");

 // Add/remove active class from tabContent
 var tabName = $(this).attr("data-tab");
 control.find(">[data-tab]").removeClass("active");
 control.find(">[data-tab='" + tabName + "']").addClass("active");
 });

 // Activate first tab
 element.find("li:first").addClass("active");

 // Return 'this' to enable chaining
 return this;
};

The plug-in is on jQuery’s prototype, so it can be called on jQuery instances:

$("ul#tabs").tabs("#tabContent");

What’s wrong with the plug-in so far? Well, we’re adding a click event handler onto all
the list items, which is our first mistake. Instead, we should be using the delegate()
function covered earlier in this chapter. Also, that click handler is massive, so it’s dif-
ficult to see what’s going on. Furthermore, if another developer wanted to extend our
plug-in, he’d probably have to rewrite it.

Let’s see how we can use custom events to clean up our code. We’ll fire a change.tabs
event when a tab is clicked, and bind several handlers to change the active class as
appropriate:

jQuery.fn.tabs = function(control){
 var element = $(this);
 control = $(control);

 element.delegate("li", "click", function(){
 // Retrieve tab name
 var tabName = $(this).attr("data-tab");

 // Fire custom event on tab click
 element.trigger("change.tabs", tabName);

26 | Chapter 2: Events and Observing

 });

 // Bind to custom event
 element.bind("change.tabs", function(e, tabName){
 element.find("li").removeClass("active");
 element.find(">[data-tab='" + tabName + "']").addClass("active");
 });

 element.bind("change.tabs", function(e, tabName){
 control.find(">[data-tab]").removeClass("active");
 control.find(">[data-tab='" + tabName + "']").addClass("active");
 });

 // Activate first tab
 var firstName = element.find("li:first").attr("data-tab");
 element.trigger("change.tabs", firstName);

 return this;
};

See how much cleaner the code is with custom event handlers? It means we can split
up the tab change handlers, and it has the added advantage of making the plug-in much
easier to extend. For example, we can now programmatically change tabs by firing our
change.tabs event on the observed list:

$("#tabs").trigger("change.tabs", "users");

We could also tie up the tabs with the window’s hash, adding back button support:

$("#tabs").bind("change.tabs", function(e, tabName){
 window.location.hash = tabName;
});

$(window).bind("hashchange", function(){
 var tabName = window.location.hash.slice(1);
 $("#tabs").trigger("change.tabs", tabName);
});

The fact that we’re using custom events gives other developers a lot of scope when
extending our work.

Non-DOM Events
Event-based programming is very powerful because it decouples your application’s
architecture, leading to better self-containment and maintainability. Events aren’t re-
stricted to the DOM though, so you can easily write your own event handler library.
The pattern is called Publish/Subscribe, and it’s a good one to be familiar with.

Publish/Subscribe, or Pub/Sub, is a messaging pattern with two actors, publishers, and
subscribers. Publishers publish messages to a particular channel, and subscribers sub-
scribe to channels, receiving notifications when new messages are published. The key

Non-DOM Events | 27

http://en.wikipedia.org/wiki/Publish/subscribe

here is that publishers and subscribers are completely decoupled—they have no idea
of each other’s existence. The only thing the two share is the channel name.

The decoupling of publishers and subscribers allows your application to grow without
introducing a lot of interdependency and coupling, improving the ease of maintenance,
as well as adding extra features.

So, how do you actually go about using Pub/Sub in an application? All you need to do
is record handlers associated with an event name and then have a way of invoking them.
Here’s an example PubSub object, which we can use for adding and triggering event
listeners:

var PubSub = {
 subscribe: function(ev, callback) {
 // Create _callbacks object, unless it already exists
 var calls = this._callbacks || (this._callbacks = {});

 // Create an array for the given event key, unless it exists, then
 // append the callback to the array
 (this._callbacks[ev] || (this._callbacks[ev] = [])).push(callback);
 return this;
 },

 publish: function() {
 // Turn arguments object into a real array
 var args = Array.prototype.slice.call(arguments, 0);

 // Extract the first argument, the event name
 var ev = args.shift();

 // Return if there isn't a _callbacks object, or
 // if it doesn't contain an array for the given event
 var list, calls, i, l;
 if (!(calls = this._callbacks)) return this;
 if (!(list = this._callbacks[ev])) return this;

 // Invoke the callbacks
 for (i = 0, l = list.length; i < l; i++)
 list[i].apply(this, args);
 return this;
 }
};

// Example usage
PubSub.subscribe("wem", function(){
 alert("Wem!");
});

PubSub.publish("wem");

You can namespace events by using a separator, such as a colon (:).

PubSub.subscribe("user:create", function(){ /* ... */ });

28 | Chapter 2: Events and Observing

www.allitebooks.com

http://www.allitebooks.org

If you’re using jQuery, there’s an even easier library by Ben Alman. It’s so simple, in
fact, that we can put it inline:

/*!
 * jQuery Tiny Pub/Sub - v0.3 - 11/4/2010
 * http://benalman.com/
 *
 * Copyright (c) 2010 "Cowboy" Ben Alman
 * Dual licensed under the MIT and GPL licenses.
 * http://benalman.com/about/license/
 */

(function($){
 var o = $({});

 $.subscribe = function() {
 o.bind.apply(o, arguments);
 };

 $.unsubscribe = function() {
 o.unbind.apply(o, arguments);
 };

 $.publish = function() {
 o.trigger.apply(o, arguments);
 };
})(jQuery);

The API takes the same arguments as jQuery’s bind() and trigger() functions. The
only difference is that the functions reside directly on the jQuery object, and they are
called publish() and subscribe():

$.subscribe("/some/topic", function(event, a, b, c) {
 console.log(event.type, a + b + c);
});

$.publish("/some/topic", "a", "b", "c");

We’ve been using Pub/Sub for global events, but it’s just as easy to scope it. Let’s take
the PubSub object we created previously and scope it to an object:

var Asset = {};

// Add PubSub
jQuery.extend(Asset, PubSub);

// We now have publish/subscribe functions
Asset.subscribe("create", function(){
 // ...
});

Non-DOM Events | 29

https://gist.github.com/799721/c119783954e1b10551c4afef53b2c04fefcb7465
http://benalman.com

We’re using jQuery’s extend() to copy PubSub’s properties onto our Asset object.
Now, all calls to publish() and subscribe() are scoped by Asset. This is useful in lots
of scenarios, including events in an object-relational mapping (ORM), changes in a
state machine, or callbacks once an Ajax request has finished.

30 | Chapter 2: Events and Observing

CHAPTER 3

Models and Data

One of the challenges with moving state to the client side is data management. Tradi-
tionally, you could fetch data directly from the database during the page request, in-
teroperating the result directly into the page. However, data management in stateful
JavaScript applications is a completely different process. There’s no request/response
model, and you don’t have access to server-side variables. Instead, data is fetched re-
motely and stored temporarily on the client side.

Although making this transition can be a hassle, there are a few advantages. For ex-
ample, client-side data access is practically instantaneous, as you’re just fetching it from
memory. This can make a real difference to your application’s interface; any interaction
with the application gives immediate feedback, often dramatically improving the user’s
experience.

How you architect data storage on the client side requires some thought. This is an
area riddled with pitfalls and potential traps, often tripping up less-experienced devel-
opers—especially as their applications get larger. In this chapter, we’ll cover how best
to make that transition, and I’ll give you some recommended patterns and practices.

MVC and Namespacing
Ensuring that there’s a clear separation between your application’s views, state, and
data is crucial to keeping its architecture uncluttered and sustainable. With the MVC
pattern, data management happens in models (the “M” of MVC). Models should be
decoupled from views and controllers. Any logic associated with data manipulation
and behavior should reside in models and be namespaced properly.

In JavaScript, you can namespace functions and variables by making them properties
of an object. For example:

var User = {
 records: [/* ... */]
};

31

The array of users is namespaced properly under User.records. Functions associated
with users can also be namespaced under the User model. For example, we can have a
fetchRemote() function for fetching user data from a server:

var User = {
 records: [],
 fetchRemote: function(){ /* ... */ }
};

Keeping all of a model’s properties under a namespace ensures that you don’t get any
conflicts and that it’s MVC-compliant. It also prevents your code from spiraling down
into a tangled mess of functions and callbacks.

You can take namespacing a step further and keep any functions specific to user in-
stances on the actual user objects. Let’s say we had a destroy() function for user re-
cords; it refers to specific users, so it should be on User instances:

var user = new User;
user.destroy()

To achieve that, we need to make User a class, rather than a plain object:

var User = function(atts){
 this.attributes = atts || {};
};

User.prototype.destroy = function(){
 /* ... */
};

Any functions and variables that don’t relate to specific users can be properties directly
on the User object:

User.fetchRemote = function(){
 /* ... */
};

For more information about namespacing, visit Peter Michaux’s blog, where he’s
written an excellent article on the subject.

Building an ORM
Object-relational mappers, or ORMs, are typically used in languages other than Java-
Script. However, they’re a very useful technique for data management as well as a great
way of using models in your JavaScript application. With an ORM, for example, you
can tie up a model with a remote server—any changes to model instances will send
background Ajax requests to the server. Or, you could tie up a model instance with an
HTML element—any changes to the instance will be reflected in the view. I’ll elaborate
on those examples later, but for now, let’s look at creating a custom ORM.

Essentially, an ORM is just an object layer wrapping some data. Typically, ORMs are
used to abstract SQL databases, but in our case, the ORM will just be abstracting

32 | Chapter 3: Models and Data

http://michaux.ca/articles/javascript-namespacing

JavaScript data types. The advantage of this extra layer is that we can enhance the basic
data with more functionality by adding our own custom functions and properties. This
lets us add things like validation, observers, persistence, and server callbacks while still
being able to reuse a lot of code.

Prototypal Inheritance
We’re going to use Object.create() to construct our ORM, which is a little different
from the class-based examples we covered in Chapter 1. This will allow us to use
prototype-based inheritance, rather than using constructor functions and the new
keyword.

Object.create() takes one argument, a prototype object, and returns a new object with
the specified prototype object. In other words, you give it an object, and it returns a
new one, inheriting from the one you specified.

Object.create() was recently added to ECMAScript, 5th Edition, so it isn’t implemen-
ted in some browsers, such as IE. However, this doesn’t pose a problem since we can
easily add support if needed:

if (typeof Object.create !== "function")
 Object.create = function(o) {
 function F() {}
 F.prototype = o;
 return new F();
 };

The example above was taken from Douglas Crockford’s article on Prototypal Inheri-
tance. Check it out if you want a more in-depth explanation behind JavaScript proto-
types and inheritance.

We’re going to create a Model object, which will be in charge of creating new models
and instances:

var Model = {
 inherited: function(){},
 created: function(){},

 prototype: {
 init: function(){}
 },

 create: function(){
 var object = Object.create(this);
 object.parent = this;
 object.prototype = object.fn = Object.create(this.prototype);

 object.created();
 this.inherited(object);
 return object;
 },

Building an ORM | 33

http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/prototypal.html

 init: function(){
 var instance = Object.create(this.prototype);
 instance.parent = this;
 instance.init.apply(instance, arguments);
 return instance;
 }
};

If you’re unfamiliar with Object.create(), this may look daunting, so let’s break it
down. The create() function returns a new object, inheriting from the Model object;
we’ll use this for creating new models. The init() function returns a new object, in-
heriting from Model.prototype—i.e., an instance of the Model object:

var Asset = Model.create();
var User = Model.create();

var user = User.init();

Adding ORM Properties
Now, if we add properties to Model, they’ll be available on all inherited models:

// Add object properties
jQuery.extend(Model, {
 find: function(){}
});

// Add instance properties
jQuery.extend(Model.prototype, {
 init: function(atts) {
 if (atts) this.load(atts);
 },

 load: function(attributes){
 for(var name in attributes)
 this[name] = attributes[name];
 }
});

jQuery.extend() is just a shorthand way of using a for loop to copy over properties
manually, which is similar to what we’re doing in the load() function. Now, our object
and instance properties are propagating down to our individual models:

assertEqual(typeof Asset.find, "function");

In fact, we’re going to be adding a lot of properties, so we might as well make
extend() and include() part of the Model object:

var Model = {
 /* ... snip ... */

 extend: function(o){
 var extended = o.extended;
 jQuery.extend(this, o);
 if (extended) extended(this);

34 | Chapter 3: Models and Data

 },

 include: function(o){
 var included = o.included;
 jQuery.extend(this.prototype, o);
 if (included) included(this);
 }
};

// Add object properties
Model.extend({
 find: function(){}
});

// Add instance properties
Model.include({
 init: function(atts) { /* ... */ },
 load: function(attributes){ /* ... */ }
});

Now, we can create new assets and set some attributes:

var asset = Asset.init({name: "foo.png"});

Persisting Records
We need a way of persisting records—i.e., of saving a reference to created instances so
we can access them later. We’ll do that using a records object, set on the Model. When
we’re saving an instance, we’ll add it to that object; when deleting instances, we’ll
remove them from the object:

// An object of saved assets
Model.records = {};

Model.include({
 newRecord: true,

 create: function(){
 this.newRecord = false;
 this.parent.records[this.id] = this;
 },

 destroy: function(){
 delete this.parent.records[this.id];
 }
});

What about updating an existing instance? Easy—just update the object reference:

Model.include({
 update: function(){
 this.parent.records[this.id] = this;
 }
});

Building an ORM | 35

Let’s create a convenience function to save an instance, so we don’t have to check to
see whether the instance was saved previously, or whether it needs to be created:

// Save the object to the records hash, keeping a reference to it
Model.include({
 save: function(){
 this.newRecord ? this.create() : this.update();
 }
});

And what about implementing that find() function, so we can find assets by their ID?

Model.extend({
 // Find by ID, or raise an exception
 find: function(id){
 return this.records[id] || throw("Unknown record");
 }
});

Now that we’ve succeeded in creating a basic ORM, let’s try it out:

var asset = Asset.init();
asset.name = "same, same";
asset.id = 1
asset.save();

var asset2 = Asset.init();
asset2.name = "but different";
asset2.id = 2;
asset2.save();

assertEqual(Asset.find(1).name, "same, same");

asset2.destroy();

Adding ID Support
At the moment, every time we save a record we have to specify an ID manually. This
sucks, but fortunately, it’s something we can automate. First, we need a way of gener-
ating IDs, which we can do with a Globally Unique Identifier (GUID) generator. Well,
technically, JavaScript can’t generate official, bona fide 128-bit GUIDs for API
reasons—it can only generate pseudorandom numbers. Generating truly random
GUIDs is a notoriously difficult problem, and operating systems calculate them using
the MAC address, mouse position, and BIOS checksums, or by measuring electrical
noise or radioactive decay—and even lava lamps! However, JavaScript’s native
Math.random(), although pseudorandom, will be enough for our needs.

Robert Kieffer has written an easy and succinct GUID generator that uses Math.ran
dom() to generate pseudorandom GUIDs. It’s so simple that we can put it inline:

Math.guid = function(){
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
 var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);

36 | Chapter 3: Models and Data

http://www.broofa.com/2008/09/javascript-uuid-function/

 return v.toString(16);
 }).toUpperCase();
};

Now that we have a function to generate GUIDs, integrating that into our ORM is
simple; all we need to change is the create() function:

Model.extend({
 create: function(){
 if (!this.id) this.id = Math.guid();
 this.newRecord = false;
 this.parent.records[this.id] = this;
 }
});

Now, any newly created records have random GUIDs as their ID:

var asset = Asset.init();
asset.save();

asset.id //=> "54E52592-313E-4F8B-869B-58D61F00DC74"

Addressing References
If you’ve been observing closely, you might have spotted a bug relating to the references
in our ORM. We’re not cloning instances when they’re returned by find() or when
we’re saving them, so if we change any properties, they’re changed on the original asset.
This is a problem because we only want assets to update when we call the update()
function:

var asset = new Asset({name: "foo"});
asset.save();

// Assert passes correctly
assertEqual(Asset.find(asset.id).name, "foo");

// Let's change a property, but not call update()
asset.name = "wem";

// Oh dear! This assert fails, as the asset's name is now "wem"
assertEqual(Asset.find(asset.id).name, "foo");

Let’s fix that by creating a new object during the find() operation. We’ll also need to
duplicate the object whenever we create or update the record:

Asset.extend({
 find: function(id){
 var record = this.records[id];
 if (!record) throw("Unknown record");
 return record.dup();
 }
});

Asset.include({

Addressing References | 37

 create: function(){
 this.newRecord = false;
 this.parent.records[this.id] = this.dup();
 },

 update: function(){
 this.parent.records[this.id] = this.dup();
 },

 dup: function(){
 return jQuery.extend(true, {}, this);
 }
});

We have another problem—Model.records is an object shared by every model:

assertEqual(Asset.records, Person.records);

This has the unfortunate side effect of mixing up all the records:

var asset = Asset.init();
asset.save();

assert(asset in Person.records);

The solution is to set a new records object whenever we create a new model. Model.cre
ated() is the callback for new object creation, so we can set any objects that are specific
to the model in there:

Model.extend({
 created: function(){
 this.records = {};
 }
});

Loading in Data
Unless your web application is entirely restricted to the browser, you’ll need to load in
remote data from a server. Typically, a subset of data is loaded when the application
starts, and more data is loaded after the interaction. Depending on the type of appli-
cation and the amount of data, you may be able to load everything you need on the
initial page load. This is ideal, so users never have to wait for more data to be loaded.
However, this isn’t feasible for a lot of applications because there’s too much data to
fit comfortably in a browser’s memory.

Preloading data is crucial to making your application feel slick and fast to your users,
keeping any waiting time to a minimum. However, there’s a fine line between preload-
ing data that’s actually accessed and loading redundant data that’s never used. You
need to predict what sort of data your users will want (or use metrics once your appli-
cation is live).

38 | Chapter 3: Models and Data

www.allitebooks.com

http://www.allitebooks.org

If you’re displaying a paginated list, why not preload the next page so transitions are
instant? Or, even better, just display a long list and automatically load and insert data
as the list is scrolled (the infinite scroll pattern). The less latency a user feels, the better.

When you do fetch new data, make sure the UI isn’t blocked. Display some sort of
loading indicator, but make sure the interface is still usable. There should be very few
scenarios, if any, that require blocking the UI.

Data can be present inline in the initial page or loaded with separate HTTP requests
through Ajax or JSONP. Personally, I would recommend the latter two technologies,
as including a lot of data inline increases the page size, whereas parallel requests load
faster. AJAX and JSON also let you cache the HTML page, rather than dynamically
render it for every request.

Including Data Inline
I don’t really advocate this approach for the reasons I outlined in the previous para-
graph, but it can be useful in specific situations, especially for loading in a very small
amount of data. This technique has the advantage of being really simple to implement.

All you need to do is render a JSON object directly into the page. For example, here’s
how you’d do it with Ruby on Rails:

<script type="text/javascript">
 var User = {};
 User.records = <%= raw @users.to_json %>;
</script>

We’re using ERB tags to output a JSON interpretation of the user data. The raw method
is simply to stop the JSON from being escaped. When the page is rendered, the resulting
HTML looks like this:

<script type="text/javascript">
 var User = {};
 User.records = [{"first_name": "Alex"}];
</script>

JavaScript can just evaluate the JSON as-is because it has the same structure as a Java-
Script object.

Loading Data with Ajax
This is probably the first method of loading remote data that springs to mind when you
hear background requests, and for good reason: it’s tried, tested, and supported in all
modern browsers. That’s not to say that Ajax is without its drawbacks—its unstan-
dardized history has resulted in an inconsistent API and, due to browser security,
loading data from different domains is tricky.

Loading in Data | 39

If you need a short primer on Ajax and the XMLHttpRequest class, read “Getting Started,”
a Mozilla Developer article. In all likelihood, though, you’ll end up using a library like
jQuery that abstracts Ajax’s API, massaging out the differences among browsers. For
that reason, we’ll cover jQuery’s API here, rather than the raw XMLHttpRequest class.

jQuery’s Ajax API consists of one low-level function, jQuery.ajax(), and several higher-
level abstractions of it, reducing the amount of code you need to write. jQuery
.ajax() takes a hash of settings for request parameters, content type, and callbacks,
among others. As soon as you call the function, the request is asynchronously sent in
the background.

url

The request url. The default is the current page.

success

A function to be called if the request succeeds. Any data returned from the server
is passed as a parameter.

contentType

Sets the Content-Type header of the request. If the request contains data, the default
is application/x-www-form-urlencoded, which is fine for most use cases.

data

The data to be sent to the server. If it’s not already a string, jQuery will serialize
and URL-encode it.

type

The HTTP method to use: GET, POST, or DELETE. The default is GET.

dataType

The type of data you’re expecting back from the server. jQuery needs to know this
so it knows what to do with the result. If you don’t specify a dataType, jQuery will
do some intelligent guessing based on the MIME type of the response. Supported
values are:

text

Plain-text response; no processing is needed.

script

jQuery evaluates the response as JavaScript.

json

jQuery evaluates the response as JSON, using a strict parser.

jsonp

For JSONP requests, which we’ll cover in detail later.

For example, let’s do a simple Ajax request, which alerts whatever data returned by the
server:

jQuery.ajax({
 url: "/ajax/endpoint",
 type: "GET",

40 | Chapter 3: Models and Data

https://developer.mozilla.org/en/Ajax/Getting_Started

 success: function(data) {
 alert(data);
 }
});

However, all those options are a bit verbose. Luckily, jQuery has a few shortcuts.
jQuery.get() takes a URL and optional data and callback:

jQuery.get("/ajax/endpoint", function(data){
 $(".ajaxResult").text(data);
});

Or, if we want to send a few query parameters with the GET request:

jQuery.get("/ajax/endpoint", {foo: "bar"}, function(data){
 /* ... */
});

If we’re expecting JSON back from the server, we need to call jQuery.getJSON() instead,
which sets the request’s dataType option to "json":

jQuery.getJSON("/json/endpoint", function(json){
 /* ... */
});

Likewise, there’s a jQuery.post() function, which also takes a URL, data, and callback:

jQuery.post("/users", {first_name: "Alex"}, function(result){
 /* Ajax POST was a success */
});

If you want to use other HTTP methods—DELETE, HEAD, and OPTIONS—you’ll have to
use the lower-level jQuery.ajax() function.

That was a brief overview of jQuery’s Ajax API, but if you need more information, read
the full documentation.

A limitation of Ajax is the same origin policy, which restricts requests to the same do-
main, subdomain, and port as the address of the page from which they’re made. There’s
a good reason for this: whenever an Ajax request is sent, all that domain’s cookie in-
formation is sent along with the request. That means, to the remote server, the request
appears to be from a logged-in user. Without the same origin policy, an attacker could
potentially fetch all your emails from Gmail, update your Facebook status, or direct
message your followers on Twitter—quite a security flaw.

However, while the same origin policy is integral to the security of the Web, it’s also
somewhat inconvenient for developers trying to access legitimate remote resources.
Other technologies like Adobe Flash and Java have implemented workarounds to the
problem with cross-domain policy files, and now Ajax is catching up with a standard
called CORS, or cross-origin resource sharing.

CORS lets you break out of the same origin policy, giving you access to authorized
remote servers. The specification is well supported by the major browsers, so unless
you’re using IE6, you should be fine.

Loading in Data | 41

http://api.jquery.com/category/ajax
http://www.w3.org/TR/access-control

CORS support by browser:

• IE >= 8 (with caveats)

• Firefox >= 3

• Safari: full support

• Chrome: full support

• Opera: no support

Using CORS is trivially easy. If you want to authorize access to your server, just add a
few lines to the HTTP header of returned responses:

Access-Control-Allow-Origin: example.com
Access-Control-Request-Method: GET,POST

The above header will authorize cross-origin GET and POST requests from exam-
ple.com. You should separate multiple values with commas, as with the GET,POST values
above. To allow access from additional domains, just list them comma-separated in
the Access-Control-Allow-Origin header. Or, to give any domain access, just set the
origin header to an asterisk (*).

Some browsers, like Safari, will first make an OPTIONS request to check whether the
request is allowed. Firefox, on the other hand, will make the request and just raise a
security exception if the CORS headers aren’t set. You’ll need to take account of this
different behavior server side.

You can even authorize custom request headers using the Access-Control-Request-
Headers header:

Access-Control-Request-Headers: Authorization

This means that clients can add custom headers to Ajax requests, such as signing the
request with OAuth:

var req = new XMLHttpRequest();
req.open("POST", "/endpoint", true);
req.setRequestHeader("Authorization", oauth_signature);

Unfortunately, while CORS works with versions of Internet Explorer 8 and higher,
Microsoft chose to ignore the spec and the working group. Microsoft created its own
object, XDomainRequest, which is to be used instead of XMLHttpRequest for cross-domain
requests. While its interface is similar to XMLHttpRequest’s, it has a number of restric-
tions and limitations. For example, only GET and POST methods work, no authenti-
cation or custom headers are supported, and finally, the kicker—only the “Content-
Type: text/plain” is supported. If you’re prepared to work around those restrictions,
then—with the correct Access-Control headers—you can get CORS working in IE.

42 | Chapter 3: Models and Data

http://lists.w3.org/Archives/Public/public-webapps/2008AprJun/0168.html
http://msdn.microsoft.com/en-us/library/cc288060%28VS.85%29.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx

JSONP
JSONP, or JSON with padding, was created before CORS was standardized, and is
another way of fetching data from remote servers. The idea is that you have a script tag
that points to a JSON endpoint where returned data is wrapped in a function invoca-
tion. Script tags aren’t subject to any cross-domain limitations, and this technique is
supported in practically every browser.

So, here we have a script tag that points to our remote server:

<script src="http://example.com/data.json"> </script>

Then the endpoint, data.json, returns a JSON object wrapped in a function invocation:

jsonCallback({"data": "foo"})

We then define a globally accessible function. Once the script has loaded, this function
will be called:

window.jsonCallback = function(result){
 // Do stuff with the result
}

As it is, this is a fairly convoluted process. Luckily, jQuery wraps it in a succinct API:

jQuery.getJSON("http://example.com/data.json?callback=?", function(result){
 // Do stuff with the result
});

jQuery replaces the last question mark in the above URL with a random name of a
temporary function it creates. Your server needs to read the callback parameter and
use that as the name of the returned wrapping function.

Security with Cross-Domain Requests
If you’re opening up your server to cross-origin requests or JSONP from any domain,
you’ve got to really think about security. Usually the cross-origin domain policy stops
an attacker from calling, say, Twitter’s API, and fetching your personal data. CORS
and JSONP change all of that. As with a normal Ajax request, all your session cookies
are passed with the request, so you’ll be logged into Twitter’s API. Any potential at-
tackers have full control over your account; security considerations are therefore
paramount.

With this in mind, here are some key points to take into account when using CORS/
JSONP if you’re not controlling which domains can access your API:

• Don’t reveal any sensitive information, such as email addresses.

• Don’t allow any actions (like a Twitter “follow”).

Or, alternatively, to mitigate those security issues, just have a whitelist of domains that
can connect, or you can use OAuth authentication exclusively.

Loading in Data | 43

http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp

Populating Our ORM
Populating our ORM with data is pretty straightforward. All we need to do is fetch the
data from the server and then update our model’s records. Let’s add a populate() func-
tion to the Model object, which will iterate over any values given, create instances, and
update the records object:

Model.extend({
 populate: function(values){
 // Reset model & records
 this.records = {};

 for (var i=0, il = values.length; i < il; i++) {
 var record = this.init(values[i]);
 record.newRecord = false;
 this.records[record.id] = record;
 }
 }
});

Now, we can use the Model.populate() function with the result of our request for data:

jQuery.getJSON("/assets", function(result){
 Asset.populate(result);
});

Any records the server returned will now be available in our ORM.

Storing Data Locally
In the past, local data storage was a pain in the neck. The only options available to use
were cookies and plug-ins like Adobe Flash. Cookies had an antiquated API, couldn’t
store much data, and sent all the data back to the server on every request, adding
unnecessary overhead. As for Flash, well, let’s try and steer clear of plug-ins if possible.

Fortunately, support for local storage was included in HTML5 and is implemented in
the major browsers. Unlike cookies, data is stored exclusively on the client side and is
never sent to servers. You can also store a great deal more data—the maximum amount
differs per browser (and version number, as listed below), but they all offer at least
5 MB per domain:

44 | Chapter 3: Models and Data

• IE >= 8

• Firefox >= 3.5

• Safari >= 4

• Chrome >= 4

• Opera >= 10.6

HTML5 storage comes under the HTML5 Web Storage specification, and consists of
two types: local storage and session storage. Local storage persists after the browser is
closed; session storage persists only for the lifetime of the window. Any data stored is
scoped by domain and is only accessible to scripts from the domain that originally
stored the data.

You can access and manipulate local storage and session storage using the local
Storage and sessionStorage objects, respectively. The API is very similar to setting
properties on a JavaScript object and, apart from the two objects, is identical for both
local and session storage:

// Setting a value
localStorage["someData"] = "wem";

There are a few more features to the WebStorage API:

// How many items are stored
var itemsStored = localStorage.length;

// Set an item (aliased to a hash syntax)
localStorage.setItem("someData", "wem");

// Get a stored item, returning null if unknown
localStorage.getItem("someData"); //=> "wem";

// Delete an item, returning null if unknown
localStorage.removeItem("someData");

// Clear all items
localStorage.clear();

Data is stored as strings, so if you intend on saving any objects or integers, you’ll have
to do your own conversion. To do this using JSON, serialize the objects into JSON
before you save them, and deserialize the JSON strings when fetching them:

var object = {some: "object"};

// Serialize and save an object
localStorage.setItem("seriData", JSON.stringify(object));

// Load and deserialize an object
var result = JSON.parse(localStorage.getItem("seriData"));

If you go over your storage quota (usually 5 MB per host), a QUOTA_EXCEEDED_ERR will
be raised when saving additional data.

Storing Data Locally | 45

http://www.w3.org/TR/webstorage

Adding Local Storage to Our ORM
Let’s add local storage support to our ORM so that records can be persisted between
page refreshes. To use the localStorage object, we need to serialize our records into a
JSON string. The problem is that, at the moment, serialized objects look like this:

var json = JSON.stringify(Asset.init({name: "foo"}));
json //=> "{"parent":{"parent":{"prototype":{}},"records":[]},"name":"foo"}"

So, we need to override JSON’s serialization of our models. First, we need to determine
which properties need to be serialized. Let’s add an attributes array to the Model
object, which individual models can use to specify their attributes:

Model.extend({
 created: function(){
 this.records = {};
 this.attributes = [];
 }
});

Asset.attributes = ["name", "ext"];

Because every model has different attributes—and therefore can’t share the same array
reference—the attributes property isn’t set directly on the Model. Instead, we’re cre-
ating a new array when a model is first created, similar to what we’re doing with the
records object.

Now, let’s create an attributes() function, which will return an object of attributes to
values:

Model.include({
 attributes: function(){
 var result = {};
 for(var i in this.parent.attributes) {
 var attr = this.parent.attributes[i];
 result[attr] = this[attr];
 }
 result.id = this.id;
 return result;
 }
});

Now, we can set an array of attributes for every model:

Asset.attributes = ["name", "ext"];

And the attributes() function will return an object with the correct properties:

var asset = Asset.init({name: "document", ext: ".txt"});
asset.attributes(); //=> {name: "document", ext: ".txt"};

As for the overriding of JSON.stringify(), all that’s needed is a toJSON() method on
model instances. The JSON library will use that function to find the object to serialize,
rather than serializing the records object as-is:

46 | Chapter 3: Models and Data

Model.include({
 toJSON: function(){
 return(this.attributes());
 }
});

Let’s try serializing the records again. This time, the resultant JSON will contain the
correct properties:

var json = JSON.stringify(Asset.records);
json //= "{"7B2A9E8D...":"{"name":"document","ext":".txt","id":"7B2A9E8D..."}"}"

Now that we’ve got JSON serializing working smoothly, adding local storage support
to our models is trivial. We’ll add two functions onto our Model: saveLocal() and
loadLocal(). When saving, we’ll convert the Model.records object into an array, seri-
alize it, and send it to localStorage:

var Model.LocalStorage = {
 saveLocal: function(name){
 // Turn records into an array
 var result = [];
 for (var i in this.records)
 result.push(this.records[i])

 localStorage[name] = JSON.stringify(result);
 },

 loadLocal: function(name){
 var result = JSON.parse(localStorage[name]);
 this.populate(result);
 }
};

Asset.extend(Model.LocalStorage);

It’s probably a good idea for the records to be read from the local storage when the
page loads and to be saved when the page is closed. That, however, will be left as an
exercise for the reader.

Submitting New Records to the Server
Earlier, we covered how to use jQuery’s post() function to send data to the server. The
function takes three arguments: the endpoint URL, request data, and a callback:

jQuery.post("/users", {first_name: "Alex"}, function(result){
 /* Ajax POST was a success */
});

Now that we have an attributes() function, creating records to the server is simple—
just POST the record’s attributes:

jQuery.post("/assets", asset.attributes(), function(result){
 /* Ajax POST was a success */
});

Submitting New Records to the Server | 47

If we’re following REST conventions, we’ll want to do an HTTP POST when creating
a record and a PUT request when updating the record. Let’s add two functions to Model
instances—createRemote() and updateRemote()—which will send the correct HTTP
request type to our server:

Model.include({
 createRemote: function(url, callback){
 $.post(url, this.attributes(), callback);
 },

 updateRemote: function(url, callback){
 $.ajax({
 url: url,
 data: this.attributes(),
 success: callback,
 type: "PUT"
 });
 }
});

Now if we call createRemote() on an Asset instance, its attributes will be POSTed to
the server:

// Usage:
Asset.init({name: "jason.txt"}).createRemote("/assets");

48 | Chapter 3: Models and Data

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Controllers and State

Historically, state was managed server side with session cookies. So, whenever users
navigated to a new page, the previous page’s state was lost—only the cookies persisted.
JavaScript applications, however, are confined to a single page, which means we can
now store state on the client's memory.

One of the major advantages to storing state on the client is a really responsive interface.
A user gets immediate feedback when interacting with the page, rather than waiting a
few seconds for the next page to load. Speed greatly improves the user experience,
making many JavaScript applications a real pleasure to use.

However, storing state on the client causes challenges as well. Where exactly should it
be stored? In local variables? Perhaps in the DOM? This is where a lot of developers get
led astray, which is an unfortunate state of affairs because storing state properly is one
of the most critical areas to get right.

First, you should avoid storing data or state in the DOM. That’s just a slippery slope
leading to an entangled mess and anarchy! In our case—since we’re using the tried and
tested MVC architecture—state is stored inside our application’s controllers.

What exactly is a controller? Well, you can think of it as the glue between the appli-
cation’s views and models. It’s the only component aware of the application’s views
and models, tying them together. When the page loads, your controller attaches event
handlers to views and processes callbacks appropriately, interfacing with models as
necessary.

You don’t need any libraries to create controllers, although they can be useful. The only
essential part is that controllers are modular and independent. Ideally, they shouldn’t
be defining any global variables, instead functioning as fairly decoupled components.
An excellent way of ensuring this is with the module pattern.

49

Module Pattern
The module pattern is a great way to encapsulate logic and prevent global namespace
pollution. It’s all made possible by anonymous functions, which are arguably the single
best feature of JavaScript. We’ll just create an anonymous function and execute it im-
mediately. All the code residing within the function runs inside a closure, providing a
local and private environment for our application’s variables:

(function(){
 /* ... */
})();

We have to surround the anonymous function with braces () before we can execute it.
JavaScript requires this so it can interpret the statement correctly.

Global Import
Variable definitions inside the module are local, so they can’t be accessed outside in
the global namespace. However, the application’s global variables are all still available,
and they can be readily accessed and manipulated inside the module. It’s often not
obvious which global variables are being used by a module, especially when your mod-
ules get larger.

In addition, implied globals are slower to resolve because the JavaScript interpreter has
to walk up the scope chain to resolve them. Local variable access will always be faster
and more efficient.

Luckily, our modules provide an easy way to resolve these problems. By passing globals
as parameters to our anonymous function, we can import them into our code, which
is both clearer and faster than implied globals:

(function($){
 /* ... */
})(jQuery);

In the example above, we’re importing the global variable jQuery into our module and
aliasing it to $. It’s obvious which global variables are being accessed inside the module,
and their lookup is quicker. In fact, this is the recommended practice whenever you
want to use jQuery’s $ shortcut, which ensures that your code won’t conflict with any
other libraries.

Global Export
We can use a similar technique when it comes to exporting global variables. Ideally,
you should be using as few global variables as possible, but there’s always the odd
occasion when they’re needed. We can import the page’s window into our module, set-
ting properties on it directly, thereby exposing variables globally:

50 | Chapter 4: Controllers and State

http://docs.jquery.com/Plugins/Authoring#Getting_Started

(function($, exports){

 exports.Foo = "wem";

})(jQuery, window);

assertEqual(Foo, "wem");

The fact that we’re using a variable called exports to set any global variables means the
code is clearer, making it obvious which global variables a module is creating.

Adding a Bit of Context
Using a local context is a useful way of structuring modules, especially when it comes
to registering callbacks to events. As it stands, the context inside our module is global—
this is equal to window:

(function(){
 assertEqual(this, window);
})();

If we want to scope the context, we need to start adding functions onto an object. For
example:

(function(){
 var mod = {};

 mod.contextFunction = function(){
 assertEqual(this, mod);
 };

 mod.contextFunction();
})();

The context inside contextFunction() is now local to our mod object. We can start using
this without worrying about creating global variables. To give you a better indication
of how it would be used in practice, let’s further flesh out that example:

(function($){

 var mod = {};

 mod.load = function(func){
 $($.proxy(func, this));
 };

 mod.load(function(){
 this.view = $("#view");
 });

 mod.assetsClick = function(e){
 // Process click
 };

Adding a Bit of Context | 51

 mod.load(function(){
 this.view.find(".assets").click(
 $.proxy(this.assetsClick, this)
);
 });

})(jQuery);

We’re creating a load() function that takes a callback, executing it when the page has
loaded. Notice that we’re using jQuery.proxy() to ensure that the callback is invoked
in the correct context.

Then, when the page loads, we’re adding a click handler onto an element, giving it a
local function, assetsClick(), as a callback. Creating a controller doesn’t need to be
any more complicated than that. What’s important is that all of the controller’s state
is kept local and encapsulated cleanly into a module.

Abstracting into a Library
Let’s abstract that library out so we can reuse it with other modules and controllers.
We’ll include the existing load() function and add new ones like proxy() and include():

(function($, exports){
 var mod = function(includes){
 if (includes) this.include(includes);
 };
 mod.fn = mod.prototype;

 mod.fn.proxy = function(func){
 return $.proxy(func, this);
 };

 mod.fn.load = function(func){
 $(this.proxy(func));
 };

 mod.fn.include = function(ob){
 $.extend(this, ob);
 };

 exports.Controller = mod;
})(jQuery, window);

proxy() ensures that functions are executed in the local context, which is a useful pat-
tern for event callbacks. The include() function is just a shortcut for adding properties
onto the controller, saving some typing.

We’re adding our library to the exports object, exposing it as the global Controller
variable. Inside the module we can instantiate a Controller object using its constructor
function. Let’s go through a simple example that toggles an element’s class depending
on whether the mouse is over the element:

52 | Chapter 4: Controllers and State

(function($, Controller){

 var mod = new Controller;

 mod.toggleClass = function(e){
 this.view.toggleClass("over", e.data);
 };

 mod.load(function(){
 this.view = $("#view");
 this.view.mouseover(this.proxy(this.toggleClass), true);
 this.view.mouseout(this.proxy(this.toggleClass), false);
 });

})(jQuery, Controller);

When the page loads, we’re creating a view variable and attaching some event listeners.
They in turn call toggleClass() when the mouse moves over the element, toggling the
element’s class. You can see the full example in this book’s accompanying files, in
assets/ch04/modules.html.

Granted, using context rather than local variables means there is probably more code
to write, what with all the usage of this. However, the technique gives us much greater
scope for reusing code and including mixins. For example, we could add a function
onto every Controller instance by setting a property on its prototype:

Controller.fn.unload = function(func){
 jQuery(window).bind("unload", this.proxy(func));
};

Or, we could extend an individual controller by using the include() function we defined
earlier, passing it an object:

var mod = new Controller;
mod.include(StateMachine);

The StateMachine object, in this example, could be reused over and over again with our
other modules, preventing us from duplicating code and keeping things DRY (don’t
repeat yourself).

Loading Controllers After the Document
As it stands, some parts of our controllers are being loaded before the DOM, and other
parts are in callbacks to be invoked after the page’s document has loaded. This can be
confusing because the controller’s logic is being executed under different states, re-
sulting in a lot of document load callbacks.

We can solve this in one fell swoop by loading controllers after the DOM. I personally
advocate this approach because it ensures that you don’t need to think constantly about
what state the page’s DOM is in when accessing elements.

Adding a Bit of Context | 53

Let’s first take advantage and clear up our library, making our controllers a bit cleaner.
The Controller class doesn’t need to be a constructor function because the context
switch needed when generating subcontrollers is unnecessary here:

// Use global context, rather than the window
// object, to create global variables
var exports = this;

(function($){
 var mod = {};

 mod.create = function(includes){
 var result = function(){
 this.init.apply(this, arguments);
 };

 result.fn = result.prototype;
 result.fn.init = function(){};

 result.proxy = function(func){ return $.proxy(func, this); };
 result.fn.proxy = result.proxy;

 result.include = function(ob){ $.extend(this.fn, ob); };
 result.extend = function(ob){ $.extend(this, ob); };
 if (includes) result.include(includes)

 return result;
 };

 exports.Controller = mod;
})(jQuery);

Now we can use our new Controller.create() function to create controllers, passing
in an object literal of instance properties. Notice that the entire controller is wrapped
in jQuery(function(){ /* ... */ }). This is an alias for jQuery.ready(), and it ensures
that the controller is loaded only after the page’s DOM has fully initialized:

jQuery(function($){
 var ToggleView = Controller.create({
 init: function(view){
 this.view = $(view);
 this.view.mouseover(this.proxy(this.toggleClass), true);
 this.view.mouseout(this.proxy(this.toggleClass), false);
 },

 this.toggleClass: function(e){
 this.view.toggleClass("over", e.data);
 }
 });

 // Instantiate controller, calling init()
 new ToggleView("#view");
});

54 | Chapter 4: Controllers and State

The other significant change we’ve made is passing in the view element to the controller
upon instantiation, rather than hardcoding it inside. This is an important refinement
because it means we can start reusing controllers with different elements, keeping code
repetition to a minimum.

Accessing Views
A common pattern is to have one controller per view. That view has an ID, so it can be
passed to controllers easily. Elements inside the view then use classes, rather than IDs,
so they don’t conflict with elements in other views. This pattern provides a good struc-
ture for a general practice, but it should not be conformed to rigidly.

So far in this chapter we’ve been accessing views by using the jQuery() selector, storing
a local reference to the view inside the controller. Subsequent searches for elements
inside the view are then scoped by that view reference, speeding up their lookup:

// ...
init: function(view){
 this.view = $(view);
 this.form = this.view.find("form");
}

However, it does mean that controllers fill up with a lot of selectors, requiring us to
query the DOM constantly. We can clean this up somewhat by having one place in the
controller where selectors are mapped to variables names, like so:

elements: {
 "form.searchForm": "searchForm",
 "form input[type=text]": "searchInput"
}

This ensures that the variables this.searchForm and this.searchInput will be created
on the controller when it’s instantiated, set to their respective elements. These are nor-
mal jQuery objects, so we can manipulate them as usual, setting event handlers and
fetching attributes.

Let’s implement support for that elements mapping inside our controllers, iterating
over all the selectors and setting local variables. We’ll do this inside our init() func-
tion, which is called when our controller is instantiated:

var exports = this;

jQuery(function($){
 exports.SearchView = Controller.create({
 // Map of selectors to local variable names
 elements: {
 "input[type=search]": "searchInput",
 "form": "searchForm"
 },

 // Called upon instantiation
 init: function(element){

Adding a Bit of Context | 55

 this.el = $(element);
 this.refreshElements();
 this.searchForm.submit(this.proxy(this.search));
 },

 search: function(){
 console.log("Searching:", this.searchInput.val());
 },

 // Private

 $: function(selector){
 // An `el` property is required, and scopes the query
 return $(selector, this.el);
 },

 // Set up the local variables
 refreshElements: function(){
 for (var key in this.elements) {
 this[this.elements[key]] = this.$(key);
 }
 }
 });

 new SearchView("#users");
});

refreshElements() expects every controller to have a current element property, el,
which will scope any selectors. Once refreshElements() is called, the this.search
Form and this.searchInput properties will be set on the controller and are subsequently
available for event binding and DOM manipulation.

You can see a full example of this in this book’s accompanying files, in assets/ch04/
views.html.

Delegating Events
We can also take a stab at cleaning up all that event binding and proxying by having
an events object that maps event types and selectors to callbacks. This is going to be
very similar to the elements object, but instead will take the following form:

events: {
 "submit form": "submit"
}

Let’s go ahead and add that to our SearchView controller. Like refreshElements(), we’ll
have a delegateEvents() function that will be called when the controller is instantiated.
This will parse the controller’s events object, attaching event callbacks. In our Search
View example, we want the search() function to be invoked whenever the view’s
<form /> is submitted:

var exports = this;

56 | Chapter 4: Controllers and State

jQuery(function($){
 exports.SearchView = Controller.create({
 // Map all the event names,
 // selectors, and callbacks
 events: {
 "submit form": "search"
 },

 init: function(){
 // ...
 this.delegateEvents();
 },

 search: function(e){ /* ... */ },

 // Private

 // Split on the first space
 eventSplitter: /^(\w+)\s*(.*)$/,

 delegateEvents: function(){
 for (var key in this.events) {
 var methodName = this.events[key];
 var method = this.proxy(this[methodName]);

 var match = key.match(this.eventSplitter);
 var eventName = match[1], selector = match[2];

 if (selector === '') {
 this.el.bind(eventName, method);
 } else {
 this.el.delegate(selector, eventName, method);
 }
 }
 }
 });

Notice we’re using the delegate() function inside delegateEvents(), as well as the
bind() function. If the event selector isn’t provided, the event will be placed straight
on el. Otherwise, the event will be delegated, and it will be triggered if the event type
is fired on a child matching the selector. The advantage of delegation is that it often
reduces the amount of event listeners required—i.e., listeners don’t have to be placed
on every element selected because events are caught dynamically when they bubble up.

We can push all those controller enhancements upstream to our Controller library so
they can be reused in every controller. Here’s the finished example; you can find the
full controller library in assets/ch04/finished_controller.html:

 var exports = this;

 jQuery(function($){
 exports.SearchView = Controller.create({
 elements: {
 "input[type=search]": "searchInput",

Adding a Bit of Context | 57

http://api.jquery.com/delegate

 "form": "searchForm"
 },

 events: {
 "submit form": "search"
 },

 init: function(){ /* ... */ },

 search: function(){
 alert("Searching: " + this.searchInput.val());
 return false;
 },
 });

 new SearchView({el: "#users"});
 });

State Machines
State machines—or to use their proper term, Finite State Machines (FSMs)—are a great
way to program UIs. Using state machines, you can easily manage multiple controllers,
showing and hiding views as necessary. So, what exactly is a state machine? At its core,
a state machine consists of two things: states and transitions. It has only one active
state, but it has a multitude of passive states. When the active state switches, transitions
between the states are called.

How does this work in practice? Well, consider having a few application views that
need to be displayed independently—say, a view for showing contacts and a view for
editing contacts. These two views need to be displayed exclusively—when one is
shown, the other view needs to be hidden. This is a perfect scenario to introduce a state
machine because it will ensure that only one view is active at any given time. Indeed,
if we want to add additional views, such as a settings view, using a state machine makes
this trivial.

Let’s flesh out a practical example that will give you a good idea of how state machines
can be implemented. The example is simple and doesn’t cater to different transition
types, but it is sufficient for our needs. First, we’re going to create an Events object that
will use jQuery’s event API (as discussed in Chapter 2) to add the ability to bind and
trigger events on our state machine:

var Events = {
 bind: function(){
 if (!this.o) this.o = $({});
 this.o.bind.apply(this.o, arguments);
 },

 trigger: function(){
 if (!this.o) this.o = $({});
 this.o.trigger.apply(this.o, arguments);

58 | Chapter 4: Controllers and State

 }
};

The Events object is essentially extending jQuery’s existing event support outside the
DOM so that we can use it in our own library. Now let’s set about creating the State
Machine class, which will have one main function, add():

var StateMachine = function(){};
StateMachine.fn = StateMachine.prototype;

// Add event binding/triggering
$.extend(StateMachine.fn, Events);

StateMachine.fn.add = function(controller){
 this.bind("change", function(e, current){
 if (controller == current)
 controller.activate();
 else
 controller.deactivate();
 });

 controller.active = $.proxy(function(){
 this.trigger("change", controller);
 }, this);
};

The state machine’s add() function adds the passed controller to the list of states and
creates an active() function. When active() is called, the active state will transition
to the controller. The state machine will call activate() on the active controller and
deactivate() on all the other controllers. We can see how this works by creating two
example controllers, adding them to the state machine, and then activating one of them:

var con1 = {
 activate: function(){ /* ... */ },
 deactivate: function(){ /* ... */ }
};

var con2 = {
 activate: function(){ /* ... */ },
 deactivate: function(){ /* ... */ }
};

// Create a new StateMachine and add states
var sm = new StateMachine;
sm.add(con1);
sm.add(con2);

// Activate first state
con1.active();

The state machine’s add() function works by creating a callback for the change event,
calling the activate() or deactivate() function, depending on which is appropriate.
Although the state machine gives us an active() function, we can also change the state
by manually triggering the change event:

State Machines | 59

sm.trigger("change", con2);

Inside our controller’s activate() function, we can set up and display its view, adding
and showing elements. Likewise, inside the deactivate() function, we can tear down
anything that is hiding the view. CSS classes offer a good way of hiding and showing
views. Simply add a class—say, .active—when the view is active, and remove it upon
deactivation:

var con1 = {
 activate: function(){
 $("#con1").addClass("active");
 },
 deactivate: function(){
 $("#con1").removeClass("active");
 }
};

var con2 = {
 activate: function(){
 $("#con2").addClass("active");
 },
 deactivate: function(){
 $("#con2").removeClass("active");
 }
};

Then, in your stylesheets, make sure that the views have a .active class; otherwise,
they’re hidden:

#con1, #con2 { display: none; }
#con1.active, #con2.active { display: block; }

You can see the full examples in assets/ch04/state_machine.html.

Routing
Our application is now running from a single page, which means its URL won’t change.
This is a problem for our users because they’re accustomed to having a unique URL
for a resource on the Web. Additionally, people are used to navigating the Web with
the browser’s back and forward buttons.

To resolve this, we want to tie the application’s state to the URL. When the application’s
state changes, so will the URL. The reverse is true, too—when the URL changes, so
will the application’s state. During the initial page load, we’ll check the URL and set
up the application’s initial state.

Using the URL’s Hash
However, the page’s base URL can’t be changed without triggering a page refresh,
which is something we’re trying to avoid. Luckily, there are a few solutions. The tra-
ditional way to manipulate the URL was to change its hash. The hash is never sent to

60 | Chapter 4: Controllers and State

the server, so it can be changed without triggering a page request. For example, here’s
the URL for my Twitter page, the hash being #!/maccman:

http://twitter.com/#!/maccman

You can retrieve and alter the page’s hash using the location object:

// Set the hash
window.location.hash = "foo";
assertEqual(window.location.hash , "#foo");

// Strip "#"
var hashValue = window.location.hash.slice(1);
assertEqual(hashValue, "foo");

If the URL doesn’t have a hash, location.hash is an empty string. Otherwise, loca
tion.hash equals the URL’s hash fragment, prefixed with the # character.

Setting the hash too often can really hurt performance, especially on mobile browsers.
So, if you’re setting it frequently—say, as a user scrolls through a list—you may want
to consider throttling.

Detecting Hash Changes
Historically, changes to the hash were detected rather crudely with a polling timer.
Things are improving, though, and modern browsers support the hashchange event.
This is fired on the window, and you can listen for it in order to catch changes to the hash:

window.addEventListener("hashchange", function(){ /* ... */ }, false);

Or with jQuery:

$(window).bind("hashchange", function(event){
 // hash changed, change state
});

When the hashchange event fires, we can make sure the application is in the appropriate
state. The event has good cross-browser support, with implementations in all the latest
versions of the major browsers:

• IE >= 8

• Firefox >= 3.6

• Chrome

• Safari >= 5

• Opera >= 10.6

The event isn’t fired on older browsers; however, there’s a useful jQuery plug-in that
adds the hashchange event to legacy browsers.

It’s worth noting that this event isn’t fired when the page initially loads, only when the
hash changes. If you’re using hash routing in your application, you may want to fire
the event manually on page load:

Routing | 61

http://benalman.com/projects/jquery-hashchange-plugin/

jQuery(function(){
 var hashValue = location.hash.slice(1);
 if (hashValue)
 $(window).trigger("hashchange");
});

Ajax Crawling
Because they don’t execute JavaScript, search engine crawlers can’t see any content
that’s created dynamically. Additionally, none of our hash routes will be indexed; as
in the eyes of the crawlers, they’re all the same URL—the hash fragment is never sent
to the server.

This is obviously a problem if we want our pure JavaScript applications to be indexable
and available on search engines like Google. As a workaround, developers would create
a “parallel universe” of content. Crawlers would be sent to special static HTML snap-
shots of the content, while normal browsers would continue to use the dynamic Java-
Script version of the application. This resulted in a lot more work for developers and
entailed practices like browser sniffing, something best avoided. Luckily, Google has
provided an alternative: the Ajax Crawling specification.

Let’s take a look at my Twitter profile address again (notice the exclamation mark after
the hash):

http://twitter.com/#!/maccman

The exclamation mark signifies to Google’s crawlers that our site conforms to the Ajax
Crawling spec. Rather than request the URL as-is—excluding the hash, of course—the
crawler translates the URL into this:

http://twitter.com/?_escaped_fragment_=/maccman

The hash has been replaced with the _escaped_fragment_ URL parameter. In the spec-
ification, this is called an ugly URL, and it’s something users will never see. The crawler
then goes ahead and fetches that ugly URL. Since the hash fragment is now a URL
parameter, your server knows the specific resource the crawler is requesting—in this
case, my Twitter page.

The server can then map that ugly URL to whatever resource it represented and respond
with a pure HTML or text fragment, which is then indexed. Since Twitter still has a
static version of their site, they just redirect the crawler to that.

curl -v http://twitter.com/?_escaped_fragment_=/maccman
 302 redirected to http://twitter.com/maccman

Because Twitter is using a temporary redirect (302) rather than a permanent one
(301), the URL shown in the search results will typically be the hash address—i.e., the
dynamic JavaScript version of the site (http://twitter.com/#!/maccman). If you don’t
have a static version of your site, just serve up a static HTML or text fragment when
URLs are requested with the _escaped_fragment_ parameter.

62 | Chapter 4: Controllers and State

http://code.google.com/web/ajaxcrawling/index.html

Once you’ve added support for the Ajax Crawling spec to your site, you can check
whether it’s working using the Fetch as Googlebot tool. If you choose not to implement
the scheme on your site, pages will remain indexed as-is, with a good likelihood of not
being properly represented in search results. In the long term, however, it’s likely that
search engines like Google will add JavaScript support to their crawlers, making
schemes like this one unnecessary.

Using the HTML5 History API
The History API is part of the HTML5 spec and essentially allows you to replace the
current location with an arbitrary URL. You can also choose whether to add the new
URL to the browser’s history, giving your application “back button” support. Like
setting the location’s hash, the key is that the page won’t reload—its state will be
preserved.

Supported browsers are:

• Firefox >= 4.0

• Safari >= 5.0

• Chrome >= 7.0

• IE: no support

• Opera >= 11.5

The API is fairly straightforward, revolving mostly around the history.pushState()
function. This takes three arguments: a data object, a title, and the new URL:

// The data object is arbitrary and is passed with the popstate event
var dataObject = {
 createdAt: '2011-10-10',
 author: 'donnamoss'
};

var url = '/posts/new-url';
history.pushState(dataObject, document.title, url);

The three arguments are all optional, but they control what’s pushed onto the browser’s
history stack:

The data object
This is completely arbitrary—you specify any custom object you want. It’ll be
passed along with a popstate event (which we’ll cover in depth later).

The title argument
This is currently ignored by a lot of browsers, but according to the spec will change
the new page’s title and appear in the browser’s history.

The url argument
This is a string specifying the URL to replace the browser’s current location. If it’s
relative, the new URL is calculated relative to the current one, with the same do-

Routing | 63

http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=158587

main, port, and protocol. Alternatively, you can specify an absolute URL, but for
security reasons, it’s restricted to the same domain as the current location.

The issue with using the new History API in JavaScript applications is that every URL
needs a real HTML representation. Although the browser won’t request the new
URL when you call history.pushState(), it will be requested if the page is reloaded. In
other words, every URL you pass to the API needs to exist—you can’t just make up
fragments like you can with hashes.

This isn’t a problem if you already have a static HTML representation of your site, but
it is if your application is pure JavaScript. One solution is to always serve up the Java-
Script application regardless of the URL called. Unfortunately, this will break 404
(page not found) support, so every URL will return a successful response. The alter-
native is to actually do some server-side checking to make sure the URL and requested
resource is valid before serving up the application.

The History API contains a few more features. history.replaceState() acts exactly the
same as history.pushState(), but it doesn’t add an entry to the history stack. You can
navigate through the browser’s history using the history.back() and history.for
ward() functions.

The popstate event mentioned earlier is triggered when the page is loaded or when
history.pushState() is called. In the case of the latter, the event object will contain a
state property that holds the data object given to history.pushState():

window.addEventListener("popstate", function(event){
 if (event.state) {
 // history.pushState() was called
 }
});

You can listen to the event and ensure that your application’s state stays consistent
with the URL. If you’re using jQuery, you need to bear in mind that the event is nor-
malized. So, to access the state object, you’ll need to access the original event:

$(window).bind("popstate", function(event){
 event = event.originalEvent;
 if (event.state) {
 // history.pushState() was called
 }
});

64 | Chapter 4: Controllers and State

CHAPTER 5

Views and Templating

Views are the interface to your application; they’re what the end user actually interacts
with and sees. In our case, views are logicless HTML fragments managed by the ap-
plication’s controllers, which deal with event handlers and interpolating data. This is
where it can be quite tempting to break the MVC abstraction by including logic directly
into your views. Don’t succumb to that temptation! You’ll end up with senseless spa-
ghetti code.

One of the biggest architectural changes you’ll have to make when moving server-side
applications to the client side is with views. Traditionally, you could just interpolate
server-side data with HTML fragments, creating new pages. However, views in Java-
Script applications are somewhat different.

First, you have to transfer any data needed for the view to the client because you don’t
have access to server-side variables. This is generally done with an Ajax call, returning
a JSON object, which is then loaded by your application’s models. You shouldn’t be
prerendering any HTML on the server side, but rather delegating all of that to the client.
This will ensure that your client-side application isn’t reliant on the server for rendering
views, keeping its interface snappy.

You then load that data into your views, either by creating the DOM elements dynam-
ically with JavaScript or by using templates. I’ll elaborate on those two options below.

Dynamically Rendering Views
One way to create views is pragmatically via JavaScript. You can create DOM elements
using document.createElement(), setting their contents and appending them to the
page. When it’s time to redraw the view, just empty the view and repeat the process:

var views = document.getElementById("views");
views.innerHTML = ""; // Empty the element

var container = document.createElement("div");
container.id = "user";

65

var name = document.createElement("span");
name.innerHTML = data.name;

container.appendChild(name);
views.appendChild(container);

Or, for a more succinct API with jQuery:

$("#views").empty();

var container = $("<div />").attr({id: "user"});
var name = $("").text(data.name);

$("#views").append(container.append(name));

I’d only advocate this if the view you need to render is very small, perhaps just a couple
of elements. Placing view elements in your controllers or states compromises the ap-
plication’s MVC architecture.

Instead of creating the elements from scratch, I advise including the static HTML in
the page—hiding and showing it when necessary. This will keep any view-specific code
in your controllers to an absolute minimum, and you can just update the element’s
contents when necessary.

For example, let’s create an HTML fragment that will serve as our view:

<div id="views">
 <div class="groups"> ... </div>
 <div class="user">

 </div>
</div>

Now, we can use jQuery selectors to update the view and to toggle the display of the
various elements:

$("#views div").hide();

var container = $("#views .user");
container.find("span").text(data.name);
container.show();

This method is preferable to generating the elements because it keeps the view and
controller as separate as possible.

Templates
If you’re used to interpolating server variables in HTML, templating will be familiar.
There are a variety of templating libraries out there—your choice will probably depend
on which DOM library you’re using. However, most of them share a similar syntax,
which I’ll describe below.

66 | Chapter 5: Views and Templating

The gist of JavaScript templates is that you can take an HTML fragment interpolated
with template variables and combine it with a JavaScript object, replacing those tem-
plate variables with values from the object. Overall, JavaScript templating works in
much the same way as templating libraries in other languages, such as PHP’s Smarty,
Ruby’s ERB, and Python’s string formatting.

We’re going to use the jQuery.tmpl library as the basis for the templating examples. If
you aren’t using jQuery, or if you want to use a different templating library, the exam-
ples should still be useful; the templating syntax for most libraries is very similar, if not
identical. If you want a good alternative, check out Mustache, which has implementa-
tions in a lot of languages, including JavaScript.

Created by Microsoft, jQuery.tmpl is a templating plug-in based on John Resig’s orig-
inal work. It’s a well-maintained library and is fully documented on the jQuery site.
The library has one main function, jQuery.tmpl(), to which you can pass a template
and some data. It renders a template element that you can append to the document. If
the data is an array, the template is rendered once for every data item in the array;
otherwise, a single template is rendered:

var object = {
 url: "http://example.com",
 getName: function(){ return "Trevor"; }
};

var template = '${getName()}';

var element = jQuery.tmpl(template, object);
// Produces: Trevor

$("body").append(element);

So, you can see we’re interpolating variables using the ${} syntax. Whatever is inside
the brackets is evaluated in the context of the object passed to jQuery.tmpl(), regardless
of whether it is a property or a function.

However, templates are much more powerful than mere interpolation. Most templating
libraries have advanced features like conditional flow and iteration. You can control
flow by using if and else statements, the same as with pure JavaScript. The difference
here is that we need to wrap the keyword with double brackets so that the templating
engine can pick them up:

{{if url}}
 ${url}
{{/if}}

The if block will be executed if the specified attribute value doesn’t evaluate to false,
0, null, "", Nan, or undefined. As you can see, the block is closed with a {{/if}}, so
don’t forget to include that! A common pattern is to display a message when an array—
say, of chat messages—is empty:

Templates | 67

http://api.jquery.com/category/plugins/templates/
http://mustache.github.com
http://ejohn.org/blog/javascript-micro-templating/
http://ejohn.org/blog/javascript-micro-templating/
http://api.jquery.com/jquery.tmpl

{{if messages.length}}
 <!-- Display messages... -->
{{else}}
 <p>Sorry, there are no messages</p>
{{/if}}

No templating library can afford to be without iteration. With JS templating libraries,
you can iterate over any JavaScript type—Object or Array—using the {{each}} key-
word. If you pass an Object to {{each}}, it will iterate a block over the object’s prop-
erties. Likewise, passing an array results in the block iterating over every index in the
array.

When inside the block, you can access the value currently being iterated over using the
$value variable. Displaying the value is the same as the interpolation example above,
which uses ${$value}. Consider this object:

var object = {
 foo: "bar",
 messages: ["Hi there", "Foo bar"]
};

Then, use the following template to iterate through the messages array, displaying each
message. Additionally, the current iteration’s index is also exposed using the $index
variable.

 {{each messages}}
 ${$index + 1}: ${$value}
 {{/each}}

As you can see, the jQuery.tmpl templating API is very straightforward. As I mentioned
earlier, most of the alternative templating libraries have a similar API, although
many offer more advanced features, such as lambdas, partials, and comments.

Template Helpers
Sometimes it’s useful to use generic helper functions inside the view, perhaps to format
a date or a number. However, it’s important to keep your MVC architecture in mind,
rather than arbitrarily inserting functions directly into the view. For example, let’s re-
place links in some plain text with <a> tags. This would certainly be the wrong way
to go about doing it:

<div>
 ${ this.data.replace(
/((http|https|ftp):\/\/[\w?=&.\/-;#~%-]+(?![\w\s?&.\/;#~%"=-]*>))/g,
'$1 ') }
</div>

Rather than injecting the function straight into the view, we should abstract and name-
space it, keeping logic separate from views. In this case, we’re going to create a separate

68 | Chapter 5: Views and Templating

helpers.js file, containing all our application’s helpers, such as the autoLink() func-
tion. Then, we can tidy up the view with our helper:

// helper.js
var helper = {};
helper.autoLink = function(data){
 var re = /((http|https|ftp):\/\/[\w?=&.\/-;#~%-]+(?![\w\s?&.\/;#~%"=-]*>))/g;
 return(data.replace(re, '$1 '));
};

// template.html
<div>
 ${ helper.autoLink(this.data) }
</div>

There’s an added advantage: the autoLink() function is now generic and can be reused
elsewhere inside the application.

Template Storage
When it comes to storing view templates, there are a few options:

• Inline in the JavaScript

• Inline in a custom script tag

• Loaded remotely

• Inline in the HTML

Some of these, however, are better at respecting the MVC architecture. I personally
advocate storing templates inline in custom script tags for the reasons outlined below.

You can store templates inside your JavaScript files. This isn’t really recommended,
though, because it entails putting view code inside the controller, violating the MVC
architecture.

By sending an Ajax call, you can dynamically load in templates when they’re needed.
The advantage of this is that the initial page load is smaller; the disadvantage is that
you could slow the UI down while templates are loading. One of the main reasons to
build JavaScript apps is for their enhanced speed, so you should be careful about
squandering this advantage when loading in remote resources.

You can store templates inline, inside the page’s HTML. The advantage to this ap-
proach is that it doesn’t have the slow loading problem that fetching remote templates
has. The source code is much more obvious—templates are inline where they’re being
displayed and used. The obvious disadvantage is that it results in a large page size. To
be honest, though, this speed difference should be negligible—especially if you’re using
page compression and caching.

I recommend using custom script tags and referencing them by ID from JavaScript.
This is a convenient way of storing templates, especially if you want to use them in

Templates | 69

multiple places. Custom script tags also have the advantage of not being rendered by
the browser, which just interprets their contents as text.

If the template is defined inline in the page, you can use jQuery.fn.tmpl(data)—i.e.,
call tmpl() on a jQuery element:

<script type="text/x-jquery-tmpl" id="someTemplate">
 ${getName()}
</script>

<script>
 var data = {
 getName: function(){ return "Bob" }
 };
 var element = $("#someTemplate").tmpl(data);
 element.appendTo($("body"));
</script>

Behind the scenes, jQuery.tmpl makes sure that the compiled template, once generated,
is cached. This speeds things up because the template doesn’t have to be recompiled
when you next use it. Notice we’re generating the element before appending it to the
page; this method performs better than manipulating elements already attached to the
page, making it a recommended practice.

Even if you’re rendering all the templates inline into the page, it doesn’t mean your
server side should be structured like that. Try to keep each template in a separate file
(or partial), and then concatenate them into the one document when the page is re-
quested. Some of the dependency-management tools covered in Chapter 6, like
RequireJS, will do this for you.

Binding
Binding is where you start to see the real benefits of view rendering on the client side.
Essentially, binding hooks together a view element and a JavaScript object (usually a
model). When the JavaScript object changes, the view automatically updates to reflect
the newly modified object. In other words, once you’ve got your views and models
bound together, the views will rerender automatically when the application’s models
are updated.

Binding is a really big deal. It means your controllers don’t have to deal with updating
views when changing records, because it all happens automatically in the background.
Structuring your application using binders also paves the way for real-time applications,
which we’ll cover in depth in Chapter 8.

So, in order to bind JavaScript objects and views, we need to get a callback that instructs
the view to update when an object’s property changes. The trouble is that JavaScript
doesn’t provide a native method for doing that. The language doesn’t have any
method_missing functionality like in Ruby or Python, and it isn’t yet possible to emulate

70 | Chapter 5: Views and Templating

the behavior using JavaScript getters and setters. However, because JavaScript is a very
dynamic language, we can roll our own change callback:

var addChange = function(ob){
 ob.change = function(callback){
 if (callback) {
 if (!this._change) this._change = [];
 this._change.push(callback);
 } else {
 if (!this._change) return;
 for (var i=0; i < this._change.length; i++)
 this._change[i].apply(this);
 }
 };
};

The addChange() function adds a change() function onto any object it’s passed. The
change() function works exactly the same as the change event in jQuery. You can add
callbacks by invoking change() with a function, or trigger the event by calling
change() without any arguments. Let’s see it in practice:

var object = {};
object.name = "Foo";

addChange(object);

object.change(function(){
 console.log("Changed!", this);
 // Potentially update view
});

object.change();

object.name = "Bar";
object.change();

So, you see we’ve added a change() callback to the object, allowing us to bind and
trigger change events.

Binding Up Models
Now let’s take that binding example a step further and apply it to models. Whenever
a model record is created, updated, or destroyed, we’ll trigger a change event, reren-
dering the view. In the example below, we’re creating a basic User class, setting up event
binding and triggering, and finally listening to the change event, rerendering the view
whenever it’s triggered:

<script>
 var User = function(name){
 this.name = name;
 };

 User.records = []

Binding | 71

http://ejohn.org/blog/javascript-getters-and-setters

 User.bind = function(ev, callback) {
 var calls = this._callbacks || (this._callbacks = {});
 (this._callbacks[ev] || (this._callbacks[ev] = [])).push(callback);
 };

 User.trigger = function(ev) {
 var list, calls, i, l;
 if (!(calls = this._callbacks)) return this;
 if (!(list = this._callbacks[ev])) return this;
 jQuery.each(list, function(){ this() })
 };

 User.create = function(name){
 this.records.push(new this(name));
 this.trigger("change")
 };

 jQuery(function($){
 User.bind("change", function(){
 var template = $("#userTmpl").tmpl(User.records);

 $("#users").empty();
 $("#users").append(template);
 });
 }):
</script>

<script id="userTmpl" type="text/x-jquery-tmpl">
 ${name}
</script>

<ul id="users">

Now, whenever we alter User’s records, the User model’s change event will be triggered,
invoking our templating callback and redrawing the list of users. This is pretty useful,
as we can go about creating and updating users without having to worry about updating
the view, which will happen automatically. For example, let’s create a new User:

User.create("Sam Seaborn");

The User’s change event will be invoked and our template will rerender, automatically
updating the view and showing our new user. You can see the full model-binding
example in assets/ch05/model.html.

72 | Chapter 5: Views and Templating

CHAPTER 6

Dependency Management

One of the things that’s held JavaScript back as a language has been the lack of de-
pendency management and a module system. Unlike other languages, namespacing
and modules aren’t something traditionally emphasized when people are learning
JavaScript. Indeed, popular libraries like jQuery don’t enforce any application struc-
ture; there’s definitely an onus on the developer to resolve this himself. Too often, I see
spaghetti-styled JavaScript, with a crazy amount of indentation and anonymous func-
tions. Does this look familiar?

function() {
 function() {
 function() {
 function() {

 }
 }
 }
}

The usage of modules and namespacing is one thing, but the lack of native dependency
systems is becoming an increasing concern when building larger applications. For a
long time, a script tag was deemed sufficient, as the amount of JavaScript present on
the page didn’t justify anything further. However, when you start writing complex
JavaScript applications, a dependency system is absolutely critical. It’s completely
impractical to keep track of dependencies yourself by adding script tags to the page
manually. You’ll often end up with a mess like this:

<script src="jquery.js" type="text/javascript" charset="utf-8"></script>
<script src="jquery.ui.js" type="text/javascript" charset="utf-8"></script>
<script src="application.utils.js" type="text/javascript" charset="utf-8"></script>
<script src="application.js" type="text/javascript" charset="utf-8"></script>
<script src="models/asset.js" type="text/javascript" charset="utf-8"></script>
<script src="models/activity.js" type="text/javascript" charset="utf-8"></script>
<script src="states/loading.js" type="text/javascript" charset="utf-8"></script>
<script src="states/search.js" type="text/javascript" charset="utf-8"></script>
<!-- ... -->

73

It’s not just the practicalities of the situation that warrant a specific dependency man-
agement system—there are performance aspects as well. Your browser needs to make
an HTTP request for each of these JavaScript files, and—although it can do this asyn-
chronously—there’s a huge cost to making so many connections. Each connection has
the overhead of HTTP headers, like cookies, and has to initiate another TCP hand-
shake. The situation is exacerbated if your application is served using SSL.

CommonJS
As JavaScript has moved to the server side, several proposals have been put forward
for dependency management. SpiderMonkey and Rhino offer a load() function, but
they do not have any specific patterns for namespacing. Node.js has the require()
function for loading in extra source files, as well as its own module system. The code
wasn’t interchangeable, though, so what happens when you want to run your Rhino
code on Node.js?

It became obvious that a standard was needed to ensure code interoperability, which
all JavaScript implementations could abide by, allowing us to use libraries across all
the environments. Kevin Dangoor started the CommonJS initiative to do just that. It
began with a blog post in which Kevin advocated a shared standard for JavaScript
interpreters and for developers to band together and write some specs:

JavaScript needs a standard way to include other modules and for those modules to live
in discreet namespaces. There are easy ways to do namespaces, but there’s no standard
programmatic way to load a module (once!).

[This] is not a technical problem. It’s a matter of people getting together and making a
decision to step forward and start building up something bigger and cooler together.

A mailing list was set up, and CommonJS was born. It quickly gathered momentum
with support from the major players. It is now the de facto module format for JavaScript
with a growing set of standards, including IO interfaces, Socket streams, and Unit tests.

Declaring a Module
Declaring a CommonJS module is fairly straightforward. Namespacing is baked directly
in; modules are separated into different files, and they expose variables publicly by
adding them to an interpreter-defined exports object:

// maths.js
exports.per = function(value, total) {
 return((value / total) * 100);
};

// application.js
var Maths = require("./maths");
assertEqual(Maths.per(50, 100), 50);

74 | Chapter 6: Dependency Management

http://www.mozilla.org/js/spidermonkey/
http://www.mozilla.org/rhino/
http://nodejs.org/
http://www.blueskyonmars.com/2009/01/29/what-server-side-javascript-needs
http://groups.google.com/group/commonjs
http://www.commonjs.org

To use any functions defined in a module, simply require() the file, saving the result
in a local variable. In the example above, any functions exported by maths.js are avail-
able on the Maths variable. The key is that modules are namespaced and will run on all
CommonJS-compliant JavaScript interpreters, such as Narwhal and Node.js.

Modules and the Browser
So, how does this relate to client-side JS development? Well, lots of developers saw the
implications of using modules on the client side—namely, that the standard, as it cur-
rently stood, required CommonJS modules to be loaded in synchronously. This is fine
for server-side JavaScript, but it can be very problematic in the browser because it locks
up the UI and requires eval-based compilation of scripts (always something to be avoi-
ded). The CommonJS team developed a specification, the module transport format, to
address this issue. This transport format wraps CommonJS modules with a callback to
allow for asynchronous loading on clients.

Let’s take our module example above. We can wrap it in the transport format to allow
asynchronous loading, making it palatable for the browser:

// maths.js
require.define("maths", function(require, exports){

 exports.per = function(value, total) {
 return((value / total) * 100);
 };

});

// application.js
require.define("application", function(require, exports){

 var per = require("./maths").per;
 assertEqual(per(50, 100), 50);

}), ["./maths"]); // List dependencies (maths.js)

Our modules can then be required by a module loader library and executed in the
browser. This is a really big deal. Not only have we split up our code into separate
module components, which is the secret to good application design, but we’ve also
got dependency management, scope isolation, and namespacing. Indeed, the same
modules can be run on browsers, servers, in desktop apps, and in any other CommonJS-
compliant environment. In other words, it’s now possible to share the same code be-
tween server and client!

CommonJS | 75

http://narwhaljs.org
http://wiki.commonjs.org/wiki/Modules/Transport

Module Loaders
To use CommonJS modules on the client side, we need to use a module loader library.
There is a variety of options, each with its own strengths and weaknesses. I’ll cover the
most popular ones and you can choose which one best suits your needs.

The CommonJS module format is still in flux, with various proposals under review. As
it stands, there’s no officially blessed transport format, which unfortunately compli-
cates things. The two main module implementations in the wild are Transport C and
Transport D. If you use any of the wrapping tools mentioned in the sections below,
you’ll have to make sure it generates wrapped modules in a format your loader supports.
Fortunately, many module loaders also come with compatible wrapping tools, or they
specify supported ones in their documentation.

Yabble
Yabble is an excellent and lightweight module loader. You can configure Yabble to
either request modules with XHR or to use script tags. The advantage to fetching mod-
ules with XHR is that they don’t need wrapping in the transport format. However, the
disadvantage is that modules have to be executed using eval(), making debugging more
difficult. Additionally, there are cross-domain issues, especially if you’re using a CDN.
Ideally, you should only use the XHR option for quick and dirty development, certainly
not in production:

<script src="https://github.com/jbrantly/yabble/raw/master/lib/yabble.js"> </script>
<script>
 require.setModuleRoot("javascripts");

 // We can use script tags if the modules
 // are wrapped in the transport format
 require.useScriptTags();

 require.ensure(["application"], function(require) {
 // Application is loaded
 });
</script>

The above example will fetch our wrapped application module and then load its de-
pendencies, utils.js, before running the module. We can load modules using the
require() function:

<script>
 require.ensure(["application", "utils"], function(require) {
 var utils = require("utils");
 assertEqual(utils.per(50, 200), 25);
 });
</script>

Although utils is required twice—once by the inline require.ensure() function, and
once by the application module—our script is clever enough to fetch the module

76 | Chapter 6: Dependency Management

http://wiki.commonjs.org/wiki/Modules/AsynchronousDefinition
http://wiki.commonjs.org/wiki/Modules/Transport/D
https://github.com/jbrantly/yabble

only once. Make sure any dependencies your module needs are listed in the transport
wrapping.

RequireJS
A great alternative to Yabble is RequireJS, one of the most popular loaders. RequireJS
has a slightly different take on loading modules—it follows the Asynchronous Module
Definition format, or AMD. The main difference you need to be concerned with is that
the API evaluates dependencies eagerly, rather than lazily. In practice, RequireJS is
completely compatible with CommonJS modules, requiring only different wrapping
transport.

To load JavaScript files, just pass their paths to the require() function, specifying a
callback that will be invoked when the dependencies are all loaded:

<script>
 require(["lib/application", "lib/utils"], function(application, utils) {
 // Loaded!
 });
</script>

As you can see in the example above, the application and utils modules are passed as
arguments to the callback; they don’t have to be fetched with the require() function.

It’s not just modules that you can require—RequireJS also supports ordinary JavaScript
libraries as dependencies, specifically jQuery and Dojo. Other libraries will work, but
they won’t be passed correctly as arguments to the required callback. However, any
library that has dependencies is required to use the module format:

require(["lib/jquery.js"], function($) {
 // jQuery loaded
 $("#el").show();
});

Paths given to require() are relative to the current file or module, unless they begin
with a /. To help with optimization, RequireJS encourages you to place your initial
script loader in a separate file. The library even provides shorthand to do this: the data-
main attribute:

<script data-main="lib/application" src="lib/require.js"></script>

Setting the data-main attribute instructs RequireJS to treat the script tag like a
require() call and load the attribute’s value. In this case, it would load the lib/appli-
cation.js script, which would in turn load the rest of our application:

// Inside lib/application.js
require(["jquery", "models/asset", "models/user"], function($, Asset, User) {
 //...
});

So, we’ve covered requiring modules, but what about actually defining them? Well, as
stated previously, RequireJS uses a slightly different syntax for modules. Rather than

Module Loaders | 77

http://requirejs.org
http://wiki.commonjs.org/wiki/Modules/AsynchronousDefinition
http://wiki.commonjs.org/wiki/Modules/AsynchronousDefinition

using require.define(), just use the plain define() function. As long as modules are
in different files, they don’t need explicit naming. Dependencies come first, as an array
of strings, and then comes a callback function containing the actual module. As in the
RequireJS require() function, dependencies are passed as arguments to the callback
function:

define(["underscore", "./utils"], function(_, Utils) {
 return({
 size: 10
 })
});

By default, there’s no exports variable. To expose variables from inside the module,
just return data from the function. The benefit to RequireJS modules is that they’re
already wrapped up, so you don’t have to worry about transport formats for the
browser. However, the caveat to this API is that it’s not compatible with CommonJS
modules—i.e., you couldn’t share modules between Node.js and the browser. All is
not lost, though; RequireJS has a compatibility layer for CommonJS modules—just
wrap your existing modules with the define() function:

define(function(require, exports) {
 var mod = require("./relative/name");

 exports.value = "exposed";
});

The arguments to the callbacks need to be exactly as shown above—i.e., require and
exports. Your modules can then carry on using those variables as usual, without any
alterations.

Wrapping Up Modules
At this stage, we’ve got dependency management and namespacing, but there’s still the
original problem: all those HTTP requests. Any module we depend on has to be loaded
in remotely, and even though this happens asynchronously, it’s still a big performance
overhead, slowing the startup of our application.

We’re also hand-wrapping our modules in the transport format which, while necessary
for asynchronous loading, is fairly verbose. Let’s kill two birds with one stone by using
a server-side step to concatenate the modules into one file. This means the browser has
to fetch only one resource to load all the modules, which is much more efficient. The
build tools available are intelligent, too—they don’t just bundle the modules arbitrarily,
but statically analyze them to resolve their dependencies recursively. They’ll also take
care of wrapping the modules up in the transport format, saving some typing.

In addition to concatenation, many module build tools also support minification,
further reducing the request size. In fact, some tools—such as rack-modulr and Trans-

78 | Chapter 6: Dependency Management

https://github.com/maccman/rack-modulr
http://github.com/kriszyp/transporter

porter—integrate with your web server, handling module processing automatically
when they’re first requested.

For example, here’s a simple Rack CommonJS module server using rack-modulr:

require "rack/modulr"

use Rack::Modulr, :source => "lib", :hosted_at => "/lib"
run Rack::Directory.new("public")

You can start the server with the rackup command. Any CommonJS modules contained
inside the lib folder are now concatenated automatically with all their dependencies
and are wrapped in a transport callback. Our script loader can then request modules
when they’re needed, loading them into the page:

>> curl "http://localhost:9292/lib/application.js"
 require.define("maths"....

If Ruby’s not your thing, there is a multitude of other options from which to choose.
FlyScript is a CommonJS module wrapper written in PHP, Transporter is one for
JSGI servers, and Stitch integrates with Node.js servers.

Module Alternatives
You may decide not to go the module route, perhaps because you’ve already got a lot
of existing code and libraries to support that can’t be easily converted. Luckily, there
are some great alternatives, such as Sprockets. Sprockets adds synchronous
require() support to your JavaScript. Comments beginning with //= act as directives
to the Sprockets preprocessor. For example, the //= require directive instructs Sprock-
ets to look in its load path for the library, fetch it, and include it inline:

//= require <jquery>
//= require "./states"

In the example above, jquery.js is in Sprockets’ load path, and states.js is required rel-
ative to the current file. Sprockets is clever enough to include a library only once,
regardless of the amount of time required. As with all the CommonJS module wrappers,
Sprockets supports caching and minification. During development, your server can
parse and concatenate files on demand in the course of the page load. When the site is
live, the JavaScript files can be preconcatenated and served statically, increasing
performance.

Although Sprockets is a command-line tool, there are some great integrations to Rack
and Rails, such as rack-sprockets. There are even some PHP implementations. The
downside to Sprockets—and indeed all these module wrappers—is that all your Java-
Script files need to be preprocessed, either by the server or via the command-line tool.

Module Alternatives | 79

http://github.com/kriszyp/transporter
http://rack.rubyforge.org
http://www.flyscript.org
http://jackjs.org
https://github.com/sstephenson/stitch
http://getsprockets.org
https://github.com/kelredd/rack-sprockets
https://github.com/stuartloxton/php-sprockets

LABjs
LABjs is one of the simplest dependency management solutions out there. It doesn’t
require any server-side involvement or CommonJS modules. Loading your scripts with
LABjs reduces resource blocking during page load, which is an easy and effective way
to optimize your site’s performance. By default, LABjs will load and execute scripts in
parallel as fast as possible. However, you can easily specify the execution order if some
scripts have dependencies:

<script>
 $LAB
 .script('/js/json2.js')
 .script('/js/jquery.js').wait()
 .script('/js/jquery-ui.js')
 .script('/js/vapor.js');
</script>

In the above example, all the scripts load in parallel, but LABjs ensures jquery.js is
executed before jquery-ui.js and vapor.js. The API is incredibly simple and succinct,
but if you want to learn about LABjs’ more advanced features, such as support for inline
scripts, check out the documentation.

FUBCs
One thing to watch out for with any of these script loaders is that during the page load,
users may see a flash of unbehaviored content (FUBC)—i.e., a glimpse at the raw page
before any JavaScript is executed. This won’t be a problem if you’re not relying on
JavaScript to style or manipulate the initial page. But if you are, address this issue by
setting some initial styles in CSS, perhaps hiding a few elements, or by displaying a brief
loading splash screen.

80 | Chapter 6: Dependency Management

http://www.labjs.com
http://labjs.com/documentation.php

CHAPTER 7

Working with Files

Traditionally, file access and manipulation was within the realm of desktop apps, with
the Web limited to functionality provided by plug-in technologies like Adobe Flash.
However, all of that is changing with HTML5, which gives developers a lot more scope
for dealing with files, further blurring the boundaries between desktop and the Web.
With modern browsers, users can drag and drop files onto the page, paste structured
data, and see real-time progress bars as files upload in the background.

Browser Support
Support for the new HTML5 file APIs is not universal, but certainly enough browsers
have implementations that it’s worth your while to integrate them.

• Firefox >= 3.6

• Safari >= 6.0

• Chrome >= 7.0

• IE: no support

• Opera >= 11.1

As there’s no IE support yet, you’ll have to use progressive enhancement. Give users
the option of a traditional file input for uploading, as well as allowing the more ad-
vanced drag/dropping of files. Detecting support is simple—just check whether the
relevant objects are present:

if (window.File && window.FileReader && window.FileList) {
 // API supported
}

Getting Information About Files
The main security consideration behind HTML5’s file handling is that only files selec-
ted by the user can be accessed. This can be done by dragging the file onto the browser,

81

selecting it in a file input, or pasting it into a web application. Although there has been
some work to expose a filesystem to JavaScript, access has always been sandboxed.
Obviously, it would be a tremendous security flaw if JavaScript could read and write
arbitrary files on your system.

Files are represented in HTML5 by File objects, which have three attributes:

name

The file’s name as a read-only string

size

The file’s size as a read-only integer

type

The file’s MIME type as a read-only string, or an empty string (“”) if the type
couldn’t be determined

For security reasons, a file’s path information is never exposed.

Multiple files are exposed as FileList objects, which you can essentially treat as an
array of File objects.

File Inputs
File inputs, which have been around since the dawn of the Web, are the traditional way
of letting users upload files. HTML5 improves on them, reducing some of their draw-
backs. One of the long-standing bugbears for developers was allowing multiple file
uploads. In the past, developers had to resort to a mass of file inputs or rely on a plug-
in like Adobe Flash. HTML5 addresses this with the multiple attribute. By specifying
multiple on a file input, you’re indicating to the browser that users should be allowed
to select multiple files. Older browsers that don’t support HTML5 will simply ignore
the attribute:

<input type="file" multiple>

The UI isn’t perfect, though; to select multiple files, users need to hold down the Shift
key. You may want to show users a message to this effect. For example, Facebook found
that 85% of users who uploaded a photo would upload only one photo. By adding a
tip that explains how to select multiple photos to the uploading process, as shown in
Figure 7-1, the metrics dropped from 85% to 40%.

Another problem for developers was not having any information about which files had
been selected. Often, it’s useful to validate the selected files, making sure they’re a
certain type or not above a certain size. HTML5 makes this possible now by giving you
access to the input’s selected files, using the files attribute.

The read-only files attribute returns a FileList, which you can iterate through, per-
forming your validation, and then informing the user of the result:

82 | Chapter 7: Working with Files

http://www.html5rocks.com/en/tutorials/file/filesystem/
http://www.zurb.com/article/515/podcast-of-julie-zhuos-talk-on-how-facebo

var input = $("input[type=file]");

input.change(function(){
 var files = this.files;

 for (var i=0; i < files.length; i++)
 assert(files[i].type.match(/image.*/))
});

Figure 7-1. Uploading multiple files on Facebook

Having access to the selected files doesn’t limit you to validation, though. For example,
you could read the file’s contents, displaying an upload preview. Or, rather than having
the UI block as the files are uploaded, you could upload them in the background using
Ajax, displaying a live progress bar. All this and more is covered in the subsequent
sections.

Drag and Drop
Drag and drop support was originally “designed” and implemented by Microsoft back
in 1999 for Internet Explorer 5.0, and IE has supported it ever since. The HTML5
specification has just documented what was already there, and now Safari, Firefox, and
Chrome have added support, emulating Microsoft’s implementation. However, to put
it kindly, the specification is rather a mess, and it requires a fair bit of hoop-jumping
to satisfy its often pointless requirements.

There are no less than seven events associated with drag and drop: dragstart, drag,
dragover, dragenter, dragleave, drop, and dragend. I’ll elaborate on each in the sections
below.

Even if your browser doesn’t support the HTML5 file APIs, it’s likely that you can still
use the drag and drop APIs. Currently, the browser requirements are:

Drag and Drop | 83

http://www.quirksmode.org/blog/archives/2009/09/the_html5_drag.html

• Firefox >= 3.5

• Safari >= 3.2

• Chrome >= 7.0

• IE >= 6.0

• Opera: no support

Dragging
Dragging is fairly straightforward. To make an element draggable, set its draggable
attribute to true.

<div id="dragme" draggable="true">Drag me!</div>

Now we have to associate that draggable element with some data. We can do this by
listening to the dragstart event and calling the event’s setData() function:

var element = $("#dragme");

element.bind("dragstart", function(event){
 // We don't want to use jQuery's abstraction
 event = event.originalEvent;

 event.dataTransfer.effectAllowed = "move";
 event.dataTransfer.setData("text/plain", $(this).text());
 event.dataTransfer.setData("text/html", $(this).html());
 event.dataTransfer.setDragImage("/images/drag.png", -10, -10);
});

jQuery provides an abstraction of the event, which doesn’t contain the dataTransfer
object we need. Conveniently, the abstracted event has an originalEvent attribute,
which we can use to access the drag/drop APIs.

As demonstrated above, the event has a dataTransfer object, which has the various
drag and drop functions we need. The setData() function takes a mimetype and string
data. In this case, we’re setting some text and text/html data on the drag event. When
the element is dropped, and a drop event is triggered, we can read this data. Likewise,
if the element is dragged outside the browser, other applications can handle the drop-
ped data according to which file types they support.

When dragging text, use the text/plain type. It’s recommended to always set this as a
fallback for applications or drop targets that don’t support any of the other formats.
Dragged links should have two formats: text/plain and text/uri-list. To drag mul-
tiple links, join each link with a new line:

// Dragging links
event.dataTransfer.setData("text/uri-list", "http://example.com");
event.dataTransfer.setData("text/plain", "http://example.com");

// Multiple links are separated by a new line

84 | Chapter 7: Working with Files

event.dataTransfer.setData("text/uri-list", "http://example.com\nhttp://google.com");
event.dataTransfer.setData("text/plain", "http://example.com\nhttp://google.com");

The optional setDragImage() function controls what is displayed under the cursor
during drag operations. It takes an image source and x/y coordinates, the position of
the image relative to the cursor. If it’s not supplied, you just get a ghostly clone of the
dragged element. An alternative to setDragImage() is addElement(element, x, y), which
uses the given element to update the drag feedback. In other words, you can provide a
custom element to be displayed during drag operations.

You can also allow users to drag files out of the browser by setting the DownloadURL
type. You can specify a URL to the file’s location, which the browser will subsequently
download. Gmail uses this to great effect by allowing users to drag and drop email
attachments straight out of the browser onto the desktop.

The bad news is that this is currently only supported by Chrome, and it is rather un-
documented. It can’t hurt to use it, though, and hopefully other browsers will add
support in the future. The DownloadURL format’s value is a colon (:)-separated list of file
information: the mime, name, and location.

$("#preview").bind("dragstart", function(e){
 e.originalEvent.dataTransfer.setData("DownloadURL", [
 "application/octet-stream", // MIME type
 "File.exe", // File name
 "http://example.com/file.png" // File location
].join(":"));
});

You can see the full example of HTML5’s drag/drop API in this book’s accompanying
assets, in assets/ch07/drag.html.

Dropping
The drag/drop API lets you listen to drop events, which can respond to dropped files
and other elements. This is where we start to see some of the drag/drop API craziness;
for the drop event to fire at all, you have to cancel the defaults of both the dragover and
the dragenter events! For example, here’s how to cancel the two events:

var element = $("#dropzone");

element.bind("dragenter", function(e){
 // Cancel event
 e.stopPropagation();
 e.preventDefault();
});

element.bind("dragover", function(e){
 // Set the cursor
 e.originalEvent.dataTransfer.dropEffect = "copy";

 // Cancel event
 e.stopPropagation();

Drag and Drop | 85

 e.preventDefault();
});

You can also set a dropEffect—i.e., the cursor appearance—in the dragover event, as
demonstrated above. By listening to the dragenter and dragleave events and toggling
classes for the targeted element, you can give a visual indication to users that a certain
area accepts dropped files.

Only once we’ve canceled dragenter and dragover’s events can we start listening to
drop events. The drop event will trigger when a dragged element or file is dropped over
the target element. The drop event’s dataTransfer object has a files attribute, which
returns a FileList of all dropped files:

element.bind("drop", function(event){
 // Cancel redirection
 event.stopPropagation();
 event.preventDefault();

 event = event.originalEvent;

 // Access dragged files
 var files = event.dataTransfer.files;

 for (var i=0; i < files.length; i++)
 alert("Dropped " + files[i].name);
});

You can access data other than files using the dataTransfer.getData() function, passing
the format you support. If that format isn’t available, the function will just return
undefined.

var text = event.dataTransfer.getData("Text");

The dataTransfer object has a read-only types attribute, which returns a DOMString
List (essentially an array) of the mime formats that were set on the dragstart event.
Additionally, if any files are being dragged, one of the types will be the string "Files".

var dt = event.dataTransfer
for (var i=0; i < dt.types.length; i++)
 console.log(dt.types[i], dt.getData(dt.types[i]));

See the full drop example in assets/ch07/drop.html.

Cancel Default Drag/Drop
By default, dragging a file onto a web page makes the browser navigate to that file. We
want to prevent that behavior because we don’t want users navigating away from our
web application if they miss the drop area. This is easily accomplished—just cancel the
body’s dragover event.

$("body").bind("dragover", function(e){
 e.stopPropagation();
 e.preventDefault();

86 | Chapter 7: Working with Files

 return false;
});

Copy and Paste
In addition to drag-and-drop desktop integration, some browsers have support for
copying and pasting. The API hasn’t been standardized, and it isn’t part of the HTML5
spec, so you’ll need to determine how to cater to the various browsers.

Again, funnily enough, IE is the pioneer here, with support dating back to IE 5.0.
WebKit has taken Microsoft’s API and improved it somewhat, bringing it inline with
the drag-and-drop API. Both are virtually identical, except for the different objects:
clipboardData rather than dataTransfer.

Firefox has no support yet, and although it has a proprietary API for accessing the
clipboard, it’s unwieldy to say the least. WebKit (Safari/Chrome) has good support,
and I imagine the W3C will eventually standardize its take on clipboard APIs. Browser
support is as follows:

• Safari >= 6.0

• Chrome (only pasting)

• Firefox: no support

• IE >= 5.0 (different API)

Copying
There are two events associated with copying, and two events with cutting:

• beforecopy

• copy

• beforecut

• cut

As the name suggests, beforecopy and beforecut are triggered before any clipboard op-
erations, allowing you to cancel them if necessary. When the user copies some selected
text, the copy event fires, giving you a clipboardData object that can be used to set
custom clipboard data. Like the dataTransfer object, clipboardData has a setData()
function, which takes a mime format and string value. If you’re planning on calling
this function, you should cancel the original copy event, preventing the default action.

Rather than on the event, IE sets the clipboardData object on window. You’ll need to
check to see whether the object is present on the event, and if not, whether it’s present
on the window.

Firefox will actually fire the copy event, but it won’t give you access to the clipboard
Data object. Chrome will give you the object, but it will ignore any data you set on it.

Copy and Paste | 87

$("textarea").bind("copy", function(event){
 event.stopPropagation();
 event.preventDefault();

 var cd = event.originalEvent.clipboardData;

 // For IE
 if (!cd) cd = window.clipboardData;

 // For Firefox
 if (!cd) return;

 cd.setData("text/plain", $(this).text());
});

At the rate browsers are innovating, it's quite likely support will be standardized soon.
If you want to add copy/paste support to your application, you should take a look at
the current situation yourself.

Pasting
There are two events associated with pasting, beforepaste and paste. The paste event is
triggered when the user initiates a paste, but before any data has been pasted. Again,
different browsers have different implementations. Chrome triggers the event, even if
no element has focus. Both IE and Safari require an actively focused element.

The API is very similar to the drop event API. The event has a clipboardData prop-
erty, which gives you access to the pasted data using the getData() function, passing
in a mime format. Unfortunately, from my tests, the types property is always null, so
you can’t see which mime types are available on the clipboard data. Unless you cancel
the event, the paste process will carry on as normal, and the data will be pasted into
the focused element:

$("textarea").bind("paste", function(event){
 event.stopPropagation();
 event.preventDefault();

 event = event.originalEvent;

 var cd = event.clipboardData;

 // For IE
 if (!cd) cd = window.clipboardData;

 // For Firefox
 if (!cd) return;

 $("#result").text(cd.getData("text/plain"));

 // Safari event support file pasting
 var files = cd.files;
});

88 | Chapter 7: Working with Files

The nightly versions of WebKit give you access to a files property on clipboardData,
allowing you to support file pasting into your application. I expect other browsers will
follow suit once the specification is standardized.

So, is there any possibility of getting this to work cross-browser? Well, yes, there are
actually a few workarounds. Cappuccino, for example, bypasses the oncopy family of
events completely, and simply captures key inputs. When the key combination Com-
mand/Ctrl + v is detected, it then focuses a hidden input field, which gets filled with
the pasted data. This works in every browser, but obviously for pastes initiated by the
keyboard only—not the menu.

Reading Files
Once you’ve obtained a File reference, you can instantiate a FileReader object to read
its contents into memory. Files are read asynchronously—you provide a callback to the
FileReader instance, which will be invoked when the file is ready.

FileReader gives you four functions to read file data. Which you use depends on which
data format you want returned.

readAsBinaryString(Blob|File)

Returns the file/blob’s data as a binary string. Every byte is represented by an in-
teger in the range 0 to 255.

readAsDataURL(Blob|File)

Returns the file/blob’s data encoded as a data URL. For example, this can be used
as the src attribute value for an image.

readAsText(Blob|File, encoding='UTF-8')

Returns the file/blob’s data as a text string. By default, the string is decoded as
UTF-8.

readAsArrayBuffer(Blob|File)

Returns the file/blob’s data as an ArrayBuffer object. This is unimplemented in
most browsers.

FileReader instances have a number of events that are triggered when one of the above
read functions is called. The main ones with which you need to be concerned are:

onerror
Called when an error occurs

onprogress
Called periodically while the data is being read

onload
Called when the data is available

Reading Files | 89

http://nightly.webkit.org
http://cappuccino.org
http://en.wikipedia.org/wiki/Data_URI_scheme

To use FileReader, just instantiate an instance, add the events, and use one of the read
functions. The onload event contains a result attribute, specifying read data in the
appropriate format:

var reader = new FileReader();
reader.onload = function(e) {
 var data = e.target.result;
};
reader.readAsDataURL(file);

For example, we can use the data variable above as an image source, displaying a
thumbnail of the specified file:

var preview = $("img#preview")

// Check to see whether file is an image type, and isn't
// so big a preview that it would cause the browser problems
if (file.type.match(/image.*/) &&
 file.size < 50000000) {

 var reader = new FileReader();
 reader.onload = function(e) {
 var data = e.target.result;
 preview.attr("src", data);
 };
 reader.readAsDataURL(file);
}

Blobs and Slices
Sometimes it’s preferable to read a slice of the file into memory, rather than the entire
thing. The HTML5 file APIs conveniently support a slice() function. This takes a
starting byte as the first argument, and a byte offset (or slice length) as its second. It
returns a Blob object, which we can interchange with methods that support the File
object, such as FileReader. For example, we could buffer the file reading like this:

var bufferSize = 1024;
var pos = 0;

var onload = function(e){
 console.log("Read: ", e.target.result);
};

var onerror = function(e){
 console.log("Error!", e);
};

while (pos < file.size) {
 var blob = file.slice(pos, bufferSize);

 var reader = new FileReader();
 reader.onload = onload;
 reader.onerror = onerror;
 reader.readAsText(blob);

90 | Chapter 7: Working with Files

 pos += bufferSize;
}

As you can see above, you can use a FileReader instance only once; after that, you’ll
need to instantiate a new one.

You can check out the full example in assets/ch07/slices.html. One thing to watch out
for is that the file can’t be read if the sandbox is local. In other words, if slices.html is
being read from the disk, rather than hosted, the read will fail and the onerror event
will be triggered.

Custom Browse Buttons
Opening a file-browsing dialog programmatically is a common use case. In other words,
a styled Browse or Attachment button immediately brings up a browse dialog when
clicked, without the user having to interact with a traditional file input. However, for
security reasons, this is trickier than it sounds. File inputs have no browse function,
and, with the exception of Firefox, you can’t just trigger a custom click event on a file
input.

The current solution may sound like a hack, but it works rather well. When a user
mouses over a browse button, overlay a transparent file input that has the same position
and dimensions as the button. The transparent file input will catch any click events,
opening a browse dialog.

Inside this book’s assets/ch07 folder, you’ll find jquery.browse.js, a jQuery plug-in that
does just that. To create a custom browse button, just call the browseElement() function
on a jQuery instance. The function will return a file input that you can add a change
event listener to, detecting when the user has selected some files.

var input = $("#attach").browseElement();

input.change(function(){
 var files = $(this).attr("files");
});

It’s got full cross-browser support, and it couldn’t be easier!

Uploading Files
Part of the XMLHttpRequest Level 2 specification was the ability to upload files. File
uploads have long been a painful experience for users. Once they’ve browsed and se-
lected a file, the page reloads and they have to wait for ages while it uploads, with no
indication of progress or feedback—quite the usability nightmare. Luckily for us, XHR
2 solves this problem. It allows us to upload files in the background, and it even gives
us progress events so that we can provide the user with a real-time progress bar. It’s
generally well supported by the major browsers:

Uploading Files | 91

http://www.w3.org/TR/XMLHttpRequest2

• Safari >= 5.0

• Firefox >= 4.0

• Chrome >= 7.0

• IE: no support

• Opera: no support

File uploads can be done via the existing XMLHttpRequest API, using the send() func-
tion, or alternatively by using a FormData instance. A FormData instance just represents
the contents of a form in an easy-to-manipulate interface. You can build a FormData
object from scratch, or by passing in an existing form element when instantiating the
object:

var formData = new FormData($("form")[0]);

// You can add form data as strings
formData.append("stringKey", "stringData");

// And even add File objects
formData.append("fileKey", file);

Once you’ve finished with the FormData, you can POST it to your server using
XMLHttpRequest. If you’re using jQuery for Ajax requests, you’ll need to set the proc
essData option to false so that jQuery doesn’t try to serialize the supplied data. Don’t
set the Content-Type header because the browser will set it automatically to multipart/
form-data, along with a multipart boundary:

jQuery.ajax({
 data: formData,
 processData: false,
 url: "http://example.com",
 type: "POST"
})

The alternative to using FormData is to pass the file directly to the XHR object’s
send() function:

var req = new XMLHttpRequest();
req.open("POST", "http://example.com", true);
req.send(file);

Or, with jQuery’s Ajax API, you can upload files like this:

$.ajax({
 url: "http://example.com",
 type: "POST",
 success: function(){ /* ... */ },
 processData: false,
 data: file
});

It’s worth noting that this upload is a bit different from the traditional multipart/form-
data one. Usually, information about the file, such as the name, would be included in

92 | Chapter 7: Working with Files

the upload. Not so in this case—the upload is pure file data. To pass information about
the file, we can set custom headers, such as X-File-Name. Our servers can read these
headers and process the file properly:

$.ajax({
 url: "http://example.com",
 type: "POST",
 success: function(){ /* ... */ },
 processData: false,
 contentType: "multipart/form-data",

 beforeSend: function(xhr, settings){
 xhr.setRequestHeader("Cache-Control", "no-cache");
 xhr.setRequestHeader("X-File-Name", file.fileName);
 xhr.setRequestHeader("X-File-Size", file.fileSize);
 },

 data: file
});

Unfortunately, many servers will have trouble receiving the upload because pure data
is a more unfamiliar format than multipart or URL-encoded form parameters. Using
this method, you may have to parse the request manually. For this reason, I advocate
using FormData objects, and sending the upload serialized as a multipart/form-data
request. In the assets/ch07 folder, you’ll find jquery.upload.js, a jQuery plug-in that
abstracts file uploading into a simple $.upload(url, file) interface.

Ajax Progress
The XHR Level 2 specification adds support for progress events, both for download
and upload requests. This allows for a real-time file upload progress bar, giving users
an estimated duration before the upload is complete.

To listen to the progress event on the download request, add it directly on the XHR
instance:

var req = new XMLHttpRequest();

req.addEventListener("progress", updateProgress, false);
req.addEventListener("load", transferComplete, false);
req.open();

For the upload progress event, add it to the upload attribute of the XHR instance:

var req = new XMLHttpRequest();

req.upload.addEventListener("progress", updateProgress, false);
req.upload.addEventListener("load", transferComplete, false);
req.open();

The load event will fire once the upload request has completed, but before the server
has issued a response. We can add it to jQuery because the XHR object and settings

Uploading Files | 93

are passed to the beforeSend callback. The full example, including custom headers,
looks like this:

$.ajax({
 url: "http://example.com",
 type: "POST",
 success: function(){ /* ... */ },
 processData: false,
 dataType: "multipart/form-data",

 beforeSend: function(xhr, settings){
 var upload = xhr.upload;

 if (settings.progress)
 upload.addEventListener("progress", settings.progress, false);

 if (settings.load)
 upload.addEventListener("load", settings.load, false);

 var fd = new FormData;

 for (var key in settings.data)
 fd.append(key, settings.data[key]);

 settings.data = fd;
 },

 data: file
});

The progress event contains the position of the upload (that is, how many bytes have
uploaded) and the total (the size of the upload request in bytes). You can use these
two properties to calculate a progress percentage:

var progress = function(event){
 var percentage = Math.round((event.position / event.total) * 100);
 // Set progress bar
}

In fact, the event has a timestamp, so if you record the time you started the upload, you
can create a rudimentary estimated time of completion (ETA):

var startStamp = new Date();
var progress = function(e){
 var lapsed = startStamp - e.timeStamp;
 var eta = lapsed * e.total / e.position - lapsed;
};

However, this estimation is unlikely to be accurate with smaller (and therefore quicker)
uploads. In my opinion, it’s only worth showing an ETA if the upload will take longer
than four minutes or so. A percentage bar is usually sufficient, as it gives users a clear
and visual indication of how much longer an upload will take.

94 | Chapter 7: Working with Files

jQuery Drag and Drop Uploader
So, let’s put all that knowledge into practice by building a drag-and-drop file uploader.
We’re going to need several libraries: jquery.js for the backbone, jquery.ui.js for the
progress bar, jquery.drop.js to abstract the drag-and-drop APIs, and jquery.upload.js for
the Ajax upload. All our logic will go inside jQuery.ready(), so it will be run when the
DOM is ready:

//= require <jquery>
//= require <jquery.ui>
//= require <jquery.drop>
//= require <jquery.upload>

jQuery.ready(function($){
 /* ... */
});

Creating a Drop Area
We want users to be able to drag and drop files onto the #drop element, so let’s turn it
into a drop area. We need to bind to the drop event, canceling it and retrieving any
dropped files, which are then passed to the uploadFile() function:

var view = $("#drop");
view.dropArea();

view.bind("drop", function(e){
 e.stopPropagation();
 e.preventDefault();

 var files = e.originalEvent.dataTransfer.files;
 for (var i = 0; i < files.length; i++)
 uploadFile(files[i]);

 return false;
});

Uploading the File
And now for the uploadFile() function—where the magic happens. We’re going use
the $.upload() function in jquery.upload.js to send an Ajax upload request to the server.
We’ll listen to progress events on the request and update a jQuery UI progress bar.
Once the upload is complete, we’ll notify the user and remove the element:

var uploadFile = function(file){
 var element = $("<div />");
 element.text(file.fileName);

 var bar = $("<div />");
 element.append(bar);
 $("#progress").append(element);

jQuery Drag and Drop Uploader | 95

 var onProgress = function(e){
 var per = Math.round((e.position / e.total) * 100);
 bar.progressbar({value: per});
 };

 var onSuccess = function(){
 element.text("Complete");
 element.delay(1000).fade();
 };

 $.upload("/uploads", file, {upload: {progress: onProgress}, success: onSuccess});
};

That’s pretty straightforward! To see the full example, check out assets/ch07/dragdro-
pupload.html.

96 | Chapter 7: Working with Files

CHAPTER 8

The Real-Time Web

Why is the real-time Web so important? We live in a real-time world, so it’s only natural
that the Web is moving in that direction. Users clamor for real-time communication,
data, and search. Our expectations for how quickly the Internet should deliver us in-
formation have changed—delays of minutes in breaking news stories are now unac-
ceptable. Major companies like Google, Facebook, and Twitter have been quick to
catch onto this, offering real-time functionality in their services. This is a growing trend
that’s only going to get bigger.

Real Time’s History
Traditionally, the Web was built around the request/response model of HTTP: a client
requests a web page, the server delivers it, and nothing happens again until the client
requests another page. Then, Ajax came along and made web pages feel a bit more
dynamic—requests to the server could now be made in the background. However, if
the server had additional data for clients, there was no way of notifying them after the
page was loaded; live data couldn’t be pushed to clients.

Lots of solutions were devised. The most basic was polling: just asking the server over
and over again for any new information. This gave users the perception of real time. In
practice, it introduced latency and performance problems because servers had to proc-
ess a huge number of connections a second, with both TCP handshake and HTTP
overheads. Although polling is still used, it’s by no means ideal.

Then, more advanced transports were devised under the umbrella term Comet. These
techniques consisted of iframes (forever frames), xhr-multipart, htmlfiles, and long
polling. With long polling, a client opens an XMLHttpRequest (XHR) connection to a
server that never closes, leaving the client hanging. When the server has new data, it’s
duly sent down the connection, which then closes. The whole process then repeats
itself, essentially allowing server push.

Comet techniques were unstandardized hacks, and as such, browser compatibility was
a problem. On top of that, there were performance issues. Every connection to the

97

server contained a full set of HTTP headers, so if you needed low latency, this could
be quite a problem. That’s not to knock Comet, though—it was a valid solution when
there were no other alternatives.

Browser plug-ins, such as Adobe Flash and Java, were also used for server push. These
would allow raw TCP socket connections with servers, which could be used for pushing
real-time data out to clients. The caveat was that these plug-ins weren’t guaranteed to
be installed, and they often suffered from firewall issues, especially on corporate net-
works.

There are now alternative solutions as part of the HTML5 specification. However, it
will be a while before all the browsers, particularly Internet Explorer, are up to speed
with the current developments. Until then, Comet will remain a useful tool in any
frontend developer’s arsenal.

WebSockets
WebSockets are part of the HTML5 specification, providing bidirectional, full-duplex
sockets over TCP. This means that servers can push data to clients without developers
resorting to long polling or browser plug-ins, which is quite an improvement. Although
a number of browsers have implemented support, the protocol is still in flux due to
security issues. However, that shouldn’t put you off; the teething problems will soon
get ironed out and the spec will be finalized. In the meantime, browsers that don’t
support WebSockets can fall back to legacy methods like Comet or polling.

WebSockets have significant advantages over previous server push transports because
they are full-duplex, aren’t over HTTP, and persist once opened. The real drawback to
Comet was the overhead of HTTP—every request also had a full set of HTTP headers.
Then there was the overhead of multiple extraneous TCP handshakes, which was sig-
nificant at high levels of requests.

With WebSockets, once a handshake is completed between client and server, messages
can be sent back and forth without the overhead of HTTP headers. This greatly reduces
bandwidth usage, thus improving performance. Since there is an open connection,
servers can reliably push updates to clients as soon as new data becomes available (no
polling is required). In addition, the connection is duplex, so clients can also send
messages back to the server, again without the overhead of HTTP.

This is what Google’s Ian Hickson, the HTML5 specification lead, said about Web-
Sockets:

Reducing kilobytes of data to 2 bytes...and reducing latency from 150ms to 50ms is far
more than marginal. In fact, these two factors alone are enough to make WebSockets
seriously interesting to Google.

So, let’s look at WebSocket support in the browsers:

• Chrome >= 4

98 | Chapter 8: The Real-Time Web

http://dev.w3.org/html5/websockets
http://www.w3.org/TR/html5
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76

• Safari >= 5

• iOS >= 4.2

• Firefox >= 4*

• Opera >= 11*

Although Firefox and Opera have WebSocket implementations, it’s currently disabled
due to recent security scares. This will all get sorted out though, probably by the time
this book goes to print. In the meantime, you can gracefully degrade with older tech-
nologies like Comet and Adobe Flash. IE support is nowhere on the map at the moment,
and it probably won’t be added until after IE9.

Detecting support for WebSockets is very straightforward:

var supported = ("WebSocket" in window);
if (supported) alert("WebSockets are supported");

From a browser perspective, the WebSocket API is clear and logical. You instantiate a
new socket using the WebSocket class, passing the socket server endpoint—in this case,
ws://example.com:

var socket = new WebSocket("ws://example.com");

Then, we can add some event listeners to the socket:

// The connection has connected
socket.onopen = function(){ /* ... */ }

// The connection has some new data
socket.onmessage = function(data){ /* ... */ }

// The connection has closed
socket.onclose = function(){ /* ... */ }

When the server sends some data, onmessage will be called. Clients, in turn, can call
the send() function to transmit data back to the server. Clearly, we should call that only
after the socket has connected and the onopen event has fired:

socket.onmessage = function(msg){
 console.log("New data - ", msg);
};

socket.onopen = function(){
 socket.send("Why, hello there").
};

When sending and receiving messages, only strings are supported. However, it’s simple
enough to serialize and deserialize the message strings into JSON, creating your own
protocol:

var rpc = {
 test: function(arg1, arg2) { /* ... */ }
};

socket.onmessage = function(data){

WebSockets | 99

 // Parse JSON
 var msg = JSON.parse(data);

 // Invoke RPC function
 rpc[msg.method].apply(rpc, msg.args);
};

Above, we’ve created a remote procedure call (RPC) script. Our server can send some
simple JSON, like the following, to invoke functions on the client side:

{"method": "test", "args": [1, 2]}

Notice we’re restricting invocation to the rpc object. This is important for security
reasons—we don’t want to expose clients to hackers by evaluating arbitrary JavaScript.

To terminate the connection, just call the close() function:

var socket = new WebSocket("ws://localhost:8000/server");

You’ll notice when instantiating a WebSocket that we’re using the WebSocket scheme,
ws://, rather than http://. WebSockets also allow encrypted connections via TLS using
the wss:// schema. By default, WebSockets will use port 80 for nonencrypted connec-
tions and port 443 for encrypted ones. You can override this by providing a custom
port in the URL. Keep in mind that not all ports are available to clients; firewalls may
block the more uncommon ones.

At this stage, you may be thinking, “I can’t possibly use this in production—the
standard’s a moving target and there’s no IE support.” Well, those are valid concerns,
but luckily there’s a solution. Web-socket-js is a WebSocket implementation powered
by Adobe Flash. You can use this library to provide legacy browsers a WebSocket
fallback to Flash, a plug-in that’s almost ubiquitously available. It mirrors the Web-
Socket API exactly, so when WebSockets have better penetration, you'll only need to
remove the library—not change the code.

Although the client-side API is fairly straightforward, things aren’t quite so simple
server side. The WebSocket protocol has been through several incompatible iterations:
drafts 75 and 76. Servers need to take account of both drafts by detecting the type of
handshake clients use.

WebSockets work by first performing an HTTP “upgrade” request to your server. If
your server has WebSocket support, it will perform the WebSocket handshake and a
connection will be initiated. Included in the upgrade request is information about the
origin domain (where the request is coming from). Clients can make WebSocket con-
nections to any domain—it’s the server that decides which clients can connect, often
by using a whitelist of allowed domains.

From conception, WebSockets were designed to work well with firewalls and prox-
ies, using popular ports and HTTP headers for the initial connection. However, things
rarely work out so simply in the wild Web. Some proxies change the WebSockets up-
grade headers, breaking them. Others don’t allow long-lived connections and will time
out after a while. In fact, the most recent update to the protocol draft (version 76)

100 | Chapter 8: The Real-Time Web

https://github.com/gimite/web-socket-js
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-75
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76

unintentionally broke compatibility with reverse-proxies and gateways. There are a few
steps you can take to give your WebSockets the best chance of success:

• Use secured WebSocket connections (wss). Proxies won’t meddle with encrypted
connections, and you get the added advantage that the data is safe from eaves-
droppers.

• Use a TCP load balancer in front of your WebSocket servers, rather than an HTTP
one. Consider an HTTP balancer only if it actively advertises WebSocket support.

• Don’t assume that if a browser has WebSocket support, it will work. Instead, time
out connections if they aren’t established quickly, gracefully degrading to a differ-
ent transport like Comet or polling.

So, what server options are there? Luckily, there is a multitude of implementations in
languages like Ruby, Python, and Java. Make sure any implementation supports at least
draft 76 of the protocol, as this is most common in clients.

• Node.js

—node-Websocket-server

—Socket.IO

• Ruby

—EventMachine

—Cramp

—Sunshowers

• Python

—Twisted

—Apache module

• PHP

—php-Websocket

• Java

—Jetty

• Google Go

—native

Node.js and Socket.IO
Node.js is the newest kid on the block, but one of the most exciting. Node.js is an
evented JavaScript server, powered by Google’s V8 JS engine. As such, it’s incredibly
fast and is great for services that have a large number of connected clients, like a Web-
Socket server.

WebSockets | 101

http://github.com/miksago/node-websocket-server
http://socket.io
http://github.com/igrigorik/em-websocket
https://github.com/lifo/cramp
http://rainbows.rubyforge.org/sunshowers/
http://github.com/rlotun/txWebSocket
http://code.google.com/p/pywebsocket
https://github.com/nicokaiser/php-websocket
http://www.eclipse.org/jetty
http://code.google.com/p/go
http://nodejs.org
http://code.google.com/p/v8

Socket.IO is a Node.js library for WebSockets. What’s interesting, though, is that it
goes far beyond that. Here’s a blurb from its site:

Socket.IO aims to make real-time apps possible in every browser and mobile device,
blurring the differences between the different transport mechanisms.

Socket.IO will try and use WebSockets if they’re supported, but it will fall back to other
transports if necessary. The list of supported transports is very comprehensive and
offers a lot of browser compatibility.

• WebSocket

• Adobe Flash Socket

• ActiveX HTMLFile (IE)

• XHR with multipart encoding

• XHR with long-polling

• JSONP polling (for cross-domain)

Socket.IO’s browser support is brilliant. Server push can be notoriously difficult to
implement, but the Socket.IO team has gone through all that pain for you, ensuring
compatibility with most browsers. As such, it works in the following browsers:

• Safari >= 4

• Chrome >= 5

• IE >= 6

• iOS

• Firefox >= 3

• Opera >= 10.61

Although the server side to Socket.IO was initially written for Node.js, there are now
implementations in other languages, like Ruby (Rack), Python (Tornado), Java, and
Google Go.

A quick look at the API will demonstrate how simple and straightforward it is. The
client-side API looks very similar to the WebSocket one:

var socket = new io.Socket();

socket.on("connect", function(){
 socket.send('hi!');
});

socket.on("message", function(data){
 alert(data);
});

socket.on("disconnect", function(){});

102 | Chapter 8: The Real-Time Web

http://socket.io
http://github.com/markjeee/Socket.IO-rack
https://github.com/MrJoes/tornadio
http://code.google.com/p/socketio-java
http://github.com/madari/go-socket.io

Behind the scenes, Socket.IO will work out the best transport to use. As written in its
readme file, Socket.IO is “making creating real-time apps that work everywhere a snap.”

If you’re looking for something a bit higher level than Socket.IO, you may be interested
in Juggernaut, which builds upon it. Juggernaut has a channel interface: clients can
subscribe to channels and servers can publish to them, i.e.—the PubSub pattern. The
library can manage scaling, publishing to specific clients, TLS, and more.

If you need hosted solutions, look no further than Pusher. Pusher lets you leave behind
the hassle of managing your own server so that you can concentrate on the fun part:
developing web applications. For clients, it is as simple as including a JavaScript file in
the page and subscribing to a channel. When it comes to publishing messages, it’s just
a case of sending an HTTP request to their REST API.

Real-Time Architecture
It’s all very well being able to push data to clients in theory, but how does that integrate
with a JavaScript application? Well, if your application is modeled correctly, it’s ac-
tually remarkably straightforward. We’re going to go through all the steps involved in
making your application real time, specifically following the PubSub pattern. The first
thing to understand is the process that updates go through to reach clients.

A real-time architecture is event-driven. Typically, events are driven by user interaction:
a user changes a record and events are propagated throughout the system until data is
pushed to connected clients, updating them. When you’re thinking about making your
application real time, you need to consider two things:

• Which models need to be real time?

• When those models’ instances change, which users need notifying?

It may be that when a model changes, you want to send notifications to all connected
clients. This would be the case for a real-time activity feed on the home page, for ex-
ample, where every client saw the same information. However, the common use case
is when you have a resource associated with a particular set of users. You need to notify
those users of that resource change.

Let’s consider an example scenario of a chat room:

1. A user posts a new message to the room.

2. An Ajax request is sent off to the server, and a Chat record is created.

3. Save callbacks fire on the Chat model, invoking our method to update clients.

4. We search for all users associated with the Chat record’s room—these are the ones
we need to notify.

5. An update detailing what’s happened (Chat record created) is pushed to the relevant
users.

Real-Time Architecture | 103

https://github.com/maccman/juggernaut
http://en.wikipedia.org/wiki/PubSub
http://pusherapp.com
http://pusherapp.com/docs

The process details are specific to your chosen backend. However, if you’re using Rails,
Holla is a good example. When Message records are created, the JuggernautObserver
updates relevant clients.

That brings us to the next question: how can we send notifications to specific users?
Well, an excellent way of doing so is with the PubSub pattern: clients subscribe to
particular channels and servers publish to those channels. A user just subscribes to a
unique channel containing an identifier, perhaps the user’s database ID; then, the server
simply needs to publish to that unique channel to send notifications to that specific
user.

For example, a particular user could subscribe to the following channel:

/observer/0765F0ED-96E6-476D-B82D-8EBDA33F4EC4

where the random set of digits is a unique identifier for the currently logged-in user.
To send notifications to that particular user, the server just needs to publish to that
same channel.

You may be wondering how the PubSub pattern works with transports like WebSockets
and Comet. Fortunately, there are already a lot of solutions, such as Juggernaut and
Pusher, both mentioned previously. PubSub is a common abstraction on top of Web-
Sockets, and its API should be fairly similar to whatever service or library you end up
choosing.

Once notifications have been pushed to clients, you’ll see the real beauty of the MVC
architecture. Let’s go back to our chat example. The notification we sent out to clients
could look like this.

{
 "klass": "Chat",
 "type": "create",
 "id": "3",
 "record": {"body": "New chat"}
}

It contains the model that’s changed, the type of change, and any relevant attributes.
Using this, our client can create a new Chat record locally. As the client’s models are
bound to the UI, the interface is automatically updated to reflect the new chat message.

What’s brilliant is that none of this is specific to the Chat model. If we want to make
another model real time, it’s just a case of adding another observer server side, making
sure clients are updated when it changes. Our backend and client-side models are now
tied together. Any changes to the backend models get automatically propagated to all
the relevant clients, updating their UI. With this architecture, the application is truly
real time. Any interaction a user makes is instantly broadcast to other users.

104 | Chapter 8: The Real-Time Web

http://github.com/maccman/holla

Perceived Speed
Speed is a critical but often neglected part of UI design because it makes a huge differ-
ence to the user experience (UX) and can have a direct impact on revenue. Companies,
such as the following, are studying its implications all the time:

Amazon
100 ms of extra load time caused a 1% drop in sales (source: Greg Linden, Amazon).

Google
500 ms of extra load time caused 20% fewer searches (source: Marrissa Mayer,
Google).

Yahoo!
400 ms of extra load time caused a 5–9% increase in the number of people who
clicked “back” before the page even loaded (source: Nicole Sullivan, Yahoo!).

Perceived speed is just as important as actual speed because this is what users are going
to notice. So, the key is to make users think an application is fast, even if in reality it
isn’t. The ability to do this is one of the benefits of JavaScript applications—UI doesn’t
block, even if a background request is taking a while.

Let’s take the chat room scenario again. A user sends a new message, firing off an Ajax
request to the server. We could wait until the message performs a roundtrip through
the server and clients before appending it to the chat log. However, that would intro-
duce a couple of seconds’ latency between the time a user submitted a new message
and when it appeared in her chat log. The application would seem slow, which would
definitely hurt the user experience.

Instead, why not create the new message locally, thereby immediately adding it to the
chat log? From a user’s perspective, it seems like the message has been sent instantly.
Users won’t know (or care) that the message hasn’t yet been delivered to other clients
in the chat room. They’ll just be happy with a fast and snappy user experience.

Aside from interactions, one of the slowest parts of Web applications is loading in new
data. It’s important to do intelligent preloading to try to[predict what a user will need
before he actually asks for it. Then, cache the data in memory; if the user needs it
subsequently, you shouldn’t have to request it again from the server. Upon startup, the
application should preload commonly used data. Users are more likely to be forgiving
of slower initial load times than once the application’s loaded.

You should always give users feedback when they interact with your application, usu-
ally with some sort of visual indicator. In business jargon this is called expectation
managment, making sure clients are aware of a project’s status and ETA. The same
applies to UX—users will be more patient if they’re given an indication that something’s
happening. While users are waiting for new data, show them a message or a spinner.
If a file’s being uploaded, show a progress bar and an estimated duration. All this gives
a perception of speed, improving the user experience.

Perceived Speed | 105

CHAPTER 9

Testing and Debugging

All developers test, to some degree or another, when they’re programming. Even just
running the code manually is a form of testing. However, what we’re going to cover
here is automated testing in JavaScript—i.e., writing specific assertions that run auto-
matically. Automated testing won’t eliminate bugs from your code, but it is a measure
to effectively reduce the number of defects and to prevent older bugs from creeping
back into the codebase. There are lots of great resources out there justifying and ex-
plaining different types of testing. So, rather than creating an inferior rehash of those,
this chapter will focus on the specifics of testing in JavaScript as opposed to other
languages.

Testing in JavaScript isn’t really ingrained into the culture, so many JavaScript devel-
opers don’t write any tests for their code. I think the main reason is that automated
JavaScript testing is difficult—it doesn’t scale. Let’s take jQuery for example. The li-
brary has hundreds of unit tests and about 10 different test suites to simulate the various
environments it’s expected to run in. Each test has to be run once in every suite. Now,
take a look at the browsers jQuery supports:

• Safari: 3.2, 4, 5, nightly

• Chrome: 8, 9, 10, 11

• Internet Explorer: 6, 7, 8, 9

• Firefox: 2, 3, 3.5, 3.6, nightly

• Opera: 9.6, 10, 11

So, that’s 5 browsers with about 20 versions among them, and each suite needs to be
run on every browser version. You can see how the amount of tests that have to be run
is expanding exponentially, and I haven’t even gotten to platforms yet! It just doesn’t
scale.

Obviously, jQuery is a special case, an example designed to highlight the problem. You
probably won’t need to support half as many browsers as jQuery does, and you are not
likely to have as many suites. However, you will have to choose which browsers your
application will support, and then test for them.

107

Before we go any further, it’s worth looking at the browser landscape, as this ultimately
dictates the limitations imposed upon web developers. The landscape changes so
quickly that this analysis is likely to be out of date by the time you read this. The general
trends, though, should remain the same.

Browser adoption rates really depend on how you measure them. They change mark-
edly between countries and continents, usually depending on how Internet-savvy the
population is. For example, here are the Statcounter.com results for Europe in early
2011:

• Safari: 4%

• Chrome: 15%

• IE: 36%

• Firefox: 37%

• Opera: 2%

The general trend is that IE usage is decreasing, while Firefox and Chrome usage is
increasing. Older browsers like IE6 are now relics of the past, with a percentage share
of a few points. Unless you’re developing for corporate or government clients with a
lot of legacy users, you shouldn’t have to worry about supporting these ancient brows-
ers.

As they say, “There are three kinds of lies: lies, damned lies, and statistics.” This applies
doubly to browser stats. The stats for my blog, for example, show IE usage of about
5%, which is way below the national average. In other words, the traffic you’ll see is
greatly affected by your specific audience. If your site caters to a technical, early-adopter
crowd, you’ll get a high percentage of Firefox and Chrome users, whereas more main-
stream sites will get visitors that better reflect the national average. When choosing
which browsers your site needs to support, you should consider your specific audience
rather than browser penetrations as a whole. However, as a rule of thumb, I generally
test in the following browsers:

• IE 8, 9

• Firefox 3.6

• Safari 5

• Chrome 11

If you don’t have stats for your existing services that show you which browsers your
audience is using, you’ll have to make an educated guess based on your target audience.
Once you’ve chosen which browsers you’re supporting, the next step is writing auto-
mated tests and making sure they pass in every supported browser.

108 | Chapter 9: Testing and Debugging

Unit Testing
Manual testing is like integration testing, making sure that your application works from
a high level. Unit testing is much more low level, ensuring that particular pieces of code
behind the scenes are performing as expected. Unit testing is much more likely to reveal
cross-browser issues, but it allows you to resolve them quickly, because you need to
examine only small sections of code.

The other advantage to unit testing is that it paves the way for automation. We’ll cover
this in more detail later in this chapter, but unit tests make it possible to set up a
continuous integration server, running the application’s tests every time the code is
committed. This is much quicker than running through your whole application man-
ually, and making sure that changes to one piece of code aren’t having any side effects
elsewhere in the application.

There are lots of JavaScript libraries out there for unit testing, each with pros and cons.
We’re going to cover the most popular ones, but the general principles should apply
to any you choose to use.

Assertions
Assertions are at the heart of testing; they determine which tests pass or fail. Assertions
are statements that indicate the expected result of your code. If the assertion is incorrect,
the test fails, and you know that something has gone wrong.

For example, here’s the simple assert() function we’ve been using for the examples
throughout this book:

var asset = function(value, msg) {
 if (!value)
 throw(msg || (value + " does not equal true"));
};

This takes a value and an optional message. If the value doesn’t evaluate to true, the
assertion fails:

// Assertion fails
assert(false);
assert("");
assert(0);

JavaScript automatically type-converts undefined, 0, and null to false during a Boolean
check. In other words, the assert works for a null check, too:

// If the statement is null, the assertion fails
assert(User.first());

Type conversion will really affect your testing, so it’s worth checking out some of the
weird and wonderful ways JavaScript behaves when converting types.

Unit Testing | 109

http://bonsaiden.github.com/JavaScript-Garden

Assert libraries aren’t just limited to checking for the truth. Most libraries include a
whole array of matchers, from comparing primitive objects to checking that a number
is greater than another. They all include at least an assertEqual() function, which lets
you compare two values:

var assertEqual = function(val1, val2, msg) {
 if (val1 !== val2)
 throw(msg || (val1 + " does not equal " + val2));
};

// Assertion passes
assertEqual("one", "one");

All the testing libraries we’re going to cover consist of a set of assertions, with slightly
differing APIs for defining them.

QUnit
QUnit is one of the most popular and well-maintained libraries, originally developed
to test jQuery. So, how do you set up a QUnit testing environment? The first step is to
download the project files locally, and then create a static test runner page:

<!DOCTYPE html>
<html>
<head>
 <title>QUnit Test Suite</title>
 <link rel="stylesheet" href="qunit/qunit.css" type="text/css" media="screen">
 <script type="text/javascript" src="qunit/qunit.js"></script>
 <!-- include tests here... -->
</head>
<body>
 <h1 id="qunit-header">QUnit Test Suite</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
 <div id="qunit-fixture">test markup</div>
</body>
</html>

To create assertions, you should put them into a test case. For example, let’s create a
test suite for that ORM we built in Chapter 3:

test("load()", function(){
 var Asset = Model.setup();

 var a = Asset.init();
 a.load({
 local: true,
 name: "test.pdf"
 });

 ok(a.local, "Load sets properties");
 equals(a.name, "test.pdf", "load() sets properties (2)");

110 | Chapter 9: Testing and Debugging

http://docs.jquery.com/Qunit
https://github.com/jquery/qunit/zipball/master

 var b = Asset.init({
 name: "test2.pdf"
 });

 equals(b.name, "test2.pdf", "Calls load() on instantiation");
});

We are defining a new case by calling test() and giving it the name of the test and the
test callback (where the magic happens). Inside the callback we’ve got various asser-
tions: ok() asserts that its first argument resolves to true, and equals() compares its
two arguments. All the assertions take a last string argument, which is the name of the
assertion, letting us easily see what passes and fails.

Let’s add that test to the page and give it a refresh, as shown in Figure 9-1.

Figure 9-1. QUnit test results

That’s pretty powerful! At a glance, we can see which tests have passed and failed—all
it takes is a page refresh. We can now begin to test every browser our application
supports, making sure our unit tests pass in all of them.

Tests are separated by the module() function, which takes a name and options. Let’s
clean up the first example by passing a setup option to module(), containing a callback
that will be executed for every test that runs in the module. In this case, all our tests
will need an Asset model, so we’ll create that in the setup:

module("Model test", {
 setup: function(){
 this.Asset = Model.setup();
 }
});

test("load()", function(){
 var a = this.Asset.init();
 a.load({
 local: true,
 name: "test.pdf"
 });

Unit Testing | 111

 ok(a.local, "Load sets properties");
 equals(a.name, "test.pdf", "load() sets properties (2)");

 var b = this.Asset.init({
 name: "test2.pdf"
 });

 equals(b.name, "test2.pdf", "Calls load() on instantiation");
});

That’s a bit cleaner, and it will be useful when adding further tests. module() also takes
a teardown option, which is a callback that will be executed after every test in the mod-
ule. Let’s add another test to our suite:

test("attributes()", function(){
 this.Asset.attributes = ["name"];

 var a = this.Asset.init();
 a.name = "test.pdf";
 a.id = 1;

 equals(a.attributes(), {
 name: "test.pdf",
 id: 1
 });
});

If you try this out, you’ll see that the test has failed, like the page shown in Figure 9-2.

This is because the equals() function uses the == comparison operator, which will fail
for objects and arrays. Instead, we need to use the same() function, which does a deep
comparison, and our test suite will pass again:

test("attributes()", function(){
 this.Asset.attributes = ["name"];

 var a = this.Asset.init();
 a.name = "test.pdf";
 a.id = 1;

 same(a.attributes(), {
 name: "test.pdf",
 id: 1
 });
});

QUnit includes a couple of other assertion types, such as notEqual() and raises(). For
full examples of their usage, see assets/ch09/qunit/model.test.js or the QUnit docs.

112 | Chapter 9: Testing and Debugging

http://docs.jquery.com/Qunit#API_documentation

Jasmine
Jasmine is another popular testing library (and my personal favorite). Rather than unit
tests, Jasmine has specs that describe the behavior of specific objects inside your ap-
plication. In practice, they’re similar to unit tests, just with a different terminology.

Jasmine’s advantage is that it doesn’t require any other libraries, or even a DOM. This
means it can run in any JavaScript environment, such as on the server side with Node.js.

As with QUnit, we need to set up a static HTML page that will load all the specs, run
them, and display the result:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Jasmine Test Runner</title>
 <link rel="stylesheet" type="text/css" href="lib/jasmine.css">
 <script type="text/javascript" src="lib/jasmine.js"></script>
 <script type="text/javascript" src="lib/jasmine-html.js"></script>

 <!-- include source files here... -->
 <!-- include spec files here... -->
</head>
<body>

 <script type="text/javascript">
 jasmine.getEnv().addReporter(new jasmine.TrivialReporter());

Figure 9-2. Failing tests in QUnit

Unit Testing | 113

http://pivotal.github.com/jasmine
http://nodejs.org

 jasmine.getEnv().execute();
 </script>

</body>
</html>

Let’s take a look at writing some Jasmine specs. We’ll test some more of the ORM
library from Chapter 3:

describe("Model", function(){
 var Asset;

 beforeEach(function(){
 Asset = Model.setup();
 Asset.attributes = ["name"];
 });

 it("can create records", function(){
 var asset = Asset.create({name: "test.pdf"});
 expect(Asset.first()).toEqual(asset);
 });

 it("can update records", function(){
 var asset = Asset.create({name: "test.pdf"});

 expect(Asset.first().name).toEqual("test.pdf");

 asset.name = "wem.pdf";
 asset.save();

 expect(Asset.first().name).toEqual("wem.pdf");
 });

 it("can destroy records", function(){
 var asset = Asset.create({name: "test.pdf"});

 expect(Asset.first()).toEqual(asset);

 asset.destroy();

 expect(Asset.first()).toBeFalsy();
 });
});

Specs are grouped into suites using the describe() function, which takes the name
of the spec and an anonymous function. In the example above, we’re using the
beforeEach() function as a setup utility to be run before every function. Jasmine also
includes a teardown function, afterEach(), which is called after every spec is run. We’re
defining the variable Asset outside the beforeEach() function, so it’s local to the suite
and can be accessed inside each spec.

A spec begins with the it() function, which gets passed the name of the spec and the
anonymous function containing the assertions. Assertions are created by passing

114 | Chapter 9: Testing and Debugging

the relevant value to the expect() function, and then calling a matcher, such as one of
the following:

expect(x).toEqual(y)

Compares objects or primitives x and y, and passes if they are equivalent

expect(x).toBe(y)

Compares objects or primitives x and y, and passes if they are the same object

expect(x).toMatch(pattern)

Compares x to string or regular expression pattern, and passes if they match

expect(x).toBeNull()

Passes if x is null

expect(x).toBeTruthy()

Passes if x evaluates to true

expect(x).toBeFalsy()

Passes if x evaluates to false

expect(x).toContain(y)

Passes if array or string x contains y

expect(fn).toThrow(e)

Passes if function fn throws exception e when executed

Jasmine includes lots of other matchers, and it even lets you write your own custom
ones.

Figure 9-3 shows an overview of running the Jasmine Test Runner using the example
specs above.

Figure 9-3. Jasmine test results

Drivers
Although by using a testing library we now have a degree of automation, there’s still
the problem of running your tests in lots of different browsers. It’s not exactly produc-
tive having developers refresh the tests in five different browsers before every commit.

Drivers | 115

http://github.com/pivotal/jasmine/wiki/Matchers

Drivers were developed to solve exactly this problem. They’re daemons that integrate
with various browsers, running your JavaScript tests automatically and notifying you
when they fail.

It can be quite a lot of work implementing a driver setup on every developer’s machine,
so most companies have a single continuous integration server, which will use a post-
commit hook to run all the JavaScript tests automatically, making sure they all pass
successfully.

Watir, pronounced “water,” is a Ruby driver library that integrates with Crome, Fire-
fox, Safari, and Internet Explorer (dependent on the platform). After installation, you
can give Watir some Ruby commands to drive the browser, clicking links and filling in
forms the same as a person would. During this process, you can run a few test cases
and assert that things are working as expected:

FireWatir drives Firefox
require "firewatir"

browser = Watir::Browser.new
browser.goto("http://bit.ly/watir-example")

browser.text_field(:name => "entry.0.single").set "Watir"
browser.button(:name => "logon").click

Due to limitations on which browsers can be installed on which operating systems, if
you’re testing with Internet Explorer, your continuous integration server will have to
run a version of Windows. Likewise, to test in Safari, you’ll also need a server running
Mac OS X.

Another very popular browser-driving tool is Selenium. The library provides a domain
scripting language (DSL) to write tests in a number of programming languages, such
as C#, Java, Groovy, Perl, PHP, Python, and Ruby. Selenium can run locally; typically,
it runs in the background on a continuous integration server, keeping out of your way
as you commit code, but notifying you when tests fail. Selenium’s strengths lie in the
number of languages it supports, as well as the Selenium IDE, a Firefox plug-in that
records and plays back actions inside the browser, greatly simplifying authoring tests.

In Figure 9-4, we’re using the Selenium IDE tool to record clicking on a link, filling in
a form, and finally submitting it. Once a session has been recorded, you can play it back
using the green play button. The tool will emulate our recorded actions, navigating to
and completing the test form.

We can then export the recorded Test Case to a variety of formats, as shown in Fig-
ure 9-5.

For example, here’s the exported Test Case as a Ruby Test::Unit case. As you can see,
Selenium’s IDE has conveniently generated all the relevant driver methods, greatly re-
ducing the amount of work needed to test the page:

class SeleniumTest < Test::Unit::TestCase
 def setup

116 | Chapter 9: Testing and Debugging

http://watir.com
http://seleniumhq.org
http://seleniumhq.org/projects/ide

 @selenium = Selenium::Client::Driver.new \
 :host => "localhost",
 :port => 4444,
 :browser => "*chrome",
 :url => "http://example.com/index.html",
 :timeout_in_second => 60

 @selenium.start_new_browser_session
 end

 def test_selenium
 @selenium.open "http://example.com/index.html"
 @selenium.click "link=Login.html"
 @selenium.wait_for_page_to_load "30000"
 @selenium.type "email", "test@example.com"
 @selenium.type "password", "test"
 @selenium.click "//input[@value='Continue →']"
 @selenium.wait_for_page_to_load "30000"
 end
end

Figure 9-4. Recording instructions with Selenium

Drivers | 117

Figure 9-5. Exporting Selenium test cases to various formats

We can now make assertions on the @selenium object, such as ensuring that a particular
bit of text is present:

def test_selenium
 # ...
 assert @selenium.is_text_present("elvis")
end

For more information about Selenium, visit the website and watch the introduction
screencast.

Headless Testing
With the development of server-side JavaScript implementations such as Node.js
and Rhino comes the possibility of running your tests outside the browser in a headless
environment via the command line. This has the advantage of speed and ease of setup,
as it does away with the multitude of browsers and the continuous integration envi-
ronment. The disadvantage, of course, is that the tests aren’t being run in a real-world
environment.

This might not be as big a problem as it sounds, as you’ll find that most of the JavaScript
you write is application logic and not browser-dependent. In addition, libraries like
jQuery have taken care of a lot of browser incompatibilities when it comes to the DOM
and event management. For smaller applications, as long as you have a staging envi-

118 | Chapter 9: Testing and Debugging

http://seleniumhq.org/movies/intro.mov
http://seleniumhq.org/movies/intro.mov

ronment when deploying and some high-level cross-browser integration tests (whether
manual or automated), you should be fine.

Envjs is a library originally developed by John Resig, creator of the jQuery JavaScript
framework. It offers an implementation of the browser and DOM APIs on top of Rhino,
Mozilla’s Java implementation of JavaScript. You can use the env.js library together
with Rhino to run JavaScript tests on the command line.

Zombie
Zombie.js is a headless library designed to take advantage of the incredible performance
and asynchronous nature of Node.js. Speed is a key feature: the less time you spend
waiting for tests to complete, the more time you get to build new features and fix bugs.

Applications that use a lot of client-side JavaScript spend much of their time loading,
parsing, and evaluating that JavaScript. Here, the sheer performance of Google’s V8
JavaScript engine helps your tests run faster.

Although your test suite and client-side JavaScript both run on the same engine, Zombie
uses another feature of V8—contexts—which keeps them separated so they do not mix
the same global variables/state. It’s similar to the way Chrome opens each tab in its
own process.

Another benefit of contexts is being able to run multiple tests in parallel, each using its
own Browser object. One test might be checking the DOM content while another test
is waiting for a page request to come back, cutting down the time it takes to complete
the entire test suite. You’ll need to use an asynchronous test framework, such as the
excellent Vows.js, and pay attention to which tests must run in parallel and which must
run in sequence.

Zombie.js provides a Browser object that works much like a real web browser: it main-
tains state between pages (cookies, history, web storage) and provides access to the
current window (and through it the loaded document). In addition, it provides you
with methods for manipulating the current window, acting like a user (visiting pages,
filling forms, clicking prompts, etc.) and inspecting the window contents (using XPath
or CSS selectors).

For example, to fill in the username and password, submit a form and then test the
contents of the title element:

// Fill email, password, and submit form.
browser.
 fill("email", "zombie@underworld.dead").
 fill("password", "eat-the-living").
 pressButton("Sign Me Up!", function(err, browser) {
 // Form submitted, new page loaded.
 assert.equal(browser.text("title"), "Welcome to Brains Depot");
 });

Headless Testing | 119

http://www.envjs.com
http://zombie.labnotes.org
http://vowsjs.org

This example is incomplete. Obviously, you’ll need to require the Zombie.js library,
create a new Browser, and load the page before you can interact with it. You also want
to take care of that err argument.

Just like a web browser, Zombie.js is asynchronous in nature: your code doesn’t block
waiting for a page to load, an event to fire, or a timer to timeout. Instead, you can either
register listeners for events such as loaded and error, or pass a callback.

By convention, when you pass Zombie a callback, it will use it one of two ways. If the
action was successful, it will pass null and some other value, most often a reference to
the Browser object. If the action failed, it will pass a reference to the Error object. So,
make sure to check the first argument to determine whether your request completed
successfully, and whether there’s anything interesting in the remaining arguments.

This convention is common to Node.js and many libraries written for it, including the
aforementioned Vows.js test framework. Vows.js also uses callbacks, which it expects
to be called with one argument that is error or null; if that argument is null, a second
argument is passed along to the test case.

Here, for example, is a test case that uses Zombie.js and Vows.js. It visits a web page
and looks for elements with the class brains (expecting to find none):

var zombie = require("zombie");

vows.describe("Zombie lunch").addBatch({
 "visiting home page": {
 topic: function() {
 var browser = new zombie.Browser;
 browser.cookies("localhost").update("session_id=5678");
 browser.visit("http://localhost:3003/", this.callback);
 },
 "should find no brains": function(browser) {
 assert.isEmpty(browser.css(".brains"));
 }
 }
});

There are many other things you can do with Zombie.js. For example, you can save the
browser state (cookies, history, web storage, etc.) after running one test and use that
state to run other tests (to start each test from the state of “new session and user logged
in”).

You can also fire DOM events—e.g., to simulate a mouse click—or respond to con-
firmation prompts and alerts. You can view the history of requests and responses, sim-
ilar to the Resources tab in WebKit’s Web Inspector. Although Zombie runs on
Node.js, it can make HTTP requests to any web server, so you can certainly use it to
test your Ruby or Python application.

120 | Chapter 9: Testing and Debugging

Ichabod
The imaginatively named Ichabod library is another alternative for running tests head-
lessly, and it is a great solution if you’re after simplicity and speed.

The advantage to Ichabod is that, rather than an emulation of the DOM and parser
engine, it uses WebKit—the browser engine behind Safari and Chrome. However,
Ichabod works only on OS X, as it requires MacRuby and the OS X WebView APIs.

Installation is pretty straightforward. First, install MacRuby, either off the project’s
site or with rvm. Then, install the Ichabod gem:

$ macgem install ichabod

Ichabod currently supports running Jasmine or QUnit tests, although additional libra-
ries will be supported soon. Simply pass the test’s endpoint to the ichabod executable:

$ ichabod --jasmine http://path/to/jasmine/specs.html
$ ichabod --qunit http://path/to/qunit/tests.html

The tests don’t have to be hosted—you can also pass a local path:

$ ichabod --jasmine ./tests/index.html
 ...
 Finished in 0.393 seconds
 1 test, 5 assertions, 0 failures

Ichabod will load up all your tests and run them in a GUI-less version of WebKit,
straight from the command line.

Distributed Testing
One solution to cross-browser testing is outsourcing the problem to a dedicated cluster
of browsers. This is exactly the approach of TestSwarm:

The primary goal of TestSwarm is to take the complicated, and time-consuming, process
of running JavaScript test suites in multiple browsers and to grossly simplify it. It achieves
this goal by providing all the tools necessary for creating a continuous integration work-
flow for your JavaScript project.

Rather than using plug-ins and extensions to integrate with browsers at a low level,
TestSwarm takes the reverse approach. Browsers open up the TestSwarm endpoint,
and automatically process tests pushed toward them. They can be located on any
machine or operating system—all it takes to add a new browser is to navigate to the
TestSwarm endpoint inside it.

This simple approach takes a lot of the pain and hassle out of running a continuous
integration server. All that’s involved is ensuring a decent number of browsers are con-
nected to the swarm. Indeed, this is something you could outsource if you have an
active community, achieving probably the most realistic testbed you could hope for,
as shown in Figure 9-6.

Distributed Testing | 121

http://github.com/maccman/ichabod
http://www.macruby.org
http://rvm.beginrescueend.com/interpreters/macruby/
http://swarm.jquery.org

Figure 9-6. TestSwarm returns results to browsers as a grid of test suites

The alternative is to use a company like Sauce Labs to manage and run all those brows-
ers in the cloud. Simply upload any Selenium tests and their service will do the rest,
running the tests on different browsers and platforms, making sure they all pass.

Providing Support
However many tests you write for your application, the likelihood is that there will
always be bugs. The best thing to do is to accept this fact and prepare for users to come
across bugs and errors. Provide an easy way for users to submit bug reports and set up
a ticketing system to manage support requests.

Inspectors
JavaScript development and debugging has come a long way from the alert() calls of
the past. Most of the major browsers now include powerful element inspectors and
debuggers, which simplifies and improves web development dramatically. We’re going
to cover the two main inspectors next, but the general concepts should transfer over
to any inspector you choose to use.

122 | Chapter 9: Testing and Debugging

http://saucelabs.com

Web Inspector
Web Inspector is available on both the Safari and Google Chrome browsers. The in-
spector’s interface differs slightly between the two browsers, but the functionality is
fairly consistent.

In Safari, you have to enable it explicitly by checking the advanced preference, "Show
Develop menu in menu bar," as shown in Figure 9-7.

Figure 9-7. Enabling Safari Inspector

Chrome has a developer toolbar under the View toolbar, which you can use to enable
the inspector. The alternative in both browsers is to right-click on an element and select
“inspect”.

Web Inspector, shown in Figure 9-8, is an incredibly useful tool, letting you inspect
HTML elements, edit styles, debug JavaScript, and more. If it isn’t the case already, the
inspector should be part of your day-to-day JavaScript development.

We’re going to cover more of its features in detail, but here’s a basic overview of Web
Inspector’s components:

Elements
Inspect HTML elements, edit styles

Resources
Page resources and assets

Network
HTTP requests

Scripts
JavaScript files and debugger

Inspectors | 123

Timeline
Detailed view of browser rendering

Audits
Code and memory auditor

Console
Execute JavaScript and see logging

Figure 9-8. Safari's Web Inspector lets you inspect the DOM

Firebug
Firefox doesn’t include a JavaScript inspector natively, but it has an excellent add-on
to do the job: Firebug. See Figure 9-9.

Figure 9-9. Inspecting the DOM and CSS with FireBug

You’ll see that although the various components to Firebug have different names to
their counterparts in Web Inspector, their functionality is very similar:

Console
Execute JavaScript and see logging

124 | Chapter 9: Testing and Debugging

http://getfirebug.com/

HTML
Inspect elements, edit styles

CSS
See and edit the page’s CSS

Script
JavaScript files and debugger

DOM
Global variable inspection

Net
HTTP requests

Firebug’s team has developed a Firefox-independent version, Firebug Lite. It has the
vast majority of features from Firebug, as well as the same look and feel, and it’s com-
patible with all major browsers. Firebug Lite is especially useful for debugging Internet
Explorer (it’s rather superior to IE’s built-in tools). Firebug Lite doesn’t require any
installation, and it can be added to a web page using a simple script tag:

<script type="text/javascript" src="https://getfirebug.com/firebug-lite.js"></script>

Alternatively, you can install the bookmarklet from the Firebug Lite website.

The Console
The console lets you easily execute JavaScript and examine the pages’ global variables.
One of the major advantages to the console is that you can log directly to it, using the
console.log() function. The call is asynchronous, can take multiple arguments, and
inspects those arguments, rather than converting them to strings:

console.log("test");
console.log(1, 2, {3: "three"});

There are additional types of logging. You can use console.warn() and console
.error() to elevate the logging level, giving an early indication that something might
be going wrong:

console.warn("a diabolical warning");
console.error("something broke!");

try {
 // Raises something
} catch(e) {
 console.error("App error!", e);
}

It’s also possible to namespace log calls by using a proxy function:

var App = {trace: true};
App.log = function(){
 if (!this.trace) return;
 if (typeof console == "undefined") return;

The Console | 125

http://getfirebug.com/firebuglite
http://getfirebug.com/firebuglite#Stable

 var slice = Array.prototype.slice;
 var args = slice.call(arguments, 0);
 args.unshift("(App)");
 console.log.apply(console, args);
};

The App.log() function prepends the string "App" to its arguments and then passes the
call onto console.log().

Keep in mind that when using the console for logging, the variable console may not be
defined. In browsers that don’t have support for the console—such as Internet Explorer
or Firefox without Firebug—the console object won’t be defined, causing errors if you
try to use it. This is a good reason for using a proxy function like App.log() when logging
inside your application.

You can output the scripts’ current stack trace to the console using console.trace().
This is especially useful if you’re trying to work out how a function is being called
because it traces the stack back through the program:

// Log stack trace
console.trace();

The application’s errors will also appear in the console and, unless the browser’s JIT
compiler has optimized the function call, the console will show a full stack trace.

Console Helpers
The console also includes a number of shortcuts and helper functions to save some
typing. For example, the $0 to $4 variables contain the current and previous three se-
lected nodes in Web Inspector or Firebug. Believe me, this is extremely useful when
you want to access and manipulate elements:

// $0 is the currently selected element
$0.style.color = "green";

// Or, using jQuery
jQuery($0).css({background: "black"});

The $() function returns the element with the specified ID. It’s essentially a shortcut
to document.getElementById(). jQuery, Prototype, or a similar library that already uses
$ will override this:

$("user").addEventListener("click", function(){ /* ... */});

The $$() function returns the array of elements that match the given CSS selector. This
is similar to document.querySelectorAll(). Again, if you use Prototype or MooTools,
those libraries will override this:

// Select elements with a class of .users
var users = $$(".users");
users.forEach(function(){ /* ... */ });

126 | Chapter 9: Testing and Debugging

The $x() function returns the array of elements that matches the given XPath
expression:

// Select all forms
var checkboxes = $x("/html/body//form");

The clear() function clears the console:

clear();

dir() prints an interactive listing of all the object’s properties:

dir({one: 1});

inspect() takes an element, database, or storage area as an argument, and automatically
jumps to the appropriate panel to display the relevant information:

inspect($("user"));

keys() returns an array containing the names of all the object’s properties:

// Returns ["two"]
keys({two: 2});

values() returns an array containing the values of all the object’s properties—i.e., the
opposite of keys():

// Returns [2]
values({two: 2});

Using the Debugger
The JavaScript debugger is one of the best-kept secrets in JavaScript development. It’s
a full-featured debugger that allows you to place breakpoints, watch expressions, ex-
amine variables, and work out exactly what’s going on.

Placing a breakpoint is easy—just add the debugger statement inside the script at the
point you want the debugger to pause execution:

var test = function(){
 // ...
 debugger
};

Alternatively, you can go to the Scripts panel in the inspector, select the relevant script,
and click on the line number where you want to place the breakpoint. Figure 9-10 shows
an example.

The latter approach is probably preferable because you don’t want to risk getting any
debugger statements in production code. When the JavaScript execution reaches the
breakpoint, it’s paused, letting you examine the current scope, as shown in Figure 9-11.

Using the Debugger | 127

Figure 9-11. Debugging a breakpoint with Safari's Web Inspector

On the right of the inspector’s Scripts panel, you can see the full call stack, the local
and global variables, and other relevant debugging information. You can hover the
mouse over any variable to see its current value. The console is even scoped to the
breakpoint, allowing you to manipulate variables and call other functions.

You can continue code execution, step into or over the next function call, and navigate
up the current stack using the Debugger toolbar on the right. The Debugger toolbar
icons are specific to the browser, but you can determine each button’s function by
hovering the mouse over it, which displays a yellow information bubble.

It’s important to remember that breakpoints remain between page reloads. If you want
to remove a breakpoint, simply toggle its line number, or uncheck it in the breakpoint
list. The JavaScript debugger is a wonderful alternative to console.log(), as it helps
you work out exactly what’s happening inside your application.

Analyzing Network Requests
As shown in Figure 9-12, the inspector’s network section shows all the HTTP requests
the page is making, how long they took, and when they completed.

Figure 9-10. Setting a breakpoint with Safari's Web Inspector

128 | Chapter 9: Testing and Debugging

Figure 9-12. Analyzing network requests with Web Inspector

You can see the initial request’s latency, which is a slightly transparent color. Then,
when data starts getting received, the timeline’s color goes opaque. In the example
above, jQuery’s file size is much bigger than the stylesheets’, so although the initial
request latency is similar, the script takes longer to download.

If you’re not using the async or defer option with your scripts (see Chapter 10), you’ll
notice that JavaScript files are downloaded sequentially rather than in parallel. Scripts
are requested only after the previous referenced script has been fully downloaded and
executed. All other resources are downloaded in parallel.

The lines in the network timeline indicate the pages’ load status. The blue line appears
at the time the document’s DOMContentLoaded event was fired or, in other words,
when the DOM is ready. The red line appears once the window’s load event is triggered,
when all the page’s images have been fully downloaded and the page has finished
loading.

The network section also shows the full request and response headers for every request,
which is especially useful for making sure any caching is being applied correctly. See
Figure 9-13.

Profile and Timing
When you’re building large JavaScript apps, you need to keep an eye on performance,
especially if you’ve got mobile clients. Both Web Inspector and Firebug include profil-
ing and timing utilities that can help keep things ticking smoothly.

Profiling code is simple—just surround any code you want to profile with console.pro
file() and console.profileEnd():

Profile and Timing | 129

console.profile();
// ...
console.profileEnd();

As soon as profileEnd() is called, a profile will be created, listing all the functions
(and the time taken in each one) that were called between the two statements. See
Figure 9-14 for an illustration.

Figure 9-14. Profiling function execution rates with Web Inspector

Figure 9-13. Viewing an in-depth analysis of network requests, such as request and response headers

130 | Chapter 9: Testing and Debugging

Alternatively, you can use the record feature of the inspector’s profiler, which is equiv-
alent to wrapping code with the profile console statements. By seeing which functions
are being called and which functions are taking longer to complete, you can discover
and optimize bottlenecks in your code.

The profiler also allows you to take a snapshot of the page’s current heap, as illustrated
in Figure 9-15. This will show you how many objects have been allocated and the
amount of memory the page is using. This is a great way of finding memory leaks
because you can see whether any objects are being unwittingly stored, and are subse-
quently unable to be garbage collected.

Figure 9-15. Seeing a bird's-eye view of the heap with Web Inspector

The console also lets you time how long it takes to execute some code. The API is similar
to the profiler—simply wrap the code with console.time(name) and console.time
End(name). Unless you manage to fit everything on one line, you won’t be able to time
code from inside the JavaScript console accurately; instead, you will have to add the
timing statements directly into your scripts:

console.time("timeName");
// ...
console.timeEnd("timeName");

When timeEnd() is called, the time taken between the two timing statements is sent to
the console’s log in milliseconds. Using the console’s timing API, you could potentially
incorporate benchmarking into your application’s tests, ensuring that additional code
wasn’t significantly hurting the application’s existing performance.

Profile and Timing | 131

CHAPTER 10

Deploying

Deploying your web application properly is just as important as actually developing it;
there’s no point in building the next Facebook if it loads too slowly for people to actually
use it. Users want your site to be as reliable and fast as possible, with good uptime.
Deploying JavaScript and HTML files sounds straightforward—they’re static assets
after all—but there’s actually a fair amount to it. This is an often neglected part to web
application building.

Luckily, there are a few tried-and-tested techniques that should apply to all JavaScript
applications, and indeed serving any kind of static assets. If you follow the recommen-
dations below, you should be well on your way to delivering speedy web apps.

Performance
One of the simplest ways of increasing performance is also the most obvious: minimize
the amount of HTTP requests. Every HTTP request contains a lot of header informa-
tion, as well as the TCP overhead. Keeping separate connections to an absolute mini-
mum will ensure pages load faster for users. This clearly extends to the amount of data
the server needs to transfer. Keeping a page and its assets’ file size low will decrease any
network time—the real bottleneck to any application on the Web.

Concatenating scripts into a single script and combining CSS into a single stylesheet
will reduce the amount of HTTP connections needed to render the page. You can do
this upon deployment or at runtime. If it’s the latter, make sure any files generated are
cached in production.

Use CSS sprites to combine images into one comprehensive image. Then, use the CSS
background-image and background-position properties to display the relevant images in
your page. You just have to scope the background position coordinates to cover the
desired image.

Avoiding redirects also keeps the number of HTTP requests to a minimum. You may
think these are fairly uncommon, but one of the most frequent redirect scenarios occurs

133

when a trailing slash (/) is missing from a URL that should otherwise have one. For
example, going to http://facebook.com currently redirects you to http://facebook.com/.
If you’re using Apache, you can fix this by using Alias or mod_rewrite.

It’s also important to understand how your browser downloads resources. To speed
up page rendering, modern browsers download required resources in parallel. How-
ever, the page can’t start rendering until all the stylesheets and scripts have finished
downloading. Some browsers go even further, blocking all other downloads while any
JavaScript files are being processed.

However, most scripts need to access the DOM and add things like event handlers,
which are executed after the page loads. In other words, the browser is needlessly re-
stricting the page rendering until everything’s finished downloading, decreasing per-
formance. You can solve this by setting the defer attribute on scripts, letting the browser
know the script won’t need to manipulate the DOM until after the page has loaded:

<script src="foo.js" type="text/javascript" charset="utf-8" defer></script>

Scripts with the defer attribute set to “defer” will be downloaded in parallel with other
resources and won’t prevent page rendering. HTML5 has also introduced a new mode
of script downloading and execution called async. By setting the async attribute, the
script will be executed at the first opportunity after it’s finished downloading. This
means it’s possible (and likely) that async scripts are not executed in the order in which
they occur in the page, leaving an opportunity for dependency errors. If the script
doesn’t have any dependencies, though, async is a useful tool. Google Analytics, for
example, takes advantage of it by default:

<script src="http://www.google-analytics.com/ga.js" async></script>

Caching
If it weren’t for caching, the Web would collapse under network traffic. Caching stores
recently requested resources locally so subsequent requests can serve them up from the
disk, rather than downloading them again. It’s important to explicitly tell browsers
what you want cached. Some browsers like Chrome will make their own default deci-
sions, but you shouldn’t rely on that.

For static resources, make the cache “never” expire by adding a far future Expires
header. This will ensure that the browser only ever downloads the resource once, and
it should then be set on all static components, including scripts, stylesheets, and images.

Expires: Thu, 20 March 2015 00:00:00 GMT

You should set the expiry date in the far future relative to the current date. The example
above tells the browser the cache won’t be stale until March 20th, 2015. If you’re
using the Apache web server, you can set a relative expiration date easily using
ExpiresDefault:

ExpiresDefault "access plus 5 years"

134 | Chapter 10: Deploying

But what if you want to expire the resource before that time? A useful technique is to
append the file’s modified time (or mtime) as a query parameter on URLs referencing
it. Rails, for example, does this by default. Then, whenever the file is modified, the
resource’s URL will change, clearing out the cache.

<link rel="stylesheet" href="master.css?1296085785" type="text/css">

HTTP 1.1. introduced a new class of headers, Cache-Control, to give developers more
advanced caching and to address the limitations of Expires. The Cache-Control control
header can take a number of options, separated by commas:

Cache-Control: max-age=3600, must-revalidate

To see the full list of options, visit the specification. The ones you’re likely to use now
are listed below:

max-age

Specifies the maximum amount of time, in seconds, that a resource will be con-
sidered fresh. Unlike Expires, which is absolute, this directive is relative to the time
of the request.

public

Marks resources as cacheable. By default, if resources are served over SSL or if
HTTP authentication is used, caching is turned off.

no-store

Turns off caching completely, which is something you’ll want to do for dynamic
content only.

must-revalidate

Tells caches they must obey any information you give them regarding resource
freshness. Under certain conditions, HTTP allows caches to serve stale resources
according to their own rules. By specifying this header, you’re telling the cache that
you want it to strictly follow your rules.

Adding a Last-Modified header to the served resource can also help caching. With
subsequent requests to the resource, browsers can specify the If-Modified-Since
header, which contains a timestamp. If the resource hasn’t been modified since the last
request, the server can just return a 304 (not modified) status. The browser still has to
make the request, but the server doesn’t have to include the resource in its response,
saving network time and bandwidth:

Request
GET /example.gif HTTP/1.1
Host:www.example.com
If-Modified-Since:Thu, 29 Apr 2010 12:09:05 GMT

Response
HTTP/1.1 200 OK
Date: Thu, 20 March 2009 00:00:00 GMT
Server: Apache/1.3.3 (Unix)
Cache-Control: max-age=3600, must-revalidate

Caching | 135

http://www.ietf.org/rfc/rfc2616.txt

Expires: Fri, 30 Oct 1998 14:19:41 GMT
Last-Modified: Mon, 17 March 2009 00:00:00 GMT
Content-Length: 1040
Content-Type: text/html

There is an alternative to Last-Modified: ETags. Comparing ETags is like comparing
the hashes of two files; if the ETags are different, the cache is stale and must be reva-
lidated. This works in a similar way to the Last-Modified header. The server will attach
an ETag to a resource with an ETag header, and a client will check ETags with an If-
None-Match header:

 # Request
 GET /example.gif HTTP/1.1
 Host:www.example.com
 If-Modified-Since:Thu, 29 Apr 2010 12:09:05 GMT
 If-None-Match:"48ef9-14a1-4855efe32ba40"

 # Response
 HTTP/1.1 304 Not Modified

ETags are typically constructed with attributes specific to the server—i.e., two separate
servers will give different ETags for the same resource. With clusters becoming more
and more common, this is a real issue. Personally, I advise you to stick with Last-
Modified and turn off ETags altogether.

Minification
JavaScript minification reduces unnecessary characters from scripts without changing
any functionality. These characters include whitespace, new lines, and comments. The
better minifiers can interpret JavaScript. Therefore, they can safely shorten variables
and function names, further reducing characters. Smaller file sizes are better because
there’s less data to transfer over the network.

It’s not just JavaScript that can be minified. Stylesheets and HTML can also be pro-
cessed. Stylesheets in particular tend to have a lot of redundant whitespace. Minifica-
tion is something best done on deployment because you don’t want to be debugging
any minified code. If there’s an error in production, try to reproduce it in a development
environment first—you’ll find it much easier to debug the problem.

Minification has the additional benefit of obscuring your code. It’s true that a suffi-
ciently motivated person could probably reconstruct it, but it’s a barrier to entry for
the casual observer.

There are a lot of minimizing libraries out there, but I advise you to choose one with a
JavaScript engine that can actually interpret the code. YUI Compressor is my favorite
because it is well maintained and supported. Created by Yahoo! engineer Julien Le-
comte, its goal was to shrink JavaScript files even further than JSMin by applying smart
optimizations to the source code. Suppose we have the following function:

136 | Chapter 10: Deploying

http://developer.yahoo.com/yui/compressor
http://www.crockford.com/javascript/jsmin.html

function per(value, total) {
 return((value / total) * 100);
}

YUI Compressor will, in addition to removing whitespace, shorten the local variables,
saving yet more characters:

function per(b,a){return((b/a)*100)};

Because YUI Compressor actually parses the JavaScript, it can usually replace
variables—without introducing code errors. However, this isn’t always the case; some-
times the compressor can’t fathom your code, so it leaves it alone. The most common
reason for this is the use of an eval() or with() statement. If the compressor detects
you’re using either of those, it won’t perform variable name replacement. In addition,
both eval() and with() can cause performance problems—the browser’s JIT compiler
has the same issue as the compressor. My advice is to stay well clear of either of these
statements.

The simplest way to use YUI Compressor is by downloading the binaries, which require
Java, and executing them on the command line:

java -jar yuicompressor-x.y.z.jar foo.js | foo.min.js

However, you can do this programmatically on deployment. If you’re using a library
like Sprockets or Less, they’ll do this for you. Otherwise, there are several interface
libraries to YUI Compressor, such as Sam Stephenson’s Ruby-YUI-compressor gem or
the Jammit library.

Gzip Compression
Gzip is the most popular and supported compression method on the Web. It was de-
veloped by the GNU project, and support for it was added in HTTP/1.1. Web clients
indicate their support for compression by sending an Accept-Encoding header along
with the request:

Accept-Encoding: gzip, deflate

If the web server sees this header and supports any of the compression types listed, it
may compress its response and indicate this via the Content-Encoding header:

Content-Encoding: gzip

Browsers can then decode the response properly. Obviously, compressing the data can
reduce network time, but the true extent of this is often not realized. Gzip generally
reduces the response size by 70%, a massive reduction that greatly speeds up the time
it takes for your site to load.

Servers generally have to be configured over which file types should be gzipped. A good
rule of thumb is to gzip any text response, such as HTML, JSON, JavaScript, and
stylesheets. If the files are already compressed, such as images and PDFs, they shouldn’t
be served with gzip because the recompression doesn’t reduce their size.

Gzip Compression | 137

http://yuilibrary.com/downloads/#yuicompressor
http://getsprockets.org
http://lesscss.org
https://github.com/sstephenson/ruby-yui-compressor
http://documentcloud.github.com/jammit

Configuring gzip depends on your web server, but if you use Apache 2.x or later, the
module you need is mod_deflate. For other web servers, see their documentation.

Using a CDN
A content delivery network, or CDN, can serve static content on your behalf, reducing
its load time. The user’s proximity to the web server can have an impact on load times.
CDNs can deploy your content across multiple geographically dispersed servers, so
when a user requests a resource, it can be served up from a server near them (ideally in
the same country). Yahoo! has found that CDNs can improve enduser response times
by 20% or more.

Depending on how much you can afford to spend, there are lot of companies out there
offering CDNs, such as Akamai Technologies, Limelight Networks, EdgeCast, and
Level 3 Communications. Amazon Web Services has recently released an affordable
option called Cloud Front that ties into its S3 service closely and may be a good option
for startups.

Google offers a free CDN and loading architecture for many popular open source Java-
Script libraries, including jQuery and jQueryUI. One of the advantages of using Goo-
gle’s CDN is that many other sites use it too, increasing the likelihood that any Java-
Script files you reference are already cached in a user’s browser.

Check out the list of available libraries. If, say, you want to include the jQuery li-
brary, you can either use Google’s JavaScript loader library or, more simply, a plain old
script tag:

<!-- minimized version of the jQuery library -->
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js"></script>

<!-- minimized version of the jQuery UI library -->
<script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.8.6/jquery-ui.min.js">
</script>

You’ll notice that in the example above we haven’t specified a protocol; instead, // is
used. This is a little-known trick that ensures the script file is fetched using the same
protocol as the host page. In other words, if your page was loaded securely over HTTPS,
the script file will be as well, eliminating any security warnings. A relative URL without
a scheme is valid and compliant to the RTF spec. More importantly, it’s got support
across the board; heck, protocol-relative URLs even work in Internet Explorer 3.0.

Auditors
There are some really good tools to give you a quick heads up regarding your site’s
performance. YSlow is an extension of Firebug, which is in turn a Firefox extension.
You’ll need to install all three to use it. Once it’s installed, you can use it to audit web
pages. The extension will run through a series of checks, including caching, minifica-

138 | Chapter 10: Deploying

http://httpd.apache.org/docs/2.0/mod/mod_deflate.html
http://developer.yahoo.com/performance/rules.html#cdn
http://www.akamai.com
http://www.limelightnetworks.com
http://www.edgecast.com
http://www.level3.com
http://aws.amazon.com
http://aws.amazon.com/cloudfront
http://aws.amazon.com/s3
http://code.google.com/apis/libraries/devguide.html
http://code.google.com/apis/libraries/devguide.html#jquery
http://code.google.com/apis/libraries/devguide.html#jquery
http://developer.yahoo.com/yslow

tion, gzipping, and CDNs. It will give your site a grade, depending on how it fares, and
then offer advice on how to improve your score.

Google Chrome and Safari also have auditors, but these are built right into the browser.
As shown in Chrome in Figure 10-1, simply go to the Audits section of Web Inspector
and click Run. This is a great way of seeing what things your site could improve on to
increase its performance.

Figure 10-1. Auditing web page performance with Web Inspector

Resources
Both Yahoo! and Google have invested a huge amount into analyzing web performance.
Increasing sites’ render speed is obviously in their best interest, both for their own
services and for the user experience of their customers when browsing the wider Web.
Indeed, Google now takes speed into account with its Pagerank algorithm, which helps
determine where sites are ranked for search queries. Both companies have excellent
resources on improving performance, which you can find on the Google and Yahoo!
developer sites.

Resources | 139

http://code.google.com/speed/page-speed/docs/payload.html
http://code.google.com/speed/page-speed/docs/payload.html

CHAPTER 11

The Spine Library

Spine is a lightweight library for JavaScript application development that uses many of
the concepts we’ve covered in this book, such as MVC, events, and classes. When I say
lightweight, I mean lightweight—the library comes in at around 500 lines of JavaScript,
which is about 2K minified and compressed. Don’t get the wrong impression, though;
Spine will let you build fully featured JavaScript applications while ensuring your code
remains clean and decoupled.

I created Spine while writing this book because I couldn’t find a client-side MVC
framework that quite suited my needs. The library attempts to enshrine many of the
best practices proposed in this book, and indeed the book’s example application, Holla,
is built using Spine.

Unlike widget-based libraries such as Cappuccino and SproutCore, Spine doesn’t make
any decisions about how you display data to users. The emphasis is on flexibility and
simplicity. Spine gives you the bare bones and gets out of your way so you get on with
the fun stuff—developing awesome applications.

Spine includes a class library with inheritance support; Spine.Class; an events module,
Spine.Events; an ORM, Spine.Model; and a controller class, Spine.Controller. Any-
thing else you’ll need, like templating support or a DOM library, is up to you, so use
what you’re most familiar with. Having said that, Spine includes specific support for
jQuery and Zepto.js libraries, which complement it excellently.

Spine’s weakness at the moment is its lack of documentation. But since it’s still the
early days of this library, the documentation situation is sure to improve. For now, this
chapter should give you a pretty good introduction, and the sample applications will
provide further explanation.

Setup
Simply download Spine from the project’s repository and include it in your page; Spine
has no dependencies:

141

http://maccman.github.com/spine
http://cappuccino.org
http://sproutcore.com
http://github.com/maccman/spine

<script src="spine.js" type="text/javascript" charset="utf-8"></script>

Spine is completely namespaced behind the Spine variable, so it shouldn’t conflict with
any other variables. You can safely include libraries like jQuery, Zepto, or Prototype
without any complications.

Classes
Pretty much every object in Spine is encapsulated in a class. However, Spine’s classes
are constructed using Object.create() and pure prototypal inheritance, as covered in
Chapter 3, which is different from how most class abstractions are constructed.

To create a new class, call Spine.Class.create([instanceProperties, classProper
ties]), passing an optional set of instance and class properties:

var User = Spine.Class.create({
 name: "Caroline"
});

In the example above, instances of User now have a default name property. Behind the
scenes, create() is creating a new object whose prototype is set to Spine.Class —i.e.,
it’s inheriting from it. If you want to create subsequent subclasses, simply call create
() on their parent class:

var Friend = User.create();

Friend is now a subclass of User and will inherit all of its properties:

assertEqual(Friend.prototype.name, "Caroline");

Instantiation
Because we’re using pure prototypal objects and inheritance instead of constructor
functions, we can’t use the new keyword for instantiating instances. Rather, Spine uses
the init() function:

var user = User.init();
assertEqual(user.name, "Caroline");

user.name = "Trish";
assertEqual(user.name, "Trish");

Any arguments passed to init() will be sent to the instances initializer function, init():

var User = Spine.Class.create({
 init: function(name){
 this.name = name;
 }
});

var user = User.init("Martina");
assertEqual(user.name, "Martina");

142 | Chapter 11: The Spine Library

Extending Classes
As well as setting class and instance properties during creation, you can use include
() and extend(), passing in an object literal:

User.include({
 // Instance properties
});

User.extend({
 // Class properties
});

include() and extend() pave the way for modules, which are reusable pieces of code
that you can include multiple times:

var ORM = {
 extended: function(){
 // invoked when extended
 // this === User
 },
 find: function(){ /* ... */ },
 first: function(){ /* ... */ }
};

User.extend(ORM);

You can receive a callback when a module is included or extended. In the example
above, the extended function will be invoked when User.extend() is called with a con-
text of User. Likewise, if a module has an included property, it will be invoked when
the module is included inside a class.

Because we’re using prototypal-based inheritance, any properties we add onto classes
will be reflected dynamically across subclasses at runtime:

var Friend = User.create();

User.include({
 email: "info@eribium.org"
});

assertEqual(Friend.init().email, "info@eribium.org");

Properties in subclasses can be overridden without affecting the parent class. However,
modifications to objects in subclasses, such as arrays, will be reflected across the whole
inheritance tree. If you want an object to be specific to a class or instance, you’ll need
to create it when the class or instance is first initialized. You can do this in a created
() function, which Spine will call when the class is first set up or instantiated:

// We want the records array to be specific to the class
var User = Spine.Class.create({
 // Called on instantiation
 init: function(){
 this.attributes = {};
 }

Classes | 143

}, {
 // Called when the class is created
 created: function(){
 this.records = [];
 }
});

Context
Context changes are rife within JavaScript programs, so Spine.Class includes some
utility methods for controlling scope. To demonstrate the problem, take this example:

var Controller = Spine.Class.create({
 init: function(){
 // Add event listener
 $("#destroy").click(this.destroy);
 },

 destroy: function(){
 // This destroy function is called with the wrong context,
 // so any references to `this` will cause problems
 // The following assertion will fail:
 assertEqual(this, Controller.fn);
 }
});

In the example above, when the event is invoked, the destroy() function will be called
with the context of the element #destroy, rather than the Controller. To deal with this,
you can proxy the context, forcing it to be a particular one you specify. Spine gives you
the proxy() function to do that:

var Controller = Spine.Class.create({
 init: function(){
 $("#destroy").click(this.proxy(this.destroy));
 },

 destroy: function(){ }
});

If you find you’re constantly proxying a function, you may want to rewrite it to always
include a proxy. Spine includes a proxyAll() function to do just that:

var Controller = Spine.Class.create({
 init: function(){
 this.proxyAll("destroy", "render")
 $("#destroy").click(this.destroy);
 },

 // Functions are now always called with the correct context
 destroy: function(){ },
 render: function(){ }
});

144 | Chapter 11: The Spine Library

proxyAll() takes multiple function names, and when invoked, it will rewrite them,
proxying the functions with the current scope. This will ensure that destroy() or ren
der() will always be executed in the local context.

Events
Events are key to Spine, and they are frequently used internally. Spine’s event func-
tionality is contained inside the module Spine.Events, which can be included wherever
it’s needed. For example, let’s add some event support to a Spine class:

var User = Spine.Class.create();
User.extend(Spine.Events);

Spine.Events gives you three functions for handling events:

• bind(eventName, callback)

• trigger(eventName, [*data])

• unbind(eventName, [callback])

If you’ve used jQuery’s event API, this will look very familiar to you. For example, let’s
bind and trigger an event on our User class:

User.bind("create", function(){ /* ... */ });
User.trigger("create");

To bind multiple events with a single callback, just separate them with spaces:

User.bind("create update", function(){ /* ... */ });

trigger() takes an event name and passes optional arguments along to the event’s
callbacks:

User.bind("countChange", function(count){
 // `count` is passed by trigger
 assertEqual(count, 5);
});

User.trigger("countChange", 5);

You will most commonly use Spine’s events with data binding, hooking up your ap-
plication’s models with its views. We’ll cover that in detail later in the section “Building
a Contacts Manager” on page 156.

Models
If you take a peek at Spine’s source code, you’ll see that the vast majority of it deals
with models, and rightly so—models are the central part of any MVC application.
Models deal with storing and manipulating your application’s data, and Spine simpli-
fies this by providing a full ORM.

Models | 145

https://github.com/maccman/spine/blob/master/spine.js

Rather than use the create() function to make a new model, which is already reserved,
use Spine.Model.setup(name, attrs), passing in the model name and an array of at-
tribute names:

// Create the Task model.
var Task = Spine.Model.setup("Task", ["name", "done"]);

Use include() and extend() to add instance and class properties:

Task.extend({
 // Return all done tasks.
 done: function(){ /* ... */ }
});

Task.include({
 // Default name
 name: "Empty...",
 done: false,

 toggle: function(){
 this.done = !this.done;
 }
});

When instantiating a record, you can pass an optional object containing the record’s
initial properties:

var task = Task.init({name: "Walk the dog"});
assertEqual(task.name, "Walk the dog");

Setting and retrieving attributes is the same as setting and getting properties on a normal
object. In addition, the attributes() function returns an object literal containing all
the record’s attributes:

var task = Task.init();
task.name = "Read the paper";
assertEqual(task.attributes(), {name: "Read the paper"});

Saving new or existing records is as simple as calling the save() function. When saving
a record, an ID will be generated if it doesn’t already exist; then, the record will be
persisted locally in memory:

var task = Task.init({name: "Finish book"});
task.save();

task.id //=> "44E1DB33-2455-4728-AEA2-ECBD724B5E7B"

Records can be retrieved using the model’s find() function, passing in the record’s ID:

var task = Task.find("44E1DB33-2455-4728-AEA2-ECBD724B5E7B");
assertEqual(task.name, "Finish book");

If no record exists for the given ID, an exception will be raised. You can check whether
a record exists without fear of an exception using the exists() function:

var taskExists = Task.exists("44E1DB33-2455-4728-AEA2-ECBD724B5E7B");
assert(taskExists);

146 | Chapter 11: The Spine Library

You can remove a record from the local cache by using the destroy() function:

var task = Task.create({name: "Thanks for all the fish"});

assert(task.exists());
task.destroy();
assertEqual(task.exists(), false);

Fetching Records
Retrieving records by ID is only one way of fetching them. Typically, it’s useful to iterate
through all the records or to return a filtered subset. Spine lets you do this using all(),
select(), and each():

// Return all tasks
Task.all(); //=> [Object]

// Return all tasks with a false done attribute
var pending = Task.select(function(task){ return !task.done });

// Invoke a callback for each task
Task.each(function(task){ /* ... */ });

In addition, Spine provides a few helpers for finding records by attribute:

// Finds first task with the specified attribute value
Task.findByAttribute(name, value); //=> Object

// Finds all tasks with the specified attribute value
Task.findAllByAttribute(name, value); //=> [Object]

Model Events
You can bind to model events to get callbacks when records change:

Task.bind("save", function(record){
 console.log(record.name, "was saved!");
});

If a record is involved, it will be passed to the event callback. You can bind a listener
to the model to receive global callbacks for every record, or you can bind a listener to
a specific record:

Task.first().bind("save", function(){
 console.log(this.name, "was saved!")
});

Task.first().updateAttributes({name: "Tea with the Queen"});

Although you can obviously create custom events using trigger(), the following are
available:

save
Record was saved (either created/updated)

Models | 147

update
Record was updated

create
Record was created

destroy
Record was destroyed

change
Any of the above; record was created/updated/destroyed

refresh
All records invalidated and replaced

error
Validation failed

You’ll find that model events are crucial when creating your application, especially
when it comes to binding models up to the view.

Validation
Validation is achieved in the simplest possible way, by overriding the model instance’s
validate() function. validate() is called whenever the record is saved. If validate()
returns anything, the validation fails. Otherwise, the save continues unhindered, per-
sisting the record to local memory:

Task.include({
 validate: function(){
 if (!this.name) return "Name required";
 }
});

If validation fails, you should return a string from validate() with an explanation. Use
this message to notify the user of what went wrong and how to correct it:

Task.bind("error", function(record, msg){
 // Very basic error notification
 alert("Task didn't save: " + msg);
});

The model’s error event will be invoked whenever validation fails. Callbacks will be
passed the invalid record and error message.

Persistence
Spine’s records are always persisted in memory, but you have a choice of storage back-
ends, such as HTML5’s Local Storage or Ajax.

Using Local Storage is trivial. Just include the spine.model.local.js JavaScript file, and
extend your model with Spine.Model.Local:

148 | Chapter 11: The Spine Library

// Save with local storage
Task.extend(Spine.Model.Local);
Task.fetch();

The records won’t be retrieved automatically from the browser’s local storage, so you’ll
need to call fetch() to populate your model with preexisting data. This is typically done
after everything else in your application has been initialized. Once the model has been
populated with new data, the refresh event will be triggered:

Task.bind("refresh", function(){
 // New tasks!
 renderTemplate(Task.all());
});

Using Ajax persistence is similar; just include the spine.model.ajax.js script and extend
your model with Spine.Model.Ajax:

// Save to server
Task.extend(Spine.Model.Ajax);

By default, Spine detects the model name and uses some basic pluralization to generate
a URL. So, for the example above, the Task model’s URL would be /tasks. You can
override this default behavior by providing your own URL property on the class:

// Add a custom URL
Task.extend({
 url: "/tasks"
});

// Fetch new tasks from the server
Task.fetch();

As soon as Task.fetch() is called, Spine will make an Ajax GET request to /tasks,
expecting a JSON response containing an array of tasks. If the server returns a successful
response, the records will be loaded and the refresh event triggered.

Spine will send Ajax requests to the server whenever you create, update, or destroy a
record, keeping the two in sync. The library expects your server to be structured in a
RESTful way so it works seamlessly, although you can obviously override this to suit
a custom setup. Spine expects these endpoints to exist:

read → GET /collection
create → POST /collection
update → PUT /collection/id
destroy → DELETE /collection/id

After a record has been created client side, Spine will send off an HTTP POST to your
server, including a JSON representation of the record. Let’s create a Task with a name
of "Buy eggs"; this is the request that would be sent to the server:

POST /tasks HTTP/1.0
Host: localhost:3000
Origin: http://localhost:3000
Content-Length: 66
Content-Type: application/json

Models | 149

{"id": "44E1DB33-2455-4728-AEA2-ECBD724B5E7B", "name": "Buy eggs"}

Likewise, destroying a record will trigger a DELETE request to the server, and updating
a record will trigger a PUT request. For PUT and DELETE requests, the record’s ID is
referenced inside the URL:

PUT /tasks/44E1DB33-2455-4728-AEA2-ECBD724B5E7B HTTP/1.0
Host: localhost:3000
Origin: http://localhost:3000
Content-Length: 71
Content-Type: application/json

{"id": "44E1DB33-2455-4728-AEA2-ECBD724B5E7B", "name": "Buy more eggs"}

Spine has a different take on Ajax syncing than most other libraries. It sends a request
to the server after the record has been saved client side, so the client is never waiting
for a response. This means your client is totally decoupled from your server— i.e., it
doesn’t need a server to be present in order to function.

Having a decoupled server offers three major advantages. First, your interface is fast
and nonblocking, so users are never waiting to interact with your application. The
second is that it simplifies your code—you don’t need to plan for a record that may be
displayed in the user interface but isn’t editable due to a pending server response. Third,
it makes it much easier to add offline support, if that’s ever required.

What about server-side validation? Spine assumes you’ll do all necessary validation
client side. The only time a server should respond with an error is if there’s been an
exception (a problem with your code), which should only happen in exceptional cir-
cumstances.

When the server returns an unsuccessful response, an ajaxError event will be fired on
the model, including the record, an XMLHttpRequest object, Ajax settings, and the
thrown error:

Task.bind("ajaxError", function(record, xhr, settings, error){
 // Invalid response
});

Controllers
Controllers are the last component to Spine, and they provide the glue that will tie the
rest of your application together. Controllers generally add event handlers to DOM
elements and models, render templates, and keep the view and models in sync. To
create a Spine controller, you need to subclass Spine.Controller by calling create():

jQuery(function(){
 window.Tasks = Spine.Controller.create({
 // Controller properties
 });
});

150 | Chapter 11: The Spine Library

It’s recommended to load controllers only after the rest of the page has loaded, so you
don’t have to deal with different page states. In all the Spine examples, you’ll notice
each controller is contained inside a call to jQuery(). This ensures that the controller
will be created only when the document’s ready.

In Spine, the convention is to give controllers camel-cased plural names—usually, the
plural of the model with which they’re associated. Most controllers just have instance
properties, as they’re used after instantiation only. Instantiating controllers is the same
as instantiating any other class, by calling init():

var tasks = Tasks.init();

Controllers always have a DOM element associated with them, which can be accessed
through the el property. You can optionally pass this through on instantiation; other-
wise, the controller will generate a default div element:

var tasks = Tasks.init({el: $("#tasks")});
assertEqual(tasks.el.attr("id"), "tasks");

This element can be used internally to append templates and render views:

window.Tasks = Spine.Controller.create({
 init: function(){
 this.el.html("Some rendered text");
 }
});

var tasks = Tasks.init();
$("body").append(tasks.el);

In fact, any arguments you pass to init() will be set as properties on the controller.
For example:

var tasks = Tasks.init({item: Task.first()});
assertEqual(Task.first(), tasks.item);

Proxying
You’ll notice in the previous examples that we’re wrapping all event callbacks with
this.proxy() to ensure that they always run in the correct context. Because this is such
a common pattern, Spine provides a shortcut, proxied. Onto your controller, simply
add a proxied property containing an array of function names that should always be
executed in the context of the controller:

// Equivalent to using proxyAll
var Tasks = Spine.Controller.create({
 proxied: ["render", "addAll"],

 render: function(){ /* ... */ },
 addAll: function(){ /* ... */ }
});

Now you can pass callbacks like render() to event listeners without being concerned
about execution context. Those functions will always be invoked in the correct context.

Controllers | 151

Elements
It’s often useful to access elements inside your controller as local properties. Spine
provides a shortcut for this: elements. Just add the elements property on your controller,
containing an object of selectors to names. In the example below, this.input refers to
the element selected by form input[type=text]. All selections are done in the context
of the controller’s element (el), not the whole page:

// The `input` instance variable
var Tasks = Spine.Controller.create({
 elements: {
 "form input[type=text]": "input"
 },

 init: function(){
 // this.input refers to the form's input
 console.log(this.input.val());
 }
});

Keep in mind, though, that if you replace the HTML of the controller’s element (el),
you’ll need to call refreshElements() to refresh all the element’s references.

Delegating Events
Spine’s events property gives you an easy way to add event listeners in bulk. Behind
the scenes, Spine takes advantage of event bubbling, so only one event listener is added
onto the controller’s element (el). Like the events property, all event delegation is
scoped by el.

Events take the form of {"eventName selector": "callback"}. The selector is optional
and, if it isn’t provided, the event will be placed straight on el. Otherwise, the event
will be delegated, and it will be triggered if the event type is fired on a child matching
the selector. This happens dynamically, so it doesn’t matter whether the contents of
el change:

var Tasks = Spine.Controller.create({
 events: {
 "keydown form input[type=text]": "keydown"
 },

 keydown: function(e){ /* ... */ }
});

In the example above, whenever the input matching the selector receives a keydown
event, the controller’s keydown callback is executed. Spine makes sure that it’s executed
with the correct context, so you don’t need to worry about proxying event callbacks in
this case.

152 | Chapter 11: The Spine Library

http://api.jquery.com/delegate

The event object is passed along to the callback, which is useful in this example because
we can tell which key was pressed. Additionally, the element in question can be re-
trieved from the event’s target property.

Controller Events
As well as event delegation, Spine’s controllers support custom events. By default,
controllers are extending with Spine.Events, meaning they have all the event function-
ality that entails, like bind() and trigger(). You can use this to ensure that your con-
trollers are decoupled from each other, or as part of the controller’s internal structure:

var Sidebar = Spine.Controller.create({
 events: {
 "click [data-name]": this.click
 },

 init: function(){
 this.bind("change", this.change);
 },

 change: function(name){ /* ... */ },

 click: function(e){
 this.trigger("change", $(e.target).attr("data-name"));
 }

 // ...
});

var sidebar = Sidebar.init({el: $("#sidebar")});
sidebar.bind("change", function(name){
 console.log("Sidebar changed:", name);
})

In the example above, other controllers can bind to Sidebar’s change event or even
trigger it. As we explored in Chapter 2, custom events can be a great way of structuring
applications internally, even if they’re never used externally.

Global Events
Spine lets you bind to and trigger events on a global basis. This is a form of PubSub,
and it lets controllers communicate without even knowing about one another, ensuring
they’re properly decoupled. This is achieved by having a global object, Spine.App, which
anything can bind to or trigger events on:

var Sidebar = Spine.Controller.create({
 proxied: ["change"],

 init: function(){
 this.App.bind("change", this.change);
 },

Controllers | 153

 change: function(name){ /* ... */ }
});

Spine’s controllers aliased Spine.App to a shortened this.App, saving you a bit of typing.
You can see in the example above that the Sidebar controller is binding to the global
event change. Other controllers or scripts can then trigger this event, passing any re-
quired data:

Spine.App.trigger("change", "messages");

The Render Pattern
Now that we’ve covered all the main options available in controllers, let’s look at some
typical use cases.

The render pattern is a really useful way of binding models and views. When the con-
troller is instantiated, it adds an event listener to the relevant model, invoking a callback
when the model is refreshed or changed. The callback will update el, usually by re-
placing its contents with a rendered template:

var Tasks = Spine.Controller.create({
 init: function(){
 Task.bind("refresh change", this.proxy(this.render));
 },

 template: function(items){
 return($("#tasksTemplate").tmpl(items));
 },

 render: function(){
 this.el.html(this.template(Task.all()));
 }
});

This simple but blunt method for data binding updates every element whenever a single
record is changed. This is fine for uncomplicated and small lists, but you may find you
need more control over individual elements, such as adding event handlers to items.
This is where the element pattern comes in.

The Element Pattern
The element pattern essentially gives you the same functionality as the render pattern,
but with a lot more control. It consists of two controllers: one that controls a collection
of items, and one that deals with each individual item. Let’s dive right into the code to
give you a good indication of how it works:

var TasksItem = Spine.Controller.create({
 // Delegate the click event to a local handler
 events: {
 "click": "click"
 },

154 | Chapter 11: The Spine Library

 // Ensure functions have the correct context
 proxied: ["render", "remove"],

 // Bind events to the record
 init: function(){
 this.item.bind("update", this.render);
 this.item.bind("destroy", this.remove);
 },

 // Render an element
 render: function(item){
 if (item) this.item = item;

 this.el.html(this.template(this.item));
 return this;
 },

 // Use a template, in this case via jQuery.tmpl.js
 template: function(items){
 return($("#tasksTemplate").tmpl(items));
 },

 // Called after an element is destroyed
 remove: function(){
 this.el.remove();
 },

 // We have fine control over events, and
 // easy access to the record too
 click: function(){ /* ... */ }
});

var Tasks = Spine.Controller.create({
 proxied: ["addAll", "addOne"],

 init: function(){
 Task.bind("refresh", this.addAll);
 Task.bind("create", this.addOne);
 },

 addOne: function(item){
 var task = TasksItem.init({item: item});
 this.el.append(task.render().el);
 },

 addAll: function(){
 Task.each(this.addOne);
 }
});

In the example above, Tasks has responsibility for adding records when they’re initially
created, and TasksItem takes responsibility for the record’s update and destroy events,
rerendering the record when necessary. Although it’s more complicated, this gives us
some advantages over the previous render pattern.

Controllers | 155

For one thing, it’s more efficient—the list doesn’t need to be redrawn whenever a single
element changes. Furthermore, we now have a lot more control over individual items.
We can place event handlers, as demonstrated with the click callback, and manage
rendering on an item-by-item basis.

Building a Contacts Manager
So, let’s take our knowledge of Spine’s API and apply it to something practical, like a
contacts manager. We want to give users a way of reading, creating, updating, and
deleting contacts, as well as searching them.

Figure 11-1 shows the finished result so you can have an idea of what we’re creating.

The contact manager is one of a set of open source Spine examples. You can follow
along with the tutorial below, or download the full code from the project’s repository.

As you can see in Figure 11-1, the contact manager has two main sections, the sidebar
and the contacts view. These two will make up our respective controllers, Sidebar and

Figure 11-1. Listing contacts in a Spine application

156 | Chapter 11: The Spine Library

http://github.com/maccman/spine.contacts

Contacts. As for models, the manager only has one: the Contact model. Before we ex-
pand on each individual component, let’s take a look at the initial page structure:

<div id="sidebar">
 <ul class="items">

 <footer>
 <button>New contact</button>
 </footer>
</div>

<div class="vdivide"></div>

<div id="contacts">
 <div class="show">
 <ul class="options">
 <li class="optEdit">Edit contact
 <li class="optEmail">Email contact

 <div class="content"></div>
 </div>

 <div class="edit">
 <ul class="options">
 <li class="optSave default">Save contact
 <li class="optDestroy">Delete contact

 <div class="content"></div>
 </div>
</div>

We have a #sidebar div and a #contacts div for our respective sections. Our application
is going to fill the .items list with contact names and have a currently selected contact
showing in #contacts. We’ll listen to clicks on .optEmail and .optSave, toggling
between the show and edit states as required. Finally, we’ll listen for click events
on .optDestroy, which destroys the current contact and selects another.

Contact Model
With just a half-dozen lines of code, the contact model is exceedingly straightforward.
Contact has three attributes: first_name, last_name, and email. We’ll also provide a
helper function that will give a full name, which will be useful in templates:

// Create the model
var Contact = Spine.Model.setup("Contact", ["first_name", "last_name", "email"]);

// Persist model between page reloads
Contact.extend(Spine.Model.Local);

// Add some instance functions
Contact.include({
 fullName: function(){

Building a Contacts Manager | 157

 if (!this.first_name && !this.last_name) return;
 return(this.first_name + " " + this.last_name);
 }
});

Notice that Spine.Model.Local is extending the model. This will ensure that records are
saved to the browser’s local storage, making them available the next time the page loads.

Sidebar Controller
Now let’s take a look at the Sidebar controller, which has the responsibility of listing
contacts and keeping track of the currently selected one. Whenever contacts change,
the Sidebar controller must update itself to reflect those changes. In addition, the side-
bar has a “New contact” button that it will listen to, creating new blank contacts when
it’s clicked.

Here’s the full controller in all its glory. This might be an overwhelming piece of code
at first—especially if you’re not familiar with Spine—but it’s heavily commented, so it
should be understandable under closer examination:

jQuery(function($){

 window.Sidebar = Spine.Controller.create({
 // Create instance variables:
 // this.items //=>
 elements: {
 ".items": "items"
 },

 // Attach event delegation
 events: {
 "click button": "create"
 },

 // Ensure these functions are called with the current
 // scope as they're used in event callbacks
 proxied: ["render"],

 // Render template
 template: function(items){
 return($("#contactsTemplate").tmpl(items));
 },

 init: function(){
 this.list = Spine.List.init({
 el: this.items,
 template: this.template
 });

 // When the list's current item changes, show the contact
 this.list.bind("change", this.proxy(function(item){
 this.App.trigger("show:contact", item);
 }));

158 | Chapter 11: The Spine Library

 // When the current contact changes, i.e., when a new contact is created,
 // change the list's currently selected item
 this.App.bind("show:contact edit:contact", this.list.change);

 // Rerender whenever contacts are populated or changed
 Contact.bind("refresh change", this.render);
 },

 render: function(){
 var items = Contact.all();
 this.list.render(items);
 },

 // Called when 'Create' button is clicked
 create: function(){
 var item = Contact.create();
 this.App.trigger("edit:contact", item);
 }
 });

});

You’ll notice that the controller’s init() function is using a class called Spine.List,
something we haven’t yet covered. Spine.List is a utility controller that’s great for
generating lists of records. What’s more, Spine.List will keep track of a currently se-
lected item, and then notify listeners with a change event when the user selects a dif-
ferent item.

The list is completely rerendered whenever contacts are changed or refreshed. This
keeps the example nice and simple, but it may be something we want to change in the
future if performance issues arise.

The #contactsTemplate referenced in template() is a script element that contains our
contact’s template for individual list items:

<script type="text/x-jquery-tmpl" id="contactsTemplate">
 <li class="item">
 {{if fullName()}}
 ${fullName()}
 {{else}}
 No Name
 {{/if}}

</script>

We are using jQuery.tmpl for the templating, which should be familiar to you if you’ve
read Chapter 5. Spine.List will use this template to render each item, and it will set a
class of current on the if it’s associated with the currently selected item.

Building a Contacts Manager | 159

http://api.jquery.com/jquery.tmpl

Contacts Controller
Our Sidebar controller is now displaying a list of contacts, allowing users to select
individual ones. But how about showing the currently selected contact? This is where
the Contacts controller comes in:

jQuery(function($){

 window.Contacts = Spine.Controller.create({
 // Populate internal element properties
 elements: {
 ".show": "showEl",
 ".show .content": "showContent",
 ".edit": "editEl"
 },

 proxied: ["render", "show"],

 init: function(){
 // Initial view shows contact
 this.show();

 // Rerender the view when the contact is changed
 Contact.bind("change", this.render);

 // Bind to global events
 this.App.bind("show:contact", this.show);
 },

 change: function(item){
 this.current = item;
 this.render();
 },

 render: function(){
 this.showContent.html($("#contactTemplate").tmpl(this.current));
 },

 show: function(item){
 if (item && item.model) this.change(item);

 this.showEl.show();
 this.editEl.hide();
 }
 });

Whenever a new contact is selected in the sidebar, the global show:contact event will
be triggered. We’re binding to this event in Contacts, executing the show() function,
which gets passed the newly selected contact. We’re then rerendering the showCon
tent div, replacing it with the currently selected record.

You can see we’ve referenced a #contactTemplate template, which will display Con
tacts' current contact to our users. Let’s go ahead and add that template to the page:

160 | Chapter 11: The Spine Library

<script type="text/x-jquery-tmpl" id="contactTemplate">
 <label>
 Name
 ${first_name} ${last_name}
 </label>

 <label>
 Email
 {{if email}}
 ${email}
 {{else}}
 <div class="empty">Blank</div>
 {{/if}}
 </label>
</script>

We’ve now got functionality to show contacts, but how about editing and destroying
them? Let’s rewrite the Contacts controller to do that. The main difference is that we’re
going to toggle between two application states, showing and editing when the .opt
Edit and .optSave elements are clicked. We’re also going to add a new template into
the fray: #editContactTemplate. When saving records, we’ll read the edit form’s inputs
and update the record’s attributes:

jQuery(function($){

 window.Contacts = Spine.Controller.create({
 // Populate internal element properties
 elements: {
 ".show": "showEl",
 ".edit": "editEl",
 ".show .content": "showContent",
 ".edit .content": "editContent"
 },

 // Delegate events
 events: {
 "click .optEdit": "edit",
 "click .optDestroy": "destroy",
 "click .optSave": "save"
 },

 proxied: ["render", "show", "edit"],

 init: function(){
 this.show();
 Contact.bind("change", this.render);
 this.App.bind("show:contact", this.show);
 this.App.bind("edit:contact", this.edit);
 },

 change: function(item){
 this.current = item;
 this.render();
 },

Building a Contacts Manager | 161

 render: function(){
 this.showContent.html($("#contactTemplate").tmpl(this.current));
 this.editContent.html($("#editContactTemplate").tmpl(this.current));
 },

 show: function(item){
 if (item && item.model) this.change(item);

 this.showEl.show();
 this.editEl.hide();
 },

 // Called when the 'edit' button is clicked
 edit: function(item){
 if (item && item.model) this.change(item);

 this.showEl.hide();
 this.editEl.show();
 },

 // Called when the 'delete' button is clicked
 destroy: function(){
 this.current.destroy();
 },

 // Called when the 'save' button is clicked
 save: function(){
 var atts = this.editEl.serializeForm();
 this.current.updateAttributes(atts);
 this.show();
 }
 });

});

As mentioned previously, we’re using a new template called #editContactTemplate.
We need to add this to the page so it can be referenced successfully. Essentially,
#editContactTemplate is very similar to #contactTemplate, except that it’s using input
elements to display the record’s data:

<script type="text/x-jquery-tmpl" id="editContactTemplate">
 <label>
 First name
 <input type="text" name="first_name" value="${first_name}" autofocus>
 </label>

 <label>
 Last name
 <input type="text" name="last_name" value="${last_name}">
 </label>

 <label>
 Email
 <input type="text" name="email" value="${email}">

162 | Chapter 11: The Spine Library

 </label>
</script>

App Controller
So, we’ve got two controllers—Sidebar and Contacts—that deal with selecting, dis-
playing, and editing Contact records. Now all that’s needed is an App controller that
instantiates every other controller, passing them the page elements they require:

jQuery(function($){
 window.App = Spine.Controller.create({
 el: $("body"),

 elements: {
 "#sidebar": "sidebarEl",
 "#contacts": "contactsEl"
 },

 init: function(){
 this.sidebar = Sidebar.init({el: this.sidebarEl});
 this.contact = Contacts.init({el: this.contactsEl});

 // Fetch contacts from local storage
 Contact.fetch();
 }
 }).init();
});

Notice we’re calling .init() immediately after creating the App controller. We’re also
calling fetch() on the Contact model, retrieving all the contacts from local storage.

So, that’s all there is to it! Two main controllers (Sidebar and Contacts), one model
(Contact), and a couple of views. To see the finished product, check out the source
repository and see Figure 11-2.

Building a Contacts Manager | 163

http://github.com/maccman/spine.contacts
http://github.com/maccman/spine.contacts

Figure 11-2. Editing contacts in the example Spine application

164 | Chapter 11: The Spine Library

CHAPTER 12

The Backbone Library

Backbone is an excellent library for building JavaScript applications. Its beauty is in its
simplicity; the library is very lightweight, giving you a great deal of flexibility while
covering all the basics. As with the rest of this book, MVC is the name of the game, and
that pattern runs right through the core of Backbone. The library gives you models,
controllers, and views—the building blocks for your application.

How is Backbone different from other frameworks, such as SproutCore or Cappuccino?
Well, the main difference is Backbone’s lightweight nature. SproutCore and Cappuc-
cino provide rich UI widgets and vast core libraries, and they determine the structure
of your HTML for you. Both frameworks measure in the hundreds of kilobytes when
packed and gzipped, as well as many megabytes of JavaScript, CSS, and images when
loaded in the browser. By comparison, Backbone measures just 4 KB, providing purely
the core concepts of models, events, collections, views, controllers, and persistence.

Backbone’s only hard dependency is underscore.js, a library full of useful utilities and
general-purpose JavaScript functions. Underscore provides more than 60 functions that
deal with—among other things—array manipulation, function binding, JavaScript
templating, and deep-equality testing. It’s definitely worth checking out Underscore’s
API, especially if you’re doing a lot of work with arrays. Other than Underscore, you
can safely use jQuery or Zepto.js to help Backbone with view functionality.

Although it’s well documented, Backbone can be a little overwhelming when you first
get into it. The aim of this chapter is to rectify that situation, giving you an in-depth
and practical introduction to the library. The first few sections will be an overview of
Backbone’s components, and then we’ll finish with a practical application. Feel free to
skip straight to the end if you want to see Backbone in action.

Models
Let’s start with probably the most key component to MVC: models. Models are where
your application’s data is kept. Think of models as a fancy abstraction upon the

165

http://documentcloud.github.com/underscore

application’s raw data, adding utility functions and events. You can create Backbone
models by calling the extend() function on Backbone.Model:

var User = Backbone.Model.extend({
 initialize: function() {
 // ...
 }
});

The first argument to extend() takes an object that becomes the instance properties of
the model. The second argument is an optional class property hash. You can call
extend() multiple times to generate subclasses of models, which inherit all their parents’
class and instance properties:

var User = Backbone.Model.extend({
 // Instance properties
 instanceProperty: "foo"
}, {
 // Class properties
 classProperty: "bar"
});

assertEqual(User.instanceProperty, "foo");
assertEqual(User.prototype.classProperty, "bar");

When a model is instantiated, the model’s initialize() instance function is called with
any instantiation arguments. Behind the scenes, Backbone models are constructor
functions, so you can instantiate a new instance by using the new keyword:

var User = Backbone.Model.extend({
 initialize: function(name) {
 this.set({name: name});
 }
});

var user = new User("Leo McGarry");
assertEqual(user.get("name"), "Leo McGarry");

Models and Attributes
Use the set() and get() functions for setting and retrieving an instances’ attributes:

var user = new User();
user.set({name: "Donna Moss"})

assertEqual(user.get("name"), "Donna Moss");
assertEqual(user.attributes, {name: "Donna Moss"});

set(attrs, [options]) takes a hash of attributes to apply to the instance, and
get(attr) takes a single string argument—the name of the attribute—returning
its value. The instance keeps track of its current attributes with a local hash called
attributes. You shouldn’t manipulate this directly; as with the get() and set() func-
tions, make sure the appropriate validation and events are invoked.

166 | Chapter 12: The Backbone Library

You can validate an instance’s attributes by using the validate() function. By default,
this is left undefined, but you can override it to add any custom validation logic:

var User = Backbone.Model.extend({
 validate: function(atts){
 if (!atts.email || atts.email.length < 3) {
 return "email must be at least 3 chars";
 }
 }
});

If the model and attributes are valid, don’t return anything from validate(); if the
attributes are invalid, you can either return a string describing the error or an Error
instance. If validation fails, the set() and save() functions will not continue and an
error event will be triggered. You can bind to the error event, ensuring that you’ll be
notified when any validation fails:

var user = new User;

user.bind("error", function(model, error) {
 // Handle error
});

user.set({email: "ga"});

// Or add an error handler onto the specific set
user.set({"email": "ga"}, {error: function(model, error){
 // ...
}});

Specify default attributes with a default hash. When creating an instance of the model,
any unspecified attributes will be set to their default value:

var Chat = Backbone.Model.extend({
 defaults: {
 from: "anonymous"
 }
});

assertEqual((new Chat).get("from"), "anonymous");

Collections
In Backbone, arrays of model instances are stored in collections. It might not be im-
mediately obvious why it’s useful to separate collections from models, but it’s actually
quite a common scenario. If you were recreating Twitter, for example, you’d have
two collections, Followers and Followees, both populated by User instances. Although
both collections are populated by the same model, each contains an array of different
User instances; as a result, they are separate collections.

As with models, you can create a collection by extending Backbone.Collection:

Collections | 167

var Users = Backbone.Collection.extend({
 model: User
});

In the example above, you can see we’re overriding the model property to specify which
model we want associated with the collection—in this case, the User model. Although
it’s not absolutely required, it’s useful to set this to give the collection a default model
to refer to if it’s ever required. Normally, a collection will contain instances of only a
single model type, rather than a multitude of different ones.

When creating a collection, you can optionally pass an initial array of models. Like with
Backbone’s models, if you define an initialize instance function, it will be invoked
on instantiation:

var users = new Users([{name: "Toby Ziegler"}, {name: "Josh Lyman"}]);

Alternatively, you can add models to the collection using the add() function:

var users = new Users;

// Add an individual model
users.add({name: "Donna Moss"});

// Or add an array of models
users.add([{name: "Josiah Bartlet"}, {name: "Charlie Young"}]);

When you add a model to the collection, the add event is fired:

users.bind("add", function(user) {
 alert("Ahoy " + user.get("name") + "!");
});

Similarly, you can remove a model from the collection using remove(), which triggers
a remove event:

users.bind("remove", function(user) {
 alert("Adios " + user.get("name") + "!");
});

users.remove(users.models[0]);

Fetching a specific model is simple; if the model’s ID is present, you can use the con-
troller’s get() function:

var user = users.get("some-guid");

If you don’t have a model’s ID, you can fetch a model by cid—the client ID created
automatically by Backbone whenever a new model is created:

var user = users.getByCid("c-some-cid");

In addition to the add and remove events, whenever the model in a collection has been
modified, a change event will be fired:

var user = new User({name: "Adam Buxton"});

var users = new Backbone.Collection;

168 | Chapter 12: The Backbone Library

users.bind("change", function(rec){
 // A record was changed!
});
users.add(user);

user.set({name: "Joe Cornish"});

Controlling a Collection’s Order
You can control a collection’s order by providing a comparator() function, returning a
value against which you want the collection sorted:

var Users = Backbone.Collection.extend({
 comparator: function(user){
 return user.get("name");
 }
});

You can return either a string or numeric value to sort against (unlike JavaScript’s
regular sort). In the example above, we’re making sure the Users collection is sorted
alphabetically by name. Ordering will happen automatically behind the scenes, but if
you ever need to force a collection to re-sort itself, you can call the sort() function.

Views
Backbone views are not templates themselves, but are control classes that handle a
model’s presentation. This can be confusing, because many MVC implementations
refer to views as chunks of HTML or templates that deal with events and rendering in
controllers. Regardless, in Backbone, it is a view “because it represents a logical chunk
of UI, responsible for the contents of a single DOM.”

Like models and collections, views are created by extending one of Backbone’s existing
classes—in this case, Backbone.View:

var UserView = Backbone.View.extend({
 initialize: function(){ /* ... */ },
 render: function(){ /* ... */ }
});

Every view instance has the idea of a current DOM element, or this.el, regardless of
whether the view has been inserted into the page. el is created using the attributes from
the view’s tagName, className, or id properties. If none of these is specified, el is an
empty div:

var UserView = Backbone.View.extend({
 tagName: "span",
 className: "users"
});

assertEqual((new UserView).el.className, "users");

Views | 169

If you want to bind the view onto an existing element in the page, simply set el directly.
Clearly, you need to make sure this view is set up after the page has loaded; otherwise,
the element won’t yet exist:

var UserView = Backbone.View.extend({
 el: $(".users")
});

You can also pass el as an option when instantiating a view, as with the tagName,
className, and id properties:

new UserView({id: "followers"});

Rendering Views
Every view also has a render() function, which by default is a no-op (an empty func-
tion). Your view should call this function whenever the view needs to be redrawn. You
should override this function with functionality specific to your view, dealing with
rendering templates and updating el with any new HTML:

var TodoView = Backbone.View.extend({
 template: _.template($("#todo-template").html()),

 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
});

Backbone is pretty agnostic about how you render views. You can generate the elements
yourself or using a templating library. The latter approach is advocated, though, be-
cause it’s generally the cleanest method—keeping HTML out of your JavaScript pro-
grams. Since Underscore.js, being a dependency of Backbone, is on the page, you can
use _.template()—a handy utility for generating templates.

Above, you’ll notice that we’re using a local property called this.model. This actually
points to a model’s instance and is passed through to the view upon instantiation.
The model’s toJSON() function essentially returns the model’s raw attributes, ready for
the template to use:

new TodoView({model: new Todo});

Delegating Events
Through delegation, Backbone’s views provide an easy shortcut for adding event han-
dlers onto el. Here’s how you can set a hash of events and their corresponding callbacks
on the view:

var TodoView = Backbone.View.extend({
 events: {
 "change input[type=checkbox]" : "toggleDone",
 "click .destroy" : "clear",

170 | Chapter 12: The Backbone Library

http://documentcloud.github.com/underscore/#template

 },

 toggleDone: function(e){ /* ... */},
 clear: function(e){ /* ... */}
});

The event hash is in the format {"eventType selector": "callback"}. The selector
is optional, and if it isn’t provided, the event is bound straight to el. If the selector is
provided, the event is delegated, which basically means it’s bound dynamically to any
of el’s children that match the selector. Delegation uses event bubbling, meaning that
events will still fire regardless of whether el’s contents have changed.

The callback is a string, and it refers to the name of an instance function on the
current view. When the view’s event callbacks are triggered, they’re invoked in the
current view’s context, rather than the current target or window’s context. This is rather
useful because you have direct access to this.el and this.model from any callbacks,
such as in the example toggleDone() and clear() functions above.

Binding and Context
So, how is the view’s render() function actually invoked? Well, typically this is called
by the view’s model when it changes, using the change event. This means your appli-
cation’s views and HTML are kept in sync (bound) with your model’s data:

var TodoView = Backbone.View.extend({
 initialize: function() {
 _.bindAll(this, 'render', 'close');
 this.model.bind('change', this.render);
 },

 close: function(){ /* ... */ }
});

One thing to watch out for is context changes in event callbacks. Underscore provides
a useful function to get around this: _.bindAll(context, *functionNames). This func-
tion binds a context and function names (as strings). _.bindAll() ensures that all the
functions you indicate are always invoked in the specified context. This is especially
useful for event callbacks, as their context is always changing. In the example above,
the render() and close() functions will always execute in the TodoView’s instance con-
text.

Catering to model destruction works similarly. Your views just need to bind to the
model’s delete event, removing el when it’s triggered:

var TodoView = Backbone.View.extend({
 initialize: function() {
 _.bindAll(this, 'render', 'remove');
 this.model.bind('change', this.render);
 this.model.bind('delete', this.remove);
 },

Views | 171

http://api.jquery.com/delegate
http://documentcloud.github.com/underscore/#bindAll

 remove: function(){
 $(this.el).remove();
 }
});

Note that you can render Backbone’s views without using models or event callbacks.
You could easily call the render() function from initialize(), rendering the view
when it’s first instantiated. However, I’ve been covering model and view integration
because it’s the typical use case for views—the binding capabilities are one of Back-
bone’s most useful and powerful features.

Controllers
Backbone controllers connect the application’s state to the URL’s hash fragment, pro-
viding shareable, bookmarkable URLs. Essentially, controllers consist of a bunch of
routes and the functions that will be invoked when those routes are navigated to.

Routes are a hash—the key consisting of paths, parameters, and splats—and the value
is set to the function associated with the route:

routes: { // Matches:
 "help": "help", // #help
 "search/:query": "search", // #search/kiwis
 "search/:query/p:page": "search" // #search/kiwis/p7
 "file/*path": "file" // #file/any/path.txt
}

You can see in the example above that parameters start with a : and then the name of
the parameter. Any parameters in a route will be passed to its action when the route is
invoked. Splats, specified by a *, are basically a wildcard, matching anything. As with
parameters, splats will be passed matched values onto their route’s action.

Routes are parsed in the reverse order they’re specified in the hash. In other words,
your most general “catch all” routes should be located at the end of the routes hash.

Per usual, controllers are created by extending Backbone.Controllers, passing in an
object containing instance properties:

var PageController = Backbone.Controller.extend({
 routes: {
 "": "index",
 "help": "help", // #help
 "search/:query": "search", // #search/kiwis
 "search/:query/p:page": "search" // #search/kiwis/p7
 },

 index: function(){ /* ... */ },

 help: function() {
 // ...
 },

172 | Chapter 12: The Backbone Library

 search: function(query, page) {
 // ...
 }
});

In the example above, when the user navigates to http://example.com#search/coconut,
whether manually or by pushing the back button, the search() function will be invoked
with the query variable pointing to "coconut".

If you want to make your application compliant with the Ajax Crawling specification
and indexable by search engines (as discussed in Chapter 4), you need to prefix all your
routes with !/, as in the following example:

var PageController = Backbone.Controller.extend({
 routes: {
 "!/page/:title": "page", // #!/page/foo-title
 }
 // ...
}):

You’ll also need to make changes server side, as described by the specification.

If you need more route functionality, such as making sure certain parameters are inte-
gers, you can pass a regex directly to route():

var PageController = Backbone.Controller.extend({
 initialize: function(){
 this.route(/pages\/(\d+)/, 'id', function(pageId){
 // ...
 });
 }
}):

So, routes tie up changes to the URL’s fragment with controllers, but how about setting
the fragment in the first place? Rather than setting window.location.hash manually,
Backbone provides a shortcut—saveLocation(fragment):

Backbone.history.saveLocation("/page/" + this.model.id);

When saveLocation() is called and the URL’s fragment is updated, none of the con-
troller’s routes will be invoked. This means you can safely call saveLocation() in a
view’s initialize() function, for example, without any controller intervention.

Internally, Backbone will listen to the onhashchange event in browsers that support it,
or implement a workaround using iframes and timers. However, you’ll need to initiate
Backbone’s history support by calling the following:

Backbone.history.start();

You should only start Backbone’s history once the page has loaded and all of your
views, models, and collections are available. As it stands, Backbone doesn’t support
the new HTML5 pushState() and replaceState() history API. This is because push
State() and replaceState() currently need special handling on the server side and

Controllers | 173

http://code.google.com/web/ajaxcrawling/index.html

aren’t yet supported by Internet Explorer. Backbone may add support once those issues
have been addressed. For now, all routing is done by the URL’s hash fragment.

Syncing with the Server
By default, whenever you save a model, Backbone will notify your server with an Ajax
request, using either the jQuery or Zepto.js library. Backbone achieves this by calling
Backbone.sync() before a model is created, updated, or deleted. Backbone will then
send off a RESTful JSON request to your server which, if successful, will update the
model client side.

To take advantage of this, you need to define a url instance property on your model
and have a RESTfully compliant server. Backbone will take care of the rest:

var User = Backbone.Model.extend({
 url: '/users'
});

The url property can either be a string or a function that returns a string. The path can
be relative or absolute, but it must return the model’s endpoint.

Backbone maps create, read, update, and delete (CRUD) actions into the following
methods:

create → POST /collection
read → GET /collection[/id]
update → PUT /collection/id
delete → DELETE /collection/id

For example, if you were creating a User instance, Backbone would send off a POST
request to /users. Similarly, updating a User instance would send off a PUT request to
the endpoint /users/id, where id is the model’s identifier. Backbone expects you to
return a JSON hash of the instance’s attributes in response to POST, PUT, and GET
requests, which will be used to update the instance.

To save a model to the server, call the model’s save([attrs], [options]) function,
optionally passing in a hash of attributes and request options. If the model has an id,
it is assumed to exist on the server side, and save() sends will be a PUT (update) request.
Otherwise, save() will send a POST (create) request:

var user = new User();
user.set({name: "Bernard"});

user.save(null, {success: function(){
 // user saved successfully
}});

All calls to save() are asynchronous, but you can listen to the Ajax request callbacks
by passing the success and failure options. In fact, if Backbone is using jQuery, any
options passed to save() will also be passed to $.ajax(). In other words, you can use
any of jQuery’s Ajax options, such as timeout, when saving models.

174 | Chapter 12: The Backbone Library

http://api.jquery.com/jQuery.ajax

If the server returns an error and the save fails, an error event will be triggered on the
model. If it succeeds, the model will be updated with the server’s response:

var user = new User();

user.bind("error", function(e){
 // The server returns an error!
});

user.save({email: "Invalid email"});

You can refresh a model by using the fetch() function, which will request the model’s
attributes from the server (via a GET request). A change event will trigger if the remote
representation of the model differs from its current attributes:

var user = Users.get(1);
user.fetch();

Populating Collections
So, we’ve covered creating and updating models, but what about fetching them from
the server in the first place? This is where Backbone collections come in, requesting
remote models and storing them locally. Like models, you should add a url property
to the collection to specify its endpoint. If a url isn’t provided, Backbone will fall back
to the associated model’s url:

var Followers = Backbone.Collection.extend({
 model: User,
 url: "/followers"
});

Followers.fetch();

The collection’s fetch() function will send off a GET request to the server—in this
case, to /followers—retrieving the remote models. When the model data returns from
the server, the collection will refresh, triggering a refresh event.

You can refresh collections manually with the refresh() function, passing in an array
of model objects. This comes in really handy when you’re first setting up the page.
Rather than firing off another GET request on page load, you can prepopulate collection
data by passing in a JSON object inline via refresh(). For example, here’s how it would
look using Rails:

<script type="text/javascript">
 Followers.refresh(<%= @users.to_json %>);
</script>

On the Server Side
As mentioned previously, your server needs to implement a number of RESTful end-
points in order to integrate seamlessly with Backbone:

Syncing with the Server | 175

create → POST /collection
read → GET /collection
read → GET /collection/id
update → PUT /collection/id
delete → DELETE /collection/id

Backbone will serialize models into JSON before sending them. Our User model would
look like this:

{"name": "Yasmine"}

Notice that the data isn’t prefixed by the current model, something that can especially
trip up Rails developers. I’m going to go through some of the specifics of integrating
Rails with Backbone, so if you’re not using the framework, feel free to skip to the next
section.

Inside your CRUD methods, you should be using the plain, unprefixed parameters. For
example, here’s how our Rails controller’s update method could work:

def update
 user = User.find(params[:id])
 user.update_attributes!(params)
 render :json => user
end

Obviously, you should be securing your model from malicious input by whitelisting
attributes using the attr_accessible method, but that’s beyond the scope of this book.
Every controller method, except for destroy, should return a JSON representation of
the record.

Serializing attributes to JSON is also an issue because, by default, Rails prefixes any
record data with the model, like this:

{"user": {"name": "Daniela"}}

Unfortunately, Backbone won’t be able to parse that object correctly. You need to
ensure Rails doesn’t include the model name inside JSON serializations of records by
creating an initializer file:

config/initializers/json.rb
ActiveRecord::Base.include_root_in_json = false

Custom Behavior
Backbone.sync() is the function Backbone calls every time it attempts to read or save a
model to the server. You can override its default behavior (sending an Ajax request) in
order to use a different persistence strategy, such as WebSockets, XML transport, or
Local Storage. For example, let’s replace Backbone.sync() with a no-op function that
just logs the arguments with which its called:

Backbone.sync = function(method, model, options) {
 console.log(method, model, options);

176 | Chapter 12: The Backbone Library

http://guides.rubyonrails.org/security.html#mass-assignment
http://guides.rubyonrails.org/security.html#mass-assignment

 options.success(model);
};

As you can see, Backbone.sync() gets passed a method, model, and options, which have
the following properties:

method

The CRUD method (create, read, update, or delete)

model

The model to be saved (or collection to be read)

options

The request options, including success and failure callbacks

The only thing Backbone expects you to do is invoke either the options.success() or
options.error() callback.

It’s also possible to override the sync function per model or collection, rather than
globally:

Todo.prototype.sync = function(method, model, options){ /* ... */ };

A good example of a custom Backbone.sync() function is in the local storage adapter.
Including the adapter and setting the localStorage option on the relevant models or
collections enables Backbone to use HTML5 localStorage, rather than a backend
server. As you can see in the example below, Backbone.sync() CRUDs the store object,
depending on the method, and finally calls options.success() with the appropriate
model:

// Save all of the todo items under the "todos" localStorage namespace.
Todos.prototype.localStorage = new Store("todos");

// Override Backbone.sync() to use a delegate to the model or collection's
// localStorage property, which should be an instance of Store.
Backbone.sync = function(method, model, options) {

 var resp;
 var store = model.localStorage || model.collection.localStorage;

 switch (method) {
 case "read": resp = model.id ? store.find(model) : store.findAll(); break;
 case "create": resp = store.create(model); break;
 case "update": resp = store.update(model); break;
 case "delete": resp = store.destroy(model); break;
 }

 if (resp) {
 options.success(resp);
 } else {
 options.error("Record not found");
 }
};

Syncing with the Server | 177

https://github.com/jeromegn/Backbone.localStorage

Building a To-Do List
Let’s put what we’ve learned about Backbone into practice with a simple to-do list
application. We want the user to be able to CRUD to-dos, and we want items to be
persisted between page refreshes. You can build the application using the examples
below, or see the finished application in assets/ch12/todos.

The initial page structure looks like the following; we’re loading in CSS, JavaScript
libraries, and our Backbone application contained in todos.js:

<html>
<head>
 <link href="todos.css" media="all" rel="stylesheet" type="text/css"/>
 <script src="lib/json2.js"></script>
 <script src="lib/jquery.js"></script>
 <script src="lib/jquery.tmpl.js"></script>
 <script src="lib/underscore.js"></script>
 <script src="lib/backbone.js"></script>
 <script src="lib/backbone.localstorage.js"></script>
 <script src="todos.js"></script>
</head>

<body>
 <div id="todoapp">
 <div class="title">
 <h1>Todos</h1>
 </div>

 <div class="content">
 <div id="create-todo">
 <input id="new-todo" placeholder="What needs to be done?" type="text" />
 </div>

 <div id="todos">
 <ul id="todo-list">
 </div>
 </div>
 </div>
</body>
</html>

The page structure is very straightforward; it just contains a text input for creating new
to-dos (#new-todo) and a list showing existing to-dos (#todo-list).

Now let’s move on to the todos.js script, where the core of our Backbone application
is located. We’re going to wrap everything we put in this class with jQuery(), ensuring
that it will be run only after the page has loaded:

// todos.js
jQuery(function($){
 // Application goes here...
})

178 | Chapter 12: The Backbone Library

Let’s create a basic Todo model that has content and done attributes. We’re providing a
toggle() helper for easily inverting the model’s done attribute:

window.Todo = Backbone.Model.extend({
 defaults: {
 done: false
 },

 toggle: function() {
 this.save({done: !this.get("done")});
 }
});

We’re setting the Todo model on the window object to ensure that it’s accessible globally.
Also, by using this pattern, it’s easy to see which global variables a script is declaring—
just look through the script for window references.

The next step is to set up a TodoList collection, where the array of Todo models will be
stored:

window.TodoList = Backbone.Collection.extend({
 model: Todo,

 // Save all of the to-do items under the "todos" namespace.
 localStorage: new Store("todos"),

 // Filter down the list of all to-do items that are finished.
 done: function() {
 return this.filter(function(todo){ return todo.get('done'); });
 },

 remaining: function() {
 return this.without.apply(this, this.done());
 }
});

// Create our global collection of Todos.
window.Todos = new TodoList;

We’re using the Backbone local storage provider (backbone.localstorage.js), which re-
quires us to set a localStorage attribute on any collections or models wanting to store
data. The other two functions in TodoList, done(), and remaining() deal with filtering
the collection, returning to-do models that have or have not been completed. Because
there will only ever be one TodoList, we’re instantiating a globally available instance of
it: window.Todos.

And now for the view that will show individual to-dos, TodoView. This will bind to the
change event on Todo models, rerendering the view when it’s triggered:

window.TodoView = Backbone.View.extend({

 // View is a list tag.
 tagName: "li",

Building a To-Do List | 179

 // Cache the template function for a single item.
 template: $("#item-template").template(),

 // Delegate events to view functions
 events: {
 "change .check" : "toggleDone",
 "dblclick .todo-content" : "edit",
 "click .todo-destroy" : "destroy",
 "keypress .todo-input" : "updateOnEnter",
 "blur .todo-input" : "close"
 },

 initialize: function() {
 // Make sure functions are called in the right scope
 _.bindAll(this, 'render', 'close', 'remove');

 // Listen to model changes
 this.model.bind('change', this.render);
 this.model.bind('destroy', this.remove);
 },

 render: function() {
 // Update el with stored template
 var element = jQuery.tmpl(this.template, this.model.toJSON());
 $(this.el).html(element);
 return this;
 },

 // Toggle model's done status when the checkbox is checked
 toggleDone: function() {
 this.model.toggle();
 },

 // Switch this view into `"editing"` mode, displaying the input field.
 edit: function() {
 $(this.el).addClass("editing");
 this.input.focus();
 },

 // Close the `"editing"` mode, saving changes to the to-do.
 close: function(e) {
 this.model.save({content: this.input.val()});
 $(this.el).removeClass("editing");
 },

 // If you hit `enter`, we're through editing the item.
 // Fire the blur event on the input, triggering close()
 updateOnEnter: function(e) {
 if (e.keyCode == 13) e.target.blur();
 },

 // Remove element when model is destroyed
 remove: function() {
 $(this.el).remove();
 },

180 | Chapter 12: The Backbone Library

 // Destroy model when '.todo-destroy' is clicked
 destroy: function() {
 this.model.destroy();
 }
});

You can see we’re delegating a bunch of events to the view that manage updating,
completing, and deleting the to-do. For example, whenever the checkbox is changed,
toggleDone() gets called, toggling the model’s done attribute. That in turn triggers the
model’s change event, which causes the view to rerender.

We’re using jQuery.tmpl for the HTML templating, replacing the contents of el with
a regenerated template whenever the view renders. The template refers to an element
with an ID of #item-template, which we haven’t yet defined. Let’s do that now, placing
the template inside our index.html body tags:

<script type="text/template" id="item-template">
 <div class="todo {{if done}}done{{/if}}">
 <div class="display" title="Double click to edit...">
 <input class="check" type="checkbox" {{if done}}checked="checked"{{/if}} />
 <div class="todo-content">${content}</div>

 </div>
 <div class="edit">
 <input class="todo-input" type="text" value="${content}" />
 </div>
 </div>
</script>

That templating syntax should look fairly familiar to you if you’ve read Chapter 5,
where jQuery.tmpl is covered in some depth. Essentially, we’re interoperating the to-
do’s contents inside the #todo-content and #todo-input elements. Additionally, we’re
making sure the checkbox has the correct “checked” state.

TodoView is pretty self-contained—we just need to give it a model on instantiation and
append its el attribute to the to-do list. This is basically the job of AppView, which
ensures that our initial to-do list is populated by instantiating TodoView instances. The
other role AppView performs is creating new Todo records when a user hits Return on
the #new-todo text input:

// Our overall AppView is the top-level piece of UI.
window.AppView = Backbone.View.extend({

 // Instead of generating a new element, bind to the existing skeleton of
 // the App already present in the HTML.
 el: $("#todoapp"),

 events: {
 "keypress #new-todo": "createOnEnter",
 "click .todo-clear a": "clearCompleted"
 },

Building a To-Do List | 181

http://api.jquery.com/category/plugins/templates

 // At initialization, we bind to the relevant events on the `Todos`
 // collection, when items are added or changed. Kick things off by
 // loading any preexisting to-dos that might be saved in *localStorage*.
 initialize: function() {
 _.bindAll(this, 'addOne', 'addAll', 'render');

 this.input = this.$("#new-todo");

 Todos.bind('add', this.addOne);
 Todos.bind('refresh', this.addAll);

 Todos.fetch();
 },

 // Add a single to-do item to the list by creating a view for it and
 // appending its element to the ``.
 addOne: function(todo) {
 var view = new TodoView({model: todo});
 this.$("#todo-list").append(view.render().el);
 },

 // Add all items in the Todos collection at once.
 addAll: function() {
 Todos.each(this.addOne);
 },

 // If you hit return in the main input field, create new Todo model
 createOnEnter: function(e) {
 if (e.keyCode != 13) return;

 var value = this.input.val();
 if (!value) return;

 Todos.create({content: value});
 this.input.val('');
 },

 clearCompleted: function() {
 _.each(Todos.done(), function(todo){ todo.destroy(); });
 return false;
 }
});

// Finally, we kick things off by creating the App.
window.App = new AppView;

When the page initially loads, the Todos collection will be populated and the refresh
event called. This invokes addAll(), which fetches all the Todo models, generates Todo
View views, and appends them to #todo-list. Additionally, when new Todo models are
added to Todos, the Todos add event is triggered, invoking addOne() and appending a
new TodoView to the list. In other words, the initial population and Todo creation is being
handled by AppView, while the individual TodoView views handle updating and destroy-
ing themselves.

182 | Chapter 12: The Backbone Library

Now let’s refresh the page and see the result of our handiwork. Notwithstanding any
bugs and typos, you should see something like Figure 12-1.

Figure 12-1. The finished Backbone Todo application

We have functionality for adding, checking, updating, and removing to-dos, all with a
relatively small amount of code. Because we’re using the local storage Backbone
adapter, to-dos are persisted between page reloads. This example should give you a
good idea of how useful Backbone is, as well as how to go about creating your own
applications.

You can find the full application inside this book’s accompanying files, in assets/ch12/
todos.

Building a To-Do List | 183

CHAPTER 13

The JavascriptMVC Library

Justin Meyer, the author of JavaScriptMVC, kindly contributed this chapter

JavaScriptMVC (JMVC) is an open source jQuery-based JavaScript framework. It is
nearly a comprehensive (holistic) frontend development framework, packaging utilities
for testing, dependency management, documentation, and a host of useful jQuery
plug-ins.

Yet every part of JavaScriptMVC can be used without every other part, making the
library lightweight. Its class, model, view, and controller combined are only 7k minified
and compressed, yet even they can be used independently. JavaScriptMVC’s inde-
pendence lets you start small and scale to meet the challenges of the most complex
applications on the Web.

This chapter covers JavaScriptMVC’s $.Class, $.Model, $.View, and $.Controller. The
following describes each component:

$.Class

The JavaScript-based class system

$.Model

The traditional model layer

$.View

The client-side template system

$.Controller

The jQuery widget factory

JavaScriptMVC’s naming conventions deviate slightly from the traditional Model-
View-Controller design pattern. For example, $.Controller is used to create traditional
view controls, like pagination buttons and lists, as well as traditional controllers that
coordinate between the traditional views and models.

185

http://jupiterjs.com/pages/justin-meyer
http://en.wikipedia.org/wiki/Model–view–controller#Concepts
http://en.wikipedia.org/wiki/Model–view–controller#Concepts

Setup
JavaScriptMVC can be used as a single download that includes the entire framework.
But since this chapter covers only the MVC parts, go to the download builder; check
Controller, Model, and View’s EJS templates; and click Download.

The download will come with minified and unminified versions of jQuery and your
selected plug-ins. Load these with script tags in your page:

<script type='text/javascript' src='jquery-1.6.1.js'></script>
<script type='text/javascript' src='jquerymx-1.0.custom.js'></script>

Classes
JMVC’s controller and model inherit from its class helper: $.Class. To create a class,
call $.Class(NAME, [classProperties,] instanceProperties]):

$.Class("Animal",{
 breathe : function(){
 console.log('breathe');
 }
});

In the example above, instances of Animal have a breathe() method. We can create a
new Animal instance and call breathe() on it:

var man = new Animal();
man.breathe();

If you want to create a subclass, simply call the base class with the subclass’s name and
properties:

Animal("Dog",{
 wag : function(){
 console.log('wag');
 }
})

var dog = new Dog;
dog.wag();
dog.breathe();

Instantiation
When a new class instance is created, it calls the class’s init method with the arguments
passed to the constructor function:

$.Class('Person',{
 init : function(name){
 this.name = name;
 },

 speak : function(){

186 | Chapter 13: The JavascriptMVC Library

http://javascriptmvc.com/builder.html

 return "I am " + this.name + ".";
 }
});

var payal = new Person("Payal");
assertEqual(payal.speak() , 'I am Payal.');

Calling Base Methods
Call base methods with this._super. The following overwrites person to provide a
more “classy” greeting:

Person("ClassyPerson", {
 speak : function(){
 return "Salutations, " + this._super();
 }
});

var fancypants = new ClassyPerson("Mr. Fancy");
assertEquals(fancypants.speak() , 'Salutations, I am Mr. Fancy.')

Proxies
Class’ callback method returns a function that has “this” set appropriately, similar to
$.proxy. The following creates a Clicky class that counts how many times it was clicked:

$.Class("Clicky",{
 init : function(){
 this.clickCount = 0;
 },

 clicked: function(){
 this.clickCount++;
 },

 listen: function(el){
 el.click(this.callback('clicked'));
 }
})

var clicky = new Clicky();
clicky.listen($('#foo'));
clicky.listen($('#bar')) ;

Static Inheritance
Class lets you define inheritable static properties and methods. The following allows
you to retrieve a person instance from the server by calling Person.findOne(ID,
success(person)). Success is called back with an instance of Person, which has the
speak method:

Classes | 187

http://api.jquery.com/jQuery.proxy/

$.Class("Person",{
 findOne : function(id, success){
 $.get('/person/'+id, function(attrs){
 success(new Person(attrs));
 },'json')
 }
},{
 init : function(attrs){
 $.extend(this, attrs)
 },
 speak : function(){
 return "I am "+this.name+".";
 }
})

Person.findOne(5, function(person){
 assertEqual(person.speak(), "I am Payal.");
})

Introspection
Class provides namespacing and access to the name of the class and namespace object:

$.Class("Jupiter.Person");

Jupiter.Person.shortName; //-> 'Person'
Jupiter.Person.fullName; //-> 'Jupiter.Person'
Jupiter.Person.namespace; //-> Jupiter

var person = new Jupiter.Person();

person.Class.shortName; //-> 'Person'

A Model Example
Putting it all together, we can make a basic ORM-style model layer. Just by inheriting
from Model, we can request data from REST services and get it back wrapped in in-
stances of the inheriting Model:

$.Class("Model",{
 findOne : function(id, success){
 $.get('/' + this.fullName.toLowerCase() + '/' + id,
 this.callback(function(attrs){
 success(new this(attrs));
 })
 },'json')
 }
},{
 init : function(attrs){
 $.extend(this, attrs)
 }
})

Model("Person",{

188 | Chapter 13: The JavascriptMVC Library

 speak : function(){
 return "I am "+this.name+".";
 }
});

Person.findOne(5, function(person){
 alert(person.speak());
});

Model("Task");

Task.findOne(7,function(task){
 alert(task.name);
});

This is similar to how JavaScriptMVC’s model layer works.

Model
JavaScriptMVC’s model and its associated plug-ins provide lots of tools around or-
ganizing model data, such as validations, associations, lists, and more. But the core
functionality is centered around service encapsulation, type conversion, and events.

Attributes and Observables
Of absolute importance to a model layer is the ability to get and set properties on the
modeled data, and to listen for changes on a model instance. This is the Observer
pattern, and it lies at the heart of the MVC approach—views listen to changes in the
model.

Fortunately, with JavaScriptMVC, it is easy to make any data observable. A great ex-
ample is pagination. It’s very common for multiple pagination controls to exist on the
page. For example, one control might provide Next and Previous page buttons; another
control might detail the items the current page is viewing (e.g., “Showing items 1-20”).
All pagination controls need the exact same data:

offset

The index of the first item to display

limit

The number of items to display

count

The total number of items

We can model this data with JavaScriptMVC’s $.Model:

var paginate = new $.Model({
 offset: 0,
 limit: 20,

Model | 189

 count: 200
});

The paginate variable is now observable. We can pass it to pagination controls that can
read from, write to, and listen for property changes. You can read properties like normal
or by using the model.attr(NAME) method:

assertEqual(paginate.offset, 0);
assertEqual(paginate.attr('limit') , 20);

If we click the next button, we need to increment the offset. Change property values
with model.attr(NAME, VALUE). The following moves the offset to the next page:

paginate.attr('offset', 20);

When paginate’s state is changed by one control, the other controls need to be notified.
You can bind to a specific attribute change with model.bind(ATTR, success(ev, new
Val)) and update the control:

paginate.bind('offset', function(ev, newVal){
 $('#details').text('Showing items ' + (newVal + 1) + '-' + this.count)
})

You can also listen to any attribute change by binding to the 'updated.attr' event:

paginate.bind('updated.attr', function(ev, newVal){
 $('#details').text('Showing items ' + (newVal+1)+ '-' + this.count)
})

The following is a next-previous jQuery plug-in that accepts paginate data:

$.fn.nextPrev = function(paginate){
 this.delegate('.next','click', function(){
 var nextOffset = paginate.offset + paginate.limit;
 if(nextOffset < paginate.count){
 paginate.attr('offset', nextOffset);
 }
 });

 this.delegate('.prev','click', function(){
 var nextOffset = paginate.offset-paginate.limit;
 if(0 < paginate.offset){
 paginate.attr('offset', Math.max(0, nextOffset));
 }
 });

 var self = this;
 paginate.bind('updated.attr', function(){
 var next = self.find('.next'),
 prev = self.find('.prev');
 if(this.offset == 0){
 prev.removeClass('enabled');
 } else {
 prev.removeClass('disabled');
 }
 if(this.offset > this.count - this.limit){
 next.removeClass('enabled');

190 | Chapter 13: The JavascriptMVC Library

 } else {
 next.removeClass('disabled');
 }
 });
};

There are a few problems with this plug-in. First, if the control is removed from the
page, it is not unbinding itself from paginate. We’ll address this when we discuss
controllers.

Second, the logic protecting a negative offset or offset above the total count is done in
the plug-in. This logic should be done in the model. To fix this problem, we’ll need to
create a pagination class, where we can add additional constraints to limit what values
limit, offset, and count can be.

Extending Models
JavaScriptMVC’s model inherits from $.Class. Thus, you create a model class by in-
heriting from $.Model(NAME, [STATIC,] PROTOTYPE):

$.Model('Paginate',{
 staticProperty: 'foo'
},{
 prototypeProperty: 'bar'
})

There are a few ways to make the Paginate model more useful. By adding setter meth-
ods, discussed next, we can limit what values count and offsets can be set to.

Setters
Setter methods are model prototype methods that are named setNAME. They get called
with the val passed to model.attr(NAME, val), as well as a success and error callback.
Typically, the method should return the value that should be set on the model instance,
or call an error with an error message. Success is used for asynchronous setters.

The Paginate model uses setters to prevent invalid counts and offsets values from being
set. For example, we make sure the value isn’t negative:

$.Model('Paginate',{
 setCount : function(newCount, success, error){
 return newCount < 0 ? 0 : newCount;
 },

 setOffset : function(newOffset, success, error){
 return newOffset < 0 ? 0 :
Math.min(newOffset, !isNaN(this.count - 1) ? this.count : Infinity)
 }
});

Now, the nextPrev plug-in can set offsets with reckless abandon:

Model | 191

this.delegate('.next','click', function(){
 paginate.attr('offset', paginate.offset+paginate.limit);
});

this.delegate('.prev','click', function(){
 paginate.attr('offset', paginate.offset-paginate.limit);
});

Defaults
We can add default values to Paginate instances by setting the static defaults property.
When a new paginate instance is created, if no value is provided, it initializes with the
default value:

$.Model('Paginate',{
 defaults : {
 count: Infinity,
 offset: 0,
 limit: 100
 }
},{
 setCount : function(newCount, success, error){ ... },
 setOffset : function(newOffset, success, error){ ... }
});

var paginate = new Paginate({count: 500});
assertEqual(paginate.limit, 100);
assertEqual(paginate.count, 500);

The Paginate model can make it even easier to move to the next or previous page and
know whether it’s possible by adding helper methods.

Helper Methods
These are prototype methods that help set or get useful data on model instances. The
following, completed Paginate model includes next and prev methods that will move
to the next and previous pages, if possible. It also provides a canNext and canPrev
method that returns whether or not the instance can move to the next page:

$.Model('Paginate',{
 defaults : {
 count: Infinity,
 offset: 0,
 limit: 100
 }
},{
 setCount : function(newCount){
 return Math.max(0, newCount);
 },
 setOffset : function(newOffset){
 return Math.max(0 , Math.min(newOffset, this.count))
 },
 next : function(){

192 | Chapter 13: The JavascriptMVC Library

 this.attr('offset', this.offset+this.limit);
 },
 prev : function(){
 this.attr('offset', this.offset - this.limit)
 },
 canNext : function(){
 return this.offset > this.count - this.limit
 },
 canPrev : function(){
 return this.offset > 0
 }
})

Thus, our jQuery widget becomes much more refined:

$.fn.nextPrev = function(paginate){
 this.delegate('.next','click', function(){
 paginate.attr('offset', paginate.offset+paginate.limit);
 })
 this.delegate('.prev','click', function(){
 paginate.attr('offset', paginate.offset-paginate.limit);
 });
 var self = this;
 paginate.bind('updated.attr', function(){
 self.find('.prev')[paginate.canPrev() ? 'addClass' : 'removeClass']('enabled')
 self.find('.next')[paginate.canNext() ? 'addClass' : 'removeClass']('enabled');
 })
};

Service Encapsulation
We’ve just seen how $.Model is useful for modeling client-side state. However, for most
applications, the critical data is on the server, not on the client. The client needs to
create, retrieve, update, and delete (CRUD) data on the server. Maintaining the duality
of data on the client and server is tricky business; $.Model simplifies this problem.

$.Model is extremely flexible. It can be made to work with all sorts of service and data
types. This book covers only how $.Model works with the most common and popular
service and data types: Representational State Transfer (REST) and JSON.

A REST service uses URLs and the HTTP verbs POST, GET, PUT, and DELETE to
create, retrieve, update, and delete data, respectively. For example, a task service that
allows you to create, retrieve, update, and delete tasks might look like:

create → POST /tasks
read all → GET /tasks
read → GET /tasks/2
update → PUT /tasks/2
delete → DELETE /tasks/2

The following connects to task services, letting us create, retrieve, update, and delete
tasks from the server:

Model | 193

$.Model("Task",{
 create : "POST /tasks.json",
 findOne : "GET /tasks/{id}.json",
 findAll : "GET /tasks.json",
 update : "PUT /tasks/{id}.json",
 destroy : "DELETE /tasks/{id}.json"
},{ });

Let’s go through every step needed to use the Task model to CRUD tasks.

Create a task

new Task({ name: 'do the dishes'}).save(
 success(task, data),
 error(jqXHR)
) //=> taskDeferred

To create an instance of a model on the server, first create an instance with new
Model(attributes). Then call save(). save() checks as to whether the task has an ID.
In this case it does not, so save() makes a create request with the task’s attributes. It
takes two parameters:

success

A function that gets called if the save is successful. Success gets called with the
task instance and the data returned by the server.

error

A function that gets called if there is an error with the request. It gets called with
jQuery’s wrapped XHR object.

save() returns a deferred that resolves to the created task.

Get a task

Task.findOne(params,
 success(task),
 error(jqXHR)
) //=> taskDeferred

Retrieves a single task from the server. It takes three parameters:

params

The data to pass to the server; typically, an ID like {id: 2}.

success

A function that gets called if the request is successful. Success gets called with the
task instance.

error

A function that gets called if there is an error with the request.

findOne() returns a deferred that resolves to the task.

194 | Chapter 13: The JavascriptMVC Library

Get tasks

Task.findAll(params,
 success(tasks),
 error(jqXHR)
) //=> tasksDeferred

Retrieves an array of tasks from the server. It takes three parameters:

params

The data to pass to the server. Typically, it’s an empty object ({}) or filters {limit:
20, offset: 100}.

success

A function that gets called if the request is successful. Success gets called with an
array of task instances.

error

A function that gets called if there is an error with the request.

findAll() returns a deferred that resolves to an array of tasks.

Update a task

task.attr('name','take out recycling');
task.save(
 success(task, data),
 error(jqXHR)
) //=> taskDeferred

To update the server, first change the attributes of a model instance with attr. Then
call save(). save() takes the same arguments and returns the same deferred as the create
task case.

Destroy a task

task.destroy(
 success(task, data),
 error(jqXHR)
) //=> taskDeferred

destroy() deletes a task on the server. destroy() takes two parameters:

success

A function that gets called if the save is successful. Success gets called with the
task instance and the data returned by the server.

error

A function that gets called if there is an error with the request.

Like with save(), destroy() returns a deferred that resolves to the destroyed task. The
Task model has essentially become a contract to our services!

Model | 195

Type Conversion
Did you notice how the server responded with createdAt values as numbers like
1303173531164? This number is actually April 18th, 2011. Instead of getting a number
back from task.createdAt, it would be much more useful if it returned a JavaScript date
created with new Date(1303173531164). We could do this with a setCreatedAt setter,
but if we have lots of date types, this will get repetitive quickly.

To make this easy, $.Model lets you define the type of an attribute as well as a converter
function for those types. Set the type of attributes on the static attributes object, and
set the converter methods on the static convert object:

$.Model('Task',{
 attributes : {
 createdAt : 'date'
 },

 convert : {
 date : function(date){
 return typeof date == 'number' ? new Date(date) : date;
 }
 }
},{});

Task now converts createdAt to a Date type. To list the year of each task, write:

Task.findAll({}, function(tasks){
 $.each(tasks, function(){
 console.log("Year = "+this.createdAt.fullYear())
 })
});

CRUD Events
The model publishes events when an instance has been created, updated, or
destroyed. You can listen to these events globally on the model or on an individual
model instance. Use MODEL.bind(EVENT, callback(ev, instance)) to listen for cre-
ated, updated, or destroyed events.

Let’s say we want to know when a task is created, so we can then add it to the page.
After it’s been added, we’ll listen for updates on that task to make sure we are showing
its name correctly. Here’s how we can do this:

Task.bind('created', function(ev, task){
 var el = $('').html(todo.name);
 el.appendTo($('#todos'));

 task.bind('updated', function(){
 el.html(this.name);
 }).bind('destroyed', function(){
 el.remove();
 })
});

196 | Chapter 13: The JavascriptMVC Library

Using Client-Side Templates in the View
JavaScriptMVC’s views are really just client-side templates, which take data and return
a string. Typically, the strings are HTML intended to be inserted into the DOM.

$.View is a templating interface that uses templates to take care of complexities. It offers:

• Convenient and uniform syntax

• Template loading from HTML elements or external files

• Synchronous or asynchronous template loading

• Template preloading

• Caching of processed templates

• Bundling of processed templates in production builds

• $.Deferred support

JavaScriptMVC comes prepackaged with four different template engines:

• EJS

• JAML

• Micro

• Tmpl

This tutorial uses EJS templates, but the following techniques will work with any tem-
plate engine (with minor syntax differences).

Basic Use
When using views, you almost always want to insert the results of a rendered template
into the page. jQuery.View overwrites the jQuery modifiers, so using a view is as easy as:

$("#foo").html('mytemplate.ejs',{message: 'hello world'})

This code:

1. Loads the template in the file mytemplate.ejs. It might look like:

<h2><%= message %></h2>

2. Renders it with {message: ‘hello world'}, resulting in:

<h2>hello world</h2>

3. Inserts the result into the foo element, which might look like:

<div id='foo'><h2>hello world</h2></div>

Using Client-Side Templates in the View | 197

jQuery Modifiers
You can use a template with the following jQuery modifier methods:

$('#bar').after('temp.ejs',{});
$('#bar').append('temp.ejs',{});
$('#bar').before('temp.ejs',{});
$('#bar').html('temp.ejs',{});
$('#bar').prepend('temp.ejs',{});
$('#bar').replaceWith('temp.ejs',{});
$('#bar').text('temp.ejs',{});

Loading from a Script Tag
View can load from script tags or from files. To load from a script tag, create a script
tag with a type attribute set to the template type (text/ejs), and an id to label the
template:

<script type='text/ejs' id='recipesEJS'>
<% for(var i=0; i < recipes.length; i++){ %>
 <%=recipes[i].name %>
<%} %>
</script>

Render with this template, like so:

$("#foo").html('recipesEJS', recipeData)

Notice that we passed the id of the element we want to render.

$.View and Subtemplates
Sometimes you simply want the rendered string. In this case, you can use $.View(TEM
PLATE , data) directly. Pass $.View the path to the template, as well as the data you
want to render:

var html = $.View("template/items.ejs", items);

The most common use case is subtemplates. It’s common practice to separate out an
individual item’s template from the list template (items.ejs). We’ll make template/
items.ejs render a <> for each item, but use the template in template/item.ejs for the
content of each item:

<% for(var i = 0; i < this.length; i++){ %>

 <%= $.View("template/item.ejs", this[i]);

< % } %>

this refers to the data passed to the template. In the case of template/items.ejs, this
is the array of items. In template/item.ejs, it will be the individual item.

198 | Chapter 13: The JavascriptMVC Library

Deferreds
It’s extremely common behavior to make an Ajax request and use a template to
render the result. Using the Task model from the previous $.Model section, we could
render tasks like:

Task.findAll({}, function(tasks){
 $('#tasks').html("views/tasks.ejs" , tasks)
})

$.View supports deferred (http://api.jquery.com/category/deferred-object/) allows very
powerful, terse, and high-performance syntax. If a deferred is found in the render
data passed to $.View or the jQuery modifiers, $.View will load the template asynchro-
nously and wait until all deferreds and the template are loaded before rendering the
template.

The model methods findAll, findOne, save, and destroy return deferreds. This allows
us to rewrite the rendering of tasks into one line:

$('#tasks').html("views/tasks.ejs" , Task.findAll())

This also works with multiple deferreds:

$('#app').html("views/app.ejs" , {
 tasks: Task.findAll(),
 users: User.findAll()
})

Packaging, Preloading, and Performance
By default, $.View loads templates synchronously because it expects that you are:

• Putting templates in script tags

• Packaging templates with your JavaScript build

• Preloading templates

JavaScriptMVC does not recommend putting templates in script tags. Script tag tem-
plates make it hard to reuse templates across different JavaScript applications. They
can also reduce load performance if your app doesn’t need the templates immediately.

JavaScriptMVC recommends initially packaging used templates with your applica-
tion’s JavaScript, and then preloading templates that will be used later.

StealJS, JavaScriptMVC’s build system, can process and package templates, adding
them to a minified production build. Simply point steal.views(PATH, ...) to your
template:

steal.views('tasks.ejs','task.ejs');

Later, when $.View looks for that template, it will use a cached copy, saving an extra
Ajax request.

Using Client-Side Templates in the View | 199

For templates that are not used immediately, preload and cache them with
jQuery.get. Simply give the URL to the template and provide a dataType of 'view' (it’s
best to do this a short time after the initial page has loaded):

$(window).load(function(){
 setTimeout(function(){
 $.get('users.ejs',function(){},'view');
 $.get('user.ejs',function(){},'view');
 },500)
})

$.Controller: The jQuery Plug-in Factory
JavaScriptMVC’s controllers are many things. They are a jQuery plug-in factory. They
can be used as a traditional view, making pagination widgets and grid controls.
They can also be used as a traditional controller, initializing controllers and hooking
them up to models. Mostly, controllers are a really great way of organizing your appli-
cation’s code.

Controllers provide a number of handy features, such as:

• jQuery plug-in creation

• Automatic binding

• Default options

• Automatic determinism

But the controller’s most important feature is not obvious to anyone but the most
hardcore JS ninjas. The following code creates a tooltip-like widget that displays itself
until the document is clicked:

$.fn.tooltip = function(){
 var el = this[0];

 $(document).click(function(ev){
 if (ev.target !== el)
 $(el).remove();
 });

 $(el).show();
 return this;
});

To use it, add the element to be displayed to the page, and then call tooltip on it:

$("<div class='tooltip'>Some Info</div>")
 .appendTo(document.body)
 .tooltip()

But this code has a problem. Can you spot it? Here’s a hint: what if your application is
long-lived and lots of these tooltip elements are created?

200 | Chapter 13: The JavascriptMVC Library

The problem is that this code leaks memory! Every tooltip element, and any tooltip
child elements, are kept in memory forever. This is because the click handler is not
removed from the document, and it has a closure reference to the element.

This is a very easy mistake to make. jQuery removes all event handlers from elements
that are removed from the page, so developers often don’t have to worry about un-
binding event handlers. But in this case, we bound to something outside the widget’s
element—the document—and did not unbind the event handler.

But within a Model-View-Controller architecture, controllers listen to the view, and
views listen to the model. You are constantly listening to events outside the widget’s
element. For example, the nextPrev widget from the $.Model section listens to updates
in the paginate model:

paginate.bind('updated.attr', function(){
 self.find('.prev')[this.canPrev() ? 'addClass' : 'removeClass']('enabled')
 self.find('.next')[this.canNext() ? 'addClass' : 'removeClass']('enabled');
})

But it doesn’t unbind from paginate! Forgetting to remove event handlers is potentially
a source of errors. However, both the tooltip and nextPrev will not error. Instead, both
will silently kill an application’s performance. Fortunately, $.Controller makes this
easy and organized. Here’s how we can write tooltip:

$.Controller('Tooltip',{
 init: function(){
 this.element.show()
 },
 "{document} click": function(el, ev){
 if(ev.target !== this.element[0]){
 this.element.remove()
 }
 }
})

When the document is clicked and the element is removed from the DOM, $.Control
ler will unbind the document click handler automatically.

$.Controller can do the same thing for the nextPrev widget, binding to the Paginate
model:

$.Controller('Nextprev',{
 ".next click" : function(){
 var paginate = this.options.paginate;
 paginate.attr('offset', paginate.offset+paginate.limit);
 },
 ".prev click" : function(){
 var paginate = this.options.paginate;
 paginate.attr('offset', paginate.offset-paginate.limit);
 },
 "{paginate} updated.attr" : function(ev, paginate){
 this.find('.prev')[paginate.canPrev() ? 'addClass' : 'removeClass']('enabled')
 this.find('.next')[paginate.canNext() ? 'addClass' : 'removeClass']('enabled');
 }

$.Controller: The jQuery Plug-in Factory | 201

})

// create a nextprev control
$('#pagebuttons').nextprev({ paginate: new Paginate() })

If the element #pagebuttons is removed from the page, the NextPrev controller instance
will automatically unbind from the Paginate model.

Now that your appetite for error-free code is properly whetted, the following details
how $.Controller works.

Overview
$.Controller inherits from $.Class. To create a controller class, call $.Controller
(NAME, classProperties, instanceProperties) with the name of your controller,
static methods, and instance methods. The following is the start of a reusable list
widget:

$.Controller("List", {
 defaults : {}
},{
 init : function(){ },
 "li click" : function(){ }
})

When a controller class is created, it creates a jQuery helper method of a similar name.
The helper method is primarily used to create new instances of controllers on elements
in the page. The helper method name is the controller’s name underscored, with any
periods replaced with underscores. For example, the helper for $.Controller('App.Foo
Bar') is $(el).app_foo_bar().

Controller Instantiation
To create a controller instance, you can call new Controller(element, options) with
an HTML element or jQuery-wrapped element, as well as an optional options object
to configure the controller. For example:

new List($('ul#tasks'), {model : Task});

You can also use the jQuery helper method to create a List controller instance on the
#tasks element:

$('ul#tasks').list({model : Task})

When a controller is created, it calls the controller’s prototype init method with:

this.element

Set to the jQuery-wrapped HTML element

this.options

Set to the options passed to the controller merged with the class’ defaults object

202 | Chapter 13: The JavascriptMVC Library

The following code updates the List controller to request tasks from the model and
then render them with an optional template passed to the list:

$.Controller("List", {
 defaults : {
 template: "items.ejs"
 }
}, {
 init : function(){
 this.element.html(this.options.template, this.options.model.findAll());
 },
 "li click" : function(){ }
});

We can now configure Lists to render tasks with a the provided template. How flexible!

$('#tasks').list({model: Task, template: "tasks.ejs"});
$('#users').list({model: User, template: "users.ejs"})

If we don’t provide a template, List will default to using items.ejs.

Event Binding
As mentioned in $.Controller’s introduction, its most powerful feature is its ability to
bind and unbind event handlers.

When a controller is created, it looks for action methods. Action methods are methods
that look like event handlers—for example, "li click". These actions are bound using
jQuery.bind or jQuery.delegate. When the controller is destroyed by removing the
controller’s element from the page or calling destroy on the controller, these events are
unbound, preventing memory leaks.

The following are examples of actions with descriptions of what they listen for:

"li click"

Clicks on or within li elements within the controller element

"mousemove"

Moves the mouse within the controller element

"{window} click"

Clicks on or within the window

Action functions get called back with the jQuery-wrapped element or object that the
event happened on, as well as the event. For example:

"li click": function(el, ev) {
 assertEqual(el[0].nodeName, "li")
 assertEqual(ev.type, "click")
}

$.Controller: The jQuery Plug-in Factory | 203

Templated Actions
$.Controller supports templated actions. Templated actions can be used to bind to
other objects, customize the event type, or customize the selector.

Controller replaces the parts of your actions that look like {OPTION} with a value in the
controller’s options or the window.

The following is a skeleton of a menu that lets you customize it to show submenus on
different events:

$.Controller("Menu",{
 "li {openEvent}" : function(){
 // show subchildren
 }
});

//create a menu that shows children on click
$("#clickMenu").menu({openEvent: 'click'});

//create a menu that shows children on mouseenter
$("#hoverMenu").menu({openEvent: 'mouseenter'});

We could enhance the menu further to allow customization of the menu element tag:

$.Controller("Menu",{
 defaults : {menuTag : "li"}
},{
 "{menuTag} {openEvent}" : function(){
 // show subchildren
 }
});

$("#divMenu").menu({menuTag : "div"})

Templated actions let you bind to elements or objects outside the controller’s element.
For example, the Task model from the $.Model section produces a “created” event when
a new Task is created. We can make our list widget listen to tasks being created, and
then add these tasks to the list automatically:

$.Controller("List", {
 defaults : {
 template: "items.ejs"
 }
},{
 init : function(){
 this.element.html(this.options.template, this.options.model.findAll());
 },
 "{Task} created" : function(Task, ev, newTask){
 this.element.append(this.options.template, [newTask])
 }
})

204 | Chapter 13: The JavascriptMVC Library

The "{Task} create" gets called with the Task model, the created event, and the newly
created Task. The function uses the template to render a list of tasks (in this case there
is only one) and add the resulting HTML to the element.

But it’s much better to make List work with any model. Instead of hardcoding tasks,
we’ll make the controller take a model as an option:

$.Controller("List", {
 defaults : {
 template: "items.ejs",
 model: null
 }
},{
 init : function(){
 this.element.html(this.options.template, this.options.model.findAll());
 },
 "{model} created" : function(Model, ev, newItem){
 this.element.append(this.options.template, [newItem])
 }
});

// create a list of tasks
$('#tasks').list({model: Task, template: "tasks.ejs"});

Putting It All Together: An Abstract CRUD List
Now we will enhance the list to not only add items when they are created, but to update
and remove them when they are destroyed. To do this, we start by listening to updated
and destroyed:

"{model} updated" : function(Model, ev, updatedItem){
 // find and update the LI for updatedItem
},
"{model} destroyed" : function(Model, ev, destroyedItem){
 // find and remove the LI for destroyedItem
}

You’ll notice that we have a problem. Somehow, we need to find the element that
represents the particular model instance. To do this, we need to label the element as
belonging to the model instance. Fortunately, $.Model and $.View make it very easy to
label an element with an instance and find that element.

To label the element with a model instance within an EJS view, simply write the model
instance to the element. The following might be tasks.ejs:

<% for(var i =0 ; i < this.length; i++){ %>
 <% var task = this[i]; %>
 <li <%= task %> > <%= task.name %>
<% } %>

tasks.ejs iterates through a list of tasks. For each task, it creates an li element with
the task’s name. But it also adds the task to the element’s jQuery data with <%=
task %>.

Putting It All Together: An Abstract CRUD List | 205

To later get that element given a model instance, call modelInstance.elements([CON
TEXT]). This returns the jQuery-wrapped elements that represent the model instance.

Putting it together, the list becomes:

$.Controller("List", {
 defaults : {
 template: "items.ejs",
 model: null
 }
},{
 init : function(){
 this.element.html(this.options.template, this.options.model.findAll());
 },
 "{model} created" : function(Model, ev, newItem){
 this.element.append(this.options.template, [newItem])
 },
 "{model} updated" : function(Model, ev, updatedItem){
 updatedItem.elements(this.element)
 .replaceWith(this.options.template, [updatedItem])
 },
 "{model} destroyed" : function(Model, ev, destroyedItem){
 destroyedItem.elements(this.element)
 .remove()
 }
});

// create a list of tasks
$('#tasks').list({model: Task, template: "tasks.ejs"});

It’s almost frighteningly easy to create abstract, reusable, memory-safe widgets with
JavaScriptMVC.

206 | Chapter 13: The JavascriptMVC Library

APPENDIX A

jQuery Primer

A lot of libraries have been developed to make the DOM easier to work with, but few
have the popularity and praise of jQuery. And for good reason: jQuery’s API is excellent
and the library is lightweight and namespaced, so it shouldn’t conflict with anything
else you’re using. What’s more, jQuery is easily extendable; a whole host of plug-ins
have been developed, from JavaScript validation to progress bars.

jQuery is namespaced behind the jQuery variable, which is aliased with a dollar sign
($). Unlike libraries such as Prototype, jQuery doesn’t extend any native JavaScript
objects, largely to avoid conflicts with other libraries.

The other important thing to understand about jQuery is selectors. If you’re familiar
with CSS, selectors will be second nature to you. All of jQuery’s instance methods are
performed on selectors, so rather than iterating over elements, you can just use a se-
lector to collect them. Any functions called on the jQuery selector will be executed on
every element selected.

To demonstrate this, let me show you an example of adding a class name selected to
all the elements with the class foo. The first example will be in pure JavaScript, and the
second will use jQuery:

// Pure JavaScript example
var elements = document.getElementsByClassName("foo");
for (var i=0; i < elements.length; i++) {
 elements[i].className += " selected";
}

// jQuery example
$(".foo").addClass("selected");

So, you can see how jQuery’s selectors API greatly reduces the code required. Let’s take
a closer look at those selectors. Just as you’d use a hash (#) in CSS to select elements
by ID, you can do the same with jQuery:

// Select an element by ID (wem)
var element = document.getElementById("wem");
var element = $("#wem");

207

http://plugins.jquery.com
http://prototypejs.org

// Select all elements by class (bar)
var elements = document.getElementsByClassName("bar");
var elements = $(".bar");

// Select all elements by tag (p)
var elements = document.getElementsByTagName("p");
var elements = $("p");

As with CSS, you can combine selectors to make them more specific:

// Select the children of 'bar' with a class of 'foo'
var foo = $(".bar .foo");

You can even select by an elements attribute:

var username = $("input[name='username']");

Or, you can select the first matched element:

var example = $(".wem:first");

Whenever we call a function on the selector, all elements selected are affected:

// Add a class to all elements with class 'foo'
$(".foo").addClass("bar");

As I mentioned, all of jQuery’s functions are namespaced, so if you call a function
directly on a DOM element, it will fail:

// This will fail!
var element = document.getElementById("wem");
element.addClass("bar");

Instead, if you want to use jQuery’s API, you’ll have to wrap up the element into a
jQuery instance:

var element = document.getElementById("wem");
$(element).addClass("bar");

DOM Traversal
Once you’ve selected some elements, jQuery gives you a number of ways of finding
other elements relative to elements in the selector:

var wem = $("#wem");

// Find scoped children
wem.find(".test");

// Select the direct parent
wem.parent();

// Or get an array of parents, scoped by an optional selector
wem.parents(".optionalSelector");

208 | Appendix A: jQuery Primer

http://api.jquery.com/category/traversing

// Select the direct descendants (of the first element)
wem.children();

Or, you can traverse elements inside the selector:

var wem = $("#wem");

// Returns the element at the specified index (0)
wem.eq(0);

// Returns the first element (equivalent to $.fn.eq(0))
wem.first();

// Reduce elements to those that match a selector (".foo")
wem.filter(".foo");

// Reduce elements to those that pass the test function
wem.filter(function(){
 // this, is the current element
 return $(this).hasClass(".foo");
});

// Reduce elements to those that have descendants that match a selector (".selected")
wem.has(".selected");

jQuery has some iterators, map() and each(), that accept a callback:

var wem = $("#wem");

// Pass each element selected into a function,
// constructing a new array based on the return values
wem.map(function(element, index){
 assertEqual(this, element);

 return this.id;
});

// Iterate a callback over selected elements, equivalent to a `for` loop.
wem.each(function(index, element){
 assertEqual(this, element);

 /* ... */
});

It’s also possible to add elements to a selector manually:

// Add all p elements to the selector
var wem = $("#wem");
wem.add($("p"));

DOM Manipulation
jQuery isn’t all about selectors, though; it has a powerful API for manipulating and
interfacing with the DOM. In addition to selectors, jQuery’s constructor takes HTML
tags, which you can use to generate new elements:

DOM Manipulation | 209

var element = $("p");
element.addClass("bar")
element.text("Some content");

Appending the new element to the DOM is easy—just use jQuery’s append() or pre
pend() functions. For performance reasons, you ideally want to do any manipulation
on generated elements before you attach them to the DOM:

// Append an element
var newDiv = $("<div />");
$("body").append(newDiv);

// Add an element as the first child
$(".container").prepend($("<hr />"));

Or, you can insert an element before/after another:

// Insert an element after another
$(".container").after($("<p />"));

// Insert an element before another
$(".container").before($("<p />"));

Removing elements is also simple:

// Removing elements
$("wem").remove();

What about changing an element’s attributes? jQuery has support for that, too. For
example, you can add class names using the addClass() function:

$("#foo").addClass("bar");

// Remove a class
$("#foo").removeClass("bar");

// Does an element have this class?
var hasBar = $("#foo").hasClass("bar");

Setting and fetching CSS styles is simple enough, too. The css() function acts as both
a getter and setter, depending on the type of arguments passed to it:

var getColor = $(".foo").css("color");

// Set the color style
$(".foo").css("color", "#000");

// Or, pass a hash to set multiple styles
$(".foo").css({color: "#000", backgroundColor: "#FFF"});

jQuery has a number of shortcuts for the most common style changes:

// Set display to none, hiding elements
$(".bar").hide();

// Set display to block, showing elements
$(".bar").show();

210 | Appendix A: jQuery Primer

Or, if you want the opacity to change slowly:

$(".foo").fadeOut();
$(".foo").fadeIn();

jQuery’s getter and setter functions aren’t limited to CSS. For example, you can set the
contents of elements using the html() function:

// Retrieving the HTML of the first element in the selector
var getHTML = $("#bar").html();

// Setting the HTML of selected elements
$("#bar").html("<p>Hi</p>");

The same goes for the text() function, although the arguments are escaped:

var getText = $("#bar").text();

$("#bar").text("Plain text contents");

And, finally, to remove all of an element’s children, use the empty() function:

$("#bar").empty();

Events
Event handling in browsers has had a turbulent history, which has resulted in incon-
sistent APIs. jQuery resolves that problem for you, ironing out all the differences among
browsers and providing a great API. Here’s a brief overview of jQuery’s event handling,
but for more information, see Chapter 2, as well as the official docs.

To add an event handler, use the bind() function, passing the event type and callback:

$(".clicky").bind("click", function(event){
 // Executed on click
});

jQuery provides shortcuts for the more common events, so rather than calling bind,
you can do something like this:

$(".clicky").click(function(){ /* ... */ });

One event you’re very likely to use is document.ready. This is fired during the page load,
when the DOM is ready but before elements such as images are loaded. jQuery provides
a neat shortcut for the event—just pass a function straight to the jQuery object:

jQuery(function($){
 // Executed on document.ready
});

What often confuses jQuery newcomers is the context change inside callbacks. For
instance, in the example above, the context of the callback is changed to reference the
element, in this case $(".clicky"):

$(".clicky").click(function(){
 // 'this' equals the event target

Events | 211

http://api.jquery.com/category/events

 assert($(this).hasClass(".clicky"));
});

The context change becomes a problem if you’re using this in the callback. A common
idiom is to store the context in a local variable, often called self:

var self = this;
$(".clicky").click(function(){
 self.clickedClick();
});

An alternative is to wrap the callback in a proxy function using jQuery.proxy(), like so:

$(".clicky").click($.proxy(function(){
 // Context isn't changed
}, this));

For a further explanation of event delegation and context, see Chapter 2.

Ajax
Ajax, or XMLHttpRequest, is another feature that has wildly different implementations
across browsers. Again, jQuery abstracts them, ironing out any differences, giving you
a nice API. We covered jQuery’s Ajax API in greater detail in Chapter 3, but here’s a
brief overview.

jQuery has one low-level function, ajax(), and several higher-level abstractions of it.
The ajax() function takes a hash of options, such as the endpoint url, the type of
request, and success callbacks:

$.ajax({
 url: "http://example.com",
 type: "GET",
 success: function(){ /* ... */ }
});

However, jQuery’s shortcuts make the API even more succinct:

$.get("http://example.com", function(){ /* on success */ })
$.post("http://example.com", {some: "data"});

jQuery’s dataType option tells jQuery how to deal with Ajax responses. If you don’t
provide it, jQuery will make an intelligent guess based on the response’s header data
type. If you know what the response is, it’s better to set it explicitly:

// Request JSON
$.ajax({
 url: "http://example.com/endpoint.jso",
 type: "GET",
 dataType: "json",
 success: function(json){ /* ... */ }
});

jQuery also provides shortcuts for common datatypes, like getJSON(), which is equiv-
alent to the ajax() function above:

212 | Appendix A: jQuery Primer

http://api.jquery.com/category/ajax

$.getJSON("http://example.com/endpoint.json", function(json){ /* .. */ });

For a more in-depth analysis of the options in jQuery’s Ajax API, check out Chap-
ter 3, as well as the official documentation.

Being a Good Citizen
jQuery prides itself on being a good web citizen; as such, it is completely namespaced
and doesn’t pollute global scope. However, the object jQuery is aliased to the $, which
is often used by other libraries, such as Prototype. Therefore, to stop the libraries from
conflicting, you need to use jQuery’s noConflict mode to change the alias and free up
$:

var $J = jQuery.noConflict();

assertEqual($, undefined);

When you’re writing jQuery extensions, you need to assume that jQuery’s no conflict
mode has been switched on and that $ doesn’t reference jQuery. In practice, though,
$ is a useful shortcut, so just make sure it’s a local variable:

(function($){

 // $ is a local variable
 $(".foo").addClass("wem");

})(jQuery);

To simplify things, jQuery will also pass a reference to itself with the document.ready
event:

jQuery(function($){
 // Runs when the page loads
 assertEqual($, jQuery);
});

Extensions
Extending jQuery couldn’t be easier. If you want to add class functions, just create the
function straight on the jQuery object:

jQuery.myExt = function(arg1){ /*...*/ };

// Then, to use
$.myExt("anyArgs");

If you want to add instance functions that will be available on the element selector, just
set the function on the jQuery.fn object, which is an alias for jQuery.prototype. It’s
good practice to return the context (i.e., this) at the end of the extension, which enables
chaining:

Extensions | 213

http://www.prototypejs.org/

jQuery.fn.wemExt = function(arg1){
 $(this).html("Bar");
 return this;
};

$("#element").wemExt(1).addClass("foo");

It’s also good practice to encapsulate your extension in the module pattern,which pre-
vents any scope leaks and variable conflicts. Wrap your extension in an anonymous
function, keeping all the variables local:

(function($){
 // Local context in here
 var replaceLinks = function(){
 var re = /((http|https|ftp):\/\/[\w?=&.\/-;#~%-]+(?![\w\s?&.\/;#~%"=-]*>))/g;
 $(this).html(
 $(this).html().replace(re, '$1 ')
);
 };

 $.fn.autolink = function() {
 return this.each(replaceLinks);
 };
})(jQuery);

Creating a Growl jQuery Plug-in
Let’s put our knowledge of jQuery into practice and create a Growl library. For those
of you unfamiliar with Growl, it’s a notification library for Mac OS X that applications
can use to show messages unobtrusively on the desktop. We’re going to emulate the
OS X library somewhat and display messages from JavaScript in the page, as demon-
strated in Figure A-1.

The first step is to create a #container div from which all our message elements will
descend. As you can see, we’re including both jQuery and jQuery UI libraries—we’ll

Figure A-1. Example Growl messages

214 | Appendix A: jQuery Primer

http://yuiblog.com/blog/2007/06/12/module-pattern/
http://growl.info

use the latter later to add a few effects. When the page loads, we’ll append the con
tainer div:

//= require <jquery>
//= require <jquery.ui>

(function($){
 var container = $("<div />");
 container.attr({id: "growl"});

 $(function(){
 // On page load, append the div
 $("body").append(container);
 });

 /* ... */
})(jQuery);

Now for the plug-in’s logic. Whenever we have a new message, we append a div to the
container element. We’re adding a drop effect to the message and then, after a period
of time, fading and removing it—just like Growl’s behavior on OS X:

$.growl = function(body){
 // Create the Growl div
 var msg = $("<div />").addClass("msg");
 msg.html(body);

 // Append it to the list
 container.append(msg);

 // Add a drop effect, and then remove
 msg.show("drop", {
 direction: "down",
 distance: 50
 }, 300).
 delay(2000).
 fadeOut(300, function(){
 $(this).remove();
 });

 return msg;
};

That’s all the JavaScript required. It’s looking rather ugly at the moment, so we can
spice it up with a bit of CSS3. We want the #container div to be positioned absolutely,
at the bottom right of the page:

#growl {
 position: absolute;
 bottom: 10px;
 right: 20px;
 overflow: hidden;
}

Creating a Growl jQuery Plug-in | 215

Now let’s style the message elements. I quite like the HUD Growl theme, so let’s try to
emulate that. We’ll make the background slightly transparent using rgba and then add
an inset box-shadow, giving the element the appearance of a light source:

#growl .msg {
 width: 200px;
 min-height: 30px;
 padding: 10px;
 margin-bottom: 10px;

 border: 1px solid #171717;
 color: #E4E4E4;
 text-shadow: 0 -1px 1px #0A131A;
 font-weight: bold;
 font-size: 15px;

 background: #141517;
 background: -webkit-gradient(
 linear, left top, left bottom,
 from(rgba(255, 255, 255, 0.3)),
 color-stop(0.8, rgba(255, 255, 255, 0))),
 rgba(0, 0, 0, 0.8);

 -webkit-box-shadow: inset 0 1px 1px #8E8E8E;
 -moz-box-shadow: inset 0 1px 1px #8E8E8E;
 box-shadow: inset 0 1px 1px #8E8E8E;

 -webkit-border-radius: 7px;
 -moz-border-radius: 7px;
 border-radius: 7px;
}

That’s all there is to it. You see how trivially easy it is to create jQuery plug-ins. As with
the other examples, you can see the full source in assets/appA/growl.html.

216 | Appendix A: jQuery Primer

APPENDIX B

CSS Extensions

In the words of its author, Alexis Sellier, Less is a “dynamic stylesheet language, which
builds upon CSS’s syntax.” Less is a superset of CSS that extends it with variables,
mixins, operations, and nested rules.

It’s great because it can really reduce the amount of CSS you need to write—especially
when it comes to CSS3 vendor-specific rules. You can then compile your Less files down
to pure CSS.

In other words, instead of writing this:

 .panel {
 background: #CCC;
 background: -webkit-gradient(linear, left top, left bottom, from(#FFF), to(#CCC));
 background: -moz-linear-gradient(top, #FFF, #CCC);
 }

You can write this:

 .panel {
 .vbg-gradient(#FFF, #CCC);
 }

Variables
If you’re reusing colors and rule attributes, using Less variables allows you to amalga-
mate them in one place, letting you make global changes without a find and replace!

Specifying a variable is easy:

@panel-color: #CCC;

Then, you can use it inside your style rules:

header {
 color: @panel-color;
}

217

http://lesscss.org

Mixins
Less mixins behave a lot like C macros. Basically, you define a mixin, which can take
optional arguments, like so:

.vbg-gradient(@fc: #FFF, @tc: #CCC) {
 background: @fc;
 background: -webkit-gradient(linear, left top, left bottom, from(@fc), to(@tc));
 background: -moz-linear-gradient(top, @fc, @tc);
 background: linear-gradient(top, @fc, @tc);
}

The example above takes two arguments, fc and tc, with default values of #FFF and
#CCC, respectively. These are then interpolated in the class contents. Think of it as
defining a variable, but for whole classes.

Since CSS3 hasn’t yet finished the standardization process, the browser vendors gen-
erally specify their own prefixes, such as -webkit and -moz. This is great, in a way,
because we can start using the features immediately; but often it’s a really verbose
syntax, as you need to define styles two or three times for the different browsers.

As you’ve probably guessed, Less can really cut down on the amount of typing you
need to do—you just need to turn vendor-specific styles into a mixin.

Here are some other mixins that might be useful:

/* Rounded borders */
.border-radius(@r: 3px) {
 -moz-border-radius: @r;
 -webkit-border-radius: @r;
 border-radius: @r;
}

/* Shadow */
.box-shadow (@h: 0px, @v: 0px, @b: 4px, @c: #333) {
 -moz-box-shadow: @h @v @b @c;
 -webkit-box-shadow: @h @v @b @c;
 box-shadow: @h @v @b @c;
}

Nested Rules
Instead of specifying long selector names to get elements, you can nest selectors. The
full selector is generated behind the scenes, but nested rules make your stylesheets
clearer and more readable:

button {
 .border-radius(3px);
 .box-shadow(0, 1px, 1px, #FFF);
 .vbg-gradient(#F9F9F9, #E3E3E3);

 :active {
 .vbg-gradient(#E3E3E3, #F9F9F9);

218 | Appendix B: CSS Extensions

 }
}

One word of warning, though: I wouldn’t go beyond two levels of nesting because you
can seriously abuse this feature if you’re not careful, and your stylesheets will look the
worse for it.

Including Other Stylesheets
If you’re planning on splitting up your stylesheet, which I highly recommend, you can
use @import to include other stylesheets within the current one. Less will actually fetch
that stylesheet and include it inline, which improves performance because clients won’t
have another HTTP request to make.

This use case is often used with mixins. Say you have a CSS3 mixin file; you can import
it like so:

@import "utils";

Colors
This feature is so new to Less that it hasn’t yet been documented, but it’s so useful that
it deserves mentioning. Less lets you manipulate colors with various functions:

background: saturate(#319, 10%);
background: desaturate(#319, 10%);
background: darken(#319, 10%);
background: lighten(#319, 10%)

A lot of designs are based on the same colors, but they use different shades. Indeed,
combined with variables, you can make branded themes very quickly.

How Do I Use Less?
There are various methods for compiling Less code into CSS.

Via the Command Line
Install the Less gem, and then call the lessc command:

gem install less
lessc style.less

How Do I Use Less? | 219

Via Rack
If you’re using a Rack-based framework like Rails 3, there’s an even simpler solution:
the rack-less gem. Just include the relevant gem in your Gemfile:

gem "rack-less"

And inject the middleware in application.rb:

require "rack/less"
config.middleware.use "Rack::Less"

Any Less stylesheets under /app/stylesheets will be compiled automatically. You can
even cache and compress the result by configuring rack-less in your production.rb
config file:

Rack::Less.configure do |config|
 config.cache = true
 config.compress = :yui
end

Via JavaScript
Development seems to have slowed on the Ruby libraries, but luckily there’s a more
up-to-date option: Less.js is Less written in JavaScript. You can specify Less stylesheets
in the page and include the less.js JavaScript file, which compiles them automatically:

<link rel="stylesheet/less" href="main.less" type="text/css">
<script src="less.js" type="text/javascript"></script>

Less.js is 40 times faster than the Ruby version of the library. However, you may want
to precompile the Less stylesheets so clients don’t take the performance hit. If you have
Node.js installed, you can compile it via the command line:

node bin/lessc style.less

Less.app
This Mac OS X application makes it even easier to use Less. It uses Less.js behind the
scenes, and you can specify certain folders to be “watched”—i.e., the Less stylesheets
will be automatically compiled into CSS when you save them. See Figure B-1.

220 | Appendix B: CSS Extensions

http://github.com/cloudhead/less.js
http://incident57.com/less

Figure B-1. Compiling Less files automatically with Less.app

How Do I Use Less? | 221

APPENDIX C

CSS3 Reference

Producing beautiful interfaces in CSS2.1 was pretty tricky because it usually involved
a lot of extra markup, images, and JavaScript. CSS3 attempts to solve these problems,
providing a variety of really useful attributes and selectors to help you create amazing
user interfaces.

Often, when designing web applications, I skip Photoshop and jump straight into CSS3
and HTML5. Now that there are these powerful technologies, designing static PSD
mockups seems a bit redundant. Clients also tend to appreciate this because they can
interact with an HTML prototype of the product, getting a much better feel for the user
experience.

“But what about older browsers?” I hear you cry! Surely CSS3 isn’t ready for prime time
yet? Well, the answer to that is graceful degradation. Older browsers will ignore your
CSS3 styles, falling back to the standard ones. For example, in Chrome, your users will
see the application in its full glory, gradients and all, whereas in IE7, the application
will be just as functional, only a lot less pretty.

As for Internet Explorer 6, I advocate you to drop support altogether. Facebook, Am-
azon, and Google are all starting to drop support, and the small percentage of IE6 users
just doesn’t make the effort to support it viable. The Web is moving on, and older
technologies need to be dropped.

The major browsers are IE, Firefox, Chrome, and Safari. Chrome and Safari have a
different JavaScript engine, but they share the same rendering engine, WebKit. Al-
though there are subtle differences between the two browsers—they use different
graphics libraries—fixes to Chrome are pushed upstream to WebKit, and vice versa.

Microsoft released IE9 as this book was being written. Hopefully it will be widely
adopted before too long, because it’s quite an improvement on its previous browsers,
and it includes a lot of CSS3 support.

It’s an incredibly exciting time to be a frontend developer, and you should consider
using these new technologies immediately.

223

Prefixes
The browser vendors were implementing CSS3 before it had been completely stand-
ardized. For that reason, while the syntax is still in flux, some CSS3 styles have a
browser-specific prefix. For example, the CSS3 gradient style is different in Firefox and
Safari. Firefox uses -moz-linear-gradient, and Safari (WebKit) uses -webkit-

gradient; both syntaxes are prefixed with the vendor type.

The different prefixes used are:

• Chrome: -webkit-

• Safari: -webkit-

• Firefox: -moz-

• IE: -ms-

• Opera: -o-

For the moment, you should specify styles with the vendor prefix and then without.
This is to ensure that when the browsers remove the prefix and switch over to the
standardized CSS3 specification, your styles will still work:

#prefix-example {
 -moz-box-shadow: 0 3px 5px #FFF;
 -webkit-box-shadow: 0 3px 5px #FFF;
 box-shadow: 0 3px 5px #FFF;
}

Colors
CSS3 gives you some new ways of specifying colors, including alpha transparency.

The old way of creating transparent colors was using 1px × 1px background images,
but you can put that behind you now.

The rgb style lets you specify colors with red, green, and blue fills—the primary colors—
rather than the traditional hex values. You can convert between the two easily by using
Safari’s Web Inspector—just click on a color in the Styles section.

The example below is equivalent to the #FFF hex value—i.e., white:

#rgb-example {
 // rgb(red, green, blue);
 color: rgb(255, 255, 255);
}

You can also use the hsl style, which stands for hue, saturation, and lightness.

224 | Appendix C: CSS3 Reference

HSL takes three values:

Hue
A degree on the color wheel; 0 (or 360) is red, 120 is green, 240 is blue. Numbers
in between create different shades.

Saturation
A percentage value; 100% shows the full color.

Lightness
Also a percentage; 0% is dark (black), 100% is light (white), and 50% is the average.

Adding alpha transparency to rgb or hsl is simple—just use rgba and hsla, respectively.
Alpha transparency is specified as a number between 0 (transparent) and 1 (opaque).

#alpha-example {
 background: hsla(324, 100%, 50%, .5);
 border: 1em solid rgba(0, 0, 0, .3);
 color: rgba(255, 255, 255, .8);
}

Browser support:

• Firefox: full support

• Chrome: full support

• Opera: full support

• Safari: full support

• IE: full support

• Opera: full support

Rounded Corners
Rounding corners in CSS 2.1 was quite a slog, often involving a lot of extra markup,
multiple images, and even JavaScript.

Now it’s much easier—just use the border-radius style. As with the padding and margin
styles, you can specify multiple radii to target different corners, two to target the hor-
izontal and vertical radii, or one radius to target all of them. By providing a large-enough
radius, you can even create a circle:

border-radius: 20px;

// horizonal, vertical
border-radius: 20px 20px;

// top left, top right, bottom right, bottom left
border-radius: 20px 20px 20px 20px;

Browser support:

• Firefox: full support

Rounded Corners | 225

• Chrome: full support

• Safari: with -webkit-

• IE >= 9.0: full support

• Opera: full support

Drop Shadows
Prior to CSS3, a lot of people didn’t bother with drop shadows because it was such a
hassle. However, CSS3 gives you box-shadow style, which makes implementing them
a breeze. Just don’t go overboard in addition to creating a potential eyesore; drop
shadows can be quite performance-intensive.

box-shadow takes a few options: the horizontal offset, vertical offset, blur radius, op-
tional spread distance, and color. By providing the inset option, the shadow will be
drawn inside the element; otherwise, the default is outside. You can also include mul-
tiple shadows by comma-separating them, as in the examples below:

// horizonal offset, vertical offset, blur radius, color
box-shadow: 10px 5px 15px #000;

// inset shadows
box-shadow: 10px 5px 15px #000 inset;

// horizonal offset, vertical offset, blur radius, spread distance, color
box-shadow: 10px 5px 15px 15px #000;

// multiple shadows
box-shadow: 0 1px 1px #FFF inset, 5px 5px 10px #000;

Designers often specify a light source in their designs, which makes the interface seem
a bit more tangible and interactive. You can do that easily with box-shadow—just specify
a 1px, white inset shadow. In this case, the light source is from the top of the page;
we’ll need to keep that consistent across all our styles:

#shadow-example {
 -moz-box-shadow: 0 1px 1px #FFF inset;
 -webkit-box-shadow: 0 1px 1px #FFF inset;
 box-shadow: 0 1px 1px #FFF inset;
}

Browser support:

• Firefox: full support

• Chrome: with -webkit-

• Safari: with -webkit-

• IE >= 9.0: full support

• Opera: full support

226 | Appendix C: CSS3 Reference

Text Shadow
Before CSS3, the only way to do text shadows was to replace the text with images—a
nasty workaround. CSS3 lets you add shadows to text with the text-shadow style. Just
pass it the horizontal offset, vertical offset, optional blur radius, and color:

// horizonal offset, vertical offset, color
text-shadow: 1px 1px #FFF;

// horizonal offset, vertical offset, blur radius, color
text-shadow: 1px 1px .3em rgba(255, 255, 255, .8);

Text shadows are different from box-shadows because as there is no support for spread
distances or inset shadows. However, you can trick the eye to believe that a text shadow
is inset or outset with the shadow position. If the shadow has a negative vertical offset
and is above the text, it appears inset. Accordingly, if the shadow is below the text, it
looks outset.

Browser support:

• Firefox: full support

• Chrome: full support

• Safari: full support

• IE: no support

• Opera: full support

Gradients
Previously, gradients were implemented by using repeating background images. This
meant they had a fixed width or height, and you needed to open up an image editor to
alter them.

CSS3 adds support for linear and radial gradients, which is one of its most useful fea-
tures. There are a few CSS functions you call to generate the gradients, and you can use
them wherever you would normally use a color.

For linear gradients, just pass the linear-gradient function a list of colors you want to
transition through:

linear-gradient(#CCC, #DDD, white)

By default, the gradients are vertical; however, you can change that by passing in a
position:

// horizontal gradient
linear-gradient(left, #CCC, #DDD, #FFF);

// or with a specific angle
linear-gradient(-45deg , #CCC , #FFF)

Gradients | 227

If you want more control over where a gradient transition begins, you can use color
stops. Just specify a percentage or pixel value along with the color:

linear-gradient(white , #DDD 20% , black)

You can also transition to and from a transparency:

radial-gradient(rgba(255, 255, 255, .8) , transparent)

Safari currently has a markedly different syntax. It will soon align with the standard,
but, for now, here’s how to use it:

// -webkit-gradient(<type>, <point> [, <radius>]?, <point> [, <radius>]?
//[, <stop>]*);
-webkit-gradient(linear, left top, left bottom,
from(#FFF), color-stop(10%, #DDD), to(#CCC));

Although most major browsers support the CSS gradient standard, each prefixes the
syntax with its own vendor name:

• Firefox: with -moz-

• Chrome: with -webkit-

• Safari: alternative implementation

• IE >= 10: with -ms-

• Opera >= 11.1: with -o-

So, a gradient that works cross-browser looks like this:

#gradient-example {
 /* Fallback */
 background: #FFF;
 /* Chrome < 10, Safari < 5.1 */
 background: -webkit-gradient(linear, left top, left bottom, from(#FFF), to(#CCC));
 /* Chrome >= 10, Safari >= 5.1 */
 background: -webkit-linear-gradient(#FFF, #CCC);
 /* Firefox >= 3.6 */
 background: -moz-linear-gradient(#FFF, #CCC);
 /* Opera >= 11.1 */
 background: -o-linear-gradient(#FFF, #CCC);
 /* IE >= 10 */
 background: -ms-linear-gradient(#FFF, #CCC);
 /* The standard */
 background: linear-gradient(#FFF, #CCC);
}

Phew, that’s quite a mouthful! Luckily, projects like Less and Sass take the pain out of
it, which I’ll elaborate on later in this chapter.

Multiple Backgrounds
Just as you can specify multiple shadows in CSS3, you can specify multiple back-
grounds. Previously, to have many background images, you’d have to create a lot of

228 | Appendix C: CSS3 Reference

nested elements—i.e., too much extraneous markup. CSS3 lets you give a comma-
separated list to the background style, greatly reducing the amount of markup required:

background: url(snowflakes.png) top repeat-x,
 url(chimney.png) bottom no-repeat,
 -moz-linear-gradient(white, #CCC),
 #CCC;

Browser support:

• Firefox: full support

• Chrome: full support

• Safari: full support

• IE >= 9.0: full support

• Opera: full support

Selectors
CSS3 gives you a bunch of new selectors for targeting elements:

:first-child
Selects the first item in the selector

:last-child
Selects the last item in the selector

:only-child
Selects elements with only one child

:target
Selects elements targeted in the current URL’s hash

:checked
Selects checked checkboxes

Selectors I want to cover in greater detail are listed below.

Nth Child
:nth-child lets you alternate styling for every n children. For example, this selects every
third child:

#example:nth-child(3n) { /* ... */ }

You can use this to select even or odd children:

/* Even children */
#example:nth-child(2n) { /* ... */ }
#example:nth-child(even) { /* ... */ }

/* Odd children */

Selectors | 229

#example:nth-child(2n+1) { /* ... */ }
#example:nth-child(odd) { /* ... */ }

You can also reverse the selector:

 /* Last child */
 #example:nth-last-child(1)

In fact, :first-child is equivalent to :nth-child(1), and :last-child is equivalent
to :nth-last-child(1).

Direct Descendants
You can limit the selector to only directly descendant children by using the greater-
than symbol, >:

/* Only directly descendant divs */
#example > div { }

Selector Negation
You can negate selectors by using :not, which you can pass a simple selector. At the
moment, negation doesn’t support the more complex selectors, like p:not(h1 + p):

/* Only directly descendant children, except ones with the "current" class */
#example > *:not(.current) {
 display: none
}

Browser support:

• Firefox: full support

• Chrome: full support

• Safari: full support

• IE >= 9.0: full support

• Opera: full support

Transitions
CSS3 adds transition support, letting you create simple animations when a style
changes. You need to pass a duration, property, and optional animation type to the
transition property. You can specify the duration in seconds (s) or milliseconds (ms):

/* duration, property, animation type (optional) */
transition: 1.5s opacity ease-out

/* Multiple transitions */
transition: 2s opacity , .5s height ease-in
transition: .5s height , .5s .5s width

230 | Appendix C: CSS3 Reference

In the first example, when the opacity changes (say, a style gets applied inline), the
original and new values will be animated between.

There are various types of timing functions:

• linear

• ease-in

• ease-out

• ease-in-out

Or, you can specify a custom timing sequence using a cubic bezier curve, which de-
scribes the animation speed, such as this bouncing animation:

#transition-example {
 position: absolute;
 /* cubic-bezier(x1, y1, x2, y2) */
 transition: 5s left cubic-bezier(0.0, 0.35, .5, 1.3);
}

In Safari and Chrome, once the transition is complete, a WebKitTransitionEvent will
be fired on the element. In Firefox, the event is called transitionend. Unfortunately,
there are several caveats to using CSS3 transitions: you get little control over playback
and not all values are transitionable. That said, transitions are very useful for simple
animations, and some browsers (such as Safari) even hardware-accelerate them:

#transition-example {
 width: 50px;
 height: 50px;
 background: red;
 -webkit-transition: 2s background ease-in-out;
 -moz-transition: 2s background ease-in-out;
 -o-transition: 2s background ease-in-out;
 transition: 2s background ease-in-out;
}

#transition-example:hover {
 background: blue;
}

For one reason or another, you can only transition between gradients if at least one
gradient has a touch of alpha transparency. You also can’t transition between some
values, like height:0 to height:auto.

Browser support:

• Firefox: with -moz-

• Chrome: with -webkit-

• Safari: with -webkit-

• IE >= 10.0: with -ms-

• Opera: with -o-

Transitions | 231

Border Images
With border-image, you can use an image for the border of an element. The first argu-
ment specifies the image’s URL; the subsequent ones describe how the image is sliced.
The last part is the stretch value, which describes how the slices for the sides and the
middle are scaled and tiled. Available stretch values are round, repeat, and stretch:

border-image: url(border.png) 14 14 14 14 round round;

border-image: url(border.png) 14 14 14 14 stretch stretch;

Browser support:

• Firefox: with -moz-

• Chrome: with -webkit-

• Safari: with -webkit-

• IE: no support

• Opera: with -o-

Box Sizing
Have you ever wanted to make an element with 100% width but still have padding or
margins? Using the traditional box model, CSS calculates percentage widths using the
parent element’s width, and then adds on margins and padding. In other words, a
100% width element with padding, margins, or a border will always overflow.

However, by setting box-sizing to border-box—instead of its default value content-
box—you can change the way the size is measured, taking into account borders, mar-
gins, padding, and content:

.border-box {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

This has great support among the major browsers, and it can be used safely unless you
plan to support any browsers prior to Internet Explorer 8.

Transformations
With CSS3, we get basic 2D transformations, which lets elements be translated,
rotated, scaled, and skewed. For example, we can rotate an element 30 degrees
counterclockwise:

transform: rotate(-30deg);

232 | Appendix C: CSS3 Reference

You can also skew the element around the x and y axes by the specified angles:

transform: skew(30deg , -10deg);

An element’s position can be transformed in the x or y axis using translateX or
translateY:

translateX(30px);
translateY(50opx);

You can increase or decrease an element’s size using the scale transform. By default,
an element’s scale is set to 1:

transform: scale(1.2);

You can specify multiple transformations by concatenating them:

transform: rotate(30deg) skewX(30deg);

Browser support:

• Firefox: with -moz-

• Chrome: with -webkit-

• Safari: with -webkit-

• IE >= 9: with -ms-

• Opera: with -o-

Flexible Box Model
CSS3 introduces the flexible box model, a new way of displaying content. It’s really
useful, as it brings some features to CSS that GUI frameworks, such as Adobe Flex,
have had for a while. Traditionally, if you wanted a list aligned horizontally, you used
floats. The flexible box model lets you do that and more. Let’s take a look at the code:

.hbox {
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 -webkit-box-pack: left;

 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 -moz-box-pack: left;
}

.vbox {
 display: -webkit-box;
 -webkit-box-orient: vertical;
 -webkit-box-align: stretch;

 display: -moz-box;
 -moz-box-orient: vertical;

Flexible Box Model | 233

 -moz-box-align: stretch;
}

We’re setting the display to -webkit-box or -moz-box, and then setting the direction in
which the children will be laid out. By default, all the children will expand equally to
fit their parent. However, you can alter this behavior by setting the box-flex attribute.

By setting box-flex to 0, you’re specifying that an element shouldn’t expand, whereas
if you set the flex to 1 or higher, the element will expand to fit the available content.
For example, a sidebar may have a flex attribute of 0, and the main content may have
a flex attribute of 1:

#sidebar {
 -webkit-box-flex: 0;
 -moz-box-flex: 0;
 box-flex: 0;

 width: 200px;
}

#content {
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
}

Browser support:

• Firefox: with -moz-

• Chrome: with -webkit-

• Safari: with -webkit-

• IE >= 10: with -ms-

• Opera: no support

Fonts
@font-face allows you to use custom fonts to display text on your web pages. So, you
no longer need to depend on a limited number of system fonts users have installed.

Supported font formats are TrueType and OpenType. Fonts are subject to the same
domain policy restriction—the files must be on the same domain as the page using
them.

You can specify a @font-face like this, giving it a font-family and the URL location
where the font is located:

@font-face {
 font-family: "Bitstream Vera Serif Bold";
 src: url("/fonts/VeraSeBd.ttf");
}

234 | Appendix C: CSS3 Reference

Then, you can use it as you would any other font:

#font-example {
 font-family: "Bitstream Vera Serif Bold";
}

Fonts will be downloaded asynchronously and applied when they’ve finished down-
loading. This means a user will see one of her system’s default fonts until the custom
font has downloaded. Therefore, it’s a good idea to specify a fallback font that’s avail-
able locally.

Browser support:

• Firefox: full support

• Chrome: full support

• Safari: full support

• IE >= 9: full support

• Opera: full support

Graceful Degradation
If you write your CSS correctly, your application will degrade gracefully. It will be
functional in browsers that don’t support CSS3—it just won’t be very pretty.

The key to graceful degradation is that browsers ignore things they don’t understand,
such as unknown CSS properties, values, and selectors. CSS properties override
one another, so if one is defined twice in the same rule, the first property will be
overridden. You should put the property that’s CSS 2.1-compliant first, so it will be
overridden if rgba is supported:

#example-gd {
 background: white;
 background: rgba(255, 255, 255, .75);
}

What about vendor prefixes? Well, the same rule applies. Just include prefixes for each
browser—it will use the one it understands. You should put the prefixless version last,
as it will be used when the browser’s CSS3 support is standardized and prefixes are
removed:

#example-gd {
 background: #FFF;
 background: -webkit-gradient(linear, left top, left bottom, from(#FFF), to(#CCC));
 background: -webkit-linear-gradient(#FFF, #CCC);
 background: -moz-linear-gradient(#FFF, #CCC);
 background: linear-gradient(#FFF, #CCC);
}

Graceful Degradation | 235

Modernizr
Modernizr detects support for various CSS3 properties, letting you target specific
browser behavior in your stylesheet:

.multiplebgs div p {
 /* properties for browsers that
 support multiple backgrounds */
}
.no-multiplebgs div p {
 /* optional fallback properties
 for browsers that don't */
}

Some of the features Modernizr detects support for are:

• @font-face

• rgba()

• hsla()

• border-image:

• border-radius:

• box-shadow:

• text-shadow:

• Multiple backgrounds

• Flexible box model

• CSS animations

• CSS gradients

• CSS 2D transforms

• CSS transitions

To see a full list or to download Modernizr, visit the project page.

Using Modernizr is very simple—just include the JavaScript file and add a class of no-
js to the <html> tag:

<script src="/javascripts/modernizr.js"></script>
<html class="no-js">

Modernizr then adds some classes to the <html> tag, which you can use in your selectors
to target specific browser behaviors:

/* Alternate layout when the Flexible Box Model is not available */
.no-flexbox #content {
 float: left;
}

236 | Appendix C: CSS3 Reference

http://www.modernizr.com
http://www.modernizr.com

Google Chrome Frame
Google Chrome Frame (GCF) is an Internet Explorer extension that lets you switch
IE’s renderer to Google Chrome’s renderer, Chromium.

Once the extension is installed, you can enable GCF with a meta tag in the page’s head:

<meta http-equiv="X-UA-Compatible" content="chrome=1">

Or, an alternative is to add the setting to the response’s header:

X-UA-Compatible: chrome=1

That’s all that’s required to enable GCF rendering for your web page. However, GCF
has some more features, like prompting users to install it if they’re running IE (and it’s
not already installed). The prompt can just overlay on top of the page and will refresh
automatically when GCF is installed—no browser restart is necessary.

The first step is to include the GCF JavaScript:

<script src="http://ajax.googleapis.com/ajax/libs/chrome-frame/1/CFInstall.min.js"

Then, in a page load handler or at the bottom of the page, we need to invoke CFInstall:

<script>
 jQuery(function(){
 CFInstall.check({
 mode: "overlay",
 });
 });
</script>

CFInstall takes several options:

mode

Inline, overlay, or popup

destination

The address to navigate to on installation, usually the current page

node

The ID of an element that will contain the installation prompt

Once GCF is installed, the browser’s User-Agent header will be extended with the string
chromeframe. GCF cleverly uses Internet Explorer’s network stack to perform URL re-
quests. This ensures that requests have the same cookies, history, and SSL state when
using GCF, which basically preserves the user’s existing sessions.

For further information, see the getting started guide.

Graceful Degradation | 237

http://www.chromium.org
http://www.chromium.org/developers/how-tos/chrome-frame-getting-started

Creating a Layout
Let’s take what we’ve learned and apply it to creating a simple layout, inspired by Holla.

First, let’s create the basic page markup. We’re going to have a header and two
columns—a sidebar with fixed width and a main content container:

<body>
 <header id="title">
 <h1>Holla</h1>
 </header>

 <div id="content">
 <div class="sidebar"></div>
 <div class="main"></div>
 </div>
</body>

Next, let’s add the basic reset and body styles:

body, html {
 margin: 0;
 padding: 0;
}

body {
 font-family: Helvetica, Arial, "MS Trebuchet", sans-serif;
 font-size: 16px;
 color: #363636;
 background: #D2D2D2;
 line-height: 1.2em;
}

And now the h tags:

h1, h2 {
 font-weight: bold;
 text-shadow: 0 1px 1px #ffffff;
}

h1 {
 font-size: 21pt;
 color: #404040;
}

h2 {
 font-size: 24pt;
 color: #404040;
 margin: 1em 0 0.7em 0;
}

h3 {
 font-size: 15px;
 color: #404040;
 text-shadow: 0 1px 1px #ffffff;
}

238 | Appendix C: CSS3 Reference

Now let’s define a header for our layout. We’re using the CSS3 background gradients,
but we’re defaulting back to a plain hex code color if they’re not supported:

#title {
 border-bottom: 1px solid #535353;
 overflow: hidden;
 height: 50px;
 line-height: 50px;

 background: #575859;
 background: -webkit-gradient(linear, left top, left bottom,
 from(#575859), to(#272425));
 background: -webkit-linear-gradient(top, #575859, #272425);
 background: -moz-linear-gradient(top, #575859, #272425);
 background: linear-gradient(top, #575859, #272425);
}

#title h1 {
 color: #ffffff;
 text-shadow: 0 1px 1px #000000;
 margin: 0 10px;
}

Now, if we look in the browser, there’s a dark header with our application’s name, as
shown in Figure C-1.

Figure C-1. Our CSS application so far, displaying a header with a background gradient

Creating a Layout | 239

Let’s create a #content div that will contain the main part of the application. We want
it stretched across the page in both the x and y directions, so we’ll make its position
absolute. Its immediate children are aligned horizontally, so we’ll set its display to the
flexible box type:

#content {
 overflow: hidden;

 /*
 The content div will cover the whole page,
 but leave enough room for the header.
 */
 position: absolute;
 left: 0;
 right: 0;
 top: 50px;
 bottom: 0;

 /* The children are horizontally aligned */
 display: -webkit-box;
 -webkit-box-orient: horizontal;
 -webkit-box-align: stretch;
 -webkit-box-pack: left;

 display: -moz-box;
 -moz-box-orient: horizontal;
 -moz-box-align: stretch;
 -moz-box-pack: left;
}

Now let’s create a lefthand column called .sidebar. It’s got a fixed width, so we’re
setting box-flex to 0:

#content .sidebar {
 background: #EDEDED;
 width: 200px;

 /* It's got a fixed width, we don't want it to expand */
 -webkit-box-flex: 0;
 -moz-box-flex: 0;
 box-flex: 0;
}

Let’s create a list of menu items inside .sidebar. Each menu is separated by an h3, the
menu header. As you can see, we’re using a lot of CSS3, which—due to the vendor
prefixes—is rather repetitive. We can clean it up using Less mixins:

#content .sidebar ul {
 margin: 0;
 padding: 0;
 list-style: none;
}

#content .sidebar ul li {
 display: block;

240 | Appendix C: CSS3 Reference

 padding: 10px 10px 7px 20px;
 border-bottom: 1px solid #cdcdcc;
 cursor: pointer;

 -moz-box-shadow: 0 1px 1px #fcfcfc;
 -webkit-box-shadow: 0 1px 1px #fcfcfc;
 box-shadow: 0 1px 1px #fcfcfc;
}

#content .sidebar ul li.active {
 color: #ffffff;
 text-shadow: 0 1px 1px #46677f;

 -webkit-box-shadow: none;
 -moz-box-shadow: none;

 background: #7bb5db;
 background: -webkit-gradient(linear, left top, left bottom,
 from(#7bb5db), to(#4775b8));
 background: -webkit-linear-gradient(top, #7bb5db, #4775b8);
 background: -moz-linear-gradient(top, #7bb5db, #4775b8);
 background: linear-gradient(top, #7bb5db, #4775b8);
}

Let’s add some example menus to the HTML markup:

<div class="sidebar">
 <h3>Channels</h3>

 <li class="active">Developers
 Sales
 Marketing
 Ops

</div>

All the CSS that’s left is the .main div, which stretches right across the page:

#content .main {
 -moz-box-shadow: inset 0 1px 3px #7f7f7f;
 -webkit-box-shadow: inset 0 1px 3px #7f7f7f;
 box-shadow: inset 0 1px 3px #7f7f7f;

 /* We want .main to expand as far as possible */
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
}

Let’s take another look; as Figure C-2 shows, we’ve now got a basic application layout
upon which we can expand.

Creating a Layout | 241

Figure C-2. Basic application layout

As I mentioned before, the CSS3 syntax is rather verbose and repetitive due to the
vendor prefixes we have to use. We can clean it up using Less mixins. For example:

#content .sidebar h3 {
 .vbg-gradient(#FFF, #DEDFE0);
 .box-shadow(0, -5px, 10px, #E4E4E4);
}

See Appendix B for more information, and view the Holla stylesheets for some good
examples.

242 | Appendix C: CSS3 Reference

Index

Symbols
$ shortcut, jQuery, 50
$$() function, 126
$() function, 126
$x() function, 127
() braces, anonymous functions, 50
_ (underscore), prefixing private properties,

16
_.bindAll(), 171

A
Access-Control-Allow-Origin header, 42
Access-Control-Request-Headers header, 42
addEventListener(), 19, 24
addressing references, 37
Adobe Flash, 44
afterEach() function, 114
Ajax

crawling, 62
jQuery, 212
loading data with, 39–42
progress, 93
syncing and Spine, 150

ajax() function, 212
ajaxError event, 150
alpha transparency, 225
AMD format, 77
Apache web server, relative expiration date,

134
APIs

History API, 63
HTML5 file APIs, 81
jQuery.tmpl templating API, 68
jQuery’s selectors API, 207

pushState() and replaceState() history API,
173

Underscore’s AP, 165
WebSocket API, 99
XMLHttpRequest API, 92

App.log() function, 126
append() function, 210
apply(), 12
arguments variable, 14
assert libraries, 110
assert() function, 109
assertEqual() function, 110
assertion types, 112
assertions, 109
async attribute, 134
attributes

async attribute, 134
Backbone library models, 166
defer attribute, 134
files in HTML5, 82
JavaScriptMVC library models, 189–191
multiple attribute, 82
originalEvent attribute, 84
returning, 46
validating an instance’s attributes, 167
whitelisting, 176

auditors, deployment, 138
autoLink() function, 69

B
Backbone library, 165–183

collections, 167
controllers, 172
models, 165
syncing with the server, 174–177

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

243

to-do lists, 178–183
views, 169

Backbone.sync() function, 174, 176
backgrounds, CSS3, 228
beforecopy event, 87
beforecut event, 87
beforeEach() function, 114
beforepaste event, 88
bind() function, 15, 23, 57, 211
binding, about, 70
blobs and slices, 90
border images in CSS3, 232
border-radius style, 225
box model, flexible box model: CSS3, 233
box sizing, CSS3, 232
box-shadow style, 226
breakpoints, 127
browse buttons, 91
browsers

CommonJS modules, 75
copy and paste, 87
CORS, 41
CSS3, 223–242
DOMContentLoaded event, 23
drag and drop, 83
event types, 20
files, 81
Firebug add-on, 124
graceful degradation, 223
hashchange events, 61
local storage, 44
performance, 134
testing JavaScript, 107
uploading files, 91

bubbles event, 21
bubbling, Spine, 152

C
Cache-Control, 135
caching, deployment, 134
call(), 12
callbacks

ajax() function, 212
Backbone, 177
binding to model events, 147
click() callback, 15
context changes in event callbacks, 171
event callbacks, 151
extended and included callbacks, 9

hash of, 170
jQuery has some iterators,, 209
Model.created() callback, 38
registering to events, 51
Spine libraries, 143

canceling
default drag/drop, 85
events, 21

Cappuccino, 89, 165
CDNs (content delivery networks), 138
change event, 59, 71, 159, 171, 175
change() function, 71
chat room, 103
Chrome, Web Inspector, 123
class, as a reversed keyword, 7
classes

adding functions to, 7
adding inheritance to class libraries, 11
adding methods to class libraries, 8
class inheritance using prototype, 10
controlling scope in class libraries, 14
JavaScriptMVC library, 186–189

calling base methods, 187
instantiation, 186
introspection, 188
model example, 188
proxies, 187
static inheritance, 187

MVC pattern, 6
Spine libraries, 142–145
Spine.List class, 159
WebSockets, 99
XMLHttpRequest class, 40

click event, 91
click() callback, 15
client-side templates, JavaScriptMVC library,

197–200
$.View and subtemplates, 198
basic use, 197
deferreds, 199
jQuery modifiers, 198
loading from a script tag, 198
packaging, preloading and performance,

199
clipboardData object, 87
clipboardData property, 88
collections

Backbone library, 167
populating: Backbone library, 175

244 | Index

colors
CSS extensions, 219
CSS3, 224

Comet techniques, 97
CommonJS

about, 74
module loaders, 76

CommonJS initiative, 74
comparator() function, 169
compression, Gzip, 137
concatenation, 78
console, debugging, 125
console.error(), 125
console.log() function, 125
console.profile() and console.profileEnd(),

129
console.time(name) and

console.timeEnd(name), 131
console.trace(), 126
console.warn(), 125
constructor functions, 6
contacts manager in Spine libraries, 156–163

App controller, 163
contact model, 157
Contacts controller, 160
Sidebar controller, 158

content delivery networks (CDNs), 138
context, 51–57

abstracting into a library, 52
changing, 12, 24, 171, 212
delegating events, 56

controllers, 49–64
about, 5
abstracting into a library, 52
accessing views, 55
adding context, 51–57
App controller in contacts manager in Spine

libraries, 163
Backbone library, 172
contacts controller in contacts manager in

Spine libraries, 160
delegating events, 56
JavaScriptMVC library, 200–205

event binding, 203
instantiation, 202
overview, 202
templated actions, 204

loading controllers after the document, 53
module pattern, 50

routing, 60–64
Ajax crawling, 62
detecting hash changes, 61
HTML5 History API, 63
URL’s hash, 60

Spine libraries, 150–156
state machines, 58

cookies, 44
copy and paste, 87–89
copy event, 87
corners, rounding in CSS3, 225
CORS (cross-origin resource sharing), 41
crawling, Ajax, 62
create() function, 37, 142, 146, 150
created() function, 143
cross-browser event listeners, 23
cross-domain requests, security, 43
CRUD events, JavaScriptMVC library models,

196
CRUD list example, 205
CSS extensions, 217–220

colors, 219
including other stylesheets, 219
Less code, 219
mixins, 218
nested rules, 218
variables, 217

CSS gradient standard, 228
CSS sprites, 133
css() function, 210
CSS3, 223–242

border images, 232
box sizing, 232
colors, 224
creating a layout, 238
CSS3, 234
drop shadows, 226
flexible box model, 233
fonts, 234
graceful degradation, 235
gradients, 227
mixins, 218
multiple backgrounds, 228
prefixes, 224
rounding corners, 225
selectors, 229
text shadows, 227
transformations, 232
transitions, 230

Index | 245

cubic bezier curve, 231

D
data

loading, 38–43
including data inline, 39
JSONP, 43
security with cross-domain requests, 43
with Ajax, 39–42

models, 3
storing locally, 44

dataTransfer object, 84, 86
dataTransfer.getData() function, 86
dataType option, 212
deactivate() function, 59
debugging, 122–131

(see also testing)
console, 125
inspectors, 122
network requests, 128
profile and timing, 129–131
using the debugger, 127

declaring CommonJS modules, 74
defaults

browsers and default actions to events, 21
caching, 134
constructor function return context, 7
controllers extending, 153
JavaScriptMVC library models, 192

defer attribute, 134
deferreds, JavaScriptMVC library client-side

templates, 199
define() function, 78
degradation, graceful degradation: CSS3, 235
delegate() function, 24, 57
delegating

Backbone library events, 170
events, 24, 56

dependency management, 73–80
CommonJS, 74
FUBCs, 80
module alternative, 79
module loaders, 76
wrapping up modules, 78

deployment, 133–139
auditors, 138
caching, 134
CDNs, 138
Gzip compression, 137

minification, 136
performance, 133
resources, 139

descendants, CSS3, 230
describe() function, 114
destroy() function, 4, 144, 147
dir() function, 127
direct descendants, CSS3, 230
distributed testing, 121
document.createElement(), 65
document.ready event, 211, 213
DOM elements

controllers, 151
creating, 65

DOM, jQuery, 208–211
domains

same origin policy, 41
whitelist of, 43

DOMContentLoaded event, 23, 129
DownloadURL type, 85
drag and drop

files, 83–86
jQuery drag-and-drop uploader, 95–96

dragenter event, 85
dragover event, 85
dragstart event, 84
drivers, testing, 115
drop areas, 95
drop event, 95
drop shadows, CSS3, 226
dropping files, 85
dynamically rendering views, 65

E
el property, 151
element pattern, 154
elements

associated with events, 22
DOM elements, 65
mapping, 55
Spine libraries’ controllers, 152
tooltip element, 201

empty() function, 211
Envjs, 119
equals() function, 112
error event, 148, 167
ETags, 136
event bubbling, 20
event callbacks

246 | Index

context changes, 171
proxying, 151

event capturing, 20
events, 19–30

ajaxError event, 150
Backbone library, 170
canceling, 21
change event, 59, 71, 159, 171, 175
click event, 91
context change, 24
controllers and event listeners, 5
copying and pasting events, 87
custom events, 25–27
delegating, 24, 56, 152
document.ready event, 211, 213
DOMContentLoaded event, 129
drag and drop, 83
dragenter event, 85
dragover event, 85
dragstart event, 84
drop event, 95
error event, 148, 167
event binding: JavaScriptMVC library

controllers, 203
event libraries, 23
event object, 21
global events in Spine libraries’ controllers,

153
hash of, 170
hashchange events, 61
jQuery, 211
keydown event, 152
listening to, 19
load event, 93
non-DOM events, 27–30
onhashchange event, 173
onopen event, 99
ordering, 20
pasting events, 88
popstate events, 64
progress event, 93, 94
real-time architecture, 103
refresh event, 175
registering callbacks to, 51
show:contact event, 160
Spine libraries, 145, 147
Spine libraries’ controller events, 153

exists() function, 146
expect() function, 115

expectation management, 105
Expires header, 134
export, global export, 50
extend() function, 8, 143, 146, 166
extending

CSS, 217–220
jQuery, 213

extending models, JavaScriptMVC library,
191

extensions, wrapping, 214

F
fetch() function, 175
fetchRemote() function, 32
FileReader object, 89
files, 81–96

browser support, 81
copy and paste, 87–89
custom browse buttons, 91
drag and drop, 83–86
getting information about, 81
inputs, 82
jQuery drag-and-drop uploader, 95–96
reading, 89
uploading, 91–94

find() function, 36, 146
find() operation, 37
Finite State Machines (FSMs), 58
Firebug, 124, 138
Firebug Lite, 125
Firefox

Firebug, 124
Firebug and YSlow, 138
Selenium IDE, 116

firewalls, WebSockets, 100
flexible box model, CSS3, 233
FlyScript, 79
Followers and Followees collections, 167
FormData instance, 92
FSMs (Finite State Machines), 58
FUBCs (flashes of unbehaviored content), 80
functions

$$() function, 126
$() function, 126
$x() function, 127
activate() function, 59
add() function, 168
addClass() function, 210
addEventListener(), 19

Index | 247

adding private functions, 16
adding to classes, 7
afterEach() function, 114
ajax() function, 212
anonymous functions, 16, 50
App.log() function, 126
append() function, 210
assert() function, 109
assertEqual() function, 110
autoLink() function, 69
Backbone.sync() function, 174, 176
beforeEach() function, 114
bind() function, 15, 23, 57, 211
change() function, 71
clear() function, 127
comparator() function, 169
console.log() function, 125
constructor functions, 6
create() function, 37, 142, 146, 150
created() function, 143
css() function, 210
dataTransfer.getData() function, 86
deactivate() function, 59
define() function, 78
delegate() function, 24, 57
describe() function, 114
destroy() function, 4, 144, 147
dir() function, 127
empty() function, 211
equals() function, 112
exists() function, 146
expect() function, 115
extend() function, 8, 143, 146, 166
fetch() function, 175
fetchRemote() function, 32
find() function, 36, 146
function invocation, 12
generic helper functions inside the view, 68
get() function, 166
getData() function, 88
getter and setter functions, 211
global variables and functions, 4
history.back() and history.forward()

functions, 64
history.pushState() function, 63
include() function, 8, 52, 143, 146
init() function, 34, 55, 142, 151
initialize() instance function, 166, 168
inspect() function, 127

it() function, 114
jQuery.ajax() function, 40
jQuery.tmpl() function, 67
keys() function, 127
load() function, 52, 74
Math.random() function, 36
module() function, 111
namespacing, 31
Object.create() function, 33, 142
post() function, 47
prepend() function, 210
proxy() function, 14, 24, 52, 144
proxyAll() function, 144
ready() function, 23
refresh() function, 175
remove() function, 168
removeEventListener(), 19
render() function, 171
require() function, 74–76
reventDefault() function, 21
same() function, 112
save() function, 146, 174, 194
search() function, 173
send() function, 92, 99
set() function, 166
setData() function, 84
setDragImage() function, 85
slice() function, 90
stopImmediatePropagation() function, 21
stopPropagation() function, 21
text() function, 211
timing functions, 231
toJSON() function, 170
trigger() function, 25
update() function, 37
uploadFile() function, 95
validate() function, 167
values() function, 127

G
GCF (Google Chrome Frame), 237
get() function, 166
getData() function, 88
getJSON(), 212
getter and setter functions, 211
global export, 50
global import, 50
global variables and functions, 4
Google

248 | Index

Ajax Crawling specification, 62
GCF, 237
Pagerank algorithm, 139
V8 JavaScript engine, 119

Google Analytics, 134
graceful degradation

about, 223
CSS3, 235

gradients, CSS3, 227
Growl jQuery plug-in, 214
GUID generators, 36
Gzip compression, 137

H
hash

default, 167
detecting hash changes, 61
events and callbacks, 170
routing and URL’s hash, 60

headless testing, 118–121
Ichabod library, 121
Zombie.js, 119

helpers
defined, 4
JavaScriptMVC library models, 192
templates, 68

history
JavaScript, xi, 1
real-time Web, 97

History API, 63
history.back() and history.forward() functions,

64
history.pushState() function, 63
HJS plug-in, 16
Holla, xvii, 104
HTML

prerendering, 65
templating, 181

HTML5
drag and drop, 83
History API, 63
HTML5 file APIs, 81
local storage, 45
WebSockets, 98

HTTP requests, performance, 133

I
Ichabod library, 121

ID support, 36
If-Modified-Since header, 135
If-None-Match header, 136
images, border images in CSS3, 232
immutable properties, 16
import, global import, 50
include() function, 8, 52, 143, 146
including data inline, 39
inheritance

adding inheritance to class libraries, 11
class inheritance using prototype, 10
classes, 17
prototypal inheritance, 33
static inheritance: JavaScriptMVC library

classes, 187
init method, 202
init() function, 34, 55, 142, 151
initialize() instance function, 166, 168
inputs, files, 82
inspect() function, 127
inspectors, 122
instantiation

JavaScriptMVC library classes, 186
JavaScriptMVC library controllers, 202
Spine libraries’ classes, 142

interfaces (see views)
interpolating variables, 67
introspection, JavaScriptMVC library classes,

188
invocation, function invocation, 12

J
Jasmine, 113–115
JavaScript

history, xi, 1
Less code, 220
minification, 136

JavaScriptMVC library, 185–206
abstract CRUD list, 205
classes, 186–189

calling base methods, 187
instantiation, 186
introspection, 188
model example, 188
proxies, 187
static inheritance, 187

client-side templates, 197–200
$.View and subtemplates, 198
basic use, 197

Index | 249

deferreds, 199
jQuery modifiers, 198
loading from a script tag, 198
packaging, preloading and performance,

199
controllers, 200–205

event binding, 203
instantiation, 202
overview, 202
templated actions, 204

models, 189–196
attributes and observables, 189–191
CRUD events, 196
defaults, 192
extending, 191
helper methods, 192
service encapsulation, 193–195
setters, 191
type conversion, 196

setup, 186
jQuery, 207–216

$ shortcut, 50
about, 207
Ajax, 212
apply() and call(), 12
being a good web citizen, 213
DOM manipulation, 209
DOM traversal, 208
drag-and-drop uploader, 95–96
events, 211
extensions, 213
Growl plug-in, 214
plug-ins and custom events, 25

jQuery() selector, 55
jQuery.ajax() function, 40
jQuery.bind, 203
jquery.browse.js plug-in, 91
jQuery.delegate, 203
jQuery.extend(), 34
jQuery.fn object, 213
jQuery.get, 200
jquery.js, 79
jQuery.prototype, 213
jQuery.proxy(), 52, 212
jQuery.tmpl, 181
jQuery.tmpl library, 67
jquery.upload.js plug-in, 93
JSMin, 136
JSON objects, 39

JSONP (JSON with padding), 43

K
keyboard events, 22
keydown event, 152
keys() function, 127
keywords

class as a reserved keyword, 7
new keyword and calling constructor

functions, 6
klass, 7

L
LABjs, 80
Last-Modified header, 135
layouts, creating in CSS3, 238
Less code, CSS extensions, 219
Less.app, 220
libraries

adding inheritance to class libraries, 11
assert libraries, 110
Backbone library, 165–183
CDN, 138
class libraries, 8, 16
controlling scope in class libraries, 14
Envjs, 119
event libraries, 23
Ichabod library, 121
JavaScriptMVC library, 185–206
jQuery, 207–216
Selenium, 116
Spine libraries, 17, 141–163
templating libraries, 66
underscore.js library, 165

linear and radial gradients, 227
listening to events, 19
literals, JavaScript object literals, 6
load event, 93
load() function, 52, 74
loading

controllers after the document, 53
data

including data inline, 39
JSONP, 43
security with cross-domain requests, 43
with Ajax, 39

local storage
about, 44

250 | Index

adapter, 177
adding to ORMs, 46

logging level, 125

M
MacRuby, 121
manual testing, 109
matchers, 115
Math.random() function, 36
messages, sending and receiving, 99
minification

about, 78
deployment, 136

mixins, CSS extensions, 218
model ID, 168
model property, 168
Model.created() callback, 38
models, 31–48

about, 3
adding ID support, 36
adding local storage ORM, 46
addressing references, 37
Backbone library, 165
binding, 71
contact model in contacts manager in Spine

libraries, 157
flexible box model: CSS3, 233
JavaScriptMVC library, 189–196

attributes and observables, 189–191
CRUD events, 196
defaults, 192
extending models, 191
helper methods, 192
service encapsulation, 193–195
setters, 191
type conversion, 196

JavaScriptMVC library classes example,
188

loading data, 38–43
including data inline, 39
JSONP, 43
security with cross-domain requests, 43
with Ajax, 39–42

MVC pattern and namespacing, 31
ORMs, 32–36
populating ORMS, 44
Spine libraries, 145–150
storing data locally, 44
submitting new records to the server, 47

Modernizr, 236
modified time (mtime), 135
modularity, MVC pattern and classes, 6
module pattern, 50
module transport format, 75
module() function, 111
modules

alternatives to, 79
browser, 75
declaring with CommonJS, 74
module loaders, 76
wrapping up, 78

mod_deflate, 138
multiple attribute, 82
Mustache, 67
MVC pattern, 1–17

about, 2
adding inheritance to class libraries, 11
adding methods to class libraries, 8
adding private functions, 16
adding structure to applications, 2
class functions, 7
class inheritance using prototype, 10
class libraries, 16
classes, 6
controlling scope in class libraries, 14
function invocation, 12
JavaScript history, 1
namespacing, 31

N
namespacing

CommonJS initiative, 74
custom events, 25
importance of, 73
introspection, 188
MVC pattern, 31
namespace pollution, 50
variable definitions and global namespaces,

50
negating selectors in CSS3, 230
nested rules, CSS extensions, 218
network requests, 128
new operator, 6
next and prev methods, 192
Node.js, 101, 220
non-DOM events, 27–30
nth-child, CSS3, 229

Index | 251

O
object-oriented languages, JavaScript as, 2
Object-relational mappers (see ORMs)
Object.create() function, 33, 142
objects

clipboardData object, 87
dataTransfer object, 84, 86
event object, 21, 153
FileReader object, 89
JavaScript object literals, 6
jQuery.fn object, 213
JSON objects, 39
localStorage and sessionStorage objects, 45
properties and namespacing, 31
prototypical objects, 10

onhashchange event, 173
onmessage, 99
onopen event, 99
operators

new operator, 6
var operator, 16

options.error() callback, 177
options.success() callback, 177
order, events, 20
originalEvent attribute, 84
ORMs (Object-relational mappers), 32–36

adding local storage, 46
adding ORM properties, 34
persisting records, 35
populating, 44
prototypal inheritance, 33

P
packaging, JavaScriptMVC library client-side

templates, 199
Pagerank algorithm, 139
pagination controls, 189
pasting, 88
performance

deployment, 133
JavaScriptMVC library client-side

templates, 199
perceived speed, 105

persistence
records: ORMs, 35
Spine libraries’ models, 148

plug-ins
Adobe Flash, 44

Growl jQuery plug-in, 214
HJS plug-in, 16
jQuery plug-ins and custom events, 25
jquery.browse.js plug-in, 91
jQuery.tmpl library, 67
jquery.upload.js plug-in, 93
Selenium, 116

popstate events, 64
populating

collections: Backbone library, 175
ORMs, 44

post() function, 47
prefixes, CSS3, 224
preloading

data, 38
intelligent preloading, 105

prepend() function, 210
prerendering HTML, 65
private functions, 16
profile, debugging, 129–131
progress event

about, 94
Ajax, 93

properties
adding ORM properties, 34
adding to classes, 8
bubbles event, 22
classes, 17
clipboardData property, 88
defining classes, 16
el property, 151
event object, 21
events property, 152
immutable properties, 16
keyboard events, 22
model property, 168
prototypical objects, 10
Spine libraries, 143
url instance property, 174

prototypal inheritance
class inheritance using prototype, 10
ORMs, 33

proxied shortcut, 151
proxies

JavaScriptMVC library classes, 187
Spine libraries’ controllers, 151
WebSockets, 100

proxy() function, 14, 24, 52, 144
proxyAll() function, 144

252 | Index

Publish/Subscribe pattern, 27
PubSub

global events, 153
pattern, 104

Pusher, 103
pushState() and replaceState() history API,

173

Q
QUnit, 110

R
Rack, Less code, 220
rack-modulr, 79
rackup command, 79
raw method, 39
reading files, 89
ready() function, 23
real-time Web, 97–105

architecture, 103
history, 97
perceived speed, 105
WebSockets, 98–103

record feature, 131
records

persisting records, 35
retrieving in Spine libraries’s models, 147
submitting new records to the server, 47

references, addressing, 37
refresh event, 175
refresh() function, 175
refreshElements(), 152
registering callbacks to events, 51
relative expiration date, 134
remove() function, 168
removeEventListener(), 19
render pattern, 154
render() function, 171
rendering

Backbone library views, 170
dynamically rendering views, 65
templates inline, 70

requests
network requests, 128
same origin policy, 41
security with cross-domain requests, 43

require() function, 74–76
RequireJS, 77

resources, deployment, 139
return statements, new operator, 6
reventDefault() function, 21
rgb style, 224
Rhino, 74
rounding corners, CSS3, 225
routes, 172
routing, 60–64

Ajax crawling, 62
detecting hash changes, 61
HTML5 History API, 63
URL’s hash, 60

RPC script, 100

S
Safari, Web Inspector, 123
same origin policy, 41
same() function, 112
Sauce Labs, 122
save() function, 146, 174, 194
saveLocation(), 173
scope

class libraries, 14
context, 51

script tags
about, 73
templates, 199

scripts, performance, 134
search() function, 173
security, cross-domain requests, 43
selectors

CSS3, 229
jQuery, 207

Selenium, 116
self local variable, 212
send() function, 92, 99
server push, 98
server-side applications, views, 65
server-side validation, 150
servers

submitting new records to, 47
syncing with: Backbone library, 174–177

session storage, 45
set() function, 166
setData() function, 84
setDragImage() function, 85
setters, JavaScriptMVC library models, 191
shadows

drop shadows in CSS3, 226

Index | 253

text shadows in CSS3, 227
shortcuts, event types, 23
show:contact event, 160
Sidebar controller in contacts manager in Spine

libraries, 158
slice() function, 90
slices and blobs, 90
Socket.IO, 102
speed, real-time Web, 105
SpiderMonkey, 74
Spine libraries, 141–163

class implementation, 17
classes, 142–145

context, 144
extending, 143
instantiation, 142

contacts manager, 156–163
App controller, 163
contact model, 157
Contacts controller, 160
Sidebar controller, 158

controllers, 150–156
controller events, 153
delegating events, 152
element pattern, 154
elements, 152
global events, 153
proxying, 151
render pattern, 154

events, 145
models, 145–150

events, 147
fetching records, 147
persistence, 148
validation, 148

setup, 141
Spine.App, 153
Spine.Events, 153
Spine.List class, 159
splats, 172
Sprockets, 79
SproutCore, 165
state machines, controllers, 58
state, storing and controllers, 49
static inheritance, JavaScriptMVC library

classes, 187
Stitch, 79
stopImmediatePropagation() function, 21
stopPropagation() function, 21

storage
local storage, 44, 46
templates, 69

submitting new records to the server, 47
syncing with the server: Backbone library, 174–

177

T
tags, loading from script tags: JavaScriptMVC

library client-side templates, 198
(see also script tags)

Task.fetch(), 149
teardown function, 114
teardown option, 112
templated actions, JavaScriptMVC library

controllers, 204
templates, 66–70

about, 66
helpers, 68
HTML, 181
prototypical objects as, 10
script tags, 199
storage, 69
templating interface, 197
views, 4

testing, 107–122
(see also debugging)
about, 107
distributed testing, 121
drivers, 115
headless testing, 118–121

Ichabod library, 121
Zombie.js, 119

support, 122
unit testing, 109–115

assertions, 109
Jasmine, 113–115
QUnit, 110

TestSwarm, 121
text shadows, CSS3, 227
text() function, 211
this

context change, 212
function invocation, 12

this.App, 154
this.input, 152
this.proxy(), 151
timeEnd(), 131
timing

254 | Index

debugging, 129–131
functions, 231

to-do lists, Backbone library, 178–183
toggleClass(), 53
toJSON() function, 170
tooltip, 200
transformations, CSS3, 232
transitionend, 231
transitions, CSS3, 230
trigger() function, 25
Twitter, Ajax crawling, 62
type conversion

JavaScriptMVC library models, 196
testing, 109

U
UIs, FSMs, 58
underscore (_), prefixing private properties,

16
underscore.js library, 165
unit testing, 109–115

assertions, 109
Jasmine, 113–115
QUnit, 110

update() function, 37
uploaders, jQuery drag-and-drop uploader,

95–96
uploadFile() function, 95
uploading files, 91–94
url instance property, 174
URLs, routing and URL’s hash, 60
User.extend(), 143
UX (user experience), 105

V
V8 JavaScript engine, 119
validate() function, 167
validation, Spine libraries’ models, 148
values() function, 127
var operator, 16
variables

arguments variable, 14
CSS extensions, 217
global variables and functions, 4
interpolating, 67
namespacing, 31
variable definitions and global namespaces,

50

views
about, 4
Backbone library, 169
controllers, 55
dynamically rendering, 65
JavaScriptMVC library client-side

templates, 197–200
Vows.js, 119

W
Watir, 116
Web Inspector, 123
web page for this book, xviii
Web-socket-js, 100
WebKit, 87
WebKitTransitionEvent, 231
WebSockets, 98–103
whitelist

of domains, 43
whitelisting attributes, 176

wildcards, 172
wrapping

extensions, 214
modules, 78

X
XDomainRequest, 42
XMLHttpRequest API, 92
XMLHttpRequest class, 40

Y
Yabble, 76
YSlow, 138
YUI Compressor, 136

Z
Zepto.js, 165
Zombie.js, 119

Index | 255

About the Author
Alex MacCaw is a Ruby/JavaScript developer and entrepreneur. He has written a Java-
Script framework, Spine; has developed major applications, including Taskforce and
Socialmod; and has done a host of open source work. He speaks at Ruby/Rails con-
ferences in New York City, San Francisco, and Berlin. In addition to programming, he
is currently traveling around the world with a Nikon D90 and a surfboard.

Colophon
The animal on the cover of JavaScript Web Applications is a Long-eared owl.

The Long-eared owl (Asio otus) is a slender, grayish-brown woodland owl that’s char-
acterized by long, upright ear tufts positioned in the middle of its head. At one time,
its distinctive ears earned it the nickname “cat owl.”

Long-eared owls can be found in the open woodlands, thickets, and forest edges of
North America, Europe, Asia, and northern Africa. Their diets consist almost entirely
of small mammals, primarily voles and mice, which they’re able to locate in complete
darkness due to the asymmetrical positioning of their ear openings. They fly back and
forth over low-cover areas to locate their food; their flight is light and buoyant and is
often compared to that of a large moth.

Long-eared owls do not build their own nests; instead, they settle in abandoned stick
nests of magpies, crows, hawks, and squirrels. They tend to become dispersed and
territorial during their breeding season (which typically occurs between mid-March
and early June), whereas during the winter months, they roost communally to keep
warm, often in clusters of 7–50 birds.

The cover image is from Wood’s Animate Creations. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Who Is This Book For?
	How This Book Is Organized
	Conventions Used in This Book
	Accompanying Files
	Code Conventions
	jQuery Examples

	Holla
	Author’s Note
	Safari® Books Online
	How to Contact Us

	Chapter 1. MVC and Classes
	Early Days
	Adding Structure
	What Is MVC?
	The Model
	The View
	The Controller

	Toward Modularity, Creating Classes
	Adding Functions to Classes
	Adding Methods to Our Class Library
	Class Inheritance Using Prototype
	Adding Inheritance to Our Class Library
	Function Invocation
	Controlling Scope in Our Class Library
	Adding Private Functions
	Class Libraries

	Chapter 2. Events and Observing
	Listening to Events
	Event Ordering
	Canceling Events
	The Event Object
	Event Libraries
	Context Change
	Delegating Events
	Custom Events
	Custom Events and jQuery Plug-Ins
	Non-DOM Events

	Chapter 3. Models and Data
	MVC and Namespacing
	Building an ORM
	Prototypal Inheritance
	Adding ORM Properties
	Persisting Records

	Adding ID Support
	Addressing References
	Loading in Data
	Including Data Inline
	Loading Data with Ajax
	JSONP
	Security with Cross-Domain Requests

	Populating Our ORM
	Storing Data Locally
	Adding Local Storage to Our ORM
	Submitting New Records to the Server

	Chapter 4. Controllers and State
	Module Pattern
	Global Import
	Global Export

	Adding a Bit of Context
	Abstracting into a Library
	Loading Controllers After the Document
	Accessing Views
	Delegating Events

	State Machines
	Routing
	Using the URL’s Hash
	Detecting Hash Changes
	Ajax Crawling
	Using the HTML5 History API

	Chapter 5. Views and Templating
	Dynamically Rendering Views
	Templates
	Template Helpers
	Template Storage

	Binding
	Binding Up Models

	Chapter 6. Dependency Management
	CommonJS
	Declaring a Module
	Modules and the Browser

	Module Loaders
	Yabble
	RequireJS

	Wrapping Up Modules
	Module Alternatives
	LABjs

	FUBCs

	Chapter 7. Working with Files
	Browser Support
	Getting Information About Files
	File Inputs
	Drag and Drop
	Dragging
	Dropping
	Cancel Default Drag/Drop

	Copy and Paste
	Copying
	Pasting

	Reading Files
	Blobs and Slices

	Custom Browse Buttons
	Uploading Files
	Ajax Progress

	jQuery Drag and Drop Uploader
	Creating a Drop Area
	Uploading the File

	Chapter 8. The Real-Time Web
	Real Time’s History
	WebSockets
	Node.js and Socket.IO

	Real-Time Architecture
	Perceived Speed

	Chapter 9. Testing and Debugging
	Unit Testing
	Assertions
	QUnit
	Jasmine

	Drivers
	Headless Testing
	Zombie
	Ichabod

	Distributed Testing
	Providing Support
	Inspectors
	Web Inspector
	Firebug

	The Console
	Console Helpers

	Using the Debugger
	Analyzing Network Requests
	Profile and Timing

	Chapter 10. Deploying
	Performance
	Caching
	Minification
	Gzip Compression
	Using a CDN
	Auditors
	Resources

	Chapter 11. The Spine Library
	Setup
	Classes
	Instantiation
	Extending Classes
	Context

	Events
	Models
	Fetching Records
	Model Events
	Validation
	Persistence

	Controllers
	Proxying
	Elements
	Delegating Events
	Controller Events
	Global Events
	The Render Pattern
	The Element Pattern

	Building a Contacts Manager
	Contact Model
	Sidebar Controller
	Contacts Controller
	App Controller

	Chapter 12. The Backbone Library
	Models
	Models and Attributes

	Collections
	Controlling a Collection’s Order

	Views
	Rendering Views
	Delegating Events
	Binding and Context

	Controllers
	Syncing with the Server
	Populating Collections
	On the Server Side
	Custom Behavior

	Building a To-Do List

	Chapter 13. The JavascriptMVC Library
	Setup
	Classes
	Instantiation
	Calling Base Methods
	Proxies
	Static Inheritance
	Introspection
	A Model Example

	Model
	Attributes and Observables
	Extending Models
	Setters
	Defaults
	Helper Methods
	Service Encapsulation
	Create a task
	Get a task
	Get tasks
	Update a task
	Destroy a task

	Type Conversion
	CRUD Events

	Using Client-Side Templates in the View
	Basic Use
	jQuery Modifiers
	Loading from a Script Tag
	$.View and Subtemplates
	Deferreds
	Packaging, Preloading, and Performance

	$.Controller: The jQuery Plug-in Factory
	Overview
	Controller Instantiation
	Event Binding
	Templated Actions

	Putting It All Together: An Abstract CRUD List

	Appendix A. jQuery Primer
	DOM Traversal
	DOM Manipulation
	Events
	Ajax
	Being a Good Citizen
	Extensions
	Creating a Growl jQuery Plug-in

	Appendix B. CSS Extensions
	Variables
	Mixins
	Nested Rules
	Including Other Stylesheets
	Colors
	How Do I Use Less?
	Via the Command Line
	Via Rack
	Via JavaScript
	Less.app

	Appendix C. CSS3 Reference
	Prefixes
	Colors
	Rounded Corners
	Drop Shadows
	Text Shadow
	Gradients
	Multiple Backgrounds
	Selectors
	Nth Child
	Direct Descendants
	Selector Negation

	Transitions
	Border Images
	Box Sizing
	Transformations
	Flexible Box Model
	Fonts
	Graceful Degradation
	Modernizr
	Google Chrome Frame

	Creating a Layout

	Index

