

Learn Azure Administration

Solve your cloud administration issues relating to networking, storage, and
identity management speedily and efficiently

Kamil Mrzygłód

BIRMINGHAM - MUMBAI

Learn Azure Administration

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or
its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this
book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Nihar Kapadia
Senior Editor: Rahul Dsouza
Technical Editor: Cleon Baretto
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Aparna Bhagat

First published: September 2020

Production reference: 1210820

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-145-2

www.packt.com

http://www.packt.com

To Klaudia – for being here.
– Kamil

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and
videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.pa
ckt.com and as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Kamil Mrzygłód is an independent consultant working with some of the
biggest companies from several industries on their cloud architectures and
technology adoption. He is an expert in Microsoft Azure and Microsoft
technologies, and he has twice been recognized as a Microsoft MVP in the
Microsoft Azure category; he is also a Microsoft Certified Trainer.

Writing a book is not easy, but making it something worth reading is especially difficult. Many thanks
to all the editors and reviewers for hours spent fixing my mistakes, typos, and unclear sentences. As
always, I want to thank Klaudia for her support and patience.

About the reviewers
Alexey Bokov is an experienced Azure architect and has been a Microsoft
technical evangelist since 2011. He works closely with top-tier
Microsoft customers all around the world to develop applications based on
Azure. Building cloud-based applications in the most challenging
circumstances is his passion, as well as helping the development community
to upskill and learn new things in a hands-on way. He's a long-time
contributor to many Azure books as a co-author and reviewer and speaks
from time to time at Kubernetes events.

I'd like to thank my family – my beautiful wife, Yana, and my amazing son, Kostya, who support my
efforts to help authors and publishers.

Marcondes Alexandre is a skilled database analyst and architect in the cloud
computing field. He is focused on delivering fast, reliable, and flexible cloud
solutions based on Azure and the Microsoft data platform. He has spoken at
multiple conferences and meetups on Microsoft technologies. He has
experience in deployment, maintenance, and migration projects from SQL
Server databases to on-premises and cloud scenarios, being recognized as a
Microsoft MVP in the Microsoft Azure category 10 times; he is also a
Microsoft Certified Trainer and Opsgility Certified Trainer - Microsoft Azure
Expert.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packtp
ub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

Learn Azure Administration

Dedication

About Packt

Why subscribe?

Contributors

About the author

About the reviewers

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Code in Action

Download the color images

Conventions used

Get in touch

Reviews

1. Section 1: Understanding the Basics

1. Getting Started with Azure Subscriptions

Technical requirements

Getting an Azure subscription

PAYG

CSP

Enterprise Agreement

Understanding different subscription models

Implementing subscription policies

Getting started with Azure Policy

Policy validation results

Examples of Azure policies

Using Azure Blueprints for repeatable deploy and update operations

Getting started with Blueprint assignment

Assigning an Azure blueprint

Checking usage and managing quotas

Cost monitoring and analysis

Cost analysis

Budgets

Azure Advisor

Implementing management automation

Summary

Further reading

2. Managing Azure Resources

Technical requirements

Managing resource providers

Managing resource groups

Browsing resource groups

Listing the available resources

Moving resources

Understanding resource providers

Performing deployments using ARM with templates

Writing a template from scratch

Automation scripts

Other tools

Implementing resource locks

Subscription locks

Resource group locks

Automating resource group management with Azure Event Grid

Creating an event subscription

Analyzing the gathered data

Implementing proper resource naming conventions

Subscription

Resource group

Resources

Summary

3. Configuring and Managing Virtual Networks

Technical requirements

Creating and configuring VNet peering

The Azure portal

The Azure CLI

Creating and configuring VNet-to-VNet connection

Single region

Multiple regions

Connecting the networks

The same resource group

Different resource groups

Creating and configuring subnets

Creating a VNet

Creating a subnet

Understanding subnet configuration

Securing critical Azure services with service endpoints

Creating a VNet and Azure Storage account

Creating a service endpoint

Configuring a service endpoint

Configuring a naming resolutions

Creating a DNS zone

Configuring the DNS within a VNet

Creating and configuring network security groups (NSGs)

Creating a VNet with a subnet

Adding an NSG to a subnet

Reviewing NSG rules

Adding an NSG rule

Summary

2. Section 2: Identity and Access Management

4. Identity Management

Technical requirements

Creating users in Azure AD

Getting started with user creation

Creating a user in an Azure Active Directory tenant

Creating a guest user

Describing the user creation process

Assigning a role to a user

Registering an application in Azure AD

Creating a new application

Creating groups

Group creation

Managing groups

Managing directory roles

Monitoring and auditing users

Enabling MFA authentication

Securing an Azure Service Fabric cluster

Summary

5. Access Management

Technical requirements

Creating a custom role

Configuring access to Azure resources

Configuring MSI

Securing Azure App Services

Using and revoking Shared Access Policies

Creating and managing Shared Access Policies

Generating SAS tokens for different services

Summary

6. Managing Virtual Machines

Technical requirements

Adding data disks

Creating a data disk

Adding network interfaces

Using Desired State Configuration

Scaling VMs up/out

Scaling caveats

Configuring monitoring

Configuring guest-level monitoring

Extending monitoring capabilities

Enabling connection monitor

Configuring high availability

Deploying VMs

Browsing the solutions

Deploying resources using various tools

Securing access to VMs

Connecting to a VM

Connecting to a VM

Using RDP and SSH to connect

Summary

3. Section 3: Advanced Topics

7. Advanced Networking

Technical requirements

Implementing load balancing

Monitoring and diagnosing networks

IP flow verify

Next hop

Effective security rules

VPN troubleshoot, Packet capture, and Connection troubleshoot

Configuring DDoS protection

Enabling VNets in AKS

Enabling VNets for ACI

Enabling VNets in Redis Cache

Summary

8. Implementing Storage and Backup

Technical requirements

Configuring network access for Azure Storage accounts

Enabling monitoring and finding logs for Azure Storage accounts

Managing the replication of Azure Storage accounts

Selecting the replication mode

Setting up Azure file shares

Transferring large datasets with low or no network bandwidth

Understanding your case – low or no bandwidth

Transferring data from on-premises to Azure

Transferring large datasets with medium or high network bandwidth

Understanding your case – medium or high bandwidth

The available options

Exploring periodic data transfer

Enabling security for Azure Storage

Summary

9. High Availability and Disaster Recovery Scenarios

Technical requirements

Monitoring Azure VMs

Creating a VM

Enabling monitoring

Understanding the details

Monitoring Azure Storage services

Monitoring Azure App Service

Exploring capabilities of Azure Application Insights

Implementing Azure SQL backup

Creating our SQL server and database

Backing up your databases

Implementing Azure Storage backup

Backing up your storage account data

Implementing Availability Zones for VMs and HA

Availability Sets versus Availability Zones

Implementing AZs

Understanding how AZs work

Monitoring and managing global routing for web traffic with Azure Front

Door

Understanding Azure Front Door

Creating an Azure Front Door instance

Designing backup plans for VMs

Summary

Further reading

10. Automating Administration in Azure

Technical requirements

Starting/stopping Azure VMs during off-hours

Getting started with a VM

Creating an Automation account

Monitoring Blob storage with Azure Event Grid

Extending your setup

Monitoring ACR with Azure Event Grid

Integrating ACR with Azure Event Grid

Integrating FTP/SFTP servers with Azure Logic Apps

Creating an Azure Logic App instance

Understanding the setup

Integrating Office 365 with Azure Logic Apps

Integrating Azure SQL Server with Azure Logic Apps

Getting started with Azure Logic Apps

Managing updates for VMs

Getting started with the Update Management feature

Enabling the feature for multiple machines

Tracking changes in VMs

Summary

Further reading

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
The momentum of cloud technologies is approaching its peak and it is hard to
overstate the value of moving your applications from on-premises to cloud
environments. As Microsoft Azure is one of the top three players on the
market, becoming familiar with this particular technology will definitely be a
plus for any IT specialist who is seeking a better understanding of how
modern applications are designed and managed. For IT administrators,
moving from their previous habits and environments is especially difficult as
the cloud offers a completely different level of complexity and a separate
administering model. Having a quick guide like this book will assist in
building new skills rapidly and allow you to compare current solutions with
the new approach.

Who this book is for
This book is intended for IT pros and IT administrators who want to get
started with Microsoft Azure as their cloud solution of choice. The reader is
expected to have some basic administration knowledge and an understanding
of basic concepts (including authentication, different levels of applications'
metrics, and virtual machines). Experience in working with command-line-
based tools and PowerShell will also be a plus.

What this book covers
Chapter 1, Getting Started with Azure Subscriptions, covers all the topics
related to basic subscription management skills and overall governance.

Chapter 2, Managing Azure Resources, constitutes something of a guide as
regards basic resource management in Azure, including resource groups,
locks, and moving resources.

Chapter 3, Configuring and Managing Virtual Networks, covers the most
important topics relating to virtual networks in Azure.

Chapter 4, Identity Management, includes topics related to user and application
management in terms of identity.

Chapter 5, Access Management, covers the defining of roles and assigning
identities to Azure resources.

Chapter 6, Managing Virtual Machines, introduces intermediary topics related
to virtual machines, including scaling, monitoring, and deployment.

Chapter 7, Advanced Networking, introduces more advanced topics pertaining
to networking, including various Azure services.

Chapter 8, Implementing Storage and Backup, provides information on various
Azure storage solutions and ways to back them up.

Chapter 9, High Availability and Disaster Recovery Scenarios, explains how to
ensure proper monitoring and availability of your services.

Chapter 10, Automating Administration in Azure, describes automation
solutions in Azure.

To get the most out of this book

To perform most of the exercises contained in this book, you will need to
install the Azure CLI, which is a free-to-use, open sourced project maintained
by Microsoft. You may also benefit from installing Azure PowerShell
(ideally PowerShell Core, which works on all operating systems).

The rest of the software listed here is optional and is not required in order to
benefit from this book:

Software/hardware covered in the book OS requirements

Azure CLI Windows / Linux / macOS

Azure PowerShell Windows / Linux / macOS

Microsoft Azure Storage Explorer Windows

ArmClient Windows

Code in Action

Code in Action videos for this book can be viewed at (http://bit.ly/2OQfDum).

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: http://www.packtpub.com/sites/defaul
t/files/downloads/9781838551452_ColorImages.pdf

http://bit.ly/2OQfDum
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Deploy a new Function App
called azureblueprint inside a resource group called blueprint-euw-rg."

Any command-line input or output is written as follows:

$ az network lb probe create -g "<rg-name>" --lb-name "<lb-name>" -n "myprobe" --protocol TCP --port 80

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "As you can see, you can configure additional
properties such as Session persistence or Floating IP."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com/su
pport/errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details.

https://www.packtpub.com/support/errata

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

Section 1: Understanding the Basics
Getting started with Azure and understanding the basics is not an easy task.
In the first part of this book, we will cover all the topics you need to know
about as an Azure apprentice, including the various subscription options,
resource management, and networking.

This section consists of the following chapters:

Chapter 1, Getting Started with Azure Subscriptions
Chapter 2, Managing Azure Resources
Chapter 3, Configuring and Managing Virtual Networks

Getting Started with Azure
Subscriptions

With the recent growth of cloud usage, more and more companies are
searching for skilled individuals who understand how the cloud works and
how it enhances a company's processes and products. One of the roles needed
is an Azure administrator (operator), who is responsible for configuring
various aspects of that cloud solution and keeping an eye on users, usage, and
configuration.

The first and the most important element when managing systems in Azure is
a subscription. You will not be able to get started with Azure without a
subscription as this is the main element of that cloud solution. In this chapter,
you will learn how to get an Azure subscription and configure it. We will also
cover typical management tasks such as managing cost, monitoring usage,
and defining quotas for services. For the more advanced topics, we will take a
look at Azure Blueprints and management automation using Azure Event
Grid. This chapter should give you a better understanding of how to get
started with Azure from an administrator's point of view and introduce you to
the most basic concepts of this cloud solution without diving into more
detailed topics (which are to be described later).

The following main topics will be covered in this chapter:

Getting an Azure subscription
Implementing subscription policies
Using Azure Blueprints for repeatable deploy and update operations
Checking usage and managing quotas
Cost monitoring and analysis
Implementing management automation

Technical requirements

To perform exercises from this chapter, you will need the following:

A working Azure subscription (you can create it in the Getting an Azure
subscription section)
Microsoft Azure Storage Explorer, which can be found at https://azure.mi
crosoft.com/en-us/features/storage-explorer/

Read about Azure Event Grid: https://docs.microsoft.com/en-us/azure/event-g
rid/overview

Read about Azure Logic Apps: https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-overview

OPTIONAL: A Microsoft account if you want to set up a subscription in
this chapter

Getting an Azure subscription
A subscription is a logical container for your resources and users, which you
have to manage while using the Microsoft Azure cloud solution.

Getting a subscription differs depending on the option you choose. By
default, you have two types of subscription available—open subscriptions,
where you pay for usage, and prepaid ones, which guarantee a certain level of
available resources and confidence when it comes to cloud costs.

In general, we have the following open subscriptions (usage-based):

Pay-As-You-Go (PAYG)
Cloud Solution Provider (CSP)

Then there's a subscription with an agreed minimum spend:

Enterprise Agreement (EA)

Depending on the subscription type, once you reach its spending limit (if
there is any), you may either end up with blocked resources or your
subscription may automatically convert to PAYG. To obtain most
subscriptions, all you need is access to a browser and possibly a credit card.

https://azure.microsoft.com/en-us/features/storage-explorer/
https://docs.microsoft.com/en-us/azure/event-grid/overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview

The process may differ for more advanced subscriptions (such as CSP or
EA), which will require coming to an agreement with a vendor. All of the
required steps will be described in this chapter in the following sections.

There is also one more difference regarding the three mentioned subscription
types when it comes to payments. In general, your choice may reflect a legal
requirement or your company's business model:

With PAYG, you are billed monthly for all of the resources you used
during the billing period (which is one month). Once the billing period
ends, an invoice is generated for you with a summary. This summary
may help you to understand the bill and analyze the cost. Note that an
invoice is usually not issued from the country you live in or where your
company is registered.
With EA, you are committed to spending on Azure a minimum value
that you agreed upon. If you spend less, there is no way to restore lost
credits.
With CSP, you will be able to contact a local reseller to be charged by
their company. It is a much easier way to pay for cloud resources from a
financial and legal point as you are working with a company that is co-
located with yours and they are responsible for charging you, not
Microsoft directly.

Getting started directly relies on the option you have selected as the processes
are quite different. The easiest option requires you only to provide a debit or
credit card number, and the most complicated will require you to come to an
agreement with Microsoft, so you have agreed on the monetary commitments
and your benefits.

PAYG

This is the most simple option, where the cost is simply calculated based on
your monthly usage of Azure resources. Such subscriptions can be canceled
anytime and the accepted payment type is s credit or debit card attached to
the subscription. The currency you will be billed in depends on the region
where you are currently located—for example, for Canada, it will be in

Canadian dollars while for the Netherlands, it will be in euros. The most
common currencies are indeed dollars and euros, but for some particular
countries (such as Norway, Brazil, or Mexico), local currencies are accepted.

Let's follow these steps to get a PAYG subscription:

1. Go to https://azure.microsoft.com/en-us/offers/pay-as-you-go/ and click on
the Purchase now button, as shown in the following screenshot:

Figure 1.1 - Purchase a PAYG subscription
If you are not currently signed in to Azure, you will be redirected to the login screen,
where you have to enter your Microsoft Account credentials. If you do not have an
account, you can create one from the login screen. It is not possible to get a subscription
without having a Microsoft Account.

2. Sign in if you are not signed in already.
3. Fill in the form to finish the process of obtaining a subscription:

Figure 1.2 - Subscription purchase form

4. Click on the Sign up button to start the process of creating a
subscription:

https://azure.microsoft.com/en-us/offers/pay-as-you-go/

Figure 1.3 - Finishing the subscription purchase

Once all of the data and your card are validated, you are ready to go—you
can sign in with your Microsoft Account at https://portal.azure.com, where you
will be able to start provisioning resources in your brand new Azure
subscription.

Now, let's look at how we can get a CSP subscription.

CSP

Another option to obtain a subscription is to collaborate with Microsoft's
partner, which offers Azure indirectly and supports you in the process of
obtaining access to the cloud, services, and deployments. All providers are
certified by Microsoft, so you can be sure that you are working with
competent specialists who will help you in case of technical issues and
questions. This is the best solution when you seek expertise and do not have
resources, which will take care of managing the more formal aspects of
having cloud solutions in connection with your business.

Let's follow these steps to get a CSP subscription:

1. Go to https://www.microsoft.com/en-us/solution-providers/home and enter your
city or address, as shown in the following screenshot:

https://portal.azure.com
https://www.microsoft.com/en-us/solution-providers/home

Figure 1.4 - CSP search form

1. Click the GO > button and you will see multiple search results
categorized depending on criteria such as distance and responsiveness.

2. Click on the selected provider to get a better picture of what is offered
and on what terms.

3. Click on the SELECT PROVIDER + button to add it to the contact
form:

Figure 1.5 - Choosing a provider

4. Click on the Contact selected providers button to get a form that will
allow you to enter everything a provider needs to know before starting
cooperation:

Figure 1.6 - Contacting a selected provider

5. Wait for an answer from the provider.

Next, let's take a look at EAs.

Enterprise Agreement

This is a special type of subscription intended for big players. In general,
when your monthly bill is more than only a few hundred dollars,
a PAYG subscription does not offer anything more than simplicity. When

this is the case, you can get an Azure subscription by signing an Enterprise
Agreement. The way this particular option works is that you have to make an
upfront monetary commitment. The specific use case of an EA is the
possibility to create multiple subscriptions on your own—
something PAYG does not offer. The benefits of this offering are really rich
—you will be able to find more details in the Further reading section of this
chapter.

The process of getting an EA is much more complicated than the other ones
—you need to contact Microsoft directly to come to an understanding of
aspects of the agreement such as monetary commitment, your company's
requirements, and enrollments. The basic process is as follows:

1. Prepare your company's requirements regarding infrastructure and
services needed.

2. Simulate the monetary commitment and how you can leverage the
assigned resources.

3. Contact Microsoft to negotiate terms and sign the agreement.

Next, let's get a deeper understanding of the subscription models.

Understanding different subscription models

In general, depending on the option selected, the outcome will be a little bit
different:

If your choice was PAYG, a subscription is created immediately after
your credit/debit card is validated. You can start work with it without
any limits. By performing the steps from the PAYG section, you have
connected your credit/debit card with an Azure subscription. This means
that any resource that you provide from now will result in your card
being charged the appropriate cost. On the other hand, your subscription
has no spending limit by default—take that into account when deploying
complex infrastructures containing multiple virtual machines and
databases.
If you have selected an EA, you will have to contact Microsoft and

agree on specific agreement requirements and assumptions. Once you
both agree on the common terms, a subscription will be created and you
will able to manage it and extra subscriptions under it.
If you decided to cooperate with a CSP, you will have to wait for an
answer and then come to an agreement on payments, technical support,
and your requirements. Once it is established, your CSP is your first line
of support and direct contact when considering Azure. The most
important thing is to select a proper provider by carefully reading their
offer, which is described in step 3 of the CSP section.

For a PAYG subscription, three sections need to be filled:

Payment Information: As mentioned earlier, you need a credit or debit
card to obtain a PAYG subscription. You will have to fill in information
here such as the card number, the name on the card, and your address.
Add technical support: Optionally, you can select a support service for
your subscription. While this may be obsolete for a Dev/Test
subscription, I strongly advise you to buy a support plan for your
production subscriptions. There are three different options
available: Getting started, Production, and Business-critical. They all are
different in many aspects (such as support availability or response time)
and, of course, give you a different level of confidence.

Note that if you are covered by Microsoft Premier support, you do not have to buy a
support plan here as your subscription will be covered by it.

Agreement: This includes your agreements to subscription, offer details,
and privacy statement.

Remember that an empty subscription is free of charge. As long as you do not have
resources provisioned (or you have provisioned only free ones), your card will not be
charged.

An Enterprise Agreement is quite different as you have three different kinds
of enrollments:

Enterprise Enrollment: This is designed for purchasing end user
technologies on a per-user, per-device, or hybrid basis.

Server and Cloud Enrollment: You can receive better pricing and
cloud-optimized licensing options by committing to one or more cloud
technologies from Microsoft.

Subscription Enrollment: This allows you to subscribe to Microsoft
product licenses.

As we are talking about Azure administration, the most interesting option for
you will be Server and Cloud Enrollment (SCE). There are four
different SCE components:

Core Infrastructure: It includes products such as Windows Server and
the requirement of Core Infrastructure Suite (CIS) coverage for all of
them.

Application Platform: It offers SQL Server with the requirement
of Full Software Assurance coverage.

Developer Platform: It contains Visual Studio Enterprise and MSDN
platforms with the requirement of Full Software Assurance coverage.

Microsoft Azure: This includes all Microsoft Azure services.

Depending on the selected option, you will have different requirements to
fulfill—this is why EA is designed for bigger companies that nonetheless
require hundreds of licenses and manage hundreds of subscriptions.

It is impossible to cover all EA aspects in such a short section. If you are searching for
the most flexible and advanced Azure offer for your company, take a look at the links
available in the Further reading section to get the full picture.

Once you have your subscription, you can start managing it—setting up
policies for resources, monitoring expenses, and managing access. This
chapter will show you multiple ideas regarding administering subscriptions
and what falls under them, so you can focus on getting the most from your
subscription instead of fighting with unclear documentation and settings.

Besides the business subscriptions presented in this chapter, you may have

access to slightly different subscription types:

Visual Studio subscriptions: If you are a .NET platform developer, you
may already have access to Azure by leveraging your free grant offered
as a part of the Visual Studio subscription. Depending on the level, you
may have from 50 USD to 150 USD per month to spend on Azure
services.
Microsoft sponsorship subscriptions: Some subscriptions are
sponsored by Microsoft itself. This includes agreements on delivering
proofs-of-concept of technologies, academic use, or specific individuals
such as MVPs, who use those for training and various projects.

When you have your subscription ready, you can proceed to the next sections
of this chapter. The next one will describe in detail how you can implement
various policies, which can help to manage your account on a subscription
level.

Implementing subscription policies
A subscription allows you to manage and control the cost of your Azure
resources. Besides the financial aspect, it is also the main control
point, where you can store policies that determine what resources can be
provisioned and which features can be used. Managing such elements would
be cumbersome without proper support in Azure. Fortunately, there are many
built-in definitions that will help you to control things such as resource
locations or proper security configuration.

You do not have to go to the portal to get information regarding compliant/non-compliant
resources—there is a detailed guide, which describes other methods (PowerShell and
RESTful APIs) and that can be exceptionally helpful when automating governance over
resources. To read it, check out https://docs.microsoft.com/en-us/azure/governance/policy/how-to/get-comp
liance-data.

Getting started with Azure Policy

To get started, we will have to actually create a policy. The process of

https://docs.microsoft.com/en-us/azure/governance/policy/how-to/get-compliance-data

assigning a policy is quite simple and can be covered by the following steps:

1. Search for the Subscriptions blade—the easiest way to do so is to use the
search field at the top of the Azure portal, as shown in the following
screenshot:

Figure 1.7 - Searching for the Subscriptions blade

2. Select the subscription you are interested in. The last thing you need to
do is to click on the Policies blade:

FIgure 1.8 - The Policies blade

3. Click on the Assign policy button, which will display a form where you
can define how the policy should work:

Figure 1.9 - The Assign policy button

4. Assign a policy and configure the appropriate fields as follow: set the
Scope of your subscription (in my case, it is Pay-As-You-Go) and leave
the exclusions empty and the policy definition as Not allowed resource
types. Remember that you can select either a built-in or a custom
policy (if you have one).

5. Initially, the compliance state may be displayed as Not registered as in
the following screenshot. Wait a few minutes before proceeding:

Figure 1.10 - Created policies view

6. If this status is diplayed longer than a few minutes, make sure a proper
resource provider for the policies is registered. To do so, go to the
Resource providers blade and check the status of the provider:

Figure 1.11 - Subscription resource providers

7. Once the status is displayed as Registered, you can test the results. Try
to perform a forbidden action (such as creating a forbidden resource
type). If you do so, you will see a result similar to the following:

Figure 1.12 - Validation error

When a policy is enabled and working, it constantly monitors your resources
against configured parameters. Depending on its configuration, it may either
block deploying particular services or enforce a specific naming
convention. An audit policy can report on non-compliant resources and, with
enforcement mode enabled, can deny the creation of resources that don't

comply with the policy.

Let's now check what a policy validation result may look like.

Policy validation results

Each policy constantly monitors your resources and validates them against
defined rules. When there is a validation error generated by a policy, you can
click on it to reveal the details, which confirm that the action was blocked by
the policy (see Figure 1.13):

Figure 1.13 - Policy validation error details

The results of the working policy may differ depending on its type. However,
they mostly focus on enforcing or forbidding an action, which will result in
an error displayed in either a portal or a command line. When you want to
assign a policy, you must configure it using various available options. Here,
you can find the description of the fields displayed:

Scope: This field defines what resources the policy is assigned to. There
is a possibility to select either a subscription or a resource group.
Exclusions: If you find the scope a little bit too generic, you can add
excluded resources that will not be covered by a policy.
Policy definition: There are two types of supported policies—built-in
and custom. Unfortunately, custom policies are out of the scope of this
book (but if you find this topic interesting, you can find a link in
the Further reading section to read more about it). A policy is a
definition that includes a rule and an effect and is triggered when a rule
is not satisfied.
Assignment name: It is the display name of an assigned policy.
Description and Assigned by: These are optional fields that gather extra
information about a policy.

Let's look at some examples of Azure policies that are available.

Examples of Azure policies

To give you a better understanding of the topic, we can take a look at various
examples of policies you may use. There are many different kinds of
available policies—let's try to describe the most interesting ones:

Audit CORS resource access restrictions for a function app: When
using Azure Functions, you may want to force developers to assign
proper Cross-Origin Resource Sharing (CORS) configuration to
function apps, so they are not accessible from all domains. A very
simple and helpful policy that addresses a common security issue when
hosting web applications.
Audit resource location matches resource group location: To avoid
confusion, you can ensure that resource groups and their resources are
always provisioned in the same location.
Audit unrestricted network access to storage accounts: If your
storage accounts should not be available from the internet, you can
enforce their owners to configure network rules so they are
only accessible from configured networks.
Not allowed resource types: Sometimes, your organization just cannot
deploy some of the resources (for example, you need to audit the whole

code base, so you cannot use Azure Functions). This policy is something
you want when forbidding the use of a particular resource is essential.

When you assign any of the policies, it will immediately start to watch for
your resources and check whether they are compliant with that policy.

Some of the policies require you to set some parameters before they can be added.
Carefully check the Parameters section to configure them exactly as you want.

Of course, the error displayed previously (see Figure 1.13) is in fact returned
by an API powering Azure resources. That means that it will be returned also
for other operations (such as using the command line or PowerShell).

The policy I described previously was executed during the creation of a
resource, but of course, it also works for the resources created previously.
Subscription policies are really powerful tools for an Azure administrator,
allowing for setting strong fundamentals for further management activities
such as automation and building an organization-wide mindset of what is
allowed and what is not. The more resources your subscription has, the more
difficult it is to manage and keep everything up to the defined rules. This is
especially true for all companies for which compliance is crucial to work
effectively—if you have thousands of VMs, app services, and storage
accounts, you just cannot rely only on telling everyone that this one particular
feature isn't allowed. For those scenarios, use properly set up policies, which
can cover many different scenarios, especially if you create a custom one.

Check out the next section to learn more about ensuring proper policies are
assigned to Azure resources using Azure Blueprints.

Using Azure Blueprints for
repeatable deploy and update
operations
Sometimes, using policies is just not enough. Reasons may vary—the number

of projects is too big to govern via policies, they become obstacles because
you cannot enforce a particular rule, or you find complex designs with them
to be just too complicated. For all of those scenarios, Microsoft has prepared
an additional tool for Azure administrators called Azure Blueprints. They
are like sketches for buildings—you can set collect all required artifacts in
one place and use it for multiple deployments. With this feature, you can
orchestrate multiple deployments and shorten the time needed to achieve a
coherent architecture. If you are familiar with ARM templates, you may find
Azure Blueprints much easier to understand as they offer similar
functionalities to Resource Manager. On the other hand, it is a great tool for
preserving a connection between a blueprint and a deployment or manage
multiple subscriptions at once.

Note that, at the time of writing this chapter, Blueprints were marked as in Preview. That
means that this feature has not reached General Availability (GA) and is not offered full
support when used in production.

Getting started with Blueprint assignment

Blueprint definition assignment is similar to a policy assignment and is
covered by the following steps:

1. Use the search box at the top of the portal and search for Blueprints:

Figure 1.14 - Searching for the Blueprints blade

2. Then, you will see a welcome screen, where you can get started with the
service:

Figure 1.15 - The Blueprints blade

3. Click on the Create button under the Create a blueprint section.
4. You will see a new screen where you can see various samples. For now,

click on the Start with blank blueprint button:

Figure 1.16 - Starting with a blank blueprint

5. Provide values for the blueprint name, description, and definition
location.

6. Add artifacts (roles that will be assigned to resources and resources that
will be deployed—in general, side effects of a blueprint assignment) by
going to the artifacts tab.

7. Save the blueprint definition.
8. Click on Publish blueprint, so it will become available for assignment.
9. To assign a blueprint, you have to click on the Assign blueprint menu

item:

Figure 1.17 - Assigning a blueprint

10. Decide whether Lock Assignment should be enabled or not
11. Provide all of the mandatory parameters, such as the name of a resource

group a blueprint will be assigned to or the configuration of a resource
(if you did not provide them when defining the blueprint).

When creating a blueprint definition, you will see a form where you can
define your blueprint. The very first thing needed is to provide the following:

Blueprint name: This field is required to give a blueprint a unique name
that will help you to understand what it is about.
Blueprint description: If you need to add extra information, you can type
it here.
Definition location: This is a place for storing your blueprint.

The form described previously can be seen in the following screenshot:

Figure 1.18 - The Create blueprint form
Under the hood, Azure Blueprints is stored with Azure Cosmos DB for resiliency, low
latency, and geo-replication. This gives you the best performance, no matter where your
resources are being deployed.

Once you are satisfied with the definition, you can save it. Initially,
blueprint's status will be displayed as Draft—as long as it is not published,

you can easily modify and adjust it to your needs. To assign it, you will have
to click on Publish blueprint so it will become available for assignment:

Figure 1.19 - Publishing a blueprint
Note that publishing a blueprint requires providing a version—this is to allow the
versioning of definitions so you can introduce breaking changes without breaking existing
setups.

Now, we will learn how to assign an Azure blueprint.

Assigning an Azure blueprint

When making an assignment, you will see a screen where you will have to
provide the following:

Subscription(s): This means which subscriptions this particular
blueprint should be assigned to.
Assignment name: As the same blueprint can be assigned to multiple
subscriptions, you have to give the assignment a unique name to avoid
confusion.
Location: When deploying resources, a blueprint requires a Managed
Identity to authenticate the operation. This field allows you to set the
location where credentials will be stored.

Blueprint definition version: If your blueprint has more than only one
version, here, you can select the one you are interested in.

Besides the preceding settings, you will have to also decide whether Lock
Assignment should be enabled or not. Locking artifacts created via Azure
Blueprints makes much sense when you consider that they are governed by
an administrator, not the resource owner. To make a long story short, the
scenarios are as follows:

When a lock is assigned, even a subscription owner cannot
change/delete a resource. This ensures that it works exactly as assumed
and planned.
The lock cannot be removed without removing a blueprint assignment.

An example setup for a blueprint assignment could look like this:

Figure 1.20 - Assign blueprint form

As Azure Blueprints is quite a new service, it is constantly enhanced to
provide functionality expected in the market. It is a great tool for ensuring a
certain level of compliance and will be used mostly in heavily regulated
environments. When adding artifacts to a blueprint definition, you have four

different artifacts available:

Policy assignment
Role assignment
Azure Resource Manager template
Resource group

By using each artifact, you can create a complex definition that will ease the
process of deployment and setting up resources. Let's think about the
following scenario—I would like to make sure that both Azure App Services
and Azure Functions are deployed with HTTPS Only enabled. Additionally, I
want to assign a specific user with a specific role to each deployment. Last
but not least, I want to deploy a resource group with an ARM template,
which creates a storage account. My current setup looks like this:

Figure 1.21 - Blueprint artifact parameters

Note the following:

You do not have to enter all parameters during the process of creating a
blueprint—they can be evaluated while creating a deployment.
When using the resource group artifact type, each deployment covered
by a blueprint will create additional resources defined by it. Using it
makes the most sense when attaching an ARM template with extra
resources (such as a custom monitoring solution, shared storage, or other
similar elements).

To test an assigned blueprint, you can do the following:

1. Deploy a new function app called azureblueprint inside a resource group
called blueprint-euw-rg. You should see a similar result to mine, shown in
the following screenshot:

Figure 1.22 - The result of running a blueprint with an additional resource group created

2. Besides the declared resource group, Azure Blueprint created an
additional group called azureadministration-euw-rg (the name is the result of
the passed parameter to a definition, which creates a resource group).
This extra resource group contains a storage account with a generated
unique name, which I can use for any purpose:

Figure 1.23 - The storage account automatically created by a blueprint

3. Let's check other resource assignments. One of the rules of my blueprint
was to assign a user with a particular role (check the role assignment
artifact in Figure 1.24). A quick look at the IAM blade gives the
expected result:

Figure 1.24 - Role assignment automatically created by a blueprint

4. The last thing to check is that the extra two policies were created. To do
so, I go to the Policies blade in my subscription:

Figure 1.25 - Policies blade

From that, you can clearly see that I have additional policies added to the
previous ones (Audit HTTPS only access for a Function / Web App):

Figure 1.26 - Azure policies with compliance status

Policies allow for a certain level of inertia—even if somebody managed to
create a resource, which was forbidden, very often you do not have to act
immediately. The preceding screen (Figure 1.26), however, gives you the
possibility to quickly check whether the compliance level is not below the
assumed level.

With the preceding information, you should be able to enhance your current
administration tasks and be able to automate many activities such as user
assignments or mandatory resources provisioning. When working with Azure
Blueprints, remember the following rules:

Name the assignments uniquely to avoid collisions.
Use the versioning feature of Azure Blueprints to introduce breaking
changes without breaking current assignments.

Use Lock Assignments to ensure that no one can mess with artifacts
deployed by a blueprint. The only thing to remember is the feature
inertia—Resource Manager may need up to 30 minutes to finish
propagating locks for the artifacts.

Azure Blueprints is one of the best tools when it comes to managing
subscriptions and resources at an enterprise level. The next topic we will
cover will guide you through the process of usage and quotas management.

Checking usage and managing
quotas
When working as an Azure administrator, it is crucial to effectively manage
current usage for your subscription and assigned quotas for different
resources. As you are probably aware, Azure offers various limits for most of
the available services, with some of them being a soft limit that can be
extended after contacting support.

When getting your very first subscription, you may realize that soft limits are
much lower than you would expect. This is especially true for all non-
commercial/test subscriptions, which are meant for educational purposes or
creating a proof-of-concept solution. In fact, Microsoft aims at helping their
customers to not hurt themselves, so some default quotas are lowered to limit
spending capabilities.

Each Azure service offers different limits depending on the resource type and
region availability. While, in most scenarios, it will not be the case, if you are
about to deploy a complex system containing, for example, hundreds of
virtual machines, you may be affected by a quota that will prevent you from
completing a deployment. When in doubt, always check https://docs.microsoft.
com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits—
it contains limits for all Azure services and storage.

Remember that quotas are assigned to each region separately—if you change the soft
limit in one region, you will not get an increase in other ones!

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits

As you can see, the maximum request rate is set to 20,000 requests per
second. However, if you read the documentation closely, you will figure out
that this particular limit can be extended after contacting Azure support.
Other examples of soft limits are as follows:

Throughput units in Azure Event Hub
IoT Hub units
IoT Hubs in a subscription
Container operations for Azure Container Instances
Load balancer limits

The question is—how can you check the current usage and limits for your
subscription? To check usage and manage a subscription quota, you will need
to perform the following steps:

1. Go to the subscription you are interested in.
2. Click on the Usage + quotas blade. To do so, you can search

for Subscriptions in the search box at the top of the Azure portal:

Figure 1.27 - Searching for the Subscriptions blade

3. Search for the blade in the Settings section:

Figure 1.28 - The Usage + quotas blade

You will see a list of the current usage depending on the provider and
location.

If you do not see any usage information, make sure you have selected all providers and
locations available.

4. Click on the Request Increase button on the upper right of the screen.
This is the quickest way to request an increase for a specific quota.

You will be redirected to the support ticket, where you can provide all
of the necessary details:

Figure 1.29 - Creating a new quota increase ticket

Once you send a ticket, you will have to wait for the support to review it and
decide whether it is possible to fulfill your requirements. Here, you can find
the usage data available for my subscription:

Figure 1.30 - Current quotas status

Let's assume that you are approaching the maximum number of 250 accounts

—this could be the moment to send a request ticket to the support. After
sending a ticket requesting changing the assigned limits, Azure support will
review what is required and what your particular use case is. In fact, whether
additional resources will be assigned to your subscription may rely on the
business use case you provided—if you are buying many services from
Microsoft, it is more likely that your request will be accepted. Depending on
the type of your subscription (PAYG, CSP, or EA) it may or may not be easy
—the easiest way to getting your limits changed is becoming a close partner
to Microsoft with common goals. This, of course, does not mean that if you
are not a Fortune 500 company, your request will be rejected—as mentioned
earlier, it all depends on the use case.

Remember to actively monitor your subscription against quotas, especially if
you are building a complex system with multiple resources. In some cases,
you may find it especially helpful to divide your projects into multiple
subscriptions—in such a setup, each project will have its own limits. This
will be the easiest to achieve with EA, but of course, it is also possible for
PAYG subscriptions (although it is much more complicated when it comes to
managing things). Also, when having several systems under your command,
make sure you are familiar with Azure resource limits, which you can find in
the Further reading section—it will help you to govern them and plan further
actions.

With proper cost and usage management, you can be certain your spending is
under control. To dive into this topic further, take a look at the next section,
which will describe how to monitor and analyze them.

Cost monitoring and analysis
If you are an Azure administrator, you are probably responsible for
monitoring and managing the cost of all services hosted in the cloud. There
are many factors related to this particular case—the types of used resources,
the scale of your projects, or different discounts that you may apply,
depending on the contract you have with Microsoft. Azure offers different
options to make your life easier—starting from easy-to-read dashboards to

cost alerts, which help you to monitor the current usage. In this section, you
will learn how to use those tools and understand their outcome.

Before you really get started with hosted services, you can estimate the cost
of the architecture using the following calculators:

Pricing calculator: An Azure cost calculator, which can be found at http
s://azure.microsoft.com/en-us/pricing/calculator/, it is a tool that you can use
to estimate how much each Azure service will cost. Of course, these
calculations are only estimates as it is really hard to plan everything
upfront. Nonetheless, treat it as the first step in planning funds for your
architecture.
Total Cost of Ownership (TCO) calculator: This is another Azure
calculator, which is available at https://azure.microsoft.com/en-us/pricing/tco
/calculator/. Using the cloud is not only about using cloud services, but
also about changing the responsibilities and moving expenses from one
place to another. This calculator helps you to understand the total cost of
your architecture including managing server infrastructure, updates,
licenses, and many more.

The preceding tools are great to understand the expected cost of the whole
cloud architecture that we are about to manage. However, they require that
you know how each service is configured and what features will be enabled.
Doing this upfront may be tricky, so they are not always an ideal solution for
managing the cost. This is why we will have to take a look at the real usage
and calculated cost to be able to control it.

To work with cost analysis, you will need a working Azure subscription. The important
thing here is also correct permission assigned to your account—you have to be able to
read subscription cost data (by being, for example, the owner of a subscription).

Cost management is enabled by default on all subscriptions—all you need
here is to access the correct section in the Azure portal:

1. To access the cost management option, search for it in the search field at
the top of the portal:

https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/tco/calculator/

Figure 1.31 - Searching for the Cost Management blade

From this point, you can access different blades such as Cost analysis,
Budgets, and Cloudyn. When you enter the subscription screen, you should
be able to see a screen similar to mine:

Figure 1.32 - Current cost charts

Let's focus quickly on the information displayed here. We have two
categories, which inform us about the current cost of the subscription:

Cost by resource: This chart displays the total cost of the subscription
divided by the resources. As you can see, in my case, almost 90% of the
cost is generated by a resource named kamzcosmos (which is probably an
Azure Cosmos DB instance).
Spending rate and forecast: This is an interesting chart that gives you an
insight into the forecast of your spending. It also allows you to see how
dynamically the cost changes.

The Spending rate and forecast chart may look a little bit different depending on the type
of your subscription. In the preceding example, I presented a subscription that has a fixed
limit of 130 EUR allowed for each month. When using, for example, a PAYG
subscription, starting credit will not be displayed.

When you go to the Cost Management, you will see a new blade where
multiple features are available:

Figure 1.33 - The Cost analysis blade

The available options will be briefly described in the following.

Cost analysis

To get a better overview of how much each resource costs (or a resource
group or a location), you can use Cost analysis to get a personalized view of

different spending categories. Besides the main chart representing the
accumulated view, you will have access to three additional charts, which you
can alter to get a different categorization of resources:

Figure 1.34 - Cost analysis per service name, location, and resource group name

There are many interesting categories that you can use to understand the cost
—you can divide services using tags, their tiers, invoice number, or even
their GUIDs. If you have many resources, this becomes especially helpful as
it allows you to use advanced filtering and better distinction.

Budgets

Microsoft Azure allows you to create budgets, which you can use to control
the cost of the cloud services. To use this feature, you have to go to
the Budgets blade and click on the + Add button. Doing so will display a
form that you can use to set a budget with an alert, which will trigger if the
current cost of your subscription exceeds the threshold:

Figure 1.35 - Creating a budget

In the preceding example (Figure 1.35), I have created a budget of 90 USD
with an alert that will trigger if I spent at least 90 USD.

Note that the Amount field of the budget relates to the currency set for the subscription.

There is an additional feature of budgets that, from your perspective, should
be very interesting. As you have probably noticed, you can divide your

budget into many categories, each triggering another kind of action group.
Action groups can be managed by clicking on the Manage action
groups button:

Figure 1.36 - Setting the alert of a budget

They allow you to enhance your budget with an additional level of
automation using services such as Azure Functions, Azure Logic Apps, or
Azure Automation to take a specific action in addition to sending an alert.
Here, you can find an example with a runbook, which will stop all virtual
machines in a resource group:

Figure 1.37 - Creating an action for a budget

Once a budget is created, you can see it in the main window of the feature:

Figure 1.38 - Budget status

Here, you can find an example mail triggered by defined alert rules. Note that
it contains all of the necessary details you need to understand what is
happening—when the budget started, what is its maximal value, and the
current state:

Figure 1.39 - Budget alert email result

Such an email can be really valuable, especially when limiting expenses is
crucial for a business to run smoothly. The important thing here is that you
should not rely on a single channel of communication only—the email
message could get lost or your mailbox might have gone down—if the budget
alert is really important, always implement a backup plan for it.

Azure Advisor

In most cases, the Azure portal features should fit most of your needs. One
more thing worth mentioning is Azure Advisor, which you can find in
the Cost Management blade:

Figure 1.40 - Advisor recommendations blade

By clicking on it, you may find helpful tips related to the cost optimization
for your subscription. If you have many different resources, it may be worth
checking once in a while whether you have missed some occasions for saving
extra money by tweaking provisioned resources.

When you set alerts via budgets in the cost management of your subscription,
you will get an email each time you reach the threshold. As in most cases,
you will not be the only administrator; a group of people will be notified to
take a look and check which resources are utilizing the budget the most. You
will find this feature really helpful, especially if you have a strict requirement
when it comes to cloud cost. By adding action groups, you can plan
automated saving based on the rules you define. We can think of an example
here:

When you reach 75%, you send an email to all administrators.
When you reach 85%, you can run a script that will scale down
Dev/Test environments.
When you reach 90%, you send an SMS to all administrators, send an
email to all engineers, and shut down Dev/Test environments.

With such flexibility, you can think of several scenarios that will be
appropriate to your current workloads and the characteristics of your systems.

You just learned about budgets and how to configure them to monitor your
resources. Let's now continue with other automation solutions that may help
you to keep an eye on the Azure services and applications you manage.

Implementing management
automation
Using all of the preceding knowledge should help you to better manage your
subscriptions, their cost, and the policies assigned to them. There is one more
thing that comes to mind when thinking about such complex tasks—
automation. Fortunately, Azure offers full integration with its services, so you
can build your own pipelines for handling additional tasks and monitoring
actions.

Understanding the basics of the mentioned services is crucial to be able to get
started with this topic. Once you are familiar with them, go to the
subscription you want to automate.

To finish the integration, we need a service that will take the JSON string and
push it further or trigger an action. For this example, I selected Azure Logic
Apps, which seems like a better match for an administrator than Azure Event
Hub and can help you to build a complex solution quickly.

We will not cover the process of creating an Azure Logic App in this book—if you need
guidance, check https://docs.microsoft.com/en-us/azure/logic-apps/quickstart-create-first-logic-app-workflo
w in the documentation.

Now we are ready to integrate the subscription with the service. To perform
this exercise, you will need the following:

A working Azure subscription
Azure Logic Apps instance, which you can integrate with Azure Event

https://docs.microsoft.com/en-us/azure/logic-apps/quickstart-create-first-logic-app-workflow

Grid

Implementing automation will require deploying Azure Event Grid and
connecting the gathered data with Azure Logic Apps. All of the steps are
described here:

1. Use the search box at the top of the Azure portal and type your
subscription name (or just use it to go to the Subscriptions blade):

Figure 1.41 - Searching for the Subscriptions blade

2. Click on the Events blade, which is the starting point to create an Azure
Event Grid subscription:

Figure 1.42 - Events blade

3. Click on the + Event subscription button. You will see a new screen
where you can enter details of a new subscription as shown in the
following screenshot (Figure 1.43):

Figure 1.43 - Creating an event subscription

4. When you click on the Create button, the process of creating a
subscription will start. After a moment, you should be able to see a
screen similar to mine:

Figure 1.44 - Current event subscription

5. Go to your Azure Logic Apps instance and click on the Logic app
designer blade:

Figure 1.45 - Logic app designer blade

6. Search for Azure Queues, which is also available as a part of the
recommended services:

Figure 1.46 - Recommended connectors with Azure Queues visible in the bottom-right corner

7. Click on the Azure Queues connector.
8. Provide a name for the connection and select the storage account where

messages are stored.
9. Set the queue name and the check frequency.

10. Save the application.

Before a subscription is created, you have to provide additional details:

Name: This is a unique name for your subscription that will help you to
distinguish it from the others.
Event Schema: You have three different schemas available here. As
this section is not about digging deeper into Azure Event Grid, you
should select the Event Grid Schema option. Other ones (Cloud
Event/Custom) would also be correct here as the choice changes the
schema without affecting the payload.
Subscribe to all event types: By deselecting this checkbox, you will have
the opportunity to explicitly select event types you are interested in. In
general, it is a good idea to subscribe to all nine events, but maybe your
particular case will have different requirements so feel free to choose
anything you want.
Endpoint details: You have four different options available
here: WebHook, Storage Queue, Event Hubs, and Hybrid Connections.
For the purpose of this exercise, I selected Storage Queue, but again,
you can create a connection using any connector you like. The
WebHooks and Storage Queues options are the most straightforward
ones and suit the most needs in most of the integrations made with
Azure Logic Apps.

Note that you will have to create a new instance of a queue or Azure Event Hub if you do
not have one when creating a connection.

At this moment, there is no event sent to the queue or generated by a
subscription. To test the functionality, let's create a new resource, which
should generate an event. For this exercise, I added an additional storage
account named azureadministratortest.

Monitoring events via the Azure portal may be cumbersome as the chart is refreshed only
once in a while. For a better understanding of what is going on, use the connector you
defined during a subscription creation.

As I used a storage account as my endpoint, I can check the queue whether

there are any events related to the resources in my subscription. To do so, I
used Microsoft Azure Storage Explorer (https://azure.microsoft.com/en-us/feature
s/storage-explorer/), which is a free tool you can download and install on any
operating system:

Figure 1.47 - Generated events stored within Azure Storage Queue

As you can see, I already have plenty of different messages generated by
resources. Some of them are related to security events and some of them tell
me details about services provisioned. One of the events is specifically
related to my new storage account:

{

 "subject": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Storage/storageAccounts/azureadministratortest",

 "eventType": "Microsoft.Resources.ResourceActionSuccess",

 "eventTime": "2019-02-09T17:36:55.8588074Z",

 "id": "c1950090-61e0-4627-9b77-776890ffb710",

 "data": {

 "correlationId": "c1950090-61e0-4627-9b77-776890ffb710",

https://azure.microsoft.com/en-us/features/storage-explorer/

 "httpRequest": {

 "resourceProvider": "Microsoft.Storage",

 "resourceUri": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Storage/storageAccounts/azureadministratortest",

 "operationName": "Microsoft.Storage/storageAccounts/listKeys/action",

 "status": "Succeeded",

 },

 "dataVersion": "2",

 "metadataVersion": "1",

 "topic": "/subscriptions/..."

}

As you can see, such an event contains a massive amount of detail, such as
the following:

data, an object containing the event payload (all information related to an
event)
eventType, which may help you to decide how to react to such an event
subject, a resource to which an event is related to

You, as an Azure administrator, can use this for multiple purposes:

Building a custom monitoring solution
Auditing changes made to resources
Creating your own alerts based on the provided payloads

For now, we only have a complex JSON, which gives us some information—
the question is how to use it in a real scenario.

We need to connect to a Storage Account—with Azure Logic Apps, it is
easy; you have to either search for the service you are interested in or just use
the most popular ones. In my case, I found Azure Queues, which happened to
be available without searching for it:

Figure 1.48 - Recommended connectors with Azure Queues visible in the bottom-right corner

When you click on the connector, you will see options available for it—for
our case, we have two scenarios:

When a specific number of messages are in a given queue
When there are messages in a queue

I want to start my app anytime there is a message, so I use the latter. You will
have to provide a name for the connection and select the storage account
where messages are stored. Here, you can find my configuration:

Figure 1.49 - Available storage accounts
If you do not see your storage account, use the Manually enter connection
information option for the advanced configuration. You can also take a look at an in-
depth article describing Azure Storage connector configuration, the link to which can be
found in the Further reading section.

The last thing needed here will be the queue name and the check frequency.
Once you are done, you can save your application. Congratulations—now
events from a subscription can be read by your Logic App! Here, you can
find the result of running it—as you can see, the event payload is available
for further integrations by using the MessageText property of the JSON string:

Figure 1.50 - Azure Logic App run debugging

The debug view for Azure Logic Apps is really helpful when you are in a
need of investigating an issue with your application. In this particular
example, you can also see what are the available fields, which you can take
control of. As there is no way to attach a debugger to Azure Logic Apps, use
it frequently when developing your apps, so you can be sure that everything
works exactly as you designed.

Now, your possibilities are almost limitless—any message generated by the
resources in your subscription will be sent to a queue, which is read by Azure
Logic Apps. As this service offers over 200 different connectors that can be
used in your application, you can do whatever you want with the data
aggregated—starting from parsing the JSON string to advanced integrations
with Office 365, Azure Functions, or even SAP or IBM MQ. The most
important thing is to leverage Azure capabilities in terms of flexibility and
automation—as an administrator, you will be able to quickly develop a tool
that you can use for better control over resources and subscriptions.

Summary
This chapter should help you to understand the basic concepts of Azure
administration regarding subscriptions and resources. We covered the most
important topics such as getting a subscription and implementing the very
first policies and learned about cost monitoring and usage analysis. While
they seem to be simple, a good understanding of these is crucial for getting
better with Azure cloud solutions. Things such as policies or blueprints are
also one of the most common tasks of Azure administrators and operators—
they are required to keep things consistent and compliant with your company
rule set. You should now be able to control your spending limits, ensure
various security rules are enforced, and analyze cloud services cost.

The next chapters will cover more detailed topics such as virtual machines,
networking, or storage so you can learn different concepts related to
managing cloud services.

Further reading
The following are about getting an Azure subscription:

PAYG subscription overview: https://azure.microsoft.com/en-us/offers/ms-az
r-0003p/

Enterprise Agreement benefits and overview: https://www.microsoft.com/en-u
s/licensing/licensing-programs/enterprise?activetab=enterprise-tab:primaryr2

CSP search: https://www.microsoft.com/en-us/solution-providers/home

For details on implementing subscription policies, see the following:

Creating a custom policy: https://docs.microsoft.com/en-us/azure/governance/p
olicy/tutorials/create-and-manage

The following is about using Azure Blueprints for repeatable deploy and
update operations:

Understanding Azure Blueprint resource locks: https://docs.microsoft.com/e
n-us/azure/governance/blueprints/concepts/resource-locking

Check out the following for more on implementing management automation:

Managed Identities for Azure resources: https://docs.microsoft.com/en-us/az
ure/active-directory/managed-identities-azure-resources/overview

Azure resources limits: https://docs.microsoft.com/en-us/azure/azure-subscript
ion-service-limits

Cloudyn: https://www.cloudyn.com/
Azure Storage connector configuration in details - https://docs.microsoft.c
om/en-us/azure/connectors/connectors-create-api-azureblobstorage

https://azure.microsoft.com/en-us/offers/ms-azr-0003p/
https://www.microsoft.com/en-us/licensing/licensing-programs/enterprise?activetab=enterprise-tab:primaryr2
https://www.microsoft.com/en-us/solution-providers/home
https://docs.microsoft.com/en-us/azure/governance/policy/tutorials/create-and-manage
https://docs.microsoft.com/en-us/azure/governance/blueprints/concepts/resource-locking
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://www.cloudyn.com/
https://docs.microsoft.com/en-us/azure/connectors/connectors-create-api-azureblobstorage

Managing Azure Resources
To become a successful Azure administrator, you have to understand
different concepts such as ARM, locks, and resource providers. They are the
bread and butter of most Azure operations, and learning about them will help
you work through more advanced topics such as automation and security and
compliance. In this chapter, we will focus on the most important concepts
that are used when managing Azure resources, including deployments,
grouping services, and automation. We will learn how to manage resource
providers and resource groups. Then, we will perform deployments using
ARM with templates and also learn how to implement resource locks. The
last section will cover automatic resource group management with Azure
Event Grid and implementing proper resource naming conventions.

In this chapter, we will cover the following topics:

Managing resource providers
Managing resource groups
Performing deployments using ARM with templates
Implementing resource locks
Automatic resource group management with Azure Event Grid
Implementing proper resource naming conventions

Let's get started!

Technical requirements
To complete the exercises in this chapter, you will need the following:

Access to an Azure subscription (you can reference Chapter 1, Getting
Started with Azure Subscriptions, to learn how to create a one).
Azure PowerShell installed on your computer: https://docs.microsoft.com/e
n-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0.
Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=a
zure-cli-latest.

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Microsoft Azure Storage Explorer: https://azure.microsoft.com/en-us/feature
s/storage-explorer/.
Read about Azure Event Grid: https://docs.microsoft.com/en-us/azure/event-g
rid/overview.
Read about Azure Logic Apps: https://docs.microsoft.com/en-us/azure/logic-
apps/logic-apps-overview.
You'll need to run the az login command (for Azure CLI) or Connect-
AzAccount (for Powershell) once the appropriate tool has been installed.

Managing resource providers
In Azure, each service is managed by a separate resource provider. By
default, most of the providers are not registered in your subscription. This is a
perfectly fine scenario as you will probably never use all the RPs inside a
single subscription. In most cases, a resource provider is registered
immediately when provisioning a resource of a specific type for the first time.
There are, however, moments when you need to do this manually. Let's learn
how to do so using both the portal and PowerShell cmdlets.

Any time your subscription tries to access a non-registered resource provider,
you will see a notification saying that a provider of a specific type is required
before you can provision a resource of a particular type. There are two ways
to check what is registered inside your subscription – you can either use the
portal or a specific PowerShell command.

To check RPs in the portal, follow these steps:

1. Search for your subscription using the search field at the top of the
portal, as shown in the following screenshot:

https://azure.microsoft.com/en-us/features/storage-explorer/
https://docs.microsoft.com/en-us/azure/event-grid/overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview

Figure 2.1: Searching for a subscription

2. The next thing to do is select the Resource providers blade:

Figure 2.2: Resource providers blade

3. You will see a complete list of supported RPs, along with information

about whether it is available for your subscription:

Figure 2.3: Registered subscription resource providers

The same can be done by running the following Powershell cmdlet in your
Powershell environment. With the following command, we list all the
providers and pipe them to the Select-Object function, thus filtering the fields:

Get-AzureRmResourceProvider -ListAvailable | Select-Object ProviderNamespace, RegistrationState

Note that you may need to connect to your subscription before calling the preceding
command. To do so, use the Connect-AzureRmAccount cmdlet.

The following is the result of calling the command for my subscription:

ProviderNamespace RegistrationState

----------------- -----------------

Microsoft.Blueprint Registered

Microsoft.EventGrid Registered

microsoft.insights Registered

Microsoft.Logic Registered

Microsoft.ManagedIdentity Registered

Microsoft.PolicyInsights Registered

Microsoft.Security Registered

Microsoft.Storage Registered

Microsoft.StreamAnalytics Registered

Microsoft.Web Registered

84codes.CloudAMQP NotRegistered

AppDynamics.APM NotRegistered

Aspera.Transfers NotRegistered

Auth0.Cloud NotRegistered

Citrix.Cloud NotRegistered

...

As you can see, I got the list of providers and their registration states. Now,
we will try to register/unregister a provider from a subscription.

Managing available RPs is really simple using both the Azure portal and
PowerShell. To change the state of a provider in the portal, simply click on
the Register / Unregister button above the available providers. Once you've
done that, the status will be displayed as Registering or Unregistering, as
shown in the following screenshot:

Figure 2.4: Registering/unregistering resource providers

The same can be done in PowerShell with the following commands:

Register-AzResourceProvider -ProviderNamespace Microsoft.BotService

Unregister-AzResourceProvider -ProviderNamespace Microsoft.BotService

Under the hood, once you've initialized the process of registering a provider,
a particular RP will be added to your subscription that you can manage and
provision its resources. This includes registering its namespace, different
types of resources (for example, if you want to deploy an Azure App Service
with application settings, both the application and its configuration are
managed via Azure Resource Manager separately), and the locations where it
will be available.

This is also one way of limiting available services to users of your
subscription – if you don't grant them the ability to register resource
providers, they will not be able to provision services managed by them.

Resource providers are a simple way of separating your subscription from
different kinds of resources and limiting access to them. If you are interested
in how things really work, go to https://docs.microsoft.com/en-us/azure/azure-resou
rce-manager/resource-group-overview, where you will find an overview of ARM.
This is a great source of knowledge if you want to know how resources in
Azure are deployed and managed behind the scenes.

In this section, you learned what resource providers are and how to use them
to steer what can be used in a subscription. This will help you get started with
the next section on resource groups, which are containers for Azure resources
that are handled by registered RPs.

Managing resource groups
A resource group is the main logical component when it comes to governing
resources provisioned in Azure. You cannot create a service without selecting
one – this is why learning the basic principles of managing resource groups is
crucial for becoming a better Azure administrator. We will focus on things
such as performing basic actions on resource groups, moving resources, and
managing them so that you can learn all the necessary operations required on
a daily basis.

To get started, you'll need a resource group. Creating one is one of the easiest
operations in Azure – you can use the Azure portal, PowerShell cmdlet, or
Azure CLI for this. If you prefer using the graphics interface, search for
the Resource group term in the marketplace and click on the Create button. You
will see a really simple form where you only need to provide two things:

Resource group name
Resource group location

The following is an example configuration for my resource group:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview

Figure 2.5: Creating a resource group
If you have more than a single subscription available, you will have to provide that value
as well.

When everything is ready, you can just click the Review + Create button to
start the process of creating an RG. Using Azure CLI or PowerShell is also
just as easy. Here, you can find a command and a result when using the CLI.
We will provide additional details such as its location and subscription to
avoid mistakes:

$ az group create --name "azurecli-euw-rg" --location "West Europe" --subscription "Pay-As-You-Go"

The result of creating a resource group looks like this:

{

 "id": "/subscriptions/.../resourceGroups/azurecli-euw-rg",

 "location": "westeurope",

 "managedBy": null,

 "name": "azurecli-euw-rg",

 "properties": {

 "provisioningState": "Succeeded"

 },

 "tags": null

}

As an alternative, you can use Azure PowerShell, as shown here:

PS C:\Users\kamz> New-AzResourceGroup -Location "West Europe" -Name azurepowershell-euw-rg

PowerShell's output is quite different in terms of its structure but provides
similar information to the Azure CLI:

ResourceGroupName : azurepowershell-euw-rg

Location : westeurope

ProvisioningState : Succeeded

Tags :

ResourceId : /subscriptions/.../resourceGroups/azurepowershell-euw-rg

Now, we are ready to learn about some additional management activities.

Browsing resource groups

When you have created some resource groups, they will be available in your
subscription. We can quickly display them using either the Azure CLI or
PowerShell window. Both commands are pretty straightforward. The result
for Azure CLI is as follows:

$ az group list --subscription "Pay-As-You-Go"

The result of running the preceding command will look like this:

[

 {

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg",

 "location": "westeurope",

 "managedBy": null,

 "name": "azureadministrator-euw-rg",

 "properties": {

 "provisioningState": "Succeeded"

 },

 "tags": {}

 }

 {

 ...

 }

]

You will get a similar effect for the PowerShell cmdlet, as shown here. Note
that it returns a similar result containing information about the resource

group's location, its tags, and its identifier:

PS C:\Users\kamz> Get-AzResourceGroup

The result of running the preceding PowerShell cmdlet should look like this:

ResourceGroupName : azureadministrator-euw-rg

Location : westeurope

ProvisioningState : Succeeded

Tags :

ResourceId : /subscriptions/.../resourceGroups/azureadministrator-euw-rg

(...)

Note that both commands provide additional parameters. The following is the
result of running the Azure CLI command with an additional switch that
determines the output's format (which is --output table):

$ az group list --subscription "Pay-As-You-Go" --output "table"

With an additional parameter, the output will change from its default JSON
representation to a table:

Name Location Status

---------------------------- ---------- ---------

azureadministrator-euw-rg westeurope Succeeded

azureadministratornew-euw-rg westeurope Succeeded

azureadminstration-euw-rg westeurope Succeeded

azurecli-euw-rg westeurope Succeeded

azurepowershell-eue-rg westeurope Succeeded

azurepowershell-euw-rg westeurope Succeeded

Remember that for the Azure CLI, you can always use the -h switch to get help regarding
a command.

Now that we've got some information about the available resource groups, we
can dive deeper and check out the resources they contain.

Listing the available resources

As we mentioned earlier, resource groups are containers for provisioned
Azure resources. If you do not want to use the Azure portal to browse and
search for the available resource groups and their resources, you can use
the Azure CLI for that:

$ az resource list --resource-group "azureadministrator-euw-rg" --subscription "Pay-As-You-Go"

In the preceding command, we are using the resource group's name and a
subscription name to narrow the results. The result of listing resources should
look similar to the following. This should contain various pieces of
information, such as the location of a resource, its name, and more:

[

 {

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Logic/workflows/azureadministrator-euw-logicapp",

 "identity": null,

 "kind": null,

 "location": "westeurope",

 "managedBy": null,

 "name": "azureadministrator-euw-logicapp",

 "plan": null,

 "properties": null,

 "resourceGroup": "azureadministrator-euw-rg",

 "sku": null,

 "tags": {},

 "type": "Microsoft.Logic/workflows"

 },

 {

 ...

 }

]

There is no best way to manage resource groups and their resources – you are allowed to
use any tool (the Azure portal, PowerShell, or Azure CLI) as you like. On the other hand,
sometimes, some operations cannot be done from the portal – or require lots of manual
work. This is why the command line is a recommended environment for Azure
administrators as well.

In some cases, you may realize that a resource was placed in an invalid
resource group. Fortunately, there is a solution to this, without a need to
reprovision it.

Moving resources

Now, let's assume you have a resource in one resource group and want to
move it to another one. There are a few possible scenarios when you would
do so:

If you simply made a mistake and provisioned a resource in an invalid
resource group
If you found resources that have a different life cycle and want to
differentiate between deployments
If you are redesigning an application and want to separate resources

related to different domains
If you do not want to perform a redeployment to place resources in a
different resource group

In Azure, this operation is really simple – all you need to do is gather the
following parameters:

Destination group: A place where resources should be moved to
IDs of resources: The identifiers of the resources you want to move

For example, I want to move an Azure Logic App named azureadministrator-
euw-logicapp to a resource group named azureadministratornew-euw-rg.

The following is the full command I used to perform this operation:

$ az resource move --destination-group "azureadministratornew-euw-rg" --ids "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Logic/workflows/azureadministrator-euw-logicapp"

The preceding command moves a specific resource (identified by its
identifier) to a destination group inside the same subscription. Note that while
moving the resource, a notification will appear in Azure portal stating that an
operation is ongoing and that a certain resource may be moved in a moment,
as shown in the following screenshot:

Figure 2.6: View of the resource group with resources under the Move operation
Remember that you cannot rename a resource group – if you misspell a name, the only
way to change it is to create a new one and move the necessary resources to it. Also, not
all resources can be moved. The full list can be found at https://docs.microsoft.com/en-us/azure/az

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-move-resources

ure-resource-manager/resource-group-move-resources.

When the operation is completed, all the resources that were moved will have
new IDs attached to them. The move operation does not break anything from
a service point of view. However, you will have to remember to update your
CI/CD pipelines if they deploy anything to Azure – in most cases, you are
providing a resource group name, which will have to be updated in that case.

The move operation can be also used to move resources between subscriptions. This is a
very helpful feature when you want to, for example, promote an environment from dev to
production or use different subscriptions for different projects.

Before we sum up managing resource groups, there is one more concept
worth mentioning. Each individual Azure service is managed by its API,
called a resource provider. Each individual instance of a service is
represented by a unique identifier called a resource ID. To understand how to
build such an identifier, we must see what a resource provider identifier looks
like.

Understanding resource providers

All the operations that are invoked via the command line or Azure portal are
reflected with the help of Azure Resource Manager. When you look closely
at resource IDs, you will see that they all have their provider provided. Take a
look at the following Azure Logic App ID:

/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Logic/workflows/azureadministrator-euw-logicapp

Here, the registered provider is Microsoft.Logic. The full namespace of the
resource is displayed as Microsoft.Logic/workflows. This means that each Logic
App uses that provider under the hood and all the operations that are
performed on it are performed with the registered RP. If we take a look at
another resource, the displayed provider will be different:

/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Storage/storageAccounts/azureadministratortest

As you can see, here, Azure uses Microsoft.Storage and
the Microsoft.Storage/storageAccounts namespace. The more you work with

Azure, the more familiar you will become with the available providers. In
fact, constructing such an ID will also become a piece of cake for you – the
only thing hard to remember is your subscription ID.

Managing resource groups requires some practice, but once you start
performing different operations on them, things will quickly become
straightforward for you. Since you are just starting your journey of
administrating Azure resources, I encourage you to focus on learning
commands to be used in a command line as they will greatly improve your
productivity when working with cloud services.

In Azure, some changes are much easier when performed with the right
command than by clicking a dozen blades in the portal. The only thing
required here is practice. This is why you should find other concepts from
this chapter extremely interesting; they'll help you build up your knowledge
when it comes to governing resources in Azure.

Using the Azure CLI or Azure PowerShell, you can perform far more
operations over your resources and resource groups. Here are the most useful
ones:

The following operations can be performed on the CLI:
az group exists: Checks whether a group exists
az group export: Exports a resource group template
az group update: Updates a resource group with the desired
parameters
az resource create: Creates a resource
az resource invoke-action: Invokes an action on a resource

The following commands can be used on PowerShell:
Export-AzureRmResourceGroup: Exports a resource group template
Set-AzureRmResourceGroup: Sets the desired parameter on a resource
group
Move-AzureRmResource: Moves Azure resources to another resource
group
Set-AzureRmResource: Sets the desired parameter on a resource

This section helped you understand one of the most important concepts in

Azure: resource groups. It is crucial that you understand how resource groups
work and their capabilities so that you can work with them with no worries.
In the next section, you will extend your current knowledge by learning how
to perform deployments in the context of a resource group using ARM
templates.

Performing deployments using
ARM with templates
One of the most important features of any computer system is the ability to
introduce changes to it seamlessly and in an automatic fashion. When
infrastructure is considered, it is especially handy if there is a way to code it.
This enables us to replicate it anywhere at any time with a single command.
This approach, often abbreviated as Infrastructure-as-Code (IaC), plays a
major role in modern applications as it guarantees that all the components are
scripted and that no manual work is required to restore them (for example, in
the case of disaster recovery).

This section addresses this problem by introducing Azure Resource
Manager (ARM) templates, which are JSON files that are used to describe
how a service should behave and be configured.

There are multiple ways to prepare an ARM template, which can be reused
and modified anytime you want. Before we get started, you have to
understand how a typical template is structured. Let's take a look at the
following JSON file:

{

 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",

 "contentVersion": "",

 "parameters": { },

 "variables": { },

 "functions": [],

 "resources": [],

 "outputs": { }

}

As you can see, it contains two metadata fields ($schema and contentVersion) and

five sections. Each section is used for a different purpose:

parameters: Since each template can be used for different regions, tiers, or
configuration settings, there has to be a way you can pass them. This
section describes each parameter that can be passed to the template,
including its type and the default value.
variables: Sometimes, you need to evaluate a value based on the passed
parameters (or maybe you just want to avoid duplicates and define it in
one place). When using ARM templates, this section can be used for
defining values that you can use for other resources. As it is parsed after
parameters, you can leverage each value that's passed from the outside of
the template.
functions: A user-defined function that you can use in the template.
resources: The main section in a template. It contains descriptions of the
resources you want to provision in Azure. To make things more flexible,
you can use values from three other sections: parameters, variables, and
functions.
outputs: This section can be used to return values from your template.
Such a value could be a connection string to a storage account, resource
ID, or a VM IP address.

ARM templates leverage the concept of resources managed by Azure Resource Manager.
This means that with ARM templates, you can provision any element that is considered a
resource in Azure. To be more specific, you can provision both an Azure App Service
instance and its settings (called application settings) separately. A resource does not have
to be a service, and you can find them in the Azure Marketplace.

Of course, not all sections are required – to make a template valid, it has to
contain the following sections:

$schema

contentVersion (for versioning purposes)
resources

All other sections (parameters, variables, functions, and outputs) are optional. A
full description of the structure and the syntax can be found at https://docs.micr
osoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates.

Now that you have understood the basics of ARM templates, we can try to

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates

prepare some and deploy them. As we mentioned previously, there are a few
ways to generate or create such a template – we will give each one a go. To
make things easier, we will assume that we want to deploy two storage
accounts, with the second one related to the first one.

Now that you understand the theoretical concepts of resource groups, we will
focus on writing an actual template and using it.

Writing a template from scratch

Conceptually, the easiest way to generate an ARM template is to write our
very own. While, initially, it is pretty easy, you will probably reconsider your
approach after a while. When your infrastructure contains tens of
components, maintaining a JSON file with over 1,000 lines may be really
painful. Nonetheless, this is one of the options and we should cover it so that
you have the full picture of all the available options.

In the following link, you can view all the resources that are managed by
ARM and their references: https://docs.microsoft.com/en-us/azure/templates/microso
ft.aad/allversions. Each resource belongs to a particular namespace (so if you
search for Storage Account, you will go to the Storage section). ARM also
maintains more than one version of its API, which is why you can select from
multiple available APIs.

Since we are about to create a brand-new piece of storage, it seems like a
good idea to use the most recent version. The minimal (containing only
required fields) version of the storage account resource for version 2019-06-01
looks like this:

{

 "name": "<string>",

 "type": "Microsoft.Storage/storageAccounts",

 "apiVersion": "2019-04-01",

 "sku": {

 "name": "Standard_LRS"

 },

 "kind": "Storage",

 "location": "<string>",

 "properties" {}

}

https://docs.microsoft.com/en-us/azure/templates/microsoft.aad/allversions

Now, let's check what the full template containing the aforementioned storage
accounts would look like. Go and check it out at https://gist.github.com/kamil-mr
zyglod/7b868e6a892cba008b7a909a1baabf43.

In the presented template, the second storage account is linked to the first one
with the dependsOn property. This property is used to define identifiers of
resources that have to be deployed before this particular one. This is
especially helpful when deploying resources that rely on connection strings
or other parameters that have to be injected into a configuration.

There is no guarantee regarding the order of deployments performed by Azure Resource
Manager. This is why you should always use the dependsOn property to avoid conflicts
during deployments.

In the preceding example, we used a special function named resourceId. It
takes two parameters – the namespace and the resource name. Once it has
been evaluated, it returns the full resource identifier, which uniquely defines
the relationship.

This section should have helped you understand some of the common
concepts of writing ARM templates such as structure, syntax, and use cases.
However, writing a template from scratch is not always necessary. The next
section will show you how you can export a template with a single click.

Automation scripts

If you have provisioned resources manually, there is a way to generate an
automation script from the whole resource group. To do so, follow these
steps:

1. Go to your resource group and click on the Export template blade:

https://gist.github.com/kamil-mrzyglod/7b868e6a892cba008b7a909a1baabf43

Figure 2.7: Export template blade
In the newest version of the portal, the Automation script option has been renamed
to Export template.

2. You will see a new window where you can find the whole ARM
template. This can be exported. What's more, this feature generates four
additional scripts that can be used if you do not like JSON templates:

CLI
PowerShell
.NET
Ruby

All are equally functional, so it is only a matter of preference.

3. In the following screenshot, we can see that the generated template is
much more complex as it contains all the possible parameters that can be
set for a resource:

Figure 2.8: ARM template generated from the portal

From my experience, I can tell that using such a generated template is a good
starting point, but unfortunately, there are situations where such templates

will contain errors (because a parameter was not exported or exported
partially). This is why it is a good idea to perform a quick check of it by
clicking on the Deploy button that's available on the blade.

Exporting a template for deployed resources is a good idea, especially when
starting with a proof-of-concept and proceeding to a more mature solution. In
your daily work, this approach may have too many cons and you need a tool
that will help you introduce logic or deploy resources in a more flexible way.
This is why, in the next section, we will cover some extra tools that may suit
your needs.

Other tools

ARM templates are not the only way to manage resources via ARM. There
are external tools that you can consider if you find this particular feature
cumbersome or counterproductive. These tools are as follows:

Azure Fluent: A set of helpful SDKs that enable you to
programmatically call ARM APIs to provision resources. They are
written for multiple different platforms (.NET, Java, Python, or
Node.js).
Terraform: A tool by HashiCorp where you use a YAML file to
describe your infrastructure.
Pulumi: A new project where you can use TypeScript, Go, or Python to
write scripts that describe your infrastructure.

Each tool has its pros and cons – your choice may be also affected by the technology
stack your team is used to. I strongly encourage you to give the aforementioned tools a go
as they follow the recent standards in terms of scripting infrastructure and may greatly
improve your productivity.

Once you have your template prepared, you probably want to deploy it. The
easiest way to do so is to use the CLI. The following is an example of the
command required to deploy the template we created earlier:

az group deployment create --name <name-of-a-deployment> --resource-group <name-of-rg> --template-file <name-of-your-file>.json

The preceding command will create a new deployment with a specific name

and use a particular template file. Of course, if your template accepts
parameters, you can pass them using the --parameters switch:

az group deployment create --name <name-of-a-deployment>--resource-group <name-of-rg> --template-file <name-of-your-file>.json --parameters

Once the deployment is finished, you should see a JSON file that represents
the serialized output of the operation. Each deployment can be found in
the Deployments blade of your resource group:

Figure 2.9: Resource group deployments list

With ARM templates, you can quickly provision your infrastructure in any
region available in Azure. As it is a native way of deploying resources in
Azure, it is important to understand at least the basic features of this
functionality so that you can quickly multiply required services. To better
understand the advanced topics (such as conditional statements, functions,

and linked templates), take a look at the following link: https://docs.microsoft.c
om/en-us/azure/azure-resource-manager/templates/template-syntax. It contains a full
description of the syntax and its structure.

Although JSON templates are often a recommended way of managing
resources in Azure, do not forget about alternatives. Azure Fluent, Terraform,
and Pulumi can be really interesting propositions, especially if you are
working with IaaS architectures.

Deciding which tool is the best for you relies solely on your actual
requirements. In many setups, a mix of available tools will give the best
results. The next section will help you enhance your deployments by
introducing locks, which help in preventing accidental deletion of resources
or changes in their configuration.

Implementing resource locks
Often, there is a need to secure your deployed environment so that there is no
possibility to easily change them or even remove them by a mistake. As you
cannot just rely on given conventions or communication between teams, you
have to implement some kind of policy that will make resources read-only. In
Azure, the way to achieve that is to leverage resource locks. In this section,
we'll learn how to implement resource locks and secure our workloads
against accidental changes.

There are two levels of locks in Azure:

Subscription locks: These are applied to all the resources inside a
subscription.
Resource group locks: These are applied to all the resources inside a
resource group (and the resource group itself).

Also, you can choose between two different kinds of those locks:

Read-only: A lock that prevents you and others from introducing
changes to the resources

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-syntax

Delete: A lock that prevents you and others from deleting resources (but
allows you to change them)

In general, using locks on production resources in Azure should be one of
your most important habits as an Azure administrator – it is one of the
simplest features but gives you complete control over what is and what is not
allowed when it comes to modifying environments.

For more information on ARM locks, please refer to the following link: https://docs.microsoft.
com/en-us/azure/templates/microsoft.authorization/allversions.

To implement a lock, you have to answer the question of whether it is a
subscription lock or if you only need it for a particular resource group. The
choice solely depends on the characteristics of the resources:

If you have a subscription per project, you may need to create a
production subscription that holds all the production resources and apply
the subscription lock.
If you have a mix of read-only and delete locks, you will have to
implement multiple resource group locks.
If you cannot have a separate subscription for your production
workloads, you may need a resource group lock.

Let's take a look at how to implement each of them.

Subscription locks

Each lock is a separate resource and is available on either a subscription,
resource group, or a resource level. In this section, we will cover working
with them using Azure portal, but under the hood, locks are just Azure
resources that are accessible via the ARM API. If you want to create a lock,
follow these steps:

1. If you go to your subscription, you can find the Resource locks blade in
the Settings section:

https://docs.microsoft.com/en-us/azure/templates/microsoft.authorization/allversions

Figure 2.10: Resource locks blade

2. From the new screen, you can click on the + Add button, where you will
able to enter the lock's properties:

Figure 2.11: Creating a lock form

Adding a lock requires that you provide the following information:

Lock name: The unique lock name across the given scope
Lock type: Determines the behavior of a lock
Notes: Optional notes

Once you click the OK button, a lock will be applied on the
subscription level and a specific action (changes/deletion) will
become forbidden.

3. The same can be done from the Azure CLI level. To list all the locks,
you can use the following command:

$ az lock list

4. Since we are using an Azure CLI command without providing an output
type, the default result representation is a JSON document. It contains
information about the full identifier of the lock (id), its type (the level
parameter) and additional information (such as a description and
its name):

[

 {

 "id": "/subscriptions/.../providers/Microsoft.Authorization/locks/Delete",

 "level": "CanNotDelete",

 "name": "Delete",

 "notes": "Delete lock for the subscription",

 "owners": null,

 "type": "Microsoft.Authorization/locks"

 }

]

5. Now, to create a new one, execute the following command:

$ az lock create -n "Read-only" -t "ReadOnly"

Now, you should be able to see the result of creating a read-only lock. Since
we only provided the name (-n) and lock type (-t), only those fields will be
filled in inside the JSON document:

{

 "id": "/subscriptions/.../providers/Microsoft.Authorization/locks/Read-only",

 "level": "ReadOnly",

 "name": "Read-only",

 "notes": null,

 "owners": null,

 "type": "Microsoft.Authorization/locks"

}

Now, let's look at resource group locks, which are more focused locks. This
is because they're only applied at the resource group level.

Resource group locks

The procedure for creating a resource group lock is the same as the
subscription lock – the only change is the place where the lock is applied. To
add a lock from the Azure portal, follow these steps:

1. Go to your resource group and find the Locks blade:

Figure 2.12: Locks blade

2. The rest is the same as in the Subscription lock section. When browsing
a resource group lock, you will be able to also see the locks that have
been applied at the subscription level:

Figure 2.13: Resource group locks view

Performing the same operation from the CLI is even easier – you only need a
single command where you pass the name of a lock (the -n parameter), its

type (-t), and the resource group (-g) that it will be applied to:

$ az lock create -n "Read-only_RG" -t "ReadOnly" --resource-group "azureadministrator-euw-rg"

The result of creating such a lock is a JSON representation of a created Azure
resource (remember that locks are also resources in terms of Azure Resource
Manager):

{

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Authorization/locks/Read-only_RG",

 "level": "ReadOnly",

 "name": "Read-only_RG",

 "notes": null,

 "owners": null,

 "resourceGroup": "azureadministrator-euw-rg",

 "type": "Microsoft.Authorization/locks"

}

As you can see, the result of such a command is a little bit different than
when performing it on the subscription – its identifier now contains the
subscription name and the name of the resource group where the lock was
applied.

Now, let's assume that we want to delete a resource group that is secured by a
delete lock. To do so, we will try to delete a resource group:

$ az group delete -n "azureadministrator-euw-rg"

Are you sure you want to perform this operation? (y/n): y

As you can see, before the command runs, the CLI asks you whether you are
sure about deleting the resource group. The result of running such a
command will be as follows:

The scope '/subscriptions/.../resourcegroups/azureadministrator-euw-rg' cannot perform delete operation because following scope(s) are locked: '/subscriptions/.../resourceGroups/azureadministrator-euw-rg,/subscriptions/...'. Please remove the lock and try again.

The result of deleting a resource group that has two delete locks (one from
the subscription and one applied directly to the group) tells us that both the
resource group and the subscription scopes are blocked. There is no way to
remove such resources if locks are not removed beforehand.

Let's check what happens if we try to remove other resources provisioned
inside a resource group:

Figure 2.14: The result of deleting a resource with the "Delete" lock using Powershell

When you try to remove such a resource from the portal, you will be notified
that such an operation is currently unavailable:

Figure 2.15: Deleting a locked resource in the portal

Additionally, if I add the read-only lock to the resource, the following
message will be displayed when I try to change something:

Failed to update storage account 'azureadministratorarm'. Error: The scope 'azureadministrator-euw-rg/providers/Microsoft.Storage/storageAccounts/azureadministratorarm'>azureadministratorarm' cannot perform write operation because following scope(s) are locked: '/subscriptions/...,/subscriptions/.../resourceGroups/azureadministrator-euw-rg'. Please remove the lock and try again.

If you add a lock at the subscription/resource group level, it will be applied to
all the resources provisioned there. However, there may be situations where
you want to have better control over this functionality.

Fortunately, when using the Azure CLI, you can use additional switches that
allow you to apply the lock to a specific resource type or even a particular
resource only. To add a lock to the subscription for all storage accounts, you
can use the following command:

az lock create --resource-type "Microsoft.Storage/storageAccounts"

Since the preceding command is run without additional parameters, it creates
a lock at the highest level available (subscription). If you need a lock for a

specific resource in a resource group, you may want to try the following
snippet:

$ az lock create --resource "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Storage/storageAccounts/azureadministratorarm" -g "azureadministrator-euw-rg"

By using the whole identifier of a resource and applying the resource group's
name, you can create a specific lock that is applied only at the resource level.
You can also script locks using the ARM template:

{

 "name": "string",

 "type": "Microsoft.Authorization/locks",

 "apiVersion": "2016-09-01",

 "properties": {

 "level": "string",

 "notes": "string"

 }

}

Thanks to this feature, you can automatically apply it when a production
environment is deployed to Azure.

For more information, you can refer to the az lock documentation: https://docs.
microsoft.com/en-us/cli/azure/lock?view=azure-cli-latest.

Becoming a master in proper resource locking is especially important when
managing Azure resources. With this simple feature, you can greatly enhance
resource immutability and be confident that no one has changed resources
without proper automation. The next section will help you understand how to
audit changes and management actions on a resource group using a service
called Azure Event Grid.

Automating resource group
management with Azure Event Grid
Automation is one of the most important features available and is especially
helpful when you're managing large workloads and have tens of systems
under your control. This is especially true when the scale of your systems

https://docs.microsoft.com/en-us/cli/azure/lock?view=azure-cli-latest

growths – when you have thousands of VMs under your control, doing
everything manually becomes almost impossible. Fortunately, you do not
have to be an Azure specialist to implement advanced workflows, which will
help you understand what is happening with a particular resource group and
all the resources it contains.

In this section, we'll learn how to organize a simple automation solution using
Azure Event Grid and Azure Logic Apps, which will help you understand the
concept and get you started with your own ideas.

Since Event Grid and Logic Apps are serverless services, infrastructure
management is no longer your concern – the only thing you have to do is
configure a service according to the documentation. Once you are familiar
with the basics, you will understand this concept easily.

Creating an event subscription

The idea here is to leverage two Azure services that allow you to implement a
complete solution without writing a single line of code. To do so, follow
these instructions:

1. The gateway to automation in your resource group can be found in
the Events blade, which can be found in every resource group:

Figure 2.16: Creating an event subscription

Once you get there, we can start implementing our automation
workflow.

2. When you click on the + Event Subscription button, you will see a new
screen where you will be able to enter all the required details for a new
event subscription. Here, you can find an example of my settings:

Figure 2.17: Creating an event subscription form

You will have to configure the following fields in order to add an
event subscription:

Name: A unique name for a subscription.
Event Schema: A selected event schema supported by Azure Event
Grid. Unfortunately, this topic will not be covered in this book (if
you are an advanced Azure user, you can use any schema you
want) – this is why I suggest you leave the default option as-is. If
you are interested in the other schema, you can refer to the
following link regarding the Event Grid schema: https://docs.microso
ft.com/en-us/azure/event-grid/event-schema.
EVENT TYPES: You can subscribe to all nine types or only the
specific ones. Note that a resource group defines the same event
types as a subscription – the difference is in the scope as here, only
events from a specific resource group will be handled.
ENDPOINT DETAILS: You can choose between Web Hook,
Storage Queue, Event Hub, and Hybrid Connection. This example
is limited to Storage Queues, but feel free to experiment on your
own.

A Storage Queue has to be configured before a subscription is created, so make sure you
have an available Storage Account with the desired queue already created.

3. Once you are satisfied with your choices, you can click on
the Create button. After a few seconds, a new subscription will become
available for the resource group:

https://docs.microsoft.com/en-us/azure/event-grid/event-schema

Figure 2.18: Event subscriptions view

The preceding view will show you the current status of the created
subscription. It contains information regarding all the generated events
(regardless of whether they succeeded or not). To understand the actual
behavior, we will have to analyze the data.

Analyzing the gathered data

Now, we are ready to check whether everything works as expected. To do so,
we can use Microsoft Azure Storage Explorer. When we access the queue we

defined during the event subscription process, we can see that there are
events gathered already:

Figure 2.19: Generated events within Azure Storage Queue

A quick look at one of the records reveals all the data gathered here:

{

 "subject": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Storage/storageAccounts/azureadministrator",

 "eventType": "Microsoft.Resources.ResourceActionFailure",

 "eventTime": "2019-02-18T19:17:52.7587534Z",

 "id": "407dc633-1157-46ac-97e5-92175fe78099",

 "data": {

 ...

 },

 "dataVersion": "2",

 "metadataVersion": "1",

 "topic": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg"

}

As you can see, such a JSON document contains the following information:

The event type (eventType)
A timestamp telling us when an event occurred (eventTime)
The identifier of an event (id)
The origin of an event (subject)

You can leverage this information to implement a complete automation
solution (for example, to find out when somebody changes a resource or even
tries to change something). Now, let's try to extend this architecture and
connect to Azure Logic Apps for an even greater set of possibilities.

As we used Storage Queues here, we can integrate events generated by our

resource group with any other service that can read messages from it. For an
administrator, the best choice is to use Azure Logic Apps.

Here, we're assuming that you are familiar with the process of creating a Logic App. If
you need guidance, check out https://docs.microsoft.com/en-us/azure/logic-apps/quickstart-create-first-l
ogic-app-workflow.

Once your Azure Logic App has been provisioned, follow these steps:

1. Go to the Logic app designer blade to start the process of designing a
new application:

Figure 2.20: Logic app designer blade

2. In the designer window, you have multiple options to get started – there
are many examples and templates that will speed up the process of
creating a new app. For now, we need a custom one, so I selected Blank
Logic App.

3. On the new screen, you will be able to search for connectors you are
interested in. Since we used a queue from the Azure Storage service, this
is the component we are searching for:

https://docs.microsoft.com/en-us/azure/logic-apps/quickstart-create-first-logic-app-workflow

Figure 2.21: Azure Logic App connectors

Each connector has its own settings that you have to configure. For
Azure Queues, the very first choice is to decide whether you do the
following:

You want to trigger an Azure Logic App when there is a specific
number of messages in the queue
See if there is a message in a queue

4. In this particular scenario, I went for the latter as I wanted to trigger it
immediately when a new event is available. The second step is related to
a storage account you want to use along with the connector.
Obviously, you have to select a storage account you've used previously
as the destination of the gathered events:

Figure 2.22: Available storage accounts for Azure Queue connector
If, for some reason, your storage account is not available, click on the Manually enter
connection information link to switch to the advanced view.

5. The last thing needed here is to configure the interval of checks for the
queue. For the purpose of this exercise, I chose 5 minutes (in a real
scenario, you can select any interval that suits your needs, such as every
5 seconds):

Figure 2.23: Queue connector settings

6. Now, you can save the application and test whether it works. If you
followed my tutorial, you should be able to see a similar result to mine:

Figure 2.24: Azure Logic App run debugging

Congratulations! You have just created your very own automation pipeline
that you can customize and extend to meet all your requirements.

There are over 200 different connectors available in Azure Logic Apps that
you can leverage at any time to create event advanced workflows that will
react to the incoming events and send emails, SMSes, raise alerts, or trigger
reports. Azure Logic Apps are a great integration tool for those who do not
want to develop a solution programmatically. As they rely on an intuitive and

robust toolset, you can quickly implement the functionality you want. I
strongly encourage you to give them a try and make them one of the common
tools you are familiar with so that you can become much more productive
and open many additional integration opportunities.

Using services such as Azure Event Grid and Azure Logic Apps becomes
more and more important when searching for flexibility and automation in
Azure administration. With proper experience, you can easily build complex
pipelines that will audit resources and gather insights about their usage and
configuration. The next section includes some guidance regarding naming
conventions so that you can administer your resources in an even better
fashion.

Implementing proper resource
naming conventions
Becoming an Azure administrator means governing tens of hundreds of cloud
resources. To be really productive here, you have to find a way to quickly
find what you are looking for, without having to check the documentation or
ask other people where a resource can be found. The real ace in the hole here
is to find the naming convention that covers multiple projects and allows you
to cover different domains of the business. In this section, we will discuss the
different options that are available and what can be done to constrain them.

To get started, you have to understand why having a proper naming
convention is crucial for many projects and administering them:

You may have difficulty changing the name of a resource once it is
provisioned.
Once a naming convention is established, it is easy to find services that
do not follow it.
When a proper name is used, you can quickly understand its purpose,
without the need to enter an extra command or browse the portal.

To cut a long story short, you are saving time when a convention is enforced.
You should ensure that all the names are as verbose as possible. This, of
course, will differ depending on the Azure service selected:

When using Azure Storage, its name must be between 3 and 24
characters in length. You are not allowed to use anything besides letters
and numbers.
A resource group can be a maximum of 90 characters in length.
Azure App Service offers a maximum of a little over 200 characters to
be used as the service name.

Considered all these factors, you have to make sure that your naming
convention does not block anybody from provisioning a resource.

There are many different levels when it comes to implementing a naming
convention:

Subscription
Resource group
Resources

Depending on the level, you may need a different convention to meet your
requirements. Let's look at each of them.

Subscription

When governing multiple subscriptions, you will probably need to know
exactly who is its owner. The recommended way of naming them can be
found in the documentation (https://docs.microsoft.com/en-us/azure/cloud-adoption-
framework/ready/azure-best-practices/naming-and-tagging):

<Company> <Department (optional)> <Product Line (optional)> <Environment>

Here, we're assuming the following parameters:

Company: TheCloudTheory
Department: IT

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging

Product Line: CRM
Environment: Dev

You will get the following result:

TheCloudTheory IT CRM Dev

Personally, I dislike empty spaces between the names of my resources, so I
would slightly modify the example and add dashes to get the following result:

TheCloudTheory-IT-CRM-Dev

Of course, this is not the only available option here. Let's prepare some other
examples:

<Department>-<Environment>-<Product>

<Company>-<Product>-<Environment>

<Product>-<Environment>

Depending on the actual scenario, you may or may not need to use the
department of the company here. However, it is not always possible to
predict whether your company or client will need extra subscriptions. We can
avoid situations where we have the following subscriptions under our
command:

CompanyA

CompanyA-Dev

CompanyA-SuperProduct-Dev

To do this, always try to implement at least three different parameters in the
names so that you are secure in case any modifications are made later.

The name of a subscription can be changed later. On the other hand, it is always a better
option to avoid modifications instead of making them later.

Resource group

As opposed to a subscription, the name of a resource group cannot be
changed once it has been created. The solution for this situation is to move
the resources to a new resource group and delete the old one. To minimize
the number of such situations, you should provide a proper recommendation

when it comes to selecting names for groups. One extra parameter that will be
useful here is called location.

Let's check out some examples of templates for resource groups names:

<product>-<location>-<environment>-rg

<product>-<location>-<environment>-resourcegroup

<company>-<product>-<location>-<environment>-rg

<company>-<department>-<location>-<environment>-resourcegroup

Whether you need to use a company name in the resource group name
depends on your setup. If you govern a single subscription, it will need to
know who the owner of the resource group is immediately. Let's assume that
you have the following names:

ServiceA

CompanySuperproduct

WestEuropeCompanyC

In the preceding example, you are missing some key information. Let's try to
answer the following questions:

Which resource group is provisioned in West Europe?
Which resource group belongs to CompanyB?
Where ServiceC is deployed?
What environments are deployed to the listed groups?

You cannot answer any of those questions with 100% confidence knowing
that your answer is correct (what's more, providing an answer to the last
question is impossible without checking the deployment pipelines). This is
why using a proper naming convention is so important.

Resources

Resources can follow a similar naming convention to resource groups. Let's
verify the following samples:

<service>-<location>

<product>-<location>-<environment>-<service>

<company>-<location>-<environment>-<product>-<service>

Depending on your needs, you may require different data to be available. In
general, you can implement the following two approaches:

Each element has to be as verbose as possible.
A child element only has to implement the extra information that is not
available for the parent.

Here are examples of those two approaches:

TheCloudTheory-IT-Prod -> TheCloudTheory-SomeProduct-Use-Prod-Rg -> TheCloudTheory-SomeProduct-Use-Prod-AppServicePlan

TheCloudTheory-IT-Prod -> SomeProduct-Use-Prod-Rg -> AppServicePlan

The choice is yours – you have to select an approach that meets your
requirements when it comes to administering resources in Azure.

Enforcing a naming convention without automating any action may be quite
cumbersome. Fortunately, you can easily prepare a script that will tell you
what resources do not match the rules. The following is a simple PowerShell
script that displays all the resource groups that do not follow the <product>-
<location>-<service> convention:

$resources = Get-AzureRmResource

foreach($resource in $resources)

{

 $resourceName = $resource.Name

 $match = $resourceName -match '[a-z]{1,}-[a-z]{1,3}-[a-z]{1,}'

 if($match -eq $false)

 {

 Write-Host $resourceName

 }

}

The preceding script iterates over all the resources inside a subscription and
checks whether their names match the regular expression reflecting the
expected naming convention. Now, let's say I have the following resource
groups:

azure-administrator-logic

azureadministratorarm

azureadministratorarm2

azureadministratoreg

azurequeues

azureadministrator-euw-logicapp

limitsandquotas

uytgu2hddgsxistandardsa

The only one that follows the convention is azureadministrator-euw-logicapp – the
rest are invalid and will be displayed.

Once you have your script ready, you can execute it any time you want.
What's more is that you do not have to use PowerShell – you can leverage the
Azure CLI or the REST API of the Azure Resource Manager to implement
this functionality using other programming languages. Now that we've
covered Azure Logic Apps, you can even implement your own pipeline
integrated with Azure Event Grid, which will allow you to verify each
resource once it has been provisioned.

For more information about naming conventions, refer to the following link: h
ttps://docs.microsoft.com/en-us/azure/architecture/best-practices/naming-conventions.

Summary
In this chapter, we learned how to manage resource providers and groups. We
then learned how to perform deployments using ARM with templates and
also learned how to implement resource locks. At the end of this chapter, we
covered automatic resource group management with Azure Event Grid and
implemented proper resource naming conventions.

Understanding the basics is really important as all the topics covered in this
chapter will have their use in the following ones. Things such as resource
locks, deployments with ARM templates, and moving resources are typical
daily tasks of Azure administrators and operators. Remember that when it
comes to cloud solutions, for most of the services you use, you are only
paying for usage. When playing with a resource group, keep in mind that they
are free of charge, regardless of whether they contain resources or not.

In the next chapter, we will learn how to configure and manage virtual
networks, which are one of the main building blocks of Azure infrastructures.

https://docs.microsoft.com/en-us/azure/architecture/best-practices/naming-conventions

Configuring and Managing Virtual
Networks

One of the most important tasks for an Azure administrator is configuring the
network properly. The bigger the system is, the more elements you will have
to integrate. In this chapter, you will learn how to link multiple VNets and
configure and secure subnets. We will also cover how to integrate virtual
networks with a set of Azure services using service endpoints. We will then
learn how to secure critical Azure services with service endpoints and how to
configure a naming resolution. At the end of the chapter, we will create and
configure a network security group (NSG). All of the topics that we will
cover in this chapter are crucial for most Azure administrators as there are
few systems that do not need some kind of networking attached to them. You
will probably also work with internal applications that need to be enclosed
inside a virtual network or placed behind a firewall.

This chapter will cover the following topics:

Creating and configuring VNet peering
Creating and configuring a VNet-to-VNet connection
Creating and configuring subnets
Securing critical Azure services with service endpoints
Configuring a naming resolution
Creating and configuring NSG

Technical requirements
To perform exercises from this chapter, you will need the following:

Access to an Azure subscription (which we created in Chapter 1, Getting
Started with Azure Subscriptions)
Azure PowerShell installed on your computer (go to https://docs.microsoft
.com/en-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0 to

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0

install Azure PowerShell)
Azure CLI installed on your computer (go to https://docs.microsoft.com/en-
us/cli/azure/install-azure-cli?view=azure-cli-latest to install Azure CLI)

Creating and configuring VNet
peering
You will often need to physically separate the different components of your
system to achieve the required level of isolation for your particular
components. The reason for this could be to isolate services in your company,
to increase the ease of management, or to partition the system into smaller
and unrelated segments. In cloud infrastructures, you do not have access to
the physical layer of networking—instead, you can use software-based
routers to help you segment your network. The resulting networks do not
exist physically, hence the name virtual networks.

There are moments when you need to connect two isolated VNets. This gives
you many crucial benefits—you can treat the traffic inside the networks as if
it was a single ecosystem. This way, you can preserve the privacy inside the
networks and achieve a low-latency and high-bandwidth connection thanks to
your use of the Azure infrastructure as the backbone. Let's learn how to
configure two VNets so that they are peered with each other (both locally and
globally).

To get started, you will need two VNets created inside your subscription. The
process of creating them is quite simple:

1. The first thing you need here is to search for a virtual network inside
Azure Marketplace:

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Figure 3.1 – Searching for VNets in Azure Marketplace

2. Once you click the Create button, you will see a form, where you will
have to provide all the necessary details related to the new network. To
create a VNet, you will have to provide the following information:

The actual Name of the network
Its Address space (the range of IP addresses from which you can
select the ones for your services)
The Subscription, Resource group, and Location
The default Subnet (which can cover either the whole network or
only a subset of it)

The following figure shows an example of a configuration:

Figure 3.2 – VNet configuration in the Azure portal

The parameters and settings in the preceding figure are described in
the following list:

IP addresses inside a VNet are private.
You have to provide a valid IP range using the CIDR notation. You
can refer to https://azure.microsoft.com/en-us/resources/videos/virtual-net
work-vnet-peering/ for additional information.
Basic DDoS protection is free and integrated into the Azure
platform. If you feel that you need extra safety here, you can go for
the Standard tier; however, you will have to pay extra for that
service.

3. Once you are satisfied with the configuration, you can click on
the Create button to initiate the process of creating a VNet. Duplicate the
preceding steps so that you have two separate networks created inside
your subscription:

Figure 3.3 – Two VNets created in the same resource group

We have two VNets inside the same resource group; however, they do not
know anything about each other. We are also unable to make a connection
from one VNet to another. Let's try to peer them so that they become a single
logical unit.

The process of peering networks is quite simple. There are two ways of doing
this in Azure: you can use the Azure portal or a command line. We will look
at two approaches so that you can decide which one suits your needs best.

https://azure.microsoft.com/en-us/resources/videos/virtual-network-vnet-peering/

The Azure portal

VNets in Azure can be managed using various tools, including the Azure
portal. The fact is that, for some people, the portal is the easiest way to use
Azure, as they are used to graphic tools and the UI really helps them
understand what is going on or how to use a particular feature.

To create a peering (which will allow you to access a network from another
network) from the portal, you can go through the following instructions:

1. In the Settings section, you will find a Peerings blade:

Figure 3.4 – Peerings blade

2. Initially, you should not see any available peering for your network (I
am assuming that you are doing this on a new VNet). To create a new
connection, click on the + Add button:

Figure 3.5 – Creating a peering

3. In the displayed form, you will have to enter all the required information
regarding the connection. Before we dig deeper into the available
options, look at my configuration:

Figure 3.6 – VNet peering configuration

Using the default options should suffice for the most common
scenarios (put simply, scenarios that do not require external
communication or need you to disable external communication);

however, you may want to consider additional options here:

Allow virtual network access: By default, two peered networks can
communicate with each other. With this option, you can change the
behavior so that communication will be disallowed.
Allow forwarded traffic: If you want to allow external
communication (not originating from the peer) to access your
VNet, check this checkbox.
Allow gateway transit: When you want to use VNet gateways, you
can allow the peer to use another peer gateway. With this option,
you have to make sure that the peer does not use a gateway already.
Use remote gateways: This option is the opposite of the previous
one. Use it if you want to use the gateway of the peer.

When everything is set, you can click the OK button and wait until the
peering is created.

Note that the selected options can be altered after the peering is created. If you want to
forbid the communication between VNets later, you will have the option to do so.

Let's now try to use the CLI to do the same operation without accessing the
portal.

The Azure CLI

Another tool that can be used when managing networks is the Azure CLI.
With the Azure CLI, you can basically do everything you could do using the
Azure portal, but this time using a more robust and automation-friendly tool
that can be run on any platform.

To create a peering with the CLI, you will need to use the following
command:

az network vnet peering create [-h] [--verbose] [--debug] [--output {json,jsonc,table,tsv}]

The command is structured in a way that helps us understand its particular
steps. This is why it contains the main category (network), service (vnet),
feature (peering), and action (create). While it is quite rich, you will actually

only need four parameters:

Resource group
VNet name
Name of the peering
The peer resource ID

For the purpose of this exercise, we will create a third VNet
named azureadministrator-euw-vnet3. Here, you can find the full command we
used to create peering between two of my networks. By providing the
following parameters, Azure will connect the two VNets:

--vnet-name: The VNet from which the VNet communication will
originate
--name: The peering name
--remote-vnet-id: The destination VNet

Let's see what the command looks like:

$ az network vnet peering create -g "azureadministrator-euw-rg" --vnet-name "azureadministrator-euw-vnet3" --name "SecondPeering" --remote-vnet-id "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/azureadministrator-euw-vnet2"

Once the peering is created, you will get the following output:

{

 ...,

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/azureadministrator-euw-vnet3/virtualNetworkPeerings/SecondPeering",

 ...

 },

 "remoteVirtualNetwork": {

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/azureadministrator-euw-vnet2",

 ...

 },

 ...

}

The result of running the preceding command (while not mentioned in this
book) will give you the full description of the created resource. It will also
contain the full identifiers of the networks connected. The only challenge
here is to obtain the VNet ID, which is required to complete the operation;
you can obtain it with a single Azure CLI command:

$ az network vnet list

The list of VNets should be presented in a JSON array:

[

 {

 "addressSpace": {

 "addressPrefixes": [

 "10.0.0.0/24"

]

 },

 ...,

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/azureadministrator-euw-vnet2",

 ...

 }

 ...

]

As in the previous command example, here, you will also see the full
description of particular resources (VNets). This time, however, you will see
a full list of them. Of course, if you are interested in the existing peerings,
you can also find them with the CLI:

$ az network vnet peering list --resource-group "azureadministrator-euw-rg" --vnet-name "azureadministrator-euw-vnet3"

Similar to a list of VNets, the list of peerings is presented as a JSON array:

[

 {

 ...,

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/azureadministrator-euw-vnet1/virtualNetworkPeerings/vnets-peering",

 ...,

 "remoteAddressSpace": {

 "addressPrefixes": [

 "10.1.0.0/28"

]

 },

 "remoteVirtualNetwork": {

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/azureadministrator-euw-vnet2",

 ...

 },

 ...

 }

]

With the full description, you will be able to see, for example, what the
second network in the peering configuration is. To make the peering fully
functional, you have to create a connection from vnet1 to vnet2 and vice versa.
Once this configuration is completed, the peering status should change its
value from Initiated to Connected, as shown in the following figure:

Figure 3.7 – Created VNet peering connected to another network

Once two VNets are peered, you can connect to the services provisioned
inside them as if they were a single network. Peering also gives you the
following benefits:

The latency between two VMs hosted inside two peered networks
(assuming they are in the same region) is the same as it would be if
those two VMs were inside a single VNet.
Traffic between peered VNets is routed through the internal Azure
infrastructure. It does not reach the public internet or any kind of a
gateway.
If you want to secure access to a specific VNet or a subnet, you can use
a network security group to achieve that kind of functionality (as
opposed to disallowing communication between networks).
Even if your networks are peered, you can still use the gateway to
connect to the on-premises network.
VNet peering also works for networks that are not in the same region.
This, however, does not guarantee private traffic or low-latency
communication.

To make sure that the connection between our networks is configured
correctly, we deployed two VMs: aa1 and aa2. The former has a private
address of 10.0.0.4 and the latter 10.1.0.4. To test the connection, we use

the ping command:

Figure 3.8 – Result of running the ping with and without VNet peering

As you can see, the first VM sees the second one, even though they are not in
the same VNet. With that VNet feature, you can create a global private
network connecting your services and machines.

By default, ICMP, which is used by ping, is disabled on Azure VMs. To enable it, use
the New-NetFirewallRule –DisplayName “Allow ICMPv4-In” –Protocol ICMPv4 command.

With the peering capability, you can create advanced topologies that contain
networks from different sites and connect multiple services.

You can refer to https://azure.microsoft.com/en-us/resources/videos/virtual-network-vnet-peering/ for
additional information.

Note that one of the most important features of the peering ability is the fact
that you can connect both Azure VNet and on-premise networks. If you do
this, you can leverage the bidirectional communication while still ensuring

https://azure.microsoft.com/en-us/resources/videos/virtual-network-vnet-peering/

that it is kept private.

This section should help you understand what peering between different
VNets involves and how it works. In the next section, you will see an
alternative to peering: VNet-to-VNet connection.

Creating and configuring VNet-to-
VNet connection
When building different computer systems, you often have to encapsulate
them inside different networks so that they are isolated from each other and
possibly from external traffic; however, there are cases when two separate
VNets need to be able to connect so that they can exchange communication.
In the previous section, you implemented a peering between two VNets—this
time, we will show you the other option for integrating them. Knowing an
alternative solution may be helpful, especially with global peering, as there
are some problems with load balancers in that kind of setup; such problems
include being unable to communicate with some services using the frontend
IP of a load balancer if the load balancer used is a basic one.

In this section, we will consider two different options:

VNet-to-VNet connections in the same region
Cross-region VNet-to-VNet connections

To get started, you will have to consider two different setups:

Two VNets in the same region
Two VNets in different regions

We will use the commands in the following sections to prepare our own
environment.

Single region

For the single-region integration method, we need to have at least two VNets
in the same region. To make things simpler, we deploy them to a single
resource group. The creation of all of the required resources can be done via
the following commands from the Azure CLI:

$ az group create -l "West Europe" -n "azureadministratorvnets-euw-rg"

$ az network vnet create -g "azureadministratorvnets-euw-rg" --name "vnet1" --address-prefixes "10.0.0.0/24"

$ az network vnet create -g "azureadministratorvnets-euw-rg" --name "vnet2" --address-prefixes "10.1.0.0/24"

It is important to make sure that the IP ranges do not overlap, as this will
prevent you from continuing with this section. In the preceding code block, I
used two different commands:

az group create: This will create a resource group in a particular region.
 az network vnet: This command will create a VNet with the desired
parameters.

Once you have both the resource group and the networks created, you can
proceed with the configuration.

Multiple regions

The process of preparing the environment is similar to the process that is used
for a single region. You will have a resource group and networks that you
want to connect:

$ az group create -l "West Europe" -n "azureadministratorvnet-euw-rg"

$ az group create -l "North Europe" -n "azureadministratorvnet-eun-rg"

$ az network vnet create -g "azureadministratorvnet-euw-rg" --name "vnet1" --address-prefixes "10.0.0.0/24"

$ az network vnet create -g "azureadministratorvnet-eun-rg" --name "vnet2" --address-prefixes "10.1.0.0/24"

In the preceding code block, I once again used two different commands:

az group create: To create a resource group in separated regions
az network vnet: To create VNets in separated resource groups

Now, with the two separate setups ready, we can try to implement a
connection between them.

Connecting the networks

To connect two different VNets, you will have to create VPN gateways inside
them with public IPs attached. As you can see, this method is completely
different from using VNet peering, where you do not have to provide
additional resources to make things work.

The same resource group

Here, you can find additional commands that are required to create a gateway
for the VNets inside a single resource group:

1. Create subnets in both VNets. Here, we are using the az network vnet
subnet create command to create a subnet with a specific name for our
gateways:

$ az network vnet subnet create --vnet-name "vnet1" -n "GatewaySubnet" -g "azureadministratorvnets-euw-rg" --address-prefix 10.0.0.0/28

$ az network vnet subnet create --vnet-name "vnet2" -n "GatewaySubnet" -g "azureadministratorvnets-euw-rg" --address-prefix 10.1.0.0/28

A gateway subnet name has to be set to GatewaySubnet—if it is set to anything else, the
process of creating a VPN gateway will fail.

2. Once the subnets in both networks are created, we will need public IP
addresses, which will be assigned to gateways. For this, we will use
the az network public-ip create command to pass the VNet and resource
group name and set the allocation method of the IP address to Dynamic so
that we will not have to worry about it later:

Create public IP addresses

$ az network public-ip create -n "vnet1" -g "azureadministratorvnets-euw-rg" --allocation-method Dynamic

$ az network public-ip create -n "vnet2" -g "azureadministratorvnets-euw-rg" --allocation-method Dynamic

3. The last step is to create the actual VPN gateway with the az network vnet-
gateway create command and pass the name of a VNet, the gateway
location, the resource name of the public IP address created in the
previous step, and other gateway-related parameters. Note the --no-
wait switch at the end, which will ensure that the command is executed
asynchronously:

Create the actual gateways in both VNets

$ az network vnet-gateway create -n "vnet1" -l "West Europe" --public-ip-address "vnet1" -g "azureadministratorVNets-euw-rg" --VNet "VNet1" --gateway-type Vpn --sku VpnGw1 --vpn-type RouteBased --no-wait

$ az network vnet-gateway create -n "vnet2" -l "West Europe" --public-ip-address "vnet2" -g "azureadministratorvnets-euw-rg" --vnet "vnet2" --gateway-type Vpn --sku VpnGw1 --vpn-type RouteBased --no-wait

Once all of the preceding commands run successfully, you can check whether
all the resources are provisioned correctly. In the end, you should see a
similar setup to mine:

Figure 3.9 – Resources created for establishing VPN connection

The last step is to create a vnet1 to vnet2 and vnet2 to vnet1 connection. To do
this, you will need the following command:

$ az network vpn-connection create -n "vnet1tovnet2" -g "azureadministratorvnets-euw-rg" --vnet-gateway1 "vnet1" -l "West Europe" --shared-key "qwerty" --vnet-gateway2 "vnet2"

The preceding command creates a connection between two gateways. This is
the moment when the actual magic happens. Without this connection, the two
gateways created during the previous steps will still be unable to process
traffic. The process of creating a connection will take a while, so just be
patient.

The important thing here is to ensure that both connections use the same shared key (the
authorization key that will be used to eventually connect both ends of the connection); if
you fail to provide the same value for both of them, the connection will fail.

When both connections are ready, you can test them using the az network vpn-
connection show command, which should give you a result similar to mine:

$ az network vpn-connection show --name "vnet1tovnet2" --resource-group "azureadministratorVNets-euw-rg"

The result of the preceding command looks like this:

{

 ...,

 "id": "/subscriptions/.../resourceGroups/azureadministratorvnets-euw-rg/providers/Microsoft.Network/connections/vnet1tovnet2",

 ...,

 "virtualNetworkGateway1": {

 "id": "/subscriptions/.../resourceGroups/azureadministratorvnets-euw-rg/providers/Microsoft.Network/virtualNetworkGateways/vnet1",

 "resourceGroup": "azureadministratorvnets-euw-rg"

 },

 "virtualNetworkGateway2": {

 "id": "/subscriptions/...d/resourceGroups/azureadministratorvnets-euw-rg/providers/Microsoft.Network/virtualNetworkGateways/vnet2",

 "resourceGroup": "azureadministratorvnets-euw-rg"

 }

}

The preceding result displays information regarding two VPN gateways that
will be responsible for handling communication between VNets. Let's now
try this again, but for different resource groups.

Different resource groups

Creating a connection between resources, which are not in the same resource
group, will require providing additional information—a full identifier of a
resource, which you will get with the az network vnet-gateway
show command. Let's now create a connection between different regions:

1. We will start by creating two subnets in separate VNets. To do this, we
will use the very same command that we used in the first step of the
previous section. The only difference is that we will use a separate
resource group for the second VNet:

$ az network vnet subnet create --vnet-name "vnet1" -n "GatewaySubnet" -g "azureadministratorvnet-euw-rg" --address-prefix 10.0.0.0/28

$ az network vnet subnet create --vnet-name "vnet2" -n "GatewaySubnet" -g "azureadministratorvnet-eun-rg" --address-prefix 10.1.0.0/28

2. The next step will be to create public IP addresses for the VNets and
deploy the gateways. To learn more about the following command,
consult the previous section, where we went through the same process
for a single resource group:

$ az network public-ip create -n "vnet1" -g "azureadministratorvnet-euw-rg" --allocation-method Dynamic

$ az network public-ip create -n "vnet2" -g "azureadministratorvnet-eun-rg" --allocation-method Dynamic

$ az network vnet-gateway create -n "vnet1" -l "West Europe" --public-ip-address "vnet1" -g "azureadministratorvnet-euw-rg" --vnet "vnet1" --gateway-type Vpn --sku VpnGw1 --vpn-type RouteBased --no-wait

$ az network vnet-gateway create -n "vnet2" -l "North Europe" --public-ip-address "vnet2" -g "azureadministratorvnet-eun-rg" --vnet "vnet2" --gateway-type Vpn --sku VpnGw1 --vpn-type RouteBased --no-wait

3. The last thing we need to do is create a VPN connection (see the
previous section) between both VNets. Note that you have to provide
the --shared-key parameter, which has to be the same for both
connections:

$ az network vpn-connection create -n "vnet1tovnet2" -g "azureadministratorvnet-euw-rg" --vnet-gateway1 "/subscriptions/.../resourceGroups/azureadministratorvnet-euw-rg/providers/Microsoft.Network/virtualNetworkGateways/VNet1" -l "West Europe" --shared-key "qwerty" --vnet-gateway2 "/subscriptions/.../resourceGroups/azureadministratorVNet-eun-rg/providers/Microsoft.Network/virtualNetworkGateways/VNet2"

4. To create the second connection, use the same command with only
the parameters changed (here, we are using the full identifiers instead of
the short names):

$ az network vpn-connection create -n "vnet2tovnet1" -g "azureadministratorvnet-eun-rg" --vnet-gateway1 "/subscriptions/.../resourceGroups/azureadministratorvnet-eun-rg/providers/Microsoft.Network/virtualNetworkGateways/vnet2" -l "West Europe" --shared-key "qwerty" --vnet-gateway2 "/subscriptions/.../resourceGroups/azureadministratorvnet-euw-rg/providers/Microsoft.Network/virtualNetworkGateways/vnet1"

As you can see, the only change here is the need to use the full identifier of a
resource—without it, Azure will have difficulties locating the appropriate
components.

Note that when connecting resources across regions, you will have to pay for the traffic
between the data centers—of course, this is not the case if you are using VNets in the
same location.

When you establish a VNet-to-VNet connection, you are leveraging the
Azure infrastructure, so you do not have to worry about whether your
communication will travel across the public internet. Another advantage is
the fact that you do not need a VPN device to connect the networks, unless
you are creating a connection between premises.

The fact that you have to use a gateway is related to the setup of this solution
—you are connecting two VNets using VPN gateways via a VPN tunnel.
This tunnel uses IPsec/IKE encryption to secure your data, so you do not
have to worry about the security features of the data transmission.

A VNet-to-VNet connection is slightly different than VNet peering, mostly in
terms of the configuration; you cannot, for example, block traffic that does
not originate from the connected VNet (but does goes through it). One more
thing to remember here is the fact that with that type of VNet connection, you
must use route-based VPNs—any other type will not work in that scenario.

In the preceding examples, we did not use DNS for resolving the names of
the resources hosted inside the VNets. Therefore, if you want to find a
specific resource, you have to use its IP address. This documentation at https:
//docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-

vms-and-role-instances describes how to configure the name resolution for Azure
VNets so that you can implement real names to your services so that they are
easier to discover and access.

Using a VNet-to-VNet connection is another way to enhance connectivity
between your services or elements of infrastructure. Until now, we have been
working mostly with VNets and have not covered the more detailed features
of that service. In the next section, you will learn more about subnets and
service connections, which will help segment and secure your services even
more.

Creating and configuring subnets
In the previous topics, we mostly handled VNets and their features. Of
course, each VNet in Azure can be divided into separate subnets that leverage
the address space of the whole network. Whether you use subnets is
completely up to you; it is perfectly fine to use a network that does not use
them to isolate the different components of your system.

However, in most cases, you will want to create an extra separation so that
you can clearly know which subsystem a particular component belongs to.
These scenarios often involve several web applications that have to be
segmented inside the same VNet so that they can connect to each other while
remaining in isolated parts of the network. Such subnets may include
additional resources so that you have an architecture of a network inside a
network. We will now learn how you can use subnetworks in Azure VNets
for your needs.

To get started, you will need a VNet that can be divided into subnets.

Creating a VNet

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-instances

Creating a VNet using the Azure CLI is really simple, as it only requires you
to provide its name and resource group:

$ az network vnet create -g "azureadministrator-euw-rg" -n "vnetforsubnets"

Once you are ready, we can start adding new subnets to it. Of course, it is
possible to create a subnet during the creation of a VNet. All you need to do
is use additional parameters:

$ az network vnet create -g "azureadministrator-euw-rg" -n "vnetforsubnetswithsubnet" --subnet-name "FirstSubnet" --subnet-prefix "10.0.0.0/29"

In the preceding command, we used the following parameters:

-g: Resource group name
-n: VNet name
--subnet-name: Name of the subnet created
--subnet-prefix: Available address space for a subnet

Remember that in Azure, all the subnets use CIDR to declare the available address space.
In the preceding example, we declared that our subnet will contain eight available
addresses using the 10.0.0.0/29 prefix.

In the preceding example, I will have a new VNet created with a subnet
named FirstSubnet already added to it.

Creating a subnet

When you have created your VNet, you can manage and create its subnets
with the following command:

az network vnet subnet

When using the Azure portal, you can also create a specific type of a VNet called a
gateway subnet. This kind of subnet is designed particularly for VPN gateways, which
you used in the Creating and configuring a VNet-to-VNet connection section.

To create a new subnet, use the following command:

$ az network vnet subnet create -g "azureadministrator-euw-rg" --vnet-name "vnetforsubnets" -n "Subnet1" --address-prefix "10.0.0.1/29"

The preceding command contains two important parameters:

--vnet-name: Identifies the VNet in which a subnet will be created.

--address-prefix: The address space of a subnet presented as CIDR block.

In the case that any errors are found, Azure will tell you what needs to be
fixed before attempting to create it again. The preceding command is quite
simple, but of course, it has much wider capabilities—you can see all the
possible parameters at https://docs.microsoft.com/en-us/cli/azure/network/vnet/subne
t?view=azure-cli-latest.

Here, we are using the Azure CLI to create our VNet subnet, but no matter
what tool you use, you will get access to the same functionality. The
following list contains descriptions of several additional features that can be
configured via additional parameters:

NSGs: Network security groups, which you can treat as firewalls (see
the --network-security-group parameters in the Azure CLI).
Route tables: These describe exactly how particular requests are
routed (see the --route-table parameters in the Azure CLI).
Service endpoints: These help to secure various Azure services by
providing secure tunnels for their connections (see the --service-endpoints
parameters in the Azure CLI).
Subnet delegation: Allows you to designate this particular subnet to
one or a set of Azure services for better network policies or routes
filtering.

Some of the preceding features will be described in the following sections of
this chapter. For now, I would like you to focus on one specific element—the
address range. As you can see, the portal displays the available range of
addresses, which you will be able to use once a subnet is created. The
important thing here is the fact that Azure reserves five addresses for itself.
This means that you will be unable to use the following blocks:

/32

/31

/30

The reason for this is the fact that you need at least six addresses available in
your address space to make a subnet functional. In the preceding list, you will

https://docs.microsoft.com/en-us/cli/azure/network/vnet/subnet?view=azure-cli-latest

be able to use at least four addresses (using the /30 suffix), which cannot work
when Azure needs at least five of them for its resources and services. Let's
now learn about the configuration of a subnet.

Understanding subnet configuration

When you are done with dividing your VNets, you can list all the subnets
using the following Azure CLI command. You will have to use two particular
parameters to get the result, the resource group name and the VNet name:

$ az network vnet subnet list --resource-group "azureadministrator-euw-rg" --vnet-name "vnetforsubnets"

The result of listing the available subnets should look similar to the following
output:

[

 {

 "addressPrefix": "10.0.0.0/29",

 "etag": "W/\"52664431-6d97-4098-9baa-f085738b1425\"",

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/vnetforsubnets/subnets/Subnet1",

 "ipConfigurations": null,

 "name": "Subnet1",

 "networkSecurityGroup": null,

 "provisioningState": "Succeeded",

 "resourceGroup": "azureadministrator-euw-rg",

 "resourceNavigationLinks": null,

 "routeTable": null,

 "serviceEndpoints": null,

 "type": "Microsoft.Network/virtualNetworks/subnets"

 }

]

The preceding output includes a list of subnets containing information such
as its current state, the route table that is attached to it, or service endpoints,
which are described later. When a subnet is created, it is not yet in use. This
means that you are allowed to change its address range. For example, I can
modify the available range for the previously created subnet by using the az
network subnet update command with the following parameters:

$ az network vnet subnet update --resource-group "azureadministrator-euw-rg" --vnet-name "vnetforsubnets" --name "Subnet1" --address-prefix "10.0.0.0/28"

The result of running the preceding command will be as follows. Note the
change in the addressPrefix field:

{

 "addressPrefix": "10.0.0.0/28",

 "etag": "W/\"a2b885de-840f-4a45-8b23-be8be7619d07\"",

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/vnetforsubnets/subnets/Subnet1",

 "ipConfigurations": null,

 "name": "Subnet1",

 "networkSecurityGroup": null,

 "provisioningState": "Succeeded",

 "resourceGroup": "azureadministrator-euw-rg",

 "resourceNavigationLinks": null,

 "routeTable": null,

 "serviceEndpoints": null,

 "type": "Microsoft.Network/virtualNetworks/subnets"

}

On the other hand, if you have a subnet that is in use (one of the cases is the
use of a VPN gateway), you will not be allowed to change it:

Figure 3.10 – Subnet blocked from being modified

Another thing to remember is the fact that subnets cannot overlap (in terms of
address spaces). Let's assume that you want to create a new subnet with
another one already created. The current subnet has an address range that is
declared as 10.0.0.0/28 and you want to create a new one with an address
range defined as 10.0.0.0/29:

$ az network vnet subnet create -g "azureadministrator-euw-rg" --vnet-name "vnetforsubnets" -n "Subnet2" --address-prefix "10.0.0.0/29"

Subnet 'Subnet2' is not valid in virtual network 'vnetforsubnets'.

Of course, such an action is not allowed in Azure, as this would mean that it
would be impossible to decide where a particular IP address belongs. In this
case, you would have to modify the address range like this:

$ az network vnet subnet create -g "azureadministrator-euw-rg" --vnet-name "vnetforsubnets" -n "Subnet2" --address-prefix "10.0.1.0/29"

Note that you can modify an addess range of a subnet by using the az network vnet subnet
create command.

The result of running the preceding command is as follows (see the previous
paragraphs for an explanation):

{

 "addressPrefix": "10.0.1.0/29",

 "etag": "W/\"91d591c7-0cd0-4f08-99c3-77f8e43e8d11\"",

 "id": "/subscriptions/.../resourceGroups/azureadministrator-euw-rg/providers/Microsoft.Network/virtualNetworks/vnetforsubnets/subnets/Subnet2",

 "ipConfigurations": null,

 "name": "Subnet2",

 "networkSecurityGroup": null,

 "provisioningState": "Succeeded",

 "resourceGroup": "azureadministrator-euw-rg",

 "resourceNavigationLinks": null,

 "routeTable": null,

 "serviceEndpoints": null,

 "type": "Microsoft.Network/virtualNetworks/subnets"

}

The rule of a thumb here is to configure as much as you can during the creation of the
subnet. Once it is defined, things such as the address range of NSGs will be blocked, and
we will have to recreate it to introduce the changes.

If you want to find out more details regarding subnets in Azure VNets, you
can refer to https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-vn
et-plan-design-arm to plan your VNet design. The important thing to understand
here is the CIDR notation and how it reflects the underlying address range.

You can refer to https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-manage-subnet#create
-subnet for more information on how to manage the subnets.

Subnets are another important feature in networking as they allow you to
divide a particular naming address space into more granular logical
components that can hide various services. As the features that we have
discussed cover mainly infrastructure, and Azure contains many platform
components that are not managed by you, the next topic we will discuss will
be service endpoints. This feature grants better security in terms of
connection by closing the public endpoint of a PaaS.

Securing critical Azure services
with service endpoints

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-vnet-plan-design-arm
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-manage-subnet#create-subnet

In Azure, most PaaS services are accessible using their public IPv4 addresses.
This works perfectly well for all systems that are intended to be public, but of
course, that is not always the case. Fortunately, Azure VNets give you the
option to configure a service endpoint, a special kind of endpoint that
switches an IP address that is used by a service from a public to a private one.

In this section, you will learn how to configure those endpoints in your VNets
so that you can encapsulate your services and protect them from unauthorized
access.

Creating a VNet and Azure Storage account

To get started, we will need a resource group with a VNet created inside it.
To do this, you can use the following PowerShell or CLI command:

PowerShell: New-AzureRmVirtualNetwork -ResourceGroupName myResourceGroup -
Location location -Name myVirtualNetwork -AddressPrefix 10.0.0.0/16

CLI: az network vnet create -g myResourceGroup -n vnetName

The next thing that we need here is a subnet, which will contain an endpoint.
To create it, you can once again use a PowerShell or CLI command:

PowerShell: New-AzureRmVirtualNetworkSubnetConfig
CLI: az network subnet create

In this section, we will try to configure an endpoint for Azure Storage. To
create a new account, you will need the following PowerShell command (if
you do not have Azure PowerShell installed, go to https://docs.microsoft.com/en-
us/powershell/azure/install-az-ps-msi?view=azps-3.0.0):

PS C:\> New-AzStorageAccount

cmdlet New-AzureRmStorageAccount at command pipeline position 1

Supply values for the following parameters:

(Type !? for Help.)

ResourceGroupName: myResourceGroup

Name: accountName

SkuName: Standard_LRS|Standard_ZRS|Standard_GRS|Standard_RAGRS|Premium_LRS

Location: location

Note that passing no parameters results in PowerShell asking you to provide

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps-msi?view=azps-3.0.0

them. The same can be done with the Azure CLI using a slightly different
syntax:

az storage account create -g myResourceGroup -n accountName

Let's assume that I created an account with the name serviceendpoint123. Its
primary endpoints will be as follows:

"primaryEndpoints": {

 "blob": "https://serviceendpoint123.blob.core.windows.net/",

 "file": "https://serviceendpoint123.file.core.windows.net/",

 "queue": "https://serviceendpoint123.queue.core.windows.net/",

 "table": "https://serviceendpoint123.table.core.windows.net/"

 }

As you can see, each endpoint is an address that is available via HTTPS, which
can be used to connect with a specific service. They are all available via the
public internet (you can try to ping any of them so you can see whether they
respond). Now we will try to hide them inside a VNet.

Creating a service endpoint

 To add an endpoint in the Azure portal, you can go through the following
steps:

1. Go to your VNet and search for the Service endpoints blade:

Figure 3.11 – Service endpoints blade

2. You will see an empty list of available endpoints added to this particular
VNet. Now, when you click on the + Add button, you will see a new
window, where you can provide the following parameters:

A Service, which you would like to create an endpoint for
Subnets, which you would like to use here:

Figure 3.12 – Creating a service endpoint

3. Let's now click the Add button at the bottom of the window. After a
moment, you will see an endpoint created, which we can further
configure:

Figure 3.13 – Service endpoint created within a VNet

Now, when an endpoint is created, we can try to configure it.

Configuring a service endpoint

When you click on the three dots to the right of the created endpoint, you will
see an option to configure VNet with a storage account (Configure virtual
networ...):

Figure 3.14 – Integrating a storage account with VNet

When you click on it, you will see a list of available storage accounts, which

you can integrate with this particular VNet:

Figure 3.15 – Available storage accounts

What you need to do now is click on the account of your choice and search
for the Firewalls and virtual networks blade:

Figure 3.16 – Firewalls and VNets blade

By default, a storage account will accept all incoming traffic; however, if you
change the Allow access from radio button value to Selected networks, you
will be able to configure a VNet, which can use it and communicate with it.
You can see my configuration in the following figure:

Figure 3.17 – Configuring a service connection for the storage account

Once the changes are saved, the service endpoint configuration is finished.
We can now compare the results of our security measures; if we either
disable the endpoint or allow our IP address to access it, we will get the
following result when listing all the tables inside an account:

$ az storage table list --account-name serviceendpoint123

When security is disabled, you should see no errors displayed:

[]

Now, with endpoint security enabled, the result is completely different:

$ az storage table list --account-name serviceendpoint123

Forbidden

{"odata.error":{"code":"AuthorizationFailure","message":{"lang":"en-US","value":"This request is not authorized to perform this operation.\nRequestId:5381bd05-1002-00a7-3115-d5e87a000000\nTime:2019-03-07T18:45:10.1293559Z"}}}

As you can see, the traffic from the public internet is completely shut down.
The same will be true for the machines and services inside a configured VNet
—if you allow them, they will be able to access this particular storage
account (or any other service that supports service endpoints in VNets).

Service endpoints are a must-have if your system cannot access the public
internet; otherwise, your services will not be accessible outside of a network.
When using IaaS components, such functionality is much easier to achieve
(thanks to load balancers and security groups); when using only PaaS
components, things are much more difficult without using the endpoints.

The important thing to remember here is the fact that while enabling a service
endpoint, any existing TCP connections are disconnected—this is especially
important if you are running a critical job during the switch. Even if a service
endpoint is enabled, the DNS entries of Azure service are intact—you will
still be able to ping the service, but you will not be allowed to access it.

The last thing to mention here is the service endpoint policies—this is an
extra feature (currently only available for Azure Storage) that gives you the
option to filter the outbound traffic from a VNet to only particular Azure
services. This was not possible when only using service endpoints (as they
allow you to connect to an Azure service) and was addressed with the
policies. You can refer to https://docs.microsoft.com/en-us/azure/virtual-network/vi
rtual-network-service-endpoint-policies-overview for more information on service
endpoints policies.

In many environments, having a PaaS component exposed to the public
internet is a violation of compliance rules, and so you will not be allowed to
use many managed services. With service endpoints, you can overcome this
problem by excluding public IP addresses and communicating with services
securely. The next section covers DNS zones in Azure, which help in
improving discoverability and ease service management by providing human-
friendly addresses to your applications.

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoint-policies-overview

Configuring a naming resolutions
In Azure, you are able to create your own hosting service for DNS domains.
With Azure DNS, you will able to host your domains for record management
and integrate them with your VNets. In this section, we will cover two things:
creating an instance of Azure DNS and configuring a VNet to use it for
resolving names.

Azure DNS is a service that is based on the Azure Resource Manager. This
gives you benefits such as role-based access control (RBAC), the ability to
audit all activities, and the ability to lock it so that no one can remove it
without permission. This also means that you can create it using standard
tools such as the Azure portal or the Azure CLI. When it comes to the CLI,
the command you will be looking for will be as follows:

az network dns zone

The same can be achieved with Azure PowerShell, as shown in the following
code:

New-AzDnsZone

As you can see from the preceding code, what you need here is a DNS zone,
which is used to host DNS records. Without it, you will not be able to
configure the service. Zones, however, have some limitations:

They must be unique within the resource group.
If you want to delegate a domain to Azure DNS, you have to own it.
If you have multiple DNS zones that share the same name, they will be
assigned differently named server addresses.

Let's try to create the service and configure it with our VNet.

Creating a DNS zone

Creating a DNS zone is quite a simple process that you can learn by going

through the following steps:

1. To create a DNS zone, run the following command. It is a pretty simple
one as it only requires you to pass the resource group name and the zone
name:

$ az network dns zone create -g myResourceGroup -n zoneName

2. The result will be similar to the following output. Besides the common
fields, it will contain the name servers, which is important if you want to
register a specific domain for that zone:

{

 "id": "...",

 "location": "global",

 "maxNumberOfRecordSets": 5000,

 "name": "azureadministrator.com",

 "nameServers": [

 "ns1-06.azure-dns.com.",

 ...

],

 "resourceGroup": "azureadministrator-euw-rg",

 "type": "Microsoft.Network/dnszones",

 "zoneType": "Public"

}

3. In my particular case, I used azureadministrator.com as my domain name
(which is reflected in the name property in the result). As you can see,
there are four different named servers assigned that you can use for your
purposes:

"nameServers": [

 "ns1-06.azure-dns.com.",

 "ns2-06.azure-dns.net.",

 "ns3-06.azure-dns.org.",

 "ns4-06.azure-dns.info."

]

4. Once a DNS service is created, you can create a new record that will
point to an IP address. Here, you have an example of a record
configuration in the portal. By using az network dns record-set a add-
record, you will create a new DNS A record, which is an address record and
maps a domain to an IP address:

az network dns record-set a add-record --resource-group <your-resource-group> --zone-name my-domain.com --record-set-name www --ipv4-address 10.0.01

5. Once the record is set, you can see it on the list of available DNS
records in your Azure DNS instance, which is accessible, for example,
via the following command:

$ az network dns record-set list -g myResourceGroup -z zoneName

As you can see, you are allowed to configure a DNS record that points to a
specific IP address. This is, of course, a way to configure a naming resolution
for a particular VNet, as you can add names that can be resolved, for
example, to specific VM addresses.

Configuring the DNS within a VNet

When you have domains configured inside your DNS service, you can
reconfigure VNet to leverage its configuration. When you go to your VNet in
the portal, you will see a DNS servers blade:

Figure 3.18 – DNS servers blade

Initially, a VNet uses the Azure-provide servers to translate names. Here, you
can change this setting so that you will be able to provide your very own
server with a custom configuration.

You do not need to use Azure DNS here—in fact, you can use any kind of DNS server that
is available over the internet.

To obtain the IP address of your Azure DNS instance, you can simply ping it.
Look at the following output for the az network dns zone create command from
the previous section for the name server address:

$ ping ns1-06.azure-dns.com

The result of running the ping command for the given DNS address is as
follows:

Pinging ns1-06.azure-dns.com [40.90.4.6] with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 40.90.4.6:

 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

The final configuration looks like this:

Figure 3.19 – Configured DNS server
Remember that if you change the DNS for the VNet, all the VMs inside it will have to be
restarted to fetch the new configuration.

In the preceding example, we set only a single DNS server. Make sure
that you have different servers configured in your production environments
so that the names can be still resolved if there are any problems.

In this section, we only covered a simple scenario of integrating the Azure
DNS service with your VNet; however, the service itself has much greater
capabilities—you can implement name resolution across multiple VNets, use

the split-horizon functionality, or delegate domains. The following are links
to the full documentation of the service, which you can use to extend your
knowledge and implement more advanced scenarios:

Name resolution for resources in Azure VNets: https://docs.microsoft.c
om/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-

instances

Azure DNS: https://docs.microsoft.com/en-us/azure/dns/

With a naming resolution configured, you can much more easily route traffic
without the need to keep the IP tables. Azure DNS zones are also a great way
to automate domain assignment; this is especially valuable in a microservices
ecosystem where you dynamically deploy and configure various services. In
the next section, you will learn how you can configure a software firewall
called a network security group.

Creating and configuring network
security groups (NSGs)
In a typical computer system, you always want to create rules that determine
who (or what) is allowed to access them. When using VMs, you will often
leverage the capabilities of firewall software, which is provided with the
system (or bought from an external vendor). Such a solution applies to a VM
only—it does not forbid access to the whole network.

In Azure, you can use the concept of network security groups. They allow
you to filter both the inbound and outbound traffic using custom rules,
including protocols or the port range. In this section, you will learn how to
extend the security of your VNets with NSGs and combine them to achieve
an advanced filter.

Creating a VNet with a subnet

To get started, we will need a VNet with a subnet created. You need a subnet

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-instances
https://docs.microsoft.com/en-us/azure/dns/

because NSGs are applied on the subnet level. To create a VNet with a
subnet, you can use the following Azure CLI or PowerShell commands.

You can use the following commands in the CLI (see the Creating and
configuring VNet-to-VNet connection section for reference):

$ az network vnet create -g myResourceGroup -n vnetName

$ az network vnet subnet create -g myResourceGroup --vnet-name vnetName -n subnetName --address-prefixes 10.0.0.0/16

Alternatively, you can use the following commands in PowerShell. They use
the same parameters as the Azure CLI command—the only difference is the
syntax:

$vnet = New-AzVirtualNetwork -AddressPrefix 10.0.0.0/16 -Location location -Name vnetName -ResourceGroupName myResourceGroup

Add-AzVirtualNetworkSubnetConfig -AddressPrefix 10.0.0.0/16 -Name subnetname-VirtualNetwork $vnet

Remember that you are not allowed to create a network security group if a subnet is a
gateway subnet.

Once both the VNet and subnet are created, we are ready to create an NSG
for them.

Adding an NSG to a subnet

Let's now learn how we can add an NSG to a subnet. To do so, go through the
following steps:

1. Go to your VNet and click on the Subnets blade. You should be able to
see the subnet that you have just created:

Figure 3.20 – List of created subnets

2. When you click on it, you will see its current configuration. From this
screen, you can either change the address range or add a service
endpoint; however, we are interested in one particular feature here:
the Network Security Group section. When you click on it, you will be
able to select an existing NSG. Because there are currently none
available, we have to create one:

Figure 3.21 – Blank network security group configuration

3. To add an NSG to the Azure portal, you have to go to the marketplace
and search for network security group:

Figure 3.22 – Adding a network security group

4. The form to configure the service is really simple—you are only
required to provide basic information, such as the name of the group, the
resource group, and the resource's location. Once you are satisfied with
your configuration, click on the Create button:

Figure 3.23 – Configuring an NSG

5. To add an NSG to a subnet, you have to go back to the previous screen
with a subnet configuration and select the group you have just created:

Figure 3.24 – Selecting a created network security group

Of course, the same result can be achieved with the Azure CLI. To create a
network security group, you have to run the following command:

$ az network nsg create -g myResourceGroup -n nsgName

The last alternative is Azure PowerShell. Like the previous examples, all you
need is a single command. Here, we are creating an empty NSG with a
specific location and resource name inside a particular resource group:

New-AzureRmNetworkSecurityGroup -Location westeurope -Name powershellnsg-euw-nsg -ResourceGroupName azureadministrator-euw-rg

Now we have an NSG created and attached to a subnet. How about some
security rules that will make our network more secure?

Reviewing NSG rules

When an NSG is created, it contains a set of default rules that completely
shut down the inbound and outbound traffic:

Figure 3.25 – Default security rules

The current setup can be read as follows:

It allows for any inbound traffic that originates in the VNet and ends in
the VNet (see the SOURCE and DESTINATION columns).
It allows for any inbound traffic that accesses a load balancer first (see
the SOURCE column).

It denies any traffic that does not fulfill the preceding inbound rules (the
lowest priority rule—65500).
It allows for outbound traffic inside the network.
It allows any resource in the VNet to access the internet (see
DESTINATION column).
It denies any outbound traffic that does not meet the preceding outbound
rules (the lowest priority rule—65500).

You should see the preceding result when you access your NSG in the portal.
In fact, a similar result is displayed when creating a security group via the
CLI:

$ az network nsg create -g azureadministrator-euw-rg -n clinsg-euw-nsg

{

 "NewNSG": {

 "defaultSecurityRules": [

 {

 "access": "Allow",

 "description": "Allow inbound traffic from all VMs in VNet",

 "destinationAddressPrefix": "VirtualNetwork",

 ...

 "name": "AllowVNetInBound",

 "priority": 65000,

 "protocol": "*",

 "provisioningState": "Succeeded",

 "sourceAddressPrefix": "VirtualNetwork",

 "sourceAddressPrefixes": [],

 "sourceApplicationSecurityGroups": null,

 "sourcePortRange": "*",

 "sourcePortRanges": [],

 "type": "Microsoft.Network/networkSecurityGroups/defaultSecurityRules"

 },

 ...

]

 }

}

As you can see, each rule is built from the following parameters:

priority: Describes in what order the rules are applied
name: The name of the rule
port: To what port the rule applies
protocol: To what protocol the rule applies

source: What source of traffic to apply this rule to
destination: What traffic destination will be covered by this rule
action: What action should be taken

Always try to leave some space between particular priorities. Doing so will make the
management activities much easier, as you will be able to easily add a new rule in
between them later.

As you can see, an NSG is a set of rules that are executed in a particular
order. To be more specific, the higher number is assigned to the Priority field
value, decreasing in value as the rules' priorities decrease. With this in mind,
let's look at the following rules:

Rule 1: Priority 1000
Rule 2: Priority 2000

From this, we can tell that Rule 1 is more important than Rule 2. Now that
you are familiar with the basics, we can now proceed to learn how to create

new rules for NSGs.

Adding an NSG rule

To add an inbound or an outbound rule, you can use either the portal, CLI, or
PowerShell. In the portal, the configuration is available via the following
blade:

Figure 3.26 – Inbound security rules blade

For the Azure CLI, you can use the following command (in the following
example, we opened port 3389 for the RDP activities on Windows):

$ az network nsg rule create -g azureadministrator-euw-rg --nsg-name myfirstnsg-euw-nsg -n AllowRDP --priority 1000 --access Allow --direction Inbound --source-port-ranges 3389 --destination-port-ranges 3389

The preceding command creates a new rule with priority 1000, allowing
inbound access on port 3389 to port 3389. For Azure PowerShell, you will have
to use the New-AzureRmNetworkSecurityRuleConfig command:

Figure 3.27 – Cmdlet details shown in the PowerShell ISE

As you can see, there are many different parameters available to be set—you
can prepare very detailed rules that combine different protocols, port ranges,
and directions (see https://docs.microsoft.com/en-us/powershell/module/az.network/new
-aznetworksecurityruleconfig?view=azps-3.7.0 for more information). This is where
NSGs really shine—you can easily steer your VNet and decide what is and
what is not allowed.

A single NSG can be associated with different subnets. This enables you to reuse
functionality among different parts of your network.

In this section, we have covered the basic configuration of NSGs and their
association with subnets; however, the whole concept of security groups is
much more complex; for example, you can use service tags, which group a
set of IP addresses managed by Microsoft to ease the creation of an NSG (so
you can use the SQL term instead of an IP range to allow only outbound
traffic to use Azure SQL services). You can also leverage network
interfaces to enable security on particular VMs.

You can refer to https://docs.microsoft.com/en-us/azure/virtual-network/security-ove
rview for additional information about NSGs, which will help you understand
the feature in great detail, enabling you to implement more advanced
scenarios.

Summary
In this chapter, we learned about how to create and configure VNet peering,
VNet-to-VNet connections, and subnets. We then learned about how to
secure critical Azure services with service endpoints. We also learned how to
configure a naming resolution. At the end of the chapter, we learned how to
create and configure network security groups. You should now be able to
create basic and intermediate setups, including separate VNets, which have to
connect with each other. With NSGs, you will able to decide what type of
connection and ports are available for communication (in the same way that
you would configure a firewall in an operating system).

https://docs.microsoft.com/en-us/powershell/module/az.network/new-aznetworksecurityruleconfig?view=azps-3.7.0
https://docs.microsoft.com/en-us/azure/virtual-network/security-overview

In the next chapter, we will cover identity management, which is another
important topic when training to be an Azure administrator. As the cloud
contains resources, applications, and identities, you will have to understand
how to manage users, handle permissions, and secure your catalog so that
everything is authenticated and authorized according to business and
technical requirements.

Section 2: Identity and Access
Management

This section will help you manage Azure identities and configure access for
users – the bread and butter of all Azure administrators. In this section, we
will cover the basics regarding users, groups, and roles.

This section consists of the following chapters:

Chapter 4, Identity Management
Chapter 5, Access Management
Chapter 6, Managing Virtual Machines

Identity Management
To easily and correctly manage resources in Azure, you have to find a way to
provide proper identity management in the cloud. By using Azure Active
Directory, you can handle the identity and security for your users with ease.
This chapter is designed to allow you to find solutions to many common
problems, such as managing groups and registering service principals for
applications. In this chapter, we will begin by creating users in Azure AD.
We will also learn how to assign a user to a role and register an application in
Azure AD. Then, we will learn how to create and manage groups, followed
by managing directory roles, along with monitoring and auditing users.
Finally, we will learn how to enable MFA authentication.

In this chapter, we will cover the following topics:

Creating users in Azure AD
Assigning a user to a role
Registering an application in Azure AD
Creating groups
Managing groups
Managing directory roles
Monitoring and auditing users
Enabling MFA authentication
Securing an Azure Service Fabric cluster

Let's get started!

Technical requirements
To complete the exercises in this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)
Azure PowerShell installed: https://docs.microsoft.com/en-us/powershell/azure
/?view=azps-4.3.0

https://docs.microsoft.com/en-us/powershell/azure/?view=azps-4.3.0

The Azure CLI installed: https://docs.microsoft.com/en-us/cli/azure/install-a
zure-cli?view=azure-cli-latest

Creating users in Azure AD
When using Azure subscriptions, you need a way to let other people access
them and work with them. When a subscription is created, you automatically
have access to an Azure AD directory, which handles identity functionalities
such as authentication, access management, and security features (including
MFA, conditional access, and service principals). In this section, you will
learn the basics of user management, including the differences between the
directory and guest users.

Before we get started, there is one topic that is really important from a user
management perspective – tenants. When you create an Azure subscription,
an Azure AD tenant is created along with it, with your account attached as
the global administrator. You can think of a tenant as a catalogue of users
inside an organization. Each Azure subscription is linked to a single tenant.
This is a one-to-many relationship (one tenant, multiple subscriptions).

The confusion often comes with personal and work/school accounts being
used for authentication. Note that you can have two accounts (one that's
personal and one that's for work/school) identified by the same email address,
but pointing to different tenants (and, by extension, different subscriptions).
Some people accidentally create their personal account inside the company's
tenant or vice versa. This may impact what is available to them, including
prepaid subscriptions, which may be linked to their work accounts only.

Getting started with user creation

To get started, you will have to access the Azure AD service in the portal.
Once you're logged in, follow these steps:

1. Log into your subscription and search for Azure Active Directory using the
search box at the top of the page:

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Figure 4.1 - Searching for the Azure Active Directory blade

2. You will see an Azure AD blade, from where you have access to
multiple different features of the service. As this section focuses on
managing users, let's go directly to the Users blade, which can be found
in the Manage section. When you access it, you will see a new screen,
where you will be able to manage users inside your directory:

Figure 4.2 - Users within a directory

3. Before we proceed, I would like you to take note of two available
buttons:

+ New user
+ New guest user

As you can see, when creating a new user, you will have to choose whether
you want to create a directory or a guest user. There are some major
differences between these two types of users:

A directory user is configured using the provided parameters during its
creation. This includes its profile, properties, groups, or a directory role.
As the user's username has to be in the something@domain.com format, you
cannot use any username you want. You are forced to use a verified

domain for your directory. On the other hand, by creating a directory
user, you can assign it any role you want.
A guest user (sometimes referred to as a partner user) is a user that
comes from an external directory. This includes an external Azure AD
tenant or, for example, a Microsoft Account. When a guest user is
created, an invitation is sent to an email address provided during user
creation. Once the invitation is accepted, a user is created inside your
directory.

Now that you are familiar with the differences between the different types of
users, we can try to create them.

Creating a user in an Azure Active Directory tenant

While users can be created in a number of ways, we will focus on using the
Azure portal to do so so that we can focus on things that are available to an
Azure administrator. We will start by creating a directory user. To do so,
follow these steps:

1. Click on the + New user button:

Figure 4.3 - The + New user button

You will see a form where you can provide user information. A filled-
in form may look like this:

Figure. 4.4 - Configuring a user

What you can see in the preceding screenshot is the most basic
configuration you can create. Let's talk about these in more detail:

Name: The name and surname of the user.
User name: By using this value, a user will be able to sign into the
directory.
Profile: By filling in these fields, you can add some more
information about the user, such as their department or role.

Groups: If you have created a group, you can assign a user to it. We
will cover groups in the upcoming section as they are the easiest
way to effectively manage access to resources.
Directory role: By default, you can create a typical user. By
changing the value of this field, you can create users with different
roles (global and limited administrators) who have much more
control over the directory.

2. The next thing here is the password, which is generated automatically.
Once a user has been created, they will have to change the password.
When you are ready, you can click on the Create button to initiate this
process. After a few seconds, you should be able to see the user on the
list:

Figure 4.5 - Created user within a tenant

Now, anyone can sign into the directory using the username and password
that was generated. With that, we have succeeded in creating a directory user.
Now, we will try to compare this with the process of creating a guest user.

Creating a guest user

In this section, we will learn how to create a guest user. Follow these steps:

1. To get started, you will need to click on the + New guest user button.
You will see a screen that's quite different from the one for creating an
Azure Active Directory tenant:

Figure 4.6 - Creating a new guest user

As you can see, now, you only have two fields to provide – an email
address, where an invitation will be sent, and the optional message to
a user. Here is what an invitation will look like:

Figure 4.7 - Invitation email for Azure AD

2. When you click on the Get Started button, you will be asked to sign into
your Microsoft Account (or an external Azure AD).

With a guest user, you can send an invitation to any email address provider
(such as Gmail), but still, you will have to use a limited set of identity
providers to sign into the directory.

Describing the user creation process

Since, internally, the process of user creation is quite complicated, let's stop
for a moment and describe it. We can separate the process of creating it into
the following steps:

1. A user is created by an administrator or is invited if it is a guest user.
2. A user record is created inside a tenant containing all the information

that was configured in the previous step.
3. Optionally, if a user comes from another tenant, an invitation email is

sent containing a link for account activation.

Even if a user has not logged in yet, you still will be able to alter its record
and assign different directory roles. The important distinction here is the
concept of local and guest accounts – they offer a completely different feeling
from an administrator perspective as they are covered by a different set of
rules (for example, guest accounts are limited when it comes to giving access
to a directory in terms of possible permissions).

Note that, by default, all local usernames have to follow the following naming
convention: ;username;@;tenantname;.onmicrosoft.com. To use a custom domain, you will have to
register a domain you own and verify it against your tenant. Instructions for doing so can
be found here: https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/add-custom-domain.

When a user is created in your tenant, a variety of actions are performed
under the hood, including the following:

User records are created inside Azure Active Directory databases.
Its accounts are synchronized with additional services such as Office
365 or your on-premises environments.
Its account is linked with groups or roles so that the appropriate access is
given to it.

The important thing here is the optional possibility to synchronize an account

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/add-custom-domain

that's been created in Azure Active Directory with your on-premises Active
Directory controllers. With this feature, you can automatically create users in
the cloud and vice versa, thus saving your management tasks.

Depending on your needs, you will have to use either a directory user or a
guest user. Guest users are often used in B2B scenarios where you have
external collaborators or partners who would like to access your directory,
but they have to be treated differently. Of course, there is still a possibility to
turn off the guest user limitations (if, for any reason, you want to give a user
full access to the directory).

When these limitations are on, guest users cannot, for example, create
application registrations. If you are an Azure administrator, you will often use
the Azure AD service for additional things such as automating user
provisioning between the cloud and on-premises environments or to meet any
security requirements (such as two-factor authentication).

Azure Active Directory is quite an advanced service and is crucial for your
subscription to work. It gives you the ability to configure access for your
users and determine how they can use Azure services. In the following
sections, you will learn about more advanced scenarios such as managing
groups and roles or enabling MFA. Don't forget to check the following links:

 https://docs.microsoft.com/en-us/azure/active-directory/b2b/: For more
information about Azure AD B2B
 https://docs.microsoft.com/en-us/azure/active-directory/b2b/add-users-administra
tor: Guest user features

This section should help you understand the basics of user creation in Azure
Active Directory and how to manage a user account at various levels. The
next section will cover role management, which is crucial for proper identity
and access implementation.

Assigning a role to a user

https://docs.microsoft.com/en-us/azure/active-directory/b2b/
https://docs.microsoft.com/en-us/azure/active-directory/b2b/add-users-administrator

Once a user has been created, you will often need to assign them a role so
that a particular set of permissions is immediately assigned to them. In Azure
AD, you have multiple roles available that can be used to set things such as a
directory administrator or a billing administrator (so that a user is limited to
subscription billing tasks only). In this section, we will focus on
understanding the different functionalities that are available for a user and
learn how to perform the basic management operations.

To get started, you will need to either select an existing user or create a new
one. To do so, either use one you created in the previous section or create a
brand new one that will serve our test purposes.

Note that Azure AD tenant and Azure subscriptions are separate topics that have a
specific connection. You can have a tenant without a subscription attached, but the
opposite is not possible. When it comes to users, you can add a user to a tenant that does
not have access to a subscription. You can even add a user's Microsoft Account using its
ID so that you don't have to create a new user.

Once a user has been created, you will need to click on them on the user list:

Figure 4.8 - Searching for a created user

As you can see, we have selected a user called Tester. Once we click on this
name, we will be able to see their full profile, as shown in the following
screenshot:

Figure 4.9 - User details
By accessing the user profile, you can also manage things such as Applications, Licenses,
and Devices. These are out of the scope of this chapter, but you can read more about
them by going to https://docs.microsoft.com/en-us/azure/active-directory/devices/overview and https://docs
.microsoft.com/en-us/azure/active-directory/fundamentals/license-users-groups.

Now, let's assign a user to a role. Follow these steps to do so:

1. To change the user's directory role, click on the Directory role blade.
Once you've done this, you will see a screen that, initially, will be
empty:

Figure 4.10 - User directory role screen

2. From here, click on the + Add role button. You will see a list of different
roles that can be assigned to the user:

https://docs.microsoft.com/en-us/azure/active-directory/devices/overview
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/license-users-groups

Fig.ure 4.11 - Available directory roles

Depending on the chosen role, a user will have a different set of permissions
assigned to them, thereby granting them access to different features.

There is one special role available here that is called Global administrator. By assigning
it to a user, you are giving it full access to the Azure AD directory and its identities.

The other features of user management will be covered in later sections.

To assign a role to a user, you have to find the user you are looking for and
decide what role you are supposed to assign to them. Since each directory has
multiple roles assigned (including billing administrator, application
developer, and global administrator), you have to know how to structure it to

ensure there's a smooth flow of permissions between users.

Once a role has been assigned, a particular set of permissions is granted. This
implies what a user can do. Under the hood, the user's record is updated to
reflect these changes. Although they are applied immediately, sometimes, we
have to wait several seconds as they propagate.

Assigning a user to a proper directory role is important if you want to give it
more advanced access to your tenant features. This includes things such as
licenses, user management, billing, compliance features, and so on. Before
you assign a role to a user, make sure you have considered the following
things:

You are aware of the implications of your choice. If you make another
user an administrator, many advanced features in Azure AD will be
unblocked for it.
Enforce (if possible) MFA authentication so that even if an
administrator loses its password, logging in still requires an additional
device to proceed.

Nonetheless, always try to leverage directory roles whenever possible – they
can save you time that's normally spent on configuring different levels of
access.

With multiple roles assigned to a user, you can easily decide what application
and feature a user can access. Remember that role management happens at
different levels, which means you can configure it globally (for example, at a
subscription level) or on a particular resource. The next section will show you
how to leverage applications in Azure so that you can introduce automation
and impersonate services so that they act like users.

Registering an application in Azure
AD

Azure AD enables you to govern not only users but also applications. An
application in Azure AD is a special type of entity that acts like a user.
However, in reality, it is an artificial being inside your directory. With
applications, you can, for example, leverage RBAC and allow them to
read other services settings or data. In this section, you will learn how to
register an application and configure its parameters so that you can control it.

To get started, you will need to go to your Azure AD directory in the Azure
portal and click on the App registrations blade:

Figure 4.12 - Application registrations within a tenant

In the displayed list, you will be able to see all the created registrations (it is
quite possible that, in your case, the list is currently empty). Now, we are
ready to create a new app registration.

Creating a new application

To get started, follow these steps:

1. Click on the + New registration button in the top-left corner of the page,
as shown in the following screenshot:

Figure 4.13 - The + New registration button

2. You will see the following form, where you will have to provide three
fields – an application Name, Supported account types, and an optional
Redirect URI:

Figure 4.14 - Creating an application

While the name is self-explanatory, you are probably wondering what
the account types are for, as well as the redirect URI:

The account type field defines the audience of your application.
The most limited one is the first option (Accounts in the
organizational directory only), while the least limited one is the
third one (as it includes other accounts such as Skype or Xbox).
The choice is, of course, dependent on the requirements of the
application you are creating.
Redirect URI is an optional field that is required for many

authentication scenarios. In general, when you are creating an API
or a native application, you will have to set this field to an
appropriate value so that the authenticated user will be redirected to
the given web page.

3. Once you are done with configuring everything, you can click on
the Register button at the bottom of the page. After a few seconds, you
will see a screen displaying information about the created application:

Figure 4.15 - Application overview screen

Congratulations – you have created your very first application in your Azure
AD directory! Now, we can focus on its settings and decide how to configure
it.

A created application gives you access to various features, as shown in the
following screenshot:

Figure 4.16 - Various features of an Azure AD application

Each available blade has its own set of settings:

Branding gives you access to basic identity configuration such as the
name of an application, its logo, and informational URLs.
Authentications lets you decide how authentication works in the
application (for example, whether an implicit grant is enabled) and what
audience is allowed to access it.
Certificates & secrets enable you to manage the credentials of the
application.
API permissions is a place where you define what permissions are
requested by the application.
Expose an API describes what is required from anyone requesting
access to the application (for example, define proper scopes).
Owners show you who can see, edit, and manage the application.
Manifest is a JSON representation of the application that you can edit

and download.

By using all these blades, you can configure the basic and advanced features
of the application, all of which can be used to secure it on different levels and
explicitly define who can access it.

It is important to avoid granting applications too much access to other resources (if you
do so, pay attention to its keys and certificates). When somebody controls an application,
there is a risk that it will be allowed to control or even provision new resources in your
subscription.

By using applications in Azure AD, you can impersonate a service or an API
inside your directory so that you can manage its access as if it was a real user
(so that you can add it to a group or assign it a role). Using applications will
become really important when you have multiple services under your control
that you have to authorize to use Azure services. You will be allowed to
leverage the built-in functionalities of Azure instead of implementing your
very own authentication logic using things such as tokens or passwords.

Using applications will be required by many different scenarios as, often,
you'll need an impersonated application to interact with other services or your
users. By assigning an identity to your app, you can give it access to
particular resources and decide which permissions it has. The next section
will help you find a way to simplify identity management by using groups.

Creating groups
When assigning roles or permissions to users, there are two basic setups that
can work – either you treat each user as an individual and manage them one
by one, or you can create a group that encapsulates security logic and allows
you to handle different scenarios in your ecosystem in a more robust fashion.

In this section, we will cover using groups in Azure AD so that you can use
them to quickly decide who is allowed to access or modify a resource (or its
particular functionality).

To get started, you will need to access your instance of Azure AD. Once
you're logged in, follow these steps:

1. Search for Azure Active Directory in the search box at the top of the Azure
portal:

Figure 4.17 - Searching for the Azure Active Directory blade

2. Now, you will need to search for the Groups blade on the left:

Figure 4.18 - Groups blade

3. When you click on it, you will see a new screen, where you will be able
to manage all the groups inside your directory:

Figure 4.19 - All groups screen

Now, we are ready to look at the functionality of group creation. To proceed,
move on to the next section.

Group creation

Now, we will look at how to create a group. Let's get started:

1. Click on the + New group button:

Figure 4.20 - The + New group button

2. You will see a simple form where you have to enter the following
information:

Group type: You can choose whether you want to create a security
group or an Office 365 group here.
Group name: A unique name for identifying a group.
Group description: If you have many different groups, it will be
easier to understand which group is which by providing a proper
description here.
Membership type: You can decide whether your group has a

dynamic or assigned membership. Dynamic membership allows
you to automatically add or remove users based on their attributes.
For the purpose of this example, I chose the latter type.

The following screenshot shows what my form looks like:

Figure 4.21 - Creating a group

3. Now, when you click on the Create button, a new group will be created
and should be visible within the groups list:

Figure 4.22 - The new group created and available within the groups list

Now, we are able to manage the group and assign it to other resources. From
this point, a group acts like a normal element in your Azure AD directory –
you can assign it roles, access, and decide which Azure resources it can
manage.

Remember that you can assign applications to the groups you have created. For example,
if you have a set of jobs that perform some administration tasks inside your subscription,
it may be a good idea to create identities for all of them and use a group to make security
tasks easier for you.

Group creation is a simple process as it includes selecting a group type and
its name only. While a group name does not mean anything special from the
tenant perspective, group type gives you a glimpse of what its purpose is. As
you have two types available (security and Office 365), you can select
between a plain access management group or a group for things such as
mailbox sharing or team collaboration.

When it comes to the membership type, most groups will be based on a
simple assignment that's performed by an administrator. For more advanced
scenarios (or automation purposes), dynamic assignment (based on the
attributes evaluated by your tenant) will be a better choice. You can read
more about this here: https://docs.microsoft.com/en-us/azure/active-directory/users-
groups-roles/groups-dynamic-membership.

While selecting members is optional, you will often finish the process of
creating a group with a proper user selection. This will link members of your
directory to a group, thereby giving them immediate access to resources that
this particular group has access to.

https://docs.microsoft.com/en-us/azure/active-directory/users-groups-roles/groups-dynamic-membership

While the concept of groups is pretty simple (as is the process of creating
them), they are really important from the security point of view of your
resources. While managing identities in your tenant, you do not want to
operate at the user level – instead, you should focus on scopes such as teams,
roles, or positions so that you can quickly alter things or revoke access.

To get a better insight into this topic, take a look at the next section, which
shows how easy it is to assign a role to a group.

It is important to implement groups as quickly as you can as postponing that
decision may affect your tenant by making access to various resources too
granular, hence making management more difficult. To learn more about
groups, proceed to the next section, where we will cover access assignment
for groups.

Managing groups
In Azure AD, groups are meant to act as simple containers for multiple
identities so that you can easily assign them to resources instead of giving
access to individual objects in your tenant. Once a group has been created,
you often want to decide which services it should have access to and what
permissions should be assigned to it. In this section, we will cover the process
of managing them by giving a group a role assignment.

To get ready, you will need a group that you can manage. If you do not have
one, please go back to the Creating groups section and set one up.

Now, we will take a look at how to manage groups. Follow these steps:

1. When you click on your group, you will gain access to all its settings
and configuration details:

Figure 4.23 - Group overview

From this screen, you will be able to perform the following activities:

Change the group name, its description, or its membership type by
using the Properties button
Manage members
Manage owners (if you create an Office 365 group and assign it an
expiration time, an owner will be notified before a group is
expired)
Assign a group to other groups
Check which applications, licenses, and Azure resources a group is
assigned to

2. Since this is a newly created group, we do not have any assignments. To
assign a group to a resource, you will have to go to it and access
its Access control (IAM) blade.

I am assuming that you already have a resource that you want to change. If you do not
have one, please create one before continuing. If you do not know how to create a
resource, go back to Chapter 2, Managing Azure Resources, and Chapter 3, Configuring and
Managing Virtual Networks, where we created various services such as Azure Storage
and Azure Virtual Network.

All Azure resources have the aforementioned blade displayed right
after the overview section. In the following screenshot, you can see it
in the Azure Storage resource:

Figure 4.24 - Access control (IAM) blade

3. To assign a group to it, you will have to click on the + Add button and
select the Add role assignment option:

Figure 4.25 - Add role assignment option

4. In the displayed form, you can select a role and the assignment target.
Since we want to assign a role to a group, the value of the Assign access
to field should be set to Azure AD user, group, or service principal:

Figure 4.26 - Searching for a group and role selection

5. You will have to find a group you are searching for and click on it to see
it as a Selected member:

Figure 4.27 - Members selected for role assignment

6. Once you are ready, you can click on the Save button and wait a
moment until the assignment is created.

Congratulations – your group is now assigned to a resource and can perform
the activities allowed by its role permissions!

Groups are quite simple to manage as they have limited possibilities when it
comes to giving them identity. However, since they act as containers, they
simplify access management. By assigning a group to a resource with a
specific role, all the members of a group are given immediate access to it
based on the role's permissions. This means that you can control access to a
specific service in Azure with a certain level of granularity using groups.

Remember that, in many ways, groups behave like a simple identity. This
means that you can assign them the very same set of roles as you would do
for a user and you do not need any special functionality to do so.

In this section, you learned how to manage a group in an Azure AD tenant.
The important thing here is to remember the value that groups bring to your
directory – you can be more productive and manage access with ease (as you
do not have to track all the users assigned to resources).

In fact, using groups is the only way to ensure that you have things under
control – when you have hundreds or thousands of users inside your
directory, managing all of them individually would be really tiresome.

In the next section, we will cover roles in Azure Active Directory. This will
help you understand how to configure access properly.

Managing directory roles
There are two different sets of roles in Azure – one reflects permissions
defined by different services, while the other is designed to operate on Azure
AD directory and give you the possibility to decide who can perform a
specific management task (such as access audit logs or register an
application).

In this section, you will learn how to use that functionality and assign
different users to different directory roles.

To get started, you will have to access your Azure AD tenant in the Azure
portal. To do so, search for Azure Active Directory in the search box located at
the top of the portal:

Figure 4.28 - Searching for the Azure Active Directory blade

Now, you will have to find the Roles and administrators blade:

Figure 4.29 - Roles and administrators blade

On the next screen, you should be able to see all the available roles and your
current role. From here, you will be able to check who has a particular role
assigned and its description.

When browsing the available roles, you will see that there's plenty of them
available to you (including some that, initially, may not be self-explanatory).
In fact, they cover Azure and other services (such as Office 365 or Power BI)

as well:

Figure 4.30 - Available directory roles

A role, which has a little ribbon next to its name, is a recently introduced or
updated role that you may want to check out in order to understand it better.

Note that these particular roles reflect your Azure AD directory – you cannot
use them for better control over your provisioned resources, but you can use
them for easy assignment of permissions when it comes to performing tasks
such as application registrations, auditing, or user management. To check
what permissions are assigned to the role, click on it and go to
the Description blade:

Figure 4.31 - The description of the Global administrator role

When we know what a specific role grants to a user, we can learn how to
assign it to a directory entity.

Remember that assigning a directory role to a specific user often means that it has
granted extended permissions. Always take into consideration the possible damage that
can be done via this particular set of functionalities and ensure that the user's credentials
cannot be stolen.

Let's assume that we want to assign a user to a role named Application
developer so that we can register applications even if a global administrator
will turn off that possibility globally. To do so, we need to go to the specific
role and click on the + Add member button:

Figure 4.32 - The + Add member button

Now, I only need to search for a specific user and click on the Select button
to finish the setup process:

Figure 4.33 - Selecting a member

Once a user has been added, you should be able to see them on the list of
members of this particular role. Once this role is assigned to the user, you
will be able to see it when you access the user's Directory role blade.

Directory roles are one of the most useful features when you want to quickly

set up proper roles within your Azure tenant. Thanks to them, you can easily
assign different users to different sets of permissions and allow them to
perform proper management tasks.

The important thing here is to always make sure that you have implemented
proper security policies when it comes to passwords and user credentials. By
assigning an important role (such as the global administrator role) to a
person, which then loses its account, you may lose access to the whole
directory.

Depending on the characteristics of your company, you may or may not need
custom roles in your directory. For many scenarios, the extensive list of
available roles in Azure is everything an administrator needs, but you still
may face a situation where it is not enough. Apart from your case, remember
that directory roles cover a separate set of permissions than resource roles and
do not affect effective permissions a user has when accessing a resource. The
next section will help you understand the actual behavior of users by helping
you learn how to monitor their actions.

Monitoring and auditing users
Being an administrator means that you often need to check some data related
to a user. This can be for different things – their saved information, assigned
permissions, or access to Azure resources. Another important thing will be
also auditing them and checking what was changed. In Azure AD, there are a
few different methods for monitoring your users such as sign-ins logs and
activity logs. We will cover these in this section so that you are familiar with
how to audit people accessing your tenant.

To get started, you will need to go to your Azure AD tenant in the Azure
portal and access the Users blade. To do so, search for Azure Active
Directory using the search box at the top of the portal:

Figure 4.34 - Searching for the Azure Active Directory blade

Then, find the mentioned blade and click on it:

Figure 4.35 - Users blade
If you have followed the previous sections, you should be familiar with the displayed
view. If you haven't, then I strongly recommend that you go back and go through them so
that you have a better understanding of how users in Azure AD work.

The following steps will walk you through the process of monitoring and
auditing users:

1. From the Users blade, you will able to access the Activity section, where
you can find two features to audit your users, Sign-ins and Audit logs:

Figure 4.36 - Sign-ins and audit logs blades
To access the Sign-ins feature, you will need to upgrade your Azure AD plan to at least
P1. If your organization does not have it, you can request a free trial.

2. Those two functionalities can be used for the following purposes:

Validating how and when a user has signed in, in case of any
suspicious activity
Checking whether this particular user was really signed in
Auditing all the operations made against your Azure AD tenant

3. You can check, for example, all the activities under the User
Management category:

Figure 4.37 - User activity logs

4. When you check the Activity dropdown, you will see that there are lots
of possible activities available to you:

Figure 4.38 - Filtering different activities

As you can see, this particular set of functionalities gives you total control
over your tenant in Azure. The important thing here is the fact that you can
download the audit logs. This will be especially helpful when you need to
provide evidence of your user's activities (or for the sake of the reports you
are generating). To download the log, click on the Download button:

Figure 4.39 - Download button

This functionality becomes especially important if you have external tools
that you can use to analyze logs and search for particular actions. As you can
see, with only a few clicks, you have direct access to your tenant audit logs –
 you do not have to log into a machine or extract them from an external
database.

Each time a user signs in or performs an operation against a tenant, it is
recorded and saved to an internal database in your Azure AD directory. That
information is then available to all the directory administrators (or people
who have permission to access it), so it does not have to be you who is
responsible for analyzing and downloading them.

Use that information to check your user's behavior (or even check for
suspicious behavior) anytime you need to audit the tenant or monitor them.

One more option for auditing what is happening inside your directory is the
IAM functionality, which is available for all the resources in Azure:

Figure 4.40 - Access control ((IAM) blade

This will give you access to the data of a particular resource so that you can
do any of the following:

Check who can access it
Validate the assigned roles
Ensure who is disallowed from accessing it

This feature provides the options that are available to you when validating
operations inside the tenant.

With proper monitoring and auditing users inside your tenant, you will be
able to deeply understand their actions and have proof that a specific action
was undertaken. However, this feature will not extend the security features of
your directory – to get the most from Azure Active Directory, proceed to the
next section, where you will learn how to enable MFA authentication.

Enabling MFA authentication
Nowadays, using only a username and a password is not enough when
securing access to our accounts. When you have an Azure subscription under
your control that holds many different production environments, you cannot
rely only on the fact that an attacker does not know your password.

This is where MFA comes into play – the abbreviation stands for Multi-
Factor Authentication and describes an additional method of authentication
that leverages extra components during the sign-in process (such as a mobile
phone or a token device). Fortunately, MFA is one of the features of Azure
AD and can be enabled to enhance the security of your tenant.

To get started, you will need to go to your Azure AD tenant in the Azure
portal and access the Security blade. To do so, search for Azure Active
Directory using the search box at the top of the portal:

Figure 4.41 - Searching for the Azure Active Directory blade

In the Manage section, find the Security blade:

Figure 4.42 - Security blade

Now, you need to access the MFA blade in the Manage section:

Figure 4.43 - MFA blade
Note that you will need at least a P1 version of Azure Active Directory to access this
feature.

You will see a new screen where all the MFA settings can be accessed. From
here, we will able to configure it and check all the available features such as
account blocking, fraud alert, or even allow for rules to be bypassed

temporarily.

There are two ways to enable MFA for your organization:

Deploy an Azure MFA service (which is the recommended way to do
things for new deployments)
Use your own infrastructure to manage the MFA components

We will focus on the first solution. To get started, follow these steps:

1. Click on the Additional cloud-based MFA settings link on
the Overview section of the MFA feature:

Figure 4.44 - Additional cloud-based MFA settings

2. You will see a new screen where you will be able to configure different
options available for the MFA, such as trusted IPs or the verification
options:

Figure 4.45 - MFA authentication settings

3. When you are done with the configuration, you can click on
the Save button. Now, we will have to enable the MFA feature on the
user. To do so, go to the Users blade and search for the Multi-Factor
Authentication button:

Figure 4.46 - Multi-Factor authentication button

4. From the new screen, select all the users you want to have MFA enabled
for and click on the Enable button:

Figure 4.47 - Enabling MFA for a user

Now, each time a user is authenticated, they will be asked to provide an
additional way to validate their credentials. The available options will depend
on the configuration of the MFA feature you have set.

During the first user authentication process, you will be asked to provide the
details of the extra authentication method that a user would like to use (in my
case, this is a mobile phone number):

Figure 4.48 - Configuring an additional factor for authentication

From this point, each time a user signs in, they will see a screen that asks
them to enter an additional security code (depending on the authentication
method, this can be an SMS, a code from a mobile app or hardware token,
and so on). The following screenshot shows that the selected authentication
method is a mobile application:

Figure 4.49 - Verification screen

If the authentication method is SMS, each time a user signs in, they will see a
message similar to the following:

Figure 4.50 - Authentication code sent to a mobile device

From this point, the user's account will be much more secure. This method of
authentication is especially important for accounts that have been assigned a
wider set of roles (such as for administrators and all the systems operators).
By enabling this, you lower the chance of someone taking control of them
and attacking your company.

At https://docs.microsoft.com/en-us/azure/active-directory/authentication/howto-mfa-mf
asettings, you will find more information about the MFA feature in Azure
Active Directory. I strongly recommend that you read this so that you are
familiar with all the features available. In this section, we covered only the
basic configuration and authentication flow of MFA in Azure. This should
inspire you to check the other functionalities that come with it (such as
blocking the account after N failed authentication attempts or fraud alerts) so
that you can make your system even more secure.

Remember to enable the MFA security feature on your admin accounts so
that you can be sure that breaking your account will require access to a
physical device you own or an additional account. The last section in this
chapter will cover Azure Service Fabric security features, which is a topic of
its own due to the complexity of Service Fabric services.

Securing an Azure Service Fabric
cluster
Azure Service Fabric is a microservice platform that allows you to host your
services in a reliable and durable manner, without the need to replicate them.
One of the most important features of Service Fabric is its security
capabilities – regardless of whether you're using certificates or Azure AD.

In this section, you will learn how to secure access to your cluster and ensure
that only a limited number of people can access it.

For this section, I am assuming that you have already created a Service Fabric cluster in

https://docs.microsoft.com/en-us/azure/active-directory/authentication/howto-mfa-mfasettings

a resource group.

Before we continue, I would like to remind you of the process of creating a
cluster:

Figure 4.51 - Security tab for creating a Service Fabric cluster

One of the required steps is to configure the available security features. For
node-to-node communication, Azure Service Fabric uses certificates, which
you can either generate or provide custom ones. Whichever option you
choose, Azure Key Vault is used to securely store them. By default, the
provided certificate will be your key to access the cluster explorer via a
browser (to log into VMSS, you will only need to know the administrator
password).

The following steps demonstrate the process of securing the Azure Fabric
cluster:

1. Access the security features of your cluster via the Security blade in
the Settings section, as shown in the following screenshot:

Figure 4.52 - Security blade

2. When you click on it, you will see all the available security
configuration options, including linked certificates and Azure AD
parameters:

Figure 4.53 - Security configuration of a cluster

3. To configure a new way of securing access to the cluster, click on the +
Add button. You will see a new screen where you can select an
authentication type and authorization method. Depending on the option
selected, different options will need to be entered:

Figure 4.54 - Configuring authentication for a cluster

You have four different options here:

Secondary certificate thumbprint: Not available via the Azure portal. If
you want to ensure that you have a secondary certificate (which can be
used if the primary has been revoked), use this option to preserve a
healthy and working cluster.
Admin client: If you want to allow another certificate holder to perform
admin tasks on the cluster, add its thumbprint using this option.
Read-only client: The same as the previous option but with limited
access rights.
Azure Active Directory: If you do not want to manage certificates for
cluster access, you can use Azure AD as the authentication method.

In this section, we will focus on the fourth one as it is one of the most popular

ways of securing SF clusters.

When a new certificate is added, it is safely stored in the Azure Key Vault,
which is connected to the SF cluster. However, for Azure AD to work, you
will have to configure three parameters:

Tenant ID
Cluster application
Client application

Basically, you have to provide the identifier of your tenant (which is a GUID
value) and the IDs of two applications that have been created inside it. While
you can perform such an operation manually, there is a simpler way: using a
ready script (which can be found here: https://docs.microsoft.com/en-us/azure/serv
ice-fabric/service-fabric-cluster-creation-setup-aad). The concept here is simple –
 you have to run the following PowerShell scripts. You will have to pass your
tenant identifier, cluster name, and application reply URL to correctly
configure the cluster. You can obtain the tenant ID using the Azure CLI and
the az account show command, as follows:

$Configobj = .\SetupApplications.ps1 -TenantId ';tenant-id;' -ClusterName ';cluster-name;' -WebApplicationReplyUrl 'https://;cluster-name;.eastus.cloudapp.azure.com:19080/Explorer/index.html' -AddResourceAccess

.\SetupUser.ps1 -ConfigObj $Configobj -UserName 'TestUser' -Password 'P@ssword!123'

.\SetupUser.ps1 -ConfigObj $Configobj -UserName 'TestAdmin' -Password 'P@ssword!123' -IsAdmin

Once you've run the preceding code, you will get the following JSON object
in response:

"azureActiveDirectory": {

 "tenantId":";guid;",

 "clusterApplication":";guid;",

 "clientApplication":";guid;"

},

These values will have to be provided in the security configuration in order to
enable Azure AD authentication. This will allow you to skip the browser
window warning you that the connection is not secure (because of an invalid
certificate). For example, in the Chrome browser, it will look like this:

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-creation-setup-aad

Figure 4.55 - Certificate validation error in Chrome

The preceding message is displayed each time you try to browse a resource
that your browser cannot trust. In order to access it, you have to select a
certificate that's available inside your certificate's store. To access a Service
Fabric cluster, you have to download a certificate that was generated (or
attached) during cluster creation and install it.

Then, you will be able to select it while you're connecting to a cluster. To
avoid this, Azure AD can be enabled so that you can use your credentials to
authenticate while connecting. This approach makes much more sense than
simple certificate authorization as you can easily use groups to set access to
multiple entities at once.

To get more insight into Azure Service Fabric's security features, go to https:/
/docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security. The
important thing to remember here is the proper configuration of Azure
AD – can prepare it on your own, but it is easy to make a mistake. To avoid
confusion or outages, leverage the script provided in the previous paragraphs,
which automates the process and can also be used in your CD pipelines.

Azure Service Fabric, being a really complex service, is a real challenge for

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security

Azure administrators as it requires managing certificates, virtual machine
access, and different user identities. If in doubt, make sure to take a look at
the extensive documentation that this Azure service provides – it may help
you understand the most common errors and best practices when it comes to
cluster configuration.

Summary
In this chapter, we started by creating users in Azure AD. We also learned
how to assign a user to a role and registered an application in Azure AD. We
then learned how to create and manage groups. We also learned how to
manage directory roles, along with monitoring and auditing users, and also
learned how to enable MFA authentication.

This chapter should have given you a basic understanding of how to manage
users in Azure AD tenant and how they are reflected in Azure resources.
Robust management of users is quite important as without the proper
procedures in place, you may introduce security holes or grant wide access to
a specific group of people.

In the next chapter, we will cover more topics regarding access management,
which is one of the main roles of many Azure and system administrators.

Access Management
Whether you are an Azure administrator, a developer, an IT pro, or an
architect, you always want to make your provisioned resources secure. This is
a common problem for multiple environments – how to manage access from
a single place using common policies and defined roles. In this chapter, we
will focus on solving access management problems, including custom roles,
RBAC, SAS tokens, and MSI. You will also learn how to secure and define
access for popular Azure services such as Azure App Services.

In this chapter, we will begin by creating a custom role and then configure
access to Azure resources and configure MSI. The next step will be learning
how to use and revoke Shared Access Policies, along with generating SAS
tokens for different services.

In this chapter, we will cover the following topics:

Creating a custom role
Configuring access to Azure resources
Configuring MSI
Using and revoking Shared Access Policies
Generating SAS tokens for different services

Let's get started!

Technical requirements
To complete the exercises in this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)
Azure PowerShell installed on your computer: https://docs.microsoft.com/e
n-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?v
iew=azure-cli-latest

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Microsoft Azure Storage Explorer: https://azure.microsoft.com/is-is/feature
s/storage-explorer/

Creating a custom role
In each computer system, you want to make managing permissions as easy as
possible. Assigning individual permissions to an individual person or an
entity is cumbersome and error-prone. This is why, in most cases, you should
aim to create a role that describes a scoped list of permissions and then assign
it to a group.

In this section, you will learn how to create a custom role that you will be
able to use in your Azure subscription. However, before we proceed, let's
take a look at the most basic in-built roles that you can find in Azure (https://
docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles). The in-built
roles are useful in many standard scenarios, but unfortunately, they are often
too general and require adjustment – this is why we need custom roles.

The easiest way to create roles in Azure is by using either the Azure CLI or
PowerShell. For the CLI, you can use the following command:

$ az role definition create

usage: az role definition create [-h] [--verbose] [--debug]

 [--output {json,jsonc,table,tsv,yaml,none}]

 [--query JMESPATH] --role-definition

 ROLE_DEFINITION

 [--subscription _SUBSCRIPTION]

The preceding command will create a new role definition, which can be used
later for identity and access management. For Azure PowerShell, you will be
interested in this command (you can find details about its usage and remarks
on it here: https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/new-a
zurermroledefinition?view=azurermps-6.13.0) as it is the direct equivalent of the
Azure CLI command mentioned previously:

New-AzRoleDefinition

Both methods will lead to the same result. The choice is yours here – in most

https://azure.microsoft.com/is-is/features/storage-explorer/
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/new-azurermroledefinition?view=azurermps-6.13.0

cases, I am using the Azure CLI as it works on any environment that supports
running Python scripts.

To create a role, you will need to describe it in JSON. Optionally, you can
provide a path to a file that contains such a definition. An example definition
looks like this:

{

 "Name": "Custom Reader",

 "IsCustom": true,

 "Description": "Custom reader role",

 "Actions": [

 "*/read"

],

 "NotActions": [],

 "DataActions": [],

 "NotDataActions": [],

 "AssignableScopes": [

 "/subscriptions/<subscription-id>"

]

}

There are a few things that need to be explained here:

Each custom role has defined actions that describe the scope of
permissions assigned to it. To get actions assigned to a particular
service, you can use the Get-AzProviderOperation cmdlet or use the Azure
CLI and input az provider operation list.
You must provide your subscription ID to the AssignableScopes property to
be able to assign a role along with your subscription. To obtain the ID,
use the Get-AzSubscription cmdlet or use the Azure CLI and input az account
list --output table.

When you have the JSON ready, either copy it or save it to a file. To create it
inside your subscription, pass it to the mentioned commands. For the Azure
CLI, the full command will look like this:

$ az role definition create --role-definition "<path-to-a-file-containing-role-definition>"

As you can see, we are using the --role-definition parameter to point to a
JSON definition of a role.

Note that the --role-definition parameter value has to be a resource that can be accessed
from your computer – whether it is a local file or a remote one.

Once the command has finished running, you will see confirmation of this,
along with some JSON output:

{

 "assignableScopes": [

 "/subscriptions/..."

],

 "description": "...",

 "id": "/subscriptions/.../providers/Microsoft.Authorization/roleDefinitions/e02672f3-97d4-4c82-a830-8d3d49d7109a",

 "name": "e02672f3-97d4-4c82-a830-8d3d49d7109a",

 "permissions": [

 {

 "actions": [

 "*/read"

],

 "dataActions": [],

 "notActions": [],

 "notDataActions": []

 }

],

 "roleName": "Custom Reader",

 "roleType": "CustomRole",

 "type": "Microsoft.Authorization/roleDefinitions"

}

Note that I provided a role description as a file and, as a result, got the full
resource description. Running a PowerShell script will look like this:

PS C:\> New-AzureRmRoleDefinition -InputFile C:/customrole.json

The output of running the preceding command will look like this:

Name : Custom Reader 2

Id : 1768f02c-01cf-4760-a0d4-f8b58ee36062

IsCustom : True

Description : Second custom role

Actions : {*/read}

NotActions : {}

DataActions : {}

NotDataActions : {}

AssignableScopes : {/subscriptions/...}

Congratulations! You have just created your very own role, which can be
used when defining access to Azure resources.

By creating a custom role, you are adding it to the defined scope (which will
be a single or multiple subscriptions). Once it has been configured, it will be
visible when browsing all the roles that have been defined at the assigned
scope level. For example, if you set the AssignableScopes field as your

subscription, this role will be available for assignment only at the
subscription level. In the following screenshot, you can see my custom role
available among the list of in-built Azure roles:

Figure 5.1: List of roles available at a subscription level

By using custom roles, you are greatly improving the management
capabilities of subscriptions as you can quickly and easily define multiple
sets of permissions.

In more complicated cases, custom roles will be a must-have as the in-built
ones probably won't satisfy your requirements.

In this short section, you have learned how to create a custom role. The more
you are proficient with the Azure cloud, the more custom roles you will be
able to start using. In the next section, you will learn how to configure access
to Azure resources – how to leverage RBAC and IAM to set access
accordingly to your company policies.

Configuring access to Azure
resources
In the previous section, you learned how to create a custom role. The next
step is to actually use it in Azure resources. Configuring access in Azure is
really simple as it is mostly covered by the Identity and Access
Management (IAM) feature, which is available both in the portal and
through the command line.

In this section, we will show you how quickly we can configure access for
your services and validate who has permissions to read or modify them. You
are going to learn what role-based access control (RBAC) is and how to use
it.

RBAC, as its name implies, relates to controlling access to resources via
roles. Each role consists of one or more permissions that describe individual
operations a user or an application may perform. You may think of a role as a
container for available (or not permitted) operations or actions. While you
could assign each permission to each individual identity, it would be a real
burden to manage them on larger sets of identities. This is why the preferred

way of access management is through roles.

To get ready, go to any Azure resource you want and search for the Access
control (IAM) blade:

Figure 5.2: Access control (IAM) blade

For the purpose of this section, we have decided to show the functionality of
using a resource group. Very often, RGs are the best place to define access as
they are logically grouped, dependent resources that act as a container for
them. However, you are free to proceed with any service or element of your
choice. Follow these steps to add a role:

1. To add a role in Azure portal, simply click on the + Add button and
select Add role assignment:

Figure 5.3 - Add role assignment button

2. On the new screen, you will be asked to select a role, the type of
identity, and the actual identity that will be assigned to the resource:

Figure 5.4 - Selecting who is going to have a role assigned to them

3. Once you click the Save button, an assignment will be created and the
selected identity will gain limited access to the resource.

The same can be achieved using the Azure CLI. To do so, use the following
command:

$ az role assignment create --role "Contributor" --scope "/subscriptions/.../resourceGroups/azureadministration-euw-rg"

With the preceding command, you will create an assignment – a link between
an identity and a role in a specific scope (which can be a subscription, a
resource group, or an individual resource). Once a role has been assigned,
you will see the following result:

"/subscriptions/.../resourceGroups/azureadminstration-euw-rg" --assignee "<object-id|sp-name|sign-in-name>"

{

 "canDelegate": null,

 "id": "/subscriptions/.../resourceGroups/azureadminstration-euw-rg/providers/Microsoft.Authorization/roleAssignments/1fb672c8-2116-482b-ac69-dc5bbbbe23af",

 "name": "1fb672c8-2116-482b-ac69-dc5bbbbe23af",

 "principalId": "fafb2af8-0ec7-4f54-a88e-c696a15d7c0d",

 "resourceGroup": "azureadminstration-euw-rg",

 "roleDefinitionId": "/subscriptions/.../providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-20f7382dd24c",

 "scope": "/subscriptions/.../resourceGroups/azureadminstration-euw-rg",

 "type": "Microsoft.Authorization/roleAssignments"

}

Remember that if you do not provide a subscription ID in commands that accept that
optional parameter, they will be executed in the scope of the default subscription.

Just like in most Azure CLI commands, once a role assignment has been
created, you will get the full description of it as an Azure resource. Then, you
can validate the parameters that were evaluated, such as scope, resource
group, or principal ID.

Once an assignment has been created, you will be able to see it when using
the Check access functionality:

Figure 5.5 - Checking access

Depending on the selected role, a different set of permissions will be assigned
to an identity. Three of the most popular roles are as follows:

Owner: Gives you full control of a resource
Contributor: Can access all the available features but cannot manage
access to a resource
Reader: Can only read the settings and configuration options

Of course, you are not limited to these roles – there are plenty of different in-
built ones (see https://docs.microsoft.com/en-us/azure/role-based-access-control/built
-in-roles) that can satisfy your requirements if you need more granular access.

Remember that you can also assign your custom roles here, which basically gives you
unlimited control over access management.

The feature we've described in this section is called RBAC and is something
you have to understand to be able to administer Azure resources and
identities. Fortunately, it is very easy to understand since most of the features
are really intuitive. To give you even more insight into it, take a look at https:
//docs.microsoft.com/en-us/azure/role-based-access-control/overview, which describes
various details of the functionality in the Azure documentation.

Configuring MSI
In Azure, you can often get access to a resource by getting its service key or
connection string, which contains a token. While such an approach is super
simple and saves time, it is really problematic when it comes to security
management and granular access to the different features of a service.

At the time of writing this, a few months ago, Managed Identity (MI) was named
Managed Service Identity (MSI). In some older publications, you can still see the old
name but do not be confused – it is still the same feature.

Before we get started, I want to ensure that you understand all the pros and
cons of MSI:

Addresses the problem of revoking access to services, which has limited
capabilities when it comes to security (such as Azure Storage or Azure
Cosmos DB)
Allows you to introduce identities to resources that did not have them
previously
Gives you the capability to declare access to different services using
RBAC and custom roles
Uses service principals to configure the feature, which is a well-
understood feature of Azure

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview

Complicates the process of delivering software as you have to configure
all the identities first and define proper access
Introduces complexity when configuring local and cloud environments

Nonetheless, in most cases, the advantages outweigh the disadvantages.
There is one more important feature here that you should become familiar
with. MSI gives you two different types of identities:

System assigned identity: This particular identity is assigned to an
Azure resource and tied to its whole life cycle.
User assigned identity: This is a kind of identity that can be attached
and detached from a resource.

In this section, you will learn what MSI is and how you can use it. It's one of
the newer features available that introduces identities to Azure services and
your applications, all of which can be managed via RBAC. Depending on
your use case, different kinds of identities will suit your needs.

MSI is a feature that is still under development for many Azure services. Before you
decide to implement your own method of authentication, consult the MSI documentation
to make sure that it is not available for the services you are using.

To get started, you will need an actual resource that works with the MSI
feature. One example of such a resource is Azure Virtual Machine. It is also
available for other services such as Azure Cosmos DB and Azure App
Services. For the purpose of this section, we will cover how to work with
MSI using the latter service.

The main feature of MSI is giving an identity to a resource so that it can
access other services without implementing the whole authentication logic.
This can be done via provided endpoints, which allow a service to obtain an
authentication token. That token allows services to access other resources
(assuming you have granted access to them). Now, let's learn how to use MSI
to secure Azure App Services.

Securing Azure App Services

To get started with MSI, you will need a principal that can be used (or let
Azure create an identity for us by using the system-assigned identity). To
access this feature in Azure App Service, you will have to find
the Identity blade in the portal:

Figure 5.6 - Identity blade

As you can see, by enabling a system-assigned identity on Azure App
Service, it gets an Object ID, which is the identifier or the resource in Azure
AD. If you go to the Enterprise applications feature in your Azure AD tenant,
you will be able to find the application here:

Figure 5.7 - Enterprise applications blade

Of course, you do not have to assign a system identity to a resource – in all
cases, you can leverage an identity you created previously by using a user-
assigned identity.

Remember that services with identities can access all the Azure AD secured resources. If
you assign it a wide set of permissions, you may face security issues.

When MSI is enabled, a service obtains a token from a special endpoint by
using the object ID it has been assigned. By using the token, the service no
longer has to store all the passwords and important configuration inside it – it
can connect to Azure Key Vault and introduce itself as a service with a
particular set of permissions. To read more about Azure Key Vault, go to http
s://azure.microsoft.com/en-us/services/key-vault/.

If you access, for example, Kudu (which is an additional layer for Web Apps

https://azure.microsoft.com/en-us/services/key-vault/

hosted on Azure App Services) for Azure App Service, you will see that it
now contains environment variables that can be leveraged to use the MI
feature inside your application:

Figure 5.8 - Accessing Kudu from Azure portal

Unfortunately, to obtain a token from the endpoint, you will still have to
implement a short snippet inside the application code (written in C#):

public static async Task <HttpResponseMessage> GetToken(string resource, string apiversion) {

 var request = new HttpRequestMessage(HttpMethod.Get,String.Format("{0}/?resource={1}&api-version=2019- 08-01"

 request.Headers.Add("X-IDENTITY-HEADER", Environment.GetEnvironmentVariable("IDENTITY_HEADER"

 return await _client.SendAsync(request);

}

The preceding snippet is written in C#, but the feature will work with
basically any language. It will be able to do one thing – send a REST request

to the provided endpoint.

To find more examples, consult the following page in the documentation: https://docs.microso
ft.com/en-us/azure/app-service/overview-managed-identity?tabs=dotnet.

The response will look like this:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "access_token": "eyJ0eXAi…",

 "expires_on": "1586984735",

 "resource": "https://vault.azure.net",

 "token_type": "Bearer",

 "client_id": "5E29463D-71DA-4FE0-8E69-999B57DB23B0"

}

Let's explain this in more detail:

We are constructing the endpoint URL from the environment variable.
We are adding the X-IDENTITY-HEADER header to help the server secure itself
against Server-Side Request Forgery (SSRF) attacks.
Once the access token is returned, we are returning it as the result of the
method. The value of the resource parameter is the URL of the Azure
service you want to get the token for (for example,
https://vault.azure.net).
The actual token is passed via the access_token parameter.
When the response is returned, you can use it to authenticate your
request to other resources by passing it in the Authorization header and
prepending Bearer as the schema.

Using the access token only will not give you immediate access – you will
have to give principal access to a service. To do so, consult the previous
section about assigning roles to different identities. The scenario is a little bit
different when using Azure Key Vault as you will have to explicitly assign a
principal to the service by giving it a defined set of permissions. To do this,
follow these steps:

1. Go to your Azure Key Vault instance and find the Access
policies blade:

https://docs.microsoft.com/en-us/azure/app-service/overview-managed-identity?tabs=dotnet
https://vault.azure.net

Figure 5.9 - Access policies blade

2. When you click on it, you will see a new screen that shows all the
policies that have been assigned to this particular instance of Key Vault.
From here, you can click on the + Add new button, which will display
the following form:

Figure 5.10 - Configuring an access policy

Once an application has been assigned to a Key Vault instance, it will be
allowed to, for example, get and list keys or secrets. On the screen shown in
the preceding screenshot, you will have to configure the following:

Select principal: The service principal who will have that policy
assigned to them.
Key/Secret/Certificate permissions: Configuration of permissions for
different areas inside Key Vault.

This pattern is really helpful when you have many applications that store
passwords in databases or other systems and want to improve security. I
strongly recommend that you use it so that you can be sure that they are
stored in a secure fashion and that only a limited number of entities can
access them.

In this section, you had a chance to use the MSI feature to configure access to
your services without implementing your own logic. The next section will
cover how to secure access in Azure using Shared Access Policies, which are
available for Azure Storage.

Using and revoking Shared Access
Policies
When you need granular access to Azure Storage services, you can use
Shared Access Signature (SAS) tokens, which can be explicitly shaped and
designed for a particular client. However, there is always a need to find a way
to revoke them so that you can get rid of compromised tokens. You can
achieve this by using Shared Access Policies, which are one of the security
features of Azure Storage.

When generating a SAS token, you can decide whether it is an ad hoc
SAS (which stores all its information about its start, expiration time, and
permissions inside it) or a SAS with stored access policy (which is attached
to a container and inherits its configuration). The choice directly implies
which features are available to you:

When using ad hoc signatures, you will have to have a way to revoke
them when compromised.
Ad hoc SAS tokens can be created at any time and do not rely on the
configuration of a container.
Signatures with policies need initial configuration.
When a policy is attached to a container and the generated signature is
based on it, you can control all the parameters of the SAS and adjust

them if needed.
Policies let you control many signatures at once, while ad hoc signatures
have to be managed individually.

You may wonder why we cannot just use Storage Account keys for
authorizing access. Well, there are some caveats for leveraging them for
production scenarios:

You are unable to segment access to your accounts.
If one key becomes compromised, you need to revoke both keys and
rotate the old ones out of usage.
You need to keep an eye on their lifetime and refresh them from time to
time.
They grant full access to the resource.

On the other hand, SAS tokens require much more attention and experience if
we wish to use them effectively:

They still require you to implement some way to refresh compromised
tokens and fix the leak.
You need to offload refreshing a token to your clients or allow them to
automatically grant new tokens.
You need to design access in the most efficient way. Relying on SAS
tokens as a magic bullet is rarely a good idea.

Nonetheless, when it comes to compliance rules, SAS tokens are much more
important than plain keys as they provide much more functionality and
granularity in terms of their usage.

Creating and managing Shared Access Policies

To create and manage Shared Access Policies, we will use the Azure CLI and
the following command:

az storage container policy

Note that policies management and generating tokens based on them is also

possible when using SDKs for different programming languages. However,
this book is trying to provide you with a generic way of controlling them, so
we are not tied to a specific language.

To create a policy connected to a container, we will use the following
command:

$ az storage container policy create -c "<container-name>" -n "<policy-name>" --account-name "<account-name>" --permissions "rl"

Creating a policy using the Azure CLI will result in JSON output similar to
the following:

{

 "etag": "\"0x8D6BAB88E733C7D\"",

 "lastModified": "2019-04-06T17:51:54+00:00"

}

For the --permissions parameter, you can use any combination of the following
values:

r : Read
d : Delete
l : List
w : Write

The same functionality can be achieved when using Microsoft Azure Storage
Explorer. When you navigate to a container you want to define a policy for,
right-click on it and select Manage Access Policies...:

Figure 5.11 - Managing access policies with Azure Storage Explorer

In the displayed window, you will be able to define a new access policy. This
is a much easier way to manage them as you do not have to remember the

command:

Figure 5.12 - Access Policies screen

Currently, we have a policy that's been created and is attached to a container.
There are two more things we need to do – we need to create a SAS token
based on this policy and revoke it so that no one can access a Storage
Account anymore.

To generate a SAS token, you will have to use the az storage container generate-
sas command, as follows:

$ az storage container generate-sas -n "<sas-name>" --account-name "<account-name>" --policy-name "<policy-name>"

Generating a SAS will result in a string representing a token:

"sv=2018-03-28&si=<policy-name>&sr=c&sig=k3dUIz8lJJOHjOPW92LwGL1bYQB1SPkbCnI%2BEAojCXQ%3D"

To run the preceding command, you will have to define the name of the
signature (which can be any string), the account name you wish to assign the
SAS to, and a custom policy name. The result of running it is a short string
that contains some parameters:

sv: The version of the service API
si: SAP identifier
sr: The scope of the generated token
sig: The signature of the token

Let's compare this with a token that's been generated without using a stored
policy (ad hoc signature):

$ az storage container generate-sas -n "<sas-name>" --account-name "<account-name>" --permissions "rl"

You should see a result similar to mine:

"sv=2018-03-28&sr=c&sp=rl&sig=HcL5Mo8ri8WMZtfpjTjINsh6nirYswBw06Bw4qj1fgY%3D"

As you can see, it no longer contains an identifier for the policy. Instead, it
has defined the permissions that have been assigned to it by the sp parameter.
The obvious downside of this solution is the lack of the ability to revoke it.
However, if your SAS token has a policy assigned to it, you can remove it (or
shorten the expiry time) so that no-one is able to use it to connect to a service.
To perform that operation, use the az storage container policy delete command.

It is important to decide whether you need ad hoc SAS tokens or the ones
with a policy assigned to them. To understand tokens fully, consult the
following documentation page: https://docs.microsoft.com/en-us/azure/storage/comm
on/storage-sas-overview. It deeply describes the functionality of SAS tokens and
is an important lecture for anyone interested in using the proper security
features for Azure Storage.

In the next section, you will learn how to generate SAS tokens with granular
access to different services so that you can control access to Azure Storage
services even better.

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

Generating SAS tokens for different
services
Proper usage of SAS tokens is an important task, especially when leveraging
multiple services of Azure Storage such as blobs, tables, and queues. The
better you manage them, the easier it is to properly secure resources and the
data stored in them. In this section, you will learn how to generate tokens for
different parts of your storage and ensure granular access to them.

To generate a SAS token, you can use one of the following tools:

Use the commands available in the Azure CLI and create a SAS for
different services
Use the SDK for the programming language of your choice and execute
a program that generates a token
Use Microsoft Azure Storage Explorer to easily generate the token with
just a few clicks

For the purpose of this book, I have made no assumptions when it comes to a
programming language you are familiar with, so we will focus on the first
and the last solutions (using the Azure CLI or Azure Storage Explorer).

In the previous section, we presented an az storage container generate-
sas command, which lets us create a SAS token for a container. However,
there are different options available to you:

az storage table generate-sas

az storage blob generate-sas

az storage queue generage-sas

Now, let's focus on Table Storage. To create the most basic SAS token, run
the following command:

$ az storage table generate-sas --account-name "<account-name>" --name "<table-name>"

A SAS token that's been generated for Table Storage will look like this:

"sv=2017-04-17&tn=<table-name>&sig=enBO5zlJwzE%2BdXSrYe2VFb7tSEhIQrPYQ5emT6TMHfo%3D"

As you can see, I configured none of the optional parameters such as the
range of Partition Keys or Row Keys, which these particular SAS tokens
grant access to, or the expiry time. Here is a more advanced example:

$ az storage table generate-sas --permissions "r" --expiry "2020-04-10" --account-name "<account-name>" --name "<table-name>"

Note how more advanced example differs from the previous one:

"se=2020-04-10&sp=r&sv=2017-04-17&tn=<table-name>&sig=R6ozQlaqFhoFv/OUmjc9by/8jXs81UmfbN%2BSK7ZAYgo%3D"

Using the preceding command, we configured some extra parameters:

The permission is set to r, which means that only read/query operations
are possible.
The expiry time is set to 2020-04-10.

Now, let's try to generate even more granular access. I will add the Partition
Key (PK) and Row Key (RK) ranges so that a service (or a person) that uses
this SAS token will not have access to the full content of a table:

$ az storage table generate-sas --permissions "r" --expiry "2020-04-10" --account-name "<account-name>" --name "<table-name>" --start-pk "colors" --end-pk "colors" --start-rk "1" --end-rk "100"

Since we added additional parameters for our SAS token, it will look
different to the one generated without them:

"se=2020-04-10&sp=r&sv=2017-04-17&tn=<table-name>&spk=colors&srk=1&epk=colors&erk=100&sig=MkUHFArwgDb2IbzjsfEsXrdFoEy5NU37HOYssfZpdjI%3D"

As you can see, besides a limited set of permissions and defined expiration
time, we have also limited access to the available ranges of PKs and RKs.
The preceding SAS token will only let you access records from
the colors partition and rows between 1 and 100.

SAS tokens allow you to define a range of PKs or RKs, which makes it impossible to
exclude specific rows from access.

The very same functionality can be achieved using Storage Explorer. Go to
Storage Accounts and then a table you are interested in. Right-click on it and
select the Get Shared Access Signature... menu item:

Figure 5.13 - Get Shared Access Signature... menu item

On the displayed window, you will be able to define the same parameters you
were defining using the Azure CLI commands:

Figure 5.14 - Generating a Shared Access Signature

Similar functionality is, of course, available for the blob storage service. The
following is a simple example:

$ az storage blob generate-sas --account-name "<account-name>" --container-name "<container-name>" --name "<blob-name>"

The output of the preceding command should look like this:

"sv=2018-03-28&sr=b&sig=pU95OJrxFGS/khiyjBs%2BgOIG/6BcgUzZvBh9oCUkonY%3D"

With the preceding SAS token, I have limited access to a specific blob stored
inside a specific container. We can extend this access restriction to additional
permissions or even protocol requirements:

$ az storage blob generate-sas --account-name "<account-name>" --container-name "<container-name>" --name "<blob-name>" --https-only --permissions "r"

A SAS token that's been generated with additional restrictions for blob
storage will look similar to the following:

"sp=r&spr=https&sv=2018-03-28&sr=b&sig=5XQBP6tXZXfgnVDF0o9Hdd4YJ8AsrcSFqsi2CsmmcSQ%3D"

Using the preceding SAS token, I will be limited to the following traits:

Forced to use HTTPS instead of HTTP when accessing the blob
Must attach read (r) permissions so that only this particular operation
can be performed against it

With Azure Storage Explorer, we can generate the token in an even easier
way. Go to the blob you are interested in and click on the Get Shared Access
Signature... menu item:

Figure 5.15 - Get Shared Access Signature... menu item at the file level

On the displayed window, you will able to generate a SAS token for a file.
The obvious downside of this method is the lack of additional parameters
(such as enforcing access via HTTPS):

Figure 5.16 - Generating a Shared Access Signature for a file

The last service – Azure Storage Queue – enables you to generate SAS

tokens in the same manner. Consider the following examples:

$ az storage queue generate-sas --account-name "<account-name>" --name "<queue-name>"

The preceding command will result in an output similar to the following:

"sv=2018-03-28&sig=z88nEawuUzOb9No8HRG8MEq8cPLadaFJ6iHJeqfvzqk%3D"

Let's see what happens to the output when we use the --permissions parameter
in this command:

$ az storage queue generate-sas --account-name "<account-name>" --name "<queue-name>" --permissions "r"

Using the --permission parameter will result in a little bit of a different output:

"sp=r&sv=2018-03-28&sig=aiHTvLJAjESFBZs/LlTvx8tOC%2BGBVeYuvXz8xcpYnTQ%3D"

Now, we will limit access to HTTPS and a specific IP address:

$ az storage queue generate-sas --account-name "<account-name>" --name "<queue-name>" --permissions "r" --https-only --ip "127.0.0.1"

Note how the generator signature differs when limiting access to HTTPS and a
specific IP address:

"sp=r&sip=127.0.0.1&spr=https&sv=2018-03-28&sig=jFouDlGHQsI9F7sYsSFl9AUnnSpujYqabHuvrrjJcys%3D"

Each of the generated SAS tokens gives access to a queue in some specific
way:

The first one gives generic access to the service.
The second one extends the security and limits access to reading
messages only.
The third one adds another layer of security by enforcing HTTPS and a
particular IP address.

Using Storage Explorer here will be similar to the previous services – once
you've found a queue you want to generate a token for, click on the Get
Shared Access Signature... menu item and generate a new token:

Figure 5.17 - Generating a Shared Access Signature for a queue

Note that on all the screens for generating a SAS token using Microsoft
Azure Storage Explorer, you can select an access policy. In the previous
section, I described the process of creating policies – you can attach them to
SAS tokens using either the command line or the application in order to
easily manage them once they've been passed to the clients.

Once you have generated a SAS token, you can use it as follows:

https://account.table.core.windows.net/container?se=2020-04-10&sp=r&sv=2017-04-17&tn=<table-name>&sig=R6ozQlaqFhoFv/OUmjc9by/8jXs81UmfbN%2BSK7ZAYgo%3D

The preceding example is used for Table Storage and consists of two
sections:

The HTTP endpoint of a container
A SAS token

Those two fragments create a SAS URI, which is used to connect to a
resource. In the same manner, you can use the token when connecting from
applications. The service will ensure that the connection respects the attached
set of permissions or protocol and will forbid unauthorized access to your
resources.

Summary
In this chapter, we started by creating a custom role. We then learned how to
configure access to Azure resources and how to configure MSI. We also
learned how to use and revoke Shared Access Policies, along with how to
generate SAS tokens for different services. With the skills you have gained in
this chapter, you are now able to secure your resources with ease. You can
define roles and various policies for all your users, depending on their needs,
which will help you conveniently handle security.

In the next chapter, we will start learning how to manage virtual machines in
Azure, as well as data disks, network interfaces, and desired configuration.
We will also cover things such as deployments, security, and connectivity.

Managing Virtual Machines
Virtual machines (VMs) are both very popular on-premises and in the
cloud. This chapter is designed to give you all the information you need to
manage VMs so that you can start deploying and configuring them without
hesitation. We will provide answers to problems such as vertical/horizontal
scaling, monitoring, configuring networking, and connecting to different
machines.

In this chapter, we will start by adding additional disks to a VM and
configuring its network and configuration. You will also learn how to
manage monitoring, availability, and the number of instances of working
machines. The last part of this chapter will cover the security features of
VMs, along with different ways to connect to them.

In this chapter, we will cover the following topics:

Adding data disks
Adding network interfaces
Using Desired State Configuration
Scaling VMs up/out
Configuring monitoring
Configuring high availability
Deploying VMs
Securing access to VMs
Connecting to a VM

Let's get started!

Technical requirements
To complete the exercises in this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)

Azure PowerShell installed on your computer: https://docs.microsoft.com/e
n-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?v
iew=azure-cli-latest

Adding data disks
Each Azure VM has to have a disk configured for it that it uses to store the
various operating systems and your files. However, you may want to
configure an additional disk that you can utilize for additional files or
application data. These disks are called data disks and can be attached to
VMs, depending on their size. In this section, you will learn how to add such
a disk and configure it so that it works with your VM.

In fact, in Azure, each VM can have two types of disks attached to it:

An OS disk (required), which contains the operating system of the
machine
A data disk (optional), which is an additional disk that offers extended
disk space

You can create a VM without a data disk if it is not required and add it later
when you run out of space on your OS disk. Technically, when you work
with your VM, all the data from the OS disk is saved in the Azure storage
account that contains the disk. Thanks to that, the whole state of the machine
is persisted and once it is rebooted, your data is still there. There is, however,
a second type of OS disk called ephemeral, which does not persist data to
Azure Storage. If you use this option and your machine gets rebooted, all the
data will be erased and you will need to start with a fresh OS installation.

Take a look at the following article for more information on ephemeral disks. There are
some differences between them and normal OS disks that are not covered in this chapter:
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/ephemeral-os-disks.

Now, let's learn how to create a data disk in Azure.

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/ephemeral-os-disks

Creating a data disk

To get started, you will need a working VM. If you do not have one, you can
quickly deploy one. To do so, use the following Azure CLI command:

You can find all the available options for this command by running `az vm create -h`

az vm create --size VmSku -n MyVm --resource-group MyResourceGroup --image VmImage

The same functionality is available via a PowerShell cmdlet:

https://docs.microsoft.com/en-us/powershell/module/azurerm.compute/new-azurermvm

New-AzureRmVM

Remember to pass all the required parameters and enter the expected VM size
(see the preceding Azure CLI command) and wait a few minutes for the
process to complete. If you want, you can also use the Azure portal and
create a machine using a step-by-step wizard:

Figure 6.1 – Configuring a new VM

To attach a data disk to a VM, you will have to create one. To do so, use the
following command:

az disk create --resource-group "<resource-group-name>" --name "<disk-name>" --size-gb "<size>"

Since we are creating an empty disk, we have to pass its size using the --size-
gb parameter. Of course, by using the preceding command, you can configure
the disk so that it uses a specific type (Standard/Premium, SSD/HDD) or
even set its IOPS:

--sku: For determining disk performance (Premium_LRS,

StandardSSD_LRS, Standard_LRS, UltraSSD_LRS)
--disk-iops-read-write: Only allowed for UltraSSD disks

 To create a disk with PowerShell, use the following command:

New-AzureRmDisk

Once the disk has been created, we have to attach it. To do so, run the
following command in the Azure CLI:

az vm disk attach

For example, to attach a disk to a VM named ch06-euw-vm, I used the following
parameters:

$ az vm disk attach --vm-name "ch06-euw-vm" --name "<disk-name>" --resource-group "<resource-group-name>"

You can create and attach a disk in the same moment by using the az vm disk
attach command with the --new switch, as follows: az vm disk attach --vm-name "ch06-euw-vm" --
name "<disk-name>" --resource-group "<resource-group-name>" --new

Once the disk is attached, you will be able to see it in the Azure portal:

Figure 6.2 – View of both the OS and data disks attached to a machine

Data disks, similar to OS disks, can be encrypted, and their performance
depends on the disk type (if you chose the Premium_SSD type, you will
benefit from much better performance than using Standard_HDD disks).

Once the data disk is attached to a VM, it is registered as an SCSI drive and
can be used by your VM. All the attached disks are, in fact, Virtual Hard
Disks (VHDs) stored as Page Blobs on storage accounts (this is why a
storage account is always created along with a VM). Data disks are one of the
available types of Managed Disks, which is a special offering for VMs. It
enables you to be responsible only for the provisioning part of the storage –
 Azure takes care of the rest.

In the next section, you will learn how to configure an additional feature
related to VMs: networking interfaces.

Adding network interfaces
In the previous section, you had a chance to add data disks, which can be
used as external storage for your data. However, VMs are not only about
storage – they are also a part of a network that you have to configure properly
to ensure proper access. In this section, you will learn what network
interfaces are and how they work to deliver a proper VM security model.

This section requires you to have a VM already deployed. For detailed instructions, go
back to the Adding data disks section, where I described the process step by step.

Network interfaces are a feature of Azure that aggregates the following
configurations:

IP configuration
DNS servers
Network Security Groups (NSGs)

They act as an interface to your VM and ensure the proper communication
between it and other components. To create a network interface (NIC), use
the following Azure CLI command:

az network nic create --resource-group "<resource-group-name>" --name "<interface-name>" --subnet "<subnet-name>" --vnet-name "<vnet-name>"

As you can see, to create a NIC, you have to have a virtual network (VNet)
already created with a subnet configured.

If you need instructions on how to create a VNet and a subnet, refer to Chapter
3, Configuring and Managing Virtual Networks, where we covered managing and
configuring them.

A NIC is always created with each VM you provision in Azure and is
available in the Networking blade in the Azure portal:

Figure 6.3 – A view of a NIC attached to a machine

As you can see, you can have more than a single interface attached to the
machine. To attach an additional one, you will have to run the following
command:

$ az vm nic add --resource-group "<resource-group-name>" --vm-name "<vm-name>" --nics "<names-or-ids-of-nics>"

Using multiple NICs allows you to configure additional public IP addresses
or network rules. A NIC is a logical Azure resource that, by itself, does not
imply any cost. It can be defined as follows:

Figure 6.4 – Network infrastructure of a machine

As you can see, it clearly describes the functionalities of NICs – they
aggregate the configuration and rules from multiple components so that they
act as a single entity. This greatly simplifies management and allows you to
control things from a single point of view.

The next section is about a feature or practice that can be described as
Infrastructure as Code (IaC). We will discuss a component called Desired
State Configuration, which will help you automate deploying your machines
by providing reusable configuration.

Using Desired State Configuration
Desired State Configuration (DSC) is a feature of Azure that allows you to
ensure that a given VM has a desired state configured. What is the desired
state? All the machines you deploy in Azure should have a specific set of
features and tools already installed and enabled. By using DSC, you can
automatically turn on different capabilities and make sure that you can deploy
your application to them without any additional steps being required.

To get started, you will need a VM deployed in your subscription. To create a new one,

please reference the Adding data disks section of this chapter. The feature described in
this section requires a machine that supports the Windows Management Framework. A
list of such machines can be found here: https://docs.microsoft.com/en-us/powershell/scripting/dsc/get
ting-started/wingettingstarted?view=powershell-7.

To be able to run DSC scripts, you will have to install the PowerShell
Desired State Configuration extensions on the desired VM. You can do this
in a variety of ways, as follows:

You can install it via the Azure portal (using the Extensions blade):

Figure 6.5 – DSC extension in the Extensions list

Another option is using the Azure CLI (or PowerShell cmdlets). By
using the az vm extension set command, you can easily add a particular
extension to a VM of your choice:

$ az vm extension set --publisher "Microsoft.Powershell" --vm-name "<vm-name>" --name "DSC" --resource-group "<resourve-group-name>"

You can get all the required information regarding an extension (its publisher and a
name) by running the az vm extension image list command.

However, there is one gotcha with the preceding command – it will just
install the extension without a proper configuration. To leverage all the

https://docs.microsoft.com/en-us/powershell/scripting/dsc/getting-started/wingettingstarted?view=powershell-7

features of DSC, use the following command variation:

$ az vm extension set --publisher "Microsoft.Powershell" --vm-name "<vm-name>" --name "DSC" --resource-group "<resourve-group-name>"

This is the very same command we described a few lines prior. The only
difference is the --settings parameter, where you can provide the extensions
configuration. As you can see, before the extension is installed, we have to
write a DSC script. A configuration that is passed via DSC is a specific
PowerShell structure and looks like this:

configuration IISInstall

{

 node "localhost"

 {

 WindowsFeature IIS

 {

 Ensure = "Present"

 Name = "Web-Server"

 }

 }

}

The preceding script makes sure that we have Internet Information Services
(IIS) on our machine. This is a Microsoft web server that's installed and
running. To run it, we will use a PowerShell script, as follows:

$resourceGroup = 'chapter06'

$location = 'westeurope'

$vmName = 'ch06-euw-vm'

$storageName = 'chapter06diag'

Publish-AzureRmVMDscConfiguration -ConfigurationPath C:\installiis.ps1 -ResourceGroupName $resourceGroup -StorageAccountName $storageName -force

Set-AzureRmVMDscExtension -Version '2.76' -ResourceGroupName $resourceGroup -VMName $vmName -ArchiveStorageAccountName $storageName -ArchiveBlobName 'installiis.ps1.zip' -AutoUpdate -ConfigurationName 'IISInstall'

At the time of writing this book, the Publish-AzureRmVmDscConfiguration cmdlet had an issue of
caching a current subscription, so it could not find a resource group when executed after
signing into a different one. Make sure you are starting with a fresh environment when
running this command.

In the preceding code block, first, we defined some variables. Then, we
published the configuration script to a VM and scheduled its execution. Once
the extension is installed, we can verify whether it actually changed
something on the machine:

Figure 6.6 – Working IIS on a VM after running a script

As you can see, after running the script, IIS is working (by default, I am
unable to access a welcome screen by going to the localhost page). Of course,
such a page is not accessible from the internet – I have to add an inbound rule
that accepts traffic from port 80 to be actually able to see it.

A DSC script is an actual PowerShell module and works in a similar fashion.
Let's check out another example script (you can find the full example at https:
//gist.github.com/kamil-mrzyglod/2aa0f0ce2188684b4f70a01fdd9ffa1e):

Configuration ParametersExample

{

 param(

 [Parameter(Mandatory=$true)]

 [string] $FeatureName,

 ...

)

 Node 'sample'

 {

 WindowsFeature ($FeatureName + 'Feature')

 {

 }

 }

}

As you can see, it contains a few areas:

Parameters: You can pass a parameter to a DSC script as if it was a
typical PowerShell script.
Logic: You can write logic as if it was a typical PowerShell script.
Node description: Contains all the features to be enabled on a machine.

DSC is a part of Azure Automation accounts. This is another Azure service
that lets you configure automation for things such as onboarding machines,
update management, and configuration provisioning. Currently, all these
features are part of VMs in Azure:

https://gist.github.com/kamil-mrzyglod/2aa0f0ce2188684b4f70a01fdd9ffa1e

Figure 6.7 – Enabling configuration management

As you can see, you can enable DSC directly from a machine. This will,
however, force you to create a Log Analytics workspace and Automation
account (but will improve the overall capabilities of the feature). Remember

that there are two features related to DSC:

DC scripts for VMs.
Azure Automation State Configuration, which extends the DSC
capabilities and lets you manage the modules, import them, and
configure them using Azure's capabilities.

The important thing with DSC is the fact that you can deploy the scripts
using Azure Resource Manager (ARM). By doing this, we can ensure that
we have a fully automated pipeline for deploying VMs and ensure that they
are configured properly.

Please proceed to the next section, where you will learn about the scaling
capabilities of VMs. Even if you are not proficient with them yet, it will help
you understand the capabilities of horizontally and vertically scaling VMs in
Azure.

Scaling VMs up/out
The biggest power of cloud computing is the seamless possibility to scale
your workloads in seconds, without the need to provision new hardware. Any
time you need more power for your applications, you can either add a VM to
the workload or scale it up so that it gets better hardware. In this section, you
will learn how easy it is to perform such actions and manage your machines.

To get started, you will need a VM deployed in your subscription. To create a new one,
please reference the Adding data disks section of this chapter. The feature described in
this section works for both Windows and Linux machines, so do not worry and select
whichever you prefer to work with.

Scaling up an instance is as easy as running a single command. Here, you can
find an example of scaling a VM with the Azure CLI:

$ az vm resize --size Standard_DS2_V2 --resource-group "<resource-group-name>" --name "<vm-name>"

The preceding command takes a --size parameter to define a new VM SKU
value. Once run, the process of scaling up (upgrading the hardware) will start

immediately.

Note that not all VM sizes are available in each region. To know which are available for
you, go to https://aka.ms/azure-regions.

The process of scaling up may take a while, so be patient. This operation,
however, allows you only to scale up – how about scaling out? Well, to
perform such an operation, we will need a Virtual Machine Scale Set
(VMSS). To create a VMSS, use the following command:

az vmss create -n "<vmss-name>" -g "<resource-group-name>" --instance-count <instance-count> --image Win2016Datacenter

The preceding command will create a VMSS containing a specific number
(according to the --instance-count parameter) of the same VMs created from
the Windows Server 2016 Datacenter image. Now, to add some more
instances (or remove them), use the following command. The difference
between this and the previous command is that, here, we are scaling the
whole scale set (we're scaling more than a single VM at once):

az vmss scale --name "<vmss-name> --new-capacity <new-capacity> --resource-group "<resource-group-name>"

When performing a scale-up/down operation, Azure will provision brand new
machines that will have your data attached to them. This doesn't happen with
scaling out since, during that operation, you are only adding/removing
machines from a workload. In most cases, you do not want to use scaling up
(vertical scaling) as it may cause data loss and, in general, it is a much more
complicated operation.

Vertical scaling (as opposed to horizontal scaling) has far more limitations as both
possible hardware and CPU and memory utilization, in most cases, have upper bounds. It
is easier to write code for parallel processing than putting all the power into a single
machine.

Scaling caveats

Please note that when you scale up/down a VM, it is restarted prior to
allocating new resources to it. As it is difficult to alter provisioned CPU and
memory for a working machine, it is highly possible that such an operation
will restart your workloads or pause them. This is why you should do that

https://aka.ms/azure-regions

with caution – wait for a window of opportunity or low-peak hours to limit
users affected by the scaling operation.

Remember that a scaling operation may fail due to various reasons:

Temporary data center capacity quota
Service outage
Reaching limits on your subscription

Take these into account when you plan to make any changes to the
production subscription to avoid disruptions to your services.

Soon, you will see that scaling is one of the most common operations you can
perform when working with cloud services. In the next section, I will show
you how to configure another important feature of cloud services, which is
monitoring for VMs.

Configuring monitoring
Monitoring VMs is one of the most important features available as there are
many different parameters to analyze and watch for. In Azure, when
designing IaaS architectures, you can use different services and features – this
is why the initial choice may be difficult to make. In this section, you will
learn how you can monitor different VM aspects and create dashboards to
display them.

To get started, you will need a VM deployed in your subscription. To create a new one,
please reference the Adding data disks section of this chapter.

In Azure, the way you monitor different aspects is based mostly on two
things:

Performance counters collected by the running OS
Installed extensions

As performance counters are OS-specific, you may get different results for

Linux and Windows machines. When it comes to extensions, their interface is
more or less OS-agnostic. Remember that Azure Monitoring collects data for
all your machines, regardless of whether there is additional software installed
or not. The downside of this solution is the fact that the data that's collected is
available only for the machine – you cannot easily send it to other monitoring
solutions or dashboards.

Configuring guest-level monitoring

With guest-level monitoring enabled, you can collect additional data and send
it to destinations other than Azure. To enable this feature, go to
the Diagnostics settings blade and click Enable guest-level monitoring:

Figure 6.8 – Diagnostic settings blade before enabling it

Now, if you go to your deployed VM in the Azure portal, you will see that
the very first monitoring feature of a VM is available immediately when you
go to its Overview section:

Figure 6.9 – View of a machine's workload

As you can see, this gives you an immediate insight into parameters such as
CPU, network, and disk utilization. By using the pin icon next to each chart,
you can attach it to your main dashboard inside the Azure portal.

Extending monitoring capabilities

More interesting capabilities can be found in the Monitoring section:

Figure 6.10 – Insights blade

Most of the features are made available by another Azure service named
Azure Monitor. By going to the Insights section, you will be able to enable
this feature:

Figure 6.11 – Getting started with Insights

When you click the Enable button, this functionality will be onboarded onto
the VM (this can take a few minutes, so be patient). With Insights and a
workspace installed, you will be able to see additional things regarding your
machine, such as the topology of the system:

Figure 6.12 – Topology of your network traffic

As you can see, you are able to analyze all the open ports and active
processes running on the machine. Installing the extension also allows you to
query collected data using the Logs blade:

Figure 6.13 – Data gathered by monitoring extensions on a machine

Azure VMs can be also configured to monitor network latency and topology

changes so that you are notified when such a situation occurs.

Enabling connection monitor

Connection monitor enables you to monitor communication between two
separate VMs so that you're notified when there are any issues in the network
connection between them. To use this feature, go to the Connection
monitor blade and click on the + Add button to install the monitor:

Figure 6.14 – Adding a connection monitor
Besides the aforementioned fields, you can use advanced settings such as a source port
and probing interval. This will allow you to leverage custom configuration (if you have
very specific requirements when it comes to open ports). Check out the following link for
a more detailed approach: https://docs.microsoft.com/en-us/azure/network-watcher/connection-monitor-prev
iew.

https://docs.microsoft.com/en-us/azure/network-watcher/connection-monitor-preview

Note that this service works not only for Azure VMs but also for applications
(by using Application Insights). Proper monitoring configuration is crucial
for all the systems as it allows you to quickly react to issues and investigate
them properly. Take into consideration that you are not limited to Azure
services only – you can install your own monitoring solutions on VMs that
can collect and send data to any data sink you like.

Here, you could try some additional capabilities when it comes to monitoring
VMs. You may find them interesting when you're heavily working on IaaS
architectures and seeking built-in tools for gathering insights.

To learn about how to achieve high availability for VMs, please proceed to
the next section, where we'll discuss Availability Zones and Availability Sets.

Configuring high availability
In many scenarios, you can live with only a single instance of your VM
available. This may include low-priority systems, asynchronous processing,
or non-production resources. Things are much more difficult when we
consider failover and business continuity scenarios. In such cases, you have
to ensure that your VMs are properly configured and that even if one of them
fails, the rest are still operating. In this section, I will show you how to
achieve high availability (HA) for Azure VMs and configure it for resiliency
scenarios.

Depending on the settings, you will end up with a machine in either an
Availability Set (which you will have to configure on your own by adding
additional VMs to it) or a VM provisioned in each available zone in the
region.

Note that Availability Zones (AZ) are not available in all the Azure regions. You can find
all the available regions at https://azure.microsoft.com/en-us/global-infrastructure/regions/.

In Azure, the availability of a VM can only be configured while you're
creating it:

https://azure.microsoft.com/en-us/global-infrastructure/regions/

Figure 6.15 – Configuring availability options

Currently, you have two options:

Availability set
Availability zone

The difference between them is based on the technical details found behind
each of the solutions. Depending on your choice, you will achieve different
levels of availability and resiliency for your machines:

Availability Sets ensure that, during planned or unplanned maintenance
events in Azure, at least one VM will be running to meet the described
SLA. This is done via upgrade and fault domains, which you will have
to select. This can protect you from local outages, but will not secure
your workloads in the case of region-wide issues.
AZs make your VM resilient to zone failures but cannot protect you
from a region-wide disaster. They are based on a single region that is
designed in a way that even a local accident should not affect all your
data centers.

To achieve HA across regions, you would have to implement at least two sets of VMs

hosted in different regions and leverage AZs. This is beyond the scope of this section, but
you can consult the following article for more: https://docs.microsoft.com/en-us/azure/virtual-machin
es/windows/manage-availability.

Now, let's learn how to create a VM with an Availability Set and see what it
looks like:

1. During the creation of a VM, select the availability option of your
choice. For the purpose of this example, I went for Availability set
(when you select this option, you will be asked to create a new set or
select an existing one):

Figure 6.16 – Configuring an Availability Set

2. Select the number of fault/update domains you are interested in. The
difference between them is as follows:

Fault domains separate your VMs physically so that they are not
affected by the same network or power issues.
Update domains allow you to update VMs one by one.

3. When you are done, click the OK button. The rest of the process is the
standard VM creation process – you will have to provide network

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability

settings and choose disks for the machines.

Note that using AS/AZ does not mean you are paying less for a machine –
 you will still pay for each VM individually (what you are not paying for is
the availability feature itself). When it comes to ensuring HA globally, you
will have to introduce an entry point that will be able to point to a proper set
of machines in the working region (such as Azure Traffic Manager or Azure
Front Door). In general, there are some major differences between local and
geographical replication:

Services leveraging AZs are replicated synchronously, so you do not
have to worry about data integrity.
Services replicated globally, in most cases, give you only asynchronous
replication (unless stated otherwise), which does not ensure proper data
replication. They also introduce greater latency and system
fragmentation.

Depending on your requirements, you will have to choose the proper
solution. Many applications can flawlessly work using only AZs as the whole
region failing is something rather uncommon. Remember that you should
always consider the most likely scenario when considering the replication
model. If your system does not require 100% uptime, you do not have to
replicate it globally (when only the availability parameter is considered).

So far, we have focused mostly on deploying VMs either using the Azure
portal or the Azure CLI. In the next section, you will learn about additional
tools that can be used to create a VM in Azure.

Deploying VMs
In this chapter, we have covered two ways of deploying VMs to Azure. Of
course, these aren't the only options we have because, in CI/CD pipelines
(which are basically continuous integration/continuous
deployment automation scripts implemented with various tools), you will
need more sophisticated solutions to ensure the desired level of automation.

In this section, we will discuss other possibilities available, including Azure
Resource Manager, the Azure Fluent API, and Terraform.

Browsing the solutions

Depending on the selected solution, different steps will be required to
perform proper VM deployment. When it comes to using ARM, take a look
at the ARM reference page at https://docs.microsoft.com/en-us/azure/templates/micr
osoft.compute/2019-03-01/virtualmachines, where you can find the complete schema
of a VM deployment:

{

 "name": "string",

 "type": "Microsoft.Compute/virtualMachines",

 "apiVersion": "2019-03-01",

 "location": "string",

 "tags": {},

 "plan": {

 "name": "string",

 "publisher": "string",

 "product": "string",

 "promotionCode": "string"

 },

 "properties": {

 "hardwareProfile": {

 "vmSize": "string"

 },

 ...

 }

}

The preceding schema will be similar to any other Azure resource that's
deployed via ARM. The common properties are as follows:

name

type

apiVersion

location

tags

properties

The plan property comes directly from the VM schema.

The reason for using ARM templates here is the fact that it is a native way of

https://docs.microsoft.com/en-us/azure/templates/microsoft.compute/2019-03-01/virtualmachines

deploying resources to Azure. Unfortunately, ARM templates (especially for
resources such as VMs) tend to be quite complicated and unclear. This is
where the other two solutions come into play as they allow you to use your
favorite programming language to create a deployment pipeline. Take a look
at the following links, where I've put SDKs for three different platforms –
.NET, Java, and Python (though there are also packages for Go and PHP
available):

.NET: https://docs.microsoft.com/en-us/dotnet/azure/sdk/
Java: https://docs.microsoft.com/en-us/azure/developer/java/sdk/
Python: https://docs.microsoft.com/en-us/azure/developer/python/

An example Fluent API description for a VM deployment written in C# looks
like this:

IAzure azure = Azure.Authenticate(credFile).WithDefaultSubscription();

var windowsVM = azure.VirtualMachines.Define("myWindowsVM")

 .WithRegion(Region.USEast)

 .WithNewResourceGroup(rgName)

 .WithNewPrimaryNetwork("10.0.0.0/28")

 .WithPrimaryPrivateIPAddressDynamic()

 .WithNewPrimaryPublicIPAddress("mywindowsvmdns")

 .WithPopularWindowsImage(

 KnownWindowsVirtualMachineImage.WindowsServer2012R2Datacenter

)

 .WithAdminUsername("tirekicker")

 .WithAdminPassword(password)

 .WithSize(VirtualMachineSizeTypes.StandardD3V2)

 .Create();

The preceding code presents a fluent way of creating a VM by describing the
deployment with easy-to-read functions. We can define all the properties
(region, resource group name, VM image, and authentication) using one of
the supported programming languages.

As you can see, the syntax is much simpler than writing a JSON document.
By using a simple console application, you can greatly improve the overall
maintenance capabilities of your deployment pipeline. The third option will
require you to understand how the basics of Terraform work (please refer to h
ttps://www.terraform.io/docs/index.html to get a better picture of the technology).
An example Terraform script for deploying a VM in Azure looks like this:

resource "azurerm_virtual_machine" "main" {

https://docs.microsoft.com/en-us/dotnet/azure/sdk/
https://docs.microsoft.com/en-us/azure/developer/java/sdk/
https://docs.microsoft.com/en-us/azure/developer/python/
https://www.terraform.io/docs/index.html

 name = "${var.prefix}-vm"

 location = "${azurerm_resource_group.main.location}"

 resource_group_name = "${azurerm_resource_group.main.name}"

 ...

 storage_image_reference {

 publisher = "Canonical"

 ...

 }

 storage_os_disk {

 name = "myosdisk1"

 ...

 }

 os_profile {

 computer_name = "hostname"

 ...

 }

}

In Terraform, you can define a resource that will contain all the supported
properties, all of which are used later during deployment. The preceding
fields, such as name, location, and resource_group_name, can be found when using
SDKs or ARM templates.

All the solutions have their pros and cons, so the choice is yours. Let's
quickly summarize them:

Using ARM templates is the native for Azure and is a widely supported
approach that gets the most updates and support from Microsoft. The
downside of these templates is their limited readability.
Terraform is a third-party tool that requires an additional language to be
mastered. It manages the configuration state on its own and offers much
better readability. Until recently, it had one advantage over standard
ARM templates – it could perform a what-if analysis.
The Management SDK is a great tool for staying within a specific
language stack. It is preferred by developers over other tools and it
allows us to use standard programmatic language constructs to deploy
infrastructure.
The imperative approach using Powershell/Azure CLI is another
alternative that helps in rapid development. However, it can be tricky
when implementing more complicated logic.

When selecting a proper tool, you always have to take factors such as your
current technology stack, the audience of the scripts, and their use into

account. Depending on the answers, one tool may suffice more than another.

Deploying resources using various tools

To deploy a VM using ARM, you will need to use either the Azure CLI or
Azure PowerShell. Depending on the technology, you will have to use a
different command. For the CLI, use the following command:

az group deployment create --resource-group <resource-group-name> --template-file <path-to-template>

For PowerShell, the following command should do the job:

New-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -TemplateFile <

Both of these commands take the provided parameters and deploy a template
file in a specified resource group. Remember to enter all the required fields to
perform a correct deployment (they are all described in the ARM reference).
Another thing to note is the fact that a VM requires other resources to also be
provisioned (such as VNet, a public IP address, or a load balancer). You will
have to include all of them inside your template to finish the deployment. The
very same requirement works for the Fluent API and Terraform – for
example, to deploy a VNet, which you will be able to use later in a VM
deployment, run the following syntax:

var network = networks.Define("mynetwork")

 .WithRegion(Region.USEast)

 .WithNewResourceGroup()

 .WithAddressSpace("10.0.0.0/28")

 .WithSubnet("subnet1", "10.0.0.0/29")

 .WithSubnet("subnet2", "10.0.0.8/29")

 .Create();

Here, we defined a new network called mynetwork and provided a bunch of
parameters (such as its region/address space). Note that we also declared a
need to deploy it inside a new resource group. A nice thing when it comes to
using the Fluent API is the variety of available methods – all the VM
required resources can be either passed as a reference or you can instruct the
syntax to create a resource for you. Here is an example method for creating a
VNet. By using a VM name as a reference, we can quickly instruct the SDK
to create a new primary network for it:

var windowsVM = azure.VirtualMachines.Define("myWindowsVM")

 .WithNewPrimaryNetwork("10.0.0.0/28")

When using Terraform, things look really similar – you can create a resource
similar to a VNet before creating a VM. To do so, you need to define your
resource in the same manner as you would in an ARM template (in
Terraform, you need to use the resource block and provide the parameters you
want):

resource "azurerm_virtual_network" "main" {

 name = "${var.prefix}-network"

 address_space = ["10.0.0.0/16"]

 location = "${azurerm_resource_group.main.location}"

 resource_group_name = "${azurerm_resource_group.main.name}"

}

resource "azurerm_network_interface" "main" {

 name = "${var.prefix}-nic"

 location = "${azurerm_resource_group.main.location}"

 resource_group_name = "${azurerm_resource_group.main.name}"

 ip_configuration {

 name = "testconfiguration1"

 subnet_id = "${azurerm_subnet.internal.id}"

 private_ip_address_allocation = "Dynamic"

 }

}

Then, you can reference it (see the network_interface_ids parameter). We are
basically creating a new VM with a name, location, and VM size. We are also
using other resources to link them to that specific one:

resource "azurerm_virtual_machine" "main" {

 name = "${var.prefix}-vm"

 location = "${azurerm_resource_group.main.location}"

 resource_group_name = "${azurerm_resource_group.main.name}"

 network_interface_ids = ["${azurerm_network_interface.main.id}"]

 vm_size = "Standard_DS1_v2"

}

All the possibilities end up with us deploying a VM of the desired size, with
the configuration included. No matter which solution meets your
requirements, all of them use ARM under the hood. Currently, there is no
other way to deploy resources to Azure (besides the classic model of
deployment, which is currently being deprecated). Using ARM templates is a
native way of creating deployments, but being so close to the API means that
you have to deal with cumbersome syntax and complicated schema. The
Fluent API and Terraform are mostly on the same level in terms of maturity

and development – they require additional work to be compatible with new
resources and often lack support for services that have not reached General
Availability (GA) status.

Since we're nearing the end of this chapter, in the next section, we will cover
more advanced topics and provide more details regarding common actions.
We will cover securing access to VMs so that you can ensure no one without
the required authority will be able to access your machines.

Securing access to VMs
A VM that is accessible to everyone is worse than having no VM at all. In
this section, you will learn how VMs in Azure can be secured and how to
enhance and use their security features. We will also discuss the proper
security approach when it comes to designing network topologies.

To get started, you will need a VM deployed in your subscription. To create a new one,
please reference the Adding data disks section of this chapter. The feature described in
this section works for both Windows and Linux machines, so do not worry and select
whichever you prefer to work with.

By default, when a VM is created in Azure, there is no way to access it – all
the ports are closed for both inbound and outbound connections. You can find
confirmation of this when creating a machine directly from the Azure portal:

Figure 6.17 – Information about ports blocked by default

This means that you will not be able to access both a Windows machine

(using RDP) or a Linux machine (using SSH). To change this, you can go to
the Networking blade of the selected machine and add a proper port rule
using the Add inbound port rule button:

Figure 6.18 – Inbound rules configuration
We covered working with NSGs and VNets in Chapter 3, Configuring and Managing Virtual
Networks. Take a look at it if you are not familiar with the networking concepts available
in Azure.

This applies to all the inbound or outbound ports that you may consider when
deploying your application to a VM. If you have a web server running on a
VM, you will have to open port 80 (and 443 if you are planning to use secured
connections). The same applies to web servers or databases – with the default
configuration, you will not be able to communicate with the machine. The
effective security rules are described by a NIC attached to a machine. Take a
look at the following screenshot:

Figure 6.19 – Inbound/outbound rules

As you can see, all the rules are divided into a few columns:

NAME: The custom name of a rule
PRIORITY: The lower the rule is, the more important it is
SOURCE: The origin of a request
SOURCE PORTS: The origin ports
DESTINATION: The endpoint type for a request
DESTINATION PORTS: Endpoint ports
PROTOCOL: The type of protocol (TCP/UDP/ICMP) allowed by that
rule
ACCESS: Either allowed or denied

In production environments, you should consider closing all the unused ports

(for example, you do not want to have port 80 open if you are not using a web
server).

When configuring a production environment, you can consider a thing called
a jumpbox. It is a VM and is the only machine that allows you to log into it
to diagnose other system components. From a jumpbox VM, you can then
RDP/SSH to other machines inside the same VNet to understand the issue or
access internal logs.

There is also a new service available to achieve a secure connection when connecting
with VMs, which is called Azure Sentinel. You can read more about it here: https://docs.micr
osoft.com/en-us/azure/sentinel/overview.

The last section of this chapter will help you understand the ways to connect
to a VM. We will cover connecting both via RDP and SSH so that you can
select a protocol that suits your needs.

Connecting to a VM
When you provision a VM in Azure, it has some settings already configured
and ready to be used. In many cases, you won't want to log into it as there are
often easier ways to diagnose a problem or install the software. However,
there are still moments when you just need to use RDP or SSH and get your
hands on the internal console of a machine. This may include a lack of proper
monitoring and the unavailability of certain tools that may automate running
a command or debugging. In this section, you will learn how to connect to a
VM from a Windows or Linux machine.

To get started, you will need a VM deployed in your subscription. To create a new one,
please refer to the Adding data disks section of this chapter. The feature described in this
section works for both Windows and Linux machines, so do not worry and select what you
prefer to work with.

With your VM deployed, we can make an attempt to connect to it.

Connecting to a VM

https://docs.microsoft.com/en-us/azure/sentinel/overview

Connecting to Azure VMs is pretty simple as the Azure portal comes with a
wizard that helps you with this. Whether you have a Windows or a Linux
machine, you will need to use the Connect button, which can be found on
the Overview page of your machine:

Figure 6.20 – Connect button

Note that you will use different ports for RDP (3389) and SSH (22) connections
as per the default settings of those services.

For using SSH, you will need an SSH client that can handle the connection. For most use
cases, I recommend using PuTTy, which is free and popular.

After clicking on the Connect button, you will be able to select the desired
option:

Figure 6.21 – Connecting to a machine

Depending on your choice, the process of signing into a VM will be slightly
different:

For RDP, you will either use an RDP file or will have to provide the IP
address and the port number to your RDP client.
For SSH, you will have to provide the IP address, port number, and
login details to your SSH client.

Note that for Windows machines, you have two options available because
connecting with both RDP and SSH is possible.

Using RDP and SSH to connect

When it comes to Linux machines, by default, only SSH is enabled – to use
remote desktop, you will have to install and configure a proper package.
Click on Download RDP file to quickly log into your VM. After accepting
the connection, you will be asked to provide the admin credentials that were
passed during the VM's creation:

Figure 6.22 – Windows RDP login prompt

Here, you can see how the process of connecting looks for SSH with PuTTy:

Figure 6.23 – Connecting to a machine via SSH with PuTTy

Here, we are using port 22 to connect via SSH. However, remember that it is
just a default port number and that, under specific circumstances (such as
security issues), it can be altered.

Remember that you need either port 3389 or 22 open to be allowed to access the VM.

After correctly logging into a VM via SSH, you will see a console that you
can use to browse the system:

Figure 6.24 – Login prompts when using SSH and a Linux machine

For RDP, you will see a desktop for the operating system of your choice.
Take into consideration that the performance of using a remote desktop may
be affected by the size of your VM and its utilization.

Avoid using RDP for small machines running production workloads. Azure services such
as Azure Service Fabric may be affected by your attempts using a machine with Remote
Desktop, even resulting in the failure of your service. Also, note that you can always
change the configuration of the remote desktop so that it is not available behind the
default 3389 port.

When it comes to remote access, always consider remapping the default port
(for example, by using NSGs) so that a potential attacker won't know that a
specific OS service is a possible vector of attack.

Connecting to VMs is one of the easiest steps when it comes to managing and
monitoring them. However, always consider the security factor – ports 3389 or
22 are well-known ports and should not be opened on production machines
unless really necessary.

In this section, you learned how to connect to your VMs. In production
systems, the whole setup may be quite different (as your VMs may be
connected to your domain controllers or require a jumpbox to actually
connect with them). Personally, I still heavily leverage the simplest ways to
connect, especially when prototyping things.

Summary
In this chapter, we covered how to connect to managing VMs hosted in
Azure. You learned about ways to secure machines, how to enhance storage
capabilities with additional disks, and how to extend networking using
network interfaces. We also talked about configuring software on VMs using
DSC and achieving HA. All these basics are really important from an
administrator's point of view as you will often face a ticket mentioning one of
those capabilities.

In the next chapter, we will cover advanced networking concepts such as load
balancing, VNets for managed services, and DDoS protection.

Section 3: Advanced Topics
With the basics in place thanks to the previous sections, we are able to move
on to more advanced topics. In this section, you will learn how to work with
data migration, high availability, and even automation for your daily tasks.

This section consists of the following chapters:

Chapter 7, Advanced Networking
Chapter 8, Implementing Storage and Backup
Chapter 9, High Availability and Disaster Recovery Scenarios
Chapter 10, Automating Administration in Azure

Advanced Networking
Networking in Azure is a big topic that requires a solution to diverse
problems. This chapter is designed to solve advanced problems that an Azure
administrator may face, such as proper DDoS protection, load balancing, or
networking for containers. After this chapter, you should be familiar with
configuring VNets even for more complicated infrastructures.

This chapter will help you understand more advanced networking topics
relating to various Azure services, such as Azure Kubernetes
Service (AKS) or Azure Container Instances (ACI). We will also describe
features such as DDoS protection and monitoring.

The following topics appear in this chapter:

Implementing load balancing
Monitoring networks
Configuring DDoS protection
Enabling VNets for AKS
Enabling VNets for ACI
Enabling VNets for Redis Cache

Technical requirements
To perform the exercises in this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)
Azure PowerShell installed on your computer: https://docs.microsoft.com/e
n-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?v
iew=azure-cli-latest

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Implementing load balancing
None of the more complex systems can work without proper load balancing.
The process and implementation of handling bigger loads may differ
depending on the components you use, the characteristics of your system, and
the overall requirements of the whole solution. In this section, we will cover
different ways to load balance your workloads, including different OSI layers
and Azure resources. Just to refresh your knowledge, there are seven layers in
the OSI model:

Layer 1 – The physical layer
Layer 2 – The data link layer
Layer 3 – The network layer
Layer 4 – The transport layer
Layer 5 – The session layer
Layer 6 – The presentation layer
Layer 7 – The application layer

To get started, we have to understand what our capabilities are when it comes
to load balancing in Azure:

Azure Load Balancer: Works on layer 4 and is designed to work
directly with Virtual Machines (VMs) in Azure by handling TCP/UDP
packets.
Azure Application Gateway: Works on layer 7, allowing you to
perform URL routing, SSL offloading, and other application-level
features.
Azure Traffic Manager: For DNS-level load balancing, you use Traffic
Manager. It works on a DNS level, which basically means that it
resolves a proper URL address for your clients depending on the
selected settings.
Azure Front Door: Working on layer 7, this is a global load balancer. It
is similar to Azure Traffic Manager in terms of resiliency as even a
region-wide failure will not put it down.

To select a proper load-balancing method, you should consider the following

cases:

Do you want to load-balance traffic on an application level? If so, use
Application Gateway.
Do you have multiple VMs inside a Virtual Network (VNet) and want
to ensure that they are evenly utilized? For that scenario, use Load
Balancer.
Do you need to load-balance requests geographically? This scenario is
covered by Traffic Manager.
Is SSL termination something you care about? If so, use Application
Gateway.
Do you seek global traffic distribution using HTTPS? Front Door looks
like the best choice for you.

To perform the exercises in this section, you will need the aforementioned
resources. To create them, I will use the Azure CLI with the following
commands:

$ az network lb create -n "<lb-name>" -g "<rg-name>"

$ az network application-gateway create -n "<ag-name>" -g "<rg-name>"

$ az network traffic-manager profile create -n "<tm-name>" -g "<rg-name>" --routing-method Priority --unique-dns-name "<unique-dns-name>"

The preceding code snippet covers three different things:

Creating a load balancer with az network lb create
Creating an Application Gateway instance with az network application-
gateway create

Creating a Traffic Manager profile with az network traffic-manager profile
create and a priority routing method, which will be described in detail
later in this chapter

Note that besides the provisioned resources, you will also need VMs or
applications to perform the load balancing. What is more, do not be surprised
by extra resources created when provisioning Load Balancer or Application
Gateway—they need public IPs and VNets to work properly.

The process of creating an instance of Application Gateway may take a while. Be patient!

Depending on the service, there will be different ways to configure it to
achieve a proper load-balancing solution. We will start with Azure Load
Balancer—to add any load-balancing rules, you will need to create a health
probe:

$ az network lb probe create -g "<rg-name>" --lb-name "<lb-name>" -n "myprobe" --protocol TCP --port 80

The preceding command will create a probe named myprobe, which will use
TCP protocol to probe a destination VM on port 80. One more thing needed
here is the actual pool of machines that we want to load-balance. By default,
a single backend pool is created for your needs, so the only thing needed here
is the rule creation:

$ az network lb rule create -g "<rg-name>" --lb-name "<lb-name>" -n "myrule" --protocol TCP --frontend-port 80 --backend-port 80

Before creating a rule, make sure at least one backend pool and probe exists as they are
required to create it.

The preceding rule will forward traffic coming on port 80 to port 80 on all the
machines in the attached backend pool.

A backend pool can be attached to either a single machine, Availability Set, or Virtual
Machine Scale Set (VMSS). This gives you a quick configuration option without the need
to manually attach a dozen of your machines.

In the portal, the configured rule looks like this:

Figure 7.1 – Configuring a load-balancing rule

As you can see, you can configure additional properties such as Session
persistence or Floating IP. They will be helpful for more advanced scenarios
(such as a need for sticky sessions). For Application Gateway, the concept is
very simple—once it is provisioned, you will have default options already
configured. Once more, you will need a backend pool, which describes
attached VMs, VMSS, or app services by declaring its targets (for example,
by using the IP addresses of your VMs or their FQDN):

Figure 7.2 – Configuring a backend pool for Application Gateway

In Application Gateway, load-balancing rules are named HTTP settings:

Figure 7.3 – Application Gateway load-balancing rule

As you can see in Figure 7.3, all the parameters available are related to the
HTTP protocol—this is why you can see settings such as Cookie based
affinity, Request timeout, and Override backend path. Conceptually, they are
the very same thing as load-balancing rules in Azure Load Balancer—the
difference here is the OSI model layer. In Load Balancer, we operate on
TCP/UDP packets, whereas for Application Gateway, we work with HTTP.
The extra thing needed here is a listener:

Figure 7.4 – Application Gateway listener

Listeners combine load-balancing rules with the port and selected protocol,
ultimately making the feature work. Things are slightly different in Azure
Traffic Manager—each instance consists of a profile and attached endpoints.
To attach an endpoint, use the following command:

$ az network traffic-manager endpoint create -g "<rg-name>" --profile-name "<tm-name>" -t externalEndpoints -n "myendpoint" --priority 1 --target <target-ip>

The preceding command may differ depending on the profile of Traffic
Manager and your selected endpoint type. As done previously, I selected
Priority as the profile type and I had to provide the priority parameter, which
defines the order in which an endpoint will be selected. What's more, because
the endpoint type I selected was externalEndpoints, I had to provide a correct IP
address to which traffic will be forwarded.

Depending on the selected resource and routing method, things will work

differently for your scenarios:

Azure Load Balancer leverages the public IP address, which is attached
to it to act as a front door to your system. It probes the attached
machines to make sure that they are responsive and they can receive the
traffic. It can be used as a part of a highly available solution (thanks to
using the Standard tier) by integrating with availability zones in Azure.
Azure Application Gateway is similar to Load Balancer but operates on
a higher layer of the OSI model. Once more, it acts as a front door to
your system, and each client will connect to it instead of communicating
with other system components. It allows you to also use Azure Web
Application Firewall (WAF), which can protect you from many
common threats.
Azure Traffic Manager has a different concept. To use it, you have to
configure your DNS server by adding a CNAME record, which will point
from your domain to the Traffic Manager domain. Your client's request
will be redirected to an instance of Traffic Manager for the final DNS
resolution. Depending on the rules defined and the current status of your
system, your client will be pointed to one of the available locations.

It is important to select the proper solution for your needs, as there is a
variety of different services (and each of them offers different capabilities),
so a deeper understanding of how things should be done is crucial for decent
management operations. Keep in mind that each of the load-balancing
solutions mentioned here has its pros and cons (refer to https://docs.microsoft.c
om/en-us/azure/architecture/guide/technology-choices/load-balancing-overview) and you
will not always be able to apply them in all of the scenarios. Note that these
are not the only available options in Azure—you can deploy your VMs and
install any kind of load balancers you want (for example, Traefik). The
advantage of native Azure load balancers is easy integration with existing
services and much easier configuration.

This section should help you understand different ways to achieve load
balancing in Azure and what the implications of using various services are.
Proceed to the next section for insights regarding tools and features to
monitor and diagnose networks.

https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview

Monitoring and diagnosing
networks
Being able to monitor what happens inside your network is always a crucial
thing. It helps you investigate outages, security issues, and the flow of your
applications. The more applications and elements your system has, the more
difficult is to monitor things in a manual manner. This is why being able to
leverage external components and automation is always an important feature
of any ecosystem of your choice. In this section, we will focus on one Azure
service, Network Watcher, which is an extra Azure service that can be
enabled for remote network monitoring, packet capturing, and network logs.
To understand this section fully, you will have to have deployed an
architecture that consists of multiple VMs and that is connected to a VNet.
To get to that point, you can refer to Chapter 3, Configuring and Managing
Virtual Networks and Chapter 6, Managing Virtual Machines, where we
discussed both the VM and networking topics.

In my scenario, I had two VMs load-balanced using Application Gateway.
They were deployed to the same subnet in the same VNet and both had ports
3389 and 80 opened for management and communication. The actual
architecture can be seen in the following diagram:

Figure 7.5 – The architecture of two VMs load-balanced by Application Gateway

The reason to have a little more advanced architecture is to be able to really
implement a solution that can be monitored in terms of network traffic. If you
deploy only a single machine, there will be nothing to watch.

We will start with Network Watcher. Before you use it, make sure it is
enabled in your subscription and your region. It is a regional service, which
means that once enabled, it will be available for all the networks inside a
single region. To check which regions are enabled, search for Network Watcher
and verify the regions:

Figure 7.6 – The Network Watcher service in the search box
By default, Network Watcher is enabled automatically in each region to which you have deployed a
network. However, there is a possibility to disable this feature—although this has important
implications, as you will be forced to contact support to opt back in.

When you check the menu on the left, you will see the available features of
Network Watcher:

Figure 7.7 – Network Watcher features

We can briefly explain them before diving deeper:

IP flow verify: Allows you to create a configuration determining

whether a packet should be approved or blocked
Next hop: Determines the next place where a packet will go
Effective security rules: Allows you to quickly validate your security
setup
VPN troubleshoot: A tool for validating your VPN connection
Packet capture: Allows you to analyze packet flowing by your network
Connection troubleshoot: A tool for checking the correctness of the
network setup

Let's now describe all the features in detail.

IP flow verify

By using IP flow verify, you can check whether a packet is accepted or
blocked based on the provided configuration and attached security rules:

Figure 7.8 – The IP flow verify settings

This feature consists of the following fields:

Subscription: Determining the availability of particular resources

Resource group
Virtual machine
Network interface: The actual network card that we are interested in
Protocol and Direction: The actual communication flow
Local and remote address and port: Communication origin and
destination

The advantage of this feature is the fact that it displays the result and the
name of the rule that provided it.

Next hop

The next feature, Next hop, makes it easier to understand what the next
checkpoint is when reaching the provided destination IP address:

Figure 7.9 – The Next hop functionality

By using Source IP address and Destination IP address, we can decide the
actual route of packets. It is a great feature when you want to quickly check
whether you are communicating with a VNet, the internet, or any other kind

of network resource.

Effective security rules

The Effective security rules feature grants you the possibility to gather all the
rules defined for a VNet and inbound/outbound connections. If you want to
check whether a machine accepts a connection on port 80, this is the place to
start.

VPN troubleshoot, Packet capture, and Connection
troubleshoot

VPN troubleshoot and Packet capture are more advanced tools for analyzing
connections handled by VPN gateways or transferred packets, respectively.

VPN troubleshooting is a long-running operation that gives results only when it is
finished. When using it, be patient and wait for the analysis to be completed.

The last feature, Connection Troubleshoot, allows you to understand what
exactly is happening when connecting from one place to another. It works by
sending packets from the source VM to the destination VM and checking the
result. It will also display the topology and all the hops to give you a better
picture of the current situation:

Figure 7.10 – Connection troubleshooting

The Network Watcher connection monitor can be added from a VNet
instance itself. You can follow these steps to add it:

1. Go to your VNet and search for the Connection monitor blade:

Figure 7.11 – The Connection monitor blade

2. From this screen, you will be able to add a new monitor to diagnose
your connection:

Figure 7.12 – Configured monitors

Connection monitors diagnose traffic on particular ports and display insights
about network behavior. These features are not always enough to define a
problem (as there might be issues such as a local network configuration
problem or errors on the ISP side, which cannot be told just by using Azure's
capabilities), but should suffice for most of the troubles you may face.
Network diagnosis and monitor features in Azure work by being installed on
machines' extensions, which gather the data:

Figure 7.13 – VM installed extensions

Some of them use in-built or native storage, but still, there are extra features
(such as VPN troubleshooting) that require you to provide external storage
such as Azure Storage. Thanks to those extensions working on your VMs
(and internal features of other Azure services such as Azure Load Balancer),
you can gather enough data to diagnose a problem. What's more, they
generate the full topology of your network:

Figure 7.14 – Network infrastructure

You can access this by going to the Topology blade in your VNet. For bigger
networks, this feature will be especially helpful as it gives you a full picture
of all the connections.

Diagnosing and monitoring networks in Azure is a really big topic and there
is no way to describe it in only one section. Here, you will find some more
information about Network Watcher, which we only briefly described in this
chapter: https://docs.microsoft.com/en-us/azure/network-watcher/. Besides packets
and connection monitoring, you will be able to also find information on how

https://docs.microsoft.com/en-us/azure/network-watcher/

to monitor the performance of your network, or even ExpressRoute.

Monitoring and diagnosing networks when using in-built features in Azure
makes the management task much easier. You do not have to implement your
own tools to analyze traffic and maintain them—everything is provided as
additional components available in the cloud. The next section will describe
in detail one of the most common features when it comes to securing a
network, which is DDoS protection.

Configuring DDoS protection
Security should always be something that you're concerned about, especially
if you are responsible for the proper administration and management of
Azure resources. As in this chapter, we are covering networking topics, so
now is a good moment to describe DDoS protection of Azure VNets. DoS
attacks can be really dangerous as they are not aimed (at least not always) at
breaking into your system—they are focused on interrupting your business,
which can be even more painful than dealing with a security breach. In this
section, we will talk a little about different levels of DDoS protection of
VNets and how to use them.

To get started, you will need a VNet that you can configure. If you do not know how to do
this, refer to Chapter 3, Configuring and Managing Virtual Networks, where I described the
process of creating VNets at the very beginning of the chapter.

Let's now check how to configure the feature:

1. Once you have a VNet, go to the Azure portal and search for the DDoS
protection blade:

Figure 7.15 – The DDoS protection blade

You will see two radio buttons:

Basic
Standard

There are some major differences between these two versions of
DDoS protection. While the basic option may be just about okay
for most standard workloads that do not need an external level of
security, the standard option gives you some really nice benefits:

Application availability guarantee
Attack metrics
Post-attack reports
Access to DDoS experts

In general, the case where you would choose Standard over Basic
is for when you have to deal with more sophisticated DDoS
attacks such as SYN floods, UDP floods, or HTTP protocol
violations. As mentioned earlier, this all depends on the actual
level of security and reliability that your application requires.
Choosing the Standard tier does not guarantee that your
application will stay alive during an attack—it just gives you
better analysis and monitoring and the opportunity to be more
adjusted to your application.

2. To change the level of DDoS protection, switch the DDoS protection
option to Standard:

Figure 7.16 – Switching to the standard level of DDoS protection

You will be asked to provide a DDoS protection plan. This is an
additional service, which will be deployed to your resource group
and paid for separately. This service will be responsible for
protecting resources inside your VNet.

Before creating a DDoS protection plan, take into consideration its pricing. The basic
price for a month is exactly $2,944 plus data processing costs.

3. To create a new protection plan, click on the Create a DDoS protection
plan link. It will redirect you to a new window, where you can provide
information related to it:

Figure 7.17 – Creating a new DDoS protection plan

4. By clicking on the Create button, you will start the provisioning process
of your new protection plan.

Consider reusing your protection plan for multiple VNets. Using multiple protection
plans may be required when you have to clearly calculate the cost of the architecture or
when you exceed the 1 PB limit for the data processed.

When a Standard protection level is enabled, it will be its responsibility to
analyze and verify traffic coming into your applications inside a VNet. That
means that if an attack is detected, the following checks are performed:

Verifying packets to ensure they are not malformed.
Communication with a client is initialized to check whether it is an
attacker.
Ultimately, some limits are applied to accept only part of the incoming
traffic.

When using the Standard tier, a few minutes after the attack starts, you will be notified
via Azure Monitor.

There are many different mitigation policies implemented in the DDoS
protection service—they all depend on the actual attack vector and its
intensity. The advantage of securing your services with this particular Azure
resource is the fact that it comes as a single product—you do not need to
implement the policies on your own, manage the monitoring of your network,
and mitigate the attack if it happens. The important fact here is the actual
knowledge about DDoS attacks. If you are not familiar with different DoS
attacks such as DRDoS, fork bombs, or SYN floods, make sure to update
your knowledge, starting with the following article: https://www.us-cert.gov/ncas
/tips/ST04-015. Knowing how they work will be crucial for you to properly
implement DDoS protection policies.

DDoS protection is one of the most common features when it comes to
securing a network as many attackers want to exploit the lack of security in
this particular area and cripple a website or an application. This is why it is
important to understand how you can secure your services with Azure. The
next section will cover VNet integration in a managed version of Kubernetes
called AKS.

Enabling VNets in AKS
AKS is a PaaS offering from Microsoft that enables you to use and manage a
Kubernetes cluster without actually provisioning your VMs and the
configuration on your own. It greatly enhances the productivity of a team and
application flexibility, as you do not have to be concerned by the burden of
updates, infrastructure, and networking. In this section, I will show you how

https://www.us-cert.gov/ncas/tips/ST04-015

you can configure a VNet in AKS by leveraging a feature called Azure
Container Networking Interface (CNI).

To get ready, you will have to start with an actual Kubernetes cluster. There
are a few ways for doing that—either by using the Azure portal or CLI
commands. We will focus on using the portal, but I will also add the
appropriate commands that you will be able to use. To create a cluster, you
can follow these steps:

1. Search for Kubernetes Service in the marketplace and click on the Create
button:

Figure 7.18 – Creating a new Kubernetes Service instance

2. You will have to provide multiple options, such as the size of the nodes,

the Kubernetes version, or the authentication options. In fact, when it
comes to the required fields, only the Basics tab has to be configured.
You can find an example here:

Figure 7.19 – Configuring a Kubernetes cluster

3. However, what we are interested in in this section is the Networking tab,
which allows us to change the advanced settings of the network
configuration of our Kubernetes cluster:

Figure 7.20 – Configuring networking for the Kubernetes cluster

The important thing to consider here is the ability to use either a Basic
or an Advanced network configuration. The difference between them
is simple—you can either use the default configuration with kubenet
or leverage Azure CNI with a customizable VNet. We will go for the
second option here.

4. Azure CNI allows each pod to get an IP address from a subnet and be
addressed directly. This is quite the opposite to using kubenet, where the
IP is attached from a subnet to a node, and then each pod has its IP
translated by Network Address Translation (NAT).

While using Azure CNI requires much more advanced configuration and an

understanding of networking features, it actually allows much more flexible
infrastructures. By giving each pod its own IP address, you can natively integrate them
with Azure VNet features.

When we change the radio button value from Basic to Advanced, we
will see new options available to be set:

Figure 7.21 – Configuring a VNet

These parameters are required to get started with Azure CNI. Besides
quite obvious things, such as a VNet instance or a subnet, there are
three additional things to be configured:

The IP range for the cluster service so that you know how many
services you can host
The IP address for a Kubernetes DNS service in case you have to
explicitly pass its address to your services

The address of the Docker bridge to interconnect between services

Once the cluster is created, IP addresses will be automatically assigned to
your pods based on the IP range of the assigned subnet.

By default, Azure CNI configures 30 IP addresses, which are available for your pods per
node. When the cluster is scaled, new addresses are configured dynamically.

The advanced networking feature can be also configured and enabled from
the Azure CLI. The following command will create an AKS cluster with --
network-plugin set to azure. That means that the created cluster will have
advanced networking enabled (as it will be using Azure CNI for networking):

az aks create --resource-group <rg-name> --name <cluster-name> --network-plugin azure --vnet-subnet-id <subnet-id> --docker-bridge-address 172.17.0.1/16 --dns-service-ip 10.2.0.10 --service-cidr 10.2.0.0/24

Whether you run the preceding command or enable advanced networking in
the portal, the output will be the same—the network in your cluster will be
configured with the values provided by yourself. Thanks to that, you will be
able to properly set the cluster IP range (so you know it will not overlay
reserved IP addresses in a particular subnet) or its DNS service (for custom
discovery scenarios).

When using Azure CNI, you have to pay attention to the IP address
uniqueness and plan the network ahead. In the case of growing demands, you
may face a situation where you need to rebuild a cluster to continue using the
feature. However, this has its own advantages, as follows:

Direct communication between pods—you do not have to communicate
through a NAT service to reach the destination.
You can configure service endpoints for different pods for secure
communication with native Azure services.
You can leverage all the native features of VNets, such as traffic routing
and IP range configuration.

With Azure CNI, the communication happens via the Docker bridge, which
acts as a door to pods hosted on each node. It communicates with CNI to
consult the IP address of a pod. The following diagram should help you
understand the infrastructure:

Figure 7.22 – Networking in Kubernetes with Azure CNI enabled

As you can see, there is no translation feature of NAT, which exists with the
basic networking in AKS. However, as IP addresses of pods are assigned
from the pool of available IP addresses of a subnet, you have to consider
additional factors:

If you deploy an internal Azure load balancer, its front-door addresses
will also be assigned from the subnet that Azure CNI uses.
If you are planning to upgrade or scale your cluster, you should set a
valid range of a subnet to avoid a need to rebuild a cluster.

Because of the preceding considerations, when selecting a range of a subnet,
do not aim at the minimal range to avoid problems. When making a choice
about whether you should use basic or advanced networking in AKS, always
ask yourself whether you need to natively integrate your pods with Azure
VNet. Advanced networking for Kubernetes in Azure is meant for more
sophisticated scenarios with a need for direct communication between pods

and Azure services and will require a detailed approach for network design.

The next section will help you understand how ACI integrates with VNets so
that you can make them private services.

Enabling VNets for ACI
If you have your applications packed as a container and do not want to
maintain the infrastructure, you can use ACI. This Azure service allows you
to host your containers without the need to handle things such as proper VM
configuration, installing hosts, and ensuring proper resources. By default,
those deployed containers are hosted inside a public network and there is no
native possibility to secure them without implementing logic directly in the
application. In this section, you will learn how to deploy ACI to a VNet,
which will give you additional features.

To get ready, you will need an instance of the ACI service. There are multiple
ways to get it—using either the portal or the Azure CLI:

$ az container create

If you have not had a chance to deploy this service previously, I strongly
recommend trying it from the portal first and reading the following article: htt
ps://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro. The
command for creating ACI is quite complicated as it allows you to provide
several different parameters. They will be much easier to understand after
deploying the service from the Azure portal. To deploy this particular
resource from the portal, go to the marketplace and search for Container
Instances. The last thing required here (besides configuration) is clicking on
the Create button:

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-intro

Figure 7.23 – Creating ACI

Once you are familiar with the service, you can proceed with this section
where we discuss the process of assigning a VNet using the proper
commands.

Deploying ACI to a VNet was still in preview when I was writing this chapter. At the
moment you are reading, the UI or naming of the parameters might have changed.

To deploy ACI to a VNet, you can use the following command:

az container create --name <aci-name> --resource-group <rg-name> --image <name-of-image> --vnet <vnet-name> --vnet-address-prefix 10.0.0.0/16 --subnet <subnet-name> --subnet-address-prefix 10.0.0.0/24

Take into consideration the following things:

The preceding command deploys ACI to a new VNet and configures it
accordingly. This is why we passed the address prefixes for both a VNet
and a subnet.
The deployment can take a while as it has to deploy additional Azure
resources.

Once the preceding command is finished, you can query it for the private IP
address, which can be used for further deployments:

az container show --resource-group <rg-name> --name <aci-name> --query ipAddress.ip --output tsv

In my case, the output was 10.0.0.4. Your output may be different depending
on the address prefixes you used in the previous command. Once the first
deployment is complete, you can add new Azure container instances to the
same VNet just like this:

az container create --resource-group <rg-name> --name <aci-name> --image <image-name> --vnet <vnet-name> --subnet <subnet-name>

When you deploy other ACI resources to the same VNet, they will be able to
communicate with each other, even though they are not using the public IP
address to do so. Deploying container instances to the same VNet works in
the same manner as other Azure services. Once your containers are inside a
VNet, they can leverage the private addressing space and be secured against
unauthorized access. You can also confirm that your container instances are
inside a private network in the portal by confirming its private IP address:

Figure 7.24 – Running container instances

As you can see, the same IP address that was displayed by querying the
resource is available here as the IP address parameter on the right. Once a
VNet is assigned to your Azure container instances, you can extend their
functionality to the following:

Connecting containers with Azure resources via service endpoints
Enabling your container to connect to on-premises networks via VPN
gateways
Direct communication between containers inside the same VNet

By using this feature, you can enforce more advanced scenarios when it
comes to connecting to your containers. If you are planning to use ACI and
find its networking features lacking, the ability to deploy a service to a VNet
should do the trick.

The last section about VNet integration will explore Redis Cache as one of
the managed services of this popular database.

Enabling VNets in Redis Cache
Redis Cache is one of the PaaS/SaaS offerings in Azure, which gives you a
well-known product that can be easily configured and provisioned. Thanks to
that option, you can quickly deploy a Redis Cache instance and focus on
using it in your application. As it very often acts as the first-level storage (or
in other words, the first-level cache) of an application, you may want to
secure it and improve its performance by colocating it inside a single VNet.
By default, when a managed Azure Redis Cache instance is deployed, there is
no way to isolate it from the public internet. In this section, I will show you
how a network integration can be achieved with just a few clicks.

To perform this exercise, we will need a Redis Cache instance. There are a
few options to do so, but we will consider two of them—either using the
Azure CLI or the Azure portal. The important thing here is the fact that VNet
integration can only be added when deploying the cache. To create Redis via
the command line, run the following snippet:

$ az redis create --resource-group "<rg-name>" --name "<redis-name>" --location "<location>" --sku <Basic|Standard|Premium> --vm-size <c0|c1|c2|c3|c4|c5|c6|p1|p2|p3|p4|p5>

The preceding command will create a Redis Cache instance with the
following settings:

--resource-group: The name of your resource group
--name: The name of your Redis Cache instance
--location: The region where an instance will be deployed
--sku: The version of Redis Cache
--vm-size: The size of the VM hosting your instance of Redis Cache

For the Azure portal, you will have to search for Azure Cache for Redis in the
marketplace. Once you find the resource, click on the Create button and fill in
the form:

Figure 7.25 – Creating a new Redis Cache instance

As you can see, the --vm-size parameter is linked to the Pricing tier parameter
in the portal. It defines the actual memory amount and available features
(such as replication, Service Level Agreement (SLA), or overall
performance). However, if you want to go for VNet integration, you will
need to choose the Premium tier to enable advanced features. In the portal, if
you have chosen the Premium tier, you will see some additional options:

Figure 7.26 – Additional options for Premium SKU Redis Cache

One of the extra features available here is VNet integration. When you click
on it, you will see an additional screen, where you will have to put in some
extra configuration information:

Figure 7.27 – Configuring the VNet
Remember that the selected VNet has to be in the same location as your cache.

There are some things to be considered:

The selected subnet has to be dedicated to your instance of Redis Cache.
There are some port requirements, which will be discussed further in
this section.
When VNet integration is enabled for Redis Cache, your client will have
to be deployed to the same VNet, or VNet peering has to be configured.

The same functionality can be achieved using the Azure CLI and two
additional parameters: --subnet-id and --static-ip. The actual command will
look just like this:

$ az redis create --resource-group "<rg-name>" --name "<redis-name>" --location "<location>" --sku <Basic|Standard|Premium> --vm-size <c0|c1|c2|c3|c4|c5|c6|p1|p2|p3|p4|p5> --subnet-id "<subnet-id>" --static-ip "<ip-address-of-instance>"

After running the preceding command, wait a while until your Redis Cache
instance is deployed. Depending on the current region status and its
availability, this may take from several seconds to a few minutes. Once your
instance of Redis Cache is deployed with VNet integration, you will see it in
the Virtual Network blade in the portal:

Figure 7.27 – VNet configuration for Redis Cache

Remember that if you did not provide the static IP address, it will be assigned
automatically once the integration is complete. You can also use the Azure
CLI to obtain that information:

$ az redis show --resource-group <rg-name> --name <redis-name>

{

 ...

 "staticIp": "10.2.0.194",

 "subnetId": "/subscriptions/.../resourceGroups/.../providers/Microsoft.Network/virtualNetworks/<vnet-name>/subnets/<subnet-name>",

 ...

}

As you can see, some of the fields returned are staticIp and subnetId—both tell
us that VNet integration has been completed.

When using this feature, consider the following limitation and issues:

Ports such as 8443, 10221–10231, 20226, and some more are used internally
by Redis for outbound connections. They should not be blocked by any
means to ensure proper Redis communication.
The same applies to inbound ports (6379, 6380, 8443, 10221–10231, and some
more).
Your VNet should support connecting to the ocsp.msocsp.com,
mscrl.microsoft.com, and crl.microsoft.com hosts to support SSL
functionality.
The same applies for resolving DNS domains for Azure Storage:
table.core.windows.net, blob.core.windows.net, queue.core.windows.net, and
file.core.windows.net.

As Azure Cache for Redis is a PaaS offering from Microsoft, enabling VNets
for it works seamlessly and is only a matter of selecting a proper tier and
configuring the network. However, there are many to-do points that have to
be checked before enabling the feature. Once everything is set, you may want
to test the connection. To do so, there are some options available:

Using tcping for testing whether a port is open with the following
command: tcping.exe contosocache.redis.cache.windows.net 6380
Using a simple console application that connects to the host

Redis is very popular in caching scenarios, yet it is important to ensure that it
is secure so that no one will exploit its interface or degrade its performance.
By using the steps in this section, you were able to do so with only a few
steps. This is the power of PaaS/SaaS components, where you are focusing
on business values, rather than fighting the infrastructure.

Summary
This chapter was intended to help you build strong foundations for
networking in Azure. Topics such as advanced networking, monitoring, and
load balancing should help you understand how to manage more complex
setups in Azure. You are now able to configure VNets for more complicated
infrastructures, as well as use services such as AKS and ACI. Now, you can
proceed on to the next chapter, where you will learn more about storage and
backup functionalities in the cloud.

Implementing Storage and Backup
Azure administrators can use the Azure Storage service for multiple actions,
such as setting up a file server, managing and storing backups, or
synchronizing their organization's files. While these concepts are simple,
everyone has to understand the implications of their choices. In this chapter,
you will find a lot of information for migrating files between local servers
and the cloud, monitoring the service, and configuring the network for
limiting access and improving security. More and more companies are
starting their journey with cloud providers—some of them have terabytes of
data that has to be migrated to the cloud at some point. As you will see, there
are many ways to achieve the same result—the only difference may be time
or the amount of money consumed.

The following topics will be discussed in this chapter:

Configuring network access for Azure Storage accounts
Enabling monitoring and finding logs for Azure Storage accounts
Managing the replication of Azure Storage accounts
Setting up Azure file shares
Transferring large datasets with no or low network bandwidth
Transferring large datasets with medium or high network bandwidth
Periodic data transfer
Enabling security for Azure Storage

Technical requirements
To perform the exercises in this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)
Azure PowerShell installed on your computer: https://docs.microsoft.com/e
n-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?v
iew=azure-cli-latest

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Azure Storage Explorer: https://azure.microsoft.com/en-us/features/storage-ex
plorer/

Configuring network access for
Azure Storage accounts
Azure Storage is one of the most basic and most important services available
in Azure. Combined with Azure virtual machines, it is the backbone of most
cloud applications hosted in Azure. By default, each storage account is
available publicly—however, in many cases, you will want to limit access
possibilities by encapsulating it inside a virtual network. That may be
enforced by policies in your company, an InfoSec audit, or the industry you
are working in. In this section, we will discuss the actual solution of enabling
Virtual Network (VNet) integration and its features.

To get ready, you will need a Storage account that we will use for this
exercise—to create one, we will use the Azure CLI with the following
commands:

1. Creating a new Azure Storage instance is pretty simple—all you will
need is this basic command:

$ az storage account create --resource-group "<rg-name>" --name "<account-name>"

2. Once the account is created, you can test that you are able to connect to
it by sending a request to its public endpoints:

$ az storage account show --resource-group "<rg-name>"--name "<account-name>" --query secondaryEndpoints

Running the preceding command will result in the following output.
Note that it contains some HTTPS endpoints that are provided, while
others are set to null. This is related to the default settings of Storage
accounts where initially, you have only the blob, queue, and
table services configured:

{

https://azure.microsoft.com/en-us/features/storage-explorer/

 "blob": "https://<account-name>-secondary.blob.core.windows.net/",

 "dfs": null,

 "file": null,

 "queue": "https://<account-name>-secondary.queue.core.windows.net/",

 "table": "https://<account-name>-secondary.table.core.windows.net/",

 "web": null

}

Note that I used the --query parameter in the preceding command. This allowed me to get
only a specific subset of the JSON result, which I would normally get by running the
preceding command.

3. As all the endpoints are standard HTTP endpoints, we can just paste the
URL or use tools such as curl to get the result. Let's now add a table to
the account—to do so, we will use the az storage table create command to
create a table and continue with az storage entity insert to insert data
using key-value parameters passed via the --entity parameter:

$ az storage table create --name "chapter08" --account-name "<account-name>"

{

 "created": true

}

$ az storage entity insert --table-name "chapter08" --entity PartitionKey=user RowKey=1 Name=John Surname=Doe --account-name "<account-name>"

"W/\"datetime'2019-05-11T16%3A36%3A09.2502542Z'\""

4. Finally, once the entity is added, we can check that we can query it
without any additional features:

$ az storage entity query --table-name "chapter08" --account-name "<account-name>"

Querying an entity should give you the following result:

{

 "items": [

 {

 "Name": "John",

 "PartitionKey": "user",

 "RowKey": "1",

 "Surname": "Doe",

 "Timestamp": "2019-06-10T09:46:43.049078+00:00",

 "etag": "W/\"datetime'2019-06-10T09%3A46%3A43.0490789Z'\""

 }

],

 "nextMarker": {}

}

As you can see, it contains the fields that we provided (PartitionKey, RowKey,
Name, and Surname) plus some technical fields (Timestamp and etag), which are
populated automatically. Now, we are ready to implement the feature, which

will allow us to block access to an account from external networks. Let's start
by configuring the network access for Azure Storage accounts. We will take
the following steps to do so:

1. In the Azure portal, you can find the Firewalls and virtual
networks blade, which, by default, is configured to allow access from all
networks, including the internet:

Figure 8.1 – The Firewalls and virtual networks blade

2. To limit access, we will have to change the Allow access from value
to Selected networks. You have two options here:

Either configure the feature via the portal by providing an existing
VNet or by creating a new one (see Chapter 3, Configuring and
Managing Virtual Networks, for managing and configuring VNets).
Use the command from the next step to configure access using the
CLI.

3. To add a new network rule with a proper VNet, run the following Azure
CLI command:

$ az storage account network-rule add --account-name "<storage-account>" --vnet-name "<vnet-name>" --subnet "<subnet-name>"

To perform the preceding operation, you will need a VNet created with a subnet and a
service endpoint configured for the Microsoft Storage service. You can find the
information on how to configure your network in Chapter 3, Configuring and Managing
Virtual Networks.

4. However, the preceding command is not all you need to finish
configuring the feature. By default, if no rule matches a request, the
default action allows access to an account. To change that, you will have
to update your account with the following command:

$ az storage account update --default-action Deny --name "<account-name>"--resource-group "<rg-name>"

Now, when you query a table storage instance, you will see that it no longer
accepts requests from external networks. Once you update your Storage
account with a new default action and a network rule, you are blocking
access to it by encapsulating it inside a VNet. This implies that the IP address
of the service is no longer public—instead, it is switched to the private one,
which can be discovered by other services that are also inside the same
network. The whole functionality is based on the two following commands:

az storage account network-rule add

az storage account update

While the first just adds a new network rule (so basically, it attaches a subnet
inside a network to a Storage account), the second one reconfigures an
account, so it correctly handles scenarios when somebody from outside a
network tries to access its records.

The described feature is based on the service endpoints feature of Azure
VNet. Basically, it integrates a network with your Storage account by
switching its IP address from the public one to the private one. With that
switch, you are losing public access to Storage services such as tables, blobs,
or queues, but only after you deny all the traffic by updating the account with
a new default rule.

The additional feature of Storage and VNet integration is limiting access
using configured IP addresses. If you want to access the account from your
corporate network (which is not peered with the network integrated with the
account), you can allow access by adding a specific set of IP addresses (or

CIDR blocks).

In the next section, you will learn about another Azure Storage feature, which
is monitoring and logging everything related to operations performed against
that service.

Enabling monitoring and finding
logs for Azure Storage accounts
Azure Storage accounts often process millions of entities, messages, or blobs.
As they are often the backbone of your systems, proper diagnosis and
monitoring will be crucial for understanding the issues you are facing. In this
section, we will focus on enabling logging features and finding logs, which
should be helpful when diagnosing problems in your applications.

To perform this exercise, you will need a Storage account. You can use
Azure PowerShell, the Azure portal, or the Azure CLI for that, depending on
your expertise and what you are used to. To create an account with the Azure
CLI, go to the first section of this chapter, where there are detailed
instructions on how to do so. However, remember that the same can be done
with Azure PowerShell by using the New-AzureRmStorageAccount cmdlet with the
required parameters, listed as follows:

New-AzureRmStorageAccount -Location <location> -Name <name> -ResourceGroupName <rg-name> -SkuName <selected-sku> -AccessTier <selected-tier>

We will walk through the following steps to enable monitoring and finding
logs for Azure Storage accounts:

1. To enable logging, run the following command:

$ az storage logging update --log rwd --services bqt --retention 7 --account-name "<account-name>"

There are two parameters that require additional description:

--log: Select operations to be logged with the possible r (read),
w (write), or d (delete) values.

--services: Select services to monitor with the t (table), b (blob),
or q (queue) values.

2. The same functionality can be achieved by using the portal. If you go to
your Storage account, select the Diagnostic settings (classic) blade:

Figure 8.2 – The Diagnostics settings blade

3. You will see the following screen containing various logging and
monitoring options. From that point, we can select what metrics should
be included, what the retention period is, and what operations should be
included:

Figure 8.3 – Various logging and monitoring options

4. Now, we are ready to find and read the gathered logs. Of course, log for
operations performed before enabling the feature will not be available—
this is why you should consider enabling it right after deployment.

Gathered metrics are stored in special system tables, which are not visible
from the Azure portal. In fact, they are also not available by using the Azure
CLI or Azure PowerShell. All of the mentioned tables start with the dollar
sign ($):

Figure 8.4 – The systems tables visible in Azure Storage Explorer
There are two types of metrics—primary and secondary. Secondary metrics are related to
additional instances of Azure Storage when geo-replication is enabled (so, GRS/RA-GRS
options).

Tables contain all the information about operations performed against your
services as availability, latency, or error counts. Once the metrics are enabled,
each action on the Storage account is logged and stored in the following
format—you can reference the following article for the table schema: https://
docs.microsoft.com/en-us/rest/api/storageservices/Storage-Analytics-Metrics-Table-Sche

ma:

Figure 8.5 – Metric Table

As Azure storage tables are NoSQL databases, different records may be
saved using different schemas while still in the same table. This is important
in the case of processing the data—you want to ensure that you are not
expecting the rows to follow the same strict schema rules.

Based on the gathered data, you can build your own charts for monitoring, or
you can correlate a particular value with some issues you were facing.
Additionally, besides metrics data, there are some additional logs stored
inside your account with more granular information. If you go to the

https://docs.microsoft.com/en-us/rest/api/storageservices/Storage-Analytics-Metrics-Table-Schema

containers of your Storage account, you will see that there is an additional
container named $logs. Inside it, you will find files for each of the services
holding the gathered data.

Using the following link, you will find more information about logs stored
inside Azure Storage accounts and how to read them: https://docs.microsoft.com
/en-us/azure/storage/common/storage-monitor-storage-account.

The most important thing is the schema described in the previous link—based
on it, you will be able to read all the columns and incorporate log files into
your diagnosis pipelines. There is one more problem to be solved—how to
download all the files in the correct way so that we are not affected by their
size or network limitations. We will address those issues in other sections in
this chapter. They will describe the proper ways of downloading files from
Storage accounts depending on their size and the overall network bandwidth.

This section should have helped you to get a better understanding of how
things are monitored for Storage accounts. The next section is about one of
the most crucial features of this service—data replication.

Managing the replication of Azure
Storage accounts
Azure Storage offers six different levels of replication, which should be
considered when both architecting and maintaining a solution. You can often
start with local replication called Locally Redundant Storage (LRS) and
switch for the geo-paired region with Geographically Redundant
Storage (GRS) or RA-GRS (read-only) models. If you seek the highest level
of consistency and durability, you should consider the GZRS/RA-GZRS
models, which are Zone Redundant Storage (ZRS) models in geo-paired
regions. In this section, we will discuss how to switch the replication model
and what the possible issues when performing such an operation are.

Basically, we can divide the replication models into two main categories:

https://docs.microsoft.com/en-us/azure/storage/common/storage-monitor-storage-account

Local replication: LRS and ZRS
Global replication: GRS, RA-GRS, GZRS, and RA-GZRS

The number of replicas can be presented as follows:

Three local replicas: LRS and ZRS
Three local replicas and three replicas in paired regions: GRS, RA-
GRS, GZRS, and RA-GZRS

When using the global replication model, your Storage account will be paired with its
geographic twin. You can find all the regions' twins in the following article: https://docs.micr
osoft.com/en-us/azure/best-practices-availability-paired-regions.

To choose the right replication model, you also have to understand one more
thing—which model represents a synchronous replication approach and
which represents an asynchronous replication approach. The difference
between the former and the latter is crucial from a data integrity point of view
—for asynchronous replication, you have a lower guarantee when it comes to
being sure that all the data was copied before an incident happened. We can
divide the replication models up as follows:

Synchronous: LRS and ZRS
Asynchronous: GRS, RA-GRS, GZRS, and RA-GZRS

If you use, for example, GZRS, you will have three replicas of your record
copied synchronously across the local data center. Then, an asynchronous
operation comes in and copies the remaining three replicas to the paired
region. If an outage in the primary region happens before the asynchronous
operation completes, you may miss some data in the secondary one.

If you require strong data consistency and still want to leverage Azure Storage, it is a
much better option to use Azure Cosmos DB with a strong consistency setting and the
Table API. You can read about it here: https://docs.microsoft.com/en-us/azure/cosmos-db/table-introduc
tion.

Let's now see how you can select or change the replication mode in Azure
Storage.

Selecting the replication mode

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-us/azure/cosmos-db/table-introduction

To perform this exercise, you will need a Storage account. You can use
Azure PowerShell, the Azure portal, or the Azure CLI for that, depending on
your expertise and what you are used to. If you want to learn what commands
you should use, refer to the previous sections of this chapter.

Remember that, by default, if you do not provide the replication model value,
you will end up with a Standard_RAGRS account:

$ az storage account show --name "<account-name"> --query sku.name

"Standard_RAGRS"

To change that, you will have to provide the --sku parameter, which supports
the Standard_LRS, Standard_GRS,
Standard_RAGRS, Standard_ZRS, Standard_RAGZRS, Standard_GZRS, Premium_LRS,
and Premium_ZRS values.

Standard_RAGZRS and Standard_GZRS are new replication models that are meant to achieve even
better durability of your data by replicating it geographically across zones. For common
scenarios, you rarely require that level of availability.

We will take the following steps to manage the replication of Azure Storage
accounts:

1. To change the replication model, you can use the following command:

$ az storage account update --name <account-name> --sku <new-sku>

2. Let's assume that we want to change the LRS model (which was just fine
for the initial version of the application, but now new requirements
appear and it has to be replicated geographically). To do so, we will
execute the following command:

$ az storage account update --name <account-name> --sku Standard_GRS

3. The same operation can be performed the other way round—we can stop
geographical replication and replicate the data only inside a single data
center:

$ az storage account update --name chapter08rep --sku Standard_LRS

However, it is not possible to switch from the Standard to the

Premium version of Storage as this particular operation implies changing the
underlying hardware. In that case, you will have to create a
new Premium version of your account and migrate the data between those
tiers. By changing the replication model, you are deciding whether you want
to preserve your data in a single region or whether to also copy everything to
a paired geographical location. Note that such an operation is not as simple as
it looks:

If you change from the local replication model (LRS or ZRS) to a
geographical one (GRS or RA-GRS), you will have to pay the cost of
transferring the data between two regions.
You cannot always select the ZRS replication model as it is only
available in those regions that support availability zones.
Switching from GRS/RA-GRS to a local replication model can be
dangerous if your application relies on high availability. If the
destination region fails, you may render your application unresponsive
and not working.
Switching to ZRS is not possible, even if your region supports
availability zones.

Remember that zone-redundant storage is quite special as is cannot be easy
migrated to other models and is not available in every region. Nonetheless,
you can always move data from one account to another, even if their
replication models differ.

Choosing the correct replication model might by a tough decision depending
on your understanding of the topic, yet remember that in many cases, you can
do it after creating an account. The next section will describe how to work
with file shares in Azure using Azure Files.

Setting up Azure file shares
Azure Files (or File Storage) is one of the extra offerings of the Azure
Storage service. While Azure Blob storage allows you to store your files in a
hierarchical manner and is designed for application development and

integration, sometimes you need a file share, which can be integrated with
your OS and act as additional storage for files and data. In this section, I will
show you how you can set such a share up and configure it for use.

To perform this exercise, you will need a Storage account. You can use
Azure PowerShell, the Azure portal, or the Azure CLI for that, depending on
your expertise and what you are used to. If you want to learn what commands
should you use, refer to the previous sections of this chapter.

Note that you need a general-purpose account (either v1 or v2 as there are two types of
accounts available) to use the file share feature. This functionality is not available for
storage types created with a Blob type.

When a Storage account is created, by default, it has file shares enabled—all
you need is to actually create one. This can be done by following these steps:

1. To create it, you need this simple command:

$ az storage share create --name <share-name> --account-name <account-name>

{

 "created": true

}

Note that a file share name has to be in lowercase.

2. To upload a file (which also can be performed in the batch manner), you
can use the following command. You will have to provide the share
name that you created, the actual Storage account name, and the source
of the data uploaded:

$ az storage file upload --share-name <share-name> --source C:\Users\MyUser\Desktop\myshare.txt --account-name <account-name>

Finished[###] 100.0000%

3. To list the uploaded files, you can run the following command:

$ az storage file list --share-name myshare --account-name chapter08euw

Listing the files will result in a JSON array given as an output. As you can
see, the output contains things such as the name of the file, its metadata, and
even when it was modified:

[

 {

 "metadata": null,

 "name": "myshare.txt",

 "properties": {

 "contentLength": 17,

 "contentRange": null,

 "contentSettings": {

 ...

 },

 "copy": {

 ...

 },

 "etag": null,

 "lastModified": null,

 "serverEncrypted": null

 },

 "type": "file"

 }

]

If you want, there is the possibility to list a specific file only (by using the az
storage file show command and providing the correct path with the --
path parameter); another possibility is to use Azure Storage Explorer to
explore your Storage accounts and deployed services:

Figure 8.6 – The available file shares in Azure Storage Explorer

Besides managing file shares, you can also create and configure other Storage
account features, such as blobs, tables, or queues. Each file storage can be
attached to your local (or remote) computer by running a predefined
command, which you can find in the Azure portal. When you go to your file
share, you can find the Connect button:

Figure 8.7 – Connecting to a file share

When you click on it, you will see a new screen, where you will find
commands for all supported OSes—Windows, Linux, and macOS:

Figure 8.8 – Connectivity options

By running these commands, you can map these shares to your computer.
Thanks to that operation, you will be able to copy, delete, and read files
directly from the mounted drive instead of using the Azure CLI. Once an

Azure file share is mapped to your computer, it is visible as a network drive
with a particular letter assigned to it (which can be, for example, Z: or X:).
Under the hood, it uses SMB 3.0 protocol for all communication, so it can
work with any OS that offers that kind of functionality (fortunately, it is
supported by Windows, macOS, and Linux systems, so there is no such a
thing as OS-locking, in that case).

The created share connects the following concepts:

The Storage account
File share
Directories
Files

That means that it abstracts away concepts such as the Azure Storage service
and gives you seamless integration with the cloud by introducing a feature
that looks like part of the OS. Azure Files also supports the concept of
snapshots, which allow you to secure your environment against the
corruption of files—either via application errors or the intended actions of
malicious users. You can find more information about this feature at https://do
cs.microsoft.com/en-us/azure/storage/files/storage-snapshots-files.

Please proceed to the next sections, where you will learn how you can
transfer large datasets from your local servers to Azure depending on the
available network bandwidth.

Transferring large datasets with low
or no network bandwidth
Sometimes, especially when migrating your workloads from on-premises
environments to the cloud, you need to move large amounts of data that your
systems have stored. For more advanced architectures, you may face a
scenario where you have to transfer hundreds of gigabytes of data over the
network. In cases when you do not have a dedicated connection between your

https://docs.microsoft.com/en-us/azure/storage/files/storage-snapshots-files

local data center and Azure, transferring large datasets may not be efficient
nor cost-effective. In this section, we will consider possible options for these
scenarios and what options you have to succeed.

Understanding your case – low or no bandwidth

Before we get started, we have to understand your case. Take a moment to
answer the following questions:

Is a dedicated connection something you would consider? If so, is your
ISP ready to provide one?
Is the cost something you are considering? If not, implementing data
transfer in an old-fashioned way may be a better option as it is
something you already know and understand.
How critical are your workloads? The more important the data is, the
more reliable the way of migrating should be.
How quickly do you want your workloads transferred to the cloud?
Offline methods are not always the quickest ones as they require you to
order hardware and copy data to it before transporting it to the data
center of your choice.

Once the preceding questions are answered, we can focus on finding the right
solution for your problem. As in this section, we are considering cases where
you have no or very low network bandwidth; we will not consider things such
as ExpressRoute for copying the data online over a dedicated network. Cases
where you have no/low network bandwidth include the following scenarios:

Systems hosted inside an internal network that cannot be connected to
the internet
Legal requirements that prevent you from sending the data over the
public internet (although this can be addressed with ExpressRoute or
VPN connections)
All kind of systems that are temporarily online-only (such as systems
installed on container ships or cruisers)

To understand how many times you would need to copy the data over the
available network bandwidth, we can perform some simple calculations. Let's

consider the following table:

Bandwidth/Data 100 Mbps 1 Gbps 10 Gbps

1 TB 22 hours 2 hours 13 minutes

10 TB 9 days 22 hours 2 hours

100 TB 92 days 9 days 22 hours

200 TB 185 days 18 days 2 days

500 TB 462 days 46 days 4 days

1 PB 925 days 92 days 9 days

5 PB - 462 days 46 days

10 PB - 925 days 92 days

20 PB - - 185 days

As you can see, the only competitive choice here is a bandwidth of 10 Gbps
—at least when considering bigger workloads to copy. As in many cases, you
may not have access to such a huge bandwidth, so copying the data over your
internet connection may not be the case. This is where offline methods come
into play.

Transferring data from on-premises to Azure

Microsoft offers a few ways of transferring data from your on-premises
systems to their data centers. These choices include the following:

The Data Box devices family, which offer dedicated hardware for
offline transfers
The Import/Export option, which allows you to ship your own disks to
Azure Blob or the Azure Files service

When it comes to using Data Box, you will have to do two things:

Deploy the Azure Data Box service inside your subscription.
Order a preferred device.

Now, let's look at the step-by-step instructions for transferring large datasets
with low or no network bandwidth:

1. To deploy the service, search for Azure Data Box in the marketplace and
click on the Create button:

Figure 8.9 – Azure Data Box in Azure Marketplace

2. The next step is selecting the desired subscription, your region, and the
data center you want to send your data to:

Figure 8.10 – The different Data Box options

3. From the preceding screen, you can also select the Import/Export option
by selecting the Send your own disk option. The process of ordering a
device will require you to also fill out the following form:

Figure 8.11 – The Data Box order details

You will have to provide information on the order name, what the destination
data center is, how much data will be provided, and where it should be
placed.

Once all the details are complete, you can confirm your order. Once the
device is sent to you (or your disks are received from you and delivered to the
data center), the process of importing data will start and your data will be
available in the Storage account you selected during the process.

Depending on your choice, things may work a little bit differently. For the
Data Box family, it is Microsoft's responsibility to deliver devices and
migrate the data to the selected data center. If you are shipping your own hard
disks, you will have to take care of things by yourself, including the
following:

Ensuring the proper disk types (SATA II/SATA III)
Ensuring the proper OS version (64-bit Windows systems
supporting BitLocker Drive Encryption)
Ensuring .NET Framework availability

Remember that for the Import/Export functionality, your data will be secured with a 128-
bit AES algorithm. If you are searching for a more advanced option, use the Data Box or
Data Box Heavy options.

Depending on the choice, different features are available:

If you intend on moving the data between region boundaries, you should
use Import/Export as it is the only choice that gives you that option.
If you want to export data from Azure, the Import/Export feature is the
only option.
If you want the easiest process, Data Box Disk is what you will be
looking for as this is the fastest and the easiest option for most
customers.
If you do not want to manage the process of shipment, choose the Data
Box family as this allows you to pass the responsibility to Microsoft.

For the Data Box family options, integration is much easier than managing
your own disks. In many cases, all you need to do is buy a device and
connect to your server racks. The process of creating an order is also simple
as it can be performed from the Azure portal

Note that the Data Box service is not allowed for all types of subscriptions. Currently,
only EA, CSP, Microsoft Partner Network, and Sponsorship offers can use that offer.

If you do not want to perform data migration by yourself, you can contact the
Microsoft partners, which support data migration and will help achieve the
best performance. Using the following link, you will find detailed
instructions for performing the migration with Data Box Disk and the
Import/Export option: https://docs.microsoft.com/en-us/azure/databox/data-box-disk-
deploy-copy-data.

If low or no network bandwidth is not the case for you, take a look at the next
section, where we are discussing medium and large dataset migration.

Transferring large datasets with
medium or high network bandwidth
In the previous section, we covered transferring datasets when you have low
or no network bandwidth available. However, there are still cases where your
network connection is efficient enough to handle data transfer. In this section,
we will cover some extra scenarios, including the ExpressRoute solution,
which will help you understand how to copy your data to Azure without
using Data Box family hardware or the Import/Export functionality.

Understanding your case – medium or high
bandwidth

To get started, we have to understand what medium or high network
bandwidth is. Refer to the previous section, where you can find a table
presenting the time needed to send data over a network with a given
bandwidth.

To find the best solution, we will go for the following assumptions:

Medium network bandwidth can be declared as 100 Mbps–1 Gbps.
High network bandwidth is everything over 1 Gbps.

https://docs.microsoft.com/en-us/azure/databox/data-box-disk-deploy-copy-data

By analyzing the table in the previous section, you can see that for medium
bandwidth, the data transfer time can still be something that you're concerned
with. For bigger workloads (such as hundreds of TBs or PBs), medium
bandwidth will be rather problematic. You may wonder what options we
have here. In general, there are two ways to handle the situation:

If the estimated time is not reasonable, you should go to the previous
section and check the solutions for handling low or no network
bandwidth.
If you can accept the data transfer time, you can proceed with the current
section as we will consider tools allowing you to pass data to the data
center over the internet.

When sending your data online, you should also consider one more option,
which is ExpressRoute. This particular offering from Microsoft offers a
private network connection, which can help you achieve better network
performance, security, and reliability. On the other hand, it is designed to
cover more advanced scenarios of connection, so ExpressRoute should never
be your first choice when it comes to connecting and communicating with
Azure. ExpressRoute scenarios include the following:

Requirement not to send data over the public internet
Azure connection redundancy
Dynamic scaling of bandwidth
National cloud connectivity

Take into consideration that ExpressRoute is not a free service and,
depending on the tier and actual bandwidth, may cost you from hundreds to
thousands of dollars.

ExpressRoute requires you to ensure that your ISP supports giving you an option to
connect to Azure using that particular solution. Not all locations provide that kind of
functionality.

The following steps demonstrate the process of transferring data with
medium or high network bandwidth:

1. To copy the data from the local source to Azure Storage, use the

following command. In the following code, we are basically using
the azcopy tool with the cp command, which will copy data from one
location and upload it to a second one:

azcopy cp "C:\local\path" "https://account.blob.core.windows.net/mycontainer1/?<sas-token>" --recursive=true

2. To obtains the SAS token required for authorization, you can use the
following Azure CLI command. Here, we are basically generating a
token for a specific container:

az storage blob generate-sas -c <container-name> -n <sas-name>

3. Once the command is executed, it may take a while to finish, depending
on the size of the files to be moved and your network bandwidth. An
alternative to azcopy, the REST API, will require using an HTTP protocol
to push all the files. Here, you can find an example of a request—we are
sending a PUT request to myblob in mycontainer with This is my blob! as the
contents:

PUT https://myaccount.blob.core.windows.net/mycontainer/myblob HTTP/1.1

x-ms-version: 2015-02-21

x-ms-date: <date>

Content-Type: text/plain; charset=UTF-8

x-ms-blob-content-disposition: attachment; filename="fname.ext"

x-ms-blob-type: BlockBlob

x-ms-meta-m1: v1

x-ms-meta-m2: v2

Authorization: SharedKey myaccount:key

Content-Length: 11

Request Body:

This is my blob!

Note that you will have to provide a proper method of authentication for a
request. This includes using a pair account name as well as an account key or
SAS token as in azcopy.

Using the REST API is significantly more complex compared to using azcopy as you will
have to write your own tool that will send requests to the Azure Storage API.

When using azcopy, the typical syntax looks like this:

.\azcopy copy <source path> <destination path> --<flag-name>=<flag-value>

.\azcopy cp "C:\local\path" "https://account.blob.core.windows.net/container" --recursive=true

As you can see, its usage is quite simple as the only thing that is required is to
tell the application where the source and the destination are (see the
parameters for the copy/cp command). We can also use the --recursive switch to
allow azcopy to process all the files that are stored inside the source location.

Of course, azcopy supports authentication with SAS tokens, so you do not have to make
your containers public to be able to copy the data.

When it comes to using the Data Box devices family, they can be ordered and
configured via the portal:

Figure 8.12 – Data Box Edge/Gateway in Azure Marketplace

The process of ordering devices is the same as with the other kinds of Data
Box hardware. The benefits of using a dedicated device to transfer the data
include things such as edge capability (the ability to perform preprocessing
directly on a device) and simple configuration—you manage and configure

the device using the Azure portal.

The available options

To sum up, for sending large amounts of data over the internet, you can
consider the following tools:

azcopy, which is a command-line tool for copying data to the Azure
Storage service.
REST APIs of Azure Storage: Instead of using additional tools, you
can implement your own applications that will leverage available REST
APIs and copy the data over HTTP.
Azure Data Factory: If you need an orchestration, you can use Azure
Data Factory to organize the work for you. It can be used in addition to
the previous tools to ensure that everything happens in a controlled
manner.

Whichever option you will choose, you should consider the following things:

When copying data online, you will have to ensure that the connection is
stable.
In the case of any errors, which may happen during the copy operation,
you will have to implement some kind of retry to avoid corrupted data.
The ideal solution for online transfer is having a dedicated connection
between your systems and the Azure data center. Failing to do so may
result in the degraded performance of your own systems.

An alternative to the preceding may be using Data Box devices. While in the
previous section we were considering them for offline data transfer, there are
special devices in the family, such as Data Box Edge and Data Box Gateway,
that can be used locally in your data center to pass the data online.

In general, there are two scenarios for transferring data to Azure—either during on-
premises migration to cloud or as a defined process of gathering the data. While the
former always requires you to move huge datasets, the latter is easier to handle as is
considered before deploying the application to the cloud.

Ultimately, whether you face a low or high network bandwidth, the process

can be similar by using the Data Box family devices. If you feel that the
previous two sections do not address your scenario, take a look at the next
one, where we will cover periodic data transfer.

Exploring periodic data transfer
In the previous two sections, we discussed the possibilities for data transfer
when you have either high or low network bandwidth. However, there may
still be cases where you need to copy your datasets from time to time. In such
situations, you neither need to maintain a dedicated connection to Azure all
the time nor want to implement a solution in a do-and-forget manner. In this
section, we will cover periodic data transfer scenarios and address possible
solutions for that kind of problem.

When considering periodic data transfer, you should consider the following
factors:

How often are you planning to perform copy operations?
How much data will be moved to Azure each time?
Is your network bandwidth going to be enough to end the operation
before it is triggered once again?
Can you perform copy operations over the public internet?
Do you need your data immediately after copying it to the cloud?

Depending on your answer, the solution can be quite different. Let's consider
some typical scenarios here:

If you cannot provide a network bandwidth high enough and the
frequency of uploads is quite high, you may face a problem where
another copy operation is scheduled before the previous one has
finished. This can lead to the general delay of your process and can sum
up with each operation.
If you cannot copy the data over the public internet, you will have to
consider additional configuration options (ExpressRoute or a VPN
connection) to be able to satisfy that requirement. In such cases, it may
be beneficial to perform a continuous copy to avoid peaks in network

connection and ensure a smaller amount of data is copied.
If your data can be immediately accessible after a copy operation, you
should not consider offline models of delivering data to Azure.
If each time you are performing the data copy operation its amount is
quite huge, an online transfer may not be the ideal method. In such
cases, consider using Data Box devices to copy data onto them and
send them to Azure data centers.

Once you know your requirements and your options, we will try to verify
possible solutions. Note, that periodic data transfer may not necessarily mean
that you copy data once a week or month—it can be any process that does not
implement the continuous sending of data to the cloud.

For periodic data transfer, as for huge network bandwidth, you will have
similar options when it comes to implementing a solution that will satisfy
your requirements:

For online data transfer, you can use azcopy, REST APIs, or Azure Data
Factory as an orchestrator.
For offline data transfer, you can use the Data Box family devices.
You can also leverage the features of Data Box Edge/Gateway so that
you can have a physical device that will be able to perform the copy
operations to push the data to Azure Storage.

When considering maintenance, the easiest (and the most robust) way to
implement periodic data transfer is with Azure Data Factory. With this Azure
service, you can easily implement pipelines that move data from your on-
premises environment to multiple Azure services. Now, follow these steps to
implement periodic data transfer via Azure Data Factory:

1. Azure Data Factory can be easily created from the Azure portal—here,
you can find detailed instructions on how to deploy the service from the
Azure portal: https://docs.microsoft.com/en-us/azure/data-factory/quickstart-cr
eate-data-factory-portal.

2. Once it is deployed, you will able to implement pipelines, which allow
you to take data from your on-premises storage and move them to Azure
Storage, Azure SQL, or any other kind of Azure service (using custom

https://docs.microsoft.com/en-us/azure/data-factory/quickstart-create-data-factory-portal

scripts, which you can deploy and run in your pipelines). Here, you can
find an example of possible linked services (see https://docs.microsoft.com/
en-us/rest/api/storageservices/Storage-Analytics-Metrics-Table-Schema), which
can be integrated using Azure Data Factory:

https://docs.microsoft.com/en-us/azure/data-factory/concepts-linked-services

Figure 8.13 – Various linked services in Azure Data Factory

Note that Azure Data Factory can copy data from/to any source or destination
that it can connect to via a custom protocol, so you can easily set schedules
for data operations and modify them whenever you need to do so.

For periodic data transfer, your implementation will rely mostly on your
requirements. When using azcopy or REST APIs, you will have to write your
own applications, which will take care of either running azcopy with proper
parameters or calling proper endpoints for data digestion and upload. Things
are a little bit different with Azure Data Factory—this particular tool allows
you to implement data transfer pipelines using a graphical interface, which
greatly simplifies delivering a production-ready solution.

With the last three sections, we have covered a problem that you may face
when migrating from on-premises to the Azure cloud or when implementing
hybrid solutions where you have to administer some parts of your workloads
in your own data center, but simultaneously, you aim at having the data
stored in one place (for example, for machine learning purposes).

The last section of this chapter will discuss the problem of security when
using Azure Storage as your storage component.

Enabling security for Azure Storage
As Azure Storage will be the backbone of many of your services, proper
security management and ensuring that you follow all the best practices will
be crucial for your workload's safety. In this section, we will cover additional
security features for Azure Storage so that you can learn what should be
verified or turned on before going into production with your infrastructure.

To perform this exercise, you will need a Storage account. You can use
Azure PowerShell, the Azure portal, or the Azure CLI for that, depending on
your expertise and what you are used to. If you want to learn what commands
should you use, refer to the previous sections of this chapter.

Once your Storage account is created, we can focus on delivering proper
security functionalities. By taking the following steps, we will enable security
for your Azure Storage account:

1. When you go to the Azure portal and find your Storage account, you can
find a blade that is called Advanced security:

Figure 8.14 – The Advanced security blade

2. When you click on it, you will see a new screen where you can find a
feature called Advanced security, which is disabled by default:

Figure 8.15 – Enabling Advanced security

3. By clicking on the Enable Advanced Threat Protection button, you will
see that the screen changes a little and now, each transaction that is
performed on the account is being analyzed against malicious activities:

Figure 8.16 – View of the enabled Advanced security feature
The Advanced security option that is featured is connected to the Security Center service.
The higher the tier of Security Center that you have, the more advanced the analytics are
that are performed against the transactions.

The Advanced security feature works by analyzing the diagnostics logs of the
Storage account and searching for known malicious patterns, which aim at
digesting personal information, company data, credentials, and other security
tokens. Another important feature here is the ability to send emails to the
subscription administrators about malicious activities.

Emails from Security Center contain additional information about the cause of the alert
(such as connecting to an account from an unusual location) and possible steps to
address these issues. Make sure you are listed as a subscription administrator to receive
these emails.

For now, the following alerts are raised for Azure Storage accounts:

Access from an unusual location: For example, you normally access
your account from the USA and after 1 hour, somebody from Italy tries
to access the account.
Application anomaly: Your application, which normally reads a few
hundred rows per minute, starts to do the same, but per second.
Anonymous access: It is rarely a good practice to allow anonymous

access for production systems.
Data exfiltration: Your data is being queried with a specific pattern,
which may imply data theft.
Unexpected delete: The data deleted does not seem to be related to any
previous operations performed on the account.
Access permission change: Somebody or something changed the Role-
Based Access Control (RBAC) settings or data availability levels.
Access inspection: Somebody or something queries your Storage
account to learn the RBAC rules.
Data exploration: Somebody or something uses a wide range filter,
which may imply unauthorized access, to learn what is stored in your
Storage account.

Of course, this list may change as new alerts are added to Security
Center. When securing Storage accounts, always consider enabling this
functionality, as it can detect unauthorized access and notify you when an
unexpected situation happens. As an administrator, you may find it beneficial
to be able to learn about all the unexpected behavior or set alerts to an
operations group that is responsible for data breaches. The value of the data
gathered becomes more and more important for many people and companies,
so it quickly becomes an important resource requiring special attention.

Summary
This chapter covered many aspects of working with Storage accounts as a
common solution for data storage. We discussed different features that can
help you achieve better performance, security, and durability of data. One of
the most important topics is importing and exporting data between
datacenters or your on-premises servers. With the skills gained in this
chapter, you will be able to migrate loads of data with ease, as well as
maintain its security. If you feel that you somehow need more information
regarding this topic, feel free to explore the Azure documentation (see https://
docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service) for more
verbose examples.

https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service

In the next chapter, you will find information relating to high-availability and
disaster-recovery scenarios.

High Availability and Disaster
Recovery Scenarios

When working as an Azure administrator, you often have to understand and
even implement multiple policies that ensure your applications are available
in case of an outage and can quickly recover from a disaster. This chapter
focuses on reviewing monitoring solutions and backup plans for multiple
services and using components such as Azure Front Door to manage your
infrastructure globally and from a single point.

In this chapter, we will cover the following topics:

Monitoring Azure VMs
Monitoring Azure Storage services
Monitoring Azure App Service
Implementing Azure SQL backup
Implementing Azure Storage backup
Implementing Availability Zones for VMs and high availability
Monitoring and managing global routing for web traffic with Azure
Front Door
Designing backup plans for VMs

Let's get started!

Technical requirements
To complete the exercises in this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)
Azure PowerShell installed on your computer: https://docs.microsoft.com/e
n-us/powershell/azure/azurerm/other-install?view=azurermps-6.13.0

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?v
iew=azure-cli-latest

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

ArmClient: https://github.com/projectkudu/ARMClient

Monitoring Azure VMs
When your systems are deployed, the most important thing is to keep them
running and easily investigate the issues they are facing. In this section, we
will cover proper Azure VM monitoring scenarios and correct
implementations. This will give you insights into the current capabilities of
the Azure cloud and the different solutions available, all of which can be used
for different infrastructures.

Creating a VM

To get started, you will need a working VM. If you do not have one, you can
quickly deploy one. To do so, use the following Azure CLI command (you
can find the command reference in Chapter 3, Configuring and Managing
Virtual Networks):

az vm create

The same functionality is available via the following PowerShell cmdlet:

New-AzureRmVM

Remember to pass all the required parameters, enter the expected VM size, and wait a
few minutes for the process to complete.

If you want, you can also use the Azure portal and create a machine using a
step-by-step wizard, as shown in the following screenshot:

https://github.com/projectkudu/ARMClient

Figure 9.1 – Creating a VM

This wizard allows you to set the following parameters for a new VM:

Basic settings such as its name, the image used, or the size of your
machine
Disks used by your VM (with one required parameter, which is OS disk
type – HDD or SSD)
Networking settings (VNet, open ports, and load balancing solutions)
Management options (auto-shutdown, backup, monitoring of a VM)
Advanced topics (proximity placement groups, Azure Dedicated Host,
and more)

To create a VM, you only need to enter parameters for the Basic tab – the rest
will be automatically propagated once you go to the Review +
create page. The feature described in this section works for both Windows
and Linux machines. Therefore, do not worry and select what you prefer to
work with.

Enabling monitoring

To enable monitoring while creating a VM, follow these steps:

1. The two basic types of VM diagnostics and monitoring are boot
diagnostics and OS guest diagnostics, which can be set during a VM's
creation:

Figure 9.2 – Configuring VM monitoring settings

They give you the following features:

The ability to understand what is happening when a machine is
starting. Some updates or modifications may affect how your VM
boots, so it is important to know that you can analyze what is
happening and introduce proper adjustments.
Information about the status of the OSes that have been deployed to
a machine.

2. The same can be set after a VM is provisioned. To do so, go to
the Diagnostics settings blade and search for agent and boot diagnostic
settings, as shown in the following screenshot:

Figure 9.3 – Diagnostics settings blade

3. Here, when you click on the Configure boot diagnostics/Configure
agent link, you will gain access to the feature's configuration, where you
can turn it on or off. Once your logs have been configured, you can
browse them by accessing the storage account you selected for the
logging purpose. Depending on the OS running on your machine,
available tables may differ a little, but in general, most of the logged
things are stored in tables named WADMetrics.

Logs that are stored can be digested by any tool that can connect to your storage
account. Use that to your advantage when implementing your own monitoring solutions.

4. When it comes to availability, you can use one of the newer features,
called Insights:

Figure 9.4 – Insights blade

 It will allow you to connect your VM to an Azure Monitor
workspace, which will gather all the necessary information about your
machine's health.

Once enabled, getting all the necessary information about a machine can take several
minutes. Be patient as Azure Monitor does so.

From this screen, you will able to access detailed information about the
current status of your machine. For example, we can check the generic
resource health to understand recent or past issues. In the following
screenshot, you can see, for example, on what day an event (Machine
crashed) happened, the description of the issue, and the possible steps to
proceed:

Figure 9.5 – Resource health view

For this particular feature, everything is managed by Azure Monitor, which
seamlessly integrates with your resource. If you want to check the details,
you can go directly to your workspace and check the information gathered
there.

Understanding the details

You must be wondering how Azure Monitor manages to do this. In fact,
under the hood, Azure Monitor uses a set of extensions that are installed on
your machine once Insights has been enabled:

Figure 9.6 – Extensions installed by Azure Monitor

They allow for different monitoring capabilities such as network monitoring,
forwarding OS events and logs, and crash dumps collection. If you go to the
network map of your machine, you will see that there are plenty of different
connections being established from your machine that pass information to
Azure Storage and Azure Monitor:

Figure 9.7 – Diagram based on data gathered by Azure Monitor

Azure Monitor is one of the most important services available on Azure and
allows you to monitor your IaaS workloads. It combines monitoring VMs,
VNets, and the OS itself to give you a bigger picture of your system. Using
Azure Monitor and its workspaces require some experience as this feature
does not give you all the information you require immediately.

To find out more about health monitoring in Azure and all the available capabilities of
this particular tool, go to https://docs.microsoft.com/en-us/azure/virtual-machines/windows/monitor.

In this section, we discussed the topic of monitoring Azure VMs using
various features available for this service. Please proceed to the next topic,
which is monitoring Azure Storage, to learn more about monitoring features
available for other Azure services.

Monitoring Azure Storage services
As Azure Storage is one of the most important services in Azure, proper
monitoring and understanding of issues surrounding it may be crucial for
your system to be stable and efficient. In this section, we will cover the best
way to monitor storage accounts (and SaaS in general) so that you can
implement the solution suited to your requirements. This solution should be
one that performs well in terms of maintenance and complexity.

To perform this exercise, you will need a storage account. You can use Azure
PowerShell, the Azure portal, or the Azure CLI for that, depending on your
expertise and what you are used to. To create an account with the Azure CLI,
run the following command:

$ az storage account create --resource-group "<rg-name>" --name "<account-name>"

The same can be done with Azure PowerShell:

New-AzureRmStorageAccount -Location <location> -Name <name> -ResourceGroupName <rg-name> -SkuName <selected-sku> -AccessTier <selected-tier>

Once your account has been created, we can focus on enabling the

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/monitor

monitoring features on it. For storage accounts, the easiest way when it
comes to monitoring is using Azure Monitor (which was also described in the
previous section). When it comes to Azure Storage, some part of the
functionality is already available on the storage account. Follow these steps
to access it:

1. Go to the Metrics blade:

Figure 9.8 – Metrics blade

2. On the new screen, you will see a chart that displays a selected metric
(such as egress, ingress, or the number of transactions). In this particular
case, we are interested in the general availability of the service. To
display the value, use the following filter – we want to check the
availability metrics for the account:

Figure 9.9 – Filtering values

3. This will give you a detailed view of the general availability of your
instance of Azure Storage and information about when it faced certain
issues. In fact, the same can be achieved using the REST API, which

each storage account exposes. To ease things a little bit, we will use a
tool named armclient. With the following two commands, you will get
information about the availability of your account in terms of the last
available hourly interval:

armclient login

armclient GET "/subscriptions/<subscriptionId>/resourceGroups/<resourceGroup>/providers/Microsoft.Storage/storageAccounts/<accountName>/providers/microsoft.insights/metrics?metricnames=Availability&api-version=2018-01-01&aggregation=Average&interval=PT1H"

The preceding code block performs the following operations:

Authenticates further requests in Azure
Sends a GET request to a specific endpoint with all the required
parameters and headers

The result of running the preceding command may look like this. It displays
information on the metric that was gathered for the specific time interval,
aggregated as an average value:

{

 "cost": 0,

 "timespan": "2019-05-22T11:01:44Z/2019-05-22T12:01:44Z",

 "interval": "PT1H",

 "value": [

 {

 "type": "Microsoft.Insights/metrics",

 "name": {

 "value": "Availability",

 "localizedValue": "Availability"

 },

 "unit": "Percent",

 "timeseries": [

 {

 "metadatavalues": [],

 "data": [

 {

 "timeStamp": "2019-05-22T11:01:00Z",

 "average": 100.0

 ...

 }

],

 ...

}

Using the REST API, you can quickly build a solution that will monitor your
storage accounts on your behalf.

armclient supports logging with a username and password, as well as a service principal.
Use those kinds of authentication to leverage the tool in applications that work in the

background and should not interact with a user.

Under the hood, everything that is displayed in the Azure portal or on Azure
Monitor charts is based on the data returned by the REST API. With armclient,
you can quickly get all the metrics available for your storage account. These
can be used for further queries (see the previous code blocks for
clarification):

armclient GET /subscriptions/<subscriptionId>/resourceGroups/<resourceGroup>/providers/Microsoft.Storage/storageAccounts/<storageAccount>/providers/microsoft.insights/metricdefinitions?api-version=2018-01-01

The result of the preceding command is as follows. Since the endpoint being
used is different than the one used previously, here, we got the available
metrics rather than aggregated values:

{

 "value": [

 {

 "id": "/subscriptions/5.../resourceGroups/.../providers/Microsoft.Storage/storageAccounts/.../providers/microsoft.insights/metricdefinitions/UsedCapacity",

 ...

 "category": "Capacity",

 "name": {

 "value": "UsedCapacity",

 "localizedValue": "Used capacity"

 },

 ...

 ...

 }]

}

Each metric can be queried with a proper interval and aggregation type so
that you can get the data you are interested in, in the form you are looking
for.

As you can see, Azure Storage monitoring can be seamlessly enabled and
integrated with the service without any prior knowledge of monitoring tools.
Now, let's proceed to another Azure service – Azure App Service – to learn
how to work with monitoring using Platform-as-a-Service (PaaS)
components.

Monitoring Azure App Service
When it comes to PaaS, one of the most popular services from Azure is

Azure App Service, also known as Web Apps. They allow you to quickly get
started with a server for hosting your web applications, which can be easily
configured and adjusted to your needs. Besides purely development
experience, Azure App Service also includes a set of features that make
monitoring and diagnosis a piece of cake. In this section, I will show you
how to monitor your web application and find the root cause of issues you
may face.

To get started, we will need an instance of a Web App in Azure. You can
deploy it really quickly using the Azure CLI:

$ az appservice plan create -g <rg-name> -n "<plan-name>" --sku <sku>

$ az webapp create -g <rg-name> -n "<webapp-name>" -p "<plan-name>"

To create an instance of Azure App Service, you need two commands:

The first one will create an Azure App Service Plan that gives you
resources (CPU, memory, and storage) that can be used by your
applications.
The second one creates the actual Web App, which will host the files of
your application.

Remember that you can attach multiple Web Apps to a single App Service Plan.

Once your Web App has been created, we can focus on implementing various
monitoring features and validating their availability. When it comes to
monitoring PaaS services, especially Azure App Service, one of the best
services is Azure Application Insights. In fact, they are available as one of the
settings of your application:

Figure 9.10 – Applications Insights blade

Initially, this feature is disabled and requires you to install an extension to get
things working. So, let's begin:

1. Install the extension directly from the Azure portal using the Turn on
site extension button:

Figure 9.11 – Enabling the extension
The extension can also be installed during a deployment (for example, using ARM
templates). In this section, we are covering a scenario where redeployment is not
possible/requires many additional actions before it can be performed.

2. Once you click the button, you will have to configure the plugin by
providing additional information about Azure Application Insights such
as resource name, the technology stack you are aiming at (.NET, .NET
Core, Node.js, or Java), and enabled features (Profiler, Snapshot
debugger, and so on):

Figure 9.12 – Additional features such as Snapshot debugger and Profiler

3. The last thing required here is clicking on the Apply button and
confirming that you want to apply the changes:

Figure 9.13 – Confirming the changes

Now, the process of provisioning the extension will start. This can take
several minutes to complete.

Note that this will restart your website, so ensure you are not performing this action
during the peak traffic hours of your application!

Now, let's check the actual capabilities of the feature.

Exploring capabilities of Azure Application Insights

Once your Azure Application Insights instance is ready, you can go to it and
start browsing its capabilities. Let's check it out:

1. The thing we are interested in the most here is the Availability blade.
You can find it in the Investigate section:

Figure 9.14 – Availability blade

2. From this screen, you will be able to perform two important actions:
Verify the availability of your application.
Create a test that periodically checks the status of your website.

3. To create a test, click on the + Create Test button:

Figure 9.15 – Creating an availability test

4. From the new screen, you will be able to configure a test where you can
decide how you want to access an application and specify the criteria
that will mark the test as failing:

Figure 9.16 – Availability test settings

Once your availability tests have run, you will be able to see their results, as
shown in the following screenshot:

Figure 9.17 – Working availability test

Note the following things:

Tests can be executed from different locations, which will ensure that
your problem is or is not related to a region.
You can have multiple tests covering different scenarios.
For more advanced scenarios, upload the WEBTEST files (go to https://
docs.microsoft.com/en-us/visualstudio/test/quickstart-create-a-load-test-project?

view=vs-2019), which cover multi-step scenarios of testing web
applications.
When availability tests are failing, you can add email recipients who will
be notified when things are not working at that moment in time.

https://docs.microsoft.com/en-us/visualstudio/test/quickstart-create-a-load-test-project?view=vs-2019

Azure Application Insights is a powerful service that is not limited to
availability tests only. In the Further reading section, you will find additional
information about using additional tools such as alerts, Smart Detection, and
API access. Depending on your use case, you can leverage this Azure
resource as either a sink for metrics or a complex solution and a dashboard,
which will cover most of your requirements when it comes to web
application monitoring.

For now, we have covered monitoring features for various Azure services
such as Azure VMs, storage accounts, and Azure App Service. The next topic
will help you understand Azure SQL backup capabilities.

Implementing Azure SQL backup
Backing up is one of the most important features when it comes to
implementing disaster recovery and proper business continuity scenarios. If
you are using a relational database such as Azure SQL, it is really important
to ensure that you can roll back from any situation you may face (planned or
unplanned). In this section, you will learn how to implement backups for
Azure SQL databases, as well as the backup capabilities of this service.

Creating our SQL server and database

To get started, we will need an instance of an Azure SQL server and a
database. You can do this really quickly using the Azure CLI and the
following commands. What we are doing here is creating an Azure SQL
Server with the az sql server create command and then creating a SQL
database with the az sql db create command:

$ az sql server create -g <rg-name> -n <server-name> -l westeurope -u <admin-username> -p <admin-password>

$ az sql db create -n c<db-name> -g <rg-name> -s <server-name>

Make sure your password does not contain your admin login – Azure will prevent you
from creating an Azure SQL server that does not satisfy that policy.

Once your server and database have been created, we can focus on
understanding and implementing proper backup policies.

Backing up your databases

When you go to the Azure portal and access your Azure SQL server, you will
see that there is a Manage Backups blade:

Figure 9.18 – Manage Backups blade

This feature allows you to configure how (and which) backups are made.
Before we dig into this, I would like you to understand some Azure SQL
backup rules and functionalities:

Azure SQL backups are stored on RA-GRS storage accounts, which
guarantee that, even in the case of catastrophic failure, you will be able
to recover. This is the default built-in position of Azure SQL and works
right after your Azure SQL server has been created.
You do not pay for those built-in backups as they are automatic and
included in the service's price.
Those automatic backups are kept for between 7 and 35 days.

As shown in the following screenshot, the default value is 35 days:

Figure 9.19 – Backup configuration

The default backup is called a Point-in-Time backup and its default retention
value is set to 35 days.

Note that backups are set for each database separately. This makes sense, especially if
you have more and less important databases (such as logs and transaction details).

If you click on the Configure retention button, you will be able to configure
additional backup types, such as the following:

Weekly backups
Monthly backups
Yearly backups

The Configure policies screen for backups allows you to configure each time
interval separately, as shown here:

Figure 9.20 – Configure policies screen

On this screen, you can decide how long you want to keep backups (weekly,
monthly, or yearly).

Note that the maximum time you can store a backup is 520 weeks (10 years). After that
period, you will have to implement your own storage solution (such as Blob Storage with
an Archive tier for blobs) to keep the backups for even longer.

Once your backup has been created, it is stored in the internal Azure storage
account. Point-in-Time backups are created with the following policies in
mind:

A full database backup is created weekly.
A differential database backup is created every 12 hours.
A transaction log backup is created every 5-10 minutes.

Automatic Point-in-Time backups cannot be disabled.

What's more is that the retention period for a Point-in-Time backup can be
changed using Azure PowerShell:

Set-AzSqlDatabaseBackupShortTermRetentionPolicy -ResourceGroupName <rg-name> -ServerName <server-name> -DatabaseName <db-name> -RetentionDays <7-35>

The preceding command requires passing a server name, database name, and
a number defining how many days backups should be kept.

In the Further reading section, you will be able to find some extra
information about backups in Azure SQL services. When using it, take into
consideration that it is a managed version of SQL Server. This means that it
abstracts away most of the administration concepts you may be familiar with
for configuring and managing standalone versions of this product. The
advantages of Azure SQL are more frequent updates and ease of
configuration. There is no longer a need to RDP to a machine and tweak all
the settings manually. Here, you can just script most of the settings (using the
Azure CLI, ARM templates, or other tools) and easily move a database or
recreate it in another region.

Understanding how backups work for managed services such as Azure SQL
is crucial to be able to use them proficiently and effectively. To compare
different Azure components, let's check how backups work for Azure
Storage.

Implementing Azure Storage
backup
I have mentioned a few times that Azure Storage is the backbone of many

Azure services. Because it is so important, sooner or later, you will face a
need to back up the data stored in storage accounts. The problem here is that
there is no automatic backup for this service. What's more is that it does not
offer any kind of backup at all! In this section, we will find a proper solution
to this issue and learn how to implement it properly.

To complete this exercise, you will need a storage account. To do so, please
refer to the Monitoring Azure Storage services section of this chapter, where
you can find detailed instructions on how to create your own storage account.

Backing up your storage account data

The easiest way to back up Azure Storage is to copy the data from one
account to another. Let's consider the following scenarios:

Do you want to immediately restore your account in any region? If so,
this section is for you.
Do you only want to secure your data in case of catastrophic failure? If
so, use GRS models for Azure storage accounts.
Is it acceptable to only have access to a read-only copy of your primary
data? If so, RA-GRS is something you'll want, without the need for
additional backup.
Do you want to secure your LRS accounts in case of accidental deletion
or malicious activity? If so, continue reading.

Once you understand your scenario, we can focus on implementing a proper
backup strategy. This is something you will have to implement on your own,
so decide on the following:

How often a backup should be made
What data should be copied
How to ensure backup correctness

The preceding questions are quite difficult to both answer and implement (as
they introduce quite a different level of complexity to a system). The ideal
solution should take various factors into account, such as the following:

How important the data that's been gathered is for your company
How much data can be lost in case of failure
How much time you have for performing a restore operation

Remember that a lack of backup support for Azure Storage may be a reason not to select
this service as a storage solution. It is always worth mentioning this fact and that you
may have to redesign your architecture if this becomes cumbersome.

In this section, we'll only focus on the proper implementation of a backup
operation – we will not consider things such as triggering it and validating
backups. To get started, you will need an additional account (you can find
instructions for this at the very beginning of this section). Consider whether it
is okay to have it in the same region or whether you need another data center
for it. Now, let's check our capabilities when it comes to data copying:

As backups are made periodically, one of the best options to achieve the
best results is using Azure Data Factory.
There are two additional options that may be interesting to you – azcopy
and the REST API, each of which the storage account exposes.

The backup scenario details for Azure Storage were covered in the Periodic
data transfer section of Chapter 8, Implementing Storage and Backup. Take a
look at it to find out more about how to use azcopy, the REST API, or Azure
Data Factory (ADF).

Whether you use REST APIs, azcopy, or ADF, the functionality will mostly
depend on your concrete implementation. Since Azure Storage is a service,
which itself acts as a backup solution for many Azure services, there was
never a real need to implement a backup strategy for it. In fact, it is quite easy
to introduce such a feature by yourself – if you use ADF, it does not require
that you have any programmatic skills. However, remember the following
things when creating backups for Azure Storage:

If you are copying data between different Azure regions, there will be an
additional charge for egress.
Consider what will happen if your data transfer is interrupted.
Think about proper backup validation and ensuring its correctness.
Make sure you know the time needed to recover from a disaster. You

may have a backup, but switching to it or recovering from it may be
unacceptable in terms of time.

In the Further reading section, you will find two very practical articles that
describe two different scenarios:

Azure Block Blob backup
Using ADF to copy the data between tables

I believe that they should give you great insights into your problems and
inspire you to build your own pipelines and solutions for Azure Storage
backup. Remember that Azure Storage may not be the ideal fit for your
systems, especially if a backup is something you do not want to focus on
when managing a solution. There are other storage solutions in Azure (Azure
SQL, Cosmos DB, Maria DB, and MySQL, to name a few) that may satisfy
your requirements better.

In this section, we discussed how to back up Azure Storage and what always
has to be considered when using that service on production environments.
Now, let's discuss how to ensure high availability (HA) for VMs.

Implementing Availability Zones for
VMs and HA
As an administrator, you have to take care of VMs that host different
workloads and applications. In the easiest scenario, you do not have to take
care of HA in terms of geo-redundancy. In other words, as long as you do not
have to replicate the machines across regions, the easiest way to ensure
everything works is using Availability Sets. However, Availability Sets only
give you the option to secure against failed updates. When it comes to a data
center failure, you need a more sophisticated feature. This is where
Availability Zones (AZs) come into play. In this section, we will implement
an AZ for our VMs to make sure they can survive even a region-wide
disaster.

Availability Sets versus Availability Zones

Before we get started, I would like to remind you of a difference between
Availability Sets and AZs:

Availability Set: This ensures that each VM is provisioned in a separate
update/fault domain. However, this works in fives. This means that the
first five machines will be deployed to five different domains, then each
additional machine is assigned to one of the already created ones.
AZ: This is a way to achieve geographical reliability. This means that
your machines will be provisioned across different zones for a single
region (let's assume the West Europe region has three different zones –
if you provision three VMs across them, each one will be hosted inside a
different data center building).

When it comes to availability, you need the following:

An Availability Set, in order to reach the guaranteed 99.95% SLA for
VMs (assuming you have at least two machines)
An AZ, in order to ensure your system can survive a region going down

Remember that not all Azure regions support AZs. The full list can be found in
the Further reading section.

Now, let's learn how to implement AZs for machines hosted in Azure.

Implementing AZs

To implement AZs, follow these steps:

1. Select an AZ during VM creation, as shown in the following screenshot:

Figure 9.21 – Configuring availability for a VM
Note that you will have to select a proper region (if a region of your choice does not
support AZs, the Availability zone option will be grayed out).

2. Once the proper option is selected, you will see a new dropdown where
you can select the ID of a zone. In most cases, you will have to select
one of three different options. At some point in the future, there may be
regions that offer more than three zones.

The same can be achieved using the Azure CLI – we can use the az vm
create command with the --zone switch to denote the zone in which a
machine will be created:

$ az vm create -n <vm-name> -g <rg-name> --location <location> --zone <1,2,3>

The preceding scenario works for a single VM. Note that a single machine
will not give you any guarantees (if a single zone goes down, so does your
VM). This is why in that setup, you should deploy two or three different
machines that host the same workload and can work separately.

Implementing redundancy in terms of AZs requires deploying either stateless workloads
or achieving some way of communicating between machines. Those concepts come from
distributed computing and will not be addressed in this book.

AZs can be also used for VM scale sets, as shown in the following
screenshot:

Figure 9.22 – Selecting AZs

The concept itself is the same as with individual VMs – when a VMSS uses
AZs, machines are deployed one by one to a separate zone. Of course, in a
scenario where you have five or seven machines, there will be zones that host
more than a single machine. This is, of course, perfectly fine as long as your
application does not implement some kind of placement constraint that may
affect its availability. Now, let's learn how AZs actually work.

Understanding how AZs work

The concept of AZs is really easy – in the case of a zone failure, your
workload should still be intact. This means that AZs can secure you from a
single data center failure (network outage, power outage), but still cannot
protect you from an entire region disaster. If we assume that a region contains
three zones and you deploy seven machines, the placement will look like this:

Zone 1: VM1, VM4, VM7
Zone 2: VM2, VM5
Zone 3: VM3, VM6

If Zone 1 fails, you still have four machines able to work on your workloads.
This does not mean that an application will not be intact (it will require some
load balancing of the current services and possibly that you rerun some of the
processes), but it can survive a possible outage.

On the other hand, AZs are meant to protect you only against a local failure –
 they do not guarantee durability when a disaster occurs that affects all the
zones at once. To secure against that kind of failure, you will have to
implement some kind of geo-redundancy.

The topic of availability becomes quite complicated when you consider what
may happen if some part of your system fails but you want to continue with
an ongoing process. Hence, it is important to understand the implications of
provisioning machines across zones. To find out more, you can visit the links
in the Further reading section. We will now switch topics a little bit and
learn how to define global routing using the Azure Front Door service.

Monitoring and managing global
routing for web traffic with Azure
Front Door

In Azure, you have access to many different services when it comes to
routing your web traffic in your applications. You can choose Azure
Application Gateway, Azure Load Balancer, or Azure Traffic Manager. You
can also implement your very own solution or combine available options and
create a custom system. In fact, the perfect choice depends on the OSI level
you are aiming at. The downside of all of these services is the lack of global
traffic support. The only option that is close to achieving that kind of
functionality is Azure Traffic Manager, but it works on the DNS level, which
is not ideal for many scenarios. In this section, you will learn what Azure
Front Door is and how to use it to manage and monitor global routing and
traffic across regions.

Understanding Azure Front Door

Before we dive into this topic, you have to understand what Azure Front
Door really is. When it comes to supported OSI levels, we can separate Azure
services like this:

Level 4 (Azure Load Balancer)
Level 7 (Azure Application Gateway, Azure Front Door, Azure Traffic
Manager)

Now, depending on your needs, you may require a different set of
functionalities:

If you need SSL offloading, you have to operate at the application level
(level 7). Load Balancer will not offer you this kind of feature.
If you need to be as close to the network layer as possible, you will have
to choose level 4 services (so in the case of Azure, Azure Load
Balancer).
If you want to perform URL routing, once again, you will have to
address this problem with level 7 services. Use Azure Application
Gateway or Azure Front Door to achieve what you need.

Sometimes, the best solution to a problem is using multiple services at once – you may
want to initially route requests to a particular VMSS with Azure Application Gateway and
then load balance the traffic between machines with Azure Load Balancer. Do not focus

on using only one service.

As there are many different solutions in Azure when it comes to traffic
routing, you may wonder what the purpose of another similar service such as
Front Door is. To understand this better, consider its following traits:

Azure Front Door uses the Azure backbone network to route traffic.
This ensures that packets are transferred over reliable and optimized
network paths, thus reducing latency and improving performance.
Azure Front Door shares the reliability model of Azure Traffic Manager.
This means it survives even entire Azure region failures.
It offers health probes, URL routing, WAF integration, and custom
forwarding paths, making it a really flexible and robust solution for
global applications.

To get a better understanding of this, we will create a new instance of Front
Door.

Creating an Azure Front Door instance

Now, we will create an instance of Front Door and check how we can route
and monitor traffic. In order to monitor and manage the global routing for
web traffic with Azure Front Door, follow these instructions. You can create
an Azure Front Door instance from the Azure portal by searching for it in the
Marketplace, as follows:

Figure 9.23 – Azure Front Door in the Azure portal

The routing model of Azure Front Door consists of three levels:

Frontend hosts
Backend pools
Routing rules

They can all be configured either during the Front Door instance's creation or
once it has been provisioned and is ready. Here, you can find an example
configuration of Front Door, which allows me to connect to my blog through
it:

Figure 9.24 – Configuring Front Door

The preceding feature is accessible via the Front Door designer blade in your
Azure Front Door instance. Once routing has been configured, I will see that
by going to https://chapter09.azurefd.net/, I will be able to see the main page of
my blog, which is hosted under https://thecloudtheory.com:

https://chapter09.azurefd.net/
https://thecloudtheory.com

Figure 9.25 – My blog available via Azure Front Door

Since the frontend pool is connected to the backend pool, I have access to the

following features:

Azure Front Door sends health probes to each backend defined in the
pool. From here, I can set weights that determine in which order they
should be accessed.
I can configure how a healthy backend is defined (in other words, how
many successful probes should be returned to mark it as healthy).
I can define routing rules (which URLs should be matched, whether it is
a forward or a redirect route, whether it should match the only HTTP or
also HTTPS).

When users access your backend through the frontend pool, each request is
monitored and diagnosed by Azure Front Door. You can view all the
available statistics by accessing the Metrics blade:

Figure 9.26 – Metrics view

However, some of the features such as Web Application Firewall (WAF)
are not accessible directly from the Azure Front Door instance – they have to
be configured separately by creating additional instances and connecting
them to your Front Door service. In the Further reading section, you will find
many articles on additional configuration features and advanced scenarios of
using this Azure product. Under the hood, when your users access your
backends via Azure Front Door, they are routed through an internal Azure
network infrastructure. This greatly improves the stability of the connection,
lowers latency, and offers greater reliability. If you have had a chance to use
Azure Traffic Manager, you are probably aware of its global deployment
status. This means that even if multiple regions fail, routing configured via
such a service still works.

In the Further reading section, you will find additional articles that describe
how more advanced features of Azure Front Door work. As this is quite a
new service, there are still things that are not that obvious in many situations
(such as WAF configuration, which happens outside of an Azure Front Door
instance). When considering the routing services, try to answer the question
"What features are really important to me?" If you need routing on level 4 of the OSI
model, only Azure Load Balancer will satisfy your requirements. Otherwise,
you have to choose an option depending on the features of the service. For
example, if you want a global routing service that can route across
subscriptions, is not tied to a single region, offers URL rewriting and SSL
offloading, and gives you caching capabilities, Azure Front Door is
something you should use.

The last topic of this chapter is how we can design backups for VMs in
Azure. Let's get started!

Designing backup plans for VMs
If your system is based on VMs, making sure they are backed up and secure
is one of the most important things to do as an administrator. Considering a

proper backup plan – when to perform it, how and what to store in it, and so
on – will be crucial for ensuring that your disaster recovery/business
continuity plans work. In this section, we will try to investigate what is
possible when it comes to backing Azure VMs up and how to implement
proper backup policies. When it comes to backing up a VM in Azure, you
have to understand the reason you need to do so. Let's take a look at the
workloads that can be run on VMs:

Stateless services, which can be easily migrated to another machine.
Stateful services, which store their state directly on a machine. In the
case of failure, you may lose data.

Unless you are running stateful services, implementing sophisticated backup
plans for your machines may not necessarily be something you want to spend
your energy on. Here are the reasons why:

 Stateless services do not store anything important on the machines they
run. If they do so, they are no longer stateless.
In the modern computing solution, it is much more important to be able
to quickly recover via proper automation scripts than performing and
validating backups.
The desired state of machines before deployment can be achieved via
multiple different tools (DSC, Ansible, and custom extensions for VMs)
without the need to get it from a backup.

However, there still are cases where you just have to implement a proper
backup. Let's understand the available options. Each VM in Azure has a
blade called Backup:

Figure 9.27 – Backup blade

From here, you will be able to configure a backup policy for your machine.
Note that the backup functionality is not a direct feature of Azure VMs – in
fact, it is a separate service called Azure Backup. Before a backup is enabled,
you have to create a Recovery Service vault that will be responsible for
managing and storing backups:

Figure 9.28 – Configuring a backup

Depending on your needs, you may need to configure the backup so that it's
performed either daily or weekly. Of course, the retention policy for different
time periods can also be configured:

Figure 9.29 – Various options for backup retention

Once the backup is enabled, Azure will create snapshots of your machine on
a defined basis. Azure Backup stores each backup in a storage account that
gives you an option to select whether you wish to use an LRS or GRS
replication model.

Azure Backup for Azure VMs simplifies the backup process by moving the
responsibility for it to the cloud. Still, it is your responsibility to ensure that
the whole process and created backups really satisfy your requirements. Note
that having a backup does not mean that you will be able to recover from a
disaster – if a whole region experiences problems, you may not be able to
move your workloads without an implemented process for that. Once the
backup for a VM is enabled, the Backup blade will change its appearance a
little bit:

Figure 9.30 – Backup blade with a backup configured

From here, you can steer the backups (by initializing them manually) and
recover them in case of any issues with a VM.

In the Further reading section, you will find an article that mentions a more
advanced scenario with an encrypted VM. Nonetheless, the most important
thing when it comes to backups is the scenario you are facing. If your
machine does not hold any application state, backing it up does not give you
much of an advantage. In such cases, it is much more important to have a

proper automation tool that will allow you to script your infrastructure and
quickly recover it in a new place.

Summary
In this chapter, we discussed various topics such as monitoring, backups for
various services, and HA. As an Azure administrator, you will often face
challenges regarding those things as you will be responsible for production
systems that need maintenance and ensuring that they follow all the rules and
best practices.

In the next and final chapter, we will cover automation topics to complete the
path we took in this book.

Further reading
Monitoring Azure App Service:

Availability tests with firewalls: https://docs.microsoft.com/en-us/azure/azure
-monitor/app/ip-addresses#availability-tests

Smart Detection: https://docs.microsoft.com/en-us/azure/azure-monitor/app/proa
ctive-diagnostics

The Application Insights API: https://dev.applicationinsights.io/quickstart/

Implementing Azure Backups:

Automated backups: https://docs.microsoft.com/en-us/azure/sql-database/sql-d
atabase-automated-backups

LTR backups: https://docs.microsoft.com/en-us/azure/sql-database/sql-database
-long-term-retention

Implementing AZs for VMs and HA:

Managing the availability of VMs in Azure: https://docs.microsoft.com/en-u

https://docs.microsoft.com/en-us/azure/azure-monitor/app/ip-addresses#availability-tests
https://docs.microsoft.com/en-us/azure/azure-monitor/app/proactive-diagnostics
https://dev.applicationinsights.io/quickstart/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automated-backups
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-long-term-retention
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability

s/azure/virtual-machines/windows/manage-availability

Replication and consistency in distributed systems: https://www.cs.helsinki
.fi/webfm_send/1256

Implementing Azure Storage backup:

Azure Block Blob Storage backup: https://azure.microsoft.com/pl-pl/blog/mi
crosoft-azure-block-blob-storage-backup/

ADF (copying data to and from a table): https://docs.microsoft.com/en-us/az
ure/data-factory/connector-azure-table-storage

Monitoring and managing global routing for web traffic with Azure Front
Door:

Azure Front Door caching: https://docs.microsoft.com/en-us/azure/frontdoor/f
ront-door-caching

Configuring WAF: https://docs.microsoft.com/en-us/azure/frontdoor/waf-front-
door-custom-rules-powershell

URL rewriting: https://docs.microsoft.com/en-us/azure/frontdoor/front-door-url
-rewrite

Designing backup plans for VMs:

Backing up encrypted VMs: https://docs.microsoft.com/en-in/azure/backup/bac
kup-azure-vms-encryption

https://www.cs.helsinki.fi/webfm_send/1256
https://azure.microsoft.com/pl-pl/blog/microsoft-azure-block-blob-storage-backup/
https://docs.microsoft.com/en-us/azure/data-factory/connector-azure-table-storage
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-caching
https://docs.microsoft.com/en-us/azure/frontdoor/waf-front-door-custom-rules-powershell
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-url-rewrite
https://docs.microsoft.com/en-in/azure/backup/backup-azure-vms-encryption

Automating Administration in Azure
The bigger the system, the more time required to manage and verify changes
made to it. This is why administrators often try to automate common
activities that allow them to focus on things that really require their attention.

In this chapter, we will focus on integrating different services with Azure
Event Grid, Azure Automation, and Azure Logic Apps so that readers can
learn additional capabilities of Azure when it comes to monitoring, auditing,
and managing multiple system components.

The following main topics are covered in the chapter:

Starting/stopping Azure virtual machines (VMs) during off-hours
Monitoring Blob storage with Azure Event Grid
Monitoring Azure Container Registry (ACR) with Azure Event Grid
Integrating File Transfer Protocol/Secure File Transfer Protocol
(FTP/SFTP) servers with Azure Logic Apps
Integrating Office 365 with Azure Logic Apps
Integrating Azure SQL Server with Azure Logic Apps
Managing updates for VMs
Tracking changes in VMs

Technical requirements
To perform exercises from this chapter, you will need the following:

Access to an Azure subscription (created in Chapter 1, Getting Started
with Azure Subscriptions)
Azure PowerShell installed on your computer. To install it, please check
the guide available at https://docs.microsoft.com/en-us/powershell/azure/azurer
m/other-install?view=azurermps-6.13.0.
The Azure command-line interface (CLI): https://docs.microsoft.com/en-u
s/cli/azure/install-azure-cli?view=azure-cli-latest

https://docs.microsoft.com/en-us/powershell/azure/azurerm/install-azurerm-ps?view=azurermps-6.13.0
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Starting/stopping Azure VMs
during off-hours
In many cases, services you are administering do not have to be enabled once
developers and testers finish their workday. In on-premises systems, whether
your system is running or not does not affect its cost—you have already paid
for the hardware, so it should be on to utilize its resources. Fortunately, in
Azure, you may use out-of-the-box features that can help you achieve the
expected level of VM automation and governance. Let's check how this can
be done with just a few steps.

Getting started with a VM

In cloud environments, things are quite different—once a machine is not
needed, it should be deallocated to save money. In this section, you will learn
how to create a schedule for starting and stopping an Azure VM so that it
reflects the team's workday. To get started, you will need a working VM. If
you do not have one, you can quickly deploy one. To do so, use the following
Azure CLI command (you can reference Chapter 3, Configuring and Managing
Virtual Networks, for complete instructions on how to use the command line
or PowerShell for VM creation):

az vm create

The same functionality is available via a PowerShell cmdlet:

New-AzureRmVM

Remember to pass all the required parameters (name of the machine, resource
group) and enter the expected VM size (by providing the --size parameter),
then wait a few minutes for the process to complete. If you want, you can
also use the Azure portal and create a machine using the step-by-step wizard:

Fig. 10.1 – Creating a VM in the Azure portal

Currently, when a VM is created through the portal, you can also select
an AUTO-SHUTDOWN option:

Fig. 10.2 – Configuring auto-shutdown

This will allow you to automatically shut down a VM on a specific schedule.
However, take into consideration that this feature will not turn a VM on. To
do so, you will need either an automation script or to do it each time
manually. To automatically shut down a machine during off-hours, we will
use an Azure Automation account, which we will be creating in the next
section.

Creating an Automation account

To create an Azure Automation account, follow these steps:

1. To create an Azure Automation account, you can use the marketplace
(by clicking on the plus (+) button on the left) and search for Automation:

Fig. 10.3 – Automation account in Azure Marketplace

2. For account creation, you can stick with the default values. The only
things needed here will be the account name, subscription, resource
group, and the desired location:

Fig. 10.4 – Automation account form

3. Once your account is created, go to it (you can either use a search box in
the middle of the top bar of the portal or just go to your resource group
and click on the machine you created) and find the Start/Stop VM blade,
which looks like this:

Fig. 10.5 – Start/Stop VM blade

From this place, you will have access to a configurable solution that
allows you to quickly decide how a VM should be stopped, and when.

4. Because there is no solution assigned to your account, click on
the Manage the solution link and then on the Create solution button:

Fig. 10.6 – Creating a solution

5. In the search box, enter Start/Stop VM and select the Start/Stop VM during
off-hours solution. Once you see the panel with the solution description,
click on the Create button:

Fig. 10.7 – Start/Stop VMs during off-hours solution

You will have to provide two separate things:

An Operations Management Suite (OMS) workspace, which is
connected to an Automation account and is responsible for running
and monitoring your solution. OMS is, in fact, a deprecated Azure
service.
The actual parameters for a solution so that you can select the
schedule of how it works.

An example solution may be configured like this:

Fig. 10.8 – Solution configuration

Once you are ready with the configuration, you can click the Create button.

After several minutes, your solution should be ready—you can go to the
selected resource group and click on the Deployments blade:

Fig. 10.9 – Deployments blade

Once the solution is ready, it will ensure that your VM is turned on and off
according to the defined schedule. Under the hood, the solution you deployed
creates PowerShell runbooks, which are responsible for turning a VM on and
off. You can find them in the Runbooks blade in your Automation account:

Fig. 10.10 – Runbooks view

Each of the runbooks can be reviewed and modified if you need to do so.

Using an Automation account is not necessarily required to achieve this particular set of
functionalities—if you want, you can try to leverage Azure Functions written in

PowerShell (https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-powershell)
or representational state transfer (REST)/CLI commands. These are run using any kind
of orchestrator that can authenticate in Azure.

Detailed instructions on the topic in this section, including information
regarding how solutions and Automation accounts work, can be found in the
Further reading section. I strongly advise you to take a look at this particular
Azure service, as it is full of powerful features such as change tracking,
update management (which will be covered in this chapter), and other VM
management features that are really important from an administrator's
perspective.

We will now proceed with the next automation solution, which is monitoring
Blob storage using the Azure Event Grid service.

Monitoring Blob storage with Azure
Event Grid
When it comes to native ways of monitoring what is stored inside an
Azure Blob storage, there is no tool that allows you to do this. However, you
may still want to implement that kind of functionality—either to introduce
some way of validating what is actually stored or to understand the actual
data volume and inflow.

In this section, we will use Azure Event Grid with Azure Functions, written
in PowerShell, to discuss the possibilities and show you the easiest way to
achieve this functionality. To get started, we will need the following services
deployed to a resource group:

Azure storage with a selected kind of Blob storage
Azure Event Grid integrated with the Storage account (see Chapter 2,
Managing Azure Resources, for reference)

To deploy the Blob storage, use the following command:

az storage account create -g <rg-name>-n <account-name> --kind BlobStorage --access-tier <Hot|Cold>

https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-powershell

It is important to select --kind as BlobStorage as Azure Event Grid integration does not work
with general-purpose accounts.

Once the account is created, you can go to the portal so that we can proceed
with the topic. To configure the integration between a Storage account and
Azure Event Grid, follow these steps, which describe the process in detail:

1. In the Azure portal, search for your Storage account and click on
the Events blade:

Fig. 10.11 – Events blade

2. On the screen that will be displayed, you will be able to select a recipe
that you can use to get started. As we want to monitor uploaded blobs
and logic apps, select the first recipe, and ensure Logic Apps is selected:

Fig. 10.12 – Recipe view

3. Once a recipe is selected, you will see a designer that will help you
create your application. The very first step is connecting a Storage
account with Azure Event Grid:

Fig. 10.13 – Connecting Storage account with Azure Event Grid

When you click on the Create button, you will be asked to provide

two things:

The name of the connection
The Storage account you would like to connect

Once you are ready to proceed, click on the Continue button once
more:

Fig. 10.14 – Proceeding with the recipe
Sometimes, you may not see your Storage account (for example, it is deployed to a
subscription you do not have access to). In such cases, use the Manually enter connection
information option to provide the values manually.

4. To provide the Event Grid connection, click on the Sign in button,
which will display a new step:

Fig. 10.15 – Signing in to Azure Event Grid
On the preceding screen, there is a Tenant field, which declares in which Azure Active
Directory (AD) tenant an instance of Event Grid should be created. The Katalog
domyślny value was not translated in my case, but it mentions the default tenant for my
account.

5. Once you select the value of the tenant you want, click once more on
the Sign in button. You will be asked to sign in once more, and once the
authentication is completed, you will see that the integration is ready to
be created:

Fig. 10.16 – Integration connected to services

6. Click on the Continue button and you will see a logic app generated,
which can be modified to fulfill your expectations:

Fig. 10.17 – Configuring logic app with Azure Event Grid connector

7. Once you are satisfied with your application, click on the Save
As button on the left of the screen to create the application inside your
subscription.

Once we have the initial setup ready, we can continue with more advanced

topics.

Extending your setup

A really nice feature of Azure Logic Apps and Azure Event Grid integration
is their ability to use predefined events without a need to know what they are
(as displayed in the preceding screenshot—you immediately have access
to BlobCreated and BlobDeleted events). Now, each time an event is sent to Azure
Event Grid, it will be handled by your logic app. The flow can be described
as follows:

1. A blob is uploaded to your Storage account.
2. An event is generated by the account (BlobCreated or BlobDeleted, in the

case of a blob deletion).

3. An event is picked up by Azure Event Grid and forwarded to all
interested subscribers.

4. A subscriber receives an event, which contains the metadata and
information described by an event schema.

As Azure Event Grid calls the receiver (as opposed to other models, where
you have to pool the broker), it offers improved performance (reactive
architecture) and easy integration with any HyperText Transfer Protocol
(HTTP) endpoint (without the need to implement additional protocols such
as Message Queuing Telemetry Transport (MQTT) or the Advanced
Message Queuing Protocol (AMQP). You can quickly test the behavior of
the application by uploading a blob using the Azure portal. Follow these steps
to do so:

1. Go to your Storage account, and click on the Blobs service:

Fig. 10.18 – Blobs service

2. If you do not have a container, you will have to create it (with the +
Container button):

Fig. 10.19 – Creating a container

3. Then, select the container and click on the Upload button:

Fig. 10.20 – Upload button
Another option is using the Microsoft Azure storage Explorer application to access a
container and upload a file of your choice.

4. Once a blob is uploaded, go back to your logic app and check the
execution status:

Fig. 10.21 – Logic app in the Running state

Depending on your flow, the execution will end quickly or you will have to
wait for several seconds or a few minutes (for example, because you are
making external calls that are waiting for the application programming
interfaces (APIs) to respond). Nonetheless, each execution will handle an
event similar to this one:

{

 "topic": "/subscriptions/.../resourceGroups/chapter10/providers/Microsoft.Storage/storageAccounts/chapter10euw2",

 "subject": "/blobServices/default/containers/chapter10/blobs/B13634_10_17.PNG",

 "eventType": "Microsoft.Storage.BlobCreated",

 "eventTime": "2019-06-01T10:21:36.8740173Z",

 "id": "629372c5-601e-007b-3563-1894e106e3f2",

 "data": {

 <data-object>

 },

 "dataVersion": "",

 "metadataVersion": "1"

}

Inside, you will see a data object containing the most important information:

"api": "PutBlockList",

"clientRequestId": "1b3c334f-c3b8-4dd8-835b-efe148c4f064",

"requestId": "629372c5-601e-007b-3563-1894e1000000",

"eTag": "0x8D6E67AEDC0AE36",

"contentType": "image/png",

"contentLength": 5851,

"blobType": "BlockBlob",

"url": "https://chapter10euw2.blob.core.windows.net/chapter10/B13634_10_17.PNG",

"sequencer": "00000000000000000000000000000AED000000000026c7a3",

"storageDiagnostics": {

 "batchId": "262f554d-1404-4e78-9b3d-171153620e04"

}

Depending on your requirements, you may want to use different fields
(contentType, url, contentLength) to implement a proper flow and decide what to
do with a file.

Azure Event Grid integration is a great way of building both simple and
advanced flows that may help you manage applications. Those scenarios
include the following:

Diagnosis of the load on your Storage accounts
Ensuring only proper (in terms of content type/size) content is uploaded
Validating the content

In the Further reading section, you will find more articles describing the
service and possible scenarios that may help you understand Azure Event
Grid better. Proceed to the next section to learn more about monitoring ACR,
once again using the Event Grid service.

Monitoring ACR with Azure Event
Grid
As containers become more and more popular, proper management of their
hubs and monitoring actions is required to ensure your systems are working
flawlessly. In Azure, you can very easily create your own registry for storing
your images using ACR.

In this section, we will try to implement seamless integration between ACR
and Azure Event Grid to see what kind of functionalities it offers.

We are covering ACR in response to the growing popularity of containerized
applications and systems backed by Docker and Kubernetes. In the simplest
scenarios, you could host your container images using shared galleries such
as Docker Hub. The downside of such a solution is a third-party dependency,
no performance guarantees, and integration options. This is why many
companies decide to host their own container registries. An option would be
also to use a registry offered by your cloud provider (such as ACR from
Microsoft).

When working with modern systems that leverage containers, you will
quickly realize that the number of containers hosted and used grows rapidly
and that you need some means of control over them. This is where Azure
Event Grid comes in handy.

Integrating ACR with Azure Event Grid

To get started, we will need an instance of ACR. To create it via the
command line, run the following command:

az acr create -n <name> -g <rg-name> --sku <Classic|Basic|Standard|Premium>

Once the ACR instance is created, find the instance you want in the portal
and go to it. The integration with Azure Event Grid is very similar to what
you can find in the previous section.

Let's get started with the integration:

1. Click on the Events blade and then on the + Event Subscription button:

Fig. 10.22 – Events blade

2. On the next screen, besides providing the name of the subscription and
the schema (we will go for the Event Grid schema), you will have to
decide which events you are interested in and select them:

Fig. 10.23 – Available events for ACR

The last thing required here will be the endpoint type. While you can
choose between many different positions (Event Hub, Storage Queue,
Hybrid Connection), we will go for the Webhook position. In case
you are not familiar with what a webhook is, let me describe the
concept briefly. Webhooks are simple HTTP endpoints that act as a
point of contact between external services and your services. They
can be used to receive a message, start a process, or send an event.

3. As you may currently not have an endpoint that can be used by you, you
can quickly create a web application using the following command,
which will create a new deployment inside a resource group, using a
template passed via the --template-uri parameter:

az group deployment create --resource-group <rg-name> --template-uri "https://raw.githubusercontent.com/Azure-Samples/azure-event-grid-viewer/master/azuredeploy.json" --parameters siteName=<site-name> hostingPlanName=<hosting-plan-name>-plan

This will deploy an example web application inside the selected
resource group.

4. Once the application is deployed, obtain its endpoint using the az webapp
show command, which displays all the information related to this specific
web app. We are using the --query parameter to limit the data returned to

defaultHostName only:

az webapp show --resource-group <rg-name> --name <webapp-name> --query defaultHostName

5. Once the hostname is returned, prepend https:// and append /api/updates
to the hostname, and use this endpoint as the webhook:

Fig. 10.24 – Passing an endpoint

6. Click on the Confirm Selection button and then on the Create button.

Congratulations! You have just connected ACR with an application that can
handle all the events.

The deployed application handles the endpoint validation by properly responding to the
validation event. If you want to provide your custom solution, you will have to implement
the logic on your own (see the Further reading section for details).

When the integration is on, each event sent to Azure Event Grid will be
handled by the integrated application. As mentioned in the previous sections,
ACR generates four different events for now:

Image pulled
Image pushed
Chart pushed
Chart deleted

The idea of the functionality is simple—once an image is pushed to/pulled
from the registry, an event is raised that is picked up by Azure Event Grid
and routed to subscribers. The same goes for charts deployed to ACR. Azure
Event Grid calls the configured endpoints and passes the metadata of an
event so that a subscriber can decide what to do with it.

It is important to remember that not all events that might be generated by ACR are

integrated with Azure Event Grid (so you will receive events related to images and charts
pushed to the service, but other things such as management actions, Identity and Access
Management (IAM) changes, and repositories will not be handled by this particular
topic).

You can check the statistics of the Azure Event Grid integration by going to
the Events blade and then clicking on the Event Subscriptions tab:

Fig. 10.25 – Events blade with the Event Subscription button

In the Further reading section, you will find a link about validating Event
Grid endpoints. Reading the article is really important if you want to
introduce custom webhooks and the endpoints of Event Grid topics, as Azure
Event Grid requires a specific way to authenticate them.

In the next section, you will learn more about one of the serverless offerings

of Azure—Azure Logic Apps—to integrate FTP/SFTP servers.

Integrating FTP/SFTP servers with
Azure Logic Apps
When it comes to hosting files, FTP servers are still popular as simple and
well-known environments for file sharing. When working as an
administrator, you probably have at least one FTP server under your control.
You may wonder if there is any way to integrate such a service with Azure.
Fortunately, you can very easily create a logic app that will handle changes
on your server and let you integrate with other Azure services.

For this exercise, we will need two components:

An FTP server
An Azure Logic Apps instance

If you do not have an FTP server, you can quickly deploy one using recipes
from the marketplace:

Fig. 10.26 – Available FTP servers in Azure

Let's now check how to use it.

Creating an Azure Logic App instance

To create a logic app instance, go to the marketplace and search for logic app:

Fig. 10.27 – Logic App in Azure Marketplace

You will have to enter all the required fields:

Name
Location
Resource group
Subscription

Once you have all the details, click on the Create button to initialize the
process of deploying your application. With your application deployed, we
can start adding the FTP server integration:

1. Go to your logic app and click on the following recipe:

Fig. 10.28 – Recipe for logic app triggered by file added

This will start a wizard that will guide you through the process of
integrating the server with Azure. You will start with creating the
connection to your FTP server:

Fig. 10.29 – Creating a connection

2. Click on the Create button to provide the required values. You will see
the following form, which you will have to fill in to proceed:

Fig. 10.30 – Configuring a connection

Of course, not all of the fields are required—in fact, the only values
you are expected to provide are as follows:

Connection name
Server address
Username
Password

Once you click on the Create button, the process of validating the
connection will start. If everything is correct, you will see that the
connection is green:

Fig. 10.31 – logic app connected to an FTP server

3. Press the Continue button. A new step should be displayed, where you
can configure the rules of handling the FTP files:

Fig. 10.32 – Configuring the rules of a trigger

You can add other steps to extend your application.

4. Once you are ready, click on the Save button to finish the changes and
let the application do its job.

If you are using an Azure VM, make sure that port 21 is open. Failing to do so will result
in errors in your connection.

Congratulations! Your Azure Logic App should now be ready and running.
Let's now discuss how the setup works in detail.

Understanding the setup

Depending on the frequency of your checks defined in the application, Azure
will start analyzing your FTP server sooner or later. Now, when the
evaluation takes place, two things may happen:

The application is not triggered because there was no change in the files
or directories.
The evaluation is positive and your application is triggered.

The Azure Logic Apps connector handles the state of your FTP server, so
you do not have to worry about notifying it about any changes. However,
make sure your FTP server does not become too big as it may affect the
performance of the logic app. You can very easily extend your logic app with
other steps offered in the FTP section, such as the following:

Copy file—for copying files between servers
Create file—so that you can create a file on the FTP server
Delete file—for deleting files from the FTP server
Get file content—for fetching information about a file
List files—for browsing files
Get file metadata—for fetching the metadata of a file

All those steps can be integrated with each other to build a complex solution
covering everything needed to work with files stored on FTP servers. In the
following screenshot, you can find an example of a very simple pipeline that
gets a file's content once it is added or modified on a server:

Fig. 10.33 – Example logic app

Once the file is fetched by Azure logic apps, you can pass it wherever you
want (including Office 365 applications, Azure Functions, or other Azure
services that you have integrated). Let's now continue with another exercise
to see how Azure logic apps may integrate with Office 365 connectors.

Integrating Office 365 with Azure
Logic Apps
If you have access to Office 365, you probably see the value of integrating
things such as meetings, emails, and OneDrive files with Azure services. This
can greatly enhance the capabilities of your company, as you can implement
extra functionalities that may help in either managing the applications or
monitoring them by closing the gap between a deployed application and a
developer.

In this section, we will see the capabilities of Azure Logic Apps when it
comes to Office 365, and what can be achieved with this service. To get
started, you will need an instance of Azure Logic App. To get it, follow these
steps:

1. Search for logic app in the marketplace:

Fig. 10.34 – Logic App in Azure Marketplace

2. Then, you will have to provide all the required values for your instance,
including the following:

Name
Location

Resource group
Subscription

3. The last step is clicking on the Create button. After a few seconds, your
application should be up and running.

Now, let's start integrating Office 365 with Azure Logic Apps, with the help
of the following steps:

1. When you access your brand new Azure Logic App, you will be offered
a bunch of different recipes to get started. We can, for example, get
started with emails received by your Outlook account:

Fig. 10.35 – Recipe for connecting to Outlook

2. Traditionally, you will have to sign in to integrate the external service
with your application in Azure:

Fig. 10.36 - Connecting to Office 365

3. When you click on the Sign in button, you will be able to provide the
credentials for your Office 365 account. Once the credentials are
provided and your account is connected, you will be able to configure
the feature:

Fig. 10.37 – Configuring the application

Of course, you are not limited to Outlook only—you can integrate other
Office 365 applications such as Forms, Excel, or OneDrive (see this link for a
services description: https://docs.microsoft.com/en-us/office365/servicedescriptions/
office-365-service-descriptions-technet-library). By selecting the desired Office
365 service and integrating it with an Azure logic app, you are making a
connection between those two cloud components. In this section, we selected
Outlook as the ingredient of the application so that we can easily introduce a
logic based on incoming email messages.

The integration is based on the credentials you provided, which means that if
you want to avoid connecting your account with Azure Logic Apps, you will
have to enter a username and a password for an artificial user account.
Depending on the service you selected, the way your logic app works will
differ slightly. In my case, when I get a message sent to my Outlook account,
this will be noticed and the flow of my application will start. This opens
multiple interesting possibilities:

I can initiate a process depending on the mail subject or content.
I can automatically delete or move an email.
I can approve something somebody is asking me in a message.

There are multiple options available that you can use:

https://docs.microsoft.com/en-us/office365/servicedescriptions/office-365-service-descriptions-technet-library

Fig. 10.38 – Available options for Outlook
Integrating Office 365 with logic apps may require additional permissions. If your
connection works but you cannot add any action to your application, make sure your
Azure AD account can manage email messages. See the following connector reference for
more information: https://docs.microsoft.com/en-us/connectors/outlook/.

In the Further reading section, you can find the details of the connector for
Office 365. Take a look at that article so that you can build better applications

https://docs.microsoft.com/en-us/connectors/outlook/

based on this particular logic apps connection. It will give you deeper insights
into the structure of the connector and the properties that it offers. Let's now
do the last exercise using Azure Logic Apps, where you will see how to
integrate with Azure SQL Server.

Integrating Azure SQL Server with
Azure Logic Apps
With Azure Logic Apps, you can very easily integrate with cloud-based SQL
Server instances, which gives you interesting integration options. You can
quickly build a solution that can access data stored inside the Structured
Query Language (SQL) tables and read it for further analysis, data
validation, or integration with other services. In this section, we will learn
how to connect to Azure SQL Server from your application so that you can
integrate with a database without the need to configure and manage it.

Note that this section focuses on integrating the Platform as a Service (PaaS) offering of
SQL Server in Azure, called Azure SQL Server. While the instructions can be still applied
to an on-premises version of this database, the primary goal is to integrate with the
managed version of it.

All we need now is an Azure Logic App instance.

Getting started with Azure Logic Apps

To get started, we will need two separate components:

An Azure Logic Apps instance
An Azure SQL database

To create a logic app instance, go to the marketplace and search for logic app:

Fig. 10.39 – Logic App in Azure Marketplace

You will have to enter all the required fields:

The name of your application
Location
Resource group
Subscription

Azure SQL can be created using the Azure CLI, using two commands—az sql

server create for SQL Server creation and az sql db create for creating a SQL
database:

$ az sql server create -g <rg-name> -n <server-name> -l westeurope -u <admin-username> -p <admin-password>

$ az sql db create -n c<db-name> -g <rg-name> -s <server-name>

Once those two services are created, we can start the integration process. To
integrate SQL Server with an Azure logic app, you will have to perform a
few simple steps, which are described here:

1. Click on the Create Blank Template button, as for now, we are not
interested in the default recipes:

Fig. 10.40 – Getting started with blank logic app

2. The next step is searching for the connector. On the next screen,
enter sql and click on SQL Server:

Fig. 10.41 – Searching for SQL Server

3. You will have to decide whether you need a trigger or an action.
Triggers allow you to react to an event, while an action works by
performing an operation and is often the result of a trigger. If this is the
very first step of your application, go to Triggers and select the one you
want:

Fig. 10.42 – Selecting a trigger

4. Provide the details of the connection, select the right SQL database, and
provide the credentials that should be used for this particular connection
with SQL Server:

Fig. 10.43 – Configuring the connection

5. Once the connection is created and validated, you can start developing
your application, starting with the SQL Server trigger:

Fig. 10.44 – Configuring the trigger

When the application is configured, it will be evaluated with the defined
interval (in my case, it was 3 minutes). This does not mean that the
application will be triggered—the flow of the application only starts if the
condition is satisfied (an item is created). By connecting your logic app with
Azure SQL Server, you are allowing the application to pool your database
and check whether a new record has been added.

This should not be implemented on tables that run on production and are used by other
applications.

If you want to monitor records, it's a better option to implement a way to
copy records from one table to another and only use the secondary ones for
your administration tasks. Thanks to this approach, you are not affecting the
performance of a single table by less important operations and can extract
only the columns you are interested in.

In the Further reading section, you will find extra articles on the topic we
have just described. An especially interesting one defines the approach to
implement a bulk data transfer with Azure Logic Apps. If you are searching
for a simple solution for transferring the data, this may be something you are
looking for. Please proceed to the next exercise, where we will discuss ways
to manage updates for VMs in Azure.

Managing updates for VMs
The topic of update management is really important for every IT
administrator. Failed updates may seriously affect the workloads you are
working on by affecting the performance of machines or causing operating
system crashes. Automatic updates are not something you are aiming for in
each and every situation, and proper update monitoring is really difficult to
achieve.

Getting started with the Update Management
feature

In this section, we will see the Update Management feature that helps in
controlling updates and controlling the compliance of VMs. To get started,
you will need a working VM. If you do not have one, you can quickly deploy
one. To do so, use the following Azure CLI command:

az vm create

The same functionality is available via a PowerShell cmdlet:

New-AzureRmVM

Remember to pass all the required parameters and enter the expected VM
size, then wait a few minutes for the process to complete. If you want, you
can also use the Azure portal and create a VM using the step-by-step wizard:

Fig. 10.45 – Creating a VM

Once your VM is created, search for it in the Azure portal and open the main
screen so that you can proceed with the instruction. Now, let's walk through
the following instructions to learn how to manage updates on VMs:

1. Update management for Azure VMs is done via the Update
management blade:

Fig. 10.46 – Update management blade

By default, this feature is not enabled on VMs as it requires a Log
Analytics workspace to work with.

2. To enable it, select the Enable for this VM option and click on
the Enable button:

Fig. 10.47 – Enabling Update Management for a VM
If you have a workspace created (as well as an Automation account), you do not have to
create them in this step. Instead, select the instances you want to connect with the Update
Management feature.

The process of enabling the feature on a machine can take several
minutes, so be patient. Once the feature is deployed, it should look
more or less like this:

Fig. 10.48 – Updates view

3. To create a new deployment of updates, click on the Schedule update
deployment button. This will take you to the following screen:

Fig. 10.49 – Configuring a deployment

4. From this screen, you will be able to configure the following features:
Which updates should be included (both in terms of their identifiers
and classification)
What is the schedule
How long the maintenance should last

5. Click on the Create button after the deployment is configured.

Once the deployment is scheduled, the Update Management feature will try
to ensure that your machine is compliant with the requirements and that it is
not missing any security fixes and new functionalities. The Update
Management feature is an optional feature that you may enable. In this
example, we enabled it for a single VM so that we can track how updates are
introduced to it.

Enabling the feature for multiple machines

The previous step described involved defining a single deployment of
changes. With that approach, we were able to configure how changes are
introduced and decide what is important for us. While in that example we
considered only a single machine, update management can also work with
multiple machines at once. This can be achieved via your Automation
account in the Update management blade:

Fig. 10.50 – + Add Azure VMs button

In the preceding screenshot, you can see the + Add Azure VMs button, which
is a quick way to configure more than a single VM to be covered by the
Update Management feature.

In the Further reading section, you will find an article that describes this
particular feature in detail. If you seek to know how update management
works in terms of different operating systems, more advanced scenarios, and
ensuring compliance, it's not to be missed. The last exercise from this book
will guide you through tracking changes in VMs.

Tracking changes in VMs
When managing VMs, it is important to know what was changed, and when.
If you are leveraging an immutable infrastructure and never perform changes
manually (instead, you are using Automation scripts and custom VM
images), you may already have a solution for tracking changes that suits your
needs. However, there are still cases where the process you are working in
does not guarantee the right management of changes, and it is hard to audit
them.

In this section, we will discuss the Change tracking feature and see how it
works for our purpose. To get started, you will need a VM with which you
can work. If you do not have one, take a look at the previous sections from
this chapter, where the process is discussed in detail.

Continuing our discussion forward, let's track changes in a VM with the help
of the following instructions:

1. To enable the Change tracking feature, go to your VM and find
the Change tracking blade:

Fig. 10.51 – Change tracking blade

2. The screen that you see here allows you to configure the Log Analytics
workspace and Automation account that steer the feature:

Fig. 10.52 – Enabling the feature
In the preceding example, my machine had already been linked to Log Analytics. In your
case, you will be able to either select a workspace or create a new one.

3. The deployment of the feature may take a while, so be patient. Once the
feature has been deployed, you will see no changes noticed by it:

Fig. 10.53 – Update tracking view

Note that it watches the following things on your machine:

Events related to it
File modifications
Registry changes
Software installations
Windows services operations

4. If you click on the Edit Settings button, you will be able to configure
each of the filters in detail:

Fig. 10.54 – Configuring the feature
By default, the Change tracking feature does not monitor all the recommended things. To
make it work, ensure that it is configured by you and that it covers all the factors you
want to monitor.

Using the Change tracking feature is similar to the usage of update
management, described in the previous section. It also uses the Log Analytics
workspace so that everything is automated and integrated with each other in a
seamless way.

In this exercise, we have discovered possibilities for changes and
modifications that may be tracked (such as new values of registry entries).
The important thing here is remembering that everything is disabled by
default—you have to mark things that you want to monitor. Change tracking
can be very easily configured by adding the registry keys or files you want to
monitor:

Fig. 10.55 – Adding a file for tracking

Make sure you have configured it properly (by adding all the files to monitor
or enabling monitoring of particular registry entries). In the Further
reading section, you will find extra information on this topic—including
limitations of the feature and known issues—that may help you troubleshoot
this functionality.

Summary
This was the last chapter of this book. We covered aspects connected to other
parts of it, but with a focus on automating your actions and duties. You
learned about things such as tracking changes of VMs and keeping them
running only during working hours. We also extended your knowledge

regarding Azure Logic Apps, which is a common tool of many Azure
administrators. I hope that the book helped you in getting started with Azure
and that it pointed to all the places you can go to keep building your skills in
relation to the Azure cloud.

Further reading
Starting/stopping Azure VMs during off-hours:

Start/Stop VMs during off-hours: https://docs.microsoft.com/en-us/azure/auto
mation/automation-solution-vm-management

Monitoring Blob storage with Azure Event Grid:

Event delivery monitoring: https://docs.microsoft.com/en-us/azure/event-grid/
monitor-event-delivery

Dead letter and retry policies: https://docs.microsoft.com/en-us/azure/event-gr
id/manage-event-delivery

Event Grid scenarios: https://docs.microsoft.com/en-us/dotnet/standard/serverl
ess-architecture/event-grid

Monitoring ACR with Azure Event Grid:

Azure Event Grid—security and authentication: https://docs.microsoft.com/
en-us/azure/event-grid/security-authentication

Integrating Office 365 with Azure Logic Apps:

Office 365 connector details: https://docs.microsoft.com/en-us/connectors/offi
ce365connector/

Integrating Azure SQL Server with Azure Logic Apps:

Managing Azure SQL logins: https://docs.microsoft.com/en-us/azure/sql-data
base/sql-database-manage-logins

Bulk data transfer with logic apps: https://social.technet.microsoft.com/wiki/

https://docs.microsoft.com/en-us/azure/automation/automation-solution-vm-management
https://docs.microsoft.com/en-us/azure/event-grid/monitor-event-delivery
https://docs.microsoft.com/en-us/azure/event-grid/manage-event-delivery
https://docs.microsoft.com/en-us/dotnet/standard/serverless-architecture/event-grid
https://docs.microsoft.com/en-us/azure/event-grid/security-authentication
https://docs.microsoft.com/en-us/connectors/office365connector/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-manage-logins
https://social.technet.microsoft.com/wiki/contents/articles/40060.sql-pagination-for-bulk-data-transfer-with-logic-apps.aspx

contents/articles/40060.sql-pagination-for-bulk-data-transfer-with-logic-apps.asp

x

Managing updates for VMs:

Update Management feature description: https://docs.microsoft.com/en-us/az
ure/automation/automation-update-management

Tracking changes in VMs:

Change tracking description: https://docs.microsoft.com/en-us/azure/automatio
n/change-tracking

https://docs.microsoft.com/en-us/azure/automation/automation-update-management
https://docs.microsoft.com/en-us/azure/automation/change-tracking

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Hands-On Data Science and Python Machine Learning
Frank Kane

ISBN: 978-1-78728-074-8

Learn how to clean your data and ready it for analysis
Implement the popular clustering and regression methods in Python
Train efficient machine learning models using decision trees and random
forests
Visualize the results of your analysis using Python's Matplotlib library
Use Apache Spark's MLlib package to perform machine learning on
large datasets

Kali Linux Cookbook - Second Edition
Corey P. Schultz, Bob Perciaccante

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-and-python-machine-learning
https://www.packtpub.com/networking-and-servers/kali-linux-cookbook-second-edition

ISBN: 978-1-78439-030-3

Acquire the key skills of ethical hacking to perform penetration testing
Learn how to perform network reconnaissance
Discover vulnerabilities in hosts
Attack vulnerabilities to take control of workstations and servers
Understand password cracking to bypass security
Learn how to hack into wireless networks
Attack web and database servers to exfiltrate data
Obfuscate your command and control connections to avoid firewall and
IPS detection

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital so
that other potential readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers think about our
products, and our authors can see your feedback on the title that they have
worked with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Learn Azure Administration

	Dedication
	About Packt
	Why subscribe?

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Code in Action
	Download the color images
	Conventions used
	Get in touch
	Reviews

	Section 1: Understanding the Basics
	Getting Started with Azure Subscriptions
	Technical requirements
	Getting an Azure subscription
	PAYG
	CSP
	Enterprise Agreement
	Understanding different subscription models
	Implementing subscription policies
	Getting started with Azure Policy
	Policy validation results
	Examples of Azure policies
	Using Azure Blueprints for repeatable deploy and update operations
	Getting started with Blueprint assignment
	Assigning an Azure blueprint
	Checking usage and managing quotas
	Cost monitoring and analysis
	Cost analysis
	Budgets
	Azure Advisor
	Implementing management automation
	Summary
	Further reading

	Managing Azure Resources
	Technical requirements
	Managing resource providers
	Managing resource groups
	Browsing resource groups
	Listing the available resources
	Moving resources
	Understanding resource providers
	Performing deployments using ARM with templates
	Writing a template from scratch
	Automation scripts
	Other tools
	Implementing resource locks
	Subscription locks
	Resource group locks
	Automating resource group management with Azure Event Grid
	Creating an event subscription
	Analyzing the gathered data
	Implementing proper resource naming conventions
	Subscription
	Resource group
	Resources
	Summary

	Configuring and Managing Virtual Networks
	Technical requirements
	Creating and configuring VNet peering
	The Azure portal
	The Azure CLI
	Creating and configuring VNet-to-VNet connection
	Single region
	Multiple regions
	Connecting the networks
	The same resource group
	Different resource groups
	Creating and configuring subnets
	Creating a VNet
	Creating a subnet
	Understanding subnet configuration
	Securing critical Azure services with service endpoints
	Creating a VNet and Azure Storage account
	Creating a service endpoint
	Configuring a service endpoint
	Configuring a naming resolutions
	Creating a DNS zone
	Configuring the DNS within a VNet
	Creating and configuring network security groups (NSGs)
	Creating a VNet with a subnet
	Adding an NSG to a subnet
	Reviewing NSG rules
	Adding an NSG rule
	Summary

	Section 2: Identity and Access Management
	Identity Management
	Technical requirements
	Creating users in Azure AD
	Getting started with user creation
	Creating a user in an Azure Active Directory tenant
	Creating a guest user
	Describing the user creation process
	Assigning a role to a user
	Registering an application in Azure AD
	Creating a new application
	Creating groups
	Group creation
	Managing groups
	Managing directory roles
	Monitoring and auditing users
	Enabling MFA authentication
	Securing an Azure Service Fabric cluster
	Summary

	Access Management
	Technical requirements
	Creating a custom role
	Configuring access to Azure resources
	Configuring MSI
	Securing Azure App Services
	Using and revoking Shared Access Policies
	Creating and managing Shared Access Policies
	Generating SAS tokens for different services
	Summary

	Managing Virtual Machines
	Technical requirements
	Adding data disks
	Creating a data disk
	Adding network interfaces
	Using Desired State Configuration
	Scaling VMs up/out
	Scaling caveats
	Configuring monitoring
	Configuring guest-level monitoring
	Extending monitoring capabilities
	Enabling connection monitor
	Configuring high availability
	Deploying VMs
	Browsing the solutions
	Deploying resources using various tools
	Securing access to VMs
	Connecting to a VM
	Connecting to a VM
	Using RDP and SSH to connect
	Summary

	Section 3: Advanced Topics
	Advanced Networking
	Technical requirements
	Implementing load balancing
	Monitoring and diagnosing networks
	IP flow verify
	Next hop
	Effective security rules
	VPN troubleshoot, Packet capture, and Connection troubleshoot
	Configuring DDoS protection
	Enabling VNets in AKS
	Enabling VNets for ACI
	Enabling VNets in Redis Cache
	Summary

	Implementing Storage and Backup
	Technical requirements
	Configuring network access for Azure Storage accounts
	Enabling monitoring and finding logs for Azure Storage accounts
	Managing the replication of Azure Storage accounts
	Selecting the replication mode
	Setting up Azure file shares
	Transferring large datasets with low or no network bandwidth
	Understanding your case – low or no bandwidth
	Transferring data from on-premises to Azure
	Transferring large datasets with medium or high network bandwidth
	Understanding your case – medium or high bandwidth
	The available options
	Exploring periodic data transfer
	Enabling security for Azure Storage
	Summary

	High Availability and Disaster Recovery Scenarios
	Technical requirements
	Monitoring Azure VMs
	Creating a VM
	Enabling monitoring
	Understanding the details
	Monitoring Azure Storage services
	Monitoring Azure App Service
	Exploring capabilities of Azure Application Insights
	Implementing Azure SQL backup
	Creating our SQL server and database
	Backing up your databases
	Implementing Azure Storage backup
	Backing up your storage account data
	Implementing Availability Zones for VMs and HA
	Availability Sets versus Availability Zones
	Implementing AZs
	Understanding how AZs work
	Monitoring and managing global routing for web traffic with Azure Front Door
	Understanding Azure Front Door
	Creating an Azure Front Door instance
	Designing backup plans for VMs
	Summary
	Further reading

	Automating Administration in Azure
	Technical requirements
	Starting/stopping Azure VMs during off-hours
	Getting started with a VM
	Creating an Automation account
	Monitoring Blob storage with Azure Event Grid
	Extending your setup
	Monitoring ACR with Azure Event Grid
	Integrating ACR with Azure Event Grid
	Integrating FTP/SFTP servers with Azure Logic Apps
	Creating an Azure Logic App instance
	Understanding the setup
	Integrating Office 365 with Azure Logic Apps
	Integrating Azure SQL Server with Azure Logic Apps
	Getting started with Azure Logic Apps
	Managing updates for VMs
	Getting started with the Update Management feature
	Enabling the feature for multiple machines
	Tracking changes in VMs
	Summary
	Further reading

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

