
 COMPANION eBOOK

US $39.99

Shelve in
Mobile Computing

User level:
Beginning-Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Learn iOS 7 App Development is both a rapid tutorial and a useful reference. You’ll
quickly get up to speed with Objective-C, Cocoa Touch, and the iOS 7 SDK. It’s an

all-in-one getting started guide to building your first iPhone or iPad app. You’ll learn best
practices that ensure your code will be efficient and perform well, earning positive reviews
on the iTunes App Store, and driving better search results and more revenue.

The iOS 7 SDK offers powerful new features, and this book is the fastest path to mastering
them—and the rest of the iOS SDK—for programmers with some experience who are
new to iPhone and iPad app development. Many books introduce the iOS SDK, but
few explain how to develop apps optimally and soundly. This book teaches both core
Objective-C language concepts and how to exploit design patterns and logic with the iOS
SDK, based on Objective-C and the Cocoa Touch framework.

Why spend months or years discovering the best ways to design and code iPhone and
iPad apps when this book will show you how to do things the right way from the start?

Learn how to create apps for any model of iPhone, the iPod Touch, the iPad, or build univer-
sal apps that run on all of them. After reading this book, you’ll be creating professional qual-
ity apps, ready to upload to the app store, making you the prestige and the money you seek!

You’ll Learn How To:

• Develop simple to moderately complex iOS apps

• Add sound and iPod music playback, the camera, and photos to your app

• Connect your app to the world through internet services, peer-to-peer
networking, social networking, and cloud synchronization

• Plug into the latest mobile technologies: maps, GPS, accelerometer,
gyroscope, and compass

• Polish your apps with elegant animation and effortless navigation

• Improve your app’s quality with core design patterns and best
programming practices

Learn

iOS 7 App
Development

James Bucanek

Learn everything you need to know to program
iPhone and iPad Apps

Companion
eBook
Available

Bucanek
LearniOS 7 App Developm

ent
SOURCE CODE ONLINE

2506237814309

ISBN 978-1-4302-5062-3
53999

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� xxv

About the Technical Reviewer �� xxvii

Acknowledgments ��� xxix

Introduction ��� xxxi

Chapter 1: Got Tools? ■ ���1

Chapter 2: Boom! App ■ ���17

Chapter 3: Spin a Web ■ ���57

Chapter 4: Coming Events ■ ���97

Chapter 5: Table Manners ■ ��137

Chapter 6: Object Lesson ■ ���177

Chapter 7: Smile! ■ ���189

Chapter 8: Model Citizen ■ ���217

Chapter 9: Sweet, Sweet Music ■ ���255

Chapter 10: Got Views? ■ ���291

Chapter 11: Draw Me a Picture ■ ���321

Chapter 12: There and Back Again ■ ��367

Chapter 13: Networking, the Social Kind ■ ���411

www.allitebooks.com

http://www.allitebooks.org

vi Contents at a Glance

Chapter 14: Networking, The Nerdy Kind ■ ��429

Chapter 15: If You Build It ��� ■ ��485

Chapter 16: Apps with Attitude ■ ���507

Chapter 17: Where Are You? ■ ��529

Chapter 18: Remember Me? ■ ��551

Chapter 19: Doc, You Meant Storage ■ ���581

Chapter 20: Being Objective ■ ��617

Chapter 21: The Elephant in the Room ■ ��653

Chapter 22: Êtes-vous Polyglotte? ■ ��671

Chapter 23: Faster, Faster ■ ���691

Chapter 24: Twice As Nice ■ ���713

Index ���735

www.allitebooks.com

http://www.allitebooks.org

xxxi

Introduction

I’m standing on a street corner in San Francisco, a city I visit far too infrequently. In my hand I hold
an electronic device. The device is receiving status updates about the city’s public transportation
system in real-time. It is telling me that the F-line rail will arrive at the Market & 5th Street station
in 7 minutes. It displays a map of the city and, by timing radio waves it receives from outer space,
triangulates and displays my exact location on that map. A magnetometer determines which
direction I’m holding the device and uses that information to indicate the direction I should walk to
meet the rail car in time to board it. My friends call me, wondering when I will arrive. A tiny video
camera and microphone share my image and voice with them as I walk. I’m meeting them at a
gallery opening. It’s an exhibition of new artwork, by artists from all over the world, created entirely
using devices similar to the one I hold in my hand. When I arrive, I use my device to create an
interactive virtual reality of the gathering, share my experiences with friends and family back home,
exchange contact information with people I meet, and look up restaurant suggestions for where we
might eat later.

This is a true story. A couple of decades ago, it would have been science fiction.

We live in a time in which personal electronics are literally changing how we work, travel, communicate,
and experience the world. A day doesn’t go by without someone discovering another novel use for
them. And while I’m sure you enjoy benefiting from this new technology, you’re reading this book
because you want to participate in this revolution. You want to create apps.

You’ve come to the right place.

Who is This Book For?
This book is for anyone who wants to learn the basic tools and techniques for creating exciting,
dynamic, applications for Apple products that run the iOS operating system. As of this writing, that
includes the iPad, iPhone, and iPod Touch.

This book assumes you are new to developing iOS apps and that you have limited programming
experience. If you’ve been learning Objective-C, that’s perfect. If you know C, Java, C#, or C++ you
shouldn’t have too much trouble following along, and there’s an Objective-C primer chapter that
you’ll want to read. If you are completely new to programming computers, I suggest getting a basic

www.allitebooks.com

http://www.allitebooks.org

xxxii Introduction

Objective-C programming book—say, Objective-C for Absolute Beginners, by Gary Bennett, Mitchell
Fisher, and Brad Lees—and read that first, or in parallel. All iOS app development is done using the
Objective-C language.

This book will explain the fundamentals of how iOS apps are designed, built, and deployed. You’ll
pick up some good design habits, get some core programming skills, and learn your way around the
development tools used to create apps.

This book is not an in-depth treatise on any one technology. It’s designed to stimulate your
imagination by giving you a head start in building apps that use a variety of device capabilities,
such as finding your location on a map, using the accelerometer, taking pictures with the built-in
camera, communicating in real-time with other devices, participating in social networks, and storing
information in the cloud. From there, you can leap beyond these examples to create the next great
iOS app!

Old School vs� Too Cool for School
I’m an Old School programmer. I learned programming from the bit up (literally). The first program
I wrote was on a 4-bit micro-controller using toggle switches to input the machine instructions.
So I pretty much knew everything there was to know about machine code before I started to
program in “high-level” languages like BASIC and C. I knew C backwards and forwards before
I dipped my toe into C++, and I was an expert in C++ before I wrote my first graphical user interface
(GUI) application for the (revolutionary) Macintosh computer.

While I value this accumulated knowledge, and much of it is still useful, I realize that a “ground up”
approach isn’t necessary to develop great apps for iOS today. Many of the advances in software
development over the past few decades have been in insulating the developer—that’s you—from the
nitty-gritty details of CPU instructions, hardware interfaces, and software design. This frees you to
concentrate on harnessing these technologies to turn your idea into reality, rather than spending all
of your time worrying about register allocations and memory management.

So the exciting news is that you can jump right in and create full-featured iOS apps with only
a minimal knowledge of computer programming or the underlying technologies that make them
possible. And that’s what this book is going to do in the first couple of chapters—show you how to
create an iOS app without any traditional programming whatsoever.

That’s not to say you don’t need these skills in order to master iOS development. On the contrary;
the more skilled you are in programming, the more proficient you’re going to be. What’s changed
is that these skills aren’t the prerequisites that they once were. Now, you can learn them in parallel
while you explore new avenues of iOS development.

How to Use this Book
This book embraces an “explore as go” approach. Some chapters will walk you through the process
of creating an iOS app that uses the camera or plays music. These chapters may gloss over many
of the finer details. In between, you’ll find chapters on basic software development skills. There
are chapters on good software design, memory management, and the Objective C programming
language.

www.allitebooks.com

http://www.allitebooks.org

xxxiiiIntroduction

So instead of the “traditional” order of first learning all of the basic skills and then building apps
using those skills, this book starts out building apps, and then explores the details of how that
happened.

You can read the chapters in any order, skipping or returning to chapters, as you need. If you really
want to know more about objects in an earlier chapter, jump ahead and read the chapter on objects.
If you’ve already learned about Objective-C memory management, skip that chapter when you get
to it. Treat this book as a collection of skills to learn, not a series of lessons that have to be taken in
order.

Here’s a preview of the chapters ahead:

Got Tools?nn shows you how to download and install the Xcode development
tools. You’ll need those.

Boom! Appnn will walk you through the core steps in creating an iOS app—no
programming needed.

Spin a Webnn creates an app that leverages the power of iOS’s built-in web
browser.

Coming Eventsnn discusses how events (touches, gestures, movement) get from
the device into your app, and how you use them to make your app respond to
the user.

Table Mannersnn shows you how data gets displayed in an app, and how it gets
edited.

Object Lessonnn dishes the straight dope on objects and object oriented
programming.

Smile!nn shows you how to integrate the camera and photo library into your app.

Model Citizennn explains the magic incantation that software engineers call
“Model-View-Controller.”

Sweet, Sweet Musicnn will jazz up your mix by showing you how to add music
and iTunes to your apps.

Got Tools?nn takes you on a brief survey of the tools (views, controls, and objects)
available in the Cocoa Touch framework. So when you need a tool, you’ll know
how to find it.

Draw Me a Picturenn will show you how to create custom views, unlocking the
power to draw just about anything in an iOS app.

There and Back Againnn lays out the basics of app navigation: how your users
get from one screen to another, and back again.

Networking, the Social Kindnn will get your app plugged into Facebook, Twitter,
email, and more.

Networking, the Nerdy Kindnn demonstrates real-time communications between
multiple iOS devices using Game Kit.

If You Build It...nn explains some of the magic behind Interface Builder.

www.allitebooks.com

http://www.allitebooks.org

xxxiv Introduction

Apps With Attitudenn shakes up your apps with the accelerometer and
compass.

Where Are You?nn will draw you a map—literally.

Remember Me?nn shows you how user preferences are set and saved,
and how to share them with other iOS devices using iCloud.

Doc, You Meant Storagenn explains how app documents are stored,
exchanged, and synchronized.

Being Objectivenn is a crash course in the Objective C programming
language.

The Elephant in the Roomnn explores the technology, techniques, and traps
of memory management.

Êtes-vous polyglotte?nn will show you how to create apps that speak
multiple languages.

Faster, Faster!nn will explain the basics of performance analysis and
optimization, so your apps will run like bunnies.

Twice as Nicenn will up your game with multi-tasking, showing your how your
app can do two, or three, or four things at the same time.

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Got Tools?

If you want to build something, you are probably going to need some tools: hammer, nails, laser,
crane, and one of those IKEA hex wrenches. Building iOS apps requires a collection of tools
called Xcode.

This chapter will show you how to get and install Xcode, and give you a brief tour of it, so you’ll
know your way around. If you’ve already installed and used Xcode, check the Requirements section
to make sure you have everything you need, but you can probably skip most of this chapter.

Requirements
In this book, you will create apps that run on iOS version 7. Creating an app for iOS 7 requires Xcode
version 5. Xcode 5 requires OS X version 10.8 (a.k.a. Mountain Lion), which requires an Intel-based
Mac. Did you get all of that? Here’s your complete checklist:

Intel-based Mac	

OS X 10.8 (or later)	

A few gigabytes of free disk space	

An Internet connection	

At least one iOS device (iPad Touch, iPhone, or iPad) running iOS 7.0 (or later)	

Make sure you have an Intel-based Mac computer with OS X 10.8 (Mountain Lion), or later, installed,
enough disk space, and an Internet connection. You can do all of your initial app development right
on your Mac, but at some point you’ll want to run your apps on a real iOS device (iPhone, iPod
Touch, or iPad), and for that you’ll need one.

www.allitebooks.com

http://www.allitebooks.org

2 CHAPTER 1: Got Tools?

Installing Xcode
Apple has made installing Xcode as easy as possible. On your Mac, launch the App Store
application and search for Xcode, as shown in Figure 1-1.

Figure 1-1. Xcode in the App Store

Note As a general rule, later versions are better. The examples in this book were developed for iOS 7.0,
built using Xcode 5.0, running on OS X 10.8.5 (Mountain Lion). By the time you read this there will probably
be a newer version of all of these, and that’s OK.

Click the install button to start downloading Xcode. This will take a while (see Figure 1-2). You can
monitor its progress from the Purchases tab of the App Store. Be patient. Xcode is huge and, even
with a fast Internet connection, it will take some time to download.

www.allitebooks.com

http://www.allitebooks.org

3CHAPTER 1: Got Tools?

While Xcode is downloading, let’s talk about it and some related topics.

What is Xcode?
So what is this huge application you’re downloading?

Xcode is an Integrated Development Environment (IDE). Modern software development requires a
dizzying number of different programs. To build and test an iOS app you’re going to need editors,
compilers, linkers, syntax checkers, cryptographic signers, resource compilers, debuggers, simulators,
performance analyzers, and more. But you don’t have to worry about that; Xcode orchestrates all of
those individual tools for you. All you have to do is use the Xcode interface to design your app, and
Xcode will decide what tools need to be run, and when. In other words, Xcode puts the “I” in IDE.

As well as including all of the tools you’ll need, Xcode can host a number of Software Development
Kits (SDKs). An SDK is a collection of files that supply Xcode with what it needs to build an app for
a particular operating system, like iOS 7. Xcode downloads with an SDK to build iOS apps and an
SDK to build OS X apps, for the most recent versions of each. You can download additional SDKs
as needed.

An SDK will consist of one or more frameworks. A framework tells Xcode exactly how your
application can use an iOS service. This is called an Application Programming Interface (API). While
it’s possible to write code in your app to do just about anything, much of what it will be doing is
making requests to iOS to do things that have already been written for you: display an alert, look up
a word in the dictionary, take a picture, play a song, and so on. Most of this book will be showing
you how to request those built-in services.

Figure 1-2. Downloading Xcode

Note A framework is a bundle of files in a folder, much like the app bundles you’ll be creating in this book.
Instead of containing an app, however, a framework contains the files your app needs to use a particular
segment of the operating system. For example, all of the functions, constants, classes, and resources needed
to draw things on the screen are in the Core Graphics framework. The AVFoundation framework contains
classes that let you record and playback audio. Want to know where you are? You’ll need the functions in the
CoreLocation framework. There are scores of these individual frameworks.

4 CHAPTER 1: Got Tools?

Wow, that’s a lot of acronyms! Let’s review them:

IDE: Integrated Development Environment. Xcode is an IDE.	

SDK: Software Development Kit. The supporting files that let you build an app 	
for a particular operating system, like iOS 7.

API: Application Programming Interface. A published set of functions, classes, 	
and definitions that describe how your app can use a particular service.

You don’t need to memorize these. It’s just good to know what they mean when you hear them,
or talk to other programmers.

Becoming an iOS Developer
The fact that you’re reading this book makes you an iOS developer—at least in spirit. To become an
official iOS developer, you need to join Apple’s iOS Developer program.

You must be an iOS Developer if you want to do any of the following:

Sell, or give away, your apps through Apple’s App Store.	

Gain access to Apple’s Developer Forums and other resources.	

Give your apps to people directly (outside of the App Store).	

Develop apps that use Game Kit, in-app purchases, push notifications, or similar 	
technologies.

Test your apps on a real iOS device.	

The first reason is the one that prompts most developers to join the program, and is probably the
reason you’ll join. You don’t, however, have to join to build, test, and run your apps in Xcode’s
simulator. If you never plan to distribute your apps through the App Store, or run your app on an iOS
device, you may never need to become an iOS Developer. You can get through most of this book
without joining.

Another reason for joining is to gain access to the iOS Developer’s community and support
programs. Apple’s online forums contain a treasure trove of information. If you run into a problem
and can’t find the answer, there’s a good chance someone else has already bumped into the same
problem. A quick search of the Developer Forums will probably reveal an answer. If not, post your
question and someone might have an answer for you.

Even if you don’t plan to sell or give away your masterpiece on the App Store, there are a couple of
other reasons to join. If you want to install your app on a device, Apple requires that you become a
registered developer. Apple will then generate special files that will permit your app to be installed on
an iOS device.

As a registered developer, Apple will also allow you to install your apps on someone else’s device
directly (i.e., not through the App Store). This is called ad-hoc distribution. There are limits on the
number of people you can do this for, but it is possible.

5CHAPTER 1: Got Tools?

Finally, some technologies require your app to communicate with Apple’s servers. Before this is
allowed, you must register yourself and your app with Apple, even just to test them. For example,
if you plan to use Game Kit in your app—and this book includes a Game Kit example—you’ll need to
be an iOS Developer.

Bookmark this URL: http://developer.apple.com/

As I write this book, the cost of becoming an iOS Developer is $99(US). It’s an annual subscription,
so there’s no point in joining until you need to. Follow that link to find more information about Apple’s
developer programs.

So is there anything at developer.apple.com that’s free? There’s quite a lot, actually. You can search
through all of Apple’s published documentation, download example projects, read technology
guides, technical notes, and more—none of which require you to be an iOS Developer. Some
activities require you to log in with your AppleID (your iTunes or iCloud account will work), or you can
create a new AppleID.

Paid registration also gives you the opportunity to buy tickets to the World Wide Developers
Conference (WWDC) held by Apple each year. It’s a huge gathering, and it’s just for Apple developers.

Getting the Projects
Now would be a good time to download the project files for this book. There are numerous projects
used throughout this book. Many can be recreated by following the steps in each chapter, and I
encourage you to do that whenever possible so you’ll get a feel for building your apps from scratch.
There are, however, a number of projects that don’t explain every detail, and some projects include
binary resources (image and sound files) that can’t be reproduced in print.

Go to this book’s page at http://www.apress.com (you can search for it by name, ISBN, or the author’s
name). Below the book’s description, you’ll see some folder tabs, one of which is labeled Source
Code/Downloads. Click that tab. Now find the link that downloads the projects for this book. Click that
link and a file named Learn iOS Development Projects.zip will download to your hard drive.

Locate the file Learn iOS Development Projects.zip in your Downloads folder (or wherever your
browser saved it). Double-click the file to extract its contents, leaving you with a folder named
Learn iOS Development Projects. Move the folder wherever you like.

Launching Xcode the First Time
After the Xcode application downloads, you will find it in your Applications folder. Open the Xcode
application, by double-clicking it, using Launchpad, or however you like to launch apps. I recommend
adding Xcode to your Dock for easy access.

Xcode will present a licensing agreement (see Figure 1-3), which you are encouraged to at least skim
over, but must agree to before proceeding.

http://developer.apple.com/
http://developer.apple.com
http://www.apress.com/

6 CHAPTER 1: Got Tools?

Once you’ve gotten through all of the preliminaries, you’ll see Xcode’s startup window, as shown
in Figure 1-4.

Figure 1-4. Xcode’s Startup Window

Figure 1-3. License Agreement

7CHAPTER 1: Got Tools?

The startup window has several self-explanatory buttons to help you get started. It also lists the
projects you’ve recently opened.

The interesting parts of Xcode don’t reveal themselves unless you have a project open, so start by
creating a new project. Click on the Create a new Xcode project button in the startup window
(or choose File ➤ New ➤ Project . . . from the menu). The first thing Xcode will want to know is what
kind of project you want to create, as shown in Figure 1-5.

Figure 1-5. Project Template Browser

The template browser lets you select a project template. Each template creates a new project
pre-configured to build something specific (application, library, plug-in, and so on) for a particular
platform (iOS or OS X). While it’s possible to manually configure any project to produce whatever you
want, it’s both technical and tedious; save yourself a lot of work and try to choose a template that’s
as close to the final “shape” of your app as you can.

In this book, you’ll only be creating iOS apps, so choose the Application category under the iOS
section—but feel free to check out some of the other sections. As you can see, Xcode is useful for
much more than just iOS development.

With the Application section selected, click the Single View Application template, and then click
on the Next button. In the next screen, Xcode wants some details about your new project, as shown
in Figure 1-6. What options you see here will vary depending on what template you chose.

8 CHAPTER 1: Got Tools?

For this little demonstration, give your new project a name in the Product Name field. It can be
anything you want—I used MyFirstApp for this example—but I recommend you keep the name
simple. The Organization Name is optional, but I suggest you fill in your name (or the company
you’re working for, if you’re going to be developing apps for them).

The Company Identifier and Product Name, together, create a Bundle Identifier that uniquely
identifies your app. The Company Identifier is a reverse domain name, which you (or your company)
should own. It isn’t important right now, as you’ll only be building this app for yourself, so use any
domain name you like. When you build apps that you plan to distribute through the App Store, these
values will have to be legitimate.

The rest of the options don’t matter for this demonstration, so click the Next button. The last thing
Xcode will ask is where to store your new project (see Figure 1-7). Every project creates a project
folder, named after your project. All of the documents used to create your app will be stored in that
project folder. You can put your project folder anywhere (even on the Desktop). In this example, I’m
creating a new iOS Development folder so that I can keep all of my project folders together.

Figure 1-6. New project options

9CHAPTER 1: Got Tools?

Welcome To Xcode
With all of the details about your new project answered, click the Create button. Xcode will create
your project and open it in a workspace window. An exploded view of a workspace window is shown
in Figure 1-8. This is where the magic happens, and where you’ll be spending most of your time in
this book.

Figure 1-7. Creating a new project

Toolbar Editor

Navigator Debug Inspector Library

Figure 1-8. Xcode workspace window

10 CHAPTER 1: Got Tools?

A workspace window has five main parts:

Navigator area (left)	

Editor area (center)	

Utility area (right)	

Debug area (bottom)	

Toolbar (top)	

You can selectively hide everything except the editor area, so you may not see all of these parts.
Let’s take a brief tour of each one, so you’ll know your way around.

Navigation Area
The navigators live on the left side of your workspace window. There are eight navigators:

Project

Symbol

Find

Issue

Test

Debug

Breakpoint

Log

Switch navigators by clicking on the icons at the top of the pane, or from the View ➤ Navigator
submenu. You can hide the navigators using the View ➤ Navigator ➤ Hide Navigator command
(Command+0) or by clicking the left side of the View button in the toolbar (see Figure 1-9). This will
give you a little extra screen space for the editor.

Figure 1-9. Navigator view controls

11CHAPTER 1: Got Tools?

The project navigator (see Figure 1-8) is your home base, and the one you’ll use the most. Every
source file that’s part of your project is organized in the project navigator, and it’s how you select a
file to edit.

Note A source file is any original document used in the creation of your app. Most projects have multiple
source files. The term is used to distinguish them from intermediate files (transient files created during
construction) and product files (the files of your finished app). Your product files appear in a special
Products folder, at the bottom of the project navigator.

The symbol navigator keeps a running list of the symbols you’ve defined in your project. The search
navigator will find text in multiple files. The issues, debug, breakpoint, and log navigators come into
play when you’re ready to build and test your app.

Editor Area
The editor area is where you create your app—literally. Select a source file in the project navigator,
and it will appear in the editor area. What the editor looks like will depend on what kind of file it is.

Note Not all files are editable in Xcode. For example, image and sound files can’t be edited in Xcode, but
Xcode will display a preview of them in the editor area.

What you’ll be editing the most are program source files, which you edit like any text file (see Figure 1-8),
and Interface Builder files, which appear as graphs of objects (see Figure 1-11) that you connect and
configure.

The editor area has three modes:

Standard editor

Assistant editor

Version editor

The standard editor edits the selected file. The assistant editor splits the editor area and (typically)
loads a counterpart file on the right side. For example, when editing an Objective-C source file,
as shown in Figure 1-10, the assistant automatically loads its counterpart file—the header file that
contains the definitions for that file—on the right. When editing Interface Builder files, it may display
the Objective-C source file for the object that’s being edited, and so on.

12 CHAPTER 1: Got Tools?

Tip The assistant editor is very flexible and can be used to edit almost any second file you choose. If the
assistant editor stops automatically loading counterpart files in the right pane, choose Counterparts from
the ribbon above the right-hand pane to restore that functionality.

Figure 1-10. The assistant editor

The version editor is used to compare a source file with an earlier version. Xcode supports several
version control systems. You can “check-in” or take a “snapshot” of your project, and later compare
what you’ve written against an earlier version of the same file. We won’t get into version control in
this book. If you’re interested, read the section Save and Revert Changes to Projects in the Xcode
Users Guide.

To change editor modes, click the Editor control in the toolbar or use the commands in the View
menu. You can’t hide the editor area.

Utility Area
On the right side of your workspace window is the utility area. As the name suggests, it hosts a
variety of useful tools, as shown in Figure 1-11.

www.allitebooks.com

http://www.allitebooks.org

13CHAPTER 1: Got Tools?

At the top of the utilities area are the inspectors. These will change depending on what kind of file is
being edited, and what you have selected. As with the navigators, you can switch between different
inspectors by clicking on the icons at the top of the pane, or from the View ➤ Utilities submenu
(see Figure 1-12). You can hide the utility area using the View ➤ Utilities ➤ Hide Utilities command,
or by clicking on the right side of the View control in the toolbar (see Figure 1-12).

Figure 1-12. Utility view controls

Figure 1-11. Editing an Interface Builder file

At the bottom of the utility area is the library. Here you’ll find ready-made objects, resources, and
code snippets that you can drag into your project.

14 CHAPTER 1: Got Tools?

Debug Area
The debug area is used to test your app and work out any kinks. It usually doesn’t appear until you run
your app. To make it appear, or disappear, use the View ➤ Debug Area ➤ Show/Hide Debug Area
command. You can also click on the close drawer icon in the upper-left corner of the debug pane.

Toolbar
The toolbar contains a number of useful shortcuts and some status information, as shown
in Figure 1-13.

Figure 1-13. Workspace window toolbar

You’ve already seen the Editor and View buttons on the right. On the left are buttons to run (test)
and stop your app. You will use these buttons to start and stop your app during development.

Next to the Run and Stop buttons is the Scheme control. This multi-part pop-up menu lets you
select how your project will be built (called a scheme) and your app’s destination (a simulator, an
actual device, the App Store, and so on).

In the middle of the toolbar is your project’s status. It will display what activities are currently
happening, or have recently finished, such as building, indexing, and so on. If you’ve just installed
Xcode, it is probably downloading additional documentation in the background, and the status will
indicate that.

You can hide the toolbar, if you want, using the View ➤ Show/Hide Toolbar command. All of the
buttons and controls in the toolbar are just shortcuts to menu commands, so it’s possible to live
without it. This book, however, will assume that it’s visible.

If you’re interested in learning more about the workspace window, the navigators, editor, and
inspectors, you will find all of that (and more) in the Xcode Overview, under the Help menu.

Running Your First App
With your workspace window open, click on the Scheme control and choose one of the iPhone
choices from the submenu, as shown in Figure 1-14. This tells Xcode where you want this app to run
when you click the Run button.

15CHAPTER 1: Got Tools?

Click the Run button. OK, there’s probably one more formality to attend to. Before you can test an
application, Xcode needs to be granted some special privileges. The first time you try to run an app,
Xcode will ask if this is OK (see Figure 1-15). Click Enable and supply your account name
and password.

Figure 1-14. Choosing the scheme and target

Figure 1-15. Enabling developer mode

Once you’re past the preliminaries, Xcode will assemble your app from all of the parts in your
project—a process known as a build—and then run your app using its built-in iPhone simulator,
as shown on the left in Figure 1-16.

16 CHAPTER 1: Got Tools?

The simulator is just what it sounds like. It’s a program that pretends—as closely as possible—to be
a real iPhone, iPad, or iPod Touch. The simulator lets you do much of your iOS app testing right on
your Mac, without ever having to load your app into a real iOS device. It also allows you to test your
app on different kinds of devices, so you don’t have to go buy one of each.

Congratulations, you just created, built, and ran an iOS app on a (simulated) iPhone! This works
because Xcode project templates always create a runnable project; what’s missing is the functionality
that makes your app do something wonderful. That’s what the rest of this book is about.

While you’re here, feel free to play around with the iPhone simulator. Although the app you created
doesn’t have any functionality—beyond that of a lame “flashlight” app—you’ll notice that you can
simulate pressing the home button using the Hardware ➤ Home command and return to the
springboard (the middle and right in Figure 1-16). There you’ll find your app, the Settings app, Game
Center, and more, just as if this were a real iPhone. Sorry, it won’t make telephone calls.

When you’re finished, switch back to the workspace window and click on the Stop button in
the toolbar.

Summary
You now have all of the tools you need to develop and run iOS apps. You’ve learned a little about
how Xcode is organized, and how to run your app in the simulator.

The next step is to add some content to your app.

Figure 1-16. The iPhone simulator

17

Chapter 2
Boom! App

In this chapter you’re going to create an iOS app that does something. Not much—these are early
days—but enough to call it useful. In the process, you will:

Use Xcode’s Interface Builder to design your app	

Add objects to your app	

Connect objects together	

Customize your objects to provide content	

Add resource files to your project	

Use storyboards to create segues	

Control the layout of visual elements using constraints	

Amazingly, you’re going to create this app without writing a single line of computer code. This is not
typical, but it will demonstrate the flexibility of Xcode.

The app you’re going to create presents some interesting facts about women surrealists of the
twentieth century. Let’s get started.

Design
Before firing up Xcode and typing furiously, you need to have a plan. This is the design phase of
app development. Over the lifetime of your app, you may revise your design several times as you
improve it, but before you begin you need a basic idea of what your app will look like and how you
want it to work.

Your design may be written out formally, sketched on a napkin, or just be in your head. It doesn’t
matter, as long as you have one. You need to, at the very least, be able to answer some basic
questions. What kinds of devices will your app run on (iPhone/iPod, iPad, or both)? Will your app run
in portrait mode, sideways, or both? What will the user see? How will the user navigate? How will
they interact with it?

18 CHAPTER 2: Boom! App

A rough sketch of this app is shown in Figure 2-1. The app is very simple, so it doesn’t require much
in the way of initial design. The surrealist app will have an opening screen containing portraits of
famous women surrealists. Tapping one will transition to a second screen showing a representative
painting and a scrollable text field with information about the artist’s life. You’ve decided this is going
to run only on an iPhone or iPod Touch, and only in Portrait orientation. This will simplify your design
and development.

Figure 2-1. Sketch of Surrealist app

Creating the Project
The first step is to create your project. Click the New Project button on the startup window or
choose the New ➤ New Project… command. Review the available templates, as shown in Figure 2-2.

19CHAPTER 2: Boom! App

Your design gives you a basic idea of how your app will work, which should suggest which Xcode
project template to start with. Your app’s design isn’t a perfect fit with any of these, so choose the
Single View Application template—it’s the simplest template that already has a view. Click on the
Next button.

The next step is to fill in the details about your project (see Figure 2-3). Name the project
Surrealists and fill in your organization name and identifier. Consistent with your design choices,
change the Devices option from Universal to iPhone, as shown in Figure 2-3.

Figure 2-2. iOS project templates

20 CHAPTER 2: Boom! App

Note Developing for the iPhone is the same as developing for the iPod Touch (unless your app uses features
only available on the iPhone). From here on, I’ll only mention the iPhone, but please remember that this also
includes the iPod Touch.

Figure 2-3. Setting the project details

There’s also a Class Prefix setting. This option sets a very short string that will be used to
consistently name all new classes you add to your project. It’s traditionally two capital letters, but it
could be anything. You’ll want to avoid the two character prefixes already used by iOS, particularly
NS and UI. Leave it blank for this project—you won’t be creating any classes.

Click the Next button. Pick a location on your hard drive to save the new project and click Create.

Setting Project Properties
You now have an empty Xcode project; it’s time to start customizing it. Begin with the project
settings by clicking on the project name (Surrealists) in the project navigator, as shown in the
upper left of Figure 2-4. The editor area will display all of the settings for this project. Choose the
Surrealist target from the pop-up menu, in the upper-left corner of the editor (see Figure 2-4),
and then choose the General tab in the middle.

21CHAPTER 2: Boom! App

Figure 2-4. Target Settings

Scroll down the target settings until you find the Deployment Info section. Uncheck the
Landscape Left and Landscape Right boxes in Device Orientation, so that only the Portrait
orientation is checked.

To review, you’ve created an iPhone-only app project that runs exclusively in portrait orientation.
You’re now ready to design your interface.

Building an Interface
Click the Main.storyboard file in the project navigator. Xcode’s Interface Builder editor appears in the
edit area, as shown in Figure 2-5.

22 CHAPTER 2: Boom! App

Figure 2-5. Interface Builder

Note Modern Interface Builder files have extensions of xib or storyboard. Legacy Interface Builder files
have a nib (pronounced “nib”) extension, and you’ll still hear programmers refer to all of them generically as
“nib” files. The nib acronym stands for Next Interface Builder, because the roots of Xcode, Interface Builder,
and the Cocoa Touch framework stretch all the way back to Steve Job’s “other” company, NeXT. Later in this
book, you’ll see a lot of class names that begin with “NS,” which an abbreviation for NeXTStep, the name of
NeXT’s operating system.

Interface Builder is the secret sauce in Apple’s app kitchen. In a nutshell, it’s a tool that adds,
configures, and interconnects objects within your app—without writing any code. You can define
most of the visual elements of your app in Interface Builder. Interface Builder edits storyboard, xib,
and (legacy) nib files.

www.allitebooks.com

http://www.allitebooks.org

23CHAPTER 2: Boom! App

Interface Builder displays the objects in the file in two views. On the left (see Figure 2-5) are the
objects organized into a hierarchical list, called the outline. Some objects can contain other objects,
just as folders can contain other folders, and the outline reflects this. Use the disclosure triangles to
reveal contained objects.

The view on the right is called the canvas. Here you’ll find the visual objects in your Interface Builder
file. Only visual objects (like buttons, labels, images, and so on) appear in the canvas. Objects that
don’t have a visual aspect will only be listed the outline. If an object appears in both, it doesn’t
matter which one you work with—they’re the same object.

Figure 2-6. Object Library

Note If you’ve been learning an Object-Oriented programming language, then you know what an “object”
is. If you don’t know what an “object” is, don’t panic. For now, just think of objects as Lego® bricks; a discrete
bundle that performs a specific task in your app, and can be connected to others to make something bigger.
Feel free to skip ahead to Chapter 6 if you want to learn about objects right now.

Adding Objects
You get new objects from the library. Choose the View ➤ Utilities ➤ Show Object Library command.
This will simultaneously make the utility area on the right visible and switch to the object library
(the little cube), as shown in Figure 2-6.

24 CHAPTER 2: Boom! App

To add an object to your app, drag it from the library and drop it into the Interface Builder editor.
Your app needs a navigation controller object, so scroll down the list of objects until you find the
Navigation Controller. You can simplify your search by entering a keyword into the search field
at the bottom of the library pane (see Figure 2-7).

Figure 2-7. Adding a Navigation Controller

Drag the navigation controller object from the library into the canvas, as shown in Figure 2-7, and
drop it anywhere in the blank space. You just added an object—several, actually—to your app.

Deleting and Connecting Objects
The library’s navigation controller object is really a cluster of objects. A navigation controller, as the
name implies, manages how a user moves between multiple screens, each screen being controlled
by a single view controller object. The navigation controller is connected to the view controller of the
first screen that will appear, called its root view controller. Don’t worry about the details; you’ll learn
all about navigation controllers in Chapter 12.

For your convenience, the navigation controller in the library creates both a navigation controller
object and the root view controller that it starts with. This root view controller happens to be a table
view controller. You don’t need a table view controller. Instead, you want this navigation controller to
use the no-frills view controller you already have.

Start by discarding the superfluous table view controller. Select just the table view controller
that’s connected to the navigation controller, as shown in Figure 2-8. Press the Delete key, or
choose Edit ➤ Delete.

25CHAPTER 2: Boom! App

Now you need to connect your new navigation controller to the plain-vanilla view controller your
project came with. Drag the view controller and position it to the right of the navigation controller
(see Figure 2-9).

Figure 2-8. Deleting the table view controller

Figure 2-9. Designating the initial view controller

26 CHAPTER 2: Boom! App

The unconnected arrow attached to the view controller indicates the initial view controller for your
app. You want to make the navigation controller the first controller, so drag the arrow away from the
simple view controller and drop it into the navigation view controller, as shown in Figure 2-9.

The last step is to reestablish the navigation controller’s connection with its root view controller.
There are numerous ways of making connections in Interface Builder. I’ll show you the two most
popular. Hold down the control key, click on the navigation controller, and then drag a line from it to
the view controller, as shown in Figure 2-10.

Figure 2-10. Setting the root view controller connection

When you release the mouse, a pop-up menu will appear listing all of the possible connections
between these two objects. Click the root view controller connection. Now the navigation controller
will present this view controller as the first screen when your app starts.

I did promise to teach you two ways of connecting objects. The second method is to use the
connections inspector in the utility area. Choose View ➤ Utilities ➤ Show Connections Inspector,
or click on the little arrow icon in the utilities pane, as shown in Figure 2-11.

27CHAPTER 2: Boom! App

To use the inspector, first choose an object. In this case, choose the navigation controller. The
connections inspector will show all of the connections for that object. Find the connection labeled
root view controller. To the right of each connection is a little circle. To set a connection, click
and drag that circle to the object you want it connected to—in this case, the view controller. To clear
(or “break”) a connection, click the small “x” in the connection field.

So far, you’ve created a new project. The project template included a simple view controller. You
added a new navigation controller object (along with an unneeded table view controller, which you
discarded) to your app. You designated the navigation controller as the one that takes control of your
app when it starts, and you connected that controller to the empty view controller. Now it’s time to
put something in that empty view.

Adding Views to a View
Now we get to the fun part of this project: creating your app’s content. Start by adding four buttons,
which you’ll customize, to your opening screen. To do that, you need to work in your initial screen’s
view object.

The view controller object is not a single object, it’s a bag of objects. I said earlier that some object
may contain other objects; view controllers and views are two such objects. Start by selecting the
view object. There are two ways of doing this in Interface Builder. You can find the object in the
outline on the left (see Figure 2-12), and select it. The other is to “drill down” to the object you want.
Click in the center of the view controller object (in the middle of Figure 2-12). This will select the view
controller object. Click again and you’ll select the view object contained in that object. If that view
contained another object, clicking again would select it, and so on.

Figure 2-11. Using the connections inspector

28 CHAPTER 2: Boom! App

Now that you know how to find and select an embedded view object, it’s time to add some new view
objects to it. In the object library, find the Button object—type “button” in the search field to make
this easier. Grab a Button object and drag it into the view object, as shown in Figure 2-13.

Figure 2-12. Selecting the view object

Figure 2-13. Adding a button object

29CHAPTER 2: Boom! App

Note The view objects that a view contains are called its subviews. The view that a view is contained in is
called its superview.

Figure 2-14. Positioning buttons

Repeat this three more times, so you have four button objects inside the view, approximately like
those shown in Figure 2-14. Now you want to resize these buttons so they fill the entire screen. To
help you lay them out evenly, add some guides. Click inside the superview so that none of the button
objects are selected and choose Editor ➤ Add Vertical Guide. By default, a new guide is created
in the middle of the view, which is exactly what you want.

Using the guides, position and resize each button so it fills one quarter of the view. Start by dragging
the button to the lower left corner of a quadrant. The view will “snap” to the nearest layout guide.
Grab the opposite resizing handle and drag it out to fill the quadrant, as shown in Figure 2-14. It
doesn’t have to be perfect at this stage; you’ll neaten this up later in the chapter.

When you’re all done, you’ll have four buttons that fill the screen (see Figure 2-15).

30 CHAPTER 2: Boom! App

Editing Object Properties
Now it’s time to customize your buttons. Select all four buttons—click on one button, and then while
holding down the shift key, click once on each of the other three. Choose View ➤ Utilities ➤ Show
Attributes Inspector, or click on the small control icon in the inspector pane, as shown in Figure 2-15.

The attributes inspector is used to change various properties about an object (or objects). The
properties in the inspector will change depending on what kind of object you have selected. If you
select multiple objects, the inspector will present just those properties that all of those objects have
in common.

With the four buttons selected, make the following changes using the attributes inspector:

Change Type to 	 Custom

Click the up arrow next to the font attribute until it reads 	 System Bold 18.0

Click the Text Color drop-down arrow and choose 	 white

Find the Control group and select the bottom vertical alignment icon	

When you’re all done, your view should look like the one in Figure 2-16. The next step is to add an
image and a label to each one, individually. To do that, you’re going to need to add some resources
to your project.

Figure 2-15. Customizing button objects

31CHAPTER 2: Boom! App

Adding Resources
Everything that your app needs to run must be part of the app that you build. If your app needs an
image, that image must be included in its resources. Image files, Interface Builder files, sound files,
and anything else that’s not computer code, are collectively referred to as resources.

You can add virtually any file as a resource to your app. Resource files are copied into your app’s
bundle when it is built and are available to your app when it runs.

Xcode has a special way of organizing commonly used resources, like images, into a single resource
called an asset catalog. To add new images to an asset catalog, select the catalog in the project
navigator, as shown in Figure 2-17. Locate the resource files you want to add in the Finder. Find the
Learn iOS Development Projects folder you downloaded in Chapter 1. Inside the Ch 2 folder you’ll
find the Surrealists (Resources) folder, which contains eight image files. With the files and your
workspace window visible, drag the image files into the group list (left side) of the asset catalog, as
shown in Figure 2-17.

Figure 2-16. Customized buttons

32 CHAPTER 2: Boom! App

Figure 2-17. Dragging resource files into an asset catalog

Figure 2-18. Previewing image files

The files will be copied to your project folder, added to the project navigator, and added to your
app as a resource. The asset catalog lets you easily organize multiple resolutions of the same image,
although in this example only low resolution images have been added. Dropping images into the
group list, as you did here, created new groups in the catalog. You can later add additional
(high-resolution or platform-specific) versions of the same image by dropping them into the preview
pain of a group, shown on the right in Figure 2-18. Xcode can’t edit these files, but the preview
pane (see Figure 2-18) let’s you review thumbnails of them.

www.allitebooks.com

http://www.allitebooks.org

33CHAPTER 2: Boom! App

Customizing Buttons
With the necessary resource files added, it’s time to customize your buttons. Select the Main.storyboard
file again and select the upper-left button. Reveal the attributes inspector (View ➤ Utilities ➤
Show Attributes Inspector) and change the title property to Remedios Varo and the background
property to RemediosVaro1, as shown in Figure 2-19.

Figure 2-19. Customizing the first button

The background property is the resource name of the image you want the button to use for its
background. You can type it in, but Xcode recognizes common image types and includes the image
resources you just added to the drop-down list. Just select the filename from that list.

Customize the remaining three buttons (working clockwise), setting their title and background image
as follows:

Kay Sage, KaySage1	

Leonora Carrington, LeonoraCarrington1	

Frida Kahlo, FridaKahlo1	

As a finishing touch, select Kay Sage’s button and change the text color to black (so it’s easier to
read). When you’re all done, your interface should look like Figure 2-20.

34 CHAPTER 2: Boom! App

Using Storyboards
Storyboards simplify your app development by allowing you to plan out your app’s screens, and
define how the user will navigate between them, all in Interface Builder. Before storyboards, you
could layout each screen, but you had to write code to move between them. It wasn’t a lot of code,
nor was it complex, but it was a chore. With storyboards, you can do most of that work in Interface
Builder—without writing any code at all.

FRICTIONLESS DEVELOPMENT

Repetitive code is a drag on development. The time you spend writing the same code, over and over again, is time you
don’t have to develop cool new features. What you want is a frictionless development environment, where the simple
tasks are taken care of for you, leaving you time to work on the stuff that makes your app special.

Apple works very hard on making iOS and Xcode as frictionless as possible. Every release adds new classes and
development tools to make developing high-quality apps easier. For example, before the introduction of gesture
recognizers, writing code to detect multi-touch gestures (like a pinch or a three-fingered swipe) was a complicated task,
often requiring a page or more of code. Today—as you might have guessed already—your app can detect these gestures
simply by dropping a gesture recognizer object into your design and connecting it to an action.

Let’s use storyboards to define the remaining screens of your app, and how the user will navigate
between them.

Figure 2-20. Finished buttons

35CHAPTER 2: Boom! App

Adding New Screens
Before you can create a transition between two screens, called a segue (pronounced “seg-way”),
you must first create another screen (called a scene in storyboard-speak). Return to the object library
and drag in a new view controller object into your Mainstoryboard file, as shown in Figure 2-21.

Figure 2-21. Adding a new view controller

In Figure 2-21, I’ve zoomed out (using the magnifying controls in the bottom right corner of the editor
pane) so I can see the entire storyboard. To edit the contents of a view, however, Interface Builder
needs to be zoomed in on that view. There are a couple of ways to accomplish this:

Double-click in the canvas to zoom out/in.	

Click the zoom toggle (=) or magnifying glass (+) in the lower-right of the canvas 	
and scroll to center the view.

Locate the Image View object in the library. Drag one into the empty view, as shown in Figure 2-22.

36 CHAPTER 2: Boom! App

Figure 2-22. Adding an image view object

If the image view object didn’t snap to fill the whole view, drag it around until it does. With the new
image view object still selected, switch to the attributes inspector. Change the Image property to
RemediosVaro2, and change the image mode to Aspect Fill, as shown in Figure 2-23.

37CHAPTER 2: Boom! App

Now add a scrolling text field to this screen. Locate the Text View (not the Text Field!) object in
the library. Drag a new text view into the window and position it, using the automatic user interface
guides, in the upper-right corner of the screen, as shown in Figure 2-24.

Figure 2-23. Customizing the background image view

38 CHAPTER 2: Boom! App

Figure 2-24. Adding a text view

With the text view selected, use the attributes inspector to change the following properties:

Set text color to 	 white

Reduce the font size to 	 12.0

Uncheck the 	 editable option

Further down, uncheck 	 Shows Horizontal Scrollers

Click on the 	 background color, in the color picker use the grey slider to choose
50% grey with a 33% alpha or opacity (see Figure 2-25)

39CHAPTER 2: Boom! App

The text for this object can be found in the Surrealists (Resources) folder where you found the image
files. You won’t add these files to your project, however. Instead, open the file named Prose - Remedios
Varo, copy the text, switch back to Xcode, and paste it into the text property of the attributes inspector,
as shown in Figure 2-26.

Figure 2-25. Setting a semi-transparent background color

40 CHAPTER 2: Boom! App

Creating a Segue
With your screen finished, it’s time to define the segue between the main screen and this one. You
want this screen to appear when the user taps on the Remedios Varo button. To create this segue,
hold down the control key, click on the Remedios Varo button, drag the connection to this new view
controller, and release the mouse, as shown in Figure 2-27.

Figure 2-26. Pasting text into a text field object

41CHAPTER 2: Boom! App

When you release the mouse button, a pop-up menu will appear with the possible segue types.
Choose push (see Figure 2-27). When your user taps the Remedios Varo button, your app will
perform a “push” transition (sliding the new screen into view) and present the new view.

Setting Navigation Titles
The initial view controller is, itself, under the control of the navigation controller object you created
at the beginning. The job of the navigation controller is to present a series of views underneath a
navigation bar. The navigation bar—which you’ve seen a hundred times—displays the title of the
screen you’re looking at, and optionally has a back button to return you to the screen you came
from. The navigation controller handles all of the details.

When you added a push segue to the second screen, the second screen fell under the control of the
navigation controller too. A push segue—which only works in conjunction with navigation controllers,
by the way—replaces one view with another, and makes the original view the target of the back
button in the new view.

So that this is meaningful to your user, you’ll want to set the titles for each screen. This will make the
navigation bar intelligible.

Select the navigation bar in the initial view controller and have the attributes inspector handy.
Change the title of the navigation bar to Woman Surrealists, and set the back button property to

Figure 2-27. Creating a segue

42 CHAPTER 2: Boom! App

Surrealists. Most Interface Builder objects with a title can be edited simply by double-clicking on
the title in the canvas, and shown in Figure 2-28. Alternatively, you can select the object and edit its
title property in the attributes inspector. Setting the optional back button property will assign a more
succinct title to the back button on screens that return to this one.

Figure 2-28. Editing the navigation bar title

Finally, select the navigation bar in the second screen you created and change its title to Remedios
Varo. You might want to adjust the size or position of the text field so the navigation bar doesn’t
obscure it.

Testing Your Interface
You have now built enough of your app to see it in action! Make sure the run target is set to one of
the iPhone simulators, as shown in Figure 2-29.

Figure 2-29. Selecting the run target

www.allitebooks.com

http://www.allitebooks.org

43CHAPTER 2: Boom! App

Click the Run button. Xcode will build your app and start it running in the simulator. If, for some
unexpected reason, there are problems building your app, messages describing those problems can
be found in the issue navigator (View ➤ Navigator ➤ Show Issue Navigator).

Your app will appear in the iPhone simulator, and should look like the one on the left in Figure 2-30.

Figure 2-30. The first test of your app

Tap the button in the upper-left, and the second screen slides smoothly into view. (Don’t worry if the
placement of the buttons isn’t ideal—you’ll fix that shortly.) Scroll the text by dragging it with your
mouse (remember that the mouse is your simulated finger). Tap the back button to return to the
initial screen. Your app has all of the standard behavior of an iOS app: a touch interface, title bars,
animation, navigation, and everything works exactly as you expect it to.

Finishing Your App
Return to the Xcode workspace window and click the Stop button in the toolbar to stop your app.
Finish your app by repeating (most of) the steps in the section “Adding New Screens.” Start by
adding three more view controllers, as shown in Figure 2-31.

44 CHAPTER 2: Boom! App

Into each new view controller, add an image view object and set its image resource name to one of
the following (working clockwise): KaySage2, LeonoraCarrington2, and FridaKahlo2.

You could repeat all of the steps for adding and customizing a new text view for each of the three
new images, or you could save yourself a lot of work by copying the work you’ve already done.
While holding down the Option key, drag the UITextView object from the Remedios Varo scene and
drop it into the Kay Sage scene, as shown in Figure 2-32. This gesture duplicates an object.

Figure 2-31. Adding the remaining view controllers

Figure 2-32. Replicating a text view object

45CHAPTER 2: Boom! App

Duplicating an object in Interface Builder creates a new object with all of the properties of the
original. The only thing left to do is position it in the view and change its text. You’ll find the text for
the other three screens in the Surrealists (Resources) folder. When you get to the text view for
Frida Kahlo, change the text color to black, so it’s easier to read.

The last step is to create a push segue from each button to the appropriate view and set the title of
its navigation bar. When you’re done, you’ll have a storyboard that looks like Figure 2-33.

Figure 2-33. Finished Surrealist app storyboard

Debugging Your App
Run your new app. Tap a button to show the details for that artist. Browse the text and use the
navigation bar to return to the initial screen. Return to Xcode. Stop the app and change the simulator
to iPhone Retina (3.5–inch), and run it again. Does something seem out of sorts?

The buttons on the initial screen have odd gaps, and get cut off on the 3.5-inch iPhone. In other
scenes, images and text views are also clipped, as shown in Figure 2-34. This is a problem.
Programmers call it a bug.

46 CHAPTER 2: Boom! App

“Bug” is usually used to describe a flaw in computer code, but any defect in how your app
behaves or operates is a bug, and you need to fix it. The process of tracking down and fixing bugs
is called debugging.

Figure 2-34. Initial test of Surrealist app

Note The term “bug” originated from a moth that expired in one of the earliest digital computers,
causing it to malfunction. I’m not kidding. There’s a picture of the moth on Grace Hopper’s Wikipedia page
(http://en.wikipedia.org/wiki/Grace_hopper).

In this case, the problem has to do with how the buttons are resized, or repositioned, for different
devices. Various models of the iPhone have different screen dimensions and resolutions. iOS adjusts
the size of your screen views to fit the model that it’s running on, which may alter the layout from
what you see in Interface Builder.

Adding Constraints
When a view changes size, a feature called auto-layout repositions its subviews. Those subviews are
repositioned based on a set of constraints. A constraint is simply a rule about an object. Here are
some examples of constraints:

the height of the object must be at least 40 pixels	

the bottom edge of the object should be 20 pixels from the bottom edge of its 	
superview

the object should be centered horizontally	

http://en.wikipedia.org/wiki/Grace_hopper

47CHAPTER 2: Boom! App

There are often several such constraints for a single view. iOS evaluates all of the constraints to
determine how each view should be adjusted so that all of the constraints are satisfied.

You can define individual constraints in Interface Builder or ask Xcode to generate some or all
of them for you. Xcode creates constraints based on how you’ve positioned your view and its
relationship with nearby views. Usually, Xcode’s guess is exactly what you want. If it’s not, you can
define them yourself.

Your Surrealist app needs constraints so that the text and images in the four artist scenes resize
properly on different devices; and you want the four buttons in the initial scene to evenly fill the
screen. Start with the former, as those are the easiest.

Return to Xcode and the Main.storyboard file. Select the Kay Sage scene by clicking on the view
controller object dock immediately below the scene, as shown in Figure 2-35. In the bottom right corner
of the editor pane, click on the Resolve Auto Layout Issues button (the one with the dot in the middle),
and choose the Reset to Suggested Constraints in View Controller item, also shown in Figure 2-35.

Figure 2-35. Using the suggested constraints

Xcode analyses the layout of your views in the scene and adds its recommended constraints to
each one. Select the text view, and Interface Builder shows you the constraints now attached to that
view, as shown in Figure 2-36. Xcode has added vertical and horizontal constraints that keep the
text view positioned a pleasing distance from the top, left, and bottom edges of its superview, and a
width constraint that determines its width. Click on a constraint to view, or edit, its properties in the
attributes inspector, shown on the right in Figure 2-36.

48 CHAPTER 2: Boom! App

This set of constraints is said to be “complete.” Together, these four rules unambiguously determine
the height, width, and position of the text view. If some of these constraints were omitted, iOS would
use the original height, width, and/or position of the view. As you’ve seen, this can result in views
overlapping or being positioned beyond the edge of their superview.

Repeat this process for the other three scenes: select the scene’s view controller and choose the
Reset to Suggested Constraints in View Controller item from the Resolve Auto Layout Issues
button.

The position and size of the four buttons in the initial scene are not, however, typical of the size
or placement of button objects in iOS. Xcode’s suggested constraints, therefore, won’t be much
help. You’ll have to design these constraints yourself. Consider how you want these buttons sized
and positioned, and then develop the simplest set of rules that describe that to iOS. Here are the
constraints that I came up with:

The top edges of the upper two buttons should be at the bottom edge of the
navigation bar.

The bottom edges of the lower two buttons should be at the bottom edge of
the superview.

Vertical
Constraints

Width
Constraints

Horizontal
Constraints

Figure 2-36. Xcode’s recommended constraints

49CHAPTER 2: Boom! App

The left edges of the left two buttons should be at the left edge of the superview.

The right edges of the right two buttons should be at the right edge
of the superview.

The buttons on the left should touch the buttons on the right.

The upper buttons should touch the lower buttons.

All of the buttons should be the same height and width.

Note There are many ways to describe the same position for a view with constraints, none of which is
wrong. For example, you can add both a leading edge and a trailing edge constraint for a view. This will
define the horizontal position and width of the view. Alternatively, you could add a trailing edge constraint
and a “center horizontally” constraint. Those also define the horizontal position and width of the view.
Use the constraints that make sense to you.

That set of rules will position and size the four buttons so they completely fill the screen, creating
four equal-sized quadrants. You add these constraints to Xcode just as they are described here.
Start with the first constraint. Either hold down the Control key and click, or right-click, the Remedios
Varo button and drag up to the navigation bar area. Release the mouse button and choose
Top Space to Top Layout Guide, as shown in Figure 2-37.

Figure 2-37. Adding a vertical constraint to a button

50 CHAPTER 2: Boom! App

You’ve now created a constraint that tells iOS to position the top edge of the Remedios Varo button
some distance from the bottom edge of the navigation bar. But you don’t want it to be “some distance,”
you want it to touch the navigation bar. Click on the constraint to select it, as shown in Figure 2-38, and
use the attributes inspector to set the constraint’s value to 0. The constraint now says there should be
no distance between the top edge of the button view and the bottom of the navigation bar.

Figure 2-38. Editing the properties of a constraint

Figure 2-39. Setting a bottom edge constraint

Repeat this with the Kay Sage button. You’ve now established the first set of constraints. The next set
is created just like the first. Control+click/right-click on the Frida Kahlo button, drag down, and choose
the Bottom Space To Bottom Layout item from the menu, as shown in the middle of Figure 2-39.
This sets the space between the bottom edge of the view and the bottom edge of its superview.

51CHAPTER 2: Boom! App

Repeat with the Leonora Carrington button. Zero-width constraints are difficult to select, but you
can select it in the object outline, as shown on the left in Figure 2-39. These buttons were already
positioned at the bottom of the superview, so the constraint’s value is already 0 (as shown on the
right in Figure 2-39).

Continue adding constraints until you’ve defined them all:

1. With the two left buttons: control+click/right-click on the button, drag left, and
choose Leading Space to Container.

2. With the two right buttons: control+click/right-click on the button, drag right,
and choose Trailing Space to Container.

3. With the two left buttons: control+click/right-click on the button, drag to
the button on its right, and choose Horizontal Spacing. Make sure the
constraint’s value is 0, meaning the right edge of the left view should touch
the left edge of the right view.

4. With the two upper buttons: control+click/right-click on the button, drag
down to the button below it, and choose Horizontal Spacing. There’s
probably a gap between the two buttons, so select the constraint and set its
value to 0 in the attributes inspector.

5. Again with the two upper buttons: control+click/right-click on the button, drag
down to the button below it, and choose Equal Height. This constraint says
that the height of the upper button should be the same as the lower button.

Tip You can also add just the constraints you want and let Xcode fill in the remaining ones using the
Add Missing Constraints commands in the Resolve Auto Layout Issues menu. If you add enough
constraints so that Xcode can guess the rest, this will save you time.

The constraints for the buttons on the initial screen are now complete. The only solution to the
set of constraints you just created must position the four buttons so they are all the same size
and fill the screen. The current size and position of the buttons do not, however, agree with those
constraints and Xcode indicates this with adjustment warnings (those little orange numbers), as
shown in Figure 2-40.

52 CHAPTER 2: Boom! App

The warnings are telling you that iOS will resize or move the view by the displayed amount when
your app runs. You can ignore the warnings if you like. But if you want your Interface Builder layout
to look more like what your interface will be when it runs, adjust the position of your views so they
agree with their constraints.

Xcode will do that for you. You can click on the warning arrow next to the view controller group in
the outline. It will slide over to reveal the warnings for the views in that controller (shown on the left
in Figure 2-40). From here, you can review and resolve each issue individually. Alternatively, choose
the Update All Frames in View Controller item from the Resolve Auto Layout Issues button, as
shown on the lower-right in Figure 2-41. Xcode adjusts the size and position of your views so the
layout in Interface Builder agrees with the constraints.

Figure 2-40. Finished button constraints with resize warnings

www.allitebooks.com

http://www.allitebooks.org

53CHAPTER 2: Boom! App

Note If you have missing or conflicting constraints, these will also appear (in red) in the object outline.

Figure 2-41. Adjusting views to agree with their constraints

Run your app, as shown in Figure 2-42. Compare these screens with those in Figure 2-34.

54 CHAPTER 2: Boom! App

Testing Your App
Will your constraints solution work for all devices? That’s an excellent question. As part of your app
development, you need to thoroughly test your app to make sure it works—as you intended—under
all circumstances. This phase of app development is every bit as important as the design and
engineering phases.

Start by testing your app on different devices. The iOS Simulator can simulate all available device
form factors. Choose different hardware, as shown in Figure 2-43, to test how your app runs in
other configurations. Some testing has to be done on real hardware, and you’ll explore that in
later chapters.

Figure 2-43. Testing different hardware configurations

Figure 2-42. Correctly positioned buttons

55CHAPTER 2: Boom! App

This is a pretty simple app, but there are still a number of things you’ll want to test before
pronouncing it finished:

See that the layout of all screens looks pleasing on different devices	

Make sure each button segues to the correct screen	

Test that the text is correct and can be scrolled	

Check all of the titles	

Does everything check out? Then your first iOS app is a success!

Summary
Give yourself a round of applause; you’ve covered a lot of ground in this chapter. You’ve learned
your way around Xcode, added resources to a project, and used Interface Builder to create,
configure, and connect the objects of your interface. And, you did that all without writing a single line
of computer code.

The point of this chapter wasn’t to avoid writing Objective-C code. We are, after all, computer
programmers. If we’re not writing code, what are we getting paid for? The point was to illustrate how
much functionality you can add, and how much tedious detail you can avoid, using Interface Builder
and iOS objects.

Are your coding fingers itchy? In the next chapter you’ll write a more traditional app—one with code.

57

Chapter 3
Spin a Web

Warm up your coding fingers. This chapter will introduce you to some of the core skills of iOS app
development, along with a healthy dose of Objective-C code. The app you’ll create in this chapter,
and the steps you’ll take, are very typical of the way iOS apps are built. From that perspective, this
will be your first “real” iOS app.

You’ve already learned to use Interface Builder to add library objects to your app, customize them,
and connect them together. In this chapter you will also:

Customize an Objective-C class	

Add outlets and actions to your custom class using Objective-C	

Connect those outlets to objects using Interface Builder	

Connect objects to your custom actions using Interface Builder	

Alter the behavior of a library object by connecting it to a delegate	

The app you’re going to build is an URL shortening app. This app relies on one of the many URL
shortening services available. These take an URL of any length and generate a much shorter URL,
which is far more convenient to read, recite over the phone, and use in a Tweet. An URL shortening
service works by remembering the original URL. When anyone in the world attempts to load the
web page at the short URL, the service returns a redirect response, directing the browser to the
original URL.

To make this app, you’ll learn how to embed a web browser in it—a trick that has many applications.
It will also show you how to programmatically send and receive an HTTP request from your app, a
useful tool for creating apps that use Internet services.

58 CHAPTER 3: Spin a Web

Note To computer programmers, the word “programmatically” means “by writing computer code.” It means
you accomplished something by writing instructions in a computer language, such as Objective‑C, as opposed
to any other way. For example, Interface Builder will let you connect two objects by dragging a line between
those objects. You can write Objective‑C code to connect those same two objects. If you used the latter
method, you could say that you “set the connection programmatically.”

Figure 3-1. Sketch of Shorty app

Design
This app needs some basic elements. The user will need a field to type in, and edit, an URL. It would
be nice to have a built-in web browser so they can see the page at that URL and tap links to go to
other URLs. It needs a button to convert the long URL into a short one, and some place to display
the shortened URL.

That’s not a particularly complicated design, and everything should easily fit on one screen, like the
sketch in Figure 3-1. Let’s toss in one extra feature: a button to copy the shortened URL to the iOS
clipboard. Now the user has an easy way to paste the shortened URL into another app.

Your app will run on all iOS devices, and work in both portrait and landscape orientation. Now that
you have a basic design, it’s time to launch Xcode and get started.

Creating the Project
As with any app, start by creating a new project in Xcode. This is a one-screen app, so the obvious
choice is the Single View Application template.

59CHAPTER 3: Spin a Web

Fill in the project details, as shown in Figure 3-2. Name the project Shorty, set the Class Prefix to SU
(for “Short URL”), and set the Devices to Universal.

Click the Next button. Choose a location to save your new project, and click Save.

Building a Web Browser
Start by building the web browser portion of your app. This will consist of a text field, where the user
enters the URL they want to visit/convert, and a web view that will display that page. Let’s also throw
in a refresh button, to reload that page at the current URL.

Select the Main_iPhone.storyboard file in the navigator. Start by developing your app for the iPhone.
You’ll create the iPad version later in the chapter.

In the object library, find the Navigation Bar object and drag it into the view, towards the top, as
shown in Figure 3-3. Navigation bar objects are normally created by navigation controllers to display
a title, a back button, and so on. You saw this in the Surrealist app. Here, however, you’re going to
use one on its own.

Figure 3-2. Shorty project details

60 CHAPTER 3: Spin a Web

Position the navigation bar so it’s the full width of the view. Control+click/right-click on the navigation
bar and drag up until the Top Layout Guide appears, as shown in Figure 3-4. Release the mouse and
choose the Vertical Space constraint.

Figure 3-3. Adding a navigation bar

Figure 3-4. Adding a vertical constraint to the navigation bar

Just as you did in the previous chapter, select the constraint and set its value to 0, as shown in
Figure 3-5. This tells iOS to position the navigation bar at the recommended position at the top of
the screen, just below the system’s status bar.

61CHAPTER 3: Spin a Web

Find the Web View object in the library, and drag one into the lower portion of the screen. Move and
resize the web view so it exactly fills the rest of the view, from the navigation bar to the bottom of the
screen, as shown in Figure 3-6.

Figure 3-5. Constraining the toolbar to the top layout guide

Figure 3-6. Adding a web view

Select the view controller (by clicking on either the object dock below the view or the View
Controller object in the outline) and choose Add Missing Constraints in View Controller from the
Resolve Auto Layout Issues button. Interface Builder uses the one constraint you established and
fills in any additional constraints needed to establish this layout for all devices.

Find the Bar Button Item in the library and drag one into the right side of the navigation bar. Bar
button items are button objects specifically designed to be placed in a navigation bar or toolbar.
Once there, select it. Switch to the attributes inspector and change the Identifier of the new button
to Refresh (see Figure 3-7). The icon of the button will change to a circular arrow.

62 CHAPTER 3: Spin a Web

Find the Text Field (not the Text View!) object in the library, and drag one into the middle of the
navigation bar. This object will displace the default title that is normally displayed. Grab the resize
handle on the right or left, and stretch the field so it fills most of the free space in the navigation bar,
as shown in Figure 3-8.

The user will type their URL into this field. Configure it so it is optimized for entering and editing
URLs. Select the text field object and, using the attributes inspector, change the following properties:

Set text to 	 http://

Set Placeholder to 	 http://

Change Clear Button to 	 Appears while editing

Change Correction to 	 No

Change Keyboard to 	 URL

Change Return Key to 	 Go

Figure 3-7. Making a refresh button in the navigation bar

Figure 3-8. Resizing the URL field

63CHAPTER 3: Spin a Web

These settings set the initial content of the field to http:// (so the user doesn’t have to type that),
and if they clear the field, a ghostly http:// will prompt them to enter a web URL. Turning spelling
correction off is appropriate (URLs are not a spoken language). When the keyboard appears, it will
be optimized for URL entry, and the return key of the keyboard will display the word “Go,” indicating
that the URL will load when they tap it.

You’ve created, and laid out, all of the visual elements of your web browser. Now you need to write a
little code to connect those pieces and make them work together.

Coding a Web Browser
Select the SUViewController.h file in the project navigator (see Figure 3-9). The SUViewController.h
and SUViewController.m files, together, define the SUViewController class. This is a custom class,
which you created—well, technically, it was created on your behalf by the project template, but
you can take credit for it. I won’t tell anyone. The job of your SUViewController object is to add
functionality to, and manage the interactions of, the view objects it’s connected to. Your app only
has one view, so you only need one view controller.

Different objects have different roles to play in your app. These roles are explained in Chapter 8.
When you add code to your app, you need to decide what class to add it to. This app is very simple;
you’ll add all of your customizations to the SUViewController class.

Figure 3-9. Adding properties to SUViewController.h

Tip Are the terms class and object confusing? Read the first part of Chapter 6 for an explanation.

www.allitebooks.com

http://www.allitebooks.org

64 CHAPTER 3: Spin a Web

The SUViewController class is a subclass of the UIViewController class, which is defined by the
Cocoa Touch framework. This means that your SUViewController class inherits all of the features
and behavior of a UIViewController—which is a lot, UIViewController is quite sophisticated.
If you did nothing else, your SUViewController objects would behave exactly like any other
UIViewController object.

The fun is in editing SUViewController.h and SUViewController.m to add new features, or change
the behavior it inherited.

Adding Outlets to SUViewController
Start by adding two new properties to SUViewController. A property defines a value associated with
an object. In its simplest form, it merely creates a new variable that the object will remember. Add
these properties to SUViewController.h:

@property (weak,nonatomic) IBOutlet UITextField *urlField;
@property (weak,nonatomic) IBOutlet UIWebView *webView;

When you’re done, your class definition should look like the one in Figure 3-9. So, what does all this
mean? Let’s examine these declarations in detail:

	@property is the keyword that tells the Objective-C compiler this is a property
declaration.

	(weak,nonatomic) are optional property attributes. These change certain
characteristics of the property. weak means this property does not hang on to
the object it’s connected to (see Chapter 21). nonatomic makes accessing this
property more efficient by relaxing certain rules with respect to multi-tasking
(see Chapter 24).

	IBOutlet is a very important keyword that makes this property appear as an
outlet in Interface Builder.

	UITextField*/UIWebView* is the type of the property. In this case, it’s the class of
the object this property stores. The asterisk means this property is a reference to
an object, not the object itself. In Objective-C, you can only store references to
objects.

	urlField/webBrowser is the name of the property.

By adding these properties to SUViewController, you enable an SUViewController object to be
directly connected to one text field object (via its urlField property) and one web view object (via its
webBrowser property).

You’ve defined the potential for being connected to two other objects, but you haven’t connected
them. For that, you’ll use Interface Builder.

Connecting Custom Outlets
Click on the Main_iPhone.storyboard file in the project navigator. Find, and select, the View
Controller object in the outline or in the dock below the view, both shown in Figure 3-10.

65CHAPTER 3: Spin a Web

In most cases, a screen in iOS starts out as just a single view controller object. When it’s time for
that view to appear on the screen, the view controller loads its view objects from an Interface Builder
file—either a scene in a .storyboard file or from an .xib file. In this app, your SUViewController
object will load the SUViewController scene in the Main_iPhone.storyboard file, creating all the
objects and connections therein. Connections between objects and the view controller will be
made between the new objects and the existing controller object. Once the scene file is loaded, the
connected properties of the controller now refer to the objects created by the Interface Builder file.

Figure 3-10. Selecting the View Controller object for a scene

Note Don’t worry if you don’t get this concept right away. Interface Builder is very elegant and simple, but
it takes most people a while to fully grasp how it works. Check out Chapter 15 for an in‑depth explanation of
how Interface Builder works its magic.

You’ve created the objects, and now you’re going to connect them together. Show the
connections inspector. In it, you’ll see the urlField and webView properties you just added to
SUViewController.h. These appear in Interface Builder because you included the IBOutlet keyword
in your @property declaration.

Drag the connection circle to the right of the urlField and connect it to the text field object in the
navigation bar, as shown in Figure 3-11. Now, when the SUViewController scene is loaded, the
urlField property of your SUViewController object will refer (point) to the text field object in your
interface. Pretty cool, huh?

66 CHAPTER 3: Spin a Web

Another handy way of setting connections is to control+drag or right-click+drag from the object with
the connection to the object you want it connected to. Holding down the control key, click the View
Controller object and connect it to the web view object, as shown in Figure 3-12.

When you release the mouse button, a pop-up menu will appear asking you to choose which outlet
to set. Choose webView.

Adding Actions to SUViewController
So why did you do all of this (creating outlet properties and connecting them in Interface Builder)?
Your controller object needs to get the value of the URL typed by the user and communicate that to
the web view object, so the web view knows what URL to load. Your SUViewController is acting as
a liaison or manager, getting data from one object (the text field) and assigning tasks to another (the
web view). Do you see now why it’s called a controller?

Figure 3-12. Connecting the web view outlet

Figure 3-11. Connecting an owner object outlet

67CHAPTER 3: Spin a Web

It’s a simple task, but there has to be some code that will make it happen. Select the
SUViewController.m file in the project navigator and switch to the assistant editor view, as shown in
Figure 3-13.

Figure 3-13. Assistant view of SUViewControler.m and SUViewController.h

The assistant editor view shows both sides of your SUViewController class. On the left is its
@implementation (in the .m file), and on the right is its @interface (in the .h file). A class’s interface
describes what an object does. Its implementation defines how it does it.

Tip If the right side of the assistant editor isn’t showing the SUViewController.h file, choose
Counterparts from the navigation menu just above the editing pane, as shown in Figure 3‑13.

The code you write to accomplish things goes in the .m (implementation) file, where you give each
task a method name. In the .h (interface) file you then declare the names of those methods and
properties that other objects need to use your object. This is how objects encapsulate, or hide, the
details of what they do. This makes them simpler to use, just as a complicated device (like an iPod)
hides the details of how it works behind an easy-to-use interface. The entire iOS is written this way.
In fact, the Cocoa Touch software development kit (SDK) is mostly the .h files that Apple wrote to
make iOS work. Apple gives you the .h files, so you know how to use any object in iOS, while the .m
files—the part with the actual code—stays locked away in Cupertino.

In the SUViewController.m file, you see that two methods (-viewDidLoad and
-didReceiveMemoryWarning) already exist. Between those and the @end statement, add this new
method:

- (IBAction)loadLocation:(id)sender
{
 NSString *urlText = self.urlField.text;

 if (![urlText hasPrefix:@"http:"] && ![urlText hasPrefix:@"https:"]) {
 if (![urlText hasPrefix:@"//"])

68 CHAPTER 3: Spin a Web

 urlText = [@"//" stringByAppendingString:urlText];
 urlText = [@"http:" stringByAppendingString:urlText];
 }

 NSURL *url = [NSURL URLWithString:urlText];

 [self.webView loadRequest:[NSURLRequest requestWithURL:url]];
}

This method does one simple task: load the web page at the URL entered by the user. This will
require three basic steps:

1. Get the string of characters the user typed into the text field

2. Convert that string of characters into an URL object

3. Request that the web view object load the page at that URL

Here’s the breakdown of this code.

NSString *urlText = self.urlField.text;

The first line declares a new string object variable, named urlText, and assigns it the value of
the text property of the urlField property of this object. The self keyword refers to this object
(SUViewController). The urlField property is the one you just added to this class. Your urlField
refers to a UITextField object, and a UITextField object has a text property that contains the
characters currently in the field—either ones the user typed or those you put there programmatically.
(See, I used the word “programmatically” again.)

Tip To see the documentation for any class or constant, hold down the option key and single‑click
(quick view) or double‑click (full documentation) on its name. To see the properties and methods of the
UITextField class, hold down the option key and double‑click the word UITextField in the .h file.

Part one of your task is already accomplished; you’ve retrieved the text of the URL using the
urlField property you defined and connected. The next few lines might look a little strange.

if (![urlText hasPrefix:@"http:"] && ![urlText hasPrefix:@"https:"]) {
 if (![urlText hasPrefix:@"//"])
 urlText = [@"//" stringByAppendingString:urlText];
 urlText = [@"http:" stringByAppendingString:urlText];
 }

If you’re comfortable with Objective-C, take a close look at this code. It isn’t critical to your app; you
could leave it out, and your app would still work. It does, however, perform a kindness for your users.
It checks to see if the string the user typed in starts with http:// or https://, the standard protocols
for a web page. If these standard URL elements are missing, this code inserts one automatically.

69CHAPTER 3: Spin a Web

Computers tend to be literal, but you want your app to be forgiving and friendly. The above
code allows the user the type in just www.apple.com (for example), instead of the correct
http://www.apple.com, and the page will still load. Does that make sense? Let’s move on.

Object-oriented programming is all about encapsulating the complexity of things in objects. While
a string object can represent the characters of an URL, it’s still just a string (an array of characters).
Most methods that work with URLs expect an URL object. In Cocoa Touch, the class of URL objects
is NSURL. How do you turn the NSString object you got from the text field into an NSURL object you
can use with the web view? I thought you’d never ask.

NSURL *url = [NSURL URLWithString:urlText];

This line of code asks the NSURL class to create a new URL object from a string object. The string
object you pass to the +URLWithString method is the urlText reference you got in the first line. A
reference to the new URL object is returned and stored in the new url variable. As you can see, it’s
pretty easy to convert a string object into an URL object, and there are methods that convert the
other way too, which you’ll use later in this chapter.

With the second step accomplished, the last thing left to do is display the web page at that URL in
the web view. That’s accomplished with the last line in your method:

[self.webView loadRequest:[NSURLRequest requestWithURL:url]];

self.webView is the webView property you created earlier, and it’s connected to the web view
object on the screen. You send that object a -loadRequest: message to load the page. It turns out,
however, that a web view needs an URL request (NSURLRequest) object, not just a simple URL object.
An URL request represents not just an URL, but also describes how that URL should be transmitted
over the network. For your purposes, a plain-vanilla HTTP GET request is all you need, and the
expression [NSURLRequest requestWithURL:url] asks the NSURLRequest class to create you a simple
URL request from the given URL, which you pass on to -loadRequest:. The rest of the work is done
by the web view.

Setting Action Connections
Let’s review what you’ve accomplished so far. You have:

created a text field object where the user can type in an URL	

created a web view object that will display the web page at that URL	

added two outlets (properties) to your 	 SUViewController class

connected the text field and web view object to those properties	

wrote a 	 -loadLocation: method that takes the URL in the text view and loads it
in the web view

What’s missing? The question is “how does the -loadLocation: method get invoked?” That’s a really
important question and, at the moment, the answer is “never.” The next, and final, step is to connect
the -loadLocation: method to something so it runs and loads the web page.

http://www.apple.com/
http://www.apple.com/

70 CHAPTER 3: Spin a Web

Start by declaring the -loadLocation: method in SUViewController’s interface. Add the following
line, just before the @end statement, to your SUViewController.h file:

- (IBAction)loadLocation:(id)sender;

When you’re done, your files should look like those in Figure 3-14. This declaration tells the rest of
the world—well, the other objects in your app—that SUViewController has a method that will load a
web page. The IBAction keyword tells Interface Builder that this is a method that can be connected
to an object, just as the IBOutlet keyword told Interface Builder that the property was a connectable
outlet. A method that can be connected to objects (like buttons and text fields) in your interface is
called an action.

Figure 3-15. Setting the Did End On Exit action connection

Figure 3-14. Finished -loadLocation: action

Click on the Main_iPhone.storyboard file again. Select the text field object and switch to the
connections inspector. Scroll down until you find Did End On Exit in the Sent Events section. Drag
the connection circle to the View Controller object and release the mouse, as shown in Figure 3-15.
A pop-up menu will ask you what action you want this event connected to; choose -loadLocation:
(which is currently the only action).

71CHAPTER 3: Spin a Web

You also want the web page loaded when the user taps the refresh button, so connect the refresh
button to the same action. The refresh button is simpler than the text field, and only sends one kind
of event (“I was tapped”). Use an Interface Builder shortcut to connect it. Hold down the control
key, click on the refresh button, and drag the connection to the View Controller object. Release the
mouse button and select the -loadLocation: action, as shown in Figure 3-16.

Testing the Web Browser
Are you excited? You should be. You just wrote a web browser app for iOS! Make sure the build
destination is set to an iPhone Simulator (see Figure 3-17) and click on the Run button.

Figure 3-16. Setting the action for the refresh button

Figure 3-17. Setting iPhone Simulator destination

Your app will build and launch in the iPhone simulator, as shown on the left in Figure 3-18. Tap the
text field and an URL-optimized keyboard appears. Tap out an URL (I’m using www.apple.com for this
example), and tap the Go button. The keyboard retracts and Apple’s home page appears in the web
view. That’s pretty darn nifty.

http://www.apple.com/

72 CHAPTER 3: Spin a Web

So how does it work? The text field object fires a variety of events, depending on what’s happening
to it. You connected the Did End On Exit event to your -loadLocation: action. This event is
sent when the user “ends” editing, by tapping the action button in the keyboard (Go). When you
ran the app and tapped Go, the text field triggered its Did End On Exit event, which sent your
SUViewController object a -loadLocation: message. Your method got the URL the user typed in
and told the web view to load it. Voila! The web page appears.

Figure 3-18. Testing Your Web Browser

Note The iOS simulator uses your computer’s Internet connection to emulate the device’s Wi‑Fi or cellular
data connection. If you’re working through this chapter on a desert island, your app might not work.

Debugging the Web View
What you’ve developed so far is pretty impressive. Go ahead, try any web page, I’ll wait. There are
only two things about it that bother me. First, when you tap a link in the page the URL in the text
field doesn’t change. Secondly, the web pages are crazy big.

The second problem is easy to fix. Quit the simulator, or switch back to Xcode and click the Stop
button in the toolbar. Select the web view object in Interface Builder and switch to the attributes
inspector, as shown in Figure 3-19. Find and check the Scale Page to Fit option. Now, when the
web view loads a page, it will zoom the page so you can see the whole thing.

73CHAPTER 3: Spin a Web

The first problem is a little trickier to solve, and requires some more code. We’ll address that one as
you add the rest of the functionality to your app.

Adding URL Shortening
You now have an app that lets you enter an URL and browse that URL in a web browser. The next
step, and the whole purpose of this app, is to convert the long URL of that page into a short one.

To accomplish that, you’ll create and layout new visual objects in Interface Builder, create outlets
and actions in your controller class, and connect those outlets and actions to the visual object, just
as you did in the first part of this chapter. If you haven’t guessed by now, this is the fundamental app
development workflow: design an interface, write code, and connect the two.

Start by fleshing out the rest of the interface. Edit Main_iPhone.storyboard, select the web view
object, grab its bottom resizing handle, and drag it up to make room for some new view objects at
the bottom of the screen, as shown in Figure 3-20. Select the vertical constraint beneath the view
(also shown in Figure 3-17) and delete it. You no longer want the bottom edge of the web view to be
at the bottom edge of the superview; you now want it to snuggle up to the toolbar view, which you’ll
add in a moment.

Figure 3-19. Setting Scale Page to Fit property

Figure 3-20. Making room for new views

74 CHAPTER 3: Spin a Web

In the library, find the Toolbar object (not a Navigation Bar object, they look similar) and drag it into
the view, as shown in Figure 3-21. Position it so it fits snugly at the bottom of the view.

Figure 3-21. Adding a toolbar

Figure 3-22. Adding additional button objects to the toolbar

Find the Bar Button Item in the library and add toolbar button objects to the toolbar, as shown in
Figure 3-22, until you have three buttons.

You’re going to customize the look of the three buttons to prepare them for their roles in your app.
The left button will become the “shorten URL” action, the middle one will be used to display the
shortened URL, and the right one will become the “copy short URL to clipboard” action. Switch to
the attributes inspector and make these changes:

Select leftmost button	

change identifier to 	 Play

uncheck Enabled	

Select middle button	

set style to 	 Plain

change title to “Tap arrow to shorten”	

change tint to 	 Black Color

75CHAPTER 3: Spin a Web

Select the rightmost button	

change title to “Copy”	

uncheck Enabled	

Now select and resize the web view, so it touches the new toolbar. Finish the layout by choosing
Add Missing Constraints in View Controller from the Resolve Auto Layout Issues button.
The final layout should look like Figure 3-23.

Figure 3-23. Finished interface

Just like before, you’ll need to add three outlets to the SUViewController class so your object has
access to these three buttons. Select the SUViewController.h file in the project navigator, and add
these three declarations:

@property (weak,nonatomic) IBOutlet UIBarButtonItem *shortenButton;
@property (weak,nonatomic) IBOutlet UIBarButtonItem *shortLabel;
@property (weak,nonatomic) IBOutlet UIBarButtonItem *clipboardButton;

Select the Main_iPhone.storyboard Interface Builder file, select the View Controller object, and
switch to the connections inspector. The three new outlets will appear in the inspector. Connect
the shortenButton outlet to the left button, the shortLabel outlet to the middle button, and the
clipboardButton to the right button, as shown in Figure 3-24.

76 CHAPTER 3: Spin a Web

Designing the URL Shortening Code
With your interface finished, it’s time to roll up your sleeves and write the code that will make this
work. Here’s how you want your app to behave:

The user enters an URL into the text field and taps Go. The web view loads the 	
web page at that URL and displays it.

When the page is successfully loaded, two things happen:	

The URL field is updated to reflect the actual URL loaded.	

The “shorten URL” button is enabled, allowing the user to tap on it.	

When the user taps the “shorten URL” button, a request is sent to the URL 	
shortening service.

When the URL shortening service sends its response, two things happen:	

The shortened URL is displayed in the toolbar.	

The “copy to clipboard” button is enabled, allowing the user to tap on it.	

When the user taps on the “copy to clipboard” button, the short URL is copied 	
to the iOS clipboard.

You can already see how most of this is going to work. The “shorten URL” and “copy to clipboard”
button objects will be connected to actions that perform those functions. The outlets you just
created will allow your code to alter their state, such as enabling the buttons when they’re ready.

The pieces in between these steps are a little more mysterious. The “When the page is successfully
loaded” makes sense, but how does your app learn when the web page has loaded, or if it was
successful? The same it true with the “when the URL shortening service sends its response.” When
does that happen? The answer to these questions is found in multitasking and delegates.

“Multi-what” you ask? Multitasking is doing more than one thing at a time. Usually, the code you
write does one thing at a time, and doesn’t perform the next thing until the first is finished. There are,

Figure 3-24. Connecting outlets to toolbar buttons

77CHAPTER 3: Spin a Web

however, techniques that enable your app to trigger a block of code that will execute in parallel, so
that both blocks of code are running, more or less, concurrently. This is explained in more detail in
Chapter 24. You’ve already done this in your app, probably without realizing it:

[self.webView loadRequest:[NSURLRequest requestWithURL:url]];

The -loadRequest: message you sent the web view object didn’t load the URL; it simply starts the
process of loading the URL. The call to this method returns immediately and your code continues
on, doing other things. This is called an asynchronous method. One of those things you want to
keep doing is responding to user touches—something that’s covered in Chapter 4. This is important,
because it keeps your app responsive.

Meanwhile, code that’s part of the UIWebView class started running on its own, quietly sending
requests to a web server, collecting and interpreting the responses, and ultimately displaying the
rendered page in the web view. This is often referred to as a background thread, or background task,
because it does its work silently, and independently, of your main app (called the foreground thread).

Becoming a Web View Delegate
All of this multitasking theory is great to know, but it still doesn’t answer the question of how your
app learns when a web page has, or has not, loaded. There are several ways tasks can communicate
with one another. One of those ways is to use a delegate. A delegate is an object that agrees to
undertake certain decisions or tasks for another object, or would like to be notified when certain
events occur. It’s this last aspect of delegates that you’ll use in this app.

The web view class has a delegate outlet. You connect that to the object that’s going to be its
delegate. Delegates are a popular programming pattern in iOS. If you poke around the Cocoa Touch
library, you’ll see that a lot of classes have a delegate outlet. Chapter 6 covers delegates in some
detail.

Becoming a delegate is a three-step process:

1. In your custom class, adopt the delegate’s protocol.

2. Implement the appropriate protocol methods.

3. Connect the delegate outlet of the object to your delegate object.

A protocol is a contract, or promise, that your class will implement specific methods. This lets other
objects know that your object has agreed to accept certain responsibilities. A protocol can declare
two kinds of methods: required and optional. All required methods must be included in your class’s
implementation. If you leave any out, you’ve broken the contract, and your project won’t compile.

It’s up to you to decide which optional methods you implement. If you implement an optional
method, your object will receive that message. If you don't, it won’t. It’s that simple. Most delegate
methods are optional.

78 CHAPTER 3: Spin a Web

Tip A few older classes rely on what is called an informal protocol. It really isn’t a protocol at all, but a
documented set of methods that your delegate is expected to implement. The documentation for the class will
explain which you should use. All of the steps for using an informal protocol are the same, except that there’s
no formal protocol name to add to your class.

The first step is to decide what object will act as the delegate and adopt the appropriate protocol.
Select your SUViewController.h file. Change the line that declares the class so it reads:

@interface SUViewController : UIViewController <UIWebViewDelegate>

The change is adding the <UIWebViewDelegate> to the end of the class declaration, between less
than and greater than symbols, sometimes referred to as “angled brackets.” Adding this to your
class definition means that your class agrees to handle messages listed in the UIWebViewDelegate
protocol, and is prepared to be connected to a UIWebView’s delegate outlet.

Looking up the UIWebViewDelegate protocol, you find that it lists four methods, all of which are
optional:

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType;
- (void)webViewDidStartLoad:(UIWebView *)webView;
- (void)webViewDidFinishLoad:(UIWebView *)webView;
- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error;

The first method, -webView:shouldStartLoadingWithRequest:navigationType:, is sent to the
delegate whenever the user taps on a link. It allows your delegate to decide if that link should be
taken. You could, for example, create a web browser that kept the user on a particular site, like a
school calendar. Your delegate could block any link that took the user to another site, or maybe just
warn them that they were leaving. This app doesn’t need to do anything like that, so just ignore this
method. By not implementing this method, the web view will let the user tap, and follow, any link
they want.

The next three methods are the ones you’re interested in. -webViewDidStartLoad: is sent to your
delegate when a web page begins to load. -webViewDidFinishLoad: is sent when it’s finished. And
finally, -webView:didFailLoadWithError: is sent if the page could not be loaded for some reason.

You want to implement all three of these methods. Get started with the first one. Select your
SUViewController.m (the implementation) file, and find a place to add this method:

- (void)webViewDidStartLoad:(UIWebView *)webView
{
 self.shortenButton.enabled = NO;
}

When a web page begins to load, this method will disable (by setting the enabled property to NO), the
button that shortens an URL. You do this simply so the short URL button can’t be triggered between

79CHAPTER 3: Spin a Web

pages, and also we’re not sure if the page can be loaded successfully yet. You’d like to limit the URL
shortening to URLs you know are good.

Below that method, add this one:

- (void)webViewDidFinishLoad:(UIWebView *)webView
{
 self.shortenButton.enabled = YES;
 self.urlField.text = webView.request.URL.absoluteString;
}

This method is invoked after the web page is finished loading. The first line uses the shortenButton
outlet you created earlier to enable the “shorten URL” button. So as soon as the web page loads,
the button to convert it to a short URL becomes active.

The second line fixes up an issue I brought up earlier in the “Debugging” section. You want the URL
in the text field at the top of the screen to reflect the page the user is looking at in the web view. This
code keeps the two in sync. After a web page loads, this line digs into the webView object to find the
URL that was actually loaded. The request property (an NSURLRequest) contains an URL property
(an NSURL), which has a property named absoluteString. This property returns a plain string object
(NSString) that describes the complete URL. In short, it turns an URL into a string, the reverse of
what you did in -loadLocation:. The only thing left to do is to assign it to the text property of the
urlField object, and the new URL appears in the text field.

The last method is received only if the web page couldn’t be loaded. It is, ironically, the most complicated
method because we want to take the time to tell the user why the page wasn’t loaded—instead of just
making them guess. Here’s the code:

- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error
{
 NSString *message = [NSString stringWithFormat:
 @"A problem occurred trying to load this page: %@",
 error.localizedDescription];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Could not load URL"
 message:message
 delegate:nil
 cancelButtonTitle:@"That's Sad"
 otherButtonTitles:nil];
 [alert show];
}

The first statement creates a message that says “A problem occurred…” and includes a description
of the problem from the error object the web view sent along with this message. The next two
statements create an alert view—a pop-up dialog—presenting the message to the user.

You’ve now done everything you need to make your SUViewController object a web view delegate,
but it isn’t a delegate yet. The last step is to connect the web view to it. Select the
Main_iPhone.storyboard file. Holding down the control key, drag from the web view object and
connect it to the View Controller. When you release the mouse button, choose the delegate outlet,
as shown in Figure 3-25.

80 CHAPTER 3: Spin a Web

Now your SUViewController object is the delegate for the web view. As the web view does its thing,
your delegate receives messages on its progress. You can see this working in the simulator. Run
your app, go to an URL (the example in Figure 3-26 uses http://developer.apple.com), and now
follow a link or two in the web view. As each page loads, the URL in the text field is updated.

Figure 3-25. Connecting the web view delegate

Figure 3-26. URL field following links

http://developer.apple.com/

81CHAPTER 3: Spin a Web

Tip Also try loading an URL or two that can’t be loaded by entering an invalid domain name or non‑existing
path, as shown in Figure 3‑26. It’s important to test how your app handles failure too.

Shortening an URL
You’ve finally arrived at the moment of truth: writing the code to shorten the URL. But first, let’s
review what has happened so far:

The user has entered an URL and loaded it into a web view.	

When the web view loaded, it sent your 	 SUViewController object a
-webViewDidFinishLoad: message, where your code enabled the “shorten URL”
button.

What you want to happen next is for the user to tap the “shorten URL” button and have the
long URL be magically converted into a short one. That sounds like an action. Select your
SUViewController.m file again and add this new method:

- (IBAction)shortenURL:
(id)sender
{
 NSString *urlToShorten = self.webView.request.URL.absoluteString;
 NSString *urlString = [NSString
 stringWithFormat:@"http://api.x.co/Squeeze.svc/text/%@?url=%@",
 kGoDaddyAccountKey,
 [urlToShorten
 stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding]];

 shortURLData = [NSMutableData new];

 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:urlString]];
 shortenURLConnection = [NSURLConnection connectionWithRequest:request
 delegate:self];

 self.shortenButton.enabled = NO;
}

In SUViewController.h, also add this line (just before the @end statement):

- (IBAction)shortenURL:(id)sender;

This line declares the -shortURL: method to be an action and lets Interface Builder know that it can
connect objects to it.

The -shortenURL: method sends a request to the X.co URL shortening service. iOS includes a
number of classes that make complicated things—like sending and receiving an HTTP request to a
web server—relatively easy to write.

http://api.x.co/Squeeze.svc/text/%25@?url

82 CHAPTER 3: Spin a Web

X.CO URL SHORTENING SERVICE

I chose to use the X.co URL shortening service in this project for several reasons. First, the service is free. Second, it has
a well‑documented and straightforward API (Application Program Interface) that can be used by performing a simple
HTTP request. Finally, it has some debugging and management features. The service lets you log in and see what URLs
your app has shortened, which is useful while you’re trying to debug it.

The X.co service is provided by GoDaddy. To use X.co, go to the X.co web page and either create a free account or log in
with your existing GoDaddy account (if you’re already a customer). In your X.co account settings, you’ll find an account
key—a 32‑character hexadecimal string—that uniquely identifies you to the X.co service. This key must be included in
your requests. Once you have your key, add the following line to the beginning of your SUViewController.m file (just
before the @implementation statement), replacing the dummy number between the quotes with your account key:

#define kGoDaddyAccountKey @"0123456789abcdef0123456789abcdef"

There are other URL shortening services out there, and you could easily adapt this app to use almost any of them. Some
services, such as bitly, even offer an iOS SDK that you can download and include in your project!

The X.co services will accept an HTTP GET request that includes the URL to be shortened, and
replies with a shortened URL. It’s that simple. A GET request is particularly easy to construct,
because all of the needed information is in the URL.

Writing -shortenURL:
Begin by constructing the URL. You’ll need three pieces of information:

The service request URL	

Your GoDaddy account key	

The long URL to shorten	

The first piece of information is documented at the X.co web site. To convert a long URL into a short
one, and have the service return the shortened URL as plain text, submit an URL with this format:

http://api.x.co/Squeeze.svc/text/<YourAccountKey>?url=<LongURL>

To construct this URL, you’ll need the values for the two placeholders, <YourAccountKey> and
<LongURL>. Get your account key from GoDaddy and use it to define the kGoDaddyAccountKey
preprocessor macro (see the X.co URL Shortening Service sidebar).

The last bit of information you need is the URL to shorten. Start with that, just as you did in
-webViewDidFinishLoad: method, and assign it to the urlToShorten variable:

NSString *urlToShorten = self.webView.request.URL.absoluteString;

The second line of code is the most complicated statement in your app. It constructs the entire URL
using NSString’s +stringWithFormat: method. The first parameter is the format string, or template,

http://api.x.co/Squeeze.svc/text/%3cYourAccountKey%3e?url=%3cLongURL%3e%0d

83CHAPTER 3: Spin a Web

for the finished string object. The two %@ sequences in the format are replaced with the values of
the next two parameters. The first is the kGoDaddyAccountKey constant you defined earlier, and the
second is the URL you want shortened, currently residing in the urlToShorten variable.

Notice that the urlToShorten value isn’t used directly. Instead, it is sent the
-stringByAddingPercentEscapesUsingEncoding: message. This message replaces any characters
that have special meaning in an URL with a character sequence that won’t be confused for something
important. The sidebar “URL String Encoding” explains why this is done and how it works.

URL STRING ENCODING

Computers, and thus computer programmers, deal with strings a lot. A string is a sequence of characters. Often, some
characters in a string have special meaning. An URL can be represented as a string. Special characters separate the
various parts of the URL. Here’s a generic URL with the special characters in bold:

scheme://some.domain.net/path?param1=value1¶m2=value2#anchor

The colon, forward slash, question mark, ampersand, equals, and pound sign (hash) characters all have special meaning
in an URL: they’re used to identify the various parts of the URL. All of the characters following the question mark are the
query string portion of the URL. The ampersand character separates multiple name/value pairs. The fragment ID follows
the pound sign character, and so on.

So how do you write an URL that has a question mark character in the path, or an ampersand character in one of the
query string values? You can’t write the following, it won’t make any sense:

http://server.net/what?artcl?param=red&white

This is the problem you’re faced with when sending an URL to the X.co service. The query string of your URL contains
another URL—it’s full of special characters, all of which have to be ignored. What you need is a way to write a character
that normally has special meaning, without its special meaning. What you need is an escape sequence.

An escape sequence is a special sequence of characters used to represent a single character so it’s treated like any
other character, instead of something special. (Read that again until it makes sense.) URLs use the percent character
(%) followed by two hexadecimal digits. When an URL sees a percent character followed by two hex digits, as in %63, it
treats it as a single character, determined by the value of the two digits. Converting characters into escape sequences to
preserve their values is call encoding a string.

The sequence %63 represents a single question mark character (?) and %38 means a single ampersand character (&).
Now you can encode that pesky URL, and it will make sense to the recipient:

http://server.net/what%63artcl?param=red%38white

The -stringByAddingPercentEscapesUsingEncoding: method converts any characters that might be confusing
to an URL and replaces them with escape sequences that mean the same character, but without any special meaning.
Now you have a string you can safely append to the query portion of the URL without confusing anyone.

http://scheme://some.domain.net/path?param1=value1%26param2=value2%23anchor%0d
http://server.net/what?artcl?param=red&white
http://server.net/what%2563artcl?param=red%2538white

84 CHAPTER 3: Spin a Web

shortURLData = [NSMutableData new];

The third line of code might seem like a bit of a mystery. It sets an instance variable named
shortURLData to a new, empty, NSMutableData object. Don’t worry about it now. It will make sense
soon.

The next line of code is very similar to what you used earlier to load a web page:

NSURLRequest *request = [NSURLRequest requestWithURL:
 [NSURL URLWithString:urlString]];

Just like the web view, the NSURLConnection class (the class that will send the URL for us) needs an
NSURLRequest. The NSURLRequest needs an NSURL. Working backwards, this line creates an NSURL from
the URL string you just constructed, and uses that to create a new NSURLRequest object, saving the
final results in the request variable.

The next statement is what does (almost) all of the work:

shortenURLConnection = [NSURLConnection connectionWithRequest:request
 delegate:self];

NSURLConnection’s +connectionWithRequest: creates a new NSURLConnection object and immediately
starts the process of sending the requested URL. Just like the web view’s -loadRequest: method,
this is an asynchronous message—it simply starts a background task and returns immediately. And
just like the web view, you supply a delegate object to receive messages about its progress, as they
occur.

Unlike a web view, however, the delegate for an NSURLConnection is passed (programmatically)
when you make the request. That’s what the delegate:self part of the message does; it tells
NSURLConnection to use this object (self) as the delegate.

What’s that you say? You haven’t made the SUViewController class an URL connection delegate?
You’re absolutely right, and that’s not your only problem. Xcode is also complaining that the
variables shortURLData and shortenURLConnection don’t exist either, as shown in Figure 3-27. Start
by fixing the missing variables.

Figure 3-27. Compiler errors in -shortenURL:

85CHAPTER 3: Spin a Web

Adding Private Instance Variables
The missing variables needed to be added to your SUViewController class. When receiving the
information from a remote service, a couple of pieces of information must be maintained while that
happens. These are the NSURLConnection object, that’s doing the work, and an NSMutableData object,
that will collect the data sent back from the web server.

These variables, however, are not for public consumption; they don’t need to be accessed by other
objects, or connected in Interface Builder. Simply put, these are private variables. You create private
variables by declaring them in the private interface of the SUViewController. Scroll to the beginning
of the SUViewController.m file and find the @interface SUViewController () section. Change it so it
looks like this (new code in bold):

@interface SUViewController ()
{
 NSURLConnection *shortenURLConnection;
 NSMutableData *shortURLData;
}
@end

As soon as you add this, the warnings you saw in -shortenURL: will go away.

Tip Another way of creating private variables is to add them to your public @interface
SUViewController section in SUViewController.h, but precede them with a @private directive. Read
all about @private and private interfaces in Chapter 20.

Becoming an NSURLConnection Delegate
You can now follow the same steps you took to make SUViewController a delegate of the web view,
to turn it into an NSURLConnection delegate as well. There’s no practical limit on how many objects
your object can be a delegate for.

Step one is to adopt the protocols the make your class a delegate. NSURLController declares a
couple of different delegate protocols, and you’re free to adopt the ones that make sense to your
app. In this case, you want to adopt the NSURLConnectionDelegate and NSURLConnectionDataDelegate
protocols. Do this by adding those protocol names to your SUViewController class, in your
SUViewController.h file, like this:

@interface SUViewController : UIViewController <UIWebViewDelegate,
 NSURLConnectionDelegate,
 NSURLConnectionDataDelegate>

The NSURLConnectionDelegate defines methods that get sent to your delegate when key events
occur. There are a slew of messages that deal with how your app responds to authenticated content
(files on the web server that are protected by an account name and password). None of that applies

86 CHAPTER 3: Spin a Web

to this app. The only message you’re interested in is -connection:didFailWithError:. That message
is sent if the request fails for some reason. Open your SUViewController.m file and add this new
method:

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error
{
 self.shortLabel.title = @"failed";
 self.clipboardButton.enabled = NO;
 self.shortenButton.enabled = YES;
}

It’s unlikely that an URL shortening request would fail. The only likely cause would be that your
iPhone has temporarily lost its Internet connection. Nevertheless, you want your app to behave itself,
and do something intelligent, under all circumstances. This method handles a failure by doing three
things:

Sets the short URL label to “failed”, indicating that something went wrong	

Disables the “copy to clipboard” button, because there’s nothing to copy	

Turns the “shorten URL” button back on, so the user can try again	

With the unlikely stuff taken care of, let’s get to what should happen when you send a request. The
NSURLConnectionDataDelegate protocol methods are primarily concerned with how your app gets
the data returned from the server. It, too, defines a bunch of other methods you’re not interested in.
The two you are interested in are -connection:didReceiveData: and -connectionDidFinishLoading:.
Start by adding this -connection:didReceiveData: method to your implementation:

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 [shortURLData appendData:data];
}

The X.co service returns the shortened URL in the body of the HTTP response, as a simple string of
ASCII characters. Your delegate object will receive a -connection:didReceiveData: message every
time new body data has been received from the server. In this app, that’s probably only going to be
once, since the amount of data you’re requesting is so small. If your app requested a lot of data (like
an entire web page), this message would be sent multiple times.

The only thing this method does it take that data that was received (in the data parameter), and
adds it to the buffer of data you’re maintaining in shortURLData. Remember the shortURLData =
[NSMutableData new]; statement back in -shortenURL:? That statement set up an empty buffer
(NSMutableData) before the request was started. As you receive the answer to that request, it
accumulates in your shortURLData variable. Does that all make sense? Let’s move on to the final
method.

87CHAPTER 3: Spin a Web

The last method should be self-explanatory by now. The -connectionDidFinishLoading: message is
sent when the transaction is complete: you’ve sent the URL request, received all of the data, and the
whole thing was a success. Add this method to your implementation:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSString *shortURLString = [[NSString alloc] initWithData:shortURLData
 encoding:NSUTF8StringEncoding];
 self.shortLabel.title = shortURLString;
 self.clipboardButton.enabled = YES;
}

The first statement turns the ASCII bytes you received in -connection:didReceiveData: and turns
them into a string object. String objects use Unicode character values, so turning a string of bytes
into a string of characters requires a little conversion.

Tip If you need to convert NSString objects to or from other forms, such as C strings or byte arrays, it would
help to learn a little about Unicode characters. There’s a great article for beginners, titled “The Absolute
Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets
(No Excuses!)” by Joel Spolsky at http://joelonsoftware.com/articles/Unicode.html.

The second line sets the title of the shortLabel toolbar button to the short URL you just received
(and converted). This makes the short URL appear at the bottom of the screen.

The last step is to turn on the “copy to clipboard” button. Now that your app has a valid short URL,
it has something to copy.

Testing The Service
You’re almost ready to test your app, there’s just one tiny detail to attend to first. You’ve written the
code that sends the request to the X.co service, you’ve set up delegate methods to collect the data
that comes back, and you’ve written code to deal with any problems. The only thing left to do is
connect the “shorten URL” button in the interface to your -shortenURL: action, so all that happens
when you tap the button.

Select the Main_iPhone.storyboard file. Holding down the control key, click on the “shorten URL”
button and connect its action to the File’s Owner. Release the mouse button and choose the
-shortenURL: method, as shown in Figure 3-28.

http://joelonsoftware.com/articles/Unicode.html

88 CHAPTER 3: Spin a Web

Run your app and enter an URL. In the example shown in Figure 3-25, I’ve entered
http://www.apple.com. When the page loads, the “shorten URL” button becomes active. Tap on it and,
within a second or two, a short URL to this page appears in the toolbar (on the right in Figure 3-29).

Figure 3-28. Connecting the “shorten URL” button

Figure 3-29. The Shorty app in action

http://www.apple.com/

89CHAPTER 3: Spin a Web

This calls for a celebration! You’ve created a remarkably sophisticated app by leveraging the power
of existing iOS classes, judiciously connecting the right objects together, and writing action and
delegate methods to handle the details.

Final Touches
You’re still not quite done. You’ve yet to write the action that copies the short URL to the system
clipboard. Fortunately, that’s not difficult to code either. In your SUViewController.m file, add this
method:

- (IBAction)clipboardURL:(id)sender
{
 NSString *shortURLString = self.shortLabel.title;
 NSURL *shortURL = [NSURL URLWithString:shortURLString];
 [[UIPasteboard generalPasteboard] setURL:shortURL];
}

The first line gets the text of the URL from the shortLabel button that was set by
-connectionDidFinishLoading:. The second line turns the text of the short URL into an URL object,
just as you did in the -loadLocation: method you wrote at the beginning of the chapter. Finally,
the [UIPasteboard generalPasteboard] method returns the system-wide pasteboard for “general”
data—what most people think of as the clipboard. You send that pasteboard object the -setURL:
message, passing it the URL object you just created. And almost as if by magic, the short URL is
now on the clipboard.

In your SUViewController.h file, add this line:

- (IBAction)clipboardURL:(id)sender;

Now you can use Interface Builder to connect the “copy to clipboard” button to the -clipboardURL:
method. Do this the same way you connected the “shorten URL” button (refer to Figure 3-24).

With everything hooked up, run your app again. You should get in the habit of running your app as
you write it, testing each new feature and function as it is developed. In the simulator, go to an URL,
and generate a shortened one, as shown on the left in Figure 3-30. Once you have a shortened URL,
tap the Copy button.

90 CHAPTER 3: Spin a Web

Tap in the text field again, and clear the field. Hold down your mouse (simulated finger) until the
Paste pop-up button appears (middle in Figure 3-30). Tap the paste button, and the shortened URL
will be pasted into the field, as shown on the right in Figure 3-30. This would also work with any
other app that allows you to paste text.

As a final test, tap the Go button. The shortened URL will be sent to the x.co server, the server will
redirect your browser back to the original URL, and the web page you started at will reappear in the
browser, along with the original URL in the text field.

Cleaning Up the Interface
You app is fully functional, but there are still a few quirks in the interface. With the simulator still
running, choose the Hardware ➤ Rotate Left command. This simulates turning the device 90°
counter-clockwise, as shown in Figure 3-31. Most of it still looks OK, but the buttons in the bottom
toolbar get squished over to the left, which looks cheesy.

Figure 3-30. Testing the clipboard

91CHAPTER 3: Spin a Web

Quit the simulator, change the project destination in the toolbar to iPad Simulator, and run your app
again, this time on a simulated iPad (on the right in Figure 3-31). This is terrible! The iPad version
doesn’t show any interface at all!

That’s because you haven’t created one. All of your interface objects were created and connected
in the Main_iPhone.storyboard file. As you are undoubtedly realizing, that’s the Interface Builder file
that gets loaded when your app runs on your iPhone. The Main_iPad.storyboard file is still empty.
You’ll take care of both of these problems in short order.

Figure 3-31. Testing device rotation

Note There are some standard file suffixes (~ipad, ~iphone, and @2x) that the iOS resource loader
(NSBundle) recognizes. You can use these to create multiple variants of any resource file, optimized for a
specific platform (~ipad/~iphone) or for a retina display (@2x). This, however, is not what’s happening with
Main_iPhone.storyboard and Main_iPad.storyboard. The storyboard that loads when your app
starts is determined by settings in your project. Select the project in the navigator, choose the app target, and
switch to the General tab. In the Deployment Info section you’ll find the name of the storyboard that an iPhone
or iPad will load when your app starts. They can be any storyboard file you choose; they can even be the
same storyboard file.

Start by fixing the layout of the toolbar. Quit the simulator, or click the stop button in Xcode. Select
the Main_iPhone.storyboard file. In the library, find the Flexible Space Bar Button Item. This
object, with a ridiculously long name, acts as a “spring” that fills the available space in a toolbar so
the button objects on either side get pushed to the edge of the screen.

92 CHAPTER 3: Spin a Web

Drag one flexible space item object and drop it between the “shorten URL” button and the short
URL field. Drop a second between the URL field and the “copy the clipboard” button, as shown in
Figure 3-32.

Figure 3-33. Testing iPhone rotation

Figure 3-32. Adding flexible space bar button items

With two flexible items, the “springs” share the empty space, causing the label in the middle to be
centered, and the copy button to shift all the way to the right. It’s not obvious in portrait orientation,
but if you rotate the device to landscape it works perfectly. Switch back to the iPhone simulator, run
your app (see Figure 3-33), and rotate the device to the left (or right). Now the toolbar looks much
nicer (on the right in Figure 3-33).

93CHAPTER 3: Spin a Web

Creating the iPad Version
The very last step will be to create the iPad version of your app. You might be groaning, thinking that
you have to start over from the beginning. Don’t worry; you’re surprisingly close to being finished.
First, a lot of the work in this app was the code, which you’ve already written. Second, just as you
did in the Surrealist app, you can copy and paste objects you’ve already created.

Select the Main_iPhone.storyboard file. Using the outline, select all of the top-level objects in the
view and copy them, as shown in Figure 3-34.

Figure 3-34. Copying the iPhone interface

Select the Main_iPad.storyboard file. Select the view object in the outline, and paste all of the
objects you just copied, as shown in Figure 3-35.

94 CHAPTER 3: Spin a Web

The clipboard duplicates all of the objects you created for the iPhone version, along with their
attributes. What it doesn’t copy is their positions, most constraints, or any of their connections.

Start by choosing Clear All Constraints in View Controller from the Resolve Auto Layout Issues
button. Exactly as you did for the iPhone interface (refer to Figure 3-4), add a Vertical Spacing
constraint from the toolbar and the Top Layout Guide and set the constraint’s value to 0. Arrange the
remaining objects in the iPad interface so they look like the iPhone’s. Everything will be bigger than
the iPhone version, including a wider text field in the navigation bar. When done, choose the Add
Missing Constraints item in the Resolve Auto Layout Issues button.

Using the connections inspector, or by control+dragging, establish the same connections you did for
the iPhone. This will include:

Connect each of the File’s Owner outlets to the correct interface object	

	urlField to the text field

	webView to the web view

	shortenButton to the “shorten URL” (left) button in toolbar

	shortLabel to the plain (middle) button in the toolbar

	clipboardButton to the “copy to clipboard” (right) button in the toolbar

Figure 3-35. Pasting object into the iPad interface

95CHAPTER 3: Spin a Web

Connect the sent events of the text field and each button to their respective 	
action:

text field’s Did End On Exit event to 	 -loadLocation:

refresh button to 	 -loadLocation:

“shorten URL” (left) button to 	 -shortenURL:

“copy to clipboard” (right) button to 	 -clipboardURL:

Don’t forget to set the web view’s delegate outlet	

Figure 3-36. Testing iPad version

Tip When making connections in Interface Builder using the control+drag shortcut, direction matters.
To connect an outlet, drag from the object with the outlet to the object you want it connected to. To connect
an action, drag from the object that sends the event to the object where the action is defined.

When you’re done, you’ll have a finished iPad app too. Switch to the iPad simulator and test it out,
as shown in Figure 3-36.

96 CHAPTER 3: Spin a Web

Summary
This was a really important chapter, and you made it through with flying colors. You learned a lot
about the fundamentals of iOS app development and Xcode’s workflow. You will use these skills in
practically every app you develop.

You learned how to whip up a web browser, something that can be used in a lot of ways, not just
displaying web pages. For example, you can create static web content by adding .html resource
files to your app, and have a web view load those files. The web view class will also let you interact
with its content using JavaScript, opening all kinds of possibilities.

Learning to create, and connect, outlets is a crucial iOS skill. As you’ve discovered, an iOS app is a
web of objects, and outlets are the threads that connect that web together.

Most importantly, you learned how to write action methods and create delegates. These two
patterns appear repeatedly throughout iOS.

In the next chapter, I’ll explain how events turn a finger touch into an action.

97

Chapter 4
Coming Events

Now that you’ve seen an iOS app in action, you might be wondering what keeps your app “alive,”
so to speak. In the Shorty app, you created action methods that were called when the user tapped
on a button or the Go key on the keyboard. You created delegate objects that received messages
when certain milestones were reached, like when a web page had problems loading or the URL
shortening service responded. You never wrote any code to see if the user had touched something
or checked to see if the web page had finished loading. In other words, you didn’t go out and get
this information; your app waited for this information to come to it.

iOS apps are event-driven applications. An event-driven application doesn’t (and shouldn’t!) spin in
a loop checking to see if something has happened. Event-driven applications set up the conditions
they want to respond to (a user’s touch, a change in the device’s orientation, the completion of a
network transaction). The app then sits quietly, doing nothing, until one of those things happen.
All of those things are collectively referred to as events, and are what this chapter is all about.

In this chapter you’re going to learn about:

Events	

Run loops	

Event delivery	

Event handling	

The first responder and the responder chain	

Running your app on a real iOS device	

I’ll start with some basic theory about how events get from the device’s hardware into your
application. You’ll learn about the different kinds of events and how they navigate the objects in
your app. Finally, you’ll create two apps: one that handles high-level events, and one that handles
low-level events.

98 CHAPTER 4: Coming Events

Run Loop
iOS apps sit perfectly still, waiting for something to happen. This is a very important feature of app
design, because it keeps your app efficient; the code in your app only runs when there’s something
important to do.

This, seemingly innocuous, arrangement is critical to keeping your user’s happy. Running computer
code requires electricity, and electricity in mobile devices is a precious commodity. Keeping your
code from running at unnecessary times allows iOS to conserve power. It does this by turning off,
or minimizing, the amount of power the CPU and other hardware accessories use when they are not
needed. This power management happens hundreds of times a second, but it’s crucial to the battery
life of mobile devices, and users love mobile devices with long battery life.

The code in your app is at the receiving end of two mechanisms: a run loop and an event queue.
The run loop is what executes code in your app when something happens, and stops your app from
running when there’s nothing to do. The event queue is a data structure containing the list of events
waiting to be processed. As long as there are events in the queue, the run loop sends them—one
at a time—to your app. As soon as all of the events have been processed, and the event queue is
empty, your app stops executing code.

Conceptually, your app’s run loop looks like this:

while (true) {
 UIEvent *event = [iOS waitForNextEvent];
 [yourApp processEvent:event];
 }

The magic is in the -waitForNextEvent message (which doesn’t exist, I made it up). If there’s an
event waiting to be processed, that event is removed from the queue and returned. The run loop
passes it to your app for processing. If there’s no event, the function simply doesn’t return; your app
is suspended until there’s something to do. Now let’s look at what those events are and where they
come from.

Event Queue
Events waiting to be processed are added to a FIFO (first in, first out) buffer called the event queue.
There are different kinds of events, and events come from different sources, as shown in Figure 4-1.

99CHAPTER 4: Coming Events

Let’s follow one event through your app. When you touch your finger to the surface of an iOS device,
here’s what happens:

1. Hardware in the screen detects the location of the touch.

2. This information is used to create a touch event object, which records the
position of the touch, what time it occurred, and other information.

3. The touch event object is placed in the event queue of your app.

4. The run loop pulls the touch event object from the queue and passes it to
your application object.

5. Your application object uses the geometry of the active views in your app to
determine which view your finger “touched.”

6. An event message, containing the touch event, is sent to that view object.

7. The view object decides what the touch event means and what it will do.
It might highlight a button or send an action message.

When you touched the “shorten URL” button in the Shorty app from Chapter 3, that’s how the
physical act of touching the screen turned into the -shortenURL: message your view controller
received.

Different event types take different paths. The next few sections will describe the different delivery
methods, along with the types of events that each deliver.

Figure 4-1. The Event Queue

100 CHAPTER 4: Coming Events

Event Delivery
Event delivery is how an event gets from the event queue to an object in your app. Different types of
events take different paths, befitting their purpose. The actual delivery mechanism is a combination
of logic in the Cocoa Touch framework, your application object, and various methods defined by
your app objects.

Broadly speaking, there are three delivery methods:

Direct delivery	

Hit testing	

First responder	

The next few sections will describe each of these three methods, and the events that get delivered
that way.

Direct Delivery
Direct delivery is the simplest form of event delivery. A number of event types target specific objects.
These events know which object(s) will receive them, so there’s not much to know about how these
events are delivered, beyond the fact that they’re dispatched by the run loop.

For example, an Objective-C message can be placed in the event queue. When that event is pulled
from the queue, the message is sent to its target object. That’s how the web view told your Shorty
app when the web page had loaded. When the network communications code (running in its own
thread) determined the page had finished loading, it pushed a -webViewDidFinishLoad: message
onto the main thread’s event queue. As your main thread pulled events from its event queue, one
of those events sent that message to your web view delegate object, telling it that the page had
loaded.

Note That isn’t exactly how asynchronous delegate messages are delivered. But from an app developer’s
perspective—which is you—it’s conceptually accurate; the details aren’t important.

Other events that are sent to specific objects, or groups of objects, are notifications, timer events, and
user interface updates. All of these events know, either directly or indirectly, which objects they will
be sent to. As an app developer, all you need to know is that when those events work their way to the
end of the event queue, the run loop will send an Objective-C message to one or more objects.

Hit Testing
Hit testing delivers events based on the geometry of your user interface, and it applies only to touch
events. When a touch event occurs, the UIWindow and UIView objects work together to determine
which view object corresponds to the location of the touch. Messages are then sent to that view

101CHAPTER 4: Coming Events

object, which interprets those events however it chooses; it may flip a switch, scroll a shopping list,
or blow up a spaceship. Let’s take a quick look at how hit testing works.

When a touch event is pulled from the event queue, it contains the absolute hardware coordinates
where the touch occurred, as shown on the left in Figure 4-2. This example will use a stylized
representation of the Shorty app from the previous chapter.

Figure 4-2. Hit testing a touch event

Your UIApplication object uses the event coordinates to determine the UIWindow object that’s
responsible for that portion of the screen. That UIWindow object receives a -sendEvent: message
containing the touch event object to process.

The UIWindow object then performs hit testing. Starting at the top of its view hierarchy, it sends
a -hitTest:withEvent: message to its top-level view object, as shown in the second panel of
Figure 4-2.

The top-level view first determines if the event is within its bounds. It is, so it starts to look for
any subviews that contain the touch coordinate. The top-level view contains three subviews: the
navigation toolbar at the top, the web view in the middle, and the toolbar at the bottom. The touch is
within the bounds of the toolbar, so it passes on the -hitTest:withEvent: message to the toolbar.

The toolbar repeats the process, looking for a subview that contains the location, as shown in the
third frame of Figure 4-2. The toolbar object discovers that touch occurs inside the leftmost bar
button item bounds. The bar button item is returned as the “hit” object, which causes UIWindow to
begin sending it low-level touch event messages.

Being a “button,” the bar button item object examines the events to determine if the user tapped the
button (as opposed to swiping it or some other irrelevant gesture). If they did, the button sends its
action message, in this case -shortenURL:, to the object its connected to.

102 CHAPTER 4: Coming Events

Tip Hit testing is highly customizable, should you ever need to. By overriding the
-pointInside:withEvent: and -hitTest:withEvent: methods of your view objects, you can literally
rewrite the rules that determine how touch events find the view object they will be sent to. See the Event
Handling Guide for iOS, which can be found in Xcode’s Documentation and API Guide, for the details.

The First Responder
The first responder is a view, view controller, or window object in your active interface (a visible
window). Think of it as the designated receiver for events that aren’t determined by hit testing. I’ll talk
about how an object becomes the first responder later in this chapter. For now, just know that every
active interface has a first responder.

Events that get delivered to the first responder are:

Shake motion events	

Remote control events	

Key events	

The shake motion event tells your app that the user is shaking their device (moving it rapidly back
and forth). This information comes from the accelerometer hardware.

So-called remote control events are generated when the user presses any of the multi-media
controls, which include:

Play	

Pause	

Stop	

Skip to Next Track	

Skip to Previous Track	

Fast Forward	

Fast Backward	

These are called “remote” events because they could originate from external accessories, such as
the play/pause button on the cord of many headphones. In reality, they most often come from the
play/pause buttons you see on the screen.

Key events come from tapping on the virtual keyboard, or from a hardware keyboard connected via
Bluetooth.

To review, direct delivery sends event objects or Objective-C messages directly to their target
object(s). Touch events use hit testing to determine which view object will receive them, and all other
events are sent to the first responder. Now it’s time to handle those events.

103CHAPTER 4: Coming Events

Event Handling
You’ve arrived at the second half of your event processing journey: event handling. In simple terms,
an object handles or responds to an event if it contains code to interpret that event and decide what
it wants to do about it.

I’ll get the direct delivery events out of the way first. An object receiving a direct delivery event must
have a method to process that event, message, or notification. This is not optional. If the object
doesn’t implement the message sent it, your application will malfunction and could crash. That’s all
you need to know about directly delivered events.

Caution When requesting timer, message, or notification events, make sure the object receiving them has
the correct method(s) implemented.

Other event types are much more forgiving. Much like optional delegate methods, if your object
implements the methods for handling an event, it will receive those events. If it isn’t interested in
handling that type of event, you simply omit those methods from its implementation and iOS will go
looking for another object that wants to handle them.

To handle touch events, for example, you add the following methods to your class’ implementation:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

If hit testing determines that your object should receive touch events, it will receive a
-touchesBegan:withEvent: message when the hardware detects a physical touch in your
view, a -touchesMoved:withEvent: whenever the position changes (a dragging gesture), and a
-touchesEnded:withEvent: message when contact with the screen is removed. As the user taps and
drags their fingers across the screen, your object may receive many of these messages, often in
rapid succession.

Note The -touchesCancelled:withEvent: message is the oddball of the group. This message is sent
to your object if something interrupts the sequence of touch events, such as your app changing to another
screen in the middle of a tap gesture. You only need to handle the cancel event if an incomplete sequence of
touch events (such as receiving a “began” but no “ended” message) would confuse your object.

If you omit all of these methods from your class, your object will not handle any touch events.

All of the methods for handling events are inherited from the UIResponder class, and each type of
event has one or more methods that you must implement if you want to handle that event. The
UIResponder class documentation has a complete list of event handling methods.

104 CHAPTER 4: Coming Events

So what happens if the hit test or first responder object ignores the event? That’s a good question,
and the answer is found in the responder chain.

The Responder Chain
The responder chain is a string of objects that represent the “focus” of your user interface. What I
mean by “focus” is those objects controlling the currently visible interface, and those view objects
that are most relevant to what the user is doing. Does that sound all vague and confusing? A picture
and an explanation of how iOS creates and uses the responder chain will make things clear.

The responder chain starts with the initial responder (see Figure 4-3). When delivering motion, key,
and remote events, the first responder is the initial responder object. For touch events, the initial
responder is the view object determined by hit testing.

Figure 4-3. First responder chain

Note All objects in the responder chain are subclasses of UIResponder. So, technically, the responder
chain consists of UIResponder objects. UIApplication, UIWindow, UIView, and UIViewController
are all subclasses of UIResponder. By extension, the initial responder (first responder or hit test result) is
always a UIResponder object.

iOS begins by trying to deliver that event to the initial responder. “Trying” is the key word here.
If the object has methods that handle that event, it does so. If not, iOS moves onto the next object in
the chain until it either finds an object that wants to process the event or it gives up and throws the
event away.

Figure 4-3 shows the conceptual organization of view objects in an app with two screens. The
second screen is currently being shown to the user. It consists of a view controller object, a number
of subviews, some nested inside of other subviews, and even a sub-view controller. In this example,
a sub-sub-view has been designated the initial responder, which would be appropriate after a hit test
determined that the user touched that view.

105CHAPTER 4: Coming Events

iOS will try to deliver the touch event to the initial responder (the sub-sub-view). If that object doesn’t
handle touch events, iOS sees if that view has a view controller object (it doesn’t) and tries to send
the event to its controller. If neither the view nor its controller handle touch events, iOS finds the view
that contains that view (its superview), and repeats the entire process until it runs out of views and
view controllers to try.

After all of the view and view controller objects have been given a chance to handle the event,
delivery moves on to the window object for that screen, and finally to the single application object.

What makes the responder chain so elegant is its dynamic nature and ordered processing of events.
The responder chain is created automatically, so your object doesn’t have to do anything to be a
part of the responder chain, except to make sure that either it, or a subsidiary view, is the initial
responder. Your object will receive event messages while that portion of your interface is active, and
won’t receive events when it’s not.

The other aspect is the specific-to-general nature of responder chain event handling. The chain
always starts at the view that’s most relevant to the user: the button they touched, an active text
input field, or a row in a list. That object always receives the events first. If the event has specific
meaning to those views, it’s processed accordingly. At the same time, your view controller or
UIApplication object could also respond to those events, but if one of the subviews handles it first,
those objects won’t receive it.

If the user moves to another screen, as shown in Figure 4-4, and presses the “pause” button on their
headphones, a new responder chain is established. This chain starts at the first responder, which in
this case is a view controller. The chain doesn’t include any view objects at all, because the top-level
view controller object is the first responder.

Figure 4-4. Second responder chain

If the view controller handles the “pause” event, then it does so. The view controllers in other interfaces
never see the event. By implementing different “pause” event handling code in the various controllers,
your app’s response to a “pause” event will be different, depending on which screen is active.

Your application object could also handle the “pause” event. If none of the view controllers handled
the “pause” event, then all “pause” events would trickle down to the application object. This would

106 CHAPTER 4: Coming Events

be the arrangement you’d use if you wanted all “pause” events to be handled the same way,
regardless of what screen the user was looking at.

Finally, you can mix these solutions. A “pause” event handler in the application could handle the
event in a generic way, and then specific view controllers could intercept the event if pressing the
“pause” button has special meaning in that screen.

Tip It’s rare to create a custom subclass of UIApplication, and even rarer to subclass UIWindow.
In a typical app, all of your event handling code will be in your custom view and view controller objects.

CONDITIONALLY HANDLING EVENTS

In practical terms, you implement an event handling method (such as -touchesBegan:withEvent:) to handle that
event type, or you omit an implementation to ignore it. In reality, it’s a little more nuanced.

Events are handled by receiving specific Objective‑C messages (like -touchesBegan:withEvent:). Your object inherits
these methods from the UIResponder base class. So every UIResponder object has a -touchesBegan:withEvent:
method and will receive the touch event object via this message. So, how does the object ignore the event?

The secret is in UIResponder’s implementation of these messages. The inherited base class implementation for all
event handling messages simply passes the event up the responder chain. So a more precise description is this:
To handle events, you override UIResponder’s event handler method and process the event. To ignore it, you let the
event go to UIResponder’s method, which ignores the event and passes it to the next object in the responder chain.

Which brings up an interesting feature: conditionally handling events. It’s possible to write an event handler that decides
if it wants to handle an event. It can arbitrarily choose to process the event itself or pass it along to the next object in the
responder chain. Passing it on is accomplished by forwarding the event to the base class’s implementation, like this:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

 if ([self iWantToHandleTheseTouches:touches])

 // handle event

 [self doSomethingWithTheseTouches:touches];

 else

 // ignore event and pass it up the responder chain

 [super touchesBegan:touches withEvent:event];

}

Using this technique, your object can dynamically decide which events it wants to handle and which events it will pass
along to other objects in the responder chain.

Now that you know how events are delivered and handled, you’re ready to build an app that uses
events directly. To do that, you’ll need to consider what kind of events you want to handle and why.

107CHAPTER 4: Coming Events

High- vs. Low-Level Events
Programmers are perpetually labeling things as high level or low level. Objects in your app form a
kind of pyramid. A few complex objects at the top are constructed from more primitive objects in the
middle, which are themselves constructed from even more primitive objects. The complex objects
on top are called the “high-level” objects (UIApplication, UIWebView). The simple objects at the
bottom are called the “low-level” objects (NSNumber, NSString). Similarly, programmers will talk about
high- and low-level frameworks, interfaces, communications paths, and so on.

Events, too, come in different levels. Low-level events are the nitty-gritty, moment-by-moment,
details that are happening right now. The touch events are examples of low-level events. Another
example is the instantaneous force vector values that you can request from the accelerometer and
gyroscope hardware.

At the other end of the scale are high-level events, like the shake motion event. Another example is
the UIGestureRecognizer objects that interpret complex touch event patterns and turn those into a
single high-level event, like “pinched” or “swiped.”

When you design your app, you must decide what level of events you want to process. In the next
app, you’re going to use the shake motion event to trigger actions in your app.

To do that, you could request and handle the low-level accelerometer events. You would have to
create variables to track the force vectors for each of the three movement axes (X, Y, and Z). When
you detected that the device was accelerating in a particular direction, you would record that
direction and start a timer. If the direction of travel reversed, within a reasonable angle of trajectory
and within a short period of time, and then reversed two or three more times, you could conclude
that the user was shaking the device.

Or, you could let iOS do all of those calculations for you and simply handle the shake motion events
generated by the Cocoa Touch framework. When the user starts to shake their device, your first
responder receives a -motionBegan:withEvent: message. When the user stops shaking it, your
object receives a -motionEnded:withEvent: message. It’s that simple.

That doesn’t mean you’ll never need low-level events. If you were writing a game app where your
user directed a star-nosed mole through the soil of a magical garden by tilting the device from
side-to-side, then interpreting the low-level accelerometer events would be the correct solution.
You’ll use the low-level accelerometer events in Chapter 16.

Decide what information you need from events, and then handle the highest-level events that give
you that information. Now you’re ready to start designing your app.

Eight Ball
The app you’ll create mimics the famous Magic Eight Ball toy from the 1950s
(http://en.wikipedia.org/wiki/Magic_Eight_Ball). The app works by displaying an eerily prescient
message whenever you shake your iOS device. Start by sketching out a quick design for your app.

http://en.wikipedia.org/wiki/Magic_Eight_Ball

108 CHAPTER 4: Coming Events

Design
The design for this app is the simplest so far: a screen containing a message is displayed in
the center of a “ball,” as shown in Figure 4-5. When you shake the device, the current message
disappears. When you stop shaking it, a new message appears.

Figure 4-5. EightBall app design

Create the Project
Launch Xcode and choose File ➤ New Project. Select the Single View iOS app template. In the next
sheet, name the app EightBall, set the class prefix to EB, and choose iPhone for the device, as shown
in Figure 4-6.

109CHAPTER 4: Coming Events

Choose a location to save the new project and create it. In the project navigator, select the project,
select the EightBall target from the pop-up menu (if needed), select the General tab, and then turn
off the two landscape orientations in the supported interface orientation section, so only the portrait
orientation is enabled.

Create the Interface
Select the Main.storyboard Interface Builder file and select the single view object. Using the
attributes inspector set the background color to Black, as shown in Figure 4-7.

Figure 4-6. Creating the EightBall project

110 CHAPTER 4: Coming Events

From the library, drag a new image view object into the interface. Using the size inspector to set
the height and width to 320 pixels. Drag the image object so it snaps to the vertical and horizontal
centering guides, as shown in Figure 4-8.

Figure 4-7. Setting main view background color

111CHAPTER 4: Coming Events

Set the first constraint by control+clicking/right-clicking in the image view and dragging down a little.
Release the mouse and choose the Height constraint. This will fix the height of the image view. From
the Resolve Auto Layout Issues control, choose the Add Missing Constraints in View Controller.
Xcode will add sufficient constraints to make them complete. Because the view was centered in the
screen, Xcode will add constraints to keep it centered.

Just as you did in Chapter 2, you’re going to add some resource image files to your project. In the
project navigator, select the Images.xcassets assets catalog. In the Finder, locate the Learn iOS
Development Projects folder you downloaded in Chapter 1. Inside the Ch 4 folder you’ll find the
EightBall (Resources) folder, which contains five image files. Select the files eight-ball.png and
eight-ball@2x.png. With these files and your workspace window visible, drag the two image files
into the assets catalog, as shown in Figure 4-9.

Figure 4-8. Centering the image view

112 CHAPTER 4: Coming Events

Returning to your project, select Main.storyboard, and select the image view object. Using the
attributes inspector set the image property to eight-ball, as shown in Figure 4-10.

Figure 4-10. Setting the image

Figure 4-9. Adding eight-ball images to the asset catalog

Now you need to add a text view to display the magic message. From the object library, drag in a
new text view (not a text field) object, placing it over the “window” in the middle of the eight ball Use
the size inspector to set the width of the text view to 160 pixels and the height to 112. Center the text
view using the centering guides, as shown in Figure 4-11.

113CHAPTER 4: Coming Events

Using the control+click/right-click gesture again, add the following constraints:

Drag up (or down), inside the text view, release, and choose a Height constraint.

Drag right (or left), inside the text view, release, and choose a Width constraint.

Drag from text view up (or down) to the image view. Choose the Center Y constraint.

Drag right (or left), from the text view to the image view. Choose the Center X
constraint.

The text view now has a fixed size and will always be centered over the image view.

Select the text view. Using the attributes inspector set the following properties:

Set text to SHAKE FOR ANSWER, on three lines (see Figure 4-12). Hold down the Option
key when pressing the Return key to insert a literal “return” character into the text
property field.

Make the text view color white.

Click the up arrow in the font property until it reads System 24.0.

Choose the centered (middle) alignment.

Uncheck the Editable behavior property.

Further down, find the background property and set it to default (no background).

Your interface design is finished, and should look like the one in Figure 4-12. Now it’s time to move
on to the code.

Figure 4-11. Centering text view

114 CHAPTER 4: Coming Events

Writing the Code
Your EBViewController object will need a connection to the text view object. Select your
EBViewController.h file and add the following property:

@property (weak,nonatomic) IBOutlet UITextView *answerView;

Now it’s time to write the code that displays the messages. Switch to your implementation file
(EBViewController.m). Just above the @implementation line, add this code:

static NSString* gAnswers[] = {
 @"\rYES",
 @"\rNO",
 @"\rMAYBE",
 @"I\rDON'T\rKNOW",
 @"TRY\rAGAIN\rSOON",
 @"READ\rTHE\rMANUAL"
};
#define kNumberOfAnswers (sizeof(gAnswers)/sizeof(NSString*))

@interface EBViewController ()
- (void)fadeFortune;
- (void)newFortune;
@end

The first statement creates a static array of NSString string objects. Each object is one possible
answer to appear in the eight ball. The \r characters are called an escape sequence. They consist
of a backslash (left leaning slash) character followed by a code that tells the compiler to replace
the sequence with a special character. In this case, the \r is replaced with a literal “carriage return”
character—something you can’t type into your source without starting a new line.

Figure 4-12. Finished EightBall interface

115CHAPTER 4: Coming Events

The #define creates a constant, kNumberOfAnswers, that evaluates to the number of string objects
in the gAnswers array. It does this by dividing the overall size of the array (sizeof(gAnswers)) by the
size of a single element in the array (sizeof(NSString*)). You do this so that you don’t have to keep
track of how many strings are in the gAnswers array. If you want to add more answers, just add new
elements to the array. The kNumberOfAnswers macro will change to reflect however many there are.

The @interface EBViewController () statement declares the two methods used to update
the message display: -fadeFortune and -newFortune. They are declared here, instead of in
EBViewController.h, because these are private methods—not for use by objects other than
EBViewController.

Create the two methods you just promised by adding the following code to your implementation
(that is, between the @implementation and @end statements):

- (void)fadeFortune
{
 [UIView animateWithDuration:0.75 animations:^{
 self.answerView.alpha = 0.0;
 }];
}

- (void)newFortune
{
 self.answerView.text = gAnswers[arc4random_uniform(kNumberOfAnswers)];

 [UIView animateWithDuration:2.0 animations:^{
 self.answerView.alpha = 1.0;
 }];
}

The -fadeFortune method uses iOS animation to change the alpha property of the answerView
text view object to 0. The alpha property of a view is how opaque the view appears. A value of 1 is
completely opaque, 0.5 makes it 50% transparent, and a value of 0 makes it completely invisible.
-fadeFortune makes the text view object fade away to nothing, over a period of ¾ of a second.

Note Animation is covered in more detail in Chapter 11.

The -newFortune method is where all the fun is. The first statement does three things:

1. The arc4random_uniform() function is called to pick a random number
between 0 and a number less than kNumberOfAnswers. So if kNumberOfAnswers
is 6, the function will return a random number between 0 and 5 (inclusive).

2. The random number is used as an index into the gAnswers array to pick one
of the constant NSString objects.

3. The random answer is used to set the text property of the text view object.
Once set, the text view object will display that text in your interface.

116 CHAPTER 4: Coming Events

Finally, iOS animation is used again to change the alpha property slowly back to 1, going from
invisible to opaque over a period of 2 seconds, causing the new message to gradually appear.

There’s one minor detail remaining: connecting the answerView outlet to the text view object in the
interface. Switch to the Main.storyboard Interface Builder file. Select the view controller object, and
use the connections inspector to connect the answerView outlet, as shown in Figure 4-13.

Figure 4-13. Connecting the answerView outlet

Handling Shake Events
Your app now has everything it needs to work, except the event handling that will make it happen.
In the Xcode documentation (Help ➤ Documentation and API Reference), take a look at the
documentation for UIResponder. In it, you’ll find documentation for three methods:

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event

Each message is sent during a different phase of a motion event. Motion events are very
simple—remember these are “high-level” events. Motion events begin and they end. If the motion is
interrupted, or never finishes, your object receives a motion canceled message.

To handle motion events in your view controller, add these three event handler methods to your
EBViewController implementation:

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 if (motion==UIEventSubtypeMotionShake)
 [self fadeFortune];
}

117CHAPTER 4: Coming Events

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 if (motion==UIEventSubtypeMotionShake)
 [self newFortune];
}

- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 if (motion==UIEventSubtypeMotionShake)
 [self newFortune];
}

Each method begins by examining the motion parameter to see if the motion event received
describes the one you’re interested in (the shake motion). If not, you ignore the event. This is
important. Future versions of iOS may add new motion events; your object should only pay attention
to the ones it’s designed to work with.

The -motionBegan:withEvent: handler sends a -fadeFortune message. When the user starts to
shake the device, the current message fades away.

The -motionEnded:withEvent: handler sends the -newFortune message. When the shaking stops,
a new fortune appears.

Finally, the -motionCancelled:withEvent: handler makes sure a message is visible if the motion was
interrupted or interpreted to be some other gesture.

Testing Your EightBall App
Make sure you have an iPhone Simulator selected in the scheme and run your app. It will appear in
the simulator, as shown in Figure 4-14.

118 CHAPTER 4: Coming Events

Choose the Hardware ➤ Shake Gesture command in the simulator. This command simulates the
user shaking their device, which will cause shake motion events to be sent to your app.

Congratulations, you’ve successfully created a shake-motion event handler! Each time you shake
your simulated device a new message appears, as shown in Figure 4-15.

Figure 4-14. Testing EightBall

119CHAPTER 4: Coming Events

FIRST RESPONDER AND THE RESPONDER CHAIN

Technically, it isn’t necessary that your view controller be the first responder. What’s required is that your view controller
be in the responder chain. If any view, or subview, in your interface is the first responder, your view controller will be in the
responder chain and will receive motion events—unless one of those other views intercepts and handles the event first.

By default, your view controller isn’t the first responder and can’t become the first responder. An object that wants to be a
first responder must return YES when sent the -canBecomeFirstResponder message. The base class implementation
of UIResponder returns NO. Therefore, any subclass of UIResponder is ineligible to be the first responder unless it
overrides its -canBecomeFirstResponder method.

After making your object eligible to be the first responder, the next step is to explicitly request to be the first responder.
This is often done in your -viewDidAppear: method, using code like this:

[self becomeFirstResponder];

Specific Cocoa Touch classes—most notably the text view and text field classes—are designed to be first responders, and
they return YES when sent -canBecomeFirstResponder. These objects establish themselves as the first responder
when touched or activated. As the first responder, they handle keyboard events, copy and paste requests, and so on.

At this point you might be wondering why your view controller is getting motion events, if it’s not the first responder
and it’s not in the responder chain? You can thank iOS 7 for that. Recent changes in iOS deliver motion events to the
active view controller if there is no first responder or the window is the first responder. If you want your app to work with
earlier versions of iOS too, you’d need to make sure your view controller can become the first responder (by overriding
-canBecomeFirstResponder), and then request that it is ([self becomeFirstResponder]) when the view loads.

Figure 4-15. The working EightBall app

120 CHAPTER 4: Coming Events

Here’s an experiment that demonstrates the responder chain in action. In The Main.storyboard file, select the
UITextView and use the attributes inspector to check the Editable behavior. Run the app, tap and hold the text
field, and when the keyboard pops up edit the fortune text. Now choose the simulator’s Hardware ➤ Shake Gesture
command. What happens? The text in the field changes, just as you programmed it to.

Return to the EBViewController.m file and comment out all three of your motion event handling methods. Do this by
selecting the text of all three methods and choose Editor ➤ Structure ➤ Comment Selection (Command+/). Now run
your app again, select the text, change it, and shake the simulator. What happens? This time you see an “Undo” dialog,
asking if you want to undo the changes you made to the text.

Motion events are initially sent to the first responder (the text field), eventually pass through the view controller, and
ultimately land in the UIApplication object. The UIApplication object interprets a shake event to mean “undo
typing”. By intercepting the motion events in your view controller, you overrode the default behavior supplied by the
UIApplication object.

Put your app back the way it was by returning to EBViewController.m and choosing Edit ➤ Undo. Do the same to
Main.storyboard.

Finishing Touches
Put a little spit and polish on your app with a nice icon. Well, at least with the icon you’ll find in the
EightBall (Resources) folder. In your project navigator, select the images.xcassets file, and then
select the AppIcon group. With the EightBall (Resources) folder visible, drag the three icon images
files into the AppIcon preview area, as shown in Figure 4-16. Xcode will automatically assign the
appropriate image file to each icon resource, based on its size.

Figure 4-16. Importing app icons

121CHAPTER 4: Coming Events

Note iOS 7 introduced a different set of icon sizes than those used in previous versions of iOS. If you
intend your app to run on earlier versions of iOS, consult the “App Icon” section of the iOS Human Interface
Guidelines for a complete list of the required icon resources, and their sizes.

Figure 4-17. Adding a new Apple ID to Xcode

With that detail taken care of, let’s shake things up—literally—by running your app on a real
iOS device.

Testing on a Physical iOS Device
You can test a lot of your app using Xcode’s iPhone and iPad simulator, but there are few things
the simulator can’t emulate. Two of those things are multiple (more than two) touches and real
accelerometer events. To test that, you need a real iOS device, with real accelerometer hardware,
that you can touch with real fingers.

The first step is to connect Xcode to your iOS Developer account. Choose Xcode ➤ Preferences ...
and switch to the Accounts tab. Choose Add Apple ID ... from the + button at the bottom of the
window, as shown in Figure 4-17.

Supply your Apple ID and password, and then click the Add button. If you’re not a member of
the iOS Developer Program yet, there’s a convenient Join Program ... button that will take you to
Apple’s website.

122 CHAPTER 4: Coming Events

Note Before you can run your app on a device, you must first become a member of the iOS Developer
Program. See http://developer.apple.com/programs/ios to learn how to become a member. Once
you are a member, Xcode will use your Apple ID to download and install the necessary security certificates
required to provision a device.

Figure 4-18. Device management

Plug an iPhone, iPad, or iPod Touch in to your computer’s USB port. Open the Xcode organizer
window (Window ➤ Organizer). In the toolbar, switch to the devices tab. The iOS device you
plugged in will appear on the left, as shown in Figure 4-18. If a “trust” dialog appears on your device,
as shown on the right in Figure 4-18, you’ll need to grant Xcode access to your device.

Select your iOS device and click the Use for Development button. Xcode will prepare your device for
development, a process known as provisioning. This will allow you to build, install, and run most iOS
projects directly through Xcode.

Once your device is provisioned, return to your project workspace window. Change the scheme
setting from one of the simulators to your actual device. I provisioned an iPhone, so iPhone appears
as one of the run destinations in Figure 4-19.

http://developer.apple.com/programs/ios

123CHAPTER 4: Coming Events

Run the EightBall app again. This time, your app will be built, copied onto your iOS device, and the
app will start running there. Pretty neat, isn’t it?

The amazing thing is that Xcode is still in control—so don’t unplug your USB connection just yet!
You can set breakpoints, freeze your app, examine variables, and generally do anything you could do
in the simulator.

With EightBall app running, shake your device and see what happens. When you’re done, click
the Stop button in the Xcode toolbar. You’ll notice that your EightBall app is now installed on your
device. You’re free to unplug your USB connection and take it with you; it is, after all, your app.

Other Uses for The Responder Chain
While the responder chain concept is still fresh in your mind, I want to mention a couple of other
uses for the responder chain, before you move on to low-level events. The responder chain isn’t
used solely to handle events. It also plays an important role in actions, editing, and other services.

In earlier projects, you connected the actions of buttons and text fields to specific objects.
Connecting an action in Interface Builder sets two pieces of information:

The object that will receive the action (SUViewController)

The action message to send (-shortenURL:)

It’s also possible to send an action to the responder chain, rather than a specific object. In Interface
Builder you do this by connecting the action to the First Responder placeholder object, as shown in
Figure 4-20.

Figure 4-19. Selecting an iOS device to test

124 CHAPTER 4: Coming Events

When the button’s action is sent, it goes initially to the first responder object—whatever that object
is. For actions, iOS tests to see if the object implements the expected message (-loadLocation:,
in this example). If it does, the object receives that message. If not, iOS starts working its way
through the responder chain until it finds an object that does.

This is particularly useful in more complex apps where the recipient of the action message is outside
the scope of the Interface Builder file. You can only make connections between objects in the same
scene. If you need a button to send an action to another view controller, or the application object
itself, you can’t make that connection in Interface Builder. But you can connect your button to the
first responder. As long as the intended recipient is in the responder chain when the button fires its
action, your object will receive it.

Editing also depends heavily on the responder chain. When you begin editing text in iOS, like the
URL field in the Shorty app, that object becomes the first responder. When the user types on the
keyboard—virtual or otherwise—those key events are sent to the first responder. You can have
several text fields in the same screen, but only one is the first responder. All key events, copy and
paste commands, and so on, go to the active text field.

Touchy
You’ve learned a lot about the so-called high-level events, the initial responder, and the responder
chain. Now it’s time to dig into low-level event handling, and you’re going to start with the most
commonly used low-level events: touch events.

The Touchy app is a demonstration app. It does nothing more than show you where you’re touching
the screen. It’s useful both to see this in action and to explore some of the subtleties of touch event
handling. You’ll also learn a new, and really important, Interface Builder skill: creating custom objects
in your interface.

Figure 4-20. Connecting an action to the responder chain

125CHAPTER 4: Coming Events

Design
The Touchy app also has a super-simple interface, as depicted in Figure 4-21. Touchy will display the
location, or locations, where you’re touching your view object. So the app isn’t too boring, you’ll jazz
it up a little with some extra graphics, but that’s not the focus of this outing.

Figure 4-21. Sketch of Touchy app

The app will work by intercepting the touch events using a custom view object. Your custom view
object will extract the coordinates of each active touch point and use that to draw their positions.

Creating the Project
As you’ve done several times already, start by creating a new Xcode project based on the Single
View iOS application template. Name the project Touchy, set the class prefix to TY, and choose
Universal for the device, as shown in Figure 4-22.

126 CHAPTER 4: Coming Events

Choose a location to save the new project and create it. In the project navigator, select the project,
select the EightBall target, select the summary tab, and then turn off the two landscape orientations
in the supported interface orientation section, so only the portrait orientation is enabled.

Creating a Custom View
You’re going to depart from the development pattern you’ve used in previous apps. Instead of
adding your code to the TYTouchViewController class, you’re going to create a new custom
subclass of UIView. “Why” is explained in Chapter 11. “How” will be explained right now.

Select the Touchy group (not the project) in the project navigator. From the File menu, or by
right/control+clicking on the Touchy group, choose the New File... command, as shown
in Figure 4-23.

Figure 4-22. Creating the Touchy project

127CHAPTER 4: Coming Events

Much like the project template assistant, Xcode provides templates for creating individual files too.
You’re going to create a new Objective-C class, so choose the Objective-C Class template in the
iOS Cocoa Touch group, as shown in Figure 4-24.

Figure 4-24. Choosing a new file template

Figure 4-23. Creating a new source file

128 CHAPTER 4: Coming Events

Name the new file TYTouchyView, and change its subclass to UIView, as shown in Figure 4-25. Click
Next and Xcode will ask where you want to save your file. Make sure the Touchy target is checked.
Accept the default location (inside your project folder) and click Create. This will add two new files to
your project: TYTouchView.h and TYTouchyView.m.

Figure 4-25. Naming your new Objective-C class

You’ve successfully created a new Objective-C class! Your class is a subclass of UIView, so it inherits
all of the behavior and features of a UIView object, and can be used anywhere a UIView object can.

Handling Touch Events
Now you’re going to customize your UIView object to handle touch events. Remember that the
base class UIResponder and UIView don’t handle touch events. Instead, they just pass them up the
responder chain. By implementing your own touch event handling methods, you’re going to change
that so your view responds directly to touches.

As you already know, touch events will be delivered to the view object they occurred in. If you
didn’t know that, go back and read the section “Hit Testing.” All you have to do is add the
appropriate event handling methods to your class. Add the following code to your TYTouchyView.m
implementation file, just before the @end statement:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self updateTouches:event.allTouches];
}

129CHAPTER 4: Coming Events

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self updateTouches:event.allTouches];
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self updateTouches:event.allTouches];
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self updateTouches:event.allTouches];
}

Note Xcode will be showing some errors in your source code. Ignore them for now; you’ll fix that when you
add the -updateTouches: method.

Each touch event message includes two objects. An NSSet object, containing the touch objects of
interest, and a UIEvent object that summarizes the event that caused the message to be sent.

In a typical app, your method would be interested in the touches set. This set, or unordered
collection, of objects contains one UITouch object for every touch relevant to the event. Each
UITouch object describes one touch position: its coordinates, its phase, the time it occurred, its tap
count, and so on.

For a “began” event, the touches set will contain the UITouch objects for the touches that just began.
For a “moved” event, it will only contain those touch points that moved. For an “ended” event, it will
contain only those touch objects that were removed from the screen. This is very convenient, from a
programming perspective, because most view objects are only interested in the UITouch objects that
are relevant to that event.

The Touchy app, however, is a little different. Touchy wants to track all of the active touches, all of
the time. You’re not actually interested in what just happened. Instead you want “the big picture”: the
list of all touch points currently in contact with the screen. For that, move over to the event object.

The UIEvent object’s main purpose is to describe the single event that just occurred; or, more
precisely, the single event that was just pulled from the event queue. But UIEvent has some other
interesting information that it carries around. One of those is the allTouches property that contains
the current state of all touch points on the device, regardless of what view they are associated with.

So now I can explain what all of your event handling methods are doing. They are waiting for any
change to the touch state of the device. They ignore the specific change, and dig into the event
object to find the state of all active touch objects, which it passes to your -updateTouches: method.
This method will record the position of all active touches and use that information to draw those
positions on the screen.

130 CHAPTER 4: Coming Events

So, I guess you need write that method! Immediately above the touch event handler methods you
just added in TYTouchyView.m, add this method to your implementation:

- (void)updateTouches:(NSSet*)set
{
 NSMutableArray *array = [NSMutableArray array];
 for (UITouch *touch in set)
 {
 switch (touch.phase) {
 case UITouchPhaseBegan:
 case UITouchPhaseMoved:
 case UITouchPhaseStationary:
 [array addObject:[NSValue valueWithCGPoint:
 [touch locationInView:self]]];
 break;
 default:
 break;
 }
 }
 touchPoints = array;
 [self setNeedsDisplay];
}

You’ll also want to declare that method in a private interface before the @implementation statement,
and you’ll also need to define a variable to store the active touch points:

@interface TYTouchyView ()
{
 NSArray* touchPoints;
}
- (void)updateTouches:(NSSet*)set;
@end

Now, back to the -updateTouches: method. It starts by creating an empty array object. This is where
you’ll store the information you’re interested in. -updateTouches: then loops through each of the
UITouch objects in the set and examines its phase. The phase of a touch is its current state: “began,”
“moved,” “stationary,” “ended,” or “canceled.” Touchy is only interested in the states that represent
a finger that is still touching the glass (“began,” “moved,” and “stationary”). The switch statement
matches these three states, obtains the coordinates of the touch relative to this view object, and
converts that into an NSValue object (suitable for adding to a collection). The NSValue object is then
added to the collection.

When all of the active touch coordinates have been gathered, the new collection is saved in your
object’s private touchPoints variable. Finally, your view object sends itself a -setNeedsDisplay
message. This message tells your view object that it needs to redraw itself.

131CHAPTER 4: Coming Events

Drawing Your View
So far, you haven’t written code to draw anything. You’ve just intercepted the touch events sent to
your view and extracted the information you want about the device’s touch state. In iOS, you don’t
draw things when they happen. You make note of when something needs to be drawn, and wait
for iOS to tell your object when to draw it. Drawing is initiated by the user interface update events I
mentioned at the beginning of this chapter.

How drawing works is described in Chapter 11, so I won’t go into any of those details now. Just
know that when iOS wants your view to draw itself, your object will receive a -drawRect: message.
Add this -drawRect: message to your implementation:

- (void)drawRect:(CGRect)rect
{
 CGContextRef context = UIGraphicsGetCurrentContext();
 [[UIColor blackColor] set];
 CGContextFillRect(context,rect);

 UIBezierPath *path = nil;
 if (touchPoints.count>1)
 {
 path = [UIBezierPath bezierPath];
 NSValue* firstLocation = nil;
 for (NSValue *location in touchPoints)
 {
 if (firstLocation==nil)
 {
 firstLocation = location;
 [path moveToPoint:location.CGPointValue];
 }
 else
 {
 [path addLineToPoint:location.CGPointValue];
 }
 }
 if (touchPoints.count>2)
 [path addLineToPoint:firstLocation.CGPointValue];

 [[UIColor lightGrayColor] set];
 path.lineWidth = 6;
 path.lineCapStyle = kCGLineCapRound;
 path.lineJoinStyle = kCGLineJoinRound;
 [path stroke];
 }

 unsigned int touchNumber = 1;
 NSDictionary* fontAttrs = @{
 NSFontAttributeName: [UIFont boldSystemFontOfSize:180],
 NSForegroundColorAttributeName: [UIColor yellowColor]
 };

132 CHAPTER 4: Coming Events

 for (NSValue *location in touchPoints)
 {
 NSString *text = [NSString stringWithFormat:@"%u",touchNumber++];
 CGSize size = [text sizeWithAttributes:fontAttrs];
 CGPoint touchPoint = location.CGPointValue;
 CGPoint textCorner = CGPointMake(touchPoint.x-size.width/2,
 touchPoint.y-size.height/2);
 [text drawAtPoint:textCorner withAttributes:fontAttrs];
 }
}

Wow, that’s a lot of new code. Again, the details aren’t important, but feel free to study this code to
get a feel for what it’s doing. I’ll merely summarize what it does.

The first part fills the entire view with the color black.

The middle section is a big loop that creates a Bezier path, named after the French engineer Pierre
Bézier. A Bezier path can represent practically any line, polygon, curve, ellipsis, or any arbitrary
combination of those things. Basically, if it’s a shape, a Bezier path can draw it. You’ll learn all about
Bezier paths in chapter 11. Here, it’s used to draw light grey lines between the touch points. It’s pure eye
candy, and this part of the -drawRect: method could be left out and the app would still work just fine.

The last part is the interesting bit. It loops through the touch coordinates and draws a big “1,” “2,” or
“3” centered underneath each finger that’s touching the screen, in yellow.

Now you have custom view class that collects touch events, tracks them, and draws them on the
screen. The last piece of this puzzle is how to get your custom object into your interface.

Adding Custom Objects in Interface Builder
Select your Main_iPhone.storyboard Interface Builder file and select the one and only view object in
the view controller scene. Switch to the identity inspector. The identity inspector shows you the class
of the object selected. In this case, it’s the plain-vanilla UIView object created by the project template.

Here’s the cool trick: You can use the identity inspector to change the class of the object to any
subclass of UIView that you’ve created. Change the class of this view object from UIView to
TYTouchyView, as shown in Figure 4-26. You can do this either by using the pull-down menu or by
just typing in the name of the class.

Figure 4-26. Changing the class of an Interface Builder object

133CHAPTER 4: Coming Events

Now instead of creating a UIView object as the root view, your app will create a TYTouchyView object,
complete with all of the methods, properties, outlets, and actions you defined. You can do this to any
existing object in your interface. If you want to create a new custom object, find the base class object
in the library (NSObject, UIView, etc.), add that object, and then change its class to your custom one.

There are still a few properties of your new TYTouchyView object that need to be customized for it
to work correctly. With your TYTouchyView object still selected, switch to the attributes inspector
and check the Multiple Touch option under Interaction. By default, view objects don’t receive
multi-touch events. In other words, the -touchSomePhase:withEvent: message will never contain
more than one UITouch object, even if multiple touches exist. To allow your view to receive all of the
touches, you must turn on the multiple touch option.

Select the Main_iPad.storyboard Interface Builder file and make the same changes you just made to
Main_iPhone.storyboard. Now your app is ready to test.

Figure 4-27. Running Touchy in the simulator

Note If you want to, give Touchy an icon too. Open the Touchy (Resources) folder, locate the five
TYIcon....png files, and drag them into the AppIcon group of the Images.xcassets asset catalog,
just as you did for the EightBall app.

Testing Touchy
Set your scheme to the iPhone or iPad simulator and run your project. The interface is
completely—and ominously—black, as shown on the left in Figure 4-27.

134 CHAPTER 4: Coming Events

Click on the interface and the number “1” appears, as shown in the middle of Figure 4-27. Try
dragging it around. Touchy is tracking all changes to the touch interface, updating it, and then
drawing a number under the exact location of each touch.

Hold down the option key and click again. Two positions appear, as shown on the right in Figure 4-27.
The simulator will let you test simple two finger gestures when you hold down the option key. With
just the option key, you can test pinch and zoom gestures. Hold down both the option and shift keys
to test two-finger swipes.

But that’s as far as the simulator will go. To test any other combination of touch events, you have to
run your app on a real iOS device. Back in Xcode, stop your app, change the scheme to iOS Device
(iPhone, iPad, or iPod Touch—whatever you have plugged in). Run your app again.

Now try out Touchy on your iOS device. Try touching two, three, four, or even five fingers. Try moving
them around, picking one up, and putting it down again. It’s surprisingly entertaining.

Advanced Event Handling
There are a couple of advanced event handling topics I’d like to mention, along with some good
advice. I’ll start with the advice.

Keep your event handling timely. As you now know, your app is “kept alive” by your main thread’s
run loop. That run loop delivers everything to your app: touch events, notifications, user interface
updates, and so much more. Every event, action, and message that your app handles must execute
and return before the next event can be processed. That means if any code you write takes too long,
your app will appear to have died. And if code you write takes a really, really, long time to finish, your
app will die—iOS will terminate your app because it’s stopped responding to events.

I’m sure you’ve had an app “lock up” on you; the display is frozen, it doesn’t respond to touches,
or shaking, or anything. This is what happens when an app’s run loop is off doing something other
than processing events. It’s not pleasant. Most iOS features that can take a long time to complete
have asynchronous methods (like the ones you used in Shorty) so those time-consuming tasks won’t
tie up your main thread. Use these asynchronous methods, pay attention to how long your program
takes to do things, and be prepared to reorganize your app to avoid “locking up” your run loop.
I’ll demonstrate all of these techniques in later chapters.

Secondly, handling multiple touch events can be tricky, even confusing. iOS does its best to
untangle the complexity of touch events and present them to your object in a rational, and digestible,
form. iOS provides five features that will make your touch event handling simpler:

Gesture recognizers	

Filtering out touch events for other views	

Prohibiting multi-touch events	

Providing exclusive touch event handling	

Suspending touch events	

Gesture recognizers are special objects and intercept touch events on behalf of a view object. Each
recognizer detects a specific touch gesture, from a simple tap to a complex multi-finger swipe. If it
detects the gesture it’s programmed to recognize, it sends an action—exactly like the button objects

135CHAPTER 4: Coming Events

you’ve used in earlier projects. All you need to do is connect that action to an object in Interface
Builder and you’re done. This feature alone has saved iOS developers tens of thousands of lines of
touch event handling code. I’ll show you how to use gesture recognizer objects in later chapters.

As I described earlier, the touch event methods (like -eventBegan:withEvent:) only include
the relevant touch objects—those touches that originated in your view object—in the touches
parameter. Your code doesn’t have to worry about other touches in other views that might be
happening at the same time. In Touchy, this was actually a disadvantage, and you had to dig up
the global set of touch objects from the UIEvent object. But normally, you only pay attention to the
touches in your view.

You’ve also seen how iOS will prohibit multi-touch events using UIView’s multipleTouchEnabled
property. If this property is NO, iOS will only send your view object events associated with the first
touch—even if the user is actually touching your view with more than one finger. For the Touchy app
to get events about all of the touches, you had to set this property to YES. Set this property to NO
if your view only interprets single touch events and you won’t have to write any code that worries
about more than one touch at a time.

If you don’t want iOS to be sending touch events to two view objects simultaneously, you can set
UIView’s exclusiveTouch property to YES. If set, iOS will block touch events from being sent to any
other views once a touch sequence has begun in yours (and vice versa).

Finally, if your app needs to, you can temporary suspend all touch events from being sent to a
specific view or even your entire app. If you want to make an individual view “deaf” to touch events,
set its userInteractionEnabled property to NO. You can also send your application object the
-beginIgnoreingInteractionEvents message, and all touch events for you app will be silenced. Turn
them back on again by sending -endIgnoringInteractionEvents. This is useful for preventing touch
events from interfering with something else that’s going on (say, a short animation), but don’t leave
them turned off for very long.

Summary
By now you have a pretty firm grasp on how messages and events get into your app and how they
are handled. You know about the event queue and the run loop. You know that events in the queue
are dispatched to the objects in your app. You know that some of them go directly to your objects,
touch events use hit testing, and the rest get sent to the first responder.

You’ve learned a lot about the responder chain. The responder chain performs a number of
important tasks in iOS, beyond delivering events.

You know how to configure an object to handle, or ignore, specific types of events. You’ve written
two apps, one that handled high-level events, and a second that tracked low-level touch events.

Possibly even more astounding, you built and ran your app on a real iOS device! Feel free to run any
other projects on your device too. Creating your very own iOS app that you can carry around with
you is a very impressive feat!

In the next chapter, you’re going to learn a little about data models and how complex sets of data
get turned into scrolling lists on the screen.

136 CHAPTER 4: Coming Events

EXERCISES

According to the instructions that come with the Magic Eight Ball, you should not shake the ball; it causes bubbles to
form in the liquid. Of course, this never stopped my brother and I from shaking the daylights out of it. Instead, you were
supposed to place the ball, “8” up, on a table, ask a question, gently turn it over, and read the answer.

For extra credit, rewrite the EightBall app so it uses the device orientation events, instead of shake motion events, to
make the message disappear and appear. A device’s orientation will be one of portrait, landscape left, landscape right,
upside down, face up, or face down.

Changes in device orientation are delivered via notifications. You haven’t used notifications yet, but think of them as just
another kind of event (at least in this context). Unlike events, your object must explicitly request the notifications it wants
to receive. Whenever the device changes orientation, such as when the user turns their iPhone over, your object will
receive a notification message.

All of the code you need to request and handle device orientation change notifications is shown in the Event Handling
Guide for iOS, under the section “Getting the Current Device Orientation with UIDevice.” In Xcode, choose Help ➤
Documentation and API Guide, and search for “Event Handling Guide”.

Change EightBall so it requests device orientation notifications instead of handling shake motion events. When your
app receives an orientation change notification, examine the current orientation of the current UIDevice object.
If the orientation property is UIDeviceOrientationFaceUp, make a new message appear. If it’s anything else, make
the message disappear. Now you have a more “authentic” Magic Eight Ball simulator! You can find my solution to this
exercise in the EightBall E1 folder.

137

Chapter 5
Table Manners

Tables are a powerful and flexible iOS interface element. So flexible that—in many applications—
table views are the interface. In this chapter you’re going to learn about table views and pick up
some class organization and inter-object communication skills in the process. By the end of this
chapter you’ll know about:

Table views	

Table cells	

Cell caching	

Table editing	

Notifications	

The app you’ll create in this chapter will depend a lot more on Objective-C code than Interface
Builder. This is typical of table view interfaces because the table view classes already provide much
of the look of your table, so there’s not much for you to design. (That doesn’t mean you can’t design
your own, and I’ll discuss that too.) First, you need to know what a table view looks like.

Table Views
A table view is a UITableView object that presents, draws, manages, and scrolls a single vertical
list of rows. Each row is one element in the table. Rows can all be alike (homogeneous) or can be
substantially different (heterogeneous) from one another. A table can appear as a continuous list of
rows or it may organize rows into groups.

If you’ve used an iPhone, iPad, or iPod for more than a few minutes, you’ve seen table views in
action. In fact, there are probably more than a few iOS app interfaces that you didn’t realize are table
views. By the time you’re done with this section, you’ll be able to spot them from a mile away.

The overall appearance of a table is set by the table style you choose when the table view is
created. Its contents can be further refined by the style and layout of the individual rows. I’ll start by
describing the overall table styles.

138 CHAPTER 5: Table Manners

Plain Tables
The plain table style (UITableViewStylePlain) is the one you’re most likely to recognize as a table
view or list. The view on the left of Figure 5-1 shows a snapshot of my Settings app. The list of
regions is a plain style table view. Each row shows one region. The arrow on the right (called an
accessory view) indicates that tapping that row will navigate to another list.

On the right of Figure 5-1 is a plain style table with an index, a common embellishment for long lists.
An index adds section labels that group similar items, and provides a quick way of jumping to a
particular group in the list, using the index on the right.

Another, somewhat obscure, plain table style is the selection list style (not shown). It looks just like a
plain style table with section titles, but has no index. It’s used to choose one or more options from a
(potentially long) list of options.

Grouped Tables
The grouped table style (UITableViewStyleGrouped) is the other table style. This style clumps sets of
rows together into groups. Each group has an optional header and an optional footer, allowing you to
surround the group with a title, description, or even explanatory text. Examples of grouped tables are
shown in Figure 5-2.

Figure 5-1. Plain table styles

139CHAPTER 5: Table Manners

The iPhone’s Settings app (see Figure 5-2) is built almost exclusively from table views. The title
above each group is a group header. The text below is a group footer. The individual setting
controls are each one row of the table. It almost doesn’t look like a table at all, but it uses the same
UITableView object that Figure 5-1 does. Grouped lists do not have indexes.

The style you choose for the list sets the overall tone of your table. You then have a lot of choices
when it comes to how each individual row looks.

Cell Styles
A table view cell object controls the appearance and content of each row. iOS comes with several
styles of table cells:

Default	

Subtitle	

Value1	

Value2	

The default style (UITableViewCellStyleDefault) is the basic one, as shown in Figure 5-3.

Figure 5-2. Grouped table style

140 CHAPTER 5: Table Manners

The default style has a bold title. It may optionally include a small image, which appears on the left. The
arrow, checkmark, or control on the right is called an accessory view, and I’ll talk about those shortly.

The second major cell style is the subtitle style (UITableViewCellStyleSubtitle), shown in Figure 5-4.
Almost identical to the default style, it also shows a deemphasized line of text below each title. The
subtitle text is also optional. If you leave out the subtitle it will look like the default style.

Figure 5-3. Default cell style

Figure 5-4. Subtitle cell style

141CHAPTER 5: Table Manners

The last two styles are the value1 and value2 styles (UITableViewCellStyleValue1 and
UITableViewCellStyleValue2), as shown in Figure 5-5. The value1 style (on the left in Figure 5-5) is
typically used to display a series of values or settings; the title of the cell describes the value and the
field on the right shows the current value.

Figure 5-5. Value1 and value2 cell styles

Figure 5-6. Standard accessory views

The alternate style, value2, puts more emphasis on the value and less on its title, as shown on the
right of Figure 5-5. You’ll see this style of cell used in the Contacts app. Neither value1 nor value2
cell styles allow an image.

Cell Accessories
On the right of all standard cell styles is the optional accessory view. iOS provides three standard
accessory views, as shown in Figure 5-6.

142 CHAPTER 5: Table Manners

The standard accessory views are (from left to right in Figure 5-6) the disclosure indicator, detail
disclosure button, and checkmark. The first two are used to indicate that tapping the row or the
button will disclose—navigate to—another screen or view that displays details about that row.
Nested lists are often organized this way. For example, in a table of countries each row navigates to
another table listing the major cities in that country.

The disclosure indicator is not a control. It’s an indication that tapping anywhere in the row will
navigate you to some additional information, as in the country/city example. The detail disclosure
button, however, is a regular button. You must tap the accessory view button to navigate to the
details. This frees the row itself to have some other purpose. The Phone app’s recent calls table
works this way (see the middle of Figure 5-6); tapping a row places a call to that person, while
tapping the detail disclosure button navigates to their contact information.

The check mark is just that, and is used to indicate when a row has been selected or marked, for
whatever purpose.

A cell’s accessory view can also be set to a control view of your choosing (such as a toggle switch).
This is very common in tables that display settings (see Figure 5-2).

Custom Cells
The two table view styles, four cell styles, and various accessory views provide a remarkable amount
of flexibility. If you peruse just the Contacts, Settings, and Music apps from Apple, it’s almost
stunning the number of interfaces (dozens, by my count) that are just different combinations of the
built-in table and cell styles, with judicious use of optional images, subtitles, and accessory views.

You’ll also notice cells that don’t fit any of the styles I’ve described. There’s a wildcard in the table
cell deck: you can design your own cell. A UITableCell object is a subclass of UIView. So, in theory,
a table cell can contain any view objects you want, even custom ones you’ve designed yourself
using Objective-C and Interface Builder. So don’t fret if the standard styles don’t exactly fit your
needs, you can always create your own.

Now that you have an idea of what’s possible, it’s time to take a closer look at how tables work.

How Table Views Work
Up to this point, every visual element in your apps has been a view object. In other words, there’s
been a one-to-one relationship between what you see on your device and a UIView object in your
app. Table views, however, have a few issues with that arrangement, and the table view class comes
with an ingenious solution.

A table view that creates a cell object for every row runs into a number of problems when the
number of rows is large. It’s not hard to imagine a contact list with several hundred names, or a
music list with several thousand songs. If a table view had to create a cell object for every single
song, it would overwhelm your app, consume a ridiculous amount of memory, require a long time to
create, and generally result in a sluggish and cumbersome interface. To avoid all of these problems,
table views use some clever sleight of hand.

143CHAPTER 5: Table Manners

Table Cells and Rubber Stamps
If you’ve ever filed papers with the county clerk, or shopped in a supermarket in the days before
UPC barcodes, you’re familiar with the idea of a rubber stamp that can be altered to stamp a
particular date or price, using a dial or movable segments. It would be ludicrous if your county clerk
had to have a different rubber stamp for every date. Similarly, table views don’t create cell objects for
every row. They create one cell object—or at least a very small number—and reuse that cell object to
draw each row in the table, kind of like a rubber stamp.

Figure 5-7 shows the concept of reusing a cell object. In this figure, there are only three (principal)
view objects: a UITableView object, a UITableViewCell object, and a data source object. The table
view reuses the one cell object to draw each row.

The table view does this using a delegate object, just like the delegate object you used in the Shorty
app. When you create a table view object you must provide it with a data source object. Your data
source object implements specific delegate methods that the table view object will send when it
wants a cell object configured to draw a particular row.

Continuing with the rubber stamp analogy, pretend you have a table view that wants to print a list
of products and their prices. It starts by handing your (data source) object the rubber stamp (cell
object) and saying, “Please configure this stamp for the first product in the list.” Your object then
sets the properties of the stamp (product name and price) and hands the configured stamp back to
the table view. The table view uses the stamp to print the first row. It then turns around and repeats
this process for the second row, and so on, until all of the rows have been printed.

Using this technique, a table view can draw tables that are thousands of rows tall using only a few
objects. It’s fast, flexible, and wickedly efficient.

Table View

Data Source

Canned Peaches
$1.49

Pickles
$2.29

Cream Cheese
$0.99

Shredded Wheat
$2.99 Table View Cell

Cookies
$1.79

Canned Peaches
Pickles
Cream Cheese
Shredded Wheat
Cookies
Tomato Sauce

1.49
2.29
0.99
2.99
1.79
1.39

Figure 5-7. Reusable cell object

144 CHAPTER 5: Table Manners

MyStuff
You’re going to create a personal inventory app named MyStuff. It’s a relatively simple app that
manages a list of items you own, recording the name of each item and where you keep it (living
room, kitchen, and so on).

Design
This app’s design is slightly more involved than the last two. It’s complicated, a little, by the
differences between the iPhone and iPad. Apple’s Mail app looks substantially different on the
iPhone versus the iPad. That’s because the iPhone only has enough screen space to comfortably
display one thing at a time—either the list of messages or the content of a message. On the iPad
there’s plenty of room for both. The underlying app logic is very similar, but the visual design is quite
different. You’ll have to account for this in both your visual design and, to a certain extent, in your
logic design. Start with the iPhone design, as shown in Figure 5-8.

The iPhone design is simple, and typical of how table views work. The main screen is a list of your
items, listing their description and location. Tapping an item navigates to a second screen where you
can edit those values.

The iPad design is less structured. In landscape orientation, the list of items will appear on the left,
as shown in Figure 5-9. Tapping an item makes the details of that item appear on the right, where
they can be changed. In portrait orientation (not shown) the item detail consumes the screen while

Figure 5-8. Sketch of MyStuff for iPhone

145CHAPTER 5: Table Manners

the list of items becomes a pop-up that the user accesses via a button in the upper-left corner of the
screen.

If this interface looks familiar, it’s the same one used by Apple’s Mail app. This is not a trivial
interface to program, but you’re in luck; Xcode has an app template that includes all of the code
needed to make this design work. You just have to fill in the details, which is exactly what you’re
going to do next.

Creating The Project
As with all apps, begin by creating a new project in Xcode. This time, choose the Master Detail iOS
application template, as shown in Figure 5-10.

Figure 5-9. Sketch of MyStuff for iPad

146 CHAPTER 5: Table Manners

The Master Detail template is so named because it’s what computer developers call this kind of
interface. The list is your master view, displaying a summary of all of the data. The master view
segues to a secondary detail view that might show more specifics about that item or provide tools
for editing it.

Name the project MyStuff, give it a class prefix of MS, and make sure Use Core Data is turned off. Set
the devices option to Universal. Click Next and save your new project folder somewhere.

The first thing you’ll notice is that there’s a lot of code in this project already. The Master Detail
template includes all of the code needed to display a list of items, navigate to a detail interface,
create new items, delete items, and handle orientation changes. The content of its table is simple
NSDate objects. Your job is to replace those placeholder objects with something of substance.

Figure 5-10. Creating a Master Detail app

Tip You’d do well to spend some time looking over the code included by the project template. It does “all
the right things” when it comes to navigation, orientation changes, presenting pop-up views, and so on. You’ll
read more about navigation in Chapter 12.

Creating Your Data Model
You know that you want to display a list of “things”—the individual items that you own. And you
know that each thing is going to need at least two properties, a name property and a location
property, both strings. So what object is going to represent each thing? That’s a very important
question, because this mysterious object (or objects) is what’s called your data model. Your data
model comprises the objects that represent whatever concept your table view is displaying.

147CHAPTER 5: Table Manners

Note The theory and practice behind data models is described in Chapter 8.

Figure 5-11. Creating the MyWhatsit class

Clearly the Cocoa Touch framework doesn’t include such an object, so you’ll have to create one!
In the project navigator, select the MyStuff folder (not the project) towards the top of the navigator.
From either the File menu, or by right/control+clicking on the folder, choose the New File ...
command.

In the template assistant, select the iOS Cocoa Touch group, and then choose the Objective-C Class
template. Click Next. Name the class MyWhatsit and make it a subclass of NSObject, as shown in
Figure 5-11.

Click Next, accept the default location (the MyStuff project folder), and click Create. Now you have
a new class of objects in your app named MyWhatsit. Select the MyWhatsit.h interface file in the
navigator. It’s pretty bleak. This is the class of objects that will represent each item that you own.
Each one will need a name and a location property. Define those now by adding the following to its
interface:

@property (strong,nonatomic) NSString *name;
@property (strong,nonatomic) NSString *location;

Congratulations, you now have a data model. You’ll also want to create your MyWhatsit objects with
something other than nothing for a name and location, so define an “init” method that creates an

148 CHAPTER 5: Table Manners

object and sets both properties in a single statement. (This isn’t a requirement, but it will make some
of your code easier to write.) Start by adding this method declaration to your interface file:

- (id)initWithName:(NSString*)name location:(NSString*)location;

Switch to your implementation of MyWhatsit (MyWhatsit.m). Initialization (or just “init”) methods are
object constructor methods. They exist to correctly instantiate a new instance of that class. Every
class inherits the plain vanilla -init method, but many classes define more elaborate initialization
methods, and you’re free to create your own.

All init methods follow a well-defined pattern, or contract. Every -init method must:

1. Start by sending the appropriate -init message to its superclass.

2. Assign the returned value to self and test it for nil.

3. If self is not nil, initialize any class-specific properties.

4. Return self to the caller.

Xcode has a library of code snippets for common programming tasks, and the -init method pattern
is no exception. Show the code snippet library in the utilities pane (View ➤ Utilities ➤ Show Code
Snippit Library). Locate the Objective-C init Method snippet, as shown in Figure 5-12.

Drag the snippet into the @implementation section of your MyWhatsit.m file. Replace the generic
-(id)init declaration with yours:

- (id)initWithName:(NSString*)name location:(NSString*)location

Hold down the Control key and press the / (forward slash) key. This editor shortcut jumps to the
placeholder in the -init method template. Code snippets often contain placeholders that you

Figure 5-12. Objective‑C init method snippet

149CHAPTER 5: Table Manners

need to replace with your code. This navigation command lets you jump right to them. Replace the
placeholder with:

self.name = name;
self.location = location;

When you’re finished, your implementation should look like the one in Figure 5-13.

Figure 5-13. Complete MyWhatsit implementation

Now that you have a data model, your next task is to teach the table view class how to use it.

Creating a Data Source
A table view object (UITableView) has two delegate properties. Its delegate property works just like
the delegates you used in earlier chapters. The table view delegate is optional. If you choose to use
one, it must be connected to an object that adopts the UITableViewDelegate protocol.

The table view’s other delegate is its data source object. For a table view to work, you must set its
dataSource property to an object that adopts the UITableViewDataSource protocol. This delegate is
not optional—without it, your table won’t display anything.

The data source’s job is to provide the table view with all of the information it needs to arrange and
display the contents of the table. At a minimum, your data source must:

Report the number of rows in the table	

Configure the table view cell (rubber stamp) object for each row 	

A data source can also provide lots of optional information to the table view. Your data source for
this app won’t need to implement any of these, but here are the kinds of things you can customize:

Organize rows into groups	

Display section titles	

150 CHAPTER 5: Table Manners

Provide an index (for indexed lists)	

Provide custom header and footer views for grouped tables	

Control which rows are selectable	

Control which rows are editable	

Control which rows are movable	

As you saw in Shorty, a single class can adopt multiple protocols and can be the delegate
for more than one object. In a similar vein, your view controller object can adopt both the
UITableViewDelegate and UITableViewDataSource protocols and act as both the delegate and data
source for a table view. This arrangement is typical in simple designs, and is exactly what’s been
set up for you by the Master Details project template. Click the Main_iPhone/iPad.storyboard file,
locate the Master View Controller scene, and select the table view object. Using the connections
inspector, you’ll see that both its delegate and dataSource outlets have been connected to the
Master View Controller (your MSMasterViewController object).

Select the MSMasterViewController.m implementation file and take a look at the methods defined
there. For a table view to work, your data source object must implement these two required
methods:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section;
- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)
indexPath;

The first message is sent to your data source object whenever the table view wants to know how
many rows are in a particular section of your table. Remember, some tables can be grouped into
sections, with each section having a different number of rows. For a simple table (like yours) there’s
only one section (0), so just return the total number of rows.

You’re going to store your MyWhatsit objects in an array. One has already been defined in
MSMasterViewController, but let’s rename it. At the top of the MSMasterViewController.m file, find
the @interface section, select the _objects instance variable, right/control+click on it, and choose
Refactor ➤ Rename ... from the pop-up menu, as shown in Figure 5-14.

151CHAPTER 5: Table Manners

Xcode’s refactoring system makes changing names, promoting and demoting methods, splitting
classes, and so on relatively painless. In the rename dialog, change the name from _objects to
things and click the Preview button. Xcode will find every reference to that variable and present a
dialog showing your source before and after the proposed changes, as shown in Figure 5-15. Click
the Save button. (Xcode may ask to take a snapshot of your project; go ahead, it’s a good idea.)

Figure 5-14. Renaming a variable

Figure 5-15. Previewing a variable name change

152 CHAPTER 5: Table Manners

So why did I have you change the name of _objects? There are two reasons. The first is that code
is easier to understand if the names you choose for variables have specific meanings. The variable
_objects was just a little too generic for my tastes. Secondly, you shouldn’t create variable names
that begin with an underscore. I know you didn’t name it, but it bothers me nonetheless.

Tip Apple reserves all symbol names that begin with a single underscore. The Objective-C compiler
reserves all symbol names that begin with two underscores. To avoid name conflicts, don’t start your variable,
class, or preprocessor names with a single or double underscore. The Master Detail template can get away
with this because the template was developed by Apple (not you).

Now it’s time to visit those two required data source methods.

Implementing Your Rubber Stamp
Find the -tableView:numberOfRowsInSection: method. Here’s what it looks like:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return things.count;
}

There’s nothing to change here. The method already does exactly what you need it to do: return the
number of rows (MyWhatsit objects) in your table.

Move on to the -tableView:cellForRowAtIndexPath: method. The code currently looks like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 NSDate *object = things[indexPath.row];
 cell.textLabel.text = [object description];
 return cell;
}

This is your rubber stamp. Your object receives this message every time the table view wants to
draw a row. Your job is to prepare a UITableViewCell object that will draw that row and return it to
the sender. This happens in two steps. The first step is to get the UITableViewCell object to use.
Ignore that step for the moment; I’ll describe this process in the next section (“Table Cell Caching”).

The second step is to configure the cell so it draws the row correctly. The last three statements
are where that happens. Right now, it expects to get an NSDate object from the array and set
the label of the cell to its description. This is the code you need to replace. But first, your

153CHAPTER 5: Table Manners

MSMasterViewController.m file needs to know about your MyWhatsit object. At the top of the file, just
below the other #import statements, add this line:

#import "MyWhatsit.h"

Now go back to your -tableView:cellForRowAtIndexPath: method and replace the last three
statements in the method with:

MyWhatsit *thing = things[indexPath.row];
cell.textLabel.text = thing.name;
cell.detailTextLabel.text = thing.location;
return cell;

Now your rubber stamp gets the MyWhatsit object for the row to be drawn (from the indexPath
object) and stores it in the thing variable. It then uses the name and location properties to set the
textLabel (title) and detailTextLabel (subtitle) of the cell.

Note Table views use NSIndexPath objects to identify rows in a table. The NSIndexPath objects used by
UITableView have a section and row property that unambiguously identifies each row. Since your table
only has one section, you can ignore the section property; it will always be 0.

The cell you return will be used to draw the row. That was the easy part. Now take one step back
and look at the first part of that method again.

Table Cell Caching
In the rubber stamp analogy, I said that the table view “gives you a rubber stamp and asks you to
configure it.” I lied—at least a little. The table view doesn’t give you the cell object to use because
it doesn’t know what kind of cell object you need. Instead, a cell object is created by either the
storyboard or code you write, and the table view hangs onto it so you can reuse it again next time.
This is called the table cell cache.

There are three ways of using the table cell cache:

Let your storyboard create the cell objects	

Lazily create cell objects programmatically, as needed	

Ignore the cache entirely	

In this app, you’ll take the first approach. The Master Detail project template has already defined a
single table cell object, with the unimaginative identifier "Cell". Select the Main_iPhone.storyboard
file and select the table view object in the Master View Controller scene, as shown in Figure 5-16.

154 CHAPTER 5: Table Manners

At the top of the table view you’ll see a Prototype Cells region. This is where Interface Builder lets
you design the cell objects that your table view will use. The Prototype Cells count (shown in the
attributes inspector on the right of Figure 5-16) declares how many different cell objects your table
needs. You only need one.

Click on the one and only prototype cell template, as shown in Figure 5-17. Now you’re editing
a single table cell object. Notice that the Identifier property is set to Cell; this identifies
the cell in the cache and must exactly match the identifier you pass in the
-dequeueReusableCellWithIdentifier:forIndexPath: message.

Figure 5-17. Editing a table cell prototype

Figure 5-16. Table view with prototype table cell

155CHAPTER 5: Table Manners

Your table will display the name of the object and its location. The standard cell type that fits that
description is the subtitle style (UITableViewCellStyleSubtitle). Change the cell’s style to Subtitle,
as shown in the upper-right of Figure 5-17.

Your table view design is complete. You’ve defined a single cell object, with an identifier of “Cell”,
that uses the subtitle table cell style.

CELL OBJECT IDENTIFIERS AND REUSE

The table view cell cache makes it easy for your -tableView:cellForRowAtIndexPath: method to efficiently reuse
table cell view objects, and there are a variety of different ways to use it.

At one extreme, you don’t have to use the cache at all. Your -tableView:cellForRowAtIndexPath: method could
return a new cell object every time it’s called. This would be appropriate for a tiny number of rows, where each row was
completely different—the kind of interface you see in the Settings app, for example.

An alternative, and the more traditional, way of using the table cell cache is to programmatically create your table cell
view objects, as needed. This is also called lazy object creation. You do this by checking to see if the cell object you need
is already in the cache and create one only if it isn’t. The code to do that looks like this:

id cellIdent = @"LazyCell"; // choose appropriate cell here

UITableViewCell *cell;

cell = [tableView dequeueReusableCellWithIdentifier:cellIdent];

if (cell==nil)

 {

 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle

 reuseIdentifier:cellIdent];

 // one-time cell view configuration goes here

 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

 }

This code asks the table cell cache if a cell with that identifier has already been added. If not, the message will return
nil, indicating there’s no such object in the cache. Your code responds by creating a new cell object, assigning it the
same cell identifier. When you return this cell object to the table view, it will automatically add it to its cache. Next time,
that cell view object will be in the cache.

A third alternative is to register a cell view class or Interface Builder file with the table using the -registerClass:for
CellReuseIdentifier: or -registerNib:forCellReuseIdentifier: messages. After you do that, requests for
a cell with that identifier that’s not in the cache will automatically create one for you. (This is, essentially, what happens
when you design prototype cells using the storyboard.)

Using cell identifiers, you can also maintain a small stable of different cell objects. In your MyStuff app, you might
one day decide to have a different row design for Star Wars memorabilia and another row design for stuff you got
from your grandmother. You would assign each cell object its own identifier (@"Cell", @"Star Wars", @"Me Ma").
The table view cell cache would then keep all three cell objects, returning the appropriate one when you send it the

156 CHAPTER 5: Table Manners

-dequeueReusableCellWithIdentifier: message. To do this using a storyboard, set the Prototype Cells
count to 3 and assign a unique identifier to each prototype cell.

You are free to mix and match any of these techniques. A single table could have some cell view objects that are defined
in the storyboard, others registered to be created by class name, and your code could lazily create the rest.

While you’re here, change the name in the navigation bar from Master to My Stuff. Do this by
double-clicking on the “Master” title in navigation bar above the table view (see Figure 5-17). You’ve
now implemented all of the code needed to display your MyWhatsit objects in a table view. There’s
only one thing missing...

Where’s the Data?
You can run your app right now, but it won’t display anything. That’s because you don’t have any
MyWhatsit objects to display. To make things worse, you haven’t written any of the code to create or
edit objects yet, so if you tried to create one your app will just crash.

My solution in these situations is to cheat; programmatically create a few test objects so the
interface has something to display. Find the -awakeFromNib method in MSMasterViewController.m.
This message is sent to any object created by an Interface Builder file. It gives you an opportunity to
do any additional setup that couldn’t be accomplished in Interface Builder.

The last statement in that method will be [super awakeFromNib]. Immediately before that, add this
code (in bold):

things = [@[
 [[MyWhatsit alloc] initWithName:@"Gort"
 location:@"den"],
 [[MyWhatsit alloc] initWithName:@"Disappearing TARDIS mug"
 location:@"kitchen"],
 [[MyWhatsit alloc] initWithName:@"Robot USB drive"
 location:@"office"],
 [[MyWhatsit alloc] initWithName:@"Sad Robot USB hub"
 location:@"office"],
 [[MyWhatsit alloc] initWithName:@"Solar Powered Bunny"
 location:@"office"]
] mutableCopy];
[super awakeFromNib];

This code creates five new MyWhatsit objects and assembles them into an array object. A mutable
version of that array is then assigned to the things property variable. Now when your controller is
first created, it will have a set of MyWhatsit objects to show.

Testing MyStuff
Set your scheme to one of the iPhone Simulators and run your app. Your table view of MyWhatsit
objects appear, as shown on the left in Figure 5-18.

157CHAPTER 5: Table Manners

That’s pretty cool! You’ve created your own data model object and implemented everything required
to display your custom set of objects in a table view, using a cell format of your choosing.

But it’s clear that this app isn’t finished yet. If you tap one of the rows, you get a new screen (on the
right in Figure 5-18) that doesn’t make a lot of sense, and certainly isn’t part of your design.

The next step is to design your details view. After that, you’ll implement the code needed to edit the
list and individual items.

Adding the Detail View
Now you’re at the second half of the Master Detail design. Your detail view is controlled by the
MSDetailViewController object. MSDetailViewController is a plain old UIViewController that
load the view objects in the Detail View Controller scene. You need to create label and text field
objects to display and edit your MyWhatsit properties. You’ll need to create Interface Builder outlets
in MSDetailViewController to connect with those text fields, and you’ll need to connect them to their
objects in Interface Builder. This should be familiar territory by now, so let’s get started.

Creating the Detail View
Start with the iPhone interface. Select the Main_iPhone.storyboard file and then select the Detail
View Controller object, as shown in Figure 5-19. Select and delete the label object in the view. You
don’t need it.

Figure 5-18. Working table view

158 CHAPTER 5: Table Manners

In the object library, locate the label object and add two of them to your view. Find the text field
object and add two of those. Set the text of one label to Name and the other to Location. Arrange and
resize them so your interface looks like the one in Figure 5-20. Choose the Editor ➤ Resolve Auto
Layout Issues ➤ Reset to Suggested Constraints in Detail View Controller command.

Figure 5-20. Finished detail view

Figure 5-19. Template detail view

159CHAPTER 5: Table Manners

Switch to the MSDetailViewController.h interface file. Underneath the #import statement, add
another (so the compiler knows about your MyWhatsit class):

#import "MyWhatsit.h"

Change the type of the detailItem property so it’s specifically a MyWhatsit object:

@property (strong,nonatomic) MyWhatsit *detailItem;

Delete the existing detailDescriptionLabel property and replace it with two new outlet properties:

@property (weak,nonatomic) IBOutlet UITextField *nameField;
@property (weak,nonatomic) IBOutlet UITextField *locationField;

Switch back to the Main_iPhone.storyboard file. Select the Detail View Controller object and use
the connections inspector to connect the two new outlets (nameField and locationField) to the
appropriate text field objects in the interface, as shown in Figure 5-21.

Figure 5-21. Connecting the text field outlets

Configuring the Detail View
You might be asking how the values of a MyWhatsit object are going to get into the two UITextField
objects you just created. That’s an excellent question. It’s going to happen when the user taps on
a row in the table view. Most of the code to get from that tap to your detail view has already been
written for you (as part of the Master Detail Xcode template), but it’s important to understand how it
all works. Let’s walk through the process of tapping on a row.

On the iPhone, tapping a row triggers a “push” seque that slides the detail view onto the screen. This
push seque—the arrow connecting the master view to the detail view, shown in Figure 5-19—was
pre-defined as part of the Master Detail project template. You can create your own seques by
control/right-dragging from a prototype cell to the scene you want that cell to navigate to.

160 CHAPTER 5: Table Manners

Just before a seque occurs, your view controller receives a -prepareForSeque:sender: message.
Find that method in your MSMasterViewController.m file now. All seques from this view to another
view send the same message. By examining the seque.identifier property, you can determine
which seque is occurring—assuming you assigned each seque a unique identifier. In this case,
you’re interested in the "showDetail" seque.

The next step is to prepare the new view to be displayed. The existing code gets the object to edit
from the things array. Unfortunately, this is template code that thinks there are NSDate objects in the
array. Change it so it’s a MyWhatsit object, like this (modified code in bold):

MyWhatsit *object = things[indexPath.row];

The rest of the code doesn’t require any modification. It takes the MyWhatsit object and uses it to set
the detailItem of the destination view controller, which you know to be the MSDetailViewController.
Since you already changed the type of the detailItem to MyWhatsit, the two object types agree and
the compiler warning disappears.

In the case of the iPad, the code path is a little different. There is no seque on the iPad because both
the master list and the detail view are visible simultaneously. Click on the Main_iPad.storyboard
file and notice that the cell prototype has no seque or disclosure accessory. Instead, your master
view controller will intercept the user tapping on a cell in the list and update the detail view (which is
already visible).

Whenever your user taps on a cell, the table view’s delegate object receives a -tableView:did
SelectRowAtIndexPath: message. Find this method in your MSMasterViewController.m file. The
existing code first determines if this is an iPad or not. If it is, it performs the exact same task
that -prepareForSeque:sender: does. It’s also just as wrong. Make the same edit that you did in
-prepareForSeque:sender:, changing the NSDate to MyWhatsit.

Note The -tableView:didSelectRowAtIndexPath: message is sent to the table view’s
delegate object, not its data source object. In fact, this is the only table view delegate method your
MSMasterViewController class implements. If you didn’t need this message, you wouldn’t need a table
view delegate object at all.

Following the chain of events, find the -setDetailItem: method in the MSDetailViewController.m
implementation file. This is the message the MSDetailViewController receives when you assign
a value to the detailItem property (that is, when self.detailViewController.detailItem = object
executes).

Tip Hold down the Command key and click on a symbol to jump to its definition in the project. For example,
in the expression self.detailViewController.detailItem, hold down the Command key and click on
the symbol detailItem. Xcode will jump immediately to the -setDetailItem: method.

161CHAPTER 5: Table Manners

The -setDetailItem: method sets its internal _detailItem variable with the new object to display.
It then sends itself a -configureView message. This is the message you’re looking for (even if you
didn’t know it yet). The rest of the -setDetailItem: message handles the case where the item was
chosen from a pop-over list on the iPad interface.

The -configureView message is received whenever your detail view controller needs to prepare
itself to display a new MyWhatsit object. This is the method you need to rewrite so your MyWhatsit
property values will appear in your interface. Edit -configureView so it looks like this:

- (void)configureView
{
 if (self.detailItem!=nil)
 {
 self.nameField.text = self.detailItem.name;
 self.locationField.text = self.detailItem.location;
 }
}

This new method checks to see if a detailItem object has been set. If it has, it uses the nameField
and locationField connections to set the contents of its two text fields to the values of the name and
location properties of the MyWhatsit object.

This completes the (iPhone) detail view! When the user taps a row, the delegate gets the MyWhatsit
object for that row, passes it to your MSDetailViewController, which sends itself -configureView to
make those values appear in the view. The MSDetailViewController then becomes the active view
and viola, your detail appears, as shown on the right in Figure 5-22.

Figure 5-22. Working detail view

162 CHAPTER 5: Table Manners

The only thing left to do is flesh out the iPad detail view. Like in previous projects, most of the
work has already been done. In your Main_iPhone.storyboard file, copy the four view objects you
just added; drag out a rectangle to select the two label and two text fields, and choose
Edit ➤ Copy. Now switch to your Main_iPad.storyboard file. Delete the existing label object, click
once in the blank view so Xcode knows where to paste your objects, and choose Edit ➤ Paste.
Reposition and resize them so they fit the iPad interface, as shown in Figure 5-23. Choose Reset to
Suggested Constraints in Detail View Controller from the Resolve Auto Layout Issues button.
Select the Detail View Controller and use the connections inspector to connect the nameField and
locationField outlets.

You’ll also need to make the same changes in the iPad’s table view that you made in the iPhone’s
table view. Find the Master View Controller scene (the one with the table view). Select the
prototype table cell view object and change its style to Subtitle (see Figure 5-17). Change the
navigation title from “Master” to “My Stuff”.

Now run your project in an iPad simulator. The iPad interface is considerably different. In portrait
mode, you see the detail view instead of the table view (on the left in Figure 5-24). You get to the
table view via the Master button (in the middle of Figure 5-24).

Figure 5-23. Finished iPad detail view

163CHAPTER 5: Table Manners

If you turn the iPad on its side (choose Hardware ➤ Rotate Left in the simulator), you get a split view
with your table view on the left and your detail view on the right (on the right of Figure 5-24).

Figure 5-24. MyStuff running on an iPad

Tip If you want the Master button to be labeled My Stuff (consistent with the navigation bar title), locate
the split view controller delegate methods in MSDetailViewController.m and change the title of the
barButtonItem to "My Stuff" (i.e., barButtonItem.title = @"My Stuff"). The template code
assigns the title using a localization macro, which I explain in chapter 22. You can ignore it for now.

You may notice that you can edit the text fields, but they don’t change anything. The last part of your
app development will be to set up editing of your MyWhatsit objects, allow the user to create new
ones, change them, and delete ones they don’t want.

Editing
I’m not going to lie to you; editing is hard. That’s not to say you can’t tackle it, and you’re going
to add editing to MyStuff. But don’t fret, you already have a huge head start. The table view and
collection classes do most of the heavy lifting, and most of the code you need to write to support
table editing has already been included in your app, thanks to the Master Detail project template.
There’s still code you need to write, but mostly you need to understand what’s already been written
and how the pieces fit together.

Editing tables can be reduced to a few basic tasks:

Creating and inserting a new item into the table	

Removing an item from the table	

164 CHAPTER 5: Table Manners

Reorganizing items in a table	

Editing the details of an individual item	

Your app will allow new items to be added, existing items to be removed, and the details of an item
to be edited. By default, items in a table can’t be reordered. You can enable that feature if you need
to, but you won’t here.

iOS has a standard interface for deleting and reordering items in a table. You can individually delete
items by swiping the row, as shown on the left in Figure 5-25, or you can tap the Edit button and
enter editing mode. In editing mode, tapping the minus button next to a row will delete it. Tapping
the Done button returns the table view to regular viewing. iOS also provides a standard “plus” button
for you to use to trigger adding a new item.

Figure 5-25. Table editing interface

These interfaces are part of the table view classes. The only work you need to do is to set up the
interface objects to trigger these actions. You’ll start by providing the code to add new objects, then
I’ll describe the set up that enables editing of your table, and finally you’ll write the code to edit the
properties of a single MyWhatsit object.

Inserting and Removing Items
Inserting a new item into your list is a two-step process:

1. Create the new object and add it to your collection.

2. Inform that table view that you added a new object, and where.

165CHAPTER 5: Table Manners

The Master Detail template includes an action method, -insertNewObject:, that does this. The
template code, however, doesn’t know about your data model so you’ll need to make some small
adjustments to create the correct kind of object.

In the MSMasterViewController.m implementation file, find the -insertNewObject: method. The
template code looks something like this:

- (void)insertNewObject:(id)sender
{
 if (!things)
 things = [[NSMutableArray alloc] init];
 [things insertObject:[NSDate date] atIndex:0];
 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:0 inSection:0];
 [self.tableView insertRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
}

The first two lines lazily create your NSMutableArray collection. This handles the case where this is
the first object being added to your collection; prior to this point, you might not have a collection
array.

Note In your app, as it stands now, this code will never get executed because you explicitly created an array
collection full of test data during controller initialization. In later versions of your app you’ll take that code out,
so it's a good idea to leave this code here.

The next line satisfies the first step of adding a new item to the table. It creates a new object and
adds it at the beginning of the collection (by inserting it at index 0). The only problem is, it’s the
wrong kind of object. Replace that line of code with the following:

static unsigned int itemNumber = 1;
NSString *newItemName = [NSString stringWithFormat:@"My Item %u",itemNumber++];
MyWhatsit *newItem = [[MyWhatsit alloc] initWithName:newItemName location:nil];
[things insertObject:newItem atIndex:0];

Your code generates a unique name for the new item (starting with “My Item 1”), uses that name to
create a new MyWhatsit object, and inserts that new object into the collection.

Tip If you want your new items to appear at the end of the list, instead of the beginning, insert that new
object at the end of the array (using -addObject:) and then tell the table view it was added at the end
(using [NSIndexPath indexPathForRow:things.count-1 inSection:0]).

The rest of the code remains the same. You’re still inserting your object at the beginning of the
collection, so the code that tells the table view that doesn’t need to change.

166 CHAPTER 5: Table Manners

Now, you may be wondering when, and how, the -insertNewObject: message gets sent. After all,
you don’t send it anywhere and it’s not an object created in any of the Interface Builder files. The
answer to that question can be found in the next section.

Enabling Table Editing
To allow any row in your table to be deleted (via the standard iOS editing features, that is) your data
source object must tell the table view that it’s allowed. If you don’t, iOS won’t permit that row to be
deleted. Your data source does this via its optional -tableView:canEditRowAtIndexPath: method.
The Master Detail template provided one for you:

- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath *)indexPath
{
 return YES;
}

The method provided by the template allows all rows in your table to be editable. By default,
“editable” means it can be deleted. If you don’t want a row to be editable, return NO.

Note Technically, the -tableView:canEditRowAtIndexPath: message only determines if a row could
be edited. If it is, then the table view delegate object gets to determine if or how via its optional -tableView
:editingStyleForRowAtIndexPath: method. The default edit style, which you’re using here, allows the
row to be deleted (UITableViewCellEditingStyleDelete).

If -tableView:canEditRowAtIndexPath: returns YES for a row, iOS allows the swipe gesture to delete
the row. If you also want to enable “editing mode” for the entire list (where minus signs appear in
each row), you hook that up in the navigation bar, provided by the UITableViewController (which
your MSMasterViewController inherits). iOS provides all the needed button objects, and most of
the behavior, that you need. All you have to do is turn them on. In your MSMasterViewController
implementation, find the -viewDidLoad method. The beginning of the method should look like this:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.navigationItem.leftBarButtonItem = self.editButtonItem;
 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(insertNewObject:)];
 self.navigationItem.rightBarButtonItem = addButton;

The first line calls the superclass’s -viewDidLoad: method, so the superclass can do whatever it
needs to do when the view objects load.

167CHAPTER 5: Table Manners

The next line creates the Edit button you see on the left side of the navigation bar (see Figure 5-23).
It sets the left-hand button to the view controller’s editButtonItem. The editButtonItem property is
a preconfigured UIBarButtonItem object that’s already set up to start and stop the edit action for its
table.

The button to create and insert a new item requires a little more set up, but not much.
The next line creates a new UIBarButtonItem. It will have the standard iOS “+” symbol
(UIBarButtonSystemItemAdd). When the user taps it, it will send an -insertNewObject: message
to this object (self). The last line adds the new toolbar button to the right-hand side of the
navigation bar.

That’s it! This is the code that adds the Edit and + buttons to your table’s navigation bar.
The Edit button takes care of itself, and you configured the + button to send your controller
object the -insertNewObject: message when it’s tapped. In the previous section, you rewrote
-insertNewObject: to insert the correct kind of object.

It’s time to try it out. Set your scheme back to the iPhone Simulator and run your app. Try swiping a
row, or using the Edit button. Add some new items by tapping the + button. Your efforts should look
like those in Figure 5-23.

There’s one last detail that you should be aware of. When adding a new object, your code created
the object, added it to your data model, and then told the table view what you’d done. When
deleting a row, the table view is deciding what row(s) to delete. So how does the actual MyWhatsit
object get removed from the things array? That happens in this data source delegate method, which
was already written for you:

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [things removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 } else if (editingStyle == UITableViewCellEditingStyleInsert) {
 // ... insert item here ...
 }
}

When a user edits a table and decides to delete (or insert) a row, that request is communicated
to your data source object by sending it this message. Your data source object must examine the
editingStyle parameter to determine what’s happening—a row is being deleted, for example—and
take appropriate action. The action to take when a row is deleted is to remove the corresponding
MyWhatsit object from the array and let the table view know what you did.

That’s all of the code needed to edit your table. Now it’s time to put the last big piece of the puzzle
into place: editing the details of a single item.

168 CHAPTER 5: Table Manners

Editing Details
To edit the details of an item, you’re going to need to:

1. Create a view where the user can see all of the details.

2. Set the values of that view with the properties of the selected item in the
table.

3. Record changes to those values.

4. Update the table with the new information.

The good news is that you’ve already done half of this work. You already modified the
MSDetailViewController to display the name and location properties of a MyWhatsit object, and you
added code to fill in the text fields with the property values of the selected item (-configureView).
Now you just have to add some code to do the next two steps, and your app is nearly done.

Start with the iPhone interface—because the iPad interface is going to work a little differently. Create
an action that will respond to changes made to the name and location text fields. Start by adding a
method prototype to MSDetailViewController.h:

- (IBAction)changedDetail:(id)sender;

In the MSDetailViewController.m implementation file, add the actual method:

- (IBAction)changedDetail:(id)sender
{
 if (sender==self.nameField)
 self.detailItem.name = self.nameField.text;
 else if (sender==self.locationField)
 self.detailItem.location = self.locationField.text;
}

This action method will be received when either the name or location text field is edited. It’s not
obvious which of the fields caused the message to be sent, so the code compares the sender
parameter (the object that caused the action message to be sent) against your two text field
connections. If one is a match, you know which text field sent the message and can update the
appropriate MyWhatsit property with the new value.

Connect the Did End Editing message of the two text fields to this action in Interface Builder.
Select the Main_iPhone.storyboard file. Select the name property text field. Using the connections
inspector, connect its Editing Did End event to the -changedDetail: action of the Detail View
Controller (your MSDetailViewController), as shown in Figure 5-26. Repeat with the location
text field.

169CHAPTER 5: Table Manners

Now when you edit one of the text fields in the detail view, it will change the property values of the
original object, updating your data model. Give it a try.

Make sure your scheme is still set to an iPhone simulator and run your app. Your items appear in the
list, shown on the left in Figure 5-27.

Figure 5-27. Testing detail editing

Figure 5-26. Connecting Editing Did End to ‑changedDetail: action

Tapping the Gort item shows you its details. Edit the details of the first row. In the example in
Figure 5-27, I’m changing its name to “Gort statue” and its location to “living room.” Clicking the My
Stuff button in the navigation bar returns you to the list. But wait! The Gort MyWhatsit object wasn’t
updated.

170 CHAPTER 5: Table Manners

Or was it? You could test this theory by setting a debugger breakpoint in -changedDetail: to
see if it was sent (it was). No, the problem is a little more insidious. With your cursor (or finger, if
you’re testing this on a real device), drag the list up so it causes the Gort row to disappear briefly
underneath the navigation toolbar, as shown on the left in Figure 5-28.

Release your mouse/finger and the list snaps back. Notice that the first row now shows the updated
values. That’s because your -changedDetail: method changed the property values, but you never
told the table view object, so it didn’t know to redraw that row. You need to fix that.

Observing Changes to MyWhatsit
In Chapter 8 I’ll explain the rationale behind data model and view object communications. For now,
all you need to know is that when the properties of a MyWhatsit object change, the table view needs
to know about it so it can redraw that row.

In theory, this is an easy problem to solve: when the MyWhatsit property is updated, a message
needs to be sent to the table view to redraw the table, just like you did when you added or
removed an object. In practice, it’s a little trickier. The problem is that neither the MyWhatsit
object nor MSDetailViewController have a direct connection to the table view object of the
MSMasterViewController view. While there’s nothing stopping you from adding one and connecting it
in Interface Builder or programmatically, in this case there’s a cleaner solution.

Figure 5-28. Redrawing the first row

Note In a good model-view-controller design, it would be completely inappropriate for a data model object
(like MyWhatsit) to have a direct connection to a view object (like a table view). So this isn’t just a clever
solution, it’s actually good software design.

171CHAPTER 5: Table Manners

There’s a software design pattern called the observer pattern. It works like this:

1. Any object interested in knowing when something happens registers as an
observer.

2. When something happens, the object responsible posts a notification.

3. The iOS notification center distributes that notification to all interested
observers.

The real beauty of this arrangement is that neither the observers nor the objects posting notifications
have to know anything about each other. You’ll use notifications to communicate changes in
MyWhatsit objects to the MSMasterViewController. The first step is to design a notification and have
MyWhatsit post it at the appropriate time.

Posting Notifications
In your MyWhatsit.h interface file, add this method prototype:

- (void)postDidChangeNotification;

Towards the top of the file, add this constant definition:

#define kWhatsitDidChangeNotification @"MyWhatsitDidChange"

Switch to your MyWhatsit.m implementation file, and add the method:

- (void)postDidChangeNotification
{
 [[NSNotificationCenter defaultCenter]
 postNotificationName:kWhatsitDidChangeNotification
 object:self];
}

When received, this method will post a notification named kWhatsitDidChangeNotification. The
object of the notification is itself. The name of the notification can be anything you want, you just
want to make sure it’s unique so it isn’t confused with a notification used by another object.

Back in your -changedDetail: method (MSDetailViewController.m), add one additional line to the
end of the method:

[self.detailItem postDidChangeNotification];

Now whenever you edit the details of your MyWhatsit object, it will post a notification that it
changed. Any object interested in that fact will receive that notification. The very last step is to make
MSMasterViewController observe this notification.

172 CHAPTER 5: Table Manners

Observing Notifications
The basic pattern for observing notifications is:

1. Create a method to receive notification messages.

2. Become an observer for the specific notification(s) your object is interested in.

3. Process any notifications received.

4. Stop observing notifications when you don’t need them anymore, or before
your object is destroyed.

The first step is simple enough. In your MSMasterViewController.m implementation file, add a
-whatsitDidChangeNotification: method. Start by adding a method prototype at the end of the
@interface MSMasterViewController () section:

- (void)whatsitDidChangeNotification:(NSNotification*)notification;

Then, towards the bottom of the @implementation section, add the actual method:

- (void)whatsitDidChangeNotification:(NSNotification*)notification
{
 NSUInteger index = [things indexOfObject:notification.object];
 if (index!=NSNotFound)
 {
 NSIndexPath *path = [NSIndexPath indexPathForItem:index inSection:0];
 [self.tableView reloadRowsAtIndexPaths:@[path]
 withRowAnimation:UITableViewRowAnimationNone];
 }
}

All notification messages follow the same pattern: -(void)myNotification:(NSNotification*
)theNotification. You can name your method whatever you want, but it must expect a single
NSNotification object as its only parameter.

The notification parameter has all of the details about the notification. Often you don’t care,
particularly if your object only wants to know that the notification happened and not exactly why. In
this case, you’re interested in the object property of the notification. Every notification has a name
and an object it’s associated with—often it’s the object that caused the notification.

The first line of your method looks for the notification’s object in your things collection. If the object
is a MyWhatsit object in your collection, the -indexOfObject: method will return its index in the
collection. If not, it will return the constant NSNotFound.

If the object is in your table (index!=NSNotFound), then the next two lines of code create an
NSIndexPath to the location of that object in your table and then tells the table view to reload
(redisplay) that row, sans animation.

The end result is that whenever the detail view changes a MyWhatsit object, this method will cause
the corresponding row of your table to redraw, showing that change. Now you just have to register
MSMasterViewController with the notification center so it will receive this message.

173CHAPTER 5: Table Manners

Locate the -awakeFromNib method. Right after the code you added to create the test array of things,
add this statement:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(whatsitDidChangeNotification:)
 name:kWhatsitDidChangeNotification
 object:nil];

This message tells the notification center to register this object (self) to receive the
given message (-whatsitDidChangeNotification:) whenever a notification with the name
kWhatsitDidChangeNotification is posted for any object (nil).

NOTIFICATION MATCHING

Registering to be a notification observer is very flexible. By passing the nil constant for either the name or object
parameters in -addObserver:selector:name:object:, you can request to receive notifications with a given name,
for a specific object, or both. The following table shows the effect of the name and object parameters when becoming an
observer.

In this situation, you want to be notified when any MyWhatsit object is edited. Your code then looks at the specific object
to determine if it’s interesting. In other situations, you’ll want to receive notifications only when a specific object sends a
specific notification, ignoring similar notifications from unrelated objects.

Just as important as registering to receive notifications, is to unregister when your object should
no longer receive them. For this app, there’s no point at which the notifications are irrelevant, but
you still must make sure that your object is no longer an observer before it’s destroyed. Leaving a
destroyed object registered to receive notifications is a notorious cause of app crashes in iOS. So
make absolutely sure your object is removed from the notification center before it ceases to exist.

It’s really easy to ensure this, so you don’t have any excuses for not doing it. Just above your
-awakeFromNib method, add this method:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

Notification observer matching

name: object: Notifications received

@"Name" object Receive only notifications named @"Name" for the object object

@"Name" nil Receive all notifications named @"Name" for any object

nil object Receive every notification for the object object

nil nil Receive every notification (not recommended)

174 CHAPTER 5: Table Manners

The -dealloc message is sent to your object just before it is destroyed. In it, you should clean up
any “loose ends” that wouldn’t be taken care of automatically. This statement tells the notification
center that this object is no longer an observer for any notification. You don’t even have to remember
what notifications or objects you’d previously ask to observe; this message will undo them all.

Run your app in an iPhone simulator again. Edit an item and return back to the list. This time your
changes appear in the list!

Modal vs. Modeless Editing
You’re in the home stretch. In fact, you’re so close to the finish line that you can almost touch it.
There’s only one vexing detail to fix: the iPad interface.

The iPhone interface uses, what software developers call, a model interface: when you tap a row to
edit an item, you’re transported to a screen where you can edit its details (editing mode), and then
you exit that screen and return to the list (browsing mode).

The iPad interface doesn’t work like that. Particularly in landscape orientation, you can jump
between the master list and the detail view at will. This means you can start editing a title or location
and then switch immediately to another item in the list. This is called a modeless interface.

While this makes for a fluid user experience, it’s a disaster for your app. If you go to the
Main_iPad.storyboard file and connect the Editing Did End events of the name and location text fields
to the -changedDetail: message, as you did in the iPhone interface, you can see that it doesn’t work.

Go ahead; give it a try. I’ll wait.

It’s because the editing of the text field never gets a chance to “end” before you can change to
another MyWhatsit object in the list. Fortunately, there’s an easy out. Instead of connecting the
Editing Did End events to -changedDetail:, connect the Editing Changed events instead. This
event is a “lower level” event that’s sent whenever the user makes any change in the text field. Now
the rows in the table view will update as the user edits the details.

Little Touches
Polish your app by giving it an icon, just as you did for the EightBall app in the previous chapter.
Locate the Learn iOS Development Projects folder you downloaded in Chapter 1. Inside the Ch 5
folder you’ll find the MyStuff (Icons) folder. Select the images.xcassets item in the navigator, and
then select the AppIcon image group. Drag all of the image files from the MyStuff (Icons) folder and
drop them into the group. Xcode will sort them out.

Your app is finished, but I’d like to take a moment to direct you to other table-related topics.

Advanced Table View Topics
You can now see that table views are used for a lot more than just listing contacts and song titles.
The table view classes are powerful and flexible, but that means they are—at times—complicated
and confusing. The good news is that they are extensively documented and there are lots of sample
projects, which you can download from Apple, that demonstrate various table view techniques.

175CHAPTER 5: Table Manners

This guide will explain every major feature of table views and how to use them. It’s not a short read,
but if you want to know how to do something specific—like create an indexed list—this is where you
should start.

Most major iOS classes have links in their documentation that will take you to a guide explaining
how to use it, and related classes. In the overview section for the UITableView class, for example,
there are several links to table-specific programming guides.

Summary
Give yourself a big “high five!” You’ve taken another huge step in iOS app development. You’ve
learned how table views works and how to use cell objects. You know what messages your app
receives when a user taps on a row, how to handle editing of rows, and how to create new rows. You
created a data model and you learned how to post and observe notifications between unconnected
objects.

This app still falls short in a few categories. The details of a particular item could be, well, more
detailed. But probably the most annoying issue is that your app doesn’t remember anything. If you
restart your app, any changes you made are lost. So for an app that’s supposed to keep track of
your stuff, it doesn’t do a very good job.

Don’t worry; we’ll attack those shortcomings in future chapters. Before you get there, take a
well-deserved rest from app development and take a brief stroll through the theory of object-oriented
programming.

The place to start is the Table View Programming Guide for iOS. Choose Help ➤ Documentation
and API Reference, in the search field enter Table View Programming, and click on the Table View
Programming Guide for iOS in the auto-completion list, as shown in Figure 5-29.

Figure 5-29. Locating the Table View Programming Guide

177

Chapter 6
Object Lesson

I’d like to take a break from app development for a chapter. Good iOS development requires
conceptual and design skills that go beyond just knowing how to write for loops or connect a
button to an outlet. Software engineers call these design patterns and design principles.
To appreciate these philosophies, I’ll start with the foundation for it all: the object.

“Hey!” you say, “I’ve been using objects, what’s to understand?” You’d be surprised at the number
of programmers who can’t describe exactly what an “object” is. If you haven’t had any questions
about the terms used in this book so far (class, object, instance, method, message, and so on), and
you’re already familiar with design patterns and principles, feel free to skip or skim this chapter.
If you have questions, keep reading.

In this chapter I will

Give a brief history of objects and object-oriented programming	

Explain exactly what a class, object, and instance are	

Describe inheritance and encapsulation	

Explain delegation and a few other design patterns	

Touch on a few key design principles	

To appreciate objects, it helps to know what came before them and why they’re such a big deal.

Two Houses, Both Alike in Dignity
There are two basic types of information rattling around inside a computer. Data is the binary values
that represent values and quantities, such as your name, a URL, or the airspeed velocity of an
unladen swallow. Code is the binary values that represent instructions that tell the computer to do
things like draw your name on the screen, load a URL, or choose a favorite color.

178 CHAPTER 6: Object Lesson

It’s easy to see this division in computer languages. The syntax of a programming language, like
Objective-C, is largely divided between statements that define, retrieve, and store values and
statements that change values, make decisions, and invoke other methods. Think of them as
the nouns and verbs of the computer’s language.

Like the Montagues and the Capulets,1 these two aspects of programming stayed separate for
a long time. As computers got bigger and faster, and computer programs got longer and more
complicated, a number of problems began to develop.

Programmers encountered more solutions where multiple pieces of information needed to be kept
together. A person doesn’t just have a name; they also have a height, an age, a tax identification
number, and so on. To keep these related facts together, they started combining multiple values into a
single block of memory called a structure. In the C programming language, a structure looks like this:

struct Person {
 char name[kLongestName];
 bool female;
 float birthdate;
 float height;
 int taxNumber;
};

These structures became so handy that programmers started to use them as if the whole thing
was a single value. They would pass a Person to a function, or store a Person in a file. They would
write functions that operated solely on a Person structure (as opposed to a single value, like a date),
writing a function that determined if it was that person’s birthday, like IsBirthdayToday(struct
Person *person) .

Programmers also started to encounter situations where there were lots of structures that resembled
one another. A Player structure has all the same properties that a Person structure does, except that
it had more variables for things like the player’s total score. They quickly figured out that they could
create structures from structures, like this:

struct Player {
 struct Person person;
 int gamesPlayed;
 int totalScore;
};

What got programmers really excited was that they could now reuse the functions they wrote for the
Person structure for the Player structure! They even gave this idea a name: subtype polymorphism.
You’ll get extra credit if you work that into a conversation at your next party.

Things should have been swell, but they weren’t. The number of structures and functions grew at a
dizzying pace. Projects would have thousands and thousands of individual functions and nearly as
many different structures. Some functions would work with Person structures, most wouldn’t.

1The Montagues and the Capulets were the two alienated families in the play Romeo and Juliet. I mention
this in case your reading list is skewed towards Jules Verne and not William Shakespeare.

179CHAPTER 6: Object Lesson

The problem was that data structures and functions were still in separate families; they didn’t mix.
Trying to figure out what functions should be used with what structures became unmanageable.
Programs didn’t work. Large software projects were failing. Something needed to happen—and it did.

Romeo Meets Juliet
In the late 1960s something magical happened: structures and functions got together, and the object
was born. An object is the fusion of property values (the data structure) and the methods that act
on those values (the functions) into a single entity that owns both. It seems so simple, but it was a
dramatic turning point in the evolution of computer languages.

Before objects, programmers spent their days writing and calling functions (also called procedures),
passing them the correct data structures. Computer languages that work this way are called
procedural languages. When the concept of an object was introduced it turned the way programmers
wrote and thought about programs inside out. Now the center of the programmer’s world is the
object; you take an object and invoke its methods. These new computer languages are called
object-oriented languages.

Objects also created programs that felt “alive.” A data structure is an inert collection of values, and
a function is an abstract sequence of instructions, but an object is both; it's an entity that has both
characteristics and can do things when told. In this sense, objects are much more analogous to the
kinds of things you deal with in the real world.

Now that you know what an object is, I’m going to give you a short course in how objects are defined
and created, and what that looks like in Objective-C. Chapter 20 describes this in much more detail.

Classes and Cookies
An object is the tangible embodiment of a class. An object’s class defines what properties that
object can have and what actions it can perform. Objects are the things you actually work with.
Think of it this way: Classes are the cookie cutters. Objects are the cookies. See Figure 6-1.

Figure 6-1. Classes and objects

180 CHAPTER 6: Object Lesson

In Objective-C, a class is defined using an @interface directive:

@interface MyClass
// Class definition goes here
@end

A class doesn’t do much by itself. A class is simply the “shape” used to create new objects. When you
create an object, you do so by specifying the class of object you want to create and then telling the
class to create one. In Objective-C that code looks like this:

MyClass *object = [[MyClass alloc] init];

The result of that expression is a new instance of a class, which is synonymous with an object.
The object includes its own storage (data structure) where all of its individual property values are
kept. Each object has its own storage; changing the value of one object won’t change the value of
any other object in the system.

Each object is also associated with a number of methods (functions) that act only on that class of
objects. The class defines those methods and every object of that class is endowed with those actions.
In Objective-C the code for methods appears in the @implementation section of that class:

@implementation MyClass
// Methods go here
@end

Methods that do their thing on a particular object (instance) of a class are called instance methods.
Instance methods always execute in the context of a single object. When the code in an instance
method refers to a property value, or the special self variable, it’s referring to the property of the
specific object it was invoked for. In Objective-C, instance methods start with a hyphen (dash):

- (void)doSomething;

There are also special class methods. A class method is defined by a class but can’t be invoked on
any specific object. The context of a class method is the class itself. Class methods are very similar
to old-style functions in the sense that they don’t do something to a particular object. Instead,
they usually perform utilitarian functions for the class, like creating new objects or changing global
settings. In Objective-C, class methods start with a plus sign:

+ (id)makeSomething;

The +alloc method is a class method. It’s sent to the class to create (allocate) a new object. The -init
method is an instance method. Its job is to prepare (initialize) that single object so it can be used.

Classes and Objects and Methods, Oh My!
A continual source of confusion for new developers is the profusion, and confusion, of terms used in
object-oriented programming. Every programming language seems to pick a slightly different set of
terms to use. Computer scientists use yet another vocabulary. Terms are often mixed up and even
seasoned programmers will use terms incorrectly, saying “object” when they really mean “class.”

181CHAPTER 6: Object Lesson

Table 6-1 will help you navigate the world of object-oriented programming terms. It lists common
Objective-C programming terms, their meaning, and some synonyms that you’ll encounter. I’ll explain
most in more detail, later in this chapter.

Table 6-1. Common Objective‑C terms

Term Meaning Similar terms

class The definition of a class of objects. It defines
what property values those objects can store
and what methods they implement.

interface, type, definition,
prototype

object An instance of a class. class instance, instance

property A value stored in an object. instance variable, attribute

method A function that executes in the context
of a single object.

instance method, function,
procedure, business logic

class method A function that executes outside the context
of any particular object.

class function, static function

override Supplanting the implementation of an inherited
method with a different one.

message A value that chooses a particular method to
execute.

selector

send Using a message to invoke an object’s method. invoke a method, call a function

sender The object that is sending a message
to another object.

caller

receive Being sent a message.

receiver The object performing the method. The context
of the running method.

self

responds Having a method that executes when sent a
particular message.

implements

client code The code outside of the class that is using the
public interface of that class or its objects.

user, client

abstract class A class, property, or method that is defined
or declared, but has no useful functionality.
Used to define a concept that subclasses will
implement in a meaningful way.

abstraction layer, placeholder, stub

concrete class A class, property, or method that does
something and is usable.

By now you should have a solid understanding of the relationship between a class, its objects, and its
properties and methods. Objective-C puts a little spin on all of this with the concept of a message.
In most other object-oriented languages, a method is simply “called” or “invoked.” This is the equivalent
of calling an old-style procedural function and passing it the data structure of the object it should
work on.

182 CHAPTER 6: Object Lesson

Objective-C works a little differently than most other object-oriented languages. Invoking a method
involves a constant numeric value called a selector. Every Objective-C method in the entire system
(such as -init or -setObject:forKey:) has a unique selector. This selector is used to choose which
of the object’s methods (if any) it will execute. This process is normally invisible to you, but it gives
rise to the language of Objective-C, where programmers speak of “sending a message to an object,”
“receiving a message,” or asking “does an object respond to this message?” One side effect: the
terms “message” and “method” are often used interchangeably.

Inheritance
Earlier I mentioned that programmers found many situations where a class or structure that they
needed was very similar, possibly with only minor additions, to another object or structure that already
existed. Furthermore, the methods they’d written for the existing object/structure were all applicable
to the new one. This idea is called inheritance, and is a cornerstone of object-oriented languages.

The idea is that classes can be organized into a tree, with the more general classes at the top, working
down to more specific classes at the bottom. This arrangement might look like something in Figure 6-2.

Figure 6-2. A class hierarchy

In Figure 6-2, the generic Object is the base class of all other objects. In Objective-C the base class is
NSObject. A subclass of Object is Toy. Toy defines a set of properties and methods common to all Toy
objects. The subclasses of Toy are Ball and Vehicle. Subclasses of Vehicle are Train and RaceCar.

183CHAPTER 6: Object Lesson

The Toy class defines a minimumAge property that describes the youngest age the toy is appropriate
for. All subclasses of Toy inherit this property. Therefore, a Ball, Vehicle, Train, and RaceCar all have
a minimumAge property.

Similarly, classes inherit methods too. The Vehicle class defines two methods: -start and -stop.
All subclasses of Vehicle inherit these two methods, so you can send a -start message to a Train
and a -stop message to a RaceCar. The -bounce message can only be sent to a Ball.

This is what computer scientists call subtype polymorphism. It means that if you have an object,
parameter, or variable of a specific type (say, Vehicle), you can use or substitute any object that's
a subclass of Vehicle. You can pass a method that has a Vehicle parameter a Train or a RaceCar
object, and the method will act on the more complex object just as effectively. A variable that refers
to a Toy can store a Toy, a Ball, or a Train. A variable that refers to a Vehicle, however, cannot be
set to a Ball, because a Ball is not a subclass of Vehicle.

You’ve already seen this in the apps you’ve written. NSResponder is the base class for all objects
that respond to events. UIView is a subclass of NSResponder, so all view objects respond to events.
The UIButton is a subclass of UIView, so it can appear in a view and it responds to events.
A UIButton object can be used in any situation that expects a UIButton object, a UIView object,
or an NSResponder object.

Abstract and Concrete Classes
Programmers refer to the Toy and Vehicle classes as abstract classes. These classes don’t define
usable objects; they define the properties and methods common to all subclasses. You’ll never find
an instance of a Toy or Vehicle object in your program. The objects you’ll find in your program are
Ball and Train objects, which inherit common properties and methods from the Toy and Vehicle
classes. The classes of usable objects are called concrete classes.

Overriding Methods
Starting a train is a lot different than starting a car. A class can supply its own code for a specific
method, replacing the implementation it inherited. This is called overriding a method.

As an example, all subclasses of NSObject inherit a -description method. This returns an
NSString describing the object. Of course, the version of -description supplied by NSObject is
generic and can’t know about the specifics of any subclass. As a programmer, you can override
-description in Ball to describe what kind of ball it is, and override -description in Train to
describe what kind of train it is.

Sometimes a class—particularly abstract classes—will define a method that doesn’t do anything at
all; it’s just a placeholder for subclasses to override. The Vehicle class methods -start and -stop
don’t do anything. It’s up to the specific subclass to decide what it means to start and stop.

For example, the UIViewController class defines the method -viewWillAppear:. This method
doesn’t do anything. It’s just a placeholder method that gets called just before the controller’s view
appears on the screen. If your view controller subclass needs to do something before your view
appears, your class would override -viewWillAppear: and perform whatever it is you need it to do.

184 CHAPTER 6: Object Lesson

If your class’s method also needs to invoke the method defined by its superclass, Objective-C has
a special syntax for that. The super keyword means the same thing as self, but messages sent to
super go to the methods defined by the superclass (ignoring the method defined in this class), as if
that method had not been overridden:

[super viewWillAppear:animated];

This is a common pattern for extending (rather than replacing) the behavior of a method. The
overriding method calls the original method and then performs any additional tasks.

Design Patterns and Principles
With the newfound power of objects and inheritance, programmers discovered that they could build
computer programs that were orders of magnitude more complex than what they had achieved in
the past. They also discovered that if they designed their classes poorly, the result was a tangled
mess, worse than the old way of writing programs. They began to ponder the question “what makes
a good class?”

A huge amount of thought, theory, and experimentation has gone into trying to define what makes a
good class and the best way to use objects in a program. This has resulted in a variety of concepts
and philosophies, collectively known as design patterns and design principles. Design patterns are
reusable solutions to common problems—a kind of programming best practices. Design principles
are guidelines and insights into what makes a good design. There are dozens of these patterns and
principles, and you could spend years studying them. I’ll touch on a few of the more important ones.

Encapsulation
An object should hide, or encapsulate, its superfluous details from clients—the other classes that
use and interact with that class. A well-designed class is kind of like a food truck. The outside of the
truck is its interface; it consists of a menu and a window. Using the food truck is simple: you choose
what you want, place your order, and receive your food through the window. What happens inside the
truck is considerably more complicated. There are stoves, electricity, refrigerators, storage, inventory,
recipes, cleaning procedures, and so on. But all of those details are encapsulated inside the truck.

Similarly, a good class hides the details of what it does behind the simple interface defined in its
@interface section. Properties and methods that the clients of that object needs should be declared
there. Everything else should be “hidden” in the @implementation or in private @interface sections.

This isn’t just for simplicity, although that’s a big benefit. The more details a class exposes to its
clients, the more entangled it becomes with the code that uses it. Computer engineers call this
a dependency. The fewer dependencies, the easier it is to change the inner workings of a class
without disrupting how that class is used. For example, the food truck can switch from using frozen
French fries to slicing fresh potatoes and cooking them. That change would improve the quality of its
French fries, but it wouldn’t require it to modify its menu or alter how customers place their order.

185CHAPTER 6: Object Lesson

Singularity of Purpose
The best classes are those that have a single purpose. A well-designed class should represent
exactly one thing or concept, encapsulate all of the information about that one thing, and nothing
else. A method of a class should perform one task. Software engineers call this the single
responsibility principle.

A button object that starts a timer has limited functionality. Sure, if you need a button that starts a
timer, it would work great. But if you need a button that resets a score, or a button that turns a page,
it would be useless. On the other hand, a UIButton object is infinitely useful because it does only
one thing: It presents a button the user can tap. When a user taps it, it sends a message to another
object. That other object could start a timer, reset a score, or turn a page.

Great objects are like Lego™ blocks. Create objects that do simple, self-contained, tasks and
connect them to other objects to solve problems. Don’t create objects that solve whole problems. I’ll
discuss this more in Chapter 8.

Stability
A ball should be useable all of the time. If you picked a ball you would expect it to bounce. It would be
strange to find a ball that wouldn’t bounce until you first turned it over twice, or had to paint it a color.

Strive to make your objects functional regardless of how they were created or what properties have
been set. In the Ball example, the -bounce method should work whether the minimumAge property has
been set or not. Software engineers call these pre-conditions, and you should keep them to a minimum.

Open Closed
There are two corollaries to the single responsibility principle. The first is the so-called “open closed”
principle: classes should be open to extension and closed to change. This is a strange one to grasp,
but it basically means that a class is well designed if it can be reused to solve other problems by
extending the existing class or methods, rather than changing them.

Programmers abhor change, but it's the one constant in software development. The more things
you have to change in an app, the more chance that it’s going to affect some other part of your
project adversely. Software engineers call this coupling. It’s a polite way of saying that by changing
one thing, you’ll create a bug somewhere else. The open closed principle tries to avoid changing
things by designing your classes and methods so you don’t have to change them in the future.
This takes practice.

Using the toy classes again, both the Train and RaceCar might be electric. You might be tempted to
add properties and methods that relate to electric propulsion (voltage, -switchOn, and so on) to the
Vehicle class. The problem is what happens when you want to define a wind-up RaceCar. You’ll have
to change Vehicle, and that’s going to affect every Train and RaceCar object in your app.

Thinking ahead, you could have added another layer of classes between Vehicle and its subclasses,
such as ElectricVehicle and WindUpVehicle. This would let you create a subclass of WindUpVehicle
without changing the subclasses of ElectricVehicle. Now you’re extending your design, not
changing it. You’re also thinking beyond the code you write today, to the code you might want to
write tomorrow.

186 CHAPTER 6: Object Lesson

Delegation
Another lesson of the single responsibility principle is to avoid mixing in knowledge or logic that’s
beyond the scope of your object. A ball has a -bounce method. To know how high the ball will
bounce, the method must know what kind of surface the ball is bouncing against. Since this
calculation has to be made in the -bounce method, it’s tempting to include that logic in the Ball
class. You might do this by adding a -howHigh method that calculates the height of a bounce.

That design decision, unfortunately, leads you down a crazy path. Since the bounce calculation varies
depending on the environment, the only way to modify the calculation is to override the -howHigh
method in subclasses. This forces you to create subclasses like BallOnWood, BallOnConcrete,
BallOnCarpet, and so on. If you then want to create different kinds of balls, like a basketball and a
beach ball, you end up subclassing all of those subclasses (BeachBallOnWood, BasketBallOnWood,
BeachBallOnCarpet, and on and on). Your classes are spiraling out of control, as shown in Figure 6-3.

Figure 6-3. Subclassing “solution”

A design pattern that avoids this mess is the delegate pattern. As you’ve seen, the delegate pattern
is used extensively in the Cocoa Touch framework. The delegate pattern defers—delegates—key
decisions to another object, so that logic doesn’t distract from the single purpose of the class.

Using the delegate pattern, you would create a surface property for the ball. The surface property
would connect to an object that implements a -bounceHeightForBall: method. When the ball wants
to know how high it should bounce, it sends its surface delegate a -bounceHeightForBall: message,
passing itself as the ball in question. The Surface object would perform the calculation and return
the answer. Subclasses of Surface (ConcreteSurface, WoodSurface, CarpetSurface, GrassSurface)
would override -bounceHeightForBall: to adjust its behavior, as shown in Figure 6-4.

187CHAPTER 6: Object Lesson

Figure 6-4. Delegate solution

Now you have a simple, and flexible, class hierarchy. The abstract Ball class has BasketBall
and BeachBall subclasses. Any of which can be connected to any of the Surface subclasses
(ConcreteSurface, WoodSurface, CarpetSurface, GrassSurface) to provide the correct physics. This
arrangement also preserves the open closed principle: you can extend Ball or Surface to create new
balls or new surfaces, without changing any of the existing classes.

Other Patterns
There are many, many other design patterns and principles. I don’t expect you to memorize them—just
be aware of them. With an awareness of design patterns, you’ll begin to notice them as you see how
classes in the Cocoa Touch framework and elsewhere are designed; iOS is a very well-designed system.

Here are other common patterns you’ll encounter:

Singleton pattern: a class that maintains a single instance of an object for use by 	
the entire program. The [UIApplication sharedApplication] is a singleton.

Factory pattern and class clusters: a method that creates objects for you 	
(instead of you creating and configuring them yourself). Often, your code
won’t know what object, or even what class of objects, needs to be created.
A factory method handles (encapsulates) those details for you. The +[NSURL
URLWithString:] method is a factory method. The class of NSURL object returned
will be different, depending on what kind of URL the string describes.

Decorator pattern: dress up an object using another object. A UIBarButtonItem 	
is not, ironically, a button object. It’s a decorator that may present a button,
a special control item, or even change the positioning of controls in a toolbar.

Lazy initialization pattern: waiting until you need an object (or its properties) 	
before creating it. Lazy initialization makes some things more efficient and
reduces pre-conditions. UITableView lazily creates table cell objects; it waits
until the moment it needs to draw a row before asking the data source delegate
to provide a cell for that row.

188 CHAPTER 6: Object Lesson

There are, of course, many others.

The first major book of design patterns (Design Patterns: Elements of Reusable Object-Oriented
Software) was published in 1994 by the so-called "Gang of Four": Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. Those patterns are still applicable today, and design patterns
have become a “must know” topic for any serious programmer. The original book is not specific
to any particular computer language; you could apply these principles to any language,
even non-object-oriented ones. Many authors have since reapplied, and refined, these patterns
to specific languages. So if you’re interested in learning these skills primarily for Objective-C, for
example, look for a book on design patterns for Objective-C.

Note An interesting offshoot of design patterns has been the emergence of anti-patterns: programming
pitfalls that developers repeatedly fall into. Many anti-patterns have entertaining names like “God object”
(an object that does too much) and “Lasagna code” (a software design with too many layers).
See http://en.wikipedia.org/wiki/Anti-patterns for their history and other examples.

Summary
That was a lot of theory, but it’s important to learn these basic concepts. Understanding design
pattern and principles will help you become a better software designer, and you’ll also appreciate
the design of the iOS classes. Observe how iOS and other experienced developers solve problems,
identify the principles they used, and then try to emulate that in your own development.

Theory is fun, but do you know what’s even more fun? Cameras!

http://en.wikipedia.org/wiki/Anti-patterns

189

Chapter 7
Smile!

Pictures and video are a big part of mobile apps. This is made possible by the amazing array of
audio/video hardware built into most iOS devices. Your apps can take advantage of this
hardware—and it’s not that difficult. Apple has made it exceptionally easy to present an interface
where your user can take a picture, or choose an existing picture from their photo library, and use
that image in your app.

In this chapter you’re going to add pictures to MyStuff. You’re going to allow a user to choose, or
take, a picture for each item they own, and display that image in both the detail view and master list.
In doing that, you’ll learn how to:

Create a camera or image picker controller and display it	

Retrieve the image the user took or chose	

Use Core Graphics to crop and resize the image	

Save the image to the user’s camera roll	

Show images in the rows of a table view	

Along the way, you’ll learn a few other useful skills:

Add a tap gesture recognizer to a view object	

Present a view controller in a popover	

Dismiss the keyboard	

This chapter will extend the MyStuff app you wrote in Chapter 5 (“Table Manners”). You can continue
working on the version you wrote in Chapter 5 or locate the finished version in the Ch 7 folder of the
Learn iOS Developer Projects folder. If you’re adding to the project in Chapter 5—which I highly
recommend—you will need the resource file in the Ch 7 ➤ MyStuff (Resources) folder.

190 CHAPTER 7: Smile!

Design
Expanding your MyStuff app won’t be difficult. You’ve already created the master/detail interface
and you have table views and editing working for both the iPhone and iPad interfaces. All of the hard
work is done; you just need to embellish it a little. In the detail view you’ll add a UIImageView object
to display an image of the item, and in the table view you’ll add icons to show a smaller version in
the list, as shown in Figure 7-1.

Figure 7-1. Updated MyStuff design

When the user taps the image in the detail view, your app will present either a camera interface or
an image picker interface. The camera interface will allow them to take a picture with the device’s
built-in camera. The image picker interface lets the user choose an existing image from their photo
library. The new image will appear in both the detail view and the master list. Let’s get started!

Extending Your Design
To extend your design, you’ll need to make small alterations to a number of existing classes and
interface files. Whether you realize it or not, your MyStuff app uses a model-view-controller design
pattern. I describe the model-view-controller design in the next chapter, but for now just know that
some of the objects in your app are “data model” objects, some are “view” objects, and others are
“controller” objects. Adding pictures to MyStuff will require:

1. Extending your data model to include image objects

2. Adding view objects to display those images

3. Expanding your controller objects to take a picture and update the data model

191CHAPTER 7: Smile!

Revising the Data Model
The first step is to extend your data model. Locate your MyWhatsit.h interface file and add two new
properties:

@property (strong,nonatomic) UIImage *image;
@property (readonly,nonatomic) UIImage *viewImage;

The first property adds a UIImage object reference to each MyWhatsit object. Now every MyWhatsit
object has an image. Gee, that was easy!

The second property requires a little more explanation. In all of the view objects (both the details
view and in the table view) you want to display the image of the item. If there is no image, however,
you want to display a placeholder image—an image that says, “there’s no image.” The viewImage
property will contain either the item’s image or a placeholder image if there isn’t one. It’s a readonly
property, which means that clients of this object can’t change it; in other words, the statement
myWhatsit.viewImage = newImage is not allowed.

VIEWIMAGE IS BAD

Adding the viewImage property to the MyWhatsit class is actually poor software design. The problem is that the
MyWhatsit class is a data model class and the viewImage property is in the domain of the view classes. In plain
English, it solves a problem displaying the image, not in storing the image. You’re adding view-specific functionality to a
data model object, which is something you should avoid.

In a well-organized model-view-controller (MVC) design, the domain of each class should be pure: the data model classes
should only have data model related properties and functions—nothing else. The problem here is that it’s so darned
convenient to add a viewImage property to the MyWhatsit class: it encapsulates the logic of providing a “display
image” for the item, which simplifies our code elsewhere. Code that encapsulates logic and makes the object easier to
use can’t be bad, right?

It isn’t bad. It’s actually good, but is there a way to avoid the architectural “flaw” of adding viewImage directly to
the MyWhatsit class? The solution is to use a category. A category is an unusual feature of Objective-C that solves
thorny domain issues like this, without making your objects more difficult to use. Using a category you can still add a
viewImage property to your MyWhatsit objects, but do it in a different module—a view module, separate from your
MyWhatsit class. You get the benefits of adding a viewImage property to MyWhatsit, while keeping your data model
code separate from your view code. I explain categories in Chapter 20.

At runtime (when your app runs) your MyWhatsit object still has a viewImage property, just as if you’d added it directly
to your MyWhatsit class. So what does it matter? Not much, and for a small project like this the ramifications are
negligible, which is why I didn’t have you create a category for viewImage. Sometimes pragmatism trumps a fanatic
adherence to design patterns. Just know that in a much more complex project, defining viewImage in MyWhatsit could
become an obstacle and the solution would be to move it into a category.

The viewImage property isn’t a traditional property. It’s what programmers refer to as a synthetic
property; it’s a value determined by some logic, rather than simply returning the value of an instance

192 CHAPTER 7: Smile!

variable. To make it work, you need to add that logic. Click on the MyWhatsit.m implementation file
and add the following method:

- (UIImage*)viewImage
{
 if (self.image!=nil)
 return self.image;
 return [UIImage imageNamed:@"camera"];
}

This method provides the value for the viewImage property. Whenever client code requests the
viewImage property (detailItem.viewImage), this method will be invoked and the value it returns will
be the value of viewImage. This is commonly referred to as the property’s getter method.

Figure 7-2. Adding camera.png resource

Note Every @property you define in a class automatically creates a getter method—a method that “gets”
the property’s value—with the same name, as in -viewImage. If the property can be modified (it’s not a
readonly property), then a second setter method is also generated, with the name prefixed by “set,” as in
-setViewImage:. You’re free to replace the compiler’s default implementations of either the getter or the
setting method if you want to do something special whenever clients get or change the property.

If the MyWhatsit object has a value for its image property, viewImage returns that same object.
If not (self.image==nil), then it returns the image in the camera.png resource file. For this to work,
you need to add that placeholder image file to your project. Find the camera.png file in the MyStuff
(Resources) folder and drag it into the group list of your Images.xcassets asset catalog, as shown
in Figure 7-2.

MyWhatsit is finished, so it’s time to add the new view objects to your interface.

193CHAPTER 7: Smile!

Adding an Image View
The next step is to add the view objects to your detail interface. This should feel like familiar territory
by now:

Add an 	 imageView outlet to your MSDetailViewController class

Add label and image view objects to your 	 MSDetailViewController interface file

Connect the 	 imageView outlet to the image view object

Start in your MSDetailViewController.h interface file. Add the following property:

@property (weak,nonatomic) IBOutlet UIImageView *imageView;

Start with the iPhone interface by selecting the Main_iPhone.storyboard file. From the object library,
add a new label object. Position it below the location text field, and resize it so it's the width of the
text field above it, as shown in Figure 7-3. Change the label’s title to “Picture.”

Figure 7-3. Adding the picture label

Add an image view object and drop it anywhere in the lower portion of the interface. Select it. Using
the size inspector set its width and height to 128, as shown in Figure 7-4.

194 CHAPTER 7: Smile!

Now you can drag the image into position. Place it so that it is centered in the display, the
recommended distance below the label object, as shown in Figure 7-5.

Figure 7-4. Fixing the size of the image view

195CHAPTER 7: Smile!

The guides will indicate when the image object is centered and a comfortable distance from
the label object. (You made the label object the width of the display so the image object would
“bump” against it, acquiring the recommended spacing.) Now turn these suggested positions into
constraints:

1. Control-click/right-click in the image view, drag down a little, release, and
choose Height from the constraint menu. This will fix the height of the image
view object.

2. Repeat for the width, dragging horizontally and choosing Width.

3. Select the image view and the label object (the ones you just added). Do
this by selecting one, holding down the Shift key, and selecting the other.
Alternatively, you can drag out a selection rectangle that touches both
objects. With the two selected, choose Add Missing Constraints from the
Resolve Auto Layout Issues button.

The last step is to select the Detail View Controller. Switch to the connections inspector and
locate the imageView outlet you added to the controller. Connect it to the image view object, as
shown in Figure 7-6.

Figure 7-5. Positioning the image view

196 CHAPTER 7: Smile!

With the view objects in place, it’s time to add the code to make your item images appear.

Updating the View Controller
You need to modify the code in the master view controller to add the image to the table cell,
and in the detail view controller to make the image appear in the new image view. Start with
MSMasterViewController.m. Locate the following code in -tableView:cellForRowAtIndexPath: and
add the one bold line:

cell.textLabel.text = thing.name;
cell.detailTextLabel.text = thing.location;
cell.imageView.image = thing.viewImage;
return cell;

The new line sets the image for the cell (cell.imageView.image) to the viewImage of the row’s
MyWhatsit object. Remember that the view image will be either the item’s actual image or a
placeholder. The act of setting the cell’s image view will alter the cell’s layout so the image appears
on the left. (Refer to the “Cell Style” section in Chapter 5.)

You’re all done with MSMasterViewController. Click on MSDetailViewController.m and locate the
-configureView method. Find the following code and add the one bold line:

self.nameField.text = self.detailItem.name;
self.locationField.text = self.detailItem.location;
self.imageView.image = self.detailItem.viewImage;

Figure 7-6. Connecting the imageView outlet

197CHAPTER 7: Smile!

This new line sets the image of the UIImageView object (connected to the imageView outlet) to the
image of the MyWhatsit object being edited.

From a data model and view standpoint, everything is ready to go, so give it a try. Set the scheme to
the iPhone simulator and run the project. You’ll see the placeholder images appear in the table and
the detail view, as shown in Figure 7-7.

Figure 7-7. Placeholder images

So far everything is working great—there’s just no way to change the picture. To accomplish that,
you’ll need to create an action.

Connecting a Choose Image Action
You want the camera, or photo library picker, interface to appear when the user taps on the image
in the detail view. That’s simple enough to hook up: create an action method and connect the image
view to it. Start by defining a new action in MSDetailViewController.h (you don’t need to write it yet,
just declare it):

- (IBAction)choosePicture:(id)sender;

Now switch back to the Main_iPhone.storyboard interface, select the image view object, and
connect its action outlet to the -choosePicture: action in the Detail View Controller.

198 CHAPTER 7: Smile!

Uh oh, we seem to have a problem. The image view object isn’t a button, or any other kind of control
view; it doesn’t send an action message. In fact, by default, it ignores all touch events (its User
Interaction Enabled property is NO). So how do you get the image view object to send an action to
your view controller?

There are a couple of ways. One solution would be to subclass UIImageView and override its touch
event methods, as was described in Chapter 4 (“Coming Events”). But there’s a much simpler way:
attach a gesture recognizer object to the view.

In the object library, locate the tap gesture recognizer. Drag a new tap gesture recognizer object into
the interface and drop it into the image view object, as shown in Figure 7-8.

Figure 7-8. Attaching a tap gesture recognizer to the image view

When you drop a gesture recognizer into a view object, Interface Builder creates a new gesture
recognizer object and connects the view object to it. This is a one-to-many relationship: a view
can be connected to multiple gesture recognizers, but a recognizer only works on a single view
object. To see the relationship, select the view object and use the connections inspector to see
its recognizers, as shown in upper-right of Figure 7-9. Hover your cursor over the connection and
Interface Builder will highlight the object it’s connected to, shown at the bottom of Figure 7-9.

199CHAPTER 7: Smile!

Tip You can also see the inverse connections in the connections inspector. Select an object. Towards
the bottom of the inspector you’ll find the referencing outlet collections section. This section shows the
connections from other objects to the object you’re inspecting.

Figure 7-9. Examining the gesture recognizer connection of the image view object

By default, a new tap gesture recognizer is configured to recognize single finger tap events, which
is exactly what you want. You do, however, need to change the attributes of the image view object.
Even though you have it connected to a gesture recognizer, the view object is still set to ignore touch
events, so it will never receive any events to recognize. Rectify this by selecting the image view
object and use the attributes inspector to check the User Interaction Enabled property, as shown
in Figure 7-10.

200 CHAPTER 7: Smile!

The last step is to connect the gesture recognizer to the -choosePicture: action. Holding down
the control key, drag from the gesture recognizer in the scene’s dock, as shown in Figure 7-11, or
from the object outline. Both represent the same object. Drag the connection to the Detail View
Controller and connect it to the -choosePicture: action, also shown in Figure 7-11.

Figure 7-10. Enabling touch events for the image view

Figure 7-11. Connecting the -choosePicture: action

201CHAPTER 7: Smile!

A -choosePicture: message will now be sent to the detail view controller when the user taps on the
image. Now you have to implement the -choosePicture: method, which brings you to the fun part:
letting the user take a picture.

Taking Pictures
The UIImagePickerController class provides simple, self-contained, interfaces for taking a
picture, recording a movie, or choosing an existing image from the user’s photo library. The image
picker controller does all of the hard work. For the most part, all your app has to do is create a
UIImagePickerController object and present it as you would any other view controller. The delegate
of the controller will receive messages that contain the image the user picked, the photo they took,
or the movie they recorded.

That’s not to say the image picker controller can do everything. There are a number of decisions
and considerations that your app must make before, and after, the image picker has done its
thing. This will be the bulk of the logic in your app, and I’ll explain these decisions as you work
through the code. Start by adding this -choosePicture: method to your MSDetailViewController.m
implementation:

- (IBAction)choosePicture:(id)sender
{
 if (self.detailItem==nil)
 return;

 BOOL hasPhotoLibrary = [UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary];
 BOOL hasCamera = [UIImagePickerController isSourceTypeAvailable:UIImagePickerControllerSourceTy
peCamera];
 if (!hasPhotoLibrary && !hasCamera)
 return;

 if (hasPhotoLibrary && hasCamera)
 {
 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Take a Picture",@"Choose a Photo",nil];
 [actionSheet showInView:self.view];
 return;
 }
 [self presentImagePickerUsingCamera:hasCamera];
}

The first decision is easy: this action only does something if the detail view is currently editing a
MyWhatsit object. If not (self.detailItem==nil), then return and do nothing. This can happen in the
iPad interface when the detail view is visible, but the user has yet to select an item to edit.

202 CHAPTER 7: Smile!

You Can’t Always Get What You Want
The rest of the code deals with deciding what image picker interfaces are available to your
app. This is the intersection of what your user wants to do and what your app can do. The
UIImagePickerController has the potential to present a still camera, video camera, combination still
and video camera, photo library picker, or camera roll (saved) photo picker. That doesn’t, however,
mean it can do all of those things. Different iOS devices have different hardware. Some have a
camera, some don’t, some have two. Some cameras are capable of taking movies, while others
aren’t. Even on devices that have cameras and photo libraries, security or restrictions may prohibit
your app from using those resources.

The first step to using the image picker is to decide what you want to do, and then find out what you
can do. For this app, you want to present either a still camera interface or present a picker interface
to choose an existing image from the photo library. Use the UIImagePickerController method
-isSourceTypeAvailable: to find out if you can do either of those. You pass the message a constant
indicating the kind of interface you’d like to present, and the method tells you if that interface can be used.

The next two lines of code save the result of asking if the photo library picker interface can
be used in hasPhotoLibrary variable. The hasCamera variable will remember if the live camera
interface is available.

Note There’s a third interface, UIImagePickerControllerSourceTypeSavedPhotosAlbum. This
presents the same interface as the photo library picker, but only allows the user to choose images in their
camera roll—called the “Saved Photos” album on devices that don’t have a camera.

The next line of code considers the situation where neither interface is available. In that situation,
there’s nothing to present and the action returns without doing anything.

Tip In the real world, it would be a good idea to put up an alert message telling the user that there are no
available image sources, rather than just ignoring their tap—but I’ll leave that as an exercise you can explore
on your own.

The next block of code considers the more likely situation where both the camera and the photo
library picker are available. So which interface do you present? That’s a question for the user to
answer, so ask them.

A UIActionSheet is a pop-up controller that presents a series of buttons and asks the user to pick
one. You create the object with a (optional) title, a delegate, and the titles of the buttons you want to
appear. In this app, you ask the user if they want to “Take a Picture” or “Choose a Photo.” You then
send -showInView: to present those choices to the user. Its delegate object will receive a message
when the user taps one, so this method returns and waits for that to happen.

203CHAPTER 7: Smile!

The last line of code handles the situation where there is only one interface available (either the
camera or the photo library picker is available, but not both). In this situation there’s no point in
asking the user, just start the one interface they can use. But before you get to that, add the code to
respond to the action sheet.

A UIActionSheet delegate must adopt the UIActionSheetDelegate protocol. Add that to the
MSDetailViewController class definition in MSDetailViewController.h:

@interface MSDetailViewController : UIViewController <UISplitViewControllerDelegate,
 UIActionSheetDelegate>

Back in MSDetailViewController.m, add the only UIActionSheetDelegate method you’re interested in:

- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 switch (buttonIndex) {
 case 0: // camera button
 case 1: // photo button
 [self presentImagePickerUsingCamera:(buttonIndex==0)];
 break;
 }
}

When the user chooses one of the action sheet buttons, your delegate receives an
-actionSheet:clickedButtonAtIndex: message. The buttonIndex parameter tells you which button
the user tapped. Use that to decide which interface to present.

To review, you’ve queried the UIImagePickerController to determine which interfaces, in the subset
of interfaces you’d like to present, are available. If none, do nothing. If only one is available, present
that interface immediately. If more than one is available, ask the user which one they would like to
use, wait for their answer, and present that. The next big task is to present the interface.

Presenting the Image Picker
Now add a -presentImagePickerUsingCamera: method to your class. Start by adding its method
prototype to the private @interface MSDetailViewController () section at the top of the
MSDetailViewController.m file:

@interface MSDetailViewController ()
@property (strong, nonatomic) UIPopoverController *masterPopoverController;
- (void)configureView;
- (void)presentImagePickerUsingCamera:(BOOL)useCamera;
@end

Now add the -presentImagePickerUsingCamera: method to its @implementation:

- (void)presentImagePickerUsingCamera:(BOOL)useCamera
{
 UIImagePickerController *cameraUI = [UIImagePickerController new];

204 CHAPTER 7: Smile!

 cameraUI.sourceType = (useCamera ? UIImagePickerControllerSourceTypeCamera
 : UIImagePickerControllerSourceTypePhotoLibrary);
 cameraUI.mediaTypes = @[(NSString*)kUTTypeImage];
 cameraUI.delegate = self;
 [self presentViewController:cameraUI animated:YES completion:nil];
}

This method starts by creating a new UIImagePickerController object.

The sourceType property determines which interface the image picker will present. It should only be
set to values that returned YES when sent to -isSourceTypeAvailable:. In this code, it’s set to either
UIImagePickerControllerSourceTypeCamera or UIImagePickerControllerSourceTypePhotoLibrary,
which you’ve already determined is available.

The mediaTypes property is an array of data types that your app is prepared to accept. Your choices
are kUTTypeImage, kUTTypeMovie, or both. This property modifies the interface (camera or picker) so
that only those image types are allowed. Setting only kUTTypeImage when presenting the camera
interface limits the controls so the user can only take still images. If you included both types
(kUTTypeImage and kUTTypeMovie), then the camera interface would allow the user to switch between
still and movie capture as they please (assuming their device was capable of video capture).

There’s also one little problem with this code: the constants for kUTTypeImage and kUTTypeMovie
aren’t defined by the standard Cocoa Touch framework. To pull these constants into this module,
add this import statement at the very top of your source file:

#import <MobileCoreServices/UTCoreTypes.h>

Note There are a number of other UIImagePickerController properties that you could set before you
start the interface. For example, set its allowsEditing property to NO if you do not want the user to have
the ability to crop (zoom) pictures or trim movies.

The last two lines of -presentImagePickerUsingCamera: set your controller as the delegate for the
picker and start its interface. The controller slides into view and waits for the user to take a picture,
pick an image, or cancel the operation. When one of those happens, your controller receives the
appropriate delegate message. But to be the image picker delegate, your controller must adopt both
the UIImagePickerControllerDelegate and UINavigationControllerDelegate protocols. Add those
to your MSDetailViewController class declaration now:

@interface MSDetailViewController : UIViewController <UISplitViewControllerDelegate,
 UIImagePickerControllerDelegate,
 UINavigationControllerDelegate,
 UIActionSheetDelegate>

205CHAPTER 7: Smile!

Note Your MSDetailViewController isn’t interested in, and doesn’t implement, any of the
UINavigationControllerDelegate messages. It adopts the protocol simply to avoid the compiler
warning that results if it doesn’t.

With the picker up and running, you’re now ready to deal with the image the user takes or picks.

Importing the Image
Ultimately, the user will take or choose a picture. This results in a -imagePickerController:didFini
shPickingMediaWithInfo: message sent to your controller. This is the method where you’ll take the
image the user took/selected and add it to the MyWhatsit object. All of the information about what
the user did is contained in a dictionary, passed to your method via the info parameter. Add this
method to your MSDetailViewController.m file. The method starts out simply enough:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *mediaType = info[UIImagePickerControllerMediaType];
 if ([mediaType isEqualToString:(NSString*)kUTTypeImage])
 {
 UIImage *whatsitImage = info[UIImagePickerControllerEditedImage];
 if (whatsitImage==nil)
 whatsitImage = info[UIImagePickerControllerOriginalImage];

The first task is to get the media type of the data being returned by the image picker. You specified
only one type (kUTTypeImage), so that’s the only thing the picker should return, but it’s a good idea to
check anyway. Once you’re sure you’re getting back a still image from the picker, the next step is to
obtain the image object.

There are, potentially, two possible images: the original one and the edited one. If the user cropped,
or performed any other in-camera editing, the one you want is the edited version. Start by requesting
that one (UIImagePickerControllerEditedImage) from the info dictionary. If that value is nil, then the
original (UIImagePickerControllerOriginalImage) is the only image being returned.

The next couple of lines consider the case where the user has taken a picture. When users take a
picture, especially using the standard iOS camera interface, they expect their photo to appear in
their camera roll. This isn’t a requirement, and another app might act differently, but here you meet
the user’s expectations by adding the picture they just took to their camera roll.

if (picker.sourceType==UIImagePickerControllerSourceTypeCamera)
 UIImageWriteToSavedPhotosAlbum(whatsitImage,nil,nil,nil);

You don’t want to do this if the user picked an existing image from their photo library, which is why
you first test to see if the interface was UIImagePickerControllerSourceTypeCamera.

206 CHAPTER 7: Smile!

Tip Many apps allow users to save an image to their camera roll. You can do this at any time using the
UIImageWriteToSavedPhotosAlbum() function. This function isn’t limited to being used in conjunction
with the image picker interface.

Cropping and Resizing
Now that you have the image, what do you do with it? You could just set the MyWhatsit image
property to the returned image object and return. While that would work, it’s a bit crude. First,
modern iOS devices have high-resolution cameras that produce big images, consuming several
megabytes of memory for each one. It won’t take too many such pictures before your app will run
out of memory and crash. Also, the images are rectangular, and both the details interface and the
table view would look better using square images.

To solve both of these problems, you’ll want to scale down and crop the user’s image. Start by
cropping the image with this code, which is the next part of your -imagePickerController:didFinish
PickingMediaWithInfo: method:

CGImageRef coreGraphicsImage = whatsitImage.CGImage;
CGFloat height = CGImageGetHeight(coreGraphicsImage);
CGFloat width = CGImageGetWidth(coreGraphicsImage);
CGRect crop;
if (height>width)
 {
 crop.size.height = crop.size.width = width;
 crop.origin.x = 0;
 crop.origin.y = floorf((height-width)/2);
 }
else
 {
 crop.size.height = crop.size.width = height;
 crop.origin.y = 0;
 crop.origin.x = floorf((width-height)/2);
 }
CGImageRef croppedImage = CGImageCreateWithImageInRect(coreGraphicsImage,crop);

The first step is to get a Core Graphics image reference from the UIImage object. UIImage is a
convenient and simple to use object that handles all kinds of convoluted image storage, conversion,
and drawing details for you. It does not, however, let you manipulate or modify the image in any
significant way. To do that, you need to “step down” into the lower-level Core Graphics frameworks,
where the real image manipulation and drawing functions reside. A CGImageRef is a reference (think
of it like an object reference) that contains primitive image data.

The next step is to get the height and width (in pixels) of the image. That’s accomplished by calling
the functions CGImageGetHeight() and CGImageGetWidth().

207CHAPTER 7: Smile!

C VS. OBJECTIVE‑C PROGRAMMING

Many of the methods of Cocoa Touch objects are actually written in C, not Objective-C. C is the procedural language that
the object-oriented Objective-C language is built on top of. In Chapter 6 I spoke of writing programs entirely by defining
structures and passing those structures to functions. This is exactly how you program using C and the framework of
C functions called Core Foundation.

While C is not an object-oriented language, you can still write object-oriented programs; it’s just more work. In Core
Foundation, a class is called a type and an object is a reference. Instead of sending messages to the object, you call
a function and pass it a reference (typically as the first parameter). In other words, instead of writing myImage.height
to the get height of an image, you write CGImageGetHeight(myImageRef).

While most Core Foundation types will only work with Core Foundation functions, a few fundamental types are
interchangeable with Objective-C objects. These include NSString/CFStringRef, NSNumber/CFNumberRef,
NSArray/CFArrayRef, NSDictionary/CFDictionaryRef, NSURL/CFURLRef, and others. Any function or
Objective-C method that expects one will accept the other as-is. This is called the toll-free bridge, and you’ve already
used it in this app. The kUTTypeImage string is really a CFStringRef, not an NSString object. But since the two are
interchangeable, it was possible to pass the Core Foundation kUTTypeImage string value in the parameter that expected
an NSString object.

The if block decides if the image is horizontal (width>height) or vertical (height>width). Based on
this, it sets up a CGRect that describes a square in the middle of the image. If horizontal, it makes the
rectangle the height of the image and insets the left and right edges. If vertical, the rectangle is the
width of the image, and the top and bottom are trimmed.

The function after the if/else block does all of the work. The CGImageCreateWithImageInRect()
function takes an existing Core Graphics image, picks out just the pixels in the rectangle, and copies
them to a new Core Graphics image. The end result is a square Core Graphics image with just the
middle section of the original image.

The next step is to turn the CGImageRef back into a UIImage object, so it can be stored in the
MyWhatsit object. At the same time, you’re going to scale it down so it’s not so big.

whatsitImage = [UIImage imageWithCGImage:croppedImage
 scale:MAX(crop.size.height/512,1.0)
 orientation:whatsitImage.imageOrientation];

The UIImage class method -imageWithCGImage:scale:orientation: creates a new UIImage object
from an existing CGImageRef. At the same time, it can scale the image and change its orientation. The
scale calculates a ratio between the size of the original image and a 512-pixel one. This scales down
the (probably) larger image size from the device’s camera down to a 512x512 pixel image, which is
a manageable size. The MAX() macro is used to keep the ratio from dropping below 1.0 (1:1); this
prevents an image that’s already smaller than 512 pixels from being made larger.

208 CHAPTER 7: Smile!

The very last detail is to release the Core Graphics image reference created by the
CGImageCreateWithImageInRect() function. This is memory management, and something that
Objective-C usually takes care of for you. When using the Core Foundation functions, however,
you’re responsible for doing this yourself. See Chapter 21 for more details.

CGImageRelease(croppedImage);

Winding Up
All of the hard part is over. The only thing left for this method to do is store the cropped and resized
image in the MyWhatsit object and dismiss the image picker controller:

 _detailItem.image = whatsitImage;
 self.imageView.image = whatsitImage;
 [_detailItem postDidChangeNotification];
 }

 [self dismissImagePicker];
}

The first line stores the new image in the new image property of the MyWhatsit object. The second
updates the image view in the detail view, so it reflects the same change. Finally, you must
remember to post a change notification so the master list knows to redraw this item’s row with the
new image.

I’ve encapsulated the image picker dismissal code in a separate function. There are two
places where the image picker needs to be dismissed: here, after a successful new image
has been imported, and if the user taps the “cancel” button, indicating that they don’t
want to change the image after all. When the latter happens your controller will receive
a -imagePickerControllerDidCancel: message. Handle that by adding the appropriate
delegate method:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissImagePicker];
}

Note UIImage has an orientation property. Core Graphic images do not. Images taken with the camera
are all in landscape format. When you take a vertical (portrait) picture, you get a UIImage with a landscape
image and an orientation that tells UIImage to draw the image vertically. When you started working
with the CGImageRef, that orientation information was lost. If you step through the program with the Xcode
debugger, you’ll see that the code crops a landscape image (width>height), even if you took a portrait photo.
So to make the photo draw the way it was taken, you have to supply the original orientation when creating
the new UIImage.

209CHAPTER 7: Smile!

This method does nothing but dismiss the controller, making no change to your MyWhatsit object.
The last piece of this puzzle is the method to dismiss the controller:

- (void)dismissImagePicker
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

You’ll also want to add a prototype for the -dismissImagePicker method in the private @interface
MSDetailViewController () section at the beginning of the file.

Testing the Camera
You’re ready to test out your image picker interface—for real. The simulator, unfortunately, does
not emulate the camera hardware nor does it come with any images in its photo library. To test this
app, you’ll need to run it on a real iOS device. Since you’ve only built the iPhone interface, you’ll
need an iPhone, iPod Touch, or something similar. If not, you’ll just have to read along until we get
to the iPad interface.

Plug in your iPhone and set the project’s scheme to iPhone. Run it. Your app’s interface should look
like that in Figure 7-12.

Figure 7-12. Testing the iPhone Interface

Tap an item, tap the placeholder image in the detail view, tap “Take a Picture”, and take a picture.
The cropped image should appear in the detail view, and again back in the master table, as shown in
Figure 7-12.

Congratulations, you’ve added picture taking to your app! You’re not quite done yet, but enjoy the
moment and have fun with the camera.

210 CHAPTER 7: Smile!

Building the iPad Interface
The iPad interface is almost identical to the iPhone interface. Follow the steps back in the sections
“Adding an Image View” and “Connecting a Choose Image Action” to add the view objects and the
tap gesture recognizer, and connect them all to the appropriate outlets and actions. (Don’t forget
to set the User Interaction Enabled property of the image view.) The only changes I suggest are
to position the iPad image view on the left—it’s too far away from the label when centered—and
change the size of the image view to 256x256, instead of 128x128. Your finished iPad interface
should look like the one in Figure 7-13.

Figure 7-13. Finished iPad interface

Run the iPad version in the iPad simulator or on your iPad. If your iPad has a camera, that will work
just fine. Picking an image from your photo library presents a ridiculously large interface that only
works in portrait orientation, as shown in Figure 7-14.

211CHAPTER 7: Smile!

Caution While it’s recommended that you present the photo library picker in a popover in iOS 7, in earlier
versions of iOS it’s required. Fail to do so and your app will crash.

Presenting a view controller inside a popover is accomplished using a UIPopoverController object.
To use it, you must:

create a popover controller for the view controller you want to display	

use the popover controller to present the interface	

dismiss the popover controller when finished	

Figure 7-14. iPad photo library picker

This, clearly, isn’t the ideal iPad interface. Consulting the documentation for
UIImagePickerController, you’ll find this statement:

On iPad, the correct way to present an image picker depends on its source type,
… if you specify a source type of UIImagePickerControllerSourceTypePhotoLibrary
or UIImagePickerControllerSourceTypeSavedPhotosAlbum, you must present the
image picker using a popover controller …

So while the full-screen camera interface works just fine on the iPad—and is the recommended
interface—the photo library picker should be presented as a popover.

212 CHAPTER 7: Smile!

Adding a Popover
The first thing you’ll need is an instance variable where you can save a reference to the popover
controller object. You’ll need to maintain a reference to the popover controller until you’re done with
it. Add these three lines of bold code to the private @interface MSDetailViewController () section
at the beginning of the MSDetailViewController.m implementation file:

@interface MSDetailViewController ()
{
 UIPopoverController *imagePopoverController;
}
@property (strong, nonatomic) UIPopoverController *masterPopoverController;
- (void)configureView;
- (void)presentImagePickerUsingCamera:(BOOL)useCamera;
- (void)dismissImagePicker;
@end

In the -presentImagePickerUsingCamera: method, replace the last line of code ([self
presentViewController:cameraUI animated:YES completion:nil]) with this logic:

if (useCamera || UIDevice.currentDevice.userInterfaceIdiom==UIUserInterfaceIdiomPhone)
 {
 [self presentViewController:cameraUI animated:YES completion:nil];
 }
else
 {
 imagePopoverController = [[UIPopoverController alloc] initWithContentViewController:cameraUI];
 [imagePopoverController presentPopoverFromRect:self.imageView.frame
 inView:self.view
 permittedArrowDirections:UIPopoverArrowDirectionAny
 animated:YES];
 }

The new code first checks to see if the user wants to see the camera interface or if they’re running
on an iPhone. If either of these is true, present the cameraUI view controller as a full-screen interface,
just as before.

If both of those conditions are false, then the user wants to pick an image from their photo library
on an iPad. The else block creates and new UIPopoverController for the cameraUI view controller,
and saves it in your new instance variable. It then uses the popover controller to present the picker
interface. The FromRect: and inView: parameters anchor the popover to the image view.

Now find your -dismissImagePicker method and replace its code with the following:

if (imagePopoverController!=nil)
 {
 [imagePopoverController dismissPopoverAnimated:YES];
 imagePopoverController = nil;
 }
 else

213CHAPTER 7: Smile!

 {
 [self dismissViewControllerAnimated:YES completion:nil];
 }

The new code determines how -presentImagePickerUsingCamera: presented the picker
interface—by examining the imagePopoverController variable—and dismissing the image picker in
the same fashion it was presented.

There’s one tiny bit of housekeeping to do. At the very beginning of the
-presentImagePickerUsingCamera: method, add this line:

imagePopoverController = nil;

The reason this needs to be done is that the imagePopoverController variable is used as a flag to
indicate which technique was used to present the image picker. If the user chooses an image,
or cancels, your delegate method is called, which ultimately results in the popover being dismissed
and imagePopoverController being set to nil again.

The user can, however, also dismiss the iPad image picker by tapping outside of the
popover. You could catch this by implementing a popover delegate and writing a
-popoverControllerDidDismissPopover: method—but that seems like a lot of work. It’s easier to just
reset the variable before presenting the next interface, destroying any stray popover controller that
might have been left over.

Your iPad photo library picker interface is now ready to use on the iPad, as shown in Figure 7-15.

Figure 7-15. iPad popover photo picker

Sticky Keyboards
One quirk of your app, if you haven’t noticed, is the sticky keyboard. No, I’m not talking about the
kind you get from eating chocolate while programming. I’m talking about the virtual keyboard in iOS.
Figure 7-16 shows the virtual keyboard that appears when you tap inside a text field.

214 CHAPTER 7: Smile!

The problem is that, once summoned, it won’t go away. It hangs around, covering up your image
view, and generally being annoying. This has been a “feature” of iOS from its beginning, and it’s
something you must deal with if it’s a problem for you app.

Now I’m sure you’ve noticed that many other apps you use don’t have this problem. Tapping
outside of a text field makes the keyboard go away again. The authors of those apps intercept taps
outside of the text field and dismiss the keyboard. There have been a wide variety of solutions to
this problem, and you’ll find many of them floating around the Internet. I’m going to show you a
particularly simple one that will only take a minute to add to your app.

The “trick” is to catch touch events outside any of the text field objects and translate those events
into an action that will retract the keyboard. Start with the second part first: create an action to
retract the keyboard. In your MSDetailViewController.m file, add the following method to your
implementation:

- (IBAction)dismissKeyboard:(id)sender
{
 [self.view endEditing:NO];
}

This simple method sends the -endEditing: message to the root view of your interface. The
-endEditing: method is ready-built to solve this problem; it searches through the view’s subviews
looking for an editable object that's currently being edited. If it finds one, it asks the object to resign
its first responder status, ending the editing session, and retracting the keyboard.

Figure 7-16. iOS’s virtual keyboard

215CHAPTER 7: Smile!

Figure 7-17. Adding a tap gesture recognizer to the root view

Tip The single value passed to the -endEditing: message is the force parameter. If YES, it forces the
view to end editing, even if it doesn’t want to. Passing NO lets the view decide, and might not end the editing
session. I elected to be polite and let the view decide.

Now add a prototype for this method to your public @interface in MSDEtailViewController.h file, so
Interface Builder can see it:

- (IBAction)dismissKeyboard:(id)sender;

Now you’re going to add another tap gesture recognizer. In the Main_iPhone.storyboard file, find the
tap gesture recognizer in the object library. Drag one into your interface and drop it into the root view
object, either by dropping it into the empty space in the interface or directly into the root view object
in the outline, as shown in Figure 7-17.

Control/right+click on the new gesture recognizer, drag it to the Detail View Controller, and
connect it to the new -dismissKeyboard: action. (If you can’t figure out which gesture recognizer
object belongs to the root view, use the connections inspector (see Figure 7-9) in the section
“Connecting a Choose Image Action.”) Now any tap that occurs outside a specific subview will pass
those touch events to the root view, dismissing the keyboard. If you’re not sure why that happens,
review the section “Hit Testing” in Chapter 4.

Give it a try. Run the iPhone interface, tap inside a text field, and then tap outside the text field. You
should see the keyboard appear and then disappear.

Now add a tap gesture recognizer to the root view of the iPad interface (Main_iPad.storyboard) and
connect it to the same action.

216 CHAPTER 7: Smile!

To be thorough, find the point in the -choosePicture: method where the app intends to present an
interface, and add this one bold line of code:

[self dismissKeyboard:self];
if (hasPhotoLibrary && hasCamera)
 {

This will cause the keyboard to retract when the user taps on the image view to change it.
Remember that in hit testing, it’s the most specific view object that gets the touch events. Since the
image view object receives touch events, those events won’t make their way to the root view.

Advanced Camera Techniques
I’m sure you’re excited to add camera and photo library features to your app. If your goal, however, is to
create the next Hipstamatic or Instagram, the UIImagePickerController isn’t what you want; you want
the low-level camera controls. You’ll find that kind of control in the AVCaptureDevice class. That object
represents a single image capture device (a.k.a. a camera), and gives you excruciatingly precise control
over every aspect of it, from turning on the flash to controlling the white balance of the exposure.

This is part of the much larger AV Foundation framework, which also encompasses video capture,
video playback, audio recording, and audio playback. You’ll explore some parts of this framework
later in this book. Some of its features are object-oriented, while others are C functions.

The advantage of using a class like UIImagePickerController is that so many of the picture-taking
details are taken care of for you. But it also constrains your app’s functionality and design. The
lower-level classes and functions open up a world of design and interface possibilities, but require
that you deal with those details yourself. To learn more, start with the AV Foundation Programming
guide you’ll find in Xcode’s Documentation and API reference.

Summary
Adding picture taking to your MyStuff app spiffed it up considerably and made it much more exciting to
use. You also learned a little about presenting view controllers and manipulating images. You now know
how to export an image to the user’s camera roll, add tap gesture recognizers to an existing view, link to
additional frameworks, and get that pesky keyboard out of the way. You’re also getting comfortable with
outlets, connections, and delegates; in other words, you’re turning into an iOS developer!

Throughout the past few chapters, I’ve constantly referred to “view,” “controller,” and “data model”
objects. The next chapter is going to take another short recess from development to explain what
that means and explore an important design pattern.

EXERCISES

If there’s no camera or photo library, it would be nice to tell the user that, rather than just ignoring them. In the Shorty
app, you put up an alert when a web page couldn’t be loaded for some reason. Use the same technique to present a
dialog if neither the camera nor photo library picker interfaces are available.

Also consider how to test this code. In the devices you’re likely to own, and in the simulator, one of those interfaces is always
going to be available. A modified MyStuff project, with comments, can be found in the MyStuff E1 project folder for this chapter.

217

Chapter 8
Model Citizen

This chapter is all about the model-view-controller design pattern. Design patterns, which I talked about
in Chapter 6, are reusable solutions to common programming problems. The model-view-controller
(MVC) design pattern is, arguably, the most important and wide-ranging design pattern used today.
In this chapter you’ll learn:

What the model-view-controller design pattern is	

What makes a good data model	

What makes a good view object	

What makes a good controller object	

How MVC objects communicate with each other	

When you can cheat	

You might be thinking that all of this MVC stuff is a bunch of esoteric computer science theory that
won’t really help you write your Death Star Laser Cannon Control app. On the contrary, learning
(even a little) about the MVC design pattern will not only make your Death Star Laser Cannon Control
app more reliable, it will actually make it easier to write and maintain. Good MVC design might
require a little more thought and consideration up front, but you save a whole lot of work in the
end—and your app is likely to have fewer bugs.

So feel free to skip this chapter, but when you press the “Destroy Alderaan” button on your app and
nothing happens . . . you’ll have to answer to Lord Vader, not me.

The Model-View-Controller Design Pattern
In Chapter 6 I talked about the single responsibility principle, encapsulation, and the “open closed”
principle. All of these can be distilled into a simple concept:

An object should do one thing, and do it well.

218 CHAPTER 8: Model Citizen

To do anything useful, your app must store data, display that data in an interface, and allow the user
to interact with it. The model-view-controller design pattern organizes what your app must do (store,
display, and interact) into objects that do just one thing (data objects, view objects, and controller
objects), and describes how those objects work together. Let’s start with the simplest of the three:
data model objects.

Data Model Objects
Your data model consists of the objects that store your app’s information. Data model objects should:

Represent the data in your app	

Encapsulate the storage of that data	

Avoid assumptions about how the data is displayed or changed	

The data of your app is whatever values, information, or concepts your app uses. In your MyStuff
app, your data model was simply the names, locations, and images of the things you own. A chess
app would have a slightly more complex data model; there would be an object that represented the
chess board, objects for each player, objects for each piece, objects that recorded the moves, and
so on. An astronomical catalog app might require dozens of classes and hundreds of thousands of
objects to keep track of the visible stars.

The first job of your data model classes is to represent the data for your app, while hiding
(encapsulating) how that data is stored. It should present the rest of your app with a simple interface
so the other classes can get the information they need, without needing to know exactly how that
data is represented or stored.

Even for “simple” apps, like MyStuff, encapsulation is important for the future of your app. For example,
the image property of MyWhatsit stored a UIImage object with the picture of that item. Simple, right?
But images can take up a lot of memory, and if your app is going to inventory hundreds, instead of
dozens, of items, your app can’t keep all of those images in memory—it will run out of memory
and crash.

You could address this problem by changing your data model so images that you’re not currently
displaying—after all, you can’t display them all at once—are written to flash memory as individual
image files. The next time an object requests the image property of a MyWhatsit object, your data
model can determine if it has that image in memory or whether it needs to retrieve it from flash storage.

The key concept is that all of these decisions are encapsulated in your data model. The other
classes that use your MyWhatsit object just request the image property; they don’t know how, or
where, that information is stored, and they shouldn’t care. Review the food truck analogy in the
“Encapsulation” section of Chapter 6, if that isn’t clear.

The other really important aspect of the data model is what it is not. The data model is at the bottom
of the MVC design and it shouldn’t contain any properties or logic that are not directly related to your
app’s data or how that data is maintained.

Specifically, it shouldn’t know anything about, or make any assumptions about, the view or controller
objects it works with. It shouldn’t contain references to view objects, have methods that present the
data in the user interface, or directly handle user actions. In this respect, the data model is the purest
of the three MVC roles; it’s all about the data, and nothing else.

219CHAPTER 8: Model Citizen

View Objects
View objects sit in the middle of the MVC design. A good view object:

Presents some aspect of the data model to the user	

Understands the data it displays, and how to display it, but nothing more	

May interpret user interface events and send actions to controller objects	

A view object’s primary purpose is to display the value(s) in your data model. View objects must, by
necessity, understand at least some aspects of your data model, but know nothing about controller
objects.

How much does a view object know about the data model? That depends on the complexity of what’s
being displayed. In general, it should know just enough to do its job, and no more. A view that displays
a string only needs to know the string value to display. A view that draws an animated picture of the
night sky needs a lot of information: the list of visible stars, their magnitude and color, the coordinates
of the observer, the current time, the azimuth, elevation, the angle of view, and so on. To find examples,
you have to look no further than the Cocoa Touch framework, which is full of view objects that display
everything from the simplest string (UILabel) to entire documents (UIWebView).

It’s common for view objects, especially complex ones, to maintain a reference to the data model
objects they display. Such a view object not only understands how to display the data, but also
knows what data to display.

View objects may also interpret user interface events (like a “swipe” or a “pinch” gesture) and
translate those into action messages (-nextPage: or -zoomOut:), which it sends to a controller object.
A view object should not act on those actions; it should simply pass them to a controller.

Note View objects that interpret events and send action messages are called controls—not to be confused with
controllers. Most control views (text field, button, slider, toggle switch, and so on) are subclasses of UIControl.

Controller Objects
Controllers are at the top of the MVC design and are the “business end” of your app. Controller
objects are supervisors that oversee, and often coordinate, the data model and view objects.
Controller objects:

Understand, and often create, the data model objects	

Configure, and often create, the view objects	

Perform the actions received from view objects	

Make changes to the data model	

Coordinate communications between the data model and view objects	

May take responsibility for keeping the view objects updated	

220 CHAPTER 8: Model Citizen

It’s almost easier to explain what a controller is not, than what it is. It is not your data model; a
controller object does not store, manage, or convert your app’s data.1 It is not a view object; it does
not draw the interface or interpret low-level events. It is, essentially, everything else.

Controllers can be involved in the initialization of your data model and view objects, often creating
the data model objects and loading your view objects from an Interface Builder file.

Controller objects contain all of the business logic of your app. They perform the commands initiated
by the user, respond to high-level events, and instigate changes to the data model. In complex apps,
there are often multiple controller objects, each responsible for a particular feature or interface.

Your controller objects are also either the recipient or source of most of the messages within your
app. How they are involved depends on your design, which brings us to the topic of inter-object
communications.

MVC Communications
In its simplest form, the communications between MVC objects forms a loop (see Figure 8-1):

Data model objects notify view objects of changes	

View objects send actions to controller objects	

Controller objects modify the data model	

Figure 8-1. Simple MVC communications

In this arrangement, the data model is responsible for notifying any observers of changes. The view
objects are responsible for observing and displaying those changes and sending actions to the
controller objects. The controller objects perform the actions, often making changes to the data
model, and the whole cycle starts again.

1There’s an exception to this rule that I’ll describe toward the end of this chapter.

221CHAPTER 8: Model Citizen

Counter-intuitively, this simplified arrangement only happens in fairly sophisticated apps. Most of the
time, the data model is not set up to post notification and the view objects don’t observe changes
directly. Instead, the controller object steps in and takes responsibility for notifying the view objects
when the data model changes, as shown in Figure 8-2.

Figure 8-2. Typical MVC communications

Now that you have the basics of the MVC design pattern, let’s put together another iOS app. Instead
of focusing on a particular iOS technology, like the motion events or the camera, I want you to pay
attention to the roles of your objects, their design, and how they change as your app evolves.

Color Model
You’re going to develop a new app called ColorModel. It’s an app that lets you choose a color using
the hue-saturation-brightness color model. Its initial design is simple, as shown in Figure 8-3. The
interface consists of three sliders, one for each of the HSB values, and a view where the chosen
color appears.

222 CHAPTER 8: Model Citizen

Note A color model, or color space, is a mathematical representation of a visible color. There are several
common models, suited to different applications. Computer displays and televisions use the red-green-blue
(RGB) model, artists like to use the hue-saturation-brightness (HSL) model, while printers use the
cyan-magenta-yellow-black (CMYK) model. See http://en.wikipedia.org/wiki/Color_model.

Figure 8-3. Initial design of ColorModel

Start by launching Xcode. Create and configure a new project:

Use the Single View Application template	

Name the project ColorModel	

Set the class prefix to CM	

Set devices to iPhone	

Create the project	

In the 	 General tab of the ColorModel target, uncheck the Landscape Left and
Landscape Right orientations, so only Portrait orientation is checked

http://en.wikipedia.org/wiki/Color_model

223CHAPTER 8: Model Citizen

Creating Your Data Model
The first step (after design) of almost any app is to develop your data model. The data model in
this app is remarkably simple; it’s a single object that maintains the values for hue, saturation, and
brightness. It also translates those values into a color object suitable for display and other uses.
Start by adding a new Objective-C source file to your project. Select the ColorModel group (the
folder, not the project) in the project navigator and choose the File ➤ New ➤ File . . . command
(or right/control+click on the group and choose New File . . .). From the iOS category, select the
Objective-C class template, name it CMColor, and make it a subclass of NSObject. You will now have
an empty data model class, as shown in Figure 8-4.

Figure 8-4. Empty CMColor class

Create your data model’s public interface by adding the following properties to the @interface
section of the CMColor.h file:

@property (nonatomic) float hue;
@property (nonatomic) float saturation;
@property (nonatomic) float brightness;
@property (readonly,nonatomic) UIColor *color;

The first three properties are floating point values, one each for the color’s hue, saturation, and
brightness. The hue is in degrees and can range between 0° and 360°. The other two are expressed
as a percentage and can range between 0% and 100%.

The last property is readonly—which just means clients of this object can’t change it. It contains a
UIColor object that represents the color of the current hue/saturation/brightness triplet. The color

224 CHAPTER 8: Model Citizen

property is a synthetic property: a value calculated from the values of the other three properties.
Implement this by replacing the default getter method with your own in CMColor.m:

- (UIColor*)color
{
 return [UIColor colorWithHue:self.hue/360
 saturation:self.saturation/100
 brightness:self.brightness/100
 alpha:1];
}

The conversion from the hue-saturation-brightness values into a UIColor object (which uses the
red-green-blue model) is thoughtfully provided by the UIColor class. I’m glad. There are formulas for
converting between various color models, but it requires a lot more math than I want to explain.

Note It’s possible to make the color property settable too: you’d just need to add code to update the hue,
saturation, and brightness values to match. Data models should be consistent; if the color property always
represents the color of the current hue, saturation, and brightness properties, then changing the color
should also change the hue, saturation, and brightness so they still agree.

The values that UIColor uses to express hue, saturation, and brightness are, however, different than
the one you choose—OK, I choose—for the data model. In your data model, hue is a value between
0 and 360. UIColor expects a value between 0 and 1. Likewise, UIColor saturation and brightness
values are also between 0 and 1. To convert between our model and the one used by UIColor, you
must scale the values by dividing them by their range. This is the kind of detail that data models
encapsulate (hide) from the rest of your app.

With your data model complete, it’s time to move on to the view objects.

Creating View Objects
Select your Main.storyboard Interface Builder file. In the objects library, find the plain View object
and drag one into your interface. Resize and position it so it occupies the top of the display, inset
from the left, top, and right using the positioning guides. Using either the resizing handles or the size
inspector, set its height to 80 pixels, as shown in Figure 8-5. This will be the view where the user’s
chosen color appears.

225CHAPTER 8: Model Citizen

Figure 8-5. Adding a simple view object

Control/Right-click on the new view object, drag down, release, and choose the Height constraint to
fix the height of the view at 80 pixels.

Find the Label object in the library and drag one into your interface. Position it immediately below
the lower-left corner of the view object. Set its title to H. Locate the Slider object in the library and
drag one into your interface, positioning it just below the color view and immediately to the right of
the label you just added, as shown in Figure 8-6.

Figure 8-6. Adding the first label and slider

Select the slider and grab the right-center resizing handle. Resize it so its right edge is aligned with
the view. You need two more label/slider pairs, so let’s quickly duplicate the ones you just created.
Select both the label and slider views (by holding down the shift key, or by dragging out a selection
rectangle that selects both). Now press the option key. While holding down the option key, click
and drag the pair down. The option key turns the drag into a copy operation. Position the pair
immediately below the first two, as shown in Figure 8-7, and release the mouse.

226 CHAPTER 8: Model Citizen

Repeat the copy again so you have three labels and three slider controls. Control/Right-click on the
top slider, drag down to the middle slider, release, and choose Equal Widths from the constraints
menu. Repeat, dragging to the bottom slider, as shown in Figure 8-8. This adds constraints to keep
the three slider controls the same width.

Figure 8-7. Duplicating the label and slider

Figure 8-8. Constraining the widths of the sliders

Retitle the second and third labels to S and B. You now have all of the view objects you need. Flesh
out the constraints by choosing Add Missing Constraints in View Controller from the Resolve
Auto Layout Issues control.

In your data mode, the hue value ranges from 0° to 360° and saturation and brightness range from
0% to 100%. Change the value range of the three sliders to match. Select the top (hue) slider and
use the attributes inspector to change its Maximum value from 1 to 360, as shown in Figure 8-9.
Change the maximum value of the other two sliders to 100.

227CHAPTER 8: Model Citizen

Writing Your Controller
The Xcode project template already provides you with a controller class; you just need to fill it out.
Select your CMViewController.h interface file. Your controller will need a reference to your data model
object, along with outlets and actions to connect with your interface. Start by adding an #import
statement above the @interface directive so your controller knows about your CMColor class:

#import "CMColor.h"

Inside the @interface, add two properties:

@property (strong,nonatomic) CMColor *colorModel;
@property (weak,nonatomic) IBOutlet UIView *colorView;

The first is your controller’s connection with your data model. The second is an outlet that you’ll
connect to your color view. This will let your controller update the color displayed in the view.

Finally, your controller will need three actions, one for each slider control, that will adjust one value in
the data model:

- (IBAction)changeHue:(UISlider*)sender;
- (IBAction)changeSaturation:(UISlider*)sender;
- (IBAction)changeBrightness:(UISlider*)sender;

Figure 8-9. Establishing value range of slider control

228 CHAPTER 8: Model Citizen

Switch to the CMViewController.m implementation file, and add these three methods:

- (IBAction)changeHue:(UISlider*)sender
{
 self.colorModel.hue = sender.value;
 self.colorView.backgroundColor = self.colorModel.color;
}

- (IBAction)changeSaturation:(UISlider*)sender
{
 self.colorModel.saturation = sender.value;
 self.colorView.backgroundColor = self.colorModel.color;
}

- (IBAction)changeBrightness:(UISlider*)sender
{
 self.colorModel.brightness = sender.value;
 self.colorView.backgroundColor = self.colorModel.color;
}

Each action message will be received from one of the slider controls whenever it changes. Each
method simply modifies the corresponding value in the data model with the new value of the slider.
It then updates the color view to reflect the new color in the data model. In this implementation, your
controller is taking responsibility for updating the view whenever the data model changes
(see Figure 8-2).

The last detail is to create the data model when the controller is loaded. Find the -viewDidLoad
method and add the one bold line:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.colorModel = [CMColor new];
}

Wiring Your Interface
The last step is to connect your controller’s outlets and actions to the view objects. Select the
Main.storyboard Interface Builder file again. Select the View Controller object and use the
connections inspector to connect your controller’s colorView outlet to the UIView object, as
shown in Figure 8-10.

229CHAPTER 8: Model Citizen

Now connect the actions of the three sliders to the controller’s -changeHue:, -changeSaturation:,
and -changeBrightness: methods. Select the top slider. Using the connections inspector, connect
the Value Changed event to the controller’s -changedHue: action. Repeat, connecting the middle
slider to the -changeSaturation: method, and the bottom slider to the -changeBrightness: method,
as shown in Figure 8-11.

Figure 8-10. Connecting the colorView outlet

Figure 8-11. Connecting slider actions

Tip You could have made these connections by right/control+clicking on a slider and dragging to the
controller. This works because the Value Changed event is the default event for control objects when
connecting an action message.

There’s one last, cosmetic, detail to attend to. The values for the hue, saturation, and brightness
in the data model all initialize to 0.0 (black). The default color in the color view is not black, and the
initial positions of the sliders are all 0.5. So that your view objects are consistent with your data

230 CHAPTER 8: Model Citizen

model from the beginning, select the sliders and use the attributes inspector to set the Current
property to 0.0. Select the color view object and set its background attribute to Black Color,
as shown in Figure 8-12.

Figure 8-12. Finished ColorModel interface

Figure 8-13. First ColorModel app

Run your app in the iPhone simulator. It appears with the color black and all three sliders set to
their minimum values. Change the values of the sliders to explore different combinations of hue,
saturation, and brightness, as shown on the right in Figure 8-13.

231CHAPTER 8: Model Citizen

Having Multiple Views
One reason the MVC design pattern separates the data model from the view objects is to avoid a
one-to-one relationship between the two. With MVC you can create a one-to-many, or even a
many-to-many, relationship between your data model and view objects. Exploit this by creating
more view objects that display the same data model and in different ways.

Start by selecting your Main.storyboard Interface Builder file. Using the right resizing handle, make
the width of the three sliders considerably shorter. You want to temporarily create some room to add
new view objects to their right, as shown in Figure 8-14.

Figure 8-14. Making room for new view objects

Find the label object in the library and add three new labels, to the right of each slider and aligned
with the right edge of the color view, as shown in Figure 8-15.

Figure 8-15. Adding HSB value labels

232 CHAPTER 8: Model Citizen

Each label will display the textual value of one property. Edit the text property of the three labels,
either using the attributes inspector or by double-clicking on the label object. Change the top label
to 360° (press shift+option+8 to get the degrees symbol), and the other two to 100%, as shown in
Figure 8-16. If the labels shift position after editing, drag them so their right edges are once again
aligned with the right edge of the color view.

Figure 8-16. Setting placeholder values

Select all three labels. Using the attributes inspector, change their Alignment property to right
justified (the rightmost of the three alignment buttons). This will keep the values neatly lined up.

Select the top slider. Select the right-edge constraint, created by Xcode, just to the right of the
slider, as shown in Figure 8-17. Using the attributes inspector, set its value to -60. This changes the
constraint so the right edge of the top slider is now inset from the right edge of the color view by 60
pixels, leaving room for the labels you just added.

233CHAPTER 8: Model Citizen

If you want to see the effects of this change, select all three sliders and choose Update Frames from
the Resolve Auto Layout Issues control. To finish the layout, choose Add Missing Constraints in
View Controller from the Resolve Auto Layout Issues control.

You’ll need outlets to use these three views, so add these to your CMViewController.h interface file:

@property (weak,nonatomic) IBOutlet UILabel *hueLabel;
@property (weak,nonatomic) IBOutlet UILabel *saturationLabel;
@property (weak,nonatomic) IBOutlet UILabel *brightnessLabel;

Connect these three outlets in Interface Builder. Switch back to the Main.storyboard file, select the
View Controller, and use the connections inspector to connect the outlets to their respective UILabel
objects, as shown in Figure 8-18.

Figure 8-17. Adjusting slider constraint

Figure 8-18. Connecting the label outlets

234 CHAPTER 8: Model Citizen

Switch to your implementation file (CMViewController.m), and modify the three actions so each also
updates its respective label view, by adding the following bold code:

- (IBAction)changeHue:(UISlider*)sender
{
 self.colorModel.hue = sender.value;
 self.colorView.backgroundColor = self.colorModel.color;
 self.hueLabel.text = [NSString stringWithFormat:@"%.0f\u00b0",
 self.colorModel.hue];
}
- (IBAction)changeSaturation:(UISlider*)sender
{
 self.colorModel.saturation = sender.value;
 self.colorView.backgroundColor = self.colorModel.color;
 self.saturationLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.saturation];
}
- (IBAction)changeBrightness:(UISlider*)sender
{
 self.colorModel.brightness = sender.value;
 self.colorView.backgroundColor = self.colorModel.color;
 self.brightnessLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.brightness];
}

These three new statements change the text in the label fields to display the textual value of each
property. The %.0f format specifier rounds the data model’s floating point value to the nearest
integer. Literally, it means “format (%) the floating point value (f), so there are zero (.0) digits to the
right of its radix point.”

Note The escape sequence \u00b0 is the degrees character (shift+option+8). The %% escape sequence
means a single % character. Format string specifiers begin with % (such as %u or %02x). To include a single
percent character in a format string you use %%.

Now run your app again. This time, whenever you adjust the value of one of the sliders, both the
color and the textual HSB value are updated too, as shown in Figure 8-19.

235CHAPTER 8: Model Citizen

Consolidating Updates
Now your data model appears, in different forms, in four different views. But why stop there? In the
CMViewController.xib file, add two more labels. Set the text of one to #000000 and the other to
Web:. Position them as shown in Figure 8-20, and set the alignment property of the one on the right
to right justified. Choose Add Missing Constraints in View Controller from the Resolve Auto
Layout Issues control.

Figure 8-19. ColorModel with HSB values

236 CHAPTER 8: Model Citizen

You’ll use this label to display the “web” color selected. This is the RGB value of the chosen color,
as an HTML short color constant. You should be able to do the next two steps in your sleep: Add the
following outlet property to CMViewController.h:

@property (weak,nonatomic) IBOutlet UILabel *webLabel;

Switch back to Main.storyboard and connect the webLabel outlet to the #000000 label object, as
shown in Figure 8-21.

Figure 8-21. Connecting webLabel outlet

Figure 8-20. Adding web-safe color view

237CHAPTER 8: Model Citizen

Now switch to the CMViewController.m implementation file and consider what needs to change.
Here’s the code to set the webLabel view to display the hex value of the color:

CGFloat red, green, blue, alpha;
[self.colorModel.color getRed:&red green:&green blue:&blue alpha:&alpha];
self.webLabel.text = [NSString stringWithFormat:@"#%02lx%02lx%02lx",
 lroundf(red*0xff),
 lroundf(green*0xff),
 lroundf(blue*0xff)];

This code extracts the individual red, green, and blue values from the UIColor object. It then uses
those values (in the range of 0.0 to 1.0) to create a string of six hexadecimal digits, two for each
color, in the range of 00 to ff, rounding to the closest integer.

While that’s not a lot of code, it is a lot of code to repeat three times, because each action method
(-changeHue:, -changeSaturation:, -changeBrightness:) must also update the new web value view.

There’s an old programming adage that says:

If you’re repeating yourself, refactor.

It means that if you find yourself writing the same code, again and again, it’s probably a good time
to reorganize and consolidate your code. It’s a truism that the more code you write, the more chance
you have of introducing a bug. A common goal of software engineers is to minimize the amount of
code they write. Not just because we’re lazy (at least, many of us are), but because it results in more
succinct solutions.

Consolidate the updates to your various view objects into a single method named -updateColor.
Start by adding a prototype for the new method at the beginning of the CMViewController.m file:

@interface CMViewController ()
- (void)updateColor;
@end

Replace the individual updates in each action with a single message to update all of the view
objects:

- (IBAction)changeHue:(UISlider*)sender
{
 self.colorModel.hue = sender.value;
 [self updateColor];
}

- (IBAction)changeSaturation:(UISlider*)sender
{
 self.colorModel.saturation = sender.value;
 [self updateColor];
}

- (IBAction)changeBrightness:(UISlider*)sender
{
 self.colorModel.brightness = sender.value;
 [self updateColor];
}

238 CHAPTER 8: Model Citizen

Finally, write the -updateColor method:

- (void)updateColor
{
 self.colorView.backgroundColor = self.colorModel.color;
 self.hueLabel.text = [NSString stringWithFormat:@"%.0f\u00b0",
 self.colorModel.hue];
 self.saturationLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.saturation];
 self.brightnessLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.brightness];
 CGFloat red, green, blue, alpha;
 [self.colorModel.color getRed:&red green:&green blue:&blue alpha:&alpha];
 self.webLabel.text = [NSString stringWithFormat:@"#%02lx%02lx%02lx",
 lroundf(red*255),
 lroundf(green*255),
 lroundf(blue*255)];
}

The first line updates the background color of the color view object, a task that had been repeated
in each of the three actions. The next three statements update the three HSB label views, and the
block of code at the end calculates the hexadecimal RGB value and updates webLabel.

Run your app again, as shown in Figure 8-22. Each change to the data model updates five different
view objects, and your controller code is arguably simpler and easier to maintain than it was before.
You can easily add new actions that update the data model; all you have to do is send -updateColor
before returning. Similarly, new view objects could be added and you’d only have to add an outlet
and modify -updateColor.

Figure 8-22. ColorModel with web value

239CHAPTER 8: Model Citizen

Figure 8-23. Updated ColorModel design

Complex View Objects
So far, the view objects you’ve used in ColorModel display relatively trivial (NSString or UIColor)
values. Sometimes view objects display much more complex data types. It’s not uncommon for
complex view objects to maintain a reference to the data model. This gives them direct access
to all of the information they need.

To make ColorModel a little more interesting, you’re going to replace the simple UIView object with
a custom view object that displays a hue/saturation color chart, in addition to identifying the exact
color selected by the hue, saturation, and brightness sliders. Revising your design, your new app
should look like the one in Figure 8-23.

Replacing UIView with CMColorView
Your new design will replace the UIView object in your current design with your own custom
CMColorView object. Start by adding a new Objective-C class to your project. Select the ColorModel
group (folder) in the project navigator and choose the File ➤ New ➤ File . . . command (or right/
control+click on the group and choose New File . . .). Select the Objective-C class template, name it
CMColorView, make it a subclass of UIView, and add it to your project.

Upgrade the plain view in your interface from a UIImage object to your new CMColorView object.
In Main.storyboard, select the UIImage view object. Use the identity inspector to change the class
of the object from UIView to CMColorView, as shown in Figure 8-24.

240 CHAPTER 8: Model Citizen

In your CMViewController.h interface file, find the colorView property that refers to this object. Add
an #include statement toward the top of the file so that CMViewController knows about CMColorView
objects:

#import "CMColorView.h"

Now change the type of the colorView property from UIView to CMColorView (modified code shown in
bold). Now your controller is connected to a CMColorView object instead:

@property (weak,nonatomic) IBOutlet CMColorView *colorView;

Connecting the View to Your Data Model
Unlike the view objects you’ve used so far, your CMColorView object will both understand and refer to
your CMColor data model. So that it understands CMColor, add this #include statement near the top
of your new CMColorView.h interface file:

#include "CMColor.h"

Now add a property to the @interface so that CMColorView has a connection to the CMColor object:

@property (strong,nonatomic) CMColor *colorModel;

Figure 8-24. Changing the UIView into a CMColorView

Note The colorModel property is not an Interface Builder outlet (IBOutlet), because you’ll be setting
this property programmatically rather than in Interface Builder. That’s not to say that it couldn’t be an outlet,
it just doesn’t need to be for this project.

Drawing CMColorView
Now switch to your CMColorView.m implementation file. You’re going to add a -drawRect: method
that draws a 2D hue/saturation color chart at the current brightness level. At the position within the
color chart that represents current hue/saturation, the view draws a circle filled with that color.

241CHAPTER 8: Model Citizen

It’s a fair amount of code, and it’s not the focus of this chapter, so I’ll gloss over the details. The code
you need to add to CMColorView.m is in Listings 8-1 and 8-2. If you’re writing this app as you work
through this chapter, I applaud you. I will, however, suggest that you save yourself a lot of typing and
copy the code for the -dealloc and -drawRect: methods from the CMColorView.m file that you’ll find
in the Learn iOS Development Projects ➤ Ch 8 ➤ ColorModel-4 ➤ ColorModel folder.

Listing 8-1. CMColorView.m private @interface

#define kCircleRadius 40.0f
@interface CMColorView ()
{
 CGImageRef hsImageRef;
 float brightness;
}
@end

Listing 8-2. CMColorView.m -dealloc and -drawRect: methods

- (void)dealloc
{
 if (hsImageRef!=NULL)
 CGImageRelease(hsImageRef);
}

- (void)drawRect:(CGRect)rect
{
 CGRect bounds = self.bounds;
 CGContextRef context = UIGraphicsGetCurrentContext();

 if (hsImageRef!=NULL &&
 (brightness!=_colorModel.brightness ||
 bounds.size.width!=CGImageGetWidth(hsImageRef) ||
 bounds.size.height!=CGImageGetHeight(hsImageRef)))
 {
 CGImageRelease(hsImageRef);
 hsImageRef = NULL;
 }

 if (hsImageRef==NULL)
 {
 brightness = _colorModel.brightness;
 NSUInteger width = bounds.size.width;
 NSUInteger height = bounds.size.height;
 typedef struct {
 uint8_t red;
 uint8_t green;
 uint8_t blue;
 uint8_t alpha;
 } Pixel;
 NSMutableData *bitmapData =
 [NSMutableData dataWithLength:sizeof(Pixel)*width*height];

242 CHAPTER 8: Model Citizen

 for (NSUInteger y=0; y<height; y++)
 {
 for (NSUInteger x=0; x<width; x++)
 {
 UIColor *color = [UIColor colorWithHue:(float)x/(float)width
 saturation:1.0f-(float)y/(float)height
 brightness:brightness/100
 alpha:1];
 float red,green,blue,alpha;
 [color getRed:&red green:&green blue:&blue alpha:&alpha];
 Pixel *pixel = ((Pixel*)bitmapData.bytes)+x+y*width;
 pixel->red = red*255;
 pixel->green = green*255;
 pixel->blue = blue*255;
 pixel->alpha = 255;
 }
 }

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 CGDataProviderRef provider = CGDataProviderCreateWithCFData(
 (__bridge CFDataRef)bitmapData);
 hsImageRef = CGImageCreate(width,height,8,32,width*4,
 colorSpace,kCGBitmapByteOrderDefault,
 provider,NULL,false,
 kCGRenderingIntentDefault);
 CGColorSpaceRelease(colorSpace);
 CGDataProviderRelease(provider);
 }

 CGContextDrawImage(context,bounds,hsImageRef);
 CGRect circleRect = CGRectMake(
 bounds.origin.x+bounds.size.width*_colorModel.hue/360-kCircleRadius/2,
 bounds.origin.y+bounds.size.height*_colorModel.saturation/100-kCircleRadius/2,
 kCircleRadius,
 kCircleRadius);
 UIBezierPath *circle = [UIBezierPath bezierPathWithOvalInRect:circleRect];
 [_colorModel.color setFill];
 [circle fill];
 circle.lineWidth = 3;
 [[UIColor blackColor] setStroke];
 [circle stroke];
}

In a nutshell, the CMColorView draws a two-dimensional graph of the possible hue/saturation
combinations at the current brightness level. (When iOS devices come out with 3D displays,
you can revise this code to draw a 3D image instead!) I’ll refer back to this code in Chapter 11,
where I explain various drawing techniques.

The point of interest (for this chapter) is that the CMColorValue has a direct reference to the CMColor
data model object, so your controller doesn’t have to explicitly update it with a new color value
anymore. All your controller needs to do is tell the CMColorView object when it needs to redraw; the
CMColorView will use the data model directly to obtain whatever information it needed to draw itself.

243CHAPTER 8: Model Citizen

For this to happen, your controller needs to establish this connection when it creates the data model
and view objects. In your CMViewController.m file, find the -viewDidLoad method and add this one
bold line:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.colorModel = [CMColor new];
 self.colorView.colorModel = self.colorModel;
}

When the view objects are created (when the Interface Builder file loads), the controller creates the
data model object and connects it to the colorView object.

Now replace the code that you used to set the color to draw (via colorView’s backgroundColor
property) with code that simply tells the colorView object that it needs to redraw itself, shown in bold:

- (void)updateColor
{
 [self.colorView setNeedsDisplay];

Run your new app and try it out. This is a dramatically more interesting interface, as shown in
Figure 8-25.

Note When you create an instance variable by declaring a @property, such as colorModel, Objective-C
generates a pair of getter and setter methods (-colorModel and -setColorModel:) that you can send
or access via the property syntax (viewObject.colorModel). It also creates an instance variable with the
same name beginning with an underscore (_colorModel). Code within your CMColorView class can access
this instance variable directly (_colorModel = nil). This is slightly faster and more efficient than using the
property syntax (self.colorModel).

Figure 8-25. ColorModel with CMColorView

244 CHAPTER 8: Model Citizen

This version of your app represents the next level of MVC sophistication. Instead of spoon-feeding
simple values to your view objects, you now have a view object that understands your data model
and obtains the values it needs directly. But the controller still has to remember to refresh all of the
views whenever it changes the data model. Let’s take a different approach, and have the data model
tell the controller when it changes.

Being a K-V Observer
Way back in the “MVC Communications” section, I described a simple arrangement where
the data model sent notifications to view objects (see Figure 8-1) letting them know when
they need to update their display. You’ve already done this in your MyStuff app. You added a
-postDidChangeNotification method to your MyWhatsit class. That method notified any interested
parties that an item in your data model had changed. Your table view observed those notifications
and redrew itself as needed.

Using NSNotificationCenter to communicate data model changes to views is a perfect example of
MVC communications. Save that in your bag of “iOS solutions I know.” I won’t repeat that solution
here. Instead, I’m going to show you an even more sophisticated method of observing changes in
your data model.

Key Value Observing
I told you that design patterns run deep in iOS and Objective-C. You’re about to find out just how
deep. MVC communications is based, in part, on the observer pattern. The observer pattern is a
design pattern in which one object (the observer) receives a message when some event in another
object (the subject) occurs. In MVC, the data model (the subject) notifies view or controller objects
(the observers) whenever it changes. This relieves the controller from having to remember to update
the view objects ([self updateColor]) whenever it changes the data model. Now it, or any other
object, can just change the data model at will; any changes will send notifications to the observers.

In MyStuff you accomplished this using NSNotifcation objects. In ColorModel you’re going to use
some Objective-C magic called Key Value Observing (KVO for short). KVO is a technology that
notifies an observer whenever the property of an object is set. The amazing thing about KVO is that
you (usually) don’t have to make any changes to your data model objects; Objective-C and iOS do
all of the work for you.

Observing Key Value Changes
Observing property changes in an object is a two-step process:

1. Become an observer for the property (key value).

2. Implement an -observeValueForKeyPath:ofObject:change:context: method.

245CHAPTER 8: Model Citizen

The first step is simple enough. In your CMViewController.m implementation file, find the
-viewDidLoad method and add the following code at the end:

[_colorModel addObserver:self forKeyPath:@"hue" options:0 context:NULL];
[_colorModel addObserver:self forKeyPath:@"saturation" options:0 context:NULL];
[_colorModel addObserver:self forKeyPath:@"brightness" options:0 context:NULL];
[_colorModel addObserver:self forKeyPath:@"color" options:0 context:NULL];

Each statement registers your CMViewController object (self) to observe changes to a specific
property (the key path) of the receiving object (_colorModel).

Thereafter, every time one of the observed properties of _colorModel changes, your controller will
receive an -observeValueForKeyPath:ofObject:change:context: message. The keyPath parameter
describes the property that changed on the object parameter. Use these parameters to determine
what changed and take the appropriate action.

Your new -observeValueForKeyPath:ofObject:change:context: method will replace your old
-updateColor method, because it serves the same purpose. Replace –updateColor with the code in
Listing 8-3. The code in bold shows what’s new.

Listing 8-3. -observeValueForKeyPath

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 if ([keyPath isEqualToString:@"hue"])
 {
 self.hueLabel.text = [NSString stringWithFormat:@"%.0f\u00b0",
 self.colorModel.hue];
 }
 else if ([keyPath isEqualToString:@"saturation"])
 {
 self.saturationLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.saturation];
 }
 else if ([keyPath isEqualToString:@"brightness"])
 {
 self.brightnessLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.brightness];
 }
 else if ([keyPath isEqualToString:@"color"])
 {
 [self.colorView setNeedsDisplay];
 CGFloat red, green, blue, alpha;
 [self.colorModel.color getRed:&red green:&green blue:&blue alpha:&alpha];
 self.webLabel.text = [NSString stringWithFormat:@"#%02lx%02lx%02lx",
 lroundf(red*255),
 lroundf(green*255),
 lroundf(blue*255)];
 }
}

246 CHAPTER 8: Model Citizen

The code is simple and straightforward. It checks to see if the keyPath parameter matches one of
the property names that you expect to change. Each if block updates the view objects affected by
changes to that property.

You can now remove all of the references to -updateColor. Delete the method prototype in the
private @interface section, and remove all of the [self updateColor]; statements in the action
methods. Now your -changeHue: method looks like this:

- (IBAction)changeHue:(UISlider*)sender
{
 self.colorModel.hue = sender.value;
}

None of your methods that change the properties of your data model have to remember to update
the view, because the data model object will notify your controller automatically whenever that
happens. Run your app and try it out, as shown in Figure 8-26.

Figure 8-26. Defective KVO

Some parts of it work, but clearly something is wrong. Let’s think about the problem for a moment.

Creating KVO Dependencies
Your controller is receiving changes for the hue, saturation, and brightness properties, because
the three label objects are getting updated. The colorView and webLabel objects, however, never
change. Your controller is not receiving change notifications for the “color” property.

That’s because nothing ever changes the color property. (It’s not even allowed to change, because
it’s a readonly property.) The problem is that color is a synthesized property value: code, that
you wrote, makes up the color value based on the values of hue, saturation, and brightness.
Objective-C and iOS don’t know that. All they know is that no one ever sets the color property
(colorModel.color = newColor), so it never sends any notifications.

247CHAPTER 8: Model Citizen

There are two, straightforward, ways to address this. The first would be to add code to your
controller so that it updates the color-related views whenever it receives notifications that any of
the other three (hue, saturation, or brightness) changed. That’s a perfectly acceptable solution, but
there’s an alternative.

You can teach the KVO system about a property (the derived key) that is affected by changes to
other properties (its dependent keys). Open your CMColor.m data model implementation file and add
this special class method:

+ (NSSet*)keyPathsForValuesAffectingColor
{
 return [NSSet setWithObjects:@"hue",@"saturation",@"brightness",nil];
}

Now run your app again and see the difference (see Figure 8-27) that one method makes.

Tip KVO is very flexible, and there are several ways to describe dependent keys. You can also write code
that determines exactly what property change notifications are sent, when, and what information those
notifications include. For a much more in-depth explanation, check out the Key-Value Observing Programming
Guide that you’ll find in Xcode’s Documentation and API Reference.

Figure 8-27. Working KVO updates

So what’s happening? The special class method +keyPathsForValuesAffectingColor tell the KVO
system that there are three properties (key paths) that affect the value of the color property: “hue”,
“saturation”, and “brightness”. Now, whenever the KVO mechanism sees one of the first three
properties change, it knows that color changed too and it sends a second notification for the “color”
key path.

248 CHAPTER 8: Model Citizen

I’m sure you’re thinking this is pretty cool, but you might also be thinking that it’s not that much less
work than the -updateColor method you wrote in the previous section. And you’re right; it’s not.
But that’s also because all of your data model changes come from one source (the slider controls),
and there’s a relatively small number of places where your data model is altered. If that situation
changes, however, it becomes a whole new ballgame.

Multi-Vector Data Model Changes
As your app matures, it’s likely to get more complex, and changes to your data model can occur
in more places. The beauty of KVO is that the change notifications happen in the same place the
changes occur—in the data model.

It was OK to call -changeColor when the only places that changed the color were the three slider
actions. But what if you added a fourth control view object that also changed them—or five, or nine?

Here’s an example. The sliders in your app are nice, but they’re sooooo Twentieth Century. We live in
the age of the touch interface. Wouldn’t it be nicer to just touch the hue/saturation graph and point
to the color you want? Let’s do it.

Handling Touch Events
You should already know how to implement this—unless you skipped Chapter 4. If you did, go back
and read it now. Add touch event handler methods to your custom CMColorView class. The handlers
will use the coordinates within the color chart to choose a new hue and saturation. Since you know
what you’re doing, get started by adding three touch event handlers to CMColorView.m:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self changeHSToPoint:[(UITouch*)[touches anyObject] locationInView:self]];
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self changeHSToPoint:[(UITouch*)[touches anyObject] locationInView:self]];
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self changeHSToPoint:[(UITouch*)[touches anyObject] locationInView:self]];
}

These three handlers catch all touch began, moved, and ended events, extract the one touch object,
gets the position of that touch in this view’s coordinates (using -locationInView:), and passes those
coordinates to the -changeHSToPoint: method.

249CHAPTER 8: Model Citizen

Now add the -changeHSToPoint: method. Start by adding a method prototype to the private
@interface section near the top of the CMColorView.m file:

- (void)changeHSToPoint:(CGPoint)point;

Finally, add the body of the method at the end of the @implementation:

- (void)changeHSToPoint:(CGPoint)point
{
 CGRect bounds = self.bounds;
 if (CGRectContainsPoint(bounds,point))
 {
 _colorModel.hue = (point.x-bounds.origin.x)/bounds.size.width*360;
 _colorModel.saturation = (point.y-bounds.origin.y)/bounds.size.height*100;
 }
}

Your -changeHSToPoint: method takes the touch point and works backwards to determine the hue
and saturation values represented at the position. It then changes the hue and saturation properties
of the data model directly.

Notice that it didn’t send an action message to the controller. It could have—that would be a
perfectly reasonable implementation too. But since you have KVO, you don’t need to. Any object
can make changes to the data model directly, and all the observers will receive the necessary
notifications.

Try it out. Run your app. Move the brightness slider off of 0%, and then use the mouse to drag
around inside the color chart. The hue and saturation change as you drag your (simulated) finger
around, as shown in Figure 8-28.

Note Remember that, by default, a view object’s multipleTouchEnabled property is NO, which means
that its touch event handler methods will never see more than one touch object in touches, even if your user
is touching the view with more than one finger.

250 CHAPTER 8: Model Citizen

Binding The Sliders
The only thing that doesn’t work is the hue and saturation sliders don’t move when you touch the
color view. That’s because they’re still acting only as inputs. Up until this point, the only way the hue
and saturation could have changed was to move the slider. Now that there are other pathways to
changing these properties, you need to keep the sliders in synchronization with the data model too.

You’ll need a connection to the three sliders, so add that to your CMViewController.h file:

@property (weak,nonatomic) IBOutlet UISlider *hueSlider;
@property (weak,nonatomic) IBOutlet UISlider *saturationSlider;
@property (weak,nonatomic) IBOutlet UISlider *brightnessSlider;

Switch to the Main.storyboard Interface Builder file and connect these new outlets from your View
Controller object to the three UISlider controls.

Find the -observeValueForKeyPath:ofObject:change:context: method in CMViewController.m and
insert these three lines of bold code:

if ([keyPath isEqualToString:@"hue"])
 {
 self.hueLabel.text = [NSString stringWithFormat:@"%.0f\u00b0",
 self.colorModel.hue];
 self.hueSlider.value = _colorModel.hue;
 }
else if ([keyPath isEqualToString:@"saturation"])
 {
 self.saturationLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.saturation];
 self.saturationSlider.value = _colorModel.saturation;
 }

Figure 8-28. Turning CMColorView into a control

251CHAPTER 8: Model Citizen

else if ([keyPath isEqualToString:@"brightness"])
 {
 self.brightnessLabel.text = [NSString stringWithFormat:@"%.0f%%",
 self.colorModel.brightness];
 self.brightnessSlider.value = _colorModel.brightness;
 }

Now when the hue value changes, the hue slider will be changed to match, even if the change came
from the hue slider.

Caution Moving a slider won’t cause an infinite loop of messages: the slider sends an action to the
controller, which changes the data model, which updates the slider, which sends an action to the controller,
and so on. That’s because slider controls only send action messages when the user drags them around, not
when their value is set programmatically. Not all views, however, are so clever, and it’s possible to create
infinite MVC message loops. The way to solve that is to only send actions or notifications when the value
actually changes.

The color view and the sliders now update whenever the data model changes, and the color view
can directly change the data model. Software engineers would say that these views are bound to
properties of the data model. A binding is a direct, two-way, linkage between a data model and a view.

Final Touches
You can now also easily fix an annoying bug in your app. The display values for the hue, saturation,
and brightness are wrong (360°, 100%, and 100%) when the app starts. The values in the data
model are 0°, 0%, and 0%. At the very end of -viewDidLoad, add this code:

_colorModel.hue = 60;
_colorModel.saturation = 50;
_colorModel.brightness = 100;

Since this code executes after your controller starts observing changes to your data model, these
statements will not only initialize your data model to a color that’s not black, but will also update all
relevant views to match. Try it!

There’s also some icon resources in the Learn iOS Development Projects ➤ Ch 8 ➤ ColorModel
(Icons) folder. Add them to the AppIcon group of the Images.xcassets item, just as you did for
earlier projects.

Cheating
The model-view-controller design pattern will improve the quality of your code, make your apps
simpler to write and maintain, and give you an attractive, healthy, glow. Do not, however, fall under
its spell and become its slave.

252 CHAPTER 8: Model Citizen

While the use of design patterns gives you an edge in your quest to become a master iOS developer,
I caution against using them just for the sake of using them. Pragmatic programmers call this over
engineering. Sometimes the simple solutions are the best. Take this example:

@interface MyScoreController : NSObject
@property NSUInteger score;
@property (weak,nonatomic) IBOutlet UILabel *scoreView;
- (IBAction)incrementScore:(id)sender;
@end

@implementation MyScoreController
- (IBAction)incrementScore:(id)sender
{
 _score += 1;
 self.scoreView.text = [NSString stringWithFormat:@"%lu",(unsigned long int)_score];
}
@end

So what’s wrong with this controller? MVC purists will point out that there’s no data model object.
The controller is also acting as the data model, storing and manipulating the score property. This
violates the MVC design pattern as well as the single responsibility principle.

Do you want my opinion? There’s nothing wrong with this solution; it’s just one #@$%&* integer!
There’s nothing to be gained in creating a new class just to hold one number, and you’ll waste a
whole lot of time doing it.

If, someday, maybe, your data model grew to three integers, a string, and a localization object,
then sure: refactor your app, pull the integer out of your controller, and move it to a real data model
object. But until that day arrives, don’t worry about it.

There’s a programming discipline called agile development that values finished, working, software
over plans and pristine design. In these situations, my advice is to use the simplest solution that
does the job. Be aware when you’re taking shortcuts in your MVC design, and have a plan to fix
it when (and if) that becomes a problem, but don’t lash yourself to a design philosophy. Design
patterns should make your development easier, not harder.

Summary
To summarize: MVC is good.

Is all of this computer science study making you want to take a break and listen to your favorite
tunes? Well then, the next chapter is for you.

253CHAPTER 8: Model Citizen

EXERCISE

While your ColorModel app came very close to the idealized MVC communications, it still relied on the controller to
observe the changes and forward update events the view objects. Given the work you’ve done so far, how difficult would
it be to make the color view observe data model changes directly?

It wouldn’t be that hard, and that’s your exercise for this chapter: Modify CMViewController and CMColorView so that
CMColorView is the direct observer of “color” changes in the CMColor object.

This is a common pattern in fairly extensive apps that have complex data models and lots of custom view objects. The
advantage is that each view object takes on the responsibility of observing the data model changes specific to that view,
relieving your controller objects from this burden.

You’ll find my solution to this exercise in the Learn iOS Development Projects ➤ Ch 8 ➤ ColorModel E1 folder.

255

Chapter 9
Sweet, Sweet Music

Choosing and playing music from your iPod library is a great way to add some toe-tapping fun
to your app. You can also add your own music and audio effects to actions and games. Both are
relatively easy to do, and I’ll get to those straight away. But don’t stop reading this chapter at that
point. Sound in iOS apps exists in a larger world of competing audio sources, real-world events,
and an ever-changing configuration of hardware. Making audio work nicely in this demanding,
and sometimes complex, environment is the real test of your iOS development skills. This chapter
covers:

Choosing tracks from the iPod music library	

Playing music in the iPod music library	

Obtaining the details (title, artist, album, artwork) of a track	

Playing sound files	

Configuring the behavior of audio in your app	

Mixing music with other sounds	

Responding to interruptions	

Responding to hardware changes	

Along the way, you’ll learn some timesaving Xcode tricks and a way of using view objects without an
outlet connection. Are you ready to make some noise?

Note The app in this chapter requires a provisioned iOS device to run it. An app that accesses the iPod
music library won’t run in the simulator; the simulator does not include the required iPod frameworks. If you
attempt to run this app in the simulator, it will simply crash.

256 CHAPTER 9: Sweet, Sweet Music

Making Your Own iPod
The two most common sources for pre-recorded sounds in an iOS app are audio resource files
and audio files in the user’s iPod library. The app you’ll develop in this chapter plays both—at the
same time! It’s a dubbing app that lets you play a track from your iPod’s music library and then
spontaneously add your own percussive instrument sounds. So if you’ve ever felt that Delibes’
Flower Duet (Lakmé, Act 1) would sound so much better with a tambourine, this is the app you’ve
been waiting for.

Design
Your app design is a simple, one screen, affair that I’ve named DrumDub. At the bottom are controls
for choosing a track from your music library and for pausing and resuming playback. At the top you’ll
find information about the track that’s playing. In the middle are buttons to add percussive sounds,
all shown in Figure 9-1.

Figure 9-1. DrumDub rough sketch

You’ll start by building the iPod music playback. Later you’ll add the album artwork, and finally mix in
the percussion sounds. As always, start by creating a new Xcode project:

1. Use the Single View Application Xcode template

2. Name the project DrumDub

3. Set the class prefix to DD

257CHAPTER 9: Sweet, Sweet Music

4. Set the device to iPhone (see note)

5. Save the project

6. In the project’s supported interface orientations, turn off landscape left
and right

Note Because this app requires an iOS device to run, you’ll need an iPhone or iPad to test it. If you only
have an iPad, consider stretching your developer legs a little and setting the supported devices to iPad
instead. As you work through this chapter, adjust the iPhone interface layout to fit the iPad. The logic and code
will remain the same.

Adding a Music Picker
The first step is to create an interface so the user can choose a song, or songs, from their iPod
music library. After Chapter 7 (where you used the photo library picker), you shouldn’t be surprised
to learn that iOS provides a ready-made music picker interface. All you have to do is configure it and
present it to the user.

You’ll present the music picker interface when the user taps the “Song” button in the interface.
For that you’ll need an action. Start by declaring this action in the @interface section of your
DDViewController.h file:

- (IBAction)selectTrack:(id)sender;

The MPMediaPickerController class provides the music picker interface. Your -selectTrack: method
will create a new MPMediaPickerController, configure it, and present it to the user. Just like the
photo library picker, your app finds out what the user picked via delegate methods. While you’re still
editing DDViewController.h, make your DDViewController an MPMediaPickerControllerDelegate:

@interface DDViewController : UIViewController <MPMediaPickerControllerDelegate>

You’ll notice that Xcode is now flagging this line with a compiler error. That’s because the media
picker and player header files are not part of the standard UIKit frameworks. Import the definition
of MPMediaPickerControllerDelegate (along with all of the other music player and picker symbols)
by adding the following #import statement immediately after your other #import statements:

#import <MediaPlayer/MediaPlayer.h>

Switch to the Main.storyboard Interface Builder file. In the object library, find the Toolbar object.
Drag a toolbar into your interface, positioning it at the bottom of the view. The toolbar already
includes a bar button item. Select it and change its title property to Song. Connect its sent action
(control/right-drag) to the View Controller’s -selectTrack: action, as shown in Figure 9-2.

258 CHAPTER 9: Sweet, Sweet Music

Now you’re ready to write your -selectTrack: action. Switch to the DDViewController.m file and add
this code to your @implementation section:

- (IBAction)selectTrack:(id)sender
{
 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeAnyAudio];
 picker.delegate = self;
 picker.allowsPickingMultipleItems = NO;
 picker.prompt = @"Choose a song";
 [self presentViewController:picker animated:YES completion:nil];
}

This code creates a new MPMediaPickerController object that will let the user choose any audio
type. The media picker is rather flexible, and can be set up to present various types of audio and/or
video content on the device. The categories for audio content are:

Music (MPMediaTypeMusic)

Podcasts (MPMusicTypePodcast)

Audiobooks (MPMediaTypeAudioBook)

iTunes U (MPMediaTypeITunesU)

By combining these binary values together, you can configure your media picker to present any
combination of those categories you desire. The constant MPMediaTypeAnyAudio includes all
categories, allowing the user to choose any audio item in their library. A similar set of flags allows
video content.

Figure 9-2. Adding the toolbar and “Song” button

259CHAPTER 9: Sweet, Sweet Music

You then make your DDViewController object the picker’s delegate. Next, the option to allow picking
multiple tracks at once is disabled. The user will only be able to choose one song at a time. Set a
prompt, or title, so the user knows what you’re asking them to do.

Finally, the controller is presented, allowing it to take over the interface and choose a song. This is
enough code to see it working, so give it a try. Set the project’s scheme to your iOS device and click
the Run button, as shown in Figure 9-3. The toolbar appears, you can tap the “Song” button to bring
up the music picker, browse your audio library, and choose a song.

Figure 9-3. Testing the audio picker

Tip Some integer parameters, like the mediaTypes parameter in -initWithMediaTypes:, are
interpreted, not as a single integer value, but as a collection of bits or flags. Each individual MPMediaType
constant is a power of 2—a single 1 bit in the integer. You can combine them by adding, or logically ORing,
the values together to form arbitrary combinations, such as (MPMediaTypeMusic|MPMediaTypeAudioBook).
The resulting value would choose any music track or audiobook, but would not let the user pick podcasts
or iTunes U content. The convenient MPMediaTypeAnyAudio constant is just all-possible audio flags
OR’d together.

260 CHAPTER 9: Sweet, Sweet Music

QUERYING THE IPOD MUSIC LIBRARY

You don’t have to use the media picker to choose items from the user’s iPod library. It’s just the most convenient method.

It’s possible to create your own interface, or not have an interface at all. The iPod framework provides classes that allow
your app to explore and search the user’s media collection as if it was a database. (Come to think of it, it is a database,
so that description is literally true.)

You do this by creating a query object that defines what you’re searching for. This can be as simple as “all R&B songs” or more
nuanced, such as “all tracks longer than 2 minutes, belonging to the ‘dance’ genre, with a BPM tag between 110 and 120.”
The result is a list of media items matching that description, which you can present any way you like (cough—table—cough).

You can read more about this in the iPod Library Access Programming Guide that you will find in Xcode’s Documentation
and API Reference. Read the section “Getting Media Items Programmatically” to get started.

Using a Music Player
What happens next is, well, nothing happens next. When the user picks a track, or taps the Cancel
button, your delegate receives one of these messages:

-mediaPicker:didPickMediaItems:
-mediaPickerDidCancel:

Nothing happened, because you haven’t written either. Start by writing -mediaPicker:didPickMe
diaItems:. This method will retrieve the audio track the user picked and start it playing using an
MPMusicPlayerController object.

First, define a private instance variable and a readonly property so you can keep a reference to,
and easily request, your music player object. Add the following bold code to the private @interface
section at the beginning of the DDViewController.m file:

@interface DDViewController ()
{
 MPMusicPlayerController *music; // (store for @property musicPlayer)
}
@property (readonly,nonatomic) MPMusicPlayerController *musicPlayer;
@end

Now you’re ready to implement the first delegate method:

- (void)mediaPicker:(MPMediaPickerController*)mediaPicker
 didPickMediaItems:(MPMediaItemCollection*)mediaItemCollection
{
 if (mediaItemCollection.count!=0)
 {
 [self.musicPlayer setQueueWithItemCollection:mediaItemCollection];
 [self.musicPlayer play];
 }
 [self dismissViewControllerAnimated:YES completion:nil];
}

261CHAPTER 9: Sweet, Sweet Music

The mediaItemCollection parameter contains the list of tracks the user picked. Remember that the
picker can be used to choose multiple items at once. Since you set the allowsPickingMultipleItems
property to NO, your picker will always return a single item.

We double check to see that at least one track was chosen (just to be sure) and then use the
collection to set the music player’s playback queue. The playback queue is a list of tracks to play
and works just like a playlist. In this case, it’s a playlist of one. The next statement starts the music
playing. It’s that simple.

Note While the music player’s playback queue works just like a playlist, it isn’t an iPod playlist. It won’t
appear in the iPod interface as a playlist, and iOS won’t save it for you. If you want this functionality in your
app, you can do it yourself. Using what you learned in Chapter 5, present the items in the media collection
as a table, allowing the user to reorder, delete, or add new items (using the media picker again) as they like.
Send the music player a -setQueueWithItemCollection: message again with the updated collection.

So what’s the problem with this code? The problem is there is no musicPlayer object yet! Write a
property getter method for musicPlayer that lazily creates the object:

- (MPMusicPlayerController*)musicPlayer
{
 if (music==nil)
 {
 music = [MPMusicPlayerController applicationMusicPlayer];
 music.shuffleMode = NO;
 music.repeatMode = NO;
 }
 return music;
}

Tip This method follows two well-used design patterns: singleton and lazy initialization. The method
implements the getter method for the musicPlayer property; any code that requests that property
(self.musicPlayer) invokes this method. The method checks to see if an MPMusicPlayerController
object—stored in music—has already been created. If not, it creates one, configures it, and saves it in the
music instance variable. This only happens once. All subsequent calls to -musicPlayer see that the music
variable is already set, and immediately returns the (single) object.

You obtain the MPMusicPlayerController object using the +applicationMusicPlayer class method.
This creates an application music player (see the “Application and iPod Music Players” sidebar).
The music player inherits the current iPod playback settings for things like shuffle and repeat modes.
You don’t want any of that, so you turn them off.

262 CHAPTER 9: Sweet, Sweet Music

APPLICATION AND IPOD MUSIC PLAYERS

Your app has access to two different music player objects. The application music player belongs to your app. Its current
playlist and settings exist only in your app, and it stops playing when your app stops.

You can also request the iPod music player object, using [MPMusicPlayerController iPodMusicPlayer].
The iPod music player object is a direct connection to the iPod player in the device. It reflects the current state of music
playing in the iPod app. Any changes you make (like pausing playback or altering shuffle mode) change the iPod app.
Music playback continues after your app stops.

There’s only one quirk. The iPod music player object won’t report information about media that’s being streamed,
say via home sharing. But other than that, the iPod music player object is a transparent extension of the built-in iPod app,
and allows your app to participate in, and integrate with, the user’s current music activity.

Only one music player can be playing at a time. If your app starts an application music player, it takes over the music
playback service, causing the built-in iPod player to stop. Likewise, if your application music player is playing and the
user starts the iPod player, your music player is stopped.

Now toss in a delegate method to handle the case where the user declines to choose a track:

- (void)mediaPickerDidCancel:(MPMediaPickerController*)mediaPicker
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

Your basic playback code is now complete. Run your app, choose a track, and enjoy the music.

The MPMusicPlayerController object is self-contained. It takes care of all of the standard iPod
behavior for you. It will, for example, automatically fade out if interrupted by an alarm or incoming
call, or stop playback when the user unplugs their headphones. I’ll talk a lot more about these events
later in this chapter.

That’s not to say you can’t influence the music player. In fact, you have a remarkable amount of
control over it. You can start and stop the player, adjust the volume, skip forwards or backwards
in the playlist, set shuffle and repeat modes, change the playback rate, and more. The player will
also tell you a lot about what it’s doing and playing. Using these properties and methods, you could
create your own, full-featured, music player.

For this app, you don’t need a full-featured music player. But it would be nice to at least know what’s
playing and be able to pause it. Get ready to add that next.

Adding Playback Control
Start by adding some buttons to pause and play the current song. These buttons will need actions,
so add these two method declarations to your DDViewController.h file:

- (IBAction)play:(id)sender;
- (IBAction)pause:(id)sender;

263CHAPTER 9: Sweet, Sweet Music

You’ll also need to update the state of the play and pause buttons, so add some connections for that:

@property (weak,nonatomic) IBOutlet UIBarButtonItem *playButton;
@property (weak,nonatomic) IBOutlet UIBarButtonItem *pauseButton;

Switch to your Main.storyboard file and add the following objects to the toolbar, inserting them to
the left of the “Song” button, in order, as shown in Figure 9-4:

1. A Flexible Space Bar Button Item

2. A Bar Button Item, changing its style to Plain, its identifier to Play,
and unchecking enabled

3. A Bar Button Item, changing its style to Plain, its identifier to Pause,
and unchecking enabled

4. A Flexible Space Bar Button Item

Figure 9-4. Adding controls to the toolbar

Finally, set all of the connections. Right/control+click on the play button and connect its action to
the -play: action (in the View Controller), and the pause button to the -pause: action. Select the
View Controller object and use the connections inspector to connect the playButton outlet to
the play button, and the pauseButton outlet to the pause button.

With the interface objects created and connected, consider for a moment how these buttons should
work. You want:

the play button to be active (tappable) when the music player 	
is not currently playing

the play button’s action to start the music playing	

the pause button to be active when the music player is playing	

the pause button’s action to pause the music player	

264 CHAPTER 9: Sweet, Sweet Music

The button’s actions will start and stop the music player. You’ll need to update the enabled
state of the buttons whenever the player starts or stops playing. The first part is pretty simple.
In DDViewController.m, add the implementation for the -play: and -pause: actions:

- (IBAction)play:(id)sender
{
 [self.musicPlayer play];
}

- (IBAction)pause:(id)sender
{
 [self.musicPlayer pause];
}

The second half is updating the button states (enabling or disabling them) at the appropriate times.

Receiving Music Player Notifications
The music player runs in a background thread. Normally, it plays tracks in its playlist until it runs out
and stops. It can also pause in response to external events: the user presses the pause button on
their headphone cable or they unplug the iPod from a dock. How do you think your app will learn
about these events?

If you said, “by receiving a delegate message or notification,” give yourself a big round of applause!
Reading the documentation for the MPMusicPlayerController class, you discover that the music
player will optionally send notifications whenever important changes occur, which happen to include
when it starts or stops playing. To be notified of those events, you’ll need to register your controller
object to receive them. As you remember from Chapter 5, to receive notifications you must:

Create a notification method	

Register with the notification center to become an observer for the notification	

Start by adding this notification method to your DDViewController.m implementation:

- (void)playbackStateDidChangeNotification:(NSNotification*)notification
{
 BOOL playing = (music.playbackState==MPMoviePlaybackStatePlaying);
 _playButton.enabled = !playing;
 _pauseButton.enabled = playing;
}

Also add a method prototype to the private @interface section at the beginning of the source file:

- (void)playbackStateDidChangeNotification:(NSNotification*)notification;

Your notification handler examines the current playbackState of your music player. The player’s
playback state will be one of stopped, playing, paused, interrupted, seeking forward, or seeking
backwards. In this implementation, the only likely states are playing, stopped, interrupted, and
paused.

265CHAPTER 9: Sweet, Sweet Music

If the player is playing, the pause button is enabled and the play button is disabled. If it’s not playing,
the opposite occurs. This presents the play button as an option whenever the player is not playing,
and the pause button when it is.

Your controller won’t receive these notifications until two additional steps are taken. First, you
must register to receive these notifications. In the -musicPlayer getter method, add this new code
immediately after the player object is created and configured (at the end of the if { ... } block):

NSNotificationCenter *notificationCenter = [NSNotificationCenter defaultCenter];
[notificationCenter addObserver:self
 selector:@selector(playbackStateDidChangeNotification:)
 name:MPMusicPlayerControllerPlaybackStateDidChangeNotification
 object:music];

The second step is to enable the music player’s notifications. MPMusicPlayerController does not,
by default, send these notifications. You must explicitly request that it does. Immediately after the
above code, add one more line:

[music beginGeneratingPlaybackNotifications];

Your playback controls are now finished. Run your app and see that they work, as shown in Figure 9-5.

Figure 9-5. Working playback controls

Note The -playbackStateDidChangeNotification: method used the instance variable (music)
instead of the property value getter (self.musicPlayer). Accessing the former, instead of the latter, avoids
lazily creating a music player object if one didn’t exist—only to find that the newly created player wasn’t
playing. That would be a waste of time and code. In this particular app, it’s impossible for music to be nil
because the notification message is only received when the music player changes state, and for that to
happen the music player object must have already been created.

Both buttons start out disabled. When you choose a track to play, the pause button becomes active
(the middle of Figure 9-5). If you pause the song, or let it finish playing, the play button becomes
active (on the right in Figure 9-5).

266 CHAPTER 9: Sweet, Sweet Music

MVC AT WORK

You’re watching the model-view-controller design pattern at work—again. In this scenario, your music player (despite the
fact the it’s called a “music controller”) is your data model. It contains the state of the music playback. Whenever that state
changes, your controller receives a notification and updates the relevant views—in this case, the play and pause buttons.

You didn’t write any code to update the play or pause button when you start or stop the player. Those requests are
just sent to the music player. If one of those requests results in a state change, the music player posts the appropriate
notifications, and the affected views are updated.

While functional, your app lacks a certain je ne sais quoi. Oh, who are we kidding? This interface is
as dull as dishwater! Let’s spruce it up a bit.

Adding Media Metadata
A colorful aspect of the music player object is its nowPlayingItem property. This property returns
an object containing metadata about the song that’s playing. The object works like a dictionary,
revealing all kinds of interesting tidbits about the current song. This includes information like its title,
the artist, the track number, the musical genre, any album artwork, and much more.

Note Metadata is “data about data.” A file, like a document, contains data. The name of that file, when it
was created, and so on, is its metadata—it’s data that describes the data in the file. A waveform stored in a
song file is data. The name of the song, the artist, its genre, and so on, is all metadata.

For your app, you’ll add an image view to display the album’s cover and text fields to show the
song’s title, the album it came from, and the artist. Start by adding new interface objects to
Main.storyboard.

Creating a Metadata View
Select the Main.storyboard file. Using the object library, find the Image View object and add one to
the interface. Using the size inspector, set both its width and height to 140 pixels, and position it
(using the guides) in the upper-left corner of the view, as shown in Figure 9-6.

267CHAPTER 9: Sweet, Sweet Music

Figure 9-6. Positioning the album view

With the view object selected, choose Editor ➤ Pin ➤ Width. Select the view again and choose
Editor ➤ Pin ➤ Height. This adds constraints that will prevent the view from being resized. These
commands are an alternative to control/right-dragging in the view. Finish the layout by choosing
Editor ➤ Resolve Auto Layout Issues ➤ Add Missing Constraints in View Controller.

Add a label object, just to the right of the image view (see Figure 9-7). Resize its width so the label
fills the display, as shown in Figure 9-7. Using the attributes inspector, change its color to White
Color and reduce its font size to System 12.0.

Figure 9-7. Adding a metadata label

268 CHAPTER 9: Sweet, Sweet Music

Make two more labels, just like it, and position them below the first. You can either copy and paste
the first label object, or hold down the Option key and drag a copy of the first label to make another.
Choose Editor ➤ Resolve Auto Layout Issues ➤ Add Missing Constraints in View Controller.
As a final touch, select the root view object and change its background to Black Color. When
finished, your interface should look something like the one in Figure 9-8.

Figure 9-8. Finished metadata interface

Figure 9-9. Viewing Main.storyboard in the assistant editor

You know what’s coming next. I’m going to ask you to switch to DDViewController.h, add some
outlet properties, and then switch back to Main.storyboard to connect them.

Well, I’m not. Sure, you’re going to create and connect some outlets, but I’m going to show you a
nifty Xcode trick so you don’t have to switch back and forth between the files.

While still looking at the Main.storyboard file, switch to the assistant editor view (View ➤ Assistant
Editor ➤ Show Assistant Editor), as shown in Figure 9-9. If your workspace window is a little
cramped, hide the utilities area (View ➤ Utilities ➤ Hide Utilities) or collapse the storyboard’s
object outline, both shown in Figure 9-9.

269CHAPTER 9: Sweet, Sweet Music

When viewing an Interface Builder file, Xcode’s assistant editor conveniently places the interface
file of the scene in the right-hand pane. (If it doesn’t, choose the DDViewController.h file from the
navigation menu, immediately above the right-hand pane, as shown in figure 9-9.) Those little circles
next to the property and action declarations work just like the ones in the connections inspector.
If you’re not excited already, you should be. It means you can declare an outlet or action, and then
connect it to an interface object, without switching between files. How cool is that?

Add these four new outlets to DDViewController.h (now on the right-hand side of the editing area):

@property (weak,nonatomic) IBOutlet UIImageView *albumView;
@property (weak,nonatomic) IBOutlet UILabel *songLabel;
@property (weak,nonatomic) IBOutlet UILabel *albumLabel;
@property (weak,nonatomic) IBOutlet UILabel *artistLabel;

Now drag the connections that appear to the left of those declarations and connect them directly to
the interface objects, as shown in Figure 9-10.

Figure 9-10. Connecting outlets directly from the interface file

You created the outlet properties, and connected them to the interface object, using a single window.
Switch back to the standard editor (View ➤ Standard Editor ➤ Show Standard Editor) and select
the DDViewController.m file. It’s time to write the code to update these new interface objects.

Observing the Playing Item
The music player object also sends notifications when the item being played changes. This occurs
when a new song starts playing, or one finishes playing. The notification is different than the one
your controller is currently observing, so you’ll need to create another notification handler and
register to observe the additional notification. Start by adding a prototype for your new function to
the private @interface DDViewController () section at the beginning of the DDViewController.m file:

- (void)playingItemDidChangeNotification:(NSNotification*)notification;

270 CHAPTER 9: Sweet, Sweet Music

Near the -playbackStateDidChangeNotification: method, add your new notification handler:

- (void)playingItemDidChangeNotification:(NSNotification*)notification
{
 MPMediaItem *nowPlaying = music.nowPlayingItem;
 MPMediaItemArtwork *artwork = [nowPlaying valueForProperty:MPMediaItemPropertyArtwork];
 UIImage *albumImage = [artwork imageWithSize:_albumView.bounds.size];
 if (albumImage==nil)
 albumImage = [UIImage imageNamed:@"noartwork"];
 _albumView.image = albumImage;
 _songLabel.text = [nowPlaying valueForProperty:MPMediaItemPropertyTitle];
 _albumLabel.text = [nowPlaying valueForProperty:MPMediaItemPropertyAlbumTitle];
 _artistLabel.text = [nowPlaying valueForProperty:MPMediaItemPropertyArtist];
}

The method gets the nowPlayingItem property object. Rather than have a bunch of fixed properties
(like typical objects), the MPMediaItem object contains a variable number of property values that you
request via a key. A key is a fixed value—typically a string object—that identifies the value you’re
interested in.

The first thing you ask for is the MPMediaItemPropertyArtwork value. This value will be a
MPMediaItemArtwork object that encapsulates the album artwork for the song. You then request a
UIImage object, optimized for the size of your image view.

Tip MPMediaItemArtwork objects may store multiple versions of the item’s artwork, at different sizes and
resolutions. When requesting a UIImage of the artwork, specify a size as close as possible to the size you plan
on displaying the image, so the media item object can return the best possible image for that size.

The thing to remember about media metadata is that there are no guarantees. Any song in the iPod
library might have values for title, artist, and artwork. Or, it might not have any of those values. Or, it
might have a title and artist, but no artwork, or artwork and no title. The bottom line is, be prepared
for the case where something you ask for isn’t available.

In this app, you test to see if MPMediaItemArtwork declined to return a displayable image
(albumImage==nil). In that case, replace the image with a resource image named “noartwork.”

For that statement to work, you’ll need to add the noartwork.png and noartwork@2x.png files to
your project. Select the Images.xcassets item in the navigator. Find the Learn iOS Development
Projects ➤ Ch 9 ➤ DrumDub (Resources) folder and drag the noartwork.png and noartwork@2x.png
files into the asset catalog.

The last three statements repeat this process, obtaining the title, album title, and artist name for the
item. In this code you don’t have to worry about missing values. If an item doesn’t have an album
name—for example, requesting MPMediaItemPropertyAlbumTitle—the media item will return a nil
value. It just so happens that setting a UILabel’s text property to nil blanks the view—which is
exactly what you want to happen if there’s no album name.

271CHAPTER 9: Sweet, Sweet Music

The last step is observing the item changed notifications. Find the -musicPlayer property getter
method. Find the code that observes the playback state changes, and insert this new statement:

[notificationCenter addObserver:self
 selector:@selector(playingItemDidChangeNotification:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:music];

Now whenever a new song starts playing, your controller will receive a “playing item did change”
notification and display that information to the user. Give it a try.

Run your app, select a song, and start it playing. The song information and artwork display,
as shown in Figure 9-11. If you let the song play to its end, the information disappears again.

Figure 9-11. Album artwork and song metadata

The only thing I don’t like about this interface is that the artwork view and the three label views are
filled with the placeholder information when the app launches. Fix that in the Main.storyboard file
by clearing the text property of the three metadata labels, and setting the image view’s initial image
to noartwork.png.

Make Some Noise
So far, you’ve essentially created a (minimal) iPod app. That’s an impressive feat, but it isn’t the only
way to add sound to your app. You may want to add sound effects to actions, or play music files
that you’ve bundled. Maybe you want to play live audio streams from a network data source. Those
are all easy to do, even easier than playing songs from the iPod library—which was pretty easy.

272 CHAPTER 9: Sweet, Sweet Music

I’ll get the easy part out of the way first. To play and control almost any kind of audio data your app
has access to:

1. Create an AVAudioPlayer object.

2. Initialize the player with the source of the audio data, typically a URL to a
resource file.

3. Send it a -play message

And just like the MPMusicPlayerController, the AVAudioPlayer object takes care of all of the details,
including notifying your delegate when it’s done.

So you might be thinking that it won’t take more than a dozen lines of code and some buttons to
finish this app. Sadly, you would be mistaken.

Living in a Larger World
What makes playing audio in this app complicated is not the code to play your sounds. The
complication lies in the nature of iOS devices, and the environment they exist in.

Consider an iPhone. It’s a telephone and videophone; audio is used to indicate incoming calls
and play the audio stream from the caller. It’s a music player; you can play your favorite music or
audiobook, or stream Internet radio, even while using other apps. It’s an alarm clock; timers can
remind you of things to do any time of the day or night. It’s a game console; games are full of
sounds, sound effects, and ambient music. It’s a pager; messages, notifications, and alerts can
occur for countless reasons, interrupting your work (or play) at a moment’s notice. It’s also a video
player, TV, answering machine, GPS navigator, movie editor, Dictaphone, and digital assistant.

All of these audio sources share a single output. To do that effectively—creating a pleasant
experience for the user—all of these competing audio sources have to cooperate. Game sounds and
music playback have to stop when a telephone call arrives. Background music needs to temporarily
lower its volume, if the user is expected to hear a reminder or recorded message. iOS refers to these
as interruptions.

Adding to this complexity, iOS devices have many different ways of producing sound. There’s the
built-in speakers, the head phone jack, wireless Bluetooth devices, AirPlay, and the dock connecter.
iOS calls these audio routes. Audio can be directed to any one of these, and switched to a different
one at any time (called a route change). Audio playback must be aware of this and your app may
need to react to those changes. For example, Apple recommends that unplugging the headphones
should cause music playback to pause, but game sound effects should continue playing.

And just to add one more dash of complication, most iOS devices have a ring/silence switch. Audio
that’s intended as an alert, alarm, embellishment, or sound effect should play only when the ring
switch is in its normal position. More deliberate audio, like movies and audiobooks, should play
normally, even when the silence switch is engaged.

Taken together, your app needs to

Decide the intent and purpose of each source of audio in your app	

Declare this purpose, so iOS can adjust its behavior to accommodate your audio	

Observe interruptions and audio route changes, and take appropriate action	

273CHAPTER 9: Sweet, Sweet Music

The good news is that not every audio-endowed app you write has to do all of these things. In fact,
if you only use the iPod music player or only play incidental sounds using AVAudioPlayer objects,
you probably don’t have to do anything at all. Both of these classes will “do the right thing.”

For an app like DrumDub, however, that wants to manage its own music playback while mixing
in additional sound effects, all of these steps need to be taken. So before you start adding sound
effects to your app, lay some of the groundwork.

Configuring Your Audio Session
You communicate your intent—describe the kinds of sounds your app will make and how those will
affect other audio sources—to iOS through an audio session. Every iOS app gets a generic audio
session, pre-configured with a basic set of behaviors. That’s why, if you only play music through a
music player controller, you don’t have to do anything special; the default audio session is just fine.

DrumDub needs to both playback and mix audio. This is unusual, so it will need to reconfigure its
audio session. Apps that only play audio can typically configure their audio session once and leave it.

Note Apps that record audio, or record and playback audio, are more complicated. They must repeatedly
reconfigure their audio session as they switch between recording, playback, and processing.

In your DDAppDelegate.m file, you’ll find the implementation for your app’s delegate object. One of
the messages sent to your app’s delegate is the -application:didFinishLaunchingWithOptions:
message. As the name implies, it’s sent immediately after your app has loaded, initialized, and is
about to start running. It’s the perfect place to put code that needs to run just once, and run before
anything else gets underway. Add the following code (in bold) to the beginning of that method:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];
 [audioSession setCategory:AVAudioSessionCategoryPlayback
 withOptions:AVAudioSessionCategoryOptionMixWithOthers
 error:NULL];

Note This code will be flagged as an error by the compiler. You’ll fix that shortly.

An audio session has a category and a set of options. There are seven different categories to choose
from, as listed in Table 9-1.

274 CHAPTER 9: Sweet, Sweet Music

The default category is AVAudioSessionCategorySoloAmbient. For DrumDub, you’ve decided that
audio is its raison d’être—its reason to exist. Use the -setCategory:withOptions:error: message to
change its category to AVAudioSessionCategoryPlayback. Now your app’s audio won’t be silenced
by the ring/silence switch.

You can also fine-tune the category with a number of category-specific options. The only option for
the playback category is AVAudioSessionCategoryOptionMixWithOthers. If set, this option allows
audio played with your AVAudioPlayer objects to “mix” with other audio playing at the same time.
This is exactly what you want for DrumDub. Without this option, playing a sound would stop other
audio sources.

All of these symbols are defined in the AVFoundation framework, so you’ll need to #import the
AVFoundation.h header to get them. Add this statement above all the other #import statements in
DDAppDelegate.m:

#import <AVFoundation/AVFoundation.h>

See, that wasn’t too hard. In fact, there was a lot more explanation than code. With your audio
session correctly configured, you can now add (mix in) sound effects with your music.

Table 9-1. Audio session categories

Session Categories App description

AVAudioSessionCategoryAmbient Plays “background” audio or non-essential sound effects. The
app will work just fine without them. App audio mixes with other
audio (the iPod) playing at the same time. The ring/silence switch
silences the app’s audio.

AVAudioSessionCategorySoloAmbient Plays non-essential audio that does not mix with other audio;
other audio sources are silenced when the app plays. The ring/
silence switch silences the app’s audio.

AVAudioSessionCategoryPlayback Plays music or other essential sounds. In other words, audio is the
principle purpose of the app and it wouldn’t work without it. The
ring/silence switch does not silence its audio.

AVAudioSessionCategoryRecord Records audio.

AVAudioSessionCategoryPlayAndRecord Plays and records audio.

AVAudioSessionCategoryAudioProcessing Performs audio processing (using the hardware audio codecs),
while neither playing nor recording.

AVAudioSessionCategoryMultiRoute Needs to output audio to multiple routes simultaneously. A slideshow
app might play music through a dock connector, while simultaneously
sending audio prompts through the headphones.

275CHAPTER 9: Sweet, Sweet Music

Playing Audio Files
You’re finally at the heart of your app’s design: playing sounds. You’re going to have four buttons,
each playing a different sound. To implement this, you will need:

Four button objects	

Four images	

Four 	 AVAudioPlayer objects

Four sampled sound files	

And an action method to play a sound	

It will be easier to build the interface once you have added the resources and defined the action
method, so start there. Find your Learn iOS Development Projects ➤ Ch 9 ➤ DrumDub (Resources)
folder and locate the 12 files in this table:

Sound Sample Button Image Retina Display Image

snare.m4v snare.png snare@2x.png

bass.m4v bass.png bass@2x.png

tambourine.m4v tambourine.png tambourine@2x.png

maraca.m4v maraca.png maraca@2x.png

Begin by adding the button image files. Select the Images.xcassets asset catalog item. In it, you’ll
see the noartwork resource you added earlier. Drag the eight instrument image files (two each of
snare, bass, tambourine, and maraca) into the asset catalog’s group list, as shown in Figure 9-12.

Figure 9-12. Adding image resources

276 CHAPTER 9: Sweet, Sweet Music

While you’re here, select the AppIcon group of the asset catalog and drag the appropriate app icon
image files into it, as you’ve done for earlier projects. If you’re building the iPhone version of this project,
that would be the DDIconIPhone@2x, DDIconSpotlight, and DDIconSpotlight@2x files. If you’re building
an iPad version, add the DDIconIPad, DDIconIPad@2x, DDIconSpotlight, and DDIconSpotlight@2x files.

The four sound files (bass.m4a, maraca.m4a, snare.m4a, and tambourine.m4a) will also become resource
files, but they’re not the kind of resources managed by an asset catalog. You can add any kind of file
you want directly to a project, and have that file included as a resource in your app’s bundle.

For the sake of neatness, begin by creating a new group for these resource files. Control+click/
right-click on the DrumDub group (not the project) in the navigator and choose the New Group
command, as shown on the left in Figure 9-13.

Figure 9-13. Adding non-image resources

Name the group Sounds, as shown in the middle of Figure 9-13. Locate the four sound sample files in
the Finder and drag them into the group, as shown on the right of Figure 9-13. If you miss and add
the items to the DrumDub group instead, select them in the navigator and drag them into the Sounds
group. You can always reorganize your project items as you please.

After dropping your items into the navigator, Xcode presents some options that determine how the
items will be added to your project, as shown in Figure 9-14. Make sure the Copy items into
destination group’s folder (if needed) option is checked. This option copies the new items into
your app’s project folder. The second option (Create groups for any added folders) only applies
when adding folders full of resource files.

277CHAPTER 9: Sweet, Sweet Music

Caution If you fail to check the Copy items into destination group’s folder (if needed) option, Xcode will
add only a reference to the original item, which is still outside your project’s folder. This works fine, until you
rename one of the original files, move your project, or copy it to another system—then your project suddenly
stops building. Save yourself some grief and keep all of your project’s resources inside your project folder.

Figure 9-14. Add project file options

Finally, make sure the DrumDub target is checked, as shown in Figure 9-14. This option makes these
items members of the DrumDub app target, which means they’ll be included as resource files in your
finished app. (If you forget to check this, you can later change the target membership of any item
using the file inspector.) Click Finish and Xcode will copy the sound sample files into your project
folder, add them to the project navigator, and include them in the DrumDub app target. These files are
now ready to be used in your app.

Creating AVAudioPlayer objects
You’ll play the sound sample files using AVAudioPlayer objects. You’ll need four. Rather than creating
four AVAudioPlayer variables and writing four play actions, create one array to hold all of the objects

278 CHAPTER 9: Sweet, Sweet Music

and one method to play any of them. Start with the AVAudioPlayer objects. Find the private
@interface DDViewController () section in DDViewController.m, and add the code in bold:

#define kNumberOfPlayers 4
static NSString *SoundName[kNumberOfPlayers] = { @"snare", @"bass", @"tambourine", @"maraca" };

@interface DDViewController ()
{
 MPMusicPlayerController *music;
 AVAudioPlayer *players[kNumberOfPlayers];
}
@property (readonly,nonatomic) MPMusicPlayerController *musicPlayer;
- (void)playingItemDidChangeNotification:(NSNotification*)notification;
- (void)playbackStateDidChangeNotification:(NSNotification*)notification;
- (void)createAudioPlayers;
- (void)destroyAudioPlayers;
@end

The kNumberOfPlayers constant defines the number of sounds, sound player objects, and sound
buttons that this app uses. Also defined is a static array of string constant objects. Each element is
the name of a sound sample resource file. The players instance variable is an array of AVAudioPlayer
objects.

Tip It’s a good practice to define almost any constant as a symbol (like kNumberOfPlayers), for two
reasons. First, it makes your code more descriptive. The expression (6*2) is much more mysterious than
(kDiceSides*kNumberOfDice). See the “Magic Numbers” anti-pattern at http://en.wikipedia.
org/wiki/Magic_number_(programming). It also defines a single point in your code where that value
can be changed. If the next version of DrumDub has six sound buttons, all of the various for loops and array
sizes can be updated by changing a single statement.

The methods -createAudioPlayers and -destroyAudioPlayers create and destroy all four audio
player objects at once. Add them to the end of your @implementation section:

- (void)createAudioPlayers
{
 for (NSUInteger i=0; i<kNumberOfPlayers; i++)
 {
 NSURL *soundURL = [[NSBundle mainBundle] URLForResource:SoundName[i]
 withExtension:@"m4a"];
 players[i] = [[AVAudioPlayer alloc] initWithContentsOfURL:soundURL
 error:NULL];
 players[i].delegate = self;
 [players[i] prepareToPlay];
 }
}

http://en.wikipedia.org/wiki/Magic_number_(programming
http://en.wikipedia.org/wiki/Magic_number_(programming

279CHAPTER 9: Sweet, Sweet Music

- (void)destroyAudioPlayers
{
 for (NSUInteger i=0; i<kNumberOfPlayers; i++)
 players[i] = nil;
}

-createAudioPlayers loops through the array of sound name constants (SoundName[i]) and uses that
to create a URL that refers to the m4a sound resource file that you added earlier. This URL is used to
create and initialize a new AVAudioPlayer object that will play that sound file.

Your controller object is set to be the sound player’s delegate (you’ll use that later). Finally, some
optimization is applied. The -prepareToPlay message is sent to the sound player. This preps the
player object so that it is immediately ready to play its sound.

Note Normally, player objects prepare themselves lazily, waiting until you request them to play before
actually reading the sound sample data file, allocating their buffers, configuring hardware codecs, and so on.
All of this takes time. When your user taps a sound button, they don’t want to wait for the sound to play; they
want it to play immediately. The -prepareToPlay message eliminates that initial delay.

The -destroyAudioPlayers method is self-explanatory, and you don’t need it yet. It will come into
“play” later.

Next up are the buttons to play these sounds and the action method to make that happen. Get the
action declaration, and a few odds and ends, out of the way first. Switch to your DDViewController.h
file. Underneath the #import statements, add a new one:

#import <AVFoundation/AVFoundation.h>

This imports the definitions for the AVAudioPlayer and related classes. Next, make your controller an
AVAudioPlayerDelegate:

@interface DDViewController : UIViewController <MPMediaPickerControllerDelegate,
 AVAudioPlayerDelegate>

Add a new action method to the @interface:

- (IBAction)bang:(id)sender;

Now you’re ready to design the interface.

280 CHAPTER 9: Sweet, Sweet Music

Adding the Sound Buttons
Return to your Main.storyboard Interface Builder file. Drag in a new UIButton object. Select it and do
the following (see Figure 9-15):

Use the size inspector to set both its width and height to 	 100 pixels.

Use the attributes inspector to:	

Set its 	 type property to Custom.

Clear its 	 title text property (deleting “Button”).

Set its 	 image property to snare.

Scroll down to its 	 tag property and change it from 0 to 1.

Choose 	 Editor ➤ Pin ➤ Width.

Select the button again and choose 	 Editor ➤ Pin ➤ Height.

Use the connections inspector to connect its 	 Touch Down event to the new
-bang: action of the View Controller object.

Figure 9-15. Creating the first bang button

There are a couple of noteworthy aspects to this button’s configuration. First, you’ve connected the
Touch Down event, instead of the more common Touch Up Inside event. That’s because you want to
receive the -bang: action message the instant the user touches the button. Normally, buttons don’t
send their action message until the user touches them and releases again, with their finger still inside
the button. Thus, the action name “Touch Up Inside.”

281CHAPTER 9: Sweet, Sweet Music

Secondly, you didn’t create an outlet to connect to this button. You’re going to identify, and access,
the object via its tag property. All UIView objects have an integer tag property. It exists solely for your
use in identifying views; iOS doesn’t use it for anything else. You’re going to use the tag to determine
which sound to play, and later to obtain the UIButton object in the interface.

Duplicate the new button three times, to create four buttons in all. You can do this either using the
clipboard, or by holding down the Option key and dragging out new copies of the button. Arrange
them in a group, as shown in Figure 9-16, and then center that group in the interface. Choose
Editor ➤ Resolve Auto Layout Issues ➤ Add Missing Constraints in View Controller.

Figure 9-16. Duplicating the bang button

All of the buttons have the same type, image, tag, constraints, and action connection. Use the
attributes inspector to change the image and tag properties of the other three, starting with
the upper-right button and working clockwise, using the following table:

Button Image Tag

Upper-right bass 2

Lower-right maraca 4

Lower-left tambourine 3

282 CHAPTER 9: Sweet, Sweet Music

Return again to DDViewController.m and add the -bang: method to your implementation:

- (IBAction)bang:(id)sender
{
 NSInteger playerIndex = [sender tag]-1;
 if (playerIndex>=0 && playerIndex<kNumberOfPlayers)
 {
 AVAudioPlayer *player = players[playerIndex];
 [player pause];
 player.currentTime = 0;
 [player play];
 }
}

All four buttons send the same action. You determine which button sent the message using its
tag property. Your four buttons have tag values between 1 and 4, which you will use as an index
(0 through 3) to obtain that button’s AVAudioPlayer object.

Once you have the button’s AVAudioPlayer, you first send it a –pause message. This will suspend
playback of the sound if it’s currently playing. If not, it does nothing.

Figure 9-17. Finished DrumDub interface

The finished interface should look like the one in Figure 9-17.

283CHAPTER 9: Sweet, Sweet Music

Then the currentTime property is set to 0. This property is the player’s logical “play head,” indicating
the position (in seconds) where the player is currently playing, or will begin playing. Setting it to 0
“rewinds” the sound so it plays from the beginning.

Finally, the -play message starts the sound playing. The -play message is asynchronous; it starts a
background task to play and manage the sound, and then returns immediately.

There are just two more details to take care of before your sounds will play.

Activating Your Audio Session
It’s not strictly required, but the documentation for the AVAudioSession class recommends that
your app activate the audio session when it starts, and again whenever your audio session is
interrupted. You’ll take this opportunity to prepare the audio player objects at the same time. Add
an -activateAudioSession method to your DDViewController.m implementation. Start by adding a
prototype to the private @interface section at the top:

- (void)activateAudioSession;

Find the –viewDidLoad method and send the controller this message when it first loads (the new line
in bold):

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self activateAudioSession];
}

And add the method to the @implementation:

- (void)activateAudioSession
{
 BOOL active = [[AVAudioSession sharedInstance] setActive:YES error:NULL];
 if (active && players[0]==nil)
 [self createAudioPlayers];
 if (!active)
 [self destroyAudioPlayers];
 for (NSUInteger i=0; i<kNumberOfPlayers; i++)
 [(UIButton*)[self.view viewWithTag:i+1] setEnabled:active];
}

The first line obtains your app’s audio session object (the same one you configured back in -appli
cation:didFinishLaunchingWithOptions:). You send it a -setActive:error: message to activate, or
reactivate, the audio session.

The -setActive:error: message returns YES if the audio session is now active. There are a few
obscure situations where this will fail (returning NO), and your app should deal with that situation
gracefully.

284 CHAPTER 9: Sweet, Sweet Music

In this app, you look to see if the session was activated and send -createAudioPlayers to prepare
the AVAudioPlayer objects for playback. If the session couldn’t be activated (which means your app
can’t use any audio), then you destroy any AVAudioPlayer objects you previously created and disable
all of the sound effect buttons in the interface.

Since you don’t have an outlet connected to those buttons, you’ll get them using their tag. The
-viewWithTag: message searches the hierarchy of a view object and returns the first subview object
matching that tag. Your bang buttons are the only views with tag values of 1, 2, 3, and 4. The loop
obtains each button view and enables, or disables, it.

Figure 9-18. Working DrumDub app

Tip Tags are a convenient way to manage a group of view objects, without requiring you to create an outlet
for each one.

The functional portion of your app is now finished. By functional, I mean that you can run your
app, play music, and annoy anyone else in the room with cheesy percussion noises, as shown in
Figure 9-18.

Interruptions and Detours
In the “Living in a Larger World” section, I described the multitude of events and situations that
conspire to complicate your app’s use of audio. Most people hate interruptions or being forced to
take a detour, and I suspect app developers are no different. But dealing with these events gracefully
is the hallmark of a finely crafted iOS app. First up are interruptions.

285CHAPTER 9: Sweet, Sweet Music

Dealing with Interruptions
An Interruption occurs when another app or service needs to activate its audio session. The
most common sources of interruptions are incoming phone calls and alerts (triggered by alarms,
messages, notification, and reminders).

Most of the work of handling interruptions is done for you. When your app’s audio session is
interrupted, iOS fades out your audio and deactivates your session. The usurping session then
takes over and begins playing the user’s ring tone or alert sound. Your app, audio, and music player
delegates then receive “begin interruption” messages.

Your app should do whatever is appropriate to respond to the interruption. Often, this isn’t much.
You might update the interface to indicate that you’re no longer playing music. Mostly, your app
should just make a note of what it was doing so it can resume when the interruption ends.

Interruptions can be short: a few seconds, for alarms. Or they can be very (very) long: an hour or
more, if you accept that incoming phone call from chatty aunt May. Don’t make any assumptions on
how long the interruption will last, just wait for iOS to notify your app when it’s over.

When the interruption is over, your app will receive “end interruption” messages. This is where
the work begins. First, your app should explicitly reactivate its audio session. This isn’t a strict
requirement, but it’s recommended. It gives your app a chance to catch the (very rare) situation
where your audio session can’t be reactivated.

Then you need to resume playback, reload audio objects, update your interface, or whatever else
your app needs to do so it is once again running, exactly as it was before the interruption occurred.
In DrumDub, there’s surprisingly little work to do, as most of the default music and audio player
behavior is exactly what you want. Nevertheless, there’s still some rudimentary interruption handling
you need to add.

Adding Your Interruption Handlers
Interruption messages can be received in a number of different ways. Your app only needs to
observe those it wants and are convenient; there’s no need to observe them all. Begin and end
interruption messages are sent to:

The audio session delegate (AVAudioSessionDelegate)

All audio player delegates (AVAudioPlayerDelegate)

Any observer of music player state change notifications 	
(MPMusicPlayerControllerPlaybackStateDidChangeNotification)

Decide how you want your app to respond to interruptions, and then implement the handlers that
conveniently let you do that. When something interrupts DrumDub, you want to:

Pause the playback of the music.	

Stop any percussion sound that’s playing (so it doesn’t resume when the 	
interruption is over).

286 CHAPTER 9: Sweet, Sweet Music

When the interruption ends, you want DrumDub to:

Reactivate the audio session and check for problems.	

Resume playback of the music.	

Pausing and resuming the music player requires no code. The MPMusicPlayerController
class does this automatically in response to interruptions. You don’t even need to
add any code to update your interface. When the music player is interrupted, its
playbackState changes to MPMusicPlaybackStateInterrupted and your controller receives a
-playbackStateDidChangeNotification: message, which updates your play and pause buttons.
When the interruption ends, the music player resumes playing and sends another state change
notification.

So DrumDub’s only non-standard behavior is to silence any playing percussion sounds when an
interruption arrives. That’s so the “tail end” of the sound bite doesn’t start playing again when the
interruption is over. Handle that by adding this audio player delegate method to DDViewController.m:

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player
{
 [player pause];
}

Your controller object is already the delegate for all four of the audio players. Your controller can
receive this message up to four times (once for each player).

Note AVAudioPlayer delegate objects also receive an -audioPlayerDidFinishPlaying:
successfully: message when the player is finished playing a sound, and an
-audioPlayerEndInterruption:withOptions: message when an interruption ends. DrumDub
doesn’t need either of these messages, but your next app might.

The last task on the list is to reactivate the audio session when the interruption is over. To do that,
make your DDViewController object the audio session’s delegate and handle the -endInterruption
delegate message. Start by modifying the class declaration in DDViewController.h:

@interface DDViewController : UIViewController <MPMediaPickerControllerDelegate,
 AVAudioSessionDelegate,
 AVAudioPlayerDelegate>

Back in DDViewController.m, locate the -viewDidLoad method and set the session’s delegate
property:

- (void)viewDidLoad
{
 [super viewDidLoad];
 [[AVAudioSession sharedInstance] setDelegate:self];
 [self activateAudioSession];
}

287CHAPTER 9: Sweet, Sweet Music

Finally, implement an -endInterruption method so your controller will receive this message from the
audio session:

- (void)endInterruption
{
 [self activateAudioSession];
}

You already wrote the code to (re)activate the audio session and update your interface.
All -endInterruption has to do is perform that again.

With the tricky business of interruptions taken care of, it’s time to deal with detours (route changes).

Dealing with Audio Route Changes
An audio route is the path that data takes to get to the eardrum of the listener. Your iPhone might
be paired to the speakers in your car. When you get out of your car, your iPhone switches to its
built-in speakers. When you plug in some headphones, it stops playing through its speaker and
begins playing through your headphones. Each of these events is an audio route change.

You deal with audio route changes exactly the way you deal with interruptions: decide what your
app should do in each situation, and then write handlers to observe those events and implement
your policies. From DrumDub, you want to implement Apple’s recommended behavior of stopping
music playback when the user unplugs their headphones, or disconnects from external speakers.
If these were sound effects in a game, or something similar, it would be appropriate to let them
continue playing. But DrumDub’s music will stop playing when the headphones are unplugged,
so the instrument sounds should stop too.

Audio route notifications are posted by the AVAudioSession object, all you have to do is observe
them. Begin by defining an audio route change notification handler, adding its prototype to the
private @interface DDViewController () section in DDViewController.m:

- (void)audioRouteChangedNotification:(NSNotification*)notification;

Next, request that your DDViewController object receive audio route change notifications. At the end
of the -viewDidLoad method, add this code:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(audioRouteChangedNotification:)
 name:AVAudioSessionRouteChangeNotification
 object:nil];

288 CHAPTER 9: Sweet, Sweet Music

Now add the method to your @implementation section:

- (void)audioRouteChangedNotification:(NSNotification*)notification
{
 NSNumber *changeReason =
 notification.userInfo[AVAudioSessionRouteChangeReasonKey];
 if ([changeReason integerValue]==
 AVAudioSessionRouteChangeReasonOldDeviceUnavailable)
 {
 for (NSUInteger i=0; i<kNumberOfPlayers; i++)
 [players[i] pause];
 }
}

The method begins by examining the reason for the audio route change. It gets this information from
the notification’s userInfo dictionary. If the value of the AVAudioSessionRouteChangeReasonKey is
AVAudioSessionRouteChangeReasonOldDeviceUnavailable, it indicates that a previously active audio
route is no longer available. This happens when headphones are unplugged, the device is removed
from a dock connector, a wireless speaker system is disconnected, and so on. If that’s the case,
it stops playback of all four audio players.

That wraps up this app! Go ahead and run it again to make sure everything is working. You’ll want to
test your interruption and audio route change logic by doing things like:

Setting an alarm to interrupt playback	

Calling your iPhone from another phone	

Plugging and unplugging headphones	

Testing your app under as many situations as you can devise is an important part of app
development.

Other Audio Topics
This chapter didn’t even begin to approach the subjects of audio recording or signal processing.
To get started with these, and similar topics, start with the Multimedia Programming Guide. It provides
an overview and roadmap for playing, recording, and manipulating both audio and video in iOS.

If you need to perform advanced or low-level audio tasks (such as analyzing or encoding audio),
refer to the Core Audio Overview. All of these documents can be found in Xcode’s Documentation
and API Reference.

Here’s something else to look at: if you need to present audio or video in a view, want your app
to play music in the background (that is, when your app is not running), or need to handle remote
events, take a look at the AVPlayer and AVPlayerLayer classes. The first is a near-universal media
player for both audio and video, similar to MPMusicPlayerController and AVAudioPlayer. It’s a little
more complicated, but also more capable. It will work in conjunction with an AVPlayerLayer object
to present visual content (movie) in a view, so you can create your own YouTube-style video player.

289CHAPTER 9: Sweet, Sweet Music

Summary
Sound adds a rich dimension to your app. You’ve learned how to play and control audio from the iPod
library as well as resource files bundled in your app. You understand the importance of configuring
your audio session, and intelligently handing interruptions and audio route changes. “Playing nice”
with other audio sources creates the kind of experience that users enjoy, and will want to use again
and again.

But is there more to iOS interfaces than labels, buttons, and image views? Join me in the next
chapter to find out.

EXERCISE

Blend DrumDub further into the iOS experience by using the iPod music player, instead of an application music player.
This will require a couple of subtle changes:

Obtain the •• +iPodMusicPlayer object, instead of the +applicationMusicPlayer object.

Create and initialize the music player as soon as the view loads, rather than doing it lazily when the ••
user chooses a song.

Don’t arbitrarily change the player’s settings (like the shuffle or repeat modes). Remember that ••
you’re changing the user’s iPod settings; most people won’t like your app fiddling with their iPod.

When you’re done, DrumDub will be “plugged in” to the user’s iPod app. If their iPod music is playing when they launch
DrumDub, the song will appear the moment your app launches. If the user starts a song playing and quits DrumDub, the
music plays on.

You’ll find my solution to this exercise in the Learn iOS Development Projects ➤ Ch 9 ➤ DrumDub E1 folder.

291

Chapter 10
Got Views?

You now have a lot of experience adding view objects to your design, arranging them, connecting
them to outlets and actions, and customizing them. You’ve created iOS apps using buttons, labels,
image views, a few text fields, and the odd toolbar. While you probably haven’t been yearning for
other kinds of view objects, there are more available. The Cocoa Touch framework provides all kinds
of switches, toggles, sliders, specialty buttons, pickers, indicators, do-dads, and gizmos you can
use to build your apps. And if that isn’t enough, many of those objects can be customized in ways
you haven’t explored yet. In this chapter you’ll learn about:

Downloading sample projects	

Button views	

Switches, sliders, and steppers	

Indicators	

Labels, text fields, and text views	

Pickers	

Grouped table views	

Scroll views	

Anyone who’s spent time building Lego figures, Erector Set constructions, or experimental aircraft
will know one thing: your ability to imagine what’s possible is directly linked to your knowledge about
what parts you have to work with. To that end, I invite you on a guided tour of iOS view objects.

Learning by Example
Software development is a lot like cooking. It’s one thing to read recipes, talk about the process, and
enjoy the results. It’s another thing to actually do it. One of the best ways to learn how to cook is to
watch someone who knows what they’re doing, and emulate them.

292 CHAPTER 10: Got Views?

Apple provides many example projects—fully written, ready to run apps—that demonstrate the
use of various technologies in iOS. All you have to do is download one, build it, run it, and then
mine it for all of its secrets. These example projects are a great way to get started using, or at least
understanding how to use, many of the frameworks and features in iOS.

Not only does Apple provide these example projects free of charge, they’ve made it ridiculously
simple to download them. Xcode will search for, download, and open sample code projects with
the click of a button. Start in Xcode’s documentation organizer (Help ➤ Documentation and API
Reference) window, as shown in Figure 10-1.

Figure 10-1. Searching for sample code

Search for the UICatalog project, as shown in Figure 10-1. It will appear under the Sample Code
category. Click on it and the project’s documentation page appears. At the top is an Open Project
button. Click it. Xcode downloads the project’s ZIP file, un-archives it, and opens the project in a
new workspace window, as shown in Figure 10-2. How easy was that?

293CHAPTER 10: Got Views?

Note Sample projects are not part of the Xcode installation package and require an Internet connection to
download.

Figure 10-2. UICatalog project

You’ll find that the documentation for many classes contains links to sample projects, making it easy
to download code that shows you those classes in action.

Tip While Apple’s so-called “walled garden” keeps most iOS app projects within the developer
community—after all, you have to be a developer to build and run apps on your iOS device—that hasn’t
stopped the open-source community. There is a wide variety of open-source iOS projects out there, available
to developers (like you) and to brave individuals who have “jailbroken” their device. A quick Internet search
will turn up open-source apps, as well as frameworks and code libraries you can use in your own projects.

The UICatalog project is extra special. It’s an iPhone app that demonstrates every major view object
supplied by iOS. So not only is it a handy visual reference to the kinds of view objects iOS supplies,
but you can see exactly how these objects are created and used in an app.

Run the UICatalog app in an iPhone simulator (or on your own device, if you like). First in the list is
buttons, as shown in Figure 10-3, and that’s a great place to start.

294 CHAPTER 10: Got Views?

Buttons
A button is a very straightforward view object; it acts like a physical button. The UIButton class
draws a button and observes touch events to determine how the user is interacting with it. It
translates what the user is doing into action events, such as “user touched inside the button,”
“user moved their finger outside the button,” “user moved back inside the button,” and “user
released their finger while still inside the button.” That’s pretty much all it does.

I know what you’re thinking. Well, maybe I don’t. But I hope you’re thinking, “but a button does more
than that! It sends action messages to another object, it remembers its state, it can be disabled, and
it can have gesture recognizers attached to it. That’s a lot!”

It is a lot, but the UIButton class doesn’t do any of those things. UIButton is at the end of a chain of
classes, each of which is responsible for one set of closely related behaviors. Software engineers
say that each class performs a role. The role of a UIButton object is to act like a button. Other
classes do all of that other stuff. So that you can get a clearer picture of what’s going on, I think it’s
time for you to dissect a UIButton. This will not only help you understand how UIButton was built,
but how all control views are constructed.

Figure 10-3. UICatalog app

295CHAPTER 10: Got Views?

Note No UIButton objects were harmed in the making of this book.

The Responder and View Classes
A UIButton is a subclass of UIControl, which is a subclass of UIView, which is a subclass of
UIResponder. Each class adds one layer of functionality that, taken together, makes a button.

The UIResponder class defines all of the event-related functions of the objects, most notably the
methods that handle touch events. You learned all about UIResponder in Chapter 4, and you created
a custom UIView object that overrode the touch event handling methods with your own, so I won’t
repeat any of that here.

The next layer that UIButton inherits is UIView. UIView is a big, complicated class. It has dozens of
properties and over a hundred methods. It’s huge because it’s responsible for every aspect of how
every visible object in the iOS universe gets displayed on a screen. It handles the geometry of the
view, its coordinate systems, transformations (like rotation, scaling, and skewing), animation, how
the view gets repositioned when the screen size changes, and hit testing. It’s also responsible for
drawing itself, drawing its subviews, deciding when those views need to be redrawn, and more.

One, seemingly unrelated, property of UIView is its gestureRecognizers property. The UIView class
doesn’t do anything with gesture recognizers directly. But a UIView defines a visible region of the
display, and any visible region can have a gesture recognizer attached to it, so that property exists
in UIView.

HOW GESTURE RECOGNIZERS GET EVENTS

Gesture recognizers are fed events by the UIWindow object during touch event delivery. In Chapter 4, I explained that
hit testing is used to determine the view that will receive the touch events. That description oversimplified the process
somewhat.

Starting with iOS 3.2, the UIWindow first looks at the initial (hit test) view to see if it has any gesture recognizer objects
attached to it. If it does, the touch events are first sent to those gesture recognizer objects, instead of being delivered
directly to the view object. If the gesture recognizers aren’t interested, then the event eventually makes its way to the
view object.

If you need to, there are a variety of ways to alter this behavior, but it’s a tad complicated. For all of the details, read the
“Gesture Recognizers” chapter of the Event Handling Guide for iOS, that you’ll find in Xcode’s Documentation and API
Reference.

So everything that’s visual about the button is defined in the UIView class. Now move on to the next
layer, the UIControl class.

296 CHAPTER 10: Got Views?

The Control Class
UIControl is the abstract class that defines the properties common to all control objects. This
includes buttons, sliders, switches, steppers, and so on. A control object:

Sends action messages to target objects	

Can be enabled or disabled	

Can be selected	

Can be highlighted	

Establishes how content is aligned	

The first item in the above list is the most important. The UIControl class defines the mechanism
for delivering action messages to recipients, typically controller objects. Every UIControl object
maintains a table of events that trigger actions, the object that will receive that action, and the action
message it will send. When you’re editing an Interface Builder file and you connect an event to an
action method in another object, you’re adding one entry to that object’s event dispatch table.

Note Remember from Chapter 4 that an event can be associated with an action message which is sent to
the first responder. You do this by specifying the message to send and using nil as the target object for that
message.

The other properties (enabled, selected, and highlighted) are general indicators of the control’s
appearance and behavior. Subclasses of UIControl determine exactly what those properties mean,
if anything.

The enabled property is the most consistent. A control object interacts with the user when enabled,
and ignores touch events when disabled (control.enabled=NO). Most control classes indicate that
they are disabled by dimming, or graying, their image to show the user the control is inert.

The highlighted property is used to indicate that the user is currently touching the control. Many
controls “light up” when touched, and this property reflects that.

The selected property is for controls that can be turned “on” or “off,” such as the UISwitch class.
Controls that don’t, such as buttons, ignore this property.

The UIControl class also introduces the concept of an alignment (vertical and horizontal) through the
contentVerticalAlignment and contentHorizontalAlignment properties. Most control objects have
some sort of title or image and use these properties to position that in the view.

Button Types
You’ve now worked your way back to the UIButton class. It’s this class that implements the
button-specific behavior of a control+view+responder object. The UIButton class supplies a handful
of pre-defined button looks, along with a plethora of customizations so you can make it look just
about any way you want.

297CHAPTER 10: Got Views?

The most important property of a button is its type. A button can be one of these types:

Rounded Rectangle	

Custom	

A “disclose detail” arrow	

An “info” button (light or dark)	

An “add contact” plus symbol	

All of these button types, except custom, are shown in the UICatalog app, as shown in Figure 10-4.
The important thing to remember is that a button’s type is determined when it is created. Unlike all
of its other properties, it cannot be changed afterwards. A rounded rectangle button is a rounded
rectangle button for life.

Figure 10-4. Buttons

The rounded rectangle button is the workhorse of iOS. It’s the standard, default, button style used
throughout the iOS interface. You’ll also notice that there’s nothing “rounded” about a Rounded
Button (middle-left of Figure 10-4). iOS 7 introduced a new, streamlined, UI design that echews the
skeuomorphic button design of earlier versions. The class and constant names, however, have not
changed. Choose the “rounded” button when you want to present the standard button design for the
version of iOS your users are running.

298 CHAPTER 10: Got Views?

The custom button style is a blank canvas. iOS (all versions) adds nothing to the look of a custom
button, allowing you complete control over its appearance. You used the custom button style for the
Surrealists app in Chapter 2.

You can dramatically alter a button’s basic look by adjusting its color, text, text style, or even supply
your own images for the button’s title and background.

Note The UICatalog project had not been fully updated for the new UI design in iOS 7 when this book was
written. I fully expect that it will be revised, so the controls in your app may appear differently from what you
see here.

The premier properties that adjust your button’s look are:

Tint color	

Title text (plain or attributed) and color	

Foreground image	

Background image or color	

The tintColor property sets the highlight and accent color of rounded rectangle buttons. The standard
color is blue. Other button types ignore this property.

The button’s title can be a simple string value (which you’ve used in your projects so far), or it can
be attributed string. An attributed string is a string that includes text attributes: font, size, italics,
bold, subscript offset, and so on. Creating attributed strings is a bit complicated, but allows you to
create buttons with whatever font and style the system is capable of. I describe attributed strings in
Chapter 20.

You can also use an image instead of text for your button’s label by setting the image property.
Similarly, the background can be set to an image or a solid color. You can also mix these in any
combination you want: text title over an image background, image over a solid color background,
image with no background (by setting the background color to UIColor’s clearColor object), and
so on.

The buttons with the rounded rectangle look (in the upper-left of Figure 10-4) are supplying their
own background image, whiteButton.png in this case. Images used for a button’s background
can utilize the cap insets (capInsets) property to define a margin around the edge of the image
that is not scaled when the image is stretched to fit the size of the button. This feature lets you
design a single graphic image that will fill any button size, without distorting its edges. Compare the
whiteButton.png resource image in Xcode with how it appears in the button when the app runs.

299CHAPTER 10: Got Views?

Tip Although I’m going to teach the primary ways you can customize the look of your buttons, sliders, and
so on, I encourage you think before you do. Don’t change the look of a button just because you can. Users
know what a button does because it looks like a button. Changing it—just to be different—makes your app
that much harder to use. I consider customizing the look of controls only when their standard look clashes,
esthetically, with the rest of the design.

The remaining button types (detail disclosure, info, add contact, and so on) are predefined buttons
with few options for customization. Use these types where your app provides those exact features,
and your users will understand exactly what they mean.

Control States
When creating and configuring the button’s title, image, background image, and background color,
you must consider the various states the button (control) can be in. The UIControl’s enabled,
highlighted, and selected properties combine to form a single state value (UIControlState) for that
control. The state will always be one of: normal, highlighted, disabled, or selected.

When the button is displaying normally, its state is UIControlStateNormal. When the user is
touching it, its state changes to UIControlStateHighlighted. When it’s disabled, its state becomes
UIControlStateDisabled.

When you set a button’s title, image, background, or color you do so for a particular state. This
allows you to set one button image for when the button is enabled and alternate button image(s)
for when it’s disabled, highlighted, or selected. You see this reflected in the methods that set these
properties:

- (void)setTitle:(NSString *)title forState:(UIControlState)state
- (void)setTitleColor:(UIColor *)color forState:(UIControlState)state
- (void)setImage:(UIImage *)image forState:(UIControlState)state
- (void)setBackgroundImage:(UIImage *)image forState:(UIControlState)state

You don’t have to set values for every state. At a minimum, you should set the value for the normal
(UIControlStateNormal) state. If that’s all you set, that value will be used for all other states. If you
then want it to have a different title, image, background, or color for one of the other states, set
that too.

There are lots of other, subtler, properties for fine-tuning your button’s look and feel. You can,
for example, control the shadow thrown by the title text or change the position (inset) of the title,
image, and background image. Read through the documentation for UIButton for all of the available
properties.

The last four button types—disclosure arrow, info (light), info (dark), and add contact—are
convenience types for well-defined user interface buttons. There is almost nothing about the look or
behavior of these buttons that you can customize.

300 CHAPTER 10: Got Views?

Button Code
You now know enough about button properties to take a peek at the button construction code in
UICatalog. Up to now, you’ve created button objects using Interface Builder—which is fine, there’s
nothing wrong with that. But you can also create any iOS object programmatically, as you’ve done
with other objects like arrays and images.

The UICatalog app creates most of its objects programmatically, and it even provides hints as to
where that happens so you can go find the code. In Figure 10-4, the text underneath the button
says “ButtonsViewController.m: (UIButton*)roundedButtonType.” Switch back to Xcode and find the
ButtonsViewController.m file. Click on it and locate the -roundedButtonType method. It should look
something like this:

- (UIButton *)roundedButtonType
{
 if (roundedButtonType == nil)
 {
 roundedButtonType = [[UIButton buttonWithType:UIButtonTypeRoundedRect] retain];
 roundedButtonType.frame = CGRectMake(182.0, 5.0,
 kStdButtonWidth, kStdButtonHeight);
 [roundedButtonType setTitle:@"Rounded" forState:UIControlStateNormal];
 roundedButtonType.backgroundColor = [UIColor clearColor];
 [roundedButtonType addTarget:self action:@selector(action:)
 forControlEvents:UIControlEventTouchUpInside];
 roundedButtonType.tag = kViewTag;
 }
 return roundedButtonType;
}

This method lazily creates the button that appears in the UICatalog app as “Rounded Button.” If you
want to try out different rounded rectangle button properties to see what they look like, fiddle with
this code and run the app again.

Switches and Sliders
Next up on the tour are switches and sliders. Both are input devices. Unlike buttons, switches and
sliders retain a value. A switch is just that, as shown in Figure 10-5. It presents a sliding button that
can change between “on” and “off” values by either tapping or swiping it with your finger. You see
these everywhere in iOS, as shown on the right in Figure 10-5.

301CHAPTER 10: Got Views?

A UISwitch object has a single Boolean value property named, appropriately enough, on. Getting that
property will tell you which position the switch is in. Setting the property changes it. You can request
that UISwitch perform a little animation eye-candy, when you change its value programmatically,
by sending it the -setOn:animated: message, passing YES for the animated parameter.

A number of properties let you customize your switch’s appearance:

	tintColor, onTintColor, and thumbTintColor: the first two set the colors used
when the switch is off and on. The thumbTintColor makes the “thumb” of the
switch (the circle you drag) a different color than tintColor.

	onImage and offImage: normally a switch displays either (localized) “On” or
“Off” text titles next to the thumb. You can replace these with images of your
choosing. There are important size restrictions, so read the documentation.

Like most controls with a value, a switch sends a “value changed” event
(UIControlEventValueChanged) whenever the user changes it. Connect this event to your controller to
receive an action message when the switch is flipped.

Sliders, also shown in Figure 10-5, are another input control that lets the user choose a value by
dragging a slider to a position within a predetermined range. While a switch’s value is Boolean,
a slider’s value property is a floating-point value that represents a continuous range of numbers.

The slider’s value property is constrained to the range set by the minimumValue and maximumValue
properties. These default to 0 and 1, respectively. Unless you change those, value will be a fractional
number between 0 and 1 (inclusive).

Figure 10-5. Switches, sliders, and the Settings app

302 CHAPTER 10: Got Views?

The key visual customization properties are:

	minimumTrackTintColor, maximumTrackTintColor, and thumbTintColor: changes
the colors of the tracks (to the left and right of the thumb), as well as the thumb
itself. See the Customized Slider in the UICatalog (Figure 10-4) for an example,
and the code that does it.

	minimumValueImage, maximumValueImage, thumbImage (per state): like the slider,
you can change the image used to draw the tracks of the slider, and the thumb
itself. The thumb image works like UIButton’s image, in that you can supply
different images for different states (normal, highlighted, and disabled).

A slider sends a single “value changed” event when the user moves it, unless you set the continuous
property to YES. If you set continuous, the control fires a barrage of “value changed” messages as
the user drags the slider. You used this setting in the ColorModel app in Chapter 8 so color changes
happened “live” as you dragged around a slider.

Page Control
A page control (UIPageControl) object, shown in Figure 10-6, can be thought of as a discrete slider
control. As its name implies, it’s intended to indicate the user’s position within a small (up to 20)
number of pages or items. Apple’s Weather app uses it to indicate which location the user is
currently viewing, shown on the right in Figure 10-6.

Figure 10-6. Page control and Weather app

303CHAPTER 10: Got Views?

UIPageControl’s integer currentPage property is its value, and its numberOfPages property determines
the former’s range and the number of dots that appear. Its appearance can be slightly modified with
these properties:

	pageIndicatorTintColor: sets the color for the page indicator

	hidesForSinglePage: if set to YES, the control doesn’t draw anything if there’s
only one page (numberOfPages<=1).

Tapping a page control object to the right or left of the current page either decrements or increments
the currentPage property (moving forwards or backwards one page) and sends a “value changed” event.

Steppers
A stepper (UIStepper) has the face of UIButton and the heart of UIPageControl, as shown in
Figure 10-7. It displays two buttons, side by side. Use a stepper when your user needs to increase
or decrease something—“something” is up to you, the stepper doesn’t display a value—one step
at a time.

Figure 10-7. Stepper

Table 10-1. Property values for a stepper with 11 possible values (1.0 to 6.0, inclusive)

Property Value

minimumValue 1.0

maximumValue 6.0

stepValue 0.5

Like a slider, the stepper’s minimumValue and maximumValue properties set the range for its value
property. The stepValue property determines what “one step” means. As an example, Table 10-1
would be the property values you’d set for a stepper with 11 possible values, between 1.0 and 6.0.

A stepper’s visual appearance can be customized using increment, decrement, and background
images, which you set the same way you do for a button. There’s also a UIButton-ish tintColor
property.

304 CHAPTER 10: Got Views?

A stepper sends a “value changed” action every time the user taps the increment or decrement
button. There are three properties that alter this behavior:

	continuous: the continuous property works just like is does for the slider.

	autorepeat: setting autorepeat to YES allows the user to continuously change
the value (one step at a time) by holding down one of the buttons.

	wraps: this property lets the value “wrap” around the range. Using the example
in Table 10-1, tapping + when the value was already a 6.0 would change the
value back to 1.0. When wraps is YES, the buttons do not disable when the value
is at the beginning or end of the range.

Segmented Controls
Closely related to steppers is the UISegmentedControl class. A segmented control displays multiple
segments. Each segment acts as a button for a choice, as shown in Figure 10-8. Use a segmented
control when you want the user to pick between a small number of mutually exclusive choices.

Figure 10-8. Segmented controls

305CHAPTER 10: Got Views?

Segmented controls come in four flavors: plain, bordered, bar, and bezeled. The UICatalog app
demonstrates the first three. The bar and bezeled styles can be tinted by setting the tintColor
property, also demonstrated in UICatalog.

To use a segmented control, first tell it how may segments there are by setting the numberOfSegments
property. You can then set the label of each segment to either a string title or an image using one of
these methods:

- (void)setTitle:(NSString *)title forSegmentAtIndex:(NSUInteger)segment
- (void)setImage:(UIImage *)image forSegmentAtIndex:(NSUInteger)segment

Alternatively, you can choose to insert (or remove) segments one at a time. Using these methods,
you have the option of having the view animate the change, sliding and resizing the other segments
to make room:

- (void)insertSegmentWithTitle:(NSString *)title atIndex:(NSUInteger)segment animated:(BOOL)animated
- (void)insertSegmentWithImage:(UIImage *)image atIndex:(NSUInteger)segment animated:(BOOL)animated

A segmented control sends a “value changed” event (UIControlEventValueChanged) when the user
changes it. Its selectedSegmentIndex property tells you which segment is selected, or can be used
to change that. The special value UISegmentedControlNoSegment means no segment is selected.

Normally, the buttons in a segment are “sticky”—they stay down to indicate which segment
is selected. If you set the momentary property to YES, buttons don’t stay down and the
selectedSegmentIndex goes back to UISegmentedControlNoSegment when the user removes their
finger.

Progress Indicators
iOS provides two progress indicators, UIActivityIndicatorView and UIProgressView, that provide
your users feedback during time-consuming activities, or to display relative quantities (such as the
amount of storage used), as shown in Figure 10-9. Use these to let your user know that your app is
hard at work; they should remain calm and stay in their seats, with their seatbelts securely fastened.

306 CHAPTER 10: Got Views?

The UIActivityIndicatorView is often called a “spinner” or “gear.” Use it when space is
limited or the duration of the activity is indeterminate or unknown. There are three spinner
styles to choose from: small grey (UIActivityIndicatorViewStyleGray), small white
(UIActivityIndicatorViewStyleWhite), and large white (UIActivityIndicatorViewStyleWhiteLarge).

Using a spinner is easy. Send it a -startAnimating message to start it spinning, and -stopAnimating
to stop it again. Its hidesWhenStopped and color properties are self-explanatory.

The second indicator is the progress bar (UIProgressView). It presents a progress indicator, familiar
to anyone who’s had days of their life siphoned away waiting on computers to finish something.
The view has two looks:

	UIProgressViewStyleDefault: the regular style progress bar

	UIProgressViewStyleBar: a style designed to be used in a toolbar

You control the view by periodically setting its progress property to a value between 0 (empty)
and 1 (full). Setting the progress property makes the indicator jump to that position. By sending
-setProgress:animated: you can ask the indicator to smoothly animate to the new setting, which is
less jarring for big changes.

Use the trackImage or trackTintColor properties to customize the look of the unfinished segment
of the view, and the progressImage and progressTintColor properties to adjust the finished
segment. The UICatalog app has a Tint button in the toolbar that demonstrates what happens when
progressTintColor and trackTintColor are set to blue.

Figure 10-9. Activity and progress indicator

307CHAPTER 10: Got Views?

Text Views
Text views come in three flavors: labels, text fields, and text views. The label is the simplest. It’s
used to place a single string of text in your interface, often next to another field or view to explain
its purpose, which is where it gets its name. A text field is a general-purpose input field, providing
full-featured editing for a single line of text. A text view can display, and edit, multiple lines of text.
Let’s start with the simple one.

Labels
You see labels everywhere in iOS (see practically any figure in this book), and you’ve used them
numerous times in your own projects. Use a UILabel object wherever you simply want to display
some text, for whatever purpose. Use label object as labels by setting their text in Interface Builder
and forgetting about them—no connection required. If you connect the label to an outlet, your controller
can update the text, as you did in the ColorModel app.

Labels have a select number of properties that let you alter how the text string is displayed, as listed
in Table 10-2.

Table 10-2. Label display properties

Property Description

numberOfLines The maximum number of lines the label will display, normally 1. Set it to
0 to display as many lines as are needed.

font The text’s font (face, size, and style)

textColor The color used to draw the text

textAlignment One of left, center, right, justified, or natural. Natural employs the native
alignment of the font.

attributedText Draws an attributed string, instead of the simple text property. Use this
to display text with a mixture of different fonts, sizes, styles, and colors.
The text attributes in the string override the other text style properties
(font, textColor, shadowOffset, and so on).

lineBreakMode Determines how an overly long string is made to fit in the available
space of the view.

adjustsFontSizeToFitWidth An alternative to shortening the string, it makes the text smaller so the
whole string will fit.

adjustLetterSpacingToFitWidth A third option to get a string to fit within the given space.

308 CHAPTER 10: Got Views?

If you plan on displaying a variable amount of text, pay attention to the properties that control what
happens when the string is too big to fit in the view. First are the numberOfLines and lineBreakMode
properties. The line break mode controls how the string is broken up across multiple lines. The
choices for multiple line labels (numberOfLines!=1) are to break text at the nearest character
(NSLineBreakByCharWrapping) or at the nearest word (NSLineBreakByWordWrapping).

For single line labels (numberOfLines==1), text that won’t fit in the view is either unceremoniously cut
off (NSLineBreakByClipping), or a portion of the beginning (NSLineBreakByTruncatingHead), middle
(NSLineBreakByTruncatingMiddle), or end (NSLineBreakByTruncatingTail) of the string is replaced by
an ellipsis (...) character.

The alternate method of getting text to fit is to set the adjustsFontSizeToFitWidth or
adjustLetterSpacingToFitWidth properties to YES. These options cause either the spacing between
words, or the size of the font—you can also set both—to be reduced in an attempt to make the
string fit in the available space. The spacing between words will never be reduced to nothing and
its size will never be shrunk below the minimumScaleFactor property. If the text still won’t fit, the
lineBreakMode is applied.

Caution Do not set adjustsFontSizeToFitWidth or adjustsLetterSpacingToFitWidth for a
multi-line (numberOfLines!=1) label, or in conjunction with a multi-line line break mode (char or word
wrapping). Doing so is a programming error and the behavior of the view will be unpredictable.

Text Fields
Use a text field (UITextField) when you want the user to enter or edit one line of text. The Shorty
app used a text field to get an URL from the user.

The UICatalog app demonstrates four text fields, as shown in Figure 10-10. Consistent with the
complexity of editing almost any kind of text, you have a broad range of choices when it comes to
the view’s appearance and behavior.

309CHAPTER 10: Got Views?

Let’s start with the appearance of the field. There are four basic style to choose from, controlled by
the borderStyle property:

	UITextBorderStyleBezel: surrounds the field with a chiseled border, giving the
illusion of the field being inset.

	UITextBorderStyleRoundedRect: draws a simple rounded rectangle around
the field.

	UITextBorderStyleLine: draws a thin grey rectangle around the field

	UITextBorderStyleNone: does not draw a border

The UICatalog app only demonstrates the bezel and rounded rectangle style, but the other two
aren’t hard to imagine. You can provide a more dramatic look by setting the background property to
your own UIImage. The background property overrides the borderStyle property. In other words, you
can’t supply a background image for a chiseled border; if you want that look, your image will need to
include a chiseled border.

Figure 10-10. Text fields

310 CHAPTER 10: Got Views?

The placeholder property shows a string (in light grey) when the field is empty. Use this to prompt
the user (like “Your Name Here”), or possibly show a default value. Set the clearsOnBeginEditing to
YES if you want the text in the field to be automatically cleared before the user begins typing.

The font face, size, style, and color of the text in the field can be controlled either by setting the
font and textColor properties, or by using attributed text strings. The latter is considerably more
complicated and considerably more flexible.

You can also insert accessory views in three different places. Use these to add additional controls
or indicators, such a button that pops up a set of options for the field, or a progress indicator. The
accessory view properties are:

	leftView and leftViewMode

	rightView and rightViewMode

	inputAccessoryView

The left and right views can be any UIView object that will fit inside the text field. The UICatalog app
demonstrates this by adding a UIImageView to the text field. The appearance of both right and left
views are controlled by their companion rightViewMode and leftViewMode properties. Each can be
set to never display the view, always display the view, only display the view when editing, or only
display the view when not editing.

The input accessory view doesn’t get attached to the text field. Instead, it gets attached to the top of
the virtual keyboard that appears when the user begins editing. You can use an input accessory view
to add special controls, presets, options, and so on.

Text fields send a variety of events. The most useful are the “editing did end on exit” event
(UIControlEventEditingDidEndOnExit), sent when the user stops editing a field, and the “value
changed” event (UIControlEventValueChanged), sent whenever the text in the field is modified.
You connected actions to both of these events in the MyStuff app. To receive even more
editing-related messages, and exert some control over editing, create a delegate object for the text
field (UITextFieldDelegate). The delegate receives messages when editing begins and ends, and
it can also control if editing is allowed to begin, editing is allowed to end, or a specific change is
allowed to be made.

Text Editing Behavior
There are a dizzying number of properties that affect how text in a field is edited. If you look in the
documentation for UITextField, you won’t find any of them. That’s because they are defined in the
UITextInput and UITextInputTraits protocols, which UITextField and UITextView both adopt. The
number of properties and options are almost overwhelming, so I’ve listed the highlights in Table 10-3.

311CHAPTER 10: Got Views?

Text Views
Text views (UITextView) objects are the synthesis of labels and text fields. It’s not a subclass of
either, but it essentially inherits the capabilities of both, and adds a few extra features of its own.
Whether a text view can be edited or not is controlled by its editable property.

With editable set to NO, a text view act much like a multi-line label. It displays multiple lines of text
in a variety of fonts, sizes, and styles, with control over line breaks. To this it adds some additional
talents: scrolling, selection, and data detectors.

Unlike a label, if the text won’t fit in the vertical space of view, the user can scroll the text in the view
to see the rest of it. You used this feature in the Surrealist app.

The user can select text in a text view (by touching and holding on the text). The selected text can
be copied to the clipboard or used to look up words in the dictionary. In addition, you can enable
data detectors. Data detectors are a technology that recognizes the purpose of certain text (such as
a telephone number or someone’s email address). The user can then tap the text to do something
useful (place a phone call, address a new email message, and so on).

With the editable property set to YES, the text view becomes a (miniature) word processor. The user
can type, select, cut, copy, and paste to their heart’s content. All of the editing features and options
described in the “Text Fields” section apply to text views. About the only thing missing are the
borders; text views do not draw a border.

A text view is also capable of editing styled (attributed) text, but you’ll have to supply the additional
user interface elements that allow the user to choose a font face, size, style, color, and so on. The
text view will handle the mechanics of applying those styles to what the user is typing, but your
controller will have to tell the text view what those styles are.

Table 10-3. Important text editing properties

Property Description

autocapitalizationType Controls the auto-capitalization mode: off or capitalize sentences, words,
or characters

autocorrectionType Turns auto-correction on or off

spellCheckingType Turns spell checking, suggestions, and dictionary lookup on or off

keyboardType Chooses the virtual keyboard to use (normal, URL, just numbers, telephone
dial, email address, Twitter, and so on)

returnKeyType If the keyboard has a “go” key, this property determines how it’s labeled:
Go, Google, Join, Next, Route, Search, Send, Yahoo!, Done, or Emergency Call.

secureEntry Hides the characters as the user types them to discourage onlookers from
seeing the contents. Set this option for sensitive information, like passwords.

312 CHAPTER 10: Got Views?

Use a text view, instead of a label or text field, when:

The user needs to edit multi-line text	

There’s more text than will fit in the view and you want it to scroll	

You want the user to have the ability to select and copy text or look up definitions	

You want to use data detectors	

Pickers
In iOS a “picker” is a user interface that lets the user choose something from a predetermined set.
You used the image picker in your MyStuff to choose a picture from the photo library, and a media
picker to choose a song from the iTunes library in DrumDub. These are both big interfaces that take
over the entire user experience.

iOS also supplies a couple of smaller picker view objects. There’s the specialty UIDatePicker, for
choosing dates and times, and the customizable UIPickerView, for anything else. Both present a
view containing a number of vertical “wheels” that the user spins to choose the value or item they
want, as shown in Figure 10-11.

Figure 10-11. Picker views

313CHAPTER 10: Got Views?

Date Picker
Use the date picker when you want the user to choose a date, time, or duration. The date picker has
four different interfaces, controlled by its datePickerMode property. This can be set to one of the four
values listed in Table 10-4. The four different modes are shown in Figure 10-12.

Figure 10-12. Date picker modes

Table 10-4. Date picker modes

Mode Description

UIDatePickerModeTime Choose a time of day

UIDatePickerModeDate Choose a calendar date

UIDatePickerModeDateAndTime Choose a date and time

UIDatePickerModeCountDownTimer Choose a duration (hours and minutes)

The picker’s date property reports the value the user has selected. Setting it changes the date/time
in the view. If you want to set the date and have the “wheels” spin to their new positions, send
-setDate:animated:. The time portion of the date property is 0:00 when using the date-only
interface. Similarly, the calendar day of the date property is meaningless when using the time-only
or duration interface.

If you want to limit the range of values the user can choose from, set the minimumDate and/or
maximumDate properties. For example, to force the user to choose a day in the future, set the
minimumDate to tomorrow.

You can also reduce the granularity of time choices with the minuteInterval property. When set
to 1, the user can choose any time or duration in one-minute increments (2:30, 2:31, 2:32, and so on).
Setting minuteInterval to 5 narrows the user’s choices to 5-minute intervals (2:30, 2:35, 2:40, 2:45,
and so on).

314 CHAPTER 10: Got Views?

Caution The value of minuteInterval must divide evenly into 60 and can’t be more than 30.

If you plan on using date picker, and your interface leaves the picker visible while time progresses,
Apple recommends updating the picker in real time. For example, if your interface uses a duration
picker and a start button, pressing the start button will probably cause some timer in your app to
begin counting down. During that time, your app should periodically update the picker so it slowly
(once a minute) changes as the time counts down to zero.

Anything Picker
What if you don’t need to pick a date or a time? What if you need to pick an ice cream flavor, a
model of car, or an arch nemesis? The UIPicker object is the catchall picker view. It looks and
functions just like the date picker, except that you define the wheels and the content of each
(see Figure 10-11).

A UIPicker uses a delegate and data source arrangement that’s eerily similar to a table view
(Chapter 5). A UIPicker needs a delegate object (UIPickerDelegate) and a data source object
(UIPickerDataSource). The picker’s data source determines the number of wheels (called
components) and the number of choices (called rows) on each wheel. The delegate object provides
the label for each choice. At a minimum, you must implement these UIPickerDataSource methods:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView
- (NSInteger)pickerView:(UIPickerView *)pickerView numberOfRowsInComponent:(NSInteger)component

And one of these UIPickerDelegate methods:

- (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row
forComponent:(NSInteger)component
- (NSAttributedString *)pickerView:(UIPickerView *)pickerView attributedTitleForRow:(NSInteger)row
forComponent:(NSInteger)component
- (UIView *)pickerView:(UIPickerView *)pickerView viewForRow:(NSInteger)row
forComponent:(NSInteger)component reusingView:(UIView *)view

Tip Most often, a single object is both the delegate and the data source for a picker, so the division of
methods between the two protocols doesn’t matter.

The first data source method tells your picker how many wheels it has. The second method is then
received once for each wheel; it returns the number of rows in that wheel.

315CHAPTER 10: Got Views?

Finally (much like the table view data source) a delegate method returns the label for each row
in each wheel. You have three choices for which method you implement, depending on how
sophisticated you want to be with the content of each row:

Implement 	 -pickerView:titleForRow:forComponent: to show plain text labels.
Your method returns a simple string value for each row. This is the most
common. See the middle of Figure 10-11.

Implement 	 -pickerView:attributedTitleForRow:forComponent: to display labels
containing special fonts or styles. Your method returns an attributed string for
each row. UICatalog doesn’t include an attributed string example, but it just
means that label could have a mixture of fonts, sizes, and styles.

Implement 	 -pickerView:viewForRow:forComponent:reusingView: to display
anything you want in a row. Your method returns a UIView object, which is then
used to draw that row. See the right of Figure 10-11.

The last method is the most like the table view’s use of cell objects. For a picker, you can supply a
different UIView objects for each row or reuse a single UIView object over and over again. There’s
no row cell object cache, as in the table view. Instead, the last UIView returned is passed back to
your delegate the next time -pickerView:viewForRow:forComponent:reusingView: is sent. If you’re
reusing a single UIView object, alter that view and return it again. If not (or the view parameter is nil),
return a new view object.

If you want to control the width of each wheel or the height of the rows in a wheel, implement the
optional -pickerView:widthForComponent: or -pickerView:rowHeightForComponent: methods,
respectively.

Look at the code that implements the simple picker view in the UICatalog app (in the middle
of Figure 10-11). You’ll find it in the PickerViewController.m file. The code that implements
the picker using custom view objects (on the right in Figure 10-11) can be found in the
CustomPickerDataSource.m file. The view object used as the rubber stamp for each row is defined in
CustomView.m.

UIPickerView objects are not control objects; they are not subclasses of UIControl and they don’t send
action messages. Instead, the picker’s delegate receives a -pickerView:didSelectRow:inComponent:
message when the user changes one of the wheels.

Image Views
You’ve already used enough image views to know your way around them. There are, however, a
couple of properties that I’d like to mention. The first is the contentMode. This property controls how
the image (which may not be the same size as the view) gets arranged. The choices are listed in
Table 10-5.

316 CHAPTER 10: Got Views?

Note The contentMode property is actually defined in the UIView class, but it’s particularly germane to
UIImageView.

Table 10-5. View content mode

Mode Description

UIViewContentModeScaleToFill Stretches or squeezes the image to exactly fill the view. It may distort
the image if the aspect ratio of the view is not the same as the image.

UIViewContentModeScaleAspectFit Scales the image, without distorting it, so it just fits inside the
view. Some parts of the view many not contain any image
(think letterboxing).

UIViewContentModeScaleAspectFill Scales the image, without distorting it, so it completely fills the view.
Some parts of the image may get clipped.

UIViewContentModeCenter Centers the image without scaling it.

UIViewContentModeTop,
UIViewContentModeBottom,
UIViewContentModeLeft, or
UIViewContentModeRight

The middle of one edge of the image is aligned with the corresponding
edge of the view. The image is not scaled. The image may not fill,
or be clipped, in the other three directions.

UIViewContentModeTopLeft,
UIViewContentModeTopRight,
UIViewContentModeBottomLeft, or
UIViewContentModeBottomRight

One corner of the image is aligned with the same corner of the view.
The image is not scaled. The image may not fill the entire view, or will
be clipped if it overfills it.

UIImageView also has a quirky talent: it can show a sequence of images either quickly (like a flipbook
or a really short movie), or slowly (like a slideshow). Put the images you want to display into an array
(NSArray) and use that array to set the animationImages property. Set the animationDuration and,
optionally, the animationRepeatCount to control the speed of each frame and how many times the
entire sequence plays. (Set animationRepeatCount to 0 to play forever.)

Once set up, send the view -startAnimation to begin the show and -stopAnimation to stop it again.
Code that demonstrates this is in the ImagesViewController.m file of the UICatalog project.

Grouped Tables
Chapter 5 mentioned that you can create grouped table views, like those used in the Settings app.
I didn’t, however, actually show you how to do that. You already have all of the basics, but if you want
a concrete example, look no further than the UICatalog project. Most of the sample views (buttons,
controls, text fields, and segments) are presented in a group table view. Each group is a single example.

Start with the sample buttons. Its view controller is the ButtonsViewController class, which is
subclass of UITableViewController. A table view controller is a UIViewController designed
specifically to manage a table view. A UITableViewController is both a UITableViewDelegate

317CHAPTER 10: Got Views?

and a UITableViewDataSource. Find these delegate methods, which define the table contents, and
see how they work:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
- (NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:(NSInteger)section
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath
*)indexPath

The View You Never See
That wraps up most of the important view objects in iOS. I’ll talk about toolbars a little in Chapter 12
and a lot more about UIView in Chapter 11. But I want to mention a very special view—one that’s
used a lot, but you never see.

It's the UIScollView class. A scroll view adds the dynamics of scrolling to your interface. You never
see the scroll view; you see its effects. A scroll view works by presenting a larger view inside a
smaller view. The effect is like having a window into that larger view. When you drag inside the
window, you are “sliding” the view behind it around so you can see different portions of it, as
illustrated in Figure 10-13.

Figure 10-13. Conceptual arrangement a scroll view

318 CHAPTER 10: Got Views?

It’s easiest to think about a scroll view as being two views in one. For most view objects, the size
of its content (called its bounds) and the size it occupies in your interface (called its frame) are the
same. So a view, say a button, that’s 30 by 100 pixels will occupy a region of 30 by 100 pixels in
your interface.

A scroll view breaks this relationship. A scroll view has a special contentSize property that’s
divorced from its frame size. It’s frame becomes the “window” that appears in your interface.
The contentSize defines the logical size of the view, only a portion of which is visible through the
window.

The contentOffset property determines exactly what portion is visible. This property is the point in
the content area that appears at the upper-left corner of the frame—the portion visible to the user.
contentOffset is initially 0,0. This places the upper-left corner of the content at the upper-left corner
of the frame. As the contentOffset moves down, the content appears to scroll up, keeping the
contentOffset point at the upper-left corner of the frame.

Table views, web views, and text views all provide scrolling and are all subclasses of UIScrollView.
You can subclass UIScrollView yourself to create a custom view that supports scrolling, or you can
use a UIScrollView object on its own by simply populating its content view with whatever subviews
you like. You can even have a scroll view inside another scroll view; it’s weird but there are notes in
the Scroll View Programming Guide for iOS on how to do it.

A great place to get started with scroll views is the PhotoScroller example project. Search Xcode’s
Documentation and API Reference for the PhotoScroller sample code project and click on the Open
Project button. The PhotoScroller project defines a subclass of UIScrollView used to display, pan,
and zoom an image. This project demonstrates two of scroll view’s three major talents:

Scrolling a larger content view around inside a smaller view	

Pinching and zooming the content view	

Scrolling by “page”	

The first is its basic function. It’s for this ability that scroll views are most often used, which includes
table views, web views, and text views. To use a scroll view in this fashion, you don’t have to
subclass it or use a delegate. Simply populate and size its content view with the views you want to
display, and the scroll view will let the user drag it around.

The scroll view’s second talent is pinching and zooming its content view, so it not only scrolls
it, but magnifies and shrinks it as well, as shown in Figure 10-14. This feature requires the use
of a scroll view delegate (UIScrollViewDelegate) object. In the PhotoScroll project, the custom
ImageScrollView is a UIScrollView subclass that’s also its own delegate—an arrangement that’s
perfectly legitimate, if a little unusual. UIScrollView processes the touch events and handles the
most of the panning and zooming details for you.

319CHAPTER 10: Got Views?

You can also cause the view to scroll programmatically by setting its contentOffset property to
any point in the content view you want. If you want to make the view animate its journey to the new
position, send it the -setContentOffset:animate: message.

SCROLL VIEWS AND THE KEYBOARD

Scroll views can contain text fields—usually indirectly, by placing a text field in a table view, which you now know is a
scroll view. When the keyboard appears, it can cover up the very text field the user wants to edit. The solution is to cause
the scroll view to scroll up so the text field is visible above the keyboard.

To do that, your controller will need to observe keyboard notifications (such as UIKeyboardDidShowNotification).
These notifications contain the coordinates of the virtual keyboard on the screen. You use this information to determine
if the keyboard is covering your text field. If it is, send the scroll view a -setContentOffset:animate: message that
will cause the text field to scroll to a position above the virtual keyboard.

The mechanics of this is described in the Text, Web, and Editing Programming Guide for iOS, which you’ll find in Xcode’s
documentation. Look for the aptly named section “Moving Content That Is Located Under the Keyboard” in the “Managing
the Keyboard” chapter.

The PhotoScroller project also demonstrates an advanced technique called tiling. In the beginning
of Chapter 5, I explained that an iOS device doesn’t have enough memory or CPU power to create
thousands of individual row objects for a table. Instead, it draws just the portion of the table that is
visible to the user, as the user scrolls through the list.

Figure 10-14. PhotoScroller app

320 CHAPTER 10: Got Views?

The contents of an exceptionally large content view may fall into the same category. The
PhotoScroller project demonstrates how to dynamically prepare only those view objects that are
currently visible through the scroll view’s “window.” The table view—which, as you remember, is
based on UIScrollView—already does this for you, only preparing the view objects for those rows
that are visible in the table.

A much less common use of scroll views is to view content in “pages.” This is enabled by setting
the pagingEnabled property to YES. When you do that, the scroll view forces the content view
(technically, its contentOffset property) to move in discrete distances, exact multiples of its frame
size. Conceptually, it divides your content view into a grid (the exact size of the window) and any
scrolling eventually settles on one segment. There’s a PageControl sample project that demonstrates
this feature.

Note The PhotoScroller project let’s you swipe between images, but it’s not using UIScrollView’s paging
feature. Instead, it uses a UIPageViewController. You’ll use UIPageViewController to create a similar
interface in Chapter 12.

Advanced use of scroll views is not for the faint of heart. This can be really complex stuff, but it’s the
stuff of really cool apps. The now famous “drag to update” gesture that has become the mainstay
of iOS apps is all done with scroll views and scroll view delegates. If you need this feature in a table
view, most of the work is already done for you: create a UIRefreshControl object and connect it
to the table view controller’s refreshControl property. Now the user can drag down to update the
table. To dive into the power of scroll views, start with the Scroll View Programming Guide for iOS.

Summary
Your command of the “language” of iOS is growing. You started out with the syntax and grammar of
iOS, learning to create objects, connect them, and send messages. In this chapter you’ve expanded
your vocabulary, acquiring an impressive number of view and control objects you can add and
customize. You also saw how grouped tables are made, and got a glimpse of the magic behind
scrolling. In the process, you learned how to download sample code and unlock its secrets.

You can go a long way using pre-made view and control objects. But there are limits, and at some
point you’re going to want a view that no one has created yet. Creating your own views is the next
step of your journey, and the next chapter in this book.

321

Chapter 11
Draw Me a Picture

You have arrived at a critical point in your mastery of iOS development. You have a good deal of
experience adding existing view objects to your app. You’ve had them display your data, connected
them to your custom controller logic, and customized their look and feel. But you’ve still been limited
to the view classes that Apple has written for you. There’s no substitute for creating your very own
view object—an object that will draw things no one else has imagined.

OK, that’s not entirely true. You have created custom view objects, but in both cases I neglected to
explain how they worked. Instead, there was a little note attached that read “Ignore the view behind
the curtain; all will be explained in Chapter 11.” Welcome to Chapter 11! In this chapter you will learn
(more) about:

Creating view subclasses	

View geometry	

How, and when, views are drawn	

Core Graphics	

Bézier paths	

Animation	

Gesture Recognizers	

Bitmaps and images	

This chapter is going to get a little technical, but I think you’re ready.

Creating a Custom View Class
You create a custom view by subclassing either UIView or UIControl, depending on whether your
intent is to create a display object or something that acts like a control, like a new kind of switch.
In this chapter you’ll only be subclassing UIView.

322 CHAPTER 11: Draw Me a Picture

Caution Do not subclass concrete view classes, such as UIButton or UISwitch, in an attempt to “fiddle”
with how they function. This is a recipe for disaster. Their internal workings are not public and often change
from one iOS release to the next, meaning your class might stop working in the near future. View classes
designed to be subclassed, like UIControl, are clearly documented, usually by including a section in their
documentation titled “Subclassing Notes.”

Figure 11-1. Graphics coordinate system

To create your own view class, you need to understand three things:

The view coordinate system	

User interface update events	

How to draw in a Core Graphics context	

Let’s start at the top—literally.

View Coordinates
The device’s screen, windows, and views all have a graphics coordinate system. The coordinate
system establishes the position and size of everything you see on the device: the screen, windows,
views, images, and shapes. Every view object has its own coordinate system. The origin of a
coordinate system is at its upper-left corner and has the coordinates (0,0), as shown in Figure 11-1.

323CHAPTER 11: Draw Me a Picture

X coordinates increase to the right and Y coordinates increase downward. The Y-axis is upside-down
from the Cartesian coordinate system you learned in school, or maybe from reading geometry books
in your spare time. For computer programs, this arrangement is more convenient; most content
“flows” from the upper-left corner, so it’s usually simpler to perform calculations from the upper-left
corner than the lower-left corner.

Table 11-1. Coordinate value types

Type Description

CGFloat The fundamental scalar value. CGFloat is floating point type used to express a single coordinate
or distance.

CGPoint A pair of CGFloat values that specify a point (x,y) in a coordinate system.

CGSize A pair of CGFloat values that describe the dimensions (width,height) of something.

CGRect The combination of a point (CGPoint) and a size (CGSize) that, together, describe a rectangular area.

Note If you’ve done any OS X programming, you’ll notice a lot of similarities between iOS and OS X view
objects. iOS, however, has no flipped coordinates—they’re always flipped, from an OS X perspective.

There are four key variable types used to describe coordinates, positions, sizes, and areas in iOS,
all listed in Table 11-1.

Frame and Bounds
View objects have two rectangle (CGRect) properties: bounds and frame. The bounds property
describes the coordinate system of the object. All of the view’s graphic content, which includes any
subviews, uses this coordinate system. The really important thing to understand is that all drawing of
a view’s content is performed by that view, and it’s done using the view’s coordinate system—often
referred to as its local coordinates.

Moving the view around (in its superview) does not change the view’s coordinate system. All of the
graphics within the view remain the same, relative to the origin (upper-left corner) of that view object.
In Figure 11-1, the subview is 160 pixels wide by 50 pixels high. Its bounds rectangle is, therefore,
((0,0),(160,50)); it has an origin (x,y) of (0,0) and a size (width,height) of (160,50). When the
subview draws itself, it draws within the confines of that rectangle.

The frame property describes the view in the coordinates of its superview. In other words, the frame is
the location of a subview in another view—often called its superview coordinates. In Figure 11-1, the
origin of the subview is (20,60). The size of the view is (160,50), so its frame is ((20,60),(160,50)).
If the view were moved down 10 pixels, its frame would become ((20,70),(160,50)). Everything
drawn by the view would move down 10 pixels, but it wouldn’t change the bounds of the view or the
relative coordinates of what’s drawn inside the view.

324 CHAPTER 11: Draw Me a Picture

The size of the bounds and frame are linked. Changing the size of the frame changes the size
of its bounds, and vice versa. If the frame of the subview in Figure 11-1 was made 60 pixels
narrower, its frame would become ((20,60),(100,50)). This change would alter its bounds so
it was now ((0,0),(100,50)). Similarly, if the bounds were changed from ((0,0),(160,50)) to
((0,0),(100,40)), the frame would automatically change to ((20,60),(100,40)).

Table 11-2. Coordinate translation methods in UIView

UIView method Description

-convertPoint:toView: Converts a point in the receiver’s local coordinate system to the same point in
the local coordinates of another view.

-convertPoint:fromView: Converts a point in another view’s coordinates into the receiver’s local
coordinate system.

-convertRect:toView: Converts a rectangle in the receiver’s local coordinate system to the same
rectangle in the local coordinates of another view.

-convertRect:fromView: Converts a point in another view’s coordinates into the receiver’s local
coordinate system.

Note There are a few exceptions to the “size of the frame always equals the size of the bounds” rule. You’ve
already met one of those exceptions: the scroll view. The size of a scroll view’s content (bounds) is controlled
by its contentSize property that is independent of its frame size, the portion that appears on the screen.
Other exceptions occur when transforms are applied, which I’ll talk about later.

UIView also provides a synthetic center property. This property returns the center point of the view’s
frame rectangle. Technically, center is always equal to (CGRectGetMidX(frame),CGRectGetMidY
(frame)). If you change the center property, the view’s frame will be moved so it is centered over that
point. The center property makes it easy to both move and center subviews, without resizing them.

Converting Between Coordinate Systems
It will probably take you a while—it took me a long time—to wrap your head around the different
coordinate systems and learn when to use bounds, when to use frame, and when to translate
between them. Here are the quick-and-dirty rules to remember:

The 	 bounds are a view’s inner coordinates: the coordinates of everything inside
that view.

The 	 frame is a view’s outer coordinates: the position of that view in its superview.

Should you need them, there are a number of methods that translate between the coordinate systems
of views. The four most common are the UIView methods listed in Table 11-2. As an example, let’s say
you have the coordinates of the lower-right corner of the subview in Figure 11-1 in its local coordinates,
(160,50). If you want to know the coordinate of that same point in the superview’s coordinate system,
send the message [superview convertPoint:CGPointMake(160,50) fromView:subview]. That statement
will return the point (180,110), the same point, but in the superview’s coordinate system.

325CHAPTER 11: Draw Me a Picture

Also, all of the event-related classes that deliver coordinates report them in the coordinate system
of a specific view. For example, the UITouch class doesn’t have a location property. Instead, it has
a -locationInView: method that translates the touch point into the local coordinates of the view
you’re working with.

When Views Are Drawn
In Chapter 4, you learned that iOS apps are event-driven programs. Refreshing the user interface
(programmer speak for drawing stuff on the screen) is also triggered by the event loop. When a view
has something to draw, it doesn’t just draw it. Instead, it remembers what it wants to draw and then
it requests a draw event message. When your app’s event loop decides that it’s time to update the
display, it sends user interface update messages to all the views that need to be redrawn. A view’s
drawing lifecycle, therefore, repeats this pattern:

1. Change the data to draw.

2. Send your view object a -setNeedsDisplay message. This marks the view as
needing to be redrawn.

3. When the event loop is ready to update the display, your view will receive a
-drawRect: message.

You rarely need to send another view a -setNeedsDisplay message. Most views send themselves that
message whenever they change in a way that would require them to redraw themselves. For example,
when you set the text property of a UILabel object, the label object sends itself -setNeedsDisplay so
the new label will appear. Similarly, a view automatically receives -setNeedsDisplay if it’s changed in a
way that would require it to redraw itself, such as adding it to a new superview.

That doesn’t mean that every change to a view will trigger another -drawRect: message. When a
view draws itself, the resulting image is saved, or cached, by iOS—like taking a snapshot. Changes
that don’t affect that image, such as moving the view around the screen (without resizing it), won’t
result in another -drawRect: message; iOS simply reuses the snapshot of the view it already has.

Note The rect parameter passed to your -drawRect: method is the portion of your view that needs to
be redrawn. Most of the time, it’s the same as bounds, which means you need to redraw everything. In rare
cases, it can be a smaller portion. Most -drawRect: methods don’t pay much attention to it and simply draw
their entire view. It never hurts to draw more than what’s required, just don’t draw less than what’s needed.
If your drawing code is really complicated and time consuming, you might try to save time by only updating
the area in the rect parameter.

So now you know when and why views draw themselves, now you just need to know how.

326 CHAPTER 11: Draw Me a Picture

Drawing a View
When your view object receives a -drawRect: message, it must draw itself. In simple terms, iOS
prepares a “canvas” which your view object must then “paint.” The resulting masterpiece is then
used by iOS to represent your view on the screen—until it needs to be drawn again.

Your “canvas” is a Core Graphics Context, also called your current context, or just context for short.
It isn’t an object, per say. It’s a drawing environment, which is prepared before your object receives
the -drawRect: message. While your -drawRect: method is executing, your code can use any of the
Core Graphics drawing routines to “paint” into the prepared context. The context is valid until your
-drawRect: method returns, and then it goes away.

Caution Your view’s Core Graphics context only exists when your -drawRect: method is invoked by iOS.
Because of this, you should never send your view a -drawRect: message and you should never use any
of the Core Graphics drawing functions outside of your -drawRect: method. (The exception is “off-screen”
drawing, which I’ll describe towards the end of this chapter.)

For most of the object-oriented drawing methods, the current context is implied. That is, you perform
some painting ([myShape fill]) and the -fill method draws into the current context. If you use any
of the C drawing functions, you’ll need to get the current context reference and pass that as the call’s
first parameter, like this:

CGContextRef currentContextRef = UIGraphicsGetCurrentContext();
CGContextSetAlpha(currentContextRef,0.5f);

A lot of the details of drawing are implied by the state of the current context. The graphics context state
is all of the settings and properties that will be used for drawing in that context. This includes things
like the color used to fill shapes, the color of lines, the width of lines, the blend mode, and so on.

Rather than specify all of these variables for every action, like drawing a line, you set up the state for
each of the individual properties first. Let’s say you want to draw a shape (myShape), filling it with
the red color and drawing the outline of the shape with the color black:

[redColor setFill];
[blackColor setStroke];
[myShape fill];
[myShape stroke];

The -fill message uses the context’s current fill color, and -stroke uses the current stroke color.
This arrangement makes it very efficient to draw multiple shapes or effects using the same, or
similar, parameters.

327CHAPTER 11: Draw Me a Picture

Now the only question remaining is what tools you have to draw with. Your fundamental painting
tools are:

Simple fill and stroke	

Bézier path (fill and stroke)	

Images	

That doesn’t sound like a lot, but taken together, they are remarkably flexible. Let’s start with the
simplest, the fill functions.

Fill and Stroke Functions
The Core Graphics framework includes a handful of functions that fill a region of the context with
a color. The two principal functions are CGContextFillRect and CGContextFillEllipseInRect. The
former fills a rectangle with the current fill color. The latter fills an oval that just fits inside the given
rectangle (which will be a circle if the rectangle is a square).

CGContextFillRect is often used to fill in the background of the entire view before drawing its details.
It’s not uncommon for a -drawRect: method to begin something like this:

- (void)drawRect:(CGRect)rect
{
 CGContextRef context = UIGraphicsGetCurrentContext();
 [self.backgroundColor setFill];
 CGContextFillRect(context,rect);

This code starts by getting the current graphics context (which you’ll need for the CGContextFillRect
call). It then obtains the background color for this view (self.backgroundColor) and makes that color
the current fill color. It then fills the view with that color. Everything drawn after that will draw over a
background painted with backgroundColor.

Tip Drawing in a Core Graphics context works much like painting on a real canvas. Whenever you draw
something, you’re drawing over what’s been drawn before. So, just like a painting, you typically start by
covering the entire surface with a neutral color—artists call this a ground. You then paint with different colors
and shapes on top of that, until you’ve painted everything.

The functions CGContextStrokeRect and CGContextStrokeEllipseInRect perform a similar function,
but instead of filling the area inside the rectangle or oval, it draws a line over the outline of the
rectangle or oval, using the current line color, line width, and line joint style. Stroke is the term used
to describe the act of drawing a line.

328 CHAPTER 11: Draw Me a Picture

Bézier Paths
You’ll notice that there are hardly any Core Graphics functions for drawing really simple things, like
lines. Or what about the rounded rectangles you see everywhere in iOS, or triangles, or any other
shape, for that matter? Instead of giving you a bazillion different functions for drawing every shape,
the iOS gods provide you an almost magical tool that will let you draw all of those things, and more:
the Bézier path.

A Bézier path, named after the French engineer Pierre Bézier, can represent any combination of
straight or curved lines, as shown in Figure 11-2. It can be as simple as a square, or as complex as
the coastline of Canada. A Bézier path can be closed (circle, triangle, pie chart) or it can be open
(a line, an arc, the letter “W”).

Figure 11-2. Bézier paths

You define a Bézier path by first creating a UIBezierPath object. You then construct the path by
adding straight and curved line segments. When you’re done, you can use the path object to draw
into the graphics context by painting its interior (filling), drawing its outline (stroking), or both.
You can reuse a path as often as you like.

Tip For common shapes, like squares, rectangles, circles, ovals, rounded rectangles, and arcs, the
UIBezierPath class provides class methods that will make a Bézier path with that shape in a single
statement.

To show you how easy it is to create paths, you’ll write an app that draws Bézier paths in a view.
But before you get to that, let’s briefly talk about the last major source of view content.

Images
An image is a picture, and doesn’t need much explaining. You’ve been using image (UIImage) objects
since the second chapter. Up until now, you’ve been assigning them to UIImageView objects (and
other controls) that drew the image for you. But UIImage objects are easy to draw into the context of
your own view too. The two most commonly used UIImage drawing methods are -drawAtPoint:
and -drawInRect:. The first draws an image into your context, at its original size, with its origin
(upper-left corner) at the given coordinate. The second method draws the image into the given rectangle,
scaling and stretching the image as necessary.

329CHAPTER 11: Draw Me a Picture

When I say an image is “drawn” into your graphics context, I really mean it’s copied. An image is a
two-dimensional array of pixels, and the canvas of your graphics context is a two-dimensional array
of pixels. So really, “drawing” a picture amounts to little more than overwriting a portion of your
view’s pixels with the pixels in the image. The exceptions to this are images that have transparent
pixels or if you’re using atypical blend modes, both of which I’ll touch on later.

I’ll explain a lot about creating, converting, and drawing images in your custom view later in this
chapter by revisiting an app you already wrote. But before I get to that, let’s draw some Bézier paths.

Shapely
You’re going to create an app that uses Bézier paths to draw simple shapes in a custom view.
Through a few iterations of the app, you’ll expand it to include movement and resizing gestures,
and learn about transforms and animation—along with a heap of UIView and Bézier path goodness.
The design of the app is simple, as shown in Figure 11-3.

Figure 11-3. Shapely app design

The app will have a row of buttons that create a new shape. Shapes appear in the middle area where
they can be moved around, resized, and reordered. Get started by creating a new project. In Xcode:

Create a new project based on the single view app template.	

Name the project Shapely.	

Use a class prefix of SY.	

Set the devices to 	 Universal.

330 CHAPTER 11: Draw Me a Picture

The next thing to do is to create your custom view class. You’ve done this several times already.
Select the Shapely group in your project navigator and choose New File... (from the File menu or by
right/control+clicking on the group) and then:

From the iOS group, choose the Objective-C class template.	

Name the class 	 SYShapeView.

Make is a subclass of 	 UIView.

Add it to your project.	

Creating Views Programmatically
In this app, you’ll be creating your view objects programmatically, instead of using Interface Builder.
In fact, you’ll be creating just about everything programmatically. By the end of the chapter, you
should be good at it.

When you create any object, you must begin by initializing it. This is accomplished by sending a
new instance an “init” message. Some classes, like NSString, provide a variety of init methods so
you can initialize them in different ways: -initWithString:, -initWithFormat:, -initWithData:,
-initWithCharacters:length:, and so on.

The UIView class, however, has what is called a designated initializer. There is only one init message
that you should send a new UIView object to prepare it for use, and that message is -initWithFrame:.
If you initialize it using any other init message, it might not work property—so don’t do that. Your
subclass is free to define its own init methods, but it must send [super initWithFrame:] so the
UIView class gets set up correctly.

Note View objects defined in Interface Builder files use a different initializer message, which is described
in Chapter 15.

Your init method is going to create a new SYShapeView object that will draw a specific shape (square,
circle, and so on) with a predetermined frame size. So you’ll need a custom init method that tells
the new object what kind of shape to draw. Your view will draw its shape in a specific color, so you’ll
need a property for its color too. Start by editing the SYShapeView.h interface file. Change it so it
looks like this (new code in bold):

typedef enum {
 kSquareShape = 1,
 kRectangleShape,
 kCircleShape,
 kOvalShape,
 kTriangleShape,
 kStarShape,
} ShapeSelector;

331CHAPTER 11: Draw Me a Picture

@interface SYShapeView : UIView

- (id)initWithShape:(ShapeSelector)theShape;
@property (strong,nonatomic) UIColor *color;

@end

The enum statement creates an enumeration. An enumeration is a sequence of constant integer
values assigned to names. You list the names and the compiler assigns each a number. Normally
the numbers start with zero, but for this app you want them to start at 1 (kSquareShape=1,
kRectangleShape=2, kCircleShape=3, and so on). The view will use these values to know which
shape to draw.

The -initWithShape: method will be this class’s initializer. It will create the object and establish which
shape it will draw. Finally, a UIColor object property will determine the color of the shape. That was
painless. Move over to the SYShapeView.m implementation file and write the init method.

Start by deleting the -initWithFrame: method that’s included in the file template. You’re defining
your own init method, and won’t be using the default one. Immediately before the @implementation
SYShapeView section, add this code:

#define kInitialDimension 100.0f
#define kInitialAlternateHeight (kInitialDimension/2)
#define kStrokeWidth 8.0f

@interface SYShapeView ()
{
 ShapeSelector shape;
}
@property (readonly,nonatomic) UIBezierPath *path;
@end

The #define statements establish three constants: the initial dimensions (height and width) of most
new shape views, an alternate height for shapes that don’t fit in a square, and the thickness of the
line used to draw the shape.

Next, you add a private interface section where you define a ShapeSelector instance variable. This
variable will determine which shape this view draws. The readonly path property will return a Bézier
path object containing that shape, ready to draw.

The first method to write is your init method. In the @implementation SYShapeView section, add
this code:

- (id)initWithShape:(ShapeSelector)theShape
{
 CGRect initRect = CGRectMake(0,0,kInitialDimension,kInitialDimension);
 if (theShape==kRectangleShape || theShape==kOvalShape)
 initRect.size.height = kInitialAlternateHeight;

332 CHAPTER 11: Draw Me a Picture

 self = [super initWithFrame:initRect];
 if (self!=nil)
 {
 shape = theShape;
 self.opaque = NO;
 self.backgroundColor = nil;
 self.clearsContextBeforeDrawing = YES;
 }
 return self;
}

The method begins by defining a default frame with an origin of (0,0) that is kInitialDimension
wide and high. It then examines the theShape parameter. If the shape being created is a rectangle or
oval, it changes the height of the frame to kInitialAlternateHeight. The only difference between
a square and a rectangle is the aspect ratio of the view. For rectangles and ovals, this changes the
aspect ratio so it is no longer 1:1.

Now your method has enough information to send the superclass -initWithFrame:. If the superclass
was successfully initialized, then your object can now initialize itself. The first order of business is to
remember what kind of shape this view draws. Next, it alters a few of the UIView’s standard properties.

The most important is resetting the opaque property. If your view object will have transparent
regions, you must declare that your view isn’t opaque. I’ll explain the clearsContextBeforeDrawing
property shortly.

Caution If your view leaves any portion of its image transparent, or even semi-transparent, you must set
the view’s opaque property to NO or it may not appear correctly on the screen.

The -drawRect: Method
I think it’s time to write your -drawRect: method. This is the heart of any custom view class. Add this
method to your SYShapeView.m implementation file (replacing any -drawRect: method supplied by the
file template):

- (void)drawRect:(CGRect)rect
{
 UIBezierPath *path = self.path;
 [self.color setStroke];
 [path stroke];
}

Whoa! That’s it? Yes, that’s all the code your class needs to draw its shape. It gets the Bézier path
object from its path property. The Bézier path defines the outline of the shape this view will draw.
You then set the color you want to draw with, and stroke (draw the outline of) the shape. The details
of how the line is drawn—its width, the shape of joints, and so on—are properties of the path object.

333CHAPTER 11: Draw Me a Picture

You’ll also notice that you didn’t have to first clear the context (as I explained back in the “Fill and Stroke”
section). That’s because you set the view’s clearsContextBeforeDrawing property. Set this to YES and iOS
will pre-fill your context with (black) transparent pixels before it sends the -drawRect: message. For views
that need to start with a transparent “canvas”—as this one does—why not let iOS do that work for you?
If your view always fills its context with an image or color, set clearsContextBeforeDrawing to NO; leaving
it YES will pointlessly fill the context twice, slowing down your app and wasting CPU resources.

Creating the Bézier Path
Clearly, the heavy lifting is creating that Bézier path object. Do that now. Add this method to your
@implementation:

- (UIBezierPath*)path
{
 CGRect bounds = self.bounds;
 CGRect rect = CGRectInset(bounds,kStrokeWidth/2+1,kStrokeWidth/2+1);

 UIBezierPath *path;
 switch (shape) {
 case kSquareShape:
 case kRectangleShape:
 path = [UIBezierPath bezierPathWithRect:rect];
 break;

 default:
 // TODO: add cases for remaining shapes
 break;
 }
 path.lineWidth = kStrokeWidth;
 path.lineJoinStyle = kCGLineJoinRound;
 return path;
}

This method implements the getter for your object’s path property. Its job is to return a UIBezierPath
object that describes the shape this view draws (square, rectangle, circle, and so on), exactly fitting
its current size (bounds).

The first two lines of code create a CGRect variable that describes the outer dimensions of the shape.
The reason it is kStrokeWidth/2+1 pixels smaller than the bounds is explained in the “Avoiding
Pixelitis” sidebar.

334 CHAPTER 11: Draw Me a Picture

AVOIDING PIXELITIS: COORDINATES VERSUS PIXELS

All coordinates in Core Graphics are mathematical points in space; they do not address individual pixels. This is an
important concept to understand. Think of coordinates as infinitely thin lines between the pixels of your display or image.
This has three ramifications:

Points or coordinates •	 are not pixels.

Drawing occurs on and inside lines, not on or inside pixels.•	

One point may not mean one pixel.•	

When you fill a shape, you’re filling the pixels inside the infinitely thin lines that define that shape. In the following
figure, a rectangle ((2,1),(5,2)) is filled with a dark color. A lower-resolution display will have one physical pixel per
coordinate space, as shown on the left. On the right is a “retina” display, with four physical pixels per coordinate space.

The rectangle defines a mathematically precise region, and the pixels that fall inside that region are filled with the color.
This precision avoids a common programmer malady known as pixelitis: the anxiety of not knowing exactly what pixels
will be affected by a particular drawing operation, common in many other graphic libraries.

This mathematical precision can have unanticipated side effects. One common artifact occurs when drawing a line with
an odd width—“odd” meaning “not evenly divisible by 2.” A line’s stroke is centered over the mathematical line or curve.
In the next figure, a horizontal line segment is drawn between two coordinates, with a stroke width of 1.0. The upper line
in the next figure does not draw a solid line on a lower-resolution display, because the stroke only covers ½ of the pixels
on either side of the line. Core Graphics draws partial pixels using anti-aliasing, which means that the color of those
pixels is adjusted using half the stroke’s color value. On a retina display, this doesn’t occur because each pixel is ½ of a
coordinate value.

335CHAPTER 11: Draw Me a Picture

The lower line in the figure avoids the “half-pixel” problem by centering the line between two coordinates. Now the
1.0 width line exactly fills the space between coordinate boundaries, neatly filling the pixels, and appearing to the user
as a clean, solid line.

If pixel-prefect alignment is important to your app, you may need to consult the contentScaleFactor property of
UIView. It discloses the number of physical screen pixels between two whole coordinate values. As of this writing,
it can be one of two values: 1.0 for lower resolution displays and 2.0 for retina displays.

The next block of code creates a UIBezierPath variable and then switches on the shape variable
to build the desired shape. For right now, the case statement only makes the paths for square and
rectangular shapes, as shown in Figure 11-4. You’ll fill in the other cases later.

336 CHAPTER 11: Draw Me a Picture

Tip If you start a // style comment with either TODO: or !!!:, that comment will automatically appear in
the file navigation menu at the top of the editing area, as shown in Figure 11-4. This is a really handy way to
make a note about something you need to address later, as it will appear prominently in your file’s navigation
menu until you remove it.

Figure 11-4. Unfinished -path method

Sharp-eyed readers will notice that the code to create a square shape and a rectangular shape are
the same. That’s because the difference between these shapes is the aspect ratio of the view, and
that was established in -initWithShape: when the object was created. If you go back and look at
-initWithShape: you’ll see these two lines of code:

 if (theShape==kRectangleShape || theShape==kOvalShape)
 initRect.size.height = kInitialAlternateHeight;

When the view’s frame was initialized, it was made half as high if the shape was a rectangle or oval.
All other shape views begin life with a square frame.

337CHAPTER 11: Draw Me a Picture

Finally, the line width of the shape is set to kStrokeWidth and the joint style is set to kCGLineJoinRound.
This last property determines how a joint (the point where one line segment ends and the next begins)
is drawn. Setting it to kCGLineJoinRound draws shapes with rounded “elbows.”

Testing Squares
That’s enough code to draw a square-shaped view, so let’s hook this up to something and try it out.
The Shapely app creates new shapes when the user taps a button, so define a button to test it. The
buttons get custom images, so start by adding those image resources to your project. Select the
Images.xcassets asset catalog item in the navigator. Find the Learn iOS Development Projects ➤
Ch 11 ➤ Shapely (Resources) folder and drag all 12 of the image files (addcircle.png,
addcircle@2x.png, addoval.png, addoval@2x.png, addrect.png, addrect@2x.png, addsquare.png,
addsquare@2x.png, addstar.png, addstar@2x.png, addtriangle.png, and addtriangle@2x.png) into
the asset catalog, as shown in Figure 11-5. There are also some app icons in the Shapely (Icons)
folder, which you’re free to drop into the AppIcon group.

Figure 11-5. Adding button image resources

I’m going to start with the iPad interface this time and copy the finished work into the iPhone
interface later. If you have an iPhone/iPod and want to play with this app on your device as you
develop it, go ahead and start with the iPhone interface instead—the steps are the same.

Select the Main_iPad.storyboard (or _iPhone.xib) file. Switch to the assistant view (View ➤ Assistant
Editor ➤ Show Assistant Editor). The interface for the interface View Controller (SYViewController.h)
will appear in the right-hand pane. If it doesn’t, select the SYViewController.h file from the navigation
ribbon immediately above the right-hand editor pane. Bring up the object library (View ➤ Utilities ➤
Show Object Library) and drag a new Button object into your interface, as shown in Figure 11-6.

338 CHAPTER 11: Draw Me a Picture

Switch to the attributes inspector, select the root view object, and change its background property to
Black Color. Select the new button again and make the following changes:

In the attributes inspector	

Change its type to 	 Custom

Erase its title (replacing “Button” with nothing)	

Change its image to 	 addsquare

Using the size inspector	

Change its width and height to 	 44 pixels

In the SYViewController.h file (in the right-hand editing pane), add a new action:

- (IBAction)addShape:(id)sender;

Connect the button to the action by dragging the connection socket next to the -addShape:
declaration into the new button, as shown in Figure 11-7.

Figure 11-6. Adding the first button

Figure 11-7. Connecting the first button

339CHAPTER 11: Draw Me a Picture

Switch to the SYViewController.m implementation file and add the action method. Begin by adding an
import statement immediately after the others, so this module knows about the SYShapeView class:

#import "SYShapeView.h"

Towards the end of the @implementation section, add the new action method:

- (IBAction)addShape:(id)sender
{
 SYShapeView *shapeView = [[SYShapeView alloc] initWithShape:kSquareShape];
 shapeView.color = [UIColor whiteColor];
 [self.view addSubview:shapeView];

 CGRect shapeFrame = shapeView.frame;
 CGRect safeRect = CGRectInset(self.view.bounds,
 shapeFrame.size.width,
 shapeFrame.size.height);
 CGPoint newLoc = CGPointMake(safeRect.origin.x
 +arc4random_uniform(safeRect.size.width),
 safeRect.origin.y
 +arc4random_uniform(safeRect.size.height));
 shapeView.center = newLoc;
}

Your shape view is now ready to try out. The -addShape: action creates a new SYShapeView object
that draws a square. It assigns it a color of white, and adds it as a new subview in the root view.

Up until this point in this book, you’ve been creating and adding view objects using Interface Builder.
This code demonstrates how you do it programmatically. Anything you add to a view using Interface
Builder can be created and added programmatically, and you can create things in code that you
can’t create in Interface Builder.

Note The -addSubview: method makes a view the receiver’s subview. The view will appear at the
coordinates of its frame, in the receiver’s (superview’s) local coordinate system. You can only add a view to
one superview at a time; a view can’t appear in two superviews simultaneously. To remove the view, you send
the view a -removeFromSuperview message.

The rest of the code in -addShape: just picks a random location for the new view, making sure it isn’t
too close to the edge of the display. Remember that SYShapeView’s -initWithShape: method set
the frame for the view, but its origin was left at (0,0). Unless you change that, all new shape views
would appear in the upper-left corner of the view.

Fire up the iPad simulator and give your app a run, as shown in Figure 11-8. Tap the button a few
times to create some shape view objects, as shown on the right in Figure 11-8.

340 CHAPTER 11: Draw Me a Picture

So far, you’ve designed a custom UIView object that draw a shape using a Bézier path. You’ve created
an action that creates new view objects and adds them to a view, programmatically. This is a great
start, but you still want to draw different shapes, in different colors, so expand the app to do that.

More Shapes, More Colors
Back in Xcode, stop the app and switch to the Main_iPad.storyboard (or _iPhone.xib) file again. Your
app will draw six different shapes, so create five more buttons. I did this by holding down the option key
and dragging out copies of the first UIButton object, as shown in Figure 11-9. You could, alternatively,
copy and paste the first button. If you’re a masochist, you could drag in new button objects from the
library and individually change them to match the first one. I’ll leave those decisions to you.

Figure 11-8. Working square shape views

Figure 11-9. Duplicating the first button

341CHAPTER 11: Draw Me a Picture

Just as you did in DrumDub, you’ll use the tag property of the button to identify the shape it will
create. Since you duplicated the first button, all of the buttons are connected to the same -addShape:
action in SYViewController. (If not, connect them now.) Working from left to right, use the attributes
inspector to set the tag and image property of the buttons using Table 11-3.

Table 11-3. New shape button properties

Tag Image

1 addsquare

2 addrect

3 addcircle

4 addoval

5 addtriangle

6 addstar

Note Did you notice that you didn’t add any constraints? That’s because this interface doesn’t need any.
The buttons are never resized and they never need to be repositioned in relationship to other elements
(like a navigation bar) or for different screen sizes.

You’ll notice that the tag values, cleverly, match up with the enum constants you defined in SYShapeView.h.
For each button to create its shape, change the first line of -addShape: (in SYViewController.m) to use
the button’s tag value instead of the kSquareShape constant:

SYShapeView *shapeView = [[SYShapeView alloc] initWithShape:[sender tag]];

Of course, the path property in SYShapeView still only knows how to create shapes for squares and
rectangles, so you’re not done yet. But before you leave SYViewConroller.m, let’s make things a little
more colorful. In the private @interface SYViewController () section, add an array instance variable
and a readonly colors property:

@interface SYViewController ()
{
 NSArray *colors;
}
@property (readonly,nonatomic) NSArray *colors;
@end

342 CHAPTER 11: Draw Me a Picture

In the @implementation section, add a (lazy) property getter for the colors array:

- (NSArray*)colors
{
 if (colors==nil)
 {
 colors = @[UIColor.redColor,UIColor.greenColor,
 UIColor.blueColor,UIColor.yellowColor,
 UIColor.purpleColor,UIColor.orangeColor,
 UIColor.grayColor,UIColor.whiteColor];
 }
 return colors;
}

This method creates an array of UIColor objects that will be used to assign different colors to the
shapes. It only creates the array once—the first time it’s received. Now change -addShape: again so
it assigns a random color to each new shape view:

- (IBAction)addShape:(id)sender
{
 SYShapeView *shapeView = [[SYShapeView alloc] initWithShape:[sender tag]];
 shapeView.color = [self.colors objectAtIndex:arc4random_uniform(self.colors.count)];

To draw those shapes, your SYShapeView object still needs some work. Switch to the SYShapeView.m
file, find the -path property getter method, and finish it out with the code shown in bold in Listing 11-1.
Oh, and you might as well remove the default: case from the unfinished version; you don’t need that
anymore.

Listing 11-1. Finished path property getter method

- (UIBezierPath*)path
{
 CGRect bounds = self.bounds;
 CGRect rect = CGRectInset(bounds,kStrokeWidth/2+1,kStrokeWidth/2+1);

 UIBezierPath *path;
 switch (shape) {
 case kSquareShape:
 case kRectangleShape:
 path = [UIBezierPath bezierPathWithRect:rect];
 break;

 case kCircleShape:
 case kOvalShape:
 path = [UIBezierPath bezierPathWithOvalInRect:rect];
 break;

 case kTriangleShape:
 path = [UIBezierPath bezierPath];
 CGPoint point = CGPointMake(CGRectGetMidX(rect),CGRectGetMinY(rect));
 [path moveToPoint:point];

343CHAPTER 11: Draw Me a Picture

 point = CGPointMake(CGRectGetMaxX(rect),CGRectGetMaxY(rect));
 [path addLineToPoint:point];
 point = CGPointMake(CGRectGetMinX(rect),CGRectGetMaxY(rect));
 [path addLineToPoint:point];
 [path closePath];
 break;

 case kStarShape:
 path = [UIBezierPath bezierPath];
 point = CGPointMake(CGRectGetMidX(rect),CGRectGetMinY(rect));
 float angle = M_PI*2/5;
 float distance = rect.size.width*0.38f;
 [path moveToPoint:point];
 for (NSUInteger arm=0; arm<5; arm++)
 {
 point.x += cosf(angle)*distance;
 point.y += sinf(angle)*distance;
 [path addLineToPoint:point];
 angle -= M_PI*2/5;
 point.x += cosf(angle)*distance;
 point.y += sinf(angle)*distance;
 [path addLineToPoint:point];
 angle += M_PI*4/5;
 }
 [path closePath];
 break;
 }
 path.lineWidth = kStrokeWidth;
 path.lineJoinStyle = kCGLineJoinRound;
 return path;
}

The kCircleShape and kOvalShape cases use another UIBezierPath convenience method to create a
finished path object that traces an ellipse that fits exactly inside the given rectangle.

The kTriangleShape case is where things get interesting. It shows a Bézier path being created, one
line segment at a time. You begin a Bézier path by sending it a -moveToPoint: message to establish
the first point in the shape. After that, you add line segments by sending a series of
-addLineToPoint: messages. Each message adds one edge to the shape, just like playing “connect the
dots.” The last edge is created using the -closePath: message, which does two things: it connects
the last point to the first point, and makes this a closed path—one that describes a solid shape.

Note This app only creates Bézier paths using straight lines, but you can mix in the messages
-addArcWithCenter:radius:startAngle:endAngle:clockwise:, -addCurveToPoint:control
Point1:controlPoint2:, and -addQuadCurveToPoint:controlPoint:, in any combination, to add
curved segments to the path too.

344 CHAPTER 11: Draw Me a Picture

The kStarCase creates an even more complex shape. If you’re curious about the details, read the
comments in the finished Shapely project code that you’ll find in the Learn iOS Development
Projects ➤ Ch 11 ➤ Shapely folder. In brief, the code creates a path that starts at the top-center
of the view (the top point of the star), adds a line that angles down to the interior point of the star,
and then another (horizontal) line back out to the right-hand point of the star. It then rotates 72° and
repeats these steps, four more times, to create a five-pointed star.

Tip Trigonometric math functions perform their calculations in radians. If your trig skills are a little rusty,
angles in radians are expressed as fractions of the constant p, which is equal to 180°. The iOS math library
includes constants for p (M_PI or 180°), p/2 (M_PI_2 or 90°), and p/4 (M_PI_4 or 45°), as well as other
commonly used constants (e, the square root of 2, and so on).

Run your app again (see Figure 11-10) and make a bunch of shapes!

Figure 11-10. Multicolor shapes

345CHAPTER 11: Draw Me a Picture

Transforms
Next up on your app’s feature list is dragging and resizing shapes. To implement that, you’re going to
revisit gesture recognizers, and learn something completely new. Start with the gesture recognizer.

Like view objects, you can create, configure, and connect gesture recognizers programmatically. The
concrete gesture recognizer classes supplied by iOS (tap, pinch, rotate, swipe, pan, and long-press)
have all the logic needed to recognize these common gestures. All you have to do is instantiate one,
do a little configuration, and hook them up.

Return to the -addShape: action method in SYViewController.m. At the end of the -addShape:
method, add this code:

UIPanGestureRecognizer *panRecognizer;
panRecognizer = [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(moveShape:)];
panRecognizer.maximumNumberOfTouches = 1;
[shapeView addGestureRecognizer:panRecognizer];

The first three statements create a new pan (drag) gesture recognizer object. This recognizer will send
its action message (-moveShape:) to your SYViewController object (self). The maximumNumberOfTouches
property is set to 1. This configures the object to only recognize single finger drag gestures; it will
ignore any two or three finger drags that it witnesses. Finally, the recognizer object is attached to the
shape view that was just created and added to the superview.

Note This code is equivalent to going into an Interface Builder file, dragging a new Pan Gesture Recognizer
into a SYShapeView object, selecting it, and changing its Maximum Touches property to 1, and then connecting
the recognizer to the -moveShape: action of the controller. And when I say “equivalent,” I mean “identical to.”

Now all you need is a -moveShape: action. At the beginning of the SYViewController.m file, locate the
private @interface SYViewController () section and add this method declaration:

- (IBAction)moveShape:(UIPanGestureRecognizer *)gesture

Scroll down to the end of the @implementation section and add the method:

- (IBAction)moveShape:(UIPanGestureRecognizer *)gesture
{
 SYShapeView *shapeView = (SYShapeView*)gesture.view;
 CGPoint dragDelta = [gesture translationInView:shapeView.superview];
 CGAffineTransform move;

 switch (gesture.state) {
 case UIGestureRecognizerStateBegan:
 case UIGestureRecognizerStateChanged:
 move = CGAffineTransformMakeTranslation(dragDelta.x,dragDelta.y);
 shapeView.transform = move;
 break;

346 CHAPTER 11: Draw Me a Picture

 case UIGestureRecognizerStateEnded:
 shapeView.transform = CGAffineTransformIdentity;
 shapeView.frame = CGRectOffset(shapeView.frame,dragDelta.x,dragDelta.y);
 break;

 default:
 shapeView.transform = CGAffineTransformIdentity;
 break;
 }
}

Gesture recognizers analyze and absorb the low-level touch events sent to the view object and turn
those into high-level gesture events. Like many high-level events, they have a phase. The phase of
continuous gestures, like dragging, progress through a predictable order: possible, began, changed,
and finally ended or canceled.

Your -moveShape: method starts by getting the view that caused the gesture action; this will be the
view the user touched and the one you’re going to move. It then gets some information about how
far the user dragged and the gesture’s state. As long as the gesture is in the “began” or “changed”
state, it means the user touched the view and is dragging their finger around the screen. When they
release it, the state will change to “ended.” In rare circumstances, it may change to “cancel” or
“failed,” in which case you ignore the gesture.

While the user is dragging their finger around, you want to adjust the origin of the shape view by
the same distance on the screen, which gives the illusion that the user is physically dragging the
view around the screen. (I hope you didn’t think you could actually move things inside your iPhone
by touching it.) The way you’re going to do that uses a remarkable feature of the UIView class: the
transform property.

Applying a Translate Transform
iOS uses affine transforms in a number of different ways. An affine transform is a 3x3 matrix that
describes a coordinate system transformation. In English, it’s a (seemingly) magical array of numbers
that can describe a variety of complex coordinate conversions. It can move, resize, skew, flip, and
rotate any set of points. And since just about everything (view objects, images, and Bézier paths) is
a “set of points,” affine transforms can be used to move, flip, zoom, shrink, and spin any of those
things. Even more amazing, a single affine transform can perform all of those transformations in a
single operation.

347CHAPTER 11: Draw Me a Picture

AFFINE TRANSFORMS

iOS provides functions to create and combine the three common transforms: translate (shift), scale, and rotate. These are
illustrated in the following figure. The grey shape represents the original shape and the dark figure its transformation:

You create a basic transform using the function CGAffineTransformMakeTranslation, CGAffineTransformMakeScale,
or CGAffineTransformMakeRotation. If you’re a hotshot math whiz, you can create any arbitrary transform using
CGAffineTransformMake.

The special identity transform (CGAffineTransformIdentity) performs no translation at all. This is the default value
for the transform property, and the constant you use if you don’t want any transformation performed.

Transforms can be combined. The effect of this is illustrated in the following figure:

To add transforms together, use the functions CGAffineTransformTranslate, CGAffineTransformScale,
CGAffineTransformRotate, and CGAffineTransformConcat. These functions take one transform (which might
already be the sum of other transforms), apply an additional transform, and return the combined transform. You would
then use this combined transform value to perform all of the individual transforms, in a single operation.

The gesture cases for the “began” and “changed” states (in -moveShape:) take the distance the user
dragged their finger and uses that to create a translate transform. Try to say “translate transform,”
three times fast. The transform property is set to this value and you’re done. But what, exactly, does
this magic property do?

348 CHAPTER 11: Draw Me a Picture

When you set the transform property of a view, all of the coordinates that the view occupies in
its superview are transformed before they appear on the screen. The view’s content and location
(its frame) doesn’t change. What changes is where the view’s image appears in the superview. I like
to think of the UIView transform as a lens that “projects” the view so it appears elsewhere, or in
a different way. If you apply a translate transform, as you just did in -moveShape:, then the view will
appear at a different set of coordinates.

Caution If you set the transform property to anything other than the identity transform, the value of the
frame property becomes meaningless. It’s not entirely meaningless, but it’s unusable for most practical
purposes. Just remember this: after you set a transform to anything other than the identity transform,
don’t use frame.

If you set the transform property back to the identity transform (CGAffineTransformIdentity), the
view will reappear at its original location. Programmers call the transform property a non-destructive
translation, because setting it doesn’t alter any of the object’s other properties. Set it back, and
everything returns to where it was. In the default: case, this is exactly what happens. The default:
case handles the “canceled” and “failed” states by setting the transform property back to the
identity transform.

The gesture “ended” case is where the work happens. First, the view’s transform property is reset back
to the identity transform. Then the view’s frame origin is updated, based on the total distance the user
dragged the view. The updated frame permanently relocates the view object to its new location.

Note The transform property of the view is set to the identity transform before the frame property is
used to change its location.

Run your project and try it out. I didn’t supply a figure, because (as my publisher explained it to me)
the illustration in the book wouldn’t move. Create a few shapes and drag them around. It’s a lot of
fun. When you’re done playing, get ready to add zooming and pinching to the mix.

But before you get to that, let me share a few nuggets about affine transforms. Transforms can be
used in a variety of places, not just to distort the frame of a view. They can be used to transform
the coordinate system of the current graphics context while you draw your view. In essence, this
use applies a transform to the bounds of your view, changing the effect of what you draw in your
view, rather than translating the final results of your view. For example, you might have a complex
drawing that you want to shift up or down in your view, or maybe draw something upside down.
Rather than recalculate all of the coordinates you want to draw, use the CGContextTranslateCTM,
CGContextRotateCTM, or CGContextScaleCM functions to shift, rotate, or resize all of the drawing
operations. You’ll use these functions in Chapter 16.

349CHAPTER 11: Draw Me a Picture

Transforms can also be used to change the points in a Bézier path. Create the desired transform and
then send the path an -applyTransform: message. All of the points in the path will be altered using
that transform. This is a destructive translation; the original points in the curve are lost.

Applying a Scale Transform
If one gesture recognizer is fun, then two must make a party. This time, you’re going to add a
pinch/zoom gesture that will resize your shape view. As before, start by creating and attaching a
second gesture recognizer object at the end of the -addShape: method (CYViewController.m):

UIPinchGestureRecognizer *pinchGesture;
pinchGesture = [[UIPinchGestureRecognizer alloc] initWithTarget:self
 action:@selector(resizeShape:)];
[shapeView addGestureRecognizer:pinchGesture];

The pinch gesture recognizer object doesn’t need any configuration because a pinch/zoom is always
a two-finger gesture. At the top of the file add a prototype for the new action method in the private
@interface SYViewController () section:

- (IBAction)resizeShape:(UIPinchGestureRecognizer*)gesture;

Finally, add the method to the @implementation section:

- (IBAction)resizeShape:(UIPinchGestureRecognizer*)gesture
{
 SYShapeView *shapeView = (SYShapeView*)gesture.view;
 CGFloat pinchScale = gesture.scale;
 CGAffineTransform zoom;

 switch (gesture.state) {
 case UIGestureRecognizerStateBegan:
 case UIGestureRecognizerStateChanged:
 zoom = CGAffineTransformMakeScale(pinchScale,pinchScale);
 shapeView.transform = zoom;
 break;

 case UIGestureRecognizerStateEnded:
 shapeView.transform = CGAffineTransformIdentity;
 CGRect frame = shapeView.frame;
 CGFloat xDelta = frame.size.width*pinchScale-frame.size.width;
 CGFloat yDelta = frame.size.height*pinchScale-frame.size.height;
 frame.size.width += xDelta;
 frame.size.height += yDelta;
 frame.origin.x -= xDelta/2;

Tip You can also shift the drawing coordinates of your view by changing the origin of the bounds property.

350 CHAPTER 11: Draw Me a Picture

 frame.origin.y -= yDelta/2;
 shapeView.frame = frame;
 [shapeView setNeedsDisplay];
 break;

 default:
 shapeView.transform = CGAffineTransformIdentity;
 break;
 }
}

This method follows the same pattern as -moveShape:. The only significant difference is in the code
to adjust the view’s final size and position, which requires a little more math than the drag method.

Run the project and try it out. Create a shape and then use two fingers to resize it, as shown on the
left in Figure 11-11.

Figure 11-11. Resizing using a transform

Tip If you’re using the simulator, hold down the option key to simulate a two-finger pinch gesture. You’ll
have to first position a shape in the middle of the view, because the second “finger” in the simulator is always
mirrored across the center-point of the display, and you have to have both “fingers” inside the view to be
recognized as a pinch gesture.

351CHAPTER 11: Draw Me a Picture

You’ll notice that when you zoom the shape out a lot, its image gets the “jaggies:” aliasing artifacts
caused by magnifying the smaller image. The reason is because you’re not resizing the view during the
pinch gesture. You’re just applying a transform to the original view’s image. Bézier paths are resolution
independent, and draw smoothly at any size. But a transform only has the pixels of the view’s current
image to work with. At the end of the pinch gesture, the shape view’s size is adjusted and redrawn. This
creates a new Bézier path, at the new size, and all is smooth again, as shown on the right in Figure 11-11.

Your app is looking pretty lively, but I think it could stand to be jazzed up a bit. What do you think
about adding some animation?

Animation: It’s Not Just for Manga
Animation has become an integral, and expected, feature of modern apps. Without it, your app
looks dull and uninteresting; even if it’s doing everything you intended it to. Fortunately for you, the
designers of iOS know this and they’ve done a staggering amount of work, all so you can easily add
animation to your app. There are four ways to add movement to your app:

The built-in stuff	

DIY	

Core Animation	

OpenGL	

The “built-in stuff” are those places in the iOS API where animation will be done for you. Countless
methods, from view controllers to table views, include a Boolean animated parameter. If you want
your view controller to slide over, your page to peel up, your toolbar buttons to resize smoothly, your
table view rows to spritely leap to their new positions, or your progress indicator to drift gently to its
new value, all you have to do is pass YES for the animated parameter and the iOS classes will do all
of the work. So keep an eye out for those animated parameters, and use them.

Tip Some view properties have two setters: one that’s never animated and one that can be animated.
For example, the UIProgressView class has a -setProgress: method (never animated) and a
-setProgress:animated: method (optionally animated). If you’re using the non-animated property setter,
check the documentation to see if there’s an animated alternative.

In the do-it-yourself (DIY) animation solution, your code performs the frame-by-frame changes
needed to animate your interface. This usually involves steps like this:

1. Create a timer that fires 30 times/second.

2. When the timer fires, update the position/look/size/content of a view.

3. Mark the view as needing to be redrawn.

4. Repeat steps 2 and 3 until the animation ends.

352 CHAPTER 11: Draw Me a Picture

The DIY solution is, ironically, the method most often abused by amateurs. It might work OK in a handful
of situations, but most often it suffers from a number of unavoidable performance pitfalls. The biggest
problem is timing. It’s really difficult to balance the speed of an animation so it looks smooth, but doesn’t
run so fast that it wastes CPU resources, battery life, and drags the rest of your app and the iOS system
down with it.

Using Core Animation
Smart iOS developers—that’s you, since you’re reading this book—use Core Animation. Core
Animation has solved all of the thorny performance, load-balancing, background-threading, and
efficiency problems for you. All you have to do is tell it what you want animated and let it work
its magic.

Animated content is drawn in a layer (CALayer) object. A layer object is just like a UIView; it’s a
canvas that you draw into using Core Graphics. Once drawn, the layer can be animated using Core
Animation. In a nutshell, you tell Core Animation how you want the layer changed (moved, shrunk,
spun, curled, flipped, and so on), over what time period, and how fast. You then forget about it and
let Core Animation do all of the work. Core Animation doesn’t even bother your app’s event loop;
it works quietly in the background, balancing the animation work with available CPU resources so
it doesn’t interfere with whatever else your app needs to do. It’s really a remarkable system.

Keep in mind that Core Animation doesn’t change the contents of the layer object. It temporarily
animates a copy of the layer, which disappears when the animation is over. I like to think of Core
Animation as “live” transforms; it temporarily projects a distorted, animated, version of your layer,
but never changes the layer.

Oh, did I say “a layer object is just like a UIView?” I should have said, “a layer object, like the one
in UIView” because UIView is based on Core Animation layers. When you’re drawing your view in
-drawRect:, you’re drawing into a CALayer object. You can get your UIView’s layer object through the
layer property, should you ever need to work with the layer object directly. The take-away lesson is
this: all UIView objects can be animated using Core Animation. Now you’re cooking with gas!

Adding Animation to Shapely
There are three ways to get Core Animation working for you. I already described the first: all of those
“built-in” animated parameters are based on Core Animation—no surprise. The second, traditional,
Core Animation technique is to create an animation (CAAnimation) object. An animation object
controls an animation sequence. It determines when it starts, stops, the speed of the animation
(called the animation curve), what the animation does, if it repeats, how many times, and so on.
There are subclasses of CAAnimation that will animate a particular property of a view or animate
a transition (the adding, removal, or exchange of view objects). There’s even an animation class
(CAAnimationGroup) that synchronizes multiple animation objects.

Honestly, creating CAAnimation objects isn’t easy. Because it can be so convoluted, there are a ton
of convenience constructors and methods that try to make it as painless as possible—but it’s still
a hard row to hoe. You have to define the beginning and ending property values of what’s being
animated. You have to define timing and animation curves, then you have to start the animation and
change the actual property values at the appropriate time. Remember that animation doesn’t change
the original view, so if you want a view to slide from the left to right, you have to create an animation

353CHAPTER 11: Draw Me a Picture

that starts on the left and ends on the right, and then you have to set the position of the original view
to the right, or the view will reappear on the left when the animation is over. It’s tedious.

Fortunately, the iOS gods have felt your pain and created a really simple way of creating basic
animations called the block-based animation methods. These UIView methods let you write a few lines
of code to tell Core Animation how you want the properties of your view changed. Core Animation
then handles the work of creating, configuring, and starting the CAAnimation object(s). It even updates
your view’s properties so, when the animation is over, your properties will be at the end value of the
animation—which is exactly what you want.

So how simple are these block-based animation methods to use? You be the judge. Find your
-addShape: method in SYViewController.m file. At the end of the method and add this code:

shapeFrame = shapeView.frame;
CGRect buttonFrame = ((UIView*)sender).frame;
shapeView.frame = buttonFrame;
[UIView animateWithDuration:0.5
 delay:0
 options:UIViewAnimationOptionCurveEaseOut
 animations:^{ shapeView.frame = shapeFrame; }
 completion:nil];

The new code starts by getting the updated frame of the new shape view. Remember that its frame
was adjusted when its center property was placed at a random position on the screen. This is the
location you want the view to end up at.

The second line of code gets the frame of the button that’s creating the new shape and the third line
repositions your new shape view (again) so it is right on top of, and the same size as, the button. If
you stopped here, your shape view would appear right on top of the button you tapped, covering it.

The last statement is the magic. It starts an animation that will last ½ second (duration:0.5), it starts
immediately (delay:0), and uses an “ease out” animation curve (options:UIViewAnimationOptionCur
veEaseOut). There are four canned curves to choose from: ease out (think of a plane landing), ease in
(plane taking off), ease in-out (take off and landing), and linear (plane in flight at constant speed).

The method has two code block parameters. The first is the block that describes what you want
animated, and by “describe” I mean you just write the code to set the properties that you want to
change smoothly. UIView will automatically animate any of these seven properties:

	frame

	bounds

	center

	transform

	alpha

	backgroundColor

	contentStretch

354 CHAPTER 11: Draw Me a Picture

If you want a view to move or change size, animate its center or frame. Want it to fade away? Animate
its alpha property from 1.0 to 0.0. Want it to smoothly turn to the right? Animate its transform from the
identity transform to a rotated transform. You can do any of these, or even multiple ones (changing
the alpha and center) at the same time. It’s that easy.

Note Objective-C blocks are values that contain a snippet of executable code. You write a code block
between ^{ and } as if it were a value (like a number). The block can be saved in a variable or passed as
a parameter. Later, the receiver can execute that block of code just as if it were part of its method. Blocks
are super-powerful. You can read all about them in A Short Practical Guide to Blocks, which you can find in
Xcode’s Documentation and API Reference.

The completion parameter is another code block that is executed when the animation ends. In Shapely,
there’s nothing else to do, since your only goal was to move the view from buttonFrame to shapeFrame.
If there was, just pass a code block that does any post-animation chores. You can even start
another animation!

Run your app again and create a few shapes. Pretty cool, huh? (Again, no figure.) As you tap each
add shape button, the new shape flies into your view, right from underneath your finger, like some
crazy arcade game. If you’re fast, you can get several going at the same time. And all it cost you was
four lines of code.

What if you want to animate something other than these seven properties, create animations that
run in loop, move in an arc, or run backwards? For that, you’ll need to dig into Core Animation and
create your own animation objects; I’ll show you how in Chapter 14. You can read about it in the
Core Animation Programming Guide you’ll find in Xcode’s Documentation and API Reference.

OpenGL
Oops, I almost forgot about the last animation technology: OpenGL. OpenGL is short for Open
Graphics Library. It’s a cross-language, multi-platform, API for 2D and 3D animation. The flavor
of OpenGL included in iOS is OpenGL ES (OpenGL for Embedded Systems). It’s a trimmed down
version of OpenGL suitable for running on very small computer systems, like iOS devices.

To be blunt, OpenGL is another world. An OpenGL view is programmed using a special C-like computer
language called GLSL (the OpenGL Shading Language). To use it, you write vertex and fragment shader
programs. These tiny little programs run in your device’s GPU (Graphics Processing Unit), as opposed
to the kind of code you have been writing, which runs in your CPU (Central Processing Unit). A GPU
is a massively paralleled processer that might be running a hundred copies of your shader program
simultaneously, each one calculating the value of a different pixel.

The results can be nothing less than stunning. If you’ve ever run a 3D flight simulator, shoot-em-up,
or adventure game, you were probably looking at an OpenGL view. Even 2D games with swirling
clouds, stars, or any number of special effects are written using OpenGL.

If you want to tap the full power of your device’s graphic processing unit, OpenGL is the way to
go—but you’ve got a lot to learn. You’ll need a good book on OpenGL. Yes, there are whole books,

355CHAPTER 11: Draw Me a Picture

thicker than this one, just on OpenGL. Your content appears in a special Core Animation layer
(CAEAGLLayer) object, specifically designed to display an OpenGL context. To add this to your app,
create a GLKView (OpenGL Kit View) object in your interface. GLKView is a subclass of UIView that
hosts a CAEAGLLayer object. If you need one, there’s also a handy GLKViewController class.

Needless to say, I won’t be showing you any OpenGL examples in this book. (There’s an OpenGL Game
Xcode project template if you’re dying to take a peek.) If that’s the kind of power you want to harness for
your app, at least you know what direction to go in. Start with the OpenGL ES Programming Guide for
iOS that you’ll find in Xcode’s Documentation and API Reference. But be warned, you’d need to learn a
lot of OpenGL fundamentals before much of that document will make any sense.

The Order of Things
While you still have the Shapely project open, I want you to play around with view object order a little
bit. Subviews have a specific order, called their Z-order. It determines how overlapping views are
drawn. It’s not rocket science. The back view draws first, and subsequent views draw on top of it
(if they overlap). If the overlapping view is opaque, it obscures the view(s) behind it. If portions of it
are transparent, the views behind it “peek” through holes.

This is easier to see than explain, so add two more gesture recognizers to Shapely. Once again,
go back to the -addShape: action method in SYViewController.m. Immediately after the code that
attaches the other two gesture recognizers (before the animation code you just added), insert this:

UITapGestureRecognizer *dblTapGesture;
dblTapGesture = [[UITapGestureRecognizer alloc] initWithTarget:self
 action:@selector(changeColor:)];
dblTapGesture.numberOfTapsRequired = 2;
[shapeView addGestureRecognizer:dblTapGesture];

UITapGestureRecognizer *trplTapGesture;
trplTapGesture = [[UITapGestureRecognizer alloc] initWithTarget:self
 action:@selector(sendShapeToBack:)];
trplTapGesture.numberOfTapsRequired = 3;
[shapeView addGestureRecognizer:trplTapGesture];

This code adds double-tap and triple-tap gesture recognizers, which send a -changeColor: and
-sendShapeToBack: message, respectively. Scroll up to the @interface SYViewController () private
interface section and declare the new methods:

- (IBAction)changeColor:(UITapGestureRecognizer*)gesture;
- (IBAction)sendShapeToBack:(UITapGestureRecognizer*)gesture;

Now add the two new methods to the @implementation section:

- (IBAction)changeColor:(UITapGestureRecognizer*)gesture
{
 SYShapeView *shapeView = (SYShapeView*)gesture.view;
 UIColor *color = shapeView.color;
 NSUInteger colorIndex = [self.colors indexOfObject:color];

356 CHAPTER 11: Draw Me a Picture

 NSUInteger newIndex;
 do {
 newIndex = arc4random_uniform(self.colors.count);
 } while (colorIndex==newIndex);
 shapeView.color = [self.colors objectAtIndex:newIndex];
}

- (IBAction)sendShapeToBack:(UITapGestureRecognizer*)gesture
{
 UIView *shapeView = gesture.view;
 [self.view sendSubviewToBack:shapeView];
}

The -changeColor: method is mostly for fun. It determines which color the shape is and picks a new
color for it at random.

The -sendShapeToBack: action illustrates how views overlap. When you add a subview to a view
(using UIView’s -addSubview: message) the new view goes on top. But that’s not your only choice.
If view order is important, there are a number of methods that will insert a subview at a specific
index, or immediately below or above another (known) view. You can also adjust the order of existing
views using the -bringSubviewToFront: and -sendSubviewToBack:, which you’ll use here. Your triple-tap
gesture will “push” that subview to the back, behind all of the other shapes.

To make this effect more obvious, make a minor alteration to your -drawRect: method in
SYShapeView.m, by inserting the two lines of code in bold:

- (void)drawRect:(CGRect)rect
{
 UIBezierPath *path = self.path;
 [[[UIColor blackColor] colorWithAlphaComponent:0.3] setFill];
 [path fill];
 [self.color setStroke];
 [path stroke];
}

The new code fills the shape with black that’s 30% opaque (70% transparent). It will appear that
your shapes have a “smoky” middle that darkens any shapes that are drawn behind it. This will make
it easy to see how shapes are overlapping.

Run your app, create a few shapes, resize them, and then move them so they overlap, as shown in
Figure 11-12.

357CHAPTER 11: Draw Me a Picture

The shapes you added last are “on top” of the shapes you added first. Now try double-tapping a
shape to change its color. I’ll wait.

I’m still waiting.

Is something wrong? Double-tapping doesn’t seem to be changing the color of a shape? There are
two probable reasons: the -changeColor: method isn’t being received (you could test that by setting
a breakpoint in Xcode), or it is being received and the color change isn’t showing up (which you can
test by resizing the shape). If you double-tap a shape and then resize it, you’ll see the color change. OK,
it’s the latter. Take a moment to fix this.

The problem is that the SYShapeView object doesn’t know that it should redraw itself whenever its
color property changes. You could add a [shapeView setNeedsDisplay] statement to -changeColor:,
but that’s a bit of a hack. I’m a strong believer that view objects should trigger their own redrawing
when any properties that change their appearance are altered. That way, client code doesn’t have to
worry about whether to send -setNeedsDisplay or not; the view will take care of that automatically.

Figure 11-12. Overlapping shapes with semi-transparent fill

358 CHAPTER 11: Draw Me a Picture

Return to SYShapeView.m and add the following method:

- (void)setColor:(UIColor *)color
{
 _color = color;
 [self setNeedsDisplay];
}

This method replaces the default setter method created by the color property. The new method
updates the _color instance variable (which is all the old setter method did), but also sends itself
a -setNeedsDisplay message. Now whenever you change the view’s color, it will immediately
redraw itself.

Run the app and try the double-tap again. That’s much better!

Finally, you get to the part of the demonstration that rearranges the view. Overlap some views and
then triple-tap one of the top views. Do you see the difference when the view is pushed to the back?

What is that, you say? The color changed when you triple-tapped it?

Oh, for Pete’s sake, don’t any of these gesture recognizer things works? Well, actually they do, but
you’ve created an impossible situation. You’ve attached both a double-tap and a triple-tap gesture
recognizer to the same view. The problem is that there’s no coordination between the two. What’s
happening is that the double-tap recognizer fires as soon as you tap the second time, before the
triple-tap recognizers gets a chance to see the third tap.

There are a number of ways to fix this bug, but the most common recognizer conflicts can be fixed
with one line of code. Return to the SYViewController.m file, find the -addShape: method, and locate
the code that adds the double- and triple-tap recognizers. Immediately after that, add this line:

[dblTapGesture requireGestureRecognizerToFail:trplTapGesture];

This message creates a dependency between the two recognizers. Now, the double-tap recognizer
won’t fire unless the triple-tap recognizer fails. When you tap twice, the triple-tap recognizer will fail
(it sees two taps, but never gets a third). This creates all of the conditions needed for the double-tap
recognizer to fire. If you triple-tap, however, the triple-tap recognizer is successful, which prevents
the double-tap from firing. Simple.

Now run your app for the last time. Resize and overlap some shapes. Triple-tap on a top shape to
push it to the back and marvel at the results, shown in Figure 11-13.

359CHAPTER 11: Draw Me a Picture

Note Hit testing knows nothing about the transparent portions of your view. So even if you can see a portion
of one view in the middle, or near the edge, of the view on top of it, you won’t be able to interact with it,
because the touch events are going to the view on top. It would be possible to change that by overriding the
-hitTest:withEvent: and -pointInside:withEvent: methods of your view, but that’s more work
than I want to demonstrate.

Figure 11-13. Working Shapely app

By now you should have a firm grasp of how view objects get drawn, when, and why. You
understand the graphics context, Bézier paths, the coordinate system, color, a little about
transparency, 2D transforms, and even how to create simple animations. That’s a lot.

One thing you haven’t explored much are images. Let’s get to that by going back in time.

Images and Bitmaps
When you’re drawing into a graphics context, one of the things you don’t have access to are the
individual pixels of your own creation. So you can fill the view with a color, but you can’t ask the
context what color a particular pixel was set to. The reason for this is encapsulation—there’s that
word again. Your code can’t assume how, or even when, things actually get drawn. In all likelihood,
your view is being drawn by a GPU into display memory your program doesn’t even have access to.

360 CHAPTER 11: Draw Me a Picture

This can be awkward when you want to work with the individual pixels of an image. If you need to do
that, you’ll have to allocate memory for those pixels. You can then manipulate those pixels directly,
or use the graphics drawing function to “paint” into your pixel array.

Creating Images from Bitmaps
You already used the first method in the ColorModel app you wrote back in Chapter 8. In it, the
CMColorView class was eventually rewritten to display a hue/saturation color field. It did that by
constructing an image object using a formula for the colors of each individual pixel. I’ve extracted
the topical portion of that code, which you’ll find in Listing 11-2.

Listing 11-2. Image creation code from ColorModel

@interface CMColorView ()
{
 CGImageRef hsImageRef;
 float brightness;
}
@end

...

- (void)drawRect:(CGRect)rect
{
 CGRect bounds = self.bounds;
 CGContextRef context = UIGraphicsGetCurrentContext();

 if (hsImageRef!=NULL &&
 (brightness!=_colorModel.brightness ||
 bounds.size.width!=CGImageGetWidth(hsImageRef) ||
 bounds.size.height!=CGImageGetHeight(hsImageRef)))
 {
 CGImageRelease(hsImageRef);
 hsImageRef = NULL;
 }

 if (hsImageRef==NULL)
 {
 brightness = _colorModel.brightness;
 NSUInteger width = bounds.size.width;
 NSUInteger height = bounds.size.height;
 typedef struct {
 uint8_t red;
 uint8_t green;
 uint8_t blue;
 uint8_t alpha;
 } Pixel;
 NSMutableData *bitmapData = [NSMutableData dataWithLength:sizeof(Pixel)
 *width*height];

361CHAPTER 11: Draw Me a Picture

 for (NSUInteger y=0; y<height; y++)
 {
 for (NSUInteger x=0; x<width; x++)
 {
 UIColor *color = [UIColor colorWithHue:(float)x/(float)width
 saturation:1.0f-(float)y/(float)height
 brightness:brightness
 alpha:1];
 float red,green,blue,alpha;
 [color getRed:&red green:&green blue:&blue alpha:&alpha];
 Pixel *pixel = ((Pixel*)bitmapData.bytes)+x+y*width;
 pixel->red = red*255;
 pixel->green = green*255;
 pixel->blue = blue*255;
 pixel->alpha = 255;
 }
 }

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 CGDataProviderRef provider = CGDataProviderCreateWithCFData(
 (__bridge CFDataRef)bitmapData);
 hsImageRef = CGImageCreate(width,height,
 8,32,width*4,colorSpace,
 kCGBitmapByteOrderDefault,provider,NULL,
 false,kCGRenderingIntentDefault);
 CGColorSpaceRelease(colorSpace);
 CGDataProviderRelease(provider);
 }

 CGContextDrawImage(context,bounds,hsImageRef);

 ...
}

The CMColorView object keeps the finished image in its hsImageRef variable (a Core Graphics image
reference, equivalent to an image object reference in Objective-C). It uses this image to draw the
background of the view using CGContextDrawImage, the last statement in Listing 11-2. This is done
because creating the image requires a lot of work. To avoid doing that work unnecessarily, the finished
image is stored in the object and reused whenever possible. This technique is called caching.

The only time the image can’t be used is (a) the very first time the view is drawn and (b) if anything
about the view changes so that the saved image can’t be used. This is what the first block of code is
all about. It determines if the view has an image already, and if that image is still correct. If either isn’t
true, then it makes a new one.

The real work begins with the if (hsImageRef==NULL) statement. This block of code creates a new
image from a bunch of individual pixel values. To do this, you must arrange the pixels in memory
in a fashion that Core Graphics can understand. There are a number of formats that Core Graphics
supports, but the most common is the red-green-blue-alpha (RGBA) format.

362 CHAPTER 11: Draw Me a Picture

An RGBA image is a two-dimensional array of pixel values. Each pixel is represented by four (8-bit)
bytes. Each byte is in unsigned integer value between 0 and 255. The first byte is the red value
(or component) of the pixel, the next the green value, then the blue value, and finally the alpha (opacity)
value. The first three combine to define the color of the pixel and the last determines its transparency,
0 being transparent and 255 being completely opaque.

An image that’s 100 pixels high by 100 pixels wide will require a 40,000 (100•100•4) byte array.
That’s what the code leading up the creation of the NSMutableData object (bitmapData) is doing.
It’s calculating the number of pixels the image occupies, and then it allocates four bytes for each one
(sizeof(Pixel)*width*height).

The next block of code spins in a loop, calculating the value for each pixel. When all of the pixels
in the array have been set, it’s time to turn this gigantic array of numbers into an image. That is a
three-step process:

1. Obtain a color model.

2. Create an image data provider.

3. Create an image from the data provider using the color model.

The reason this is so convoluted is that there are lots of sources for image data (memory, resource
files, network connections, and so on), and iOS needs to know what the color model is (RGB, HSL,
CMYK, and so on). For your app, use the default RGB color model. The source of the image data is
the bytes in the array you just filled in.

The function that does the work is CGImageCreate. The parameters describe the number of pixels
in the image, the number of pixels in each row of the array (which might not be the same), the
number of bytes that represent each pixel (4), the data provider, the color model, and a hint about
how you want the image rendered. If you don’t have any particular opinion on that matter, pass
kCGRenderingIntentDefault.

That’s it! Now you have a CGImageRef that’s the image (object) created from the pile of pixel values in
the array.

Tip If you want to turn that CGImageRef into a UIImage object, use [UIImage
imageWithCGImage:myImageRef].

Creating Bitmaps From Drawings
You can also go the other direction—turning an image or drawing into a bunch of pixels—and there
are two techniques, depending on what you want to do with the results.

The simplest, and recommended, technique is to call the UIGraphicsBeginImageContext function to
create a graphics context using a block of memory (which it conveniently allocates for you). You only
need to tell it how big of a drawing area you want.

363CHAPTER 11: Draw Me a Picture

You then immediately start drawing into the context, just as if you were responding to a -drawRect:
message. All of the drawing functions work, and their results are written into the temporary memory
buffer. When you’re finished drawing, call UIGraphicsGetImageFromCurrentImageContext and iOS
will return a new UIImage object containing the results of what you just drew. You’ll use this
technique in Chapter 13.

Note This technique is called off-screen drawing because you’re drawing in a graphics context that won’t
appear on the display, or in response to a -drawRect: message. You can initiate off-screen drawing at any
time to render anything you want, and then save it in a UIImage object. You can even perform the drawing in
a background thread.

When you’re done, call UIGraphicsEndImageContext to dismantle the context and discard the
temporary buffer.

While this technique is useful for turning any drawing into an image, it still doesn’t give you access
to the individual pixels of what was drawn; you can’t get that from the context or the UIImage object.
If you’re on a pixel hunt, you’ll need to use an even lower level function, CGBitmapContextCreate.

CGBitmapContextCreate creates a drawing context (just like UIGraphicsBeginImageContext), but the
buffer is an array of bytes you supply, exactly as you did earlier in CMColorView. When the context is
created, any drawing you perform is poured straight into that array. When you’re done drawing, you
can do anything with the resulting pixels that you want: count the number of black pixels, find the
darkest and lightest pixel, you name it.

All of these techniques, and the extensive list of pixel formats supported, are described in the
Quartz 2D Programming Guide you’ll find in Xcode’s Documentation and API Reference.

Advanced Graphics
Oh, there’s more. Before your head explodes from all of this graphics talk, let me briefly mention a
few more techniques that could come in handy.

Text
You can also draw text directly into your custom view. The basic technique is:

1. Create a UIFont object that describes the font, style, and size of the text.

2. Set the drawing color.

3. Send an NSString object any of its -drawAtPoint:... or -drawInRect:...
messages.

You can also get the size that a string would draw (so you can calculate how much room it will take
up) using the various -sizeWithFont:... methods.

364 CHAPTER 11: Draw Me a Picture

You’ll find examples of this in the Touchy app you wrote in Chapter 4 and later in the Wonderland
app in Chapter 12. The -drawAtPoint: . . . and -drawInRect: . . . methods are just wrappers for
the low-level text drawing functions, which are described in the “Text” chapter of the Quartz 2D
Programming Guide. If you need precise control over text, read the Core Text Programming Guide.

Shadows, Gradients, and Patterns
You’ve learned to draw solid shapes and solid lines. Core Graphics is capable of a lot more. It can
paint with patterns and gradients, and it can automatically draw “shadows” behind the shapes
you draw.

You accomplish this by creating various pattern, gradient, and shadow objects, and then setting
them in your current graphics context, just as you would set the color. Copious examples and
sample code can be found in the Quartz 2D Programming Guide.

Blend Modes
Another property of your graphics context, and many drawing functions, is the blend mode. A blend
mode determines how the pixels of what’s being drawn affect the pixels of what’s already in the
context. Normally, the blend mode is kCGBlendModeNormal. This mode paints opaque pixels, ignores
transparent ones, and blends the colors of partially transparent ones.

There are some two dozen other blend modes. You can perform “multiplies” and “adds,” paint only
over the opaque portions of the existing image, paint only in the transparent portion the existing
image, paint using “hard” or “soft” light, affect just the luminosity or saturation—the list goes on
and on. You set the current blend mode using the CGContextSetBlendMode function. Some drawing
methods take a blend mode parameter.

The available blend modes are documented, with examples, in two places, both in the Quartz 2D
Programming Guide. For drawing operations (shapes and fills), refer to the “Setting Blend Modes”
section of the “Paths” chapter. For examples of blending images, find the “Using Blend Modes with
Images” section of the “Bitmap Images and Image Masks” chapter.

The Context Stack
All of these settings can start to make your graphics context hard to work with. Let’s say you need to
draw a complex shape, with a gradient, drop shadow, rotated, and with a special blend mode. After
you’ve set up all of those properties and drawn the shape, now you just want to draw a simple line.
Yikes! Do you now have to reset every one of those settings (drop shadow, transform, blend mode,
and so on)?

Don’t panic, this is a common situation and there’s a simple mechanism for dealing with it. Before
you make a bunch of changes, call the CGContextSaveGState function to save almost everything
about the current graphics context. It takes a snapshot of your current context settings and pushes
them onto a stack. You can then change whatever drawing properties you need (clipping region, line
width, stroke color, and so on) and draw whatever you want.

365CHAPTER 11: Draw Me a Picture

When you’re done, call CGContextRestoreGState and all of the context’s setting will be immediately
restored to what they were when you called CGContextSaveGState. You can nest these calls as
deeply as you need: save, change, draw, save, change, draw, restore, draw, restore, draw. It’s not
uncommon, in complex drawing methods, to begin with a call to CGContextSaveGState, so that later
portions of the method can retrieve an unadulterated graphics context.

Summary
I think it’s time for a little celebration. What you’ve learned in this chapter is more than just some
drawing mechanics. Creating your own views, drawing your own graphics, and making your own
animations, is like trading in your erector set for a lathe. You’ve just graduated from building apps
using pieces that other people have made, to creating anything you can imagine.

I just hope the next chapter isn’t too boring after all of this freewheeling graphics talk. It doesn’t
matter how cool your custom views are, users still need to get around your app. The next chapter
is all about navigation.

EXERCISE

If there’s a big flaw in Shapely’s interface, it’s that it allows the user to make shapes that are so big they cover the entire
interface, and allow them to move shapes off the edge of the screen, or cover the button views. Wouldn’t it be nice if
Shapely would gently slide, or shrink, shapes the user has dragged so this doesn’t happen? I think so too.

Here’s your challenge: add code to Shapely so that shapes can’t be moved off the edge of the screen or cover the add
shape buttons. There are a variety of ways to approach this problem. You could simply prevent the user from moving or
resizing the shape too much during the drag or pinch gesture. Another solution would be to let them move it wherever
they want, and then gently “correct” it afterwards. Whatever solution you choose, make it clear to the user what’s
happening, so the user doesn’t just think your app is broken.

You’ll find my solution in the Learn iOS Development Projects ➤ Ch 11 ➤ Shapely E1 folder. (Hint: I added a
-corralShape: method to SYViewController.m.)

367

Chapter 12
There and Back Again

Unless your app fits entirely on one screen, your users will need ways of getting around, not unlike
the way people navigate cities and towns. We get around via roads, sidewalks, paths, and tracks.
You’ll need to lay down the “roads” between the screens of your app, so your users can easily get
around too. This chapter will explore the tools and techniques for adding navigation to your app. In
it, you will learn to:

Use container view controllers	

Present and dismiss modal view controllers	

Set up a tab view controller	

Create navigation and table view controllers using storyboards	

Use a page view controller	

Learn about split view controllers	

Urban planners have a proven set of solutions (expressways, one-way streets, roundabouts,
intersections, overpasses) that they use to provide the best transportation solution for their
populace. As an iOS app designer, you also have a rich set of navigation tools, which iOS users are
already familiar with. The first step to adding elegant navigation to your app is to take stock of those
tools and understand how they work together.

Measure Twice, Cut Once
Like those urban planners, you need a plan. iOS navigation, just like city streets, is difficult to tear
up and replace, once built. So begin your design by carefully considering how you want your users
to navigate your app. You’ll need to live with your decision, or be willing to expend a fair amount of
effort to change it in the future.

iOS navigation can also get complicated. Which is ironic, because the principal player
(UIViewController) is a pretty straightforward class. The complication is not in the classes
themselves, but in how they combine to form larger solutions. I think of them like the elements.

368 CHAPTER 12: There and Back Again

It’s not difficult to explain the periodic table—each element has an atomic weight, a number of
electrons, and so on. But it’s quite a different matter to consider all of the ways those elements can
combine into molecules and interact with one another. In this respect, iOS navigation is kind of like
chemistry.

So sharpen your No. 2 pencil and get ready to take notes, because you’re about to learn all about
navigation: what it means, how it’s done, the classes involved, and the roles they perform.

What is Navigation?
Every screen in your app is defined, and controlled by, a view controller. If your app has three
screens, then it has (at least) three view controllers. The base class for all view controllers is
UIViewController.

In its simplest terms, navigation is the transition from one view controller to another. Navigation
is an activity that view controllers participate in, and view controllers are its currency. Now this is
where things begin to get interesting. Navigation is not a class, per se, but there are classes that
provide specific styles of navigation. While view controllers are the subjects of navigation, some view
controllers also provide navigation, some only provide navigation, and some non-view controller
classes provide navigation. Are you confused yet? Let’s break it down.

View Controller Roles
View controllers come in two basic varieties. View controllers that just contain view objects are called
content view controllers. This is the basic form of view controllers, and what you’ve mostly dealt with
in this book so far. The entire purpose of navigation is to get a content view controller to appear on
the screen so the user can see and interact with it.

The other kind is a container view controller. A container view controller presents other view
controllers. It may, or may not, have content of its own. Its primary job is to present, and navigate
between, a set of view controllers.

The intriguing part is that both content view controllers and container view controllers are both
subclasses of UIViewController and are, therefore, all “view controllers.” While a content view
controller only displays views, a container view controller can present a parade of content view
controllers and container view controllers, the latter of which may present other content view
controllers or container view controllers, and so on, down the rabbit hole.

You won’t get confused if you clearly understand the differences, and relationship, between
container view controllers and content view controllers. So, let’s review. Content view controllers
display only tangible view objects. Examples of content view controllers are:

	UITableViewController

	UICollectionViewController

	UIViewController

Every custom subclass of 	 UIViewController you’ve created in this book

369CHAPTER 12: There and Back Again

Note that UIViewController is on that list. The UIViewController base class is a content view
controller. It has all of the basic properties and features needed to display a view, and that does not
(implicitly) present any views owned by other view controllers.

Container view controllers present, and provide navigation between, the views in one or more other
view controllers. Examples of container view controllers are:

	UINavigationController

	UITabBarController

	UIPageViewController

These view controllers present other view controllers, provide some mechanism for navigating
between them, and may decorate the screen with additional view objects that enable that navigation.

So it’s possible to have a tab bar (container view) controller that contains three other view
controllers: a custom (content) view controller, a navigation (container view) controller, and a page
(container) view controller. The navigation controller could contain a table (content) view controller.
The page view controller could contain a series of custom (content) view controllers, one for each
“page.” Does that sound horribly complex? It’s not. In fact, it’s typical of a medium-sized app design,
and it’s exactly the organization of the app you’re about to write. By the end of this chapter, this will
seem like child’s play.

Designing Wonderland
The app you’re going to write is based on Lewis Carroll’s famous book, Alice’s Adventures in
Wonderland. This seems appropriate, given the (sometimes) confounding and convoluted nature of
navigation. Here’s a summary of the screens in your app:

A title page

The full text of the book

Some supplementary information about the author

A list of characters

Detailed information about each character

The key is to organize the app’s navigation in a way that makes sense, is obvious, is visually
appealing, and is easy to use. Think about how you would organize the content of your app while
I review the basic styles of navigation available.

Weighing Your Navigation Options
To design your app, you need to know what styles of navigation are available, and then what classes
and methods provide what you need. Table 12-1 lists the major styles of navigation and the principal
class involved.

370 CHAPTER 12: There and Back Again

Modal navigation is the simplest, and the one you’ve used the most in this book. When DrumDub
presented the MPMediaPicker controller, or MyStuff presented the UIImagePickerController,
these view controllers were presented modally. The new view controller took over the interface
of the device until its task was complete. When it was done, it communicated its results to your
controller (via a delegate message), which dismissed the modal controller, and resumed control of
the interface. The presented view controller is responsible for implementing an interface that signals
when it’s done.

Use modal navigation when you need to “step out” of the current interface to 	
present relevant details, controls, or perform some task and then immediately
return the user to where they were.

Table 12-1. Navigation Styles

Style Class Description

Modal UIViewController One view controller presents a second view controller. When
the second view controller is finished, it disappears and the
first view controller reappears.

Stack or Tree UINavigationController View controllers operate in a stack. View controllers modally
present sub-view controllers, adding to the stack, and
navigating deeper into the “tree” of scenes. A navigation bar
at the top takes the user back to the previous view controller,
removing the view controller from the stack, and navigation up
the “tree” towards the root.

Random UITabBarController A tab bar appears at the bottom of the screen. The user can
jump immediately to any view controller by tapping one of the
buttons in the tab bar.

Sequential UIPageViewController The user navigates through a linear sequence of view
controllers, moving one view controller at a time, forwards or
backwards.

Concurrent UISplitViewController Presents two view controllers simultaneously, eliminating the
need to navigate between them (iPad only).

Custom UIViewController subclass You decide.

Note On the iPad, modally presented view controllers can appear as pop-ups or overlays.

The second style of navigation is the stack or tree style, managed by a UINavigationController
object. You see this style all over iOS. The Settings app is a particularly obvious example. The
signature of the navigation controller is its navigation bar that appears at the top of the screen. It
shows the user where they are, and has a button to return to where they were. When a content view
controller (modally) presents a new view controller, the navigation controller adds it to the stack of
view controllers the user can step back through. When used in the context of a navigation controller,

371CHAPTER 12: There and Back Again

a view doesn’t have to provide a method for returning to the presenting view controller, because the
back button in the navigation bar provides that action.

You can (within strict limits) customize the navigation bar, adding your own titles, buttons, or even
controls. The navigation controller can also add a toolbar at the bottom of the display, which you
can populate with buttons and indicators. Both of these elements are owned and managed by the
navigation controller.

Use a navigation controller when there are several layers of modal views, to 	
keep the user informed about where they are, where they came from, and
provide a consistent method of returning.

The UITabBarController manages a set of view controllers the user can maneuver through arbitrarily.
Each view controller is represented by a button in a tab bar at the bottom of the screen. Tap a button
and that view controller appears. The iOS Clock app is a perfect example.

Use a tab bar to allow quick and direct access to functionally different areas of 	
your app.

The UIPageViewController is equally easy to understand. It presents a sequence of view controllers,
one at a time. The user navigates to the next, or previous, view controller in the sequence by tapping
or swiping on the screen, as if leafing through the pages of a book. Apple’s Weather app is the iconic
example of a page view controller in action.

Use a page view controller, as an alternative to 	 UIScrollView, when you have
more information than can be presented on a single screen or an unbounded set
of functionally similar screens that differ only in content.

The UISplitViewController is a navigation controller that eliminates the need for navigation. This
special container view controller simultaneously presents two view controllers, side-by-side, on
an iPad. With the iPad’s additional screen space, an interface that had a list in one screen and the
details of an item on a second can be presented as a unified interface, creating a much simpler and
fluid experience. A split view controller is part of your MyStuff app.

Use a split view controller on the iPad to present more content on a single 	
screen, reducing the need for navigation.

Finally, it’s possible to create your own style of navigation. You can subclass UIViewController and
create a container view controller with whatever new kind of navigation you invent. I would, however,
caution you about doing this. The existing navigation styles are successful largely because they are
familiar to users. If you start designing spiral sidewalks, or streets that go backwards on Tuesdays,
you might be creating a navigation nightmare, rather than navigation nirvana.

Wonderland Navigation
Considering all of the available options, the design for the Wonderland app is shown in Figure 12-1.
The main screen—called the initial view controller—will be a tab view with three tabs. The first tab
contains a content view with the book’s title and an info button that (modally) presents some details
about the author.

372 CHAPTER 12: There and Back Again

The middle tab lists characters in the book in a table view. Tapping a row transitions to a detail view
with more information. This interface is under the control of a navigation controller, so a navigation
bar provides a way back to the list.

The book appears in the last tab, a page view controller, where users can swipe and tap their way
through the text.

Creating Wonderland
Launch Xcode and create a new project. (I’m sure you saw that one coming.) This time, create the
project based on the Tabbed Application template. Name the app Wonderland, use a class prefix of
WL, and make it Universal, as shown in Figure 12-2.

Figure 12-1. Wonderland app design

Figure 12-2. Project options for Wonderland

373CHAPTER 12: There and Back Again

The initial view controller presented by your app will be a tab bar controller; the Tabbed Application
template creates a project whose initial view controller is a tab bar controller. By cleverly
choosing the Tabbed Application template, your first step is already done. You’ve created a
UITabBarController object and installed it as the app’s initial view controller.

Figure 12-3. Starting tab bar configuration

Tip The initial view controller is the view controller presented when your app starts. You can create it
programmatically in the startup code of your application delegate object or you can let iOS present it for you.
For the latter to happen, you need to set its Is Initial View Controller property (see Figure 12-3).
You can set this in Interface Builder by checking the Is Initial View Controller option using the
attributes inspector, or by dragging around the initial view controller arrow (shown on the left side of the tab
bar controller object in Figure 12-3) and attaching it to the view controller of your choice.

Remember that a tab bar controller is a container view controller. It doesn’t display (much) content of
its own. Select the Main_iPhone.storyboard Interface Builder file, as shown in Figure 12-3. The big
blank area in the middle of the tab view controller is going to be filled in with the contents of some
other view controller. It shows that your tab bar controller comes pre-configured with two content
view controllers, WLFirstViewController and WLSecondViewController.

374 CHAPTER 12: There and Back Again

To use a tab bar, you must provide a pair of objects for each tab: a view controller to display and a
tab bar item (UITabBarItem) that configures that tab’s button at the bottom of the screen. Each tab
bar item defines a title and an icon. Icons smell suspiciously like resource files, so start there.

Adding Wonderland’s Resources
I’m going to have you cheat (a little bit) and add all of the resources for this project at once. This will
save you (me) from repeating these steps over again for each interface you’re going to develop in
this chapter. Just add them all now; I’ll explain them later as you need them.

In earlier projects, I had you add individual resource files to the main top-level group (the folder icon)
in your project navigator or to the Images.xcasset assest catalog. There are a sufficient number of
resource files in this project that I’m going to have you create sub-groups so they don’t become
unwieldy. There are three ways you can organize source files in your project:

Create a sub-group and then create or add new files to that group	

Import folders of source files and let the Xcode create groups for each folder	

Wait until you have too many files cluttering up your navigator and then decide 	
to organize them

To use the first or last method, create a new sub-group using the File ➤ New Group command
(also available by right/control+clicking in the project navigator). Name the new group and then
import resource files, create new source files, or drag existing files into it. Developers tend to either
organize their groups by file type (all of the data files in one group, class source files in another) or by
functional unit (all of the source and resources files for a table in a single group). It’s a matter of style
and personal preference.

Tip If you decide to use the last method, which is my personal favorite, make use of the File ➤ New Group
from Selection command. Select the files you want to organize into a group and choose New Group from
Selection. It creates a new sub-group and moves all of those items into it, in one step.

The middle method is handy when you’re importing a large number of resource files at once. Find
the Learn iOS Development Projects ➤ Ch 12 ➤ Wonderland (Resources) folder. These resource
files have been organized into subfolders: Data Resources, Character Images, Info Images, and
Tab Images. Instead of dragging the individual files into the project navigator, you’ll drag the folders
into your project, importing all of the resource files at once. Begin with the data (non-image) files
in the Data Resources folder. Drag that folder and drop it into the Wonderland group, as shown in
Figure 12-4.

375CHAPTER 12: There and Back Again

When the import dialog appears, make sure the Create groups for any added folders option is
selected. This will turn each folder’s worth of resource files into group, as shown on the right in
Figure 12-4.

To do something similar for your images, choose the Images.xcassets asset catalog item and drag
all three folders of images (Character Images, Info Images, and Tab Images) into the catalog’s group
column, as shown in Figure 12-5. This will automatically create three groups of images, as shown on
the right of Figure 12-5.

In the interests of neatness, let’s discard some detritus you don’t need. Select the first and second
image sets in the asset catalog. While holding down the command key, press the delete key (or
choose Edit ➤ Delete) to remove these items from your project.

Figure 12-4. Adding a folder of resource files

Figure 12-5. Importing groups of image files

Note You’ll also find some app icons in the Wonderland (Icons) folder. Drop those into the AppIcon
image set, if you like.

Configuring a Tab Bar Item
Now that you have all of your resources, configure the tab bar for the first tab. Each tab button in
the tab bar is configured via a UITabBarItem object associated with its view controller. You’ll find this
object in the scene that defines that view controller. Select the Main_iPad.storyboard (or _iPhone) file.

376 CHAPTER 12: There and Back Again

Find and expand the first view controller group, as shown in Figure 12-6. Select the Tab Bar Item -
First object and use the attributes inspector to change its title to “Welcome” and set its image to
tab-info.

Figure 12-6. Configuring a tab bar item

Note The image for the tab bar button is not displayed “as is.” The image you supply is used like a stencil,
creating a silhouette from the opaque pixels of the image. So don’t bother designing your tab bar button
images with pretty colors, only the transparency matters.

You’ll repeat these steps for each content view you add to the tab bar. Now move on to the content
for this first tab.

The First Content View Controller
The first tab presents a simple content view controller, based on UIViewController. The Xcode
template has already created a custom view controller (WLFirstViewController) and attached it as
the contents of the first tab. This is almost exactly what you want, so gut it and make it your own.

Select the Main_iPad.storyboard (or _iPhone) file. Double-click on the first view controller (upper-
right) in the canvas to make it the focus. The view already contains some label and text view objects.
Select these and delete them.

377CHAPTER 12: There and Back Again

Using the object library, add two labels and one image view object. Using the attributes and size
inspectors, set their properties as follows:

1. First label

a. Text: Alice’s Adventures in Wonderland

b. Font: System 30.0 (iPad), System 16.0 (iPhone)

2. Second Label

a. Text: by Lewis Carroll

b. Font: System 20.0 (iPad), System 13.0 (iPhone)

3. Image View

a. Image: info-alice

b. Mode: Aspect Fit

c. Size: 480x480 (iPad), 320x320 (iPhone)

Note You’ll start out by editing the iPad version of the interface, mostly so I can demonstrate a few iPad-
only features. Later I’ll switch to the iPhone version, because it’s easier to see. The steps for developing both
interfaces are the same. So except for the few iPad-specific bits, follow the steps using either the iPad or
iPhone interface. To develop the other one, come back and do the same steps again.

Tip After changing the text, font, or image of an object, if its content no longer exactly fits its dimensions,
select it and use the Editor ➤ Size to Fit Contents command. It will resize the object so it’s exactly the same
size as the image or text it contains.

Arrange the views so they look something like those in Figure 12-7. You’re going to add an “info”
button and have that present a modal view controller. Start by adding the button. Drag a Button
object into your interface. Use the attributes inspector to change the type to Info Dark, and position
it just to the right of the “by Lewis Carroll” label, also shown in Figure 12-7.

378 CHAPTER 12: There and Back Again

Presenting a Modal View Controller
To present a view controller, you need a view controller to present. From the object library, drag in a
plain-vanilla view controller object, positioning it to the right of the first view controller.

Create a modal transition by right/control-clicking on the dark gray info button and dragging it to the
view controller you just added, as shown in Figure 12-8. When you release the mouse, choose modal
from the list of styles.

Figure 12-7. Creating the first view controller interface

379CHAPTER 12: There and Back Again

What just happened is this. Interface Builder has connected the button to a storyboard segue,
which it created for this purpose. The segue is configured to perform a modal transition. If you were
doing this programmatically, you would connect the button to your own action method which would
send the first view controller a -presentViewController:animated:completed: message. Using a
storyboard segue saves you from having to create an action and write that code.

Select the storyboard segue by clicking on the segue line, or the circle in the middle of the segue
line, as shown in Figure 12-9. Using the attributes inspector, change the presentation to Form Sheet
and the transition to Flip Horizontal.

Figure 12-8. Creating a modal segue

Figure 12-9. Editing a segue

380 CHAPTER 12: There and Back Again

Now put something in the new view controller. Drag in an image view and a text view object from the
object library. Set the text of the text view (using option+return to insert carriage returns) to:

Lewis Carroll

a.k.a. Charles Lutwidge Dodgson

27 January 1832 – 14 January 1898

Set the alignment of the field to centered (middle button) and uncheck the Editable behavior. Now
select the image view and change its image property to info-charles. Select the text field object
and choose Editor ➤ Size to Fit Contents. Repeat with the image object. (If you’re working on the
iPhone version, select the image view and set its size to 164x244.) Position both towards the bottom
of the view, as shown in Figure 12-10.

Set the project’s scheme to use an iPad Simulator and run the project. The first view controller
appears in the first tab of your app. Tapping the gray info button triggers a transition to the view
controller you just created, making it appear in a “form sheet” floating above the screen. Isn’t
that cool?

It would be even cooler if the app wasn’t stuck now. When presenting a view controller modally,
you’re responsible for providing the interface that will return the user to the previous view controller.
Add that now.

Figure 12-10. Creating the author info view

381CHAPTER 12: There and Back Again

Dismissing a View Controller
The controller that presents a view controller is normally responsible for dismissing it. You’ve already
done this in your DrumDub and MyStuff apps. You presented a modal picker view controller that
allowed the user to pick an image or song. When it was done, it sent your view controller a delegate
message with the choice. That method retrieved the image/song and then sent itself a -dismissView
ControllerAnimated:completion: message, causing the picker interface to retract.

If your modal view controller did something similar (let the user pick a planet to invade, or a pattern
for their bowling ball), you’d create a delegate protocol—I explain how in Chapter 20—and send
a completion message when your modal view controller was done. The presenting view controller
would then dismiss it.

That, however, sounds like a lot of work and I’m quite fond of not doing too much work. In this
situation, there’s no information that needs to be sent back to the presenting controller. You just want
the modal view controller to go away. For that, there’s a simple solution.

In your project navigator, create a new Objective-C source file (File ➤ New File...). Base it on
the Objective-C class template. Name it WLAuthorInfoViewController. Make it a subclass of
UIViewController. Make sure the With XIB for user interface option is not checked. Create the
new file.

Note You don’t need the XIB (Interface Builder) file for your new class because you’ve already created one
for it in the storyboard file.

Select the WLAuthorInfoViewController.h interface file. In the @interface section, add an action
method declaration:

- (IBAction)done:(id)sender;

In the WLAuthorInfoViewController.m implementation file, add the method to the @implementation
section:

- (IBAction)done:(id)sender
{
 [self.presentingViewController dismissViewControllerAnimated:YES
 completion:nil];
}

Return to the Main_iPad.storyboard file. Select the view controller in the view controller scene
you just created (by clicking on the view controller object in the outline or the dock at the bottom
of the scene) and use the identity inspector to change its class from UIViewController to
WLAuthorInfoViewController. Add a button to the interface and change its title to “Done”. (For the
iPhone interface, you may want to rearrange the views a little.) Right/control-drag from the button to
the view controller’s placeholder object, as shown in Figure 12-11. Connect the button to the -done:
action. When using storyboards, the key view controller objects for each scene are conveniently
located below that scene, as well as in the outline.

382 CHAPTER 12: There and Back Again

Run the project again. Tap the info button and the modal view controller appears. Tap the “done”
button, and it disappears again. How does it work? It’s simple.

When one view controller presents another view controller, a relationship is formed. The initial
view controller’s presentedViewController property is set to the view controller it just presented.
The presented view controller’s presentingViewController property is, reflexively, set to the view
controller that presented it. The -done: method simply gets the view controller that presented it from
its presentingViewController property, and sends that object a -dismissViewControllerAnimated:
completed: message on its behalf.

The “form sheet” presentation style is only applicable to the iPad. The iPhone version of the segue
doesn’t even have a presentation property. Since this is an app about a book, and you want both
versions (iPhone and iPad) to work similarly, choose a modal presentation style that works on both
devices and is a little more thematic.

Return to the Main_iPad.storyboard file and select the storyboard segue between the info button
and the author info view controller. Use the attributes inspector and change the presentation to
Default and the transition to Partial Curl. If you’re in the iPhone interface, just set the transition to
Partial Curl.

Figure 12-11. Connecting the “Done” button

383CHAPTER 12: There and Back Again

Run the app again. Now tap the info button and see what happens, shown in Figure 12-12. That’s
pretty slick! This effect works for both the iPad and the iPhone, as shown on the right in Figure 12-12.

Congratulations! The first third of your Wonderland app is finished. You’ve created a custom view
controller that presents a second view controller modally, and wrote the necessary code to dismiss
that view controller when it’s done. There are lots of different transition styles to choose from, but the
basic formula for modally presenting and dismissing a view controller remains the same. Now you’re
ready to move on to the second tab.

Creating a Navigable Table View
The second tab of your Wonderland app presents a list of characters in a table view. Tapping a row
navigates to a screen with some character details. Does this sound familiar? It should. You already
built this app in Chapter 5. Well, you get to build it again. But this time, the focus is going to be on
navigation.

Figure 12-12. Partial Curl transition for iPad and iPhone

Note When you change the presentation style of the segue, Interface Builder will resize the view controller
layout size to match its best guess of the interface’s size when presented. You may need to rearrange the
view objects so they are still nestled at the bottom of the view. Use the Editor ➤ Pin ➤ Height/Width
commands to fix the size of the image view and Editor ➤ Pin ➤ Height to fix the height of the text view.
With those constraints added, choose Editor ➤ Resolve Auto Layout Issues ➤ Add Missing Constraints
in Author Info View Controller to establish the rest of your layout.

384 CHAPTER 12: There and Back Again

You know from Chapter 5 that you’re going to need:

A navigation view controller	

A custom subclass of 	 UITableViewController (for the table view)

A data model	

A table view delegate object	

A data source object	

A table view cell object	

A custom subclass of 	 UIViewController (for the detail view)

View objects to display the detail view	

Start with the navigation view controller. A navigation view controller is a container view controller.
The view it initially displays is its root view controller. This view is its home base; the view that all
navigation starts from, and eventually returns back to. To have the second tab of the Wonderland
app present a navigable table view, you need to install a navigation controller as the second view
controller in the tab bar, and then install a table view controller as the root view controller of the
navigation controller. This is easier than it sounds.

Start by clearing some room. Select the Main_iPhone.storyboard (or _iPad) file. A
WLSecondViewController already occupies the second tab. You don’t need it. Select the
second view controller scene in the Interface Builder canvas and delete it. Then select the
WLSecondViewController.h and WLSecondViewController.m files and delete them too.

Note This is the point where I’m switching to the iPhone interface, so that the illustrations are easier to
see. If you want to continue developing the iPad interface, that’s fine. Or, you can repeat the iPad interface
changes in the iPhone storyboard and continue with that. It’s your choice.

From the object library, drag in a navigation controller and place it underneath the first view
controller, as shown in Figure 12-13. A new navigation controller comes pre-installed with a table
view controller, which is exactly what you want. (See, I told you this wouldn’t be too hard.) You’ll also
need a detail view, so drop in another view controller object next to the table view.

385CHAPTER 12: There and Back Again

To add the navigation controller to the tab bar, right/control-drag from the tab bar controller to the
navigation controller, as shown in Figure 12-14. When the pop-up appears, find the Relationship
Segue category and choose view controllers. This special connection adds the view controller to
the collection of controllers that the container view controller manages. A second tab appears in the
tab view, and a companion tab bar item object is added to the navigation controller’s scene.

Figure 12-14. Making the navigation controller the second tab

Figure 12-13. Adding a navigation controller, table view controller, and view controller

386 CHAPTER 12: There and Back Again

Expand the Navigation Controller group in the navigation controller’s outline and select the tab bar
item. Use the attributes inspector to set the title to “Characters” and the image to tab-chars.

You’ve now added a navigable table view to your tab bar (container view) controller. It’s the
second tab. It has a title and icon. Tapping it will present the table (content) view controller inside
the navigation (container view) controller. It sounds complicated, but the storyboard makes the
organization easy to follow.

Breathing Data Into Your Table View
You can run your app right now, tap on the Characters tab, and marvel at the raging emptiness of
your table view. You know, from Chapter 5, that without a data source and some data your table
view has nothing to display. Let’s tackle that now.

You’re going to need a custom subclass of UITableViewController, so create one. You also know
that you’re going to need a custom subclass of UIViewController for your detail view. While you’re
here, you might as well create that too:

1. In the Wonderland group of the project, add a new file

a. Use the iOS ➤ Cocoa Touch ➤ Objective‑C class template

b. Name the class WLCharacterTableViewController

c. Make it a subclass of UITableViewController

d. Do not create an XIB file for the new controller

2. Add a second new file:

a. Use the Objective-C class template

b. Name the class WLCharacterDetailViewController

c. Make it a subclass of UIViewController

d. Do not create an XIB file for the new controller

Note A view controller can load its interface from a separate XIB file or from a scene in a storyboard file, but
not both. For this project you’re using a storyboard file.

Reviewing the list of things you need to do to get the table view working, you now have a
navigation controller and custom subclasses of the table and view controllers. But the objects
in the interface aren’t your custom subclasses yet. Select the Main_iPhone.storyboard (or
_iPad) file, select the table view controller, and use the identity inspector to change its class to
WLCharacterTableViewController. Do the same for the detail view controller, making its class
WLCharacterDetailViewController.

387CHAPTER 12: There and Back Again

Creating the Detail View
Since you’re already in the character detail view controller, go ahead and create its interface. Use the
object library to add a label, an image view, and a text view to the character detail view controller, as
follows:

1. Label

a. Make its width 420 (iPad) or 280 (iPhone)

b. Set alignment to centered (the middle button)

c. Pin the height (Editor ➤ Pin ➤ Height)

2. Image View

a. Make its size 420x420 (iPad) or 280x280 (iPhone)

b. Set mode to Aspect Fit

c. Pin the height (Editor ➤ Pin ➤ Height)

3. Text View

a. Make its size 420x100 (iPad) or 280x100 (iPhone)

4. Constraints (Universal)

a. Position the three views so they are centered in the view and stacked vertically,
approximately like those shown in Figure 12-15.

b. Select all three view objects (label, image view, and text view) using the shift key or
by dragging out a selection rectangle

c. Choose Editor ➤ Pin ➤ Width

d. Select all three view objects

e. Choose Editor ➤ Align ➤ Horizontal Center in Container (not Horizontal Center!)

388 CHAPTER 12: There and Back Again

5. Constraints (iPhone)

a. Select just the label and the text view

b. Choose Editor ➤ Pin ➤ Height

c. Control/right-drag from the label to the image view and choose Vertical Spacing

d. Control/right-drag from the image view to the text view and choose Vertical Spacing

e. Control/right-drag from the label to the Top Layout Guide, as shown in Figure 12-16,
and choose Vertical Spacing

f. Control/right-drag from the text view to the Bottom Layout Guide and choose
Vertical Spacing

g. Select the vertical constraint above the label and use the attribute inspector to check
the Standard option

h. Select the vertical constraint below the text view and use the attribute inspector to
check the Standard option.

Figure 12-15. Rough position of detail views

389CHAPTER 12: There and Back Again

6. Constraints (iPad)

a. Select all three views

b. Choose Editor ➤ Pin ➤ Height

c. Select the image view

d. Choose Editor ➤ Align ➤ Vertically Center in Container

e. Control/right-drag from the top label to the image view and add a Vertical Spacing
constraint

f. Control/right-drag from the bottom label to the image view and add a Vertical
Spacing constraint

On the iPhone, the label will be at the top of the container, the text view at the bottom, and the
image view will resize to fill the space between. On an iPad, the three views will be grouped together,
centered in the root view.

This seems like a lot of constraints, but it precisely describes how the views should adapt when
their container view changes size. There are two things that will affect that size: the dimensions of
different devices and the navigation bar and tab bar you’re about to introduce (in the next section).

You’ll need outlets for these view objects. Switch to the assistant editor; the
WLCharacterDetailViewController.h interface file will appear on the right. (If it doesn’t choose,
Automatic ➤ WLCharacterDetailViewController.h from the navigation ribbon.)

Add the following outlet declarations to the @interface section:

@property (weak,nonatomic) IBOutlet UILabel *nameLabel;
@property (weak,nonatomic) IBOutlet UIImageView *imageView;
@property (weak,nonatomic) IBOutlet UITextView *descriptionView;

Use the outlet connectors, which now appear next to the property declarations, to connect them to
their respective objects in the interface, as shown in Figure 12-17.

Figure 12-16. Adding a constraint to the top layout guide

390 CHAPTER 12: There and Back Again

Adding the Data Model
What’s left? You still have to create a data model and provide the table view with a data source and
table view cell object. Start with the data model.

I have a surprise for you. I created a data model for you. Isn’t that nice of me? The character
detail info is stored in an object array (NSArray). Each element of the array contains a dictionary
(NSDictionary). Each dictionary has the name of the character, the filename of its image, and a brief
description. All of this information is stored in the Characters.nsarray file, one of the resource files
you added earlier in this chapter.

Figure 12-17. Connecting character detail view outlets

Note The Characters.nsarray file is a serialized property list XML file. You can open it in almost any
plain text editor if you want to look at it. I created the file by writing an OS X command-line program that
creates all of the dictionaries, assembles them into an array, and writes (serializes) the array to a file. The
project that does this is in the Learn iOS Development Projects ➤ Ch 12 ➤ WLCharacterMaker
folder. Property lists and serialization are explained in Chapter 18.

Add the data model to your table view controller by creating a property to store the array in your
WLCharacterTableViewController.h interface file:

@property (strong,nonatomic) NSArray *tableData;

391CHAPTER 12: There and Back Again

Switch to WLCharacterTableViewController.m and add this code to -viewDidLoad:

NSURL *dataURL = [[NSBundle mainBundle] URLForResource:@"Characters"
 withExtension:@"nsarray"];
self.tableData = [NSArray arrayWithContentsOfURL:dataURL];

This code locates the Characters.nsdata file in your apps resources, reads it in as an NSArray
object, and stores it in your tableData property. You now have a data model!

Implementing Your Data Source
Now you need to feed the table view this information, via its data source object. The table view
controller file template includes dummy implementations for all the key data source and delegate
methods, they just need a little adjustment.

While still in the WLCharacterTableViewController.m file, find the -numberOfSectionsInTableView:
method and delete it. You don’t need it. Your table has one section, and that’s the default.

Find the -tableView:numberOfRowsInSection: method and replace its code with this (shown in bold):

- (NSInteger)tableView:(UITableView*)table numberOfRowsInSection:(NSInteger)sec
{
 return self.tableData.count;
}

This method provides the table view with the number of rows in the list, which is the number of
objects in the array.

Note You might have noticed that you haven’t connected the table view’s delegate or
dataSource outlets to your table view controller. That’s because your controller is a subclass of
UITableViewController, which is specifically designed to manage a table view. If you do not connect the
delegate or dataSource outlets yourself, the controller makes itself both the delegate and the data source
for the table, automatically. Isn’t that convenient?

Defining a Table View Cell Object
The last piece of the puzzle is to supply the table view a table cell object for each row—the table
view’s rubber stamp. Find the -tableView:cellForRowAtIndexPath: method and edit it so it looks
like this (new code in bold):

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellId = @"Cell";
 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellId
 forIndexPath:indexPath];

392 CHAPTER 12: There and Back Again

 NSDictionary *characterInfo = _tableData[indexPath.row];
 cell.textLabel.text = characterInfo[kNameKey];
 return cell;
}

This code should look very familiar—unless you skipped Chapter 5. The cell’s appearance is defined
by the cell prototype in the storyboard. Switch back to the Main_iPhone.storyboard (or _iPad) file
and locate the table view controller.

At the top of the table view you’ll see an area labeled Prototype Cells, as shown in Figure 12-18.
Select the first, blank, cell and use the attributes inspector to change the style to Basic, set its
identifier to Cell, and change its accessory to Disclosure Indicator (see Figure 12-18).

Now when your -tableView:cellForRowAtIndexPath: method asks for the “Cell” table cell object, it’s
already there. Your code just configures the text of the cell and it’s done.

The code in -tableView:cellForRowAtIndexPath: is still showing an error because you haven’t
defined the keys used to retrieve the values from the dictionaries. Do that in WLCharacterTableView
Controller.h, by adding this code immediately after the #import statements:

#define kImageKey @"image"
#define kNameKey @"name"
#define kDescriptionKey @"description"

Your table view is now finished. Run the app in the simulator, tap the second tab, and this time your
table is populated with the names from the data model, as shown in Figure 12-19.

Figure 12-18. Defining a table cell

393CHAPTER 12: There and Back Again

Pushing the Detail View Controller
Tapping a row in the table, however, doesn’t do much (on the right in Figure 12-19). That’s
because you haven’t defined the action that presents the detail view. Also, the table’s title is
Root View Controller, which is a bit “on the nose.” Fix the second one by selecting the
Main_iPhone.storyboard (or _iPad) file, locating the character table view controller, double-clicking
the title in the navigation bar, and changing it to “Characters,” as shown in Figure 12-20.

Figure 12-19. Working table view

Figure 12-20. Creating a segue for the table cell

394 CHAPTER 12: There and Back Again

Right/control-drag from the prototype cell object over to the character detail view controller (also
shown in Figure 12-20). When you release the mouse, choose the push option from the Selection
Segue group. This configures all rows that use this cell object to “push” the character details view
controller onto the navigation controller’s stack, presenting it as the active view controller.

Just as you did in Chapter 5, you need some code to prepare the detail view based on the row
the user tapped. Return to the WLCharacterTableViewController.m file. Add this method to your @
implementation:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 WLCharacterDetailViewController *detailsController = segue.destinationViewController;
 detailsController.characterInfo = _tableData[self.tableView.indexPathForSelectedRow.row];
}

The segue object contains information about the view controllers involved (both coming and going).
Use it to get the details view controller object the storyboard just created and loaded. You then
use the tableView object to get the row number of the currently selected row—the one the user is
tapping—and use that to get the character details from the data model and configure the new view
controller (by setting characterInfo).

There are still a few loose ends. The list view controller doesn’t know anything about
WLCharacterDetailViewController, and that controller doesn’t have a characterInfo property yet.
These are pretty trivial tasks. Start by adding this #import statement immediately after the other
#import statement:

#import "WLCharacterDetailViewController.h"

Switch to your WLCharacterDetailViewController.h interface file and add a property declaration to
hold the details of one character:

@property (strong,nonatomic) NSDictionary *characterInfo;

Select the WLCharacterDetailViewController.m implementation file. After the existing #import
statement, add a new one to pick up the dictionary key constants (kNameKey and so on) you
wrote earlier:

#import "WLCharacterTableViewController.h"

Finally, add this method to the @implementation:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 self.nameLabel.text = _characterInfo[kNameKey];
 self.imageView.image = [UIImage imageNamed:_characterInfo[kImageKey]];
 self.descriptionView.text = _characterInfo[kDescriptionKey];
}

When the view controller is about to appear on the screen, this code will populate the view objects
with details in characterInfo. Run the app in the simulator and try it out, as shown in Figure 12-21.

395CHAPTER 12: There and Back Again

Your app is now two-thirds finished. In this section, you created a navigable table view by nesting a
table (content) view controller inside a navigation (container view) controller. You used a storyboard
to configure the table’s cell object and created its segue to the detail view controller.

By now you should be getting pretty comfortable with content and container view controllers,
connecting them together, and creating segues to define your app’s navigation. The final section of
this chapter is going to show you how to use a page view controller.

Creating a Page View Controller
You have arrived at the third, and final, tab of your Wonderland app. This tab will display the text
of the book, one page at a time. This tab uses a page view controller (UIPageViewController)
object. It’s a container view controller that manages a (potentially huge) collection of content view
controllers. Each “page” consists of one or two content view controllers. The page view controller
provides gesture recognizers that perform, and animate, the navigation between pages in the
collection.

Adding a page view controller to your design is simple enough. Getting it to work is another matter.
Page view controllers are typically code intensive, and this app is no exception. To make the
situation even more exciting, you have to get the bulk of your code working before the page view will
do anything at all. So settle in, this is going to be a long trip.

You’re going to need a number of new classes, so create them all now. Use the New File...
command to create new Objective-C class files in your project’s Wonderland group. Table 12-2 lists
the new classes you need to create, the superclass of each, and what its role will be. When creating
new view controller classes, do not create an XIB file.

Figure 12-21. Finished character table

396 CHAPTER 12: There and Back Again

Just as table and picker views need a data source object, so does the page view controller. But
instead of providing a value on a wheel or one row of a table, the page view controller’s data source
provides it with the view controllers it wants to display, on demand.

Adding the Page View Controllers
It’s not all code. Use Interface Builder to create the two view controllers. Select the Main_Phone.
storyboard (or _iPad) file. Drag a new Page View Controller from the object library and add it to
your design. Also add a new View Controller object, as shown in Figure 12-22. Arrange them below
the other scenes.

Figure 12-22. Adding the page view controller and single page view controller

Table 12-2. Page View Classes

Class Superclass Description

WLBookViewController UIPageViewController Your custom version of the page view controller that
will manage the page view

WLBookDataSource NSObject The data source object that provides the page view
controller with the content view controllers it contains

WLPaginator NSObject A utility object that encapsulates the logic that
determines out how much text will fit on a page

WLOnePageViewController UIViewController The content view controller(s)

WLOnePageView UIView A custom view object used to display the text

397CHAPTER 12: There and Back Again

Add the page view controller to the tab bar by right/control-dragging from the tab bar controller to
the new page view controller, as shown in Figure 12-23. Select the view controllers relationship.

As you did with the other tabs, select the tab bar item in the page view controller’s scene. Use the
attributes inspector to set its title to “Book” and its tab icon to tab-book.

Now configure the page view controller itself. Select the page view controller object and use the
identity inspector to change its class to WLBookViewController. Switch to the attributes inspector
and double-check that the following properties are set:

Navigation: 	 Horizontal

Transition Style: 	 Page Curl

Spine Location: 	 Min

These settings define a “book-like” interface where the user moves horizontally through a collection
of view controllers, one per page. (If you set the Spine location to the Mid, you’d get two view
controllers per page.) A transition between controllers emulates the turning of a paper page.

Designing a Prototype Page
Now move over to the plain view controller you just added. Use the identity inspector to change its
class to WLOnePageViewController. Also change its Storyboard ID to “OnePage”. This last step is
important. This controller won’t be connected in Interface Builder; you’re going to create instances
of it programmatically. To do that, you need a way to refer to it, and you’ll use its storyboard ID to do
that. (It’s equivalent to UIView’s tag property.)

Figure 12-23. Adding the page view controller to the tab bar

398 CHAPTER 12: There and Back Again

With the preliminaries out of the way, create the interface for the one page view controller. From the
object library, add three view objects as follows:

1. Label

a. Font: System 15.0

b. Text: Alice's Adventures in Wonderland

c. Position it top center (iPhone) or top right (iPad)

2. Label

a. Font: System 11.0 (iPhone) or 13.0 (iPad)

b. Alignment: center (middle button)

c. Position at bottom center

3. View

a. Position between the two labels to fill in the available space

4. Constraints

a. Select both label objects

b. Fix their height (Editor ➤ Pin ➤ Height)

c. Select both label objects

d. Center them (Editor ➤ Align ➤ Horizontal Center in Container)

e. Add a constraint from the top label to the top layout guide (refer to Figure 12-16)

f. Select the newly created constraint and use the attributes inspector to check the
Standard option

g. Add a constraint from the bottom label to the bottom layout guide

h. Select the newly added constraint (see Figure 12-24) and set its Constant to 60
(allowing for the tab bar at the bottom of the screen)

i. Fill in the remaining constraints (Editor ➤ Resolve Auto Layout Issues ➤
Add Missing Constraints in One Page View Controller)

Select the UIView object and use the identity inspector to change its class to WLOnePageView. The
finished interface should look like the one in Figure 12-24.

399CHAPTER 12: There and Back Again

Switch to the assistant editor and, with the WLOnePageViewController.h file in the right pane, add
two #import statements:

#import "WLOnePageView.h"
#import "WLPaginator.h"

And then add four properties to the @interface:

@property (nonatomic) NSUInteger pageNumber;
@property (strong,nonatomic) WLPaginator *paginator;
@property (weak,nonatomic) IBOutlet WLOnePageView *textView;
@property (weak,nonatomic) IBOutlet UILabel *pageLabel;

Connect the outlet sockets of the last two properties to the WLOnePageView object in the middle of the
screen and the small label object at the bottom, as shown in Figure 12-25. The latter will display the
page number.

Figure 12-24. One page view controller interface

400 CHAPTER 12: There and Back Again

The other two properties let this view controller know which page of the book it is displaying and a
reference to the “paginator” object that determines what text is on that page. Taken together, this is
all the information this view controller needs to determine the text and page number to display.

Coding the One Page View
You’ve now done just about all you can do in Interface Builder. It’s time to roll up your sleeves and
start coding. This time, start from the “tail” end of this design and work back up to the page view
controller, filling in the details as you go. The last object in the chain is WLOnePageView, the custom
view that display the text of a page. Select the WLOnePageView.h file. Add two properties to the
@interface:

@property (strong,nonatomic) NSString *text;
@property (strong,nonatomic) NSDictionary *fontAttrs;

Switch to the WLOnePageView.m implementation file and write its -drawRect: method:

- (void)drawRect:(CGRect)rect
{
 [super drawRect:rect];
 [_text drawInRect:self.bounds withAttributes:_fontAttrs];
}

You should be able to decipher this, having read Chapter 11. When it’s time to draw itself, it fills the
view with the background color ([super drawRect:rect] does that for you), and then draws its text
using the attributes stored in its fontAttrs property.

You’re done with this class. Let’s move on to the view controller. You’ve already defined the interface
for the WLOnePageViewController class (in WLOnePageViewController.h). Select its implementation file
(WLOnePageViewController.m) and fill in the missing code.

Figure 12-25. Connecting the outlets in the page view

401CHAPTER 12: There and Back Again

At the top of the file, find the private @interface WLOnePageViewController () section and add a
prototype for the -loadPageContent method (new code in bold):

@interface WLOnePageViewController ()
- (void)loadPageContent;
@end

The –loadPageContent method prepares the WLOnePageView object to display the text for this
controller’s page. Add that method now:

- (void)loadPageContent
{
 _paginator.viewSize = _textView.bounds.size;
 if (![_paginator availablePage:_pageNumber])
 _pageNumber = _paginator.lastKnownPage;
 _textView.fontAttrs = _paginator.fontAttrs;
 _textView.text = [_paginator textForPage:_pageNumber];
 [_textView setNeedsDisplay];
 _pageLabel.text = [NSString stringWithFormat:@"Page %u",
 (unsigned int)_pageNumber];
}

This method loads the content of the view. It configures the paginator object with the size of its text
view object. It configures the text view to use the same font attributes the paginator is using, and
then asks the paginator for the text that appears on this page. It also updates the page number label
at the bottom of the view.

There’s also a little logic to handle the case where the page to display doesn’t exist anymore. This
can happen if you rotate the device; the dimensions of the view change, altering the text in each
page, and changing the number of pages in the book. In this situation, the view changes to the last
page available and displays that.

So when does -loadPageContent get sent? Under most circumstances, this kind of first-time-view-
setup code would be invoked from your -viewDidLoad method. But -loadPageContent needs to be
sent whenever the size of text view changes, and that can happen at any time, most notably when
the user changes the display orientation. Solve that by adding a -viewDidLayoutSubviews method
and sending -loadPageContent whenever the controller’s view layout is adjusted:

- (void)viewDidLayoutSubviews
{
 [super viewDidLayoutSubviews];
 [self loadPageContent];
}

You’re seeing a number of compiler errors because you haven’t implemented the paginator object
yet. Do that now.

402 CHAPTER 12: There and Back Again

The Paginator
The code for WLPaginator.h is in Listing 12-1 and the code for WLPaginator.m is in Listing 12-2.
If you want to copy and paste the solution, you’ll find the source files for the finished code in the
Learn iOS Development Projects ➤ Ch 12 ➤ Wonderland project folder.

Listing 12-1. WLPaginator.h

#import <Foundation/Foundation.h>

@interface WLPaginator : NSObject

@property (strong,nonatomic) NSString *bookText;
@property (strong,nonatomic) UIFont *font;
@property (readonly,nonatomic) NSDictionary *fontAttrs;
@property (nonatomic) CGSize viewSize;
@property (readonly,nonatomic) NSUInteger lastKnownPage;

- (BOOL)availablePage:(NSUInteger)page;
- (NSString*)textForPage:(NSUInteger)page;

@end

Listing 12-2. WLPaginator.m

#import "WLPaginator.h"

@interface WLPaginator ()
{
 NSMutableArray *ranges;
 NSUInteger lastPageWithContent;
 NSDictionary *fontAttrs;
}
- (NSRange)rangeOfTextForPage:(NSUInteger)page;
@end

@implementation WLPaginator

- (void)resetPageData
{
 ranges = [NSMutableArray array];
 lastPageWithContent = 1;
}

- (void)setBookText:(NSString *)bookData
{
 _bookText = bookData;
 [self resetPageData];
}

403CHAPTER 12: There and Back Again

- (void)setFont:(UIFont *)font
{
 if ([_font isEqual:font])
 return;
 _font = font;
 _fontAttrs = nil;
 [self resetPageData];
}

- (NSDictionary*)fontAttrs
{
 if (fontAttrs==nil)
 {
 NSMutableParagraphStyle *style = [NSMutableParagraphStyle new];
 style.lineBreakMode = NSLineBreakByWordWrapping;
 fontAttrs = @{
 NSFontAttributeName: self.font,
 NSParagraphStyleAttributeName: style
 };
 }
 return fontAttrs;
}

- (void)setViewSize:(CGSize)viewSize
{
 if (CGSizeEqualToSize(_viewSize,viewSize))
 return;
 _viewSize = viewSize;
 [self resetPageData];
}

- (NSUInteger)lastKnownPage
{
 return lastPageWithContent;
}

#define SpanRange(LOCATION,LENGTH) \
 ({ NSUInteger loc_=(LOCATION); NSMakeRange(loc_,(LENGTH)-loc_); })

- (NSRange)rangeOfTextForPage:(NSUInteger)page
{
 if (ranges.count>=page)
 return [ranges[page-1] rangeValue];

 CGSize constraintSize = _viewSize;
 CGFloat targetHeight = constraintSize.height;
 constraintSize.height = 32000;

 NSRange textRange = NSMakeRange(0,0);
 if (page!=1)
 textRange.location = NSMaxRange([self rangeOfTextForPage:page-1]);
 NSCharacterSet *wordBreakCharSet = [NSCharacterSet whitespaceAndNewlineCharacterSet];

404 CHAPTER 12: There and Back Again

 while (textRange.location<_bookText.length &&
 [wordBreakCharSet characterIsMember:[_bookText characterAtIndex:textRange.location]])
 {
 textRange.location += 1;
 }

 CGSize textSize = CGSizeMake(0,0);
 CGRect textBounds;
 NSCharacterSet *paraCharSet = [NSCharacterSet characterSetWithCharactersInString:@"\r"];
 while (textSize.height<targetHeight)
 {
 NSRange paraRange = [_bookText rangeOfCharacterFromSet:paraCharSet
 options:NSLiteralSearch
 range:SpanRange(NSMaxRange(textRange),_bookText.length)];
 if (paraRange.location==NSNotFound)
 break;

 textRange.length = NSMaxRange(paraRange)-textRange.location;
 NSString *testText = [_bookText substringWithRange:textRange];
 textBounds = [testText boundingRectWithSize:constraintSize
 options:NSStringDrawingUsesLineFragmentOrigin
 attributes:self.fontAttrs
 context:[NSStringDrawingContext new]];
 textSize = textBounds.size;
 }

 while (textSize.height>targetHeight)
 {
 NSRange wordRange = [_bookText rangeOfCharacterFromSet:wordBreakCharSet
 options:NSBackwardsSearch
 range:textRange];
 if (wordRange.location==NSNotFound)
 break;
 textRange.length = wordRange.location-textRange.location;
 NSString *testText = [_bookText substringWithRange:textRange];
 textBounds = [testText boundingRectWithSize:constraintSize
 options:NSStringDrawingUsesLineFragmentOrigin
 attributes:self.fontAttrs
 context:[NSStringDrawingContext new]];
 textSize = textBounds.size;
 }

 if (textRange.length!=0)
 lastPageWithContent = page;

 [ranges addObject:[NSValue valueWithRange:textRange]];
 return textRange;
}

405CHAPTER 12: There and Back Again

- (BOOL)availablePage:(NSUInteger)page
{
 if (page==1)
 return YES;
 NSRange textRange = [self rangeOfTextForPage:page];
 return (textRange.length!=0);
}

- (NSString*)textForPage:(NSUInteger)page
{
 return [_bookText substringWithRange:[self rangeOfTextForPage:page]];
}

@end

The details of how WLPaginator works isn’t important to this chapter, but if you’re curious read
the comments in the finished project. Conceptually, it’s straightforward. The paginator object is
configured with three pieces of information: the complete text of the book, the font it will be drawn
in, and the size of the text view that displays a page. The object then splits up the text of the book
into ranges, each range filling one page. Any view controller object can then ask the paginator for the
text that fits on its page.

Note This is hardly the most sophisticated way of implementing the paginator, but it’s sufficient for this app.

Coding the Page View Data Source
You finally get to the heart of the page view controller: the page view data source. A page view
controller data source must conform to the UIPageViewControllerDataSource protocol and
implement these two required methods:

- pageViewController:viewControllerBeforeViewController:
- pageViewController:viewControllerAfterViewController:

The page view starts out with an initial view controller to display. When the user “flips” the page
to the right or left, the page view controller sends the data source object one of these messages,
depending on the direction of the page turn. The data source, using the current view controller as a
reference, retrieves or creates the view controller that will display the next (or previous) page. If there
is no page, it returns nil.

Your data source must implement these methods. It also needs a readonly property that returns the
single paginator object used by all of the individual view controllers and a method to create the view
controller for an arbitrary page. Your WLBookDataSource.h file, therefore, looks like this:

#import "WLPaginator.h"
#import "WLOnePageViewController.h"

@interface WLBookDataSource : NSObject <UIPageViewControllerDataSource>

406 CHAPTER 12: There and Back Again

@property (readonly,nonatomic) WLPaginator *paginator;

- (WLOnePageViewController*)pageViewController:pageViewController
 loadPage:(NSUInteger)page;

@end

Now switch to the WLBookDataSource.m implementation file. You need an instance variable to store
the single paginator object, so add this before the @implementation section:

@interface WLBookDataSource ()
{
 WLPaginator *paginator;
}
@end

In the @implementation section, write a getter method for the paginator property that lazily creates
the object:

- (WLPaginator*)paginator
{
 if (paginator==nil)
 {
 paginator = [WLPaginator new];
 paginator.font = [UIFont fontWithName:@"Times New Roman" size:18];
 }
 return paginator;
}

The -pageViewController:loadPage: method is the workhorse of this data source. Add it now:

- (WLOnePageViewController*)pageViewController:(UIPageViewController*)pageViewController
 loadPage:(NSUInteger)page
{
 if (page<1 || ![paginator availablePage:page])
 return nil;

 WLOnePageViewController *controller;
 controller = [pageViewController.storyboard
 instantiateViewControllerWithIdentifier:@"OnePage"];
 controller.paginator = self.paginator;
 controller.pageNumber = page;
 return controller;
}

This method returns a configured WLOnePageViewController for any page in the book. It works by
checking to see if the requested page number is in the book. If not, it returns nil.

It then asks the storyboard object to create the controller and views contained in the scene with the
identifier “OnePage.” This is done because segues and actions aren’t used to navigate between view
controllers in a page view. It’s up to the data source to create them when requested.

407CHAPTER 12: There and Back Again

Note Remember, earlier, you assigned the view controller scene in the storyboard an identifier of
“OnePage.” This is why. If you need to programmatically load a view controller and its view objects from a
storyboard scene, the -instantiateViewControllerWithIdentifier: message is your ticket.

Once it has a new one page view controller object, it connects it to the paginator and sets the page
number it should display.

All that’s left to do is to implement the two required data source protocol methods. These also go in
your WLBookDataSource.m file:

- (UIViewController *)pageViewController:(UIPageViewController *)pageViewController
 viewControllerAfterViewController:(UIViewController *)viewController
{
 NSUInteger currentPageNumber = ((WLOnePageViewController*)viewController).pageNumber;
 return [self pageViewController:pageViewController loadPage:currentPageNumber+1];
}

- (UIViewController *)pageViewController:(UIPageViewController *)pageViewController
 viewControllerBeforeViewController:(UIViewController *)viewController
{
 NSUInteger currentPageNumber = ((WLOnePageViewController*)viewController).pageNumber;
 return [self pageViewController:pageViewController loadPage:currentPageNumber-1];
}

Since each one page view controller stores the page number it displays, all these two methods have
to do is request the page after, or before, the current one.

Initializing a Page View Controller
Your book implementation is almost complete. The only thing left to do is perform some initial setup
of the page view controller and data model when the page view controller is created. Switch to the
WLBookViewController.m implementation file. Begin by creating an instance variable to store the data
source object, by adding this #import statement and instance variable to the private @interface
WLBookViewController () section at the beginning of the file (new code in bold):

#import "WLBookDataSource.h"

@interface WLBookViewController ()
{
 WLBookDataSource *bookSource;
}
@end

408 CHAPTER 12: There and Back Again

Find the -viewDidLoad method, and add the rest of the code in this section, starting with:

self.dataSource = bookSource = [WLBookDataSource new];

This creates, and retains, the data source object and makes it the data source for this page view
controller.

NSURL *bookURL = [[NSBundle mainBundle] URLForResource:@"Alice"
 withExtension:@"txt"];
NSString *text = [NSString stringWithContentsOfURL:bookURL
 encoding:NSUTF8StringEncoding
 error:NULL];
bookSource.paginator.bookText = text;

This next block of code reads in the text of the book, stored in the Alice.txt file that was one of
the resource files you added at the beginning. The file is a UTF-8 encoded text file with each line
separated by a single carriage return (U+000d) character. This format is what the paginator expects.
The entire text is read into a single string and stored in the paginator, which will use it to assign text
to individual pages.

[self setViewControllers:@[[bookSource pageViewController:self loadPage:1]]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO
 completion:nil];

This last statement is probably the most important. It creates the initial view controller that the page
view controller will present. This must be done, programmatically, before the page view controller
appears.

Note Why it’s necessary to create a bookSource instance variable has to do with a quirk of the automatic
reference counting (ARC) memory management system. Read the comments in the finished project, and
Chapter 21, for an explanation.

Caution The initial view controllers for a page view controller is an array. The number of view controllers
must exactly match the number of view controllers the page view controller presents at one time. If you
configure the page view controller with a spine location of Mid, you must provide two initial view controllers:
one for the left page and a second one for the right page.

That was a lot of code, but you’re done! Run your app and test out the third tab, as shown in
Figure 12-26.

409CHAPTER 12: There and Back Again

You’ve created a truly complex app. You were aided, in part, by storyboards that allowed you to
map out and define much of your app’s navigation in a single file. But you also learned how to load
storyboard scenes programmatically when you need to.

I encourage you to take a moment and review the scenes in your storyboard file and the classes
you created to support them. Once you’re comfortable that you understand the organization of your
view controllers, how they work together, and the roles of the individual classes you created, you can
consider yourself an iOS navigation engineer, first class.

Using Pop-Over Controllers
There’s one oddball navigation class, the pop-over controller (UIPopoverController). The
pop-over controller is not a view controller. It’s a utility class that presents a view controller in a
floating window, on top of an existing view controller. The first view controller never goes away, but
is disabled while the pop-over’s view controller is active. In this sense, it’s work like any other modal
view controller.

Coding a pop-over isn’t difficult. You already did it in Chapter 7. Now that you know a lot more about
view controllers, you might want to skip back and review the code you added to present the media
picker interface on the iPad.

You can also create pop-over transitions using storyboard segues. When you create a modal segue
in an iPad storyboard, you get the added option of popover. Just choose this segue type and the
storyboard will wrap your view controller in a pop-over controller to present it.

Advanced Navigation
You have dived deep into the sea of iOS navigation, but you haven’t covered everything. To go
further, I suggest starting with two key documents: View Controller Programming Guide for iOS
and the View Controller Catalog for iOS in the Xcode Documentation and API Reference. The
first explains the nitty-gritty details about view controllers and navigation in general. The second
describes each of the individual view controller subclasses, and how to use them.

Figure 12-26. Working page view interface

410 CHAPTER 12: There and Back Again

Summary
You’ve traveled far in your quest to master iOS app development. In all but the simplest apps,
navigation is an important part of your design, every bit as important as what your app does.

In this chapter you gained experience using all of the major view controller classes:
UIViewController, UITableViewController, UINavigationController, UITabBarController, and
UIPageViewController. More importantly, you learned the difference between content and container
view controllers, and how to assemble and connect them using storyboards. You also learned the
fundamentals of presenting modal view controllers. You added some new tricks to your table view
skills; you learned how to create a table view using a storyboard, configure its cell object, create a
row selection segue, and use the storyboard methods for preparing the details view controller. You
created view controllers stored in a storyboard file programmatically, and used that to create a page
view controller data source.

This is a huge accomplishment. It’s so exciting that you should share it with your friends. The next
chapter will show you how to do just that.

411

Chapter 13
Networking, the Social Kind

Social networking has exploded in recent years and mobile apps have played a huge part in
that revolution. Not too long ago, it was quite difficult to add social networking features to your
app. Today, recent additions to iOS have made it so easy that—given what you know about view
controllers—the process can be accurately described as “trivial.” In this, rather short, chapter you
will learn how to:

Share content via Facebook, Twitter, Sina Weibo, Tencent Weibo, Flickr, Vimeo, 	
e-mail, SMS, and more

Customize content for different services	

Draw images off-screen	

Refactor code in Xcode	

Choosing which app to modify was probably the most difficult decision in this chapter. Would
people you know want to learn interesting facts about the Surrealists in Chapter 2? Of course you’d
want to share a shortened URL from Chapter 3. Do your friends want to know what your Magic
Eight Ball prediction was in Chapter 4? You took pictures of your cool stuff in Chapter 7; what if
someone wants to see them? It would be easy to add sharing features to all of these apps. In the
end, I choose to expand on the ColorModel app from Chapter 8. You’ve spent a lot of time and effort
picking just the right color, and I’m sure your friends will appreciate you sharing it with them.

Color My (Social) World
Start with the final ColorModel app from Chapter 8. You will add a button that shares the chosen
color with the world. iOS includes a standard “Activity” toolbar item, just for this purpose, so use
that. In the Main.storyboard interface file, add a toolbar to the bottom of the view controller’s
interface, as shown in Figure 13-1. The toolbar comes with one bar button item pre-installed. Select
the new toolbar and choose Editor ➤ Resolve Auto Layout Issues ➤ Add Missing Constraints.

412 CHAPTER 13: Networking, the Social Kind

Select the included bar button item and change its identifier property to Action.

Switch to the assistant editor view (View ➤ Assistant Editor ➤ Show Assistant Editor). Switch to the
CMViewController.h file (in the right pane) and add a new action:

- (IBAction)share:(id)sender;

Connect the action to the button by dragging the action connection to the button. I won’t include a
figure for that, because if you don’t know what that looks like by now you’ve clearly skipped most of
the earlier chapters.

Having Something to Share
Start out by sharing the red-green-blue code for the color. Currently, the code that generates the
HTML value for the color is in the -observeValueForKeyPath:ofObject:change:context: method
(CMViewController.m). You now have a second method that needs that conversion; consider

Figure 13-1. Adding a toolbar and toolbar button item

413CHAPTER 13: Networking, the Social Kind

reorganizing the code so this conversion is more readily accessible. Translating the current color
into its equivalent HTML value feels as if it lies in the domain of the data model, so add this method
declaration to CMColor.h:

- (NSString*)rgbCodeWithPrefix:(NSString*)prefix;

Switch to the CMColor.m implementation file, and add the new method to the @implementation
section:

- (NSString*)rgbCodeWithPrefix:(NSString*)prefix
{
 if (prefix==nil)
 prefix = @"";
 CGFloat red, green, blue, alpha;
 [self.color getRed:&red green:&green blue:&blue alpha:&alpha];
 return [NSString stringWithFormat:@"%@%02lx%02lx%02lx",
 prefix,
 lroundf(red*255),
 lroundf(green*255),
 lroundf(blue*255)];
}

Now that your data model object will return the color’s HTML code, replace the code in
CMViewController.m to use the new method. Edit the end of -observeValueForKeyPath:ofObject:
change:context: so it looks like this (replacement code in bold):

 else if ([keyPath isEqualToString:@"color"])
 {
 [self.colorView setNeedsDisplay];
 self.webLabel.text = [self.colorModel rgbCodeWithPrefix:@"#"];
 }
}

Note I’ve mentioned it once already, but it bears repeating. If you’re repeating yourself (writing the same
code in multiple places), stop and think about how you could consolidate that logic.

Presenting the Activity View Controller
While still in the CMViewController.m implementation file, add the new action method:

- (IBAction)share:(id)sender
{
 NSString *shareMessage = [NSString stringWithFormat:
 @"I wrote an iOS app to share a color!"
 @" RGB=%@",
 [self.colorModel rgbCodeWithPrefix:nil]];
 NSArray *itemsToShare = @[shareMessage];

414 CHAPTER 13: Networking, the Social Kind

 UIActivityViewController *activityViewController;
 activityViewController = [[UIActivityViewController alloc] initWithActivityItems:itemsToShare
 applicationActivities:nil];
 [self presentViewController:activityViewController
 animated:YES
 completion:nil];
}

The method starts out by collecting the items to share. Items can be a message (string), an image, a
video, a document, a URL, and so on. Basically, you can include any message, link, media object, or
attachment that would make sense to share. These are collected together into a single NSArray.

The next section is just as straightforward. You create a UIActivityViewController, initializing it with
the items you want to share. You then modally present the view controller.

That’s all there is to it! Run the project and tap on the share button, as shown in Figure 13-2.

Figure 13-2. Sharing a message

Note What sharing options appear for you will depend on what services you subscribe to, what services are
supported in your region, and what activities Apple has added this month.

Tapping the share button presents a picker that lets the user decide how they want to share
this message. While your goal is to add sharing to your app, the motivation behind the
UIActivityViewController is to allow the user to do any number of things with the data
items you passed in, all external to your application. This includes actions like copying the
message to the clipboard, which is why it’s named UIActivityViewController and not
UIPokeMyFriendsViewController.

415CHAPTER 13: Networking, the Social Kind

Tip It’s possible to invent and add your own activities to the list that appears. Create a concrete
subclass of UIActivity and pass your activity object (or objects, if you’ve created more than one) in the
applicationActivities: parameter.

Tapping the Twitter activity presents a tweet sheet. Tapping Mail composes a new mail message.
Each activity has its own interface and options. Some, like the copy to clipboard action, have no
user interface at all; they just do their thing and dismiss the controller.

Note This is one of those rare cases where the modal controller dismisses itself.
UIActivityViewController does not use a delegate to report what it did, and you are not responsible
for dismissing it when it’s done. In fact, the only way to find out if it performed an activity is to assign a code
block to its completionHandler property before presenting it. The code block receives two values: an
activityType string describing which activity was chosen (such as UIActivityTypePostToFacebook)
and a Boolean completed parameter that is YES if it was successful.

UIACTIVITYVIEWCONTROLLER AND THE IPAD

Like the photo image picker you used in Chapter 7, you must present a UIActivityViewController in a popover on
the iPad. This isn’t an issue for this app, because ColorModel only runs on an iPhone. For a universal application—one
designed to run on both the iPhone and iPad—you would check the idiom of the device to determine how to present the
view controller. You’d replace the last statement in -share: with something like this:

if (UIDevice.currentDevice.userInterfaceIdiom==UIUserInterfaceIdiomPad)

 {

 UIPopoverController *popover;

 popover = [[UIPopoverController alloc]

 initWithContentViewController:activityViewController];

 [popover presentPopoverFromBarButtonItem:sender

 permittedArrowDirections:UIPopoverArrowDirectionAny

 animated:YES];

 }

else

 {

 [self presentViewController:activityViewController

 animated:YES

 completion:nil];

 }

416 CHAPTER 13: Networking, the Social Kind

When presenting a popover that was initiated by touching an item in the toolbar, use the -presentPopoverFromBarBu
tton:permittedArrowDirection:animated: method. This code assumes that view object that sent the -share:
message (sender) is the bar button item. This is a safe assumption for this app, but if -share: was sent by other kinds
of view objects, you’d have to case that out and decide which UIPopoverController method to send.

Sharing More
I admit, sharing a hexadecimal color code probably isn’t going to get you a lot of “likes” on
Facebook. It’s pretty boring. When you share a color, what you want to share is a color. You can
improve the user experience by preparing as much content as you can for the activity view controller.
Include not just plain text messages, but images, video, URLs, and so on. The more the merrier.

It’s a shame you can’t attach the image displayed in the CMColorView. You went to a lot of
work to create a beautiful hue/saturation chart, with the selected color spotlighted. But all that
-drawRect: code draws into a Core Graphics context; it’s not a UIImage object you can pass to
UIActivityViewController.

Or could you?

If you remember the section “Creating Bitmaps From Drawings” in Chapter 11, it’s possible to create
a UIImage object by first creating an off-screen graphics context, drawing into it, and then saving the
results as an image object. That would let you turn your drawing into a sharable UIImage object! So
what are you waiting for?

Extracting Code
What you need now is a method that does the work of drawing the hue/saturation image in a
graphics context. Let’s call it -drawColorInRect:context:. You then need to change the -drawRect:
method so it calls -drawColorInRect:context: to draw the UIView. Then you need a second method
that creates an off-screen graphics context, calls -drawColorInRect:context: to draw the h/s chart
into that, and saves the result as a UIImage.

So, how do you get from the -drawRect: method you have now to the three you need? Xcode is
here to help! When you encounter refactoring problems like this, look to Xcode’s Refactor command.
There’s an extract tool just for this situation. It takes a selected section of code in a method and
extracts that into a separate method (or function). The result is a second method with the same
logic, which the first method then calls. Once the code is extracted, you can then write other
methods to call it.

Note Code refactoring is the art of restructuring your code without changing what it does (see
http://refactoring.com/). You refactor to better organize your classes, simplify their interfaces, reduce
complexity, or—as in this example—consolidate and reuse code.

http://refactoring.com/

417CHAPTER 13: Networking, the Social Kind

Start by finding the -drawRect: method in CMColorView.m. In the editor, select the code that starts
with the statement if (hsImageRef!=NULL && and ends with the last statement in the method, but
not the terminating } of the method, as shown in Figure 13-3. It’s important that the first two lines of
code are not selected—you’ll see why in a moment. In the figure, a couple of if blocks have been
collapsed so you can see the entire range of the selected code.

Choose the Refactor ➤ Extract ... command from either the Edit menu or by right/control+clicking on
the selected text, as shown in Figure 13-3. The extract tool analyzes the selected code, determines
what local variables the code depends on, and converts those local variables into parameters. It
then asks you to name the new method, as shown in Figure 13-4.

Edit the method’s declaration so it is - (void)drawColorInRect:(CGRect)bounds
context:(CGContextRef)context, make sure the New method option is selected, and click the
Preview button. The refactoring tool will let you preview the changes it’s about to make, as shown in
Figure 13-5. Review all of the changes carefully to make sure this is what you want, and then click
the Save button.

Figure 13-3. Selecting the code to extract

Figure 13-4. Extracting code into a new method

418 CHAPTER 13: Networking, the Social Kind

The extract tool has created a new -drawColorInRect:context: method with just the code that was
selected in -drawRect:. It has also rewritten -drawRect: so it is now:

- (void)drawRect:(CGRect)rect
{
 CGRect bounds = self.bounds;
 CGContextRef context = UIGraphicsGetCurrentContext();
 [self drawColorInRect:bounds context:context];
}

The important fact, from a refactoring standpoint, is that -drawRect: still does exactly what it did
before the change. The only difference is that a portion of its code has been relocated to a new
method that can be reused by other methods.

And that’s exactly what you want to do next. Add a new property getter method (to CMColorView.m)
named -image that returns a UIImage object containing the same image that -drawRect: draws in the
interface:

- (UIImage*)image
{
 CGRect bounds = self.bounds;
 CGSize imageSize = bounds.size;
 CGFloat margin = kCircleRadius/2+2;
 imageSize.width += margin*2;
 imageSize.height += margin*2;
 bounds = CGRectOffset(bounds,margin,margin);

 UIGraphicsBeginImageContext(imageSize);
 CGContextRef context = UIGraphicsGetCurrentContext();
 [[UIColor clearColor] set];
 CGContextFillRect(context,CGRectMake(0,0,imageSize.width,imageSize.height));
 [self drawColorInRect:bounds context:context];

Figure 13-5. Previewing refactoring changes

419CHAPTER 13: Networking, the Social Kind

 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 return image;
}

The new method starts out by getting the existing dimensions of the view object. It then creates a
rectangle that is kCircleRadius/2+2 larger on every side. It does this so that when the color “spot”
is drawn into the image, it won’t get clipped if it’s close to the edge of the h/s graph. (All UIView
drawing is clipped to the bounds of the view.) A bounds rectangle is then offset so it is centered in
the image.

The next step is to create an off-screen drawing context, the size of the final image. You then fill the
context with transparent pixels ([UIColor clearColor]). This is done so that any pixels that aren’t
drawn end up as transparent pixels in the image. You then reuse the -drawColorInRect:context:
method you just extracted to draw the h/s chart and selected color.

The final step is to extract what’s been drawn into the graphics context as a UIImage. The context
can then be discarded, and you return the finished UIImage object to the sender.

Switch to the CMColorView.h interface file, and add a readonly property declaration for the new
image getter:

@property (readonly,nonatomic) UIImage *image;

Providing More Items to Share
Now if you want to get what the CMColorView object draws on the screen as an image, you simply
fetch its image property. Use this in the -share: method. Select the CMColorViewController.m file
and change the first few statements with the following code (changes in bold):

- (IBAction)share:(id)sender
{
 NSString *shareMessage = [NSString stringWithFormat:
 @"I wrote an iOS app to share a color!"
 @" RGB=%@"
 @" @LearniOSAppDev",
 [self.colorModel rgbCodeWithPrefix:nil]];
 UIImage *shareImage = self.colorView.image;
 NSURL *shareURL = [NSURL URLWithString:@"http://www.learniosappdev.com/"];
 NSArray *itemsToShare = @[shareMessage,shareImage,shareURL];

Run the app again. This time, you’re passing three items (a string, an image, and a URL) to the
UIActivityViewController. Notice how this changes the interface, as shown in Figure 13-6.

http://www.learniosappdev.com/

420 CHAPTER 13: Networking, the Social Kind

Each activity responds to different kinds of data. Now that you include an image object, activities
like Save Image and Assign to Contact appear. Each activity is also free to do what it thinks makes
sense for the types of data you provide. The Mail activity will attach images and documents to
a message, Facebook will upload images to the user’s photo album, while Twitter may upload
the picture to a photo-sharing service, and then include the link to that image in the tweet. It’s
completely automatic.

Figure 13-6. Activities with more sharable items

Tip If you’re curious about what activities work with what kinds of data, refer to the UIActivity class
documentation. Its “Constants” section lists all of the built-in activities, and the classes of objects each
responds to.

Excluding Activities
iOS’s built-in activities are smart, but they aren’t prescient; they don’t know what the intent of your
data is. Activities know when they can do something with a particular type of data, but not if they
should. If there are activities that you, as a developer, don’t think are appropriate for your particular
blend of data, you can explicitly exclude them.

You’ve decided that printing a color example or assigning it to a contact don’t make any sense.
(You assume the user has no contacts for Little Red Riding Hood, The Scarlet Pimpernel, The Green
Hornet, or other colorful characters.) Return to the -share: method in CMColorViewController.m.
Immediately after the statement that creates the activityViewController, add this statement:

activityViewController.excludedActivityTypes = @[UIActivityTypeAssignToContact,
 UIActivityTypePrint];

Setting this property excludes the listed built-in activities from the choices. Run the app again. This
time, the excluded activities are, well, excluded (see Figure 13-7).

421CHAPTER 13: Networking, the Social Kind

The Curse of the Lowest Common Denominator
The activity view controller is a fantastic iOS feature, and it’s likely to get better with time. About the
only negative thing you can say about it is that it’s too easy to use. Its biggest problem is that there’s
no obvious way of customizing that data items based on what the user wants to do with it.

Case in point: When I was developing the app for the chapter, I initially added a simple -rgbCode
method to the CMColor class that returned the HTML code for the color (#f16c14). The problem with
this is Twitter. On Twitter, so-called “hash tags” start with a pound/hash sign and are used to signal
keywords in tweets. My color (#f16c14) would be interpreted as an “f16c14” tag, which doesn’t make
any sense. To avoid this, I rewrote the method so I could obtain the RGB value with, or without, the
hash and purposely left it out from the message passed to UIActivityViewController. That way, if
the user decided to share with Twitter, it wouldn’t tweet a confusing message.

Figure 13-7. Activities with some excluded

Note Sina Weibo also uses hash tags, but the pound/hash signs bracket the tag (#Tag#). Thus, #f16c14
would not be a hash tag on Weibo.

422 CHAPTER 13: Networking, the Social Kind

But that’s just the tip of the iceberg. Message length for mail and Facebook can be considerably
longer than those on Twitter. Why should your text message or Facebook post be limited to 140
characters?

Providing Activity Specific Data
As it happens, the iOS engineers did not ignore this problem. There are several ways of customizing
your content based on the type of activity the user chooses. The two tools iOS provides are:

	UIActivityItemSource

	UIActivityItemProvider

The first is a protocol, which your class adopts. Any object that conforms to the
UIActivityItemSource protocol can be passed in the array of data items to share. The
UIActivityViewController will then send your object these two (required) messages:

- (id)activityViewController:(UIActivityViewController *)activityViewController
 itemForActivityType:(NSString *)activityType
- (id)activityViewControllerPlaceholderItem:(UIActivityViewController *)activityViewController

The first method is responsible for converting the content of your object into the actual data you
want to share, or act upon. What’s significant about this message is that it includes the activity the
user chose in the activityType parameter. Use this parameter to alter your content based on what
the user is doing with it.

For ColorModel, you’re going to turn your CMViewController object into a sharing message proxy
object. Select your CMViewController.h file. Adopt the UIActivityItemSource protocol in your
CMViewController class (changes in bold):

@interface CMViewController : UIViewController <UIActivityItemSource>

Tip If you had a more complex conversion, or multiple conversions, I’d recommend creating new classes
(possibly subclasses of UIActivityItemProvider) that did nothing but perform the transformation. This
would make it easy to develop as many different kinds of conversions as you needed.

Switch to CMViewController.m. Add the first of UIActivityItemSource’s two required methods:

- (id)activityViewController:(UIActivityViewController *)activityViewController
 itemForActivityType:(NSString *)activityType
{
 CMColor *color = self.colorModel;
 NSString *message = nil;
 if ([activityType isEqualToString:UIActivityTypePostToTwitter] ||
 [activityType isEqualToString:UIActivityTypePostToWeibo])
 {
 message = [NSString stringWithFormat:
 @"Today's color is RGB=%@."

423CHAPTER 13: Networking, the Social Kind

 @"I wrote an iOS app to do this!"
 @"@LearniOSAppDev",
 [color rgbCodeWithPrefix:nil]];
 }
 else if ([activityType isEqualToString:UIActivityTypeMail])
 {
 message = [NSString stringWithFormat:
 @"Hello,\n\n"
 @"I wrote an awesome iOS app that lets me share"
 @"a color with my friends.\n\n"
 @"Here's my color (see attachment): hue=%.0f\u00b0,"
 @"saturation=%.0f%%, "
 @"brightness=%.0f%%.\n\n"
 @"If you like it, use the code %@ in your design.\n\n"
 @"Enjoy,\n\n",
 color.hue,
 color.saturation,
 color.brightness,
 [color rgbCodeWithPrefix:@"#"]];
 }
 else
 {
 message = [NSString stringWithFormat:
 @"I wrote a great iOS app to share this color: %@",
 [color rgbCodeWithPrefix:@"#"]];
 }

 return message;
}

This method performs the conversion from your object to the actual data object that the activity view
controller is going to share or use. For this app, your controller will provide the message (NSString
object) to post.

Your method examines the activityType parameter and compares it against one of the known
activities. (If you provided your own custom activity, the value would be the name you gave your
activity.) For Twitter and Weibo, it prepares a short announcement, avoiding inadvertently creating
any hash tags, and including a Twitter-style mention. If the user chooses to send an e-mail, you
prepare a rather lengthy message, without a mention. For Facebook, SMS, and any other activity,
you create a medium-length message that doesn’t worry about hash tags.

Find the -share: method and change the beginning of it so it looks like this (removing shareMessage
and adding the new code in bold):

- (IBAction)share:(id)sender
{
 UIImage *shareImage = self.colorView.image;
 NSURL *shareURL = [NSURL URLWithString:@"http://www.learniosappdev.com/"];
 NSArray *itemsToShare = @[self,shareImage,shareURL];

Instead of preparing a message before the activity view controller is presented, you now pass your
CMViewController object with a promise to provide the message. Once the user has decided what

http://www.learniosappdev.com/

424 CHAPTER 13: Networking, the Social Kind

they want to do (print, Tweet, Message, and so on), your view controller will receive a -activityView
Controller:itemForActivityType: message and produces the data.

Promises, Promises
You may have noticed the “chicken and egg” problem here. What activities are available
is determined by the kinds of data you pass to the activity view controller. But with
UIActivityItemSource, the data isn’t produced until the user chooses an activity. So how does the
activity view controller know what kind of activities to offer if it doesn’t yet know what kind of data
your method plans to produce?

The answer is the second required UIActivityItemSource method, and you need to add that now:

- (id)activityViewControllerPlaceholderItem:(UIActivityViewController *)activityViewController
{
 return @"My color message goes here.";
}

This method returns a placeholder object. While it could be the actual data you plan to share, it
doesn’t have to be. Its only requirement is that it be the same class of the object that -activityView
Controller:itemForActivityType: will return in the future. Since your -activityViewController:item
ForActivityType: returns an NSString, all this method has to do is return any NSString object.

Figure 13-8. Activity customized content

Caution The object that -activityViewController:itemForActivityType: returns should be
“functionally equivalent” to the final data object, even if it’s not the same data. For example, if you are supplying
an NSURL object, the scheme (http:, mailto:, file:, sms:, and so on) of the placeholder URL should be the same.

Run the app again and try out different activities, as shown in Figure 13-8.

425CHAPTER 13: Networking, the Social Kind

Big Data
The alternative technique for providing activity data is to create a custom subclass of
UIActivityItemProvider. This class, which already conforms to the UIActivityItemSource protocol,
produces your app’s data object in the background. When the activity view controller wants your
app’s data, it sets the activityType property of your provider object and then requests its item
property. Your subclass must override the -item method to provide the desired data, referring to
activityType as needed.

UIActivityItemProvider is intended for large or complex data that’s time-consuming to create, such
as a video or a PDF document. It receives the -item message on a secondary execution thread—not
on your app’s main thread, which is the thread all of your code in this book has executed on so
far. This allows your provider object to work in the background, preparing the data, while your app
continues to run. It also requires an understanding of multi-tasking and thread-safe operations,
topics that I visit in Chapter 24.

In short, if the data you need to share isn’t particularly large, complicated, or time consuming
to construct, or you’re just not comfortable with multi-tasking yet, stick with adopting
UIActivityItemSource.

Sharing with Specific Services
I’d like to round off this topic with some notes on other sharing services in iOS, and which ones to use.

The UIActivityViewController class is relatively new, and largely replaces several older APIs.
If you search the iOS documentation for classes that will send e-mail, text messages (SMS), or
Tweets, you’re likely to find MFMailComposeViewController, MFMessageComposeViewController, and
TWTweetComposeViewController. Each of these view controllers presents an interface that lets the user
compose and send an e-mail message, a short text message, or a Tweet, respectively. The latter two
don’t offer any significant advantages over UIActivityViewController or SLComposeViewController
(which I’ll explain in a moment), and their use in new apps is not recommended.

The MFMailComposeViewController still has a trick or two to offer. Its biggest talent is its ability to
create an HTML formatted mail message and/or pre-address the message by filling in the To, CC,
and BCC fields. This allows you to create pre-addressed, richly formatted e-mail, with embedded
CSS styling, animation, links, and other HTML goodies.

If you want to present your user with an interface to post to a specific social service—rather
than asking them to choose—use the SLComposeViewController class. You create an
SLComposeViewController object for a specific service (Twitter, Facebook, or Sina Weibo) using the
+composeViewControllerForServiceType: message. You then configure that view controller with the
data you want to share, as you did with UIActivityViewController, and present the view controller
to the user. The user edits their message and away it goes.

Note To use SLComposeViewController, add #import <Social/Social.h> to your
implementation file.

426 CHAPTER 13: Networking, the Social Kind

Other Social Network Interactions
In ColorModel, we’ve only explored the sharing side of social networking. If you want your app to
get information from your user’s social networks, that’s another matter altogether. Other types of
interactions, like getting contact information about a user’s Facebook friends, are handled by the
SLRequest class.

An SLRequest works very similarly to the way an NSURLRequest works. You used NSURLRequest objects
in Chapter 3 to send a request to the X.co URL shortening service. To use a social networking
system, you prepare an SLRequest object in much the same manner, providing the URL of the
service, the method (POST or GET), and any required parameters. You send the request, providing a
code block that will process the response.

The biggest difference between SLRequest and NSURLRequest is the account property. This property
stores an ACAccount object that describes a user’s account on a specific social networking service.
This property allows SLRequest to handle all of the authentication and encryption required to
communicate your request to the servers. If you’ve ever written any OAuth handling code, you’ll
appreciate how much work SLRequest is doing for you.

To use other social networking features you must, therefore, prepare the following:

Service Type	

Service URL	

Request method (POST, GET, DELETE)	

Request parameters dictionary	

The user’s 	 ACAccount object

The service type is one of SLServiceTypeFacebook, SLServiceTypeSinaWeibo, SLServiceTencentWeibo,
or SLServiceTypeTwitter. The URL, method, and parameters dictionary are dictated by whatever
kind of request you’re making. For those details, consult the developer documentation for the
specific service. Some places to start reading are listed in Table 13-1.

Table 13-1. Social Services Developer Documentation

Social Service URL

Facebook https://developers.facebook.com/docs/

Sina Weibo http://open.weibo.com/wiki/

Tencent Weibo http://dev.t.qq.com/

Twitter https://dev.twitter.com/docs

Finally, you’ll need the ACAccount object for the user’s account. Account and login information is
maintained by iOS for your app, so your app only needs to request it. Whether the user wants to
authorize your app to use their account, or they need to sign in, it’s all handled for you.

https://developers.facebook.com/docs/
http://open.weibo.com/wiki/%20
http://dev.t.qq.com/
https://dev.twitter.com/docs

427CHAPTER 13: Networking, the Social Kind

The basic steps to obtaining an account object are:

1. Create an instance of the ACAccountStore object.

2. Send the account store an -accountTypeWithAccountTypeIdentifier:
message to get an ACAccountType object for the service you’re interested
in. An ACAccountType object is your key to the user’s accounts on a specific
service.

3. Finally, you send the account store a -requestAccessToAccountsWithType:
message. If successful (and allowed) your app will receive an array of
ACAccount objects for that user.

Services like Facebook allow an iOS user to be logged into only one account at a time. Twitter, on
the other hand, permits a user to be connected to multiple accounts simultaneously. Your app will
have to decide if it wants to use all of the account objects, selected ones, or just one. Once you
have an ACAccount object, use it to set the account property of the SLRequest, and you’re ready to
get social!

Summary
You’ve learned how to add yet another nifty feature to your app, allowing your users to connect
and share content with friends and family around the world—and it only took a smattering of code
to get it working. You learned how to tailor that content for specific services, or exclude services.
If you want more control over which services your app provides, you learned how to use the
SLComposeViewController to create a specific sharing interface, along with the SLRequest class that
provides a conduit for unlimited social networking integration.

During your journey, you also gained some practical experience in drawing into an off-screen
graphics context, and using Xcode’s refactoring tool. The refactoring command contains a powerful
set of code maintenance tools. If you plan to rename or relocate a method or property, you should
make friends with the refactoring tools and other global editing commands. To read more about
them, search for “Make Projectwide Changes” in Xcode’s Documentation and API Reference
window.

Sharing posts with your friends and colleagues isn’t the only way iOS apps communicate. In Chapter
3 you wrote an app that uses an Internet URL shortening service. In the next chapter, you’re going to
write an app that talks to another iOS device directly, via Wi-Fi or Bluetooth.

429

Chapter 14
Networking, The Nerdy Kind

You might use (social) networking to crowd-source the perfect color for your bookshelves or find
a great place to stay on your next trip, but “networking” means something altogether different to
computer engineers. A data network allows computer systems and devices to directly exchange
information, and is largely what makes portable devices useful. (How sad would your iPhone be if it
couldn’t place telephone calls, get text messages, surf the web, send e-mail, or download apps?)

The goal of this chapter is to introduce you to some simple peer-to-peer networking. “Simple” and
“peer-to-peer networking” are words you don’t often see together. Networking is tricky. Peer-to-peer
networking is downright thorny. So if you want to write an app that directly exchanges data with
another device, what are your choices?

Note Peer-to-peer means that two coequal computer systems are communicating directly with one another,
exchanging data, without going through an intermediate computer system, such as a message or web server.

Your choices are to spend a lot of time learning about network communications—or use GameKit.
The GameKit designers realized that it would be a lot of fun if two or more iOS users could sit down
and all play the same game. The individual iOS apps would get together to form an ad-hoc network.
They could then send live updates to each other, so everyone can participate. Knowing how incredibly
difficult it is to construct a network (Wi-Fi, Bluetooth, and so on), coordinate the discovery of other
players, maintain the connections between them, and distribute messages to all parties, they did you
a huge favor: they wrote it for you. GameKit does all of that work automatically. All your app has to
do is prepare the data.

As an added bonus, you get to learn GameKit and create a Game Center–aware app. That alone is
worth reading this chapter. A Game Center–aware app can network with other players, post scores
to a worldwide leaderboard, participate in challenges, and more. In this chapter you will:

Develop a single-player and two-player game	

Assign your app an ID and register it with iTunes Connect	

430 CHAPTER 14: Networking, The Nerdy Kind

Create leaderboards for your app in Game Center	

Record player scores	

Use GameKit to establish a peer-to-peer data connection with another 	
iOS device

Exchange real-time data between two iOS apps	

Learn some new things about loading view controllers, creating animations, 	
and establishing the orientations a view controller supports

The chapter takes a departure from previous ones. Most of the code for your app isn’t listed in this
chapter. The bulk of the code for the game—which is actually secondary to this chapter’s objective—is
in the Learn iOS Development Projects ➤ Ch 14 folder. Your app will progress through several
iterations, each of which is in a subfolder. I’ll describe the important elements and milestones of the
app’s development, but not all steps in detail.

Figure 14-1. SunTouch design

Note To test GameKit, you must be a registered iOS developer. To test peer-to-peer communications, you must
have two, provisioned, iOS devices. GameKit peer-to-peer networking does not work in the iOS simulator.

SunTouch
The app for this chapter is a game named SunTouch. Play begins with a star field. Touch a point in the
field to blast a hole in space, as shown in Figure 14-1. Any suns hiding in that area are captured. The
game ends when you’ve captured all of the suns. It’s sort of asteroids meets minesweeper.

431CHAPTER 14: Networking, The Nerdy Kind

There are two additional strategic elements. The size of the blast increases the longer you wait
between blasts. An indicator at the bottom of the screen gives the user an idea of how big the
blast radius will be. So waiting gives you a bigger blast and a better chance of capturing a sun.
Countering that, the score for capturing a sun goes down over time. So the longer you wait to
capture a sun, the lower your score. Does that all make sense? Let’s get started.

Creating SunTouch
The first iteration of SunTouch is in the Learn iOS Development Projects ➤ Ch 14 ➤ SunTouch-1
folder. Your game will need an opening screen, a screen of instructions, and a screen to play the
game. The app was based on the Utility app project template. This template has an initial view
controller and an alternate view controller that appears when the user taps the small “info” button.
On the iPad, this appears in a popover.

The project was created with a company identifier of com.apress.learniosdev and a class prefix of
ST. Up to this point, the company identifier hasn’t been that important. Now it is. To test an app that
uses Game Center, you must register your app with Apple. To register, you must assign your app
a unique app ID. If you, or your organization, own an Internet domain name, you can use that as a
unique prefix for all of the apps you develop.

You don’t have to worry about it just yet. You can change your app’s identifier, after its project has
been created, in the project settings. Just start thinking about the identifier you want to use; I’ll show
you how to change it when the time comes.

Designing the Initial Screens
In the first iteration, I’ve just done the window dressing. I added a backdrop graphic and two
buttons to the initial view controller (STMainViewController), one to start a single player game
and a second to start a two-player game, as shown in Figure 14-2. In the flipside view controller,
I added image view and text view objects to provide some basic game-play instructions, also
shown in Figure 14-2.

432 CHAPTER 14: Networking, The Nerdy Kind

If you were developing this project yourself, you would:

1. Create a new project based on the Utility iOS app template

a. Set the class prefix to ST

b. Make sure Use Core Data is not checked

2. Add the image resources in the SunTouch (Resources) folder to your
Images.xcassets image catalog. Drop the icon resources in the
SunTouch (Icons) folder into the catalog’s AppIcon group.

3. In the Main_iPhone.xib (or _iPad) file, find the flipside view and follow these steps:

a. If you’re developing the iPad version, the flipside view is presented in a
popover. Begin by selecting the Flipside View Controller and, using the
attributes inspector, set its simulated metrics size to Freeform. Select the
root view and, using the size inspector, set its height to 500.

b. Add image view and text view objects as shown in Figure 14-2. The
image resource files used are Strike.png, SunHot.png, and SunCold.png.
The text is white, with a black background that’s 50% transparent.

Figure 14-2. Initial and flipside interface design

433CHAPTER 14: Networking, The Nerdy Kind

c. Add one more image view object, set its image to Starfield.png, its mode
to Aspect Fill, and resize it to fill the view. With the image view selected,
choose Edit ➤ Arrange ➤ Send to Back. This will put the star image
behind the other view objects.

d. Pin the height and the width of the image view with the Strike image.
For the background image view, add constraints so its top, bottom,
left, and right edges are flush (0 pixels from) with the Top Layout
Guide, Bottom Layout Guide, leading container, and trailing container,
respectively. If you arrange the other views so they’re clearly visible on a
3.5” iPhone, you don’t need any other constraints.

4. In the main view controller:

a. Add two button objects, labeled Single Player and Two Player. Set their
shadow color to White Color. (This makes the button text easier to read
on the dark background.)

b. Add a Vertical Spacing constraint from the lower button to the Bottom
Layout Guide, another from the upper button to the lower one, and then
horizontally center both buttons in the container view.

c. Add an image view object, set its image to Billboard-iPhone.png, and
resize it to fill the view. Arrange it behind the other views. Use the Editor
➤ Pin submenu to pin its top, bottom, leading, and trailing space to its
superview.

d. Select the Main View Controller (iPhone version only) and use the
attributes inspector to set its status bar option to None. This will hide
the status bar information (battery, Wi-Fi indicator, and so one) that’s
normally at the top of the display.

e. In the iPad version, change the title of the “Info” navigation bar button to
“Instructions.”

Tip If you have a large view object in your interface, create and position it last. If you try to add it first, it will
be very difficult—if not impossible—to add the views that go in front of it because Interface Builder will assume
that the foreground objects should be subviews of the background object, instead of overlapping peers.

Run the project and test the flipside view, as shown in Figure 14-3. The code that accomplishes
this is supplied by the template, and can be found in the STMainViewController and
STFlipsideViewController classes.

434 CHAPTER 14: Networking, The Nerdy Kind

So far, the game is looking pretty snazzy. It’s a shame there’s no actual game yet. The next step is
to create the single-player version of the game. This will become the foundation for integrating with
Game Center and adding networking.

Creating the Single Player Version
The code for the single player game is in the Learn iOS Development Projects ➤ Ch 14 ➤ SunTouch-2
folder. This version of the project adds 12 files:

STGameDefs.h
STGameViewController.h, STGameViewController.m, STGameViewController.xib
STGameView.h, STGameView.m
STStrike.h, STStrike.m
STSun.h, STSun.m
STGame.h, STGame.m

The STGameDefs.h is a header file containing constants, macros, and in-line functions used by most
of the other files. In larger projects, it’s common to collect all of the globally relevant definitions into
a single file that can be imported by whatever modules need them.

The game starts when the user taps the “single player” button in the main storyboard. A new view
controller was added to the storyboard and its class changed to STGameViewController, as shown in
Figure 14-4. A modal segue was added from the single player button to the new view controller.
The segue was given the identifier singlePlayer. The game starts when the STGameViewController
is presented.

Figure 14-3. Testing the game instructions

435CHAPTER 14: Networking, The Nerdy Kind

Loading STGameViewController
This project has an unusual Interface Builder file organization. So far, you’ve developed projects
where the interfaces were all designed in a single storyboard file. This project defines the
interfaces for the initial view and the flipside view in the storyboard file. The view objects for the
STGameViewController, however, are defined in a separate STGameViewController.xib file. A view
controller can obtain its view objects from a scene in a storyboard, its own .xib file, or can create
them programmatically. Here’s how it works:

1. When a view controller is loaded from a storyboard, it and its view objects are
(normally) created at the same time. The view controller’s view objects already
exist when it’s time to present the interface, so there’s nothing more to do.
This is the typical arrangement when using storyboards.

2. If the view controller is asked to present its interface and it doesn’t have any
view objects, it sends itself a -loadView message. The -loadView method first
looks for the Interface Builder resource file the controller was initialized with.
This applies when you programmatically create a view controller using the
-initWithNibName:bundle: method. When creating view controller this way,
it’s recommended that you explicitly tell the view controller the name of the
file that contains its interface.

3. If the view controller doesn’t have an explicit .xib filename, it tries to load
the interface file with the same name as its class, which in this case is
STGameViewController.xib. This is how STGameViewController loads its
interface in SunTouch.

4. Finally, if there were no views in the storyboard file, and no .xib file can be
loaded, the -loadView method creates an empty UIView object as its view.

Figure 14-4. View controllers in storyboard

436 CHAPTER 14: Networking, The Nerdy Kind

Note If your view controller has a special view loading procedure, you can override its -loadView method
and create its views however you want.

Figure 14-5. Deleting STGameViewController’s view objects

In SunTouch you get the STGameViewController to load its interface from the STGameViewController.xib
file by deleting its interface in the storyboard. Figure 14-5 shows the root view object for the
STGameViewController being deleted in Interface Builder. Once deleted, the view controller appears
hollow, as shown on the right in Figure 14-5.

So why did I do this? When using storyboards for a universal app, you must lay out your interface twice:
once for the iPhone and again for the iPad. For interfaces like the game instructions, this is great, since
the iPhone and iPad version are substantially different. The interface for STGameViewController, however,
works equally well on the iPhone and iPad. By deleting the interface in the storyboard files, and
supplying an STGameViewController.xib file, both the iPhone and iPad version load the same Interface
Builder file. Now you have a single STGameViewController.xib file to maintain. You’ll see where this
reduces the work you have to do when you get to the two-player version of the game.

How SunTouch Works
I’m not going to explain everything in detail, but here’s an overview of how the game works. The
-viewDidAppear: method in STGameViewController starts everything when it sends itself the -startGame
message. -startGame creates an STGame object (the game engine), connects it to the STGameView
object, and then starts the game engine and the strike preview animation.

Gameplay works through messages sent to the STGame object. When the user touches the screen, a
-touchInGame:event: action is sent to the game view controller. The controller determines where the
user touched and sends a -strike:radius:inView: message to the game engine.

437CHAPTER 14: Networking, The Nerdy Kind

The game engine maintains the list of hidden suns. It uses the strike coordinates and radius to
determine if a strike will capture a sun. These strike and capture events are communicated
to the game view via notifications (kGameStrikeNotification and kGameSunCaptureNotification).
The game view observes these notifications and creates the animations that you see on the
screen.

The game engine also posts a kGameScoreDidChangeNotification notification whenever the score
changes, and a kGameDidEndNotification notification when it’s all over. The game and main
view controllers observe these notifications to update the score view and dismiss the game view
controller at the end. The game view controller also keeps two other animations going: the score
weight is periodically updated using a timer (NSTimer) and the strike preview animation is restarted
after each strike.

There are two interesting aspects of the game’s design. First, there’s the game space coordinate
system. The location of the hidden suns, the coordinates of strikes, the size of the strike radius,
and so on are stored and calculated using a logical coordinate system with values and distances
between 0.0 and 1.0. “Why” you ask? Because the two-player game must translate between the
coordinates of two iOS devices. The two players could be using different size devices, possibly in
different orientations. By performing all game-play calculations in a unit coordinate system, these
differences can be ignored. A sun at unit coordinates (0.25,0.25) is in the upper-left quadrant of
the screen, regardless if that screen is an iPod Touch in landscape orientation or an iPad in portrait
orientation. Methods in STGameView (-pointFromUnitPoint:, and so on) translate between game unit
and view coordinates.

Customizing Core Animations
The other features you may want to look at are the animations. SunTouch uses several Core
Animation sequences. Many animations use the block-based methods you learned in Chapter 11,
but sometimes you need an animation that doesn’t run in a straight line or uses one of the simple
animation curves (ease in, ease out, ease in-out, or linear). In these situations, you need to create a
CAAnimation object yourself.

Look at the code in -startStrikeGrowAnimation that you’ll find in STGameViewController.m. This
code creates an animation that changes the size of the strike preview image view object over time:

NSMutableArray *times = [NSMutableArray new];
NSMutableArray *values = [NSMutableArray new];
CGRect rect;
for (float time=0.0f; time<=1.0f; time+=0.1f)
 {
 CGFloat r = STFloor((maxRadius-kStrikePreviewMinRadius)
 *STSquareRoot(time)
 +kStrikePreviewMinRadius);

438 CHAPTER 14: Networking, The Nerdy Kind

 rect = CGRectMake(0,0,r*2,r*2);
 [times addObject:@(time)];
 [values addObject:[NSValue valueWithCGRect:rect]];
 }
CAKeyframeAnimation* animation;
animation = [CAKeyframeAnimation animationWithKeyPath:@"bounds"];
animation.duration = kStrikePreviewGrowDuration;
animation.beginTime = 0;
animation.calculationMode = kCAAnimationCubic;
animation.keyTimes = times;
animation.values = values;
[previewView.layer addAnimation:animation forKey:@"grow"];

This code creates a keyframe animation (CAKeyframeAnimation) object. CAKeyframeAnimation is
a subclass of CAAnimation, used to manage an animation sequence. A keyframe animation
defines several reference values at specific times during the animation. The animation object
can then calculate a continuous curve of values by interpolating between keyframe values.
A CAKeyframeAnimation object can animate almost any property of the view object: its frame,
center, background color, rotation, scaling, transparency, drop shadow, a Core Image color filter,
and so on. By creating a sequence of keyframe values, you can create any animation curve you
want. You can make the view bounce, wink in and out, loop in a circle, pulse, or swing like a
pendulum.

In this app, the keyframe defines a logarithmic size change. The code calculates 11 keyframe values
at equidistant times (0.0 to 1.0, in 0.1 increments). The value of each keyframe is the view’s bounds,
which is scaled based on the elapsed time, squared. Intermediate values are calculated using cubic
interpolation, which will closely approximate to the actual logarithmic curve; it’s not perfect, but it’s
good enough.

Once the animation object is configured with the list of keyframe values and times, it is attached to
the layer property of the view object. Remember (from Chapter 11) that UIView objects are built from
CALayer objects. It’s the CALayer object that actually appears in the interface, and is the object that
can be animated.

Playing the Game
Run the app and give it a try, as shown in Figure 14-6. The single-player game will run in the
simulator or on any provisioned device.

439CHAPTER 14: Networking, The Nerdy Kind

Note While using Core Animation to fling UIImageView objects around the screen is good enough for
this project, I doubt anyone has created any killer iOS games using similar techniques. If you’re interested in
creating games, you should look into technologies like Sprite Kit (new in iOS 7), OpenGL, or one of the many
game engines that have been developed for iOS. Game engines are third-party (read “not written by Apple”)
frameworks that make it much easier to write spectacular games. Apress publishes a diverse selection of
books on iOS game development.

Figure 14-6. Single player game

I recommend that you spend a little time exploring this project. Start by observing how the interface
elements work: the strike animation, the hole left behind afterwards, the sun capture animation,
the updating score and weight labels, and the strike size preview. Then trace the messages that
make those things happen until you’re comfortable with how the whole app works. Understanding
how strikes are sent to the game (STGame) and how the game sends sun capture messages will be
important when you get to the two-player version.

The next step is to add the GameKit to your app and integrate it with the Game Center.

440 CHAPTER 14: Networking, The Nerdy Kind

Plugging into Game Center
Game Center is a service, provided by Apple, to enhance your game with social networking. Apps
that work with Game Center are said to be Game Center–aware. The most visible part of the Game
Center is its leaderboard, a public scoreboard displaying the highest scoring players from around the
world. Game milestones, called achievements, that you’ve accomplished are also announced here.

Multi-player games can use Game Center to invite, and connect, with other players. This process is
called matchmaking. Matchmaking can happen over the Internet at large, for slow games that can be
played over arbitrary distances. Alternatively, your app can pair with iOS devices in your immediate
vicinity (technically, on the same Wi-Fi subnet or within Bluetooth range), creating direct data
connections for playing real-time action games.

It’s your choice what Game Center features you support in your game. You can add all of these
features, or just one. For SunTouch, you’re going to add two: leaderboard scores and local
matchmaking. For this to work, you must enable your app to use Game Center and configure Game
Center for your game.

Configuring a Game Center–aware app
Enabling Game Center in your app is a multi-step process that involves configuring your app’s
project, configuring the iTunes Store, and adding specific code to your app. Specifically, you must:

Assign your app a unique ID

Register your unique ID with Apple

Register your app with Apple and assign it that unique ID

Configure the Game Center with the leaderboards and achievements your app
will use

Add the necessary digital certificates required for your app to use the Game
Center servers

Link your app to the GameKit framework

Add “gamekit” as a capability of your app

Add code to log the current player in

Add a button so the user can access the Game Center leaderboards from within
your app

Request matchmaking when starting a multi-player game

Send scores and achievements to Game Center

Create a test player account and test your game in the sandbox

That sounds like a lot of steps, but none of them are particularly difficult and Xcode will do a lot of
them for you.

Start with your app’s project. Select the project in the navigator and switch to General tab and find
the Identity group, as shown in Figure 14-7. It should be right at the top.

441CHAPTER 14: Networking, The Nerdy Kind

The bundle identifier uniquely identifies your app, in the universe of all iOS apps. The identifier
can be any (RFC1034 compliant) name. If you (or your company) own an Internet domain, it’s
recommended that you base your app identifiers on that domain name, reducing the chance that
someone else might try to use the same identifier. You can also add sub-domains to help you
organize your apps into groups.

Figure 14-7. Editing the app ID

Note RFC1034 is the document that describes exactly how domain names are written. RFC (Request For
Comment) documents are managed by the Network Working Group. An RFC document starts as a proposal
(thus, the name). Once it has been approved and accepted, it becomes the “law” of the Internet.

Whatever base identifier you choose, Xcode appends the app’s product identifier to form the
complete ID. So if you named your project SunTouch, and entered a base bundle identifier of
com.mycompany.games, your app’s ID will be com.mycompany.games.SunTouch.

Change your project’s bundle identifier now so your app has a unique ID. You won’t be able to
register your app until you’ve done so.

You’ll also need to choose a Team from the pop-up menu, also shown in Figure 14-7. Your app’s
identifier will belong to the iOS Developer account associated with the team you select and it
designates the team members allowed to install and test your app. If you have not yet connected
Xcode to your iOS Developer account, choose the Add an Account ... command and Xcode will take
you to the accounts pane of the preferences, where you can do so.

442 CHAPTER 14: Networking, The Nerdy Kind

Enabling Game Center
While still in the SunTouch target’s properties, switch to the Capabilities tab, as shown in Figure 14-8.
Locate the Game Center group and turn it on. With that single click, Xcode does the following for you:

Generates a unique app ID, based on your app’s bundle identifier

Connects with the iOS Dev Center and registers the new ID with Apple

Enables Game Center services for the new ID

Downloads the necessary Game Center entitlements and digital certificates,
installing those resources into your app’s project

Adds the “gamekit” key to your app’s required device capabilities

Links your app to the GameKit framework

Figure 14-8. Enabling Game Center

Note All of these steps can be performed manually, either in the project settings or through the iOS Dev Center.

See, I told you a lot of the steps were easy. If you want to see what Xcode did in the Dev Center, log
into http://developer.apple.com/devcenter/ios, click on the Certificates, Identifiers &
Profiles section, and click on Identifiers. The developer portal will list all of the identifiers
registered to your account. Click on the identifier generated by Xcode, as shown in Figure 14-9.

http://developer.apple.com/devcenter/ios

443CHAPTER 14: Networking, The Nerdy Kind

Your app’s full ID consists of the unique Prefix (generated by Apple) and its app ID, concatenated
together. Notice that Game Center services have already been enabled for use with this app ID. The
name of your ID (Xcode iOS App ID com apress learniosapps SunTouch) that was generated by Xcode
is awkward, but you can change that at any time by clicking the Edit button. The name of an identifier
is solely for managing IDs in the iOS Dev Center; it doesn’t appear anywhere in your app or to the user.
In the edit ID page, you can also manually disable or enable services associated with this ID.

The next step is to configure Game Center with the leaderboards you want. A leaderboard is where game
scores are posted. But before you can get to that, you must create an app in the iTunes App Store.

Figure 14-9. Registered App ID

444 CHAPTER 14: Networking, The Nerdy Kind

Creating an App in the iTunes Store
The next step is to register your app with the iTunes Store. If you thought you just did that, you
didn’t. What you’ve done is register an ID. Now you need to assign that ID to an app.

Log into your iOS Dev Center account (http://developer.apple.com/devcenter/ios) page and
locate the iTunes Connect link. iTunes Connect is the portal you use to work with the iTunes Store.
It’s also the place where you setup and configure other online support services, such as Game
Center, In-App Purchases, advertising, and subscription apps (magazines).

After signing into iTunes Connect, locate and click on the Manage Your Apps link. This will list all
of the apps you have registered with the App Store. Apps go through a process of registration,
configuration, submission, and approval before they appear in the App Store. To test an app with
Game Center, you must register and configure your app. Click on the Add New App button and fill in
the details, as shown in Figure 14-10.

Figure 14-10. Adding a new app to the App Store

http://developer.apple.com/devcenter/ios

445CHAPTER 14: Networking, The Nerdy Kind

Select the default language and give your app a name (“Sun Touch”). This is the name of your app,
as it will appear in the store. You must assign your app an SKU number, although it can be any
identifier you choose. It only has to be unique among the apps that you develop, and Apple doesn’t
use it for anything except reporting.

Finally, choose the bundle ID you created in the previous section from the pop-up menu. If you
forgot to create a unique ID, there’s a convenient link that will take you back to the Certificates,
Identifiers & Profiles page where you can correct that oversight.

You’ll then be led through a series of screens that let you set the date your app will be available for
sale, its price, its category, any content warnings, the required App Store icons and screen shots,
a description of your app, and so on. Unless you actually plan to publish a version of SunTouch on
the App Store, you don’t need to be too concerned with the answers. Files for the required uploads
(icons and screen shots) can be found in the Learn iOS Development Projects ➤ Ch 14 ➤ SunTouch
(iTunes Connect) folder.

Note If you’ve never used iTunes Connect before, it may ask additional questions about your company
name and how you want that to appear in the App Store. Basically, if the portal asks for additional information
I don’t mention in this section, provide it and keep moving.

Caution These are the exact steps you’ll take to prepare any app for distribution through Apple’s App
Store. After creating an app record, you have (as of this writing) approximately 180 days to submit your
app for approval. If you wait too long, Apple may—at its discretion—delete your app from iTunes Connect
and forbid you from using that app name in the future.

When you’re finished, your app will appear in iTunes Connect. Locate your new app and click on its
icon to manage it, as shown in Figure 14-11.

446 CHAPTER 14: Networking, The Nerdy Kind

Configuring Game Center
Once you’ve created your app in iTunes Connect, click on the Manage Game Center button
(see Figure 14-11). The Game Center management page is where you enable Game Center features
for your app. Your app is already enabled for use with Game Center, as shown in Figure 14-12. If it
wasn’t, just turn it on now.

Figure 14-11. Managing an app in iTunes Connect

447CHAPTER 14: Networking, The Nerdy Kind

To use the leaderboards feature in your app, you must create one or more leaderboards in the Game
Center. You can create single scoreboards that are independent of one another, or combined scoreboards
that aggregate other scoreboards. For SunTouch, create two independent (single) scoreboards by clicking
the Add Leaderboard button, shown in Figure 14-12. Configure the boards as follows:

1. Choose to create a Single leaderboard

2. Fill in the leaderboard reference name and leaderboard ID (see table)

3. Score format type: Integer

4. Score Submission Type: Best Score

5. Sort Order: High to Low

6. Leave Score Range empty

7. Add at least one language to the Leaderboard Localization list

a. Give the leaderboard a name in the choosen language (see table)

b. Select the appropriate score formatting options (US English uses comma
separators in integer numbers, for example)

Figure 14-12. Configuring Game Center

448 CHAPTER 14: Networking, The Nerdy Kind

Reference Name Leaderboard ID Name

Single single Single Player

Multi multiple Multi-Player

Repeat these steps to create the second leaderboard. Your finished leaderboards should look like
those in Figure 14-13. The leaderboard ID is the key you’ll use in your app to refer to the leaderboard
when submitting scores. The reference name is for your use. You’ll use the “Single” leaderboard to
record one-person game scores, and the “Multi” leaderboard to record two-player game scores.

Figure 14-13. Finished leaderboards

Save your work by clicking the Save button and sign out of iTunes Connect. Your work there is done.
Now you can add GameKit support to your app and create a test user.

Adding GameKit to Your App
The Game Center–aware version of SunTouch can be found in the Learn iOS Development Projects
➤ Ch 14 ➤ SunTouch-3 folder. You can open that, or follow these steps to add Game Center support
to the single-player version of the game.

Now you need to add the code to your app to activate and interact with Game Center. At a minimum,
you must:

Obtain the local player as soon as possible	

If the local player is not logged in, present the login view controller	

Disable your game if the local player cannot, or refuses to, log in	

Add a button to your interface to allow the user to interact with Game Center	

449CHAPTER 14: Networking, The Nerdy Kind

For games that record scores to a leaderboard, you must:

Report each score to the appropriate leaderboard	

Let’s get started.

Obtaining the Local Player
The very first thing your app should do after launching is to obtain the local player (GKLocalPlayer)
object. Add this code to STMainViewController.m:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 __weak GKLocalPlayer *localPlayer = [GKLocalPlayer localPlayer];
 localPlayer.authenticateHandler =
 ^(UIViewController *viewController, NSError *error) {
 if (viewController!= nil)
 [self showAuthenticationView:viewController];
 else if (localPlayer.authenticated)
 [self authenticatePlayer:localPlayer];
 else
 [self disableGameCenter];
 };
}

The local player object represents the user’s identity in Game Center. Normally, a user will already
be logged into Game Center and there’s nothing to do. If they have not logged in, you should
immediately present the Game Center authentication view, which allows the user to log into their
Game Center account. If they can’t, or won’t, you should disable your game or run it in a mode that
doesn’t interact with Game Center.

All of those cases are handled in the code block you set for the authenticateHandler property.
Unlike most objects, the process of logging into Game Center isn’t one you explicitly initiate. It’s an
ongoing endeavor, as the player can log out or switch accounts at any time (using the Game Center
app on their iOS device). The code block you set in authenticateHandler is executed whenever
there’s a change in the player’s Game Center status.

In SunTouch, there are three conditions that require action. If the viewController is not nil, Game
Center is telling your app that it wants it to present that view controller to the user. Typically, this is
because the player is not logged in; that view controller presents a login screen so the player can
authenticate with Game Center.

The second condition is that the player is now, or was already, authenticated and is ready to play your
game. At this point your game should prepare itself for play. In SunTouch, the -authenticatePlayer:
method readies itself by displaying the two “start game” buttons.

Finally, Game Center will signal your app that the local player is not, or is no longer, authorized. In
other words, they logged out or weren’t logged in. SunTouch sends a -disableGameCenter message
that hides the two “start game” buttons. The user won’t be able to play the game until they log in.

450 CHAPTER 14: Networking, The Nerdy Kind

To finish this code, you need to add those three methods to the STMainViewController.m file:

- (void)showAuthenticationView:(UIViewController*)viewController
{
 [self presentViewController:viewController animated:YES completion:NULL];
}

- (void)authenticatePlayer:(GKLocalPlayer*)player
{
 self.singlePlayButton.hidden = NO;
 self.multiPlayButton.hidden = NO;
}

- (void)disableGameCenter
{
 self.singlePlayButton.hidden = YES;
 self.multiPlayButton.hidden = YES;
}

Adding a Game Center Button
You’ve already handled the first three requirements (obtaining the local player, logging the player in,
and disabling the game when they aren’t). All Game Center–aware apps should also provide a button
so the user can access the Game Center interface from within the app. This is where the user can
see their leaderboards, scores, and achievements.

In SunTouch, add a small (22x22 pixel) custom button to the main view controller in the Main_iPhone.
storyboard (or _iPad) file. Use the GameCenter.png image, as shown in Figure 14-14. Fix its height
and width, and add constraints to the Bottom Layout Guide and the closest container view edge.

Figure 14-14. Adding a Game Center button

Switch to the assistant editor, so that STMainViewController.h appears in the right pane. Add an
action method declaration:

- (IBAction)showGameCenter;

Connect the game center button to this action (see Figure 14-14). While you’re in STMainViewController.h,
there are some loose ends that need to be taken care of. The earlier code uses two button outlets.
Declare those and connect them to the Single Player and Two Player buttons:

451CHAPTER 14: Networking, The Nerdy Kind

@property (weak,nonatomic) IBOutlet UIButton *singlePlayButton;
@property (weak,nonatomic) IBOutlet UIButton *multiPlayButton;

Select the two buttons in the storyboard and use the attributes inspector to hide them (by checking
the hidden attribute). This way, the buttons won’t appear when the app starts. If the player is logged
into Game Center, the -authenticatePlayer: method will immediately reveal (unhide) them. The
player probably won’t even notice. This precaution does, however, prevent a nimble-fingered user
from starting a game before the status of the local player can be determined.

If you’re building both versions of the app, make the same changes (add the Game Center button,
connect it to the -showGameCenter action, connect the two outlets to the buttons, and hide the
buttons) in the other storyboard (_iPhone or _iPad).

For reasons I’ll explain in a moment, your STMainViewController will need to adopt the
GKGameCenterControllerDelegate, so add that now (new code in bold):

@interface STMainViewController : UIViewController
 <STFlipsideViewControllerDelegate,
 UIPopoverControllerDelegate,
 GKGameCenterControllerDelegate>

Finally (or firstly) import the GameKit.h header:

#import <GameKit/GameKit.h>

Now switch to STMainViewController.m and add the -showGameCenter action method and the
GKGameCenterControllerDelegate handler method:

- (IBAction)showGameCenter
{
 GKGameCenterViewController *gameCenterController;
 gameCenterController = [GKGameCenterViewController new];

 if (gameCenterController!=nil)
 {
 gameCenterController.gameCenterDelegate = self;
 [self presentViewController:gameCenterController
 animated:YES
 completion:nil];
 }
}

- (void)gameCenterViewControllerDidFinish:(GKGameCenterViewController*)controller
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

You’ve seen this kind of code before. The -showGameCenter method creates a GKGameCenterViewController,
sets itself as the delegate, and modally presents the view controller to the user. When the view
controller is done, your delegate receives a -gameCenterViewControllerDidFinish: message (which
is why your controller had to adopt GKGameCenterControllerDelegate) that dismisses the game
center view controller.

452 CHAPTER 14: Networking, The Nerdy Kind

You’ve now satisfied the minimum requirements for a Game Center–aware app. But SunTouch uses
leaderboards, so in the next section you’ll add code to record the player’s score.

Recording Leaderboard Scores
Recording the player’s score to the leaderboard is probably the simplest part of your app. You
only need two pieces of information: the leaderboard identifier and the final score. Select the
STGameViewController.m file and locate the -finishGame method. At the end of the if block, change
the code so it looks like this (new code in bold):

self.strikePreview.hidden = YES;
GKScore *scoreReport;
scoreReport = [[GKScore alloc] initWithLeaderboardIdentifier:
 kSinglePlayerLeaderboardID];
scoreReport.value = score;
[GKScore reportScores:@[scoreReport] withCompletionHandler:^(NSError *error) {
 }];
}

The -initWithLeaderboardIdentifier: initializer method creates a GKScore object for the
leaderboard you want to post the score to. You then set the score property you want to report and
send it to the Game Center servers (+reportScores:withCompletionHandler:). The completion
handler block is executed when the score has been, or fails to be, delivered. You can examine
the error parameter to see if it was successful and take whatever action you feel is appropriate.
SunTouch isn’t overly concerned if the player’s score couldn’t be posted.

Tip When the score is successfully reported, and the completion handler executes, several properties of the
GKScore object have been updated to reflect the results. The most interesting is the rank property. It is set
to the player’s new rank on the leaderboard (1 being the highest scoring player, 2 being the second highest,
and so on). Your app can retrieve that value in the completion block and tell the player the good news.

Leaderboards are addressed using their ID. Switch to the STGameDefs.h file and add these two constants:

#define kSinglePlayerLeaderboardID @"single"
#define kTwoPlayerLeaderboardID @"multiple"

Now the -initWithLeaderboardIdentifier: method will create a leaderboard for the “single”
leaderboard you defined in iTunes Connect.

Caution Leaderboard identifiers are case sensitive. The identifier you pass to
-initWithLeaderboardIdentifier: must exactly match the identifier you entered in iTunes Connect, or
your scores won’t post to the leaderboard.

453CHAPTER 14: Networking, The Nerdy Kind

Creating a Test Player
The only thing left to do is test your app. To do that, you must have a player account in Game Center.
But it can’t be just any player; it must be a sandbox player. Until your app is submitted and approved
for distribution on the App Store, your app will use the Game Center sandbox. The Game Center
sandbox is a set of servers that work identically to the way the public Game Center servers do, but
the information, players, and scores are all private and are only used for development and testing.

When you run your pre-approved app, Apple automatically places it in the sandbox. You create a
sandbox player by creating a new player account from within your (sandboxed) app. This can be
done via iOS simulator or a provisioned device. The steps are simple:

1. If you already have a Game Center player account, launch the Settings app,
go to the Game Center settings, and log out (tap your account name, choose
Sign Out). See Figure 14-15.

Figure 14-15. Creating a sandbox player

2. Launch your app.

3. Since no player is logged in, your app will immediately present the player
sign-in view controller (see Figure 14-15).

4. Create a new player account.

Creating an account in a sandboxed app creates a sandbox player account. You must provide an
e-mail address for your account that is not associated with any regular Apple ID, so you may need to
create a new e-mail account for testing.

454 CHAPTER 14: Networking, The Nerdy Kind

Play a few games. You’ll see your scores appear on the leaderboard, which you can access via the
Game Center button you added to your app, as shown in Figure 14-16.

Figure 14-16. Playing your Game Center-aware app

Note A sandbox player account can only be used with games running in the sandbox. If you’re logged into
your sandbox account on your iOS device, you’ll have to log out and log into your regular account to play any
games you’ve downloaded from the App Store. You can tell the difference by looking for the sandbox badge
over your player icon, as shown on the right in Figure 14-15.

Congratulations! You’ve created a Game Center–aware app, configured the Game Center servers,
created a sandbox player account, and posted scores to your leaderboard. Which finally brings you
to the point where you can add networking to your app.

Peer-To-Peer Networking
The moment you’ve been waiting for has arrived: adding peer-to-peer networking to your app.
Broadly speaking, this will necessitate making three changes to SunTouch:

Turning the single-player game into a two-player game

Discovering and connecting with another iOS device

Sending and receiving game data

455CHAPTER 14: Networking, The Nerdy Kind

Start with the first. In the two-player game, two players (one local and one remote) will be
simultaneously blasting holes in space, trying to capture suns before the other player can, in a battle
royale to become master of the universe—or something like that. The interface needs change to:

Show the strike animation of the opposing player

Show the areas of space blasted by the opposing player

Animate and display suns captured by the opposing player

You already have code to animate strikes and show the areas of space that have already been
blasted. You also have code that animates a sun being captured. Can you reuse this code to do the
same for the opposing player? I think you can.

Turning SunTouch Into a Two-Player Game
You’re going to make a minor change to STGameView so it “draws” transparent circles in the
blasted holes, instead of filling them with black. You’ll then create a subclass of STGameView, called
STOpponentGameView, and position an instance of that view directly behind the STGameView object
in the interface. The opponent game view will animate strikes and draw the blasted holes for the
opponent. These animations and struck areas will only be visible through the transparent holes
drawn in the foreground (local) game view. The effect will be like looking at a slice of Swiss cheese
through a second slice of Swiss cheese.

Note You’ll find the finished two-player game in the Learn iOS Development Projects ➤ Ch 14 ➤
SunTouch-4 folder.

For the sun capture animations, you want the local player to see the suns being captured by their
opponent. This adds to the strategy of the game; by observing where the opponent is capturing
suns, the local player can infer what areas of space their opponent has already blasted. To be visible
in the interface, the sun capture animation must occur in a view above the local player view. This
is solved by having the local game view perform all sun capture animations. The only thing that
changes is the color of the suns, indicating which player captured them.

That’s the bulk of the two-player changes. Beyond that, there’s a bunch of small details to attend to,
which I’ll get to shortly. Start by making those small changes in STGameView. Select the STGameView.h
file and add an opponent property:

@property (readonly,nonatomic) BOOL opponent;

Now switch to the STGameView.m implementation file and add the getter method for this property:

- (BOOL)opponent
{
 return NO;
}

456 CHAPTER 14: Networking, The Nerdy Kind

The opponent property will indicate if the view is displaying the game for the local or remote
player. STGameView always returns NO, because it only displays the view for the local player.
STOpponentGameView will return YES, because it always displays the view for the remote player.

The game view displays and animates the strikes initiated by the player, now players. It does this
by observing kGameStrikeNotification notifications. In the two-player game, there are now two
sources for these notifications: strikes by the local player and strikes from the remote player. The
code that sends these notifications will change to indicate the source of the strike. Change the
-strikeNotification: method so it starts like this (new code in bold):

- (void)strikeNotification:(NSNotification*)notification
{
 NSDictionary *info = notification.userInfo;
 STStrike *strike = info[kGameInfoStrike];
 BOOL opponent = [info[kGameInfoOpponent] boolValue];
 if (opponent!=self.opponent)
 return;

The new code gets the kGameInfoOpponent value from the notification. This value will be YES if
the strike notification is coming from the remote player. It compares that value against this view’s
opponent property. If the values disagree, the notification is ignored. The end result? The local game
view only animates strikes from the local player and the opponent game view only animates strikes
from the remote player.

This leaves the sun capture animation to fix. The sun capture animations for both players
are handled by the local (foreground) view. The only thing that changes is the image used for
the suns. A SunCold.png image indicates a sun that was captured by the opponent. Find the
-captureNotification: method and change the last statement to this (modified code in bold):

sunView.image = [UIImage imageNamed:(sun.localPlayer?@"SunHot":@"SunCold")];

This alteration uses a different sun image if the sun was captured by the opponent. (You haven’t
created the localPlayer property for STSun yet, but you’ll get to that soon enough.)

Finally, modify the -setStrikeDrawColor method to this (new code in bold):

- (void)setStrikeDrawColor
{
 if (self.opaque)
 {
 [[UIColor blackColor] set];
 }
 else
 {
 [[UIColor clearColor] set];
 CGContextSetBlendMode(UIGraphicsGetCurrentContext(),kCGBlendModeCopy);
 }
}

The -setStrikeDrawColor method does exactly what it says. It’s sent by the -drawRect: method
when it wants to set the graphics context color used to draw a hole in space. In the single-player

457CHAPTER 14: Networking, The Nerdy Kind

game, the local game view is opaque and strikes draw as black circles. In the two-player game, the
local game view can be partially transparent (!opaque), and the holes are really holes; the context
is set to “draw” with invisible pixels, making whatever portion of the view being filled transparent.
Normally, the blend mode does not draw transparent pixels, which is why the blend mode is
changed to kCGBlendModeCopy. The kCGBlendModeCopy mode performs no blending at all, replacing
pixels in the context with the current color.

Subclassing STGameView
The remaining differences between the local and opponent’s game view are supplied by the
STOpponentGameView class. Create that class now. Select the STGameView.m file in the navigator
and choose the New File . . . command. Use the Objective-C file template. Name the new class
STOpponentGameView and make it a subclass of STGameView.

STOpponentGameView doesn’t define any new properties or methods. It does all of its magic by
overriding methods defined in STGameView. Here is all of the code to make STOpponentGameView work.

@implementation STOpponentGameView

- (void)observeNotificationsFromGame:(STGame*)game
{
 [super observeNotificationsFromGame:game];
 if (game!=nil)
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:kGameSunCaptureNotification
 object:game];
}

- (BOOL)opponent
{
 return YES;
}

- (UIImage*)strikeImage
{
 return [UIImage imageNamed:kOpponentStrikeImageName];
}

- (void)setStrikeDrawColor
{
 [[UIColor blackColor] set];
}

- (void)drawBackground
{
 [[UIColor darkGrayColor] set];
 CGContextFillRect(UIGraphicsGetCurrentContext(),self.bounds);
}

@end

458 CHAPTER 14: Networking, The Nerdy Kind

The -observeNotificationsFromGame: method is sent when the game begins. The game view
becomes the observer of key game engine notifications. This consists of observing the “strike”
and “sun captured” notifications, so the view can draw and animate those events. In the case of a
two-player game, however, all of the “sun captured” events are animated by the local (foreground)
view. None of them are animated by the opponent (background) view. Rather than adding code to
-captureNotification: to ignore them (the way you did in -strikeNotification:), the opponent
view simply un-registers itself again from the notification center. It will still receive the “strike”
notifications, but won’t receive any “sun captured” notifications.

The remaining methods override methods in STGameView. When the -drawRect: method in
STGameView sends itself the -setStrikeDrawColor and -drawBackground messages, the opponent
game view will execute this code instead.

Tip Defining overridable behaviors is an important pattern in object-oriented programming. I knew, when
writing STGameView, that the strike image, hole color, and background would need to be different for the
opponent game view. I planned ahead and wrote these aspects as individual methods. If you didn’t plan
ahead, use the extract refactoring tool to move a specific behavior into its own method, which your subclass
can then override.

The finished STOpponentGameView class draws its strike animation using the
kOpponentStrikeImageName image, draws its strike holes in black, and fills the rest of its view with
dark grey. It draws and animates only strike events from the remote player, and it doesn’t animate
any sun capture events.

Now you just need to add an STOpponentGameView object to your interface.

Adding the Opponent Game View
Select the STGameViewController.xib Interface Builder file. From the object library, drag a new View
object into the outline. Carefully insert the new view so it’s a subview of the root view, and is ordered
before (behind) the existing game view object. Do this by dropping the new view into the outline, as
shown in Figure 14-17. You can’t drop the new view object into the canvas, as you normally would,
because it would become a subview of some other view, which is not what you want.

459CHAPTER 14: Networking, The Nerdy Kind

Resize the view, using the resize handles or the size inspector, so it has the same frame as the game
view. Add the exact same set of constraints you did for the game view; align the top, leading, and
trailing edge to the superview, and add a vertical spacing constraint from the bottom to the top of
the strike preview view. Using the identity inspector, change its class to STOpponentGameView, as
shown in Figure 14-18.

Figure 14-18. The finished opponent game view

Figure 14-17. Inserting the opponent game view

Switch to the assistant editor. The STGameViewController.h file should appear in the right pane. Use
the navigation ribbon above the pane to switch to the STGameViewController.m implementation file,

460 CHAPTER 14: Networking, The Nerdy Kind

as shown in Figure 14-19. The Interface Builder outlets for the game views are private outlets, used
only by STGameViewController.

Figure 14-19. Adding an opponentGameView outlet

Define a second STGameView outlet named opponentGameView (see Figure 14-19) and connect it to
the new game view object, also shown in Figure 14-19. Make the connection by dragging the outline
connection socket to the Opponent Game View object in the outline. (Since this view is behind all of
the other views, it’s difficult to make the connection in the Interface Builder canvas.)

Odds and Ends
There are a smattering of additional code changes, some obvious and some not so obvious, that
will finish turning your app into a two-player game. I’ll summarize the changes here. If you’re
modifying the single-player version of SunTouch as you work through this section, use this as a
guide to locate and copy the updated code from the source files in the Learn iOS Development
Projects ➤ Ch 14 ➤ SunTouch-4 folder.

	STSun.h

Add a Boolean 	 localPlayer property. This property establishes which player
captured the sun.

	STGame.h

Add a 	 readonly opponentScore property that calculates the score of the
opposing player.

The 	 -willCaptureSunAtIndex:gameTime: method is renamed to -willCaptu
reSunAtIndex:gameTime:localPlayer:. The new parameter is YES when the
sun is being captured by the local player.

Define a 	 kGameInfoOpponent key, used to identify the source of strike
notifications.

	STGame.m

Add a synthetic, 	 readonly, Boolean property named twoPlayer. This
property is YES if this is a two-player game.

In 	 -weightAtTime:, double the value of the weight if twoPlayer is YES. Scores
for capturing a sun in a two-player game are doubled.

461CHAPTER 14: Networking, The Nerdy Kind

Implement the 	 -opponentScore getter method. The -score and
-opponentScore methods both use the new -scoreForLocalPlayer: method,
which calculates the score for either player.

Add a new 	 -startMultiPlayerWithMatch:started: method. This method is
sent, instead of -startSinglePlayer, to start a two-player game.

Change 	 -strike:radius:inView: so it passes YES for the localPlayer
parameter when sending -willCaptureSunAtIndex:gameTime:localPlayer:.

	-willCaptureSunAtIndex:gameTime:localPlayer: sets the localPlayer
property of the sun that will be captured. This determines the image for the
captured sun and which player gets credit.

	STGameViewController.h

Add a Boolean 	 twoPlayer property. This property is set to YES when the user
starts a two-player game.

	STGameViewController.m

In 	 -viewDidLoad, twoPlayer is used to configure the views for a one- or
two-player game. For a one-player game, the opponentGameView is removed
(deleted), since it’s not used, and the local game view’s opaque property is
set to YES. For a two-player game, both game views are used and the local
game view’s opaque property is set to NO, allowing it to have transparent
regions that will show the opponent game view behind it.

In 	 -finishGame, the twoPlayer property selects the end-of-game alert
message. The two-player alert tells the local player if they won (or lost),
and what both scores were. Two-player game scores are posted to the
kTwoPlayerLeaderboardID leaderboard.

	STMainViewController.m

In the 	 -prepareForSegue:sender: method, the game view controller’s
twoPlayer property is set to YES or NO before it is presented, based on the
segue’s identifier (“singlePlayer” or “twoPlayer”). Setting this property to YES
begins the cascade of events that creates and runs a two-player game.

	Main_iPhone.storyboard/Main_iPad.storyboard

Create a modal segue from the “two player” button to the game view 	
controller. Set the segue’s identifier property to twoPlayer.

This completes the front-end of your two-player game. Now comes the network communications
portion that will connect the game with another user playing on a second iOS device.

Matchmaking
Real-time, peer-to-peer, game communications can be roughly divided into two phases: matchmaking
and live communications. Matchmaking is, by far, the most complicated, which is why it’s so great
that GameKit is going to do it for you.

462 CHAPTER 14: Networking, The Nerdy Kind

Matchmaking is the process of discovering and connecting with a second instance of your app
running on another iOS device. The biggest impact it will have on your app’s design is that it
radically changes how the game starts. In the single player version, STGameViewController created
an STGame object and sends it a -startSinglePlayer message. This immediately starts the game.

Starting the two-player version is a multi-step process:

1. STGameViewController creates a GKMatchRequest object.

2. The match request is used to create and present a
GKMatchmakerViewController.

3. The app waits for the CKMatchmakerViewController to locate and connect
with a second player.

4. If successful, the -matchmakerViewController:didFindMatch:
delegate method creates an STGame object and sends it a
-startMultiplayerWithMatch: message.

5. The STGame object sends the remote app “game start” data. When it receives the
corresponding “game start” data from the remote app, the game begins.

The next few sections will add this code to your app. Once that matching code is in place, you’ll
move on to the actual communications code.

Requesting a Match
Your game begins by requesting a match (connection) with one or more other users running the
same app. It does this through a GKMatchRequest object. There are three types of matches you can
request: peer-to-peer, hosted, and turn-based.

Peer-to-peer sets up a direct communications link with all of the other devices. 	
All of the participants are “peers” that communicate freely with one another.
SunTouch will use peer-to-peer communications.

A hosted match requires that your app provide its own network connection and 	
communications. It’s intended for games that use a centralized server (like an
MMORPG) or one for which you’ve already written custom communications.

Turn-based games do not require a direct connection with the other players. 	
Infrequent communications are relayed—via the Game Center servers—to the
other players, allowing for casual game play over distances limited only by
the reach of the Internet. That means you could play a turn-based game with
someone on the International Space Station, since they have Internet now.

Begin the process by requesting a match when the game starts. Select the STGameViewController.m
file, find the -startGame method, and add the new code in bold:

- (void)startGame
{
 if (self.game==nil)
 {
 STGame *game = [STGame new];
 self.game = game;

463CHAPTER 14: Networking, The Nerdy Kind

 [self.gameView reset];
 [self.opponentGameView reset];
 if (self.twoPlayer)
 {
 GKMatchRequest *request = [GKMatchRequest new];
 request.minPlayers = 2;
 request.maxPlayers = 2;
 request.defaultNumberOfPlayers = 2;

 GKMatchmakerViewController *mmvc;
 mmvc = [[GKMatchmakerViewController alloc] initWithMatchRequest:request];
 mmvc.matchmakerDelegate = self;
 [self presentViewController:mmvc animated:YES completion:nil];
 }
 else
 {
 [self.gameView observeNotificationsFromGame:game];
 [game startSinglePlayer];
 [self startStrikeGrowAnimation];
 }
 }
}

The modified -startGame method starts the single-player game immediately. When twoPlayer is
YES, it begins the matchmaking process. The match request is configured to limit the minimum,
maximum, and default number of participants. Since SunTouch is strictly a one-on-one game, the
only choice is 2 players.

A peer-to-peer match is established using the GKMatchmakerViewController. The code for this is
simple: you create the view controller, make your object its delegate, and present it to the user.

Note You didn’t specify the type of match (peer-to-peer, hosted, or turn-based). That’s because it’s implied
by which matchmaker view controller you use. GKMatchmakerViewController creates a peer-to-peer
match. Use GKTurnBasedMatchmakerViewController to create a turn-based match. For hosted
games—or to provide your own custom interface—use the GKMatchmaker or GKTurnBasedMatch class.

For this to work, your matchmaker delegate object must conform to the
GKMatchmakerViewControllerDelegate protocol, so hop over to STGameViewController.h and add
that (new code in bold):

@interface STGameViewController : UIViewController <UIAlertViewDelegate,
 GKMatchmakerViewControllerDelegate>

464 CHAPTER 14: Networking, The Nerdy Kind

Completing the Match
Your app handles the success, or failure, of the match by implementing the
GKMatchmakerViewControllerDelegate methods. Start by adding the success method to
STGameViewController.m:

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindMatch:(GKMatch *)match
{
 [self dismissViewControllerAnimated:YES completion:nil];
 if (match.expectedPlayerCount==0)
 {
 [self.game startMultiPlayerWithMatch:match started:^{
 [self.gameView observeNotificationsFromGame:self.game];
 [self.opponentGameView observeNotificationsFromGame:self.game];
 [self startStrikeGrowAnimation];
 }];
 }
}

When a match is established, the matchmaker view controller creates a GKMatch object and your
delegate receives a -matchmakerViewController:didFindMatch: message. The match object is the
one you’ll use to communicate with the remote players.

It may take awhile for all of the players to connect, and you may receive this message multiple times.
You should examine the expectedPlayerCount property of the match object. It reports the number of
players you’re still waiting (expecting) to connect with. Once it is 0, all of the players have connected.
This is the point where SunTouch starts the game engine.

But the game still hasn’t started yet! Before a SunTouch bout can begin, the game engine must first
communicate with the other player to establish the parameters of the game (where the suns are
hidden). You’ll get to that later. For now, just know that -startMultiplayerWithMatch: begins the
process of exchanging variables with the remote app and synchronizing the start of gameplay. This
is called a handshake. When the handshake is finished, the game starts and the code block you
passed in the started: parameter is executed, allowing the STGameViewController to perform its
start-of-game housekeeping at the same time.

Finally, add the two failure delegate methods:

- (void)matchmakerViewControllerWasCancelled:(GKMatchmakerViewController *)controller
{
 [[NSNotificationCenter defaultCenter] postNotificationName:kGameDidEndNotifcation
 object:self];
}

- (void)matchmakerViewController:(GKMatchmakerViewController *)controller
 didFailWithError:(NSError *)error
{
 [self matchmakerViewControllerWasCancelled:controller];
}

465CHAPTER 14: Networking, The Nerdy Kind

A -matchmakerViewControllerWasCancelled: message is received if the player decides they don’t
want to connect with another player. A -matchmakerViewController:didFailWithError: message
is received if something went wrong. Both end the game, dismissing the game view controller, and
returning to the initial screen.

Exchanging Data with Another Device
This is where the rubber meets the road, so to speak. The GKMatch object returned by the matchmaker
is your conduit for communicating with the other iOS devices. At its core, it’s ridiculously simple to
use. It has a delegate property and some -sendData... methods. The -sendData... methods send
data to the other devices. Your delegate object receives a -match:didReceiveData:fromPlayer:
message when those other devices send data to your app. That sounds simple, doesn’t it? The devil
is in the details.

As the app designer, you must decide what information to send, how it’s formatted, how the receiver
will interpret it, which players you’re going to send the data to, when to send the data, and how
important it is that said data is received.

When designing your communications, there are a variety of ways you can organize it. There are
methods to send data to all of the other participants, or to just one. This lets you choose to send
updates to all of the other players, or specific updates to individual players. Your game might
require that one device be designated as the host or master (for games structured like Dungeons
and Dragons). The GKMatch class has a -chooseBestHostPlayerWithCompletionHandler: method for
assisting the devices in choosing a ringleader.

In this respect, SunTouch is simple. There’s never more than one other player, so communication
topology isn’t an issue. The only tricky part is deciding which app will pick the random locations
for the suns. Both players must be using the same set of sun locations, or the game won’t make
any sense—or at least less sense than it already does. (How do you make a hole in space, and why
would you want to?)

Remember that you have two identical versions of the program running, simultaneously, on two
separate devices. There’s no “leader” unless you pick one. For SunTouch, the solution is for both
apps to pick a set of random sun locations. They then toss a coin—or the electronic equivalent—and
choose a winner. Both apps will use the winner’s set of suns. After that, your app sends data to
the remote app describing strikes and captured suns. The remote app is, simultaneously, sending
your app the opposing player’s strikes and captured suns. SunTouch’s communications can be
summarized as follows:

Send “game start” data to the remote app containing a list of random sun 	
locations along with a random number (the “coin”).

When “game start” data is received, compare the remote app’s random number 	
to ours. This determines who wins the coin toss and which set of sun locations
will be used.

When the user initiates a strike, send “strike” data to the remote app containing 	
the location and radius of the strike.

When “strike” data is received from the remote app, animate a strike in the 	
opponent’s game view.

466 CHAPTER 14: Networking, The Nerdy Kind

When the local player captures a sun, send “sun captured” data to the remote 	
app, including the time the sun will be captured.

When “sun captured” data is received from the remote app, animate the 	
captured sun and credit the opposing player. If both players uncover the same
sun, the earliest capture wins.

All of the communications code is going into STGame. It’s the two game engine objects that talk to
each other. Your controller objects are only concerned with interaction with the local player, and the
view objects just respond to notifications. You’ll start to implement this by fleshing out the -startMul
tiPlayerWithMatch:started: method and then construct the individual send/receive data methods.

Starting the Game
Click on the STGame.h interface file. You’re going to add some variables and a multi-player start
method. Start with the variables. Edit the instance variable section of the @interface so it looks like
this (new code in bold):

@interface STGame : NSObject
{
 NSArray* suns;
 NSTimeInterval startTime;
 GKMatch *multiPlayerMatch;
 void (^multiPlayStarted)(void);
 uint32_t coinToss;
}

The multiPlayerMatch variable keeps a reference to the GKMatch object you need to communicate
with the other apps. The funny-looking declaration after that defines the multiPlayerStarted
variable. It’s a code block variable; it holds a reference to a block of code that STGame can later
execute. This is one of the parameters of the -startMultiPlayerWithMatch:started: method.
Speaking of which, add a method declaration for it after -startSinglePlayer:

- (void)startSinglePlayer;
- (void)startMultiPlayerWithMatch:(GKMatch*)match
 started:(void(^)(void))started;

Switch to STGame.m and write the new method:

- (void)startMultiPlayerWithMatch:(GKMatch*)match started:(void(^)(void))started
{
 multiPlayerMatch = match;
 multiPlayStarted = started;
 suns = [STGame randomSuns];
 coinToss = arc4random();
 match.delegate = self;
 [self sendGameStart];
}

The GKMatch object you’re going to use to communicate with the other apps is saved, along with
the reference to the code block to execute when the game actually gets underway. Next, a set of

467CHAPTER 14: Networking, The Nerdy Kind

random sun locations is generated along with a random number that will act as the coin toss. The
app that picks the highest random number is the one that determines the sun locations.

The STGame object is made the delegate for the GKMatch object. Data received by the match object
will now be sent to STGame. Finally “game start” data is sent to the remote app. Presumably, the
remote app is executing the exact same code, at nearly the same time, choosing a set of suns, a
random number, and sending this app its “game start” data.

Figure 14-20. Creating the STDataMessaging category

Note You may have noticed that STGame does not conform to the GKMatchDelegate protocol. That’s
handled in a category, coming up next.

Creating a Data Messaging Category
You’re going to consolidate all of your remote communications logic in a category of STGame named
STDataMessaging. Select the STGame.m file in the project navigator and choose the New File . . .
command, either from the File menu or by right+clicking on the STGame.m file.

Note A category adds additional methods to the class. The methods are declared and implemented in
a separate module, but are otherwise indistinguishable from the other methods of the class. I’ll explain
categories more in Chapter 20.

Choose the Objective-C category template. Name the category STDataMessaging and make it a
category of STGame, as shown in Figure 14-20.

468 CHAPTER 14: Networking, The Nerdy Kind

The category is going to implement three methods that send game information to the other player:
-sendGameStart, -sendStrike:, and -sendCaptureForSunIndex:. The category also implements the
CGMatchDelegate methods to receive data from the other player. In the new STGame+STDataMessaging.h
interface file, edit the category declaration so it looks like this (new code in bold):

@interface STGame (STDataMessaging) <GKMatchDelegate>
- (void)sendGameStart;
- (void)sendStrike:(STStrike*)strike;
- (void)sendCaptureForSunIndex:(NSUInteger)index;;
@end

The category declaration will need a definition of the STStrike class and few constants, so add this
to the beginning of the file:

#import "STGameDefs.h"
@class STStrike;

Note A @class directive declares a class without telling the compiler anything about that class. In other
words, it informs the compiler that such a class exists, but that’s all. It’s used primarily in interface files where
a declaration refers to a class name (-(void)sendStrike:(STStrike*)strike;) but doesn’t need, or
want, to include the entire definition of the class (#import "STStrike.h").

Defining the Data Format
One of the design tasks I outlined earlier was deciding “how your data is formatted.” This is a critical
part of your communications design. The GKMatch object will transport an array of bytes from your
app to another device, possibly halfway around the world, but what’s in that array of bytes is entirely
up to you. It has to contain the information you want to communicate with the other app, and it has
to be organized in such a way that the other app can understand it when it’s received. The sidebar
“Serialization and Cross-Platform Communications” describes some of the challenges involved.

Note The term “serialization” is used generically in computer engineering to describe the encoding of
objects and values into a transportable format. Unfortunately, “serialization” means something very specific
in Cocoa, described in Chapter 18. In Cocoa, the term “archiving” is more akin to the generic “serializing.”
Archiving is explained in Chapter 19.

469CHAPTER 14: Networking, The Nerdy Kind

SERIALIZATION AND CROSS-PLATFORM COMMUNICATIONS

Converting information (numbers, objects, properties, and so on) into a format that’s transportable is generically referred
to as serialization, marshaling, or deflating. You must do this whenever you exchange information with another computer
system or process, which includes storing information in a file. Cocoa and Objective-C provide a number of tools to help
serialize your data, and then turn that serialized data back into the objects and properties your app can use—a process
called deserialization, unmarshaling, or inflating.

There are three aspects about the information in your app that can present a barrier to exchanging it with another app or
device: memory addresses, word size, and byte order.

The biggest problem is memory addresses. An object in Objective-C is a small region of dynamic RAM that stores the
properties of that instance. In your app, you refer to that object using its address. The memory address of an object is
utterly meaningless to another process or computer system. Another device can’t access the memory of your app—at
least I hope it can’t. Giving the address of an object to another process is akin to giving someone your telephone number ...
in a parallel universe; they have no way to use it.

The solution is to convert the properties of your object(s) into a sequence of bytes that can be used to assemble equivalent
objects by the recipient. Let’s say you had a Person object that had name (string) and age (integer) properties. You can’t
pass the address of the Person, or string, object to another process. Instead, you serialize the object by creating an array
of bytes and filling those bytes with the characters of the person’s name and the binary value of their age. The computer
receiving these bytes can use that data to construct a new string object and a new Person object with the same properties.

When it comes to exchanging that person’s age, there are two additional issues to contend with. Different computer
systems, and even different compilers, use different word sizes. A “word” in computer architecture is a sequence of bytes
used to store a single number, such as an int. An int may be 16 bits (2 bytes) long on one computer system and 64 bits
(8 bytes) long on another. So you can’t simply write code that copies an int into an array of bytes and then extracts it
again on the other system, because on one computer that means 2 bytes and on the other that means 8 bytes.

Mismatched word sizes are typically solved by using the fixed-size variable types in C and Objective-C. For example, int32_t
is a variable type (just like int and char) that defines an integer that’s always 32 bits (4 bytes) long. It doesn’t matter on what
kind of computer system you compile this on, or what kind of CPU it’s running, an int32_t variable will always be 32 bits long.

The final problem is byte order. Different CPU architectures choose to store the bytes of a single integer in different orders. CPUs
that store the least significant bits of the integer in the first (lowest) byte of memory are called little-endian machines. If the
first byte contains the most significant bits of the integer, it’s a big-endian machine. If you transmit the value of an integer, least
significant byte first, to a system that expects the first byte to be the most significant, the integer value will arrive scrambled.

Byte order isn’t a problem (yet) for SunTouch. As of this writing, all iOS devices are built with similar CPU architectures
that all use the same (little-endian) byte order. Be aware that this could change in the future.

Word size, however, is not the same on all iOS devices. With the introduction of the A7 processor, some iOS devices
have a 32-bit CPU while others have a 64-bit CPU. This means an NSInteger variable occupies 4 bytes (32 bits) when
running on an iPhone 4S, but occupies 8 bytes (64 bits) when running on an iPhone 5S. (This statement presumes that
you’ve compiled your app for both 32 and 64 bit architectures, which is the default Xcode build setting.) The length of
all pointer and CGFloat variables will also be different. Any integer or floating point values you exchange between iOS
devices will have to agree on a consistent word size.

If your app wanted to communicate with a different kind of computer system, running a different operating system, you’d
need to concern yourself with both word size and byte order differences.

Chapters 18 and 19 explain the built-in Objective-C tools for serializing objects. These tools take care of all of the word
size, byte order, and object inflating for you.

470 CHAPTER 14: Networking, The Nerdy Kind

When the SunTouch app receives data, it must be able to determine what kind of information the
data block contains. The simplest approach, when doing this yourself, is to start every data block
with an integer that described what kind of information the rest of the data block contains. In
STGame+STDataMessaging.h, add this declaration:

typedef uint32_t STMessage;
enum {
 kSTStartGameMessage,
 kSTStrikeMessage,
 kSTCaptureMessage
};

This code defines a new integer variable type (STMessage) that is guaranteed to be 32 bits long
regardless of what computer system it’s compiled for. It then defines three constants, one for each
type of data message SunTouch sends.

The rest of the declarations in STGame+STDataMessaging.h define the structures uses to exchange
data between games:

typedef float STFloat;
typedef struct {
 STFloat x;
 STFloat y;
} __attribute__((aligned(4), packed)) STMessagePoint;

struct STStartGameMessage {
 STMessage message;
 uint32_t coinToss;
 STMessagePoint sun[kSunCount];
} __attribute__((aligned(4), packed));

struct STStrikeMessage {
 STMessage message;
 STMessagePoint location;
 STFloat radius;
} __attribute__((aligned(4), packed));

struct STCaptureMessage {
 STMessage message;
 uint32_t sunIndex;
 STFloat gameTime;
} __attribute__((aligned(4), packed));

The first two declarations create two new variable types, STFloat and STMessagePoint. STFloat
defines a single coordinate or distance variable and STMessagePoint defines a pair of STFloat values
used to describe a coordinate.

471CHAPTER 14: Networking, The Nerdy Kind

The next three structures (STStartGameMessage, STStrikeMessage, and STCaptureMessage) define the
organization of the data blocks that will be exchanged. Notice that every structure starts with an
STMessage integer field. This will contain the appropriate message type constant. When your app
receives a data block from another player, you know that the first 32 bits of the message will contain
a number. You’ll examine that number to determine what the data contains.

The rest of the fields should be obvious. The __attribute__((aligned(4),packed)) gibberish is a
special directive that tells the compiler exactly how to align and pack the fields within the structure.
Just as word size and byte order change from one computer to another, so does the byte alignment
of fields within a structure. By being explicit, SunTouch makes sure that—should the compiler’s
structure alignment rules change in the future—all versions of SunTouch will still be able to
communicate with each other.

That’s all the declarations you need. Now you can write the methods that send and receive data
from the remote app.

Sending Data to a Player
Switch to the STGame+STDataMessaging.m implementation file. Start by #importing the definitions of
the STStrike and STSun classes; you’re going to need them.

#import "STStrike.h"
#import "STSun.h"

Implement the -sendGameStart method:

- (void)sendGameStart
{
 struct STStartGameMessage message;
 message.message = kSTStartGameMessage;
 message.coinToss = coinToss;
 for (NSUInteger i=0; i<kSunCount; i++)
 {
 STSun *sun = suns[i];
 message.sun[i].x = sun.location.x;
 message.sun[i].y = sun.location.y;
 }

 NSData *data = [NSData dataWithBytes:&message length:sizeof(message)];
 [multiPlayerMatch sendDataToAllPlayers:data
 withDataMode:GKMatchSendDataReliable
 error:NULL];
}

Note Why didn’t you just use CGFloat and CGPoint? Because the length of CGFloat is different between
32- and 64-bit CPU architectures and the default alignment of the CGPoint structure could change someday.
By defining your own, transportable, variable types you guarantee that variables in these structures will have
the same size, order, and position on any iOS device SunTouch could run on.

472 CHAPTER 14: Networking, The Nerdy Kind

All of your methods to send data to the other players will follow this same pattern. Your method
starts by allocating the appropriate data structure (STStartGameMessage, in this case). It sets the
message field to the constant (kSTStartGameMessage) that identifies what kind of data it contains. It
then fills in the remaining values of the structure.

Note It’s traditional to transmit all integer values in big-endian order over a network. Since all iOS
devices (as of this writing) use little-endian integers, I’m skipping that step. If you need to flip the byte
order of integers, use the Core Foundation byte swapping functions. Search for “byte swapping” in the
Xcode documentation.

The last step is to transmit the finished structure to the other player. The NSData class converts the
bytes of the structure into an NSData object—which is nothing more than an object that contains
an array of bytes. You then send the -sendDataToAllPlayers:withDataMode:error: message to the
GKMatch object. This method transmits those bytes to all other participating players. Since SunTouch
is only a two-player game, the sole recipient is the opposing player’s app.

The GKMatchSendDataReliable mode tells GKMatch that it’s important that this data arrive. This
might seem a silly thing to request—wouldn’t you want all data to arrive? But not all game data is
important enough to worry about whether it arrives safely or not.

Wireless communications can be spotty and unreliable. Data can get lost due to interference. If it’s not
critical that the message arrives, pass GKMatchSendDataUnreliable. This sends the data quickly, but
makes no guarantees. This would be appropriate for status updates that occur continuously. It won’t hurt
(too much) if a few of them got lost; the next one will catch the game up. Messages that communicate
vital information—such as a chess move—should be sent using GKMatchSendDataReliable. If there’s a
problem sending the message, GKMatch will try again until successful. This adds overhead, and it may
take a while before it’s delivered, but the message will get there.

You’ve implemented the code to send “game start” data to the other player. Now write the code to
receive “game start” data from the other player.

Receiving Data from a Player
When a block of data is received from the remote player, your STGame object receives a
-match:didReceiveData:fromPlayer: message. This will be the central location where you handle all
received data:

- (void) match:(GKMatch*)match
didReceiveData:(NSData*)data
 fromPlayer:(NSString*)playerID
{
 STMessage message = *((STMessage*)data.bytes);
 switch (message) {
 case kSTStartGameMessage: {
 const struct STStartGameMessage *message = data.bytes;

473CHAPTER 14: Networking, The Nerdy Kind

 if (message->coinToss>coinToss)
 {
 STSun *otherSuns[kSunCount];
 for (NSUInteger i=0; i<kSunCount; i++)
 otherSuns[i] = [STSun sunAt:message->sun[i].x
 :message->sun[i].y];
 suns = [NSArray arrayWithObjects:otherSuns count:kSunCount];
 }
 else if (message->coinToss==coinToss)
 {
 coinToss = arc4random();
 [self sendGameStart];
 return;
 }
 startTime = [NSDate timeIntervalSinceReferenceDate];
 multiPlayStarted();
 }
 break;
 }
}

The first step is to examine the 32-bit integer value that occupies the first four bytes of the received
data block. The C syntax *((STMessage*) treats the first four bytes of the received data as an
STMessage integer, and then gets that value and stores it in the message variable. Now the method
knows what kind of data it just received. The rest is just a matter of handling each type.

The kSTStartGameMessage case treats (casts) the data bytes received as if it were an
STStartGameMessages structure—which it is.

When your game receives “game start” data, it compares the coinToss value chosen by the other
player with the one your game engine picked in -startMultiplayerWithMatch:started:. If the
opponent’s coinToss is bigger, the opponent won the coin toss. Discard the sun locations we
picked and replace them with the ones the opponent picked. Now both games have the same sun
locations.

In the case where your game picked the higher coinToss number, there’s nothing to do, as you
already have the sun locations. There is, however, a one-in-a-billion chance that both apps
picked the same value for coinToss. If that happens, both apps pick a new random number and
try again.

Once the coin toss is over and both games are using the same sun locations, the game is started.

If you’re looking for a function named multiPlayStarted, you can stop. It isn’t a function. It’s the
name of the code block variable that STGameViewController passed to STGame when it originally sent
the -startMultiplayerWithMatch:started: message. It looks like a C function call, but what it’s
doing is executing the code block saved in the multiPlayStarted instance variable.

Executing the “game did start” code block is the last step in starting the game. The game is now
running and both players are using the same list of hidden sun locations. The next thing that will
happen is that one, probably both, of the players will touch their interface and cause a strike
to occur.

474 CHAPTER 14: Networking, The Nerdy Kind

Sending Strike Data
When a player touches the game view, a strike is initiated. But that same information must be
communicated to the other player, so it can animate its opponent game view. Add the send strike
data method to the STGame+STDataMessaging.m implementation file:

- (void)sendStrike:(STStrike*)strike
{
 if (multiPlayerMatch==nil)
 return;
 struct STStrikeMessage message;
 message.message = kSTStrikeMessage;
 message.location.x = strike.location.x;
 message.location.y = strike.location.y;
 message.radius = strike.radius;

 NSData *data = [NSData dataWithBytes:&message length:sizeof(message)];
 [multiPlayerMatch sendDataToAllPlayers:data
 withDataMode:GKMatchSendDataReliable
 error:NULL];
}

The first statement does nothing if the multiPlayerMatch property is nil, inferring that this is a
single-player game and there is no remote player to send data to. The rest of the method looks just
like -sendGameStart, except the data consists of the location of the strike and its radius.

This method must be invoked every time the local user strikes. Switch to the STGame.m
implementation file, find the -strike:radius:inView: method and change the beginning so it looks
like this (new code in bold):

- (void)strike:(CGPoint)viewLocation
 radius:(CGFloat)viewRadius
 inView:(STGameView*)gameView
{
 STStrike* strike = [STStrike new];
 strike.location = [gameView unitPointFromPoint:viewLocation];
 strike.radius = [gameView unitRadiusFromRadius:viewRadius];
 [self sendStrike:strike];

Now every time the game engine receives a -strike:radius:inView: message, it will report that
strike to the opposing player (assuming it’s a two-player game). The -sendStrike: method is part of
the STDataMessaging category. Add this #import towards the beginning of the file so STGame.m will
recognize the new method:

#import "STGame+STDataMessaging.h"

Anything you send to the other player, you have to expect to receive.

475CHAPTER 14: Networking, The Nerdy Kind

Receiving Strike Data
Return to STGame+STDataMessaging.m, locate the -match:didReceiveData:fromPlayer: method, and
add a new case to the switch statement:

case kSTStrikeMessage: {
 const struct STStrikeMessage *message = data.bytes;
 STStrike *strike = [STStrike new];
 strike.location = CGPointMake(message->location.x,message->location.y);
 strike.radius = message->radius;
 NSDictionary *strikeInfo = @{ kGameInfoStrike: strike,
 kGameInfoOpponent: @YES };
 [[NSNotificationCenter defaultCenter] postNotificationName:kGameStrikeNotification
 object:self
 userInfo:strikeInfo];
 }
 break;

When a block of data identifying itself with the kSTStrikeMessage value is received, an STStrike
object is constructed from the location and radius information in the data. This is then posted as
a strike notification, with the kGameInfoOpponent property set to YES. The game views observe this
notification, causing the opponent game view to animate a strike in the background view.

The game engine isn’t interested in opponent strikes; suns captured by the opponent will be
communicated separately. And there’s no time like the present to write that code.

Sending Sun Capture Data
This is starting to get monotonous, but you’re almost done. Still in STGame+STDataMessaging.m, add
the -sendCaptureForSunIndex: method:

- (void)sendCaptureForSunIndex:(NSUInteger)index
{
 if (multiPlayerMatch==nil)
 return;
 struct STCaptureMessage message;
 STSun *sun = suns[index];
 message.message = kSTCaptureMessage;
 message.sunIndex = (uint32_t)index;
 message.gameTime = sun.time;
 NSData *data = [NSData dataWithBytes:&message length:sizeof(message)];
 [multiPlayerMatch sendDataToAllPlayers:data
 withDataMode:GKMatchSendDataReliable
 error:NULL];
}

You’ve got this: check multiPlayerMatch, fill an STCaptureMessage structure, convert it to NSData, and
send that data to the other players. Done.

476 CHAPTER 14: Networking, The Nerdy Kind

When does this happen? When the -strike:radius:inView: method determines that a strike will
capture a sun. Switch to STGame.m, find -strike:radius:inView:, find the if block that determines
when a sun is captured, and change it so it now reads (new code in bold):

if (sunDistance<=viewRadius)
 {
 NSTimeInterval strikeTime = self.gameTime+kStrikeAnimationDuration/2
 *(sunDistance/viewRadius);
 [self willCaptureSunAtIndex:i gameTime:strikeTime localPlayer:YES];
 [self sendCaptureForSunIndex:i];
 }

Receiving Sun Capture Data
Back in the STGame+STDataMessaging.m file, add one last case to the switch statement in the
-match:didReceiveData:fromPlayer: method:

case kSTCaptureMessage: {
 const struct STCaptureMessage *message = data.bytes;
 [self willCaptureSunAtIndex:message->sunIndex
 gameTime:message->gameTime
 localPlayer:NO];
 }
 break;

This is the simplest one yet. The captured sun information from the opponent is passed to the game engine.
Remember that you added an additional parameter to -willCaptureSunAtIndex:gameTime:localPlayer:
so the method can distinguish between suns captured by the local player and sun captured by the
opponent. When sun captured data is received from the remote game, you send the same message,
but this time pass NO for the localPlayer.

Note Network communication takes time. Not a long time, but long enough that it’s possible for both
players to think they’ve captured the same sun before they receive the capture data from the other player.
This is called a race condition, and it’s a notorious problem in real-time programming. Review the logic
and the comments in the -willCaptureSunAtIndex:gameTime:localPlayer: and STGameView’s
-captureNotification: methods to see how SunTouch handles it.

Handling Match Disruption
All of your communications logic is finished, but there are a few additional GKMatchDelegate methods
you should implement. Add them to your STGame+STDataMessaging.m file:

- (void) match:(GKMatch*)match
 player:(NSString*)playerID
didChangeState:(GKPlayerConnectionState)state
{
}

477CHAPTER 14: Networking, The Nerdy Kind

- (void)match:(GKMatch*)match didFailWithError:(NSError*)error
{
 [[NSNotificationCenter defaultCenter] postNotificationName:kGameDidEndNotifcation
 object:self];
}

- (BOOL)match:(GKMatch *)match shouldReinvitePlayer:(NSString*)playerID
{
 return YES;
}

As mentioned earlier, wireless communication is subject to a variable quality of service. (The technical
term is “flaky.”) When iOS loses, or reestablishes, a connection with one of the other players, your
delegate method will receive a -match:player:didChangeState: message. What you do depends on
the type of game. SunTouch doesn’t do anything. (It’s sad that the other player can’t capture your
suns, but that’s about it.) If this was a two-player battling robot game, it might make sense to pause
the game until the connection can be reestablished.

The more dire -match:didFailWithError: message is received when a serious networking problem
prevents the game from keeping, or reestablishing, a connection with one or more players. In this
situation, the link to the other players is probably broken. SunTouch responds by ending the game.

Finally, the -match:shouldReinvitePlayer: method is received whenever a two-player game looses
connection with the other player. If this method returns YES, the GKMatch object will automatically attempt
to reestablish a connection with the other player. If you return NO, or there are more than two players, it’s
up to you to reconnect the disconnected players in your -match:player:didChangeState: method.

Testing a Two-Player Game
Please don’t throw this book across the room if I tell you there’s one more step before you can test
the two-player version of SunTouch, but there’s one more step before you can test the two-player
version of SunTouch.

Note Remember that you must have two, provisioned, iOS devices to test a two-player Game Center-aware
app that uses peer-to-peer networking. The iOS simulator will not connect to a real iOS device, and vice versa.

You’ll first need to get SunTouch running in two iOS devices. Plug both of your iOS devices into
your Mac. In Xcode, set the scheme’s target to the first device and click the Run button, as you’ve
done countless times in this book so far. While the first app is still running, change the target of the
scheme to the second iOS device, and click the Run button again. Now Xcode is running the same
app in two iOS devices simultaneously.

Tip Some games are awkward to play with the device plugged into a USB port. If you’re not using Xcode
to debug one or both apps, you can run the project to copy the app to the device, stop the app, unplug the
device, and launch the app again from the springboard.

478 CHAPTER 14: Networking, The Nerdy Kind

The last step is to create a second sandbox player. To play a two-player game, you must have two
Game Center player accounts, and since both apps are using the sandbox servers, both players
must be sandbox players. On your second iOS device, follow the same steps in the “Creating a Test
Player” section that you did for the single version. Once you have two sandbox player accounts, you
can start a two-player game.

With both apps running, tap the “two player” button on both. Both devices will present the
matchmaker view controller, as shown in Figure 14-21. Tap the Play Now button on both. This uses
Game Center’s “auto-match” feature, which connects to the first local player it can locate.

Figure 14-21. Connecting with a second SunTouch player

As soon as both devices have connected, SunTouch is off and running, as shown in Figure 14-22.

479CHAPTER 14: Networking, The Nerdy Kind

Tip When Xcode is running more than one instance of your app, the Stop button turns into a drop-down
menu. Click it and choose which app to stop.

Figure 14-22. Two-player SunTouch communicating over local Wi-Fi

When you’re done playing, you can stop the apps in Xcode. If you like, unplug the devices and
re-launch SunTouch from the springboard.

Advanced Networking
GameKit is a fantastic resource for peer-to-peer networking, but it’s not the only network
communications solution available—just the easiest to use.

If you want to create a more general networking solution, possibly connecting and communicating
with a custom application running on almost any kind of computer, there are lots of resources and
possible solutions. The best place to begin is the Network Overview document that you’ll find in

480 CHAPTER 14: Networking, The Nerdy Kind

Xcode’s Documentation and API Reference window. The three areas of network communication that
you most likely want to explore are:

The high-level HTTP/URL services for communicating with Internet servers, 	
like those you used in Shorty. These include the NSURLRequest and
NSURLConnection classes.

The low-level TCP/IP socket APIs for direct connection with almost any networked 	
device or service. Start with the Using Sockets and Socket Streams document.

The Bonjour service for advertising and discovering local services. If you wanted 	
to perform your own matchmaking, so your users could effortlessly connect to
another local computer, Bonjour is the tool of choice. (GameKit uses Bonjour.)
On iOS, the Bonjour service also supports Bluetooth, for wireless peer-to-peer
Bluetooth discovery. Start with the Bonjour Overview document.

One Last Detail
There’s one aspect (no pun intended) that bothers me about SunTouch. The project settings
allow SunTouch to run in portrait or landscape mode on both iPhones and iPads. While there are
numerous cosmetic issues that I’d want to address before declaring this app ready to release,
there’s one rather glaring problem: If the player starts to play the game in one orientation, and then
turns to another, the games gets sort of wonky. This is a side effect of the unit-space coordinate
system the game engine uses. It results in peculiar behavior, like hidden suns now in areas of the
screen that have already been blasted.

The project settings determine the allowed orientations for your entire app. Individual view
controllers can also stipulate which orientations they support, and they can do so dynamically.
You’re going to exploit this last feature to put a stop to users flipping their devices mid-game.

The set of orientations a view controller is willing to work in is declared in the bits returned by its
-supportedIntefaceOrientations method. iOS queries this when presenting a view controller. If the
view controller doesn’t support the current orientation, the orientation of the interface is changed
to one that does. Your STFlipsideViewController could benefit from this feature. The game
instructions are laid out vertically, and are unsightly when presented in landscape orientation.

Change STFlipsideViewController so that the view only appears in portrait orientation. Find the
STFlipsideViewController.m implementation file and add this method (or review the finished project
in the Learn iOS Development Projects ➤ Ch 14 ➤ SunTouch-5 folder):

- (NSUInteger)supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskPortrait;
}

This overrides the inherited -supportedInterfaceOrientations, which returns
UIInterfaceOrientationMaskAll on the iPad and UIInterfaceOrientationMaskAllButUpsideDown
on the iPhone. If you run the app, rotate the device, and present the flipside view controller, it still
appears in portrait orientation, as shown in Figure 14-23, because that’s the only orientation it
supports now.

481CHAPTER 14: Networking, The Nerdy Kind

If your view controller supports a combination of orientations, either return one of the combination
constants (UIInterfaceOrientationMaskAll) or construct a set of orientations by ORing individual ones
together (UIInterfaceOrientationMaskPortrait|UIInterfaceOrientationMaskPortraitUpsideDown).

Note Many container view controllers aggregate the supported orientations of their constituent view
controllers. For example, the tab bar controller will rotate from portrait to landscape orientation only if all of
its sub-view controllers support landscape orientation.

For the STGameViewController, the problem is a little different. You want to allow landscape, or even
upside down, orientations but you don’t want the orientation to change once the game begins. The
solution is to create a “smart” -supportedInterfaceOrientations method that only supports the
orientation it started out with.

In the STGameViewController.h interface file, add a lockedOrientation property to the class:

@property (nonatomic) UIInterfaceOrientation lockedOrientation;

Switch to the STMainViewController.m implementation file and find the -prepareForSegue:sender:
method. In the if block that segues to the STGameViewController, add a line that captures the
current orientation of the device (new code in bold):

gameViewController.twoPlayer = [segue.identifier isEqualToString:@"twoPlayer"];
gameViewController.lockedOrientation = self.interfaceOrientation;
}

Figure 14-23. Limiting a view controller to portrait orientation

482 CHAPTER 14: Networking, The Nerdy Kind

Finally, switch to the STGameViewController.m file and override the -supportedInterfaceOrientation
method:

- (NSUInteger)supportedInterfaceOrientations
{
 switch (self.lockedOrientation)
 {
 case UIInterfaceOrientationPortrait:
 return UIInterfaceOrientationMaskPortrait;
 case UIInterfaceOrientationPortraitUpsideDown:
 return UIInterfaceOrientationMaskPortraitUpsideDown;
 case UIInterfaceOrientationLandscapeLeft:
 return UIInterfaceOrientationMaskLandscapeLeft;
 case UIInterfaceOrientationLandscapeRight:
 return UIInterfaceOrientationMaskLandscapeRight;
 }
 return UIInterfaceOrientationMaskAll;
}

The new method allows only the orientation that matches the one set in lockedOrientation. Now
you can start a SunTouch game in any orientation, but once started it won’t respond to changes to
the device’s orientation until the game ends. Wasn’t that simple?

Summary
In this chapter you covered a lot of diverse ground. You created a Game Center–aware application,
assigned it a unique app ID, registered that ID and your app with Apple, used iTunes Connect to
enable and configure Game Center for your app, implemented the various GameKit requirements,
created a sandbox player, got the local player in your app, and reported scores to the worldwide
leaderboard.

And all of that was just the prelude to adding real-time network communications to your app! You
used the matchmaking feature of Game Center to connect with a second iOS device, sent live status
updates to the other player, and processed remote messages received from the other player—all
in real-time. You also learned some basics about serializing information, and constructing and
interpreting inter-process data.

This is cause for some celebration and well-deserved congratulations. This was, by far, the most
complex and difficult project in the book, and you made it through with flying colors. With the
momentum you’ve built up, you can, honestly, coast through the rest of this book. Later chapters
are going to introduce you to even more iOS services, like maps, and there’s a lot of practical
information about Objective-C and multi-tasking, but all of that is going to seem simple compared to
what you’ve accomplished so far.

Speaking of practical information, the next chapter is going to focus on Interface Builder. Not so
much how to use it, as how it works; something that’s important to understand if you want to be an
iOS master developer.

483CHAPTER 14: Networking, The Nerdy Kind

EXERCISE

How complicated would it be, do you think, to turn SunTouch into a game that could be played by three, or even four,
players at a time? Surprisingly, it’s not that much work. Or, maybe the fact that it isn’t difficult means SunTouch is a
well-designed piece of software.

Your exercise for this chapter, if you’re willing to borrow another iOS device from a friend or family member, is to get
SunTouch to play up to four players simultaneously.

The parts of your app that will have to change probably aren’t the ones that leap immediately to mind. If you treat
all strikes and captured suns from any of the remote players as “the opponent,” the logic to send strikes and handle
captured suns from remote players requires only minor tweaks. The view classes don’t need to change at all—how well
designed is that?

The complicated problems are at the beginning and end of the game. You now have to arbitrate between up to four sets
of sun locations, with all players getting the same set. But even that can be solved with a few lines of code. The really
complicated problem is that there is now more than one opponent score, so the single -opponentScore method is
meaningless.

I thought of several different ways of evolving SunTouch into a multi-player game. The solution I finally wrote can be
found in the Learn iOS Development Projects ➤ Ch 14 ➤ SunTouch E1 folder. It adds a new playerID
property to the STSun object. This property records the player that captured the sun. A new -scoreForPlayer: method
calculates the score for any individual player. If you wanted to make the game even more colorful, you could modify
STGameView to assign different colored suns to each player. Search the project for the string *Multi-Player* to find
these, and other, changes.

Picking a leader to start the game and agreeing on a set of suns sounds like it would be tricky with so many players,
but it only required a few minor code changes. The highest coin toss still determines the set of suns to use, the only
difference is each app waits until its received a “start game” message from every other player. An alternative approach
would be to use GKMatch’s -chooseBestHostPlayerWithCompletionHandler: method to let GameKit select one
of the devices as the host. Once chosen, the host device would then pick a set of sun locations and communicate that
to all of the other players, in a single message, starting the game and eliminating the need for the coin toss. (The only
problem with -chooseBestHostPlayerWithCompletionHandler: is that it’s not guaranteed to pick a host, so you
must still provide a fallback mechanism.)

I went through several different solutions to this exercise, including one that added a new “score” message, broadcast
whenever the local score changed. Can you think of another solution? While there are often lots of poor solutions, there’s
no single, correct, way to write software.

485

Chapter 15
If You Build It ...

Interface Builder is Xcode’s “secret sauce.” It makes the creation of complex interfaces effortless:
drag interface elements into a canvas, connect them together, press a button, and they become
working objects in your app. It’s like magic.

Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke

“Magic” is often used to describe what we don’t understand. Interface Builder can sometimes meet
this criteria; it works, you just don’t know how. Well, step behind the curtain and prepare to learn
those secrets. In this chapter you will:

Learn what Interface Builder files are (exactly)	

Find out how objects in an Interface Builder file become objects in your app	

Discover programmatic equivalents to what Interface Builder does	

Understand how placeholder objects work	

Programmatically load your own Interface Builder files	

Provide your own placeholder objects	

Normally, Interface Builder files are loaded by your view controller objects, which hide a lot of the
details. That’s fine. In fact, it’s great. If you’re using a view controller object you should let it handle
the details—that’s what it’s there for. But sometimes you’ll find yourself in a situation where you can’t
use Interface Builder, but you need to accomplish something similar in code. Or what if you want to
load an Interface Builder file that isn’t managed by a view controller? These are easy to accomplish,
if you first understand how Interface Builder works.

486 CHAPTER 15: If You Build It ...

How Interface Builder Files Work
An Interface Builder file contains a serialized graph of objects. In Chapter 14, you learned a little of
what serialization means and some of the challenges involved. In Chapters 18 and 19, you’ll learn
how to serialize objects and how to create objects that can be serialized (archived). But for now, all
you need to know is that “serializing an object” means converting its properties into a transportable
array of bytes, and eventually reversing the process to get them back again.

Note I’m still using the term “serialize” in the generic, computer engineering, sense. In the language of
Cocoa Touch, Interface Builder files are an archive of objects. Loading an Interface Builder file consists
of un-archiving those objects.

So what’s an object graph? An object graph is a set formed by an object, all of the objects that
object refers to, all of the objects those objects refer to, and so on. The object—or small number of
objects—that begins the graph is referred to as the root or top-level object(s).

Serialization starts at the root object. That object converts its properties into a serialized byte array.
If any of its properties refer to other objects, those objects are asked to serialize their property values
into the same byte array, and so on, until all of the objects and property values for the entire graph
are converted. The finished array of bytes describe the entire set of objects, their properties, and
their relationships.

Compiling Interface Builder Files
You use an Interface Builder file by creating one and adding it to your project. You then edit it and
build your app.

But the .xib or .storyboard file that you edit in Xcode is not what ends up in your app’s bundle. Like
your source (.m and .h) files, your Interface Builder files are compiled. The nib compiler converts
the design in your .storyboard or .xib file into serialized data that, when un-archived, will create the
objects with the properties and connections you described. This compiled nib file is then added to
your app’s bundle as a resource file.

Note Some interface editors take your design and turn it into source code, equivalent to what you drew,
which you then compile as part of your app. These tools are called code-generators. Interface Builder is not a
code-generator. Interface Builder is an object compiler.

Loading a Scene
When your apps needs the objects stored in an Interface Builder file, it loads the interface. Figure 15-1
shows the Detail View scene of the Main_iPhone.storyboard file (from MyStuff in Chapter 7).
Figure 15-2 shows the (simplified) graph of objects contained in that scene.

487CHAPTER 15: If You Build It ...

A storyboard scene consists of at least one top-level object, the view controller. The view controller’s
view property refers to its single root view object (UIView). This, in turn, contains a collection of
subviews (managed by an NSArray). Some of those view objects refer to additional objects, such as
NSString, UIImage, and UIGestureRecognizer objects.

Figure 15-1. Detail View in Interface Builder

Figure 15-2. Graph of objects in the Detail View scene

488 CHAPTER 15: If You Build It ...

The -instantiateViewControllerWithIdentifer: method instigates the recreation (un-archiving)
of the view controller, and all of its related objects, stored in the storyboard scene. This method is
invoked automatically when triggered by a segue or, as you did in the Wonderland app (Chapter 12),
you can send it programmatically to create a view controller when it pleases you.

During de-serialization (un-archiving), the property values and connections in the serialized data are
used to instantiate new objects, set their properties, and connect them together.

Loading an .xib File
In the SunTouch project, you designed the game play interface in a separate .xib file. When loading
an interface builder file yourself, or letting UIViewController load it for you, the object relationships
are subtly different.

Refer again to Figure 15-2. In the storyboard scene, there is only one top-level object (the view
controller) and the entire graph of objects is reconstructed by un-archiving that single object. Take
a close look at the STGameViewController.xib file, shown in Figure 15-3, and its simplified graph of
objects, shown in Figure 15-4.

Figure 15-3. STGameViewController.xib in Interface Builder

489CHAPTER 15: If You Build It ...

The difference is the placeholder object. Placeholder objects—the most important being the file’s
owner—are objects that already exist when the Interface Builder file is loaded. During the un-archiving
process, existing objects are substituted for the placeholders. The existing objects become part of
the object graph, but are not created by, the Interface Builder file. Outlets in a placeholder can be
set to objects created during the loading process, and objects in the graph can be connected to a
placeholder. In Figure 15-4, the scoreLabel and weightLabel properties in the file’s owner (the view
controller) are set to the two new UILabel objects.

So far in this book, your use of Interface Builder files has been largely transparent. You either created
interfaces in a storyboard scene or standalone .xib file, loaded automatically by its view controller.
Now you’ll learn how to load them yourself and how to designate placeholder objects.

Placeholder Objects and the File’s Owner
When an Interface Builder file is loaded, the sender supplies the existing objects that will replace the
placeholders in the file. The most common scenario is to use one placeholder object, referred to as
the file’s owner. This is typically the object loading the file; when a view controller loads its Interface
Builder file, it declares itself as the file’s owner. You can provide any object you choose or none at
all, in which case there are zero placeholder objects. Optionally, you can supply as many additional
placeholder objects as you wish. (Later in this chapter you’ll load an Interface Builder file with
multiple placeholders.) Think of the file’s owner as the “designated placeholder,” provided to make
the common task of loading an Interface Builder file with one placeholder object as easy as possible.

The important rule to remember is that the class of the file’s owner in the Interface Builder file must
agree with the class of the owner object when the file is loaded. You set the class of the file’s owner
using the identity inspector in Interface Builder. When you set this, you’re making a promise that the
actual object will be of that class (or a subclass) when the file is loaded.

Figure 15-4. Graph of objects in STGameViewController.xib

490 CHAPTER 15: If You Build It ...

The principle use of the file’s owner is to gain access to the objects created in the Interface Builder
file. To access any of those objects, you must obtain a reference to them. While it’s possible to
obtain references to the top-level objects, all other objects must be accessed indirectly, either
via properties in the top-level objects or through connections set in the file’s owner object. In the
example shown in Figure 15-4, the STGameView object becomes accessible through the owner
object’s gameView property. Without a placeholder object, it would be awkward (sometimes
impossible) to access the objects you just created.

When an Interface Builder file loads, only those outlets in the placeholder objects that are connected
in the file are set. All other properties and outlets remain the same.

Objects within the Interface Builder file can only establish connections to other objects in the graph
or to the placeholder objects. For example, an object being loaded by a view controller cannot be
directly connected to the application delegate object. That object isn’t in the graph. The exception is
the first responder. The first responder is an implied object that could be any object in the responder
chain. As you learned in Chapter 4, the responder chain goes all the way to the UIApplication object.

Now that you have a feel for how objects in an Interface Builder file get created, it’s time to dig
into the details of how objects are defined and connected to one another, and what that means to
your app.

Creating Objects
Adding an object to an Interface Builder file is equivalent to creating that object programmatically.
This is a really important concept to grasp. There is nothing “special” about objects created from
Interface Builder files. You can always write code that accomplishes the exact same results; it’s just
excruciatingly tedious, which is why Interface Builder was invented in the first place.

In Figure 15-5, an object is being added to an Interface Builder file. This is borrowed from the
ColorModel project in Chapter 8.

Changing the class of the file’s owner from UIViewController to UIApplication won’t magically
give your Interface Builder file access to your app’s UIApplication object. It just means that the
UIViewController object (the file’s real owner) will be treated as if it were a UIApplication object,
probably with unpleasant consequences.

Caution When changing the class of any placeholder object in Interface Builder, ensure that you set it to the
class, or a superclass, of the actual object that will be supplied when the file is loaded.

491CHAPTER 15: If You Build It ...

The object being added is a UISlider object. It’s being created with a frame of ((39,137),(118,34))
and it’s a subview of the root UIView. The equivalent code (in the view controller) would be:

UISlider *newSlider = [[UISlider alloc] initWithFrame:CGRectMake(39,137,118,34)];
[self.view addSubview:newSlider];

This code creates a new UISlider object with the desired dimensions and adds it to the view
controller’s root view object. In both methods (Interface Builder and programmatically) the end result
is the same.

Figure 15-5. Adding an object to an Interface Builder file

Note Interface Builder understands a few special object relationships, and creates those relationships for
you. For example, when you add a view object as a subview, it’s equivalent to sending an -addSubview:
message to the superview. If you add Bar Button Items to a toolbar, the equivalent message would be
-setItems:animated:. Dropping a new gesture recognizer into a view is the same as sending it an
-addGestureRecognizer: message. Adding constraints is equivalent to sending -addConstraint: or
-addConstraints:, and so on.

There’s only one, technical, difference between how the UISlider object gets created in the Interface
Builder file and how you create one programmatically. When you write code to create a view object,
you use the -initWithFrame: initializer message. When an object is un-archived—which is how
objects in an Interface Builder file get created—the object is created with an -initWithCoder:
message. The coder parameter contains an object that has all of the properties the new object
needs, including its frame. You’ll learn all about -initwithCoder: in Chapter 19.

492 CHAPTER 15: If You Build It ...

ARBITRARY OBJECTS AND THEIR ATTRIBUTES

So far, you've only used Interface Builder to add objects from the object library, or custom subclasses of those library
objects (most often, UIView). Using the identity inspector, you can edit the class of an object, turning it into any custom
subclass that you’ve created. But you can’t change the object’s class to just any class. Or can you?

If you poke around the object library, you’ll find a curious object: Object (see figure). It’s an NSObject object. By itself,
it’s nearly useless. But since every object you’ll ever create is a subclass of NSObject, you can use the identity inspector
to change the class of that object to anything you want.

In addition, the identity inspector has a limited ability to set the properties of your custom object. In ColorModel app,
you programmatically created the CMColor object that was the app’s data model object and then set its initial property
values. You could have created that object in Interface Builder. In your CMViewController.h interface, change the
colorModel property so it’s an Interface Builder outlet, like this (new code in bold):

@property (strong,nonatomic) IBOutlet CMColor *colorModel;

To create the actual CMColor object, drag an Object object into the top-level of the object outline (as shown above).
Use the identity inspector to change its class to CMColor, and then connect the colorModel outlet to the new object,
as shown in the next figure. (Make the colorModel property of the CMColorView class an outlet and connect it too.)

493CHAPTER 15: If You Build It ...

To edit the properties of your custom object, add them to the User Defined Runtime Attributes section, as shown
in the next figure. You can set any object property that’s one of these types: BOOL, any kind of number (integer or floating
point), NSString, CGPoint, CGSize, CGRect, NSRange, or UIColor. Just click the + button and describe the name of
the property, its type, and the value you want it set to (see next figure).

The project in the Learn iOS Development Projects ➤ Ch 15 ➤ ColorModel folder has been modified to
create, configure, and connect the CMColor object entirely in Interface Builder, as described here. Take a look at the code
this displayed in -viewDidLoad:.

You can combine this technique with custom subclasses of other standard library objects. If you create a subclass
UIView, you can set all of the standard UIView properties in the attributes inspector, and then use the identity inspector
to set any additional properties that your class defines.

Editing Attributes
But the frame isn’t the only property of the UISlider object. When you created your slider object in
ColorModel, you used the attributes inspector to change several of its properties. You changed its
maximum range to 360 and checked the Update Events: Continuous option. That was equivalent to
writing this code:

newSlider.maximumValue = 360;
newSlider.continuous = YES;

Again, the resulting object is indistinguishable from the object created by the Interface Builder file,
despite subtle differences in how those property values are set.

Connections
You’ve seen how objects, and their properties, in an Interface Builder file get created, but what about
connections? Figure 15-6 shows the hueSlider outlet being connected to a slider object.

494 CHAPTER 15: If You Build It ...

Here’s the equivalent code:

self.hueSlider = newSlider;

And this time, when I say “equivalent” I mean “identical.” Objects in an Interface Builder file are
created in stages. During the first stage, all of the objects are created and have their attributes set.
In the next stage, all of the connections are made. Those connections are made using the same
methods you’d use to set an outlet property programmatically.

Action connections are a little more complicated. An action connection consists of two, and possibly
three, pieces of information.

Objects that send a single action (UIGestureRecognizer, UIBarButtonItem, and so on) are
connected by setting two properties: the target and the action. The target property is the object
(usually a controller) that will receive the message. The action is the selector (-play:, -pause:,
-someoneMashedAButton:) that determines which message the target receives. Some objects (such as
UIGestureRecognizer) can be configured to send messages to multiple targets. You’d connect those
objects, programmatically, like this:

[gestureRecognizer addTarget:viewController action:@selector(changeColor:)];

Figure 15-6. Connecting an outlet in Interface Builder

Note In Shapely, you programmatically created gesture recognizer objects, but you set the target and
action when you created the object. That works too.

To connect additional actions, send more -addTarget:action: messages with those additional
actions. Disconnect actions using -removeTarget:action:.

495CHAPTER 15: If You Build It ...

Other single-event objects (such as UIBarButtonItem) have only a single target property. These
objects can only send a single message to a single target. You can programmatically make an action
connection by setting the target and action properties individually, like this:

barButtonItem.target = viewController;
barButtonItem.action = @selector(refresh:);

More complex control objects have a multitude of events, any of which can be configured
to send action messages when they occur. A UISlider object can send action messages
when: the user touches the control (UIControlEventTouchDown), they drag outside
its frame (UIControlEventTouchDragOutside), release their finger outside its frame
(UIControlEventTouchUpOutside), release their finger inside its frame (UIControlEventTouchUpInside),
or the value of the slider changes (UIControlEventValueChanged). Each of these is identified by an
event constant (see UIControlEvents). Any event can be configured to send action messages to
multiple targets. In Figure 15-7, the Value Changed event is being configured to send a -changeHue:
message to the view controller.

Figure 15-7. Creating an action connection for the Value Changed event

The code to create that same connection looks like this:

[newSlider addTarget:viewController
 action:@selector(changeHue:)
 forControlEvents:UIControlEventValueChanged];

Tip UIControlEvents is a set of bits. Combine (OR) multiple constants together to attach an action
message to multiple events at once.

496 CHAPTER 15: If You Build It ...

Sending Action Messages
At this point, you shouldn’t be surprised to learn that action messages can also be sent programmatically.
If you want to send an action message, all you have to do is send a -sendAction:to:from:forEvent:
message to your application object ([UIApplication sharedApplication]).

Subclasses of UIControl send events by sending themselves a -sendAction:to:forEvent: message.
This, incidentally, just turns around and sends -sendAction:to:from:forEvent: to your application
object, passing itself in the from: parameter.

Tip If you’re sending an action event in response to an iOS event (Chapter 4), it’s polite to include the
UIEvent object in the forEvent: parameter. Otherwise, pass nil.

You can programmatically cause any UIControl object to send the actions associated with one or
more of its events by sending it a -sendActionsForControlEvents: message.

In all cases—both when sending action messages programmatically and when configuring control
objects—the target object can be nil. When it is, the action message will be sent to the responder
chain, starting with the first responder, instead of any specific object (see Chapter 4). To send an
arbitrary message up the responder chain, use code that looks like this:

[[UIApplication sharedApplication] sendAction:@selector(orderIceCream:)
 to:nil /* responder chain */
 from:self
 forEvent:nil];

You now have a good grasp of how Interface Builder works and how objects get created, configured,
and connected. You’ve also learned most of the equivalent code for what Interface Builder does, so
you could programmatically create, configure, and connect objects, as you did in the Shapely app.

Forget all of that. Well, don’t forget it—you might need it someday—but set it aside for the moment.
It’s great to know how Interface Builder files work, and the code you would write to do that same
work. But the point of having Interface Builder is so you don’t have to do that work! Instead of
writing code to replace Interface Builder, it’s time to put Interface Builder to work for you.

Taking Control of Interface Builder Files
Now that you understand what Interface Builder files are and how they work, you can easily add new
ones to your app and load them when you want. This is the middle ground between the completely
automatic use of Interface Builder files by view controllers and creating your view objects entirely
with code. In this section you’re going to learn to:

Add an independent Interface Builder file to your project	

Programmatically load an Interface Builder file	

Designate multiple placeholder objects that Interface Builder objects can 	
connect to

497CHAPTER 15: If You Build It ...

Back in Chapter 11 you wrote the Shapely app. Every time a button was tapped you created a new
shape (SYShapeView) object, configured it, and attached a slew of gesture recognizers, using nothing
but Objective-C. How much of that code could you accomplish using Interface Builder? Let’s find out.

Declaring Placeholders
Starting with the finished Shapely project from Chapter 11, add a new Objective-C class file, name
it SYShapeFactory, and make it a subclass of NSObject. Add another file, but this time choose the
View file template from the iOS ➤ User Interface group, as shown in Figure 15-8. If Xcode asks for
a device family, pick any one; it won’t matter. Name the file SquareShape. This will add a standalone
Interface Builder (SquareShape.xib) file that creates a single UIView object to your project.

Figure 15-8. Adding a new Interface Builder file

The SYShapeFactory class will be this file’s owner. This is your first placeholder object. To use the
owner object, select the new SquareShape.xib file in the navigator, select the File's Owner in the
placeholder group, and use the identity inspector to change its class to SYShapeFactory. You can
now connect objects to the SYShapeFactory object that you’ll provide later.

You also need to connect objects—specifically, the gesture recognizers—to your view controller.
To accomplish that, you’ll need a second placeholder object. From the object library, locate the
External Object object and drag it into the outline, as shown on the left in Figure 15-9. Select it and

498 CHAPTER 15: If You Build It ...

change its class to SYViewController. With the placeholder object still selected, use the attributes
inspector to assign it an identifier of viewController, as shown on the right in Figure 15-9. The
objects in your new Interface Builder file can now connect to either the SYShapeFactory or your
SYViewController object. Now it’s time to design your objects.

Figure 15-9. Defining a second placeholder

Designing SYShapeView
Select the single view object in the SquareShape.xib file and, using the identity inspector, change its
class to SYShapeView.

Switch to the attributes inspector. Xcode doesn’t really know what you’re going to use the objects in
an Interface Builder file for. By default, it assumes that a top-level view object will become the root
view of an interface, so it sizes the view as if it were an iPhone or iPad screen and adds a simulated
status bar. For SYShapeView, that isn’t the case, so turn all of these assumptions off. Change the
simulated size to Freeform and status bar to None, as shown in Figure 15-10. Now use the attribute
and size inspectors to set the following properties:

Set the background to Default (none)

Uncheck the Opaque property

Make sure Clears Graphics Context is checked

Set its size to 100 by 100

499CHAPTER 15: If You Build It ...

You’ve now replicated the size and properties of a new SYShapeView object produced with the
-initWithShape: method—except for the shape property, which you’ll address in a moment.

Select the SYShapeView.h file, remove the -initWithShape: method prototype, and replace it with
a new property:

@property (nonatomic) ShapeSelector shape;

This makes the shape property settable. We’ll need that later, because we can no longer
use -initWithShape: to create the object (Interface Builder will create the object using
-initWithCoder: instead).

Switch to the SYShapeView.m file and make the following changes:

Discard the definitions for kInitialDimension and kInitialAlternateHeight

Remove the shape instance variable from the private @interface SYShapeView ()
directive

Delete the entire -initWithShape: method

Replace the one reference to the shape variable with _shape (in the -path method,
just follow the compiler warnings).

See how much code you’ve already eliminated? The entire purpose of the -initWithShape:
constructor method was to create and configure a new SYShapeView object. Most of that work is
now being done in your new Interface Builder file.

Connecting the Gesture Recognizers
Back in the SquareShape.xib file, it’s time to add the gesture recognizers. From the object library, drag
out a Pan Gesture Recognizer and drop it into the SYShapeView object. Select the recognizer object and
use the attributes inspector to set its minimum and maximum touches to 1, as shown in Figure 15-11.

Figure 15-10. Designing the top-level view object

500 CHAPTER 15: If You Build It ...

Figure 15-11. Creating and configuring the pan gesture recognizer

Figure 15-12. Connecting the pan gesture recognizer action

Switch to the connections inspector and connect its sent action to the -moveShape: method in the
view controller placeholder, as shown in Figure 15-12.

501CHAPTER 15: If You Build It ...

You’ve now created a pan gesture recognizer that recognizes only single-finger drag gestures.
It’s attached to the shape view object and it sends a -moveShape: message to the view controller,
when triggered. The resulting gesture recognizer object is identical to the one you created,
configured, and connected in the -addShape: method of SYViewController.

Add the other three gesture recognizers:

1. Drop a Pinch Gesture Recognizer into the shape view.

a. Connect its sent action to the view controller’s -resizeShape: method.

2. Drop a Tap Gesture Recognizer into the shape view.

a. Set its Taps to 2

b. Set its Touches to 1

c. Connect its sent action to the -changeColor: method.

3. Drop a Tap Gesture Recognizer into the shape view.

a. Set its Taps to 3

b. Set its Touches to 1

c. Connect its sent action to the -sendShapeToBack: method.

Much of the code you wrote in the -addShape: method has now been replicated using Interface
Builder. There are two steps that can’t be accomplished in Interface Builder; you’ll address those in
code shortly.

Build Your Shape Factory
Select the SYShapeFactory.h file. Add the following #include, @property, and method prototypes
(new code in bold):

#import "SYShapeView.h"
#import "SYViewController.h"

@interface SYShapeFactory : NSObject

@property (strong,nonatomic) IBOutlet SYShapeView *shapeView;
@property (strong,nonatomic) IBOutlet UITapGestureRecognizer *dblTapGesture;
@property (strong,nonatomic) IBOutlet UITapGestureRecognizer *trplTapGesture;

- (SYShapeView*)loadShape:(ShapeSelector)shape
 forViewController:(SYViewController*)controller;

@end

Your shape factory object defines outlets that will be connected to the shape view and selected
gesture recognizers. You’ve also declared a -loadShape:forViewController: method that will do all
of the work.

502 CHAPTER 15: If You Build It ...

This is enough code to complete the necessary connections. Select the SquareShape.xib file, select
the File's Owner, and use the connections inspector to connect the shapeView, dblTapGesture,
and trplTapGesture outlets to their respective objects, as shown in Figure 15-13. Save the file.
(Seriously, save the file by choosing File ➤ Save; it’s important.)

Figure 15-13. Connecting the factory outlets

Tip Make sure you connect the right gesture recognizer outlet to the correct object, as both objects appear
as Tap Gesture Recognizer in the outline. If you have Interface Builder objects that might be easily
confused, use the identity inspector to change the object’s label to something more descriptive. In Figure 15-13,
I changed their labels to “Double Tap ...” and “Triple Tap ...” so I can tell which one is which. The label is
cosmetic and doesn’t alter the functionality of your Interface Builder design in any way.

The one aspect—sorry for the bad pun—that has not been addressed is the difference between
the square, rectangle, circle, and oval shapes. If you remember, -initWithShape: would produce a
100 by 50 pixel view for rectangle and oval shapes and a 100 by 100 pixel view for everything else.
In this version, you’re going to replicate that logic using two Interface Builder files. SYShapeFactory
will choose which one to load.

Start by creating the second Interface Builder file. Select the SquareShape.xib file and choose the
Edit ➤ Duplicate ... command, as shown in Figure 15-14.

503CHAPTER 15: If You Build It ...

Name the file RectangleShape. Select the new file, select the shape view object, and use the size
inspector to change the height of the shape view to 50, as shown in Figure 15-14. Now you have
two Interface Builder files, one that produces a 100 by 100 view and a second one that creates a
100 by 50 view.

Now switch to the SYShapeFactory.m file. Add a class method that will choose which Interface
Builder file (SquareShape or RectangleShape) to load for given shape (new code in bold):

#import "SYShapeFactory.h"

@interface SYShapeFactory ()
+ (NSString*)nibNameForShape:(ShapeSelector)shape;
@end

@implementation SYShapeFactory

+ (NSString*)nibNameForShape:(ShapeSelector)shape
{
 switch (shape) {
 case kRectangleShape:
 case kOvalShape:
 return @"RectangleShape";

 default:
 return @"SquareShape";
 }
}

Figure 15-14. Creating the RectangleShape.xib file

504 CHAPTER 15: If You Build It ...

Loading an Interface Builder File
You’re now ready to create your shape view and gesture recognizer objects by loading an Interface
Builder file. Write the -loadShape:forViewController: method now:

- (SYShapeView*)loadShape:(ShapeSelector)shape
 forViewController:(SYViewController*)controller;
{
 NSDictionary *placeholders = @{ @"viewController": controller };
 NSDictionary *options = @{ UINibExternalObjects: placeholders };
 [[NSBundle mainBundle] loadNibNamed:[SYShapeFactory nibNameForShape:shape]
 owner:self
 options:options];
 self.shapeView.shape = shape;
 [_dblTapGesture requireGestureRecognizerToFail:_trplTapGesture];

 return _shapeView;
}

The first two statements prepare the view controller to be a placeholder object when the Interface
Builder file is loaded. You may pass as many placeholder objects as you like, just make sure their
classes and identifiers agree with the external objects you defined in the Interface Builder file.

The third statement is where the magic happens. The -loadNibNamed:owner:options: method
searches your app’s bundle for an Interface Builder file with that name. The name (SquareShape
or RectangleShape) is determined by the +nibNameForShape: method you added earlier. The
owner parameter becomes the file’s owner placeholder object. The options parameter is a
dictionary of special options. In this case, the only special option is additional placeholder objects
(UINibExternalObjects).

When -loadNibNamed:owner:options: is sent, the owner and any additional placeholder objects
take the place of the File's Owner and the corresponding external objects defined in the Interface
Builder file. The objects in the file are created, the properties of the objects are set according to the
attributes you edited, and finally all of the outlet and action connections are established.

Tip If you have code that needs to execute when your objects are created by an Interface Builder file,
override your object’s -awakeFromNib method. When an Interface Builder file or scene is loaded, every
object it creates receives an -awakeFromNib message. This occurs after all properties and connections
have been set.

The message returns an NSArray containing all of the top-level objects created in the file. You can
access the objects created by the file either through this array or via outlets that you connected to
the placeholders. In this app, you’ve used the latter technique.

505CHAPTER 15: If You Build It ...

Note The main reason you created the SYShapeFactory class was to provide an owner object with
outlets that conveniently provide references to the shape view and recognizer objects. Another solution would
be to make the view controller the file’s owner and dig through the returned NSArray of top-level objects to
find the shape view and recognizer objects.

The last two statements take care of the two steps that can’t be accomplished in Interface Builder.
The shape property of the view is set and the double-tap/triple-tap dependency is established.

Replacing Code
Switch to the SYViewController.m file. Add an #import "SYShapeFactory.h" statement after
the other #import statements. Now find the -addShape: method and replace the code that
programmatically created a new SYShapeView object with the following (modified code in bold):

- (IBAction)addShape:(id)sender
{
 SYShapeView *shapeView = [[SYShapeFactory new] loadShape:[sender tag]
 forViewController:self];

Now, for the fun part: find the code in -addShape: that creates, configures, and connects the
four gesture recognizers and delete it all. You don’t need any of that now. All four of the gesture
recognizers were created, configured, and connected by the Interface Builder file.

Run the finished app and observe the results. You shouldn’t be able to tell any difference between
this version of Shapely and the one from Chapter 11, which is the point. This exercise underscores
the major advantages and disadvantages of creating your objects in Interface Builder:

Objects are easy to create, configure, and connect in Interface Builder. This 	
reduces the amount of code you have to write, saving time, and potentially
reducing bugs. (Advantage)

There are some properties and object relationships—like the double-tap/triple-tap 	
dependency—that cannot be set in Interface Builder, and must be performed
programmatically. (Disadvantage)

You can easily choose between multiple Interface Builder files. Instead of writing 	
huge if/else or switch statements, you can create a completely different set of
objects simply by selecting a different Interface Builder file. (Advantage)

You’re limited to the configuration and initialization methods supported by 	
Interface Builder. In Shapely, you had to prove a settable shape property in
order to “fix” the object after it was created, since you could no longer use the
-initWithShape: method. (Disadvantage)

Interface Builder makes it easy to create complex sets of objects, especially 	
ones like gesture recognizers and layout constraints. It requires pages and
pages of dense, difficult to read, code to reproduce the layout constraints
required for many interfaces. (Big Advantage)

506 CHAPTER 15: If You Build It ...

It can sometime take considerable effort to obtain references to the objects 	
created in an Interface Builder file. You might have to create special
placeholder objects, or tediously dig through the top-level objects returned
by -loadNibNamed:owner:options:. In this section you created a class
(SYShapeFactory) for the sole purpose of providing outlets for the references to
the shape view and gesture recognizers. (Disadvantage)

Interface Builder files aren’t the best solution for every interface; sometimes a few lines of well-written
code are all you need. But in the majority of cases, Interface Builder can save you from writing,
maintaining, and debugging (literally) thousands of lines of code. It’s an amazingly flexible and efficient
tool that can free you from hours of work and improve the quality of your apps. You just needed to
know how it works and how to use it.

Summary
Interface Builder is one of the cornerstones of Xcode, and it’s what makes iOS app development so
smooth. Understanding how it works gives you an edge. Understand what it can do and how, and
you can push it to its limits or take over with your own code; it’s your choice.

Loading Interface Builder files directly is where the real flexibility of Interface Builder becomes
evident. You now know how to define practically any interface, a fragment of an interface, or just
some arbitrary objects in an Interface Builder file and load them when, and where, you want. You
know how to create any kind of objects you like, set its custom properties, and connect those with
existing objects in your app. That’s an incredibly useful tool to have at your fingertips.

507

Chapter 16
Apps with Attitude

In a feat of miniaturization that would make Wayne Szalinski1 proud, most iOS devices are equipped
with an array of sensors that detect acceleration, rotation, and magnetic orientation—which is a lot
of “ations.” The combined output of these sensors, along with a little math, will tell your app the
attitude the device is being held in, whether it’s being moved or rotated (and how fast), the direction
of gravity, and the direction of magnetic north, with surprising accuracy. You can incorporate this
into your app to give it an uncanny sense of immediacy. You can present information based on the
direction the user is holding their device, control games through physical gestures, tell them if the
picture they’re about to take is level, and so much more.

In Chapter 4, you used the high-level “device shake” and “orientation change” events to trigger
animations in the EightBall app. In this chapter, you’re going to plug directly into the low-level
accelerometer information and react to instantaneous changes in the device’s position. In this
chapter you will learn to:

Collect accelerometer and other device motion data	

Use timers	

You’ll also get some more practice using affine transformations in custom view objects and use
some of the fancy new animation features added in iOS 7. Let’s get started.

Note You will need a provisioned iOS device to test the code in this chapter. The iOS
simulator does not emulate accelerometer data.

1Wayne Szalinski was the hapless inventor in the movie Honey, I Shrunk the Kids.

508 CHAPTER 16: Apps with Attitude

Leveler
The app you’re going to create is a simple, digital, level called Leveler.2 It’s a one-screen app that
displays a dial indicating the inclination (angle from an imaginary vertical plumb line) of the device,
as shown in Figure 16-1.

Figure 16-1. Leveler design

Creating Leveler
Create a new Xcode project, as follows:

Use the 	 Single View Application template

Product Name: 	 Leveler

Class Prefix: 	 LR

Devices: 	 Universal

After creating the project, edit the supported interface orientations to support all 	
device orientations

2Look up the word “leveler” for an interesting factoid on English history.

509CHAPTER 16: Apps with Attitude

Leveler is going to need some image and source code resources. You’ll find the image files in the
Learn iOS Development Projects ➤ Ch 16 ➤ Leveler (Resources) folder. Add the hand.png and
hand@2x.png files to the Images.xcassets image catalog. In the finished Leveler-1 project folder,
locate the LRDialView.h and LRDialView.m files. Add them to your project too, alongside your other
source files. Remember to check the Copy items into destination group's folder option in the
import dialog. You’ll also find a set of app icons in the Leveler (Icons) folder that you can drop into
the AppIcon group of the image catalog.

You’ll first lay out and connect the views that will display the inclination before getting to the code
that gathers the accelerometer data.

Pondering LRDialView
The source files you just added contain the code for a custom UIView object that draws a circular
“dial.” After reading Chapter 11, you shouldn’t have any problem figuring out how it works. The most
interesting aspect is the use of affine transforms in the graphics context. In Chapter 11, you applied
affine transforms to a view object, so it appeared either offset or scaled from its actual frame. In
LRDialView, an affine transform is applied to the graphics context before drawing into it. Anything
drawn afterwards is translated using that transform.

In LRDialView, this technique is used to draw the tick marks and angle labels around the inside of
the “dial.” If you’re interested, find the -drawRect: method in LRDialView.m. The significant bits
of code are in bold, and irrelevant code has been replaced with ellipses:

#define kCircleDegrees 360
#define kMinorTickDegrees 3

...

- (void)drawRect:(CGRect)rect
{
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGRect bounds = self.bounds;
 CGFloat radius = bounds.size.height/2;
 ...
 CGContextTranslateCTM(context,radius,radius);
 for (NSUInteger angle=0; angle<kCircleDegrees; angle+=kMinorTickDegrees)
 {
 ... draw one vertical tick and horizontal label ...
 CGContextConcatCTM(context,
 CGAffineTransformMakeRotation(kMinorTickDegrees*M_PI/180));
 }
}

The -drawRect: method first applies a translate transform to the context. This offsets the drawing
coordinates, effectively changing the origin of the view’s local coordinate system to the center of
the view. (The view is always square, as you’ll see later.) After applying this transform, if you drew a
shape at (0,0), it will now draw at the center of the view, rather than the upper-left corner.

510 CHAPTER 16: Apps with Attitude

The loop draws one vertical tick mark and an optional text label below it. At the end of the loop, the
drawing coordinates of the context are rotated 3°. The second time through the loop the tick mark
and label will be rotated 3°. The third time through the loop all drawing will be rotated 6°, and so on,
until the entire dial has been drawn. Context transforms accumulate.

The key concept to grasp is that transformations applied to the drawing context affect the
coordinate system of what’s being drawn into the view, as shown in Figure 16-2. Context transforms
don’t change its frame, bounds, or where it appears in its superview.

No Transformation Translate + Rotation

(0,0)

30°

View Bounds

(0,-radius)

Translate

Ro
ta

te

Tick mark and label

Figure 16-2. Graphics context transformation

To change how the view appears in its superview, you set the transform property of the view, as you
did in the Shapely app. And that’s exactly what the view controller will do (later) to rotate the dial on
the screen. This underscores the difference between using affine transforms while drawing and using
a transform to alter how the finished view appears.

Also note that the view only draws itself once. All of this complicated code in -drawRect: executes
only when the view is first drawn or resized. Once the view is drawn, the cached image of the dial
appears in the display and gets rotated by the view’s transform property. This second use of a
transform simply transcribes the pixels in the cached image; it doesn’t cause the view to redraw
itself at the new angle. In this respect, the drawing is very efficient. This is important, because later
on you’re going to animate it.

511CHAPTER 16: Apps with Attitude

Creating the Views
You’re going to add a label object to the Interface Builder file, and then write code in
LRViewController to programmatically create the LRDialView and the image view that displays the
“needle” behind the dial. Start with the Main_iPhone.storyboard (or _iPad) file.

Drag a label object into the interface. Using the attributes inspector, change the following:

Text: 360° (press Option+Shift+8 to type the degree symbol)

Color: White Color

Font: System 60.0 (iPhone) or System 90.0 (iPad)

Alignment: middle

Select the label object and choose Editor ➤ Size to Fit Content. Position the object so it is centered
at the top of the interface. Select the root view object and change its background color to Black
Color.

Select the label and add the following constraints:

1. Fix its width (Editor ➤ Pin ➤ Width)

2. Fix its height (Editor ➤ Pin ➤ Height)

3. Center it (Editor ➤ Align ➤ Horizontal Center in Container)

4. Control/right-drag to the Top Layout Guide and create a Vertical Spacing
constraint

5. Using the attributes inspector, select the constraint and check its Standard
option

The finished interface should look like the one in Figure 16-3.

Figure 16-3. Leveler Interface Builder layout

512 CHAPTER 16: Apps with Attitude

Switch to the assistant view. With the LRViewController.h file in the right-hand pane, add this outlet
property:

@property (weak,nonatomic) IBOutlet UILabel *angleLabel;

Connect the outlet to the label view in the interface, as shown in Figure 16-4.

Figure 16-4. Connecting angle label outlet

You’ll create and position the other two views programmatically. Switch back to the standard editor
and select the LRViewController.m file. You’ll need the definition of the LRDialView class and the
name of the image resource file, so add the following #import and #define declarations immediately
after the existing #import directives:

#import "LRDialView.h"

#define kHandImageName @"hand"

You’ll also need some instance variables to keep a reference to the dial and image view objects and
a method to position them. Add those to the private @interface section (new code in bold):

@interface LRViewController ()
{
 LRDialView *dialView;
 UIImageView *needleView;
}
- (void)positionDialViews;
@end

Create the two views when the view controller loads its view. Since this is the app’s only view
controller, this will only happen once. Find the -viewDidLoad method and add the following bold code:

- (void)viewDidLoad
{
 [super viewDidLoad];

 dialView = [[LRDialView alloc] initWithFrame:CGRectMake(0,0,100,100)];
 [self.view addSubview:dialView];

513CHAPTER 16: Apps with Attitude

 needleView = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:kHandImageName]];
 needleView.contentMode = UIViewContentModeScaleAspectFit;
 [self.view insertSubview:needleView belowSubview:dialView];
}

When the view is loaded, the additional code creates new LRDialView and UIImageView objects,
adding both to the view. Notice that the needleView is deliberately placed behind dialView. The dial
view is partially transparent, allowing the needleView to show through it.

No attempt is made to size or position these views. That happens when the view is displayed or
rotated. Catch those events by adding these two methods:

- (void)viewWillAppear:(BOOL)animated
{
 [self positionDialViews];
}

- (void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)fromOrientation
{
 [self positionDialViews];
}

Just before the view appears for the first time, and whenever the view is rotated to a new orientation,
reposition the dialView and needleView objects. You’ll also need to add this method for the iPhone
version:

- (NSUInteger)supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskAll;
}

While you edited the supported orientations for the app, remember (from Chapter 14) that each view
controller dictates which orientations it supports. By default, the iPhone’s UIViewController does
not support upside-down orientation. This code overrides that to allow all orientations.

Finally, you’ll need the code for -positionDialView:

- (void)positionDialViews
{
 CGRect viewBounds = self.view.bounds;
 CGRect labelFrame = self.angleLabel.frame;
 CGFloat topEdge = CGRectGetMaxY(labelFrame)+labelFrame.size.height/3;
 CGFloat dialHeight = ceilf((CGRectGetMaxY(viewBounds)-topEdge)*2);
 dialView.transform = CGAffineTransformIdentity;
 dialView.frame = CGRectMake(0, 0, dialHeight, dialHeight);
 dialView.center = CGPointMake(CGRectGetMidX(viewBounds),
 CGRectGetMaxY(viewBounds));
 [dialView setNeedsDisplay];

 CGSize needleSize = needleView.image.size;
 CGFloat needleScale = (dialHeight/2)/needleSize.height;

514 CHAPTER 16: Apps with Attitude

 CGRect needleFrame = CGRectMake(0,0,
 needleSize.width*needleScale,
 needleSize.height*needleScale);
 needleFrame.origin.x = CGRectGetMidX(viewBounds)-needleFrame.size.width/2;
 needleFrame.origin.y = CGRectGetMaxY(viewBounds)-needleFrame.size.height;
 needleView.frame = CGRectIntegral(needleFrame);
}

This looks like a lot of code, but all it’s doing is sizing the dialView so it is square, positioning its
center at the bottom center of the view, and sizing it so its top edge is just under the bottom edge of
the label view. The needleView is then positioned so it’s centered and anchored to the bottom edge,
and scaled so its height equals the visible height of the dial. This is a lot harder to describe than it is
to see, so just run the app and see what I mean in Figure 16-5.

That pretty much completes all of the view design and layout. Now you need to get the
accelerometer information and make your app do something.

Getting Motion Data
All iOS devices (as of this writing) have accelerometer hardware. The accelerometer senses the force
of acceleration along three axes: X, Y, and Z. If you face the screen of your iPhone or iPad in portrait
orientation, the X-axis is horizontal, the Y-axis is vertical, and the Z-axis is the line that goes from
you, through the middle of the device, perpendicular to the screen’s surface.

You can use accelerometer information to determine when the device changes speed and in what
direction. Assuming it’s not accelerating (much), you can also use this information to infer the
direction of gravity, since gravity exerts a constant force on a stationary body. This is the information
iOS uses to determine when you’ve flipped your iPad on its side or when you’re shaking your iPhone.

In addition to the accelerometer, recent iOS devices also include a gyroscope and a magnetometer.
The former detects changes in rotation around the three axes (pitch, roll, yaw) and the magnetometer
detects the orientation of a magnetic field. Barring magnetic interference, this will tell you the
device’s attitude relative to magnetic North. (Which is a fancy way of saying it has a compass.)

Figure 16-5. Dial and needle view positioning

515CHAPTER 16: Apps with Attitude

Your app gets to all of this information through a single gatekeeper class: CMMotionManager. The
CMMotionManager class collects, interprets, and delivers movement and attitude information to your
app. You tell it what kind(s) of information you want (accelerometer, gyroscope, compass), how often
you want to receive updates, and how those updates are delivered to your app. Your Leveler app will
only use accelerometer information, but the general pattern is the same for all types of motion data:

1. Create an instance of CMMotionManager

2. Set the frequency of updates

3. Choose what information you want and how your app will get it (pull or push)

4. When you’re ready, start the delivery of information

5. Process motion data as it occurs

6. When you’re done, stop the delivery of information

There’s no better place to start than step 1.

Creating CMMotionManager
Before all of the other #import statements in LRViewController.m, pull in the CoreMotion framework
definitions:

#import <CoreMotion/CoreMotion.h>

You’ll need to specify how fast you want motion data updates. For neatness, define this as a
constant, just after the #import statements:

#define kAccelerometerPollingInterval (1.0/15.0)

You will need an instance variable to store the CMMotionManager object reference and methods to
process the motion data and rotate the dial. Add those to your private interface (new code in bold):

@interface LRViewController ()
{
 CMMotionManager *motionManager;
 LRDialView *dialView;
 UIImageView *needleView;
}
- (void)positionDialViews;
- (void)updateAccelerometerTime:(NSTimer*)timer;
- (void)rotateDialView:(double)rotation;
@end

Locate the -viewDidLoad: method and add this code to the end of the method:

motionManager = [CMMotionManager new];
motionManager.accelerometerUpdateInterval = kAccelerometerPollingInterval;

516 CHAPTER 16: Apps with Attitude

You’ve completed the first two steps in using motion data. The first statement creates a new
CMMotionManager object and saves it in your motionManager instance variable.

Caution Do not create multiple instances of CMMotionManager. If your app has two or more controllers
that need motion data, they share a single instance of CMMotionManager. I suggest creating a readonly
property in your application delegate class that returns a singleton CMMotionManager object. Any code can
retrieve it via [UIApplication.sharedApplication.delegate motionManager].

The next statement tells the manager how long to wait between measurements. This property is
expressed in seconds. For most apps, 10 to 30 times a second is adequate, but extreme apps might
need updates as often as 100 times a second. For this app, you’ll start with 15 updates per second
by setting the accelerometerUpdateInterval property to 1/15th of a second.

Starting and Stopping Updates
To perform the third and fourth steps in getting motion data, locate the -viewWillAppear: method
and add this statement (new code in bold):

- (void)viewWillAppear:(BOOL)animated
{
 [self positionDialViews];
 [motionManager startAccelerometerUpdates];
}

Just before the view appears, you request that the motion manager begin collecting accelerometer
data. The accelerometer information reported by CMMotionManager won’t be accurate—or even
change—until you begin its update process. Once started, the motion manager code works tirelessly
in the background to monitor any changes in acceleration and report those to your app.

Tip To conserve battery life, your app should request updates from the motion manager only while your app
needs them. For this app, motion events are used for the lifetime of the app, so there’s no code to stop them.
If you added a second view controller, however, that didn’t use the accelerometer, you’d want to add code to
-viewWillDisappear: to send -stopAccelerometerUpdates.

Push Me, Pull You
It might not look you like you’ve performed the third step in getting motion data, but you did. It was
implied when you sent the -startAccelerometerUpdates message. This method starts gathering
motion data, but it’s up to your app to periodically ask what those values are. This is called the pull
approach; the CMMotionManager object keeps the motion data current and your app pulls the data
from it as needed.

517CHAPTER 16: Apps with Attitude

The alternative is the push approach. To use this approach, send the -startAccelerometerUpdates
ToQueue:withHandler: message instead. You pass it an operation queue (that I’ll explain in
Chapter 24) and a code block that gets executed the moment motion data is updated. This is much
more complicated to implement because the code block is executed on a separate thread, so all of
your motion data handling code must be thread-safe. You really only need this approach if your app
must, absolutely, positively, process motion data the instant it becomes available. There are very few
apps that fall into this category.

Timing is Everything
Now you’re probably wondering how your app “periodically” pulls the motion data it’s interested
in. The motion manager doesn’t post any notifications or send your object any delegate messages.
What you need is an object that will remind your app to do something at regular intervals. It’s called
a timer, and iOS provides just that. At the end of the -viewWillAppear: method, add this statement:

[NSTimer scheduledTimerWithTimeInterval:kAccelerometerPollingInterval
 target:self
 selector:@selector(updateAccelerometerTime:)
 userInfo:nil
 repeats:YES];

An NSTimer object provides a timer for your app. It is one of the sources of events that I mentioned in
Chapter 4, but never got around to talking about.

Note Making a functioning timer is a two-step process; you must create the timer object and then add it to
the run loop. The -scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
method does both for you. If you create a timer using a different method, you’ll have to send the run loop
object an -addTimer:forMode: message before the timer will do anything.

Timers come in two flavors: single-shot or repeating. A timer has a timeInterval property and
a message it will send to an object. After the amount of time in the timeInterval property has
passed, the timer fires. At the next opportunity, the event loop will send the target object the timer’s
message. If it’s a one-shot timer, that’s it; the timer becomes invalid and stops. If it’s a repeating
timer, it continues running, waiting until another timeInterval amount of time has passed before
firing again. A repeating timer continues to send messages until you send it an -invalidate
message.

Caution Don’t use timers to poll for events—such as waiting for a web page to load—that you could have
determined using event messages, delegate methods, notifications, or code blocks. Timers should only be
used for time-related events and periodic updates.

518 CHAPTER 16: Apps with Attitude

The code you added to -viewWillAppear: creates and schedules a timer that sends your view
controller object an -updateAccelerometerTime: message approximately 15 times a second. This is
the same rate that the motion manager is updating its accelerometer information. There’s no point in
checking for updates any faster, or slower, than the CMMotionManager object is gathering them.

Everything is in place, except the -updateAccelerometerTime: and -rotateDialView: methods. While
still in LRViewController.m, add the first method:

- (void)updateAccelerometerTime:(NSTimer *)timer
{
 CMAcceleration acceleration = motionManager.accelerometerData.acceleration;
 double rotation = atan2(-acceleration.x,-acceleration.y);
 [self rotateDialView:rotation];
}

The first statement retrieves the accelerometerData property of the motion manager. Since you only
started the gathering of accelerometer information, this is the only motion data property that’s valid.
This property is a CMAccelerometerData object, and that object only has one property: acceleration.
The acceleration property—which is a structure, not an object—contains three numbers: x, y, and z.
Each value is the instantaneous force being exerted along that axis, measured in G’s.3 Assuming the
device isn’t being moved around, the measurements can be combined to determine the gravitational
vector; in other words, you can figure out which way is down.

Your app doesn’t need all three. You only need to determine which direction is up in the X-Y plane,
because that’s where the dial lives. Ignoring the force along the Z-axis, the arctangent function
calculates the angle of the gravitational vector in the X-Y plane. The result is used to rotate the
dialView by that same angle. Simple, isn’t it?

Note You might have questioned why the arctangent function was given the negative values of x and y.
That’s because the dial points up, not down. Flipping the direction of the force values calculates the angle
away from gravity.

Complete the app by writing the -rotateDialView: method:

- (void)rotateDialView:(double)rotation
{
 dialView.transform = CGAffineTransformMakeRotation(rotation);

 NSInteger degrees = round(-rotation*180.0/M_PI);
 if (degrees<0)
 degrees+=360;
 _angleLabel.text = [NSString stringWithFormat:@"%u\u00b0",(unsigned)degrees];
}

3G is the force of gravity, equal to an acceleration of approximately 9.81 meters per second every second.

519CHAPTER 16: Apps with Attitude

This method turns the rotation parameter into an affine transform that rotates dialView. The last
block of code converts the rotation value from radians into degrees, makes sure it’s not negative,
and uses that to update the label view.

It’s time to plug in your provisioned iOS device, run your app, and play with the results, as shown
in Figure 16-6. Notice how the app switches orientation as you rotate it. If you lock the device’s
orientation, it won’t do that, but the dial still works.

Herky-Jerky
Your app works, and it was pretty easy to write, but boy is it hard to look at. If it works anything
like the way is does on my devices, the dial jitters constantly. Unless the device is perfectly still, it’s
almost impossible to read.

It would be really nice if the dial moved more smoothly—a lot more smoothly. That sounds like a
job for animation. What you want is an animation that makes the dial appear to have mass, gently
drifting towards the instantaneous inclination reported by the hardware.

So what are your choices? In the past, you’ve used Core Animation to smoothly move views around.
But Core Animation is like a homing pigeon; you take it to where you want it to start, tell it where
you want it end up, and let it go. Once started, it’s not designed to make in-flight course corrections
should the end point change. And that’s exactly what will happen when new accelerometer
information is received.

You could try to smooth out the updates yourself by clamping the rate at which the view is rotated.
To make it look really nice, you might even go so far as to create a simple physics engine that
gives the dial simulated mass, acceleration, drag, and so on. But as I mentioned in chapter 11, the
do-it-yourself approach to animation is fraught with complications, is usually a lot of work, and
often results to sub-standard performance.

Lucky for you, iOS 7 introduced view dynamics. View dynamics is a new animation service that
endows your views with a simulated physicality that mimics mass, gravity, acceleration, drag,
collisions, and so on. View dynamics takes a substantially different approach to animation. Instead
of describing what you want the animation to do—move this many pixels, rotate that many degrees,

Figure 16-6. Working Leveler app

520 CHAPTER 16: Apps with Attitude

and so on—you describe the “forces” acting on a view and let the dynamic animator create an
animation that simulates the view’s reaction to those forces.

Using Dynamic Animation
Dynamic animation involves three players:

The dynamic animator object	

One or more behavior objects	

One or more view objects	

The dynamic animator is the object that performs the animation. It contains a complex physic engine
that’s remarkably intelligent. You’ll need to create a single instance of the dynamic animator.

Animation occurs when you create behavior objects and add those to the dynamic animator.
A behavior describes a single impetus or attribute of a view. iOS includes predefined behaviors for
gravity, acceleration, friction, collisions, connections, and more, and you’re free to invent your own.
A behavior is associated with one or more view (UIView) objects, imparting that particular behavior
to all of its views. The dynamic animator does the work of combining multiple behaviors for a single
view—acceleration plus gravity plus friction, for example—to construct the animation for that view.

So the basic formula for dynamic animation is:

1. Create an instance of UIDynamicAnimator

2. Create one or more UIDynamicBehavior objects, attached to UIView objects

3. Add the UIDynamicBehavior objects to the UIDynamicAnimator

4. Sit back and enjoy the show

You’re now ready to add view dynamics to Leveler.

Creating the Dynamic Animator
You’ll need to create a dynamic animator object, and for that you’ll need an instance variable to save
it in. Find the private @interface LRViewController () declaration in LRViewController.m. Add an
instance variable for your animator (new code in bold). While you’re here, add some constants and a
variable to contain an attachment behavior, all of which will be explained shortly:

#define kSpringAnchorDistance 4.0
#define kSpringDamping 0.7
#define kSpringFrequency 0.5

@interface LRViewController ()
{
 CMMotionManager *motionManager;
 LRDialView *dialView;
 UIImageView *needleView;
 UIDynamicAnimator *animator;
 UIAttachmentBehavior *springBehavior;
}

521CHAPTER 16: Apps with Attitude

You’ll need to create the dynamic animator, create the behavior objects you want, and connect
those to your views. The perfect place to do all three is in the -positionDialViews method. Find the
-positionDialViews method and add this code to the very beginning (new code in bold):

- (void)positionDialViews
{
 if (animator!=nil)
 [animator removeAllBehaviors];
 else
 animator = [[UIDynamicAnimator alloc] initWithReferenceView:self.view];

This code simply determines if a UIDynamicAnimator objects has already been created or not. If it
has, it resets it by removing any active behaviors. If it hasn’t, it creates a new dynamic animator.

When you create a dynamic animator, you must specify a view that will be used to establish the
coordinate system the dynamic animator will use. The dynamic animator uses its own coordinate
system, called the reference coordinate system, so that view objects in different view hierarchies
(each with their own coordinate system) can interact with one another in a unified coordinate space.
Using the reference coordinate system you could, for example, have a view in your content view
controller collide with a button in the toolbar, even though it resides in an unrelated superview.

For your app, make the reference coordinate system that of your view controller’s root view. This
makes all dynamic animator coordinates the same as your local view coordinates. Won’t that be
convenient? (Yes, it will.)

Defining Behaviors
So what behavior(s) do you think the dial view should have? If you look through the behaviors
supplied by iOS, you won’t find a “rotation” behavior. But the dynamic animator will rotate a view,
if the forces acting on that view would cause it to rotate. Rotating the dial view, therefore, isn’t any
more difficult that rotating a record platter, a merry-go-round, a lazy susan, or anything similar:
anchor the center of the object and apply an oblique force to one edge.

You’ll accomplish this using two attachment behaviors. An attachment behavior connects a point
in your view with either a similar point in another view or a fixed point in space, called an anchor.
The length of the attachment can be inflexible, creating a “towbar” relationship that keeps the
attachment point at a fixed distance, or it can be flexible, creating a “spring” relationship that tugs on
the view when the other end of the attachment moves. To rotate the dial view, you’ll use one of each,
as shown in Figure 16-7.

522 CHAPTER 16: Apps with Attitude

Create the first behavior by adding this code to the end of the -positionDialViews method:

CGPoint dialCenter = dialView.center;
UIAttachmentBehavior *pinBehavior;
pinBehavior = [[UIAttachmentBehavior alloc] initWithItem:dialView
 attachedToAnchor:dialCenter];
[animator addBehavior:pinBehavior];

The attachment behavior defines a rigid attachment from the center of the dial view to a fixed anchor
point, at the exact same location. When you create an attachment behavior, the distance between
the two attachment points defines its initial length, which in this case is 0. Since the attachment is
inflexible and its length is 0, the net effect is to pin the center of the view at that coordinate. The
view’s center can’t move from that spot.

Force M o v ement

Attachment
Behavior
(flexible)

24°

Attachment
Behavior

(fixed)

Figure 16-7. dialView attachment behaviors

Note Most dynamic behaviors can be associated with any number of view objects. Gravity, for example, can
be applied to a multitude of view objects equally. The attachment behavior, however, creates a relationship
between two attachment points, and therefore only associates with one or two view objects.

All that remains is to add that behavior to the dynamic animator. All by itself, this doesn’t accomplish
much, except to prevent the view from being moved to a new location. Things get interesting when
you add a second attachment behavior, using the following code:

CGRect dialRect = dialView.frame;
CGPoint topCenter = CGPointMake(CGRectGetMidX(dialRect),
 CGRectGetMinY(dialRect));
springBehavior = [[UIAttachmentBehavior alloc]
 initWithItem:dialView
 offsetFromCenter:UIOffsetMake(0,topCenter.y-dialCenter.y)

523CHAPTER 16: Apps with Attitude

 attachedToAnchor:topCenter];
springBehavior.damping = kSpringDamping;
springBehavior.frequency = kSpringFrequency;
[animator addBehavior:springBehavior];

The first two statements calculate the point at the top center of the view. A second attachment
behavior is created. This time the attachment point is not in the center of the view, but at its
top-center (expressed as an offset from its center).

Again, the anchor point is the same location as the attachment point, creating a zero-length
attachment. What’s different is that the damping and frequency properties are then set to something
other than their default values. This creates a “springy” connection between the anchor point and
the attachment point. But since the anchor and the attachment point are currently the same, no
force is applied (yet).

Animating the Dial
The stage is set and all of the players are in place. You’ve defined a behavior that pins the center of
the dial to a specific position, and a second that will “tug” the top-center point towards a second
anchor point. The action begins when you move that second anchor point, as shown in Figure 16-7.

Locate the -rotateDialView: method and delete the first statement, the one that created an affine
transform and applied it to the view. Replace that code with the following (new code in bold):

- (void)rotateDialView:(double)rotation
{
 CGPoint center = dialView.center;
 CGFloat radius = dialView.frame.size.height/2 + kSpringAnchorDistance;
 CGPoint springPoint = CGPointMake(center.x+sin(rotation)*radius,
 center.y-cos(rotation)*radius);
 springBehavior.anchorPoint = springPoint;

Instead of the traditional approach of telling the graphics system what kind of change you want to
see (rotate the view by a certain angle), you describe a change to the physical environment and let
the dynamic animator simulate the consequences. In this app, you moved the anchor point attached
to the top-center point of the view. Moving the anchor point creates an attraction between the new
anchor point and the attachment point in the view. Since the center of the view is pinned by the first
behavior, the only way the top point of the view can get closer to the new anchor point is to rotate
the view, and that’s exactly what happens.

Run the app and see the effect. The dial acts much more like a “real” dial. There’s acceleration,
deceleration, and even oscillation. These effects are all courtesy of the physics engine in the
dynamic animator.

Try altering the values of kSpringAnchorDistance, kSpringDamping, and kSpringFrequency and
observe how this affects the dial. For extra credit, add a third behavior that adds some “drag”
to the dial. Create a UIDynamicItemBehavior object, associate it with the dial view, and set its
angularResistance property to something other than 0; I suggest starting with a value of 2.0.
Don’t forget to add the finished behavior to the dynamic animator.

524 CHAPTER 16: Apps with Attitude

You now have a nifty inclinometer that’s silky smooth and fun to watch. Now that you know how
easy it is to add motion data to your app, and simulate motion using view dynamics, let’s take a look
at some of the other sources of motion data.

Getting Other Kinds of Motion Data
As of this writing, there are three other kinds of motion data your app can use. You can collect and
use the other kinds of data instead of, or in addition to, the accelerometer data. Here are the kinds of
motion data iOS provides:

Gyroscope: measures the rate at which the device is being rotated around its 	
three axes

Magnetometer: measures the orientation of the surrounding magnetic field	

Device Motion: combines information from the accelerometer, magnetometer, 	
and gyroscope to produce useful values about the device’s motion and position
in space

Using the other kinds of motion data is identical to what you’ve done with the accelerometer data,
with one exception. Not all iOS devices have a gyroscope or a magnetometer. You will have to
decide if your app must have these capabilities, or can function in their absence. That decision will
dictate how you configure your app’s project and write your code. Let’s start with the gyroscope.

Gyroscope Data
If you’re interested in the instantaneous rate at which the device is being rotated—logically
equivalent to the accelerometer data, but for angular force—gather gyroscope data. You
collect gyroscope data almost exactly as you do accelerometer data. Begin by setting
the gyroUpdateInterval property of the motion manager object, and then send it either a
-startGyroUpdates or -startGyroUpdatesToQueue:withHandler: message.

The gyroData property returns a CMGyroData object, which has a single rotationRate property value.
This property is a struct (just like CMAcceleration) with three values: x, y, and z. Each value is the
rate of rotation around that axis, in radians per second.

You must consider the possibility that the user’s device doesn’t have a gyroscope. There are two
approaches:

If your app requires gyroscopic hardware to function, add the 	 gyroscope value to
the Required Device Capabilities collection of your app’s property list.

If you app can run with, or without, a gyroscope, test the 	 gyroAvailable
property of the motion manager object.

The first approach makes the gyroscope hardware a requirement for your app to run. If added to
your app’s property list, iOS won’t allow the app to be installed on a device that lacks a gyroscope.
The App Store may hide the app from users that lack a gyroscope, or warn them that your app may
not run on their device.

525CHAPTER 16: Apps with Attitude

If your app can make use of gyroscope data, but could live without it, test for the presence of a
gyroscope by reading the gyroAvailable property of the motion manager object. If it’s YES, feel free
to start and use the gyroscope data. If it’s NO, make other arrangements.

Magnetometer Data
The magnitude and direction of the magnetic field surrounding your device is available via the
magnetometer data. By now, this is going to sound like a broken record:

Set the frequency of magnetometer updates using the 	
magnetometerUpdateInterval property.

Start magnetometer measurements using the 	 -startMagnetometerUpdates or -st
artMagnetometerUpdatesToQueue:withHandler: messages.

The 	 magnetometerData property returns a CMMagnetometerData object with the
current readings.

The 	 CMMagnetometerData object’s sole property is the magneticField property, a
structure with three values: x, y, and z. Each is the direction and strength of the
field along that axis, in mT (microteslas).

Either add the 	 magnetometer value to your app’s Required Device Capabilities
property or check the magnetometerAvailable property to determine if the device
has one.

Like the accelerometer and gyroscope data, the magnetometerDate property returns the raw,
unfiltered, magnetic field information. This will be a combination of the Earth’s magnetic field, the
device’s own magnetic bias, any ambient magnetic fields, magnetic interference, and so on.

Teasing out magnetic North from this data is a little tricky. What looks like North might be a
microwave oven. Similarly, the accelerometer data can change because the device was tilted,
or because it’s in a moving car, or both. You can unravel some of these conflicting indicators by
collecting and correlating data from multiple instruments. For example, you can tell the difference
between a tilt and a horizontal movement by examining the changes to both the accelerometer and
gyroscope; a tilt will change both, but a horizontal movement will only register on the accelerometer.

If you’re getting the sinking feeling that you should have been paying more attention in your physics
and math classes, you can relax; iOS has you covered.

Device Motion and Attitude
The CMMotionManager also provides a unified view of the device’s physical position and movements
through its device motion interface. The device motion properties and methods combine the
information from the accelerometer, gyroscope, and sometimes the magnetometer. It assimilates
all of this data and produces a filtered, unified, calibrated picture of the device’s motion and
position in space.

526 CHAPTER 16: Apps with Attitude

You use device motion in much the way you used the preceding three instruments:

Set the frequency of device motion updates using the 	
deviceMotionUpdateInterval property.

Start device motion update by sending a 	 -startDeviceUpdates,
-startDeviceMotionUpdatesToQueue:withHandler:,
-startDeviceMotionUpdatesUsingReferenceFrame:, or -startDeviceMotion
UpdatesUsingReferenceFrame:toQueue:withHandler: message.

The 	 deviceMotion property returns a CMDeviceMotion object with the current
motion and attitude information.

Determine if device motion data is available using the 	 deviceMotionAvailable
property.

There are two big differences between the device motion and previous interfaces. When starting
updates, you can optionally provide a CMAttitudeReferenceFrame constant that selects a frame of
reference for the device. There are four choices:

Direction of the device is arbitrary	

Direction is arbitrary, but use the magnetometer to eliminate “yaw drift”	

Direction is calibrated to magnetic North	

Direction is calibrated to true North (requires location services)	

The neutral reference position of your device can be imaged by placing your iPhone or iPad flat on a
table in front of you, with the screen up, and the home button towards you. The line from the home
button to the top of the device is the Y-axis. The X-axis runs horizontally from the left side to the
right. The Z-axis runs through the device, straight up and down.

Spinning your device, while still flat on the table, changes its direction. It’s this direction that the
reference frame is concerned with. If the direction doesn’t matter, you can use either of the arbitrary
reference frames. If you need to know the direction in relationship to true or magnetic North, use one
of the calibrated reference frames.

Note Not all attitude reference frames are available on every device. Use the
+availableAttitudeReferenceFrames method to determine which ones the device supports.

The second big difference is the CMDeviceMotion object. Unlike the other motion data objects, this
one has several properties, listed in Table 16-1.

527CHAPTER 16: Apps with Attitude

At first glance, all of this information would appear to be the same as the data from the
accelerometer, gyroscope, and magnetometer—just repackaged. It’s not. The CMDeviceMotion object
combines the information from multiple instruments to divine a more holistic picture of what the
device is doing. Specifically:

The 	 attitude property combines information from the gyroscope to measure
changes in angle, the accelerometer to determine the direction of gravity, and
it may also use the magnetometer to calibrate direction (rotation around the
Z-axis) and prevent drift.

The 	 userAcceleration property correlates accelerometer and gyroscope data,
excluding the force of gravity and changes in attitude, to provide an accurate
measurement of acceleration.

The 	 magneticField property adjusts for the device bias and attempts to
compensate for magnetic interference.

In all, the device motion interface is much more informed and intelligent. If there’s a downside, it’s
that it requires more processing power, which steals app performance and battery life. If all your app
needs is a general idea of motion or rotation, then the raw data from the accelerometer or gyroscope
is all you need. But if you really want to know the device’s position, direction, or orientation, then the
device motion interface has it figured out for you.

Table 16-1. Key CMDeviceMotion properties

Property Description

attitude A CMAttitude object that describes the actual attitude (position in space) of the device
described as a triplet of property values (pitch, roll, and yaw). Additional properties
describe the same information in mathematically equivalent forms, both as a rotation
matrix and a quaternion.

rotationRate A structure with three values (x, y, and z) describing the rate of rotation around those
axes.

userAcceleration A CMAcceleration structure (x, y, and z) describing the motion of the device.

magneticField A CMCalibratedMagneticField structure (x, y, z, and accuracy) that describes the
direction of the Earth’s magnetic field.

Note A device may need to be moved in a figure-8 pattern to help calibrate the magnetometer.
iOS will automatically present a display that prompts the user to do this if you set the
showsDeviceMovementDisplay property of CMMotionManager to YES.

Measuring Change
If your app needs to know the rate of change of any of the motion measurements, it needs time
information. For example, to measure the change in angular rotation you’d subtract the current rate
from the previous rate, and divide that by the time delta between the two samples.

528 CHAPTER 16: Apps with Attitude

But where can you find out when these measurements were taken? In earlier sections I wrote,
“CMAccelerometerData’s only property is acceleration,” along with similar statements about
CMGyroData and CMMagnetometerData. That’s not strictly true.

The CMAccelerometerData, CMGyroData, CMMagnetometerData, and CMDeviceMotion classes are
all subclasses of CMLogItem. The CMLogItem class defines a timestamp property, which all of the
aforementioned classes inherit.

The timestamp property records the exact time the measurement was taken, allowing your app to
accurately compare samples and calculate their rate of change, record them for posterity, or for any
other purpose you might imagine.

Tip If you need to calculate the change in attitude (subtracting the values of two CMAttitude objects), the
-multiplyByInverseOfAttitude: method will do the math for you.

Summary
In this chapter you’ve tapped into the unfiltered data of the device’s accelerometer, gyroscope, and
magnetometer. You know how to configure the data you want to collect, interpret it, and learned
how to use timers to collect it. You’ve also learned how to exploit the device motion data for a more
informed view of the device’s position in space. There’s almost no motion or movement that your
app can’t detect and react to.

Well, almost. Despite the incredibly detailed information about the direction of the device and how
it’s being moved around, there’s still one piece of information missing: where the device is located.
You’ll solve that remaining mystery in the next chapter.

529

Chapter 17
Where Are You?

If you think the accelerometer, gyroscope, and magnetometer are cool, you’re going to love this
chapter. In addition to those instruments, many iOS devices contain radio receivers allowing them
to triangulate their position by timing radio signals they receive from a network of satellites—either
the Global Positioning System or the Russian Global Navigation Satellite System. This technology is
generically referred to as GPS.

What does that mean to you? As a user, it means your iOS device knows where it is on the planet.
As a developer, it means your app can get information about the device’s location and use that to
show your user where they are, what’s around them, where they’ve come from, or how to get to
where they want to go. In this chapter you will:

Collect location information	

Display a map showing the user’s current location	

Add custom annotations to a map	

Monitor the user’s movement and offer direction	

Create an interface for changing map options	

This chapter will use two iOS technologies: Core Location and Map Kit. Core Location provides the
interface to the GPS satellite receivers and provides your app with data about where the device is
located, in a variety of forms. Map Kit supplies the view objects and tools to display, annotate, and
animate maps. The two can be used separately or together.

Creating Pigeon
The app for this chapter is called Pigeon. It’s a utility that lets you remember your current location on
a map. Later it will show you where you are and where the marked location is, so you can fly back to
it. The design for Pigeon is shown in Figure 17-1.

530 CHAPTER 17: Where Are You?

The app has a map and three buttons. The middle button remembers your current location and
drops a pin into the map to mark it. When you move away from that location, the map displays
where you are, the saved location, and an arrow showing the direction back. A trash button forgets
the saved location, and an info button lets the user change map display options. Let’s get started.

Start by creating the project and laying out the interface. In Xcode, create a new project as follows:

1. Use the Single View Application template

2. Name the project Pigeon

3. Use a class prefix of HP

4. Set devices to Universal

Select the Main_iPhone.storyboard file. (You can choose to develop the iPhone interface, the iPad
interface, or both; the steps are the same.) Add a toolbar to the bottom of the interface. Add and
configure toolbar button items as follows (from left to right):

1. Bar Button Item: set its identifier to Trash

2. Flexible Space Bar Button Item

3. Bar Button Item: set its title to Remember Location

4. Flexible Space Bar Button Item

5. Button (not a Bar Button Item): set its type to Info Light

From the object library, add a Map View object to fill the rest of the interface. Set the following
attributes for the map view object:

Check Shows User Location

Check Allows Zooming

Figure 17-1. Pigeon design

531CHAPTER 17: Where Are You?

Uncheck Allows Scrolling

Uncheck 3D Perspective

Complete the layout by choosing the Add Missing Constraints to View Controller command,
either from the Editor ➤ Resolve Auto Layout Issues submenu or the Resolve Auto Layout Issues
button at the bottom of the editor pane. The finished interface should look like Figure 17-2.

Figure 17-2. Pigeon interface

You’ll need to wire these views up to your controller, so do that next. Switch to the assistant
editor and make sure HPViewController.h appears in the right-hand pane. Immediately after the
#import <UIKit/UIKit.h> statement, add an #import statement to pull in the Map Kit declarations:

#import <MapKit/MapKit.h>

Add the following connections to the @interface section:

@property (weak,nonatomic) IBOutlet MKMapView *mapView;
- (IBAction)dropPin:(id)sender;
- (IBAction)clearPin:(id)sender;

Connect the mapView outlet to the map view object. Connect the actions of the left and center
toolbar buttons to the -clearPin: and -dropPin: actions, respectively. Now you’re ready to begin
coding the actions.

Collecting Location Data
Getting location data follows the same pattern you used to get gyroscope and magnetometer data
in Chapter 16, with only minor modifications. The basic steps are:

Create an instance of 	 CLLocationManager.

If precise (GPS) location information is a requirement for your app, add the 	 gps
value to the app’s Required Device Capabilities property.

532 CHAPTER 17: Where Are You?

Check to see if location services are available using the 	
+locationServicesAvailable or +authorizationStatus methods.

Designate an object to be the 	 CLLocationManager’s delegate. Adopt the
CLLocationManagerDelegate protocol and make that object the delegate.

Send 	 -startUpdatingLocation to begin collecting location data.

The delegate object will receive messages whenever the device’s location 	
changes.

Send 	 -stopUpdatingLocation when your app no longer needs location data.

The only significant difference between using CLLocationManager and CMMotionManager is that
you can create multiple CLLocationManager objects and data is delivered to its delegate object
(rather than requiring your app to pull the data or pushing it to an operation queue).

Another difference is that location data may not be available, even on devices that have GPS
hardware. There are a lot of reasons this might be true. The user may have location services turned
off. They may be somewhere they can’t receive satellite signals. The device may be in “airplane
mode,” which doesn’t permit the GPS receivers to be energized. Or your app may specifically have
been denied access to location information. It doesn’t really matter why. You need to check for the
availability of location data and deal with the possibility that you can’t get it.

Finally, there are a number of different methods of getting location data depending on the precision
of the data and how quickly it’s delivered. Knowing that the user moved 20 feet to the left is a
different problem from knowing when they’ve arrived at work. I’ll describe the different kinds of
location monitoring towards the end of the chapter.

Pigeon needs precise location information that only GPS hardware can deliver. Select the Pigeon
project in the project navigator, select the Pigeon target (pop-up menu in upper-left corner, as
shown in Figure 17-3), switch to the Info tab, and locate the Required device capabilities in
the Custom iOS Target Properties group. Click the + button and add a gps requirement, as shown
in Figure 17-3.

Figure 17-3. Adding gps device requirement

533CHAPTER 17: Where Are You?

You’re now probably thinking that I’m going to have you add some code to:

Make the HPViewController adopt the CLLocationManagerDelegate protocol

Implement the -locationManager:didUpdateLocations: delegate method to process
the location updates

Create an instance of CLLocationManager

Make the HPViewController the location manager’s delegate

Send -startUpdatingLocation to begin collecting location data

But you’re not going to do any of that.

Now I’m sure you wondering why not, so let me explain. Pigeon uses both location services and the
Map Kit. The Map Kit includes the MKMapView object, which displays maps. Among its many talents,
it has the ability to monitor the device’s current location and display that on the map. It will even
notify its delegate when the user’s location changes.

For this particular app, MKMapView is already doing all of the work for you. When you ask it to
display the user’s location, it creates its own instance of CLLocationManager and begins monitoring
location changes, updating the map and its delegate. The end result is that MKMapView has all of the
information that Pigeon needs to work.

Note Pigeon is a little bit of an anomaly; you’ll configure the map view so it always tracks the user’s
location and the map view is always active. If this wasn’t the case, then relying on the map view to locate the
user wouldn’t be a solution and you’d have to resort to using CLLocationManager in the usual way.

This is a good thing. All of that CLLocationManager code would look so much like the code you wrote
in Chapter 16 that it would make this app a little boring, and I certainly don’t want you to get bored.
Or maybe you haven’t read Chapter 16 yet, in which case you have something to look forward to.

Regardless, all you need to do is setup MKMapView correctly. Let’s do that now.

Using a Map View
Your map view object has already been added to the interface and connected to the mapView outlet.
You’ve also used the attributes inspector to configure the map view so it shows (and tracks) the
user’s location and you disallowed user scrolling. There’s one more setting that you need to make,
and you can’t set it from the attributes inspector.

Select the HPViewController.m file and location the -viewDidLoad method. At the end, add this
statement:

[_mapView setUserTrackingMode:MKUserTrackingModeFollow];

This sets the map’s tracking mode to “follow the user.” There are three tracking modes—which
I’m sure you’ve see in places like Apple’s Maps app—listed in Table 17-1.

534 CHAPTER 17: Where Are You?

The code you added to -viewDidLoad: sets the tracking mode to follow the user. The combination
of the showsUserLocation property and the tracking mode force the map view to begin gathering
location data, which is what you want.

If you’ve played with the Maps app, you also know that you can “break” the tracking mode by
manually panning the map. You disabled panning for the map view, but there are still circumstances
where the tracking mode will revert to MKUserTrackingModeNone. To address that you need to add
code to catch the situation where the tracking mode changes and “correct” it, if necessary.

That information is provided to the map view’s delegate. Wouldn’t it be great if your
MPViewController object were the delegate for the map view? I thought so too.

Switch to HPViewController.h and adopt the MKMapViewDelegate protocol (new code in bold):

@interface HPViewController : UIViewController <MKMapViewDelegate>

Return to HPViewController.m and add this map view delegate method to the @implementation:

- (void) mapView:(MKMapView *)mapView
 didChangeUserTrackingMode:(MKUserTrackingMode)mode
 animated:(BOOL)animated
{
 if (mode==MKUserTrackingModeNone)
 [mapView setUserTrackingMode:MKUserTrackingModeFollow];
}

This message is received whenever the tracking mode for the map changes. It simply sees if the
mode has changed to “none” and sets it back to tracking the user.

Of course, this message is only received if your HPViewController object is the delegate object for
the map view. Select the Main_iPhone.storyboard (or _iPad) file. Select the map view object and
use the connections inspector to connect the map view’s delegate outlet to the view controller,
as shown in Figure 17-4.

Table 17-1. User tracking modes

Tracking Mode Description

MKUserTrackingModeNone The map does not follow the user’s location.

MKUserTrackingModeFollow The map is centered at the user’s current location and it moves
when the user moves.

MKUserTrackingModeFollowWithHeading The map tracks the user’s current location and the orientation of
the map is rotated to indicate the user’s direction of travel.

535CHAPTER 17: Where Are You?

You’ve done everything you need to see the map view in action, so fire it up. Run your app in the
simulator, or on a provisioned device. You may see build warnings that you haven’t implemented the
-dropPin: and -clearPin: methods; ignore them, for now.

Having problems? Maybe your app isn’t ready to run. If your app crashes with a blank screen and
a nasty message in the console pane, it’s because your app isn’t linked to the MapKit framework.
In most cases, Xcode will automatically link your app to the frameworks it needs, but in some
situations you need to do that explicitly. Don’t worry, this is really easy to fix.

Select the Pigeon project, make sure the Pigeon target is selected, and switch to the General tab.
Locate the Linked Frameworks and Libraries section, as shown on the left in Figure 17-5.
Click on the + button and choose a new library or framework to link against, as shown on the right
in Figure 17-5.

Figure 17-4. Connecting the map view’s delegate outlet

Figure 17-5. Adding a framework to the project

536 CHAPTER 17: Where Are You?

Tip Use the search field in the “add library” dialog to quickly find the library or framework you’re looking for.

Figure 17-6. Testing map view

You’re not really adding anything to your project. Every iOS symbol your app uses must, eventually,
be translated into the memory address of that variable or class when it runs. This process is called
dynamic linking, and it’s part of the mechanism that launches your app. The libraries and frameworks
you “link to” during development are little more than a list of symbol names that iOS provides, along
with instructions on how your app can connect to them when it runs. Adding the MapKit framework
gives your app access to all of the classes, variables, and constants in the Map Kit service.

With that annoying detail out of the way, run your app again. This time, you should see something
like what’s shown in Figure 17-6.

The first time your app runs, iOS will ask the user if it’s OK for your app to collect location data.
Tap OK, or this is going to be a really short test. Once it’s granted permission, the map locates your
device and centers the map at your location (second screen shot in Figure 17-6).

The iOS simulator will emulate location data, allowing you to test location-aware apps. In the Debug
menu you’ll find a number of choices in the Location submenu (third screen shot in Figure 17-6).
Choose the Custom Location… item to enter the longitude and latitude of your simulated location.
There are also a few pre-programmed locations, such as the Apple item, also shown in Figure 17-6.

Some of the items play back a recorded trip. Currently the choices are City Bicycle Ride, City Run,
and Freeway Drive. Selecting one starts a series of location changes, which the map will track, as
though the device was on a bicycle, accompanying a jogger, or in a car. Go ahead and try one; you
know you want to.

The map can also be zoomed in and out by pinching or double tapping, as shown on the right
in Figure 17-6. You can’t scroll the map, as you disabled that option in Interface Builder.

While the freeway drive is playing back, add the code to mark your location on the map.

537CHAPTER 17: Where Are You?

Decorating Your Map
There are three ways of adding visual elements to a map: annotations, overlays, and subviews.

An annotation identifies a single point on the map. It can appear anyway you like, but iOS provides
classes that mark the location with a recognizable “map pin” image. Annotations can optionally
display a callout that consists of a title, subtitle, and accessory views. The callout appears above the
pin when selected (tapped).

An overlay identifies a path or region on the map. You won’t use overlays in Pigeon, but that’s how
lines (like driving directions) are drawn and arbitrary areas (like a city park) are highlighted.

A subview is like any other subview. MKMapView is a subclass of UIView, and you are free to add
custom UIView objects to it. Use subviews to add additional controls or indicators to the map.

Annotation and overlay are attached to the map. They are described using map coordinates
(which I’ll talk about later) and they move when the map moves. Subviews are positioned in the
local graphics coordinate system of the MKMapView object. They do not move with the map.

Your Pigeon app will create an annotation—that is, “put a pin”—at the user’s current location when
they tap the “remember location” button. The trash button will discard the pin. That sounds like a
couple of action methods to me.

Adding an Annotation
When the user taps the “remember location” button, you’ll capture their current location and add an
annotation to the map. I thought it would be nice if the user could choose a label for the location, to
make it easier to remember what they’re trying to remember. To accomplish all that, you’ll need an
instance variable to store the annotation object and your HPViewController will need to be an alert view
delegate. Add both of those to the private @interface section in HPViewController.m (new code in bold):

@interface HPViewController () <UIAlertViewDelegate>
{
 MKPointAnnotation *savedAnnotation;
}
@end

The next step is to write the -dropPin: method. It begins by presenting an alert view configured so
the user can type in a label. Add this to the @implementation section:

- (IBAction)dropPin:(id)sender
{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"What's here?"
 message:@"Type a label for this location."
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"Remember", nil];
 alert.alertViewStyle = UIAlertViewStylePlainTextInput;
 alert.delegate = self;
 [alert show];
}

538 CHAPTER 17: Where Are You?

This method creates an alert and sets its style to UIAlertViewStylePlainTextInput. This presents
an alert view with a regular text field the user can type something into. The functional part of the
-dropPin: action occurs when the user finishes typing in their label and taps the “Remember”
button. Add that after the -dropPin: method:

- (void) alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 CLLocation *location = _mapView.userLocation.location;
 if (location==nil)
 return;

 NSString *name = [[alertView textFieldAtIndex:0] text];
 name = [name stringByTrimmingCharactersInSet: ↳
 [NSCharacterSet whitespaceAndNewlineCharacterSet]];
 if (name.length==0)
 name = @"Over Here!";

 [self clearPin:self];
 savedAnnotation = [MKPointAnnotation new];
 savedAnnotation.title = name;
 savedAnnotation.coordinate = location.coordinate;
 [_mapView addAnnotation:savedAnnotation];
 [_mapView selectAnnotation:savedAnnotation animated:YES];
}

The first step is to get the user’s current location. Remember that the map view has been tracking
their location since the app was started, so it should have a pretty good idea of where they are by
now. You must, however, consider the possibility that the map view doesn’t know (location==nil).
The user may have disabled location services, is running in “airplane mode,” or is spelunking.
Regardless, if there’s no location there’s nothing to do.

The next bit of code cleans up what the user typed. It strips off any leading or trailing whitespace
characters (a.k.a. spaces) and supplies a readable label if the user neglected to.

Now the method gets down to work. It clears any existing pin; Pigeon remembers only one location
at a time. It creates a new annotation object, sets its title and coordinates, adds the annotation
to the map, and selects it. Since you haven’t done anything special (yet), the map view will use
the standard red map pin annotation view to indicate the location on the map. Programmatically
selecting the new annotation causes its callout to pop-up, as if the user tapped the pin.

While you’re still in HPViewController.m, toss in the -clearPin: method, which doesn’t need much
explanation:

- (IBAction)clearPin:(id)sender
{
 if (savedAnnotation!=nil)
 {
 [_mapView removeAnnotation:savedAnnotation];
 savedAnnotation = nil;
 }
}

539CHAPTER 17: Where Are You?

Run the app and give it a try. Tap the “remember location” button, enter a label, and a pin appears at
your current location, as shown in Figure 17-7.

Figure 17-7. Testing the annotation

Map Coordinates
The coordinates of the annotation object were set to the coordinates of the user’s location (provided
by the map view). But what are these “coordinates?” Map Kit uses three coordinate systems, listed
in Table 17-2.

Table 17-2. Map coordinate systems

Coordinate System Description

Latitude and Longitude The latitude, longitude, and sometimes altitude, of a position on the planet.
These are called map coordinates.

Mercator The position (x,y) on the Mercator map of the planet. A Mercator map is a cylindrical
projection of the planet’s surface onto a flat map. The Mercator map is what you see
in the map view. Positions on the Mercator map are called map points.

Graphics The graphics coordinates in the interface, used by UIView. These are referred to
simply as points.

540 CHAPTER 17: Where Are You?

Map points are eventually translated into graphic coordinates, so they can appear somewhere on
the screen. There are methods to translate map coordinates into graphic coordinates. Additional
methods translate the other way. You’ll use these, along with some utility methods to calculate the
distance between coordinates, later in this project.

Adding a Little Bounce
Your map pin appears on the map, and it moves around with the map. You can tap on it to show,
or hide, its callout. Which is pretty impressive, considering you only needed a few lines of code to
create it. We do, however, love animation and I’m sure you’ve seen map pins that “drop” into place.
Your pin doesn’t drop; it just appears. So how do you get your map pin to animate, or change its
color, or customize it in any other way? The answer is to use a custom annotation view.

An annotation in a map is actually a pair of objects: an annotation object and an annotation view
object. An annotation object associates information with a coordinate on the map—the data model.
An annotation view object is responsible for how that annotation looks—the view. If you want to
customize how an annotation appears you must supply your own annotation view object.

You do this by implementing the -mapView:viewForAnnotation: delegate method. When the map
view wants to display an annotation, it sends its delegate this message with the annotation object.
The method’s job is to return an annotation view object that represents that annotation. If you don’t
implement this method, or decide to return nil for an annotation, the map view uses its default
annotation view, which is a plain map pin.

Add this method to HPViewController.m:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id<MKAnnotation>)annotation
{
 if (annotation==self.mapView.userLocation)
 return nil;

Note The Mercator projection is particularly convenient for navigation because a straight line between any two
points on a Mercator map describes a heading the user can follow to get from one to the other. The disadvantage
is that east-west distances and north-south distances are not to the same scale—except at the equator.

Map coordinates (longitude and latitude) are the principle values used to identify locations on the
map, stored in a CLLocationCoordinate2D structure. They are not XY coordinates, so calculating
distance and heading between two coordinates is a non-trivial exercise that’s best left to location
services and Map Kit. Annotations are positioned at map coordinates.

Map points are XY positions in the Mercator map projection. Being XY coordinates on a flat plane,
calculating angles and distances is much simpler. Map points are used when drawing overlays. This
simplifies drawing and reduces the math involved.

541CHAPTER 17: Where Are You?

 NSString *pinID = @"Save";
 MKPinAnnotationView *view = (MKPinAnnotationView*)
 [self.mapView dequeueReusableAnnotationViewWithIdentifier:pinID];
 if (view==nil)
 {
 view = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:pinID];
 view.canShowCallout = YES;
 view.animatesDrop = YES;
 }
 return view;
}

The first statement compares the annotation to the map view’s user annotation object. The user
annotation object, like any other annotation object, represents the user’s position in the map. The
map view automatically added it when you asked it to display the user’s location. This automatic
annotation is available via the map view’s userLocation property. If you return nil for this annotation,
the map view uses its default user annotation view—the pulsing blue dot that we’re all familiar with.
If you want to represent the user’s location some other way, this is where you’d provide that view.

The rest of the code works exactly like the table view cell code from Chapter 4. The map view
maintains a cache of reusable MKAnnotationView objects that you recycle using an identifier.
Your map only uses one kind of annotation view: a standard map pin view provided by the
MKPinAnnotationView class. The pin is configured to display callouts and animate itself (“drop in”)
when added to the map.

Tip If you want to give the user the ability to move the pin they just dropped, all you have to do is set the
draggable property of the annotation view object to YES.

Run the app again. Now when you save the location, the pin animates its insertion into the map,
which is a lot more appealing.

Your -mapView:viewForAnnotation: delegate method can return a customized version of a built-in
annotation view class, as you’ve done here. MKPinAnnotationView can display pins of different colors,
can allow or disallow callouts, have custom accessory views in its callout, and so on. Alternatively, you
can subclass MKAnnotationView and create your own annotation view, with whatever custom graphics
and animations you want. You could represent the user’s location as a waddling duck. Let your
imagination run wild.

Note Overlay objects and overlay view objects work almost identically to annotations. The big difference is
that an overlay occupies a region of the map, not just a point.

542 CHAPTER 17: Where Are You?

Pointing the Way
The other technique for augmenting your map view is to add your own subviews. These can impart
additional information (direction of travel, elapsed trip time, and so on) or you can add control
objects (switches, music playback buttons, and the like).

Pigeon is going to add an image view that displays an arrow. The arrow will point from the user’s
current location back to the location they marked on the map. Here’s how it will work:

The map view delegate receives a message when the user’s location changes.

This method will calculate the coordinate (on the screen) of the user’s location and
the remembered location, and the real-world distance between them.

If the distance is more than 50 meters away, position the image view (the arrow) over
the user’s screen location and rotated so it points towards the remembered location.

Otherwise, hide the arrow.

To make this happen, you’re going to need an arrow image, an instance variable for the image
view, a method that hides the arrow, and a method to display the arrow and point it in the correct
direction. Start by adding the arrow.png resource file, which you’ll find in the Learn iOS Development
Projects ➤ Ch 17 ➤ Pigeon (Resources) folder, to your Images.xcassets image catalog. While
you’re adding images, there’s a set of app icons in the Pigeon (Icons) folder you can drop into the
AppIcons group.

In the HPViewController.m file, locate the private @interface section. Define the threshold distance
constant, add an instance variable, and declare a couple of methods, as follows (new code in bold):

#define kArrowDisplayDistanceMin 50.0
@interface HPViewController () <UIAlertViewDelegate>
{
 MKPointAnnotation *savedAnnotation;
 UIImageView *arrowView;
}
- (void)hideReturnArrow;
- (void)showReturnArrowAtPoint:(CGPoint)userPoint towards:(CGPoint)returnPoint;
@end

The next step is to catch when the user’s location changes. When the user moves, the distance
between the user and the remembered location changes, the map moves, and it alters the angle
between the two. Your HPViewController is already the map view’s delegate. All you have to do is
implement this method:

- (void) mapView:(MKMapView *)mapView
 didUpdateUserLocation:(MKUserLocation *)userLocation
{
 if (savedAnnotation!=nil)
 {
 CLLocationCoordinate2D coord = savedAnnotation.coordinate;
 CLLocation *toLoc = [[CLLocation alloc] initWithLatitude:coord.latitude
 longitude:coord.longitude];

543CHAPTER 17: Where Are You?

 CLLocationDistance distance =
 [userLocation.location distanceFromLocation:toLoc];
 if (distance>=kArrowDisplayDistanceMin)
 {
 CGPoint userPoint = [mapView convertCoordinate:userLocation.coordinate
 toPointToView:self.mapView];
 CGPoint savePoint = [mapView convertCoordinate:coord
 toPointToView:self.mapView];
 [self showReturnArrowAtPoint:userPoint towards:savePoint];
 return;
 }
 }
 [self hideReturnArrow];
}

The arrow is only displayed when there’s a saved location and the real-world distance between
it and the user is more than 50 meters. The first two conditions test those prerequisites. The
-distanceFromLocation: method is particularly handy, as it handles the math involved in determining
the distance between two map coordinates.

To position the arrow, you need to know that position on the screen and the position of the
remembered location. The -convertCoordinate:toPointToView: method performs that conversion.
You pass the method the map coordinate and it returns the view coordinate of that point on the
map. Those coordinates are passed to your -showReturnArrowAtPoint:towards: method. In all other
cases, the arrow view is hidden.

The last step is to implement the -hideReturnArrow and -showReturnArrowAtPoint:towards: methods:

- (void)hideReturnArrow
{
 arrowView.hidden = YES;
}

- (void)showReturnArrowAtPoint:(CGPoint)userPoint towards:(CGPoint)returnPoint
{
 if (arrowView==nil)
 {
 UIImage *arrowImage = [UIImage imageNamed:@"arrow"];
 arrowView = [[UIImageView alloc] initWithImage:arrowImage];
 arrowView.opaque = NO;
 arrowView.alpha = 0.6;
 [self.mapView addSubview:arrowView];
 arrowView.hidden = YES;
 }

 CGFloat angle = atan2f(returnPoint.x-userPoint.x,userPoint.y-returnPoint.y);
 CGAffineTransform rotation = CGAffineTransformMakeRotation(angle);

 void (^updateArrow)(void) = ^{
 arrowView.center = userPoint;
 arrowView.transform = rotation;
 };

544 CHAPTER 17: Where Are You?

 if (arrowView.hidden)
 {
 updateArrow();
 arrowView.hidden = NO;
 }
 else
 {
 [UIView animateWithDuration:0.5 animations:updateArrow];
 }
}

What the -hideReturnArrow method does should be obvious.

The -showReturnArrowAtPoint:towards: method begins by lazily creating the image view object,
if this is the first time it’s being displayed. The next couple of statements calculates the angle
between the user’s point and the remembered point and creates a transform to rotate the arrow so
it points from one to the other.

The rest of the code gets a little fancy—but in a good way. If the arrow was previously hidden,
you want it to appear immediately, at its correct position, with no animation. If it’s currently being
displayed, you want it to animate smoothly to its new position. The solution here captures the code
that positions and rotates the arrow view in a code block variable (updateArrow). The following if
statement either executes the code block immediately (no animation) and shows the view, or it
passes the code block to UIView for animation. See, that wasn’t too hard.

Run the app and test it out. Tap the “remember location” button to drop a pin in the map and then
use the iOS simulator’s debug menu to move the simulated location. If you’re using a real device,
then just move 50 meters in any direction, as shown in Figure 17-8.

545CHAPTER 17: Where Are You?

Note This technique works largely because the user location is constantly being updated, incrementally
refining the position and angle of the arrow view. This was more of an exercise in adding subviews to the
map view and translating map coordinate into graphics coordinates, than it was a recommendation on how to
provide in-map directions. If I were writing this app “for real,” I’d use an overlay and custom overlay view to
draw the route from the user back to the saved location.

Figure 17-8. Testing the direction arrow

Are you still wondering what the info button in the toolbar is for? I saved that for the exercise at the
end of the chapter. Before you get to that, let’s take a brief tour of some location services and map
features you haven’t explored yet.

Location Monitoring
Pigeon is the kind of app that uses immediate, precise (as possible), and continuous monitoring
of the user’s location. Because of this, it requires an iOS device with GPS capabilities and gathers
location data continuously. This isn’t true for all apps. Many apps don’t need precise location
information, continuous monitoring, or to be immediately notified of movement.

546 CHAPTER 17: Where Are You?

For apps with less demanding location requirements, the Core Location framework offers a variety
of information and delivery methods. Each method involves a different amount of hardware and CPU
involvement, which means that each will impact the battery life and performance of the iOS device in
varying ways.

As a rule, you want to gather the least amount of location information your app needs to function.
Let’s say you’re writing a travel app that needs to know when the user has left one city and arrived
at the next. Do not fire up the GPS hardware (the way Pigeon does) and start monitoring their
every movement. Why? Because your app will never get the notification that they’ve arrived in their
destination city, because the user’s battery will have been completely drained! And the first thing the
user is going to do, after recharging, is to delete your app. Take a look at some other ways of getting
location information that don’t require as much juice.

Approximate Location and Non-GPS Devices
Location information is also available on iOS devices that don’t have GPS hardware. These devices
use location information that they gather from Wi-Fi base stations, cell phone towers, and other
sources. The accuracy can be crude—sometimes kilometers, instead of meters—but it’s enough to
place the user in a town. This is more than enough information to suggest restaurants or movies that
are playing in their vicinity.

So even if you left out the “gps” hardware requirement for your app, you can still request location
information and you might get it. Consult the horizontalAccuracy property of the CLLocation object
for the uncertainty (in meters) of the location’s reported position. If that value is large, then the device
probably isn’t using GPS or it’s in a situation where GPS is not accurate.

Note iOS devices with GPS also use this alternative location information to improve the speed of GPS
triangulation—which, by itself, is rather slow—and to reduce power consumption. This system is called
Assisted GPS.

If your app only needs approximate location information, gather your location data by sending
CLLocationManager the -startMonitoringSignificantLocationChanges message instead of the
-startUpdatingLocation message. This method only gets a rough estimate of the user’s location
and only notifies your app when that location changes in a big way, saving a great deal of processing
power and battery life.

Monitoring Regions
Getting back to that travel app, some iOS devices are capable of monitoring significant changes
in location, even when the device is idle. This is accomplished using region monitoring. Region
monitoring lets you define an area on the map and be notified when the user enters or exits that
region. This is an extremely efficient (low-power) method of determining when the user has moved.

547CHAPTER 17: Where Are You?

You could, for example, create two region (CLRegion) objects: one around the city the user is in and
a second encompassing the city they are traveling to next. You would send the location manager
object a -startMonitoringForRegion: message for each one, up to 20. Then all your app has to
do is sit back and wait until the delegate object receives a -locationManager:didEnterRegion: or
-locationManager:DidExitRegion: message.

Use region monitoring to be notified when the user arrives at work or at their family reunion. To learn
more about region monitoring, find the “Monitoring Shape-Based Regions” section of the Location
Awareness Programming Guide that you’ll find in Xcode’s Documentation and API Reference
window. The Location Awareness Programming Guide also describes how to receive location data in
the background—when your app isn’t the active app, something I haven’t discussed in this book.

Reducing Location Change Messages
Another way to stretch battery life is to reduce the amount of location information your app receives.
I already talked about receiving only significant changes or monitoring regions, but there’s a middle
ground between that extreme and getting second-by-second updates on the user’s location.

The first method is to set the location manager’s distanceFilter and desiredAccuracy properties.
The distanceFilter reduces the number of location updates your app receives. It waits until the
device has moved by the set distance before updating your app again. The desiredAccuracy
property tells iOS how much effort it should expend trying to determine the user’s exact location.
Relaxing that property means the location hardware doesn’t have to work as hard.

Another hint you can provide is the activityType property. This tells the manager that your app is
used for automotive navigation, as opposed to being a personal fitness app. The location manager
will use this hint to optimize its use of hardware. An automobile navigation app might, for example,
temporarily power down the GPS receivers if the user hasn’t moved for an extended period of time.

Movement and Heading
Your app might not be interested so much in where the user is, as what direction they’re going in and
how fast. If heading is your game, consult the speed and course properties of the CLLocation object
that you obtain from the location property of the CLLocationManager.

If all you want to know is the user’s direction, you can gather just that by sending the location
manager the -startUpdatingHeading message (instead of -startUpdatingLocation). The user’s
heading can be determined somewhat more efficiently than their exact location.

To learn more about direction information, read the “Getting Direction-Related Events” chapter of the
Location Awareness Programming Guide.

Geocoding
What if your app is interested in places on the map? It might want to know where a business is
located. Or maybe it has a map coordinate and wants to know what’s there.

The process of converting information about locations (business name, address, city, zip code)
into map coordinates, and vice versa, is called geocoding. Geocoding is a network service,

548 CHAPTER 17: Where Are You?

provided by Apple, that will convert a dictionary of place information (say, an address) into a
longitude and latitude, and back again, as best as it can. Turning place information into a map
coordinate is called forward geocoding. Turning a map coordinate into a description of what’s there
is called reverse geocoding.

Geocoding is performed through the CLGeocoder object. CLGeocoder will turn either a dictionary
of descriptive information or a map coordinate into a CLPlacemark object. A placemark object is a
combination of a map coordinate and a description of what’s at that coordinate. This information will
include what country, region, and city the coordinate is in, a street address, and a postal code
(if appropriate), even whether it’s a body of water.

Getting Directions
Another resource your app has at its disposal is the Maps app. Yes, the standard Maps app that
comes with iOS. There are methods that let your app launch the Maps app to assist your user. This
is a simple way of providing maps, locations, directions, and navigation services to your user without
adding any of that to your app.

You use the Maps app via the MKMapItem object. You create one or more MKMapItem objects either
from the current location (+mapItemForCurrentLocation) or from a geocoded placemark object
(-initWithPlacemark:).

Once created, send the map item object an -openInMapsWithLaunchOptions: message (for one map
item) or pass an array of map items to +openMapItems:launchOptions:. The launch options are a
dictionary that can optionally tell the Maps app what region of the globe to display, a region on the
map to highlight, whether you want it provide driving or walking directions to a given location, what
mode to use (map, satellite, hybrid), whether to display traffic information, and so on.

Code examples using MKMapItem are shown in the “Providing Directions” chapter of the Location
Awareness Programming Guide.

Summary
You’ve traveled far in your journey towards mastering iOS app development. You’ve passed many
milestones, and learning to use location services is a big one. You now know how to get the user’s
location, for a variety of purposes, and display that on a map.

Speaking of which, you also learned a lot about maps. You now know how to present a map in your
app, annotate it with points of interest, and customize how those annotations look. You learned how
to track and display the user’s location on the map and add your own view controls to the interface.

But you know what? Pigeon still has the same problem that MyStuff has. What good is an app that’s
supposed to remember stuff, if it forgets everything when you quit the app? There should be some
way of storing its data somewhere, so when you come back to the app it hasn’t lost everything. Not
surprisingly, there’s a bunch of technologies for saving data, and the next two chapters are devoted
to just that.

549CHAPTER 17: Where Are You?

EXERCISE

MKMapView can display graphic maps, satellite images, or a combination of both. It can orient the map to true north or
rotate the map based on the orientation of the device. It’s rude not to let your user choose which of these options they
want to use. Pigeon locked the map view’s orientation and display mode. Your exercise is to fix that.

These two aspects of the map display are controlled by two properties: mapType and userTrackingMode.
The map type can be set to display graphics (MKMapTypeStandard), satellite imagery (MKMapTypeStellite),
or a combination of the two (MKMapTypeHybrid). The user’s tracking mode can be either follow the user
(MKUserTrackingModeFollow), or follow them with heading (MKUserTrackingModeFollowWithHeading).

The controls you add to the interface are up to you. Some apps add a button right to the map interface that toggles
between different map types and tracking modes. For Pigeon, I decided to place the settings on a separate view controller
and use a page curl transition to reveal them.

You’ll find the finished project in the Learn iOS Development Projects ➤ Ch 17 ➤ Pigeon E1 folder. Basically,
here’s what I did:

1. Created a subclass of UIViewController named HPMapOptionsViewController.

2. Added a view controller object to the storyboard and changed the class of the object to
HPMapOptionsViewController.

3. In HPMapOptionsViewController, I created a mapView property and two UISegmentControl
outlets: mapStyleControl and headingControl.

4. I defined three action methods: -changeMapStyle:, -changeHeading:, and -done:.

5. In the new view controller, I created one segment control with three options (Map, Satellite,
and Hybrid), connecting it to the mapStyleControl outlet and its Value Changed action to
-changeMapStyle:.

6. I created a second segment control, below the first, with two options (North and Heading), connecting
it to the headingControl outlet and its Value Changed action to -changeHeading:.

7. I constrained the lower segment control to the Bottom Layout Guide (Standard), constrained
the upper segment control to the lower one, and then centered both in the container view.

8. In HPMapOptionViewController’s implementation, I used the mapView property to get the
current map type and tracking mode and set the two segment controls in -viewWillAppear:.

9. The -changeMapStyle: action changes the map’s type.

10. The -changeHeading: action changes the map’s tracking mode.

11. The –done: method dismisses the view controller.

12. In HPViewController, I added a -prepareForSeque: method that sets the mapView property of
the HPMapOptionsViewController when the segue is “mapOptions”.

13. In the storyboard, I created a modal segue from the info button in the toolbar to the new view
controller, setting its transition to “partial curl” and assigning it an identifier of “mapOptions”.

550 CHAPTER 17: Where Are You?

Note When creating the segue, make sure you have the button (UIButton) object imbedded inside the bar
button item selected; it’s this imbedded control that sends the action message, not the bar button item.

14. Finally, I added a tap gesture recognizer to the root view object of HPMapOptionsViewController
and connect it to the -done: action and set the background color of the view to a very light (90%) grey.

This is all stuff you learned in Chapters 10 and 12. Here’s the finished interface in action:

551

Chapter 18
Remember Me?

One of the marvelous qualities of iOS devices, which make them such an indispensable part
of our lives, is their ability to remember so much stuff: pictures, phone numbers, addresses,
appointments, to-do lists, lesson notes, project ideas, keynote presentations, playlists, articles you
want to read—the list seems endless. But so far, none of the apps you’ve developed in this book
remember anything. MyStuff starts with an empty list every time you launch it. Wonderland doesn’t
even remember what page you were reading. And consider Pigeon, poor Pigeon. Its only task is to
memorize one location and it can’t even do that. You’re going to fix all of that, and more.

As you might imagine, there are lots of different ways of storing information in iOS. The next two
chapters will explore the basic ones. You’re going to begin with user defaults (sometimes called
“preferences”). This is the technology most often used to remember small bits of information like
your settings, what tab you were viewing, what page number you were last looking at, your list of
favorite URLs, and so on. In this chapter you will:

Learn about property lists	

Add and retrieve values from the user defaults	

Create a settings bundle for your app	

Store and synchronize property list data in the cloud	

Preserve and restore views and view controllers	

The mechanics of property lists and how to use them are simple; it will only take a page or two
to explain the whole thing. How best to use them is another matter. Much of this chapter will be
focused on the strategies of using property lists, so put on your thinking cap and let’s get started.

Property Lists
A property list is a graph of objects, where every object is one the following classes:

	NSDictionary

	NSArray

552 CHAPTER 18: Remember Me?

	NSString

	NSNumber (any integer, floating point, or Boolean value)

	NSDate

	NSData

While a property list can be a single string, it is most often a dictionary that contain strings, numbers,
dates, or other arrays and dictionaries. Instances of these classes are called property list objects.

Seriously, that’s it.

Serializing Property Lists
Property lists are used throughout iOS because they are flexible, universal, and easily serialized. In
this case, “serialize” (the Cocoa term) means “serialize” (the computer science term). Cocoa uses
the term serialization to mean converting a property list into a transportable stream of bytes. You
don’t often serialize property lists yourself, but they are regularly serialized behind the scenes.

Note A property list can be serialized into two different formats: binary and XML. The binary format is
unique to Cocoa. It can be read and understood only by another Cocoa (OS X) or Cocoa Touch (iOS) app.
The XML format is universal and can be exchanged with practically any computer system in the world.
The advantage of the binary format is efficiency (both size and speed). The advantage of the XML format is
portability.

A serialized property list written to a file is called a property list file, often a .plist file. Xcode includes
a property list editor so you can directly create and modify the contents of a property list file. You’ll
use the property list editor later in this chapter.

For the Wonderland app, I wrote a Mac (OS X) utility application that generated the
Characters.nsarray resource file. That was a property list (an array of dictionaries containing
strings), serialized in the XML format, and written to a property list file. Later, you added that as a
resource file, which your app turned back into an NSArray object by deserializing the file.

Tip If you want to serialize a property list yourself, use the NSPropertyListSerialization class, or
one of the -writeTo... methods in NSArray and NSDictionary.

User Defaults
One of the premier uses of property list objects is in the user defaults. The user defaults is a
dictionary of property list objects you can use to store small amounts of persistent information,
such as preferences and display state. You can store any property list value you want into the user

553CHAPTER 18: Remember Me?

defaults (NSUserDefaults) object, and later retrieve it. The values you store there are serialized and
preserved between runs of your app.

A user defaults (NSUserDefaults) object is created when your app starts. Any values you stored there
the last time are deserialized and become immediately available. If you make any changes to the user
defaults, they are automatically serialized and saved so they’ll be available the next time your app runs.

Note The user default values are local to your app. In other words, your app can’t get or change the values
stored by other iOS apps.

Using NSUserDefaults is really simple. You obtain your app’s singleton user defaults object
using [NSUserDefaults standardUserDefaults]. You send it “set” messages to store values
(-setInteger:forKey:, -setObject:forKey:, -setBool:forKey:, and so on). You retrieve values using
the “get” messages (-integerForKey:, -objectForKey:, -boolForKey:, and so on).

Making Pigeon Remember
You’re going to use user defaults to give Pigeon some long-term memory. When you add user
defaults to an app you need to consider:

What values to store	

What property list objects and keys you will use	

When to store the values	

When to retrieve the values	

Each decision affects subsequent ones, so start at the top. For Pigeon, you want it to remember:

The remembered map location (duh)

The map type (plain, satellite, or hybrid)

The tracking mode (none or follow heading)

The next step is to decide what property list objects you’re going to use to represent these
properties. The map type and tracking mode are easy; they’re both integer properties, and you can
store any integer value directly in the user defaults.

The MKPointAnnotation object that encapsulates the map location, however, isn’t a property list
object and can’t be stored directly in the user defaults. Instead, its significant properties need to
be converted into property list objects, which can be stored. The typical technique is to turn your
information into either a string or a dictionary of property list objects, both of which are compatible
with user defaults. For Pigeon, you’re going to convert the annotation into a dictionary containing
three values: its latitude, its longitude, and its title. This is enough information to reconstruct the
annotation when the app runs again.

You also have to pick keys to identify each value stored. At the top-level, you want to choose
keys that won’t be confused with any keys iOS might be using. A number of iOS frameworks

554 CHAPTER 18: Remember Me?

also use your app’s user defaults to preserve information. The simplest technique is to use the
same class prefix that your project uses. For example, it’s unlikely the keys “HPMapType” and
“HPFollowHeading” would conflict with any reserved keys. Keys used for values in sub-dictionaries
can be anything you want.

Minimizing Updates and Code
With the first part out of the way, you can now turn your attention to the much subtler problem of
deciding when and where to preserve your values in the user defaults, and when to get them back
out again.

Tackle the storage problem first. As a rule, you want to make updates to the user defaults as
infrequently as possible, while still keeping your code simple. The common solutions are:

Capture the value when it changes	

Capture the value at some dependable exit point	

The first solution is perfect for Pigeon. It only saves three values, and none of those change that
often. The user might change map type and heading from time to time, but they’re unlikely to fiddle
with those settings a dozen times a minute. Likewise, the user will save a location when they arrive
somewhere, but won’t save another location until they’ve traveled someplace else.

The reason you want to limit user default updates is that every change triggers a chain of events that
results in a fair amount of work occurring in the background. It’s something to avoid, as long as it
doesn’t overly complicate your design. A good design will minimize updates with a minimal amount
of code. When you start working with cloud-based storage (later in this chapter) it’s even more
important to avoid gratuitous changes.

On the other hand, some values you want to preserve might change all the time or in many different
places. For example, remembering the playback location of an audio book is something that
changes constantly. It would be ludicrous to capture the playback position every second the audio
was playing. Instead, it makes a lot more sense to simply note the user’s current playback position
when they exit the app. You’ll explore that technique later in this chapter.

You’re going to start by preserving the map type and tracking mode, because these are the simplest.
Then you’ll tackle preserving and restoring the map location.

Defining Your Keys
This tutorial starts with the version of Pigeon in the exercise for Chapter 17. You’ll find that version
in the Learn iOS Development Projects ➤ Ch 17 ➤ Pigeon E1 folder. If you came up with your own
solution to the exercise, you should have no problem adapting this code to your app.

Begin by defining the keys used to identify values in your user defaults. Select the
HPViewController.h file and add these three constants:

#define kPreferenceMapType @"HPMapType"
#define kPreferenceHeading @"HPFollowHeading"
#define kPreferenceSavedLocation @"HPLocation"

555CHAPTER 18: Remember Me?

Writing Values to User Defaults
Locate the code where the map type and tracking mode get changed. If you’re working with the
version of Pigeon I wrote for Chapter 17, that code is in HPMapOptionsViewController.m. Add this
#import statement so the code can use the key constants you just defined:

#import "HPViewController.h"

Now find the code where each setting gets changed. In HPMapOptionsViewController that happens
in the -changeMapStyle: and -changeHeading: methods. Change the code so it looks like this
(new code in bold):

- (IBAction)changeMapStyle:(id)sender
{
 MKMapType mapType = self.mapStyleControl.selectedSegmentIndex;
 self.mapView.mapType = mapType;
 [[NSUserDefaults standardUserDefaults] setInteger:mapType
 forKey:kPreferenceMapType];
}

- (IBAction)changeHeading:(id)sender
{
 MKUserTrackingMode tracking = self.headingControl.selectedSegmentIndex+1;
 self.mapView.userTrackingMode = tracking;
 [[NSUserDefaults standardUserDefaults] setInteger:tracking
 forKey:kPreferenceHeading];
}

The change is straightforward, and you should have no problem adapting the same idea to your
own app. When a setting is changed, the new value is also stored in the user defaults. That’s all you
have to do. NSUserDefaults takes care of everything else: converting the simple integer value into
the appropriate property list (NSNumber) object, serializing the values, and storing them so they’ll be
available the next time your app runs.

That’s the first half. Now you need to add the code to retrieve these saved values and restore the
map options when your app starts.

Getting Values from User Defaults
Select the HPViewController.m file and locate the -viewDidLoad method. Replace the [_mapView set
UserTrackingMode:MKUserTrackingModeFollow] statement with this code:

 NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
 _mapView.mapType = [userDefaults integerForKey:kPreferenceMapType];
 NSUInteger trackingMode;
 if ([userDefaults objectForKey:kPreferenceHeading]!=nil)
 trackingMode = [userDefaults integerForKey:kPreferenceHeading];
 else
 trackingMode = MKUserTrackingModeFollow;
 _mapView.userTrackingMode = trackingMode;

556 CHAPTER 18: Remember Me?

This new code retrieves the integer values for the map type and tracking mode from the user
defaults and uses them to restore those properties before the map is displayed. The result is that
when the user runs the app and changes the map type, every time they launch the app after that the
map type will be the same.

But there’s a hitch. The very first time the app is run—or if the user never changes the map type
or tracking mode—there are no values at all for those keys in the user defaults. If you request the
property list object for a non-existent key, user defaults will return nil. If you request a scalar value
(Boolean, integer, or floating-point) user defaults will return NO, 0, or 0.0. Here are three ways of
dealing with this situation:

Choose your values so that 	 nil, NO, 0, or 0.0 is the default

Test to see if user defaults contains a value for that key	

Register a default value for that key	

The map type property adopts the first solution. Conveniently, the initial map type in Pigeon
is MKMapTypeStandard, whose integer value is 0. So if there is no value in user defaults for the
kPreferenceMapType key, it returns a 0 and sets the map type to standard—which is perfect.

The tracking mode isn’t so lucky. The initial tracking mode Pigeon uses is
MKUserTrackingModeFollow, whose integer value is 1. If there’s no value for the kPreferenceHeading
key, you don’t want to set trackingMode to MKUserTrackingModeNone (0) by mistake.

Instead, the code uses the second solution. It first gets the property list (NSNumber) object for that
key. If there’s no value for that key, user defaults returns nil and you know that a tracking value has
never been set. You use this knowledge to either restore the user-selected mode or set the correct
default.

Note The code uses the method -objectForKey: to test for the presence of any value. A property
list object ultimately represents every value in a property list. The methods -boolForKey:,
-integerForKey:, and so on, convert the simple integer, floating-point, or Boolean values to, and from,
an NSNumber object for you.

That’s everything you need to preserve and restore these map settings. It’s time to test it out,
but that will require a little finesse.

Testing User Defaults
Using either a provisioned device or the simulator, run your updated Pigeon app. Tap the settings
button and change the map type and tracking mode, as show in Figure 18-1. This will update the
user defaults with the new values, but those values may, or may not, be saved in persistent storage
yet. That’s because the user defaults tries to be as efficient as possible and may wait for additional
changes before beginning the serialization and storage process.

557CHAPTER 18: Remember Me?

One way to get its attention is to push your app into the background. Do this by tapping the home
button or use the Hardware ➤ Home command in the simulator, shown in the third image in Figure 18-1.
When your app enters the background, it doesn’t immediately stop running, but it prepares itself for
that eventuality. One of those steps is to serialize and preserve all of your user defaults.

With your user defaults safely stored, you can now stop your app and start it running again. Switch
back to Xcode and click the stop button. Once the app stops, click the run button. The app starts up
again. This time, it loads the map type and tracking mode from the saved user defaults and restores
those properties. When the view controller loads, the map is exactly as the user left it last time.

Congratulations, you’ve learned the basics of preserving and restoring values in the user defaults.
In the next few sections you’re going to refine your technique a little, and deal with the (slightly) more
complex problem of preserving and restoring the user’s saved map location.

Registering Default Values
The code to restore the tracking mode is awfully ugly. Well, maybe not “awfully ugly,” but it’s a little
ugly. If you had a dozen of these settings to restore, you’d have a lot of repetitive code to write.
Fortunately, there’s a more elegant solution.

Your app can register a set of default values for specific keys in user defaults—yes, they’re default
defaults. When your code requests a value ([userDefaults integerForKey:kPreferenceHeading]),
the user defaults checks to see if a value for that key has been previously set. If not, it returns a
default value. For integers that value is 0—unless you’ve specified something else. You do that using
the -registerDefaults: method.

Select the HPAppDelegate.m implementation file. This is your app’s delegate object. It receives a lot
of messages about the state of your app. One of those is the -application:willFinishLaunching
WithOptions: method. This is the first message your app object receives, and is normally the first
opportunity for code that you’ve written to run.

Figure 18-1. Testing the map settings

558 CHAPTER 18: Remember Me?

Add this #import towards the top of the file, so your new code can use your key constants:

#import "HPViewController.h"

In the @implementation section, add this method (or update it if it already exists):

- (BOOL) application:(UIApplication *)application
 willFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 [[NSUserDefaults standardUserDefaults] registerDefaults:@{
 kPreferenceHeading: @(MKUserTrackingModeFollow)
 }];
 return YES;
}

The -registerDefaults: message establishes a backup dictionary for the user default’s primary
dictionary. The user defaults object actually manages several dictionaries, arranged into domains.
When you ask it to retrieve a value, it searches each domain until it finds a value and returns it.
The -registerDefaults: method sets up a domain behind all of the others, so if none of the other
domains contain a value for kPreferenceHeading, this dictionary provides one.

Note Each domain in the user defaults has its own purpose and properties. The domain into which you
store values is persistent; it will be serialized and preserved between app runs. The registration domain
is not persistent. The values you pass to -registerDefaults: disappear when your app quits. You
can read about domains in “The Organization of Preferences” chapter of the Preferences and Settings
Programming Guide.

Now you can clean up the code in -viewDidLoad. Return to HPViewController.m and replace the
code you previously added with this (updated code in bold):

NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
_mapView.mapType = [userDefaults integerForKey:kPreferenceMapType];
_mapView.userTrackingMode = [userDefaults integerForKey:kPreferenceHeading];

Isn’t that a lot simpler? Because you’ve registered a defaults dictionary, your code doesn’t have to
worry about the situation where there is no value for kPreferenceHeading, because now there will
always be one.

Now that your map settings are persistent, it’s time to do something about that saved map location.

559CHAPTER 18: Remember Me?

Turning Objects into Property List Objects
The big limitation of property lists is that they can only contain property list objects (NSNumber,
NSString, NSDictionary, and so on). Anything you want to store in user defaults (or any property list)
must be converted into one of those objects. Here are three most common techniques for storing
other kinds of values:

Convert the value(s) into a string	

Convert the values into a property list dictionary	

Serialize the object(s) into an NSData object	

The first technique is simple enough, especially since there are a number of Cocoa Touch functions
that will do this for you. For example, let’s say you need to store a CGRect value in your user defaults.
CGRect isn’t a property list object—it’s not even an object. You could store each of its four floating-
point fields as separate values, like this:

CGRect saveRect = self.someView.frame;
[userDefaults setFloat:saveRect.origin.x forKey:@"HPFrame.x"];
[userDefaults setFloat:saveRect.origin.y forKey:@"HPFrame.y"];
[userDefaults setFloat:saveRect.size.height forKey:@"HPFrame.height"];
[userDefaults setFloat:saveRect.size.width forKey:@"HPFrame.width"];

And you’d have to reverse the process to restore the rectangle. That seems like a lot of work.
Fortunately, there are two functions—NSStringFromCGRect and CGRectFromString—that will convert
a rectangle into a string object and back again. Now the code to save your rectangle can look
something like this:

[userDefaults setObject:NSStringFromCGRect(self.someView.frame)
 forKey:@"HPFrame"];

So if you can find functions that will convert your value to and from a property list object, use them.

The second technique is what you’re going to use for the map location. You’re going to write
a pair of methods. The first will return the salient properties of your MKPointAnnotation object as
a dictionary of NSString and NSNumber objects. A second method will take that dictionary and set
them again.

Start by adding a new category to your project. Select a file, like HPViewController.m, in your project
navigator and choose the New ➤ File . . . command (File menu or right/control+click). From the
Cocoa Touch group, choose the Objective-C category template. Name the category HPPreservation
and make it a category on MKPointAnnotation.

Note A category adds additional methods to an existing class. In Chapter 14 you used a category to add
methods to your own class, but they can just as easily add new methods to classes you didn’t write. I explain
the ins and outs of categories in Chapter 20.

560 CHAPTER 18: Remember Me?

In the @interface of MKPointAnnotation+HPPreservation.h, add two method declarations:

- (NSDictionary*)preserveState;
- (void)restoreState:(NSDictionary*)state;

In MKPointAnnotation+HPPreservation.m, define three constants for the dictionary keys,
immediately after the #import statements:

#define kInfoLocationLatitude @"lat"
#define kInfoLocationLongitude @"long"
#define kInfoLocationTitle @"title"

In the @implementation section, write the two methods:

- (NSDictionary*)preserveState
{
 CLLocationCoordinate2D coord = self.coordinate;
 return @{ kInfoLocationLatitude: @(coord.latitude),
 kInfoLocationLongitude: @(coord.longitude),
 kInfoLocationTitle: self.title };
}

- (void)restoreState:(NSDictionary*)state
{
 CLLocationCoordinate2D coord;
 coord.latitude = [state[kInfoLocationLatitude] doubleValue];
 coord.longitude = [state[kInfoLocationLongitude] doubleValue];
 self.coordinate = coord;
 self.title = state[kInfoLocationTitle];
}

The first method returns a new dictionary (NSDictionary) object with three values: the latitude, the
longitude, and the title of the annotation. The values in the dictionary are NSNumber and NSString
objects, all perfectly suited to being stored in a property list. Which is exactly what you’re going to do.

The second method reverses the process, setting the coordinates and the title of the annotation
using the values in the dictionary. Now let’s go use these to save and restore the map location.

Preserving and Restoring savedLocation
Return to HPViewController.m. You’re going to use the same technique you used to preserve
and restore the map settings for the remembered map location. You’re going to save the
location information (dictionary) when it’s established, and restore it when the app starts again.
The savedLocation object isn’t, however, a simple integer, so the code is a little more involved.
Furthermore, you’re now establishing a new location from two places in the code: when the user sets
it and when the app starts again. As you know by now, I’m not fond of repeating code, so I’m going
to have you consolidate the code that sets the location. This will come in handy later, when you add
a third avenue for setting the location.

561CHAPTER 18: Remember Me?

To summarize, here’s what you’re going to change:

Add a -setLocation: method to set or clear the saved location

Write -preserveAnnotation and -restoreAnnotation methods to store, and retrieve,
the map location from the user defaults

Add code to -dropPin: and -clearPin: to preserve the map location

Restore any remembered location when your app launches

Begin by importing the category you just created, immediately after the other #import statements:

#import "MKPointAnnotation+HPPreservation.h"

Add the new method declarations to the private @interface HPViewController () section:

- (void)setAnnotation:(MKPointAnnotation*)annotation;
- (void)preserveAnnotation;
- (void)restoreAnnotation;

Add the new -setAnnotation: method to the @implementation section:

- (void)setAnnotation:(MKPointAnnotation*)annotation
{
 if ([savedAnnotation isEqual:annotation])
 return;
 if (savedAnnotation!=nil)
 [_mapView removeAnnotation:savedAnnotation];
 savedAnnotation = annotation;
 if (annotation!=nil)
 {
 [_mapView addAnnotation:annotation];
 [_mapView selectAnnotation:annotation animated:YES];
 }
}

This method will be used throughout MKViewController to set, or clear, the annotation object. It
follows a common setter method pattern that handles the cases where the savedAnnotation variable
is nil, the annotation parameter is nil, both are nil, or neither are nil. It also deliberately takes no
action if the same annotation object is set again.

Find the -alertView:clickedButtonAtIndex: method. Locate the [self clearPin:self] statement.
Delete it, along with all of the statements in the method that follow it, and replace them with the
following code:

 MKPointAnnotation *newAnnotation = [MKPointAnnotation new];
 newAnnotation.title = name;
 newAnnotation.coordinate = location.coordinate;
 [self setAnnotation:newAnnotation];

 [self preserveAnnotation];
}

562 CHAPTER 18: Remember Me?

The new code makes two changes. First, it uses the new -setAnnotation: method to add the
annotation to the map. Second, it sends the -preserveAnnotation message to store the new map
location in the user defaults. Now make a similar change to the -clearPin: method (modified code
in bold):

- (IBAction)clearPin:(id)sender
{
 if (savedAnnotation!=nil)
 {
 [self setAnnotation:nil];
 [self preserveAnnotation];
 }
}

Add the new -preserveAnnotation and -restoreAnnotation methods:

- (void)preserveAnnotation
{
 NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
 if (savedAnnotation!=nil)
 {
 NSDictionary *annotationInfo = [savedAnnotation preserveState];
 [userDefaults setObject:annotationInfo
 forKey:kPreferenceSavedLocation];
 }
 else
 {
 [userDefaults removeObjectForKey:kPreferenceSavedLocation];
 }
}

- (void)restoreAnnotation
{
 NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
 NSDictionary *restoreInfo =
 [userDefaults dictionaryForKey:kPreferenceSavedLocation];
 if (restoreInfo!=nil)
 {
 MKPointAnnotation *restoreAnnotation = [MKPointAnnotation new];
 [restoreAnnotation restoreState:restoreInfo];
 [self setAnnotation:restoreAnnotation];
 }
}

-preserveAnnotation converts the savedAnnotation object into a dictionary, suitable for storing in
the user defaults. If there is no map location, it intentionally deletes any saved value for that key from
the user defaults. You can’t store nil as a value in user defaults. To store nothing, delete the value
by sending the -removeObjectForKey: message.

The -restoreAnnotation method reverses the process, retrieving the dictionary of map location
information from user defaults and turning it back into an MKPointAnnotation object with the

563CHAPTER 18: Remember Me?

same information. There’s only one thing left to do. In -viewDidLoad, add this statement to
the end of the method:

[self restoreAnnotation];

Pigeon now has the memory of an elephant! Reuse the test procedure you employed earlier to test
the map settings:

1. Run Pigeon

2. Remember a location on the map

3. Press the home button to put the app in the background

4. Stop the app in Xcode

5. Run the app again

When the app is restarted, the saved location is still there. Success!

This project demonstrates several common techniques for putting user defaults to work in your
app. Remembering user preferences, settings, and working data (like the saved map location) are all
perfect uses for the user defaults.

Another common use is to save your app’s display state. When the user selects the Artists tab in the
Music app, taps down into an album, and ultimately a song, they aren’t surprised when they start
Music the next day and find themselves at the same track, of the same album, of the same artist, in
the Artists tab. That's because the Music app went to some effort to remember exactly what view
controller the user left off at, and reconstructed it the next time it was launched.

From what you know so far, you might think that you’d have to write code to capture the state of
tab view and navigation view controllers, convert those into property list objects, store them in user
defaults, and unroll the whole thing again when the app restarts. That’s basically what happens,
but you’ll be happy to know that you don’t have to do (much) of that yourself. iOS has a specific
mechanism for saving and restoring the state of your view controllers.

Persistent Views
In the section “Minimizing Updates and Code” I said the primary techniques for capturing user
defaults was (a) when the value changes or (b) at a dependable exit point. You used technique
(a) in Pigeon because it was a perfect fit. The values you were saving were only changed in a handful
of places, and they change infrequently. But that isn’t always the case.

Some changes occur constantly (like which view controller the user is in) and some changes occur
in a myriad of different ways, making it very difficult to catch them all. In these situations, the second
approach is the best. You don’t worry about trying to monitor, or even care about, what changes are
being made. Just arrange to capture that value before the user quits the app, dismisses the view
controller, or exits whatever interface they’re using. There are two exit points that make good places
to capture changes:

Dismissing a view controller	

The app entering the background	

564 CHAPTER 18: Remember Me?

For view controllers, you can capture your values in the code that dismisses the view controller.
You might have to do a little extra work in circumstances like a popover view controller, as
tapping outside the popover can dismiss it implicitly. You’d want to catch that message
(-popoverControllerDidDismissPopover:) too, so you don’t miss that exit route. But for the most
part, it’s usually pretty easy to catch all of the ways a view controller can be dismissed.

Fading Into the Background
The other great place to capture changes, and particularly the view state, is when the app switches
to the background. To appreciate this technique, you need to understand the states an iOS app
progresses through. Your iOS app is always in one of these states:

Not running	

Foreground	

Background	

Suspended	

Your app is in the “not running” state before it’s launched, or after it’s ultimately terminated. Very little
happens when it’s not running.

The foreground state is the one you have the most experience with. This is when your app appears
in the device’s display and your user is interacting with it. Foreground has two sub-states, active and
inactive, that it jumps between. Active means your app is running. Inactive occurs when something
interrupts it (like a phone call or an alert), but it’s still being displayed. Your app’s code does not run
when it’s inactive. The inactive state usually doesn’t last long.

Your app moves to the background state when you press the home button, switch to another app,
or the screen locks. Your app continues to run for a short period of time, but will quickly move to the
suspended state.

Your app does not execute any code once suspended. If iOS later decides that it needs the memory
your app is occupying, or the user shuts down their device, your suspended app will terminate
(without warning) and return to the not running state.

But your app might not be terminated. If the user re-launches your app, and it’s still in the
background state, your app isn’t restarted; it’s simply activated again. It moves directly to the
foreground state and instantly resumes execution. Your app may enter, and exit, the background
state repeatedly over its lifetime.

Note You can make special arrangements that allow your app to continue to run in the background. For
example, you can request to play music or receive user location changes, even while your app is not the
foreground app. See the section “Background Execution and Multitasking” in the iOS App Programming Guide
for further details.

565CHAPTER 18: Remember Me?

Apps take advantage of this small window of background processing to prepare themselves for
termination. This is when the user defaults serializes its property values and saves them to persistent
storage. It’s also the perfect time to capture the state of your interface.

Your app can discover when it has entered the background state in two ways. Your app delegate
object receives an -applicationDidEnterBackground: message. Around the same time, a
UIApplicationDidEnterBackgroundNotification notification is posted. Override that method, or
have any object observe that notification, and save whatever state information you need.

Caution iOS allots your app approximately 5 seconds of background processing time to save its state
and finish up any work in progress. Your app must wrap up within that time, or take explicit steps to enable
background processing.

iOS also provides a mechanism to capture, and later restore, the state of your view controllers.
This is automatically invoked when your app enters the background state.

Preserving View Controllers
As an example, take the Wonderland app. (I mean that, literally. Go find the finished Wonderland
app from Chapter 12. You’re going to modify it.) The user can spend all day jumping between tabs,
browsing characters in the table view, and flipping through the page view. You want to catch the
point when the app switches to the background and remember what tab they had active and what
page of the book they were looking at. You’ll use this to restore those views the next time the app is
launched.

When an iOS app enters the background, iOS examines the active view controller. If properly
configured, it will automatically preserve its state in the user defaults. This is a combination of what
iOS already knows about the view controller and additional information that your code supplies.
Specifically, iOS will remember what tab view was being displayed, the scroll position in a table
view, and so on. To that, you can add custom information that only your app understands. For
Wonderland, you’re going to remember the page number the user was reading. (Remember that a
page view controller has no concept of a page number; that’s something you invented for your page
view controller data source.)

The first thing to address is the “properly configured” prerequisite. To put iOS to work for you,
preserving and restoring your view controllers, you must do two things:

1. Implement the -application:shouldSaveApplicationState: and -applicatio
n:shouldRestoreApplicationState: app delegate methods

2. Assign restoration identifiers to your view controllers, starting with the root
view controller

The first step tells iOS that you want its help in preserving and restoring your app’s view state.
These methods must be implemented, and they must return YES, or iOS will just pass your app
by. They also serve a secondary function. If you have any custom, app-wide, state information

566 CHAPTER 18: Remember Me?

that you want to preserve, these are the methods to do that in. Wonderland doesn’t have any,
so it only needs to return YES.

Open the Wonderland project from Chapter 12 and select the WLAppDelegate.m file. Add the following
two methods to the @implementation section:

- (BOOL) application:(UIApplication *)application
 shouldSaveApplicationState:(NSCoder *)coder
{
 return YES;
}

- (BOOL) application:(UIApplication *)application
 shouldRestoreApplicationState:(NSCoder *)coder
{
 return YES;
}

Assigning Restoration Identifiers
Once iOS is given the green light to save your view state, its starts with the root view
controller being displayed and checks for a restoration ID. A restoration ID is a string property
(restorationIdentifier) used to tag the state information for that view controller. It also acts
as a flag, inviting iOS to preserve, and ultimately restore, that view controller’s state. If the
restorationIdentifer property is nil, iOS ignores the view controller; nothing gets persevered, and
nothing will be restored.

iOS then looks for any view (UIView) objects that have a restorationIdentifier set, and preserves
them. If the root view controller is a container view controller, the entire process repeats with each
sub-view controller, capturing the state of each view controller with a restoration ID and ignoring
those without.

Note The search for restorable view controllers skips any view controller that lacks a restoration ID. Thus, to
save the state of a table view controller inside a navigation view controller inside a tab view controller, every
one of those controllers must have a restoration ID, or else the state of the table view controller won’t be
captured.

You can set restoration IDs programmatically, but if your view controller is defined in an Interface
Builder file it’s simplest to set them there. Select the Main_iPhone.storyboard (or _iPad) file. Select
the root tab bar view controller and switch to the identity inspector, as shown in Figure 18-2. Locate
the Restoration ID property and set it to TabViewController.

567CHAPTER 18: Remember Me?

You’ve now done everything required to get iOS to save, and restore, that state of your tab view
controller. This, unfortunately, won’t do you much good. What you want is the sub-view controller
that was visible when the user quit Wonderland to reappear when they launch it again. For that to
happen, each of the sub-view controllers must be restored too. Using the identity inspector, select
each of the sub-view controllers and assign them restoration IDs too, using Table 18-1 as a guide.

Figure 18-2. Setting restoration ID property

Table 18-1. Wonderland view controller restoration IDs

View Controller Restoration ID

Root Tab View Controller TabViewController

WLFirstViewController CoverViewController

UINavigationController CharacterNavController

WLBookViewController BookViewController

This is enough to remember, and later restore, the top-level tab the user was viewing when they quit
the app. Give it a try:

1. Run the Wonderland app

2. Choose the character or book tab

3. Press the home button to push the app into the background

4. Stop the app in Xcode

5. Run the app again

The restoration ID strings can be anything you want; they just have to be unique within the scope of
the other view controllers.

568 CHAPTER 18: Remember Me?

Customizing Restoration
So far, the only view state that gets restored is which tab the user was in. If they were viewing
a character’s information, or had thumbed through to page 87 of the book, they’ll return to the
character list and page 1 when the app is relaunched.

Deciding how much view state information to preserve is up to you. As a rule, users expect to return
to whatever they were doing when they quit the app. But there are limits to this. If the user had
entered a modal view controller to pick a song or enter a password, it wouldn’t necessarily make
sense to return them to that exact same view two days later. You’ll have to decide how “deep” your
restoration logic extends.

For Wonderland, you definitely want the user to be on the same page of the book. Your users
would be very annoyed if they had to flip through 86 pages to get back to where they were reading
yesterday. The page view controller, however, knows nothing about the organization of your book
data. That’s something you created when you wrote the WLBookDataSource class. If you want to
preserve and restore the page they were on, you’ll have to write some code to do that.

Each view and view controller object with a restoration ID receives an
-encodeRestorableStateWithCoder: message when the app moves to the background. During
application startup, it receives a -decodeRestorableStateWithCoder: message to restore itself. If you
want to preserve custom state information, override these methods.

Select the WLBookViewController.m implementation file. Add these two methods to the
@implementation section:

- (void)encodeRestorableStateWithCoder:(NSCoder *)coder
{
 [super encodeRestorableStateWithCoder:coder];
 WLOnePageViewController *currentView = self.viewControllers[0];
 [coder encodeInteger:currentView.pageNumber forKey:@"page"];
}

- (void)decodeRestorableStateWithCoder:(NSCoder *)coder
{
 [super decodeRestorableStateWithCoder:coder];
 NSUInteger page = [coder decodeIntegerForKey:@"page"];
 if (page!=0)
 {
 WLOnePageViewController *currentView = self.viewControllers[0];
 currentView.pageNumber = page;
 }
}

The first method obtains the current view controller being displayed in the page view controller.
The WLOnePageViewController knows which page number it’s displaying. This number is saved in the
NSCoder object.

569CHAPTER 18: Remember Me?

When your app is relaunched, the page view controller receives a
-decodeRestorableStateWithCoder: message. It looks inside the NSCoder object to see if it contains
a saved page number. If it does, it restores the page number before the view appears, returning the
user to where they were when they quit. That wasn’t too hard, was it?

Test out your new code. Launch Wonderland, flip through a few pages of the book, then quit the app
and stop it in Xcode. Launch it again, and the last page you were looking at will reappear, as if you’d
never left.

Deeper Restoration
Exactly how much view state information you decide to preserve is up to you. Here are some tips to
developing a restoration strategy:

	UIView objects can be preserved too. Assign them a restoration ID
and, if necessary, implement -encodeRestorableStateWithCoder: and
-decodeRestorableStateWithCoder: methods.

If you want to restore the state of a data model for a table or collection view, 	
your data source object should adopt the UIDataSourceModelAssociation
protocol. You then implement two methods (-indexPathForElementWithModelId
entifier:inView: and -modelIdentifierForElementAtIndexPath:inView:) that
remember, and restore, the user’s position in the table.

You can encode and restore anything you want in your app delegate’s 	
-application:shouldSaveApplicationState: and -application:shouldRestore
ApplicationState: methods. You can use these methods to perform your own
view controller restoration, or use a combination of the automatic restoration
and a custom solution.

The gory details are all explained in the “State Preservation and Restoration” chapter of the iOS App
Programming Guide, which you can find in Xcode’s Documentation and API Reference window.

Pigeons in the Cloud
Cloud storage and synchronization are hot new technologies that make iOS devices even more
useful. Set an appointment on one, and it automatically appears on all of your other devices.
The technology behind this bit of magic is complex, but iOS makes it easy for your app to take
advantage of it.

There are a number of cloud storage and synchronization features in iOS, but the easiest to use,
by far, is the NSUbiquitousKeyValueStore object. It works almost identically to user defaults. The
difference is that anything you store there is automatically synchronized with all of your other iOS
devices. Wow!

Note NSCoder is the workhorse of iOS’s archiving framework. You use it by storing values and properties,
which are converted into serialized data. You’ll learn all about NSCoder in the next chapter.

570 CHAPTER 18: Remember Me?

There are both practical limits and policy restrictions on what information you should, or can,
synchronize between devices. Your first task is to decide what it makes sense to share. Typically,
user settings and view states are only preserved locally. It would be weird to change the map type
on your iPhone, and then suddenly have your iPad’s map view change too. On the other hand, if
your user was reading Alice’s Adventures in Wonderland on their iPad, wouldn’t it be magic if they
could reach for their iPhone and open it up at the same page?

Another reason to carefully choose what you synchronize is that the iCloud service strictly limits how
much information you can share through NSUbiquitousKeyValueStore. The limits are:

No more than 1MB of data, in total	

No more than 1,000 objects	

A “reasonable” number of updates	

Apple doesn’t spell out exactly what “reasonable” is, but it’s a good idea to keep the number of
changes you make to NSUbiquitousKeyValueStore to a minimum.

Caution If you abuse these limits, the iCloud servers may delay your updates or possibly stop synchronizing
your data entirely.

Storing Values in the Cloud
Let your Pigeon app spread its wings by adding cloud synchronization. The only piece of information
you’ll synchronize is the remembered map location—the map type and tracking mode aren’t good
candidates for syncing. You use NSUbiquitousKeyValueStore almost exactly the way you use
NSUserDefaults. In fact, they are so similar that you’ll be reusing many of the same strategies and
methods you wrote at the beginning of this chapter.

You get a reference to the singleton NSUbiquitousKeyValueStore object via
[NSUbiquitousKeyValueStore defaultStore]. Any values you set are automatically serialized and
synchronized with the iCloud servers.

Select HPViewController.m and add an instance variable to the private @interface
HPViewController (). This will retain the cloud store object (new code in bold):

@interface HPViewController () <UIAlertViewDelegate>
{
 MKPointAnnotation *savedAnnotation;
 UIImageView *arrowView;
 NSUbiquitousKeyValueStore *cloudStore;
}

Initialize the new variable by adding these statements to the end of the –viewDidLoad method:

cloudStore = [NSUbiquitousKeyValueStore defaultStore];
[cloudStore synchronize];

571CHAPTER 18: Remember Me?

This code retrieves and saves a reference to the singleton cloud store object, and then requests an
immediate synchronization. This prompts iOS to update any values in the store that might have been
changed by other iOS devices, and vice versa. It will happen eventually, but this hurries the process
along when the app first starts, and is the only time you’ll need to send -synchronize.

Note There’s a reason I have you create and store a reference to the NSUbiquitousKeyValueStore
object, rather than just use [NSUbiquitousKeyValueStore defaultStore] when you need it. It will all
make sense by the end of the chapter.

Now update the -preserveAnnotation method so it stores the annotation information in both the
user defaults and the cloud (new code in bold):

- (void)preserveAnnotation
{
 NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
 if (savedAnnotation!=nil)
 {
 NSDictionary *annotationInfo = [savedAnnotation preserveState];
 [userDefaults setObject:annotationInfo
 forKey:kPreferenceSavedLocation];
 [cloudStore setDictionary:annotationInfo
 forKey:kPreferenceSavedLocation];
 }
 else
 {
 [userDefaults removeObjectForKey:kPreferenceSavedLocation];
 [cloudStore removeObjectForKey:kPreferenceSavedLocation];
 }
}

Cloud Watching
Unlike user defaults, the values in the cloud can change at any time. So it’s insufficient to simply
read them when your app starts. Your app has to be prepared to react to changes, whenever they
occur. In addition, your iOS device doesn’t always have access to the cloud. It may be in “airplane”
mode, experiencing spotty cell reception, or maybe you’re using your device inside a Faraday
cage—for a little privacy. No matter what, your app should continue to work in an intelligent manner
under all of these conditions.

The preferred solution is to mirror your cloud settings in your local user defaults. This is what
-preserveAnnotation does. Whenever the location changes, both the user defaults and the cloud
are updated with the same value. If the cloud can’t be updated just now, that won’t interfere with the
app. Likewise, if a value in the cloud changes, you should update your user defaults to match.

572 CHAPTER 18: Remember Me?

Which brings you to the task of observing changes in the cloud. So how do you find out when
something in the cloud changes? At this point in the book, you should be chanting “notification,
notification, notification,” because that’s exactly how you observe these changes. Your view
controller observes the NSUbiquitousKeyValueStoreDidChangeExternallyNotification notification
(which is also the runner up for being the longest notification name in iOS). You’ll create a
new method to process those changes, so begin by adding that to the private @interface
HPViewController () section in HPViewController.m:

- (void)cloudStoreChanged:(NSNotification*)notification;

Find the -viewDidLoad method and augment the code that sets up the cloud store (new code in
bold):

cloudStore = [NSUbiquitousKeyValueStore defaultStore];
NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:self
 selector:@selector(cloudStoreChanged:)
 name:NSUbiquitousKeyValueStoreDidChangeExternallyNotification
 object:cloudStore];
 [cloudStore synchronize];

Caution You must register to observe change notifications before sending -synchronize, or your app
may miss pre-existing changes in the cloud.

The -cloudStoreChanged: message will now be received whenever something in the cloud changes.
The last step is to write that method:

- (void)cloudStoreChanged:(NSNotification*)notification
{
 NSDictionary *cloudInfo = [cloudStore dictionaryForKey:
 kPreferenceSavedLocation];
 NSUserDefaults *localStore = [NSUserDefaults standardUserDefaults];
 [localStore setObject:cloudInfo forKey:kPreferenceSavedLocation];
 [self restoreAnnotation];
}

Whenever the cloud values change—and there’s only one value, so you don’t even need to worry
about which one changed—it retrieves the new value and copies it into the local user defaults. It
then sends -restoreAnnotation to restore the map location from the user defaults, which is now the
same as the value in the cloud.

Between -preserveAnnotation and -cloudStoreChanged:, the user defaults always has the latest
(known) location. Should something interfere with cloud synchronization, the app still has a working
location and continues to function normally.

Finally, consider the -restoreAnnotation method you wrote earlier. It never considered the possibility
that there was an existing map annotation. That’s because the only place it was sent was when your

573CHAPTER 18: Remember Me?

app started. Now, it can be received at any time, to either set or clear the saved map location. Add
an else clause to the end of the method to take care of that possibility (new code in bold):

if (restoreInfo!=nil)
 {
 MKPointAnnotation *restoreAnnotation = [MKPointAnnotation new];
 [restoreAnnotation restoreState:restoreInfo];
 [self setAnnotation:restoreAnnotation];
 }
else
 {
 [self setAnnotation:nil];
 }

Enabling iCloud
All of your iCloud code is ready to run, but there’s just one problem: none of it will work. Before
an app can use the iCloud servers, you must add an iCloud entitlement to your app. This, in
turn, requires that you register your app’s bundle identifier with Apple and obtain an entitlement
certificate. These aren’t complicated steps, but they are required.

Select the Pigeon project in the navigator. Make sure the Pigeon target is selected (either from the
sidebar or the pop-up menu) and switch to the Capabilities tab. Locate the iCloud section and turn it
on, as shown in Figure 18-3.

Figure 18-3. Enabling iCloud services

Choose the developer team that will be testing this app and click Choose. Xcode will register your
app’s unique ID with the iOS Dev Center and enable that ID for use with the iCloud service. It will
then download and install the necessary entitlement certificates that permit your app to use the
iCloud servers. You should now enable use of the key-value store, as shown in Figure 18-4. This is
the iCloud service that the NSUbiquitousKeyValueStore class depends on.

574 CHAPTER 18: Remember Me?

When you enabled the key-value store, Xcode generates one ubiquity container identifier. This
identifier is used to collate and synchronize all of the values you put in NSUbiquitousKeyValueStore.
Normally, you use the bundle identifier of your app—which is the default. This keeps your app’s
iCloud values separate from the iCloud values stored by any of the user’s other apps.

Figure 18-4. Enabling iCloud’s key-value store

Tip You’re allowed to enter a key-value store identifier used by another app (that you wrote and registered).
This allows your app to share a key-value store with another app. You might do this, for example, if you’ve
created a “light” and a “professional” version of the same app. Both apps can use the same key-value store
to share and synchronize their settings.

Testing the Cloud
To test the cloud version of Pigeon, you’ll need two, provisioned, iOS devices. Both devices will need
active Internet connections, be logged into the same iCloud account, and have iCloud Documents &
Data turned on.

Start the Pigeon app running on both devices. Tap the “remember location” button on one device,
give it a name, and wait. If everything was set up properly, an identical pin should appear on the
other device, typically within a minute. Try remembering a location on the second device. Try clearing
the location.

Tip Even if you only have one iOS device, you can still tell if NSUbiquitousKeyValueStore is working
by checking the value returned by -synchronize. If -synchronize returns YES, then cloud values were
successfully synchronized and everything is working. If it returns NO, then there’s a problem. It could be network
related. It could also mean your app’s identifier, entitlements, or provisioning profiles are not correctly configured.

575CHAPTER 18: Remember Me?

You don’t need to have both apps running simultaneously—that’s just the coolest way to experience
iCloud syncing. Launch Pigeon on one device, remember a location, and quit it. Count to twenty.
Launch Pigeon on a second device, and you’ll instantly see the updated location. That’s because
the ubiquitous key-value store works constantly in the background, whenever it has an Internet
connection, to keep all of your values in sync.

Not everyone will want their map locations shared with all of their other devices. Some users would
be perfectly happy with the first, non-cloud, version of Pigeon. Why not make all of your users happy
and give them the option?

Add a configuration setting so they can opt-in to cloud synchronization, or leave it off. The question
now is where do you put that setting? Do you add it to the map options view controller? Do you
create another settings button that takes the user to a second settings view? Maybe you’d add a tiny
button with a little cloud icon to the map view? That would be pretty cute.

There are lots of possibilities, but I want you to think outside the box. Or, more precisely, I want you to
think outside your app. Your task is to create an interface to let the user turn cloud synchronization on
or off, but don’t put it in your app. Confused? Don’t be; it’s easier than you think.

Bundle Up Your Settings
A settings bundle is a property list file describing one or more user default values that your users can
set. See, yet another use for property lists. Users set them, not in your app, but in the Settings app
that comes with every iOS system. Using a settings bundle is quite simple:

You create a list of value descriptions.

iOS turns that list into an interface that appears in the Settings app.

The user launches the Settings app and makes changes to their settings.

The updated values appear in your app’s user defaults.

Settings bundles are particularly useful for settings the user isn’t likely to change often and you don’t
want cluttering up your app’s interface. For Pigeon, you’re going to create a trivially simple settings
bundle with one option: synchronize using iCloud. The possible values will be on or off (YES or NO).
Let’s get started.

Creating a Settings Bundle
In the Pigeon project, choose the New ➤ File ... command (via the File menu or by right/control-clicking
in the project navigator). In the iOS section, locate the Resource group and select the Settings Bundle
template, as shown in Figure 18-5.

576 CHAPTER 18: Remember Me?

Make sure the Pigeon target is selected, and add the new Settings resource to your project.

Figure 18-5. Creating a settings bundle resource

Caution Do not change the name of the new file. Your settings bundle must be named Settings.bundle,
or iOS will ignore it.

A settings bundle contains one property list file named Root.plist. This file contains a dictionary.
You can see this in Figure 18-6. The Root.plist file describes the settings that appear (first) when
the user selects your app in the Settings app.

301054
Rectangle
fix rule

577CHAPTER 18: Remember Me?

The dictionary contains an array value for the key Preference Items. That array contains a list of
dictionaries. Each dictionary describes one setting or organization item. The kinds of setting you can
include are listed in Table 18-2 and the organizational items are in Table 18-3. The details for each
type are described in the “Implementing an iOS Settings Bundle” chapter of the Preferences and
Settings Programming Guide that you can find in Xcode’s Documentation and API Reference window.

Figure 18-6. Property list from the settings bundle template

Table 18-2. Settings bundle value types

Settings Type Key Interface Value

Text Field PSTextFieldSpecifier Text field A string

Toggle Switch PSToggleSwitchSpecifier Toggle switch Any two values, but YES and NO are the norm

Slider PSSliderSpecifier Slider Any number within a range

Multi-value PSMultiValueSpecifier Table One value in a list of values

Radio Group PSRadioGroupSpecifier Picker One value in a list of values

Title PSTitleValueSpecifier Label Display only (value can’t be changed)

Table 18-3. Settings bundle organization types

Settings Type Key Description

Group PSGroupSpecifier Organizes the settings that follow into a group.

Child Table PSChildPaneSpecifier Presents a table item that, when tapped, presents another set of
settings, creating a hierarchy of settings.

Your settings bundle can invite the user to type in a string (like a nickname), let them turn settings
on and off, pick from a list of values (“map,” “satellite,” “hybrid”), or choose a number with a slider.
If your app has a lot of settings, you can organize them into groups or even link to another set with
even more settings.

578 CHAPTER 18: Remember Me?

The values shown in Figure 18-6 present three settings in a single group named, rather
unimaginatively, Group. Those settings consist of a text field, a toggle switch, and a slider.

For Pigeon, you only have one Boolean setting. Select the Root.plist file and used Xcode’s property
list editor to make the following changes:

1. Select the row Item 3 (Slider) and press the delete key (or choose Edit ➤ Delete).

2. Select the row Item 1 (Text Field - Name) and press the delete key (or
choose Edit ➤ Delete).

3. Expand the row Item 0 (Group - Group).

a. Change the value of its Title to iCloud

4. Expand the row Item 1 (Toggle Switch - Enabled)

a. Change the Default Value to NO

b. Change the Identifier to HPSyncLocations

c. Change the Title to Sync Locations

Your finished settings bundle should look like the one in Figure 18-7.

Figure 18-7. Pigeon settings bundle

Using Your Settings Bundle Values
Your settings bundle is complete. All that’s left is to put the values you just defined to work in your
app. Select the HPViewController.h file and add this constant:

#define kPreferenceLocationsInCloud @"HPSyncLocations"

579CHAPTER 18: Remember Me?

Switch to your HPViewController.m file, locate the -viewDidLoad method, and add the following
conditional to your cloud store setup code (new code in bold):

if ([userDefaults boolForKey:kPreferenceLocationsInCloud])
 {
 cloudStore = [NSUbiquitousKeyValueStore defaultStore];
 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
 [center addObserver:self
 selector:@selector(cloudStoreChanged:)
 name:NSUbiquitousKeyValueStoreDidChangeExternallyNotification
 object:cloudStore];
 [cloudStore synchronize];
 }

That’s it! If you’re saying “but what about all of those places in the code that store values into cloudStore,”
you don’t have to worry about those. Your existing code takes advantage of an Objective-C feature
that ignores messages sent to nil objects. If the kPreferencesLocationsInCloud value is NO,
cloudStore never gets set and remains nil. Messages sent to nil, like [cloudStore removeObjectFor
Key:kPreferenceSavedLocation], do nothing. The net effect is that, with cloudStore set to nil, Pigeon
doesn’t make any changes to iCloud’s ubiquitous key-value store, and it won’t receive any notifications
of changes. For a complete explanation, see the “nil is Your Friend” section in Chapter 20.

Testing Your Settings Bundle
Run Pigeon, as shown in Figure 18-8. If you still have two iOS devices connected, you can verify that your
app is no longer saving the map location to the cloud. Each app is functioning independently of the other.

Figure 18-8. Testing the settings bundle

In Xcode, stop your app(s). This will return you to the springboard (second screen shot in Figure 18-8).
Locate your Settings app and launch it. Scroll down until you find the Pigeon app (third screen shot
in Figure 18-8). Tap it, and you’ll see the settings you defined (on the right in Figure 18-8).

580 CHAPTER 18: Remember Me?

Change your Sync Locations setting to on—do this in both devices—and run your apps again. This
time, Pigeon uses iCloud synchronization to share the map location.

Summary
Pigeon can no longer be accused of being a bird-brained app! Not only will it remember the location
the user saved, but also the map style and tracking mode they last set. In doing this, you learned
how to store property list values into the user defaults, how to convert non-property list objects into
ones suitable to store, and how to get them back out again. More importantly, you understand the
best times to store and retrieve those values.

You learned how to handle the situation where a user defaults value is missing, and how to create
and register a set of default values. You also used user defaults to preserve the view controller
states, which gives your app a sense of persistence. You did this by leveraging the powerful view
controller restoration facility, built into iOS.

You also took flight into the clouds, sharing and synchronizing changes using the iCloud storage
service. iCloud integration adds a compelling dimension to your app that anyone with more than
one iOS device will appreciate. And if that wasn’t enough, you defined settings the user can access
outside of your app.

You’ve taken another important step in creating apps that act the way users expect. But it was a
tiny step. User defaults, and particularly the ubiquitous key-value store, are only suitable for small
amounts of information. To learn how to store “big data,” step into the next chapter.

EXERCISE

You may have noticed a flaw in the last version of Pigeon—which I cleverly sidestepped by having you stop your app in
Xcode before changing the Sync Location setting in the Settings app. Knowing what you now know about app states, the
problem should be obvious.

Pigeon only examines the value of the kPreferencesLocationsInCloud value when it first starts. If a Pigeon user
switches to the Settings app, changes the Sync Location setting, and then immediately returns to Pigeon, Pigeon is
probably still running. It would have been moved the background state and suspended for a bit, but would be reactivated
when the user returned. The bug is that Pigeon doesn’t check the value of kPreferencesLocationsInCloud again,
and won’t know that it’s changed.

There are a couple of ways of solving this. One would be to add code to the -applicationWillEnterForeground:
app delegate method. The solution I picked was to observe the NSUserDefaultsDidChangeNotification, posted
by NSUserDefaults. Remember that the values in a settings bundle make changes to your app’s user defaults, and you
can observe those changes via the notification center.

You’ll find my solution to this problem in the Learn iOS Development Projects ➤ Ch 18 ➤ Pigeon E1
folder. See if you can think of a third—very similar, but more targeted—solution. (Hint, read the documentation for the
-applicationWillEnterForeground: method.)

581

Chapter 19
Doc, You Meant Storage

If you want your iOS app to store more than a few tidbits of information, you need documents. iOS
provides a powerful document framework that brings data storage into the 21st century. The iOS
document (UIDocument) class takes care of, or lets you easily implement, modern features like
auto-saving, versioning, and cloud storage. In the process, you’ll finally learn how to archive objects.
In this chapter you will:

Create a custom document object	

Use a document object as your app’s data model	

Learn how to archive and unarchive your data model objects	

Design a document that can be loaded or saved incrementally	

Handle asynchronous document loading	

Manage document changes and auto-saving	

You’ll find numerous “how-to” guides for using UIDocument because, quite frankly, it’s a complicated
class to use. There are a lot moving parts and more than a few details you must pay attention to.
This has led many developers to ignore UIDocument and “roll their own” document storage solution.
Don’t do that. Conquering UIDocument isn’t that hard, and the rewards are substantial.

UIDocument can seem overwhelming—until you understand why UIDocument works the way it does.
Once you understand some of the reasoning behind its architecture, and what it’s accomplishing for
you, the code you need to write will all make sense. So in this chapter, you’ll concentrate not on just
the how, but the why. By the end, you’ll be using UIDocument like a pro.

Document Overview
The word “document” has many meanings, but in this context a document is a data file (or
package) containing user-generated content that your app opens, modifies, and ultimately saves to
persistent storage. We’re all used to documents on desktop computer systems. In mobile devices,
the concept of a document takes a backseat, but it’s still there, and in much the same form. In a

582 CHAPTER 19: Doc, You Meant Storage

few apps, like the Pages word processing app, the familiar document metaphor appears front and
center; you launch the app, see a collection of your named documents, choose one to work on, the
document opens, and you being typing. In other apps, it’s not as clear that you’re using individual
documents, and some apps hide the mechanics of documents entirely. You can choose any of
these approaches for your app. iOS provides the tools needed for whatever interface you want, but
it doesn’t dictate one.

This flexibility lets you add document storage and management to your app completely behind
the scenes, loosely coupled to your user interface, or echoing the legacy document metaphor of
desktop computer systems. Whatever you decide to do with your interface, the place to start is the
UIDocument class. Here are the basic steps to using UIDocument in your app:

Create a custom subclass of 	 UIDocument

Design an interface for choosing, naming, and sharing documents (optional)	

Convert your app’s data model to, and from, data that’s suitable for permanent 	
storage

Handle asynchronous reading of documents	

Move documents into the cloud (optional)	

Observe change notifications from shared documents and handle conflicts 	
(optional)

Implement undo/redo capabilities, or at least track changes to a document	

You’re going to revisit the MyStuff app and modify it so it stores all of those cool items, their
descriptions, and even their pictures, in a document. There are no interface changes to MyStuff this
time. The only thing your users will notice is that their stuff is still there when they relaunch your app!

Where, Oh Where, Do My Documents Go?
So where do you store documents in iOS? Here’s the short answer: Store your documents in your
app’s private Documents folder, and optionally in the cloud.

The long answer is that you can store your documents anywhere your app has access to, but
the only place that makes much sense is your app’s private Documents folder. Each iOS app has
access to a cluster of private folders called its sandbox. The Documents folder is one of these and is
reserved, by iOS, for your app’s documents. The contents of this folder are automatically backed up
by iTunes. If you also want to exchange documents through iTunes, your documents must be stored
in the Documents folder.

This is somewhat different than what you’re used to on most desktop computer systems, where
apps will let you load and save documents to any location and your Documents folder is freely shared
by all of your apps. In iOS, an app only has access to the files in its sandbox and these directories
are inaccessible to the user—unless you deliberately expose the Documents folder to iTunes—or
other apps.

583CHAPTER 19: Doc, You Meant Storage

Note If you’re interested in what the other folders in the sandbox are, and what they’re used for, read the
section “About the iOS File System” in the File System Programming Guide, which you can find in Xcode’s
Documentation and API Reference window.

For MyStuff, you’re going to store a single document in the Documents folder. You won’t, however,
provide any user interface for this document. The document will be automatically opened when the
app starts, and any changes made by the user will be automatically saved there. Even though you’ll
be using the standard document classes, and storing your data in the Documents folder, the entire
process will be invisible to the user.

That’s not to say that you can’t, or shouldn’t, provide an interface that lets your users see what
documents are in their Documents folder. A typical interface would display the document names,
possibly a preview, and allow the user to open, rename, and delete them. You could do that in a
table view, a collection view, or even using a page view controller. If document manipulation makes
sense for your app, create the interface that presents your documents in their best light.

Where you’ll save your document seems like a great place to start. You’ll begin by creating a custom
subclass of UIDocument and defining where and how your document gets stored.

MyStuff on Documents
Pick up with the version of MyStuff at the end of Chapter 7, where you added an image for each
item. In the project navigator, choose New ➤ File ..., from either the File menu or by right/control-
clicking in the navigator. Use the Objective-C class template, name the new class MSThingsDocument,
and make is a subclass of UIDocument. Add it to the project.

Declare two class methods in MSThingsDocument.h interface file (new code in bold):

@interface MSThingsDocument : UIDocument
+ (NSURL*)documentURL;
+ (MSThingsDocument*)documentAtURL:(NSURL*)url;
@end

Switch to the MSThingsDocument.m implementation file. Add these constant definition after the
#import statements:

#define kThingsDocumentType @"mystuff"
#define kThingsDocumentName (@"Things I Own." kThingsDocumentType)

Add the first method to the @implementation section:

+ (NSURL*)documentURL
{
 static NSURL *docURL = nil;
 if (docURL==nil)
 {
 NSFileManager *fileManager = [NSFileManager defaultManager];
 docURL = [fileManager URLForDirectory:NSDocumentDirectory

584 CHAPTER 19: Doc, You Meant Storage

 inDomain:NSUserDomainMask
 appropriateForURL:nil
 create:YES
 error:NULL];
 docURL = [docURL URLByAppendingPathComponent:kThingsDocumentName];
 }
 return docURL;
}

The +documentURL method returns an NSURL object with the filesystem location of the one and only
document used by your MyStuff app. There’s a little code in there so the location is only constructed
once, because it never changes.

The important method here is the -URLForDirectory:inDomain:appropriateForURL:create:error:
method. This is one of a handful of methods used to locate key iOS directories, like the Documents
directory in your app’s sandbox. The NSDocumentDirectory constant tells which one—of the half-
dozen or so designated directories—you’re interested in. To locate directories in your app’s sandbox,
specify the NSUserDomainMask. The create flag tells the file manager to create the directory if it
doesn’t already exist. This was gratuitous, because the Documents directory is created when your
app is installed and should always exist.

Caution Do not “hard code” paths to standard iOS directories, using constants like @"~/Documents/".
Use methods like -URLsForDirectory:inDomain: to determine the path of well-known directories. The
standard directory locations change from time to time; don’t make assumptions about their names or paths.

Once you have the URL of your Documents folder, append the document’s name, creating a complete
path to where your document is, or will be, stored.

Now write a method to open your document. MyStuff isn’t going to present a document interface.
When it starts, it either creates an empty document or re-opened the existing document. Consolidate
that logic into a method, immediately after the +documentURL method:

+ (MSThingsDocument*)documentAtURL:(NSURL *)url
{
 MSThingsDocument *document;
 document = [[MSThingsDocument alloc] initWithFileURL:url];

 NSFileManager *fileManager = [NSFileManager defaultManager];
 if ([fileManager fileExistsAtPath:url.path])
 {
 [document openWithCompletionHandler:nil];
 }

585CHAPTER 19: Doc, You Meant Storage

 else
 {
 [document saveToURL:url
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:nil];
 }

 return document;
}

This method creates a new instance of your MSThingsDocument object at the given (file)
URL. It then uses the file manager to determine if a document at that location already exists
(-fileExistsAtPath:). If it does, it sends the document object an -openWithCompletionHandler:
message to open the document and read the data it contains. If it doesn’t exist, one is created by
sending the -saveToURL:forSaveOperation:completionHandler: message. The opened document
object is then returned to the sender.

Tip The name of MyStuff’s document is irrelevant, because no one (except its developer) will ever see it.
If, however, you do want your users to have access to the documents your app’s Documents folder, all you
have to do is add the UIFileSharingEnabled key (with a value of YES) to your app’s info.plist. This
flag tells iTunes to expose the documents stored in the Documents folder to the user. Through iTunes, the
user can browse, download, upload, and delete documents in that folder. See the “App-Related Resources”
chapter of the iOS App Programming Guide. Also check out Technical Q&A #1699 (QA1699). It describes how
to selectively share some documents through iTunes, while keeping other documents hidden.

Supplying Your Document’s Data
In your subclass of UIDocument, you are required to override two methods: -contentsForType:error:
and -loadFromContents:ofType:error:. These two methods translate your app’s data model objects
into a form that UIDocument can save, and later converts that saved data back into the data model
objects your app needs.

This is also where implementing UIDocument gets interesting. The key is to understand what
UIDocument is doing for you, and what UIDocument expects from -contentsForType:error: and -load
FromContents:ofType:error:. There’s a strict division of responsibilities:

	UIDocument implements the actual storage and retrieval of your document’s data

	-contentsForType:error: and -loadFromContents:ofType:error: provide the
translation between your data model objects and a serialized version of that
same information

UIDocument might be storing your document on a filesystem. It might be storing your document in
the cloud. It might be transferring your document over a USB connection. Someday it might store
your document on a wireless electronic wallet you carry around on a key fob. I don’t know, and you
shouldn’t care. Let UIDocument worry about where and how your document’s data gets stored.

586 CHAPTER 19: Doc, You Meant Storage

When UIDocument wants to save your document, it sends the -contentsForType:error: message.
Your implementation should convert your data model objects into data suitable for storage.
UIDocument takes the returned data and stores it on the filesystem, in the cloud, or wherever.

When it’s time to read the document, UIDocument reverses the process. It first reacquires the data
(from wherever it was saved) and passes that to -loadFromContents:ofType:error:, which has the
job of turning it back into the data model objects of your app.

The $64,000 question is “how do you convert your data model objects into bytes that UIDocument
can store?” That is a fantastic question, and the answer will range from stunningly simple to
treacherously complex. Broadly, you have four options:

Serialize everything into a single 	 NSData object

Describe a multi-part document using file wrapper objects	

Back your document with Core Data	

Implement your own storage solution	

The first solution is the simplest, and suitable for the majority of document types. Using string
encoding, property list serialization, or object archiving (which you’ll learn shortly) convert your data
model object(s) into a single array of bytes. Your -contentsForType:error: method then returns
those bytes as an NSData object that UIDocument stores somewhere. Later, UIDocument retrieves
that data and passes it to your -loadFromContents:ofType:error: method, which unarchives/
deserializes/decodes it back into the original object(s). If this describes your app’s needs, then
congratulations—you’re pretty much done with this part of your UIDocument implementation!

Your MyStuff app is a little more complicated. It’s cumbersome to convert all of the app’s
data—descriptions and images—into a single stream of bytes. Images are big and time consuming
to encode. Not only will it take a long time to save the document, the entire document will have to be
read into memory and converted back into image objects before the user can use the app. No one
wants to wait tens of seconds, and certainly not minutes, to open an app!

Note The situation is more dire than just annoying your users. If you tried to encode and compress several
dozen images when the document was saved, it would probably take so long that iOS would assume your
app had “locked up” and will forcibly terminate it. Your app will have appeared to crash and the document
would never get saved.

The solution MyStuff will employ is to archive the descriptions of the items (much like the first
solution) into a single NSData object, but store the images in individual files inside a package.
A package is a directory containing multiple files that appears, and acts, like a single file to the user.
All iOS and OS X apps are packages, for example.

587CHAPTER 19: Doc, You Meant Storage

Wrapping Up Your Data
You might be seeing the glimmer of a conundrum. Or, maybe you don’t. Don’t worry if you missed it,
because it’s a really subtle problem. The concept behind -contentsForType:error: is that it returns
the raw data that represents your document—just the data. The code in -contentsForType:error:
can’t know how that data gets stored, nor does it do the storing. Creating a design that states
“images will be stored in individual files” is a non-starter, because -contentsForType:error: doesn’t
deal with files. The document might end up being stored in something that doesn’t even resemble a
file. It might get put into the records of a database, or become a tag in an XML file.

So how does -contentsForType:error: return an object that describes not one, but a collection of,
individual data blobs,1 one of which contains the archived objects and others that contain individual
image data? Well it just so happens that iOS provides a tool for this very purpose. It’s called a file
wrapper, and it brings us to the second method for providing document data.

A file wrapper (NSFileWrapper) object is an abstraction of the data stored in one or more files. There
are three types of file wrappers: regular, directory, and link. Conceptually, these are equivalent to
a single data file, a filesystem directory, and a filesystem symbolic link, respectively. File wrappers
allow your app to describe a collection of named data blobs, organized within a hierarchy of named
directories. If this sounds just like files and folders, it should. And when your UIDocument is stored in
a file URL, that’s exactly what these file wrappers will become. But by maintaining this abstraction,
UIDocument can just as easily transfer this data collection over a network or convert the wrappers
into the records of a database.

Using Wrappers
Using file wrappers isn’t terribly difficult. A regular file wrapper represents an array of bytes,
like NSData. A directory file wrapper (or just directory wrapper) contains any number of other file
wrappers. One significant difference between wrappers and files/folders is that a wrapper has
a preferred name and a key. Its key is the string that uniquely identifies the wrapper, just as a
filename uniquely identifies a file. Its preferred name is the string it would like to be identified
as. If the preferred name of a wrapper is unique, its key and preferred name will be the same. If,
however, you add two or more wrappers with identical preferred names to a directory wrapper,
the directory wrapper will generate unique keys for the duplicates. In other words, it’s valid to
add multiple wrappers with the same name to the same directory wrapper. One side effect is that
adding a wrapper with the same name as an existing wrapper doesn’t replace, or overwrite, an
existing wrapper, as it would on a filesystem.

Your -contentsForType:error: method will create a single directory wrapper that contains all of the
other regular file wrappers. There will be one regular file wrapper with the archived version of your
data model objects. Each item that has a picture will store its image as another file wrapper. You’ll
modify MyWhatsit to store the image in the document when the user adds a picture, and get the
image from the document when it needs it again.

1Blob is actually a database term meaning Binary Large Object, sometimes written BLOb.

588 CHAPTER 19: Doc, You Meant Storage

Incremental Document Updates
Organizing your document into wrappers confers a notable feature to your app: incremental
document loading and updates. If your user has added 100 items to your MyStuff app, your
document package (when saved to a filesystem) will consist of folding containing 101 files: one
archive file and 100 image files. If the user replaces the picture of their astrolabe with a better one,
only a single file wrapper will be updated. UIDocument understands this. When it’s time to save the
document again, UIDocument will only re-write that single file in the package. This makes for terribly
fast, and efficient, updates to large documents. These are good qualities for your app.

Similarly, file wrapper data isn’t read until it’s requested. When you open a UIDocument constructed
from file wrappers, the data for each individual wrapper stays where it is until your app wants it. For
your images, that means your app doesn’t have to read all 100 images files when it starts. It can
lazily retrieve just the images it needs at that moment. Again, this means your app can get started
quickly and does the minimum work required to display your interface.

Constructing Your Wrappers
Select the MSThingsDocument.m implementation file. Just before the @implementation section, define
two more constants and add a private @interface section that declares two instance variables:

#define kThingsPreferredName @"things.data"
#define kImagePreferredName @"image.png"

@interface MSThingsDocument ()
{
 NSFileWrapper *docWrapper;
 NSMutableArray *things;
}
@end

The two constants define the preferred wrapper names for the archived MyWhatsit objects and any
image added to the directory wrapper. The docWrapper instance variable is the single directory wrapper
that will contain all of your other wrappers. For all intents and purposes, docWrapper is your document’s
data. The things variable is the array of MyWhatsit objects that constitute your data model.

Note Later on, you’ll replace the things array in MSMasterViewController with your new
MSThingsDocument. The document object will become the data model for your view controller.

Now add the -contentsForType:error: method to the @implementation section:

- (id)contentsForType:(NSString *)typeName
 error:(NSError *__autoreleasing *)outError
{
 if (docWrapper==nil)
 docWrapper = [[NSFileWrapper alloc] initDirectoryWithFileWrappers:nil];

589CHAPTER 19: Doc, You Meant Storage

 if (things==nil)
 things = [NSMutableArray array];

 NSFileWrapper *wrapper = docWrapper.fileWrappers[kThingsPreferredName];
 if (wrapper!=nil)
 [docWrapper removeFileWrapper:wrapper];

 NSData *thingsData = [NSKeyedArchiver archivedDataWithRootObject:things];
 [docWrapper addRegularFileWithContents:thingsData
 preferredFilename:kThingsPreferredName];

 return docWrapper;
}

This message is received when UIDocument wants to create or save the document. If the document
doesn’t exist yet, docWrapper and things will be nil. In this circumstance, the code creates an empty
directory wrapper and stores it in docWrapper. It also creates a new, empty, things array, which will
become the data model for the app.

The rest of the method assembles all of the data UIDocument will need to store the document. It
checks to see if the docWrapper already contains a wrapper named things.data. This is the wrapper
that contains the archived version of your data model objects. There should only be one of these,
so if it already exists, it’s first removed from the directory wrapper. Remember that adding another
wrapper with the same name won’t replace an existing wrapper.

The last step is to archive (serialize) all of the MyWhatsit objects into a portable NSData object. I’ll
explain how that happens in the next section. The data is passed to the -addRegularFileWithContents
:preferredFilename: method. This is a convenience method that creates a new regular file wrapper,
containing the bytes in thingsData, and adds it to the directory wrapper with the preferred name.
This method saves you from explicitly coding those steps.

You return the directory wrapper, containing all of the data in your document, to UIDocument. Now you
might be asking, “But what about all of the image data? Where does that get created?” That’s a really
good question. Image data is represented by other regular file wrappers in the same directory wrapper.
When the document is first created, there are no images, so the directory wrapper only contains
things.data. As the user adds pictures to the data model, each image will add a new wrapper to
docWrapper. When your document is saved again, the file wrappers containing the images are already
in docWrapper! Each regular file wrapper knows if it has been altered or updated, and UIDocument is
smart enough to figure out which files need to be written and which ones are already current.

Interpreting Your Wrappers
The reverse of the previous process occurs when your document is opened. UIDocument obtains that
data saved in the document, and then sends the -loadFromContents:ofType:error: message. This
method’s job is to turn the document data back into your data model. Add this method immediately
after your -contentsForType:error: method:

- (BOOL)loadFromContents:(id)contents
 ofType:(NSString *)typeName
 error:(NSError *__autoreleasing *)outError

590 CHAPTER 19: Doc, You Meant Storage

{
 docWrapper = contents;
 NSFileWrapper *wrapper = docWrapper.fileWrappers[kThingsPreferredName];
 NSData *data = wrapper.regularFileContents;
 if (data!=nil)
 things = [NSKeyedUnarchiver unarchiveObjectWithData:data];
 return (things!=nil);
}

The contents parameter is the object that encapsulates your document’s data. It’s always going
to be the same (class of) object you returned from -contentsForType:error:. If you adopted the
first method and returned a single NSData object, the contents parameter will contain an NSData
object—with the same data. Since MyStuff elected to use the file wrapper technique, contents is an
equivalent directory wrapper object to the one you returned earlier.

The first step is to save contents in docWrapper; you’ll need it, both to read image wrappers and to
later save the document again. The rest of the method finds the things.data wrapper that contains
the archived MyWhatsit object array. It immediately retrieves the data stored in that wrapper and
unarchives it, recreating the data model objects.

The -loadFromContents:ofType:error: method must return YES if it was successful, and NO if there
were problems interpreting the document data. If the wrapper contained a things.data wrapper, and
the data in that wrapper was successfully converted back into an array of MyWhatsit objects, the
method assumes the document is valid and returns YES.

This, almost, concludes the work needed to save, and later open, your new document. There’s one
glaring hole: the array of MyWhatsit objects can’t be archived! Let’s fix that now.

OTHER STORAGE ALTERNATIVES

The last two document storage solutions available to you are Core Data and DIY (Do It Yourself). DIY is one I rarely
find appealing. It should be your last resort, because you’ll be forced to deal with all of the tasks, both mundane and
exceptional, that UIDocument normally handles for you. My advice is work very hard to make one of the first three
solutions work. If that fails, you can perform your own document storage handling. Consult the “Advanced Overrides”
section of UIDocument’s documentation.

One of the most interesting document solutions is Core Data. iOS includes a fast and efficient relational database engine
(SQLite) with language-level support. Core Data is far beyond the scope of this book, but it’s an incredibly powerful tool
if your app’s data fits better into a database than a text file. (It’s a shame I don’t have enough pages, because MyStuff
would have made a perfect Core Data app.)

One of the huge advantages of using Core Data is that document management is essentially done for you. You don’t
have to do much beyond using the UIManagedDocument class (a subclass of UIDocument). Many of the features in
this chapter that you will write code to support—incremental document updating, lazy document loading, archiving and
unarchiving of your data model objects, background document loading and saving, cloud synchronization, and so on—are
all provided “for free” by UIManagedDocument.

The prerequisite, of course, is that you must first base your app on Core Data. Your data model objects must be
NSManagedObjects, you must design a schema for your database, and you have to understand the ins and outs of
Object-Oriented Database (OODB) technology. But beyond that (!), it’s child’s play.

591CHAPTER 19: Doc, You Meant Storage

Archiving Objects
In Chapter 18 you learned all about serialization. Serialization turns a graph of property list objects
into a stream of bytes (either in XML or binary format) that can be stored in files, exchanged with
other processes, transmitted to other computer systems, and so on. On the receiving end, those
bytes are turned back into an equivalent set of property list objects, ready to be used.

Archiving is serialization’s big sister. Archiving serializes (the computer science term) a graph of
objects that all adopt the NSCoding protocol. This is a much larger set of objects than the property-
list objects.2 More importantly, you can adopt the NSCoding protocol in classes you develop. Your
custom objects can then be archived right along with other objects. This is exactly what needs to
happen to your MyWhatsit class.

Adopting NSCoding
The first step to archiving a graph of objects is to make sure that every object adopts the NSCoding
protocol. If one doesn’t, you either need to eliminate it from the graph or change it so it does. In
MyWhatsit.h, change the @interface declaration so it adopts NSCoding (new code in bold):

@interface MyWhatsit : NSObject <NSCoding>

The NSCoding protocol requires a class to implement two methods: -initWithCoder: and
-encodeWithCoder:. The first “init” method reconstructs an object from data that was previously
archived. The second creates the archive data from the existing object. Both of these processes
work through an NSCoder object. The NSCoder object does the work of serializing (encoding), and
later deserializing (decoding), your object’s properties.

The coder identifies each property value of your object using a key. Define those keys now by adding
these declarations before the @implementation section in your MyWhatsit.m file:

#define kNameCoderKey @"name"
#define kLocationCoderKey @"location"

Now you can add the two required methods to the @implementation section:

- (id)initWithCoder:(NSCoder *)decoder
{
 self = [super init];
 if (self!=nil)
 {
 _name = [decoder decodeObjectForKey:kNameCoderKey];
 _location = [decoder decodeObjectForKey:kLocationCoderKey];
 }
 return self;
}

2All property list objects adopt NSCoding. Property list objects are, therefore, a subset of the archivable
objects.

592 CHAPTER 19: Doc, You Meant Storage

The -initWithCoder: method follows the typical pattern for an “init” method. But instead of
initializing the new object’s properties with default values, or from parameters, it retrieves the
previously archived values from the coder object. In this case, both of the values are (NSString)
objects. Coder objects can also directly encode integer, floating-point, Boolean, and other C
primitive types. UIKit adds categories to NSCoder to encode point, rectangle, size, affine transforms,
and similar data structures.

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:_name forKey:kNameCoderKey];
 [coder encodeObject:_location forKey:kLocationCoderKey];
}

Translation in the other direction is provided by your -encodeWithCoder: method. This method
preserves the current values of its persistent properties in the coder object. Your MyWhatsit objects
are now ready to participate in the archiving process.

SUBCLASSING AN <NSCODING> CLASS

When you subclass a class that already adopts NSCoding, you do things a little differently. Your -initWithCoder:
method will look like this:

- (id)initWithCoder:(NSCoder *)decoder

{

 self = [super initWithCoder:decoder];

 if (self!=nil)

 {

 ... perform subclass decoding here ...

 }

 return self;

}

And your -encodeWithCoder: method should look like this:

- (void)encodeWithCoder:(NSCoder *)coder

{

 [super encodeWithCoder:coder];

 ... perform subclass encoding here ...

}

Your super class already encodes and decodes its properties. Your subclass must allow the superclass to do that, and
then encode and decode any additional properties defined in the subclass.

593CHAPTER 19: Doc, You Meant Storage

The Archiving Serialization Smackdown
Now that you’ve added both serialization (property lists) and archiving (NSCoding objects) to your
repertoire, I’d like to take a moment to compare and contrast the two. Table 19-1 summarizes their
major features.

Archiving and Unarchiving Objects
When you want to flatten your objects into bytes, use code like this:

NSData *data = [NSKeyedArchiver archivedDataWithRootObject:things];

The NSKeyedArchiver class is the archiving engine. It creates an NSCoder object and then
proceeds to send the root object (things) an -encodeWithCoder: message. That object is
responsible for preserving its content in the coder object. Most likely, it will send the coder
object -encodeObject:forKey: messages for the objects it refers to. Those objects receive an
-encodeWithCoder: message, and the process repeats until all of the objects have been encoded.
The only limitation is that every object must adopt NSCoding.

When you want your objects back again, you use the NSKeyedUnarchiver class, like this:

things = [NSKeyedUnarchiver unarchiveObjectWithData:data];

During the encoding process, the coder recorded the class of each object. The decoder then uses
that information to create new objects and sends each one an -initWithCoder: message. The
resulting object is the same class, and has the same property values, as the originally encoded
object.

Table 19-1. Serialization vs. Archiving

Feature Serialization Archiving

Object Graph Property list objects only Objects that adopt NSCoding

XML? Yes No

Portability Cocoa or Cocoa Touch apps, or any
system that can parse the XML version

Only another process that includes
all of the original classes

Editors? Yes No

Note The predecessor to keyed archiving was sequential archiving. You may occasionally see references to
sequential archiving, but it is not used in iOS.

Property lists are much more limited in what you can store in them, but make up for that in the
number of ways you can store, share, and edit them. Use property lists when your values need to be
understood by other processes, particularly processes that don’t include your custom classes. An
example is the settings bundle you created in Chapter 18. The Settings app will never include any

594 CHAPTER 19: Doc, You Meant Storage

of your custom Objective-C classes, yet you were able to define, exchange, and incorporated those
settings into your app using property lists. Property lists are the “universal” language of values.

Archiving, by contrast, can encode a vast number of classes and you can add your own classes to
that roster by adopting the NSCoding protocol. Everything you create in Interface Builder is encoded
using keyed archiving. When you load an Interface Builder file in your application, NSKeyedUnarchiver
is busy translating that file back into the objects you defined. Archiving is extremely flexible, and
has long reach, which is why it's the technology of choice for storing your data model objects in a
document.

So why don’t we use archiving for everything? When unarchiving, every class recorded in the archive
must exist. So forget about trying to read your MyStuff document using another app or program that
doesn’t include your MyWhatsit code—you can’t do it. Archives are, for the most part, opaque. There
are no general purposes editors for archives, like there are for property lists. There is no facility for
turning archive data into XML documents. Interface Builder is the closest thing to an archive editor
there is, but it’s a one-way trip; you edit your interface and compile it into an archive, but you can’t
open a compiled archive file and edit it.

Serialization, Meet Archiving
Now that you have a feel for the benefits and limitations of archiving and serialization, I’m going to
show you a really handy trick for combining the two. (You may have already figured this out, but
you could at least pretend to be surprised.) NSData is a property list object. The result of archiving a
graph of NSCoding objects is an NSData object. Do you see where this is going?

By first archiving your objects into an NSData object, you can store non-property list objects in a
property list, like user defaults! Your code would look like this:

NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults]
NSData *data = [NSKeyedArchiver archivedDataWithRootObject:dataModel];
[userDefaults setObject:data forKey:@"data_model"];

What you’ve done is archive your data model objects into an NSData object, which can be stored in a
property list. To retrieve them again, reverse the process:

NSData *modelData = [userDefaults objectForKey:@"data_model"];
dataModel = [NSKeyedUnarchiver unarchiveObjectWithData:modelData];

The disadvantages of this technique are the same ones that apply to archiving in general. The
process retrieving the objects must to be able to unarchive them. Also, any editors or other
programs that examine your property values will just see a blob of data. Contrast this to the
technique you used in Pigeon to convert the MKAnnotation object into a dictionary. Those property
list values (the location’s name, longitude, and latitude) are easily interpreted, and could even be
edited, by another program.

595CHAPTER 19: Doc, You Meant Storage

I think that’s enough about archiving and property lists. It’s time to get back to the business of
getting MyStuff documentified.

Document, Your Data Model
Where were we? Oh, that’s right, you created a UIDocument class and wrote all of the code needed to
translate your data model objects into document data and back again. The next step is to make your
MSThingsDocument object the data model for MSMasterViewController.

Caution Don’t go crazy with this technique. Services like NSUserDefaults and
NSUbiquitousKeyValueStore are designed to store small morsels of information. Don’t abuse them by
storing multi-megabyte sized NSData objects that you’ve created using the archiver.

Note In a “big” app, you’d probably create a custom data model class that was separate from your
UIDocument class. In MVC-speak, you’d have a data model and a data model controller (the document
object). Both the document and the view controller would connect to the data model object. For MyStuff,
I’m having you combine the data model and document into a single class. It simplifies the design and reduces
the amount of code you have to write. It won’t hurt the design, but you should know where your MVC lines
are drawn.

Your current MSMasterViewController is using an NSArray as its data model object. The array object
provides a number of methods that the view controller is using. This includes counting the number
of objects in the array, along with adding, removing, and locating objects in the array. UIDocument
doesn’t have any of these methods—because it’s not a data model. Turn it into a data model by
replicating the functions the view controller needs. Select MSThingsDocument.h and add these
methods to its @interface section (new code in bold):

@class MyWhatsit;

@interface MSThingsDocument : UIDocument

+ (NSURL*)documentURL;
+ (MSThingsDocument*)documentAtURL:(NSURL*)url;

@property (readonly) NSUInteger whatsitCount;
- (MyWhatsit*)whatsitAtIndex:(NSUInteger)index;
- (NSUInteger)indexOfWhatsit:(MyWhatsit*)object;
- (void)removeWhatsitAtIndex:(NSUInteger)index;
- (MyWhatsit*)anotherWhatsit;

@end

596 CHAPTER 19: Doc, You Meant Storage

Switch to the MSThingsDocument.m implementation file. Add another #import directive to get the
MyWhatsit class definition:

#import "MyWhatsit.h"

Now add the code for the data model methods to the @implementation section:

- (NSUInteger)whatsitCount
{
 return things.count;
}

- (MyWhatsit*)whatsitAtIndex:(NSUInteger)index
{
 return things[index];
}

- (NSUInteger)indexOfWhatsit:(MyWhatsit*)object
{
 return [things indexOfObject:object];
}

- (void)removeWhatsitAtIndex:(NSUInteger)index
{
 [things removeObjectAtIndex:index];
}

- (MyWhatsit*)anotherWhatsit
{
 MyWhatsit *newItem = [MyWhatsit new];
 newItem.name = [NSString stringWithFormat:@"My Item %u",self.whatsitCount+1];
 [things addObject:newItem];
 return newItem;
}

The purpose of these methods should be obvious. The view controller will now send these
messages to your document object to count the number of items, get the item at a specific index,
discover the index of an existing item, remove an item, or create a new item. The next step is to
make these changes in the view controller. Select your MSMasterViewController.h file and add this
#import statement:

#import "MSThingsDocument.h"

Select your MSMasterViewController.m file in the project navigator. Find the private @interface
section and replace the old things array with your document object (new code in bold):

@interface MSMasterViewController () {
 MSThingsDocument *document;
}

597CHAPTER 19: Doc, You Meant Storage

Your document object is now your data model. Now you need to go through your view controller
code and replace every reference to the old things array with equivalent code for your document.

Tip Your file is now awash with compiler errors. Isn’t that great? I use this technique all the time. When I
need to redefine, or repurpose, a property value, I deliberately change the name of the property/variable—if
only temporarily. The compiler will immediately flag all references to the old name as an error. This becomes
my roadmap to where I need to make my changes. If I liked the original property name, I’ll use the refactor
tool to rename it back, once everything is working.

You’ll also be removing the code that created the fake items for testing and replacing that with code
to load your data model from the document. Start in the -awakeFromNib method. Delete the code
that filled the things array with items. You don’t need that anymore, because MyStuff will fill the data
model from the contents of the document. Find the -viewDidLoad method and add this statement to
the end of the method:

document = [MSThingsDocument documentAtURL:[MSThingsDocument documentURL]];

You should remember these methods from the beginning of the chapter. This statement requests
a new MSThingsDocument object with the contents of the document at [MSThingsDocument
documentURL], which is the fixed document in your app’s Documents folder. That’s it. Your document
object is created, and loaded, in a single statement.

The rest of the work is mostly replacing code that used things with code that will use document. Find
the -insertNewObject: method and change it so it reads (modified code in bold):

- (void)insertNewObject:(id)sender
{
 MyWhatsit *newItem = [document anotherWhatsit];
 NSUInteger newIndex = [document indexOfWhatsit:newItem];
 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:newIndex
 inSection:0];
 [self.tableView insertRowsAtIndexPaths:@[indexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
}

This is the biggest change. The document object now takes care of creating a new MyWhatsit
object—you’ll understand why when you work on the code for MyWhatsit images. The code is also
modified to ask document where in the array it added the new item, rather than assuming that it
inserted at the beginning of the array. This is a smart change, because the -anotherWhatsit method
actually inserts new items at the end of the array. And if you ever altered that again, this code would
still work.

The rest of the changes are so mundane that I’ve summarized them below. (Hint: follow the trail of
compiler errors and replace the things statements with equivalent document statements.)

598 CHAPTER 19: Doc, You Meant Storage

In 	 -tableView:numberOfRowsInSection:
things.count becomes document.whatsitCount

In 	 -tableView:cellForRowAtIndexPath:, -tableView:didSelectRowAtIndexPath:,
and –prepareForSeque:

things[indexPath.row] becomes [document whatsitAtIndex:indexPath.row]

In 	 -tableView:commitEditingStyle:forRowAtIndexPath:

[things removeObjectAtIndex:indexPath.row] becomes [document
removeWhatsitAtIndex:indexPath.row]

In 	 -whatsitDidChangeNotification:

[things indexOfObject:notification.object] becomes [document
indexOfWhatsit:notification.object]

Your MSThingsDocument object is now your app’s data model. This is an important step. It’s not
important that you combined the document and data model into a single object, but it is important
that you’ve encapsulated all of the changes to the data model—counting, getting, removing, and
creating items—behind your own methods, rather than simply using NSArray methods. You’ll see
why shortly.

You might think that you’ve written enough code that your app would be able to store its MyWhatsit
objects (at least the name and location bits) in your document and retrieve them again. But there are
still a few small pieces missing.

Tracking Changes
One thing you haven’t written is any code to save your document. You’ve written code to convert
your data model objects into something that can be saved, but you’ve never asked the UIDocument
object to use it.

And you won’t.

At least, that’s not the ideal technique. UIDocument embraces the auto-save document model,
where the user’s document is periodically saved to persistent storage while they work, and again
automatically before your app quits. This is the preferred document-saving model for iOS apps.

For auto-saving to work, your code must notify the document that changes have been made.
UIDocument then schedules and performs the saving of the new data in the background. There are
two ways to communicate changes to your document: send it an -updateChangeCount: message or
use the document’s NSUndoManager object. As you register changes with the NSUndoManager, it will
automatically notify its document object of those changes.

Note The alternative to using an undo manager and auto-saving is to explicitly save the document by
sending it a -saveToURL:forSaveOperation:completionHandler: message (or one of the closely
related methods). This would imply an interface that works more like traditional desktop applications, where
the user deliberately saves their document.

599CHAPTER 19: Doc, You Meant Storage

You’re not going to embrace NSUndoManager for this app—although it’s a great feature to consider,
and not at all difficult to use. Consequently, you’ll need to send your document object an
-updateChangeCount: message whenever something changes. UIDocument will take it from there.

So when does your data model change? One obvious place is whenever items are added or
removed. Select the MSThingsDocument.m implementation file. Locate the -removeWhatistAtIndex:
and -anotherWhatsit methods. At the end of -removeWhatistAtIndex:, and again just before the
return statement in -anotherWhatsit, add the following statement:

[self updateChangeCount:UIDocumentChangeDone];

This message tells the document object that its content was changed. There are other kinds of
changes (changes due to an undo or redo action, for example), but unless you’ve created your own
undo manager, this is the only constant you need to send.

The other place that the document changes is when the user edits an individual item. You already
solved that problem way back in Chapter 4! Whenever a MyWhatsit object is edited, your object
posts a MyWhatsitDidChange notification. All your document needs to do is observe that notification.

Back at the top of MSThingsDocument.m, declare a new method to the private @interface
MSThingsDocument () section:

- (void)whatsitDidChange:(NSNotification*)notification;

In your +documentAtURL: method, observe this notification by adding this code immediately before
the return statement:

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:document
 selector:@selector(whatsitDidChange:)
 name:kWhatsitDidChangeNotification
 object:nil];

For objects, like UIDocument, that can be destroyed before the app quits, remember that you must
remove the object from the notification center before it is destroyed. Do this by adding a -dealloc
method to the class:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

Finally, add the new notification handler method:

- (void)whatsitDidChange:(NSNotification *)notification
{
 if ([self indexOfWhatsit:notification.object]!=NSNotFound)
 [self updateChangeCount:UIDocumentChangeDone];
}

600 CHAPTER 19: Doc, You Meant Storage

Its only purpose is to notify the document that a MyWhatsit object in this document has changed,
and that’s what it does.

Testing Your Document
Surely, you’ve written enough code by now to see your document in action. Run your app, either
in the simulator or in a provisioned device. It contains nothing when first launched, as shown in
Figure 19-1. Enter the details for a couple of items.

Figure 19-1. Testing document storage

Now either wait about 20 seconds or press the home button to push the app into the background
state. When you created a new item, the document was notified of the change. The auto-save
feature of UIDocument periodically saves the document when the user isn’t doing anything else, and
will immediately save it when your app is moved to the background state.

With your data safely saved in the document, stop the app and run it again from Xcode. You should
be rewarded for all of your hard work with the list of items you entered earlier.

What you see, however, is an empty screen, shown on the right in Figure 19-1.

So what went wrong? Maybe your document isn’t being opened when your app starts? Maybe it
didn’t get saved in the first place? What you do know is that you’ve got a bug; it’s time to turn to the
debugger.

Setting Breakpoints
Switch back to Xcode and set a breakpoint in your -contentsForType:error: by clicking in the gutter
to the left of the code, as shown in Figure 19-2. A breakpoint appears as a blue tab.

601CHAPTER 19: Doc, You Meant Storage

Uninstall your My Stuff app on your device or simulator. (Tap and hold the My Stuff app icon in the
springboard until it starts to shake, tap the delete (x) button, agree to delete the app, and press the
home button again.) This deletes your app and any data, including any documents, stored on the
device. Run the app again. Xcode will reinstall the app and it will run with a fresh start.

Almost immediately, Xcode stops at the breakpoint in the -contentsForType:error: method,
as shown in Figure 19-2. If you look at the stack trace on the left, you can see that the
-contentsForType:error: message was sent from the +documentAtURL: method, which was sent
from -viewDidLoad. Together, this tells you that -contentsForType:error: is being sent to create the
initial, empty, document when no document exists.

Stepping Through Code and Examining Variables
Another way to verify this is to examine the value of the things array when the method executes.
The things object is your data model. When the method is entered for the first time, you can see
that the things variable is nil. You can examine its value either in the debugging pane (at the bottom
of the window) or by hovering your cursor over a variable name, as shown in Figure 19-3.

Figure 19-2. Setting a breakpoint in -contentsForType:error:

602 CHAPTER 19: Doc, You Meant Storage

Click on the Step Over button (See Figure 19-2) to execute one line of code. Continue stepping over
lines, watching as the code compares the things variable to nil and then creates an empty array
(replacing nil with "0 objects"), as shown in Figure 19-3.

Figure 19-3. Stepping through -contentsForType:error:

Tip Step Over executes a complete statement in your source code and stops when it finishes. Step Into
executes one statement; if it’s a function call or message in your app, it will move into that function or
message and stop again. Step Out allows the remainder of a function or method to execute, stopping again
when it returns to its sender.

To let your app run at full speed again, click the Continue button, just to the left of the Step Over
button. Your app will resume full speed execution until it encounters another breakpoint. Back in
your app, add an item or two and then pause. The auto-save mechanism will eventually kick in and
send another -contentForType:error: message, and your app will again stop at the breakpoint. This
time, the things array contains new MyWhatsit objects, as shown in Figure 19-4.

603CHAPTER 19: Doc, You Meant Storage

This confirms that your app is adding MyWhatsit objects to the things array, serializing it, and
returning it to UIDocument for saving. The problem isn’t that the document isn’t being saved. So there
must be a problem loading the document.

By the way, this is called the “divide and conquer” debugging technique. Decide what your code
should be doing, set a breakpoint somewhere in the middle of that process, and see if that step is
happening correctly. If not, the problem is either right there or earlier in your code. If it is happening
correctly, the problem is after that point. Choose another breakpoint and repeat until you’ve found
the bug.

Figure 19-4. Contents of things array during second save

Tip Remove a breakpoint by dragging it out of the gutter. Relocate a breaking by dragging it to a new
location. Disable or enable a breakpoint by clicking on it.

Run the app again, but first set a breakpoint in your -loadFromContents:ofType:error: method.
When your app starts, you’ll see that the -loadFromContents:ofType:error: method is received
immediately, as shown in Figure 19-5.

604 CHAPTER 19: Doc, You Meant Storage

Using the step over command, you can watch the code obtain the wrapper object, extract its data,
and turn that data back into the things array. As you can see in Figure 19-5, all of your data has
been restored.

So your document is being opened, its contents read, and yet the table view is still empty. What
insanity is this? To make matters worse, if you try to add a new item, your app crashes. Why is this
happening (to you)?

As it turns out, the problem isn’t that mysterious. If you set a breakpoint in the +documentAtURL:
method and also in MSMasterViewController’s -tableView:numberOfRowsInSection: method (one
of the first messages the table view data source receives), as shown in Figure 19-6, you’ll discover
two things. First, -tableView:numberOfRowsInSection: is received after +documentAtURL:, but before
the -loadFromContents:ofType:error: message is received. Secondly, if you examine the document
object (also shown in Figure 19-6), you’ll see that the things array is still nil.

Figure 19-5. Checking to see that -loadFromContents:ofType:error: is received

605CHAPTER 19: Doc, You Meant Storage

Have you figured it out yet? UIDocument’s -openWithCompletionHandler: method (sent in
+documentAtURL:) is asynchronous. It starts the process of retrieving your document’s data in the
background and returns immediately. Your app’s code proceeds, displaying the table view, with a
still empty data model.

Some time later, the data for the document finishes loading and is passed to
-loadFromContents:ofType:error: to be converted into a data model. That’s successful, but the
table view doesn’t know that and continues to display—what it thinks is—an empty list.

What your document needs to do is notify your view controller when the data model has been
updated, so the table view can refresh itself. You could accomplish this using a notification or a code
block property, but I think the most sensible solution is to use a delegate message. As a bonus,
you’ll get practice creating your own protocol.

Define a new delegate protocol. You could add a new header file to the project just for this protocol,
but since it goes hand-in-hand with the MSThingsDocument class, I recommend adding it to the end of
the MSThingsDocument.h interface file:

@protocol MSThingsDocumentDelegate <NSObject>
@optional
- (void)gotThings:(MSThingsDocument*)document;
@end

This defines a protocol with one, optional, method (-gotThings:), sent whenever your document
object loads new things from the document. Back up to the beginning of the MSThingsDocument.h
file, find the @class MyWhatsit statement, and add a forward declaration for the new protocol and a
delegate property (new code in bold):

@class MyWhatsit
@protocol MSThingsDocumentDelegate;

@interface MSThingsDocument : UIDocument
+ (NSURL*)documentURL;
+ (MSThingsDocument*)documentAtURL:(NSURL*)url;
@property (weak) id<MSThingsDocumentDelegate> delegate;

Figure 19-6. Examining the document object in the debugger

606 CHAPTER 19: Doc, You Meant Storage

Tip Use the @class and @protocol directives to create forward declarations. A forward declaration tells
the compiler that a class or protocol exists, but without any of the details. That symbol can then be used in
a class or protocol reference without causing a compiler error. This is necessary because some definitions,
like MSThingsDocument and MSThingsDocumentDelegate, are circular; MSThingsDocument refers to
MSThingsDelegateProtocol, and MSThingsDocumentProtocol refers to MSThingsDocument.

Switch to the MSThingsDocument.m implementation file. In the +documentAtURL: method, change the
statement that opens the document to this (modified code in bold):

[document openWithCompletionHandler:^(BOOL success){
 if (success)
 {
 if ([document.delegate respondsToSelector:@selector(gotThings:)])
 [document.delegate gotThings:document];
 }
 }];

The modified code now performs an action after the document is finished loading, which includes
the unarchiving of the data model objects. Now it sends its delegate a -gotThings: message, so the
delegate (your view controller) knows that the data model has changed.

Tip This is how you send an optional message to a delegate. Delegate objects are not required to
implement optional methods, and you do not want to send a message the object doesn’t implement; it
will result in a nasty exception and your code will stop executing. The -respondsToSelector: method
determines if an object implements (“responds to”) a specific method.

Switch to the MSMasterViewController.h file and make your view controller a document delegate
(new code in bold):

@interface MSMasterViewController
 : UITableViewController <MSThingsDocumentDelegate>

Over in the MSMasterViewController.m implementation file, make two changes. Immediately after
obtaining the new document object in -viewDidLoad, make the view controller the document’s
delegate object (new code in bold):

document = [MSThingsDocument documentAtURL:[MSThingsDocument documentURL]];
document.delegate = self;

607CHAPTER 19: Doc, You Meant Storage

Finally, add the optional -gotThings: method to the @implementation section:

- (void)gotThings:(MSThingsDocument *)document
{
 [self.tableView reloadData];
}

Run your app again, as shown in Figure 19-7, and voilà! The data in your document appears in the
table view.

Figure 19-7. Working document

Make changes or add new items. Press the home button to give UIDocument a chance to save the
document, stop the app, restart it, and your changes persist. The only content MyStuff doesn’t save
is any images you add. That’s because images aren’t part of the archived object data. You’re going
to add image data directly to the document’s directory wrapper, so attack that problem next.

Tip The Debug ➤ Deactivate Breakpoints command will disable all breakpoints in your project, allowing
you to run and test your app without interruption.

608 CHAPTER 19: Doc, You Meant Storage

Storing Image Files
Image data storage takes a different route than the other properties in your MyWhatsit objects. Here
is how it’s going to work:

When a new, or updated, image (UIImage) object is added to a MyWhatsit object,
the image is converted into the PNG (Portable Network Graphics) data format
and stored in the document as a file wrapper. The MyWhatsit object remembers
the key of the file wrapper.

When the document is saved, 	 UIDocument automatically includes the data from
all the file wrappers in the document. The image file wrapper keys are archived
by the MyWhatsit objects.

When the document is opened again, the file wrapper objects for the image data 	
are restored.

When client code requests the image property of a 	 MyWhatsit object, MyWhatsit
uses its saved key to locate and load the data in the file wrapper, eventually
converting it back into the original UIImage object.

The key to this design (no pun intended) is the relationship between the MyWhatsit objects and the
document object. A MyWhatsit object will use the document object to store, and later retrieve, the
data for an individual image. From a software design standpoint, however, you want to keep the code
that actually stores and retrieves the image data out of the MyWhatsit object. The single responsibility
principle encourages the MyWhatsit object to do what it does (represent the values in your data model)
and the document object to do what it does (manage the storage and conversion of document data)
without polluting one class with the responsibilities of the other.

The solution is to create an abstraction layer, or abstract service, in the MSThingsDocument class to
store and retrieve images. MyWhatsit will still instigate image management, but the mechanics of
how those images get turned into file wrappers stays inside MSThingsDocument. Let’s get started.

Add two public methods to the @interface in MSThingsDocument.h:

- (NSString*)setImage:(UIImage*)image existingKey:(NSString*)key;
- (UIImage*)imageForKey:(NSString*)key;

The first method will store, or replace, an image in the document. The second will retrieve one. Now
modify MyWhatsit to use these methods to save and restore its image property.

Select the MyWhatsit.h interface file. Add a forward reference to the MSThingsDocument class, a new
document property, and a readonly imageKey property (new code in bold):

@class MSThingsDocument;

@interface MyWhatsit : NSObject <NSCoding>

@property (weak,nonatomic) MSThingsDocument *document;
@property (readonly,nonatomic) NSString *imageKey;

609CHAPTER 19: Doc, You Meant Storage

While you’re here, delete the -initWithName:location: method you originally added to help with
testing in Chapter 5. You’re not using it anymore.

The document property contains a reference to the document where this object stores and retrieves
its image. The imageKey property is the key of the file wrapper that contains this object’s image data.
Modify your image handling to use these new properties.

Select the MyWhatsit.m implementation file. Begin by importing the document object interface, just
below the other #import directives:

#import "MSThingsDocument.h"

Before the @implementation section, add one more archiving key and a private interface section that
defines two instance variables, one for the image and one for the image data key:

#define kImageKeyCoderKey @"image.key"

@interface MyWhatsit ()
{
 UIImage *image;
 NSString *imageKey;
}

Note Previously, an instance variable to store the image property (_image) was created automatically by
the compiler. In this version, however, you’re going to provide a custom setter method (-setImage:) for the
image property. When you do that, it becomes your responsibility to define the storage for that property.

Delete the -initWithName:location: method you are no longer using.

In the -encodeWithCoder: method, add a statement to archive the value of the imageKey property:

[coder encodeObject:imageKey forKey:kImageKeyCoderKey];.

To the -initWithCoder: method, add a matching statement, immediately after the other
-decodeObjectForKey: messages, to restore it when it’s unarchived:

imageKey = [decoder decodeObjectForKey:kImageKeyCoderKey];

You don’t add the actual image data to the archive, but your object does need to remember the key
to where that data is stored in the document’s directory wrapper.

Note Your NSCoding methods do not encode, or decode, either the image or document property of the
object. When the object is unarchived, these property values will be nil. This makes them transient properties.
Properties preserved by archiving are called persistent properties.

610 CHAPTER 19: Doc, You Meant Storage

Now you can define a custom getter and setting method for the image property. Start with the getter:

- (UIImage*)image
{
 if (image==nil && imageKey!=nil)
 image = [_document imageForKey:imageKey];
 return image;
}

The image property getter method now checks for the situation where it does not have an image
object (image==nil), but it does have a key for an image stored in the document (imageKey!=nil). In
that case, it retrieves the image object stored in the document. This is done lazily; that is, the first
time the image property is requested. When the table view first appears, only those items visible in
the list will load their images. The rest of the items in the document won’t be loaded until the user
scrolls the list to reveal them.

The image property setter method has to keep the document up to date. After the getter, add its
companion setter method:

- (void)setImage:(UIImage *)newImage
{
 imageKey = [_document setImage:newImage existingKey:imageKey];
 image = newImage;
}

The setter method either adds, or replaces, the image in the document. The document’s
-setImage:existingKey: method stores the image data in a file wrapper and returns the key
identifying that wrapper. The existingKey parameter passes in the key of the image data the object
had previously stored. This is used by the document to delete any old image data before adding the
new. Finally, the image object is retained.

Finally, a getter method for the imageKey property must be supplied:

- (NSString*)imageKey
{
 return imageKey;
}

That concludes all of the changes to the MyWhatsit class. Select the MSThingsDocument.m
implementation file. Obviously, you need to supply the two image storage methods you defined in
the interface. Start with the -setImage:existingKey: method:

- (NSString*)setImage:(UIImage *)image existingKey:(NSString *)key
{
 if (key!=nil)
 {
 NSFileWrapper *imageWrapper = docWrapper.fileWrappers[key];
 if (imageWrapper!=nil)
 [docWrapper removeFileWrapper:imageWrapper];
 }

611CHAPTER 19: Doc, You Meant Storage

 NSString *newKey = nil;
 if (image!=nil)
 {
 NSData *imageData = UIImagePNGRepresentation(image);
 newKey = [docWrapper addRegularFileWithContents:imageData
 preferredFilename:kImagePreferredName];
 }

 [self updateChangeCount:UIDocumentChangeDone];
 return newKey;
}

It works just as you would expect it to. If the sender included a key for an existing file wrapper, that
file wrapper is first removed. If an image is being stored (image!=nil), the image is encoding into
the PNG file format by the UIImagePNGRepresentation function. The compressed image data is then
added to the directory package as a new file wrapper, and the key that identifies that wrapper is
returned to the sender. Of course, you didn’t forget to tell the document that its content has changed
before returning.

That takes care of storing a new image in the document and replacing an existing image with a new
one. Now add the code to retrieve images from the document:

- (UIImage*)imageForKey:(NSString *)key
{
 UIImage *image = nil;
 if (key!=nil)
 {
 NSFileWrapper *imageWrapper = docWrapper.fileWrappers[key];
 if (imageWrapper!=nil)
 image = [UIImage imageWithData:imageWrapper.regularFileContents];
 }
 return image;
}

This method performs the inverse of the -setImage:existingKey: method. It uses key to find the file
wrapper in the document, sends the wrapper a -regularFileContents message to retrieve the data,
and uses that PNG image data to reconstruct the original UIImage object, which is returned to the
sender.

Note The data that a regular file wrapper represents isn’t read into memory until you send it a
-regularFileContents message. File wrappers are just lightweight placeholders for the data in persistent
storage, until you request that data.

612 CHAPTER 19: Doc, You Meant Storage

Sneakily, there’s one more place where an image is removed from the document: when the user
deletes a MyWhatsit object. Locate the -removeWhatsitAtIndex: method. Add code to the beginning
of the method to remove the image file wrapper for that item, before removing that item (new code in
bold):

- (void)removeWhatsitAtIndex:(NSUInteger)index
{
 MyWhatsit *thing = things[index];
 if (thing.imageKey!=nil)
 [self setImage:nil existingKey:thing.imageKey];
 [things removeObjectAtIndex:index];
 [self updateChangeCount:UIDocumentChangeDone];
}

Tip Another way of handling this would be let the MyWhatsit object delete its own image before being
removed. You’d do that by defining (something like) a -prepareToBeRemovedFromDocument: method that
would remove any document resources belonging to that MyWhatsit. It all depends on which side of the
data-model/data-model-controller fence you want to encapsulate the logic.

All of the mechanics for saving, retrieving, and deleting images from the document are in place.
Sadly, none of it will work. The MyWhatsit must be connected to the working MSThingsDocument
object through its document property for any of this new code to function. At this point, no one is
setting that property.

So where should the document property be set, and what object should be responsible for setting
it? The answer is the MSThingsDocument object. It should take responsibility for maintaining the
connection between itself and its data model objects.

As it turns out, this is an incredibly easy problem to solve, because there are only two locations
where MyWhatsit objects are created: when the document is unarchived and when the user creates
a new item. Start with the -anotherWhatsit method and add a statement to set the new object’s
document property (new code in bold):

- (MyWhatsit*)anotherWhatsit
{
 MyWhatsit *newItem = [MyWhatsit new];
 newItem.document = self;

Note Methods like -anotherWhatsit are called factory methods. A factory method creates new, correctly
configured, objects for the client. The objects might be different classes or need to be initialized in a special
way—like being added to a collection and having their document property set—before being returned. Write
factory methods to create objects that need to be created in a way that the sender shouldn’t be responsible
for.

613CHAPTER 19: Doc, You Meant Storage

Locate the -loadFromContents:ofType:error: method. Immediately after the things array is
unarchived, add this statement (new code in bold):

if (thingsData!=nil)
 {
 things = [NSKeyedUnarchiver unarchiveObjectWithData:thingsData];
 [things makeObjectsPerformSelector:@selector(setDocument:)
 withObject:self];
 }

The -makeObjectsPerformSelector:withObject: message sends a message with one parameter
to every object in the collection (equivalent to [things[0] setDocument:self], [things[1]
setDocument:self], and so on). When it’s done, every MyWhatsit object in the array will have its
document property set with the document where its image is stored.

Your document implementation is finally finished! Give it a spin by running MyStuff. Add some items,
attach some pictures, and quit the app, as shown in Figure 19-8. Stop the app in Xcode and start it
again. All of the items, along with their pictures, are preserved in the document.

Figure 19-8. Testing image storage

Well, almost. There are some performance problems and some irregularities in the image orientation.
You’ll fix the former in Chapter 24, and you can take a stab at the orientation problem in the exercise
at the end of this chapter.

614 CHAPTER 19: Doc, You Meant Storage

Note In the rush to add image storage to your MyWhatsit object, I wanted to make sure you didn’t miss
a remarkable fact: you did not change the interface to your data model. None of the code that uses the
MyWhatsit object, like the code in MSDetailViewController, required any modifications. That’s because
the meaning and use of the image property never changed. The only thing that changed was how that data
gets stored. This is encapsulation at work.

Figure 19-9. MyStuff sandbox files

If you’re running MyStuff on a provisioned device, you can see your app’s document file(s) in
the Devices tab of the Organizer window (Window ➤ Organizer). Select the Devices tab, select the
Applications installed on your device, and then select the MyStuff app. The organizer window will
show you the files in your app’s sandbox, as shown in Figure 19-9.

You can clearly see your Things I Own.mystuff document package inside your app’s Documents
folder. The funny filenames (1__#$!@%!#__image.png) is how UIDocument handles two or more file
wrappers with the same preferred name. It gives the files crazy names so they can all be stored in
the same directory.

If you need to get these files, use the Download button at the bottom of the window. Xcode will copy
the files from your iOS device and save them on your hard drive, where you can examine them.

615CHAPTER 19: Doc, You Meant Storage

Odds and Ends
What you’ve accomplished in MyStuff is a lot, but it really represents the bare minimum of support
required for document integration. There are lots of features and issues that I skipped over. Let’s
review a couple of those now.

iCloud Storage
You can store your documents in the cloud, much as your stored property list values in the cloud in
Chapter 18. Documents, naturally, are a little more complicated.

Apple’s guidelines suggest that you provide a setting that allows the user to place all of their
documents in the cloud or none of their documents in the cloud. A piecemeal approach is not
recommended. When the user changes their mind, your app is responsible for moving (copying) the
locally stored documents into the cloud or in the other direction. This isn’t a trivial task. It involves
multi-tasking, which I don’t get to until Chapter 24.

Once in the cloud, you open, modify, and save documents much the way you do
from your local sandbox. All of the code you wrote for -contentsForType:error: and
-loadFromContents:ofType:error: won’t need any modification (if you wrote them correctly), you’ll
just use different URLs. In reality, the data of your “cloud” documents are actually stored locally on
the device. Any changes are synchronized with the iCloud storage servers in the background, but
you always retain a local copy of the data, both for speed and in case the network connection with
the cloud is interrupted.

There are some subtle, and not so subtle, differences between local and cloud-based documents.
One of the big differences is change. Changes to your cloud documents can occur at any time. The
user is free to edit the same document on another device, and network interruptions can delay those
changes from reaching your app immediately.

In general, your app observes the UIDocumentStateChangedNotification notification. If the iCloud
service detects conflicting versions (local vs. what’s on the server), your document’s state will
change to UIDocumentStateInConflict. It’s then up to your app to compare the two documents and
decide what to keep and what to discard. You might query the user for guidance, or your app might
do it automatically.

To learn more about iCloud documents, start with the Document-Based App Programming Guide
for iOS, that you can find in Xcode’s Documentation and API Reference window. It’s a good read,
and I strongly suggest you peruse it if you plan to do any more development involving UIDocument.
The chapters “Managing the Life Cycle of a Document” and “Resolving Document Version Conflicts”
directly address cloud storage.

Archive Versioning
When implementing NSCoding, you might need to consider what happens when your class changes.
One of the consequences of archiving objects to persistent storage is that the data is—well—
persistent. Users will expect your app to open documents created years ago. I’m trying to improve
my software all of the time, and I assume you are too. I’m always adding new properties to classes,
or changing the type and scope of properties. It often means creating new classes and periodically

616 CHAPTER 19: Doc, You Meant Storage

abandoning old ones. All such changes alter the way classes encode themselves and pose
challenges when unarchiving data created by older, and sometimes newer, versions of your software.

There are a number of techniques for dealing with archive compatibility. Your newer code might
encode its values using a different key. When decoding, your software can test for the presence
of that key to determine if the archive data was created by modern or legacy software. You might
encode a “version” value in your archive data and test that version when decoding. Newer software
might encode a value in both its modern form and a legacy form, so that older software (that knows
nothing of the newer form) can still interpret the document data.

There are even techniques for substituting one class for another during unarchiving. This can solve
the problem of an encoded class that no longer exists. A thorough discussion of these issues, and
some solutions, are discussed in the “Forward and Backward Compatibility for Keyed Archives”
chapter of the Archives and Serializations Programming Guide.

Summary
Embracing UIDocument adds a level of modern data storage to your app that users both appreciate
and have come to expect. You’ve learned how, and where, to store your app’s documents. More
importantly, you understand the different roles that objects and methods play that, together,
orchestrate the transformation of model objects into raw data, and back again. You learned how to
construct multi-file documents that can be incrementally saved and lazily loaded. Along the way, you
learned how to archive objects and create objects that can be archived.

You’ve come a long way, and you should be feeling pretty confident in your iOS aptitude. Adding
persistent storage to your apps was really the last major iOS competency you had to accomplish.
The next couple of chapters dig into Objective-C, to hone your language knowledge and proficiency.

EXERCISE

If you used your iOS Device’s built-in camera to take pictures of your stuff, you might notice an annoying problem. The
picture appears fine when you first add it. But later, after they’re saved to the document and reloaded, some of the
images are on their side or upside down.

Try searching the iOS developer forums, or the Internet in general, for what the problem might be. You’ll find my first “fix”
for the problem in the Learn iOS Development Projects ➤ Ch 19 ➤ MyStuff E1 folder. Hint: I only changed
two lines of code, both in MSThingsDocuments.m.

The “fix” in MyStuff E1 doesn’t really solve the problem; it just works around it. To really address the issue took a little
more work. I changed how the cropped image is created in the -imagePickerController:didFinishPicking
MediaWithInfo: method. You’ll find that solution in the Learn iOS Development Projects ➤ Ch 19 ➤ MyStuff E2
folder. Using what you learned in Chapter 10, and the code you wrote in Chapter 13, you shouldn’t have any trouble
figuring out how it works. And maybe you can come up with a different solution.

617

Chapter 20
Being Objective

As promised, I didn’t start out this book with a dry lesson on Objective‑C. You dove right in and
started creating apps—and I think that’s fantastic. The fact that Xcode empowers even novice
programmers to design and create quality iOS apps opens a world of possibilities. But you don’t
want to stay a novice forever. You don’t get the good seats in the monastery’s dining hall, and there’s
never any fan mail. I’m not saying that reading this one chapter will turn you into an Objective‑C
guru, but it should definitely up your game.

If you’re struggling at all with Objective‑C, or just relatively new to it, give this chapter a good
read. It’s basically a crash course that will put you on a firm footing. If you’ve already read a book
on Objective‑C, or have been programming in it for a while, the contents of this chapter may not
surprise you. In that case, treat it as a handy reference to the “good bits” of Objective‑C. In this
chapter you will:

Learn how Objective‑C classes are declared and objects are created	

Understand the relationship between properties, instance variables, getters, 	
and setters

Use introspection to examine objects and classes	

Explore the differences between protocols and categories, and what they’re 	
good for

Learn to love 	 nil

Get the skinny on collection objects	

Become familiar with some really useful shortcuts	

There are no projects for this chapter, so you can give Xcode the day off. I’ll start with the basics,
which you’re welcome to skim, and then I’ll take you on a whirlwind tour of the classes and features
that you’ll regularly use, or just need to know about. Let’s start at the foundation.

618 CHAPTER 20: Being Objective

Objective‑C is C
Objective‑C is C. It’s a deceptively simple statement, but it has far‑reaching ramifications. C and
BASIC were the first truly popular programming languages for computers. Almost a half‑century
after its invention, C is still the most popular programming language1 in the world. Its concise syntax,
and the efficiency with which it can be compiled into computer code, have made it the workhorse
of the industry. When new languages were developed, it was natural that they adopted many of C’s
conventions, both because the syntax is really good and because so many programmers already
knew C. We now live in a world awash with C‑like languages: C++, C#, Perl, Java, JavaScript, and
PHP, to name just a few.

A “C‑like” language is one that kind of, sort of, looks like C, but isn’t. The authors of the language
liked the C syntax, but wanted to make changes to it, for whatever reason. If you already know C, it’s
easier to learn these languages. But it also means that you can’t take standard C code and compile
it using Java or C#, for example.

Note C++ is, by far, the C-like language most closely related to C. C++ started out as a C preprocessor;
your C++ code was first translated into plain C, which was then compiled by a C compiler. C++ has since
diverged from C sufficiently that it is no longer a super-set of the C language, although you can still insert
plain C into a C++ program using its special extern "C" { /* Plain C code here */ } syntax.

In contrast, Objective‑C is a strict superset of the C language. It means that Objective‑C adds
object‑oriented features to C, but doesn’t change or take away any of its C‑ness. For the most part,
it does this by introducing a few keywords that begin with @ (like @interface, @private, @selector,
and so on) and the square‑bracket syntax for sending messages to objects ([object message])2.
Everything in between—and I mean everything—is standard (ISO/IEC 9899:2011) C.

For you, it means that any standard C code can be dropped into your project and used as is. You
can sprinkle your Objective‑C app with struct and typedef statements, use the preprocessor, and
define your own C functions. And it means you have direct, unfiltered, access to any C function your
app can link to.

That last bit is huge. More computer code has been written in C than any other language—several
billion lines, at last estimate. iOS is built on top of the Core Foundation and BSD libraries, which
contain thousands of useful C functions, all at your disposal. And if your app needs something
exceptional—maybe you need to calculate elliptic cypher codes, or predict planetary orbits—I can
guarantee you that someone has already written that code in C.

1Popularity as defined by various indices, like the Language Popularity Index (lang-index.sourceforge.net).
2Recent extensions to Objective‑C are not as distinct. Modern features like fast enumeration and property
accessors are harder to spot as being Objective‑C additions to C.

http://lang-index.sourceforge.net

619CHAPTER 20: Being Objective

Tip There’s also an Objective-C++ language. It adds the same additions to C++ that Objective-C adds to C.
Objective-C++ is particularly useful for OpenGL programming, where a lot of the code is written in C++.

This is good for me too, because all I have to do is declare that “Objective‑C is C” and I can move on
to explaining what Objective‑C adds to C. As I see it, you have three paths to Objective‑C mastery:

If you already know how to program in C, you’re almost there. Read the rest of 	
this chapter to find what Objective‑C adds to C.

If you’re not familiar with C, or a little shaky, you have two routes:	

Learn C and then read the rest of this chapter. There are numerous 	
C tutorials and references on the Internet. Apress also publishes an
exceptional book, Learn C on the Mac, 2nd Edition, by David Mark and yours
truly—but now I’m just bragging.

Instead of reading this chapter, get a book on Objective‑C. A thorough 	
treatise on Objective‑C will explain the entire language, which
encompasses C.

If you’re good with C, it’s time to move on to Objective‑C.

Objective‑C Classes
You’ve seen this a hundred times so far, and I explained it in Chapter 6, but here is again, in its
complete glory. A class in Objective‑C is declared by an @interface directive, typically in a .h
(header) file:

@interface ClassName : SuperClassName <ProtocolName>
{
 @public
 int instanceVariable;
}
@property (nonatomic) int property;
+ (void)classMethod;
- (void)instanceMethod:(int)param1 withTwoParameters:(int)param2;
@end

Here are the salient points:

The 	 @interface declaration informs the compiler of the existence of the class
and describes it: what it inherits, what additional instance variables, properties,
and methods it implements, and what protocols it adopts. It does not generate
any code.

Although technically optional, for all practical purposes you must specify a 	
superclass. If you don’t inherit from a specific class, inherit NSObject.

Protocols are optional. Separate multiple protocols with commas. Omit the 	
brackets if you don’t adopt any.

620 CHAPTER 20: Being Objective

Instance variables are declared in the block between two curly brackets. If your 	
class doesn’t declare any instance variables, you can omit the block entirely.
Only instance variables can be declared inside the block.

You can optionally insert visibility directives (@public, @protected, or @private)
between instance variable declarations. All variables that follow one are
assigned that visibility. Variables declared before the first one are @protected.

The 	 @end directive marks the end of the @interface declaration and is required.
You cannot nest another declaration (@interface, @category, @protocol, or
@implementation) inside an @interface.

Most of this should all make sense to you by now. The only keywords not mentioned in this book so
far are the visibility directives. The visibility of a variable determines what methods are allowed direct
access to those variables. The choices are listed in Table 20‑1.

Table 20-1. Visibility Directives

Directive Meaning

@public Any code with a reference to the object can directly manipulate the instance variable

@protected Only methods of this class or one of its subclasses may directly manipulate the variable

@private Only methods of this class may directly manipulate the variable

When I say “directly manipulate,” I mean the code can use the instance variable in a C expression
to get or change its value directly. (See the section on “Properties” later in this chapter for those
details.) Visibility does not apply to methods or properties; those are always public. The most
useful visibility directive is @private, but its use has largely been replaced by extensions, which are
described in the section “Categories,” later in this chapter.

Implementing Your Class
The code for a class appears in its @implementation section, typically in a .m (implementation) file:

@implementation ClassName

+ (void)classMethod
{
}

- (void)instanceMethod:(int)param1 withTwoParameters:(int)param2
{
}

@end

You’re responsible for implementing every method (and possibly some properties) listed in your
class’s @interface directive. That includes any required methods of the protocols your class adopts.

621CHAPTER 20: Being Objective

Caution Not implementing a method that you’ve declared may only result in compiler warning. This may
not stop you from building and running your app, but if a message for one of those unimplemented methods
is received, your application will throw an exception and fail. Pay attention to compiler warnings.

Creating and Destroying Objects
Creating an object is a two‑step process:

1. Allocate the object

2. Initialize the object

You tell the class to allocate it, and then send the object an “init” message to initialize it, like this:

id myObject = [[MyClass alloc] init];

Classes may have alternative init methods, some with parameters, that initialize the object in
different ways. Some classes are documented with designated init methods; these are the only init
messages you should send those objects, even if it inherits other init methods from its superclass.
All initializer methods traditionally begin with the letters “init.”

Tip The NSObject base class defines a +new class message that allocates a new object, sends it
an -init message, and returns it to the sender. The statements [[AnyClass alloc] init] and
[AnyClass new] are functionally identical. I’m mystified why programmers don’t use the [MyClass new]
shorthand more often.

If you define an init method for your class, it must follow this pattern:

- (id)init
{
 self = [super init];
 if (self)
 {
 instanceVariable = 1;
 }
 return self;
}

Your class must first send the appropriate init method to your object’s superclass. Often this is
-init, but it can be any init method the superclass implements.

You must then reassign the returned value to your self variable and check to see that it is not nil.
If the superclass fails to initialize the object, it will destroy it and return nil. This indicates that there
is no longer any object to initialize; your method should immediately return nil.

622 CHAPTER 20: Being Objective

Your code then proceeds to initialize its instance variables and properties. All instance variables and
properties are pre‑initialized to 0, 0.0, NO, or nil when your object was allocated. You only need to
set those values that shouldn’t be zero.

Like the superclass, if something might go wrong during your initialization, you can destroy your
object and return nil (self = nil), indicating that your initialization failed.

The next chapter describes how, and when, objects are destroyed.

Class Clusters
It’s important that you update the self variable when sending the init method to the superclass
(self = [super init]). Objective‑C has a unique ability to substitute a different object for the one
you initialize. That is, you allocate an object of one class, you send it an -init message, but the
object you get back isn’t the one you allocated. In fact, it might not even be the same class.

This technique is called a class cluster, and is a variant of the factory pattern. Writing your own class
cluster isn’t difficult. Your code would look like this:

- (id)initCluster:(int)param
{
 self = [super init];
 if (self)
 {
 if (param<0)
 {
 self = [[SpecialNegativeClass alloc] init];
 }
 }
 return self;
}

Class clusters are used in iOS to optimize memory and to simplify the class interface. For example, you’d
think that the statement [[NSNumber alloc] initWithBool:YES] would create a new NSNumber object
every time it’s executed. But NSNumber objects are immutable (can’t be changed), so any two NSNumber
objects that represent YES are interchangeable. iOS takes advantage of this and pre‑allocates two
NSNumber objects, one for YES and a second one for NO. Executing [[NSNumber alloc] initWithBool:YES]
will actually return one of those two objects, in place of the one you tried to create.

Referring to Objects
Objective‑C uses C’s pointer syntax to refer to objects. Here is a variable that points to an
Objective‑C object of a specific class:

SpecificClass *anObject;

A pointer to an Objective‑C object is called an object pointer, object reference, or just object. Unlike
some languages, you cannot declare a variable that contains the object (SpecificClass anObject).
All objects in Objective‑C are dynamically allocated, so you can only declare and manipulate
pointers to objects.

623CHAPTER 20: Being Objective

When a variable is declared with a specific class, the Objective‑C compiler knows what methods,
properties, and instance variables are defined for that object. It will complain if you attempt to
access a property or method it doesn’t implement. This is great, at least most of the time. Try to
send a message that your object doesn’t understand, or access a variable it doesn’t have, and you’ll
be rewarded with a compile error.

It’s a problem when the object is actually a subclass of the class that it’s declared to be. For
example, in your DrumDub app, you retrieved a UIButton object using a tag, and then set its enabled
property. You might have initially written code like this:

[[self.view viewWithTag:i+1] setEnabled:active];

That statement, sadly, won’t compile. The problem is that the method -viewWithTag: returns a
UIView*, not a UIButton*. You and I know that the object returned was a UIButton, but the compiler
doesn’t. The only thing the compiler is sure of is that the object is a UIView, and UIView has no
-setEnabled: method; your program won’t compile, and you’ll never get to play your sound effects.
In these cases, the C cast syntax comes to your rescue:

[(UIButton*)[self.view viewWithTag:i+1] setEnabled:active];

This code says, “I know that -viewWithTag: returns a UIView*, but I also know the object is a
UIButton, so treat it that way.” The only caution is that it had better be a UIButton or things will go
very badly. In the section “Introspection,” I talk about how to check to see that an object is, in fact,
a UIButton—in case there’s some doubt.

Can I See Your id?
You may occasionally see the type id used in Objective‑C. This special type means “a pointer to any
object.” It is treated differently than just a pointer to an object. In the following bullet points, assume
this code:

id anyObj;
SpecificClass *specificObj;

You can send any message to an object of type 	 id ([anyObj anyMessage]).
The compiler will not complain. It has no idea what kind of object anyObj is,
and assumes you do. Again, it’s up to you to ensure that anyObj responds to
-anyMessage.

You cannot access instance variables (anyObj->instanceVariable), or refer to
properties (anyObj.enabled=YES), through an id reference. You’ll first have to cast
the variable to a specific type (((SpecificClass*)anyObj)->instanceVariable),
or use the equivalent getter or setter message ([anyObj setEnabled:YES]).

An 	 id reference can be assigned to any object pointer variable or parameter
(specificObj=anyObj). The compiler will never complain about this, and you
don’t need a C cast operator. The assumption is that you know the class of the
object. (So you better be sure.)

624 CHAPTER 20: Being Objective

Any object pointer can be assigned to an 	 id variable or parameter
(anyObj=specificObj). The compiler will never complain about this,
and you don’t need a C cast operator. An id variable refers to any object,
and specificObj is an object, so what’s the problem?

The id type is used in variables, methods, and parameters where (almost) any object would be
acceptable. This simplifies your code, because the compiler relaxes the rules for dealing with
that reference.

A good example is the collection classes (NSArray, NSDictionary, and so on). Every value in a
collection is of type id, because it truly can be “any object.” This makes it easy to store and retrieve
objects from a collection, even objects of specific types:

SpecificClass *specificObj = [[SpecificClass alloc] init];
[array appendObject:specificObj];
specificObj = [array lastObject];

The compiler won’t generate any warnings for this code, and you don’t have to cast the object in
the assignment statement. If -lastObject returned a type of NSObject*, instead of id, you’d have to
write specificObj = (SpecificObject*)[array lastObject] every time—yuck.

Caution The * in id is implied. You do not include the C pointer operator when using id. If you write id *,
you’ve actually written “a pointer to a pointer to any object.”

Method Names
Method names in Objective‑C are traditionally verbose. It’s one of Objective‑C’s charms, and
substantially improves its readability. Consider this C function call:

CGBitmapContextCreate(pixes,768,1024,8,space,kCGImageAlphaPremultipliedLast);

Unless you’re looking at the documentation, it’s a challenge to tell exactly what each of those
parameters means. Now contrast that with a similar Objective‑C message:

[[CIImage alloc] initWithBitmapData:pixes
 bytesPerRow:768*4
 size:CGSizeMake(768,1024)
 format:kCIFormatARGB8
 colorSpace:space];

It’s much easier to intuit what each of the parameters in the second statement is for. When
Objective‑C messages get too long to fit on a single line, the convention is to write each parameter
on its own line, aligning the colons, as illustrated above. Xcode’s source code editor will do this
automatically.

625CHAPTER 20: Being Objective

Methods that begin with a minus sign (-) are instance methods. They execute in the context of the
receiving object. Methods that being with a plus sign (+) are class methods. They execute in the
context of the class.

Method Name Construction
Parameters in a method are separated by colons. The words and the colons, together, form the
method’s signature. A method signature uniquely identifies a method. Take this method as an
example:

- (BOOL)getBytes:(void *)buffer maxLength:(NSUInteger)maxBufferCount usedLength:(NSUInteger *)
usedBufferCount encoding:(NSStringEncoding)encoding options:(NSStringEncodingConversionOptions)
options range:(NSRange)range remainingRange:(NSRangePointer)leftover;

(Yes, that’s an action method.) The signature of that method is:

getBytes:maxLength:usedLength:encoding:options:range:remainingRange:

Use a signature in a @selector() directive to specify a particular method.

Tip You’ll sometimes see method names written as -[ClassName method:name:] in documentation,
while debugging, or in conversations between programmers. This is shorthand that uniquely identifies the
method of a class. It isn’t Objective-C syntax, and you’ll never use it in a program, but it is informative.

The types of each parameter, and the return value of the method, are expressed in parentheses
immediately before the name of each parameter and method. The following method takes two
parameters, a CGPoint struct and a pointer to a UIEvent object, and returns a BOOL value:

- (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event;

Technically, parameter and returns types are optional. If omitted, the type defaults to id. These two
methods are identical:

- (id)objectforKey:(id)key;
- objectForKey:key;

I don’t recommend omitting the type for parameters or return values. The convention is to explicitly
declare the type of the return value and every parameter. It’s not that much typing, and it avoids a lot
of confusion.

One fallacy about Objective‑C, that you might overhear, is that it uses named parameters. It
does not. You can’t alter the order of the parameters in an Objective‑C message. The methods
-setLineDash:count:phase: and -setLineDash:phase:count: are two, distinct, methods. Technically,
the individual words of a message are called tokens. Sometimes—and I’ve done it in the
book—programmers will refer to the token to identify a parameter, but it’s not the “name” of the
parameter.

626 CHAPTER 20: Being Objective

It’s also a little known fact that the tokens are optional. There’s a method in the
CAMediaTimingFunction that’s defined as:

+ (id)functionWithControlPoints:(float)c1x :(float)c1y :(float)c2x :(float)c2y;

You send that message like this:

[CAMediaTimingFunction functionWithControlPoints:100.0:120.0:180.0:200.0];

And if you want to be perverse, the following is a perfectly valid Objective‑C method:

- :i :j :k;

Note Don’t ever use such a method in your class. If you do, don’t tell anyone where you learned this.

The +initialize Method
Every class inherits an +initialize method. The class receives this message when it is first
initialized. The Objective‑C runtime library initializes classes lazily, so the +initialize message is
sent just before the class is first used, most likely just before the first object of that class is created.

The +initialize method is a handy place to write code that should be executed once, and before
any code in the class gets a chance to run. Consider this +initialize method:

static NSNumberFormatter *Formatter;
+ (void)initialize
{
 if (Formatter==nil)
 {
 Formatter = [[NSNumberFormatter alloc] init];
 Formatter.roundingMode = NSNumberFormatterRoundHalfEven;
 }
}

Any method of this class would be safe in assuming that the Formatter variable contained an
initialized NSFormatter object, because the +initialize message is guaranteed to be sent before
any other class message is received, or any instance of this class is created. Use +initialize to
create singleton objects, initialize global variables, create shared collections, pre‑fetch user default
values, and so on.

Caution Your subclasses will inherit your +initialize method, which means it could be received again
when a subclass is initialized. In the preceding code, the if (Formatter==nil) condition prevents this
code from executing more than once.

627CHAPTER 20: Being Objective

Properties
Object properties are the public face of the values stored in an object. More often than not, they are
implemented simply as an instance variable whose value can be queried or altered. But they can
also be synthetic values—values derived from other information. Regardless, the interface the client
sees is a value that can be obtained, and optionally changed, via a property name.

You add properties to your class in one of four ways:

1. Public instance variable (pre‑properties)

2. Private instance variable combined with your own getter and setter methods

3. A @property declaration backed by a private instance variable and optional
getting and setting methods

4. A modern @property declaration

These four techniques recapitulate the history of property values in Objective‑C. Reprising the
evolution of properties will help explain both what options you have, and why you have them.
Let’s begin in the dark ages.

Instance Variables
A long time ago (in the 1980s), Objective‑C was born. In its original incarnation, it was a very (very)
thin layer on top of C that added Smalltalk‑like messaging to special structs called objects. The
values of an object were stored in its instance variables and accessed exactly like the fields of a C
struct. Here’s an example:

@interface DarkAge : Object
{
 BOOL dawn;
}
@end
...
DarkAge *darkest = [[DarkAge alloc] new];
if (darkest->dawn==NO)
 ...

You can still do this today. Programmers, however, quickly discovered that there are a number
of problems to this arrangement. The biggest problem is that it’s counter to the philosophy of
encapsulation. The client code has too much access, and too many responsibilities, when modifying
the values of an object. This realization ushered in the second age object values.

Using Getters and Setters
The convention that spread through the industry was to declare a private instance variable, and then
write methods that returned and set the value stored in that variable. Together, these are called the
accessor methods. The method that retrieves the value is referred to as the getter method, and the
method that sets the value is the setter method. The getter method would have the same name

628 CHAPTER 20: Being Objective

as the variable and the setter method would be the name of the variable prefixed with “set.” (A value
that couldn’t be modified would omit the setter method.) Here’s a class written this way:

@interface GoGetter : NSObject
{
 @private
 BOOL eager;
}
@end

@implementation GoGetter

- (BOOL)eager
{
 return eager;
}

- (void)setEager:(BOOL)newEager
{
 eager = newEager;
}

@end

This was a huge improvement—at least in terms of good software design, encapsulation, and
flexibility. The client code now used the getter ([obj eager]) and setter ([obj setEager:YES])
methods to access the object’s values. Any special cases, necessary memory management,
notification of changes, and so on could all be handled—consistently and reliably—in the getter and
setter methods. Technologies like Key‑Value Observing (see Chapter 8) were now possible.

It also created two paths for affecting object values: direct manipulation of the instance variable and
sending the accessor messages. Using directives like @private or @protected, you can limit direct
access to the instance variables to just those methods defined by the class (or its subclasses). Direct
access to variables is sometimes preferred. It’s faster and may avoid unwanted side effects of the
accessor methods. The canonical example is the accessor methods themselves, which must be able
to affect the instance variables directly; they obviously can’t use the getter and setter methods.

Life was looking pretty good, except for the poor programmer who had to write the same getter
and setter methods, over and over again. Programmers cried out for a solution. Surely, there must
be some way that Objective‑C could rescue them from this tedium? The giant brains that oversee
Objective‑C heard their calls, and the age of properties began.

Declared Properties
Objective‑C 2.0 introduced the @property directive. This formalized the conventions that
programmers had been using, and added a property accessor syntax that greatly simplified their
use. Property values could now be retrieved by writing obj.value and set it using obj.value=nil.
A property declaration looks like this:

@property (nonatomic) id value;

629CHAPTER 20: Being Objective

Classes inherit the properties of their superclass. You cannot (with one exception) change the
definition of an inherited property in your class, although you can override its accessor methods.

Initially, the @property declaration did little beyond legitimizing the relationship between the instance
variable and the getter and setter methods. It didn’t generate any code or define storage for the
variable. The programmer was still responsible for all that. But it did sweeten the syntax.

Programmers could now take pre Objective‑C 2.0 code, like the GoGetter class, add @property
declarations to it, and use the property getter syntax (replacing [obj setEager:YES] with
obj.eager=YES). It was definitely an improvement.

But Objective‑C 2.0 had one more gift. If the getter and setter methods were generic—all they did
was return or set the value of an instance variable—the programmer could use the new @synthesize
directive and Objective‑C would write that code for them. Now their classes looked like this:

@interface GoldenAge : NSObject
{
 @private
 BOOL joyful;
}
@property BOOL joyful;
@end

@implementation GoldenAge
@synthesize joyful;
@end

...

GoldenAge *age = [[GoldenAge alloc] init];
age.joyful = YES;

It had all the benefits of encapsulation, with none of the code. The accessor syntax was particularly
welcome, as nested setters and getters in Objective‑C can be quite difficult to read at times.
Consider these two, equivalent, statements:

[layer setRasterizationScale:[layer rasterizationScale]*2];
layer.rasterizationScale *= 2;

You have to admit, the second statement is easier on the eyes. And this brings up an important
point. The property accessor syntax added by Objective‑C 2.0 did not, fundamentally, change how
getter and setter methods are sent or how they work. It only changed the syntax used to send them.
Computer language designers call this syntactic sugar; it “sweetens” the language, but doesn’t
change what it does.

The statements in Table 20‑2 demonstrate the translation that occurs when using property accessor
syntax. The last two rows in the table illustrate the difference between accessing an instance
variable directly (from within an instance method) and invoking the object’s own accessor method for
that same property.

630 CHAPTER 20: Being Objective

Tip You don’t have to use the @property directive to benefit from the accessor syntax. Objective-C will let
you treat any method that takes no parameters and returns a value as if it were the getter for a property, and
any method that returns nothing, starts with the word “set,” and takes a single parameter as the setter method
for a property. The NSPort class has never been updated with @property declarations; it only defines the
methods -delegate and -setDelegate:. Yet, Objective-C will let you write port.delegate = nil,
because those two methods conform to the accessor pattern for a delegate property.

Table 20-2. Property Accessor Message Equivalency

Objective‑C 2.0 Objective‑C (any version)

v = obj.property; v = [obj property];

obj.property = v; [obj setProperty:v];

obj.property += v; [obj setProperty:[obj property]+v];

property = v; property = v;

self.property = v; [self setProperty:v];

Automatic Properties
Modern Objective‑C compilers (LLVM) have finally “closed the loop” on properties. Today, if you
declare a @property in your @interface and then you do not write either the required accessor
methods or include a @synthesize directive, Objective‑C will synthesize everything for you. It adds
an instance variable to your object (beginning with an underscore character) and generates the
getter and setter methods.

This is largely what you’ve been using in this book. The following class illustrates modern properties:

@interface Nirvana : NSObject
@property BOOL automatic;
@end

@implementation Nirvana
@end

This class has a private BOOL instance variable named _automatic, and implements two methods
named -automatic and -setAutomatic:. The tedious work of allocating and implementing the
property is now done for you. You are not, however, compelled to use the modern solution. If
your class has special needs, you can back up and use any of the previous solutions. Table 20‑3
summarizes the different combinations in which properties are declared and implemented.

631CHAPTER 20: Being Objective

Table 20-3. Property Implementation Choices

@interface @implementation Notes

@property id prop; (nothing) Creates an instance variable named _prop and
generates the methods -(id)prop and -(void)
setProp:(id)prop;

@property (readonly)
id prop;

-(id)prop; No instance variable is added and you must
implement your own getter method

@property id prop; -(id)prop;
-(void)setProp:(id)prop;

If you supply your own setter method, no
instance variable (_prop) will be added. You are
reasonable for how the property value is stored.

{
id prop;
}
@property id prop;

@synthesize prop; Generates the methods -(id)prop and -(void)
setProp:(id)prop that use the prop variable for
storage

{
id prop;
}
@property id prop;

(nothing) Results in a compiler warning that you have
declared your own variable (prop) which
duplicates the _prop variable added by the
compiler

The Anatomy of a Property
A property declaration consist of four parts:

The 	 @property keyword

An optional list of property attributes, within parentheses	

The property type	

The property name	

The @property keyword, type, and name don’t need any explanation. The possible property
attributes, on the other hand, afford you several options that affect how your property is
implemented and treated.

Mutability
The readonly attribute declares a property that can be read, but not set. The expression
obj.property is allowed, but the statement obj.property=nil is not. Here’s a readonly property:

@property (readonly) NSDate *created;

632 CHAPTER 20: Being Objective

As you saw in Table 20‑3, specifying the readonly attribute means Objective‑C won’t allocate an
instance variable for your property (what good is a variable for something that never changes?),
and you must supply a getter method.

The readwrite attribute is the opposite of the readonly attribute. All properties are readwrite by
default, so you normally don’t declare them as such.

There is one use for the readwrite attribute. Objective‑C allows you to declare a readonly property
in a class, and then re‑declare the same property as readwrite in a subclass. This is the only time
that Objective‑C will allow you to re‑declare a property in a subclass, and all other aspects of the
property must be identical. This feature supports the immutable superclass, mutable subclass
design pattern.

Storage
The copy attribute applies to object properties. (Scalar and struct properties are always copied.)
Without it, setting an object property retains a pointer to the object. The copy attribute changes the
code in the setter method so that the object is duplicated—the mechanics of which are explained
later in the “Copying Objects” section. The object keeps the reference to the duplicate object,
not the one passed to the setter method. Here’s an example:

@property (copy) NSDictionary *collection;

This can be important when the property is a mutable object. Take, for example, a dictionary
property. If your property were set to a mutable dictionary object, both the object and the sender
would be referring to the same dictionary. If the sender later modified the dictionary, the dictionary
the property is pointing to would change too—because it’s the same dictionary. Making a copy of
the dictionary prevents this from happening.

The attributes retain and assign are alternatives to the copy attribute in a non‑ARC (Automatic
Reference Counting) environment. In this book, you’ve used ARC exclusively in your projects,
so these attributes don’t apply (although they’re allowed, for compatibility with older software).

Lifetime Qualifiers
In an app that uses ARC, the attribute strong or weak determines how the property retains the object
reference, and you’ve seen them throughout this book:

@property (strong) NSString *title;

The details of this are explained in Chapter 21. In short, a strong property will guarantee that the
object exists as long as your property refers to it, and is the default. A weak property won’t prevent
the object from being destroyed, if no other objects have a strong reference to it.

Note The attributes assign, retain, strong, weak, and copy are mutually exclusive; you can use
only one.

633CHAPTER 20: Being Objective

If you’re using legacy code in an ARC project, the retain attribute is equivalent to strong, and
assign is broadly equivalent to weak.

Accessor Method Names
Use the attributes getter= and/or setter= when the property’s getter or setter method names don’t
follow the usual pattern. One use for these attributes is when you are adding @property declarations
to older code that already implements accessor methods with non‑standard names.

A more contemporary use involves getter methods for Boolean values. Boolean properties often
indicate state information. Their getter method has a history of being prefixed with the past or
present form of the “to be” verb, such as -isEnabled or -hasConnection. To allow these getter
methods to work as a property, override the getter name in the property declaration, like this:

@property (getter=hasConnection) BOOL connected;

Now the statements obj.connected and [obj hasConnection] are equivalent. Note that there will be
no -connected method.

Atomic
As explained in Chapter 24, some properties must be accessed and set atomically. This ensures
their integrity when being used from multiple threads of execution. If this is not a concern (which is
most of the time), specify the nonatomic keyword. If it is a concern, and Chapter 24 will explain when
it is, use the atomic keyword or nothing; atomic is the default. Here are two examples:

@property (nonatomic) NSString *name;
@property (atomic) NSPort *port;

It’s somewhat unfortunate that atomic is the default. It certainly produces the safest code, but it also
introduces thread synchronization code that executes every time the setter method is received.
For the best performance, specify the nonatomic attribute for all of your object and struct properties
that don’t need to be atomic.

Keeping Your Promises
When you implement your own getter and setter methods, as opposed to letting Objective‑C
generate them, you are obligated to deliver the behavior specified by your property’s attributes.
Table 20‑4 itemizes your responsibilities.

634 CHAPTER 20: Being Objective

Introspection
Introspection is the ability to examine the metadata of an object. You can determine what class the
object is, what methods it implements, what properties it declares, and so on. The extent to which
you can plumb the details of an object or class is staggering, but there are really only three tests that
are useful on a regular basis.

Class
Every object has a class property. This property is the class of the object. A class is, itself, an object
(of type Class). The class object has properties and methods that describe the class.

Table 20-4. Required Accessor Method Behavior

Attribute Your Implementation

readonly You must implement a getter method. You can still implement a setter method, often
for your class’s own consumption.

copy Your setter method must copy the object being set, and retain the reference to the
duplicate object. You can make an exception for immutable objects.

strong, weak, retain,
assign

Retain the object value using the rules declared in the property. For example, do not
strongly retain an object in a property declared as weak.

getter=, setter= Name your getter and setter methods according to the property declaration.

atomic Code your getter and setter method so that access, and changes to, the property
value are atomic. This usually involves the use of mutual exclusion semaphores.

Note A Class object acts very much like any other object, but in some ways doesn’t. For example, Class
is a type, not a class. So even though it acts like an object, it isn’t a subclass of NSObject. When you send a
class message (+classMethod), the context is the Class object, so the self variable refers to that class.
The class (property) of a Class (object) returns itself.

There are two methods useful for testing the class of an object: -isKindOfClass: and
-isMemberOfClass:. The first determines if an object is a specific class, or any subclass of that class.
You use it like this:

if ([view isKindOfClass:[UIControl class]]) ...

This expression is true if view is a UIControl object, or any subclass of UIControl. It would be false if
view were a UIView, and it would be true if view were a UIButton. The expression [UIControl class]
returns the Class object for UIControl. Remember that the class of a class is itself, so this statement
is essentially a constant. You’d think you could write [view isKindOfClass:UIControl], but obscure
Objective‑C syntax rules prohibit that.

635CHAPTER 20: Being Objective

The second method tests to see if an object is a specific class. You use it just like the
-isKindOfClass: message:

if ([view isMemberOfClass:[UIControl class]]) ...

The message returns YES if the receiver is that class, and NO in all other cases. This statement will be
false if view were a UIView or if view were a UIButton. That’s because neither is a UIControl. In fact,
this statement would be unlikely to ever be true, since UIControl is an abstract class.

Caution The method -isMemberOfClass: is preferred to the expression [view class]==[UIControl
class]. The method correctly handles special objects—such as proxy objects that are placeholders for
objects in another process—for which the equality test will fail.

You might be tempted to use this test to determine if a class implements a particular method or
property (like buttonType, if it was a UIButton). That’s not recommended, because there’s another,
much more relevant, test for methods.

Method
Probably the single most useful introspection test is the -respondsToSelector: message. It returns
YES if the object responds to the message selector—implying that it implements that method.
You typically use it like this:

if ([delegate respondsToSelector:@selector(saveTheUniverse)])
 [delegate saveTheUniverse];

The beauty of this code is that it’s fast, specific, and it works correctly even when the receiver is
nil. It’s the only practical technique for determining which optional protocol methods an object has
elected to implement.

It also avoids the problem of making assumptions. Novice programmers will often test the class of an
object, and then assume that it implements a particular method based on that knowledge. Not only is
this slower, but if the class implementation changes, that assumption could be wrong one day.

Objective‑C encourages functional testing. If you want to know if an object has a tag property, test
to see if it implements a -tag method; don’t check its class and then guess.

Protocol
When dealing with delegate objects, it’s sometimes useful to see if an object adopts a particular
protocol. This is a little more specific than testing its class, and more efficient than testing for a
bunch of different methods. It won’t tell you if the object has implemented any of the optional
protocol methods, but it implies that it’s implemented all of the required ones.

636 CHAPTER 20: Being Objective

One application for this test is to require that an object adopts a protocol. For example, the delegate
setter for your class might check to see if the proposed object does, in fact, adopt the correct
protocol, and abort the program if it doesn’t:

if (![newDelegate conformsToProtocol:@protocol(MyClassDelegate)])
 @throw [NSException exceptionWithName:NSInvalidArgumentException
 reason:@"does not conform to protocol"
 userInfo:nil];

These three introspection techniques are your bread and butter, but they barely scratch the surface of
what you can find out about objects and classes. Search Xcode’s Documentation and API Reference
window for “introspection” and you’ll find a number of articles and guides similar to what I’ve written
here. If you really want to dig deep, the definitive guide is the Objective‑C Runtime Reference.

Protocols
A protocol defines a set of methods a class promises to implement. A protocol is defined using a
@protocol directive. Here’s a protocol declaration:

@protocol PromiseDelegate

- (void)pledge:(Promise*)promise; // required method
@property BOOL crossHeart; // required property

@optional
- (void)swear; // optional method
@property BOOL hopeToDie; // optional property

@end

A protocol looks just very much like an @interface, except that it can’t declare instance variables.
A protocol can define properties, but those properties won’t automatically allocate any instance
variables or generate the getter or setter methods, the way they would in an @interface. You can
also specify that methods/properties are optional using the @optional and @required directives;
@required is the default.

A protocol is often in its own .h (header) file, named after the protocol. If a protocol goes hand‑in‑glove
with a class, you may find both defined in the class’s .h file.

Adopting Protocols
A class adopts one or more protocols by listing them after its @interface directive, like this:

@interface Agent : NSObject <PromiseDelegate>

A class is responsible for implementing the required protocol methods, and the getters and setters
for any required properties. It’s free to implement all, some, or none of the optional methods.
An object of a class that adopts a protocol is said to conform to that protocol.

637CHAPTER 20: Being Objective

A category (next section) can also adopt protocols. A protocol can adopt protocols
(superprotocols?), like this:

@protocol PromiseDelegate <NSCoding>

Adopting a protocol that adopts another protocol adopts both. Using this protocol declaration,
the Agent class adopts both the PromiseDelegate and NSCoding protocols.

Referring to Conforming Objects
Any number of classes can adopt the same protocol. The protocol defines a behavior, independent
of the class hierarchy, that any class can adopt. This allows disparate objects to share a common
functionality and be treated homogenously, a central feature of aspect programming. Objective‑C
provides a special syntax for referring to any object that conforms to a protocol:

id<PromiseDelegate> promisor;

The type id<PromiseDelegate> can be used anywhere an object reference type (id or Agent*) would
be acceptable. The promisor variable can be set to any object that adopts the PromiseDelegate
protocol. The type can include multiple protocols, separated by commas.

The NSCoding protocol is an excellent example. Any class, no matter what its superclass, can elect
to adopt the NSCoding protocol and participate in archiving and unarchiving. You can treat all such
objects uniformly by referring to them as id<NSCoding> objects.

There is, however, a stumbling block with this scheme. When you declare a variable to be
id<PromiseDelegate>, the Objective‑C compiler assumes that the object implements only those
methods and properties in the PromiseDelegate protocol. An id<PromiseDelegate> type is, therefore,
more like a specific class reference (UIButton*) than a wildcard (id). Attempting to send the object
any message not in the protocol results in a compiler error. This creates problems for a statement
like this one:

if ([promisor respondsToSelector:@selector(swear)]) // * compiler error *
 [promisor swear];

The PromiseDelegate protocol only defines two methods and two properties. The method
-respondsToSelector: is not among those. You’re probably saying, “But promisor must implement
-respondsToSelector:, because that’s defined in NSObject, and every object inherits from NSObject!”
And you’re correct, promisor does inherit -respondsToSelector:—but the Objective‑C compiler
doesn’t assume that, because the type of promisor is id<PromiseDelegate>.

Tip A less elegant way around this problem is to cast the object variable as id, as in [(id)promisor
respondsToSelector:...]. Objective-C will allow you send an id object any message without complaining.

638 CHAPTER 20: Being Objective

The Cocoa Touch framework defines the special NSObject protocol to help you get around this
inconvenience. The NSObject protocol declares almost all of the same methods that NSObject
implements. By adopting NSObject in your protocol (@protocol PromiseDelegate <NSObject>), any
use of the type id<PromiseDelegate> implies that the object adopts both the PromiseDelegate and
NSObject protocols, which includes all of the commonly used methods in NSObject.

Categories
A category implements additional methods for an existing class, compiled independently of that
class. If you’re used to object‑oriented languages like Java or C#, categories will seem strange, even
bizarre. It’s a unique feature, but it neatly solves a number of vexing programming problems.

A category declares, and implements, a set of methods. These methods are compiled and linked
to your app in their own module. When your app runs, the category adds its methods to an existing
class. It can be any class: one that you wrote or even one that’s part of the operating system.

Caution Do not attempt to override a method in a category. A category cannot (reliably) be used to replace
an existing method. If you try this, only one of those methods will execute, and it’s unpredictable which one it
will be.

You declare a category as if you were defining a class. The class name is a class that’s already
been defined. Instead of a superclass, you follow the class with the category name in parentheses,
like this:

@interface NSString (WordCount)
- (NSUInteger)wordCount;
@end

This defines a category of NSString named WordCount. It adds one new method, -wordCount, to the
existing NSString class. You then implement those methods in a similarly named @implementation
section:

@implementation NSString (WordCount)

- (NSUInteger)wordCount
{
 return /* count number of words in self here */;
}

@end

When your app loads, this category inserts its method into the NSString class. You can now send a
-wordCount messages to any NSString object. The methods you implement execute in the context of
the object, and are indistinguishable from methods defined by the original class.

639CHAPTER 20: Being Objective

Categories are typically written as a .h (interface) and .m (implementation) file, exactly as a regular
class would be. When importing header files, remember that the compiler must see both the class
interface and the category’s interface, before it will recognize your category’s methods and properties.

Tip When choosing filenames for a category, the convention is to use the class name “plus” the category
name, as in NSString+WordCount.h and NSString+WordCount.m. Xcode’s Objective-C category file
template will do this for you.

I mentioned that categories help solve peculiar programming problems. Let’s talk about three
of them.

Single Responsibility
The single responsibility principle encourages an object, and by extension a class, to do one thing
well. But that can be limiting. Sometimes you need an object to do a variety of unrelated tasks.

Single responsibility means that string objects only do “string” things. This is great. This is how
it should be. But when it comes time to do “non‑string” things with strings, like drawing a string
in graphics context, software designers have a problem. They’d like to be able to tell a string,
“Draw yourself.” But they don’t want to “pollute” the string class with non‑string related code.
Programmers using other object‑oriented languages end up organizing all of the drawing code in
other classes, which result in methods like this:

[graphicsContext drawString:string at:point];

Categories give you the tools to simplify your design, without “polluting” the NSString class. Using
a category, you can add drawing methods directly to the string class. All of the drawing code is
maintained, and compiled, separately from the NSString class. Now your app can draw a string
like this:

[string drawAt:point];

You code is actually more object oriented, simpler, and easier to code. And this example isn’t
hypothetical. All of the string drawing functions in iOS are defined in a category of NSString provided
by the UIKit framework, specifically NSString(UIStringDrawing).

Module Organization
Categories are also useful for organizing your methods. In particularly complex classes, it helps to
group your methods into categories, pun intended.

In Chapter 14, the STGame object was responsible for all of the gameplay logic. Later, you also
made it responsible for communicating with STGame objects on other iOS devices. Rather than just
shoving new methods into STGame, you created a category, STGame(STDataMessaging). All of the
communications code was neatly organized in its own module.

640 CHAPTER 20: Being Objective

This can be very helpful in large projects where multiple programmers are contributing to the
same class. One programmer could be working on the game logic, while another one refines the
communications code. Since the category is separate from the main class, they won’t step on each
other’s toes.

Private Methods
Objective‑C programmers soon discovered another use for categories: hiding methods. Let’s
say you’ve written a Star Gazer app. It has a Star class that represents a star. Your Star object is
immutable; stars don’t change. But then you create the Star Editor app that allows users to edit
stars. You don’t want to make the Star class in your Star Gazer app mutable. In that context, stars
should still be immutable.

Categories solve this problem neatly. Both apps use the Star class and Star Editor adds a
Star(MutableStar) category with the methods needed to alter it. These methods are “private” to the
Star Editor app.

And the desire for private methods can be much more mundane. Objective‑C methods have no
visibility attribute; you can’t declare a method to be @private or @protected, as you can with
instance variables. So programmers quickly started to use categories to “hide” class methods that
were intended only for internal consumption. Almost every class would define a category like this:

@interface MyClass (Private) // private methods
- (void)doSomethingSecret;
@end

This practice became so widespread, that it inspired a change to the Objective‑C language.

Extensions
Objective‑C 2.0 introduced the extension. An extension is an unnamed category of a class. I’ve
been referring to these as “the private @interface” for your class throughout this book, but they are
technically extensions. Here’s an example of an extension:

@interface MyClass ()
- (void)doSomethingSecret;
@end

The rules for an extension differ slightly from a regular category:

There can only be one extension per class, and it must be declared before the 	
@implementation of the class.

The methods and properties declared in an extension are implemented in 	
the @implementation section of the class, right alongside the class’s regular
methods—not in a separate category @implementation.

Extensions can declare additional instance variables and properties that create 	
instance variables. These variables become part of the object, just as if they had
been declared in the class’s @interface.

641CHAPTER 20: Being Objective

nil is Your Friend
If you’re an experienced programmer, but new to Objective‑C, you probably have a healthy fear of
NULL pointers. And you should. In most languages, NULL pointers and object references are ticking
time bombs. Call a method on a NULL Java object, and your code will throw an uncaught exception.
Dereference a NULL pointer in C, and your app just crashed. Terminated. Pushing up daisies.
Dead. An ex‑app.

The Unbearable Lightness of nil
Objective‑C, in contrast, takes a decidedly different attitude towards nil. You can send a nil object
any message. It’s perfectly safe. It’s even encouraged, and it will change the way you write your
software. Let’s take a look.

An Objective‑C invocation involves a message and a receiver. The receiver is usually a variable,
like this:

[obj doSomething];

If the object obj implements the -doSomething method, it executes. If it does not implement the
-doSomething method, it throws an exception (that’s bad). But if obj is nil (points to address 0),
Objective‑C does a curious thing: it quietly does nothing and goes on. In Chapter 18, the
cloudService variable will be nil when the user isn’t synchronizing their location with the cloud.
When the user removed the saved map location, this code executes:

[cloudStore removeObjectForKey:kPreferenceSavedLocation];

If cloudStore referred to the ubiquitous value store, then the value with that key would be removed.
If cloudStore was nil, the statement would do nothing and continue. It wasn’t necessary to pepper
the code with if (cloudStore!=nil) ... statements to prevent that line from executing.

Pay attention to those places in your code where you don’t want something to happen when an
object is missing or hasn’t been set. Look back through the projects in this book for examples; there
are probably more than you realize. Let the nil‑ness of the variable implicitly skip whatever you
would have done if there were an object. You might not start a timer, if there’s no timer. You might
not set a lock, if there’s no lock, and so forth.

The Virtues of Being Positive
And it doesn’t just return, it returns an empty value. If the message you sent a nil object returns an
object, scalar, or pointer value, Objective‑C guarantees the return value will 0, 0.0, NO, NULL, or nil.
This makes it possible to write the following with impunity:

if ([delegate conformsToProtocol:@protocol(MyClassDelegate)])
 {
 // do something with delegate
 }

642 CHAPTER 20: Being Objective

If delegate is nil, the message -conformsToProtocol: will return NO. This makes sense. A nil object
doesn’t implement your protocol. It doesn’t implement anything.

This also means nil applies to property values. The expression collection.count will always be 0 if
collection is nil, because collection.count gets translated into [collection count]. And there’s
a cascade effect. The statement [viewController.button.superview.backgroundColor setFill] will
do nothing if backgroundColor is nil, superview is nil, button is nil, or viewController is nil.

You can exploit this in your own design by expressing return and property values in the positive
sense. Define methods like -hasContent instead of -isEmpty. If an object reference is nil, the
message -hasContent returns NO. This makes sense; a nil object doesn’t have any content. But
-isEmpty would also return NO, implying that it has content; believe me, it doesn’t. In short, choose
properties and return values so they still make sense when sent to nil objects.

When nil Is Bad
That’s not to say nil is harmless all the time. If used as a C pointer, it has all the hazards associated
with dereferencing a NULL pointer. Which is yet another reason to embrace properties; getter and
setter methods are perfectly safe when used with a nil object. If obj is nil, the statement obj.var=0
is safe and does nothing. In contrast, the statement obj->var=0 will crash your app.

A nil parameter can also be a hazard. A lot of methods do not tolerate nil parameters. In the
statement [array removeObject:obj], array can be nil, but obj must not be. Most methods that
allow nil parameters will say so in the documentation. If it doesn’t, assume nil is not allowed.

Finally, a message sent to a nil object does nothing, but the parameters of that message
are prepared first. This means that any side effects of assembling the parameters will occur.
In the following code, the -useConnection message isn’t sent if downloader is nil, but the
+createConnection message still gets sent:

[downloader useConnection:[DownloadSource createConnection]];

If you wanted to prevent +createConnection from being sent, you’d need to first test to see that
downloader!=nil.

Copying Objects
The Cocoa framework defines a protocol for copying (duplicating) objects. Not all objects can be
copied. Those that can adopt the NSCopying protocol and implement a -copyWithZone: method.
There are three ways to make your objects copyable:

Adopt 	 NSCopying and create a new object in your -copyWithZone: method

Inherit 	 NSCopying and send the superclass a -copyWithZone: message

Take a shortcut	

643CHAPTER 20: Being Objective

Adopting NSCopying
If your class is the one adopting NSCopying, its -copyWithZone: must create a new object and
duplicate its properties, as appropriate. Here’s an example:

@interface Recipe : NSObject <NSCopying>
@property NSString *title;
@property NSMutableArray *ingredients;
@end

@implementation Recipe

- (id)copyWithZone:(NSZone *)zone
{
 Recipe *copy = [[[self class] allocWithZone:zone] init];
 if (copy!=nil)
 {
 copy->_title = _title;
 copy->_ingredients = [_ingredients copy];
 }
 return copy;
}

@end

The Recipe class is the first to adopt NSCopying, so it must create a new object in its
-copyWithZone: method. Notice how it creates the new object, with the statement [[[self class]
allocWithZone:zone] init]. There are three steps to creating a duplicate object correctly:

1. Get the class of the original object. Subclasses of Recipe inherit this
-copyWithZone: method, so it’s possible that self could be a subclass of
Recipe. The expression [self class] gets the class of the object, rather than
assuming it’s a Recipe object.

2. Send the -allocWithZone: message to allocate the object in the requested
memory zone. In iOS the zone parameter is typically nil, but this satisfied the
memory management contract for -copyWithZone:.

3. Finally, the newly created object receives its -init message and you test to
see that it’s not nil, in case the object couldn’t be created.

Note Memory zones are not used in iOS. But to maintain compatibility with Cocoa (OS X) classes, the
-copyWithZone: message still includes a zone parameter.

After that, the individual property values of the original object (self) are copied to the new object
(copy). What gets copied and how is up to you, but as a rule the copy should be functionally identical
to the original, and autonomous. To that end, the title reference is simply copied. The title property

644 CHAPTER 20: Being Objective

is an NSString, and NSString objects are immutable, so both objects can safely refer to the same
string object. This is called a shallow copy. The ingredients array, however, is duplicated so that the
ingredients of the copy are not coupled to the ingredients of the original. This is called a
deep copy.

Other properties might be treated differently. For example, an object with a UUID (Universally Unique
Identifier) property might generate a new UUID when the object is copied, so that both objects have
unique IDs. You’ll make these kinds of decisions on a case‑by‑case basis.

Inheriting NSCopying
When your class inherits NSCopying, it’s your responsibility to see that it upholds its copy contract.
This is an easy thing to overlook. Your subclass should implement its -copyWithZone: method,
like this:

@interface AssignedRecipe : Recipe
@property Chef *chef;
@end

@implementation AssignedRecipe

- (id)copyWithZone:(NSZone *)zone
{
 AssignedRecipe *copy = [super copyWithZone:zone];
 if (copy!=nil)
 {
 copy->_chef = _chef;
 }
 return copy;
}

@end

Recipe already adopts NSCopying and creates the copy of the object in its -copyWithZone: method.
All the subclass has to do is let the superclass create the new copy and then duplicate any
subclass‑specific properties.

Copying Something Special
As an alternative, your -copyWithZone: implementation might do something completely different.
For example, if your object is immutable, or a singleton, then its -copyWithZone: method could
be this:

- (id)copyWithZone:(NSZone *)zone
{
 return self;
}

Any attempt to copy your object will return a reference to itself.

645CHAPTER 20: Being Objective

Copying an Object
When you want to copy an object, first make sure it adopts NSCopying. To make a copy, send it a
-copy message. (NSObject’s -copy method just executes [self copyWithZone:nil]). The returned
value is the duplicate object. If you were writing a property setter that specified the copy attribute,
your code would look like this:

@property (copy) NSDictionary *options;

...

- (void)setOptions:(NSDictionary*)options
{
 _options = [options copy];
}

Mutable Copies
A few classes, most notably the collection classes, adopt the special NSMutableCopying protocol and
implement the -mutableCopyWithZone: method.

The base class collections (NSArray, NSDictionary, NSSet, and so on), along with NSString, are all
immutable—they can’t be changed. If you copy an immutable object, you’ll just end up with another
immutable object, possibly the same object.

If you need a mutable copy of a string, collection, or any immutable object that conforms to
NSMutableCopying, send it a -mutableCopy message. If the array (for example) was already a mutable
array, you’ll receive a copy of the array, the same as sending -copy. But if it was an immutable array
(NSArray), it will return a new mutable array (NSMutableArray) with the same contents.

Attributed Strings
You’ve seen, throughout this book, a number of UIView classes and drawing methods that use
attributed strings, instead of regular strings. An attributed string associates a variable number of
attribute values with a range of characters within the string. Attributes can express the font the
characters are drawn in (font family, size, style), color, typographical adjustments (character spacing),
alignment (right justified, superscript, subscript), text decorations (underline, strikethrough), and so
on. Attributed strings are very flexible and can describe arbitrarily complex typography. In concept,
they’re not complicated, although they can be a little tedious in practice.

Attributes are expressed as a dictionary of values. The key identifies the kind of attribute. This
dictionary is then associated with a range of characters. The following example shows how
attributed strings are constructed:

NSMutableAttributedString *fancyString;
fancyString = [[NSMutableAttributedString alloc] initWithString:@"iOS "];
NSDictionary *iOSAttrs = @{
 NSFontAttributeName: [UIFont italicSystemFontOfSize:30],

646 CHAPTER 20: Being Objective

 NSForegroundColorAttributeName: [UIColor redColor],
 NSKernAttributeName: @4, };
[fancyString setAttributes:iOSAttrs range:NSMakeRange(0,3)];

NSDictionary *appAttrs = @{
 NSFontAttributeName: [UIFont boldSystemFontOfSize:28],
 NSUnderlineStyleAttributeName: @(NSUnderlineStyleSingle) };
NSAttributedString *secondString;
secondString = [[NSAttributedString alloc] initWithString:@"App!"
 attributes:appAttrs];
[fancyString appendAttributedString:secondString];

self.label.attributedText = fancyString;

The first block of code creates a mutable attributed string from a plain string. It then creates a
dictionary, defining three attributes: the italic system font at 30pts, the color red, and a kerning
(inter‑character spacing) of 4pts. Those attributes are applied to the first three characters of the
string. Note that the space character (4th character in the string) has no attributes.

The second technique is to create an attributed string directly from a string and a dictionary of
attributes. The appAttrs dictionary describes the system bold font at 28pts and the underline style.
When you create an attributed string this way, the attributes apply to all of the characters.

Finally, the second attributed string is appended to the first. The appended string retains all of its
attributes. The fancyString object now has 8 characters, with one set of attributes for the first three,
a different set for the last four, and still no attributes for the space. All attributes have default values
and a character will use the default values for any attributes it’s missing.

When the attributed string is assigned to a UILabel, as shown in Figure 20‑1, its attributes determine
how it is drawn.

647CHAPTER 20: Being Objective

Here are some tips for using attributed strings:

An attributed string is not a subclass of 	 NSString. It has an NSString (its string
property), but it isn’t an NSString.

If the attributes apply to the entire string, you can create a single, immutable, 	
attributed string using NSAttributedString.

If you want to create an attributed string with a mixture of different attributes, 	
you must create an NSMutableAttributedString and construct it piecemeal.

Using a mutable attributed string, you can set the attributes for a range of 	
characters (-setAttributes:range:), which replace any previous attributes
for that range. You can also add (-addAttributes:range:) or remove
(-removeAttributes:range:) attributes. These methods combine with,
or selectively remove from, the existing attributes.

Figure 20-1. An attributed string in a label

Caution Never change an attribute by altering the value object in an attribute dictionary that’s already been
assigned to a range. You must always replace the attributes to change them.

648 CHAPTER 20: Being Objective

Find the NSAttributedString UIKit Additions Reference in Xcode’s Documentation and API Reference
window. The “Constants” section lists all of the attribute keys supported by iOS, and what kind of
value object to supply for each.

Collections
You’ve probably learned almost everything you need to know about collections through osmosis.
The array (NSArray) and dictionary (NSDictionary) collections are used extensively throughout iOS.
You just saw how dictionaries describe attributes in a string.

There are, however, a few collection objects that you might not have heard of, and some fine points
you should be aware of. And it’s always nice to know how to work with the objects in a collection.
Let’s start with what’s on the menu.

Collection Classes
Table 20‑5 lists the major collection classes in iOS.

Table 20-5. Collection classes

Immutable Class Mutable Class Description

NSArray NSMutableArray An ordered collection of objects. Objects are identified by their
position (index) in the collection.

NSPointerArray Like an NSMutableArray, but can be tailored to store things
other than objects (integer values, pointers, NULL).

NSDictionary NSMutableDictionary An unordered collection of objects. A unique key object
addresses each value object.

NSMapTable Like an NSMutableDictionary, but can be tailored to store things
other than objects (integer values, pointers, NULL).

NSSet NSMutableSet An unordered collection of unique objects. Objects are either in
the set or they are not. Individual objects cannot be addressed.

NSHashTable Like NSMutableSet, but can be tailored to store things other than
objects (integer values, pointers, NULL).

NSIndexSet NSMutableIndexSet A set of integer values.

The traditional collection classes, NSArray, NSDictionary, NSSet, and NSIndexSet, all come in two
flavors: an immutable base class and a mutable subclass. NSArray, NSDictionary, and NSSet can
only store object values, and that does not include nil. NSIndexSet is a special collection that
efficiently keeps track of a set of integer values.

The newer NSPointerArray, NSMapTable, and NSHashTable are essentially professional versions of
NSArray, NSDictionary, and NSSet. They can be configured to store things other than objects, use
different memory management rules, and they can store nil/NULL values. Unless you have a burning
need to store a nil value in an array, or you are storing a bazillion small value objects, you’re better

649CHAPTER 20: Being Objective

off using the NSArray, NSDictionary, and NSSet classes. If you want to step up to NSPointerArray,
NSMapTable, or NSHashTable, read the appropriate chapter in the Collections Programming Topics
document that you’ll find in Xcode’s Documentation and API Reference window.

Here are a few details about collections that you should know:

Object and key equality in arrays, dictionaries, and sets is determined by the 	
-isEqual: method of the objects. Every object inherits an -isEqual: method
from NSObject. It’s used to determine if two objects are equivalent. If you add
custom objects to a collection, and test for their presence (using methods like
-containsObject:), or do anything with sets, those objects must implement their
-isEqual: and -hash methods correctly. See the documentation for -hash.

Objects used for the keys in dictionaries are copied when added to the 	
collection. For typical keys (NSNumber and NSString), this doesn’t matter because
they are both immutable and already conform to NSCopying. If you use unusual
objects for your dictionary keys, they must implement NSCopying, and be aware
that they’ll be copied when added.

You can sort arrays in one of four ways: supply a comparison message the 	
objects respond to, supply an array of comparison descriptors, supply a C
function that compares the objects, or pass a code block that compares the
objects. Immutable arrays can create a new, sorted, array. Mutable arrays
can be sorted in place. See the “Arrays: Ordered Collections” section of the
Collections Programming Topics document.

All of the collections have methods for adding, subtracting, and combining 	
collections. If you need to make wholesale changes to a collection, such as
combining two arrays (‑addObjectsFromArray:), determining the intersection
of two sets (‑intersectSet:), or removing multiple keys from a dictionary
(‑removeObjectsForKeys:), look for methods that already do that work for you.

Enumeration
A lot of times you’ll want to do something with all of the objects in a collection. The Objective‑C
language provides a for loop syntax just for collections, and the collection objects themselves have
a variety of enumeration methods. Let’s start with Objective‑C.

Fast Object Enumeration
Objects in a collection can be processed, one at a time, using a special form of C’s for loop syntax:

for (id obj in collection) { ... }

The loop’s code block is executed once for every object in the collection. The obj variable will refer
to a different object during each iteration. For arrays, the order is always the order of the objects in
the array. For dictionaries and sets, the order is unpredictable.

650 CHAPTER 20: Being Objective

Caution You cannot modify a collection during the execution of the for loop. Modifying the collection will
throw an exception. Either loop through a duplicate of the collection (that won’t change), or just avoid making
changes until the loop is finished.

When using the for loop on a dictionary, obj will be the keys in the dictionary, not the values.
To work with the values, you can use the key to get the value at the beginning of the code block
(id v = collection[obj]), or you can loop through the values using code like for (id v in
dictionary.allValues). The allValues property returns an array of just the value objects in
the dictionary.

Note Technically, the collection term of the for loop can be any object that conforms to
NSFastEnumeration. If you create a custom class that adopts NSFastEnumeration, you can pass
your object as the collection term of a for loop. Your object is responsible for supplying the individual
object values.

Collection Enumeration
The alternative technique is to use one of the many enumeration methods in the collection classes.
Broadly, these come in two flavors:

Send a simple message to every object in the collection. An example is 	
-makeObjectsPerformSelector:.

Execute a code block with every object in the collection. Examples are 	
-enumerateObjectsUsingBlock: and -enumerateKeysAndObjectsUsingBlock:.

The latter method is the most flexible, and in many ways very similar to using the for loop technique.
Most of the block‑based enumeration methods include a stop parameter. This parameter points to
a BOOL value. If, while processing the objects, your code wants the enumeration to stop, set the BOOL
value to YES, like this:

*stop = YES;

Shortcuts
Who doesn’t love shortcuts? It means less typing, and your code is often easier to read. You’ve
already seen how accessor syntax simplifies your code. The latest version of Objective‑C adds a
fresh batch of shortcuts, which I’ve summarized in Table 20‑6.

651CHAPTER 20: Being Objective

Summary
There’s more to Objective‑C; I didn’t cover everything. But you’ve learned a lot. And I mean,
a lot—enough to write professional‑level iOS apps. Some of the topics I didn’t cover are Key‑Value
Coding, code blocks, exceptions, programmatic method invocation, and the toll‑free bridge, to name
a few. Don’t panic; there are technology guides for all of those included in the Xcode documentation.
If you need something I missed, hit the docs. It’s all there.

I also don’t expect you to memorize everything in this chapter the first time around. Most
Objective‑C developers, myself included, learned these lessons over the course of years. Use this
chapter as a reference, or just come back when things feel fuzzy.

It’s confession time. In the preceding chapters, I deliberately sidestepped one of the most onerous
programming tasks there is: memory management. You’re now ready to tackle that topic.

Table 20-6. Objective‑C shortcuts

Task Shortcut Equivalent Code

Create NSNumber @3
@3.14159267
@YES
@((int)expression)

[NSNumber numberWithInteger:3]
[NSNumber numberWithDouble:3.14159267]
[NSNumber numberWithBool:YES]
[NSNumber numberWithInteger:expression]

Create NSArray @[a,b,c] [NSArray arrayWithObjects:a,b,c,nil]

Create NSDictionary @{ @"key": v } [NSDictionary dictionaryWithObject:v
forKey:@"key"]

Create NSDictionary @{ @"key1": v1,
 @"key2": v2 }

[NSDictionary dictionaryWithObjectsAndKeys:
v1, @"key1",
v2, @"key2",
nil]

Object in an NSArray array[1] [array objectAtIndex:1]

Replace object in an
NSMutableArray

array[1] = obj [array replaceObjectAtIndex:1
withObject:obj]

Object in an NSDictionary dictionary[@"key"] [dictionary objectForKey:@"key"]

Set object in an
NSMutableDictionary

dictionary[@"key"] = obj [dictionary setObject:obj forKey:@"key"]

653

Chapter 21
The Elephant in the Room

So far, I’ve been ignoring a huge part of app development, memory management. It can be a difficult
and painful topic, and has been the bane of many a programmer. I, personally, have spent days
tracking down memory leaks and over-release bugs. If you have any programming experience, you’ve
probably dedicated a significant portion of your brain to dealing with memory management rules.

So how did I pull this off—ignoring such an important topic—for most of this book? The answer
is Automatic Reference Counting (ARC). Apple, in collaboration with the Objective-C language
developers, has baked efficient—and nearly foolproof—memory management right into Objective-C
and iOS. This is a huge boon for modern iOS developers, like you.

It’s delightful that you haven’t been burdened with memory management in this book. But that’s not
to say that ignorance is bliss. To be a proficient iOS developer, it helps to know when objects get
destroyed, how ARC replaces traditional memory management, and what those strong and weak
property attributes mean. In this chapter you will learn:

The principles of memory management	

How garbage collection works	

How reference counting works	

How ARC implements reference counting for you	

What lifetime qualifiers mean	

What ARC doesn’t do	

In Chapter 18 you created the page view controller’s data source programmatically. You also had
to store a reference to it in both the controller’s data source outlet and an instance variable—a
variable you never used. This seems like Voodoo, unless you understand the retention rules for
object references. If you didn’t, you would have gone insane trying to figure out why the data source
of your view controller kept disappearing. I want to save you from that fate, so let’s set sail for the
mysterious land of memory management.

654 CHAPTER 21: The Elephant in the Room

Memory Management
What is memory management? Memory management is how an app manages its dynamically
allocated memory. At a fundamental level, memory management is a simple concept:

1. Your app’s process is allotted a range of memory locations (bytes), called its
logical address space.

2. The bulk of those locations are placed into a vast pool of available memory
called the heap.

3. Whenever your app needs a block of memory to store something (like an
object) it requests a block of bytes from the heap.

4. A block of free bytes is found (allocated) and can now by utilized by your
app. The pointer to this block of bytes becomes the object’s reference.

5. Your app uses the block/object to store values and do wonderful things.

6. When your app is done with the block/object, it passes the address back to
the heap. That range of locations is returned to the pool of free bytes, ready
to be used for some other purpose.

It’s kindergarten rules: you take something off the shelf, play with it, and put it back when you’re
done. As simple as it sounds, the operating system is already doing an incredible amount of work for
you, keeping track of what memory is in use and efficiently recycling it.

Determining when your app needs a block of memory is easy. Figuring out when it should be
returned to the heap keeps programmers up through the night. Giving blocks back in a timely
fashion is important, which brings us to the first three pitfalls of memory management:

Running out of memory	

Neglecting to return enough memory to the heap, and running out of memory	

Forgetting to return blocks you’re no longer using, and running out of memory	

You’ll encounter the first problem when your app’s memory needs exceed that of the device. This
is a real possibility on iOS devices. Handheld computer systems have a tiny fraction of the memory
available to typical desktop computers, and they don’t employ technology (like virtual memory
stores) to extend that. So while it’s practically impossible for modern desktop applications to run out
of addressable memory, it’s a daily occurrence for even the best iOS apps. If your app deals with
large amounts of data, it’s something you’ll have to contend with.

The second problem is just poor app design. Failing to return memory that you don’t need will mean
your app uses more memory than it should. This reduces the performance of your app, other apps,
and the iOS device in general. In Chapter 23, you’re going to analyze your app’s memory usage and
take steps to release objects you don’t really need.

The last problem is called a memory leak, and that’s a bug. If you allocate a block of memory, forget
to return it, and forget its address, that block of memory is lost—it stays allocated, and it can never
(ever!) be used again. Repeat this a few thousand times, and your app will begin to suffer, eventually
running out of free memory, and dying.

655CHAPTER 21: The Elephant in the Room

Your Grandfather’s Memory Management
Simple memory management follows the steps outlined at the beginning of “Memory Management;”
your code allocates a block of memory when it wants one, and frees it again when it’s finished with it.
You can do this directly, should you need to. Pass the number of bytes you want to allocate to the
alloc function. It will return a pointer to an allocated block of memory. When you have finished using
that memory, pass the same pointer to the free function, returning it to the pool of available memory.

When you allocate a new Objective-C object ([[MyClass alloc] init]), that +alloc class method
eventually ends up calling alloc (the C function) to carve out a little chunk of the heap for your new
object. When the object gets destroyed, free is called to recycle it.

That sounds simple. So why isn’t this chapter ending already? When code allocates an object, some
other code has to take responsibility for destroying it when it’s no longer needed. Specifically, you
have to answer the general question “what code is responsible for destroying the object when your
app is done with it?” Answering that question can be a little tricky.

We’ve already talked about how objects form graphs. Objects refer to other objects, which refer to
even more objects. Several objects can refer to the same object. An object can refer to an object
that refers back to the original object, creating a loop. In these situations, answering the question
“who’s responsible for this object” isn’t easy, or even meaningful.

Here’s a simple example. In the last chapter, you saw how to use an attributed string to display
styled text in a UIView. Figure 21-1 shows a similar graph of objects. It has two buttons, with
different titles, but both titles use the same font.

Button AttributedString
String

String

String Font

Dictionary

Dictionary
AttributedStringButton

Figure 21-1. Attributed string object graph

Now pretend the attributed string of a button is replaced with a different one. The graph of objects
now looks like the one in Figure 21-2.

Button AttributedString

String String

Font

String

String

Dictionary

Dictionary

Dictionary

AttributedString

AttributedString

Button

Figure 21-2. Object graph with leaked objects

656 CHAPTER 21: The Elephant in the Room

There’s no longer a reference to the original attributed string. Unless the attributed string, string, and
dictionary objects are destroyed, they’ll “leak,” wasting precious memory. It won’t take long before
thousands (millions!) of leaked objects choke your app to death.

You might suggest that the button take responsibility for destroying the attributed string object.
That’s an excellent suggestion. You could make a general rule that the object with the reference
destroys the original object when it’s done with it.

But which object should destroy the font object? Several objects reference it. No one object is
“responsible” for the font object. So when the dictionary that refers to it is destroyed, does it,
or does it not, need to destroy the font object?

And this is the central problem with object reclamation in an undirected graph of objects—determining
which objects are still useful and which ones aren’t. Computer scientists and engineers have spent
decades trying to solve this problem, and they’ve come up with two solutions: garbage collection
and reference counting.

Garbage Collection
iOS doesn’t use garbage collection (although it made a brief appearance in OS X’s Cocoa). The
poster children for garbage collection are currently Java and C#. Understanding how garbage
collection works is useful, mostly, as a conceptual basis for what automatic memory management
does for you. You can then appreciate the logic behind reference counting when we get to that.
To that end, here’s the Cliff Notes version of garbage collection.

In garbage collection, the operating system keeps track of every object your app creates. It
periodically traces the graph of objects in your app. It starts with your permanent objects (like your
application object), and finds all of the objects it references (your view controllers), all of the objects
those objects reference (your data model), and so on, until it’s created the set of reachable objects.
These are all of the objects your app has access to. (If you have no way of referring to an object, you
can’t use it, no matter how much you want to.) What’s left over are the unreachable objects; in other
words, the garbage. This is shown in Figure 21-3.

Button

Button

AttributedString

AttributedString

AttributedString

String

String String

String

Dictionary

Dictionary Font

Dictionary

Figure 21-3. Reachable and unreachable objects

657CHAPTER 21: The Elephant in the Room

The attributed string, and the dictionary and string objects it refers to, have become unreachable.
These objects are destroyed and their memory recycled.

The beauty of garbage collection is that it takes almost no effort on the part of the programmer.
You simply set, or forget, object references as needed. The operating system will eventually come
around to figure out which objects you’re using and which ones you’re not.

That sounds fantastic, doesn’t it? So why doesn’t iOS use garbage collection? There are a couple
of reasons. Garbage collection shifts all of the work onto the operating system. Periodically sifting
through tens of thousands of objects to determine who references what is not a trivial task. This
requires a significant amount of CPU time, which translates into battery drain and intermittent
unresponsiveness.

Secondly, research has concluded that garbage collection is only truly efficient when there is
substantially more memory available than the application uses.1 When memory is tight, the
performance of garbage collection plummets, further reducing your app’s performance.

Garbage collection works great, therefore, when there’s lots of CPU capacity, no reason to conserve
that capacity, and a surfeit of memory. What does that sound like? I hope you said “desktop
computers” or “servers,” because that’s not the description of tiny handheld computing platforms,
like iOS devices.

What you want is a solution like garbage collection—that can automatically determine what objects
are in use and which ones need to be destroyed—without so much overhead. That solution is called
reference counting.

Reference Counting
Reference counting counts the references to an object to determine if it’s still in use. It’s a
cooperative system, whereby each object remembers the number of references to it—called its
reference count. Objects that use an object inform it when they establish a reference to it, and again
later when they no longer need it. An object is destroyed when the last referring object breaks its
connection. Here’s the scheme, in brief:

When an object wants to maintain a reference to another object, it sends that 	
object a -retain message. The -retain message increases the receiver’s
reference count by one.

When an object stops referring to an object, it first sends the object a 	 -release
message. The -release message decrements the receiver’s reference count by one.

When an object’s reference count becomes 0, it destroys itself.	

In essence, it shifts the responsibility for determining when an object is no longer being used from
the operating system to the object and the objects that refer to that object.

1Recent studies conclude that garbage collection matches the efficiency of reference counting only
when the total heap memory is at least 4 to 5 times that of the application’s memory footprint: Quantifying
the Performance of Garbage Collection vs. Explicit Memory Management by Matthew Hertz and Emery D.
Berger, Dept. of Computer Science, University of Massachusetts Amherst, Amherst, MA.

658 CHAPTER 21: The Elephant in the Room

Returning to the attributed string example, each object reference in the graph is accompanied by a
-retain message. Each message increments the object’s reference count by one, and it knows that
one more object is using it. Shared objects, like the Font object, have a reference count of two or
more, as they’re being used by more than one object, as shown in Figure 21-4.

Button
1

1 1

1

1

1

1

1

+1

+1

+1

+1

+1

+1

+1

+1

+1

2

2

+1

+1

+1

Button AttributedString
String

String

FontString

Dictionary

Dictionary

AttributedString

Figure 21-4. Reference counted objects

Button AttributedString

AttributedString

AttributedString

String

String

String

String Font
3

1

1

1

1

1

11

1+1

+1

+1

+1

+1

+1

1

1

1

3

Dictionary

Dictionary

Dictionary
Button

Figure 21-5. Retaining a new property

The sending of retain and release messages is typically encapsulated in the property setter method.
The setter method sends a retain message to the object reference being set, and a release message
to the reference being displaced. When you set a different attributed string object for the button
object, the first thing that happens is a new retain message is sent to the new attributed string
object, as shown in Figure 21-5. The attributed string object has, already, sent -retain messages
to the string and dictionary it refers to, and the dictionary has already sent -retain messages to the
string and font objects in its collection.

Before the button’s setter method returns, it sends a -release message to the object it was
previously referencing. That object had a reference count of 1. The -release message drops the
object’s reference count to 0 and it immediately destroys itself. As part of its destruction, it sends
-release messages to all of the objects it still has references to. This begins a cascade of -release
messages that systematically seek out and destroy all objects that no longer have an active
reference, as shown in Figure 21-6.

659CHAPTER 21: The Elephant in the Room

Reference counting gives you most of the benefits of garbage collection, with less than one-third
of the calories. All iOS apps use reference counting. When you start a new project you’ll be using
Automatic Reference Counting (ARC). Existing projects may use ARC or manual reference counting
(also called managed memory, or just reference counting). The decision changes how your write
your code. Let’s start with old-fashioned reference counting.

Manual Reference Counting
When writing iOS apps using traditional reference counting, your code is responsible for retaining
and releasing your object references as you change them. If you’re looking at non-ARC Objective-C
code, it will be peppered with -retain, -release, and -autorelease messages. (I’ll explain
-autorelease shortly.) But it isn’t as hard as it sounds. Here are the basics:

Send a 	 -retain message to an object you want to continue referencing it.

For an object you retained, send a 	 -release message to it immediately before
discarding the reference.

Every new (just created) object has a reference count of 1. If you create an 	
object (with [[SomeClass alloc] init] or -copy), you’ve already retained it and
must release it when you’re finished with it.

When an object is destroyed, it receives a 	 -dealloc message. The -dealloc
method must release all of the objects it still references.

You typically send your retain and release messages in your property setting methods—yet another
good reason to use setter methods for changing property values. Now can you appreciate what the
retain attribute is for? The setter method for a retain property promises to retain the new object
and release the old one. A typical property and setter pair look like this:

@property (retain) UIFont *font;

...

- (void)setFont:(UIFont*)font
{
 [font retain];
 [_font release];
 _font = font;
}

Button
String

Dictionary

Dictionary

Dictionary

String

String

String

Font

AttributedString

AttributedString

AttributedString

Button

1

1

1

1

1

11

1

0

0

0

1

1

1

1

1

2

2

Figure 21-6. Releasing old objects

660 CHAPTER 21: The Elephant in the Room

Note Pay attention to the order in which the -retain and -release messages are sent in the setter
method. Now consider the case where the new object is the same as the existing one.

Even better, if you let Objective-C synthesize your setter method for you, it will send all of the correct
messages.

Your object is also responsible for releasing any references it still has when it’s destroyed. Every
object receives a -dealloc method, immediately after its reference count reaches 0 and just before
its memory is returned to the heap. Here’s a typical -dealloc method:

- (void)dealloc
{
 [_font release];
 [super dealloc];
}

That wasn’t too complicated, and it works pretty well—except for two gigantic flaws. Well, one
gigantic flaw and a serious problem. Let’s look at the gigantic flaw first.

Jumping into the Pool
This reference counting thing works great for about five minutes, until you need to create and
return an object from a method. Think about it. If the code that creates an object is responsible for
releasing it when it’s done, that means it’s impossible to create an object and return it to the sender.
You end up with code like this:

- (NSArray*)allThatJazz
{
 NSMutableArray *jazz = [[NSMutableArray alloc] init];
 [jazz addObject:hands];
 [jazz release];
 return jazz; // oops, jazz no longer exists!
}

You might be tempted to suggest that -allThatJazz return a retained object, and make the
sender responsible for releasing it, but that creates a royal mess. Now every sender has to know
which messages return objects they have to release and which ones don't. And forget about
changing your mind and later deciding that -allThatJazz should now return an object that
doesn’t need to be released, because then you’d have to change all the code that uses it.
No, there’s a better way.

The solution is a clever construct called the autorelease pool. The autorelease pool defers sending
-release messages to objects. After your code is finished, the autorelease pool is drained (yes,
that’s the actual term). It sends -release messages to all of the objects in the pool. Objects that no
longer have any references are destroyed.

661CHAPTER 21: The Elephant in the Room

Use the autorelease pool to schedule a -release message to be sent to an object “at some
point in the future.” You do this by sending the object an -autorelease message instead of a
-release message. If a -release message means “I’m completely done with this object,” then the
-autorelease message means “I will be done with this object, after this code is finished.”

Caution Signal your disinterest in an object by sending either a -release or an -autorelease message,
but never both. The meaning of the two (“I’m done with this object”) is exactly the same, and balances one
-retain message. The only difference is the timing (now instead of later).

Using the autorelease pool, the -allThatJazz method now looks like this:

- (NSArray*)allThatJazz
{
 NSMutableArray *jazz = [[[NSMutableArray alloc] init] autorelease];
 [jazz addObject:hands];
 return jazz;
}

The jazz object is called an autoreleased object. The object has a non-zero reference count and
is guaranteed to exist until the autorelease pool is drained. Even better, the object that sent the
message doesn’t have to worry about it either:

- (void)fosse
{
 NSArray *jazz = [self allThatJazz];
 if (jazz.count<3)
 [self yell:@"More!"];
}

Notice that this code doesn’t retain or release the object, although it’s clearly “using” it. That’s
because of this very important rule: Every Objective‑C method returns an object that’s retained
by another object. The object will be retained either by the object you requested it from or the
autorelease pool.

Caution The exception to this rule is methods that return newly created objects. Those method names will
begin with the words “init,” “copy,” or “new.” When using those methods, follow the rule for new objects.

What that means is that you don’t have to retain an object to use it immediately. In fact, you don’t
have to retain an object unless you want to continue using that object after your method returns.
So as long as the -fosse method doesn’t need to use jazz after it returns, it doesn’t have to retain
or release it.

662 CHAPTER 21: The Elephant in the Room

And what if it did need to use it later? Then it would send the object a -retain message and store it
in a more permanent variable. That’s usually a property, whose setter method will send the -retain
message automatically:

- (void)fosse
{
 NSArray *jazz = [self allThatJazz];
 self.modernJazz = jazz;
}

Are you still wondering when the autorelease pool is drained? Autorelease pools are created, and
drained, by your app’s event loop. Back in Chapter 4, I explained how your app is “event driven.”
Before each event is dispatched to your code, an autorelease pool is created. Every object
that receives an -autorelease message is added to that pool. When all of your code finishes
executing, and control returns to the event loop, the autorelease pool is drained, destroying all
the temporary objects. Before the next event is dispatched, a new autorelease pool is created,
and the process repeats.

Note It’s possible to create your own autorelease pools using the @autoreleasepool { ... }
directive. It creates a new pool, executes the code in the block, and immediately drains the pool. The use of
@autoreleasepool is rare.

Autorelease pools solve the huge flaw in reference counting, and generally means that most of your
code doesn’t have to send any -retain or -release messages. I’ll get to the other big problem
shortly, but first let’s review what you’ve learned so far.

Quick Summary
That’s 99% of manual memory management. Here’s a simplified summary of how to use it:

After creating an object ([[Class alloc] init] or -copy), either:

Use it and then send it a 	 -release message

Send it an 	 -autorelease message

An object returned by a message can be safely used for the duration of the 	
method.

If you store an object reference anywhere where it could be used after the 	
method returns, it should be retained (normally handled by a property setter
method).

If your code sent an object a 	 –retain message, you must send it a matching
-release or -autorelease message before discarding the reference to it
(normally handled by a property setter method or by -dealloc).

663CHAPTER 21: The Elephant in the Room

With these basic rules, and some help from your setter methods, object destruction and memory
management is something that happens, more or less, in the background. You get most of the
benefits of garbage collection with almost none of the costs. There is, however, one situation where
garbage collection still beats reference counting. Let’s take a look at that problem next.

OBSCURE REFERENCE COUNTING PITFALLS

There are a few, oddball, situations where following these simplified rules can still get you into trouble. Consider this code:

 id obj = [array objectAtIndex:0];
[array removeObjectAtIndex:0];

[obj doSomething]; // ! crash !

So what’s wrong? The problem is that the code is relying on the -objectAtIndex: message to return either a retained (by
array) or autoreleased object. It does that. The object is, in fact, retained by array. But the next line removes the object
from the array. The array is no longer retaining the object. If this was the object’s only reference, it destroys itself. The
next line of code blows up your app, because obj now points to garbage. (Note: Automatic Reference Counting is not
fooled by this kind of code.)

You’ll sometimes see the addition of reference counting messages to work around problems like this:

id obj = [[[array objectAtIndex:0] retain] autorelease];
[array removeObjectAtIndex:0];
[obj doSomething]; // safe as houses

A complete set of memory management rules can be found in the Advanced Memory Management Programming Guide,
which you can find in Xcode’s Documentation and API Reference window.

Breaking the Cycle
Now let’s talk about “the other problem” with reference counting. An object can, indirectly, refer to
itself. This causes its reference count to be artificially high, preventing it from being released. Take
the simple example of a classroom data model, shown in Figure 21-7.

Teacher Student
students teacher teacher teacher+1

Student Student

+1
+1

1114

+1
+1

+1

+1

Figure 21-7. Circular retains

664 CHAPTER 21: The Elephant in the Room

A Class object creates a Teacher object and adds Student objects to it. The Teacher maintains a reference
to each student, which necessitates sending each a -retain message. Each Student needs a connection
to its Teacher. That connection is a property that references and retains the Teacher object.

When class is over, the Teacher object is released. What happens next is, well, nothing. As you see
in Figure 21-8, the Teacher’s reference count drops from 4 to 3, and it just sits there, thinking that
it has three other objects that are still using it. And there are, but those three objects are the three
Student objects it’s retaining.

Teacher Student Student Student
students teacher teacher teacher-1

13 1 1

Figure 21-8. Releasing an over-retained Teacher

Teacher Student Student Student
students+1 (weak) teacher (weak) teacher (weak) teacher

+1 +1 +1

1 1 1 1

Figure 21-9. Unretained object references

This is called the circular retain problem, and reference counting can’t fix it. The objects in the circle
are leaked and can never be destroyed.

The solution is to not retain all of the object references. In Figure 21-9, the Student objects have
been modified so they do not send -retain messages to the Teacher object. Now when the Teacher
is released, its reference count will drop to 0. It will destroy itself and its three Student objects.

The Student objects are using unretained references. Unretained references are used in parent-child
relationships (like the Teacher-Student example), delegates, and sometimes target objects to avoid
creating circular retains. To create an unretained property, use the assign attribute (@property
(assign) id delegate). An assign property simply stores the object reference; it doesn't send any
retain or release messages.

This fixes the circular retain problem, but I have to warn you (and I can’t stress this enough),
unretained references are dangerous. If the object you’re referencing gets destroyed—and it can,
because you’re not retaining it—the object reference will point to garbage memory. This is one of the
most vexing bugs you’ll encounter in an Objective-C program.

Note Unretained references are sometimes called weak references. I’m avoiding this term for now because
ARC defines a weak reference that means something different.

665CHAPTER 21: The Elephant in the Room

The key is to write your code in a way that ensures an unretained reference won’t ever end up
pointing to a destroyed object. The Teacher object, for example, could set the teacher property of
each Student to nil before releasing them in its -dealloc method. If some other object was still
retaining a Student object, it won’t have a teacher property pointing to garbage memory.

This is also why, throughout this book, I’ve repeatedly warned you to remove your object from the
notification center before your object is destroyed. In several places, you’ve seen this code:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

The reason is because the notification center uses unretained references. (Don’t ask why; it’s
a convoluted reason with a long history.) If you allow your object to be destroyed, but leave it
registered with the notification center, the next notification message will be sent to garbage.
And trust me, that’s a hard bug to diagnose.

Scared Straight
Let’s wrap up this discussion with all of the ways reference counting and memory management can
go horribly wrong. Oh, come on, it’ll be fun!

Creating or retaining an object and then forgetting to send it a 	 -release or
-autorelease message. This will create a memory leak. It’s called an
over‑retain bug.

Erroneously sending an object a 	 -release or -autorelease message. This
causes the object to be prematurely destroyed while there are still references to
it. The next message sent to the reference will behave badly. This is called an
over‑release bug.

Creating circular retains. This eventually results in leaked objects.	

Failing to clear an unretained object reference once the object is destroyed. This 	
is called a dangling pointer bug.

There are a hundred different scenarios that can lead to one of these bugs, but all of them fall into
those four categories.

Are you now too scared to write another line of Objective-C? Take a deep breath and relax, because
Automatic Reference Counting is here to save you. ARC prevents three of these four tragedies, and
gives you the tools to easily avoid the fourth. Let’s now return to the safe confines of ARC.

Automatic Reference Counting
Automatic Reference Counting is a feature of the Objective-C compiler. It analyses your source code
to determine exactly when you stop using an object reference, and automatically inserts code to
send the correct -retain and -release messages. This consistency means your code is immune
from half of the reference counting bugs: over-retain and over-release. They simply don’t happen.

666 CHAPTER 21: The Elephant in the Room

The two remaining problems, avoiding circular retains and dangling pointers, is aided by a new weak
qualifier. Any variable or property can be declared to be weak. It doesn’t retain the object it refers to
(just like an unretained reference), but it’s also safe. The Objective-C runtime automatically sets the
variable to nil if the object it’s pointing to should be destroyed. So you can solve those annoying
circular retention problems without worrying about dangling references that could crash your app.

ARC comes at a (slight) cost. There are certain programming practices that ARC doesn’t allow. But
I’m sure that, after reviewing them, you’ll agree the benefits of ARC far outweigh the few obscure
features you have to give up:

Your code can’t send 	 -retain, -release, or -autorelease messages. That’s the
compiler’s job now.

Your 	 -dealloc method no longer sends [super dealloc] at the end. The
compiler does that for you.

You cannot put object pointers in a C struct (struct { int number; id obj }).

You cannot convert object pointers into C type pointers (void *cPtr = obj),
or vice versa.

All automatic object pointer variables are initialized to 	 nil.

There are some other, far more obscure, limitations, but those are the big ones. If you think about
it, it’s not much to give up. Most of what you have to abandon (sending your own -retain and
-release messages), is what you want ARC to save you from in the first place.

Enabling ARC
You enable ARC in your project settings. It will be turned on for all new projects. If you want to change it
in an existing project, visit the project’s build settings. Find the Apple LLVM – Language – Objective-C
section, and change the Objective-C Automatic Reference Counting setting, as shown in Figure 21-10.

Figure 21-10. Changing the ARC setting for a project

667CHAPTER 21: The Elephant in the Room

Note It’s possible to enable ARC on a file-by-file basis. ARC is completely compatible with non-ARC code,
so you can mix and match. You do this by adding either the -fobjc-arc or -fno-objc-arc compiler flag
to specific files in your project’s build phase. For a “how to,” find the Controlling How an Individual File is
Compiled guide in Xcode’s Documentation and API Reference window.

Strong and Weak References
ARC introduces two new object reference qualifiers: strong and weak. Under ARC, all object
reference variables are strong by default. And this doesn’t apply to just properties; all object
references—property values, instance variables, automatic variables, parameter variables, and static
variables—act like a retain property under ARC.

For @property declarations, the new strong attribute makes this explicit, and replaces the retain
attribute. If you feel the need to explicitly declare that an instance or automatic variable is strong,
use the new __strong (that’s two underscore characters) type qualifier, like this:

- (void)doSomething
{
 id __strong value;
 ...

To address circular retains, and similar problems, ARC provides the weak attribute. Use weak in
place of assign in @property declarations to create a reference that does not retain the object. With
variables, the __weak type qualifier will do the same.

As you’ve seen, circular retains are a perfect use for the weak qualifier. Another situation where weak
is useful is in view controller outlets that refer to view objects. Throughout this book, you’ve written
Interface Builder outlets that look like this:

@interface DDViewController : UIViewController

@property (weak,nonatomic) IBOutlet UIBarButtonItem *playButton;
@property (weak,nonatomic) IBOutlet UIBarButtonItem *pauseButton;
@property (weak,nonatomic) IBOutlet UIImageView *albumView;
@property (weak,nonatomic) IBOutlet UILabel *songLabel;
@property (weak,nonatomic) IBOutlet UILabel *albumLabel;
@property (weak,nonatomic) IBOutlet UILabel *artistLabel;

Why were all of those properties weak? A weak reference allows those view objects to be automatically
released. As you’ll learn in Chapter 23, iOS may send your app warning messages when it’s starting to
run out of memory. View controllers—that are not being displayed—react by releasing their view objects.
(A view controller can always reload its view objects from its Interface Builder file.) If these properties were
strong, those view objects wouldn't be released because the individual properties would still retain them.
By making them weak, once the view controller releases its view objects, these properties are set to nil.

There are, unfortunately, pitfalls to using the weak qualifier too. The problem is that a weak reference
does not retain its object. If all of the references to an object are weak, the object gets destroyed.
This was the problem you ran into in the Wonderland app.

668 CHAPTER 21: The Elephant in the Room

The page view controller’s data source property is weak (assign), to avoid circular retains. Your
natural inclination is to create your data source object and assign it to the property, like this:

self.dataSource = [WLBookDataSource new];

If you run the app, you’ll find the WLBookDataSource object is immediately destroyed again. That’s
because the dataSource property is weak, and there are no other strong references to the object.

The solution was to create a second, strong, reference to the object in WLBookViewController, like this:

@interface WLBookViewController ()
{
 WLBookDataSource *bookSource; // strong reference to dataSource
}
@end

When the data source object is created, it’s assigned to both the property and the instance variable:

self.dataSource = bookSource = [WLBookDataSource new];

The mystery is finally explained. The second, strong, reference retains the data source object and
keeps it alive for the lifetime of the WLBookViewController object.

What ARC Doesn’t Do
ARC is a fantastic technology, and probably the best compromise in balancing the needs of the
developer with the demands of running on a mobile device. Its reach, however, stops right at the
border of Objective-C. Core Foundation (the C functions at iOS’s core) also uses reference counting,
but ARC takes a decidedly “hands off” approach.

You encountered this already in your ColorModel app. In the code that created the hue/saturation
field image, you used some Core Graphics functions. These were C functions that returned pointers
to object-like structures called types. Core Foundation types use reference counting too:

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
CGDataProviderRef provider = CGDataProviderCreateWithCFData(
 (__bridge CFDataRef)bitmapData);
hsImageRef = CGImageCreate(...);
CGColorSpaceRelease(colorSpace);
CGDataProviderRelease(provider);

There are two things of interest in this code. First, you’re responsible for the memory management of
these types, even though this is an ARC app. The values returned by CGColorSpaceCreateDeviceRGB
and CGDataProviderCreateWithCFData are new (retained) type references. It’s your responsibility to
release them, using the appropriate Core Foundation release functions, CGColorSpaceRelease and
CGDataProviderRelease.

Secondly, there’s that pesky rule that you can’t convert an Objective-C object pointer into a C
pointer. But that’s exactly what happens in the parameter of CGDataProviderCreateWithCFData.
The parameter is a CFDataRef (a C pointer), but bitmapData is an NSData object. CFData and NSData

669CHAPTER 21: The Elephant in the Room

are functionally interchangeable, members of the toll-free bridge. A select number of classes in
Objective-C have Core Foundation counterparts, either of which can substitute for the other. The
special __bridge qualifier relaxes ARC’s normal rules to allow the Objective-C object reference to be
passed as a C type reference.

And the border between Objective-C and Core Foundation isn’t completely closed. ARC has an
emigration policy, of sorts. A Core Foundation function that returns a toll-free bridge type is often
cast and stored in an Objective-C object reference, so it can be treated as an object. In pre-ARC
code, it would look like this:

NSString *strObj = (NSString*)CFUUIDCreateString(0,uuid);

This particular function creates a new string from a UUID structure and stores it in a string object
reference. But again, ARC doesn’t allow this because CFUUIDCreateString returns a CFStringRef
pointer, not an object. This is fixed by adding the __bridge_transfer qualifier:

NSString *strObj = (__bridge_transfer NSString*)CFUUIDCreateString(0,uuid);

Two wonderful things happen. The compiler stops complaining, allowing the C type pointer to be
converted into an Objective-C object pointer. But even more significant, ARC takes responsibility for
releasing strObj. The __bridge_transfer qualifier says “This C pointer represents an Objective-C
compatible object with a retain count of 1. Store it in an object reference and treat it like any newly
created object.” ARC takes it from there.

If you need to go the other direction—taking an ARC-managed object and converting it into a Core
Foundation reference—use the __bridge_retained qualifier, like this:

NSString *objString = @"Hello!";
CFStringRef coreString = (__bridge_retained CFStringRef)objString;
// do C function things with coreString
CFRelease(coreString);

ARC transfers ownership and memory management of the Objective-C object to you, as if it was a
newly created CFStringRef. From there, you treat it like any CFStringRef, which includes releasing it
(CFRelease) when you’re done.

Those are the highlights of using the Core Foundation and the toll-free bridge. These, and additional
issues, are discussed in the Transitioning to ARC Release Notes that can be found in Xcode’s
Documentation and API Reference window.

Summary
Memory management is a critical part of successful iOS app development. With the help of technologies
like ARC, you shouldn’t spend too much of your day worrying about it. With your newfound knowledge
of ARC and circular retains, you can make intelligent decisions about what kind of reference to define
(strong or weak), and how to solve the occasional mystery of disappearing (weakly retained) objects. More
importantly, you understand when and why objects get destroyed, which will be important for reducing
your app’s memory use. In a later chapter, you’ll get to see just how much memory your app is using.

But before you get to that, we’re going to take a little trip and visit a part of iOS development that’s
often overlooked. A place where you can ask the question “¿Qué pasa, Alicia?”

671

Chapter 22
Êtes-vous Polyglotte?

Dumella rah!

Maybe you prefer kia ora, guten tag, bom dia, hallo, saluton, bonjour, ¡hola, 你好, or ciao? I bet at
least one of your users does. If you’re developing apps for world-wide distribution, here’s something
to think about: most of your potential users don’t speak your language.

Apple has a long history of embracing technologies that allow software to be translated and
localized, so people around the world can enjoy them, in their native tongue. Xcode and iOS work
together to help you adapt your app to different languages and regions. In this chapter
you will:

Internationalize your project and code	

Add localizations to your app	

Localize app resources	

Localize string constants	

Use localized system objects	

Pigeon is a great little app, and one that I’m sure people from all over the world would love to use.
But that’s going to be hard if they can’t understand it. Let’s localize Pigeon so that people who speak
Spanish can enjoy it too. In the process, you’ll learn how to localize your app for practically any user,
wherever they live.

The Localization Process
Preparing an app for international distribution is often described as “translating” an app. Natural
language translation is a part of it, but omits other important elements. The correct term is localizing,
and it encompasses not just language differences, but cultural and regional ones too.

672 CHAPTER 22: Êtes-vous Polyglotte?

Localizing your app is usually one of the last phases of app development. After you’ve designed all
of the interfaces, written all of the code, and everything works the way it should, you then begin the
process of localizing it for other languages. There are two big steps:

1. Internationalize your project and code

2. Localize your resources and strings

The first step is purely technical, and prepares your app for step 2. Internationalization consists of
project and code changes that allow your app to be localized. There usually isn’t a lot to do, but it
lays the groundwork for what comes next.

The second step is localization. An internationalized app can be localized for different languages,
without modifying the code. Once your app is internationalized, localizations can be added at will.
Your app may have been born speaking English, but by adding localizations, it can effortlessly switch
to French, Arabic, German, Chinese, Russian, Hebrew, Korean, or Portuguese. Popular apps often
come with dozens of localizations. And you don’t have to do a thing; your app will automatically use
the best localization based on the user’s profile, region, and preferences.

The localization process is also designed to be cooperative. If you’re like me (who has enough
trouble with my native language, let alone 20), you’ll need professional help translating your app. iOS
app localization is deliberately organized around a set of resource files. You identify the resource files
that need to be localized and give copies to your translator or translation service. They will translate
them into another language, returning localized versions of those same files. You simply add those
translated files to your project, and your app is suddenly muy versado!

Language Bundles
iOS organizes all of the language-specific resources of your app into localization bundles. Each
bundle is a subdirectory in your app named after a language: en.lproj contains all of the English
resources, fr.lproj the French resources, es.lproj the Spanish resources, and so on. When your
app is launched, the user’s preferred language selects the localization bundle to use. Whenever
your code requests a resource file, the bundle manager looks first in the preferred language bundle
for a localized version of that file. If there isn’t one, it uses the one from the default language, or the
universal version.

Note Language identifiers (en, fr, de, ja, and so on) are defined by the ISO 639-1 and ISO 639-2
standards. See http://www.loc.gov/standards/iso639-2/php/English_list.php. iOS uses ISO
639-2 for those languages not defined in ISO 639-1. You’ll be glad to know that Klingon (tlh) was recently
added to the ISO 639-2 standard. MajQa’!

Here’s an example. Let’s pretend that you’ve localized the Wonderland app for English and French.
It will contain two language bundles: en.lproj and fr.lproj. When you created Wonderland, you
added a resource file containing the text of the book, stored in a file named Alice.txt. If you did
nothing else, your app would always show the English version of the book, because that’s the only
version of Alice.txt in your app.

http://www.loc.gov/standards/iso639-2/php/English_list.php

673CHAPTER 22: Êtes-vous Polyglotte?

If you had a French translation of the book, that would be stored in a file named Alice.txt too, but
placed inside the fr.lproj folder. In the WLBookViewController.m file, you wrote code that loaded
the text of the book into a string object:

NSURL *bookURL = [[NSBundle mainBundle] URLForResource:@"Alice"
 withExtension:@"txt"];
NSString *text = [NSString stringWithContentsOfURL:bookURL
 encoding:NSUTF8StringEncoding
 error:NULL];

If your app’s user spoke French, the NSBundle object would first search the fr.lproj for a file named
Alice.txt. If it found one, it would load the French version of the file instead of the original English one.
Your code doesn’t change and it doesn’t make any language-specific decisions. It simply requests a
resource, and the bundle manager delivers the localized version, if available and appropriate.

Since all view controllers get their view objects from Interface Builder files, all of your app’s
interfaces can be easily localized. The same goes for sound files (particularly important if the sounds
include spoken words), icons, graphics, and so on. You don’t have to localize everything, just those
resources that need to be translated.

Xcode handles the creation and the maintenance of the localization bundles. You just tell Xcode
what languages you want to support, and which resource files need to be localized. Xcode will
create the localization bundles and organize the files.

Programmatic Localization
Localized resource files make it easy to localize the bulk of your app’s language-specific interface.
There are still a couple of sources of natural language content that aren’t in resource files. These
include the string constants in your program and formatted values.

iOS includes a mechanism for translating string constants and formatting values the way the user
expects. Take the following code from the Shorty app, earlier in the book:

UIAlertView* alert = [[UIAlertView alloc]
 initWithTitle:@"Could not load URL"
 message:error.description
 delegate:nil
 cancelButtonTitle:@"That's Sad"
 otherButtonTitles:nil];

Internationalizing this code requires a couple of changes. First, the string constants need to be
replaced with variables that will supply localized versions of each string. Secondly, objects that provide
text the user will see should provide a localized version (when available). The internationalized code
looks like this (changes in bold):

UIAlertView* alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"Could not load URL",nil)
 message:error.localizedDescription
 delegate:nil
 cancelButtonTitle:NSLocalizedString(@"That's Sad",nil)
 otherButtonTitles:nil];

674 CHAPTER 22: Êtes-vous Polyglotte?

The string literals are replaced with a special macro that substitutes a localized string when the user’s
language changes. The error.description property is replaced with the error.localizedDesription
property. It’s the same information, just translated into the user’s native language.

Localize Now!
Normally, I’d suggest that you internationalize your app completely before beginning the localization
process. I’m betting, however, you want to jump in and see how localization works right away. So
let’s do that; it won’t cause any issues for this project. You’ll get to internationalize your code shortly.

Figure 22-1. Project localizations

Caution If this were a large project, I’d strongly urge you to internationalize first and localize second.
Internationalizing your code can often result in resource file changes, which would require them to be
re-localized.

Localizing your project is a three-step process:

1. Add the languages you want to support to your project

2. Choose which resource files need to be localized, and into what languages

3. Edit the localized version of the files

Begin with the finished Pigeon project from Chapter 18. Select the project in the project navigator,
and then select the Pigeon project (not the target) in the editor pane, as shown in Figure 22-1.
Choose the Info tab and scroll down until you find the Localizations section.

675CHAPTER 22: Êtes-vous Polyglotte?

Your project has two localizations already: a Base localization and one for the development language.
The development language is the language of the developer who created the project—that’s you. The
base localization is the localization used when no other localization is a good fit for the user.

Notice that Xcode says that some files have already been localized. You won’t find any indication
of this in project navigator (yet), but if you open the project folder in the Finder (choose the Pigeon
folder in the project navigator, right/control+click, and choose Reveal in Finder), you’ll see the
structure of the localization bundle, as shown in Figure 22-2.

Figure 22-2. Default localization bundle structure

In Pigeon, the InfoPlist.strings and the two storyboard files are localized. A localized file is
one that has been moved into one or more specific localization bundles. Files that have not been
localized are stored outside the localization bundles and are used for every language.

Tip To localize a resource file, select the file in the project navigator and click the Localize. . . button in the
file inspector. This only applies to files that can be localized and haven’t been.

Since there’s still only one version of every file, the distinction between localized and non-localized
resource files is largely meaningless. Let’s change that. Back in Xcode, return to the Project Info
tab, click the + button at the bottom of the Localizations group and choose to add a localization
for Spanish (es), as shown in Figure 22-3. Common languages are listed in the main menu. Many
(many!) more languages can be found in the Other submenu at the bottom.

676 CHAPTER 22: Êtes-vous Polyglotte?

Xcode will then prompt you for which files to localize, as shown in Figure 22-4. The list will include
all of the files that are currently localized. If a file doesn’t need to be localized for this language,
uncheck it. The Reference Language is the version of the file that will be copied to create this
localization. If you’ve already localized for some languages, it might be easier to choose a language
that’s similar to the one that you’re creating. If you were creating a localization for Icelandic, it’s
probably easier to start with the existing Norwegian translation, rather than English.

Figure 22-3. Adding a localization to the project

Figure 22-4. Choosing files to localize

In the File Types column, some files have a choice of how that file is localized. There are two ways
to localize Interface Builder files: localizing the entire file or creating just a string translation file. If
you choose the former, a copy of the entire Interface Builder file is placed in the localization bundle.
This permits you to change anything in the interface for the new language. You can change the
titles of buttons, choose different images, set different text alignments, specify different fonts, add

677CHAPTER 22: Êtes-vous Polyglotte?

different layout constraints, and so on. Localizing for languages like Hebrew, that read right-to-left,
often require radical alterations to the layout of the interface. Views might need to be resized to
accommodate longer (German) or shorter (Chinese) titles.

On the other hand, if the only changes required are the textual titles of buttons and other control
objects, you can localize the interface with a Localizable Strings file. You’ll learn about, and create,
these files later in this chapter. For this demonstration, change the file type of both storyboard files to
Interface Builder Cocoa Touch Storyboard, as shown in Figure 22-4. Click the Finish button.

Figure 22-5. Localized files in the navigator

Note Pigeon could easily be localized for Spanish using Localizble Strings files for both storyboards. That,
however, would have denied you the experience of localizing an Interface Builder file.

In the project navigator, the InfoPlist.strings and the two storyboard files now have expansion
triangles next to them, as shown in Figure 22-5. Expand them and you’ll see the localized version for
each language.

The files in your project folder have changed too. If you return to the Finder you’ll see that Xcode has
created an es.lproj bundle and copied the three resource files into it, as shown in Figure 22-6.

678 CHAPTER 22: Êtes-vous Polyglotte?

Xcode, thankfully, hides the bundle structure from you in the project navigator. Instead, it presents
the much more rational picture of your resource files, grouping together the specific localizations of
that resource into a single, expandable, item.

To localize a file, just edit the language-specific version. Really, that’s it. Expand the Main_iPhone.storyboard
(or _iPad) file group and select the Main_iPhone.storyboard (Spanish) localization, as shown in
Figure 22-7. Selecting the file group is the same as selecting the base or development language
version. So if you don’t choose to edit a specific localization, you’ll be editing the default one.

Figure 22-7. Editing the Spanish version of the iPhone storyboard

Figure 22-6. Project file structure with multiple localization bundles

Edit the button titles in the two view controllers, resizing them as needed, using Table 22-1.

679CHAPTER 22: Êtes-vous Polyglotte?

Run the app. You won’t notice any difference, as shown on the left in Figure 22-8, because the
preferred language is still English. Press the home button and open the Settings app.
In General ➤ International ➤ Language, change the language to Español and tap the Done
button. The simulator, or device, will perform a “warm” restart. This will cause all running apps to
stop. When they start again, they’ll be using a different set of localized resources.

Table 22-1. Spanish button titles

English Title Spanish Title

Remember Location Recordar Ubicación

Map Mapa

Satellite Satélite

Hybrid Híbrido

North Norte

Heading Rumbo

Figure 22-8. First attempt at localizing Pigeon

From Xcode, run the Pigeon app again. This time, it’s in Spanish! The middle of Figure 22-8 shows
localized labels for the buttons, and even some of the map labels have changed (courtesy of the
Map Kit).

You’re not done yet, though. Tap the Recordar Ubicación button and take a look at the alert (on the
right in Figure 22-8). That doesn’t look like Spanish to me. That’s because you didn’t internationalize
your app first. It’s time to circle back and do this right.

680 CHAPTER 22: Êtes-vous Polyglotte?

Internationalizing Your App
Internationalizing your app consists of making the code and project changes needed to support
localization. This breaks down into four tasks:

Adding language bundles to your app	

Translating string constants	

Getting localized properties	

Using iOS formatter objects	

You’ve already done the first one in the previous section, adding an es.lproj localization bundle to
your app. The problem in Pigeon is that it has string constants that are in English. These need to be
replaced with localized versions.

Internationalizing String Constants
The Cocoa Touch framework has a set of macros—they look like C functions, but they’re not—that
make localizing your string constants (relatively) easy. These macros work hand-in-hand with a
development tool that extracts your app’s string constants and turns them into resource files, stored
in your localization bundles. Here are the four macros:

NSLocalizedString

NSLocalizedStringFromTable

NSLocalizedStringFromTableInBundle

NSLocalizedStringWithDefaultValue

The first one is the mostly commonly used, and the only one you’re going to use in Pigeon. The others
are useful in situations where you have a lot of strings and need to organize them into groups, or read
them from other bundles, but none of that applies here. The workflow for all of them is the same:

1. Embed your string constants in NSLocalizedString... macros

2. Run the genstrings tool to extract the strings in your code

3. Localize and edit your .strings resource files

I could explain how this all works, but it’s so much easier to just show you. Select the HPViewController.m
file and find all of the strings the user will see. In Pigeon, these are in just two sections of code. In the
-dropPin: method, edit the alert object construction code so it looks like this (modified code in bold):

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:NSLocalizedString(@"What's here?",@"Pin alert title")
 message:NSLocalizedString(@"Type a label for this location.",
 @"Pin alert message")
 delegate:self
 cancelButtonTitle:NSLocalizedString(@"Cancel",@"Pin alert cancel button")
 otherButtonTitles:NSLocalizedString(@"Remember",@"Pin alert save button"),
 nil];

The string constants are rewritten as NSLocalizedString statements. The first argument is the
original, untranslated, string literal. The second is a hint or a description of what the string means

681CHAPTER 22: Êtes-vous Polyglotte?

or how it’s used in the program. This second argument doesn’t become part of your program. It’s
used solely to aid the translator.

There’s only one other English string constant in this program, and that’s in the -alertView:clickedB
uttonAtIndex: method. Find and edit this statement (modified code in bold):

name = NSLocalizedString(@"Over Here!",@"Default location label");

The strings in your app have now been internationalized. The next step is to turn them into resources.

Note You only localize the strings the user will see. All other string constants—dictionary keys, encoding
keys, user defaults, table cell identifiers, and so on—are never localized.

Using the genstrings Tool
When you installed Xcode, it installed a host of command-line tools. Included was the genstrings
tool. genstrings scans code (C, Objective-C, C++, and others), finds the string constants in
NSLocalizedString ... macros, and compiles them into .strings (with an ‘s’) files. Using the
genstrings tool is one of the few times you need to step outside the comfortable confines of Xcode.

Launch the Terminal application from the Finder, the Dock, LaunchPad, or your favorite app-launching
utility. Terminal lets you use OS X’s command shell. You’re going to run the genstrings tool
from the command line to scan all of the Objective-C source files in your project, compiling all
NSLocalizedString ... statements into a .strings file. Follow these steps:

1. Select the Pigeon folder group (not the project) in the project navigator.

2. Show the file inspector (on the right in Figure 22-9) and click the arrow to the
right of its Full Path. This will reveal the folder in the Finder.

Figure 22-9. Setting up the genstrings tool

682 CHAPTER 22: Êtes-vous Polyglotte?

3. Open a Terminal window and type cd, and the space bar (at the bottom in
Figure 22-9). ‘cd’ is the shell’s change directory command.

4. In the Finder, drag the Pigeon folder, inside the Pigeon project folder, into the
Terminal window and drop it.

5. Make sure the Terminal window is active again and press the Return key.
This sets the shell’s default directory to the Pigeon folder, which contains all
of your source files and the es.lproj language bundle.

6. Type the command genstrings -o es.lproj *.m into the Terminal window
and press the Return key.

When genstrings is finished scanning all of your source files and creating a .strings file—which
should happen faster than you can blink—a new Localizable.strings file will appear in the
es.lproj bundle, as shown in Figure 22-10. This file isn’t a part of your project yet, so drag it into
the Supporting Files group in the project navigator, also shown in Figure 22-10.

Figure 22-10. Adding the initial Localizable.strings file

Note If you change your strings in the future, you can run the genstrings tool again to update the existing
Localizable.strings file; you don’t have to add it to the project again.

Make sure the Pigeon target is selected and add it to the project. Select the Localizable.strings
file in the navigator and show the file inspector (View ➤ Utilities ➤ Show File Inspector), as
shown in Figure 22-11.

683CHAPTER 22: Êtes-vous Polyglotte?

Note You don’t have to use your original string as the key, but that’s the most convenient way to use
NSLocalizedString. You could also write NSLocalizedString(@"KEY1",nil), and then in the English
.strings file translate that into something readable, like this: "KEY1" = "Welcome to Pigeon!";.
This would require that you have an English .strings file as well.

Figure 22-11. Newly created Localizable.strings file

Localizing Your Strings File
Select the Localizable.strings file. In the file inspector, find the Localization section. The
Spanish localization, as shown in Figure 22-11, is the only language checked because there’s only
one version of Localizable.strings. In this project, you only need a Localizable.strings file for
Spanish. All other languages will use the original, untranslated, strings in the source code. When
you’re ready to add a third language, simply check it in the Localization section of the file inspector
and Xcode will duplicate the existing Localizable.strings file and copy it into the new language
bundle. Then you’ll have a group of Localizable.strings file, just like Main_iPhone.storyboard.

With the Localizable.strings file selected, edit the right (value) side of each string using Table 22-2.

A .strings file is a resource file containing a list of string substitutions. The format is reminiscent of
C source. On the left of each = statement is the original string (the key). On the right is its localized
translation (the value). Above each replacement is the comment, as a C-style comment, from the
original NSLocalizedString ... statement.

684 CHAPTER 22: Êtes-vous Polyglotte?

Figure 22-12. Spanish version of Pigeon

When you’re finished, the edited .strings file should look something like the one in Figure 22-11.

Testing Your String Localization
Run Pigeon again. Assuming the user’s language setting is still set to Español, the app will appear in
Spanish, as shown in Figure 22-12.

Table 22-2. Spanish string constants

Comment Spanish String

Pin alert cancel button Cancelar

Pin alert save button Recordar

Pin alert title ¿Lo que aquí?

Pin alert message Crear una letrero para esta ubicación.

Default location label ¡Aquí está!

Here’s how it works. The NSLocalizedString... macros expand into code that sends a -localized
StringForKey:value:table: message to the app’s NSBundle object, passing the literal string as the
key. This method searches for a .strings file in the preferred localization bundle. If it finds a file, it
searches that file for the key (original string) and returns its translation.

The default .strings file is Localizable.strings, but you can define others if you have a lot of
strings to organize. Each strings file is referred to as a table, and you pass the name of the table in
the -localizedStringForKey:value:table: message or NSLocalizedStringFromTable macro. Using
those macros, genstrings will automatically create multiple .strings files, one for each table name.

If there is no .strings file for that language, or the key can’t be found in the .strings file, no
translation is performed and the macro or message returns the original string.

685CHAPTER 22: Êtes-vous Polyglotte?

Localizing Interfaces Using Localizable Strings
Now that you understand .strings files, you can appreciate the use of .strings file to localize an
Interface Builder file. When you localized Main_iPhone.storyboard, you localized the entire file by
choosing the Interface Builder Cocoa Touch Storyboard option. You then proceeded to create a
localized version of that storyboard.

If you had chosen the Localizable Strings option instead, Xcode would have created a localized strings
file for that Interface Builder file, named Main_iPhone.strings. The file would have contained substitutions
for various text properties (mostly control titles) of the view objects in that interface, like this one:

"jkj-WQ-xYm.title" = "Remember Location";

The key is an identifier that only Interface Builder and iOS understand; don’t change it. In this
instance, it identifiers the bar button item’s title property. Edit the value for your localization, like this:

"jkj-WQ-xYm.title" = "Recordar Ubicación";

When iOS loads the interface file, it replaces the appropriate text properties with those in the
Main_iPhone.strings file found in the localization bundle.

If the localized version of your interface can be accomplished by only altering the titles of control
and text objects, then use a localizable strings file rather than duplicating the entire Interface Builder
file. The advantage is that you can later alter the Interface Builder file, adding new views, adjusting
constrains, and so on, without having to replicate those changes in all of the copies you’ve made for
other languages.

Those are the highlights of internationalization and localization. In the next couple of sections,
I’m going to describe some unusual localization problems and tips on writing code to keep your
app international.

Localizing Settings.bundle
One of Pigeon’s resources is the Settings.bundle that defines its settings in the Settings app. It’s a
bundle, like your app’s bundle, and has its own localization bundles. If you expand it in the project
navigator or Finder, you’ll see that it contains a Root.strings file in its default localization bundle.
Select the Root.strings file, as shown in Figure 22-13.

Figure 22-13. Default Root.strings file

686 CHAPTER 22: Êtes-vous Polyglotte?

Figure 22-14. Creating an es.lproj from the en.lproj bundle in Settings.bundle

Tip Any string translation that results in the same string ("iCloud" = "iCloud";) is superfluous and can
be omitted from the .strings file. When a translation isn’t found, the original value is used, so a missing
substitution means no substitution. The exception is when using NSLocalizedStringWithDefaultValue
or -localizedStringForKey:value:table: with a default value; these return an alternate value when
a substitution isn’t found.

This file is left over from the original Settings.bundle template. It’s supposed to contain the
translations for any visible strings in the Root.plist file. You edited the Root.plist file in Chapter 18,
but never edited this file. Let’s fix that now. Edit the English Root.strings file so it contains this:

"iCloud" = "iCloud";
"Sync Locations" = "Sync Locations";

The keys are the visible text—the group name and toggle switch title—in the settings bundle.
Save the file (File ➤ Save). Unfortunately, the current version of Xcode doesn’t manage localized
files inside other bundles, so you’ll have to create the Spanish localization manually. It’s pretty easy:

1. Open a Terminal window.

2. Type cd and the spacebar.

3. Drag the Settings.bundle directly from the project navigator in Xcode and
drop it into the Terminal window.

4. Switch to the Terminal window and press Return.

5. Type the command cp -R en.lproj es.lproj and press Return, as shown in
Figure 22-14.

687CHAPTER 22: Êtes-vous Polyglotte?

Returning to Xcode, you’ll now see that the Settings.bundle contains a new es.lproj bundle, as
shown in Figure 22-15.

Figure 22-15. Localized Settings.bundle strings

Figure 22-16. Localized Pigeon settings

Expand the new es.lproj folder in the navigator, select the Root.strings file, and edit it as follows
(new text in bold):

"Sync Locations" = "Actualizar Ubicaciónes";

Run Pigeon. After it starts, press the home button and tap the Settings app—oops, I mean the Ajustes
app. Find the settings for Pigeon and you’ll see its localized settings, as shown in Figure 22-16.

688 CHAPTER 22: Êtes-vous Polyglotte?

Other Code Considerations
In addition to language differences, there are also regional preferences that your app should be
sensitive to. Most of these are handled automatically by iOS, as long as you let it. When writing your
code, pay attention to these issues:

Visible messages	

Dates	

Numbers, including percentages and currency	

Most objects that return a string intended for the user to see will provide a localized version. This will
be translated into the user’s language, whenever possible. Look for these whenever you get a string
that you’re going to show the user. Here are some examples:

-[NSError localizedDescription]

-[UIDocument localizedName]

-[UIDevice localizedModel]

-[PKPass localizedName]

Dates and numbers, including currency, are formatted for the user’s region and personal preference.
This cannot be inferred from their language; French speakers in France format currency differently
than French speakers in Canada. In addition to the user’s region, iOS may provide personal
preferences (such as a 12- or 24-hour clock) that the user can customize.

All of these variables and choices make correctly formatting values extremely challenging. Unless,
of course, you let iOS do it for you. Let me put it this way: always let iOS format dates and numbers;
never try to do it yourself.

Let’s say you want to present a readable date and time to your user. Use the NSDateFormatter class
to convert the date object into a displayable string, using the user’s desired language, calendar, and
formatting style. This is such a common procedure that’s there’s even convenience method to do all
of that with a single statement.

I created a simple demonstration app, named Dated, which you’ll find in the Learn iOS Development
Projects ➤ Ch. 22 ➤ Dated folder. The Dated app presents a date picker and the results of
converting that date into a readable string using the NSDateFormatter class. Here’s the code in
DTViewController.m that does all of the work:

self.dateView.text =
 [NSDateFormatter localizedStringFromDate:self.datePicker.date
 dateStyle:NSDateFormatterFullStyle
 timeStyle:NSDateFormatterLongStyle];

When I first launch Dated in the simulator, as shown in the left in Figure 22-17, the date is in English,
even though the current language is set to Español. That’s because dates, times, numbers, and
currency are controlled by a different set of preferences—and another reason you can’t assume how
numbers are formatted based on the user’s language.

689CHAPTER 22: Êtes-vous Polyglotte?

In the Ajustes (Settings) app, I changed the Formato regional (Region Format) setting from Estados
Unidos (United States) to España (Spain), as shown in the middle of Figure 22-17. Returning to the
Dated app, both the app picker and the formatted date have been translated to Spanish, using the
date style conventions common in Spain.

Use NSNumberFormatter to format numbers, percentages, and currency. Both of these classes handle
all of the subtle details. For more information, refer to the Data Formatting Guide that you can find in
Xcode’s Documentation and API Reference window.

Localizing Your App’s Name
Your app’s .strings files are most often used to localize the string constants in your program, as
you’ve already seen. They are, actually, general-purpose string translation files and are used for a
variety of purposes, like translating the visible strings in the Settings.bundle.

One important .strings files is the InfoPlist.strings file, that’s localized automatically for you. The
substitutions in this .strings file are applied to your app’s Info.plist file. This is the property list file
that contains the information (metadata) about your app. You’ve edited this file earlier in the book,
when you added device requirements like gps.

Expand the InfoPlist.strings group and select the InfoPlist.strings (Spanish) item. The
InfoPlist.strings file contains substitutions for any user-visible property values contained in
the Info.plist file. In iOS, this is pretty much limited to the name of your app. The keys of the
InfoPlist.strings file are not, however, the original strings; they’re the Info.plist property keys.
To localize a specific property, add a property key and its localized value to your InfoPlist.strings
file, like this:

"CFBundleDisplayName" = "Paloma";

For a Spanish-speaking user, the app’s name becomes Paloma in the springboard, the Settings app,
and elsewhere, as shown in Figure 22-18.

Figure 22-17. Localizing dates using NSDateFormatter

690 CHAPTER 22: Êtes-vous Polyglotte?

Summary
Localization is one of the last things you do to your app, but it certainly isn’t the least important.
Localizing dramatically broadens your app’s horizons. And as you’ve seen, it’s not that much work.
I’ll go so far as saying that localizing your app is the single most significant step you can take to
broaden its appeal.

While you’ve done all of the common steps, your app can support localization in more sophisticated,
and non-standard, ways. It’s possible to switch languages within your own app, provide your own
localization logic, or even add unsupported languages like Hawaiian or Klingon. Start with the
Internationalization Programming Topics document that you can find in Xcode’s Documentation and
API Reference window.

As localization is one of the last app development tasks you undertake, it’s fitting that this is one of
the last chapters in this book. But your iOS journey doesn’t have to stop here. There’s so much more
to perfect your app and refine your app development skills. The next two chapters will improve your
app’s performance, taking it to even greater heights.

Figure 22-18. Localizing your app’s name

691

Chapter 23
Faster, Faster

I’ve spent a lot of this book explaining the “correct” way to do things in iOS: the correct way to use a
delegate, the correct way to define a data model, the correct way to register for notifications, and so
on. But there’s more to creating great apps than ensuring that they’re correct. Of course, you want
your app to be bug free. You want its buttons to work, and you surely don’t want it to crash, but
there are other aspects too. The fit, finish, and performance of your app are just as important as its
features. In this chapter you’re going to focus on performance.

Xcode provides a suite of tools for profiling and performance testing, which you haven’t even looked
at, called Instruments. In this chapter you’ll fire up Instrument and:

Learn the fundamentals of code optimization	

Analyze method execution time	

Identify “hot spots” and reorganize your code to improve app responsiveness	

Trace object allocations to quantify memory usage	

Stress test your app	

Implement low memory handling	

The notion of performance is often confined to measuring how fast code X accomplishes task Y.
My definition is much broader. For me, the performance of an app is simply how well it performs for
the user; it should be efficient, respond smartly, and (ideally) not grind to a crawl under a heavy load.
You can apply metrics to some of these aspects—and we’ll measure some in this chapter—but in
the end, what’s important is how your app feels. Does it feel lively or sluggish? Is it jerky or smooth?
That’s the litmus test.

As you piled on new features to MyStuff in Chapter 19, your app was starting to feel a little fatigued.
Some actions were getting slow. It’s losing its responsiveness. In this chapter, you’ll put MyStuff
on the test bench and see what’s ailing it. But before you get to that, let’s talk a little about the
overall process.

692 CHAPTER 23: Faster, Faster

Performance Optimization
Performance optimization is the art of getting the best performance from your code. There are hundreds
of different ways to solve almost any software problem. Some of those ways are going to be more
efficient—use less memory, require fewer resources, execute faster—than other solutions. In the
simplest terms, performance optimization is the search for a solution with the best performance.
Now we’re going to go look at some code and try to figure out how to make it run faster, right?

Wrong.

The mistake practically every programmer makes is optimizing code that doesn’t need optimizing.
I’ve done it. It’s hard not to. You see code that you know could be made faster, or more efficient,
and you’re just chomping at the bit to rewrite it. Don’t. Take a deep breath, three if you have to, and
carefully read the following.

Code optimization serves a purpose: making your app better. If your work isn’t making your app
better, you shouldn’t be doing it. Just jumping in and rewriting code to make it faster is a fool’s
errand. First, you don’t know what to optimize. Seriously, you don’t. Even programmers with
decades of experience can’t accurately guess where an app’s performance problems are.

Secondly, it’s even harder to look at some code and tell if it’s adversely impacting your app. You
might know how to make it better, or use fewer objects, but that doesn’t mean that’s going to
translate into a tangible difference for your app.

Finally, code optimizations—particularly code to improve execution performance—will often
complicate your code and could introduce new bugs. That makes it harder to read, harder to debug,
and harder to maintain. You’d better be getting some significant benefit for what it’s costing you, or
your development efforts are going backwards, not forwards.

Here’s the way to achieve purposeful, rational, and effective performance optimization:

1. Establish a performance criterion

2. Measure the performance of your app and record a baseline

3. Optimize your code

4. Measure the performance of your modified app and compare it to the
baseline

5. Repeat steps 3 and 4 until the goal in step 1 is achieved

Begin by writing your code simply and directly. Don’t worry too much about optimization and
performance at the outset. Concentrate on writing concise, straightforward, solutions that are
robust, bug free, and easy to maintain. Now you can begin the process of performance analysis and
optimization.

Step one is crucial. You must begin by deciding what your app’s performance criteria are. It doesn’t
have to be fancy, or even specific. It can be as simple as “I want my app to be responsive.” That’s
actually an exceptional performance criterion. As you test your app, if you find a place or two where it
isn’t as responsive as you’d like it to be, then that’s the code you concentrate on. The rest of the code
you ignore. It doesn’t matter how much better you can make it, it isn’t—by definition—impinging on
your app’s performance.

693CHAPTER 23: Faster, Faster

Once you’ve established that something needs to be improved, measure and analyze your app’s
current performance, using a tool like Instruments. This becomes your baseline. This is also a critical
step. You cannot evaluate the effectiveness of your optimizations if you don’t have something to
measure your progress against.

Then, and only then, should you start changing your code. Because you’ve taken the first two
steps, you know what you need to accomplish and you have the information (from the baseline
measurements) needed to formulate a plan to achieve that goal.

You should then measure your app’s performance again and compare it to the baseline. This will
tell you, definitively, what progress you’ve made. If the change meets your original performance
criterion, you’re done. Get back to adding cool new features.

If not, then just try again. Optimization is as much art as science, and it’s not uncommon to try two
or three different solutions before you find one you’re happy with. The point is, you’ll know if you’re
making real progress or not, and how much.

OK, the sermon is over. Let’s put this to the test, so to speak.

Fixing a Slow Tap
At the end of Chapter 19, you added document storage to MyStuff and fixed an image rotation problem.
I’ve been playing with MyStuff on my iPhone, and it’s starting to drag a little. When I choose a new
image from my photo library, there’s a definite hiccup—a pause of about a second—between when
I tap the image and it returns me to the detail view controller. It’s long enough that, every time I do it,
I have a momentary sense that I didn’t actually touch the image and I should try again. That’s too long.

Note You might not be experiencing these performance deficiencies. For this chapter, I deliberately tested
MyStuff on an older iPhone 4. Newer, faster, devices are probably much more responsive, but I want all of my
users to get a great app experience, not just the ones with the latest hardware.

The programmer voice inside my head is telling me what’s wrong, “Dude, the did-pick-image method
has to crop, rotate, and resize the image, and then it has to encode it into a compressed PNG format
and store that in a file wrapper. Of course it’s going to take a second or two!” I then have to remind
my programmer voice, “Dude, that doesn’t matter, the interface sucks.”

If you’re following my line of reasoning, you’ve already taken your first step in your performance
optimization journey. You wrote the code in a simple, straightforward, manner that works. You then
established a performance criterion for your app, specifically that touch responses shouldn’t lag.
A full second to respond to a tap is too slow.

Note In most situations, if the visual feedback in response to a gesture happens within ¼ to ¹/3 of a second,
the interface will feel lively and responsive. Anything that happens in less than 1/10th of a second will appear
to be instantaneous. A delay of ½ second or more, and the interface begins to feel sluggish.

694 CHAPTER 23: Faster, Faster

The next step is to measure the performance of the app, gather information, and establish a
baseline. For that, you’ll use Instruments.

Launching Instruments
Instruments is the front-end for a suite of analysis, profiling, and faultfinding tools, much as Xcode is
the front-end for your editors, compilers, and debuggers. You can use the Instruments app by itself,
but Xcode makes it so easy to use directly from your project, I can’t imagine why you’d want to.

For this chapter, start with the version of MyStuff after you added document support and fixed the
image rotation problem (second exercise in Chapter 19). You’ll find this project in the Learn iOS
Development Projects ➤ Ch 19 ➤ MyStuff E2 folder.

Instruments is normally launched when you profile your app. This is determined by a set of schemes
defined in your project. When you run your app (using the Run button or menu command), the
Run scheme is used. When you profile your app, the Profile scheme is used. To see your project’s
schemes, choose Edit Scheme... from either the Scheme control in the toolbar or by choosing
Product ➤ Scheme ➤ Edit Schemes... from the menu. This will present the scheme editor, as
shown in Figure 23-1.

Figure 23-1. Project scheme editor

There’s nothing here to change, I just wanted you to know where it was. The default configuration
for the Profile scheme is to launch Instruments and prompt you (Ask on Launch) for the type of
analysis to perform, which is perfect to get started. So what are you waiting for? Close the scheme
editor and profile your app by choosing Product ➤ Profile (Command+I) from the menu or from the
Run button’s drop-down menu. Xcode will build your project and launch Instruments, as shown in
Figure 23-2.

695CHAPTER 23: Faster, Faster

Each Instruments template describes a different kind of analysis. They’re organized into groups for
convenience. For your first foray into performance analysis, choose the iOS ➤ CPU group and select
the Time Profiler. This is the most commonly used instrument for measuring code performance.
It works by sampling your code as it executes, thousands of times a second. At each sample, it records
the functions and methods that are executing at that instant. By aggregating hundreds of thousands
of these samples, it can paint a remarkably accurate picture of where your app is spending its time.
These are the methods that you want to make faster.

Figure 23-2. Instruments template picker

Note While you can do performance analysis in the simulator, it’s not that useful. Performance is highly
dependent on the model of CPU, hardware components, memory speed, and other physical traits of the
device. All performance tests should be done on real iOS devices.

Click the Profile button and your app begins executing, under the watchful eye of the Time Profiler
instrument, as shown in Figure 23-3. You want to find out what’s taking so long when a new image
is added, so immediately started adding new items and selecting images for those items from your
camera roll. Repeat this several times. You should notice a sizable spike in CPU activity as you tap
on an image in the photo picker, creating a series of “humps” in the CPU usage graph.

696 CHAPTER 23: Faster, Faster

After adding a few new images, press the home button to push the app into the background, wait
a few seconds, and click the Record button in the Instruments toolbar. This stops recording and
terminates the app.

Congratulations, you have a baseline! You’ve captured the code activity associated with the
performance problem you’re trying to solve. Now it’s time to mine this mountain of data for some
answers.

Finding the Hot Spots
Begin by isolating just the performance information you’re interested in studying. Using the mouse
in the Instruments timeline (at the top of the window), drag the sample cursor (hollow triangle with
dotted line) just to the left of one of those “humps” in the graph recorded just as you tapped an
image in the photo library picker. To make this easier, drag the Change Track Scale control, shown
at the middle-left of the window in Figure 23-3, to zoom in on the samples you’re interested in. Click
on the left mask button in the Inspection Range control in the toolbar. Drag the cursor just to the
right of the hump and click on the right mask button. Now all of the data you’re going to work with
in the lower panes will contain only samples from the highlighted range (lower pane in Figure 23-3),
because this is the code you’re interested in profiling.

Figure 23-3. Initial sample of MyStuff

697CHAPTER 23: Faster, Faster

Note Code performance numbers are going to vary wildly from one CPU to the next. That’s why it’s
important to measure your app on actual hardware (not the simulator) and to repeat your tests on as many
different configurations of hardware as you can get your hands on.

Now you want to find the hot spots in your code. This is optimization slang for the code that’s eating
up all of your CPU time. Less colorfully, it’s the regions of code that accumulated the most samples.
With the Time Profiler instrument selected in the trace document, locate the Invert Call Tree and
Show Obj-C Only options in the Time Profiler sidebar. Check both of these, as shown in Figure 23-3.

The Show Obj-C Only option filters out all of the C functions from the analysis. I recommend this
option for Objective-C programmers, particularly to get started.

The Invert Call Tree option inverts the Call Tree you see to the right. When not checked, the Call
Tree summarizes the calling hierarchy of your entire app. Each line in the table shows a method or
function and how much time your app spent in it. Expand a line and you see the methods it invoked,
and the breakdown of time spent in each sub-method. Expand one of those, and you get the idea.

The Call Tree is normally sorted by “heaviest” method. That is, the first line of each group will be the
method that used the most CPU time. To dig down into the pile and find the heaviest code path in
the tree, keep expanding the first line of each group.

With the Invert Call Tree option checked, the Call Tree is turned inside out. Now, the method listed at
the top is the heaviest leaf method in your app. Expand it, and it lists what methods called it—instead
of what methods it called. In Figure 23-3, you see that 32.3% of your app’s response time was spent
in the -drawInRect:blendMode:alpha: method. Working backwards, by expanding the lines, and you
find that it’s the -imagePickerController:didFinishPickingMediaWithInfo: method that’s using it
(to resize and crop the chosen image).

Tip Inverting the call tree is particularly useful for identifying heavy methods that are invoked from a variety
of different places.

Looking a little further down the list, the next heaviest method is the -setImage:existingKey: method.
This is the method you added to store the new image in the document. When the user taps on an
image in the picker, 23.7% of the time is spent storing it in the new document. If you expand its
caller you see that it, too, is being called from the -imagePickerController:didFinishPickingMediaW
ithInfo: method.

This corroborates your suspicion that the image conversion and document storage code you added
in Chapter 19 are slowing down the interface when the user picks an image. Let’s dig into the
-imagePickerController:didFinishPickingMediaWithInfo: method and find out what’s going on.
Turn the Invert Call Tree option off again, and begin expanding the heaviest methods in the call tree
until you uncover the -imagePickerController:didFinishPickingMediaWithInfo: method, as shown
in Figure 23-4.

698 CHAPTER 23: Faster, Faster

In this set of samples, it shows that the image picker delegate method spent close to a second
(860 milliseconds) responding to the tap. Expanding that line, you see the amount of time spent in
each message the picker method sent. While this is accurate information, it’s sometimes a little hard
to translate into what your code is doing. Instruments will help you here too.

Double click the -imagePickerController:didFinishPickingMediaWithInfo: method line and Time
Profiler will switch to its source view, as shown in Figure 23-5.

Figure 23-4. Details of -imagePickerController:didFinishPickingMediaWithInfo: execution time

Figure 23-5. Time Profiler source view

699CHAPTER 23: Faster, Faster

Instruments overlays the time spent in each line of your source code, clearly identifying the hot spots
in your code. This view is particularly good at identifying loops that are taking a long time to execute.

What have you learned from Figure 23-5? You’ve learned that when the user tapped on an image in
the photo picker, 37.3% of the time was spent cropping image, 26.9% storing it in the document,
and 0.3% dismissing the photo picker view controller. In a big surprise, 34.8% of the time was spent
notifying any observers that the data model changed.

Huh?

The Hubris of Experience
Yes, it caught me off guard too. When I was originally planning the projects for these chapters, I knew
that the image compression and document storage code in Chapter 19 would add a lot of overhead
to the MyStuff app. I’ve worked with the LZ77 compression algorithm used by the PNG format, and
I know how CPU intensive it can be. I planned to start this chapter by showing you how much time
the image conversion and compression routines were taking up when the user chose an image,
and what to do about it. But when I actually ran Instruments on MyStuff, what did I find? I find that
almost a third of the delay is tangled up in the data model notification. Something that I guessed
wouldn’t have even showed up on the radar.

And this is why you can’t assume you know where your performance problems are. Even with years
of programming experience, you’re going to guess wrong. I did. You must start by measuring your
real-world performance. If you don’t, you’ll be tilting at windmills.

So what is going on? Digging into the -postDidChangeNotification method, shown in Figure 23-6,
it turns out that the MyWhatsit change notification was observed by the view controller, and that
triggered a redraw of the table view (-reloadRowsAtIndexPaths:withRowAnimation:). This, apparently,
is a much more expensive operation than I thought.

Figure 23-6. Time sample details of -postDidChangeNotification

Fine, I guessed wrong. Can we get back to improving MyStuff now?

700 CHAPTER 23: Faster, Faster

Picking the Low Hanging Fruit
With all of this knowledge, you now need to formulate an optimization plan. You’ve identified
three hot spots in your photo picker handling code:

Data model notification	

Image conversion	

Image compression and document storage	

The trick is to pick the “low hanging fruit.” Find the code that is hurting performance the most and
is the easiest to improve.

Graphics operations are data and CPU intensive, by their very nature, and the iOS graphics library
is already heavily optimized. It’s unlikely you’re going to get much improvement by rewriting the code
that crops the image.

That leaves the data model notification and document storage as candidates for improvement. And
in a nice surprise, the heaviest is also the easiest to solve.

Deferring Notifications
In iOS, notifications are delivered immediately. When you post a notification, all of the observers are
sent their notification messages, and control returns to your method only after they’re all done. In
this instance, the act of notifying everyone that the data model object changed triggered a series of
expensive and time-consuming operations.

You can’t avoid this work—the data model has to send its notifications, and the observers have to
be notified—but you can procrastinate. It’s not critical to the code that picks a new image that these
notifications are delivered before that code is finished. You can take advantage of this to defer the
notification. The notification will still happen, just not at the moment the user taps an image. This will,
in turn, improve the response time to the tap event.

The notification center has an oft-neglected relative called the notification queue (NSNotificationQueue).
A notification queue posts notifications to a notification center on your behalf, but it provides two
essential services. It doesn’t post them immediately, so any code triggered by those notifications
won’t execute until later. Secondly, it will combine duplicate notifications and only post one; a
feature called coalescing. Some notifications, like data model changes, can occur many times, but
they all mean the same thing. Rather than repeatedly send the same message to all observers, the
notification queue combines them into a single notification, which is far more efficient.

Open your MyStuff project. Select the MyWhatsit.m implementation file in the project navigator and
locate the -postDidChangeNotification method. Rewrite the method like this (new code in bold):

- (void)postDidChangeNotification
{
 NSNotification *noti;
 noti = [NSNotification notificationWithName:kWhatsitDidChangeNotification
 object:self];
 [[NSNotificationQueue defaultQueue] enqueueNotification:noti
 postingStyle:NSPostWhenIdle];
}

701CHAPTER 23: Faster, Faster

To use a notification queue, you must create a notification object. (When you use the notification
center’s -postNotification... messages, the NSNotification object is created for you.) Once you
create the notification, push it onto the queue.

Each notification queue is attached to a notification center. iOS, conveniently, creates a notification
queue attached to the default notification center for you. Anything you add to the default queue will
(eventually) be posted to the default notification center.

When your modified MyWhatsit object receives a -postDidChangeNotification message, it doesn’t
notify its observers immediately. This method has become an asynchronous method. It merely
queues the notification to be delivered in the future.

So when does it get delivered? You have are a few choices, controlled by the postingStyle
parameter. The two most useful are NSPostWhenIdle and NSPostASAP.

	NSPostASAP will post the notification as soon as the current code finishes
executing and control returns to the event loop. Use this to post notifications
that must be sent before the next event is dispatched.

	NSPostWhenIdle saves notifications until the event loop is idle. It waits until
all pending events (touch events, timers, deferred messages, user interface
updates) have been dispatched. Before the event loop goes to sleep again, any
queued notifications are sent. Use NSPostWhenIdle when you want notifications
to be handled immediately after you’ve responded to all user and timer events.

Now the work of updating the data model, refreshing the table view, and notifying the document of
changes is still handled, but it’s handled after you’ve responded to the tap event, dismissed the view
controller, and updated everything on the screen.

Once More into The Breach
Close and save your Instruments trace document, as shown in Figure 23-7. Give it a descriptive
name, like Baseline Profile. Close the profile window.

Figure 23-7. Saving your baseline trace document

702 CHAPTER 23: Faster, Faster

Return to Xcode and profile your app again. Perform the same steps you did before: choose the
Time Profiler template, add images to your app, stop it, narrow the inspector range to the code
that picks a new image, and review the call tree, as shown in Figure 23-8.

Figure 23-8. Profiling revised code

This time, it only took half a second (514 milliseconds) to execute the code in the -imagePickerController:
didFinishPickingMediaWithInfo: method. That’s an improvement of over 67%. Open the baseline
trace document you saved and compare two, similar, execution sections. In the modified code, the
-postDidChangeNotification method doesn’t even show up in the sample, it happens so fast!

If you dig around the call tree, you’ll eventually find where the data model notification is posted, and
all of the busy work associated with it still gets done. But it’s not happening when the user taps the
interface, so they don’t see it.

Your app should feel much more responsive now. The key to creating responsive apps is to keep
your event loop running and ready to react immediately to the user or other events. That often
means breaking up the work so it doesn’t happen all at once. Notification queues are a great way to
defer tasks that you don’t want interfering with your interface, and can be safely performed later.

This is great progress, but it still hasn’t gotten the response time below ½ second. The next “heavy”
on the list is the code that adds the image to the document. You’ll learn a different way of deferring
that work in the next chapter.

Save your second trace document and close it. Now you’re ready to look at a completely different
aspect of your app’s performance.

Precious Memory
The amount of RAM available to mobile apps is minuscule when compared to most computing
environments. Yet, users expect mobile apps to accomplish many of the same tasks: surf the
web, play videos, read books, and edit documents. An iOS app is under tremendous pressure to
conserve, and make the best use of, its memory. Xcode has several tools to help you analyze and
improve your app’s memory use.

703CHAPTER 23: Faster, Faster

Quantifying memory use isn’t as conclusive as measuring code performance. Poor use of memory
degrades your apps, other apps, and the iOS device in general, in odd and subtle ways. Generally,
you want your app to use as little memory as possible. But that can be counter to making your app
faster, because caching data and objects is one of the ways of improving its performance.

In this section you’re going to work through the bare minimum of responsible memory use by
stress testing your app and responding to iOS’s low memory warnings. When an app starts to use
too much memory, iOS first gives it a chance to release memory it’s not relying on. It does this by
sending low memory warning notifications. If the app responds, it (and other apps) can all continue
to run. If it doesn’t, or can’t recover enough memory, iOS will begin terminating apps, in order to
keep the active app running.

If an app continues to ignore these warnings, it runs the risk of running out of memory. This usually
has disastrous results. The app will crash, and the user will be left staring at the springboard. This
situation should be avoided at all costs.

In this section you’re going to use Instruments to trace the memory usage of your app and find its
breaking point. You’ll then modify your code and use Instruments again to verify that it behaves
correctly. But first, you have to push it to its limit.

Breaking MyStuff
MyStuff is an unbounded app. You put no limits on the number of items the user can add. Now you
might expect that number to be reasonable, and MyStuff’s memory needs to be nominally modest.
And most of the time, you’d be right. But if I have 20 model train cars, you know there’s somebody
with 300. What happens to MyStuff when the user wants to track 100, or 500, or 2,000 items? Is that
crazy? Absolutely. Is it OK if MyStuff crashes after adding the 500th item? No, it is not.

When you develop any app, you need to stress test it. How you do that will depend on the nature of
the app. For MyStuff, its Achilles’ heel is the memory used by all of those item image objects. If the
user keeps adding items and images, it’s going to run out.

You’ve already written MyStuff to keep its image objects in memory, lazily loaded from the
document’s file wrapper objects. You also have to establish a performance criterion: MyStuff should
use its memory efficiently and not crash if the user enters 1,000 items. That’s a reasonable goal.
The next step is to test it.

I don’t know what you’re doing this weekend, but I don’t want to spend it entering 1,000 items (with
pictures) into MyStuff. I suggest you do what any respectable programmer would do; you cheat. Add
some code to MyStuff to generate hundreds of test items.

The first step is to make MyWhatsit copyable. Select the MyWhatsit.h interface file and adopt
the NSCopying protocol (new code in bold):

@interface MyWhatsit : NSObject <NSCoding,NSCopying>

704 CHAPTER 23: Faster, Faster

Switch to the MyWhatsit.m implementation file and add the necessary -copyWithZone: method (you
learned how to do this in Chapter 20):

- (id)copyWithZone:(NSZone *)zone
{
 MyWhatsit *copy = [[[self class] alloc] init];
 if (copy!=nil)
 {
 copy->_name = _name;
 copy->_location = _location;
 copy->image = image;
 copy->imageKey = imageKey;
 }
 return copy;
}

Select the MSThingsDocument.m file, find the -loadFromContents:ofType:error: method, and locate
the code that unarchives the things array. Immediately after that, add this test code (in bold):

 if (thingsData!=nil)
 {
 things = [NSKeyedUnarchiver unarchiveObjectWithData:thingsData];
#if 1 // STRESS TESTING: generate a thousand test items
 if (things.count>10)
 {
 NSUInteger cloneIndex = 0;
 while (things.count<1000)
 [things addObject:[things[cloneIndex++] copy]];
 }
#endif
 [things makeObjectsPerformSelector:@selector(setDocument:)
 withObject:self];
 }

Run the modified MyStuff app. Add more than 10 items to the list, with images. Press the home
button, to push the app to the background, and let it save its document. Run it again. This time, your
list will have 1,000 items. Now it’s time to see how well MyStuff handles that!

Note When you’re done testing, change the statement #if 1 to #if 0. This will disable all of the code
between the #if 0 and the #endif.

Measuring Memory
Memory and CPU usage are such important performance metrics for apps that Xcode includes a set
of “mini” instruments right in its debug navigator. Run your MyStuff app from within Xcode. Switch to
the debug navigator (if it doesn’t appear automatically), as shown in Figure 23-9.

705CHAPTER 23: Faster, Faster

The stress-test code you added will generate a 1,000 test items. Start scrolling through the list. As
each table row reveals a new MyWhatsit item, it requests the item’s image. This, in turn, loads a new
UIImage object from the document and saves it in the image property of the object.

As you scroll, you’ll notice the memory use of the app begins to climb, as shown in Figure 23-9.
Keep scrolling and the app will eventually run out of memory. You’ll be rewarded with a fatal app
crash, accompanied by the message shown in Figure 23-10.

Figure 23-9. Xcode’s CPU and memory monitors

Figure 23-10. Memory pressure failure

706 CHAPTER 23: Faster, Faster

Xcode explains that your app “Terminated due to Memory Pressure,” which is a polite way of saying
it used up all of its available memory and died an ugly death. This is horrible. You definitely don’t
want this happening to your users.

The CPU and Memory monitors in Xcode are great for spot-checking your app’s use of these precious
resources, but when there’s a big problem you’ll usually need more detail. Turn again to Instruments.

Memory Instruments
The Allocations instrument is the memory measurement tool of choice for Objective-C
programmers. This instrument tracks the creation and destruction of Objective-C objects—every
single one of them. It’s useful in finding all kinds of problems, but today you’ll be using it simply
to measure the total amount of memory your app is using, count the number of image objects
allocated, and observe memory warnings.

Profile your app. When Instruments presents its template picker, choose the Allocations template,
as shown in Figure 23-11.

Figure 23-11. Allocations template

MyStuff starts running and the Allocations instrument begins collecting data. At the top, you’ll see a
graph of all memory allocations. (You can chart any set of allocations you like by checking different
items in the categories.) Begin scrolling through the list of items in the MyStuff app. As you remember
from Chapter 5, table cell view objects are prepared lazily. As you scroll, the images for each item that’s
about to be displayed is lazily loaded from the document. Each time this happens, another UIImage
object is created. You can see the effect it has on the overall memory usage, shown in Figure 23-12.

707CHAPTER 23: Faster, Faster

If you keep scrolling the table, the memory use goes up and up and up and . . . boom! The app crashes.

Figure 23-12. Baseline memory use in MyStuff with 1,000 items

Note Your app might not crash after scrolling through 300 items, or even 600. Apple keeps making
newer iOS devices with more memory, so by the time you read this the latest iOS gizmo might not run out
of memory even after loading 1,000 images. This is one reason why you need to test your app on as many
different configurations of hardware (CPU/memory combinations) as you can. An app that runs for days on the
latest generation of hardware might not last 5 minutes on one that’s a few years old.

You’ll notice a set of flags in the timeline. Click on one, as shown in Figure 23-12, and it will show
you that a Low Memory Warning was sent to your app—several, actually. iOS was trying to warn
your app that it was running out of memory. Your app ignored those warnings and kept loading
images, to its peril. You may also see black flags (with an X) in the timeline. These indicate where iOS
terminated another running app in order to provide your app with more memory. This underscores
how poor memory management impacts other apps, not just yours.

If you sort the list by the amount of memory each type of allocation is occupying, you’ll see that the
biggest consumer is VM: ImageIO_PNG_Data allocations, as shown in Figure 23-13. If you scroll down
the list of object/allocation types, you’ll also find the UIImage object listed. It’s easier to find these
objects if you filter the list; the keyword “image” has been used in Figure 23-13 to eliminate many
uninteresting categories.

708 CHAPTER 23: Faster, Faster

In this sample, the app crashed after creating 324 UIImage objects, 305 of which still exist and are
occupying memory. So we’ve learned that MyStuff, running on this particular flavor of iPhone, can
load about 300 images into memory at once. But there are 1,000 images in the list! What can you do
about that?

Figure 23-13. UIImage allocations in baseline stress test

Note You can’t tell how much memory, in total, the UIImage objects are consuming by looking at this
one line in the Allocations instrument. The memory size for a UIImage is just the memory occupied by that
object; it doesn’t include any memory occupied by other objects or memory allocations the UIImage refers
to. The bulk of an image’s data is allocated in separate ImageIO_PNG_Data allocations that will appear
elsewhere in the list. This is also true of collection objects (like NSArray).

Heed the Warnings
It turns out, this problem is also easy to address. Your MyWhatsit object has two image references:
the ID of the compressed image data in the document (NSString) and the working image object
(UIImage) in memory. The image object can be easily recreated, at a moment’s notice, from the data
in the document.

709CHAPTER 23: Faster, Faster

If your app is running out of memory, the first thing it should do is discard all of the objects that can
be easily reconstructed. Your view controller objects already do this. Every NSViewController object
receives a -didReceiveMemoryWarning message when memory starts to run low. (The custom view
controller class template includes stubs for these methods, so I know you’ve seen them around.) If
the view controller has loaded its view objects, but isn’t being displayed—it had been presented but
has since been dismissed—it destroys all of its view objects.1 Its view objects are easily recreated
from its Interface Builder file, should it be presented again.

The solution for MyStuff is for every MyWhatsit object to observe these low memory warnings. When
one is received, it can discard its UIImage object, knowing that it can reload it from the document
using its imageKey property.

Select the MyWhatsit.h file. Add this new method prototype to the @interface section:

- (void)memoryWarning;

Switch to the MyWhatsit.m implementation file and add the new method:

- (void)memoryWarning
{
 if (imageKey!=nil && image!=nil)
 image = nil;
}

The method is simple. If the object has an image (image!=nil) and it has a key it can use to reload
that image from the document (imageKey!=nil), then it discards its image object (image=nil). The
next request for its image (-image) will create a new image from the document.

Now the question is: who is going to send the MyWhatsit objects this -memoryWarning message? That
sounds like a job for the document object. Select the MSThingsDocument.m implementation file. In the
private interface section, add a prototype for a new -memoryWarning: method (new code in bold):

@interface MSThingsDocument ()
{
 NSFileWrapper *docWrapper;
 NSMutableArray *things;
}
- (void)whatsitDidChange:(NSNotification*)notification;
- (void)memoryWarning:(NSNotification*)notification;
@end

Locate the +documentAtURL: class method and find the code that registers to observe the
kWhatsitDidChangeNotification notification. Immediately after that, add another one:

[notificationCenter addObserver:document
 selector:@selector(memoryWarning:)
 name:UIApplicationDidReceiveMemoryWarningNotification
 object:nil];

1This is why you don’t want your view object outlets to be strong references.

710 CHAPTER 23: Faster, Faster

Finally, add the new -memoryWarning: notification handler:

- (void)memoryWarning:(NSNotification*)notification
{
 [things makeObjectsPerformSelector:@selector(memoryWarning)];
}

The -memoryWarning: method observes the iOS notification that the app is running low on memory.
It turns around and sends a -memoryWarning message to each of its MyWhatsit objects, giving each
one a chance to release some memory.

Figure 23-14. Successful stress test of MyStuff

Caution In Objective‑C method signatures, colons are significant. The signature -memoryWarning (without
a colon) and -memoryWarning: (with a colon) are unique methods, but are easy to mix up.

Stress Test, Round #2
Profile MyStuff again. This time you didn’t save and close the trace document from the last profile.
When you work this way, Instruments reuses the open trace document and the data you gather from
this run accumulates in the same document. You’ll see a message like “Run 2 of 2” in the toolbar run
status, as shown in Figure 23-14. This is the other technique for comparing multiple measurements
of your app: collect multiple runs in a single trace document, and then flip back through them—using
the arrows in the run status or through the Run Browser window in the View menu—to compare
and contrast your progress.

711CHAPTER 23: Faster, Faster

You do the same thing you did last time; when MyStuff starts running, begin scrolling down through
the list, forcing the table view to load each item’s image. As you see in Figure 23-14, the memory
consumption begins to rise, just as before.

Eventually your app starts to run out of memory and receives a low memory warning (flag in the
timeline). This time, it responds to that warning by releasing all of its UIImage objects, dramatically
reducing its memory use. As you continue to scroll, new rows are drawn, causing it to load
new image objects, and the cycle repeats. What doesn’t repeat is the crash. This time, you can
successfully scroll all the way to the end of your 1,000 row table without incident.

If you look at the number of UIImage objects in Figure 23-11, it says that there have been a total
of 807 objects created, 747 of those have since been destroyed, and 60 remain in memory. If you
continued scrolling, the living count will climb again, until the next memory warning destroys them.
MyStuff is now correctly responding to memory warnings.

THE ALLOCATIONS INSTRUMENT

The Allocations instrument is a hidden gem for Objective‑C programmers. You used it in a rather rudimentary fashion in
this chapter, but it can track down all kinds of memory management issues.

The Allocations instrument traces every object allocation and destruction, recording what routine created it and what
routine was responsible for its destruction. In a non‑ARC app, it will also record every -retain, -release, and
-autorelease message sent to an object (and by whom), which can be invaluable in finding retain/release mismatches.

The Object Summary lists all of the objects, by class, that have ever been allocated. You can use the options on the left
to filter this to just the objects that still exist, or only objects that have been destroyed.

If you click the focus button (arrow) just to the right of a class, the list will expand to list every instance of that object in your
app, present and past. Each line records the time the object was created and its address in memory. If your app is stopped in
Xcode’s debugger at the same time, you can use the address of an object to find its history in the Instruments, and vice versa.

712 CHAPTER 23: Faster, Faster

The extended detail pane on the right (View ➤ Extended Detail) shows the stack trace when the object was
created. This is the code path in your app that created this object. The Live column indicates if the object still exists. This
is how you find objects that are leaking—should have been destroyed, but weren’t—possibly due to a circular retain.

Click on the focus button next to a specific instance, and the list shows the complete history of that object.

In an ARC application, this is going to be pretty boring, but can still be used to identify the code responsible for destroying
the object. In a non‑ARC app, this trace can include every place where a -retain, -release, and -autorelease
message was sent. Working backwards, you can identify code that was supposed to send a -retain that didn’t, or
uncover code that wasn’t supposed to send a -release that did.

You’ve addressed two significant performance problems in MyStuff. In the process, you’ve learned
a little about Instruments and how to measure code performance and Objective-C memory usage.
But this barely scratches the surface of what Instruments can do. I suggest you start by reading the
Instruments User Guide, which you can find in Xcode’s Documentation and API Reference window.
This guide is written for both iOS and OS X developers, so some topics won’t be relevant.

Summary
Performance analysis and optimization is an important phase of iOS development. Test your app
on as many hardware configurations as possible, to ensure it behaves well for everyone, and under
stressful conditions. This is the only way to ensure that your app not only works, but it works
well—all of the time.

If you learned nothing else in this chapter, I hope you learned when not to optimize code. Making
the best use of your time and talents is just as important as your other development skills. But I’m
sure you did learn other things. You’ve learned how to launch Instruments to analyze your app’s
performance. You can find hot spots in your code, and trace its memory usage. These tools reveal
behaviors in your app that you might not have realized and help you focus your coding efforts in the
right direction.

But MyStuff isn’t done yet! I promised you a second way of deferring work, to make the photo picker
method even more responsive. That requires some skills you haven’t developed yet. Since you’re at
the last chapter, I can’t put it off any longer.

713

Chapter 24
Twice As Nice

This is the final chapter, and the last topic I wanted to cover in this book. Your apps are pretty much
done. Localization and performance optimizations are typically the last details you address.
The next step is to upload them to the App Store (see the “Submitting Your App to the App Store”
sidebar) and start dreaming about your next project.

But I can’t let you go just yet. There’s a bug in one of your apps, you still have some performance
issues, and they’re all wrapped around the topic of concurrency. Concurrency is when two or more
sequences of code (called threads) are executing at the same time. This allows your iOS device to,
literally, do more than one thing at a time. It also severely complicates your job as a programmer.
In this chapter, you’re going to:

Learn the basics of multitasking	

Execute code blocks on another thread	

Use mutual exclusion locks to synchronize multiple threads	

Explore thread safety	

Embrace the main thread	

Concurrent programming, or multithreading, is reminiscent of the game of Go, often described
as “a minute to learn, a lifetime to master.” The basic principles are straightforward, but it adds a
complexity to your app that’s often difficult to grasp. Adding even small amounts of multitasking
to your app can have broad ramifications for your design, introduce subtle bugs, make your code
difficult to test, and could create conditions that will bring your app to a screeching halt.

So why do it? We use multitasking because it’s impossible to write a modern app without it. It’s
what allows your app to stay “alive” while it’s also loading web pages, updating the user’s location,
playing music, synchronizing documents, animating views, and so much more. iOS tries to insulate
your app from the mechanics of multitasking, but sometimes you have to deal with it, and it would
be a shame not to take advantage of its power.

714 CHAPTER 24: Twice As Nice

SUBMITTING YOUR APP TO THE APP STORE

In this book, you’ve experienced every major phase of iOS app development except one: publishing your finished app
on Apple’s App Store. With everything you’ve accomplished so far, the remaining steps for submitting your app are
almost trivial:

1. Register your app’s unique ID in the iOS Dev Center. You did this in chapter 14 for SunTouch and
again in chapter 18 for Pigeon.

2. Log into iTunes Connect and create an app, as you did for SunTouch in chapter 14. You’ll need to
provide the artwork, screen shots, contact information, and other material that will appear on the
App Store.

3. Still in iTunes Connect, click the Prepare for Upload button and answer any remaining questions.
There’s some legal stuff you’ll have to agree to. You’ll also want to make sure the services your app
needs, like Game Center and iCloud, are enabled for your live app.

4. Back in Xcode, choose iOS Device (or any real iOS device) as your run target.

5. Choose Product ➤ Archive to build your app and package it into a distribution archive.

6. In the Organizer window, choose the archive you just created and click the Validate... button.
This pre-flights your app and make sure it’s ready for submission. Address any problems that are
reported.

7. When you’re ready, select the archive in the Organizer window and click the Distribute... button.
Choose the Submit to iOS App Store option and follow the instructions.

Apple will review your app. If it’s accepted, it will appear in the App Store! If you have any problems or questions, consult
the iTunes Connect guides or contact Developer Services (using the Contact Us button in the iTunes Connect portal).

Concurrent Programming
A thread is a sequence of computer code that executes one statement at a time. It’s what we usually
think of as “a computer program” and exactly what you’ve written so far in this book. Most of the
time, your design and coding are focused entirely on the main thread of your app. In fact, the term
“your app” is nearly synonymous with the code executing on the main thread.

In a multithreaded environment, more than one thread can be executing concurrently. I’ve
occasionally mentioned background threads and asynchronous methods throughout this book.
Your app has even communicated with them through delegate methods. But for the most part,
these were activities that occurred “behind the curtain.” Which is, honestly, the way it should be.
When properly designed, and correctly implemented, multitasking enhances the power of your app
without complicating it.

Sometimes, however, those complications invade your code. On the benefits side, multitasking is a
powerful tool and there’s no reason you can’t use it in your app. For that, you’ll need to learn some
basic concepts, and then prepare to expand your thinking into the fourth dimension.

715CHAPTER 24: Twice As Nice

Threads
A thread executes a single sequence of computer code. Multitasking or multithreading is a mechanism
that executes two or more threads concurrently. Threads have a state. The truly interesting states
are running and sleeping. When a thread is running, it’s executing its code. When it’s sleeping, it
does nothing.

In small microprocessors, the central processing unit (CPU) can only perform one operation at a time.
So to be very literal, only a single thread is ever executing. The CPU periodically (a few hundred times
a second) stops executing the current thread, saves everything it knows about it, and starts to
execute a different thread. This is called a task switch. It jumps from one thread to the other so
quickly that it gives the illusion that all of them are running at the same time. Two threads can be
described as running concurrently, but not simultaneously.

Many newer microprocessors have multiple cores. These devices contain the hardware for two (or more)
complete CPUs on a single chip. In this environment, two threads literally execute simultaneously,
each CPU running a different program. Both CPUs perform the same task-switching that single-core
processors do, so all of the threads still appear to be running at once, but the CPU is accomplishing
twice the work. As of this writing, multi-core CPUs are just beginning to appear in small, portable,
computer systems like iOS devices. By the time you read this, multi-core CPUs could be the norm.

Synchronization
Having the CPU executing two, three, or even twenty different threads concurrently certainly sounds
wonderful. Think about how much work your app can do! The problem is how to coordinate that
work so it doesn’t collide. If you were the only person in the world with a car, there would be no
need for lanes, stoplights, or roundabouts. Add just one more driver to the road, and you better have
some agreement about which one of you goes through the intersection first. And that’s exactly the
kind of mayhem that awaits your app. Take this simple fragment of code:

if (singleton==nil)
 singleton = [[MySingle alloc] init];

You’ve written code like this in a dozen places. As long as only one thread is executing this code at
any one time, it works great. Now consider what would happen if two threads were executing this
code simultaneously:

1. Thread A would test singleton and find that it is nil.

2. Thread B would test singleton and find that it is nil.

3. Thread A would allocate and initialize a new MySingle object.

4. Thread B would allocate and initialize a second MySingle object.

5. Thread A would store its MySingle object in singleton.

6. Thread B would overwrite the object Thread A just created with its instance
of MySingle.

Two MySingle objects get created, the threads are using different objects, the reference to one object
gets lost—it’s a mess.

716 CHAPTER 24: Twice As Nice

To tame this confusion, programmers coordinate threads using a variety of means. The principle one
is the mutual exclusion semaphore, or mutex for short. It grants one thread the right to a resource,
and forces all other threads to wait. Here’s an example of how it’s used:

@synchronized (self)
{
if (singleton==nil)
 singleton = [[MySingle alloc] init];
}

The Objective-C @synchronized directive protects a block of code with a mutex. The mutex is used
to allow one, and only one, thread to execute the block at a time. Here’s how it works:

1. Thread A locks the mutex. This is the first request, so thread A is successful.

2. Thread B tries to lock the mutex. The mutex is already locked, so thread B’s
request is denied. Thread B is put to sleep—it stops executing.

3. Thread A checks the singleton variable, sees it is nil, creates a new
MySingle object, and stores it in singleton.

4. Thread A unlocks the mutex.

5. Unlocking the mutex wakes thread B, which (again) attempts to lock the
mutex. It’s the only one requesting it now, so the lock is successful.

6. Thread B tests singleton and sees an object has already been created.

7. Thread B unlocks the mutex.

A hundred different threads could all be trying to execute this code at the same time, but it will still
behave exactly as you intended. The mutex prevents any other thread from running this code, until
the thread that’s currently executing it is done. This code is now said to be atomic. The word atomic
comes from the Greek word atomos, meaning “indivisible.” The action performed by that code block
cannot be broken up or interrupted.

iOS includes an arsenal of objects and functions to help coordinate and synchronize thread activity.
Effective concurrent programming revolves largely around how, when, and when not, to use these
tools. Before I get to them, let’s first talk about how you can run your code in multiple threads.

Running Multiple Threads
You’ve started code running in a separate thread, indirectly, throughout this book whenever you sent
an asynchronous message. The UIWebView class’s -loadRequest: method creates a second thread of
execution that loads the web page’s content in the background.

Arranging for code you’ve written to run in a different thread is pretty easy too. You identify the
code you want executed and request Grand Central Dispatch (GCD) to run it. For Objective-C
programmers, the interface to GCD is the operation queue. An operation queue (NSOperationQueue)
object manages an array of operation (NSOperation) objects, each encapsulating one executable
task to be performed. You can create your own custom subclasses of NSOperation, or you can use
concrete subclasses that you configure to execute a specific method or a block of code.

717CHAPTER 24: Twice As Nice

Note An NSThread object represents a single thread of execution, but you rarely deal with thread objects
directly. Grand Central Dispatch automatically creates, schedules, and terminates the threads your operation
objects will run in.

In the last chapter, I told you there was another way of deferring work to improve the responsiveness
of the -imagePickerController:didFinishPickingMediaWithInfo: method. In this chapter you’re
going to arrange for the image compression (UIImagePNGRepresentation) to execute on a separate
thread. This will defer the work of compressing the image and allow your main thread to respond to
the user’s touch event quicker.

Creating an Operation Queue
The first step is to create an operation queue. This queue needs to be accessible to all MyWhatsit
objects, which will be using it to schedule work, so make it a property of the MSThingsDocument
class. Start with the final version of MyStuff from Chapter 23. You can find that in the Learn iOS
Development Projects ➤ Ch 23 ➤ MyStuff-2 folder. Select MSThingsDocument.h and add this
property to the @interface section:

@property (readonly) NSOperationQueue* editOperations;

Now you need to implement this property. Switch to the MSThingsDocument.m implementation
file and add an instance variable to the private @interface section (new code in bold):

@interface MSThingsDocument ()
{
 NSFileWrapper *docWrapper;
 NSMutableArray *things;
 NSOperationQueue *editOpQueue;
}

Create a getter method for the property that lazily creates the queue by adding this method
to the @implementation section:

- (NSOperationQueue*)editOperations
{
 if (editOpQueue==nil)
 editOpQueue = [[NSOperationQueue alloc] init];
 return editOpQueue;
}

Your document object now provides an operation queue for use by any code that wants to schedule
changes (edits) to the document, to be run asynchronously.

718 CHAPTER 24: Twice As Nice

Adding an Operation
The one place you want to use the new operation queue is in the MyWhatsit object. Select the
MyWhatsit.m implementation file, find the -setImage: method, and edit it so it looks like this (new code
in bold):

- (void)setImage:(UIImage *)newImage
{
 [_document.editOperations addOperationWithBlock:^{
 imageKey = [_document setImage:newImage existingKey:imageKey];
 }];
 image = newImage;
}

When the user chooses a new image for an item, the -imagePickerController:didFinishPickingMe
diaWithInfo: method will eventually send the MyWhatsit object a -setImage: message. Previously,
this method would compress and store the image in the document object
(using -setImage:existingKey:) before returning.

Now the code that stores the image data in the document is merely scheduled to execute at some
later time. The -setImage: method has become an asynchronous method. It returns immediately and
serious work happens in a background thread.

The -addOperationWithBlock: message is a convenience method that creates an NSBlockOperation
object, an operation object that executes a code block, and adds it to the operation queue. To add
some other kind of operation, you’d first create a custom subclass of NSOperation, or instantiate one
of its concrete subclasses (NSBlockOperation or NSInvocationOperation), and add it to a queue.
The documentation for the NSOperation class has extensive notes on how to subclass it.

There is very little about operation queues that you can configure. For the most part, you just add
operation objects to a queue and forget it. GCD will manage all the details, including creating the
thread the operation will execute in (sometimes called “spawning a thread”). It also manages the
number of concurrently running operations so it’s doing the most amount of work, but not so much
that it bogs down your app’s main thread, a technique called load balancing. You can also create
dependencies between two or more operations. The operation queue ensures the operations that an
operation depends on are executed first, before running that operation.

Measuring the Effects
Profile MyStuff again using the Time Profiler Instruments template. Just as before, add several new
items, choosing images from your photo library. Each photo creates a CPU spike in the time profile
graph, as shown in Figure 24-1. As before, stop recording and isolate one of those spikes.

719CHAPTER 24: Twice As Nice

Expand the call tree until you find the -imagePickerController:didFinishPickingMediaWithInfo:
method, also shown in Figure 24-1. You can see that the total time spent in the
-imagePickerController:didFinishPickingMediaWithInfo: method is only 329 milliseconds.
That’s less than a third of a second, which is a substantial improvement over the half-second it was
taking in the last chapter. The response time to the user’s photo-picker tap is now well within our
performance goals for responsiveness, and almost three times faster than it was when you started.

If you look further down the call tree list, you’ll see other threads, as shown in Figure 24-2. Digging
into those, you’ll find where the -[MSThingsDocument setImage:existingKey:] method executed
(it took 254 milliseconds). It still takes time, and CPU resources, to execute this code, but since it’s
running in its own thread, it doesn’t interfere with your app’s event loop, which means your app
stays responsive.

Figure 24-1. Time profile with multiple threads

Figure 24-2. -setImage:existingKey: running in another thread

720 CHAPTER 24: Twice As Nice

Here’s what happened. The -addOperationWithBlock: message created an NSOperation object and
configured it to run the code block passed in the parameter. The operation object was added to the
document’s operation queue. Grand Central Dispatch will then determine the best time to begin
executing the operation. The scheduled operation might not run until after the photo picker method
is finished (which most likely), or it might run in its entirety before the picker method finishes. There
are very few guarantees when it comes to when threads execute, as I’ll explain shortly.

Figure 24-3. Execution order of a single thread

Tip One way to see the order in which asynchronous methods execute is to add NSLog statements to
your methods and observe the order in which those log messages show up in Xcode’s console pane. The
message will indicate which thread logged the message. Don’t forget to take the NSLog statements back
out when you’re done.

Execution Order
The concurrent operation you just added also introduced some bugs into your document handling.
Not just one, but two, and there was a third that was already there. All of them have to do with the
total lack of coordination between the concurrent tasks running in your app—those cars driving
around without any stoplights.

When you run multiple threads concurrently, it ridiculously complicates the possible execution order
of your code. Consider two blocks of code named A and B. Before multitasking, there was only one
possible execution order, shown in Figure 24-3.

If the code in A and B are run in separate threads, the execution order can be any of those shown in
Figure 24-4.

721CHAPTER 24: Twice As Nice

The code could execute simultaneously (1). The B code could execute completely before the A code
even starts (2), or vice versa. Portions of the A and B code could execute alternately (3). Portions
of the A and B code could execute alternately, other sections could execute simultaneously, and at
other times neither is executing (4). In extreme cases, the B code might not execute at all (5), or at
least not start for a very long time.

Figure 24-4. Possible execution order of two threads

Note If the code in both A and B consisted of only three atomic statements, there are over 30 different
orders in which the code could execute. Now consider that useful background tasks will have hundreds of
nonatomic statements, and there could be a dozen or so other threads running concurrently alongside them.
When I ponder all of the possible execution orders, the word “gazillion” comes to mind.

So how do you inject some order into this chaos? It’s possible to write your code so that it behaves
rationally and predictably, while still reaping the benefits of concurrent execution. It just takes some
careful planning and a little practice.

Thread Safety
Thread-safe code behaves rationally, and predictably, when being executed from multiple threads
concurrently. The first big bug you introduced into MyStuff is that its -setImage:existingKey:
method isn’t thread-safe. There’s nothing stopping the user from choosing several images rapidly,
which could add several operation objects to the operation queue. GCD may then elect to run two or
more of those operations simultaneously, which means that multiple threads would be executing the
-setImage:existingKey: method at the same time. That would be a disaster.

There are many techniques for creating thread-safe code. Here are the big four:

1. Don’t use threads

2. Don’t share data

3. Share only immutable objects

4. Make concurrent actions and mutations atomic

722 CHAPTER 24: Twice As Nice

Don’t Talk About Thread Safety
The preferred solution for creating thread-safe code is not to use threads. As you saw in the
“Execution Order” section, the single thread solution doesn’t have any thread safety problems.
It’s perfectly safe, completely predictable, easy to write, and easy to debug.

If you can find a solution that doesn’t use threads, use it. In this book you’ve used timers, delegate
methods, event handlers, notifications, and notification queues to divide up work and respond to
events in a timely fashion—all on the main thread. Keep doing that. As long as all of your code is
executing on the main thread, you have (by definition) no thread safety issues.

But not everything can be performed on the main thread. The biggest problem is code that takes a
long time to execute. It will tie up the main thread, destroying its responsiveness, and may kill your
app entirely if it takes too long. For those problems, threads are the only solution.

The remaining techniques all deal with the problem of sharing data, which is at the nexus of all
thread safety problems.

Not Sharing Is Caring
The second way to skirt around thread safety issues is to not share the same data. Almost all
concurrency problems are caused by multiple threads trying to change the same data or objects
simultaneously. You’ve already seen a trivial example in the “Synchronization” section, earlier in
this chapter. In short, any code that modifies something—sets variables, alters the contents of
collections, changes properties, and so on—that is accessible to a second thread, isn’t thread-safe.

So the second solution to writing thread-safe code is to not share any data. If the data in thread A is
used and modified by thread A only, and the data in thread B is used and modified in thread B only,
the code is implicitly thread-safe.

iOS apps are, themselves, an extreme example of this arrangement. Your iOS device is running
several different apps right now (assuming it’s turned on). Each is running in its own thread. But each
is also in a separate process; a process is an island and has no access to any data or variables in any
other process. There are no thread safety issues between apps, because they have no shared data.

Of course, that also means the threads can’t communicate (they don’t share any data), which isn’t
practical. One thread-safe solution is to hand off the data to the other thread, so that the threads are
never using the same object at the same time. This is the technique used by the UIWebView object.
Here’s what happens:

1. The main thread prepares an NSURLRequest object.

2. The main thread passes the NSURLRequest object to the -loadRequest: method.

3. The -loadRequest: method makes a copy of the NSURLRequest object and
starts a background thread.

4. The background thread uses its copy of the URL request to send the web
page request and collects the response from the server in an NSData object.

5. The background thread terminates.

6. The NSData collected by the background thread is passed back to the main thread.

723CHAPTER 24: Twice As Nice

At no point did the main thread and the background thread use, or even have access to, the same
objects. The background thread used a copy of the NSURLRequest object, made before the thread started.
The main thread can do whatever it wants with its original copy; it doesn’t affect the copy used by the
background thread, and vice versa.

Similarly, the NSData object was accessible only to the background thread while it was being
constructed. Once finished, the background thread handed the object to the foreground (main)
thread at which point it didn’t touch it again.

This simple, sequential hand-off technique means that neither the background thread nor the main
thread has any thread safety issues to worry about.

Promise Me You’ll Never Change
There’s one class of objects that can be safely shared by multiple threads: immutable objects.
The properties of immutable objects can never change, so they can be safely used and accessed
by any number of threads concurrently.

This includes the immutable base classes for strings (NSString), numbers (NSNumber, NSValue),
collections (NSArray, NSDictionary, NSSet), and bytes (NSData). For collection objects, it’s
important that not only the collection object is immutable, but that the objects in the collection
are also immutable.

Tip Technically, shared objects don’t have to be immutable; they just can’t change. Once an object is
created, you can treat it as immutable and share it with another thread, as long as no subsequent code
makes any alterations to it. That’s a promise you have to be careful to keep.

The Atomic Age
OK, so your code can’t execute on the main thread. Your solution is to create a second thread
that must share objects and send messages that mutate data. In this situation, you need to
make your code thread-safe. This largely consists of making your methods and properties
atomic. Atomic code executes in its entirety before any other thread or process can interrupt it
or execute it again.

You have a wide selection of tools to choose from, but most thread synchronization is accomplished
using the mutual exclusion semaphore. It’s so popular, there are nearly a dozen different kinds
to choose from. For the Objective-C programmer, the simplest to use are the @synchronized
directive and the various NSLock classes. Let’s start by using @synchronized to make the
-setImage:existingKey: method atomic.

724 CHAPTER 24: Twice As Nice

Creating an Atomic Method
Select the MSThingsDocument.m file and locate the -setImage:existingKey: method. Rewrite it
so it looks like this (new or modified code in bold):

- (NSString*)setImage:(UIImage *)image existingKey:(NSString *)key
{
 NSString *newKey = nil;
 @synchronized (docWrapper)
 {
 if (key!=nil)
 {
 NSFileWrapper *imageWrapper = docWrapper.fileWrappers[key];
 if (imageWrapper!=nil)
 [docWrapper removeFileWrapper:imageWrapper];
 }
 if (image!=nil)
 {
 NSData *imageData = UIImagePNGRepresentation(image);
 newKey = [docWrapper addRegularFileWithContents:imageData
 preferredFilename:kImagePreferredName];
 }
 }
 [self updateChangeCount:UIDocumentChangeDone];
 return newKey;
}

You added a mutex around the block of code that modifies the docWrapper object. This code is now
atomic; only one thread can execute it at a time. Every atomic block of code that changes the object
should leave it in a stable state, ready to receive the next message or change. In this specific case, all
of the logic to either add, remove, or replace a data file wrapper in the document is completed without
interruption. When it’s finished, the next action that might need the docWrapper object can safely proceed.

The @synchronized directive is easy to use because it creates the mutex object for you. The object
in parentheses is not the mutex; that object is used merely to identify the mutex, and is called the
token. For a mutex to work, both threads must refer to the same mutex, so picking your token is
important. The most commonly used token is self:

@synchronized (self)
{
 ...
}

This mutex prevents multiple threads from executing this code for the same object. It also prevents
any other code, similarly protected, from executing at the same time, on the same object. It does not
prevent two threads from executing this code for different objects.

It doesn’t matter what object you choose for the token. What’s important is that the token is related
to the data being mutated; any two threads attempting to mutate the same data must refer to the
same token. Because of this, I chose the docWrapper object, because that’s the shared object being
changed. You can’t get more related than that. You could have used self in this situation—it would
have been just as effective.

725CHAPTER 24: Twice As Nice

Creating an Atomic Property
I told you that scheduling even a tiny bit of code to execute in its own thread complicates your job.
Return to the MyWhatsit.m file. The code block in -setImage: looks simple, but it’s fraught
with complications:

imageKey = [_document setImage:newImage existingKey:imageKey];

Sticking this code into an operation queue means that it could execute at any time. It also means
that the relationship you previously assumed between the image and imageKey variables has
evaporated, specifically:

The 	 imageKey variable could be set at any time (by the second thread). Code
that refers to the imageKey variable more than once could read one value the first
time and a different value the second time.

The 	 imageKey variable may, or may not, be set when -setImage: returns.

At any given moment, the 	 imageKey variable is no longer guaranteed to be the
image tag of the image variable.

To fix MyWhatsit, the imageKey variable needs to be made atomic. It’s being referred to, and modified
by, multiple threads and must now be made thread-safe. Start in the MyWhatsit.h file and change
the declaration for the imageKey property (modified code in bold):

@property (atomic) NSString *imageKey;

Switch to the MyWhatsit.m file. Locate the existing -imageKey getter method and add an atomic
setter method:

- (void)setImageKey:(NSString *)key
{
 @synchronized (self)
 {
 imageKey = key;
 }
}

Now, any code that sets the imageKey property will do it in the thread-safe manner.

Note It’s not necessary to rewrite the getter method. A single load of a pointer variable is implicitly
thread-safe. The CPU always transfers the entire word in a single, atomic, operation. Said another way,
reading or setting a single scalar value cannot be interrupted by another thread.

726 CHAPTER 24: Twice As Nice

The first method to rewrite is the -image method. Change the method so it looks like this
(new code in bold):

- (UIImage*)image
{
 @synchronized (self)
 {
 if (image==nil && imageKey!=nil)
 image = [_document imageForKey:imageKey];
 }
 return image;
}

This code is now thread-safe because it obtains a lock on the object before evaluating the imageKey
variable. Remember that imageKey could change at any time, so it’s possible that the valueKey in the
if statement will be different than the valueKey passed to the -imageForKey:. The mutex prevents
that from happening. Any code that would try to set the imageKey property (using the setter you just
wrote) between the if and the -imageForKey: message would stop and wait for this method to finish.
Are you beginning to see how this all works together?

Lastly, the -setImage: code needs to change once more (new code in bold):

- (void)setImage:(UIImage *)newImage
{
 [_document.editOperations addOperationWithBlock:^{
 self.imageKey = [_document setImage:newImage existingKey:imageKey];
 }];
 image = newImage;
}

The only change is how the imageKey property is set. It now goes through the thread-safe setter
method. When the background task ultimately gets around to setting the imageKey property,
it coordinates that change with any other threads currently using that value.

Note The -encodeWithCoder:, -copyWithZone:, and -memoryWarning methods don’t need to
change. They all fetch the value of imageKey once, and only once, which keeps them thread-safe. If the code
were changed so that wasn’t true, those methods would need to be made thread-safe too.

You only made the setting, and use of, the imageKey property atomic. You didn’t change any of the
other MyWhatsit properties. That’s because the imageKey property is the only value that could be
modified from another thread. If you later wrote code to set the name or location properties from
another thread, you’d need to repeat this analysis and take steps to make those properties
thread-safe too.

727CHAPTER 24: Twice As Nice

Making a Nonatomic Method, Atomic
That takes care of two bugs—making -setImage:existingKey: and the imageKey property atomic—but
you still have one more bug, which you’ve had since you added document support to MyStuff. You’ll
only encounter it if you select an image at the same instant the document object is auto-saving itself.
And this underscores just how subtle, and hard to find, concurrency bugs can be. You could have
tested MyStuff for days, shipped it to customers, and never run into it. Here’s how you’d find it.

Running MyStuff under the control of Xcode, repeatedly add items and select images for those items
from your photo library. The more items you add quickly, the longer it will take UIDocument to update
the files during its auto-save, and the more likely you are to encounter the bug. When it happens,
it appears in the console pane of Xcode, like the incident shown in Figure 24-5.

Figure 24-5. A concurrency bug

The message is an exception, a kind of software “abort” when something goes wrong. When you
run your app under Xcode’s control, exceptions are caught and logged to the console. Looking
in the stack pane, you can see that the exception was caught in thread 7, which is labeled
UIDocument File Access. This is a pretty good clue that the problem occurred while the document
was trying to read or write from the filesystem.

The description of the exception (“Collection was mutated while being enumerated”) tells you what
happened, but not why. The code that threw the exception is no longer running, so you can’t consult
the stack view. Instead, you have to investigate the stack trace recorded by the exception. This,
unfortunately, is just a string of numbers.

I’ll save you from looking this up on the Internet (lldb.llvm.org). The exception message is followed
by a list of the return code addresses that were on the stack when the exception occurred. If you
know what code those addresses refer to, you’ll have a pretty good idea of what was going on when
it happened.

http://lldb.llvm.org

728 CHAPTER 24: Twice As Nice

That (lldb) prompt in the console window is the debugger’s command prompt. You can send
commands directly to the debugger just by typing them in. In this situation, the image lookup --address
command is extremely useful. It tries to identify the method/function name of any code address.
If you plug in the addresses from the stack trace, you quickly get a picture of what the code was
doing when the exception was thrown, as shown in Figure 24-5.

Working backwards up the stack, you quickly uncover the method responsible was
-writeContents: toURL:forSaveOperation:originalContentsURL:error:. It writes the docWrapper
(NSFileWrapper) object, which blows up because it was modified in the middle of being written.
Now you know where it’s choking, you have to figure out why. It’s obvious that some other code is
modifying the docWrapper while it’s being written. Looking around that stack pane, you can’t see any
other code that is modifying docWrapper. It’s likely that whatever modified it did so and has exited
already, so there’s no trace of it in the debugger. You’ll have to look through your code and find all of
the places that modify docWrapper and determine, empirically, if one of them could be the problem.

It doesn’t take too long to zero in on a suspect; the -setImage:existingKey: method changes
(mutates) the docWrapper by adding and removing regular file wrappers. At the same time, the
UIDocument is periodically auto-saving the document, and it writes the docWrapper to persistent
storage on a background thread. The problem is that a collection object (like docWrapper) cannot be
changed while it’s being enumerated. You might remember this obscure rule from the “Collections”
section in Chapter 20.

With the detective work out of the way, your approach is obvious. You need to keep docWrapper
from being modified while it’s being written. That sounds like a mutex. But where do you put it?
The method that’s running on the background thread belongs to UIDocument.

The solution is to wrap the UIDocument method in a mutex. Select the MSThingsDocument.m
implementation file, and add this method:

- (BOOL)writeContents:(id)contents
 toURL:(NSURL *)url
 forSaveOperation:(UIDocumentSaveOperation)saveOperation
 originalContentsURL:(NSURL *)originalContentsURL
 error:(NSError *__autoreleasing *)outError
{
 @synchronized (docWrapper)
 {
 return [super writeContents:contents
 toURL:url
 forSaveOperation:saveOperation
 originalContentsURL:originalContentsURL
 error:outError];
 }
}

This method overrides UIDocument’s -writeContents:toURL:forSaveOperation:originalContentURL:error:
method and prevents it from running if some other thread is currently modifying docWrapper
(specifically, -setImage:existingKey:). Once it is running, it will block any other thread from
modifying docWrapper until the -writeContents:... method is finished.

729CHAPTER 24: Twice As Nice

As you can see, writing thread-safe code isn’t always obvious. It takes a fair degree of planning,
testing, and analysis. Which is why the first rule is still the best; avoid it when you can.

I’ll now wrap up with a brief tour of some other concurrency tools at your disposal.

Concurrency Roundup
Here’s a loose collection of tips, concepts, and tools that will help you get started using multitasking,
and hopefully keep you out of trouble.

The Thread-Safe Landscape
Making even a single property of an object (like MyWhatsit’s image property) thread-safe is often a
non-trivial task. Consequently, most classes and properties are not thread safe. Read that again. The
classes, or specific methods, that are thread-safe are usually documented. If you want a list, look up
the Thread Safety Summary in Xcode’s Documentation and API Reference window. It lists all of the
Cocoa classes that are thread-safe; it’s not a very long list.

Of particular note, the UI classes are not thread-safe. Not only are they not thread-safe, the only thread
that should use them is the main thread. In other words, you must not do anything with the user interface
objects—not even telling a UIView object it needs to be redrawn—from any thread except your main
thread. One of the very few exceptions is off-screen drawing. You can create an off-screen drawing
context (UIGraphicsBeginImageContext) and draw in a background thread. The resulting UIImage object
is not, ironically, thread-safe, and must be passed back to the main thread before it can be used.

Caution Do not attempt to send any message to a UI class from any thread other than the main thread.

To use any object, message, or property that isn’t thread-safe in a thread-safe manner requires that
you provide your own thread synchronization and atomicity.

Sending Messages To Main
Earlier I described how UIWebView would “pass an object to the main thread.” There are a handful
of methods that will send a message, or perform a code block, on a specific thread. The thread in
question must be running an event loop. This excludes any threads used by your operation objects,
but it does include the main thread, and that’s where this trick is the most useful.

So many thread safety issues disappear when code is run on the main thread. You can avoid a
lot of problems if you can schedule a method or block of code to execute there. This works, not
surprisingly, through the main thread’s run loop. Messages are added to the event queue and are
executed in their turn. The two most useful techniques are:

Send the 	 -performSelectorOnMainThread:withObject:waitUntilDone: message
to any object. It will arrange for that object to receive the Objective-C message
(with an optional object parameter). The message is dispatched to the object by
the main thread’s run loop. If waitUntilDone is YES, the sending thread will sleep
until the main thread has executed the message.

730 CHAPTER 24: Twice As Nice

The 	 +[NSOperationQueue mainQueue] object is a special operation queue that
runs its operations on the main thread. If you need a code block, or anything
more complicated than a single message, to run on the main thread, turn that
into an operation object and add it to this queue.

You already know that you can’t send any UI objects messages from another thread. So how does
your waveform analysis thread tell its custom UIView object to redraw itself once it’s finished with the
calculations? Here’s how:

[waveView performSelectorOnMainThread:@selector(setNeedsDisplay)
 withObject:nil
 waitUntilDone:NO];

Results of background tasks can, similarly, be delivered to your main thread through its run loop,
avoiding numerous thread safety issues:

[[NSOperationQueue mainQueue] addOperationWithBlock:^{
 [xrayViewController addImage:image sequence:n forPatient:patientID];
 }];

Lock Objects
You’ve created mutex objects using the @synchronized directive, but it’s sometimes more convenient,
efficient, and flexible to create the mutex objects yourself. The workhorse mutex class is NSLock.
Here’s an example:

NSLock *lock = [[NSLock alloc] init];

...

[lock lock];
// do thread-safe stuff here
[lock unlock];

This is equivalent to the @synchronized blocks you used earlier, but just a tad faster because you’re
not asking Objective-C to dynamically create and keep track of the mutex objects for you.

Lock objects are also more flexible. The -tryLock and -lockBeforeDate: messages will attempt
to acquire the lock and return NO if they were unsuccessful. Instead of being forced to go to sleep,
your code can use this information to do something else if the lock is currently locked by another
(possibly long-running) task.

Caution Always unlock a mutex object on the same thread that locked it. You must never lock a mutex
object on one thread and then unlock it on another. If you’re trying to signal or join threads, use the
NSCondition or NSConditionLock classes.

731CHAPTER 24: Twice As Nice

There are some subtle hazards that you need to avoid. If the code protected by your lock can throw
an exception, or your method needs to return a value, steps have to be taken to ensure the lock is
unlocked before returning. Here’s an atomic method using the @synchronized directive:

- (BOOL)doItSafely
{
 @synchronized (self)
 {
 return [obj doSomething];
 }
}

Here’s a functionally identical method, written using an NSLock object:

- (BOOL)doItSafely
{
 BOOL result;
 @try {
 [lock lock];
 result = [obj doSomething];
 }
 @finally {
 [lock unlock];
 }
 return result;
}

The @finally block intercepts any software exceptions that -doSomething might throw and ensures
that the NSLock is unlocked before exiting the method. If lock wasn’t unlocked, the next time
-doItSafely is received the program will seize up, which brings you to the next hazard of using
mutual exclusion semaphores.

Deadlocks
A deadlock occurs when code tries to lock a mutex that will never be unlocked. The code stops
executing—forever. If this happens to your main thread, your app just died. This can occur in the
same thread or between threads, where it’s known by the more colorful term “deadly embrace.”

When most programmers first start writing thread-safe code, the inclination is to “lock everything.”
This leads to code like this real-time order processing system:

NSLock *lock = [[NSLock alloc] init];

...

- (NSUInteger)availableProduct:(int)productID
{
 NSUInteger count = 0;
 [lock lock];
 for (Item *item in inventory)

732 CHAPTER 24: Twice As Nice

 if (item.productID==productID)
 count++;
 [lock unlock];
 return count;
}

- (void)orderProduct:(int)productID count:(NSUInteger)count
{
 [lock lock];
 // Customer can't order more than what's in stock
 if (count>[self availableProduct:productID])
 count = [self availableProduct:productID];
 if (count!=0)
 {
 // Create an item and add it to the order
 OrderItem *item = [[OrderItem alloc] init];
 item.productID = productID;
 item.count = count;
 item.taxExempt = NO;
 [order addObject:item];
 }
 [lock unlock];
}

The first receipt of -orderProduct:count: will cause the program to seize. It will never execute
another line of code. Can you see why?

The -orderProduct:count: method acquires lock and sends itself an -availableProduct: message.
That method tries to acquire lock. It can’t, and the thread goes to sleep waiting for lock to be
unlocked, which will never happen.

Recursive Locks
There are two ways to solve this kind of problem. The first is to use a recursive lock. Replace the
NSLock with an NSRecursiveLock, like this:

NSRecursiveLock *lock;

A recursive lock allows a single thread to acquire the lock multiple times. Other threads treat the
lock like any other mutex. Now -orderProduct:count: and -availableProduct: can both acquire the
mutex (in the same thread), do their work, and return. You must still balance every -lock message
with an -unlock message, or the mutex will remain locked (to other threads) for all eternity.

Multiple Locks
Another solution is to use two locks, like this:

NSLock *inventoryLock = [[NSLock alloc] init];
NSLock *orderLock = [[NSLock alloc] init];

...

733CHAPTER 24: Twice As Nice

- (NSUInteger)availableProduct:(int)productID
{
 NSUInteger count = 0;
 [inventoryLock lock];
 ...
 [inventoryLock unlock];
 return count;
}

- (void)orderProduct:(int)productID count:(NSUInteger)count
{
 [orderLock lock];
 if (count>[self availableProduct:productID])
 count = [self availableProduct:productID];
 ...
 [orderLock unlock];
}

Once again, -orderProduct:count: runs smoothly. This technique can, however, easily lead
to a deadly embrace between two threads:

1. Thread A locks inventoryLock

2. Thread B locks orderLock

3. Thread A tries to lock orderLock, can’t, and goes to sleep.

4. Thread B tries to lock inventoryLock, can’t, and goes to sleep.

Now both threads are suspended and will never wake up. If you use multiple mutex objects to
protect different data objects, try to always lock and unlock them in the same order.

Spin Locks
Mutex objects are great, but they’re also slow (relatively speaking). If a mutex object gets locked and
unlocked a few times, that’s no big deal. But it you use a mutex object in code that gets executed
hundreds of thousands of times, it can hurt your app’s performance. When you run your Time Profile
in Instruments, you’ll see that a significant amount of your app’s CPU time is spent locking and
unlocking the mutex.

A spin lock is a high-performance mutex that doesn’t put the losing thread to sleep. If the thread
can’t obtain the mutex (because another thread already locked it), the thread “spins” waiting for the
mutex to be unlocked again. Spin locks are useful for protecting small sections of code that:

Are called thousands and thousands of times	

Execute very quickly	

Have a very low probability of competing with a second thread	

The process of “spinning” is a huge waste of CPU resources, but spin locks make up for that by
being extremely fast when locking and unlocking a mutex that’s not locked by any other thread.
These are called optimistic locks.

734 CHAPTER 24: Twice As Nice

Spin locks are opaque C variables and you use C functions to lock and unlock them. Other than that,
you use them exactly the way you’d use an NSLock object:

static OSSpinLock spinner;

...

OSSpinLockLock(&spinner);
// do something really quick here
OSSpinLockUnlock(&spinner);

As an example, iOS’s memory management functions (the ones that allocate and return memory
blocks to the heap) use spin locks. Think about it; all memory functions have to be thread-safe, since
any thread can create and destroy objects. They also have to be extremely fast, and the probability
of two threads allocating an object at exactly the same moment is really small. For functions like this,
spin locks are perfect.

Further Reading
When you’re ready to wade into the deep end of concurrency and thread safety, here are two good
places to start, both of which can be found in Xcode’s Documentation and API Reference window:

Start with the 	 Concurrency Programming Guide. This is your roadmap to
all things concurrent. It describes asynchronous app design, Grand Central
Dispatch, and how to use operation queues.

The 	 Thread Programming Guide contains a thorough discussion of threads
and thread synchronization. Here you’ll find descriptions of all of the low-level
tools—exclusion semaphores, locks, spin locks, signals, conditions, atomic
functions, and memory barriers—to synchronize your threads and data.

Summary
Multithreading is definitely an advanced app development technique. Master it, and you can create
apps that do an amazing amount of work, while staying responsive and smooth. I won’t declare you
a concurrency guru just yet, but you’ve got all of the basics and you know where to find out more.

You’ve learned a tremendous amount about iOS app development since Chapter 1. It’s been an
exciting journey, and one that’s only just begun. With the foundation you have now, you can explore
many of the technologies I didn’t cover in this book, and go deeper into the ones I did.

I hope you’ve enjoyed reading this book as much as I enjoyed writing it. Use your imagination, apply
what you’ve learned, and promise to write (james@learniosappdev.com) or tweet (@LearniOSAppDev)
me when you’ve written something great. Good luck!

A ■
Accessor methods, 627
Accessory view, 141
Ad-hoc distribution, 4
Animation

add shapes
block-based animation methods, 353
core animation programming guide, 354
curve, 352
properties, 353

built-in stuff, 351
Core animation, 352
DIY solution, 352
OpenGL, 354–355
steps, 351–352
types, 351

Application music player, 262
Application Programming Interface (API), 3–4
Apps, 507

CMMotionManager, 514
dynamic animator (see Dynamic

animator)
framework definitions, 515
gravitational vector, 518
NSTimer object, 517
pull and push approach, 516
updateAccelerometerTime:method, 518
update process, 516
viewDidLoad:method, 515

Leveler (see Leveler)
motion data

device motion and attitude, 525–526
frame of reference, 526
gyroscope data, 524
magnetometer data, 525
measurements, 527

Arbitrary objects, 492
Archiving serialization

benefits and limitations, 594
definition, 591
encodeWithCoder: method, 592
features, 593
initWithCoder: method, 592
@interface declaration, 591
MyWhatsit.m file, 591
NSCoding protocol, 591, 594
NSKeyedUnarchiver, 594
and unarchiving objects, 593

Atomic age
concurrency bugs, 727
docWrapper object, 724
imageKey property, 725–726
setImage:existingKey: method, 724, 728
token, 724
UIDocument method, 728
writeContents:method, 728

Attributed strings
constructs, 645
points, 647–648
UILabel, 646–647

Automatic properties, 630
Automatic Reference Counting

(ARC), 653, 665
Core fundation, 668
enable, 666
stpes, 666
strong and weak, 667
weak qualifier, 666

Auto-save document model, 598

B ■
Bonjour Overview document, 480

Index

735

C ■
Class clusters, 622
CLLocationManager, 533
Cloud storage

Cloud watching, 571
features, 569
HPViewController (), 570
iCloud, 573
NSUbiquitousKeyValueStore, 570
and synchronization, 569
testing, 574

Code refactoring, 416
Collection

collection classes, 648
collection enumeration methods, 650
fast object enumeration, 649

Concurrency definition, 713
Concurrent programming. See Thread
Controllers, Interface builder, 496

gesture recognizers
moveShape: method, 500
SYShapeView object, 499
SYViewController, 501

loadShape:forViewController: method, 504
placeholders declared

SYShapeFactory class, 497
User Interface group, 497
viewController, 498

replace code, 505
SYShapeFactory

factory outlets, 502
RectangleShape.xib file, 503
SquareShape.xib file, 502

SYShapeView
initWithShape: method, 499
properties, 498

Coordinates vs. pixels
mathematical precision, 334
pixelitis, 334
pixel-prefect alignment, 335
ramifications, 334

Coordinate system, 521
Custom view objects. See Animation;Draw

simple shapes;Transforms
drawn

Bézier path, 328
core graphics context, 326

fill and stroke functions, 327
fundamental painting tools, 327
images, 328

event-driven programs, 325
exercise, 365
graphics

blend modes, 364
context stack, 364
shadows, gradients and patterns, 364
text, 363

images and bitmaps
bitamps creation from

drawing, 362–363
image creation, 359–362

view coordinate system, 321
converts, 324–325
coordinate value types, 323
frame and bounds, 323–324
graphics coordinate system, 322–323
translation methods, 324

Z-order, 355, 359
overlapping shapes, 357
working shapely app, 358

D ■
Dangling pointer bug, 665
Data network. See Networking
Deadlocks

definition, 731
multiple locks, 732–733
real-time order processing system, 731
recursive locks, 732

Delegate pattern, 186
Design patterns and principles, 184
Document

UIDocument (see UIDocument)
Draw simple shapes

-drawRect:method, 332–333
Bézier path object, 333, 336
unfinished-path method, 336

shapely app design, 329
shapes and colors

duplication, 340
getter method, 342–343
multicolor shapes, 344
properties, 341
trigonometric math functions, 344

736 Index

steps, 330
testing squares

action method, 339
add first button, 337–338
connection, 338–339
shape view, 339

testing squares:-addSubview:method, 339
view objects programmatically

designated initializer, 330
enumeration, 331
init method, 331–332
initWithFrame:method, 331
SYShapeView, 330

Xcode, 329
Dynamic animator

basic formula, 520
behavior definition, 521
creation, 520
damping and frequency

properties, 523
players, 520
rotateDialView:method, 523

E, F ■
Encapsulation, 184
Enumeration methods, 650
Events

advanced event handling, 134
delivery methods

direct delivery, 100
first responder, 102
hit testing, 101

event-driven applications, 97
event handling, 103
event queue, 98
high vs. low-level events, 107
Magic Eight Ball app, 107

design, 108
EBViewController object, 114
first responder, 119
handling shake events, 116
image setting, 112
import app icons, 120
interface creation, 109
on iOS device, 121
project creation, 108
responder chain, 119

testing, 117
UIApplication object, 120

responder chain, 104, 123
run loop, 98
Touchy app, 124

custom view, 126
design, 125
drawRect: message, 131
handle touch events, 128
interface builder, 132
project creation, 125
testing, 133
UIEvent object, 129
updateTouches: method, 130

G ■
Game Center–aware

achievements, 440
app ID, 441
configuration, 440–441
game center button, 450–452
game center configuration

boards, 447
window, 446

GameKit requirement, 448
iTunes Store

app Store, 444
connection, 446

local player, 449–450
matchmaking, 440
recording leaderboard scores, 452
sandbox, 453
test player creation

playing screen, 454
sandbox player, 453

Garbage collection, 656
Getter method, 627
Global positioning system (GPS)

geocoding, 547
getting directions, 548
iOS technology, 529
location data, 531

CLLocationManager, 532
device requirement, 532
MKMapView objects, 533

location monitoring, 545
movement and heading, 547

737Index

non-GPS devices, 546
reduce location, 547
region monitoring, 546

map decorations
add little bounce, 540
annotation, 537
map coordinate systems, 539
MKMapView object, 537
overlay, 537
sub view, 537

pigeon creation, 529
design, 530
HPViewController, 531
#import statement, 531
interface, 531
Main_iPhone.storyboard file, 530
Map Kit declarations, 531
Map View object, 530
Resolve Auto Layout Issues, 531
trash button, 530

pointing, 542
using map view object

delegate outlet, 535
dynamic linking, 536
HPViewController object, 534
MapKitframework, 535–536
MPViewController object, 534
showsUserLocation property, 534
testing, 536
tracking modes, 534
viewDidLoad method, 533

Grand Central Dispatch (GCD), 716
Group footer, 139
Group header, 139

H ■
Hot spots

Change Track Scale control, 696
Inspection Range control, 696
Invert Call Tree option, 697
NSNotificationQueue

coalescing, 700
definition, 700
NSPostASAP, 701
NSPostWhenIdle, 701
postDidChangeNotification method, 700

photo picker handling code, 700
postDidChangeNotification

method, 699
setImage:existingKey: method, 697
Show Obj-C Only option, 697
Time Profiler template, 698, 702
trace document, 701–702

I, J ■
iCloud, 573, 615
Inheritance, 182
Inherits NSCopying, 644
+initialize method, 626
Instance methods, 180
Instance variables, 627
Instruments, 691

hot spots (see Hot spots)
memory (see Memory)
performance optimization, 692
slow tap fixing

did-pick-image method, 693
instruments, 694
photo library, 693
scheme editor, 694
template picker instrument, 695
Time Profiler instrument, 695
view controller, 693

Integrated Development Environment
(IDE), 3–4

Interface builder, 485
controllers, 496

gesture recognizers, 499
loadShape:forViewController:

method, 504
placeholders declared, 497
replace code, 505
SYShapeFactory, 501
SYShapeView, 498

files work
arbitrary objects, 492
compilation, 486
connections, 493
editing attributes, 493
file’s owner, 489
loading interface, 486
object graph, 486
objects creation, 490

738 Index

Global positioning system (GPS) (cont.)

placeholder objects, 489
root/top-level object, 486
sending action message, 496
.xib file, 488

Introspection
class, 634
method, 635
protocol, 635–636

iOS app, 57
iOS app development, Xcode

application category, 7
Bundle identifier, 8
new project options, 8
project template browser, 7
Single View Application template, 7

iOS developer
download project files, 5
join Apple’s iOS developer program

paid registration, 5
payment details, 5
registered developer, 4
uses, 4

iOS devices, 551
persistent views (see Persistent views)
Pigeon

cloud storage (see Cloud storage)
getting values, user defaults, 555
HPMapType, 554
HPViewController.h file, 554
MKPointAnnotation object, 553
testing, user defaults, 556–557
update and code, 554
writing values, user defaults, 555

plist file, 552
property list object, 551

alertView:clickedButtonAtIndex:
method, 561

clearPin: method, 562
Cocoa Touch functions, 559
floating-point fields, 559
@interface HPViewController (), 561
MKPointAnnotation, 559–560
preserveAnnotation method, 562
restoreAnnotation method, 562
savedLocation object, 560
techniques, 559
testing, 563
view controllers, 563

registerDefaults: method, 557–558
serialization, 552
settings bundle

creation, 575
definition, 575
Root.plist file, Xcode, 576, 578
testing, 579
types, 577
viewDidLoad method, 579

user defaults, 552
iOS navigation, 367
iPod music library, 255

add sound effects, 271
audio session configuration, 273
AVAudioPlayer objects, 278
AVAudioSession class, 283
complications, 272
createAudioPlayers and

destroyAudioPlayers method, 278
DrumDub interface, 282
interruptions, 272
kNumberOfPlayers constant, 278
playing sounds, 275
route change, 272
UIButton object, 280

audio recording/signal processing, 288
interruptions

audio route change, 287
callbacks, 287
handler implementation, 285

iOS app design, 256
media metadata, 266–267

album artwork and song metadata, 271
album view position, 266
DDViewController.xib, 269
label object, 268
MPMediaItemArtwork object, 270
musicPlayer property getter method, 271
outlet properties, 269

model-view-controller design pattern, 266
music picker interface

audio content categories, 258
DDViewController.m file, 257
MPMediaPickerController class, 257
testing, 259

music player object
mediaItemCollection parameter, 261
playback queue, 261

739Index

private instance variable and
readonly property, 260

singleton and lazy initialization, 261
playback control, 262
playing item, 269
receiving notifications, 264

K ■
Key Value Observing (KVO)

change property, 244
defective, 246
dependencies, 246
observeValueForKeyPath, 245

L ■
Learn iOS Development Projects, 5
Leveler

angle label layout connection, 512
dial and needleView positioning, 513–514
interface builder layout, 512
LRDialView

context transformations, 510
drawRect: method, 509

viewDidLoad method, 512
Xcode project creation, 508

Logical address space, 654

M ■
Manual reference counting

autoreleased object, 661
basics, 659
breaking cycle

circular retain problem, 664
circular retains, 663
over-retained teacher, 664
unretained object references, 664

pool, 660
quick summary, 662
reference counting pitfalls, 663
scared straight, 665

Map decorations
add little bounce

mapView:viewForAnnotation:
delegate method, 540–541

MKPinAnnotationView, 541

annotations
call out, 537
clearPin: method, 538
dropPin: method, 537–538
HPViewController, 537
testing, 539

map coordinate systems, 539
CLLocationCoordinate2D structure, 540
map points, 540

MKMapView object, 537
overlay, 537
pointing

distanceFromLocation: method, 543
hideReturnArrow method, 544
HPViewController, 542
showReturnArrowAtPoint:towards:

method, 543–544
testing, 545

subview, 537
Memory

allocations template, 706
black flags timeline, 707
copyWithZone: method, 704
heed warnings, 708

+documentAtURL:class method, 709
imageKey property, 709
memoryWarning: method, 709

ImageIO_PNG_Data allocations, 707
measurement, 704
MSThingsDocument.m file, 704
MyStuff, 703
NSCopying protocol, 703
RAM, 702
Stress Test, Round #2, 710
UIImage object, 706

Memory leak, 654
Memory management. See Automatic

reference counting (ARC)
attributed string object graph, 655
concept, 654
garbage collection, 656
heap, 654
leaked objects, 655
manual reference counting

autoreleased object, 661
basics, 659
cycle, 663
pool, 660

740 Index

iPod music library (cont.)

quick summary, 662
reference counting pitfalls, 663
scared straight, 665

memory leak, 654
overview, 653
pitfalls, 654
reachable and unreachable objects, 656–657
reference counting

counted objects, 658
releasing old objects, 659
retain messages, 658
scheme, 657

Memory Pressure, 706
Method names

construction, 625
function, 624
+initialize method, 626

Method signature, 625
Model-view-controller design pattern, 217, 251

agile development, 252
Color Model, 221

controller, 227
data model, 223
initial design, 222
interface, 228
project creation, 222
view objects, 224

complex view objects
CMColorView.m, 240–241, 243
replace with CMColorView object, 239
to CMColor data model, 240
updated ColorModel design, 239

consolidating updates, 235
controller objects, 219
data model objects, 218
KVO (see Key Value Observing (KVO))
multiple views, 231

HSB value labels, 232
label outlets, 233
placeholder values, 232
realign sliders, 233

multi-vector data model changes
binding the sliders, 250
-changeHSToPoint: method, 249
touch event handlers, 248

MVC communications, 220
over engineering, 252
view objects, 219

Multiple threads
load balancing, 718
measurement, 718
NSOperation class, 718
operation queue, 716–717
order execution, 720–721
setImage:existingKey method, 718
setImage: method, 718

Multitasking/multithreading, 76, 715
MyStuff app, 189

cell identifiers, 155
data model, 146
data source object

optional information, 149
Xcode refractoring system, 151

design
adding pictures, 190
camera techniques, 216
camera testing, 209
cropping and resizing, 206
C vs. Objective C programming, 207
getter method, 192
imageView object, 193
import image, 205
iPad interface, 210
MSDetailViewController.h, 197
MSMasterViewController, 196
popover controller, 212
presentImagePickerUsingCamera

method, 203
setter method, 192
sticky keyboard, 213
synthetic property, 191
UIActionSheet delegate, 202
UIImagePickerController

method, 201–202
viewImage property, 191

init methods, 148
iPad design, 144
iPhone design, 144
Master Detail template, 146
MyWhatsit

class creation, 147
implementation, 149

rubber stamp implementation, 152
table cell cache, 153
testing, 156
test objects, 156

741Index

N ■
Navigation

view controllers
container view

controllers, 368–369
content view controllers, 368

view objects, 369
wonderland design

initial view controller, 371
modal navigation, 370
stack/tree style, 370
styles and class, 369
UIPageViewController, 371
UISplitViewController, 371
UITabBarController, 371

wonderland design (see also Wonderland
app design)

Networking. See Peer-to-peer networking
communication, 480
exercise, 483
Game Center–aware

achievements, 440
configuration, 440–441
game center button, 450–451
game center configuration, 446–448
iTunes Store, 444–445
local player, 449
matchmaking, 440
recording leaderboard scores, 452
test player creation, 453–454

GameKit, 429
overview, 479
peer-to-peer, 429
project details

STFlipsideViewController, 480
STGameViewController, 482
view controller/portrait

orientation, 480–481
single player game

core animations, 437–438
simulator, 438
STGameDefs.h, 434
STGame ViewController, 435–436
SunTouch, 436–437
version, 434
view controllers, 435

SunTouch
creation, 431
design, 430
initial screens, 431–434

Next Interface Builder (NIB), 22
nil

nil Is Bad, 642
unbearable lightness, 641
virtues, 641

NSCopying, 643
NSFileWrapper

contentsForType:error: method, 587–588
definition, 587
directory file wrapper, 587
docWrapper, 588
instance variable declaration, 588
Interpreting, 589
loadFromContents:ofType:error: method, 587
loading and updates, document, 588
NSData object, 589
regular file wrapper, 587
things.data, 589
types, 587
unique keys, 587

NSNotificationQueue
coalescing, 700
definition, 700
NSPostASAP, 701
NSPostWhenIdle, 701
postDidChangeNotification method, 700

O ■
Objective-C

attributed strings
constructs, 645
points, 647–648
UILabel, 646–647

billion lines, 618
categories

declaration, 638
extensions, 640
module organization, 639
NSString class, 638
parentheses, 638
private methods, 640
single responsibility, 639

742 Index

classes
class cluster, 622
creating and destroying objects, 621
.h (header) file, 619
@implementation section, 620
points, 619–620
reference, 622
type id, 623
visibility directives, 620

collection
collection classes, 648
collection enumeration methods, 650
fast object enumeration, 649

copying (duplicating) objects, 642
adopting NSCopying, 643
copyWithZone, 644
inherits NSCopying, 644
mutable copies, 645
object copying, 645

introspection
class, 634
method, 635
protocol, 635

languages, 618
method names

construction, 625
function, 624
+initialize method, 626

nil
nil Is Bad, 642
unbearable lightness, 641
virtues, 641

overview, 617
paths, 619
properties

accessor message equivalency, 630
accessor method names, 633
anatomy, 631
atomic, 633
automatic properties, 630
declaration, 628
instance variables, 627
lifetime qualifiers, 632
mutability, 632
points, 627
required accessor method, 634
setter and getter method, 627
storage, 632

protocols
adopts, 636–637
conforming objects, 637
definition, 636

shortcuts, 650
strict superset, 618
struct and typedef statements, 618

Object-oriented languages, 179
Objects

classes and cookies, 179
class methods, 180
data and codes, 177
definition, 179
design patterns and principles, 184

decorator pattern, 187
delegate pattern, 186
encapsulation, 184
factory pattern and class clusters, 187
lazy initialization pattern, 187
open closed principle, 185
single responsibility principle, 185
singleton pattern, 187
stability, 185

inheritance
abstract and concrete classes, 183
class hierarchy, 182
overriding methods, 183

instance methods, 180
Objective-C programming terms, 181
object-oriented languages, 179
procedural languages, 179
structures, 178
subtype polymorphism, 178

Observer pattern, 244
Open closed principle, 185

P, Q ■
Peer-to-peer networking, 429

data exchange (device)
data format definition, 468, 470
data message category, 467–468
deserialization, unmarshaling/inflating, 469
handling match disruption, 476
little-endian machines, 469
receiving data, 472–473
sending data, 471–472
serialization, marshaling/deflating, 469

743Index

starting game, 466
strike data (receive), 475
strike data (sending), 474
sun capture data (receive), 476
sun capture data (send), 475–476
SunTouch’s communications, 465
testing (two-player game), 477–478
utterly meaningless, 469

interface, 455
matchmaking, 461

completion, 464
match connection, 462–463
multi-step process, 462

two-player game (SunTouch), 454
kGameStrikeNotification, 456
odds and ends, 460–461
opponent game view, 458–460
-setStrikeDrawColor method, 456
STGameView, 455, 457–458
STOpponentGameView, 455

Persistent views
background state, 564–565
capture changes, 563
decodeRestorableStateWithCoder:

message, 568
encodeRestorableStateWithCoder:

message, 568
foreground state, 564
not running state, 564
NSCoder object, 569
restorationIdentifer property, 566–567
restoration strategy, 569
suspended state, 564
techniques, 563
view controllers, 565
WLBookDataSource class, 568

Pigeon creation, 529
design, 530
HPViewController, 531
#import statement, 531
interface, 531
Main_iPhone.storyboard file, 530
Map Kit declarations, 531
Map View object, 530
Resolve Auto Layout Issues, 531
trash button, 530

Procedural languages, 179
Property list object

alertView:clickedButtonAtIndex: method, 561
clearPin: method, 562
Cocoa Touch functions, 559
floating-point fields, 559
@interface HPViewController (), 561
MKPointAnnotation, 559–560
preserveAnnotation method, 562
restoreAnnotation method, 562
savedLocation object, 560
techniques, 559
testing, 563
view controllers, 563

Protocols, 77
adopts, 636–637
conforming objects, 637
definition, 636

R ■
Reference counting

counted objects, 658
releasing old objects, 659
retain messages, 658
scheme, 657

Request For Comment (RFC), 441

S ■
Segue, 35

adding image view object, 36
adding new view controller, 35
adding text view, 38
creation, 40
customize background image view, 37
navigation bar, 41
pasting text in text field, 40
semi-transparent background

color setting, 39
Setter method, 627
Single player game

core animations, 437
simulator, 438
STGameDefs.h, 434
STGame ViewController

delete, 436
STGameViewController.xib file, 435

744 Index

Peer-to-peer networking (cont.)

SunTouch, 436–437
version, 434
view controllers, 435

Single responsibility principle, 185
Social networking

account object, 426
activity view controller, 421

UIActivityItemProvider, 425
UIActivityItemSource, 422, 424

Activity View Controller, 413
code refactoring, 416
ColorModel app, 411
excluded activities, 420
NSURLRequest, 426
Request method, 426
Service Type, 426
Service URL and parameters dictionary, 426
sharing, 413–414, 416, 419

Mail activity, 420
MFMailComposeViewController, 425
SLComposeViewController, 425
UIActivityViewController, 425

SLRequest, 426
UIActivityViewController, 415

Social working. See Networking
Software Development Kits (SDKs), 3–4
Speed optimization. See Instruments
Storyboards

finished app, 43
frictionless development, 34
segue, 35

Strong and weak references, 667
SunTouch

creation, 431
design, 430
initial screens

flipside interface design, 431–432
game instructions, 433–434
steps, 432–433

Surrealist app
attributes inspector, 30
customize button objects, 30
customize buttons, 33
debugging, 45

constraints, 46
testing, 54

deleting and connecting objects, 24
design phase, 17

initial view controller, 25–26
Interface Builder, 21

canvas, 23
outline, 23

object library, 23
project creation, 18

Class Prefix setting, 20
iOS project templates, 19
setting details, 19–20

resources
into a project, 31
preview, 32

root view controller, 24, 26
storyboards

finished app, 43
frictionless development, 34
segue, 35

table view controller, 24–25
target project settings, 20
testing, 42
view controller object, 27

Synchronization, 715

T ■
Table editing

insert and remove items, 164
interfaces, 164
notification observer matching, 173
objectives, 168
observer pattern, 170
observing notifications, 172
posting notifications, 171
tasks, 163

Tables
Detail View

configuration, 159
––configureView message, 161
creation, 157
iPad, 162
iPhone, 161
MyStuff, 162
––setDetailItem: method, 161

editing
insert and remove items, 164
interfaces, 164
modeless interface, 174
model interface, 174

745Index

notification observer matching, 173
objectives, 168
observer pattern, 171
observing notifications, 172
posting notifications, 171
tableView, 166
tasks, 163

editing, 163 (see Table editing)
table view, 137

cell accessory views, 141
cell styles, 139
custom cells, 142
grouped table style, 138
plain table style, 138

Table view
cell accessory views, 142
cell object and rubber stamps, 143
cell styles, 139

default, 140
subtitle, 140
value 1 and value 2, 141

custom cells, 142
description, 142
grouped table style, 138
plain table style, 138
reusable cell object, 143

Task switch, 715
Testing

asynchronous, 605
Continue button, 602
debugging pane, 601
delegate property, 605
document storage, 600
gotThings: method, 607
loadFromContents:ofType:error:

method, 604
MSThingsDocument.h interface file, 605
respondsToSelector: method, 606
sett up breakpoint, contentsForType:error:

method, 601
Step Over button, 602
things array, 603

Thread
deadlocks

definition, 731
multiple locks, 732–733

real-time order processing
system, 731

recursive locks, 732
definition, 714–715
lock objects, 730
multiple threads

load balancing, 718
measurement, 718
NSOperation class, 718
operation queue, 716–717
order execution, 720–721
setImage:existingKey method, 718
setImage: method, 718

multitasking/multithreading, 715
optimistic locks, 733
spin lock, 733
synchronization, 715
task switch, 715
techniques, sending messages

to main thread, 729
Thread-Safe Landscape, 729
Thread Safety

atomic age (see Atomic age)
immutable objects, 723
techniques, 721
UIWebView object, 722
usage, 722

Transforms, 345
-addShape:action method, 345
method declaration, 345
phase, 346
scale transform

@implementation section, 349
resize, 350

translate transform
affine transform, 346–347
destructive translation, 349
non-destructive translation, 348

tryLock, 730

U ■
UIDocument

archive version, 615
archiving serialization

benefits and limitations, 594
definition, 591

746 Index

Tables (cont.)

encodeWithCoder: method, 592
features, 593
initWithCoder: method, 592
@interface declaration, 591
MyWhatsit.m file, 591
NSCoding protocol, 591, 594
NSKeyedUnarchiver, 594
and unarchiving objects, 593

contentsForType:error: method, 586
data model

awakeFromNib method, 597
document statements, 597
insertNewObject: method, 597
MSMasterViewController.m

file, 595–596
MyWhatsit class, 596
things array, 597
viewDidLoad method, 597

Documents folder, 582
+documentURL method, 584
file wrapper (see NSFileWrapper)
iCloud storage, 615
Image file storage

abstraction layer, 608
file wrapper, 608
imageKey property, 609–610
initWithName:location: method, 609
MyStuff sandbox files, 614
Portable Network Graphics, 608
removeWhatsitAtIndex: method, 612
setImage:existingKey:

method, 610–611
testing, 613
things array, 613

loadFromContents:ofType:error:
method, 586

MSThingsDocument.h
interface file, 583

MyStuff’s document, 583
NSDocumentDirectory, 584
overview, 581
package, 586
sandbox, 582
testing (see Testing)
track changes, 598
UIFileSharingEnabled key, 585

URL shortening app, 57
Bar Button Item, 74
clipboard testing, 90
design, 58
(IBAction) clipboardURL:(id)

sender, 89
interface cleanup, 90
iPad Version

iPhone interface, 93
pasting objects, 94
testing, 95

project creation, Xcode, 58
URL shortening, 73

absoluteString property, 79
asynchronous method, 77
background thread, 77
delegate, 77
designing, 76
escape sequence, 83
finished interface, 75
kGoDaddyAccountKey, 83
multitasking, 76
NSURLConnection delegate, 85
optional delegate method, 77
private variables, 85
protocol, 77
required delegate method, 77
service request URL, 82
shortURLData, 84
shortURL: method, 81
testing, 87–88
toolbar, 74
UIWebViewDelegate protocol, 78
URL string encoding, 83
X.co service, 82

web browser
action connection settings, 69
coding, 63
debugging, 72
Navigation bar, 59
properties, 62
SUViewController, 64, 66
testing, 71–72
URL Field, 62
web view, 61
web view outlet, 66

747Index

V ■
View dynamics, 519
View objects, 291

buttons
attributed string, 298
code, 300
control class, 296
control states, 299
event handling, 295
Gesture recognizers, 295
properties, 298
responder and view classes, 295
types, 297
UIButton class, 294

grouped tables, 316
image views, 315–316
page control

properties, 303
weather app, 302

pickers
anything picker, 314–315
date picker modes, 313–314
views, 312

progress indicators, 305–306
scroll view

bounds and frame, 318
conceptual arrangement, 317
keyboard, 319
scrolling app, 319
talents, 318

segmented controls, 304–305
steppers, 303–304
switches and sliders

key visual customization
properties, 301–302

properties, 301
setting apps, 300

text views
labels, 307–308
text editing behavior, 310–311
text fields, 308–310

Xcode’s documentation
sample code, 292
UICatalog app, 294
UICatalog project, 292–293
walled garden, 293

W ■
Wonderland app design

advanced navigation, 409
content view controller, 376–378
creation, 372
detail view controller, 393–395
dismiss view controller, 381
modal view controller, 378
navigation view controller, 383

root view controller, 384
to tab bar, 385

page view controller
classes, 395
initialization, 407
One Page View code, 400
page view data source, 405
Paginator, 402
prototype page design, 397
to tab bar, 397

pop-over controller, 409
project options, 372
resource files, 374
tab bar configuration, 373
tab bar item configuration, 375
Tabbed Application template, 373
UITableViewController, 386

data model, 390
data source object, 391
detail view controller, 387
table cell, 391
tableView:cellForRowAtIndexPath

method, 392

X, Y, Z ■
Xcode

API, 3–4
App execution

developer mode, 15
iPhone simulator, 16
scheme and target selection, 15

IDE, 3
installation, 2
iOS app development (see iOS app

development, Xcode)
iOS developer (see iOS developer)

748 Index

SDKs, 3
setting up

license agreement, 5
startup window, 6

system requirements, 1
workspace window, 9

debug area, 14
editor area, 11

navigator area, 10
toolbar, 14
utility area, 12

.xib file, 488
graphical representation, 489
placeholder objects, 489
STGameViewController.xib

file, 488

749Index

Learn iOS App
Development

James Bucanek

Learn iOS App Development

Copyright © 2013 by James Bucanek

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5062-3

ISBN-13 (electronic): 978-1-4302-5063-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Tom Welsh
Technical Reviewer: Charles Cruz
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan
Copy Editor: Lori Cavanaugh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/ .

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
www.apress.com/source-code/

To Deborah and Doug, best friends forever

vii

Contents

About the Author �� xxv

About the Technical Reviewer �� xxvii

Acknowledgments ��� xxix

Introduction ��� xxxi

Chapter 1: Got Tools? ■ ���1

Requirements ��1

Installing Xcode ���2

What is Xcode? ��3

Becoming an iOS Developer ��4

Getting the Projects ���5

Launching Xcode the First Time ��5

Welcome To Xcode ��9

Navigation Area ��� 10

Editor Area ��� 11

Utility Area ��� 12

Debug Area �� 14

Toolbar ��� 14

Running Your First App ��14

Summary ���16

viii Contents

Chapter 2: Boom! App ■ ���17

Design ���17

Creating the Project ���18

Setting Project Properties ���20

Building an Interface ���21

Adding Objects �� 23

Deleting and Connecting Objects �� 24

Adding Views to a View�� 27

Editing Object Properties ��� 30

Adding Resources �� 31

Customizing Buttons �� 33

Using Storyboards ���34

Adding New Screens ��� 35

Creating a Segue ��� 40

Setting Navigation Titles �� 41

Testing Your Interface ��42

Finishing Your App ���43

Debugging Your App ��45

Adding Constraints �� 46

Testing Your App �� 54

Summary ���55

Chapter 3: Spin a Web ■ ���57

Design ���58

Creating the Project ���58

Building a Web Browser ��59

Coding a Web Browser ��63

Adding Outlets to SUViewController �� 64

Connecting Custom Outlets ��� 64

Adding Actions to SUViewController �� 66

ixContents

Setting Action Connections �� 69

Testing the Web Browser ��� 71

Debugging the Web View ��� 72

Adding URL Shortening ���73

Designing the URL Shortening Code �� 76

Becoming a Web View Delegate �� 77

Shortening an URL ��� 81

Final Touches ���89

Cleaning Up the Interface �� 90

Creating the iPad Version �� 93

Summary ���96

Chapter 4: Coming Events ■ ���97

Run Loop ���98

Event Queue ��98

Event Delivery ���100

Direct Delivery ��� 100

Hit Testing �� 100

The First Responder �� 102

Event Handling ��103

The Responder Chain ��104

High- vs� Low-Level Events ���107

Eight Ball ���107

Design �� 108

Create the Project �� 108

Create the Interface ��� 109

Writing the Code �� 114

Handling Shake Events �� 116

Testing Your EightBall App ��� 117

Finishing Touches �� 120

Testing on a Physical iOS Device ���121

Other Uses for The Responder Chain ���123

x Contents

Touchy ���124

Design �� 125

Creating the Project ��� 125

Creating a Custom View��� 126

Handling Touch Events ��� 128

Drawing Your View ��� 131

Adding Custom Objects in Interface Builder �� 132

Testing Touchy ��� 133

Advanced Event Handling ��134

Summary ���135

Chapter 5: Table Manners ■ ��137

Table Views ���137

Plain Tables �� 138

Grouped Tables �� 138

Cell Styles �� 139

Cell Accessories��� 141

Custom Cells �� 142

How Table Views Work ���142

Table Cells and Rubber Stamps ��� 143

MyStuff ��144

Design �� 144

Creating The Project �� 145

Creating Your Data Model �� 146

Creating a Data Source �� 149

Implementing Your Rubber Stamp ��� 152

Table Cell Caching ��� 153

Where’s the Data? ��� 156

Testing MyStuff �� 156

Adding the Detail View ��157

Creating the Detail View �� 157

Configuring the Detail View ��� 159

xiContents

Editing ���163

Inserting and Removing Items ��� 164

Enabling Table Editing ��� 166

Editing Details �� 168

Observing Changes to MyWhatsit �� 170

Modal vs� Modeless Editing ���174

Little Touches ��174

Advanced Table View Topics ��174

Summary ���175

Chapter 6: Object Lesson ■ ���177

Two Houses, Both Alike in Dignity ���177

Romeo Meets Juliet ���179

Classes and Cookies ���179

Classes and Objects and Methods, Oh My! ���180

Inheritance ��182

Abstract and Concrete Classes �� 183

Overriding Methods ��� 183

Design Patterns and Principles ���184

Encapsulation �� 184

Singularity of Purpose ��� 185

Stability �� 185

Open Closed ��� 185

Delegation ��� 186

Other Patterns ��� 187

Summary ���188

Chapter 7: Smile! ■ ���189

Design ���190

Extending Your Design ���190

Revising the Data Model �� 191

Adding an Image View ��� 193

xii Contents

Updating the View Controller ��� 196

Connecting a Choose Image Action ��� 197

Taking Pictures ��201

You Can’t Always Get What You Want��� 202

Presenting the Image Picker ��� 203

Importing the Image �� 205

Cropping and Resizing ��� 206

Winding Up �� 208

Testing the Camera �� 209

Building the iPad Interface ��210

Adding a Popover ��� 212

Sticky Keyboards ���213

Advanced Camera Techniques ��216

Summary ���216

Chapter 8: Model Citizen ■ ���217

The Model-View-Controller Design Pattern ���217

Data Model Objects ��� 218

View Objects �� 219

Controller Objects �� 219

MVC Communications �� 220

Color Model ���221

Creating Your Data Model �� 223

Creating View Objects �� 224

Writing Your Controller ��� 227

Wiring Your Interface ��� 228

Having Multiple Views ���231

Consolidating Updates���235

Complex View Objects ���239

Replacing UIView with CMColorView ��� 239

Connecting the View to Your Data Model ��� 240

Drawing CMColorView ��� 240

xiiiContents

Being a K-V Observer ��244

Key Value Observing �� 244

Observing Key Value Changes ��� 244

Creating KVO Dependencies �� 246

Multi-Vector Data Model Changes ���248

Handling Touch Events ��� 248

Binding The Sliders �� 250

Final Touches ��� 251

Cheating ��251

Summary ���252

Chapter 9: Sweet, Sweet Music ■ ���255

Making Your Own iPod ��256

Design �� 256

Adding a Music Picker ��� 257

Using a Music Player ��� 260

Adding Playback Control �� 262

Receiving Music Player Notifications �� 264

Adding Media Metadata ��� 266

Observing the Playing Item �� 269

Make Some Noise ���271

Living in a Larger World ��� 272

Configuring Your Audio Session ��� 273

Playing Audio Files��� 275

Creating AVAudioPlayer objects ��� 277

Adding the Sound Buttons ��� 280

Activating Your Audio Session ��� 283

Interruptions and Detours ���284

Dealing with Interruptions ��� 285

Adding Your Interruption Handlers ��� 285

Dealing with Audio Route Changes �� 287

Other Audio Topics ���288

Summary ���289

xiv Contents

Chapter 10: Got Views? ■ ���291

Learning by Example ���291

Buttons ��294

The Responder and View Classes �� 295

The Control Class ��� 296

Button Types �� 296

Control States �� 299

Button Code ��� 300

Switches and Sliders ���300

Page Control ��302

Steppers ��303

Segmented Controls ��304

Progress Indicators ���305

Text Views ���307

Labels �� 307

Text Fields �� 308

Text Editing Behavior ��� 310

Text Views �� 311

Pickers ��312

Date Picker �� 313

Anything Picker�� 314

Image Views ��315

Grouped Tables ��316

The View You Never See ��317

Summary ���320

Chapter 11: Draw Me a Picture ■ ���321

Creating a Custom View Class ���321

View Coordinates ��� 322

When Views Are Drawn �� 325

Drawing a View �� 326

xvContents

Shapely��329

Creating Views Programmatically �� 330

The -drawRect: Method ��� 332

More Shapes, More Colors ��� 340

Transforms ��345

Applying a Translate Transform ��� 346

Applying a Scale Transform ��� 349

Animation: It’s Not Just for Manga ��351

Using Core Animation �� 352

Adding Animation to Shapely ��� 352

OpenGL �� 354

The Order of Things ���355

Images and Bitmaps ��359

Creating Images from Bitmaps �� 360

Creating Bitmaps From Drawings �� 362

Advanced Graphics ��363

Text �� 363

Shadows, Gradients, and Patterns ��� 364

Blend Modes �� 364

The Context Stack �� 364

Summary ���365

Chapter 12: There and Back Again ■ ��367

Measure Twice, Cut Once ��367

What is Navigation? ��� 368

View Controller Roles �� 368

Designing Wonderland ��369

Weighing Your Navigation Options ��� 369

Wonderland Navigation�� 371

Creating Wonderland ���372

Adding Wonderland’s Resources ��� 374

Configuring a Tab Bar Item �� 375

xvi Contents

The First Content View Controller ��376

Presenting a Modal View Controller ��� 378

Dismissing a View Controller ��� 381

Creating a Navigable Table View ���383

Breathing Data Into Your Table View �� 386

Pushing the Detail View Controller �� 393

Creating a Page View Controller ��395

Adding the Page View Controllers ��� 396

Designing a Prototype Page �� 397

Coding the One Page View ��� 400

The Paginator �� 402

Coding the Page View Data Source ��� 405

Initializing a Page View Controller ��� 407

Using Pop-Over Controllers ���409

Advanced Navigation ���409

Summary ���410

Chapter 13: Networking, the Social Kind ■ ���411

Color My (Social) World ���411

Having Something to Share ��� 412

Presenting the Activity View Controller �� 413

Sharing More ���416

Extracting Code ��� 416

Providing More Items to Share �� 419

Excluding Activities �� 420

The Curse of the Lowest Common Denominator ���421

Providing Activity Specific Data ��� 422

Promises, Promises ��� 424

Big Data ��� 425

Sharing with Specific Services ���425

Other Social Network Interactions ��426

Summary ���427

xviiContents

Chapter 14: Networking, The Nerdy Kind ■ ��429

SunTouch ���430

Creating SunTouch ��� 431

Designing the Initial Screens ��� 431

Creating the Single Player Version ��434

Loading STGameViewController �� 435

How SunTouch Works �� 436

Customizing Core Animations �� 437

Playing the Game ��� 438

Plugging into Game Center ��440

Configuring a Game Center–aware app ��� 440

Enabling Game Center ��� 442

Creating an App in the iTunes Store �� 444

Configuring Game Center �� 446

Adding GameKit to Your App �� 448

Obtaining the Local Player ��� 449

Adding a Game Center Button ��� 450

Recording Leaderboard Scores ��� 452

Creating a Test Player �� 453

Peer-To-Peer Networking ��454

Turning SunTouch Into a Two-Player Game ��� 455

Matchmaking ��� 461

Exchanging Data with Another Device ��� 465

Advanced Networking ���479

One Last Detail ��480

Summary ���482

Chapter 15: If You Build It � � � ■ ���485

How Interface Builder Files Work ��486

Compiling Interface Builder Files ��� 486

Loading a Scene �� 486

Loading an �xib File �� 488

xviii Contents

Placeholder Objects and the File’s Owner ��� 489

Creating Objects �� 490

Editing Attributes ��� 493

Connections ��� 493

Sending Action Messages�� 496

Taking Control of Interface Builder Files ���496

Declaring Placeholders �� 497

Designing SYShapeView �� 498

Connecting the Gesture Recognizers ��� 499

Build Your Shape Factory ��� 501

Loading an Interface Builder File ��� 504

Replacing Code �� 505

Summary ���506

Chapter 16: Apps with Attitude ■ ���507

Leveler ���508

Creating Leveler �� 508

Getting Motion Data���514

Creating CMMotionManager �� 515

Starting and Stopping Updates �� 516

Push Me, Pull You ��� 516

Timing is Everything �� 517

Herky-Jerky ��� 519

Getting Other Kinds of Motion Data ���524

Gyroscope Data ��� 524

Magnetometer Data ��� 525

Device Motion and Attitude �� 525

Measuring Change ��� 527

Summary ���528

Chapter 17: Where Are You? ■ ��529

Creating Pigeon ���529

Collecting Location Data��531

xixContents

Using a Map View ��533

Decorating Your Map ���537

Adding an Annotation �� 537

Map Coordinates �� 539

Adding a Little Bounce ��� 540

Pointing the Way ��542

Location Monitoring ��545

Approximate Location and Non-GPS Devices �� 546

Monitoring Regions�� 546

Reducing Location Change Messages ��� 547

Movement and Heading ��� 547

Geocoding ���547

Getting Directions ��548

Summary ���548

Chapter 18: Remember Me? ■ ��551

Property Lists ��551

Serializing Property Lists���552

User Defaults ���552

Making Pigeon Remember ��553

Minimizing Updates and Code ��� 554

Defining Your Keys ��� 554

Writing Values to User Defaults ��� 555

Getting Values from User Defaults ��� 555

Testing User Defaults ��� 556

Registering Default Values ��557

Turning Objects into Property List Objects ��559

Preserving and Restoring savedLocation �� 560

Persistent Views ��563

Fading Into the Background �� 564

Preserving View Controllers��� 565

xx Contents

Assigning Restoration Identifiers ��� 566

Customizing Restoration �� 568

Deeper Restoration �� 569

Pigeons in the Cloud ��569

Storing Values in the Cloud �� 570

Cloud Watching �� 571

Enabling iCloud �� 573

Testing the Cloud ��� 574

Bundle Up Your Settings ��575

Creating a Settings Bundle �� 575

Using Your Settings Bundle Values �� 578

Testing Your Settings Bundle ��� 579

Summary ���580

Chapter 19: Doc, You Meant Storage ■ ���581

Document Overview ��581

Where, Oh Where, Do My Documents Go? ���582

MyStuff on Documents ��583

Supplying Your Document’s Data ��585

Wrapping Up Your Data �� 587

Using Wrappers ��� 587

Incremental Document Updates �� 588

Constructing Your Wrappers �� 588

Interpreting Your Wrappers �� 589

Archiving Objects ��591

Adopting NSCoding �� 591

Archiving and Unarchiving Objects �� 593

The Archiving Serialization Smackdown ��� 593

Serialization, Meet Archiving ��� 594

Document, Your Data Model ��595

Tracking Changes ��598

Testing Your Document ��600

xxiContents

Setting Breakpoints ��� 600

Stepping Through Code and Examining Variables ��� 601

Storing Image Files ���608

Odds and Ends ��615

iCloud Storage ��� 615

Archive Versioning ��� 615

Summary ���616

Chapter 20: Being Objective ■ ��617

Objective-C is C ���618

Objective-C Classes���619

Implementing Your Class ��� 620

Creating and Destroying Objects ��� 621

Class Clusters �� 622

Referring to Objects ��� 622

Can I See Your id? �� 623

Method Names ��624

Method Name Construction ��� 625

The +initialize Method ��� 626

Properties ��627

Instance Variables ��� 627

Using Getters and Setters �� 627

Declared Properties ��� 628

Automatic Properties ��� 630

The Anatomy of a Property �� 631

Keeping Your Promises �� 633

Introspection ���634

Class �� 634

Method��� 635

Protocol ��� 635

Protocols ���636

Adopting Protocols �� 636

Referring to Conforming Objects ��� 637

xxii Contents

Categories ���638

Single Responsibility ��� 639

Module Organization �� 639

Private Methods ��� 640

Extensions ��� 640

nil is Your Friend ��641

The Unbearable Lightness of nil �� 641

The Virtues of Being Positive ��� 641

When nil Is Bad �� 642

Copying Objects ��642

Adopting NSCopying �� 643

Inheriting NSCopying ��� 644

Copying Something Special ��� 644

Copying an Object �� 645

Mutable Copies �� 645

Attributed Strings ��645

Collections ���648

Collection Classes�� 648

Enumeration �� 649

Fast Object Enumeration ��� 649

Collection Enumeration �� 650

Shortcuts ���650

Summary ���651

Chapter 21: The Elephant in the Room ■ ��653

Memory Management ���654

Your Grandfather’s Memory Management���655

Garbage Collection ��656

Reference Counting ���657

Manual Reference Counting ��659

Jumping into the Pool �� 660

Quick Summary ��� 662

xxiiiContents

Breaking the Cycle ��� 663

Scared Straight �� 665

Automatic Reference Counting ��665

Enabling ARC ��� 666

Strong and Weak References �� 667

What ARC Doesn’t Do ��� 668

Summary ���669

Chapter 22: Êtes-vous Polyglotte? ■ ��671

The Localization Process ���671

Language Bundles ���672

Programmatic Localization �� 673

Localize Now! ��674

Internationalizing Your App ��680

Internationalizing String Constants ��� 680

Using the genstrings Tool �� 681

Localizing Your Strings File �� 683

Testing Your String Localization ��� 684

Localizing Interfaces Using Localizable Strings ��685

Localizing Settings�bundle ��685

Other Code Considerations ��688

Localizing Your App’s Name ��689

Summary ���690

Chapter 23: Faster, Faster ■ ���691

Performance Optimization ���692

Fixing a Slow Tap ��693

Launching Instruments �� 694

Finding the Hot Spots ��696

The Hubris of Experience ��� 699

Picking the Low Hanging Fruit ��� 700

Deferring Notifications ��� 700

Once More into The Breach ��� 701

xxiv Contents

Precious Memory ��702

Breaking MyStuff ��� 703

Measuring Memory�� 704

Memory Instruments ��� 706

Heed the Warnings �� 708

Stress Test, Round #2 �� 710

Summary ���712

Chapter 24: Twice As Nice ■ ���713

Concurrent Programming ��714

Threads �� 715

Synchronization ��� 715

Running Multiple Threads ���716

Creating an Operation Queue��� 717

Adding an Operation �� 718

Measuring the Effects�� 718

Execution Order ���720

Thread Safety ��721

Don’t Talk About Thread Safety �� 722

Not Sharing Is Caring ��� 722

Promise Me You’ll Never Change ��� 723

The Atomic Age �� 723

Concurrency Roundup ���729

The Thread-Safe Landscape �� 729

Sending Messages To Main ��� 729

Lock Objects �� 730

Deadlocks �� 731

Spin Locks ��� 733

Further Reading ��� 734

Summary ���734

Index ���735

xxv

About the Author

James Bucanek has spent the past 30 years programming and
developing microprocessor systems. He has experience with a broad
range of computer hardware and software, from embedded consumer
products to industrial robotics. His development projects include the
first local area network for the Apple II, distributed air conditioning
control systems, a piano teaching system, digital oscilloscopes, silicon
wafer deposition furnaces, and collaborative writing tools for K-12
education.

James holds a Java Developer Certification from Sun Microsystems
and was awarded a patent for optimizing local area networks. James
is currently focused on OS X and iOS software development, where
he can combine his deep knowledge of UNIX and object-oriented
languages with his passion for elegant design. James holds an
Associate’s degree in classical ballet from the Royal Academy of Dance,
and can occasionally be found teaching at Adams Ballet Academy.

xxvii

About the Technical
Reviewer

Charles Cruz is a mobile application developer for the iOS, Android,
and Windows Phone platforms. He graduated from Stanford University
with B.S. and M.S. degrees in engineering. He lives in Southern
California and runs a photography business with his wife
(www.facebook.com/BellaLenteStudios). When not doing
technical things, he plays lead guitar in an original metal band
(www.taintedsociety.com).

Charles can be reached at codingandpicking@gmail.com and
@CodingNPicking on Twitter.

http://www.facebook.com/BellaLenteStudios
http://www.taintedsociety.com
http://codingandpicking@gmail.com
http://@CodingNPicking

xxix

Acknowledgments

Clay Andres started this ball rolling by introducing me to Apress. Steve Anglin is largely responsible
for deciding what Apress prints, and I was genuinely flattered when he asked me to write this book.
Tom Welsh, my editor, kept a watchful eye on every paragraph, keeping the message clear and
comprehensible. Tom was great to work with and immeasurably improved the quality of this book.
Charles Cruz checked every line of code and symbol to ensure complete accuracy. Any technical
errors are ultimately my responsibility, but there are significantly fewer thanks to Charles. Lori
Cavanaugh dotted my i’s, crossed my t’s, and corrected my (egregious) spelling. If you find this book
easy to read, you have Lori’s blue pencil to thank.

The entire project was stewarded by a phalanx of coordinating editors. Anamika Panchoo, Katie
Sullivan, and Christine Ricketts juggled schedules, liaised between editors, tracked production, and
herded everyone towards a common goal. To all the folks at Apress, thank you, thank you, thank you!

Finally, I want to shout a “thank you” to Apple’s Xcode development team for creating the most
advanced mobile app development tool in the world. iOS development would be nearly impossible
without it.

	Learn iOS AppDevelopment
	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Chapter 1: Got Tools?
	Requirements
	Installing Xcode
	What is Xcode?
	Becoming an iOS Developer
	Getting the Projects
	Launching Xcode the First Time
	Welcome To Xcode
	Navigation Area
	Editor Area
	Utility Area
	Debug Area
	Toolbar

	Running Your First App
	Summary

	Chapter 2: Boom! App
	Design
	Creating the Project
	Setting Project Properties
	Building an Interface
	Adding Objects
	Deleting and Connecting Objects
	Adding Views to a View
	Editing Object Properties
	Adding Resources
	Customizing Buttons

	Using Storyboards
	Adding New Screens
	Creating a Segue
	Setting Navigation Titles

	Testing Your Interface
	Finishing Your App
	Debugging Your App
	Adding Constraints
	Testing Your App

	Summary

	Chapter 3: Spin a Web
	Design
	Creating the Project
	Building a Web Browser
	Coding a Web Browser
	Adding Outlets to SUViewController
	Connecting Custom Outlets
	Adding Actions to SUViewController
	Setting Action Connections
	Testing the Web Browser
	Debugging the Web View

	Adding URL Shortening
	Designing the URL Shortening Code
	Becoming a Web View Delegate
	Shortening an URL
	Writing -shortenURL:
	Adding Private Instance Variables
	Becoming an NSURLConnection Delegate
	Testing The Service

	Final Touches
	Cleaning Up the Interface
	Creating the iPad Version

	Summary

	Chapter 4: Coming Events
	Run Loop
	Event Queue
	Event Delivery
	Direct Delivery
	Hit Testing
	The First Responder

	Event Handling
	The Responder Chain
	High- vs. Low-Level Events
	Eight Ball
	Design
	Create the Project
	Create the Interface
	Writing the Code
	Handling Shake Events
	Testing Your EightBall App
	Finishing Touches

	Testing on a Physical iOS Device
	Other Uses for The Responder Chain
	Touchy
	Design
	Creating the Project
	Creating a Custom View
	Handling Touch Events
	Drawing Your View
	Adding Custom Objects in Interface Builder
	Testing Touchy

	Advanced Event Handling
	Summary

	Chapter 5: Table Manners
	Table Views
	Plain Tables
	Grouped Tables
	Cell Styles
	Cell Accessories
	Custom Cells

	How Table Views Work
	Table Cells and Rubber Stamps

	MyStuff
	Design
	Creating The Project
	Creating Your Data Model
	Creating a Data Source
	Implementing Your Rubber Stamp
	Table Cell Caching
	Where’s the Data?
	Testing MyStuff

	Adding the Detail View
	Creating the Detail View
	Configuring the Detail View

	Editing
	Inserting and Removing Items
	Enabling Table Editing
	Editing Details
	Observing Changes to MyWhatsit
	Posting Notifications
	Observing Notifications

	Modal vs. Modeless Editing
	Little Touches
	Advanced Table View Topics
	Summary

	Chapter 6: Object Lesson
	Two Houses, Both Alike in Dignity
	Romeo Meets Juliet
	Classes and Cookies
	Classes and Objects and Methods, Oh My!
	Inheritance
	Abstract and Concrete Classes
	Overriding Methods

	Design Patterns and Principles
	Encapsulation
	Singularity of Purpose
	Stability
	Open Closed
	Delegation
	Other Patterns

	Summary

	Chapter 7: Smile!
	Design
	Extending Your Design
	Revising the Data Model
	Adding an Image View
	Updating the View Controller
	Connecting a Choose Image Action

	Taking Pictures
	You Can’t Always Get What You Want
	Presenting the Image Picker
	Importing the Image
	Cropping and Resizing
	Winding Up
	Testing the Camera

	Building the iPad Interface
	Adding a Popover

	Sticky Keyboards
	Advanced Camera Techniques
	Summary

	Chapter 8: Model Citizen
	The Model-View-Controller Design Pattern
	Data Model Objects
	View Objects
	Controller Objects
	MVC Communications

	Color Model
	Creating Your Data Model
	Creating View Objects
	Writing Your Controller
	Wiring Your Interface

	Having Multiple Views
	Consolidating Updates
	Complex View Objects
	Replacing UIView with CMColorView
	Connecting the View to Your Data Model
	Drawing CMColorView

	Being a K-V Observer
	Key Value Observing
	Observing Key Value Changes
	Creating KVO Dependencies

	Multi-Vector Data Model Changes
	Handling Touch Events
	Binding The Sliders
	Final Touches

	Cheating
	Summary

	Chapter 9: Sweet, Sweet Music
	Making Your Own iPod
	Design
	Adding a Music Picker
	Using a Music Player
	Adding Playback Control
	Receiving Music Player Notifications
	Adding Media Metadata
	Creating a Metadata View

	Observing the Playing Item

	Make Some Noise
	Living in a Larger World
	Configuring Your Audio Session
	Playing Audio Files
	Creating AVAudioPlayer objects
	Adding the Sound Buttons
	Activating Your Audio Session

	Interruptions and Detours
	Dealing with Interruptions
	Adding Your Interruption Handlers
	Dealing with Audio Route Changes

	Other Audio Topics
	Summary

	Chapter 10: Got Views?
	Learning by Example
	Buttons
	The Responder and View Classes
	The Control Class
	Button Types
	Control States
	Button Code

	Switches and Sliders
	Page Control
	Steppers
	Segmented Controls
	Progress Indicators
	Text Views
	Labels
	Text Fields
	Text Editing Behavior
	Text Views

	Pickers
	Date Picker
	Anything Picker

	Image Views
	Grouped Tables
	The View You Never See
	Summary

	Chapter 11: Draw Me a Picture
	Creating a Custom View Class
	View Coordinates
	Frame and Bounds
	Converting Between Coordinate Systems

	When Views Are Drawn
	Drawing a View
	Fill and Stroke Functions
	Bézier Paths
	Images

	Shapely
	Creating Views Programmatically
	The -drawRect: Method
	Creating the Bézier Path
	Testing Squares

	More Shapes, More Colors

	Transforms
	Applying a Translate Transform
	Applying a Scale Transform

	Animation: It’s Not Just for Manga
	Using Core Animation
	Adding Animation to Shapely
	OpenGL

	The Order of Things
	Images and Bitmaps
	Creating Images from Bitmaps
	Creating Bitmaps From Drawings

	Advanced Graphics
	Text
	Shadows, Gradients, and Patterns
	Blend Modes
	The Context Stack

	Summary

	Chapter 12: There and Back Again
	Measure Twice, Cut Once
	What is Navigation ?
	View Controller Roles

	Designing Wonderland
	Weighing Your Navigation Options
	Wonderland Navigation

	Creating Wonderland
	Adding Wonderland’s Resources
	Configuring a Tab Bar Item

	The First Content View Controller
	Presenting a Modal View Controller
	Dismissing a View Controller

	Creating a Navigable Table View
	Breathing Data Into Your Table View
	Creating the Detail View
	Adding the Data Model
	Implementing Your Data Source
	Defining a Table View Cell Object

	Pushing the Detail View Controller

	Creating a Page View Controller
	Adding the Page View Controllers
	Designing a Prototype Page
	Coding the One Page View
	The Paginator
	Coding the Page View Data Source
	Initializing a Page View Controller

	Using Pop-Over Controllers
	Advanced Navigation
	Summary

	Chapter 13: Networking, the Social Kind
	Color My (Social) World
	Having Something to Share
	Presenting the Activity View Controller

	Sharing More
	Extracting Code
	Providing More Items to Share
	Excluding Activities

	The Curse of the Lowest Common Denominator
	Providing Activity Specific Data
	Promises, Promises
	Big Data

	Sharing with Specific Services
	Other Social Network Interactions
	Summary

	Chapter 14: Networking, The Nerdy Kind
	SunTouch
	Creating SunTouch
	Designing the Initial Screens

	Creating the Single Player Version
	Loading STGameViewController
	How SunTouch Works
	Customizing Core Animations
	Playing the Game

	Plugging into Game Center
	Configuring a Game Center–aware app
	Enabling Game Center
	Creating an App in the iTunes Store
	Configuring Game Center
	Adding GameKit to Your App
	Obtaining the Local Player
	Adding a Game Center Button
	Recording Leaderboard Scores
	Creating a Test Player

	Peer-To-Peer Networking
	Turning SunTouch Into a Two-Player Game
	Subclassing STGameView
	Adding the Opponent Game View
	Odds and Ends

	Matchmaking
	Requesting a Match
	Completing the Match

	Exchanging Data with Another Device
	Starting the Game
	Creating a Data Messaging Category
	Defining the Data Format
	Sending Data to a Player
	Receiving Data from a Player
	Sending Strike Data
	Receiving Strike Data
	Sending Sun Capture Data
	Receiving Sun Capture Data
	Handling Match Disruption
	Testing a Two-Player Game

	Advanced Networking
	One Last Detail
	Summary

	Chapter 15: If You Build It ...
	How Interface Builder Files Work
	Compiling Interface Builder Files
	Loading a Scene
	Loading an .xib File
	Placeholder Objects and the File’s Owner
	Creating Objects
	Editing Attributes
	Connections
	Sending Action Messages

	Taking Control of Interface Builder Files
	Declaring Placeholders
	Designing SYShapeView
	Connecting the Gesture Recognizers
	Build Your Shape Factory
	Loading an Interface Builder File
	Replacing Code

	Summary

	Chapter 16: Apps with Attitude
	Leveler
	Creating Leveler
	Pondering LRDialView
	Creating the Views

	Getting Motion Data
	Creating CMMotionManager
	Starting and Stopping Updates
	Push Me, Pull You
	Timing is Everything
	Herky-Jerky
	Using Dynamic Animation
	Creating the Dynamic Animator
	Defining Behaviors
	Animating the Dial

	Getting Other Kinds of Motion Data
	Gyroscope Data
	Magnetometer Data
	Device Motion and Attitude
	Measuring Change

	Summary

	Chapter 17: Where Are You?
	Creating Pigeon
	Collecting Location Data
	Using a Map View
	Decorating Your Map
	Adding an Annotation
	Map Coordinates
	Adding a Little Bounce

	Pointing the Way
	Location Monitoring
	Approximate Location and Non-GPS Devices
	Monitoring Regions
	Reducing Location Change Messages
	Movement and Heading

	Geocoding
	Getting Directions
	Summary

	Chapter 18: Remember Me?
	Property Lists
	Serializing Property Lists
	User Defaults
	Making Pigeon Remember
	Minimizing Updates and Code
	Defining Your Keys
	Writing Values to User Defaults
	Getting Values from User Defaults
	Testing User Defaults

	Registering Default Values
	Turning Objects into Property List Objects
	Preserving and Restoring savedLocation

	Persistent Views
	Fading Into the Background
	Preserving View Controllers
	Assigning Restoration Identifiers
	Customizing Restoration
	Deeper Restoration

	Pigeons in the Cloud
	Storing Values in the Cloud
	Cloud Watching
	Enabling iCloud
	Testing the Cloud

	Bundle Up Your Settings
	Creating a Settings Bundle
	Using Your Settings Bundle Values
	Testing Your Settings Bundle

	Summary

	Chapter 19: Doc, You Meant Storage
	Document Overview
	Where, Oh Where, Do My Documents Go?
	MyStuff on Documents
	Supplying Your Document’s Data
	Wrapping Up Your Data
	Using Wrappers
	Incremental Document Updates
	Constructing Your Wrappers
	Interpreting Your Wrappers

	Archiving Objects
	Adopting NSCoding
	Archiving and Unarchiving Objects
	The Archiving Serialization Smackdown
	Serialization, Meet Archiving

	Document, Your Data Model
	Tracking Changes
	Testing Your Document
	Setting Breakpoints
	Stepping Through Code and Examining Variables

	Storing Image Files
	Odds and Ends
	iCloud Storage
	Archive Versioning

	Summary

	Chapter 20: Being Objective
	Objective‑C is C
	Objective‑C Classes
	Implementing Your Class
	Creating and Destroying Objects
	Class Clusters
	Referring to Objects
	Can I See Your id?

	Method Names
	Method Name Construction
	The +initialize Method

	Properties
	Instance Variables
	Using Getters and Setters
	Declared Properties
	Automatic Properties
	The Anatomy of a Property
	Mutability
	Storage
	Lifetime Qualifiers
	Accessor Method Names
	Atomic

	Keeping Your Promises

	Introspection
	Class
	Method
	Protocol

	Protocols
	Adopting Protocols
	Referring to Conforming Objects

	Categories
	Single Responsibility
	Module Organization
	Private Methods
	Extensions

	nil is Your Friend
	The Unbearable Lightness of nil
	The Virtues of Being Positive
	When nil Is Bad

	Copying Objects
	Adopting NSCopying
	Inheriting NSCopying
	Copying Something Special
	Copying an Object
	Mutable Copies

	Attributed Strings
	Collections
	Collection Classes
	Enumeration
	Fast Object Enumeration
	Collection Enumeration

	Shortcuts
	Summary

	Chapter 21: The Elephant in the Room
	Memory Management
	Your Grandfather’s Memory Management
	Garbage Collection
	Reference Counting
	Manual Reference Counting
	Jumping into the Pool
	Quick Summary
	Breaking the Cycle
	Scared Straight

	Automatic Reference Counting
	Enabling ARC
	Strong and Weak References
	What ARC Doesn’t Do

	Summary

	Chapter 22: Êtes-vous Polyglotte?
	The Localization Process
	Language Bundles
	Programmatic Localization

	Localize Now!
	Internationalizing Your App
	Internationalizing String Constants
	Using the genstrings Tool
	Localizing Your Strings File
	Testing Your String Localization

	Localizing Interfaces Using Localizable Strings
	Localizing Settings.bundle
	Other Code Considerations
	Localizing Your App’s Name
	Summary

	Chapter 23: Faster, Faster
	Performance Optimization
	Fixing a Slow Tap
	Launching Instruments

	Finding the Hot Spots
	The Hubris of Experience
	Picking the Low Hanging Fruit
	Deferring Notifications
	Once More into The Breach

	Precious Memory
	Breaking MyStuff
	Measuring Memory
	Memory Instruments
	Heed the Warnings
	Stress Test, Round #2

	Summary

	Chapter 24: Twice As Nice
	Concurrent Programming
	Threads
	Synchronization

	Running Multiple Threads
	Creating an Operation Queue
	Adding an Operation
	Measuring the Effects

	Execution Order
	Thread Safety
	Don’t Talk About Thread Safety
	Not Sharing Is Caring
	Promise Me You’ll Never Change
	The Atomic Age
	Creating an Atomic Method
	Creating an Atomic Property
	Making a Nonatomic Method, Atomic

	Concurrency Roundup
	The Thread-Safe Landscape
	Sending Messages To Main
	Lock Objects
	Deadlocks
	Recursive Locks
	Multiple Locks

	Spin Locks
	Further Reading

	Summary

	Index

