
www.allitebooks.com

http://www.allitebooks.org

Learn PowerShell Toolmaking
in a Month of Lunches

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learn PowerShell Toolmaking
in a Month of Lunches

DON JONES

 JEFFERY HICKS

M A N N I N G

Shelter Island

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical proofreader: James Berkenbile
PO Box 261 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Maureen Spencer

Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

ISBN 9781617291166
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

www.allitebooks.com

http://www.allitebooks.org

v

brief contents
PART 1 INTRODUCTION TO TOOLMAKING ..1

1 ■ Before you begin 3

2 ■ PowerShell scripting overview 9

3 ■ PowerShell’s scripting language 15

4 ■ Simple scripts and functions 27

5 ■ Scope 39

PART 2 BUILDING AN INVENTORY TOOL...45

6 ■ Tool design guidelines 47

7 ■ Advanced functions, part 1 53

8 ■ Advanced functions, part 2 66

9 ■ Writing help 80

10 ■ Error handling 88

11 ■ Debugging techniques 102

12 ■ Creating custom format views 119

13 ■ Script and manifest modules 132

14 ■ Adding database access 143

15 ■ Interlude: creating a new tool 157

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi

PART 3 ADVANCED TOOLMAKING TECHNIQUES161

16 ■ Making tools that make changes 163

17 ■ Creating a custom type extension 175

18 ■ Creating PowerShell workflows 183

19 ■ Troubleshooting pipeline input 192

20 ■ Using object hierarchies for complex output 200

21 ■ Globalizing a function 209

22 ■ Crossing the line: utilizing the .NET Framework 217

PART 4 CREATING TOOLS FOR DELEGATED ADMINISTRATION225

23 ■ Creating a GUI tool, part 1: the GUI 227

24 ■ Creating a GUI tool, part 2: the code 236

25 ■ Creating a GUI tool, part 3: the output 244

26 ■ Creating proxy functions 256

27 ■ Setting up constrained remoting endpoints 268

28 ■ Never the end 275

www.allitebooks.com

http://www.allitebooks.org

vii

contents
preface xv
about this book xvi
about the authors xix
acknowledgments xx

PART 1 INTRODUCTION TO TOOLMAKING...............................1

1 Before you begin 3

1.1 What is toolmaking? 3

1.2 Is this book for you? 4

1.3 Prerequisites 5

PowerShell v3 5 ■ Admin privileges 5 ■ Multiple computers 6
SQL Server 7 ■ PowerShell ISE 7 ■ Optional prerequisites 7

1.4 How to use this book 8

2 PowerShell scripting overview 9

2.1 What is PowerShell scripting? 9

2.2 PowerShell’s execution policy 10

2.3 Running scripts 10

2.4 Editing scripts 11

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

2.5 Further exploration: script editors 14

2.6 Lab 14

3 PowerShell’s scripting language 15

3.1 One script, one pipeline 15

3.2 Variables 16

3.3 Quotation marks 17

3.4 Object members and variables 18

3.5 Parentheses 19

3.6 Refresher: comparisons 19

3.7 Logical constructs 20

If construct 20 ■ Switch construct 21

3.8 Looping constructs 23

Do...While construct 23 ■ ForEach construct 24 ■ For construct 25

3.9 Break and Continue in constructs 25

3.10 Lab 26

4 Simple scripts and functions 27

4.1 Start with a command 27

4.2 Turn the command into a script 28

4.3 Parameterize the command 31

4.4 Turn the script into a function 33

4.5 Testing the function 35

Dot sourcing 36 ■ Calling the function in the script 37 ■ A better way
ahead: modules 38

4.6 Lab 38

5 Scope 39

5.1 What is scope? 39

5.2 Seeing scope in action 41

5.3 Working out of scope 41

5.4 Getting strict with scope 42

5.5 Best practices for scope 43

5.6 Lab 43

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

PART 2 BUILDING AN INVENTORY TOOL45

6 Tool design guidelines 47

6.1 Do one thing, and do it well 47

Input tools 48 ■ Functional tools 49 ■ Output tools 49

6.2 Labs 50

Lab A 50 ■ Lab B 51 ■ Lab C 51

7 Advanced functions, part 1 53

7.1 Advanced function template 53

7.2 Designing the function 54

7.3 Declaring parameters 55

7.4 Testing the parameters 56

7.5 Writing the main code 57

7.6 Outputting custom objects 59

7.7 What not to do 61

7.8 Coming up next 63

7.9 Labs 63

Lab A 63 ■ Lab B 64 ■ Lab C 64 ■ Standalone lab 64

8 Advanced functions, part 2 66

8.1 Making parameters mandatory 66

8.2 Verbose output 68

8.3 Parameter aliases 69

8.4 Accepting pipeline input 70

8.5 Parameter validation 73

8.6 Adding a switch parameter 75

8.7 Parameter help 76

8.8 Coming up next 77

8.9 Labs 77

Lab A 77 ■ Lab B 78 ■ Lab C 78 ■ Standalone lab 79

9 Writing help 80

9.1 Comment-based help 80

9.2 XML-based help 84

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

9.3 Coming up next 86

9.4 Labs 86

Lab A 86 ■ Lab B 86 ■ Lab C 87 ■ Standalone lab 87

10 Error handling 88

10.1 It’s all about the action 88

10.2 Setting the error action 90

10.3 Saving the error 90

10.4 Error handling v1: Trap 91

10.5 Error Handling v2+: Try…Catch…Finally 92

10.6 Providing some visuals 95

10.7 Coming up next 97

10.8 Labs 97

Lab A 97 ■ Lab B 98 ■ Lab C 99 ■ Standalone lab 100

11 Debugging techniques 102

11.1 Two types of bugs 102

11.2 Solving typos 103

11.3 The real trick to debugging: expectations 103

11.4 Dealing with logic errors: trace code 109

11.5 Dealing with logic errors: breakpoints 113

11.6 Seriously, have expectations 116

11.7 Coming up next 116

11.8 Lab 117

12 Creating custom format views 119

12.1 The anatomy of a view 119

12.2 Adding a type name to output objects 121

12.3 Making a view 123

12.4 Loading and debugging the view 126

12.5 Using the view 128

12.6 Coming up next 129

12.7 Labs 129

Lab A 130 ■ Lab B 130 ■ Lab C 131

CONTENTS xi

13 Script and manifest modules 132

13.1 Introducing modules 132

Module location 132 ■ Module name 133 ■ Module contents 134

13.2 Creating a script module 135

13.3 Creating a module manifest 137

13.4 Creating a module-level setting variable 139

13.5 Coming up next 142

13.6 Lab 142

Lab A 142 ■ Lab B 142 ■ Lab C 142

14 Adding database access 143

14.1 Simplifying database access 143

14.2 Setting up your environment 143

14.3 The database functions 147

14.4 About the database functions 149

14.5 Using the database functions 150

14.6 Lab 156

15 Interlude: creating a new tool 157

15.1 Designing the tool 157

15.2 Writing and testing the function 158

15.3 Dressing up the parameters 158

15.4 Adding help 158

15.5 Handling errors 159

15.6 Making a module 159

15.7 Coming up next 159

PART 3 ADVANCED TOOLMAKING TECHNIQUES161

16 Making tools that make changes 163

16.1 The –Confirm and –WhatIf parameters 163

16.2 Passthrough ShouldProcess 164

16.3 Defining the impact level 166

16.4 Implementing ShouldProcess 167

16.5 Lab 174

CONTENTSxii

17 Creating a custom type extension 175

17.1 The anatomy of an extension 175

17.2 Creating a script property 177

17.3 Creating a script method 178

17.4 Loading the extension 179

17.5 Testing the extension 179

17.6 Adding the extension to a manifest 180

17.7 Lab 182

18 Creating PowerShell workflows 183

18.1 Workflow overview 183

Common parameters for workflows 184 ■ Activities and stateless
execution 185 ■ Persisting state 186 ■ Suspending and resuming
workflows 186 ■ Inherently remotable 186 ■ Parallelism 187

18.2 General workflow design strategy 188

18.3 Example workflow scenario 189

18.4 Writing the workflow 189

18.5 Workflows vs. functions 190

18.6 Lab 191

19 Troubleshooting pipeline input 192

19.1 Refresher: how pipeline input works 192

19.2 Introducing Trace-Command 193

19.3 Interpreting trace-command output 194

19.4 Lab 199

20 Using object hierarchies for complex output 200

20.1 When a hierarchy might be necessary 200

20.2 Hierarchies and CSV: not a good idea 201

20.3 Creating nested objects 202

20.4 Working with nested objects 203

Using Select-Object to expand child objects 204 ■ Using Format-Custom
to expand an object hierarchy 205 ■ Using a ForEach loop to enumerate
subobjects 207 ■ Using PowerShell’s array syntax to access individual
subobjects 208

20.5 Lab 208

CONTENTS xiii

21 Globalizing a function 209

21.1 Introduction to globalization 209

21.2 PowerShell’s data language 211

21.3 Storing translated strings 213

21.4 Do you need to globalize? 216

21.5 Lab 216

22 Crossing the line: utilizing the .NET Framework 217

22.1 .NET classes and instances 217

22.2 Static methods of a class 218

22.3 Instantiating a class 219

22.4 Using Reflection 220

22.5 Finding class documentation 220

22.6 PowerShell vs. Visual Studio 222

22.7 Lab 223

PART 4 CREATING TOOLS FOR DELEGATED ADMINISTRATION ..225

23 Creating a GUI tool, part 1: the GUI 227

23.1 Introduction to WinForms 228

23.2 Using a GUI to create the GUI 228

23.3 Manually coding the GUI 232

23.4 Showing the GUI 234

23.5 Lab 234

24 Creating a GUI tool, part 2: the code 236

24.1 Addressing GUI objects 236

24.2 Example: text boxes 236

24.3 Example: button clicks 237

24.4 Example: list boxes 238

24.5 Example: radio buttons 241

24.6 Example: check boxes 242

24.7 Lab 243

CONTENTSxiv

25 Creating a GUI tool, part 3: the output 244

25.1 Using Out-GridView 244

25.2 Creating a form for output 247

25.3 Populating and showing the output 250

25.4 Lab 254

26 Creating proxy functions 256

26.1 What are proxy functions? 256

26.2 Creating the proxy function template 257

26.3 Removing a parameter 261

26.4 Adding a parameter 263

26.5 Loading the proxy function 267

26.6 Lab 267

27 Setting up constrained remoting endpoints 268

27.1 Refresher: Remoting architecture 268

27.2 What are constrained endpoints? 269

27.3 Creating the endpoint definition 270

27.4 Registering the endpoint 271

27.5 Connecting to the endpoint 273

27.6 Lab 274

28 Never the end 275

28.1 Welcome to toolmaking 275

28.2 Cool ideas for tools 276

28.3 What’s your next step? 276

appendix GUI technologies and PowerShell 277

index 281

xv

preface
I have a unique outlook on scripting. In my first career as an aircraft mechanic, I

worked with machinists—folks who used tools and dies to carve metal into aircraft

parts. A step above machinist, career-wise, was the tool and die maker. Those were the

highly-trained folks who actually created the tools and dies used by machinists. Folks

aspired to be toolmakers, as they were nicknamed, because it was considered a bit

cushier job. You didn’t work on the hot shop floor around screaming machines and

flying shards; you worked in a cool office, on a computer-aided design (CAD) station.

You wore nicer clothes.

 It turns out that PowerShell can be treated in much the same way. Imagine work-

ing in a nice, cool office, with no users demanding your attention. You cruise through

your organization’s help desk ticketing system, looking for recurring problems that

eat up a lot of time, or that end up having to be solved by higher-tier technical staffers.

You write tools, in PowerShell, to solve those problems. You deploy those tools to the

help desk and your lower-tier colleagues. They can now solve those problems more

quickly and more consistently—and with less involvement from you. Your job is cush-

ier. Maybe you get paid more, too. Sounds awesome, right?

 It’ll happen. That same pattern has repeated itself, over and over, throughout the

history of IT, in almost every corner of IT except the Microsoft space, mainly because

we haven’t had the right tool-making tools. Well, we do now: Windows PowerShell. If

you’re ready to stop thinking like a button-clicker and command-runner, and to start

thinking like a toolmaker, you’ve picked up the right book.

 DON JONES

xvi

about this book
Most of what you’ll need to know about this book is covered in chapter 1, but there

are a few things that we should mention up front.

 First of all, if you plan to follow along with our examples and complete the hands-

on exercises, you’ll need a virtual machine or computer running Windows 8 or Win-

dows Server 2012. We cover that in more detail in chapter 1. You can get by with Win-

dows 7, but you’ll miss out on a few of the hands-on labs.

 Second, be prepared to read this book from start to finish, covering each chapter

in order. Again, this is something we’ll explain in more detail in chapter 1, but the

idea is that each chapter introduces a few new things that you will need in subsequent

chapters. You shouldn’t try to push through the whole book—stick with the one chap-

ter per day approach. The human brain can only absorb so much information at

once, and by taking on PowerShell in small chunks, you’ll learn it a lot faster and

more thoroughly.

 Third, this book contains a lot of code snippets. Most of them are quite short, so

you should be able to type them easily. In fact, we recommend that you do type them,

since doing so will help reinforce an essential PowerShell skill: accurate typing!

Longer code snippets are given in listings and are available for download at http://

Morelunches.com (just click on this book’s cover image and look for the “Down-

loads” section).

 That said, there are a few conventions that you should be aware of. Code will

always appear in a special font, just like this example:

Get-WmiObject –class Win32_OperatingSystem

➥

–computerName SERVER-R2

http://Morelunches.com
http://Morelunches.com

ABOUT THIS BOOK xvii

That example also illustrates the line-continuation character used in this book. It indi-

cates that those two lines should actually be typed as a single line in PowerShell. In

other words, don’t hit Enter or Return after Win32_OperatingSystem—keep right on

typing. PowerShell allows for very long lines, but the pages of this book can only hold

so much.

 Sometimes, you’ll also see code font within the text itself, such as when we write

Get-Command. That lets you know that you’re looking at a command, parameter, or

other element that you would type within the shell.

 Fourth is a tricky topic that we’ll bring up again in several chapters: the backtick

character (`). Here’s an example:

Invoke-Command –scriptblock { Dir } ̀
-computerName SERVER-R2,localhost

The character at the end of the first line isn’t a stray bit of ink—it’s a real character

that you would type. On a U.S. keyboard, the backtick (or grave accent) is usually near

the upper left, under the Escape key, on the same key as the tilde character (~). When

you see the backtick in a code listing, type it exactly as is. Furthermore, when it

appears at the end of a line—as in the preceding example—make sure that it’s the

very last character on that line. If you allow any spaces or tabs to appear after it, the

backtick won’t work correctly, and neither will the code example.

NOTE Frankly, it’d be easier to just download the code samples and not
worry about typing them in. They’re posted at http://MoreLunches.com—
just click on this book’s cover image and head for the Downloads section.

You can also download the code from the publisher’s website at www.manning.com/

LearnPowerShellToolmakinginaMonthofLunches.

 Finally, we’ll occasionally direct you to Internet resources. Where those URLs are

particularly long and difficult to type, we’ve replaced them with Manning-based short-

ened URLs that look like http://mng.bz/S085 (you’ll see that one in chapter 1).

Author Online

The purchase of Learn PowerShell Toolmaking in a Month of Lunches includes access to a

private forum run by Manning Publications where you can make comments about the

book, ask technical questions, and receive help from the authors and other users. To

access and subscribe to the forum, point your browser to www.manning.com/

LearnPowerShellToolmakinginaMonthofLunches and click the Author Online link.

This page provides information on how to get on the forum once you are registered,

what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the authors can take

place. It’s not a commitment to any specific amount of participation on the part of

the authors, whose contribution to the book’s forum remains voluntary (and

http://MoreLunches.com/
http://MoreLunches.com/
http://www.manning.com/LearnPowerShellToolmkainginaMonthofLunches
http://www.manning.com/LearnPowerShellToolmkainginaMonthofLunches
http://mng.bz/S085
http://www.manning.com/jones4
http://www.manning.com/jones4
http://www.manning.com/jones4
www.manning.com/LearnPowerShellToolmakinginaMonthofLunches
www.manning.com/LearnPowerShellToolmakinginaMonthofLunches

ABOUT THIS BOOKxviii

unpaid). We suggest you try asking the authors some challenging questions, lest

their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

xix

about the authors
DON JONES is a multiple-year recipient of Microsoft’s prestigious Most Valuable Profes-

sional (MVP) Award for his work with Windows PowerShell. He writes the Windows

PowerShell column for Microsoft TechNet Magazine, blogs at PowerShell.org, and

authors the “Decision Maker” column and blog for Redmond Magazine. Don is a pro-

lific technology author and has published more than a dozen print books since 2001.

Don is a Senior Partner and Principal Technologist for Concentrated Technology

(ConcentratedTech.com), an IT education and strategic consulting firm. Don’s first

Windows scripting language was KiXtart, going back all the way to the mid-1990s. He

quickly graduated to VBScript in 1995 and was one of the first IT pros to start using

early releases of a new Microsoft product code-named “Monad”—which later became

Windows PowerShell. Don lives in Las Vegas and travels all over the world delivering

IT training (especially in PowerShell) and speaking at IT conferences.

JEFFERY HICKS is a multi-year Microsoft MVP in Windows PowerShell, a Microsoft Certi-

fied Trainer, and an IT veteran with 20 years of experience, much of it spent as an IT

consultant specializing in Microsoft server technologies. He works today as an inde-

pendent author, trainer, and consultant with clients all over the world. Jeff writes the

popular Prof. PowerShell column for MPCMag.com and is a regular contributor to the

Petri IT Knowledgebase. If he isn’t writing books then he’s most likely recording train-

ing videos for companies like TrainSignal or helping out in discussion forums. You

can keep up with Jeff at his blog, http://jdhitsolutions.com/blog.

www.allitebooks.com

http://jdhitsolutions.com/blog
http://www.allitebooks.org

xx

acknowledgments
Books simply don’t write, edit, and publish themselves. Don would like to thank every-

one at Manning Publications who decided to take a chance on a very different kind of

book for Windows PowerShell, and who worked so hard to make this book happen.

And Jeff would like to thank Don for inviting him along for the ride, as well as the

PowerShell community for their enthusiasm and support.

 We are both grateful to Manning for allowing us to continue the “Month of

Lunches” series with this next book in the line-up.

 Thanks also to the following peer reviewers who read the manuscript during its

development and provided feedback: Bryan Clark, Chad McAuley, Christoph

Tohermes, David Smith, Karl Mitschke, Manuel Ruf, Marc Johnson, Mark Schill, Mike

Stevenson, Nathan Shelby, and Thomas Lee. Special thanks to James Berkenbile for

his technical proofread of the final manuscript shortly before we went to press.

Part 1

Introduction to toolmaking

Before you can dive into PowerShell scripting and toolmaking, you need to

know exactly what those entail—and you need just a crash course in Power-

Shell’s scripting language. That’s what we’ll accomplish in this part of the book.

 If the material in this part seems high level and brief, it’s okay. That’s our

intent: At this point, all of these foundation topics are a bit conceptual and

abstract, so we’re going to try to get them out of the way quickly. Stick with it,

because we’ll be revisiting all of them later, when we can do so in a more real-

world and meaningful context. If you’re looking for more complete coverage,

grab a copy of Learn PowerShell in a Month of Lunches, 2nd edition. Or if you feel

like going all in, pick up PowerShell in Depth, also from Manning Press.

3

Before you begin

Windows PowerShell is an interesting product. It’s one of the few Microsoft prod-

ucts that were explicitly designed for several different audiences. Within those

audiences will be beginners, intermediate users, and experts, but in many cases

there’s little crossover between the audience categories. Folks who use the shell as

a command-line interface—tool users, in our terminology—aren’t always interested

in approaching the shell in any other way. Folks who use the shell to create tools—

toolmakers, as we would call them—might use the shell as a development tool most

of the time and only rarely use PowerShell as an interactive command-line inter-

face. This book is for people—primarily administrators—who are getting started in

that second, toolmaking audience.

1.1 What is toolmaking?

We borrowed the term toolmaking from the tool and die industry, because we think

it’s a particularly apt fit for PowerShell. In that industry, there are machinists who

produce a variety of different parts and products. To do so, they use tools—drill

bits, dies, and so forth—which are manufactured by tool and die makers. Both

audiences—machinists and the tool and die makers—utilize many of the same

skills and equipment, but they do so for different reasons. Toolmakers know that

the tools they make aren’t an end product but are rather a means to an end. They

know their work product will be consumed by another expert, albeit an expert with

a slightly different set of goals and a different inventory of skills.

 In the PowerShell world, the broadest audience of shell users is just using the tools

provided to them. They’re running commands and at most combining a bunch of

those commands in a script to automate some complex, multistep process. Toolmak-

ers, on the other hand, are focused less on getting a production task accomplished

4 CHAPTER 1 Before you begin

and more on making a reusable, packaged tool that can complete that task—and doing

so in a way that enables the tool to be handed down to the tool users, who can consume

the tool in their own, simpler scripts.

 Sure, there’s crossover. Today, Bob might be focused on getting a bunch of new

users provisioned in Active Directory. After doing that manually for a while, Bob

might think, “You know, I bet I could put this all into a script that someone from

Human Resources could run, and get this off of my plate entirely.” Bob has just set

himself up to become a toolmaker: using PowerShell not to accomplish a task directly

but instead enabling someone else—often someone less technically proficient—to

accomplish the task themselves.

 We use the term toolmaking instead of scripting in order to highlight what we believe

is a key difference between the two. For us, a script is something you make for your-

self. It might be a bit ugly, but you’re the only one who’ll know. You can make a lot of

assumptions about how it will be run, because you’ll be the one running it. Scripts are

often quick and dirty, and although they might be long and complicated, they’re just a

way for you to automate something that only you will ever do. For a tool, on the other

hand, you can make fewer assumptions. You’re going to be handing it over to some-

one else, and you won’t be around to babysit it. Your tool needs to be more structured

and more resilient to errors. You need to check the input your tool is given to make

sure it’s correct and usable. Your tool needs to be a bit more professional, and a bit

more robust, than something that you’d only ever run yourself.

 Toolmaking is a step below full-on software development. Toolmakers still operate

entirely within PowerShell, rather than moving into, say, Visual Studio and a .NET

Framework language like C#. Toolmakers still need to exhibit some of the discipline

and maturity of a developer—anticipating and handling errors, validating user input,

and so forth—but toolmakers work in a simpler environment than developers and

often produce less-complex tools. Developers often tap into broad portions of the

.NET Framework; PowerShell toolmakers rely more heavily on PowerShell commands

and may not directly access the Framework at all or may do so only minimally. We

admit that it’s a fine line; in the end, it becomes more about the person. If Visual Stu-

dio just ain’t your cup of tea, and you’d rather stick with a simpler, scripting-like envi-

ronment, then you’re a toolmaker. Welcome aboard.

1.2 Is this book for you?

At a minimum, you should be a confident and skilled Microsoft administrator.

Whether you work with Windows, Exchange Server, SharePoint Server, or even third-

party products like VMware vSphere, you should know how to quickly accomplish

whatever tasks you need within your chosen technology. We’re going to keep the

examples in this book pretty generic, so that you can focus on the skills and tech-

niques rather than on the technology being managed; we’ll also keep the examples

very template-ized, so that you can more easily rip them apart and repurpose them for

your own uses, in your own environment. Remember, the goal here is to teach you

how to make tools in PowerShell, not to teach you how to accomplish tasks in

5Prerequisites

Exchange or SharePoint or whatever. The skills we’re teaching are universal and can

be applied to any technology that’s administered through PowerShell.

 You should also have a strong background as a tool user in Windows PowerShell.

You should be confident typing and running commands, dealing with command-line

errors, and even stringing commands together into a simple script. If you’re not,

we suggest starting with Learn Windows PowerShell v3 in a Month of Lunches (http://

MoreLunches.com), which is a better way to learn those foundational skills.

 Ideally, you should even have a little bit of programming or scripting in your back-

ground. Any language is fine—C++, C#, Perl, PHP, VBScript, Python, whatever. Just

enough to let you recognize an if statement, to understand what a loop does, and so

forth. You won’t need major programming skills in this book, and if you have zero pro-

gramming background you’ll still get along just fine; having that background will just

make things a teeny bit smoother for you.

1.3 Prerequisites

Before you get started, there are a few things you need. First, make sure you’ve read

“Is this book for you?” because that section describes the skills and background we’re

expecting you to bring to the table.

1.3.1 PowerShell v3

In addition, we expect that you have access to a Windows computer that has Power-

Shell v3 installed. If you have PowerShell but aren’t sure if it’s v3, open it up, type

$PSVersionTable, and hit Enter. The PowerShell version should be 3.0. If it isn’t, visit

http://download.microsoft.com, punch “PowerShell” into the search field, and down-

load v3 of the Windows Management Framework, the package that includes Power-

Shell appropriate for your operating system. We strongly recommend that your

Windows computer be running either Windows 8 or Windows Server 2012, and we

even more strongly recommend that you be running it in a virtual machine of some

kind. That way, if you mess anything up, you’ve only messed up a virtual machine and

not your real computer.

 You must make sure script execution is enabled for PowerShell by running

Set-ExecutionPolicy and specifying either Unrestricted or RemoteSigned, based on

your organization’s preferred setting. If you do so and receive a warning that the exe-

cution policy is being set via Group Policy, make sure that the execution policy is

either Unrestricted or RemoteSigned. If it isn’t one of those, contact your Active

Directory administrator to discuss the situation. For this book, we’re assuming you can

run scripts without needing to digitally sign them. Again, working in an off-the-

domain virtual machine is a good way to resolve that problem.

1.3.2 Admin privileges

For much of this book, we assume that you will have local Administrator privileges on

your machine or within your test virtual machine. When you run PowerShell, the

window title bar should say “Administrator”; if it doesn’t, close the shell, right-click

http://MoreLunches.com
http://MoreLunches.com

6 CHAPTER 1 Before you begin

the icon, and select Run As Administrator. If that isn’t available or doesn’t work, then

you’ll need to resolve that before continuing.

1.3.3 Multiple computers

Many of the tools you’ll build in this book are designed to query multiple computers.

If you only have one computer to work with, you can always specify “localhost” multiple

times, to simulate connecting to multiple machines. But if it’s possible to have two or

three machines to work with, it makes for a more exciting experience. We used a web-

based virtual lab service called CloudShare.com to set up our environment for this book.

We created a domain controller in a domain named AD2008R2 and then added a client

computer and a member server to that domain. That gave us three computers to play

with. Figure 1.1 shows our test environment, which we’ll use throughout this book.

NOTE CloudShare.com is a commercial service and has a monthly or annual
fee. It isn’t the only service of its kind (you may know of others that are free
or cost less), and you may well have the resources at your job to bring up a
couple of virtual machines to use as a lab. Whatever you choose to do, we
think it’s worth it—even the monthly fee for a service like CloudShare.com—
so that you can use PowerShell in a more realistic environment. Toolmaking
is a big-league set of tasks, and that means you’ll need to be willing to invest a
bit in order to have the best learning experience. You can do this entire book
on a single machine—but we don’t think that’ll fully prepare you for the real
world. We like CloudShare.com mainly because it lets us spin up virtual
machines, completely configured (even as domain controllers) in a few sec-
onds, so it’s super convenient for us.

NOTE It’s not our goal in this book to teach you how to set up a domain con-
troller or a test environment; we expect that you already have those skills. We con-
sider these to be baseline skills that every Microsoft network administrator should
have. If you don’t have them, then it’s very likely this isn’t the right book for you.

Figure 1.1 Test environment diagram

7Prerequisites

For some of our multi-computer examples, we’re assuming that Windows Manage-

ment Instrumentation (WMI) can communicate between these machines, which typi-

cally requires that they not have a local firewall blocking any ports. You may even wish

to disable the Windows Firewall, or other local firewall software, on your test machine.

You wouldn’t do that in a production environment, of course, but doing so in a lab

environment (or a test virtual machine) will let you follow along without having to

worry about complex configurations.

 For other examples, we utilize PowerShell Remoting. You can enable Remoting by

running Enable-PSRemoting on each of your test machines (make sure you’re run-

ning this as Administrator). We’re assuming that any multi-machine environment that

you set up will have all machines in a single domain, so that Remoting will work in its

simplest, default configuration. If you only have a single machine, running the com-

mand on it and always using localhost as the remote computer name (even if you use

localhost multiple times) will also work, even if your single machine isn’t in a domain

at all. Make sure Enable-PSRemoting completes without error.

 If you need to learn more about Remoting, consider the free Secrets of PowerShell

Remoting guide available at http://PowerShellBooks.com.

1.3.4 SQL Server

For portions of this book, you’re also going to need SQL Server. We recommend down-

loading SQL Server Express (whatever the latest version is) and that you specifically

download the package that includes the Express Management Tools (sometimes, you’ll

need to download SQL Server Express and independently download the matching

Express Management Tools for that version—Microsoft frequently changes their mind

on how they package those). That way, you’ll get both the SQL Server backend and the

GUI-based management tools. Install these packages into your test computer or virtual

machine using the default installation options. SQL Server Express is free, and you’ll

find it at http://download.microsoft.com—just enter “sql express” into the search field.

 Note that PowerShell v3 requires Microsoft .NET Framework v4; SQL Server,

depending on the version you download, will also require one or more specific Frame-

work versions. Read the prerequisites on the download page and make sure you have

everything required.

1.3.5 PowerShell ISE

If you choose to work on a Windows Server operating system, install the Windows

Power-Shell ISE. To do so, from the PowerShell console, run Add-WindowsFeature

powershell-ise and wait a few minutes. No restart should be needed for that.

1.3.6 Optional prerequisites

There are a few other things you can choose to have on hand if you want to. They’re

not absolutely necessary, but if you choose to further pursue certain topics in this

book, you’ll want some tools to make life easier. These include the following:

http://PowerShellBooks.com
http://download.microsoft.com

8 CHAPTER 1 Before you begin

■ PowerShell Studio, formerly known as PrimalForms—This will be useful in chap-

ters 21 though 23. This is a commercial product, available through http://

primaltools.com. A free trial is available.

■ An XML editor—This will come in handy a few times throughout this book. We

tend to hand-code XML in a text editor like Notepad, but if you get really seri-

ous with it, a dedicated editor can be useful.

■ Microsoft InfoPath—If you start authoring multilanguage help files for the tools

you make, then InfoPath can be an easy way to produce the necessary source

files. We tend to stick with single-language comment-based help that doesn’t

require XML or InfoPath, but you may feel differently when you get to chapter 9.

1.4 How to use this book

This book is designed to be read one chapter at a time, in order. Each chapter builds

on the ones before it, so we don’t recommend skipping around, especially on your

first read-through. Each chapter is sized to be readable in about an hour, and that

should in most cases include enough time to complete the hands-on lab at the end of

each chapter.

 We can’t emphasize the benefit of the hands-on labs enough. Make sure you’re

doing those. They truly help to reinforce the concepts. If you get stuck on one, hop on

http://bit.ly/AskDon and ask for help. You can also visit http://MoreLunches.com,

click this book’s cover image, and download sample lab answers. But don’t peek until

you’ve at least given the lab a shot on your own! The website will also direct you to addi-

tional supplementary resources, including bonus chapters, tools, narrated demo vid-

eos, and more.

 Finally, stick with the one-chapter-a-day program. It can be tempting to zoom

through the book, but trust us: By reading one chapter a day, you’re giving your brain

time to process the day’s learning in the background. If you feel ready to move for-

ward the next day, do one more chapter. If not, reread the previous day’s chapter and

let your brain process it a bit. Hop online (http://bit.ly/AskDon) and ask questions to

clarify any problems or sticking points. Above all, don’t move on to the next chapter

until you’re sure you’ve gotten the previous one completely. The goal here is for you to

be successful and learn something, not to just race to the end of the book!

 Your Month of Lunches starts with the very next chapter. Good luck!

http://primaltools.com
http://primaltools.com
http://bit.ly/AskDon
http://MoreLunches.com
http://bit.ly/AskDon

9

PowerShell
 scripting overview

When you start using PowerShell’s scripting language, it’s easy to run into a num-

ber of gotchas and hurdles that you wouldn’t ordinarily see when you’re running

commands. In this chapter, we’ll try to get those hurdles out of the way up front, so

that you can start creating tools with fewer hassles.

2.1 What is PowerShell scripting?

From our perspective, PowerShell is first and foremost a command-line interface

(CLI). That means you run commands and get immediate results. Like many good

CLIs, PowerShell contains a scripting language, but using that language is optional.

To make tools, we’ll definitely be using that language! The good news is that com-

pared to languages like VBScript, Perl, PHP, and others, PowerShell’s language is

incredibly simplified, consisting of only about three dozen keywords.

 At its simplest, scripting might just involve running several specific commands

in a specific sequence. More complex scripts might start applying logic—only exe-

cute this command if that condition exists. Scripts might have to execute some task

across a number of different targets—checking a number of different files, recon-

figuring a number of different services, and so on. The point is automation, in most

cases, typically completing some series of steps that you could do manually but that

you’d rather codify into a tool that can be reused and repeated more easily, per-

haps by folks other than yourself.

www.allitebooks.com

http://www.allitebooks.org

10 CHAPTER 2 PowerShell scripting overview

2.2 PowerShell’s execution policy

PowerShell goes to some lengths, by default, to prevent scripts from executing. That’s

mainly because in the past (think VBScript era, here) scripts were used maliciously. A

detailed discussion of PowerShell security is out of scope for this book; you should

already be familiar with the execution policy, what it does, and what setting is appro-

priate for your organization. If you’re not, review the help for PowerShell’s

Set-ExecutionPolicy command, including the “See Also” help files that it refer-

ences. You can also refer to the “Security Alert!” chapter in Learn Windows PowerShell

v3 in a Month of Lunches, which includes a more detailed discussion of PowerShell’s

security concepts and mechanisms.

 For now, you need to decide which execution policy is right for you in terms of this

book’s hands-on labs. Ideally, you’ll be working in a standalone, isolated virtual

machine, giving you the ability to set your execution policy to RemoteSigned or Unre-

stricted without any potentially negative consequences. You should also know what your

production environment’s execution policy is and take the time to think about how that

will affect the script-based tools that you’ll create and use in that environment.

2.3 Running scripts

If you’re writing scripts, then it goes without saying that you’ll want to run them. This

is where another PowerShell security feature can create a gotcha. As shown in figure 2.1,

you can’t simply type the name of a script file in order to run it. Even with the execution

policy configured to permit scripts, you must precede the script filename with a path.

In figure 2.1, you’ll see the .\ path in use, which refers to the current directory. You could

also provide any other absolute or relative path in order to run a script—but you must

provide a path of some kind.

 If you’re working in the PowerShell ISE—and we expect that you’ll spend most of

this book doing so—then you can click the green Play icon to run whatever script is

Figure 2.1 Running a script requires you to provide a path to it.

11Editing scripts

open in the current tab. Figure 2.2 shows what this looks like and how you can config-

ure the ISE to display both your script and its output in different panes.

 Note that the one way you can’t run scripts, at least by default, is to double-click

them in Windows Explorer. The .PS1 file type, which is used for PowerShell scripts,

isn’t configured as an executable file type. Again, that’s a security precaution, so that

double-clicking a script opens it in Notepad rather than running it. We don’t recom-

mend changing that setting.

 Scripts, you’ll notice, continue to use a .PS1 filename extension even though

they’re running under PowerShell v3. The 1 designates the version of PowerShell’s

scripting language, which hasn’t really changed since PowerShell v1.

2.4 Editing scripts

Whatever you do, please don’t use Notepad to edit PowerShell scripts. Notepad might

be free, but it does nothing to make the process easier. What’s far better, and equally as

free, is the PowerShell ISE, which was shown in figure 2.2. Version 3 of the ISE (which

comes with PowerShell v3) is robust, offers numerous handy features like IntelliSense

code completion, and color codes your commands to help you make sure you’re typing

them correctly. For example, as shown in figure 2.3, the ISE uses IntelliSense pop-up

menus to help you complete command names more quickly—and to help prevent typos.

Figure 2.2 Running a script and viewing its output in the PowerShell ISE

12 CHAPTER 2 PowerShell scripting overview

We strongly encourage you to get used to this feature, pressing Enter or Tab to select an

item from the menu rather than typing entire command names manually. What you

don’t type, you can’t mistype!

TRY IT NOW Now’s a good time to dive into the ISE and start trying this fea-
ture. It’s new in version 3, so if you don’t see the IntelliSense menus, you
need to install PowerShell v3.

Figure 2.4 shows another ISE feature: parameter completion. Just type a command

name, a space, and a dash, and the ISE prompts you with all of that command’s avail-

able parameters. Again, you can’t mistype what you don’t type, so choosing a parame-

ter from the list will ensure that it’s typed correctly and completely and that it’s a

legitimate parameter for that command.

 Figure 2.5 shows how the ISE can help you prevent errors, too. Notice the squiggly

red underline (we’ve added an arrow to point it out)? That’s telling you that there’s a

syntax problem. In this case, it’s because we typed a comma but didn’t type anything

after it. This is a great feature that helps you avoid error messages later: Just make sure

you clear up all the red squiggles, and you’re one step closer to an error-free script!

Figure 2.3 Using IntelliSense to complete command names

Figure 2.4 Using parameter name IntelliSense in the ISE

13Editing scripts

You should pay close attention to the ISE’s color coding, because it’s another way the

ISE can cue you to potential errors. For example, figure 2.6 shows a command we’ve

typed incorrectly, forcing the ISE’s color coding to be incorrect and displaying a red

squiggle. By getting used to what the colors should be, you’ll become more alert to

errors when the colors look wrong.

Color coding errors can also come from improperly paired elements, like curly brack-

ets, quotes, and so on. Just look for the spot where the color goes wrong—it’ll often be

accompanied by a red squiggle—and that’s close to where you’ll need to put your fix.

As shown in figure 2.7, the ISE goes a step further by highlighting matching paired

elements. For this example, we put our cursor right next to a closing curly bracket,

and the ISE subtly highlighted it and its pairing opening bracket. That helped us make

sure that everything was properly nested, closed, and error free.

Figure 2.5 Red squiggly underlines call your attention to syntax errors.

Figure 2.6 Color coding is another way the ISE alerts you to possible syntax errors.

Figure 2.7 Highlighting matching brackets is another way the ISE helps you avoid syntax errors.

14 CHAPTER 2 PowerShell scripting overview

NOTE It can be tough to see some of the ISE’s more subtle visual features in
a black-and-white book—so we encourage you to retype these examples in
the ISE yourself, so that you can more clearly see what’s happening. Also,
keep in mind that you can select the Options item from the ISE’s Tools
menu to customize the color coding, in case you find some elements too low
contrast to read comfortably.

2.5 Further exploration: script editors

Of course, the ISE isn’t the only game in town. Numerous free editors—Notepad++ is

one that folks often turn to—provide color coding for PowerShell scripts, although

color coding is really the least of the features the ISE provides. There are also many

commercial and free editors that provide more specific PowerShell support along the

lines of the ISE. Some of the major choices include these:

■ PowerShellPlus by Idera (http://idera.com)

■ PrimalScript by SAPIEN Technologies (http://primalscript.com)

■ PowerShell Studio (formerly PrimalForms) by SAPIEN Technologies

(http://primaltools.com)

■ PowerGUI (free and commercial Pro edition) by Quest Software

(http://powergui.org and http://quest.com/powershell)

■ Admin Script Editor (http://adminscripteditor.com)

■ PowerSE (free and integrated with the commercial PowerWF product)

by DevFarm Software (http://powerwf.com).

We don’t intend this as a comprehensive list, merely the major titles we’re aware of at

the time of this writing. Concentrated Technology made a pretty detailed comparison

of many of these, which you’ll find at http://Library.ConcentratedTech.com. Note

that, as of this writing, PowerGUI doesn’t seem to be under active development,

although it’s still in wide use by administrators everywhere. We weren’t able to evalu-

ate its compatibility with PowerShell v3, though. Most of the commercial tools are

available in a free trial, which often extends to 30 or 45 days, giving you ample time to

try them all and decide which, if any, you like.

2.6 Lab

You’ll start this book with a simple lab: Make sure you can get the ISE open. Enter,

save, and run a simple script (like Write-Host "It's working!") to make sure your

execution policy is set properly. There’s no sample answer for this lab, because all

you’re doing is verifying base PowerShell functionality.

 Also ensure that you’re running PowerShell v3: If your ISE doesn’t look a lot like our

screen shots and doesn’t provide the pop-up IntelliSense menus, download version 3

(it’s in the Management Framework package) from http://download.microsoft.com.

http://idera.com
http://primalscript.com
http://primaltools.com
http://powergui.org
http://quest.com/powershell
http://adminscripteditor.com
http://powerwf.com
http://Library.ConcentratedTech.com
http://download.microsoft.com

15

PowerShell’s
 scripting language

Before we dive into scripting and toolmaking, we need to cover a few background

concepts—some of which are unique to PowerShell. We’re also going to do a light-

ning overview of PowerShell’s scripting constructs. If this seems a bit brief, don’t

worry—we’ll be re-explaining a lot of these when you see them in a more practical

context. The idea now is to familiarize you with what’s ahead.

3.1 One script, one pipeline

A PowerShell script isn’t exactly like a command-line batch file, and running a

script isn’t precisely the same as running the same commands yourself in the same

sequence. For example, open a console window and run the following, pressing

Enter after each line:

Get-Service
Get-Process

Now type those exact same lines into a script file, or into the ISE’s script editing

pane, and run the script. You’ll get different results.

 In PowerShell, each time you hit Enter you start a new pipeline. Whatever com-

mands you typed are run in that single pipeline, and at the end of the pipeline

PowerShell converts the contents of the pipeline into a text display. When you ran

the two commands in the normal console, you did so in two distinct pipelines.

Therefore, PowerShell was able to construct a unique display for each set of output.

When entered into a script, however, both commands ran in the same pipeline,

16 CHAPTER 3 PowerShell’s scripting language

and PowerShell’s formatting system isn’t sophisticated enough to construct the same

unique output for two different sets of results. Try running this in the console:

Get-Service;Get-Process

Those results should look the same as they did when you ran the script containing

those two commands. That’s because in this case both commands ran in a single pipe-

line—which is what happened when you ran the script.

 The practical upshot of all this is that a script should produce one kind of output

only. It’s a bad idea—due in large part to the limitations of the formatting system, but

also due to other considerations—to have a script that’s dumping several different

kinds of things into the pipeline at the same time.

 Focus on that as a rule for everything that we’ll cover: A script should output one,

and only one, kind of thing.

3.2 Variables

Variables provide a named, temporary place in memory that you can store objects—

whether those are simple values like the number 5 or a collection of complex objects

like the output of Get-Service.

 Think of variables as a box, into which you can put one or more things—even dis-

similar things. The box has a name, and in PowerShell that name can include almost any-

thing. Var can be a variable name, as can {my variable}. In that second example, the

curly brackets enclose a variable name that contains spaces—which is pretty ugly. As a

good practice, stick with variable names that include letters, numbers, and underscores.

 Using a variable’s name references the entire box, but if you want to reference the

contents of the box you need to add a dollar sign: $var. Most commonly, you’ll see

PowerShell variables preceded with the dollar sign because the whole point of using

one is to get at the contents. It’s important to remember, however, that the dollar sign

isn’t part of the variable name: It’s just a cue to tell PowerShell that you want the con-

tents rather than the box itself.

$var = 'hello'
$number = 1
$numbers = 1,2,3,4,5,6,7,8,9

These examples show how to place items into a variable, by using the assignment

operator (=). The first example assigns a string object to the variable var, with the

characters in the string contained within quotation marks. The second example cre-

ates a variable with an integer. Note the last example: It creates an array, because Pow-

erShell interprets all comma-separated lists as an array, or collection, of items.

 One thing that can sometimes confuse newcomers is that PowerShell doesn’t

understand any meaning you may associate with a variable name. A variable like

$computername doesn’t tell the shell that the variable will contain a computer name.

Similarly, $numbers doesn’t tell the shell that a variable will contain more than one

number—the shell doesn’t care if you use a variable name that happens to be plural.

$numbers = 1 is equally valid to the shell, as is $numbers = 'fred'.

17Quotation marks

 Variable names normally consist of just letters, numbers, and the underscore char-

acter. But ${this is also a legal variable name} is also a valid variable name. In this

example, the curly brackets enclose the entire name. We don’t recommend using that

approach—it’s confusing to read, and there’s really no need to have such a long vari-

able name. But you may run across that in others’ scripts, so we wanted you to know

what to look for.

 When a variable does contain multiple values, you can use a special syntax to access

just a single one of them. $numbers[0] gets the first item, $numbers[1] is the second,

$numbers[-1] is the last, $numbers[-2] is the second to last, and so on.

 PowerShell includes a number of commands for working with variables (run

Get-Command –noun variable to see them), but by and large they’re unnecessary.

PowerShell doesn’t force you to declare variables in advance and technically provides

no way to do so. So we’ll just work with variables by referring to them, and for the

most part we won’t use the cmdlets. Keep in mind that if you choose to use those

cmdlets, they ask for a variable name, which does not include a dollar sign. If you run

New-Variable –Name $x, you won’t be creating a new variable named x; you’ll be cre-

ating a new variable named whatever is inside of $x, because the dollar sign draws out

the contents of $x.

NOTE Variables are something you should already be pretty familiar with
from using the shell as a command-line interface. Learn Windows PowerShell 3
in a Month of Lunches has a whole chapter on this introductory topic.

3.3 Quotation marks

As a best practice, you should use single quotes to delimit a variable unless you have a

specific reason not to. There are three specific instances where you’d want to use dou-

ble quotes.

 The first is where you need to insert a variable’s contents into a string. Within dou-

ble quotes only, PowerShell will look for the $ and will assume that everything after

the $, up to the first character that’s illegal in a variable name, is a variable name. The

variable name and $ will be replaced with the contents of that variable.

$name = 'Don'
$prompt = "My name is $name"

$prompt will now contain My name is Don because $name will be replaced with the

contents of the variable. This is a great trick for joining strings together without hav-

ing to concatenate them. If you need to insert something more complex than a single

variable’s contents, you can use a subexpression, for example:

$processes = Get-Process
$prompt = "The first process is using $($processes[0].vm) bytes of VM."

The $() is the subexpression; anything inside it is evaluated as code, and the entire

subexpression is replaced with the results of that code. Using this technique, you

should almost never have to concatenate strings together—simply insert items into

double quotation marks using either variables or subexpressions.

18 CHAPTER 3 PowerShell’s scripting language

 Within double quotes, PowerShell will also look for its escape character, the back-

tick or grave accent, and act accordingly. Here are a couple of examples:

$debug = "`$computer contains $computer" #the first $ is escaped
$head = "Column`tColumn`tColumn" #`t is the tab character

In the first example, the first $ is being escaped. That removes its special meaning as

a variable prefix, so if $computer contained 'SERVER', then $debug will contain

computer contains SERVER. In the second example, `t represents a horizontal tab

character, so PowerShell will place a tab between each Column. You can read about

other special escape characters in the shell’s about_escape_characters help topic.

 Finally, use double quotes when a string needs to contain single quotes:

$filter1 = "name='BITS'"
$computer = 'BITS'
$filter2 = "name='$computer'"

In this example, the literal string is name='BITS' and the double quotes contain the

whole thing. Both $filter1 and $filter2 end up containing exactly the same thing;

$filter2 gets there by using the variable-replacement trick of double quotes. Note

that only the outermost set of quotes matters when it comes to that trick—the fact that

single quotes are used within the string doesn’t matter to PowerShell. Those single

quotes are just literal characters; PowerShell doesn’t interpret them.

3.4 Object members and variables

Everything in PowerShell is an object. Even a simple string like 'name' is an object, of

the type System.String. You can pipe any object to Get-Member to see its type name

(that is, the kind of object it is) as well as its members, which include its properties

and methods.

$var = 'Hello'
$var | Get-Member

Use a period after a variable name to tell the shell, “I don’t want to access the entire

object within this variable; I want to access just one of its properties or methods.” After

the period, provide the property or method name. Method names are always followed

by parentheses (). Some methods accept input arguments, and those go within the

parentheses in a comma-separated list. Other methods require no arguments, and so

the parentheses are empty. But don’t forget the parentheses!

$svc = Get-Service
$svc[0].name #get the first object's name property
$name = $svc[1].name
$name.length #get the length property
$name.ToUpper() #invoke the ToUpper method

Notice line 2. It starts by accessing the first item in the $svc variable. The period

means “I don’t want that entire object—I just want a property or method.” We’ve then

accessed just the name property. Line 5 illustrates how to access a method, by provid-

ing its name after a period, and then following that with the parentheses.

19Refresher: comparisons

 A period is normally an illegal character within a variable name, because the

period means we want to access a property or method. That means line 2 below won’t

work the way you might expect:

$service = 'bits'
$name = "Service is $service.ToUpper()"
$upper = $name.ToUpper()
$name = "Service is $upper"

On line 2, $name will contain Service is BITS.ToUpper() whereas on line 4 $name will

contain Service is BITS.

3.5 Parentheses

Aside from their use with object methods, parentheses also act as an order-of-execution

marker for PowerShell. Just like in algebra, parentheses tell the shell to “execute this

first.” The entire parenthetical expression is replaced by whatever that expression pro-

duced. Here’s a mind-bending couple of examples:

$name = (Get-Service)[0].name
Get-Service -computerName (Get-Content names.txt)

On the first line, $name will contain the name of the first service on the system. Reading

this takes a bit of effort: Start with the parenthetical expression, because that’s what

PowerShell will start with as well. Get-Service resolves to a collection, or array, of ser-

vices. [0] accesses the first item in an array, so that’ll be the first service. Because it’s fol-

lowed by a period, we know that we’re accessing a property or method of that service

rather than the entire service object. Finally, we pull out just the name of the service.

 On the second line, the parenthetical expression is reading the contents of a text

file. Assuming that file contains one computer name per line, Get-Content will return

an array of computer names. Those are being fed to the -computerName parameter of

Get-Service. Any parenthetical expression that returns an array of strings can be fed

to the -computerName parameter in this case, because the parameter is designed to

accept arrays of strings.

3.6 Refresher: comparisons

We’re about to dive into PowerShell’s scripting constructs, and they require that you

recall PowerShell’s comparison operators. Specifically, you’ll need to know the ones in

table 3.1.

Table 3.1 Basic comparison operators

Operator Purpose Example

-eq Equality (case-insensitive

for strings)

"hello" –eq "HELLO" (True)

5 –eq 100 (False)

-ne Inequality (case-insensitive

for strings)

"hello" –ne "HELLO" (False)

5 –ne 100 (True)

www.allitebooks.com

http://www.allitebooks.org

20 CHAPTER 3 PowerShell’s scripting language

You can learn more about these and other PowerShell comparison operators by read-

ing the about_comparison_operators help file in the shell.

3.7 Logical constructs

Logical constructs are used to make decisions and to execute different commands

based on the outcome of that decision.

3.7.1 If construct

This is PowerShell’s main decision-making construct. In its full form, it looks like this:

If ($this -eq $that) {
 # commands
} elseif ($those -ne $them) {
 # commands
} elseif ($we -gt $they) {
 # commands
} else {
 # commands
}

The If keyword is the only mandatory part of this construct. Following it is a paren-

thetical expression that must evaluate to either True or False—although PowerShell

will always interpret 0 (zero) as False and any nonzero value as True. PowerShell also

recognizes the built-in variables $True and $False as representing those Boolean val-

ues. If the expression in parentheses works out to True, then the commands in the fol-

lowing set of curly brackets will execute. If the expression is False, then the commands

won’t execute. That’s really all you need for a valid If construct.

 Note that you don’t necessarily have to put a comparison in those parentheses—so

long as whatever you do put in there contains True or False. For example, if you have

a variable $go_ahead that you know will contain either True or False, then this is a

legal construct:

If ($go_ahead) {
 # do something
}

-like, -notlike Wildcard string comparison

(case-insensitive)

"Power" –like "*ow*" (True)

"Shell" –notlike "*he*" (False)

-gt Greater than (numbers,

dates, and times)

5 –gt 100 (False)

-ge Greater than or equal to 50 –ge 10 (True)

-lt Less than (numbers, dates,

and times)

100 –lt 1000 (True)

-le Less than or equal to 100 –le 100 (True)

Table 3.1 Basic comparison operators (continued)

Operator Purpose Example

21Logical constructs

It isn’t necessary to put If ($go_ahead –eq $True), though doing so won’t hurt and

will work properly also.

 Optionally, you can go a bit further by providing one or more ElseIf sections.

These work the same way: They get their own parenthetical expression, and if that’s

True the commands within the following curly brackets will execute. If not, they won’t.

 Finally, you can wrap up with an Else block, which will execute if none of the pre-

ceding blocks executed. Only the block associated with the first True expression will

execute. For example, if $this did not equal $that, and $those did not equal $them,

then the commands on line 4 would execute—and nothing else. PowerShell won’t

even evaluate the second ElseIf expression on line 5.

 Note that the # character is a comment character, making PowerShell essentially

ignore anything from there until a carriage return.

 Also notice the care with which those constructs were formatted. You might also

see formatting like this from some folks:

if ($those -eq $these)
{
 #commands
}

It doesn’t matter where you place the curly brackets. But what does matter is that you

be consistent about how you place them, so that your scripts are easier to read. It’s

also important to indent, to the exact same level, every line within the curly brackets.

The PowerShell ISE lets you use the Tab key for that purpose, and it defaults to a

four-character indent. Indenting your code is a core best practice—fail to do so and

you’ll have a tough time properly matching opening and closing curly brackets in

complex scripts. Also, all of the other PowerShell kids out there will make fun of you,

deservedly. Imagine looking at a script that’s poorly formatted:

function mine {
if ($this -eq $that){
get-service
}}

That’s a lot harder to read, to debug, to troubleshoot, and to maintain. Although the

space after the closing parenthesis isn’t necessary, it does make your script easier to

read. The indented code isn’t necessary, but it makes your script easier to follow. Plac-

ing a single closing curly bracket on a line by itself isn’t required by the shell, but it’s

appreciated by human eyes. Be a neat formatter, and you’ll have fewer problems in

your scripts and in your life.

3.7.2 Switch construct

The Switch construct examines a single object, often contained in a variable, and

compares it to a number of possible values. This is essentially like having an If state-

ment with a whole bunch of ElseIf statements. Many people prefer to just use If and

ElseIf and to ignore Switch completely. You’re welcome to do so. But you should be

22 CHAPTER 3 PowerShell’s scripting language

aware of what Switch does, so that you can recognize it in someone else’s script.

Here’s the basic construct:

Switch ($status) {
 0 { $status_text = 'ok' }
 1 { $status_text = 'error' }
 2 { $status_text = 'jammed' }
 3 { $status_text = 'overheated' }
 4 { $status_text = 'empty' }
 default { $status_text = 'unknown' }
}

With this construct, $status_text will be assigned a value based on the value of

$status. The Default section will run only if no other section matched the contents

of $status. One reason to keep Switch in the back of your mind is that it has some

unique capabilities not shared by the If construct, for example:

$result = ""
Switch -wildcard ($servername) {
 "*DC*" { $result += ' Domain Controller ' }
 "*FILE*" { $result += ' File Server ' }
 "*SQL*" { $result += ' SQL Server ' }
 "*EXCH*" { $result += ' Exchange Server ' }
}

In this example, the Switch construct’s –wildcard option allowed us to use wildcard

characters in the possible values. We set $result to be an empty string by default and

then concatenated a value based on the contents of $servername. If $servername was

DCFILE01, then $result would contain Domain Controller File Server. You see,

Switch will execute each matching comparison, rather than stopping after the first

match. That’s different from the If construct, which will only execute the first match.

 If you don’t want Switch executing multiple matches, you can add a break key-

word. We’ll cover that more toward the end of this chapter, but here’s a sneak preview:

$result = ""
Switch -wildcard ($servername) {
 "*DC*" { $result += ' Domain Controller '; break }
 "*FILE*" { $result += ' File Server '; break }
 "*SQL*" { $result += ' SQL Server '; break }
 "*EXCH*" { $result += ' Exchange Server '; break }
}

We’re using an old C programming trick that works well in PowerShell: A semicolon

separates the two commands within each condition section. It’s the same as if we’d for-

matted each on a separate line:

$result = ""
Switch -wildcard ($servername) {
 "*DC*" {
 $result += ' Domain Controller '
 break
 }
 "*FILE*" {

23Looping constructs

 $result += ' File Server '
 break
 }
 "*SQL*" {
 $result += ' SQL Server '
 break
 }
 "*EXCH*" {
 $result += ' Exchange Server '
 break
 }
}

When our conditional code contains only a couple of commands, we often find that

using a semicolon to separate them provides for a more concise and readable code

listing, but you’re welcome to format your code however you like. Switch has other

capabilities, too; read the about_switch help file in PowerShell to learn about them.

3.8 Looping constructs

Looping constructs are designed to execute some action over and over, either a speci-

fied number of times or until some condition is met.

3.8.1 Do...While construct

This is a primary looping construct in PowerShell. It’s designed to repeat a block of

commands so long as some condition is True or until a condition becomes True.

Here’s the basic usage:

Do {
 # commands
} While ($this -eq $that)

In this variation of the construct, the commands within the curly brackets will always

execute at least one time, because the While condition isn’t evaluated until after the

first execution. You can move the While, in which case the commands will only exe-

cute if the condition is True in the first place:

While (Test-Path $path) {
 # commands
}

Notice that this second example doesn’t use a comparison operator like -eq. That’s

because the Test-Path cmdlet happens to return True or False to begin with; just as

with the If construct, there’s no need to compare that to True or False in order for

the expression to work. Remember, the parenthetical expression used with these

scripting constructs merely needs to simplify down to True or False—if you’re using a

command like Test-Path, which always returns True or False, then that’s all you need.

 As always, there’s an “about” topic in the shell that demonstrates other ways to use

this construct, along with information on one additional variation that uses the Until

keyword.

24 CHAPTER 3 PowerShell’s scripting language

3.8.2 ForEach construct

This construct is similar in operation to the ForEach-Object cmdlet and differs only in

its syntax. The purpose of ForEach is to take an array (or collection, which in Power-

Shell is the same as an array) and enumerate the objects in the array so that you can

work with one at a time.

$services = Get-Service
ForEach ($service in $services) {
 $service.Stop()
}

It’s easy for newcomers to overthink this construct. Here are a few things to remember:

■ The fact that $services happens to be a plural English word doesn’t mean any-

thing at all to PowerShell. That variable name is used to remind us, as human

beings, that the variable contains one or more services. Just because it’s plural

doesn’t make the shell behave in a special fashion.

■ The in keyword on line 2 is part of the ForEach syntax.

■ The $service variable is one we made up. It could as easily have been

$fred or $coffee and it would have worked in just the same way. We chose

$services because the variable name describes what’s in the variable; we

chose $service because the name describes what the variable will hold—one

service at a time. That’s entirely for our benefit—PowerShell doesn’t care what

we call the variables.

■ PowerShell will repeat the construct’s commands—the ones contained within

curly brackets—one time for each object that’s in the second variable

($services). Each time, a single object will be taken from the second vari-

able ($services) and placed into the first variable ($service).

■ Within the construct, use the first variable ($service) to work with an individ-

ual object. On line 3, we’ve used the period to indicate that we don’t want to

work with the entire object but rather want to work with one of its members—

the Stop() method.

There are times when using ForEach is inevitable and even desirable. But if you have a

bit of programming or scripting in your past, you can sometimes leap to using

ForEach when it isn’t the best approach. The previous example isn’t a good reason to

use ForEach. Wouldn’t this be easier?

Get-Service | Stop-Service

The point here is to really evaluate your use of ForEach and to make sure it’s the only

way to accomplish what you’re trying to do. Here are some instances where ForEach is

probably the only way to go:

■ When you need to execute a method against a bunch of objects, and there’s no

cmdlet that performs the equivalent action.

25Break and Continue in constructs

■ When you have a bunch of objects and need to perform several consecutive

actions against each one.

■ When you have an action that can only be performed against one object at a

time, but your script may be working with one or more objects, and you have no

way of knowing in advance.

3.8.3 For construct

This construct—similar to VBScript’s For...Next construct—is designed to execute

the construct’s contents a specific number of times. Here’s the basic syntax:

For ($i=0;$i –lt 5;$i++) {
 #do something
}

For some starting condition, ($i=0), while some condition is True, ($i less than 5),

do the code in the curly braces. Then increment $i by 1 ($i++).

 PowerShell seems to always provide a lot of alternative ways to do things. For exam-

ple, if you need to execute something 10 times, some folks will use a For construct,

whereas others will do something like this:

1..10 | ForEach-Object -process {
 # code here will repeat 10 times
 # use $_ to access the current iteration
 # number
}

That doesn’t technically use any constructs at all. It uses PowerShell’s range operator

(.., or two periods right next to each other) to produce 10 objects (the integers 1

through 10) and then uses ForEach-Object to enumerate them. The Process script

block of ForEach-Object will therefore execute 10 times. It’s up to you how to do this

type of thing; if you’re browsing the internet for scripts, be prepared to run across any

and all variations!

3.9 Break and Continue in constructs

Break and Continue are two special keywords. You’ve already seen Break in the sec-

tion on Switch, but here’s a bit more about it:

■ Break will immediately exit any construct except the If construct. If you use

Break within an If construct, and the If construct is nested within another con-

struct, then it’ll break out of that parent construct. In other words, in the fol-

lowing example, once $i reaches 5, the loop will exit completely:

$i = 0
do {
 if ($x –eq 5) { break }
 $i++
} while ($i –lt 100)

■ If you use Break and there are no constructs to exit from, then it will exit the

current script, ceasing execution.

26 CHAPTER 3 PowerShell’s scripting language

The Continue keyword, when used within any looping construct, will immediately

jump to the end of the construct and loop again (if the loop would normally con-

tinue). For example, the following would attempt to stop only the BITS service:

$services = Get-Service
foreach ($service in $services) {
 if ($service.name –ne 'BITS') { continue }
 $service.Stop()
}

That’s just meant as an easy-to-read example; it’s certainly not as easy as running

Stop-Service –Name BITS, but hopefully it illustrates how the Continue keyword

works.

3.10 Lab

There’s no lab for you in this chapter; our goal was to expose you to some of these

basics for the first time. You’ll be using them plenty in upcoming chapters and labs,

and you should remember to refer to this chapter if you need a quick refresher in how

each of these items works.

27

Simple scripts and functions

Depending on how much you’ve worked with PowerShell already, this chapter may

be a bit of a refresher. That’s okay, because we’re going to quickly build on what this

chapter covers. In fact, you can think of this chapter as your true starting point in tool-

making, now that we’ve reviewed some of the foundation topics. This chapter rep-

resents the point where tool users usually stop and where true tool maker begins.

4.1 Start with a command

Whenever we set out to build a tool, we usually start at the shell’s command line.

Internally, tools run PowerShell commands in a specific sequence, so we’ll start by

getting our command working properly. After all, at the command line we have less

complication to worry about and fewer moving parts. It’s a lot easier to get the com-

mand working there and to then move it into a script than to start in a script where

many other things are going on. Start simple and then build complexity!

 For this chapter, we’ll start with a simple tool that retrieves some basic operating

system information from a remote computer. Here’s the command, along with a

sample of its output:

PS C:\> Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName DONJ
ONES1D96

SystemDirect Organization BuildNumber RegisteredU SerialNumbe Version
ory ser r
------------ ------------ ----------- ----------- ----------- -------
C:\Window... 8250 Don Jones 00127-82... 6.2.8250

TRY IT NOW It’s a good idea to try this command on your own. We’ll be
building on this throughout this and subsequent chapters, so making
sure the command runs in this simpler form will help ensure you don’t
run into problems later.

28 CHAPTER 4 Simple scripts and functions

We’ve chosen to use Get-CimInstance, which is new in PowerShell v3. It requires that

Windows Remote Management, or WinRM, be enabled on the remote computer (run

Enable-PSRemoting on the remote machine to enable WinRM and configure a default

remoting configuration), and it requires that you be running PowerShell as a user

who is also a local Administrator on the remote machine. If you only have a single

machine to test with, just provide your computer’s name instead of the name of a

remote computer.

4.2 Turn the command into a script

For the next step, we’re going to turn to the PowerShell ISE. We’ll copy our command

to the clipboard (if you started in the PowerShell console, highlight the command

and press Enter to copy it) and then paste the command into the ISE. As you can see

in figure 4.1, our copy-and-paste operation included some of the PowerShell prompt,

as well as an unnecessary carriage return. We’ll need to edit those out before running

the command again.

 Figure 4.2 shows the edited script, which includes the complete command on a sin-

gle line. We’ll run this by clicking the green Play icon in the toolbar (you could also

press F5). This is an important step, because it ensures that our command—which ran

fine in the console—has been properly copied over to the ISE. As shown in figure 4.2,

Figure 4.1 Pasting the command into the ISE

29Turn the command into a script

we can confirm that the ISE is displaying the same output, thus confirming that we

pasted and then edited the command correctly.

TRY IT NOW Once again, make sure you can follow along and get this com-
mand running within the ISE. The computer name we used will need to be
replaced, with either your computer’s name, the name of a remote com-
puter on your network, or even localhost.

At this point, you can save the file. Figure 4.3 shows that we’re saving this as

C:\Get-OSInfo.ps1. We chose the root of the C:\ drive for two reasons: First, it makes

our script easy to get to, and we plan to run it a lot throughout this chapter, so it

makes for a shorter path to type. Second, saving to that location ensures we’ve run

the shell as Administrator (you can also see that the window title bar for the ISE says

“Administrator,” which also confirms our permissions). You might opt to save this

into an alternate path with a short name, like C:\Scripts or something similar.

 We chose a script filename that looks like a PowerShell cmdlet name: It uses a verb,

followed by a singular noun. If at all possible, try to stick with standard and approved

verbs. If you don’t know what they are, run Get-Verb. The .ps1 filename extension lets

Windows know that this is a PowerShell script file. Having saved the script, we want to

again test it by running it from the console (you can use the console in the ISE or

Figure 4.2 Ensuring the command runs correctly after editing it

www.allitebooks.com

http://www.allitebooks.org

30 CHAPTER 4 Simple scripts and functions

switch back to the normal console window), as shown in figure 4.4. Running a quick

test after each change we make helps us make sure we’ve done everything right. The

Figure 4.3 Saving the script as C:\Get-OSInfo.ps1

Figure 4.4 Running the new script file

31Parameterize the command

worst thing you can do is make a bunch of changes and then test them all at once,

because if something’s broken it’s more difficult to figure out which of your many

changes caused the problem.

TRY IT NOW Once again, make sure you’re able to follow along to this
point. Notice that we had to type a path (.\, which means “the current
folder”) in front of our script name to get it to run, and that we’ve already
used Set-ExecutionPolicy to enable script execution on our computer.

4.3 Parameterize the command

Let’s consider what we’ve done so far, with the perspective of a toolmaker. We’ve cre-

ated this script, which can query information from a remote computer. We want to

give this to someone else to use. But they’re likely to want to query other computers as

well as the one we’ve been testing with. We could just tell them, “Look, whenever you

want to use this, open it up in Notepad or the ISE. You have to change the computer

name, but be sure not to change anything else, or you could break it.” What could

possibly go wrong?

 It would make a lot more sense to not have other folks editing our script on a rou-

tine basis—the less they edit, the less they’ll break. Besides, when someone runs a reg-

ular PowerShell command, they don’t have to edit anything—they just provide

information to a parameter. That’s what we should do, too: provide a parameter to

accept any changeable information. Looking at our script, there’s probably only one

piece of information we’d change: the computer name. So we’ll parameterize that.

 Before we do so, we need to choose a parameter name. The goal here should be to

remain consistent with the rest of what PowerShell does. So when you see a Power-

Shell command that accepts a computer name, what parameter does it use to do so?

NOTE You’ll find that “remaining consistent with the rest of PowerShell” is
a major theme in this book. As we build tools, we want them to look and
work as much like “real” PowerShell commands as possible. We’ll be contin-
ually asking you to look at the rest of the shell for inspiration and to stick as
close as possible to what PowerShell already does.

Looking at commands like Get-Service, Get-Process, Invoke-Command, and even

Get-CimInstance, we see that PowerShell always uses a –computerName parameter for

commands that can accept a computer name. So we’ll use that same parameter name

in our script. Listing 4.1 shows our revised script, with the changes in boldface.

ONLINE As a quick reminder, you can download all numbered listings from
this book by visiting http://MoreLunches.com. Click this book’s cover on
the main page and then look under the Downloads section.

Param(
 [string]$computerName = 'localhost'

Listing 4.1 Parameterizing Get-OSInfo.ps1

http://MoreLunches.com

32 CHAPTER 4 Simple scripts and functions

)
Get-CimInstance -ClassName Win32_OperatingSystem `
 -ComputerName $computerName

There are several things we need to point out—and please read these carefully:

■ We defined the parameter in a Param() block that uses parentheses to enclose

our parameters. Within the parentheses, we indented everything by using the

Tab key. PowerShell doesn’t require the indentation, but it’s very important to

keeping the script readable and easier to troubleshoot.

CAUTION We always welcome your questions at http://bit.ly/AskDon.
But if you can’t take the time to format your scripts nicely, then our
reply is going to be “Fix your formatting first.” We can’t help you trou-
bleshoot a hard-to-read script—so please, please, please, pay attention to
formatting. It’ll make troubleshooting easier for you, too.

■ We defined a data type, [string], for our parameter.

■ The parameter is basically a variable, so it gets a dollar sign ($) in front of its

name.

■ We’ve assigned a default value, localhost, which will be used if someone runs

the script and doesn’t provide a value for the parameter.

■ We replaced our hardcoded computer name with the new $computerName vari-

able. This is what puts the parameter to use.

■ Just because we passed the parameter to a –ComputerName parameter didn’t

force us to use $computerName as our parameter name. We could have easily

used $fred or $x or $anything. We used $computerName for consistency: Power-

Shell commands use –computerName as the parameter name whenever a

computer name is being accepted, and we wanted to remain consistent with

that practice.

■ After Win32_OperatingSystem, you’ll notice a backtick (`) character. That isn’t

a stray piece of toner on the page—it’s important! You see, we didn’t have

enough room in this book to put that entire command on a single line. The

backtick escapes the following carriage return, allowing us to continue the com-

mand on the next line. What’s crucial, if you’re typing this in yourself, is that

the backtick be immediately followed by a carriage return, not by spaces or tabs

or anything else. If the carriage return isn’t right after the backtick, the trick

won’t work and the script won’t run. Of course, in your version you aren’t lim-

ited by space, so feel free to make this a one-line command.

With all of that out of the way, try running the script. Take a look at figure 4.5, where

you can see that PowerShell is opening the script file and reading that Param() block,

so that it can offer IntelliSense hinting for the –computerName parameter. Cool! This is

starting to work just like a real PowerShell cmdlet!

http://bit.ly/AskDon

33Turn the script into a function

We should now be able to run the script with any of the following commands:

.\Get-OSInfo –computerName SERVER2

.\Get-OSInfo –comp SERVER2

.\Get-OSInfo SERVER2

.\Get-OSInfo

The first three of those query a computer named SERVER2; if you’re following along,

you’ll need to provide a valid computer name. These demonstrate that we can type

the full parameter name, a truncated parameter name, or even no parameter name at

all—we can provide the value in the first position after the script name. The last exam-

ple shows that our default value of localhost will also work.

TRY IT NOW Make sure you can get this script working in your own copy of Power-
Shell—it’s important that it be functional and bug free before you continue.

4.4 Turn the script into a function

Throughout much of this book, you’ll find our general approach will be to do some-

thing, discuss how cool it is, and then point out something we don’t like about it—thus

creating a clever segue into the next topic. Right now, we have a parameterized script

that anyone can run, which is cool. What we don’t like is that every tool we create in this

Figure 4.5 PowerShell offers IntelliSense for our script’s parameter.

34 CHAPTER 4 Simple scripts and functions

fashion has to be in its own file. As we create more and more and more and more tools,

that’s going to be a lot of files to manage, which we don’t like. We’d rather bundle a

bunch of tools into a single file, which is what a function lets us do. Listing 4.2 shows our

modified script, with our code contained inside a function. We’ve resaved this as

C:\Tools.ps1—because this file can now contain multiple tools, it makes sense to give it

a generic name rather than a cmdlet-style, verb-noun name.

function Get-OSInfo {
 param(
 [string]$computerName = 'localhost'
)
 Get-CimInstance -ClassName Win32_OperatingSystem `
 -ComputerName $computerName
}

As always, there are a few specifics we want to point out:

■ We’ve given the function itself a cmdlet-style, verb-noun name.

■ The contents of our old script are now the contents of the function, contained

within curly brackets {}.

■ In the ISE, we highlighted the contents of the function and pressed Tab to

indent everything one level. This is really, really important, because a well-

formatted script is an easier-to-debug script. The function’s opening { should

appear either after the function name or at the beginning of a line by itself after

the function name. The closing } should be on a line by itself.

■ Nothing else changed—we haven’t added more features to our script. We’ve

just added some structure to it.

Let’s talk a bit more about the formatting. Here’s the deal: You’ve spent decent

money, we expect, buying this book. You did so because you thought we’d teach you

something important, and that’s our plan. Trust us when we tell you that the format-

ting is one of those important things. We know people like to just fudge the format-

ting and move on to cooler stuff, like writing scripts that solve real tasks, but you have

to pay attention to the formatting. Here’s an alternate formatting approach that’s

also acceptable:

function Get-OSInfo
{
 param(
 [string]$computerName = 'localhost'
)
 Get-CimInstance -ClassName Win32_OperatingSystem `
 -ComputerName $computerName
}

You see, with either this or the original (in listing 2.2), it’s easy for us to tell where the

contents of the function begin and end. The curly brackets line up—the closing

Listing 4.2 Tools.ps1

35Testing the function

bracket is indented to the same level as the opening bracket. We’ve also taken some

care to line up our parameter names in the Get-CimInstance command, making it

more visually apparent which command those parameters are attached to. Skip these

niceties at your own risk—but, at the risk of sounding harsh, if you can’t be bothered

to do the right thing with your formatting, then please don’t come asking us to help

debug your script. Help yourself by paying attention to the formatting, and we’ll be

more than glad to help you debug any further issues.

4.5 Testing the function

So how do we test this function? We could just run the script, as shown in figure 4.6.

 But, er, nothing happened. As you’ll learn in the next chapter, each script file acts

as a kind of container. When we ran the script, it defined the Get-OSInfo function, but

it didn’t run that function. Further, once the script finished, PowerShell removed

everything defined by the script as part of a sort of automatic cleanup process. So now

our function is gone, and we didn’t even get to see it run!

 You see, once you put your commands into a function, they do become a tad bit

more difficult to test. You have two possible approaches for right now and a third

approach that we’ll get into much later. Let’s briefly look at all three.

Figure 4.6 Running C:\Tools.ps1

36 CHAPTER 4 Simple scripts and functions

4.5.1 Dot sourcing

This approach is shown in figure 4.7. What we’ve done is typed a dot, a space, and

then the path and filename to our script. When you’re using the .\ path (which again

means “the current directory”), this can look a little confusing, so pay close attention.

 Here’s the command again:

PS C:\>. .\tools.ps1

That ran the script, which defined the function, but told PowerShell to skip the post-

script cleanup process (that’s a simplification, and in the next chapter we’ll explain

what actually happened in more detail). The result is that the script finished running,

but the Get-OSInfo function remained defined. We were therefore able to execute

it—and want to point out that we did so without providing a path. Get-OSInfo isn’t a

script now, so you don’t provide a path to it. It’s a command (specifically, a function)

that’s sitting in PowerShell’s memory. You can run Dir function: to see the function

sitting in PowerShell’s function “drive.”

TRY IT NOW Make sure you’re able to follow along and that you can run Dir
function: to see the function in memory.

Dot sourcing is a useful technique. There are downsides, though: One is that you’ll often

be making changes to your script and then wanting to test them. With dot sourcing, you

Figure 4.7 Dot sourcing C:\Tools.ps1 and then running the Get-OSInfo function

37Testing the function

have to re–dot source your script file each time you want to test your most recent

changes. That can be kind of annoying, and it’s the biggest downside to dot sourcing.

Also, should you decide you want to remove your script’s functions from PowerShell’s

memory, there’s no super-easy way to do so; you have to manually delete each one from

the drive, which again is kind of annoying.

4.5.2 Calling the function in the script

We think it’s easier—just for testing purposes, you understand—to have the script

define the function and also run the function. That way, PowerShell can still clean up

after the script finishes, removing the function from memory—but we get to see the

function work. The following listing shows the revised Tools.ps1 script, which adds a

line to the end.

Listing 4.4

function Get-OSInfo {
 param(
 [string]$computerName = 'localhost'
)
 Get-CimInstance -ClassName Win32_OperatingSystem `
 -ComputerName $computerName
}
Get-OSInfo –computername SERVER2

TRY IT NOW You should modify your Tools.ps1 to look like this, although
you’ll want to provide a valid computername (or localhost) so that your
script actually works. Run it to make sure!

Figure 4.8 shows that this is a bit easier to test—just run the script normally.

Listing 4.3 Revised Tools.ps1

Figure 4.8 Running Tools.ps1 to define and test our function

38 CHAPTER 4 Simple scripts and functions

Now it’s easier to modify, test, modify, test, and repeat. Now we could just click the Play

button on the ISE’s toolbar, or press F5 while looking at the script, to quickly test it.

NOTE If you want to have your script run your function, you must have it do
so after your function’s definition. PowerShell has to see the function before
it can run it, so you’ll often stack up all of your functions at the top of the
file and then run one or more at the very end of the file.

4.5.3 A better way ahead: modules

Neither dot sourcing nor having the script run the function is appropriate outside of

testing. What would be better is to provide a defined way to load the script (and its

functions) into memory, allow those functions to be run on demand, and also provide

a way to quickly and easily remove them all from memory if needed. That way is called

a module, and we’ll eventually show you how to turn your script into one. It isn’t diffi-

cult, but we have a few other things we want to cover first. Until that happens, we sug-

gest you use the technique we just showed you—have the script run the function.

4.6 Lab

WMI is a great management tool and one we think toolmakers often take advantage

of. Using the new CIM cmdlets, write a function to query a computer and find all ser-

vices by a combination of startup mode such as Auto or Manual and the current state,

for example, Running. The whole point of toolmaking is to remain flexible and reus-

able without having to constantly edit the script. You should already have a start based

on the examples in this chapter.

 For your second lab, look at this script:

Function Get-DiskInfo {
Param ([string]$computername='localhost',[int]$MinimumFreePercent=10)
$disks=Get-WmiObject -Class Win32_Logicaldisk -Filter "Drivetype=3"
foreach ($disk in $disks) {$perFree=($disk.FreeSpace/$disk.Size)*100;
if ($perFree -ge $MinimumFreePercent) {$OK=$True}
else {$OK=$False};$disk|Select DeviceID,VolumeName,Size,FreeSpace,`
@{Name="OK";Expression={$OK}}
}}

Get-DiskInfo

Pretty hard to read and follow, isn’t it? Grab the file from the MoreLunches site, open

it in the ISE, and reformat it to make it easier to read. Don’t forget to verify that it

works.

39

Scope

Like the previous chapter, this chapter may be a bit of a refresher. But because the

concept of scope continues to trip people up, we feel it’s worth our time and yours

to get on the same page. More than likely your toolmaking projects will be on the

complex side, and if you don’t understand scope, you may end up with a bad tool.

5.1 What is scope?

Scope is a system of containerization. In some senses, it’s designed to help keep

things in PowerShell from conflicting with one another. For example, if you ran a

script that defined a variable named $x, you’d be pretty upset if some other script

also used $x and somehow messed up your script. Scope is a way of building walls

between and around different scripts and functions, so that each one has its own lit-

tle sandbox to play in without fear of messing up something else.

 There are several elements within PowerShell that are affected by scope:

■ Variables

■ Functions

■ Aliases

■ PSDrives

■ PSSnapins (but oddly not modules—so as things migrate mainly to modules

and away from PSSnapins, this won’t matter much)

The shell itself is the top-level, or global, scope. That means that every new Power-

Shell window you open is an entirely new, standalone, global scope—with no con-

nection to any other global scope. The ISE lets you have multiple global scopes

within the same window, which can be a bit confusing. In the ISE, when you select

www.allitebooks.com

http://www.allitebooks.org

40 CHAPTER 5 Scope

New PowerShell Tab from the File menu, you’re creating a new PowerShell

runspace—which is equivalent to opening a new console window. Each of those tabs

within the ISE is its own global scope. Figure 5.1 shows what that looks like in the ISE—

note that it’s the top, rectangular tabs that represent separate global scopes; the more

rounded tabs that hold script files all live within that runspace, or global scope.

 Each script that you run creates its own script scope. If a script calls a script, then

that second script gets its own script scope as well. Functions all have their own scope,

and a function that contains a function gets its own scope. As you can imagine, this

can result in a pretty deep hierarchy, which figure 5.2 illustrates with a few global

scope examples. There’s even terminology for the scopes’ relationships: a scope’s

containing scope is called its parent; any scopes contained within a scope are its chil-

dren. So the global scope is only ever a parent (because it’s the top-level scope), and it

contains children.

 So here’s the deal: If you create a vari-

able within a script, that variable belongs

to that script’s scope. Everything inside

that same scope can “see” that variable

and its contents. The scope’s parent can’t

see the variable.

 Any child scopes, however, have an inter-

esting behavior. Imagine a script named

C:\Tools.ps1, in which we create a variable

named $computer. Within that script, we

have a function named Get-OSInfo (sound

familiar?) If Get-OSInfo attempts to access

the contents of $computer, the operation

will work. But if Get-OSInfo attempts to

change the contents of $computer, it will

create a brand-new variable, also named

$computer, within its own scope. From then

on, the function will be accessing its own

private version of $computer, which will be

Figure 5.1 This ISE window has two runspaces (global scopes); the second one, which is selected, has

three script file tabs.

Figure 5.2 Scopes within scopes within scopes

within scopes

41Working out of scope

independent of the $computer in the script scope. This, as you imagine, can be crazy con-

fusing, so let’s see it in action to clarify.

5.2 Seeing scope in action

The following listing is a script that will help demonstrate scope.

$var = 'hello!'

function My-Function {
 Write-Host "In the function; var contains '$var'"
 $var = 'goodbye!'
 Write-Host "In the function; var is now '$var'"
}

Write-Host "In the script; var is '$var'"
Write-Host "Running the function"
My-Function
Write-Host "Function is done"
Write-Host "In the script; var is now '$var'"

Let’s run that and check out the results:

PS C:\> .\script.ps1
In the script; var is 'hello!'
Running the function
In the function; var contains 'hello!'
In the function; var is now 'goodbye!'
Function is done
In the script; var is now 'hello!'

TRY IT NOW Please, definitely run this script on your own—we want you to
see the results for real, right in front of your eyes. It’ll make it all clearer.

Read through the script’s output. Notice that at the start of the script, $var contains

hello! because that’s what the first line in the script set it to. Then the function runs,

and it sees that $var contains hello! That’s because $var doesn’t exist in the func-

tion’s scope, so when it tries to access $var, PowerShell goes up to the scope’s parent.

Lo and behold, there’s a $var there! So that’s what the function sees.

 But then the function assigns goodbye! to $var. PowerShell sees that $var still

doesn’t exist in the function’s scope, and so it creates the variable and puts goodbye!

into it. There are now two copies of $var running around: one in the function’s scope

and one—which still contains hello!—in the script’s scope. The global scope is still

clueless about either of these; there’s no $var in its scope, and it can’t see the variables

of its child scopes.

5.3 Working out of scope

The basic rule is this: If you try to create or change something in your own scope, it’s

created in your scope. Run New-Alias inside a function, for example, and the alias

Listing 5.1 Script.ps1 will be used to demonstrate scope

42 CHAPTER 5 Scope

will only be created within that scope. If you try to access (that is, read) something,

and it doesn’t already exist in the current scope, PowerShell will go to the parent

scope and its parent and its parent and so forth, until it finds that something. If it

doesn’t find it, then the item truly doesn’t exist, and you’ll get an error message, or a

null value, or whatever’s appropriate for the kind of thing you’re accessing.

 But PowerShell has some techniques for working with out-of-scope items. There

are two techniques, which we call the long-form way and the short-form way. We’ll

look at the long-form way first.

 All of the cmdlets that deal with scoped items have a –scope parameter, which lets

you explicitly work with items in a different scope. The parameter takes one of two

value types:

■ A number, where zero (0) represents the current scope, 1 is your parent, 2 is

your parent’s parent, and so on.

■ A word: Local, meaning the current scope; Script, meaning the script scope

that’s nearest to you in the hierarchy; or Global, which refers to the shell’s top-

level scope.

The default value is 0, or Local. So, if you were to write a function that did this

New-Variable –Name Color –Value Purple –Scope 1

you’d be creating a variable named $Color, setting it to Purple, and doing so in your

parent script’s scope—not within the function itself. You’ll find the –Scope parameter

on all of the cmdlets using the variable noun, on New-Alias, and so forth.

 The short-form way is designed only for variables and involves adding Global,

Script, or Local. Using it looks like this:

$global:color = 'purple'

This would create or set a global variable named $color, setting it to contain purple,

no matter where this command was executed. Even if executed within a deeply nested

scope, it would modify the top-level scope.

NOTE Commands like New-Variable and New-Alias also have an –Option
parameter. Setting this to AllScopes causes the variable or alias to be cre-
ated in all child scopes created from that point on within that shell session.
The item isn’t retroactively added to any existing child scopes, but it will be
added, automatically, to any new scopes. Those scopes can then modify the
item in any way they want, without affecting any other scope’s copy of the
item.

5.4 Getting strict with scope

PowerShell offers a cmdlet named Set-StrictMode, which configures some options

that affect how scope works. There are two strict modes, v1.0 and v2.0. Here are the

differences:

43Lab

■ In v1.0 mode, if you try to access a variable that doesn’t exist in your scope or in

any parent scope, you’ll get an error. The exception is a variable contained

within double quotes, which will be treated as an empty string.

■ In v2.0 mode, if you try to access a variable that doesn’t exist in your scope or in

any parent scope, you’ll get an error—even if the variable is inside double

quotes. Also, if you attempt to access nonexistent properties of an object, you’ll

get an error.

You can also use the –Off parameter to shut off strict mode entirely. It’s worth reading

the help for Set-StrictMode to learn a bit more about what it can do.

5.5 Best practices for scope

The basic rule is “Don’t mess with other people’s scopes.” It’s a bad idea. You can’t

ever know what lingering, cascading effects those changes will have. By the same

token, don’t rely on other people’s scopes. Other people are so unreliable! Don’t

access any variable that you haven’t assigned a value to right within your own scope—

that way, you’ll always know what it contains.

 These rules don’t apply to the built-in aliases that ship with PowerShell: Although

aliases like Dir exist in the global scope, it’s fine to use them in a script or function,

because it’s always there, and it’s always defined the same. It’s reliable, because it’s “in

the box.”

 We get particularly irritated when we see people writing scripts that dump things

into some $global:variable in order to pass information from one function to

another. That’s a bad, bad idea. You can’t always guarantee that your global scope will

be preserved between calls (sure, the basic PowerShell host application will, but you

might not always be running in that). There are proper ways to pass data between

functions, and we’ll be showing you how to do those. Typing $global means you’re

doing it wrong, wrong, wrong.

5.6 Lab

This script is supposed to create some new PSDrives based on environmental variables

like %APPDATA% and %USERPROFILE%\DOCUMENTS. But after the script runs, the drives

don’t exist. Why? What changes would you make?

Function New-Drives {

Param()

New-PSDrive -Name AppData -PSProvider FileSystem -Root $env:Appdata
New-PSDrive -Name Temp -PSProvider FileSystem -Root $env:TEMP

$mydocs=Join-Path -Path $env:userprofile -ChildPath Documents
New-PSDrive -Name Docs -PSProvider FileSystem -Root $mydocs

}

New-Drives
DIR temp: | measure-object –property length -sum

Part 2

Building an inventory tool

Now you’re ready to start constructing a practical, real-world tool. We’re

going to create an inventory tool called Get-SystemInfo, and over the next few

chapters we’ll continue to build on it. Each chapter will address a new aspect of

the tool, from its basic functionality through error handling, debugging, and

packaging the tool for distribution.

 Each chapter will also provide you with a series of hands-on labs. Completing

all of them may take more than the hour that you’ve allotted for your lunchtime

reading, but we encourage you to take the extra time, if you can, to complete

each of the labs. Repetition is an important part of cementing this new knowl-

edge, and each lab will throw a slightly different twist on the subject matter to

help build your experience and prepare you for real-world toolmaking.

47

Tool design guidelines

We have a confession to make. When we first started outlining this book, we were

just going to jump right into the get-it-done stuff. That’s actually in the next chap-

ter. You see, our original plan was to dig in, and then after it was all over, to explain

our design philosophy. One of our early reviewers suggested, very politely, that we

were being dumb. We just wanted to get to the fun stuff, but that reviewer was right:

We need to explain why we’re going to do what we’re going to do.

 We know it’s easy to skip past this philosophy stuff. But we plan to keep it brief

and to the point—and honestly, this stuff is important. People really struggle to

make PowerShell do the right thing, and they honestly end up working a lot harder

than they need to, because nobody wants to cover these basic design guidelines. So

here we go.

6.1 Do one thing, and do it well

Here’s a basic tenant of good PowerShell tool design: Do one thing, and do it well.

Broadly speaking, a function should do one—and only one—of these things:

■ Retrieve data from someplace

■ Process data

■ Output data to some place

■ Put data into some visual format meant for human consumption

This fits well with PowerShell’s command-naming convention: If your function uses

the verb Get, that’s what it should do: get. If it’s outputting data, you name it with a

verb like Export, or Out, or something else. If each command (okay, function) wor-

ries about just one of those things, then they’ll have the maximum possible flexibility.

48 CHAPTER 6 Tool design guidelines

 For example, let’s say we want to write a tool that will retrieve some key operating

system information from multiple computers and then display that information in a

nicely formatted onscreen table. It’d be easy to write that tool so that it opened up

Active Directory, got a bunch of computer names, queried the information from

them, and then formatted a nice table as output. The problem?

 Well, what if tomorrow we didn’t want the data on the screen but rather wanted it

in a CSV file? What if one time we needed to query a small list of computers rather

than a bunch of computers from the directory? Either change would involve coding

changes, probably resulting in many different versions of our tool lying around. Had

we made it more modular and followed the basic philosophy we just outlined, we

wouldn’t have to do that. Instead, we might have designed the following:

■ One function that gets computer names from the directory

■ One function that accepts computer names, queries those computers, and pro-

duces the desired data

■ One function that formats data into a nice onscreen table

Suddenly, everything becomes more flexible. That middle function could now work

with any source of computer names: the directory, a text file, or whatever. Its data could

be sent to any other command to produce output. Maybe we’d pipe it to Export-CSV to

make that CSV file or to ConvertTo-HTML to make an HTML page. What about the

onscreen table we want right now? We’re betting Format-Table could do the job, mean-

ing we don’t even have to write that third function at all—less work for us!

 So let’s talk about function design. We’re going to suggest that there are really

three different categories of functions, or tools: input, functional, and output.

6.1.1 Input tools

Input tools are the functions you write that don’t produce anything inherently useful

themselves but are rather meant to feed information to a second tool. So a function

that retrieves computer names from a configuration management database is an input

tool. You don’t necessarily want the computer names, but there might be an endless

variety of other tools that you want to send computer names to—including any num-

ber of built-in PowerShell commands!

 That’s a good example of how to draw a line between your functions. Let’s say you’re

writing a hunk of commands intended to retrieve computer names from your configu-

ration management database. Your intent today is to query some WMI information from

those computers—but aren’t there other tools that need computer names as input?

Sure! Restart-Computer accepts computer names. So does Get-EventLog, and

Get-Process, and Invoke-Command, and a dozen more commands. That’s what sug-

gests—to us, at least—that the getting-names-from-the-database functionality should be

a standalone tool: It could potentially feed a lot more than just today’s current need.

 PowerShell already comes with a number of input tools. Sticking with the theme of

getting computer names, you might use Import-CSV, Get-Content, or Get-ADComputer

to retrieve computer names from various sources. To us, this further emphasizes the fact

49Do one thing, and do it well

that the task of getting computer names is its own, standalone capability rather than

being part of another tool.

6.1.2 Functional tools

This is the kind of tool you’ll be writing most often. The idea is that this kind of tool

doesn’t spend any time retrieving any information that it needs to do its main job.

Instead, it accepts that information via a parameter of some kind—that parameter being

fed by manually entered data, by another command, and so on. So if your functional tool

is going to query information from remote computers, then it doesn’t internally do any-

thing to get those computers’ names but instead accepts them on a parameter. It doesn’t

care where the computer names come from—that’s someone else’s job.

 Once it’s been given the information it needs to operate, a functional tool does its

job and then outputs objects to the pipeline. Specifically, it outputs a single kind of

object, so that all of its output is consistent. This functional tool also doesn’t worry

about what you plan to do with that output: It just puts objects into the pipeline. This

kind of tool doesn’t spend a nanosecond worrying about formatting, about output

files, or about anything else. It does its job, perhaps produces some objects as output,

and that’s it.

 Note that not all functional tools will produce output of any kind. A command that

just does something—perhaps reconfiguring a computer—might not produce any

output, apart from error messages if something goes wrong. That’s fine.

6.1.3 Output tools

Output tools are specifically designed to take data—in the form of objects—that’s

been produced by some functional tool and then put that data into some final form.

Let’s stress that: final form. We looked up final in our dictionary, and it says something

like, “pertaining to or coming at the end; last in place, order, or time.” In other words,

once you’ve sent your data to an output tool, you’re finished with it. You don’t want any-

thing else happening to the data. You want to save it in a file or a database, or display

it onscreen, or fax it to someone, or tap it out in Morse code, whatever. PowerShell

verbs for this include Export, Out, and ConvertTo, to name a few.

 Consider the inverse of this philosophy: If you have a tool that’s putting data into

some final form, like a text file or an onscreen display, then that tool should be

doing nothing else. Why? Well, consider a function that we’ve created, named

Get-ComputerDetails. This function goes and gets a bunch of information from a

bunch of computers. It then produces a pretty, formatted table on the screen. That’s

a text-based display. Doing so means we could never do this:

Get-ComputerDetails | Where OSBuildNumber –le 7600 |
Sort ComputerName | ConvertTo-HTML | Out-File computers.html

Why couldn’t we do that? Because—in this example—Get-ComputerDetails is pro-

ducing text. Where-Object, Sort-Object, and ConvertTo-HTML can’t deal with text—

they deal with objects. Our Get-ComputerDetails has put our data into its final form,

www.allitebooks.com

http://www.allitebooks.org

50 CHAPTER 6 Tool design guidelines

meaning—according to the dictionary—that Get-ComputerDetails is “coming at

the end” and should be “last in place.” Nothing can come after it—meaning we have

less flexibility.

 A better design would have had Get-ComputerDetails just produce objects and to

create a second command, perhaps called Format-MyPrettyDisplay, that handles the

formatting. That way we could get our originally desired output:

Get-ComputerDetails | Format-MyPrettyDisplay

But we could also do this

Get-ComputerDetails | Where OSBuildNumber –le 7600 |
Sort ComputerName | ConvertTo-HTML | Out-File computers.html

meaning we could change our minds about using Format-MyPrettyDisplay from

time to time, instead sending our data objects on to other commands to produce dif-

ferent displays, filter the data, source the data, create files, and so on.

6.2 Labs

In these labs, we aren’t going to have you write any actual scripts or functions. Instead,

we want you to think about the design aspect, something many people overlook. Let’s

say you’ve been asked to develop the following PowerShell tools. Even though the

tools will be running from PowerShell 3.0, you don’t have to assume that any remote

computer is running PowerShell 3.0. Assume at least PowerShell v2.

6.2.1 Lab A

Design a command that will retrieve the following information from one or more

remote computers, using the indicated WMI classes and properties:

■ Win32_ComputerSystem:
■ Workgroup
■ AdminPasswordStatus; display the numeric values of this property as text

strings

■ For 1, display Disabled

■ For 2, display Enabled

■ For 3, display NA

■ For 4, display Unknown
■ Model
■ Manufacturer
■ From Win32_BIOS
■ SerialNumber
■ From Win32_OperatingSystem
■ Version
■ ServicePackMajorVersion

51Labs

Your function’s output should also include each computer’s name.

 Ensure that your function’s design includes a way to log errors to a text file, allow-

ing the user to specify an error filename but defaulting to C:\Errors.txt. Also plan

ahead to create a custom view so that your function always outputs a table, using the

following column headers:

■ ComputerName

■ Workgroup

■ AdminPassword (for AdminPasswordStatus in Win32_ComputerSystem)

■ Model

■ Manufacturer

■ BIOSSerial (for SerialNumber in Win32_BIOS)

■ OSVersion (for Version in Win32_OperatingSystem)

■ SPVersion (for ServicePackMajorVersion in Win32_OperatingSystem)

Again, you aren’t writing the script but only outlining what you might do.

6.2.2 Lab B

Design a tool that will retrieve the WMI Win32_Volume class from one or more remote

computers. For each computer and volume, the function should output the com-

puter’s name, the volume name (such as C:\), and the volume’s free space and size in

GB (using no more than two decimal places). Only include volumes that represent

fixed hard drives—don’t include optical or network drives in the output. Keep in

mind that any given computer may have multiple hard disks; your function’s output

should include one object for each disk.

 Ensure that your function’s design includes a way to log errors to a text file, allow-

ing the user to specify an error filename but defaulting to C:\Errors.txt. Also plan to

create a custom view in the future so that your function always outputs a table, using

the following column headers:

■ ComputerName

■ Drive

■ FreeSpace

■ Size

6.2.3 Lab C

Design a command that will retrieve all running services on one or more remote com-

puters. This command will offer the option to log the names of failed computers to a

text file. It will produce a list that includes each running service’s name and display

name, along with information about the process that represents each running service.

That information will include the process name, virtual memory size, peak page

file usage, and thread count. But peak page file usage and thread count will not dis-

play by default.

52 CHAPTER 6 Tool design guidelines

 For each tool, think about the following design questions:

■ What would be a good name for your tool?

■ What sort of information do you need for each tool? (These might be potential

parameters.)

■ How do you think the tool would be run from a command prompt, or what type

of data will it write to the pipeline?

53

Advanced functions, part 1

PowerShell has a number of types of functions: basic functions that just return a

value, filtering functions that work in the pipeline, and so on. We’re going to jump

straight to the top of the food chain and build an advanced function—what some

people call a script cmdlet. Frankly, we think this is where you should be aiming for

any tool you build—even if it’s just a tool for your own personal use. Advanced

functions do a lot of heavy lifting for you, giving you a great deal of functionality

essentially for free. You can end up with the equivalent of a cmdlet without having

to program in Visual Studio.

 If you have any programming background, this will require you to reach into

your mind, locate whatever you already know about functions, and delete that

information—or at least willfully forget it for a while. PowerShell functions are a

different beast, especially if you’re building them to truly leverage PowerShell’s

functionality. Stick with us through the chapters in this part of the book, because

one step at a time we’re going to show you how to build something truly awesome.

7.1 Advanced function template

At the end of the day, advanced functions all end up looking remarkably similar, so

we tend to start with a template of one. It’s in the following listing, and it’s a good

starting point any time you need to build a tool to do anything at all.

function <name> {
 [CmdletBinding()]
 param(

Listing 7.1 Advanced function template

The function
declarationDeclare the function as

an advanced function

54 CHAPTER 7 Advanced functions, part 1

)
 BEGIN {}
 PROCESS {}
 END {}
}

This starts with the keyword Function and is followed by the function’s name—which

should be in the familiar PowerShell verb-noun format. Try to use one of PowerShell’s

standardized, approved verbs—run Get-Verb in the shell to see a list of them all.

 The first thing inside the function is the [CmdletBinding()] declaration, which

identifies this as an advanced function rather than one of the lesser types. After that is

the parameter block, where we’ll stick our function’s input parameters.

 Following that are three named script blocks: BEGIN, PROCESS, and END. When the

function is executed, PowerShell runs the BEGIN block first and the END block last. In

between, it runs the PROCESS block, although how it does so depends a bit on exactly

how the function got run. There are two possibilities:

■ If the function is called with nothing more than its parameters, meaning no infor-

mation is piped into it from the pipeline, then the PROCESS block runs once.

■ If the function is called with pipeline input, then the PROCESS block runs one

time for each object that was piped in from the pipeline.

We’ll be covering both of those scenarios in more detail as we build out the function in

the upcoming chapters, so if this doesn’t make perfect sense right now, don’t sweat it.

7.2 Designing the function

We need to start by remembering the previous chapter and deciding what kind of

function we want to build. For this example, we’re going to be creating a functional

tool, meaning we’re going to focus on doing something rather than on getting data to

feed to another tool or on formatting the output. We’re going to accept one or more

computer names and query some information from the specified computers. To run

the query, we’ll use Windows Management Instrumentation (WMI). In order to make

our tool compatible with older versions of Windows, we’ll stick with the old-style WMI

cmdlet, which uses remote procedure calls (RPCs) rather than Windows Remote Man-

agement for communications. Right there, we know our function is going to need a

–ComputerName parameter, which will accept one or more strings.

 We know it’s possible for one or more of those computers to be offline when we try

to query them, so we’ll also keep a text log file of any computers we can’t contact. That

way, we can try them again later. Now, we’re not going to implement that error-logging

functionality in this chapter, but we want to be sure to include the capability in our

design. We’ll implement it eventually, but it means we need to plan for an –ErrorLog

parameter that will accept a string.

 Although we’ll be querying information from several different places, we know

that our function needs to output one and only one kind of object. There will be one

output object for each computer that we query, and we want the properties of those

objects to be as follows:

Input parameters
go here

Defined script
blocks

55Declaring parameters

■ ComputerName—The name of the computer

■ OSVersion—The Windows version

■ SPVersion—The service pack version

■ BIOSSerial—The BIOS serial number

■ Manufacturer—The computer’s manufacturer

■ Model—The computer’s model description

The first piece of information will obviously be given to us. The second two will come

from WMI’s Win32_OperatingSystem class; the BIOS serial number will be from

Win32_BIOS. The last two pieces of information can be found in the Win32

_ComputerSystem class.

 We also need to decide how we want the function to be used. We like to do this by

writing out some example commands using our function and then make sure we write

the function to work that way. You can think of this as our end goal, which we’re going

to try to implement. First, we want to be able to specify one or more computer names

via parameter:

Get-SystemInfo –computer one,two,three –errorlog retries.txt

We’d also like to be able to pipe in computer names. For example, suppose we have a

text file that lists one computer name per line:

Get-Content computers.txt | Get-SystemInfo –errorlog retries.txt

7.3 Declaring parameters

We’ve identified the two parameters we intend to use, so let’s go ahead and add them

to our script. The next listing shows what we’ve done, with the changes in boldface.

function <name> {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {}
 PROCESS {}
 END {}
}

We didn’t do a lot, but we’re establishing a pattern of good practices, so let’s discuss

some of the specifics of what we just did:

■ PowerShell doesn’t care about uppercase and lowercase much, but we like

easy-to-read code, so we’ve been careful to type our parameter names nicely.

-ComputerName looks better to us than -computername, and PowerShell will

present the parameter exactly as we’ve typed it.

Listing 7.2 Adding parameters to our script

56 CHAPTER 7 Advanced functions, part 1

■ We’ve declared a data type for each parameter. In the case of –ComputerName,

it’s a [string[]], and those extra square brackets after the g indicate that it can

accept one or more values. –ErrorLog needs only one string, so it doesn’t get

the extra brackets.

■ The parameters are a comma-separated list. We could have typed the entire

parameter block on a single line, so the comma after the –ComputerName

parameter separates it from the next parameter, -ErrorLog.

■ We like putting each parameter on its own line, and we especially like putting a

blank line between them. PowerShell doesn’t care, but again, we love easy-to-

read code. That extra blank line is going to make our lives a ton easier as we

start adding things to this function later.

■ Notice that we indented the contents of the Param() block. We’re going to con-

tinue beating you up on formatting—it’s important!

A lot of what we’re focusing on at this point is just pretty formatting. That may come

across as petty and annoying to you, but please trust us. The formatting is important.

Don likes to tell people, “If you can’t be bothered to format your script nicely, then

you deserve all the bugs you get.” It’s true: Debugging—and even preventing bugs in

the first place—is a ton easier when you keep your formatting neat and tidy. Plus, if

your script is ugly, all the cool kids will point at you and laugh.

7.4 Testing the parameters

Let’s not go one step further without testing what we’ve done. This is going to involve

what we call throwaway code, meaning we’re going to put in some commands that

we’ll then delete almost right away. The whole point is to make sure that our function

is working properly. Listing 7.3 shows the revision—and note that we’ve added some

commands to the bottom of the script that will actually run the function. That way, as

we discussed in chapter 5, we can run the script in the ISE to test it. Also notice that

we’ve finally given our function a real name.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {}
 PROCESS {
 Write-Output $ComputerName
 Write-Output $ErrorLog
 }
 END {}
}

Get-SystemInfo -computername one,two,three -errorlog x.txt
Get-SystemInfo one x.txt

Listing 7.3 Adding throwaway code to the function

57Writing the main code

Here’s the output of the script when we run it:

PS C:\> C:\test.ps1
one
two
three
x.txt
one
x.txt

TRY IT NOW We expect that you’re following along, so make sure that you can run
the script and get identical output. If you can’t, stop and fix it before you go on.

So we know that our parameter variables are accepting input, and we can display their

contents from within the function’s PROCESS block. Now it’s time to clean out the test

code—so we’re going to proceed with the function shown in the following listing.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {}
 PROCESS {
 }
 END {}
}

Now we’re ready to make this thing work.

7.5 Writing the main code

Recall from the beginning of this chapter that we have two possible situations to deal

with:

■ If objects are piped into the function, the PROCESS block will execute multiple

times. Since we plan to pipe in computer names, that means $ComputerName

would only contain one computer name each time PROCESS executes.

■ If data is provided solely via the function’s parameters, PROCESS will execute just

once. For us, that means $ComputerName would contain a collection of multiple

computer names when PROCESS executes.

We haven’t wired things up to even accept pipeline input yet, but we plan to, because

we said so in our design. So we need to understand that $ComputerName might contain

one name, or might contain multiple names. We can’t know, so we have to write the func-

tion to deal with either situation. This is a common concern when writing advanced

functions that accept pipeline input. Fortunately, there’s an easy way to deal with it: We’ll

always assume that $ComputerName contains more than one name. PowerShell’s ForEach

construct can be used to enumerate them, so that we only have to deal with one at a time.

Listing 7.4 Removing the throwaway code

58 CHAPTER 7 Advanced functions, part 1

If $ComputerName turns out to only contain one name sometimes, that’s fine—ForEach

will still enumerate that one name, so our code will work fine. The next listing shows our

modified function—notice that we’ve added a bit more throwaway code so that we can

quickly test the function.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {
 Write-Output "Log name is $errorlog"
 }
 PROCESS {
 foreach ($computer in $computername) {
 Write-Output "computer name is $computer"
 }
 }
 END {}
}

Get-SystemInfo -ComputerName one,two,three -ErrorLog x.txt

Now let’s run it:

PS C:\> C:\test.ps1
Log name is x.txt
computer name is one
computer name is two
computer name is three

Here are a few things to pay attention to:

■ PowerShell will present our parameter names as they’ve been defined in the

Param() block, so that’s where we were careful about casing them nicely

(ComputerName versus computername, for example). Elsewhere in the script

we don’t care, and neither does PowerShell, so we’re a bit lazier, just using

$computername and $errorlog.

■ Notice the trick with variable names in double quotes, which lets us quickly

check our work without having to concatenate strings or anything.

■ We’re explicitly testing the idea that the BEGIN block executes only once, and

you can see in our output that we’ve confirmed it: Log name is x.txt appears

only once, at the start of the output.

■ Formatting, formatting, formatting! The contents of the ForEach construct—

everything in its curly brackets {}—gets indented. Right now that’s only one line,

but we dutifully indented. The contents of the BEGIN and PROCESS blocks are

indented too. Notice how easy it is to visually see what each block contains,

because the contents are uniformly lined up.

Listing 7.5 Beginning the functional code

59Outputting custom objects

Okay, now it’s time to make a big leap and add the commands that will actually do

what this function is supposed to do. Check out this listing.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {
 Write-Output "Log name is $errorlog"
 }
 PROCESS {
 foreach ($computer in $computername) {
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer

 }
 }
 END {}
}

There’s the backtick again—three times in this function, mainly so that we could fit

the code neatly within the printed pages of this book. We’ll repeat our warning from

earlier: Make sure the backtick is immediately followed by a carriage return and not

by any spaces or tabs or anything else. Alternatively, just don’t include the backtick,

don’t hit Enter, and string the entire Get-WmiObject command onto a single line.

 Note that we haven’t piped Get-WmiObject to anything else. Even though our

intent is to only get certain properties from each of these WMI objects, we’re putting

the entire object—including the unwanted properties—into those three variables.

There’s no reason to do anything else at this point.

 We’ve removed most of our throwaway code (we’re leaving the BEGIN block alone

for right now), and we can’t test this again at this point. First, we need to construct our

actual output.

7.6 Outputting custom objects

At this point, we have our WMI data stored in three variables. We can’t just output

those, because it would violate the “only output a single kind of object” rule. Instead,

we need to combine the bits of information we want into a single object. The next list-

ing shows how we do it.

Listing 7.6 Adding the WMI commands

60 CHAPTER 7 Advanced functions, part 1

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {
 Write-Output "Log name is $errorlog"
 }
 PROCESS {
 foreach ($computer in $computername) {
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Get-SystemInfo -ErrorLog x.txt -ComputerName localhost,localhost

We boldfaced the new stuff, including a new line of throwaway code at the end of the

script file, so that we can test this. We’ve done three things within the function itself:

■ We created a hash table, which is stored in $props. Given how we plan to use

this, the syntax for this is the name of the property we want to create, then the

value we want to put into that property, and then a semicolon. You’ll notice that

we’ve set up the exact properties we decided on in our original design, and

we’ve filled them with data from our three variables that contain WMI objects.

■ We then created a new object of the type PSObject, which is a special type of

object that Microsoft gives us for this exact purpose. We tell it to populate the

new object with the properties hash table, and we store the new object in $obj.

Technically, we didn’t need to store the object, but we plan to do more with this

later, so it’s easier to put it into a variable now.

■ We then output the object to the pipeline by using Write-Object.

Let’s run it. Notice that we’ve given our function the computer name localhost twice,

just so we can test its ability to output multiple objects. Here’s the result:

Listing 7.7 Creating the custom output

61What not to do

PS C:\> C:\test.ps1
Log name is x.txt

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Perfect! Now we want to point out the advantage of the technique we’re using. Because

we’re outputting a single kind of object to the pipeline, by means of Write-Output, we

can send that output anywhere we want. All of these commands would work:

Get-SystemInfo –comp localhost –errorlog x.txt | Export-CSV
Get-SystemInfo –comp localhost –errorlog x.txt | ConvertTo-HTML
Get-SystemInfo –comp localhost –errorlog x.txt | Export-CliXML
Get-SystemInfo –comp localhost –errorlog x.txt | Sort OSVersion
Get-SystemInfo –comp localhost –errorlog x.txt | Format-Table

See? By not worrying about how the output will be used or what it should look like,

we can send our output on to other commands. We can sort it. Filter it. Format it.

Export it. Convert it. Doesn’t matter—we get all of those options with no additional

programming.

NOTE You’ll probably notice that our properties aren’t displayed in the
order in which we created them. That’s normal: PowerShell displays the
properties in more or less whatever order it wants to. There is a technique
for retaining the order of the properties, but we’re not going to use it. Why
not? Eventually, we won’t need to—in an upcoming chapter, we’ll be exer-
cising control over the visual display of our output.

7.7 What not to do

If you have some prior programming experience, you may start trying to use that to

anticipate what PowerShell needs you to do. Use some caution, there, because it’s easy

to start running down a bad road to a bad place. Here are a few things we often see

students do:

■ Create an array variable, add the custom objects to that array, and then at the

end of the script output the entire array. There’s no need to do this. The whole

point of the PowerShell pipeline is to accumulate output objects one at a

time—it is your output array. Just write objects straight to the pipeline and let

PowerShell worry about it.

62 CHAPTER 7 Advanced functions, part 1

■ Use the Return keyword to output things. Again, there’s no need. PowerShell’s

Return keyword is what some folks call syntax sugar, meaning it’s only there so

that people who expect it to be there will find it. Return does exactly the same

thing as Write-Output, except that Return also immediately exits the function.

Pointless! Just use Write-Output to write one object at a time to the pipeline.

The function will exit when it reaches its end. Always be thinking about writing

objects to the pipeline, not returning values.

We’ve also done something we shouldn’t. Remember the rule, “only output one kind

of object”? We’ve technically broken it. That line of throwaway code in the BEGIN

block is using Write-Output, which is putting a String object into the pipeline. Our

PROCESS block then puts out custom objects into the pipeline. Oops! The right thing

to do at this point is to just remove the throwaway code from the BEGIN block. There’s

a better way to output that information, but we’re not quite there yet. So we’ll take the

next listing as our final script for this chapter, which will become the starting point for

the next chapter.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [string[]]$ComputerName,

 [string]$ErrorLog
)
 BEGIN {
 }
 PROCESS {
 foreach ($computer in $computername) {
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Get-SystemInfo -ErrorLog x.txt -ComputerName localhost,localhost

Listing 7.8 Removing the last line of throwaway code

63Labs

We’ve left that last line in the script, which runs our function. We’ll be testing this a lot

more, so we might as well leave it in there.

TRY IT NOW Make sure you have this script and that it runs in the ISE with-
out error. We’re going to build on this in the next chapter, so it’s impor-
tant that we all be on the same page.

7.8 Coming up next

There are a few things about our function that we don’t like, which provides the per-

fect segue into the next chapter. For one, we need to make sure that both of our

parameters are mandatory, although we might just set a default value for –ErrorLog,

so that we don’t have to keep specifying that parameter.

 We also need a better way of verifying the value of the –ErrorLog parameter, with-

out using Write-Output (which was making our output pipeline contain multiple

objects). There are also a few tweaks we’d like to make. For example, we’re not sure

that -ComputerName is the perfect parameter name. It’s consistent with the rest of the

shell, but we tend to think of words like -host first, so we’d like to see if we can make

that work. It’d also be nice to put some limitations on our tool, so that it can (for

example) only run against a small set of computers at a time. That’ll keep perfor-

mance from getting out of hand.

 We’ll address most of those issues in the next chapter.

7.9 Labs

Using your design notes from the previous chapter, start building your tools. You

won’t have to address every single design point right now. We’ll revise and expand

these functions a bit more in the next few chapters. For this chapter your functions

should complete without error, even if they are only using temporary output.

7.9.1 Lab A

Using your notes from Lab A in chapter 6, write an advanced function that accepts

one or more computer names. For each computer name, use CIM or WMI to query

the specified information. For now, keep each property’s name, using

ServicePackMajorVersion, Version, SerialNumber, and so on. But go ahead and

“translate” the value for AdminPasswordStatus to the appropriate text equivalent.

 Test the function by adding <function-name> -computerName localhost to the

bottom of your script and then running the script (replacing <function_name> with

your actual function name, which would not include the angle brackets). The output

for a single computer should look something like this:

Workgroup :
Manufacturer : innotek GmbH
Computername : CLIENT2
Version : 6.1.7601
Model : VirtualBox

64 CHAPTER 7 Advanced functions, part 1

AdminPassword : NA
ServicePackMajorVersion : 1
SerialNumber : 0

It is possible that some values may be empty.

7.9.2 Lab B

Using your notes for Lab B from chapter 6, write an advanced function that accepts one

or more computer names. For each computer name, use CIM or WMI to query the spec-

ified information. Format the Size and FreeSpace property values in GB to two decimal

points. Test the function by adding <function-name> -computerName localhost to the

bottom of your script and then running the script (replacing <function_name> with

your actual function name, which would not include the angle brackets). The output for

a single service should look something like this:

FreeSpace Drive Computername Size
--------- ----- ------------ ----
0.07 \\?\Volume{8130d5f3... CLIENT2 0.10
9.78 C:\Temp\ CLIENT2 10.00
2.72 C:\ CLIENT2 19.90
2.72 D:\ CLIENT2 4.00

7.9.3 Lab C

Using your notes for Lab C from chapter 6, write an advanced function that accepts

one or more computer names. For each computer name, use CIM or WMI to query all

instances of Win32_Service where the State property is Running. For each service,

get the ProcessID property. Then query the matching instance of the Win32_Process

class—that is, the instance with the same ProcessID. Write a custom object to the

pipeline that includes the service name and display name, the computer name, the

process name, ID, virtual size, peak page file usage, and thread count. Test the func-

tion by adding <function-name> -computerName localhost to the end of the script

(replacing <function_name> with your actual function name, which would not

include the angle brackets).

 The output for a single service should look something like this:

Computername : CLIENT2
ThreadCount : 52
ProcessName : svchost.exe
Name : wuauserv
VMSize : 499138560
PeakPageFile : 247680
Displayname : Windows Update

7.9.4 Standalone lab

If time is limited, you can skip the three previous labs and work on this single, standalone

lab. Write an advanced function named Get-SystemInfo. This function should accept

one or more computer names via a –ComputerName parameter. It should then use WMI

or CIM to query the Win32_OperatingSystem class and Win32_ComputerSystem class for

65Labs

each computer. For each computer queried, display the last boot time (in a standard

date/time format), the computer name, and operating system version (all from

Win32_OperatingSystem). Also, display the manufacturer and model (from Win32

_ComputerSystem). You should end up with a single object with all of this information

for each computer.

 Note that the last boot time property does not contain a human-readable date/

time value; you’ll need to use the class’s ConvertToDateTime() method to convert that

value to a normal-looking date/time. Test the function by adding Get-SystemInfo

-computerName localhost to the end of the script.

 You should get a result like this:

Model : VirtualBox
ComputerName : localhost
Manufacturer : innotek GmbH
LastBootTime : 6/19/2012 8:55:34 AM
OSVersion : 6.1.7601

NOTE Labs A, B, and C for chapters 7 through 14 build on what was accom-
plished in previous chapters. If you haven’t finished a lab from a previous
chapter, please do so. Then check your results with sample solutions on
MoreLunches.com before proceeding to the next lab in the sequence.

66

Advanced functions, part 2

Once you’ve started creating advanced functions, it’s easy to want them to do more

and more and more. In this chapter, we’ll take advanced functions a bit further,

adding a number of useful features to them. We’re going to try to get as much func-

tionality as possible for as little work as possible, letting PowerShell do most of the

work for us—meaning we won’t have to do very much programming!

8.1 Making parameters mandatory

We want to ensure that our command has everything it needs when it runs, which

means we might have to prompt someone for a computer name or an error log

filename. We’d rather provide a simple default value for the error log filename,

but we definitely want to prompt for that computer name if one isn’t provided.

Fortunately, there’s no coding required to make that happen! Check out the fol-

lowing listing.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True)]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt'
)
 BEGIN {
 }
 PROCESS {
 foreach ($computer in $computername) {

Listing 8.1 Adding parameter attributes

67Making parameters mandatory

 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Get-SystemInfo

All we needed to do was add that default value to $ErrorLog, and we added a

[Parameter()] attribute to the $ComputerName parameter. Inside that attribute, we

indicated that the parameter is mandatory. One thing to be aware of is that if you set

Mandatory to $True and provide a default parameter value, the default value will

be ignored.

NOTE This is where you can start to see the value of the blank line that we
included between the two parameters. The [Parameter()] bit only goes
with $ComputerName; we could include one with $ErrorLog, too, but right
now there’s no need.

Notice that the last line of the script is now just calling the function with no parame-

ters, so that we can test our new configuration. Here’s what happens when we run the

script:

PS C:\> C:\test.ps1
cmdlet Get-SystemInfo at command pipeline position 1
Supply values for the following parameters:
ComputerName[0]: localhost
ComputerName[1]:

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Notice that we were prompted for ComputerName. Because the parameter is config-

ured to accept multiple values (remember, that’s the [string[]] part), PowerShell

kept prompting us even though we’d entered a value. Just hit Enter on a blank

prompt to tell the shell you’re finished and have no more values to enter.

68 CHAPTER 8 Advanced functions, part 2

8.2 Verbose output

In the previous chapter, you’ll recall that we wound up deleting some throwaway code

from the function’s BEGIN block because it was writing a String to the pipeline, which

violated the “output only one kind of object” rule. Fortunately, PowerShell provides a

specific way to write those kinds of messages without messing up the tool’s intended

output. Rather than writing to the pipeline, we can have text written to an alternate

stream. Take a look at the next listing.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True)]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt'
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Get-SystemInfo -ComputerName localhost

We’ve added three uses of Write-Verbose. Let’s see what that looks like when we run

the script (we modified the last line of the script, which calls the function, so that

we’re providing a computer name, because we don’t want to be prompted anymore):

PS C:\> C:\test.ps1

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250

Listing 8.2 Adding verbose output

69Parameter aliases

BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Wait—where’s the verbose output? Here’s the cool part about Write-Verbose when

it’s used in an advanced function: It suppresses its own output by default. Want to turn

it on? Run the script like this instead:

Get-SystemInfo -ComputerName localhost –verbose

PS C:\> C:\test.ps1
VERBOSE: Error log will be c:\retry.txt
VERBOSE: Querying localhost
VERBOSE: WMI queries complete

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Just by adding the –Verbose switch, we’ve enabled the output of Write-Verbose.

Now, we can choose to have that output displayed or suppress it, depending on our

needs at the moment.

TRY IT NOW Make sure you’re following along throughout this chapter—we
want to make sure you have a working copy of this function that you can use
as an example for your lab work.

8.3 Parameter aliases

At the end of the previous chapter, we mentioned that a word like host sprang more

easily to our mind than computername when it came to our parameter. We need to use

–ComputerName because it’s consistent with the way the rest of PowerShell works, but

that doesn’t mean we can’t have other options. Consider this listing.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt'
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"

Listing 8.3 Adding a parameter alias for –ComputerName

70 CHAPTER 8 Advanced functions, part 2

 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Get-SystemInfo -Host localhost –verbose

The one new line is in bold. We’ve just added an [Alias()] attribute to the

–ComputerName parameter, so that the parameter can also be referred to as –HostName.

Because PowerShell still lets us truncate parameter names (as a kind of shortcut), we’re

betting –Host will also work, and that’s what we’re now trying on the last line of the

script. Here’s what we get when we run it:

PS C:\> C:\test.ps1
VERBOSE: Error log will be c:\retry.txt
VERBOSE: Querying localhost
VERBOSE: WMI queries complete

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Perfect! Again, this is where that blank line between the two parameters can be help-

ful. As our –ComputerName parameter becomes more and more complex, the visual

separation between the two parameters becomes more important.

8.4 Accepting pipeline input

In our original design of the function, we said that we wanted –ComputerName to

accept strings from the pipeline. It’s time to make that happen, as shown here.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,ValueFromPipeline=$True)]

Listing 8.4 Configuring –ComputerName to accept pipeline input

71Accepting pipeline input

 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt'
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

'localhost','localhost' | Get-SystemInfo

This just required a change to our [Parameter()] attribute (shown in bold) and to

the last line of our script, where we’re now piping two strings to the command instead

of specifying the computer names on the parameter. This change will take any strings

that are in the pipeline and feed them to the –ComputerName parameter. Running the

script now produces this:

PS C:\> C:\test.ps1

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Awesome—that worked perfectly. It’s kind of neat to see how PowerShell is running

this. We’ll make a minor change, shown in the following listing. We’re just going to add

72 CHAPTER 8 Advanced functions, part 2

some more verbose output. Also note that we’re adding a line to the end of the script,

so that we can test the function in pipeline input mode as well as in parameter mode.

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt'
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 Write-Verbose "Beginning PROCESS block"
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Write-Host "---- PIPELINE MODE ----"
'localhost','localhost' | Get-SystemInfo -Verbose

Write-Host "---- PARAM MODE ----"
Get-SystemInfo -ComputerName localhost,localhost -Verbose

Here’s the output. Note that we don’t normally encourage the use of Write-Host

(Don’s had some creative things to say about it, to say the least), but in this case we’re

using it purely to make the output more illustrative in this book. First up is the output

from pipeline mode:

--- PIPELINE MODE ----
VERBOSE: Error log will be c:\retry.txt
VERBOSE: Beginning PROCESS block
VERBOSE: Querying localhost
VERBOSE: WMI queries complete

Listing 8.5 Testing both modes of the tool

73Parameter validation

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

VERBOSE: Beginning PROCESS block
VERBOSE: Querying localhost
VERBOSE: WMI queries complete
Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

Here you can see that we entered the PROCESS block twice, once per computer. That

squares with what we explained in previous chapters: When you pipe objects to a tool,

the PROCESS block executes once for each object, and in our case the $ComputerName

parameter contains only one computer name each time. Now for parameter mode:

---- PARAM MODE ----
VERBOSE: Error log will be c:\retry.txt
VERBOSE: Beginning PROCESS block
VERBOSE: Querying localhost
VERBOSE: WMI queries complete
Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

VERBOSE: Querying localhost
VERBOSE: WMI queries complete
Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

This time we only entered the PROCESS block once, and $ComputerName contained

both names. The ForEach loop took care of spinning through them one at a time so

that we could work with them individually.

8.5 Parameter validation

Because our script uses WMI, it has a potential downside, related to the fact that we’re

making three WMI queries and doing so against each computer, one at a time, in

sequence. Simply put, this could take a long time to query a lot of computers! To help

keep that from happening, we’re going to add a validation attribute so that PowerShell

will only accept 1 to 10 computer names. The following listing contains the change.

74 CHAPTER 8 Advanced functions, part 2

function Get-SystemInfo {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
 [ValidateCount(1,10)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt'
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 Write-Verbose "Beginning PROCESS block"
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 }
 }
 END {}
}

Get-SystemInfo -ComputerName one,two,three,four,five,
 six,seven,eight,nine,ten,eleven

NOTE That last line in the script will run exactly as typed. Because we ended
the second-to-last line with a comma (after the value five), PowerShell will
look for the command to continue on the second line. It’s a cool trick!

Here’s what happens when we run that script:

PS C:\> C:\test.ps1
Get-SystemInfo : Cannot validate argument on parameter 'ComputerName'. The
number of supplied arguments (11) exceeds the
maximum number of allowed arguments (10). Specify less than 10
arguments and then try the command again.
At C:\test.ps1:38 char:30
+ Get-SystemInfo -ComputerName
one,two,three,four,five,six,seven,eight,nine,ten,el ...

Listing 8.6 Adding a validation attribute to –ComputerName

75Adding a switch parameter

+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidData: (:) [Get-SystemInfo], 

ParameterBindingValidationException
    + FullyQualifiedErrorId : ParameterArgumentValidationError,Get-SystemInfo

That’s the error we expected. We highlighted the relevant text in bold for your

convenience.

 There are actually a bunch of other validation attributes that PowerShell under-

stands: Run help about_functions_advanced_parameters in the shell to learn all

about them. 

8.6 Adding a switch parameter

You know, it occurs to us that we might not always want an error log file. Even though

we haven’t actually implemented the creation of that log, we’d like a way to be able to

turn it on or off, kind of like we can turn the verbose output on or off. Check out the

next listing.

function Get-SystemInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = 'c:\retry.txt',

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }
    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            $os = Get-WmiObject -class Win32_OperatingSystem `
                                -computerName $computer
            $comp = Get-WmiObject -class Win32_ComputerSystem `
                                  -computerName $computer
            $bios = Get-WmiObject -class Win32_BIOS `
                                  -computerName $computer
            $props = @{'ComputerName'=$computer;
                       'OSVersion'=$os.version;
                       'SPVersion'=$os.servicepackmajorversion;
                       'BIOSSerial'=$bios.serialnumber;
                       'Manufacturer'=$comp.manufacturer;
                       'Model'=$comp.model}
            Write-Verbose "WMI queries complete"
            $obj = New-Object -TypeName PSObject -Property $props

Listing 8.7 Adding a switch parameter



76 CHAPTER 8 Advanced functions, part 2

            Write-Output $obj
        }
    }
    END {}
}

Get-SystemInfo -ComputerName localhost

Not much has changed here: We added a comma after the $ErrorLog parameter,

because we’re now adding a third parameter after it within the Param() block. The

new parameter, which users will see as –LogErrors, has been declared as the type

[switch]. PowerShell will automatically populate the $LogErrors variable with True if

the command is run with –LogErrors and populate it with False if the command is

run without the parameter. So the default now will be to not log errors, and someone

can add –LogErrors if they want the log.

8.7 Parameter help

The last thing we’re going to do is add some parameter help. This will help folks

understand what each parameter is meant to do, especially the –ComputerName param-

eter, which is something they may be prompted for. To revisit an earlier example,

here’s what the prompt looks like for the –ComputerName parameter:

cmdlet Get-SystemInfo at command pipeline position 1
Supply values for the following parameters:
ComputerName[0]: localhost
ComputerName[1]: 

Take a look at this listing, where we’ve made another minor change.

function Get-SystemInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True,
                   HelpMessage="Computer name or IP address")]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = 'c:\retry.txt',

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }
    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            $os = Get-WmiObject -class Win32_OperatingSystem `

Listing 8.8 Adding parameter help



77Labs

                                -computerName $computer
            $comp = Get-WmiObject -class Win32_ComputerSystem `
                                  -computerName $computer
            $bios = Get-WmiObject -class Win32_BIOS `
                                  -computerName $computer
            $props = @{'ComputerName'=$computer;
                       'OSVersion'=$os.version;
                       'SPVersion'=$os.servicepackmajorversion;
                       'BIOSSerial'=$bios.serialnumber;
                       'Manufacturer'=$comp.manufacturer;
                       'Model'=$comp.model}
            Write-Verbose "WMI queries complete"
            $obj = New-Object -TypeName PSObject -Property $props
            Write-Output $obj
        }
    }
    END {}
}

Get-SystemInfo 

This new help message, which is part of the [Parameter()] attribute, can now be dis-

played by the shell when it prompts for that parameter. Because the other two param-

eters won’t ever be prompted, we didn’t bother creating a help message for them. Also

note that we broke up the formatting of the [Parameter()] attribute. Because that

thing gets longer and longer, putting each little setting on its own line makes it easier

to read—and helps it fit into this book! Because the first two settings have a comma after

them, we can hit Enter after the comma and continue the attribute on the next line.

8.8 Coming up next

Our tool is starting to look and feel a lot like a “real” PowerShell command, which is

making us more and more aware of the ways in which it doesn’t yet behave like an

actual cmdlet. For example, anyone who has learned to use PowerShell effectively

knows to use the shell’s help system, but our function doesn’t yet provide very good

help output. We want to fix that, and it’s what we’ll be addressing in the next chapter.

8.9 Labs

In this chapter we’re going to build on the functions you created in the last chapter

using the concepts you hopefully picked up today. As you work through these labs,

add verbose messages to display key steps or progress information.

8.9.1 Lab A

Modify your advanced function from chapter 7, Lab A, to accept pipeline input for

the –ComputerName parameter. Also, add verbose input that will display the name of

each computer contacted. Include code to verify that the –ComputerName parameter

will not accept a null or empty value. Test the function by adding 'localhost' |

<function-name> -verbose to the end of your script. The output should look some-

thing like this:



78 CHAPTER 8 Advanced functions, part 2

VERBOSE: Starting Get-Computerdata
VERBOSE: Getting data from localhost
VERBOSE: Win32_Computersystem
VERBOSE: Win32_Bios
VERBOSE: Win32_OperatingSystem

Workgroup               :
Manufacturer            : innotek GmbH
Computername            : CLIENT2
Version                 : 6.1.7601
Model                   : VirtualBox
AdminPassword           : NA
ServicePackMajorVersion : 1
SerialNumber            : 0

VERBOSE: Ending Get-Computerdata

8.9.2 Lab B

Modify your advanced function from chapter 7, Lab B, to accept pipeline input for

the –ComputerName parameter. Add verbose output that will display the name of

each computer contacted. Ensure that the –ComputerName parameter will not accept

a null or empty value. Test the function by adding 'localhost' | <function-name>

-verbose to the end of your script. The output should look something like this:

VERBOSE: Starting Get-VolumeInfo
VERBOSE: Getting volume data from localhost
VERBOSE: Procssing volume \\?\Volume{8130d5f3-8e9b-11de-b460-806e6f6e6963}\

FreeSpace              Drive                  Computername          Size
---------              -----                  ------------          ----
0.07                   \\?\Volume{8130d5f3... CLIENT2               0.10
VERBOSE: Procssing volume C:\Temp\
9.78                   C:\Temp\               CLIENT2               10.00
VERBOSE: Procssing volume C:\
2.72                   C:\                    CLIENT2               19.90
VERBOSE: Procssing volume D:\
2.72                   D:\                    CLIENT2               4.00
VERBOSE: Ending Get-VolumeInfo

8.9.3 Lab C

Modify your advanced function from Lab C in chapter 7 to accept pipeline input for the

–ComputerName parameter. Add verbose output that will display the name of each com-

puter contacted and the name of each service queried. Ensure that the –ComputerName

parameter will not accept a null or empty value. Test the function by running

'localhost' | <function-name> -verbose. The output for two services should look

something like this:

VERBOSE: Starting Get-ServiceInfo
VERBOSE: Getting services from localhost
VERBOSE: Processing service AudioEndpointBuilder

Computername : CLIENT2
ThreadCount  : 13



79Labs

ProcessName  : svchost.exe
Name         : AudioEndpointBuilder
VMSize       : 172224512
PeakPageFile : 83112
Displayname  : Windows Audio Endpoint Builder

8.9.4 Standalone lab

Use this script as your starting point.

function Get-SystemInfo {
    [CmdletBinding()]
    param(
        [string[]]$ComputerName
    )
    PROCESS {
        foreach ($computer in $computerName) {
            $os = Get-WmiObject -class Win32_OperatingSystem `
                                -computerName $computer
            $cs = Get-WmiObject -class Win32_ComputerSystem `
                                -computerName $computer
            $props = @{'ComputerName'=$computer;
                  'LastBootTime'=($os.ConvertToDateTime($os.LastBootupTime));
                  'OSVersion'=$os.version;
                  'Manufacturer'=$cs.manufacturer;
                  'Model'=$cs.model}
            $obj = New-Object -TypeName PSObject -Property $props
            Write-Output $obj
        }
    }
}

Modify this function to accept pipeline input for the –ComputerName parameter. Add

verbose output that will display the name of each computer contacted. Ensure that

the –ComputerName parameter will not accept a null or empty value. Test the script by

adding this line to the end of the script file:

'localhost','localhost' | Get-SystemInfo -verbose  

The output should look something like this:

VERBOSE: Getting WMI data from localhost

Model        : VirtualBox
ComputerName : localhost
Manufacturer : innotek GmbH
LastBootTime : 6/19/2012 8:55:34 AM
OSVersion    : 6.1.7601

NOTE Labs A, B, and C for chapters 7 through 14 build on what was accom-
plished in previous chapters. If you haven’t finished a lab from a previous
chapter, please do so. Then check your results with sample solutions on
MoreLunches.com before proceeding to the next lab in the sequence.

Listing 8.9 Standalone script



80

Writing help

You’ll notice in this book that each progressive chapter (through at least chap-

ter 14) will make your tools progressively better and better. You could just take what

you’ve learned to this point and stop, knowing that you have a functional, useful,

and well-designed tool. But why stop now when it’s just getting fun?

 We’re going to start focusing more and more on making your tools look, feel,

smell, and taste (imagine that) more and more like a “real” PowerShell cmdlet.

One way to do that is to have your tools include help that looks just like the help for

PowerShell’s native cmdlets.

9.1 Comment-based help

Right now, if we try to ask the help system for assistance with our Get-SystemInfo

function, we’ll get something like this:

NAME
    Get-SystemInfo

SYNTAX
    Get-SystemInfo [-ComputerName] <string[]> [[-ErrorLog] <string>] 
    [-LogErrors]  
    [<CommonParameters>]

ALIASES
    None

REMARKS
    Get-Help cannot find the Help files for this cmdlet on this computer.
    It is 
    displaying only partial help.
        -- To download and install Help files for the module that includes
         this 
    cmdlet, use Update-Help.



81Comment-based help

Not so helpful, really. In fact, it’s downright wrong, because despite what it says, running

Update-Help won’t do anything to give our function better-looking, more-complete

help. Fortunately, there’s an easy fix, shown in the following listing.

function Get-SystemInfo {

<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-SystemInfo
.EXAMPLE
 Get-SystemInfo -ComputerName SERVER1,SERVER2
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True,
                   HelpMessage="Computer name or IP address")]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = 'c:\retry.txt',

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }
    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            $os = Get-WmiObject -class Win32_OperatingSystem `
                                -computerName $computer
            $comp = Get-WmiObject -class Win32_ComputerSystem `
                                  -computerName $computer

Listing 9.1 Adding comment-based help to our function



82 CHAPTER 9 Writing help

            $bios = Get-WmiObject -class Win32_BIOS `
                                  -computerName $computer
            $props = @{'ComputerName'=$computer;
                       'OSVersion'=$os.version;
                       'SPVersion'=$os.servicepackmajorversion;
                       'BIOSSerial'=$bios.serialnumber;
                       'Manufacturer'=$comp.manufacturer;
                       'Model'=$comp.model}
            Write-Verbose "WMI queries complete"
            $obj = New-Object -TypeName PSObject -Property $props
            Write-Output $obj
        }
    }
    END {}
}

help Get-SystemInfo -full

NOTE We added a last line to this script that will attempt to display help for
Get-SystemInfo. This will let you test by running the script in the ISE.

We have a few things to point out:

■ What we’ve added is called comment-based help, and you can read more about it

by running help about_comment_based_help in the shell. We prefer to put the

help immediately after our function’s name but before the [CmdletBinding()]

attribute, which is one of a couple of valid locations for the help and is the easi-

est location to not mess up.

■ The help text is contained between <# and #>, which are PowerShell’s block com-

ment characters.

■ The comment-based help is broken into sections, each of which starts with a

specific keyword. The keywords needn’t be in all uppercase as we’ve typed

them, although that is the preferred style. The keywords all start with a period

in the first column.

■ Notice that the .PARAMETER section is included for each parameter the function

offers, and the .PARAMETER keyword is followed by the parameter’s name.

■ The .EXAMPLE sections aren’t numbered, but as you’ll see in a moment, Power-

Shell will sequentially number them for us.

We’re big believers in documenting scripts, and this comment-based help serves to

document this script quite well. Unlike code comments, comment-based help isn’t just

for someone reading the script! It also works for someone who is using our tool,

because when they ask for help they get a standard-looking PowerShell help display:

NAME
    Get-SystemInfo

SYNOPSIS
    Retrieves key system version and model information
    from one to ten computers.

SYNTAX



83Comment-based help

    Get-SystemInfo [-ComputerName] <String[]> [[-ErrorLog] <String>] [-
LogErrors] 

    [<CommonParameters>]

DESCRIPTION
    Get-SystemInfo uses Windows Management Instrumentation
    (WMI) to retrieve information from one or more computers.
    Specify computers by name or by IP address.

PARAMETERS
    -ComputerName <String[]>
        One or more computer names or IP addresses, up to a maximum
        of 10.
        
        Required?                    true
        Position?                    1
        Default value                
        Accept pipeline input?       true (ByValue)
        Accept wildcard characters?  false

    -ErrorLog <String>
        When used with -LogErrors, specifies the file path and name
        to which failed computer names will be written. Defaults to
        C:\Retry.txt.

        Required?                    false
        Position?                    2
        Default value                c:\retry.txt
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -LogErrors [<SwitchParameter>]
        Specify this switch to create a text log file of computers
        that could not be queried.

        Required?                    false
        Position?                    named
        Default value                False
        Accept pipeline input?       false
        Accept wildcard characters?  false

    <CommonParameters>
        This cmdlet supports the common parameters: Verbose, Debug,
        ErrorAction, ErrorVariable, WarningAction, WarningVariable,
        OutBuffer and OutVariable. For more information, see 
        about_CommonParameters (http://go.microsoft.com/fwlink/

?LinkID=113216). 

INPUTS

OUTPUTS

        -------------------------- EXAMPLE 1 --------------------------

    C:\PS>Get-Content names.txt | Get-SystemInfo

  
       -------------------------- EXAMPLE 2 --------------------------

    C:\PS>Get-SystemInfo -ComputerName SERVER1,SERVER2    



84 CHAPTER 9 Writing help

Now c’mon, tell us that isn’t cool! Our examples are all broken out and numbered,

the parameter help is all formatted, and it even picked up on our –ComputerName

parameter’s ability to accept input from the pipeline ByValue! This is, in the words of

a PowerShell enthusiast friend of ours, $GREAT! The help system even word-wrapped

our help to properly fit the screen and added the little C:\PS> prompt to our exam-

ples! Sorry—we know we’re gushing, but this is just an incredibly neat feature. Our

suggestion is that you document every one of your functions this way, so that they’re

documented both for other scripters and for the folks who will use them.

TRY IT NOW You’ll notice that some sections of the help display, like INPUT
and OUTPUT, are empty. See if you can read about_comment_based_help and
figure out how to get those sections to contain information.

9.2 XML-based help

Our honest preference is to use comment-based help—but that’s because we only

speak English. The one downside to comment-based help is that it doesn’t support

multilingual help. You can type your comment-based help in English or German or

any other language, but you have to pick just one language. Using XML-based help, on

the other hand, lets you provide help in multiple languages. PowerShell automatically

picks the language based on Windows’ own configuration. This is how PowerShell’s

native commands provide their help.

APOLOGIES IN ADVANCE We hate doing this, but honestly XML-based help isn’t
something you’re going to use in conjunction with a script. You’d mainly only
use it in conjunction with a module, which is just a way of packaging a script and
several supporting files, like the XML-based help. We won’t get to modules until
chapter 13, but we’re going to talk about XML-based help now. The fact is that
most folks (other than major software vendors like Microsoft) won’t use it,
because it’s a lot more hassle than comment-based help.

Above and beyond

If you’re happy putting your comment-based help where we did—at the top of the

function but inside the function—then you can skip this sidebar.

It’s also legal to put the comment-based help just before the function keyword, or

“just above the function.” For the first function in your script file, however, make sure

there is no more than one blank line between the end of the comment-based help

block and the function keyword. Also, there must be at least two blank lines between

the start of the script and the first line of the comment-based help. Otherwise, the

help will be interpreted as being for the script rather than for the function.

It’s also legal to put the comment-based help at the very end of the function, after all

of the function’s code but before the function’s closing curly bracket }. We think that’s

a silly place to put it, because it forces another scripter to have to scroll to the end

of a function to figure out what it’s supposed to be doing. 

These rules are exactly why we put the comment-based help where we did: It’s easier,

as we mentioned, to not mess things up that way!



85XML-based help

PowerShell’s native help system uses an XML format called MAML, which is a bit of a

bear to work with and is mostly not very well documented. On the plus side, this help

is contained in an external file, which helps to keep your functions a bit shorter and

more readable by moving the help out of those sometimes-lengthy comments.

 There are a couple of ways to make working with MAML a bit easier: 

■ Use Microsoft InfoPath, along with an InfoPath template to create a help file

from your script. 

You’ll find details and the template in a blog post at http://blogs.technet

.com/b/jamesone/archive/2009/07/24/powershell-on-line-help-a-change-you

-should-make-for-v2-3-and-how-to-author-maml-help-files-for-powershell.aspx.

 Note that you can’t use the file that’s created by InfoPath; you have to make

a minor adjustment to it in order for PowerShell to use the file properly. That blog

post explains what you’ll need to do.

■ Download http://blogs.msdn.com/b/powershell/archive/2011/02/24/cmdlet-

help-editor-v2-0-with-module-support.aspx, which is a cmdlet help editor. This tool

lets you copy and paste the bits of your help (synopsis, description, and so forth)

and produces a ready-to-use MAML file. We think this is a bit easier to use, but it’s

a pretty cumbersome, manual process.

Each XML file contains the help for a single language. You then have to create the

proper folder structure in which to place the files. Assume that you’ve created US Eng-

lish help and German help, all for a module named Test.psm1 (if you were to save our

existing Test.ps1 file as test.psm1, within the folder structure we’re about to show you,

it would magically become a “script module”). Your help file folder structure has to

start in the same folder where your script module resides. Here’s the folder structure:

\Users\<username>\[My ]Documents
  \WindowsPowerShell
    \Modules
      \Test
       test.psm1                
         \<en-US>
          Test-help.xml                   
          about_Test.txt
         \<de-DE>
          Test-help.xml           
          about_Test.txt

NOTE This folder structure needs to go in your My Documents folder, not
in your Public Documents folder, which can be hard to distinguish on Win-
dows Vista and later, because they’re both part of the Documents Library.
So be careful. Also, the WindowsPowerShell folder and everything under it
doesn’t exist by default—you have to create all of it yourself.

The English help goes under the <en-US> folder, while the German help goes under

<de-DE>—those two folder names reflect the internal culture codes that Windows

uses to identify a language (such as en or de) and its regional variants (such as US or,

for British English, UK). 

Our renamed 
Test.ps1 file

English 
XML help

German 
XML help

http://blogs.technet.com/b/jamesone/archive/2009/07/24/powershell-on-line-help-a-change-you-should-make-for-v2-3-and-how-to-author-maml-help-files-for-powershell.aspx
http://blogs.technet.com/b/jamesone/archive/2009/07/24/powershell-on-line-help-a-change-you-should-make-for-v2-3-and-how-to-author-maml-help-files-for-powershell.aspx
http://blogs.technet.com/b/jamesone/archive/2009/07/24/powershell-on-line-help-a-change-you-should-make-for-v2-3-and-how-to-author-maml-help-files-for-powershell.aspx
http://blogs.msdn.com/b/powershell/archive/2011/02/24/cmdlet-help-editor-v2-0-with-module-support.aspx
http://blogs.msdn.com/b/powershell/archive/2011/02/24/cmdlet-help-editor-v2-0-with-module-support.aspx


86 CHAPTER 9 Writing help

TIP You can find a complete list of culture codes and their corresponding lan-
guages at http://msdn.microsoft.com/en-us/library/ee825488(v=CS.20).aspx. 

Notice that we’ve also specified an about topic for the entire module, which is just a

plain text file. That file has to have the filename about_<moduleName>.txt, where

<moduleName> is the exact name of your module—Test in this example. We’ve also

provided an XML file in each language, which contains help for the individual func-

tions. Those XML files are created using the PowerShell Help Editor tool (or Info-

Path, if you prefer). You can add as many languages as you want, provided each is

included in a folder with the proper culture name. 

NOTE One thing you should know is that many international PowerShell
users actually use a US English version of Windows, so their default help lan-
guage is en-US. Some folks at Microsoft tell us that, although the company
provides PowerShell help in more than a dozen languages, the en-US ones
are the most-often used. Apparently there have been errors in some of the
non-English files that went undetected for months because people don’t use
those files. So before you dive into the work of translating help files into lan-
guages other than US English, you might check with the folks who will be
using that help to find out what language(s) they want.

The XML-based help definitely requires a bit more effort. It’s worth it if you have (or

want to write) extensive help that makes comment-based help unwieldy, or if you want

to provide help in multiple languages for a given script.

9.3 Coming up next

Okay, our Get-SystemInfo has had an –ErrorLog parameter for a few chapters now,

and we recently added –LogErrors on top of that. It’s time to stop putting off the

task of actually making those do something, so error handling will be the topic of

our next chapter.

9.4 Labs

These labs will build on what you’ve already created, applying new concepts from this

chapter.

9.4.1 Lab A

Add comment-based help to your advanced function from Lab A in chapter 8. Include

at least a synopsis, description, and help for the –ComputerName parameter. Test your

help by adding help <function-name> to the end of your script.

9.4.2 Lab B

Add comment-based help to your advanced function from Lab B in chapter 8. Include

at least a synopsis, description, and help for the –ComputerName parameter. Test your

help by adding help <function-name> to the end of your script.

http://msdn.microsoft.com/en-us/library/ee825488(v=CS.20).aspx


87Labs

9.4.3 Lab C

Add comment-based help to your advanced function from Lab C in chapter 8. Include

at least a synopsis, description, and help for the –ComputerName parameter. Test your

help by adding help <function-name> to the end of your script.

9.4.4 Standalone lab

Using the script in the following listing, add comment-based help.

function Get-SystemInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
        [ValidateNotNullOrEmpty()]
        [string[]]$ComputerName
    )
    PROCESS {
        foreach ($computer in $computerName) {
            Write-Verbose "Getting WMI data from $computer"
            $os = Get-WmiObject -class Win32_OperatingSystem 

  ➥ -computerName $computer
            $cs = Get-WmiObject -class Win32_ComputerSystem 

  ➥ -computerName $computer
            $props = @{'ComputerName'=$computer;
                       'LastBootTime'=

  ➥ ($os.ConvertToDateTime($os.LastBootupTime));
                       'OSVersion'=$os.version;
                       'Manufacturer'=$cs.manufacturer;
                       'Model'=$cs.model
                }
            $obj = New-Object -TypeName PSObject -Property $props
            Write-Output $obj
        }
    }
}

Include at least a synopsis, description, and help for the –ComputerName parameter.

Test your help by adding help <function-name> to the end of your script.

NOTE Labs A, B, and C for chapters 7 through 14 build on what was accom-
plished in previous chapters. If you haven’t finished a lab from a previous
chapter, please do so. Then check your results with sample solutions on
MoreLunches.com before proceeding to the next lab in the sequence.

Listing 9.2 Standalone lab starting point



88

Error handling

The Get-SystemInfo function we wrote earlier was designed from the outset to log

the names of computers it failed to reach. In this chapter, we’ll make that happen,

through a set of techniques collectively known as error handling.

10.1 It’s all about the action

Whenever a PowerShell command—be it a native cmdlet or a function you write—

encounters a non-terminating error, it asks PowerShell what to do. PowerShell

looks at a built-in variable, $ErrorActionPreference, to see what it should do. 

 Before we dive into that, let’s talk about this non-terminating error thing. It’s any

error that presents a problem, but one from which the command can recover and

continue. “Hey, this computer was unreachable, but if you want, I can continue try-

ing with the next computer in the list.” That’s different than a terminating error,

which means everything will stop completely.

 So what does $ErrorActionPreference do? It can be set to one of four values:

■ Continue—This is the default, and it says, “Hey, if you can keep going, go for it,

but display an error message to let me know what happened.” It looks like this:

PS C:\> $ErrorActionPreference = 'Continue'

PS C:\> Get-WmiObject -class Win32_BIOS -ComputerName 
NOTONLINE,localhost
Get-WmiObject : The RPC server is unavailable. (Exception from 
HRESULT: 0x800706BA)
At line:1 char:1
+ Get-WmiObject -class Win32_BIOS -ComputerName NOTONLINE,localhost
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidOperation: (:) [Get-WmiObject], 
COMException



89It’s all about the action

    + FullyQualifiedErrorId : 
GetWMICOMException,Microsoft.PowerShell.Commands.Get 
   WmiObjectCommand

SMBIOSBIOSVersion : 7.0.15094.749908
Manufacturer      : Parallels Software International Inc.
Name              : Default System BIOS
SerialNumber      : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 
FC DC
Version           : PRLS   - 1 

■ SilentlyContinue—This is the setting you wish your kids had: “Keep going,

don’t talk about it, don’t display any error messages—just shut up and get on

with it.” It looks like this:

PS C:\> $ErrorActionPreference = 'SilentlyContinue'

PS C:\> Get-WmiObject -class Win32_BIOS -ComputerName 
NOTONLINE,localhost

SMBIOSBIOSVersion : 7.0.15094.749908
Manufacturer      : Parallels Software International Inc.
Name              : Default System BIOS
SerialNumber      : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 
FC DC
Version           : PRLS   - 1

■ Stop—This turns the non-terminating error into a terminating exception,

meaning the command stops. By default, that’ll also display an error message.

Here’s what happens:

PS C:\> $ErrorActionPreference = 'Stop'

PS C:\> Get-WmiObject -class Win32_BIOS -ComputerName 
NOTONLINE,localhost
Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT: 
0x800706BA)
At line:1 char:1
+ Get-WmiObject -class Win32_BIOS -ComputerName NOTONLINE,localhost
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidOperation: (:) [Get-WmiObject],
COMException
    + FullyQualifiedErrorId : 
GetWMICOMException,Microsoft.PowerShell.Commands.Get 
   WmiObjectCommand 

■ Inquire—“Ask me what to do.” Literally, with a prompt. This is almost never

the right answer, but it can sometimes be useful in troubleshooting situations. It

looks like this:

PS C:\> $ErrorActionPreference = 'Inquire'
PS C:\> Get-WmiObject -Class Win32_BIOS -ComputerName 
NOTONLINE,localhost

Confirm
The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):



90 CHAPTER 10 Error handling

Now, let’s be crystal clear about something: You should not be modifying

$ErrorActionPreference in most cases. One of the things that bugs us the most

is getting a script from someone and seeing $ErrorActionPreference=

'SilentlyContinue' right at the top. What, exactly, are they trying to hide? Sure,

maybe there’s some command that causes an error, and they’re comfortable just hiding

that error, but their approach is hiding every error the script might produce! That

might well be useful information, and hiding it might feel better (no ugly red text on

the screen!), but it doesn’t help you get the script working. 

 What’s needed is a way to tell a specific command that you want it to take some

behavior other than the default when an error occurs.

10.2 Setting the error action

And you can do exactly that. It’s hard to realize, but every command—even the ones you

write yourself—support a set of common parameters. You’ll see <CommonParameters>

listed in the syntax help for every command, and if you run help about

_common_parameters, you can see a list of them all. The one that concerns us right now

is –ErrorAction, which can be abbreviated as –EA. The parameter accepts the same four

values as $ErrorActionPreference: Continue, SilentlyContinue, Stop, and Inquire.

The trick is that, unlike $ErrorActionPreference, -ErrorAction affects only that sin-

gle command. You can suppress errors for just the one command you expect to cause

them, while leaving everything else able to raise any unexpected errors that come up.

 But SilentlyContinue isn’t going to be our focus. Instead, we’re going to be using

Stop a lot. That’s because the terminating exception produced by Stop is something

we can trap, enabling us to handle the error ourselves rather than just getting the

default error message.

10.3 Saving the error

Another common parameter is –ErrorVariable, or –EV. This lets you specify a vari-

able name (remember, the variable name doesn’t include a dollar sign), and any error

produced by the command will be stored in that variable so that you can examine it

and take whatever action you like. Here’s how it works:

PS C:\> Get-WmiObject -Class Win32_BIOS -ComputerName NOTONLINE -EV err -EA 
SilentlyContinue

PS C:\> $err
Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT: 

0x800706BA)
At line:1 char:1
+ Get-WmiObject -Class Win32_BIOS -ComputerName NOTONLINE -EV err -EA 

SilentlyCont 
...
+ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~
    + CategoryInfo          : InvalidOperation: (:) [Get-WmiObject],
 COMException



91Error handling v1: Trap

    + FullyQualifiedErrorId :
 GetWMICOMException,Microsoft.PowerShell.Commands.Get 
   WmiObjectCommand

You have to be really careful with –ErrorVariable. For example, consider this:

PS C:\> $x = 'fred'

PS C:\> Gwmi Win32_BIOS -ErrorVariable $x

The error isn’t in $x. The error is in $fred. You see, we told –ErrorVariable to access

the contents of x—that’s what the $ means in front of a variable name. So –ErrorVariable

looked inside x, found fred, and created a variable $fred. There’s no problem with

using this technique if that’s what you intended, but if you intended for the error to go

into $x, then you can see how this would be confusing. If that was our intent, then the

command should have looked like this:

PS C:\> Gwmi Win32_BIOS -ErrorVariable x

Be careful when you’re providing that variable name.

10.4 Error handling v1: Trap

We’re going to briefly cover this error-handling construct, because you may well run

across it in someone’s script that you’ve found on the internet. If you don’t think

that’ll ever happen, then skip to the next section, because we don’t think you’ll be

writing any new commands using this construct.

 The construct’s name is Trap. Essentially, it works like this: When a command causes

a terminating error (which you can trigger by using –ErrorAction Stop), PowerShell

scans backward in the current scope to see if a Trap construct exists. Read that carefully: It

won’t scan ahead in the scope, which means you have to define your Trap before you

think the error will occur. As a result, Traps tend to occur at the top of the script file.

When PowerShell finds a Trap, it runs whatever code is inside.

 Scope plays an important role with Trap, and it can become very complex—which

is a big part of why people don’t use it so much anymore. For example, say you’re in a

function and an error occurs. PowerShell will look inside the function for a Trap. If it

doesn’t find one, PowerShell exits the function, goes up one level (let’s say the func-

tion is inside a script, so we’re now in the script’s scope), and looks for a Trap there. If

it finds one, it’ll execute it.

 At the end of the Trap, you can execute one of two commands: Break or Continue.

Break exits the current scope, passing the original error up to the parent scope. That’s

kind of like saying, “I couldn’t handle this error, so I’m handing it off to you, and I’m

finished.” Continue will resume execution in the same scope, on the command following

the one that caused the error. 

 Confused? Yeah, us too. This is really hard to follow. What’s worse is that the Trap

itself has its own scope—so it’s tricky to modify variables or anything within the Trap,

because doing so just (by default) creates new items inside the Trap itself, without

affecting the Trap’s parent scope. 



92 CHAPTER 10 Error handling

 We’re not going to explore this construct any further. If you need to learn more

about it in order to translate some old script you’ve found, run help about_trap in

the shell; we recommend sticking with newer techniques in any new tools you write.

10.5 Error Handling v2+: Try…Catch…Finally

Introduced in PowerShell v2, this is the real way to do error handling. All the cool

kids are doing it, because it’s easier and much more like the error handling found in

traditional programming languages. It’s called Try...Catch...Finally, and we’re

going to slap it into our Get-SystemInfo function to show you how it works. Check

out this listing.

function Get-SystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-SystemInfo
.EXAMPLE
 Get-SystemInfo -ComputerName SERVER1,SERVER2
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True,
                   HelpMessage="Computer name or IP address")]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = 'c:\retry.txt',

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }

Listing 10.1 Adding Try...Catch to our function



93Error Handling v2+: Try…Catch…Finally

    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            Try {
                $os = Get-WmiObject -class Win32_OperatingSystem `
                                    -computerName $computer `
                                    -erroraction Stop
            } Catch {
                if ($LogErrors) {
                    $computer | Out-File $ErrorLog -Append
                }
            }
            $comp = Get-WmiObject -class Win32_ComputerSystem `
                                  -computerName $computer
            $bios = Get-WmiObject -class Win32_BIOS `
                                  -computerName $computer
            $props = @{'ComputerName'=$computer;
                       'OSVersion'=$os.version;
                       'SPVersion'=$os.servicepackmajorversion;
                       'BIOSSerial'=$bios.serialnumber;
                       'Manufacturer'=$comp.manufacturer;
                       'Model'=$comp.model}
            Write-Verbose "WMI queries complete"
            $obj = New-Object -TypeName PSObject -Property $props
            Write-Output $obj
        }
    }
    END {}
}

Get-SystemInfo –computername NOTONLINE

So what have we done?

■ We added –ErrorAction Stop to the command that we expect to cause an

error, Get-WmiObject.

■ We surrounded the error-causing command in a Try{} construct. 

■ We created a Catch{} construct, which will be executed if a terminating excep-

tion occurs anywhere within the Try{} construct. Notice that we check the

$LogErrors variable, which is our –LogErrors switch parameter, to see if we’re

supposed to be logging errors. If we are, we append the failed computer name

to whatever file is specified in $ErrorLog.

■ We didn’t include a Finally{} construct, because it’s optional. But had we cho-

sen to do so, its contents would have executed whether or not an error

occurred within the Try{} construct.

■ You have the option of including multiple Catch{} constructs. If you do, each

one identifies one or more exceptions for that particular Catch{} block. You can

define different error handling for different exceptions. Read about_try

_catch_finally in the shell for examples of multiple Catch{} blocks.



94 CHAPTER 10 Error handling

We’ve not quite finished with our error handling. Right now, our function is only

checking for errors on the first Get-WmiObject command. If that fails, shouldn’t we

just skip the remaining ones? After all, they’re just as likely to fail, right? Look at the

next listing.

function Get-SystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-SystemInfo
.EXAMPLE
 Get-SystemInfo -ComputerName SERVER1,SERVER2
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True,
                   HelpMessage="Computer name or IP address")]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = 'c:\retry.txt',

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }
    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            Try {
                $everything_ok = $true
                $os = Get-WmiObject -class Win32_OperatingSystem `
                                    -computerName $computer `

Listing 10.2 Finishing off the error handling



95Providing some visuals

                                    -erroraction Stop
            } Catch {
                $everything_ok = $false
                if ($LogErrors) {
                    $computer | Out-File $ErrorLog -Append
                }
            }

            if ($everything_ok) {
                $comp = Get-WmiObject -class Win32_ComputerSystem `
                                      -computerName $computer
                $bios = Get-WmiObject -class Win32_BIOS `
                                      -computerName $computer
                $props = @{'ComputerName'=$computer;
                           'OSVersion'=$os.version;
                           'SPVersion'=$os.servicepackmajorversion;
                           'BIOSSerial'=$bios.serialnumber;
                           'Manufacturer'=$comp.manufacturer;
                           'Model'=$comp.model}
                Write-Verbose "WMI queries complete"
                $obj = New-Object -TypeName PSObject -Property $props
                Write-Output $obj
            }
        }
    }
    END {}
}

Get-SystemInfo –computername NOTONLINE -logerrors

We put the new stuff in boldface in listing 10.2. Basically, before running the first

Get-WmiObject command, we created a new variable, $everything_ok, and set it to

$True. We’re optimistic guys. If that command causes an error, $everything_ok gets

set to $False whether we’re going to log the error or not. Then, we only execute the

rest of the function if $everything_ok is still $True.

TRY IT NOW The proof is in the execution, so make sure you can run this
script (be sure to include the –LogErrors parameter, as we did in the last
line of the script) with a bad computer name and have that computer name
show up in the log file.

10.6 Providing some visuals

One problem we have with our error handling is that we’re no longer displaying a use-

ful error message to whoever is running our script. They might not, for example, even

remember or realize where the error log file is! So let’s make one final change, in the

following listing, that displays a warning (which is less severe than an error) to the user.

function Get-SystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information

Listing 10.3 Adding a warning message



96 CHAPTER 10 Error handling

from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-SystemInfo
.EXAMPLE
 Get-SystemInfo -ComputerName SERVER1,SERVER2
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True,
                   HelpMessage="Computer name or IP address")]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = 'c:\retry.txt',

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }
    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            Try {
                $everything_ok = $true
                $os = Get-WmiObject -class Win32_OperatingSystem `
                                    -computerName $computer `
                                    -erroraction Stop
            } Catch {
                $everything_ok = $false
                Write-Warning "$computer failed"
                if ($LogErrors) {
                    $computer | Out-File $ErrorLog -Append
                    Write-Warning "Logged to $ErrorLog"
                }
            }

            if ($everything_ok) {
                $comp = Get-WmiObject -class Win32_ComputerSystem `



97Labs

                                      -computerName $computer
                $bios = Get-WmiObject -class Win32_BIOS `
                                      -computerName $computer
                $props = @{'ComputerName'=$computer;
                           'OSVersion'=$os.version;
                           'SPVersion'=$os.servicepackmajorversion;
                           'BIOSSerial'=$bios.serialnumber;
                           'Manufacturer'=$comp.manufacturer;
                           'Model'=$comp.model}
                Write-Verbose "WMI queries complete"
                $obj = New-Object -TypeName PSObject -Property $props
                Write-Output $obj
            }
        }
    }
    END {}
}

Get-SystemInfo -ComputerName NOTONLINE -LogErrors

Just a couple of calls to Write-Warning make the output of our script much more useful:

PS C:\> C:\test.ps1
WARNING: NOTONLINE failed
WARNING: Logged to c:\retry.txt

TIP The exception object is passed to the Catch block as $_ so you can cap-
ture a lot of information from it. One thing Jeff often includes in his Catch
blocks is a line like this: Write-Warning $_.Exception.Message so that
the user can see the error message without the exception. If you use the
common –errorvariable, you can also pass that. But the variable is the
exception, so you could do this, assuming an errorrvariable of err:
Write-Warning $err.message.

10.7 Coming up next

We’re starting to make these tools complex enough that there are bound to be bugs,

and we need to show you how to squash those as efficiently as possible. So in the next

chapter, we’re going to take a quick break from building Get-SystemInfo (and your

lab functions) and focus on debugging.

10.8 Labs

You are going to continue with the functions you’ve been building the last few chap-

ters. The next step is to begin incorporating some error handling using

Try...Catch...Finally. If you haven’t done so, take a few minutes to read the help

content on Try...Catch...Finally. For any changes you make, don’t forget to

update your comment-based help.

10.8.1 Lab A

Using Lab A from chapter 9, add a –ErrorLog parameter to your advanced func-

tion, which accepts a filename for an error log and defaults to C:\Errors.txt. When



98 CHAPTER 10 Error handling

the function is run with this parameter, failed computer names should be appended

to the error log file. 

 Next, if the first WMI query fails, the function should output nothing for that com-

puter and should not attempt a second or third WMI query. Write an error to the pipe-

line containing each failed computer name. 

 Test all of this by adding this line <function-name> -ComputerName localhost,

NOTONLINE –verbose to the end of your script. A portion of the output should look

something like this:

VERBOSE: Starting Get-Computerdata
VERBOSE: Getting data from localhost
VERBOSE: Win32_Computersystem
VERBOSE: Win32_Bios
VERBOSE: Win32_OperatingSystem

Workgroup               :
Manufacturer            : innotek GmbH
Computername            : CLIENT2
Version                 : 6.1.7601
SerialNumber            : 0
Model                   : VirtualBox
AdminPassword           : NA
ServicePackMajorVersion : 1

VERBOSE: Getting data from notonline
VERBOSE: Win32_Computersystem
Get-Computerdata : Failed getting system information from notonline. The RPC 

server is
unavailable. (Exception from HRESULT: 0x800706BA)
At S:\Toolmaking\Ch10-LabA.ps1:115 char:40
+ 'localhost','notonline','localhost' |  Get-Computerdata -logerrors -verbose
+                                        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : NotSpecified: (:) [Write-Error], 

WriteErrorException
    + FullyQualifiedErrorId : 

Microsoft.PowerShell.Commands.WriteErrorException,Get-Comp
   uterData

VERBOSE: Getting data from localhost

10.8.2 Lab B

Using Lab B from chapter 9, add a –ErrorLog parameter to your advanced function,

which accepts a filename for an error log and defaults to C:\Errors.txt. When the func-

tion is run with this parameter, failed computer names should be appended to the

error log file.

 Test all of this by adding this line <function-name> -ComputerName localhost,

NOTONLINE –verbose to the end of your script. A portion of the output should look

something like this:

VERBOSE: Starting Get-VolumeInfo
VERBOSE: Getting data from localhost



99Labs

FreeSpace              Drive                  Computername          Size
---------              -----                  ------------          ----
0.07                   \\?\Volume{8130d5f3... CLIENT2               0.10
9.78                   C:\Temp\               CLIENT2               10.00
2.72                   C:\                    CLIENT2               19.90
2.72                   D:\                    CLIENT2               4.00
VERBOSE: Getting data from NotOnline
Get-VolumeInfo : Failed to get volume information from NotOnline. The RPC 

server is
unavailable. (Exception from HRESULT: 0x800706BA)
At S:\Toolmaking\Ch10-LabB.ps1:96 char:27
+ 'localhost','NotOnline' | Get-VolumeInfo -Verbose -logerrors
+                           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : NotSpecified: (:) [Write-Error], 

WriteErrorException
    + FullyQualifiedErrorId : 

Microsoft.PowerShell.Commands.WriteErrorException,Get-Volu
   meInfo

VERBOSE: Logging errors to C:\Errors.txt
VERBOSE: Ending Get-VolumeInfo

10.8.3 Lab C

Using Lab C from chapter 9, add a –LogErrors switch parameter to your advanced

function. Also add a –ErrorFile parameter, which accepts a filename for an error log

and defaults to C:\Errors.txt. When the function is run with the -LogErrors parameter,

failed computer names should be appended to the error log file. Also, if –LogErrors is

used, the log file should be deleted at the start of the function if it exists, so that each

time the command starts with a fresh log file.

 Test all of this by adding this line <function-name> -ComputerName localhost,

NOTONLINE –verbose –logerrors to the end of your script. A portion of the output

should look something like this:

VERBOSE: Processing service wuauserv
VERBOSE: Getting process for wuauserv
Computername : CLIENT2
ThreadCount  : 45
ProcessName  : svchost.exe
Name         : wuauserv
VMSize       : 499363840
PeakPageFile : 247680
Displayname  : Windows Update

VERBOSE: Getting services from NOTOnline
Get-ServiceInfo : Failed to get service data from NOTOnline. The RPC server is
unavailable. (Exception from HRESULT: 0x800706BA)
At S:\Toolmaking\Ch10-LabC.ps1:109 char:39
+ "localhost","NOTOnline","localhost" | Get-ServiceInfo -logerrors -verbose
+                                       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : NotSpecified: (:) [Write-Error], 

WriteErrorException
    + FullyQualifiedErrorId : 

Microsoft.PowerShell.Commands.WriteErrorException,Get-Serv
   iceInfo



100 CHAPTER 10 Error handling

VERBOSE: Logging errors to C:\Errors.txt
VERBOSE: Getting services from localhost
VERBOSE: Processing service AudioEndpointBuilder
VERBOSE: Getting process for AudioEndpointBuilder

10.8.4 Standalone lab

Use the code in the following listing as a starting point.

Function Get-SystemInfo {

<#
.SYNOPSIS
Gets critical system info from one or more computers.
.DESCRIPTION
This command uses WMI, and can accept computer names, CNAME aliases,
and IP addresses. WMI must be enabled and you must run this
with admin rights for any remote computer.
.PARAMETER Computername
One or more names or IP addresses to query.
.EXAMPLE
Get-SystemInfo -computername localhost
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
        [ValidateNotNullOrEmpty()]
        [string[]]$ComputerName
    )
    PROCESS {
        foreach ($computer in $computerName) {
            WWrite-Verbose "Getting WMI data from $computer"
            $os = Get-WmiObject -class Win32_OperatingSystem 

  ➥ -computerName $computer
            $cs = Get-WmiObject -class Win32_ComputerSystem 

  ➥ -computerName $computer
            $props = @{'ComputerName'=$computer;
                       'LastBootTime'=

  ➥ ($os.ConvertToDateTime($os.LastBootupTime));
                       'OSVersion'=$os.version;
                       'Manufacturer'=$cs.manufacturer;
                       'Model'=$cs.model
                              }
            $obj = New-Object -TypeName PSObject -Property $props
            Write-Output $obj
        }
    }
}

Add a –LogErrors switch to this advanced function. When the function is run with

this switch, failed computer names should be logged to C:\Errors.txt. This file should

be deleted at the start of the function each time it is run, so that it starts out fresh each

time. If the first WMI query fails, the function should output nothing for that

Listing 10.4 Standalone lab starting point



101Labs

computer and should not attempt a second WMI query. Write an error to the pipeline

containing each failed computer name. 

 Test your script by adding this line to the end of your script.

Get-SystemInfo -computername localhost,NOTONLINE,localhost -logerrors 

A portion of the output should look something like this:

Model        : VirtualBox
ComputerName : localhost
Manufacturer : innotek GmbH
LastBootTime : 6/19/2012 8:55:34 AM
OSVersion    : 6.1.7601

Get-SystemInfo : NOTONLINE failed
At S:\Toolmaking\Ch10-Standalone.ps1:51 char:1
+ Get-SystemInfo -computername localhost,NOTONLINE,localhost -logerrors
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : NotSpecified: (:) [Write-Error], 

WriteErrorException
    + FullyQualifiedErrorId : 

Microsoft.PowerShell.Commands.WriteErrorException,Get-Syst
   emInfo

Model        : VirtualBox
ComputerName : localhost
Manufacturer : innotek GmbH
LastBootTime : 6/19/2012 8:55:34 AM
OSVersion    : 6.1.7601

NOTE Labs A, B, and C for chapters 7 through 14 build on what was accom-
plished in previous chapters. If you haven’t finished a lab from a previous
chapter, please do so. Then check your results with sample solutions on
MoreLunches.com before proceeding to the next lab in the sequence.

http://wwwMoreLunches.com
http://wwwMoreLunches.com


102

Debugging techniques

Debugging can be one of the most frustrating parts of toolmaking, and we feel it’s

often because folks don’t have a consistent, methodical approach to debugging.

That’s what we’re going to offer you in this chapter. We’ll even make a promise: If

you follow our recommendations, you’ll find debugging to be infinitely less frus-

trating. We’ll even walk you through some real-life debugging examples to help

drive home the point. 

11.1 Two types of bugs

We feel that the entire universe of software bugs, at least the PowerShell universe,

essentially comes down to one of two types: typos and logic errors. 

 Typos are straightforward enough: They’re what happen when you type some-

thing wrong. Maybe it’s a command name. Maybe you mistype a variable name.

Maybe you forgot a closing quotation mark or curly bracket. Whatever the cause,

typos are relatively easy to prevent (we’ll offer some tips shortly) and to solve, at

least compared to their more sinister cousin, logic errors.

 When a script has a logic error, it may run without actually displaying any error

messages, or any errors it does produce seem unrelated or vague. Either way, the

script doesn’t do what you want it to do. We find that, in the end, logic errors come

down to one single, straightforward cause: You (or whoever wrote the script) made

a wrong assumption. Perhaps you assumed a command would output “True” when

in fact it outputs an entire object full of data; maybe you assumed a variable con-

tained a string value when in fact it contained a number. Whatever the cause, bad

assumptions are at the root of almost every logic error. The bulk of this chapter will

focus on how to validate and correct those assumptions and expectations.



103The real trick to debugging: expectations

11.2 Solving typos

Typos are fixable. They’re even easy to catch up front—especially if you’re formatting

your scripts carefully. Yeah, we told you back in the beginning of this book that the for-

matting thing would keep surfacing, and we’re really going to pound it in now.

 We don’t want to make this a big chapter on typos, though, so let’s stick with this

short list of tips:

■ Get to know your script editing software, whether it’s the PowerShell ISE or

something else. Get used to its colors, its error indicators, its display options,

and so forth. Half the time, typos like unclosed quotes and brackets reveal

themselves in not-normal coloring and other artifacts, making them pretty easy

to catch if you’re paying attention.

■ Format your scripts neatly. Indent code within curly brackets {} and parentheses

(), and put the closing bracket (or parentheses) at the same indent level as the

line that opened the construct.

■ Read error messages. Honestly, PowerShell does its best to tell you what it’s

upset about. Consider this command and its resulting error, where PowerShell

is making it clear that it doesn’t understand the misspelled parameter name

(we’ve boldfaced it for you) and even telling you the exact character position

(13) where the problem exists. It even, in its character-based way, underlined

the part it had a problem with (also in our boldfacing)! 

PS C:\> Get-Service -conputername localhost -Name s*
Get-Service : A parameter cannot be found that matches parameter name 
'conputername'.
At line:1 char:13
+ Get-Service -conputername localhost -Name s*
+             ~~~~~~~~~~~~~
    + CategoryInfo          : InvalidArgument: (:) [Get-Service], 

ParameterBinding 
   Exception
    + FullyQualifiedErrorId : 

NamedParameterNotFound,Microsoft.PowerShell.Commands 
   .GetServiceCommand

We know, every time the screen fills with red text, we curl into a ball and go back to

high school English class, where red ink was a bad, bad thing. But relax, take a breath,

and read what PowerShell is trying to tell you. Typo solved.

11.3 The real trick to debugging: expectations

As we mentioned earlier, assumptions and expectations are at the heart of the trickier

errors and bugs that you’ll find. Before you can begin debugging, you therefore have

to have an expectation for what each line of your script will do, and you have to be able

to validate those expectations. When you find the place where your expectation differs

from reality, then you’ve found your bug. But you can’t debug without first sitting

down and thinking about what the script is supposed to do—or at least what you think

it’s supposed to do. 



104 CHAPTER 11 Debugging techniques

 This is exactly where most folks go wrong. The idea of sitting down and poring over

a script, line by line, seems inefficient, boring, and frustrating. So they’ll just jump right

in and start making changes. That way, in our experience, leads to madness. We’ve

watched students pound away at a broken script for hours, painfully making change

after change that doesn’t help. Yes, it can seem inefficient to try to read through a script

and document your expectations (although when you become more experienced,

you’ll do a lot of it in your head and it’ll go faster). But our way of debugging is far more

efficient than the “just try stuff and see what happens” approach. Our way results in a

better understanding of the script, and a faster fix time, than just randomly trying stuff.

 Let’s start with a simple example that doesn’t even use a script but rather uses a

simple, three-command one-liner:

PS C:\> 
Get-CimInstance -class Win32_LogicalDisk `
                -filter "drivetype='fixed'" |
Select -Property DeviceID,Size |
Sort -Property FreeSpace 

Get-CimInstance : INVALID_QUERY
At line:2 char:1
+ Get-CimInstance -class Win32_LogicalDisk `
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidArgument: (:) [Get-CimInstance], 

CimException
    + FullyQualifiedErrorId : 

MiClientApiError_InvalidQuery,Microsoft.Management.I 
   nfrastructure.CimCmdlets.GetCimInstanceCommand

Oh look, an error message. It’s telling us (we boldfaced the bit we’re looking at) that

the problem is with the Get-CimInstance command. We had an expectation about

something that was wrong. Let’s examine just that portion of our command. In fact,

heck with that—let’s run just that portion. We’ve been typing this in the PowerShell

ISE, so we can just highlight the portion that represents the first command, right-click

it, and select Run Selection (or press F8) to run just that command. Notice, as shown

in figure 11.1, that we were careful not to highlight the pipe character after the first

command. This ensures that PowerShell runs just the first command and that the

shell doesn’t expect anything afterward.

Figure 11.1 Highlight 

a portion of code and 

press F8 to run just 

that portion.



105The real trick to debugging: expectations

Here’s our result:

PS C:\> Get-CimInstance -class Win32_LogicalDisk `
                -filter "drivetype='fixed'"
Get-CimInstance : INVALID_QUERY
At line:1 char:1
+ Get-CimInstance -class Win32_LogicalDisk `
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidArgument: (:) [Get-CimInstance], 

CimException
    + FullyQualifiedErrorId : 

MiClientApiError_InvalidQuery,Microsoft.Management.I 
   nfrastructure.CimCmdlets.GetCimInstanceCommand

Same error—so the problem is definitely with this command. Our standard approach

in this instance is to back off a little. This means that we’ll take away a bit of the com-

mand, if possible, to reduce complexity and see if we can find what we’re doing

wrong. Look, there are only two parameters on this command—we’ve clearly typed

one wrong. So let’s just get rid of one, if possible:

PS C:\> Get-CimInstance -class Win32_LogicalDisk

DeviceID     DriveType VolumeName       Size        FreeSpace  
--------     --------- ----------       ----        ---------  
A:           2                   
C:           3                          68717375488 58424459264
D:           5         HB1_CCPA_X64F... 3583707136  0          

Ah. That worked (although we truncated the output a bit to make it fit on the page in

this book). The problem was our –Filter parameter. Looking at the output of the

successful command, we can see that the DriveType property contains numbers—2, 3,

or 5 in our case. That’s not what we expected—we thought it would be something like

“fixed,” which is what was in our query. Assumption corrected. Let’s fix our command

and try again:

PS C:\> 
Get-CimInstance -class Win32_LogicalDisk `
                -filter "drivetype=3" |
Select -Property DeviceID,Size |
Sort -Property FreeSpace 

DeviceID                                                      Size
--------                                                      ----
C:                                                            68717375488

Well, that’s better. Although...maybe not. Our computer has only one fixed drive (drive

type 3), so we can’t be sure our Sort command is working. Let’s remove the drive type

filter, so that we get more drives in the output, so that we can make sure Sort is working.

It’s bad to assume Sort is working when you have only one object in the output!

Get-CimInstance -class Win32_LogicalDisk |
Select -Property DeviceID,Size |
Sort -Property FreeSpace 



106 CHAPTER 11 Debugging techniques

DeviceID                                                      Size
--------                                                      ----
D:                                                            3583707136
C:                                                            68717375488
A:    

Um, wait—we’re sorting by FreeSpace, but that isn’t even shown in the output. So we

can’t tell if it’s working. In fact, we may have done something stupid here. Our Select

command is only choosing the DeviceID and Size properties—its output probably

doesn’t even have a FreeSpace to sort on! Let’s test this by backing off a bit and

removing the Sort command and then seeing what Select is producing:

Get-CimInstance -class Win32_LogicalDisk |
Select -Property DeviceID,Size |
Get-Member

   TypeName: Selected.Microsoft.Management.Infrastructure.CimInstance

Name        MemberType   Definition                    
----        ----------   ----------                    
Equals      Method       bool Equals(System.Object obj)
GetHashCode Method       int GetHashCode()             
GetType     Method       type GetType()                
ToString    Method       string ToString()             
DeviceID    NoteProperty System.String DeviceID=A:     
Size        NoteProperty  Size=null                    

That’s what we thought. As shown by Get-Member, our Sort command is trying to sort

on a property that, at that point in the pipeline, doesn’t exist. Dumb mistake on our

part, but backing off one command and examining the output with Get-Member

helped us confirm the suspicion. Isn’t it irritating that PowerShell didn’t throw an

error when we tried to sort on something that didn’t exist at the time? But that’s what

it does. Now we know that we should maybe move our Sort command to earlier in the

pipeline, or just do away with it entirely, or have Select include the sort property in its

output. Any of those would fix the problem.

 The point of this example is that assumptions are what lead to bugs. Verifying and

validating data, often by running just fragments of your script, backing off a little bit,

and so forth can help you correct your assumptions and fix the bug. Let’s work

through a quick example of how to develop expectations: Take a look at listing 11.1.

TRY IT NOW We haven’t made any changes to this script, which one of our
colleagues provided to us, other than to remove identifying names and pro-
prietary information. We encourage you to follow along in this expectation-
documentation process. Keep in mind that we’re not positioning this script
as one that follows best practices—far from it—but it’s a realistic example!

$data = import-csv c:\data.csv
$totalqty = 0
$totalsold = 0
$totalbought = 0
foreach ($line in $data) {

Listing 11.1 A script we found



107The real trick to debugging: expectations

if ($line.transaction -eq 'buy') {
    # buy transaction (we sold)
    $totalqty -= $line.qty
    $totalsold = $line.total } else {
    # sell transaction (we bought)
    $totalqty += $line.qty
    $totalbought = $line.total }
"totalqty,totalbought,totalsold,totalamt" | out-file c:\summary.csv
"$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold)" |
 out-file c:\summary.csv -append

This script is intended to process a CSV file, which is output by another application.

The following listing shows a sample of the CSV file data.

"name,transaction,qty,amount,total"
"ctgannon,buy,4,3.00,12.00"
"gshields,sell,1200,1.00,1200.00"
"tevans,sell,8,9.00,72.00"

We aren’t going to run the script. First of all, the formatting is atrocious. We have to

fix that first—no way around it. The next listing is the revised script, and right away we

can see a problem. Can you spot it?

$data = import-csv c:\data.csv
$totalqty = 0
$totalsold = 0
$totalbought = 0
foreach ($line in $data) {
    if ($line.transaction -eq 'buy') {
        # buy transaction (we sold)
        $totalqty -= $line.qty
        $totalsold = $line.total
    } else {
        # sell transaction (we bought)
        $totalqty += $line.qty
        $totalbought = $line.total
    }
"totalqty,totalbought,totalsold,totalamt" | out-file c:\summary.csv
"$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold)" |
    out-file c:\summary.csv –append

If you’re reading carefully, you’ll notice that the ForEach construct’s closing curly

bracket is missing. The following listing shows the fixed script—this kind of error is a

lot easier to notice when you’re properly formatting your script. 

$data = import-csv c:\data.csv
$totalqty = 0
$totalsold = 0

Listing 11.2 Sample CSV data for listing 11.1

Listing 11.3 The reformatted script

Listing 11.4 Fixing the script’s typo



108 CHAPTER 11 Debugging techniques

$totalbought = 0
foreach ($line in $data) {
    if ($line.transaction -eq 'buy') {
        # buy transaction (we sold)
        $totalqty -= $line.qty
        $totalsold = $line.total
    } else {
        # sell transaction (we bought)
        $totalqty += $line.qty
        $totalbought = $line.total
    }
}
"totalqty,totalbought,totalsold,totalamt" | out-file c:\summary.csv
"$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold)" |
    out-file c:\summary.csv –append

DON’T TRY IT NOW Don’t run this script yet. We know it’s buggy—that’s kind
of the whole point of this exercise. We’ll run in a second to see what it does!

Now let’s start documenting our expectations. We aren’t even going to run the

script—this is about our expectations, based on what we’re seeing.

$data = import-csv c:\data.csv
$totalqty = 0
$totalsold = 0
$totalbought = 0

These first four lines seem to be importing a CSV file (we gave you a sample of what

that looks like). Our expectation is that each line in the CSV becomes an object, and

each column of the CSV becomes a property of that object. Using our sample data,

there should be three objects with five properties each. The remaining three lines

seem to be initializing some variables, setting their values to zero—a great idea, given

PowerShell’s scope rules.

foreach ($line in $data) {
}

The ForEach construct should enumerate through those three objects, so that the

$line variable contains one object at a time. 

if ($line.transaction -eq 'buy') {
        # buy transaction (we sold)
        $totalqty -= $line.qty
        $totalsold = $line.total
    } else {
        # sell transaction (we bought)
        $totalqty += $line.qty
        $totalbought = $line.total
    }

The If construct is checking the Transaction property of each object (that is, the

Transaction column from the CSV file). If it’s “buy,” there’s one set of actions, and if

it isn’t, there’s another set. This raises a small red flag with us: If the CSV is guaranteed



109Dealing with logic errors: trace code

to only contain “buy” and “sell” as our sample does, then just using an Else block is fine.

Normally, if we expect specific values like “buy” and “sell,” we’d rather see an ElseIf

block that explicitly tests for “sell,” or if there were several values perhaps a Switch state-

ment. As is, if the CSV file contains something aberrant like “swap” in the Transaction

column, it’ll be treated as a “sell,” which could cause problems. We’ll let this slide for now.

 Apart from that, the code looks straightforward: We’re incrementing some vari-

ables based on the contents of the Qty and Total columns of the CSV file. The script’s

last two lines are

"totalqty,totalbought,totalsold,totalamt" | out-file c:\summary.csv
"$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold)" |
    out-file c:\summary.csv -append

This outputs two lines to a new CSV file, with the first line acting as column headers

and the second line using those variables to produce a single data line for the CSV file.

Let’s test that theory by running the script:

PS C:\> C:\debug.ps1

PS C:\> gc .\summary.csv
totalqty,totalbought,totalsold,totalamt
0,,0,0

So we ran the script (which we’d saved as C:\debug.ps1) and then displayed the con-

tents of c:\summary.csv. All zeros and a blank column. Awesome. Well, we knew the

script was broken—let’s learn how to fix it.

11.4 Dealing with logic errors: trace code

One great technique for dealing with logic errors is to add trace code to your script.

This lets you output some internal details about what your script is seeing and dealing

with, enabling you to validate those assumptions (assuming you’ve made some—and if

you haven’t, you’re not ready to debug). 

 Most programming languages provide a way of adding trace code; PowerShell does

so in a way that means you don’t have to go back later and remove, or comment out,

the trace code commands. It’s super convenient! We tend to add the trace code,

which is implemented by using Write-Debug, as we write a new script. We tend to

assume we’re going to mess up, and adding the debug code at the outset makes

debugging quicker. And to be perfectly honest, we’ve started relying on the trace code

to act as inline comments for our scripts, rather than actual comments. The next list-

ing shows our script with trace code added.

[CmdletBinding()]
param()
$data = import-csv c:\data.csv
Write-Debug "Imported CSV data"

$totalqty = 0

Listing 11.5 Adding trace code to our buggy script

http://MoreLunches.com


110 CHAPTER 11 Debugging techniques

$totalsold = 0
$totalbought = 0
foreach ($line in $data) {
    if ($line.transaction -eq 'buy') {

        Write-Debug "ENDED BUY transaction (we sold)"
        $totalqty -= $line.qty
        $totalsold = $line.total

    } else {

        $totalqty += $line.qty
        $totalbought = $line.total
        Write-Debug "ENDED SELL transaction (we bought)"

    }
}

Write-Debug "OUTPUT: $totalqty,$totalbought,$totalsold,

  ➥ $($totalbought-$totalsold)"

"totalqty,totalbought,totalsold,totalamt" | out-file c:\summary.csv
"$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold)" |
    out-file c:\summary.csv –append

TIP If you’re typing in a script like this, make sure you save it before trying
to run it. Some things, like the [CmdletBinding()] attribute, will only work
if your script is being run from a file on disk.

Some notes about what we did:

■ In order to make this truly useful, we added [CmdletBinding()] and a blank

Param() block to the top of the script. Those two elements have to go

together—you can’t have [CmdletBinding()] without a Param(). We’ll show

you in a second why [CmdletBinding()] is so awesome here.

■ We added a Write-Debug after each major decision or operation the script

took, giving us a chance to follow the script’s logic.

■ Because the ultimate output of this is a CSV file (which kind of violates our rule

of breaking tools into input, functional, or output, but hey—it’s what we were

given to debug), we added a Write-Debug that lets us preview the output.

Let’s run the script again. This time, we’ll add the –Debug switch (which is enabled by

[CmdletBinding()]) to make the output of Write-Debug visible:

TRY IT NOW We’re going to run this in the normal PowerShell console,
which we like a bit better for debugging. Its messages—which you’ll see in
the following output—are text prompts, whereas the ISE uses pop-up dia-
logs that we find a bit distracting.

PS C:\> .\debug.ps1 -Debug
DEBUG: Imported CSV data

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):



111Dealing with logic errors: trace code

When PowerShell hit that first Write-Debug, it displayed its message and then paused

the script. From here, we have some choices. We’re going to select S for “Suspend.”

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):s
PS C:\>> $data

name,transaction,qty,amount,total
---------------------------------
ctgannon,buy,4,3.00,12.00
gshields,sell,1200,1.00,1200.00
tevans,sell,8,9.00,72.00

Notice that the PowerShell prompt changed to >> instead of >, indicating that we’re in

debug mode. We take the opportunity to see what actually went into the $data vari-

able—and it wasn’t what we expected. Remember, we said that we expected $data to

contain three objects of five properties each—but it appears to just be a bunch of text.

NOTE If you’ve done anything to modify your PowerShell prompt (numer-
ous third-party add-ins do so), you may not see the same output we’re see-
ing. We recommend running PowerShell without any add-ins to restore the
original debug prompt, if needed.

While still in debug mode, we’ll pipe $data to Get-Member to see what’s in that variable:

PS C:\>> $data | gm

   TypeName: System.Management.Automation.PSCustomObject

Name                              MemberType   Definition
----                              ----------   ----------
Equals                            Method       bool Equals(System.Objec...
GetHashCode                       Method       int GetHashCode()
GetType                           Method       type GetType()
ToString                          Method       string ToString()
name,transaction,qty,amount,total NoteProperty System.String name,trans...

Well, it isn’t a string—it’s an object with a property called name,transaction,qty,

amount,total. Weird and not what we expected. That’s one property, not five. We can’t

expect the rest of the script to work, which is probably why we got that weird output the

first time we ran it.

 Reviewing the CSV file, the problem seems to be the quotation marks. Within quo-

tation marks, the CSV file format ignores commas, meaning the entire file is being

taken as a single property. Let’s fix that, with the revised sample shown here.

name,transaction,qty,amount,total
ctgannon,buy,4,3.00,12.00
gshields,sell,1200,1.00,1200.00
tevans,sell,8,9.00,72.00

Listing 11.6 Correcting the sample data



112 CHAPTER 11 Debugging techniques

It would be legal to include each field in quotes—for example, "name",

"transaction","qty","amount","total"—but since none of our values contain

commas, we can also eliminate the quotes entirely, which is faster. All of this is a

potential problem, because this data is allegedly being output by another

application. That application, therefore, has a bug, because it’s writing out illegal

CSV files. We’ll let that application’s developer deal with their problems, though, and

continue debugging our script. 

 We’re still at the debug prompt. Let’s exit, kill the script, and run it again.

PS C:\>> exit

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):h
Write-Debug : Command execution stopped because the user selected the
Halt option.
At C:\debug.ps1:4 char:1
+ Write-Debug "Imported CSV data"
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : OperationStopped: (:) [Write-Debug], Parent
   ContainsErrorRecordException
    + FullyQualifiedErrorId : ActionPreferenceStop,Microsoft.PowerShell.C
   ommands.WriteDebugCommand

PS C:\> .\debug.ps1 -Debug
DEBUG: Imported CSV data

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):s
PS C:\>> $data

name        : ctgannon
transaction : buy
qty         : 4
amount      : 3.00
total       : 12.00

name        : gshields
transaction : sell
qty         : 1200
amount      : 1.00
total       : 1200.00

name        : tevans
transaction : sell
qty         : 8
amount      : 9.00
total       : 72.00

Ah, much more what we were expecting: three objects of five properties each. Excel-

lent. Let’s allow the script to continue:



113Dealing with logic errors: breakpoints

PS C:\>> exit

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):y
DEBUG: ENDED BUY transaction (we sold)

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):y
DEBUG: ENDED SELL transaction (we bought)

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):y
DEBUG: ENDED SELL transaction (we bought)

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):y
DEBUG: OUTPUT: 1204,72.00,12.00,60

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):

It properly recognized each of the three transactions, but we’re having a bit of a prob-

lem with the proposed line of output. By our math, columns 2 and 3 shouldn’t be 72

and 12, but rather 1272 and 12. So we have another problem. Tell you what: Let’s kill

the script again, and debug the rest of it using a different technique:

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help
(default is "Y"):h
Write-Debug : Command execution stopped because the user selected the
Halt option.
At C:\debug.ps1:25 char:1
+ Write-Debug "OUTPUT:
$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold ...
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [Write-Debug], Parent
 ContainsErrorRecordException
 + FullyQualifiedErrorId : ActionPreferenceStop,Microsoft.PowerShell.C
 ommands.WriteDebugCommand

11.5 Dealing with logic errors: breakpoints

Technically, Write-Debug acts as a sort of permanent, manually inserted breakpoint

in your script. When the shell hits Write-Debug, it pauses your script and lets you

114 CHAPTER 11 Debugging techniques

investigate things. PowerShell also supports a more dynamic form of breakpoint,

called a PSBreakpoint.

 You create a PSBreakpoint by running Set-PSBreakpoint. Using parameters

of that command, you tell PowerShell what script the breakpoint goes with (it’s based

on the path and filename, so the breakpoint will only work so long as the script stays

in the same spot) and what you want the breakpoint to trigger on. Your choices

include the following:

■ Stopping on a particular line or line/character position, which is similar to

sticking a Write-Debug in the script

■ Stopping when a particular command is run

■ Stopping when a particular variable is read, written, or either

NOTE Technically, you don’t have to tie anything but a line/character
breakpoint to a script file. The other kinds of breakpoints can also operate
globally within the shell.

Keep in mind that breakpoints are dynamic: Close your shell, and they go away. You’re

not actually doing anything to your script but rather are asking PowerShell to remem-

ber what to do. You can also set line-based breakpoints in the ISE: Just move to the line

where you want a breakpoint and press F9. Because at this point we’re having trouble

with our $totalbought and $totalsold variables, we’ll set breakpoints on those:

PS C:\> Set-PSBreakpoint -Script C:\debug.ps1 -Variable totalbought,totalso
ld -Mode ReadWrite

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 debug.ps1 totalbought
 1 debug.ps1 totalsold

Boom, two new breakpoints. Let’s run the script, omitting the –Debug parameter so

that our Write-Debug statements don’t kick in:

PS C:\> .\debug.ps1
Entering debug mode. Use h or ? for help.

Hit Variable breakpoint on 'C:\debug.ps1:$totalsold' (ReadWrite access)

At C:\debug.ps1:7 char:1
+ $totalsold = 0
+ ~~~~~~~~~~~~~~
[DBG]: PS C:\>>

First breakpoint! This is where you realize that having a printout of your script, includ-

ing line numbers, would be helpful. We stopped on line 7, which sets $totalsold to

zero. We’ll run Exit to continue running the script:

Hit Variable breakpoint on 'C:\debug.ps1:$totalbought' (ReadWrite access)

At C:\debug.ps1:8 char:1
+ $totalbought = 0

115Dealing with logic errors: breakpoints

+ ~~~~~~~~~~~~~~~~
[DBG]: PS C:\>> exit
Hit Variable breakpoint on 'C:\debug.ps1:$totalsold' (ReadWrite access)

At C:\debug.ps1:14 char:9
+ $totalsold = $line.total
+ ~~~~~~~~~~~~~~~~~~~~~~~~
[DBG]: PS C:\>>

Okay, line 14 is where we first modify $totalsold. Let’s see what $line.total contains:

[DBG]: PS C:\>> $line.total
12.00
[DBG]: PS C:\>> exit
Hit Variable breakpoint on 'C:\debug.ps1:$totalbought' (ReadWrite access)

At C:\debug.ps1:19 char:9
+ $totalbought = $line.total
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~

12 is what we expected, so we ran Exit again. Now we’ve modified $totalbought, so

the script paused again. Let’s see what’s in $line.total:

[DBG]: PS C:\>> $line.total
1200.00
[DBG]: PS C:\>> exit
Hit Variable breakpoint on 'C:\debug.ps1:$totalbought' (ReadWrite access)

At C:\debug.ps1:19 char:9
+ $totalbought = $line.total
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Okay, again, 1200 is right on track. We continued, so let’s now look at $line.total

and $totalbought again:

[DBG]: PS C:\>> $line.total
72.00
[DBG]: PS C:\>> $totalbought
72.00
[DBG]: PS C:\>>

Wait, wait, wait. $totalbought should contain 1200+72, which is 1272, but it only con-

tains 72. Back to the code:

 $totalbought = $line.total

And there’s the problem. We’re not adding $line.total to what’s in $totalbought;

we’re setting $totalbought to whatever’s in $line.total. So the old value is being

wiped out. The same thing is happening in $totalsold, just above it in the script.

Let’s make some fixes, as shown in the following listing.

[CmdletBinding()]
param()
$data = import-csv c:\data.csv
Write-Debug "Imported CSV data"

Listing 11.7 Fixing the bugs

116 CHAPTER 11 Debugging techniques

$totalqty = 0
$totalsold = 0
$totalbought = 0
foreach ($line in $data) {
 if ($line.transaction -eq 'buy') {

 Write-Debug "ENDED BUY transaction (we sold)"
 $totalqty -= $line.qty
 $totalsold += $line.total

 } else {

 $totalqty += $line.qty
 $totalbought += $line.total
 Write-Debug "ENDED SELL transaction (we bought)"

 }
}

Write-Debug "OUTPUT: $totalqty,$totalbought,$totalsold,$($totalbought-
$totalsold)"

"totalqty,totalbought,totalsold,totalamt" | out-file c:\summary.csv
"$totalqty,$totalbought,$totalsold,$($totalbought-$totalsold)" |
 out-file c:\summary.csv –append

Now let’s clear the breakpoints and run it again:

PS C:\> Get-PSBreakpoint | Remove-PSBreakpoint
PS C:\> .\debug.ps1
PS C:\> gc .\summary.csv
totalqty,totalbought,totalsold,totalamt
1204,1272,12,1260
PS C:\>

Huzzah! It worked! Debugging complete!

11.6 Seriously, have expectations

You can see that this would all have been impossible if we hadn’t developed some

expectations: what we thought variables would contain, what we thought the output

would be (we admit to pulling out a calculator to add 1200 and 72, but there’s no rea-

son to be embarrassed about that, is there?), and so on. We used tools to compare

those expectations to what really happened—and each time we found a difference, we

knew to dive back into the code to find the problem.

 This is the simple fact about debugging: With no expectations, you’re out in the

cold. Have expectations, and the tools in PowerShell will let you validate them and

find the bugs.

11.7 Coming up next

In the next chapter, we’re going to return to our running Get-SystemInfo example,

where we have it producing great output—but not attractive-looking output. Com-

mands like Get-Service produce a really nicely formatted table by default, and we’d

like our command to do the same. In the next chapter, we’ll work on that.

117Lab

11.8 Lab

We’re sure you’ll have plenty of practice debugging your own scripts. But we want to

reinforce some of the concepts from this chapter and get you used to following a pro-

cedure. Never try to debug a script simply by staring at it, hoping the error will jump

out at you. It might, but more than likely it may not be the only one. Follow our guide-

lines to identify bugs. Fix one thing at a time. If it doesn’t resolve the problem, change

it back and repeat the process.

 The functions listed here are broken and buggy. We’ve numbered each line for ref-

erence purposes; the numbers are not part of the actual function. How would you

debug them? Revise them into working solutions. Remember, you’ll need to dot

source the script each time you make a change. We recommend testing in the regular

PowerShell console.

 The function in the next listing is supposed to display some properties of running

services sorted by the service account.

1 Function Get-ServiceInfo {
2 [cmdletbinding()]
3 Param([string]$Computername)
4 $services=Get-WmiObject -Class Win32_Services -filter "state='Running" `
 -computername $computernam
5 Write-Host "Found ($services.count) on $computername" –Foreground Green
6 $sevices | sort -Property startname,name Select -property `
 startname,name,startmode,computername
7 }

The function in listing 11.9 is a bit more involved. It’s designed to get recent event log

entries for a specified log on a specified computer. Events are sorted by the event

source and added to a log file. The filename is based on the date, computer name,

and event source. At the end, the function displays a directory listing of the logs. Hint:

Clean up the formatting first.

01 Function Export-EventLogSource {
02
03 [cmdletbinding()]
04 Param (
05 [Parameter(Position=0,Mandatory=$True,Helpmessage="Enter a

computername",ValueFromPipeline=$True)]
06 [string]$Computername,
07 [Parameter(Position=1,Mandatory=$True,Helpmessage="Enter a classic event

log name like System")]
08 [string]$Log,
09 [int]$Newest=100
10)
11 Begin {
12 Write-Verbose "Starting export event source function"

Listing 11.8 A broken function

Listing 11.9 Buggy export function

118 CHAPTER 11 Debugging techniques

13 #the date format is case-sensitive"
14 $datestring=Get-Date -Format "yyyyMMdd"
15 $logpath=Join-path -Path "C:\Work" -ChildPath $datestring
16 if (! (Test-Path -path $logpath) {
17 Write-Verbose "Creating $logpath"
18 mkdir $logpath
19 }
20 Write-Verbose "Logging results to $logpath"
21 }
22 Process {
23 Write-Verbose "Getting newest $newest $log event log entries from

$computername"
24 Try {
25 Write-Host $computername.ToUpper -ForegroundColor Green
26 $logs=Get-EventLog -LogName $log -Newest $Newest -Computer $Computer -

ErrorAction Stop
27 if ($logs) {
28 Write-Verbose "Sorting $($logs.count) entries"
29 $log | sort Source | foreach {
30 $logfile=Join-Path -Path $logpath -ChildPath "$computername-

$($_.Source).txt"
31 $_ | Format-List TimeWritten,MachineName,EventID,EntryType,Message |
32 Out-File -FilePath $logfile -append
33
34 #clear variables for next time
35 Remove-Variable -Name logs,logfile
36 }
37 else {Write-Warning "No logged events found for $log on $Computername"}
38 }
39 Catch { Write-Warning $_.Exception.Message }
40 }
41 End {dir $logpath
42 Write-Verbose "Finished export event source function"
43 }
44 }

NOTE You can find debugged versions of these functions and a commen-
tary on how you might debug them at http://MoreLunches.com.

119

Creating custom format views

We’re getting back to the script that we left off with in chapter 10, before our short

diversion into the world of debugging. One thing we didn’t like about that script

was its output. Some folks would be tempted to put commands right into the script

to fix that, but we know better. Remember: A tool should either create input for

another tool, do something, or format output from another tool. Our tool is

already doing something, so we can’t have it start messing around with formatting

the output as well. Instead, we’ll get PowerShell to do that for us by creating a cus-

tom view.

12.1 The anatomy of a view

PowerShell ships with a number of views, all of which are contained in

.format.ps1xml files that live within PowerShell’s installation folder. You can get there

by running cd $pshome in the shell, and we’ll open DotNetTypes.format.ps1xml in

Notepad (or the ISE) to view it.

CAUTION Be very careful not to make any changes to the .format.ps1xml
files in PowerShell’s installation folder—or if you do, make sure you don’t
save those changes. The files are digitally signed, and even an extra space
or carriage return will break them, rendering them useless to PowerShell.

There’s a lot of stuff in there, but let’s just start with a simple table view:

<View>
 <Name>System.Globalization.CultureInfo</Name>
 <ViewSelectedBy>
 <TypeName>System.Globalization.CultureInfo</TypeName>
 </ViewSelectedBy>

Name of the view

Object that
uses view

120 CHAPTER 12 Creating custom format views

 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Width>16</Width>
 </TableColumnHeader>
 <TableColumnHeader>
 <Width>16</Width>
 </TableColumnHeader>
 <TableColumnHeader/>
 </TableHeaders>
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>LCID</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Name</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>DisplayName</PropertyName>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
</View>

Here’s what we’d like you to notice:

■ The view is contained within the <View> and </View> XML tags. Note that all of

the XML tags are case sensitive, so it’s important to type accurately. We prefer to

copy and paste an existing view from DotNetTypes.format.ps1xml and use that

as a starting point, because doing so helps us avoid typos in the XML.

■ The view has a name of its own, which is commonly just the type name that the

view will apply to. The name doesn’t matter much—there are a couple of ways

in which the shell can use it, but they’re exceedingly rare to run into.

■ The view is selected by a specific type name, in this case, objects of the System

.Globalization.CultureInfo type. So, when PowerShell needs to display that

type of object, it will use this view to do so.

■ This is a table view, as opposed to a list, wide, or custom view.

■ There are three column headers—count those carefully. The last one is shown

by the <TableColumnHeader/> XML tag; this represents a column where we’re

not providing a custom column header, width, or alignment. It’s easy to miss

that third column header, so make sure you see it!

■ The remaining XML defines the contents of the three columns. You’ll notice

that each of these specifies the object property name to be displayed in the col-

umn. Because our column headers didn’t include alternate names, the prop-

erty names will be used at the top of each column.

Type of
view

Table column
headers

121Adding a type name to output objects

This basic form is used for all views. A single XML file, as you’ll see in DotNetTypes.format

.ps1xml if you look in it, can contain multiple views, each for a different kind of object.

12.2 Adding a type name to output objects

Because views are triggered by the type name of the object they display, we need to

ensure our script’s output object has a unique type name. Right now it doesn’t: The

script outputs a generic type of object called PSObject. The following listing shows

how we’ll fix that, with a single line shown in boldface.

function Get-SystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-SystemInfo
.EXAMPLE
 Get-SystemInfo -ComputerName SERVER1,SERVER2
#>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 HelpMessage="Computer name or IP address")]
 [ValidateCount(1,10)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt',

 [switch]$LogErrors
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 Write-Verbose "Beginning PROCESS block"
 foreach ($computer in $computername) {

Listing 12.1 Adding a custom TypeName to the view

122 CHAPTER 12 Creating custom format views

 Write-Verbose "Querying $computer"
 Try {
 $everything_ok = $true
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer `
 -erroraction Stop
 } Catch {
 $everything_ok = $false
 Write-Warning "$computer failed"
 if ($LogErrors) {
 $computer | Out-File $ErrorLog -Append
 Write-Warning "Logged to $ErrorLog"
 }
 }

 if ($everything_ok) {
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 $obj.PSObject.TypeNames.Insert(0,'MOL.SystemInfo')
 Write-Output $obj
 }
 }
 }
 END {}
}

Get-SystemInfo -ComputerName localhost | Get-Member

This is the big reason we stored our output object in a variable, $obj, in the first

place—because we knew we’d be adding a custom type name to it. The Insert()

method takes two arguments. The first, where we’ve provided zero, tells the method

where to insert the new type name. Zero simply means “put this type name in the first

position,” making it the usable type name for our object.

 The second argument is a string with the type name itself. We’ve used a two-part

type name: MOL (which stands for “Month of Lunches”) is first, and it will help set our

type name apart from the others already in the .NET Framework. Think of the MOL as a

kind of prefix that’s unique to us. You’d want to use something unique to your organi-

zation. For example, if you worked for IBM, you might use IBM as your prefix. If you

worked for IBM’s Research & Development arm in Charlotte, you might use

IBM.Research.Charlotte as the first part of your type name—again, just to help

make sure that the complete type name is unique. SystemInfo represents, to us, the

type of information this object contains.

123Making a view

 Running our script and piping the results to Get-Member (which is accomplished

by the last line in the script) proves that the type name has indeed been set:

PS C:\> C:\test.ps1

 TypeName: MOL.SystemInfo

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
BIOSSerial NoteProperty System.String BIOSSerial=Parallels-48 6C 63 4...
ComputerName NoteProperty System.String ComputerName=localhost
Manufacturer NoteProperty System.String Manufacturer=Parallels Software ...
Model NoteProperty System.String Model=Parallels Virtual Platform
OSVersion NoteProperty System.String OSVersion=6.2.8250
SPVersion NoteProperty System.UInt16 SPVersion=0

With the type name assigned, we can now set out to make a view. Before we do so, we’ll

make one change to our script: On the last line, we’ll remove the | Get-Member, so

that running the script displays the script’s normal, intended output. Right now,

here’s what that looks like:

PS C:\> C:\test.ps1

Manufacturer : Parallels Software International Inc.
OSVersion : 6.2.8250
BIOSSerial : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion : 0
Model : Parallels Virtual Platform

TRY IT NOW Make sure you can follow along to this point and that your script
is displaying this output. We won’t be making further changes to the script in
this chapter, so if you can get it to this point, then you should be good to go.

12.3 Making a view

We’ll start with the following listing, where we’ve provided the basic shell for the XML file.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <ViewDefinitions>
 </ViewDefinitions>
</Configuration>

We’ve saved this as C:\Test.format.ps1xml. We suggest saving your view files to a short

path—like C:\, or C:\Test, or something else—while you’re working on the file. You’ll

be typing that path a lot, so keeping it short saves you time and effort. Note that the

contents of our file are already showing good XML formatting practices: We’re indent-

ing each nested set of tags and making sure that each tag is closed at the proper level.

Listing 12.2 Basic template for an empty format file

124 CHAPTER 12 Creating custom format views

 For example, the outermost tag pair is <Configuration></Configuration>.

Nested fully within that is <ViewDefinitions></ViewDefinitions>, and within that

we’ll be placing our actual views.

 We’ll start by copying an existing table view from DotNetTypes.format.ps1xml. The

new file is in the next listing.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <ViewDefinitions>
 <View>
 <Name>System.Reflection.Assembly</Name>
 <ViewSelectedBy>
 <TypeName>System.Reflection.Assembly</TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>GAC</Label>
 <Width>6</Width>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Version</Label>
 <Width>14</Width>
 </TableColumnHeader>
 <TableColumnHeader/>
 </TableHeaders>
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
<PropertyName>GlobalAssemblyCache</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
<PropertyName>ImageRuntimeVersion</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Location</PropertyName>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

We allowed our neat formatting to get a bit messed up in order to let this fit within the

pages of this book. What we have here is a table with three columns. We actually want

five columns:

Listing 12.3 Pasting in a starting point for our table view

125Making a view

■ ComputerName
■ Manufacturer, which we’ll display as Mfgr in the column header and limit to 20

characters

■ Model, which we’ll also limit to 20 characters
■ OSVersion
■ SPVersion, which we’ll display as SP in the column header

The following listing shows our modified table.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MOL.SystemInfo</Name>
 <ViewSelectedBy>
 <TypeName>MOL.SystemInfo</TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader/>
 <TableColumnHeader>
 <Label>Mfgr</Label>
 <Width>20</Width>
 </TableColumnHeader>
 <TableColumnHeader>
 <Width>20</Width>
 </TableColumnHeader>
 <TableColumnHeader/>
 <TableColumnHeader>
 <Label>SP</Label>
 </TableColumnHeader>
 <TableColumnHeader/>
 </TableHeaders>
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>ComputerName</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Manufacturer</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Model</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <Propertyname>OSVersion</Propertyname>
 </TableColumnItem>
 <TableColumnItem>
 <Propertyname>SPVersion</Propertyname>
 </TableColumnItem>

Listing 12.4 Modifying the pasted-in XML to meet our needs

B Column 1

Column 2C

D Column 3

E Column 4

F Column 5

126 CHAPTER 12 Creating custom format views

 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

Let’s pay extra-close attention to the column headers:

■ The first B column is a <TableColumnHeader/> tag, which in XML is called a

singleton tag. That means it doesn’t come in pairs. We used this because we

wanted (a) the column header to just be the property name and (b) PowerShell

to calculate the best width of the column.

■ The second C column has both a label and a width.

■ The third D column has a width but no label, so the property name will be

used as the column header.

■ The fourth E column is another singleton, meaning it’ll use the property

name and a best-fit width.

■ The fifth F column has a label but no width, meaning PowerShell will calculate

the best-fit width for us.

With this saved as C:\Test.format.ps1xml, we’re ready to test it.

12.4 Loading and debugging the view

View files have to be loaded into memory within each new shell session, which

is accomplished by using Update-FormatData. We’ll be specifying the path using the

–PrependPath parameter; you can read the command’s help to learn about other

options.

PS C:\> Update-FormatData -PrependPath C:\test.format.ps1xml
Update-FormatData : There were errors in loading the format data file:
C:\test.format.ps1xml, Error at XPath
/Configuration/ViewDefinitions/View[1]/TableControl in file
C:\test.format.ps1xml: Header item count = 6 does not match default row
item count = 5.
C:\test.format.ps1xml, Error at XPath
/Configuration/ViewDefinitions/View[1] in file C:\test.format.ps1xml:
Missing Node from TableControl, ListControl, WideControl, CustomControl.
At line:1 char:1
+ Update-FormatData -PrependPath C:\test.format.ps1xml
+ ~~
 + CategoryInfo : InvalidOperation: (:) [Update-FormatData],
 RuntimeException
 + FullyQualifiedErrorId : TypesXmlUpdateException,Microsoft.PowerShel
 l.Commands.UpdateFormatDataCommand

That’s okay—errors happen sometimes. We’ve boldfaced the interesting part of the

error, which tells us that we defined six column headers but only five column proper-

ties. Oops! Listing 12.5 shows the revised file; if you go back to listing 12.4 you can see

127Loading and debugging the view

that we had an extra <TableColumnHeader/> at the end of the column header list (it’s

on line 24 of the XML). Those singletons are hard to miss—we left it in on purpose to

show you this error.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MOL.SystemInfo</Name>
 <ViewSelectedBy>
 <TypeName>MOL.SystemInfo</TypeName>
 </ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader/>
 <TableColumnHeader>
 <Label>Mfgr</Label>
 <Width>20</Width>
 </TableColumnHeader>
 <TableColumnHeader>
 <Width>20</Width>
 </TableColumnHeader>
 <TableColumnHeader/>
 <TableColumnHeader>
 <Label>SP</Label>
 </TableColumnHeader>
 </TableHeaders>
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>ComputerName</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Manufacturer</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>Model</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <Propertyname>OSVersion</Propertyname>
 </TableColumnItem>
 <TableColumnItem>
 <Propertyname>SPVersion</Propertyname>
 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

Listing 12.5 Removing the extra column header

128 CHAPTER 12 Creating custom format views

Now that we’ve fixed the file, we can try loading it again:

PS C:\> Update-FormatData -PrependPath C:\test.format.ps1xml

No errors is good news!

12.5 Using the view

Our script is loaded into the ISE, so we’ll go into its console pane and import our view

file (we’ve been testing the view file in the normal PowerShell console, which is a sep-

arate application; in order to use the view within the ISE we have to load it there as

well). Figure 12.1 shows that the file loaded without error.

Backward compatibility

In v1 and v2 of PowerShell, you have to close the shell completely in order to attempt

to reload a failed view file. That was corrected in v3.

Also, v3 is less case sensitive than earlier versions. On line 38 of our XML file, we

spelled one tag <Propertyname> instead of <PropertyName>, but PowerShell ac-

cepted it anyway. That wouldn’t have been the case in earlier versions of the shell.

Our XML worked only because we also spelled the closing tag </Propertyname>.

Had we not matched the case between them—had we typed <Propertyname> and

</PropertyName>, for example, the XML file would have failed.

If you use the ISE to edit these XML files, its syntax checking will spot those kinds of

errors, underlining them with a squiggly red underline. Pay attention to those, and let

them help you spot errors before they become a problem!

Figure 12.1 Loading the view into the ISE’s runspace

129Labs

Now we can return to our script tab, press F9 to run it, and see if our new view took

effect. Figure 12.2 shows the results.

 Perfect! That’s exactly what we wanted. Notice that, because we constrained the

Mfgr and Model columns to 20 characters, PowerShell is truncating their contents with

an ellipsis (...). That’s fine; it’s what we wanted. If we didn’t like it, we could obviously

modify the XML to provide a wider column or just remove the width directive entirely

and let PowerShell calculate a best-fit width for the column.

12.6 Coming up next

As usual, we’re ending this chapter with a problem. Specifically, we have our tool con-

tained within a script, and if someone plans to use it, they have to also remember to

manually load our custom view XML file. That’s unacceptable. We also need to get our

script into some kind of easily distributed form, so that people can load our tools into

memory and run them as normal commands rather than having to hardcode a line to

run the function at the bottom of the script.

 The next chapter will solve both problems: We’re going to turn our script into a

module.

12.7 Labs

We bet you can guess what’s coming. You’ll be adding type information and creating

custom format files for the functions you’ve been working on the last several

Figure 12.2 Running our script with the new view in effect

130 CHAPTER 12 Creating custom format views

chapters. Use the dotnettypes.format.ps1xml and other .ps1xml files as sources for

sample layout. Copy and paste the XML into your new format file. Don’t forget that

tags are case sensitive.

12.7.1 Lab A

Modify your advanced function from Lab A in chapter 10 so that the output object has

the type name MOL.ComputerSystemInfo. Then, create a custom view in a file named

C:\CustomViewA.format.ps1xml. The custom view should display objects of the type

MOL.ComputerSystemInfo in a list format, displaying the information in a list as indi-

cated in your design for this lab. Go back to chapter 6 to check what the output names

should be.

 At the bottom of the script file, add these commands to test:

Update-FormatData –prepend c:\CustomViewA.format.ps1xml
<function-name> -ComputerName localhost

The final output should look something like the following:

Computername : CLIENT2
Workgroup :
AdminPassword : NA
Model : VirtualBox
Manufacturer : innotek GmbH
BIOSSerialNumber : 0
OSVersion : 6.1.7601
SPVersion : 1

Note that the list labels aren’t exactly the same as the custom object’s property names.

12.7.2 Lab B

Modify your advanced function Lab B from chapter 10 so that the output object has the

type name MOL.DiskInfo. Then, create a custom table view in a file named C:\Custom-

ViewB.format.ps1xml. The custom view should display objects of the type MOL.DiskInfo

in a table format, displaying the information in a table as indicated in your design for

this lab. Refer back to chapter 6 for a refresher. The column headers for the FreeSpace

and Size properties should display FreeSpace(GB) and Size(GB), respectively.

 At the bottom of the script file, add these commands to test:

Update-FormatData –prepend c:\CustomViewB.format.ps1xml
<function-name> -ComputerName localhost

The final output should look something like the following:

ComputerName Drive FreeSpace(GB) Size(GB)
------------ ----- ------------- --------
CLIENT2 \\?\Volume{8130d5f3-8e9b-... 0.07 0.10
CLIENT2 C:\Temp\ 9.78 10.00
CLIENT2 C:\ 2.72 19.90
CLIENT2 D:\ 2.72 4.00

Note that the column headers are not exactly the same as the custom object’s property

names.

131Labs

12.7.3 Lab C

Modify your advanced function Lab C from chapter 10 so that the output object has

the type name MOL.ServiceProcessInfo. Then, create a custom view in a file named

C:\CustomViewC.format.ps1xml. The custom view should display objects of the type

MOL.ServiceProcessInfo in a table format, displaying computer name, service name,

display name, process name, and process virtual size.

 In addition to the table format, create a list view in the same file that displays the

properties in this order:

■ ComputerName

■ Name (renamed as Service)
■ Displayname
■ ProcessName
■ VMSize
■ ThreadCount
■ PeakPageFile

At the bottom of the script file, add these commands to test:

Update-FormatData –prepend c:\CustomViewC.format.ps1xml
<function-name> -ComputerName localhost
<function-name> -ComputerName localhost | Format-List

The final output should look something like this for the table.

ComputerName Service Displayname ProcessName VM
------------ ------- ----------- ----------- --
CLIENT2 AudioEndpo... Windows Audio E... svchost.exe 172208128
CLIENT2 BFE Base Filtering ... svchost.exe 69496832
CLIENT2 BITS Background Inte... svchost.exe 499310592
CLIENT2 Browser Computer Browser svchost.exe 499310592

And like this for the list:

Computername : CLIENT2
Service : AudioEndpointBuilder
Displayname : Windows Audio Endpoint Builder
ProcessName : svchost.exe
VMSize : 172208128
ThreadCount : 13
PeakPageFile : 83112

Note that per the design specifications from chapter 6, not every object property is

displayed by default and that some column headings are different than the actual

property names.

NOTE Labs A, B, and C for chapters 7 through 13 build on what was accom-
plished in previous chapters. If you haven’t finished a lab from a previous
chapter, please do so. Then check your results with sample solutions on
MoreLunches.com before proceeding to the next lab in the sequence.

132

Script and manifest modules

We’ve been building Get-SystemInfo for several chapters now, and we’ve been test-

ing it by inserting a line, at the end of our script, that runs the function. It’s time to

move away from that and into something that’s a bit more formal, packaged distrib-

utable for our command. We also need to find a way to get our custom view XML

file to load into memory automatically when someone wants to use our tool. In this

chapter, we’ll accomplish both.

13.1 Introducing modules

Introduced in PowerShell v2, modules are the shell’s preferred means of extension

(over the original PSSnapin extension technology). Modules can, in many cases, be

file copied rather than requiring packagers or installers, which makes modules easy

to distribute. Best of all—from our perspective—modules can be written in script,

meaning you don’t need to be a C# developer to create one.

 When it comes to modules, much of PowerShell’s capability relies on relatively

low-tech techniques. Modules must follow a specific naming and location conven-

tion in order for PowerShell to “see” them. This can really throw people for a loop

in the beginning—it’s tough to comprehend that PowerShell can get sensitive over

things like folder names and filenames. But that’s how it is.

13.1.1 Module location

In order for PowerShell to fully utilize them, modules must live in a specific loca-

tion. There can actually be more then one location; the PSModulePath environ-

ment variable defines those permitted locations. Here are the default contents of

the variable:

133Introducing modules

PS C:\> get-content env:\psmodulepath
C:\Users\donjones\Documents\WindowsPowerShell\Modules;C:\Windows\system32\Win

dowsPowerShell\v1.0\Modules\

You can modify this environment variable—using either Windows or a Group Policy

object (GPO)—to contain additional paths. Some third-party PowerShell products

might also modify this variable. The variable’s contents must be a semicolon-separated

list of paths where modules may be stored. For this chapter, we’ll start with the first

default path, which is in C:\Users\<username>\Documents\WindowsPowerShell\

Modules. This path does not exist by default: You’ll need to create it in order to begin

using it.

CAUTION In Windows Explorer, when you click the Documents library,
you’re actually accessing two folders: Public Documents and My Documents
(or just Documents). The module path in PSModulePath refers only to the My
Documents location. So if you’re using Windows Explorer to create the fold-
ers in this path, be sure that you expand the Documents library and explicitly
select My Documents or Documents.

We’ve created a handy command to create the necessary path:

PS C:\> New-Item -type directory -path (((get-content env:\psmodulepath)

 ➥ -split ';')[0])

 Directory: C:\Users\donjones\Documents\WindowsPowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/6/2012 8:36 PM Modules

Note that this path is user specific; if you want to put your modules into a shared loca-

tion that’s accessible by multiple users, then it’s fine to add that path to PSModulePath

for those users. Doing so with a GPO would be easiest, and it’s fine to put UNC paths

into PSModulePath rather than having to map a network drive.

13.1.2 Module name

Module names should consist of letters, numbers, and underscores, although

Microsoft-provided modules tend to be named only with letters. Don’t use module

names that contain spaces (it isn’t technically illegal, but it makes them a bit harder

to work with).

 Once you’ve come up with a good name for your module (we’re going to use

MOLTools), you need to create a folder for the module. In many ways, the folder you

create is the module: If you distribute this to other users, for example, it’s the entire

folder that you will distribute. The folder must be created in one of the paths listed in

PSModulePath; if you put the module folder elsewhere, then it won’t participate in

numerous PowerShell features (like module autodiscovery, autoloading, updatable

help, and so on).

 We’ll change to the allowed module path and create a folder for MOLTools:

134 CHAPTER 13 Script and manifest modules

PS C:\> cd .\users\donjones\Documents\WindowsPowerShell\Modules

PS C:\users\donjones\Documents\WindowsPowerShell\Modules> mkdir
cmdlet mkdir at command pipeline position 1
Supply values for the following parameters:
Path[0]: MOLTools
Path[1]:

 Directory: C:\users\donjones\Documents\WindowsPowerShell\Modules

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/6/2012 8:41 PM MOLTools

We chose the name MOLTools after some serious thought. Keep in mind that PowerShell’s

command-naming convention allows for a prefix on the noun portion of command

names. This prefix is designed to keep command names from overlapping. So, our

Get-SystemInfo command should be named something like Get-MOLSystemInfo

instead. The MOL stands for “Month of Lunches,” and it’s a noun prefix we feel is unlikely

to be used by many others. That makes it private to us (although there’s no way to enforce

our ownership of it). Using MOL as our prefix will help ensure that our command can

peacefully coexist with any Get-SystemInfo commands that someone else dreams up.

 Having chosen MOL as our noun prefix, it makes sense to also include it in our

module name. That way, the module name itself provides a clue as to the noun prefix

used by the commands within the module.

TRY IT NOW Make sure you can create a MOLTools module folder as you fol-
low along. Also, consider the prefix that you might use for your organization’s
commands and modules.

13.1.3 Module contents

With our module folder created, we can begin adding contents to it. We want to be able

to load this module by running Import-Module MOLTools or by attempting to run one

of the commands within the module (Get-SystemInfo, or Get-MOLSystemInfo if we

rename it). In order for that to work, we need to understand a bit about how PowerShell

loads modules.

 First, if a module is located in a nonstandard path (that is, a path not listed in

PSModulePath), we’ll always have to manually load the module. Suppose we stored

the module folder in C:\MyStuff. We’d need to run Import-Module C:\MyStuff\

MOLTools in order to load the module, and PowerShell wouldn’t be able to automati-

cally load it for us.

 That’s why it’s better to go with one of the supported module paths or to add a

new supported path to the PSModulePath environment variable. That way, we can

simply run Import-Module MOLTools, or just run one of the module’s commands, to

load the module.

 When you run Import-Module, or when PowerShell attempts to automatically load

a module for you, the shell looks in your module folder for one of these items, and it

looks in this specific order:

http://MoreLunches.com
http://MoreLunches.com

135Creating a script module

1 A module manifest, which in our case would be MOLTools.psd1. Note that the

filename must match the name of the module’s folder, MOLTools.

2 A binary module, which in our example would be MOLTools.dll, if we were

using a compiled binary, which we aren’t. Again, the filename must be the com-

plete module name plus the filename extension.

3 A script module, which for us would be MOLTools.psm1. Once again, you see

that the filename must be the complete module name, exactly as the module’s

folder is named, plus the .psm1 filename extension.

This is the bit that really throws people. We see students put something like Test.psm1

into the \Modules\MOLTools folder, and that simply won’t work. Most of PowerShell’s

magic is based upon the module folder being in one of the supported paths and on

the module contents having the same name as that folder.

CAUTION Avoid putting modules into the other predefined path, which is
under C:\Windows\System32—that location is reserved for Microsoft’s use.

13.2 Creating a script module

Listing 13.1 shows our current script file, which we’re still calling Test.ps1. Notice

that we’ve renamed our command to Get-MOLSystemInfo (highlighted in bold-

face), and we’ve removed the final line of the script that was being used to run the

function. We’re saving this as C:\Users\donjones\WindowsPowerShell\Modules\

MOLTools\MOLTools.psm1—in other words, making it into a script module.

function Get-MOLSystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-MOLSystemInfo
.EXAMPLE
 Get-MOLSystemInfo -ComputerName SERVER1,SERVER2

Listing 13.1 MOLTools.psm1

136 CHAPTER 13 Script and manifest modules

#>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 HelpMessage="Computer name or IP address")]
 [ValidateCount(1,10)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = 'c:\retry.txt',

 [switch]$LogErrors
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 Write-Verbose "Beginning PROCESS block"
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 Try {
 $everything_ok = $true
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer `
 -erroraction Stop
 } Catch {
 $everything_ok = $false
 Write-Warning "$computer failed"
 if ($LogErrors) {
 $computer | Out-File $ErrorLog -Append
 Write-Warning "Logged to $ErrorLog"
 }
 }

 if ($everything_ok) {
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 $obj.PSObject.TypeNames.Insert(0,'MOL.SystemInfo')
 Write-Output $obj
 }
 }
 }
 END {}
}

137Creating a module manifest

That’s all we need to do, provided we only want the module to be visible to the cur-

rently logged-on user. Again, if we wanted the module to be shared among users, we’d

have created a new path and added that to PSModulePath.

 Running Import-Module MOLTools and then Help Get-MOLSystemInfo confirms

that our module loads and works. We can then run Get-MOLSystemInfo –computername

localhost to get the output of the command. But if you do that in a fresh shell window,

you won’t get the custom table view that we created in the previous chapter. Let’s fix

that next.

13.3 Creating a module manifest

A script module is intended to consist of a single .PSM1 file, and that’s it. In our case,

our module contents technically consist of MOLTools.psm1 and the XML view file we

created in the previous chapter. A manifest would let us load both of those into mem-

ory at once, so let’s create one. We’ll start by copying the XML view file into our mod-

ule folder:

PS C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools> copy C:\
test.format.ps1xml .\
PS C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools> ls

 Directory:
 C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/6/2012 5:52 PM 2833 MOLTools.psm1
-a--- 5/6/2012 8:23 AM 2018 test.format.ps1xml

It seems silly to have that still named test.format.ps1xml, so let’s rename it to

MOLTools.format.ps1xml—that helps visually connect it to the script module file:

PS C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools> ren .\te
st.format.ps1xml MOLTools.format.ps1xml
PS C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools> ls

 Directory:
 C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/6/2012 8:23 AM 2018 MOLTools.format.ps1xml
-a--- 5/6/2012 5:52 PM 2833 MOLTools.psm1

Now let’s create a new module manifest. We’re going to do so by running

NewModuleManifest and providing the information needed using the command’s

parameters. Note that the module manifest filename must be MOLTools.psd1 in order

for the shell to “see” the manifest.

PS C:\Users\donjones\Documents\WindowsPowerShell\Modules\MOLTools>
 New-ModuleManifest -Path MOLTools.psd1
 -Author 'Don & Jeff'
 -CompanyName 'Month ofLunches'

138 CHAPTER 13 Script and manifest modules

 -Copyright '(c)2012 Don Jones and Jeffery Hicks'
 -Description 'Sample Module for Month of Lunches'
 -FormatsToProcess .\MOLTools.format.ps1xml
 -ModuleVersion 1.0
 -PowerShellVersion 3.0
 -RootModule .\MOLTools.psm1

NOTE We’ve formatted this nicely to fit in the book, but you’d type it all on
one line.

Aside from –Path, the –FormatsToProcess and –RootModule parameters are the really

important ones. –FormatsToProcess is a comma-separated list of .format.ps1xml view

files (or in our case, just the single file), and –RootModule is the “main” file in our

module (in our case, our script module).

 The root module is an important concept: Only the commands in the root module

will be made visible to shell users. If our script module imported other modules, by

including Import-Module commands within the script file or within one of its func-

tions, those child modules wouldn’t be visible to shell users (although someone could

still manually import one of those modules, if they wanted to, to see their contents).

TIP Once you have a module manifest created, most likely a lot of it is boiler-
plate that you can reuse with other modules. There’s nothing wrong with
copying and pasting between .psd1 files and changing filenames as necessary.
But you’ll need to create a new GUID for each manifest, which is quite easy.
Use this command in the shell to create one, [guid]::NewGuid(), and then
copy and paste the result into your manifest. Any sections you don’t need in
the manifest you can comment out.

To test this, we’re going to close the shell console and open a new one. Figure 13.1

shows that we can import the module, run the command, and get the formatted out-

put defined in our XML view file. Success!

TRY IT NOW Make sure you can follow along to this point and get the same
results that we do.

Figure 13.1 Testing the new module

139Creating a module-level setting variable

13.4 Creating a module-level setting variable

Now that we’ve created a script module, we can take advantage of some other cool

functionality provided by modules. For example, right now we’re going to create a

module variable. This will work a lot like the shell’s built-in “preference” variables:

The variable will be loaded into memory when the module is imported, and we’ll use

it to control an aspect of the module’s behavior. The following listing shows the

revised script file.

$MOLErrorLogPreference = 'c:\mol-retries.txt'

function Get-MOLSystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-MOLSystemInfo
.EXAMPLE
 Get-MOLSystemInfo -ComputerName SERVER1,SERVER2
#>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 HelpMessage="Computer name or IP address")]
 [ValidateCount(1,10)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = $MOLErrorLogPreference,

 [switch]$LogErrors
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 Write-Verbose "Beginning PROCESS block"

Listing 13.2 Adding a module-level variable to MOLTools.psm1

Module-level
variable

Using the
variable

140 CHAPTER 13 Script and manifest modules

 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 Try {
 $everything_ok = $true
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer `
 -erroraction Stop
 } Catch {
 $everything_ok = $false
 Write-Warning "$computer failed"
 if ($LogErrors) {
 $computer | Out-File $ErrorLog -Append
 Write-Warning "Logged to $ErrorLog"
 }
 }

 if ($everything_ok) {
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 $obj.PSObject.TypeNames.Insert(0,'MOL.SystemInfo')
 Write-Output $obj
 }
 }
 }
 END {}
}
Export-ModuleMember -Variable MOLErrorLogPreference
Export-ModuleMember -Function Get-MOLSystemInfo

What we’ve done is add a $MOLErrorLogPreference variable to the module. It’s not

defined within one of the module’s functions, so this becomes a module-level variable,

meaning it will exist in the shell’s memory as soon as the module is loaded. We’ve

then utilized that to assign a default value to the Get-MOLSystemInfo command’s

–ErrorLog parameter. This now enables a user to set $MOLErrorLogPreference to a

path and filename and have our command automatically use that as the default for the

–ErrorLog parameter.

 At the bottom of the revised script comes an important part. By default, module-

level variables are private, meaning they can only be seen by other items within the

module. Because our intent is to make the variable globally visible, we have to export

it, using the Export-ModuleMember command. As soon as we use that command,

everything in the module becomes private, meaning we also have to export our

Get-MOLSystemInfo function in order for that to be globally visible as well.

Making the
variable visible

141Creating a module-level setting variable

Figure 13.2 shows that everything is working. We start by importing the module and

then checking to see that $MOLErrorLogPreference has been added to the variable

drive. We then run the command, adding the –LogErrors parameter. As you can see,

the filename specified in $MOLErrorLogPreference has been created and filled with

the name of the failed computer.

NOTE You can also create and export aliases in much the same way. Define
the alias and then export it using Export-ModuleMember.

Figure 13.3 shows the real test: We removed the module and tested to make sure that

$MOLErrorLogPreference was also removed from the shell. Our module is fully self-

contained and can be completely loaded and unloaded on demand!

Figure 13.2 Testing the module-level variable

Figure 13.3 Removing the module from the shell’s memory

142 CHAPTER 13 Script and manifest modules

13.5 Coming up next

We’re almost finished with Get-SystemInfo—but not quite. It’s a “do something”

function, and we’d like to show you some examples of “input” and “output” functions.

We’d also like to show you how to access databases from within a PowerShell script,

and we can probably take care of all of that in the next chapter.

13.6 Lab

In this chapter you’re going to assemble a module called PSHTools, from the func-

tions and custom views that you’ve been working on for the last several chapters. Cre-

ate a folder in the user module directory, called PSHTools. Put all of the files you will

be creating in the labs into this folder.

13.6.1 Lab A

Create a single ps1xml file that contains all of the view definitions from the three

existing format files. Call the file PSHTools.format.ps1xml. You’ll need to be careful.

Each view is defined by the <View></View> tags. These tags and everything in between

should go between the <ViewDefinition></ViewDefinition> tags.

13.6.2 Lab B

Create a single module file that contains the functions from the Labs A, B, and C in

chapter 12, which should be the most current version. Export all functions in the

module. Be careful to copy the function only. In your module file, also define aliases

for your functions and export them as well.

13.6.3 Lab C

Create a module manifest for the PSHTools module that loads the module and custom

format files. Test the module following these steps:

1 Import the module.

2 Use Get-Command to view the module commands.

3 Run help for each of your aliases.

4 Run each command alias using localhost as the computer name and verify for-

matting.

5 Remove the module.

6 Are the commands and variables gone?

CAUTION Once you finish these labs, please check the sample solutions at
http://MoreLunches.com. Because you’re going to continue building on
these functions in some of the upcoming chapters, it’s important that you
have the correct solution (or close to it) before you continue.

143

Adding database access

We’re going to step away briefly from the tools we’ve been creating and look at

something you might want to add to your projects: reading and writing information

from databases. For example, you may want to query a database for a list of com-

puter names. Or perhaps you want to write the results from a function to a data-

base. As we’re going to show you, PowerShell doesn’t even care what kind of

database it is!

14.1 Simplifying database access

Accessing databases from PowerShell requires the use of pretty low-level .NET

Framework technology. To simplify that for you, we’re going to offer you a script

module that bundles all the .NET stuff into a couple of PowerShell advanced func-

tions, which should look and work a lot like a native PowerShell command. You’ll

need to either enter the appropriate code listings or download them from http://

MoreLunches.com (find this book’s name or cover image, click it, and go to the

Downloads section).

14.2 Setting up your environment

First, you need to get your test environment set up properly. The techniques we’re

going to show you will work across any database platform for which you have .NET

Framework–compatible or ODBC database drivers, but it’s up to you to get those

and install them. To keep things simple, we’re going to work with SQL Server

Express, which is a free edition of SQL Server that you can download from Micro-

soft. There are a variety of versions available; be sure to obtain one that’s compati-

ble with your version of the Windows operating system. Also, it’s often distributed

http://MoreLunches.com
http://MoreLunches.com

144 CHAPTER 14 Adding database access

in an Express with Management Tools package, which is the one you want. The man-

agement tools provide a simple GUI that you can use to set up a test database. Some-

times the management tools (Management Studio) are a separate download, and we

recommend that you install them if that’s the case.

NOTE We’re testing with SQL Server 2012 Express with Tools on a 64-bit edi-
tion of Windows 8. SQL Server 2012 offers the normal Express install or the
LocalDB install, and we chose the Express version. A full explanation of SQL

Server Express and how to install it is beyond the scope of this book, but we’ll
at least walk you through the installation steps we took. If you’re not using
Windows 8, you may need to use an older version of SQL Server Express.
Check the SQL Server system requirements for more information.

Here’s how we installed the product:

1 We went to http://www.microsoft.com/en-us/download/details.aspx?id=29062

and downloaded ENU\x64\SQLEXPRWT_x64_ENU.exe, which is the English-

language build of SQL Server 2012 Express with Tools. Microsoft may well

change that URL over time, and it will eventually be superseded by later

releases; visit http://download.microsoft.com to search for “SQL Express 2012”

if that URL stops working.

2 We made sure that our system already had all of the listed prerequisites

installed. If you don’t do this, the installer will usually prompt you to download

and install the necessary components, which may include a version of the .NET

Framework.

3 After downloading, we double-clicked the .exe file to start the installation. Keep

in mind that the steps we’re following apply only to SQL Server 2012 Express;

later releases, or even service pack versions, may have slightly different proce-

dures. It isn’t our goal with this book to teach you how to install SQL Server; we

just want to get it up and running on your system so that you’ll have something

to play with.

4 We selected the option to install a new standalone installation.

5 We accepted the licensing terms and allowed the installer to check for product

updates.

6 We opted to include the Database Engine Services, Management Tools, and SQL

Client Connectivity. We did not include SQL Server Replication or LocalDB,

although doing so shouldn’t hurt, if you want to include them.

7 We installed a Names instance, named SQLExpress, with an instance ID of

SQLEXPRESS. This was the default, and we kept the default installation path as

well.

8 We accepted the defaults for the Service Accounts and Collation tabs.

9 We accepted the defaults for the Database Engine Configuration tabs, includ-

ing Server Configuration, Data Directories, User Instances, and FILESTREAM.

10 We accepted the defaults for Error Reporting.

http://www.microsoft.com/en-us/download/details.aspx?id=29062
http://download.microsoft.com

145Setting up your environment

11 We waited a while for the installation to complete.

12 We created a folder, C:\SampleData, in which to place our sample database. We

made sure that our user account had read/write permissions to the folder.

TIP You can pretty much accept the defaults and get the same installation we
did. We’re not claiming this is a perfect production-quality install, but it’s per-
fect for our lab environment.

After the installation is complete, you’ll need to confirm the name of your SQL Server

instance. The easiest way to do that is to look at a list of running services on your com-

puter, because that will show you all installed SQL Server instances. We ran Get-Service,

with the following results:

PS C:\Windows\system32> get-service -name mssql* | select name

Name

MSSQL$SQLEXPRESS

This shows that we have a SQL Server service running with the instance ID SQLEX-

PRESS (which is what we told the installer to create, so that should come as no sur-

prise). The full name of this instance is <computername>\SQLEXPRESS, or

localhost\SQLEXPRESS if you’re logging in locally. You’ll need to know that in order to

build the correct connection string later.

 For now, open SQL Server Management Studio (it should have an icon in your Start

menu once the installer is complete). You’ll be asked to log in, as shown in figure 14.1.

We provided the instance name localhost\SQLEXPRESS and let it use our Windows cre-

dentials (which is all we told the installer we wanted to allow).

Figure 14.1 Connecting SQL Server Management Studio to our SQLEXPRESS instance

146 CHAPTER 14 Adding database access

Next, click the New Query button to open a new query window (as shown in figure 14.2).

Type (or paste in, if you’ve downloaded this book’s scripts) the code from listing 14.1

into the query window.

NOTE As a quick reminder, numbered listings in this book can be downloaded
from http://MoreLunches.com. Look for this book’s cover image, click it, and
scroll to the Downloads section. Downloading will be a lot easier than typing
them in and will ensure that you’re getting a corrected version in the event that
we find any bugs or make any improvements after the book is printed.

CREATE DATABASE [Inventory] ON PRIMARY
(NAME = N'Inventory', FILENAME = N'c:\sampledata\Inventory.mdf' , SIZE =

3096KB , FILEGROWTH = 1024KB)
 LOG ON
(NAME = N'Inventory_log', FILENAME = N'c:\sampledata\Inventory_log.ldf' ,

SIZE = 1024KB , FILEGROWTH = 10%)
GO
USE [Inventory]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[Computers](
 [computername] [nvarchar](50) NULL,
 [osversion] [nvarchar](100) NULL,
 [spversion] [nvarchar](100) NULL,
 [manufacturer] [nvarchar](100) NULL,
 [model] [nvarchar](100) NULL
) ON [PRIMARY]

GO

To run this after typing or pasting it in, click the ! (Execute) button in the toolbar.

Make sure it runs without error.

Listing 14.1 Creating a database

Figure 14.2 Opening a new query window in SQL Server Management Studio

http://MoreLunches.com

147The database functions

 Next, we’re going to put a couple of rows of data into the database. Close the query

window you were working in, and then open a new one by clicking that New Query

button again. Then, enter (or paste) the code from the following listing into the

query window.

Use [Inventory]
Go
INSERT INTO Computers (computername) VALUES ('localhost')
INSERT INTO Computers (computername) VALUES ('localhost')
INSERT INTO Computers (computername) VALUES ('not-online')

Once again, click ! (Execute) to run this query, and make sure it runs without error.

Once it’s done, you should be ready to start testing and using PowerShell.

14.3 The database functions

Listing 14.3 is a script module that we created to help simplify database access. We sug-

gest saving this file on your computer as \Users\<user>\Documents\WindowsPowerShell\

Modules\MOLDatabase\MOLDatabase.psm1, where <user> is your username in Win-

dows. This is the same folder structure where your PSHTools module, from the previous

chapter, is located. Remember, the MOLDatabase folder should be at the same level as

the MOLTools folder, and MOLDatabase.psm1 should go inside the MOLDatabase folder.

Figure 14.3 shows what this looks like in Windows Explorer.

Listing 14.2 Adding data to the database

Figure 14.3 Saving the MOLDatabase module

148 CHAPTER 14 Adding database access

function Get-MOLDatabaseData {
 [CmdletBinding()]
 param (
 [string]$connectionString,
 [string]$query,
 [switch]$isSQLServer
)
 if ($isSQLServer) {
 Write-Verbose 'in SQL Server mode'
 $connection = New-Object -TypeName `
 System.Data.SqlClient.SqlConnection
 } else {
 Write-Verbose 'in OleDB mode'
 $connection = New-Object -TypeName `
 System.Data.OleDb.OleDbConnection
 }
 $connection.ConnectionString = $connectionString
 $command = $connection.CreateCommand()
 $command.CommandText = $query
 if ($isSQLServer) {
 $adapter = New-Object -TypeName `
 System.Data.SqlClient.SqlDataAdapter $command
 } else {
 $adapter = New-Object -TypeName `
 System.Data.OleDb.OleDbDataAdapter $command
 }
 $dataset = New-Object -TypeName System.Data.DataSet
 $adapter.Fill($dataset)
 $dataset.Tables[0]
 $connection.close()
}

function Invoke-MOLDatabaseQuery {
 [CmdletBinding(SupportsShouldProcess=$True,
 ConfirmImpact='Low')]
 param (
 [string]$connectionString,
 [string]$query,
 [switch]$isSQLServer
)
 if ($isSQLServer) {
 Write-Verbose 'in SQL Server mode'
 $connection = New-Object -TypeName `
 System.Data.SqlClient.SqlConnection
 } else {
 Write-Verbose 'in OleDB mode'
 $connection = New-Object -TypeName `
 System.Data.OleDb.OleDbConnection
 }
 $connection.ConnectionString = $connectionString
 $command = $connection.CreateCommand()
 $command.CommandText = $query
 if ($pscmdlet.shouldprocess($query)) {

Listing 14.3 MOLDatabase.psm1 script module

149About the database functions

 $connection.Open()
 $command.ExecuteNonQuery()
 $connection.close()
 }
}

These functions are intended to provide low-level access to a database, using a generic

approach. In the next couple of sections, we’ll explain what they do and how they

work, and then we’ll incorporate them into our running example script (the

MOLTools module that you created in the previous chapter).

NOTE We’ve provided you with these functions in the form of a module
because we hope that you’ll be able to use them in your own tools. Part of
what we’ll be showing you includes having your module load the MOLDatabase
module behind the scenes, meaning you should be able to use our database
functions in your own projects to simplify database access.

14.4 About the database functions

So let’s cover a little background information on the two database functions.

Get-MOLDatabaseData is to be used when you want to query information from a data-

base; Invoke-MOLDatabaseQuery is for when you want to make changes, such as add-

ing data, removing data, or changing data. Each supports three parameters:

■ -ConnectionString—This tells PowerShell how to find the database server,

what database to connect to, and how to authenticate. You can find more con-

nection string examples at http://ConnectionStrings.com.

■ -isSQLServer—Include this switch when your connection string points to a

Microsoft SQL Server. Omit this string for all other database server types, and

PowerShell will use OleDB instead. You’ll need to make sure your connection

string is OleDB compatible and that you’ve installed the necessary OleDB driv-

ers to access your database. That can be MySQL, Access, Oracle, or whatever

you like.

■ -Query—This is the actual SQL language query that you want to run. This book

isn’t going to dive into detail on that language; we assume you know it already.

If you’d like to learn more about the SQL language, there are numerous books

and videos on the subject.

Invoke-MOLDatabaseQuery doesn’t write anything to the pipeline; it just runs your

query. Get-MOLDatabaseData will retrieve data and place it into the pipeline. Within

the pipeline, you’ll get objects with properties that correspond to the columns of the

database. We’re not going to dive into further detail on how the two database func-

tions operate internally. As we said at the outset, the line in the sand for this book is

the .NET Framework. These functions internally utilize the .NET Framework, and so

for this book they’re out of scope. The functions do, however, provide a nice wrapper

around .NET, so that you can access databases without having to mess around with the

raw .NET Framework stuff.

http://ConnectionStrings.com

150 CHAPTER 14 Adding database access

 Note that Invoke-MOLDatabaseQuery declares support for the –WhatIf and

–Confirm parameters via its SupportsShouldProcess attribute. We’ll cover that in

more detail in chapter 16. For right now, you can safely ignore it.

14.5 Using the database functions

 Let’s put the MOLDatabase module to use. Here’s what we’re going to do:

■ Modify the MOLTools module from the previous chapter so that it internally

loads the MOLDatabase module.

■ Create a function, in MOLTools, that reads computer names from the database

and delivers them to Get-MOLSystemInfo. This will be an example of an input

function, which we discussed at the outset of the book.

■ Create a function, in MOLTools, that takes the output from Get-MOLSystemInfo

and saves that information back to the database. This will be an example of an

output function, which we also discussed at the outset of the book, although in

this case the output will be to a database rather than to the screen or some

other visible form.

We first need to create a connection string, which we’ll use throughout our new

MOLTools functions. Referring to http://ConnectionStrings.com, the following would

appear to be correct:

server=localhost\SQLEXPRESS;database=inventory;trusted_connection=True

We’ll put this into a module-level variable for easy reuse, but we won’t export that vari-

able. That’ll make the variable visible only to other elements within the MOL-

Tools.psm1 script module file. The following listing shows the complete, new

MOLTools.psm1 file.

$MOLErrorLogPreference = 'c:\mol-retries.txt'
$MOLConnectionString =

"server=localhost\SQLEXPRESS;database=inventory;trusted_connection=True"

Import-Module MOLDatabase

function Get-MOLComputerNamesFromDatabase {
<#
.SYNOPSIS
Reads computer names from the MoL sample database,
placing them into the pipeline as strings.
#>
 Get-MOLDatabaseData -connectionString $MOLConnectionString `
 -isSQLServer `
 -query "SELECT computername FROM computers"
}

function Set-MOLInventoryInDatabase {
<#
.SYNOPSIS

Listing 14.4 Revised MOLTools.psm1

http://ConnectionStrings.com

151Using the database functions

Accepts the output of Get-MOLSystemInfo and saves
the results back to the MoL sample database.
#>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [object[]]$inputObject
)
 PROCESS {
 foreach ($obj in $inputobject) {
 $query = "UPDATE computers SET
 osversion = '$($obj.osversion)',
 spversion = '$($obj.spversion)',
 manufacturer = '$($obj.manufacturer)',
 model = '$($obj.model)'
 WHERE computername = '$($obj.computername)'"
 Write-Verbose "Query will be $query"
 Invoke-MOLDatabaseQuery -connection $MOLConnectionString `
 -isSQLServer `
 -query $query
 }
 }
}

function Get-MOLSystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.
.EXAMPLE
 Get-Content names.txt | Get-MOLSystemInfo
.EXAMPLE
 Get-MOLSystemInfo -ComputerName SERVER1,SERVER2
#>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True,
 HelpMessage="Computer name or IP address")]

152 CHAPTER 14 Adding database access

 [ValidateCount(1,10)]
 [Alias('hostname')]
 [string[]]$ComputerName,

 [string]$ErrorLog = $MOLErrorLogPreference,

 [switch]$LogErrors
)
 BEGIN {
 Write-Verbose "Error log will be $ErrorLog"
 }
 PROCESS {
 Write-Verbose "Beginning PROCESS block"
 foreach ($computer in $computername) {
 Write-Verbose "Querying $computer"
 Try {
 $everything_ok = $true
 $os = Get-WmiObject -class Win32_OperatingSystem `
 -computerName $computer `
 -erroraction Stop
 } Catch {
 $everything_ok = $false
 Write-Warning "$computer failed"
 if ($LogErrors) {
 $computer | Out-File $ErrorLog -Append
 Write-Warning "Logged to $ErrorLog"
 }
 }

 if ($everything_ok) {
 $comp = Get-WmiObject -class Win32_ComputerSystem `
 -computerName $computer
 $bios = Get-WmiObject -class Win32_BIOS `
 -computerName $computer
 $props = @{'ComputerName'=$computer;
 'OSVersion'=$os.version;
 'SPVersion'=$os.servicepackmajorversion;
 'BIOSSerial'=$bios.serialnumber;
 'Manufacturer'=$comp.manufacturer;
 'Model'=$comp.model}
 Write-Verbose "WMI queries complete"
 $obj = New-Object -TypeName PSObject -Property $props
 $obj.PSObject.TypeNames.Insert(0,'MOL.SystemInfo')
 Write-Output $obj
 }
 }
 }
 END {}
}

Export-ModuleMember -Variable MOLErrorLogPreference
Export-ModuleMember -Function Get-MOLSystemInfo,
 Get-MOLComputerNamesFromDatabase,
 Set-MOLInventoryInDatabase

153Using the database functions

We need to explain what we did, but first let’s test it:

PS C:\> remove-module mol*
PS C:\> import-module moltools
PS C:\> Get-MOLComputerNamesFromDatabase | Get-MOLSystemInfo |
Set-MOLInventoryInDatabase
2
2
WARNING: not-online failed

Perfect! The 2 in the output is probably coming from our database function and is a

success indicator; we could have piped that to Out-Null to suppress it, but at this stage

it’s nice to see something happening. So what made this work? Let’s grab some snip-

pets from MOLTools.psm1, starting with this:

$MOLConnectionString =
"server=localhost\SQLEXPRESS;database=inventory;trusted_connection=True"

Import-Module MOLDatabase

This text at the top of the file sets our default connection string and loads the

MOLDatabase module. The contents of MOLDatabase won’t be visible to the shell user,

because it’s internal to MOLTools. Next up is our first new function:

function Get-MOLComputerNamesFromDatabase {
<#
.SYNOPSIS
Reads computer names from the MoL sample database,
placing them into the pipeline as strings.
#>
 Get-MOLDatabaseData -connectionString $MOLConnectionString `
 -isSQLServer `
 -query "SELECT computername FROM computers"
}

We kept this simple for illustration purposes; we should add better comment-based

help to it, so feel free to expand on what we’ve started. This just gets all of the computer

names from the database. It outputs each as an object with a ComputerName property.

That’s going to necessitate a minor change to Get-MOLSystemInfo’s parameters:

 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True,
 HelpMessage="Computer name or IP address")]
 [ValidateCount(1,10)]
 [Alias('hostname')]
 [string[]]$ComputerName,

Here, we’ve added the ValueFromPipelineByParameterName attribute, enabling the

function’s –ComputerName parameter to accept the contents of a piped-in ComputerName

property. We might, in the long run, want to remove that ValidateCount() attribute as

well, because it’s likely our database will eventually contain more than 10 computers.

154 CHAPTER 14 Adding database access

 Next is the function that saves the data back to the database:

function Set-MOLInventoryInDatabase {
<#
.SYNOPSIS
Accepts the output of Get-MOLSystemInfo and saves
the results back to the MoL sample database.
#>
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [object[]]$inputObject
)
 PROCESS {
 foreach ($obj in $inputobject) {
 $query = "UPDATE computers SET
 osversion = '$($obj.osversion)',
 spversion = '$($obj.spversion)',
 manufacturer = '$($obj.manufacturer)',
 model = '$($obj.model)'
 WHERE computername = '$($obj.computername)'"
 Write-Verbose "Query will be $query"
 Invoke-MOLDatabaseQuery -connection $MOLConnectionString `
 -isSQLServer `
 -query $query
 }
 }
}

This one is a bit more complex. You can see that we’ve set it to accept pipeline input

of the generic type Object. We then construct a query that grabs the object’s proper-

ties and sets them as the values of the database table’s columns. We then execute the

query. We’ve included some verbose output too, so that we can keep track of what’s

happening should we need to debug.

 Let’s see if we can’t modify the function to suppress those two output lines. The

next listing shows a revised MOLDatabase.psm1 file, with just one change, which we’ve

boldfaced for you.

function Get-MOLDatabaseData {
 [CmdletBinding()]
 param (
 [string]$connectionString,
 [string]$query,
 [switch]$isSQLServer
)
 if ($isSQLServer) {
 Write-Verbose 'in SQL Server mode'
 $connection = New-Object -TypeName `
 System.Data.SqlClient.SqlConnection
 } else {

Listing 14.5 Revised MOLDatabase.psm1

Object
change

Define a
database query

Execute the
database query

155Using the database functions

 Write-Verbose 'in OleDB mode'
 $connection = New-Object -TypeName `
 System.Data.OleDb.OleDbConnection
 }
 $connection.ConnectionString = $connectionString
 $command = $connection.CreateCommand()
 $command.CommandText = $query
 if ($isSQLServer) {
 $adapter = New-Object -TypeName `
 System.Data.SqlClient.SqlDataAdapter $command
 } else {
 $adapter = New-Object -TypeName `
 System.Data.OleDb.OleDbDataAdapter $command
 }
 $dataset = New-Object -TypeName System.Data.DataSet
 $adapter.Fill($dataset)
 $dataset.Tables[0]
 $connection.close()
}

function Invoke-MOLDatabaseQuery {
 [CmdletBinding(SupportsShouldProcess=$True,
 ConfirmImpact='Low')]
 param (
 [string]$connectionString,
 [string]$query,
 [switch]$isSQLServer
)
 if ($isSQLServer) {
 Write-Verbose 'in SQL Server mode'
 $connection = New-Object -TypeName `
 System.Data.SqlClient.SqlConnection
 } else {
 Write-Verbose 'in OleDB mode'
 $connection = New-Object -TypeName `
 System.Data.OleDb.OleDbConnection
 }
 $connection.ConnectionString = $connectionString
 $command = $connection.CreateCommand()
 $command.CommandText = $query
 if ($pscmdlet.shouldprocess($query)) {
 $connection.Open()
 $command.ExecuteNonQuery() | Out-Null
 $connection.close()
 }
}

Let’s test again:

PS C:\> remove-module mol*
PS C:\> import-module moltools
PS C:\> Get-MOLComputerNamesFromDatabase | Get-MOLSystemInfo |
Set-MOLInventoryInDatabase
WARNING: not-online failed

156 CHAPTER 14 Adding database access

Perfect! This illustrates how straightforward it is to put something together, test it, and

then tweak it if you’re not happy with the first results. And as you can see, with a little

help from the wrapper functions in MOLDatabase, we can start working with databases

pretty easily!

14.6 Lab

There’s no lab for this chapter; your actual use of databases is going to vary greatly

depending on your exact needs and the tasks that you want to complete. But the func-

tions we’ve provided in this chapter should give you all of the patterns and templates

you need to start using databases in your own scripts.

157

Interlude: creating a new tool

We’re not going to teach you anything new in this chapter. Instead, we’d like to

take a brief break from the learning and focus on reinforcing what you’ve done so

far, using a different example. This chapter, then, is basically one giant lab. You’ll

be walking through every step of the toolmaking process (as we’ve covered it thus

far) and creating an all-new tool for yourself.

NOTE In the example Lab Answers provided at http://MoreLunches.com,
we’ll provide you with an example script for each section of this chapter.
That way, if you get lost, you can catch up by looking at our example for
that point.

15.1 Designing the tool

This chapter will require that you have a Windows 8 or Windows Server 2012 com-

puter. You’re going to design a tool that makes use of the SmbShare module

included in those versions of Windows. Your task is to create a function named

Get-RemoteSmbShare. It should accept one or more computer names, either on a

–ComputerName parameter or from the pipeline, and then retrieve a list of current

shared folders from each specified computer. The output must include each com-

puter’s name, the share name, description, and the path to the share.

 Because the commands in the SmbShare module do not have –ComputerName

parameters themselves, you’ll utilize PowerShell Remoting (Invoke-Command). For

the purposes of this lab, assume that each computer you need to query has Power-

Shell Remoting enabled, with the default configuration of non-encrypted HTTP

over port 5985. For testing purposes, enable Remoting on your computer by run-

ning Enable-PSRemoting (this must be done as an Administrator in an elevated

158 CHAPTER 15 Interlude: creating a new tool

session, and you must ensure that the command completes without error). When you

test your function throughout this chapter, do so by providing “localhost” as the com-

puter name.

15.2 Writing and testing the function

Start writing your advanced function. For now, don’t include it in a module. Instead,

include it in a plain .ps1 script that’s saved into your C:\ directory. At the bottom of

your script, after the closing } for the function, enter the following to test the function:

Get-RemoteSmbShare –computerName localhost,localhost

Because localhost is listed twice, your function’s output should list each of your com-

puter’s shared folders twice.

15.3 Dressing up the parameters

Modify your Get-RemoteSmbShare function to include the following features:

■ The –ComputerName parameter should be mandatory, meaning PowerShell

should prompt for a value if one isn’t specified.

■ The –ComputerName parameter should accept input from the pipeline ByValue.

■ Add –HostName as an alias for the –ComputerName parameter.

■ Ensure that at least one, and no more than five, computer names are specified

each time the function is run.

Add the following lines to the bottom of your script to test your additions:

Section 15.3 Tests...
'localhost','localhost' | Get-RemoteSmbShare
Get-RemoteSmbShare –host localhost

The following should prompt for a name; enter localhost
Get-RemoteSmbShare

The following should fail with an error
Get-RemoteSmbShare –Computer one,two,three,four,five,six,seven

When you’ve finished testing your changes, remove all of the previous lines from your

script.

15.4 Adding help

Add comment-based help to your Get-RemoteSmbShare function. Include at least a

synopsis and description, and include help for the –ComputerName parameter. Also

include at least two examples. At the bottom of your script, add the following line to

test the new help:

Help Get-RemoteSmbShare

Remove that line of code from your script after testing your new help.

159Coming up next

15.5 Handling errors

Modify your Get-RemoteSmbShare function to include a –ErrorFile parameter. This

parameter should accept a single string and should default to C:\Errors.txt. Also, mod-

ify the function to catch any errors that occur while running Invoke-Command. When

an error occurs, the function should log the failed computer name to whatever file-

name is specified in the –ErrorFile parameter. It should always append values to this

file and should never attempt to delete the file. The function should also display a

Warning message with the failed computer name and shouldn’t attempt to create any

output objects for that computer’s shares. Don’t forget to update your comment-

based help to reflect the new parameter.

 Add the following to the bottom of your script to test this new functionality:

Get-RemoteSmbShare –computer localhost,NOTONLINE,localhost

Ensure that NOTONLINE is logged to C:\Errors.txt, and then remove the previous line

of code from your script.

15.6 Making a module

Incorporate your Get-RemoteSmbShare function into the PSHTools module that you

created for the earlier chapters in this book. When doing so, be sure to add only the

function itself to the module’s .psm1 file; don’t add any testing code that’s in the

script from previous sections of this chapter.

 Open a fresh PowerShell console window and run Import-Module PSHTools. Run

Get-RemoteSmbShare –computer localhost and ensure that the correct output is

displayed.

15.7 Coming up next

Congratulations! You’ve completed the core and most important part of this book!

Using the techniques you’ve learned to this point, you should be able to build some

pretty impressive tools. In the next seven chapters, we’re going to start expanding

your repertoire of toolmaking tricks, showing you additional techniques. We won’t

always be building off of the good-old Get-SystemInfo function any longer, but we

think you’ll find plenty of cool things to work with.

Part 3

Advanced
 toolmaking techniques

With the toolmaking basics under your belt, you’re ready to start exploring

some of the other techniques and strategies that PowerShell offers. In the next

few chapters, we’ll explore things like workflow, pipeline input troubleshooting,

and more. While none of these are intended to provide comprehensive coverage

of their topics (workflow, for example, needs an entire book of its own), these

chapters will get you pointed in the right direction to start using these advanced

features and capabilities.

163

Making tools
 that make changes

So far, we’ve been focused on tools that get information, Get-MOLSystemInfo being

our running example. But you’re obviously going to create tools that make changes,

too. When you do so, there are a couple of extra steps that you should take in order

to remain consistent with the rest of PowerShell. You’ve already seen a hint of this:

the support for –Confirm and –WhatIf that our Invoke-MOLDatabaseQuery function

included. In this chapter, we’ll walk you through those details.

NOTE We’re going to be using some of PowerShell’s CIM commands in
this chapter. Those work against Windows Management Instrumentation
(WMI) but only work if PowerShell Remoting has been enabled on the
computer. If you’re having problems using them, you can change to the
older WMI command. We’ll provide tips along the way for doing so.

16.1 The –Confirm and –WhatIf parameters

Look at the help for any PowerShell command that makes changes, and you’re

likely to see both –Confirm and –WhatIf included in the command’s parameters.

These parameters should be supported for any command that changes the system

state in any way—even something as simple as changing a file on disk.

 Fortunately, there’s no need to hand-code these parameters into your tools.

If you’re writing an advanced function, which is more or less all we’ve been writing

in this book, then just a little extra work can implement these two key parameters

for you.

164 CHAPTER 16 Making tools that make changes

16.2 Passthrough ShouldProcess

We’re going to create a tool called Restart-MOLCimComputer. Our tool will accept one

or more computer names and will utilize WMI to restart them. Specifically, we’re going

to use the Reboot() method of the Win32_OperatingSystem class. This method

accepts no parameters; it simply begins the reboot.

NOTE We’re aware that a very similar Restart-Computer command exists
natively in PowerShell. Our technique will utilize PowerShell v3’s CIM cmdlet
family, which utilizes the WS-MAN remoting protocol, rather than whatever
black magic Restart-Computer uses to communicate. In addition, we needed
a straightforward example, and this is what we thought of!

Anytime we start building a tool, we tend to start in the command line, running com-

mands ad hoc to get them working. So we’ll start by running this command in the

PowerShell console:

PS C:\>Invoke-CimMethod –ClassName Win32_OperatingSystem –MethodName Reboot
–ComputerName localhost

CAUTION A moment’s thought will tell you that you shouldn’t run this com-
mand unless you’ve saved all of your open files!

A quick reboot later and we’ve confirmed that our command works. Now let’s build a

tool out of it. We’re going to add the contents of listing 16.1 to our MOLTools.psm1

file, but we’re just listing the additions here instead of listing the entire file contents.

We’re also including the last lines of MOLTools.psm1, which list the module’s

exported items. Notice that we’ve added Restart-MOLCimComputer to the list of

exported functions.

function Restart-MOLCimComputer {
 [CmdletBinding(SupportsShouldProcess=$True,
 ConfirmImpact='High')]
 param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$ComputerName
)

Listing 16.1 Adding to MOLTools.psm1

Switching to WMI

If this command isn’t working on your system, then it’s likely that PowerShell’s

Remoting hasn’t been enabled. You can do that by running Enable-PSRemoting
as an Administrator. Or you can switch to Invoke-WmiMethod –Class
Win32_OperatingSystem –Name Reboot –ComputerName localhost.

You’ll need to make that same substitution in listing 16.1.

165Passthrough ShouldProcess

 PROCESS {
 ForEach ($computer in $computername) {
 Invoke-CimMethod -ClassName Win32_OperatingSystem `
 -MethodName Reboot `
 -ComputerName $computer
 }
 }
}

Export-ModuleMember -Variable MOLErrorLogPreference
Export-ModuleMember -Function Get-MOLSystemInfo,
 Get-MOLComputerNamesFromDatabase,
 Set-MOLInventoryInDatabase,
 Restart-MOLCimComputer

NOTE In order to keep this example straightforward, we’re not adding any
error handling. In a production environment, we expect that you’d want to
do that. You’d probably also want to add comment-based help and the other
niceties that we’ve covered in the preceding chapters.

There’s only one major difference between this tool and the others we’ve written, and

that’s in the [CmdletBinding()] attribute (which we’ve boldfaced). We’ve indicated

that this function supports ShouldProcess, which is what enables the –WhatIf and

–Confirm parameters. We’ve also defined a ConfirmImpact, setting it to High. We’ll

discuss that impact level in the next section; for now, let’s test our new function.

 Before we do that, look carefully at the help for Invoke-CimMethod. Notice that it

too supports –WhatIf and –Confirm, which you can verify by reading its help file. We’ll

save our revised MOLTools.psm1 file and then go into the console. We’ll remove the

MOLTools module (in case it’s already loaded), import it (to read in the new version),

and then run our function. This will reboot the computer again, so make sure there

aren’t any other open, unsaved files!

PS C:\> remove-module moltools
Remove-Module : No modules were removed. Verify that the specification of
modules to remove is correct and those modules exist in the runspace.
At line:1 char:1
+ remove-module moltools
+ ~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ResourceUnavailable: (:) [Remove-Module], I
 nvalidOperationException
 + FullyQualifiedErrorId : Modules_NoModulesRemoved,Microsoft.PowerShe
 ll.Commands.RemoveModuleCommand

PS C:\> import-module moltools
PS C:\> Restart-MOLCimComputer -ComputerName localhost

NOTE The error message tells us that the module wasn’t already loaded when
we tried to remove it. That’s fine.

And away it goes! This confirms that our command worked. Now let’s try running it

with –WhatIf and –Confirm:

166 CHAPTER 16 Making tools that make changes

PS C:\> import-module moltools
PS C:\> Restart-MOLCimComputer -ComputerName localhost -whatif
What if: Performing operation "Invoke-CimMethod: Reboot" on Target "Win32_O
peratingSystem".
PS C:\> Restart-MOLCimComputer -ComputerName localhost -confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Invoke-CimMethod: Reboot" on Target
"Win32_OperatingSystem".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):n
PS C:\>

This time, you can see the what-if output as well as the confirmation prompt. This

illustrates a couple of important points:

■ By specifying SupportsShouldProcess=$True in our [CmdletBinding()] attri-

bute, we allow Restart-CimComputer to accept the –WhatIf and –Confirm

parameters.

■ Because our internal command, Invoke-CimMethod, already supports –WhatIf

and –Confirm on its own, we don’t need to do anything else. The –WhatIf or

–Confirm passed to our tool is handed down to any internal commands that

also support the parameters. If you examine the what-if output and the

Confirm prompt, you’ll see that it’s actually Invoke-CimMethod that’s triggering

the output.

This hand-me-down effect works for all of the common parameters, including

–Verbose, -Debug, and others. If someone runs your tool with one of those, they’ll

be passed down to any commands within your tool. So if someone runs your tool

with –Verbose, every command inside the tool will also run with –Verbose, which is

pretty much exactly what you’d normally want!

16.3 Defining the impact level

Let’s circle back to the impact level. The possible values for ConfirmImpact, in the

[CmdletBinding()] attribute, are Low, Medium, and High. This is a relative indication

of how harmful your command might be. If you’re planning to make a minor change,

you specify a confirm impact of Low; if you’re making a major change—like rebooting

a computer—you might opt for High. There are no set rules about which level is

meant for what; it’s all up your judgment.

 PowerShell has two built-in variables, $WhatIfPreference and $ConfirmPreference.

They each work a bit differently:

■ $WhatIfPreference is set to $False by default. If you change it to $True, then

all commands that support –WhatIf will run as if –WhatIf was specified, even if

you don’t specify it. In other words, it shifts the shell into what-if mode by

default. When the variable is set to $True, you can run commands with

–WhatIf:$False to shut off what-if mode for just that command.

167Implementing ShouldProcess

■ $ConfirmPreference is set to High by default. When you run a command that sup-

ports –Confirm, the shell looks at the command’s impact level. If the command’s

impact level is equal to or higher than the contents of $ConfirmPreference, then

the –Confirm parameter is added automatically. So a command with an impact

level of High should always result in a confirmation prompt, unless you run it

with –Confirm:$False.

Reading that last bullet point, you might develop the expectation that our

Restart-CimComputer command will always display a confirmation prompt. After all,

we’ve set its ConfirmImpact to High, right? But if you recall our first test of the command,

the computer rebooted without a confirmation prompt at all. What happened?

 The secret is in how the hand-me-down process works. You see,

Restart-CimComputer never gave the shell a chance to check the impact level.

Instead, it ran Invoke-CimMethod. That command’s impact level isn’t set to High, so

it didn’t trigger the $ConfirmPreference. Your tool will only auto-trigger confirma-

tion when it explicitly tells the shell that it’s doing something that might require

confirmation. That’s what we’ll look at next.

16.4 Implementing ShouldProcess

For our next tool, we’re going to change a service’s logon password. This is something

that must be accomplished by running the Change() method of WMI’s Win32_Service

class. Glancing at the MSDN documentation for the class (http://msdn.micro-

soft.com/en-us/library/windows/desktop/aa384901(v=vs.85).aspx), we see that the

Change() method accepts numerous settings. The eighth one sets the logon password,

so we’ll need to pass $null for the first seven parameters, so that we don’t change any

of them. We can omit the ninth and subsequent parameters, because we also don’t

want to change them. Again, we’ll start by testing this in the shell—we’ll modify the

BITS service, because doing so won’t mess up anything too severely.

CAUTION BITS is certainly used in a production environment for, among
other things, Windows Update. We’re comfortable messing it up in our lab
environment, but this isn’t something you should experiment with on a live
computer.

PS C:\> Get-WmiObject -Class Win32_Service -ComputerName Localhost -Filter
"name='BITS'" | Invoke-WmiMethod -Name Change -ArgumentList $null,$null,$nu
ll,$null,$null,$null,$null,"P@ssw0rd"
Invoke-WmiMethod : Input string was not in a correct format.
At line:1 char:84
+ Get-WmiObject -Class Win32_Service -ComputerName Localhost -Filter
"name='BITS'" ...
+ ~~
~~~~~~~~
    + CategoryInfo          : NotSpecified: (:) [Invoke-WmiMethod], Forma
   tException
    + FullyQualifiedErrorId : System.FormatException,Microsoft.PowerShell
   .Commands.InvokeWmiMethod

http://msdn.microsoft.com/en-us/library/windows/desktop/aa384901(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384901(v=vs.85).aspx


168 CHAPTER 16 Making tools that make changes

We’ve chosen to use the WMI command, rather than the CIM equivalent, for a specific

reason: The –ArgumentList parameter of Invoke-WmiMethod can’t deal with $null

values. That’s why we got this error message. Invoke-CimMethod accepts arguments in

a different format, specifically to avoid this problem. For the moment, we’re going to

pretend that we’re writing a tool that needs to run against older computers (such as

Windows XP), so the newer CIM cmdlets aren’t an option. That means that, rather

than using Invoke-WmiMethod, we’ll have to manually invoke the Change() method of

the object. This presents a problem: Although Invoke-WmiMethod supports –WhatIf

and –Confirm, an object method does not. We’ll need to manually implement support

for those two parameters. 

 The next listing shows the new function we’re adding to MOLTools.psm1, along

with the last couple of commands in that file, which are exporting our functions.

function Set-MOLServicePassword {
    [CmdletBinding(SupportsShouldProcess=$True,
                   ConfirmImpact='Medium')]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True)]
        [string[]]$ComputerName,

        [Parameter(Mandatory=$True)]
        [string]$ServiceName,

        [Parameter(Mandatory=$True)]
        [string]$NewPassword
    )
    PROCESS {
        foreach ($computer in $computername) {
            $svcs = Get-WmiObject -ComputerName $computer `
                                  -Filter "name='$servicename'" `
                                  -Class Win32_Service
            foreach ($svc in $svcs) {
                if ($psCmdlet.ShouldProcess("$svc on $computer")) {
                    $svc.Change($null,
                                $null,
                                $null,
                                $null,
                                $null,
                                $null,
                                $null,
                                $NewPassword) | Out-Null
                }
            }
        }
    }
}

Export-ModuleMember -Variable MOLErrorLogPreference
Export-ModuleMember -Function Get-MOLSystemInfo,
                              Get-MOLComputerNamesFromDatabase,
                              Set-MOLInventoryInDatabase,
                              Restart-CimComputer,
                              Set-MOLServicePassword

Listing 16.2 Adding more to MOLTools.psm1



169Implementing ShouldProcess

NOTE Again, we’ve left out things like comment-based help and error han-
dling, just to keep this example more straightforward.

Let’s test this right away. We’ll start in a fresh PowerShell console, load the module,

and see what happens:

PS C:\> Set-MOLServicePassword -ServiceName BITS -NewPassword "P@ssw0rd" -C
omputerName localhost

That’s what we expected. We set the confirm impact to Medium, and we know the

default value of $ConfirmPreference is High, so we weren’t expecting a confirmation

prompt. Now let’s change that variable and try the command again:

PS C:\> $ConfirmPreference = "Medium"
PS C:\> Set-MOLServicePassword -ServiceName BITS -NewPassword "P@ssw0rd" -C
omputerName localhost

Confirm
Are you sure you want to perform this action?
Performing operation "Set-MOLServicePassword" on Target
"\\DONJONES1D96\root\cimv2:Win32_Service.Name="BITS" on localhost".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "Y"):n
PS C:\>

Perfect. With $ConfirmPreference at Medium, our command’s impact level was equal

to or higher than the variable, and so confirmation happened automatically. Now let’s

put the variable back to its default, and try running the command in what-if mode:

PS C:\> $ConfirmPreference = "High"
PS C:\> Set-MOLServicePassword -ServiceName BITS -NewPassword "P@ssw0rd" -C
omputerName localhost -WhatIf
What if: Performing operation "Set-MOLServicePassword" on Target "\\DONJONE
S1D96\root\cimv2:Win32_Service.Name="BITS" on localhost".
PS C:\>

Excellent. Now for confirmations:

PS C:\> Set-MOLServicePassword -ServiceName BITS -NewPassword "P@ssw0rd" -C
omputerName localhost -confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Set-MOLServicePassword" on Target
"\\DONJONES1D96\root\cimv2:Win32_Service.Name="BITS" on localhost".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "Y"):n
PS C:\>

Wonderful! Or, as our friend Spike says, $GREAT! Now let’s look at how that works.

The magic is contained within a single line:

if ($psCmdlet.ShouldProcess("$svc on $computer")) {

$psCmdlet is a built-in object that represents the shell’s cmdlet functionality for our

tool. By calling its ShouldProcess() method, we’re informing the shell that we’re



170 CHAPTER 16 Making tools that make changes

about to do something dangerous. We pass in a text description of whatever it is we’re

modifying (the target), so that the confirmation prompt and what-if output can be

more informative.

NOTE By referring to $svc in our target, we’re displaying the complete ser-
vice WMI path and name. For something a bit shorter, you might put
"$($svc.name) on $computer" instead.

When ShouldProcess() executes, PowerShell does a few checks:

■ If the command was run with –WhatIf, ShouldProcess() returns False, prevent-

ing the code within the If construct from executing at all. The shell displays the

what-if output, using the target description passed to ShouldProcess().

■ If the command was run with –Confirm, ShouldProcess() displays the confir-

mation prompt and returns True only if the user selects Yes or Yes to All at the

prompt.

■ If the command wasn’t run with –Confirm, but the command’s impact level is

equal to or higher than $ConfirmPreference, then the shell does the confirma-

tion prompt anyway.

So when do you need to include this If construct and the ShouldProcess() method?

■ If your command is only running other commands that natively support –WhatIf

and –Confirm (check their help files to be certain), you don’t need the

If construct or ShouldProcess(). Just include SupportsShouldProcess in

your [CmdletBinding()] attribute, as we did with our Restart-MOLCimComputer

function.

■ If your command includes other commands that support –WhatIf and

–Confirm, but you want to specify a higher impact level than those commands

natively declare, then wrap those commands in the If construct that

uses ShouldProcess(). In your [CmdletBinding()] attribute, include

SupportsShouldProcess and your desired ConfirmImpact.

■ If your command is running object methods, or commands that don’t natively

support –WhatIf and –Confirm, then wrap them in the If construct that

uses ShouldProcess(). Your [CmdletBinding()] attribute must include

SupportsShouldProcess and an impact level.

Just to make sure you’re on the same page going forward, the following listing con-

tains the complete MOLTools.psm1 file to this point.

$MOLErrorLogPreference = 'c:\mol-retries.txt'
$MOLConnectionString = 

"server=localhost\SQLEXPRESS;database=inventory;trusted_connection=True"

Import-Module MOLDatabase

function Get-MOLComputerNamesFromDatabase {
<#

Listing 16.3 The complete MOLTools.psm1 file



171Implementing ShouldProcess

.SYNOPSIS
Reads computer names from the MoL sample database,
placing them into the pipeline as strings.
#>
    Get-MOLDatabaseData -connectionString $MOLConnectionString `
                        -isSQLServer `
                        -query "SELECT computername FROM computers" 
}

function Set-MOLInventoryInDatabase {
<#
.SYNOPSIS
Accepts the output of Get-MOLSystemInfo and saves
the results back to the MoL sample database.
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True)]
        [object[]]$inputObject
    )
    PROCESS {
        foreach ($obj in $inputobject) {
            $query = "UPDATE computers SET
                      osversion = '$($obj.osversion)',
                      spversion = '$($obj.spversion)',
                      manufacturer = '$($obj.manufacturer)',
                      model = '$($obj.model)'
                      WHERE computername = '$($obj.computername)'"
            Write-Verbose "Query will be $query"
            Invoke-MOLDatabaseQuery -connection $MOLConnectionString `
                                    -isSQLServer `
                                    -query $query
        }
    }
}

function Get-MOLSystemInfo {
<#
.SYNOPSIS
Retrieves key system version and model information
from one to ten computers.
.DESCRIPTION
Get-SystemInfo uses Windows Management Instrumentation
(WMI) to retrieve information from one or more computers.
Specify computers by name or by IP address.
.PARAMETER ComputerName
One or more computer names or IP addresses, up to a maximum
of 10.
.PARAMETER LogErrors
Specify this switch to create a text log file of computers
that could not be queried.
.PARAMETER ErrorLog
When used with -LogErrors, specifies the file path and name
to which failed computer names will be written. Defaults to
C:\Retry.txt.



172 CHAPTER 16 Making tools that make changes

.EXAMPLE
 Get-Content names.txt | Get-MOLSystemInfo
.EXAMPLE
 Get-MOLSystemInfo -ComputerName SERVER1,SERVER2
#>
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True,
                   ValueFromPipelineByPropertyName=$True,
                   HelpMessage="Computer name or IP address")]
        [ValidateCount(1,10)]
        [Alias('hostname')]
        [string[]]$ComputerName,

        [string]$ErrorLog = $MOLErrorLogPreference,

        [switch]$LogErrors
    )
    BEGIN {
        Write-Verbose "Error log will be $ErrorLog"
    }
    PROCESS {
        Write-Verbose "Beginning PROCESS block"
        foreach ($computer in $computername) {
            Write-Verbose "Querying $computer"
            Try {
                $everything_ok = $true
                $os = Get-WmiObject -class Win32_OperatingSystem `
                                    -computerName $computer `
                                    -erroraction Stop
            } Catch {
                $everything_ok = $false
                Write-Warning "$computer failed"
                if ($LogErrors) {
                    $computer | Out-File $ErrorLog -Append
                    Write-Warning "Logged to $ErrorLog"
                }
            }

            if ($everything_ok) {
                $comp = Get-WmiObject -class Win32_ComputerSystem `
                                      -computerName $computer
                $bios = Get-WmiObject -class Win32_BIOS `
                                      -computerName $computer
                $props = @{'ComputerName'=$computer;
                           'OSVersion'=$os.version;
                           'SPVersion'=$os.servicepackmajorversion;
                           'BIOSSerial'=$bios.serialnumber;
                           'Manufacturer'=$comp.manufacturer;
                           'Model'=$comp.model}
                Write-Verbose "WMI queries complete"
                $obj = New-Object -TypeName PSObject -Property $props
                $obj.PSObject.TypeNames.Insert(0,'MOL.SystemInfo')
                Write-Output $obj
            }



173Implementing ShouldProcess

        }
    }
    END {}
}

function Restart-MOLCimComputer {
    [CmdletBinding(SupportsShouldProcess=$True,
                   ConfirmImpact='High')]
    param(
        [Parameter(Mandatory=$true,
                   ValueFromPipeline=$true)]
        [string[]]$ComputerName
    )
    PROCESS {
        ForEach ($computer in $computername) {
            Invoke-CimMethod -ClassName Win32_OperatingSystem `
                             -MethodName Reboot `
                             -ComputerName $computer
        }
    }
}

function Set-MOLServicePassword {
    [CmdletBinding(SupportsShouldProcess=$True,
                   ConfirmImpact='Medium')]
    param(
        [Parameter(Mandatory=$True,
                   ValueFromPipeline=$True)]
        [string[]]$ComputerName,

        [Parameter(Mandatory=$True)]
        [string]$ServiceName,

        [Parameter(Mandatory=$True)]
        [string]$NewPassword
    )
    PROCESS {
        foreach ($computer in $computername) {
            $svcs = Get-WmiObject -ComputerName $computer `
                                  -Filter "name='$servicename'" `
                                  -Class Win32_Service
            foreach ($svc in $svcs) {
                if ($psCmdlet.ShouldProcess("$svc on $computer")) {
                    $svc.Change($null,
                                $null,
                                $null,
                                $null,
                                $null,
                                $null,
                                $null,
                                $NewPassword) | Out-Null
                }
            }
        }
    }
}



174 CHAPTER 16 Making tools that make changes

Export-ModuleMember -Variable MOLErrorLogPreference
Export-ModuleMember -Function Get-MOLSystemInfo,
                              Get-MOLComputerNamesFromDatabase,
                              Set-MOLInventoryInDatabase,
                              Restart-CimComputer,
                              Set-MOLServicePassword

TRY IT NOW Make sure you have this file and that you can run the commands as
we’ve shown you in this chapter. We’re going to build on this again in some
upcoming chapters, so it’s important to make sure you’re on the same page as us.

16.5 Lab

In WMI, the Win32_OperatingSystem class has a method called Win32Shutdown. It

accepts a single input argument, which is a number that determines if the method

shuts down, powers down, reboots, and logs off the computer.

 Write a function called Set-ComputerState. Have it accept one or more computer

names on a –ComputerName parameter. Also provide an –Action parameter, which

accepts only the values LogOff, Restart, ShutDown, or PowerOff. Finally, provide a

–Force switch parameter (switch parameters don’t accept a value; they’re either speci-

fied or not). 

 When the function runs, query Win32_OperatingSystem from each specified com-

puter. Don’t worry about error handling at this point; assume each specified com-

puter will be available. Be sure to implement support for the –WhatIf and –Confirm

parameters, as outlined in this chapter. Based on the –Action specified, execute the

Win32Shutdown method with one of the following values:

■ LogOff—0

■ ShutDown—1

■ Restart—2

■ PowerOff—8

If the –Force parameter is specified, add 4 to those values. So if the command was

Set-ComputerState –computername localhost –Action LogOff –Force, then the value

would be 4 (0 for LogOff, plus 4 for Force). The execution of Win32Shutdown is what

should be wrapped in the implementing If block for –WhatIf and –Confirm support.

CAUTION Be careful when testing this against localhost—be sure you’ve saved
your work, because the function will log you off.



175

Creating a
 custom type extension

A few chapters back, we showed you how to create a custom formatting view for

your tools’ output. In this chapter, we’re going to do something very similar by

creating a type extension. Unlike views, which only affect the visual presentation of

your output, a type extension can actually add functionality to objects you write to

the pipeline.

17.1 The anatomy of an extension

Believe it or not, you’ve already seen type extensions in action. For example, run

Get-Process | Get-Member, and look at the output:

   TypeName: System.Diagnostics.Process

Name                       MemberType     Definition
----                       ----------     ----------
Handles                    AliasProperty  Handles = Handlecount
Name                       AliasProperty  Name = ProcessName
NPM                        AliasProperty  NPM = NonpagedSystemMemorySize
PM                         AliasProperty  PM = PagedMemorySize
VM                         AliasProperty  VM = VirtualMemorySize
WS                         AliasProperty  WS = WorkingSet
__NounName                 NoteProperty   System.String __NounName=Process
Company                    ScriptProperty System.Object Company {get=$t...
CPU                        ScriptProperty System.Object CPU {get=$this....
Description                ScriptProperty System.Object Description {ge...
FileVersion                ScriptProperty System.Object FileVersion {ge...
Path                       ScriptProperty System.Object Path {get=$this...
Product                    ScriptProperty System.Object Product {get=$t...
ProductVersion             ScriptProperty System.Object ProductVersion ...



176 CHAPTER 17 Creating a custom type extension

We truncated the output to only show the type extensions: AliasProperties,

NoteProperties, and ScriptProperties. Other types of extensions include

ScriptMethods and PropertySets, which aren’t shown here. These extensions aren’t

native parts of the .NET Framework’s System.Diagnostics.Process class. If you look

up that class’s documentation (http://msdn.microsoft.com/en-us/library/system

.diagnostics .process.aspx), you won’t see Handles or Description or FileVersion.

These properties are added by PowerShell’s Extensible Type System, or ETS, because

the shell is producing the objects for output. Why does the shell do this? It depends.

There are several types of extension, each with a different purpose. Some of the major

ones, and their purposes, are as follows:

■ An AliasProperty provides an easier way, or a more consistent way, of referring

to a native object property. For example, Handles is easier than Handlecount,

and Name provides better across-the-shell consistency than ProcessName. Both of

those native properties remain accessible, but the AliasProperties gives us an

alternate way of accessing them.

■ A NoteProperty contains a static value and is often used by PowerShell to store

management information. In this example, the NounName NoteProperty keeps

track of the noun used by the command that produced the object (Process).

The shell might use this internally for a variety of purposes.

■ A ScriptProperty executes PowerShell script code in order to produce a prop-

erty value. For example, Path actually digs deep into the object’s native infor-

mation hierarchy to reveal a piece of information that’s ordinarily buried quite

deeply. A ScriptProperty doesn’t usually access any external resources to do its

job; it just reformats or reveals something that’s already part of the object.

■ A ScriptMethod is similar to a ScriptProperty, although sometimes it may take

an action and not produce any output at all. ScriptMethods are a bit rarer in

PowerShell’s native commands, although all WMI objects include ScriptMethods

that translate between WMI-style date values and human-readable date values.

■ A PropertySet bundles up one or more properties that are related in some

fashion. For example, run Get-Process | Select PSResources and you’ll see

different output from Get-Process, containing properties related to resource

consumption. PSResources is a property set.

Type extensions are defined in XML files, much like the formatting views you worked

with earlier. In PowerShell’s installation folder (run cd $pshome to get there), you’ll

find Types.ps1xml, which is the main ETS file that ships with PowerShell. Be careful

not to modify that file in any way (you’ll break it), but do feel free to use it as a copy-

and-paste template for your own extensions. 

 We’ll focus on adding two extensions to the MOL.SystemInfo object that’s pro-

duced by our Get-MOLSystemInfo function, which is in our MOLTools.psm1 file. We

won’t need to modify that script at all: Creating and loading the necessary ETS XML

will do everything we need. We’ll start with the simple template in listing 17.1, which

we’ll save as C:\MOLTools.ps1xml.

http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx


177Creating a script property

TIP Saving the file in C:\ lets us play with it more easily; we may have to load
it over and over to get it right, so we want to make it easy to get to. We’ll move
it to its final location when we’ve finished testing.

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

NOTE Notice that the filename extension is .ps1xml; that’s different from a
view file, which should use .format.ps1xml. 

Our type extensions will live within the <Types> and </Types> XML tags. We’re only

going to cover ScriptProperty and ScriptMethod extensions in this chapter, because

they’re the ones you’ll use the most. You probably won’t use AliasProperty much when

you’re extending your own objects (after all, because you’re creating the object from

scratch, you can name properties whatever you want in the first place). But you can

review PowerShell’s provided Types.ps1xml file to see examples of other extensions.

17.2 Creating a script property

Looking at the normal output of Get-MOLSystemInfo, we see something like this:

PS C:\> Get-MOLSystemInfo -ComputerName localhost | Format-List *

Manufacturer : Parallels Software International Inc.
OSVersion    : 6.2.8250
BIOSSerial   : Parallels-D5 A7 11 48 6C 63 42 80 AB E6 90 AF C4 D3 FC DC
ComputerName : localhost
SPVersion    : 0
Model        : Parallels Virtual Platform

That BIOS serial number is super long, at least for this computer. We’d like a version

of it that omits all the spaces, to create a shorter and more concise serial number. The

following listing shows what we’ll add to MOLTools.ps1xml.

  <Type>
    <Name>MOL.SystemInfo</Name>
    <Members>
      <ScriptProperty>
        <Name>NormalizedBIOSSerial</Name>
        <GetScriptBlock>
            $this.biosserial -replace ' ',''
        </GetScriptBlock>
        </ScriptProperty>
    </Members>
  </Type>

There are a few specifics to notice about this:

Listing 17.1 C:\MOLTools.ps1xml

Listing 17.2 Our ScriptProperty type extension



178 CHAPTER 17 Creating a custom type extension

■ The <Name></Name> tag must include the full type name of the object type that

we want to extend.

■ We only create one <Type></Type> block for a given object type. All of the

extensions for that type go within the <Members></Members> block. You’ll see

what we mean by that when we add the next extension to this type.

■ The <Name></Name> within <ScriptProperty></ScriptProperty> is the name

of the new ScriptProperty extension.

■ The <GetScriptBlock></GetScriptBlock> defines the code that will run when

the property is read. Within this block, the special $this variable refers to the

object itself, enabling us to access its other properties and methods. In this

example, we’re using PowerShell’s –replace operator to replaces spaces with

an empty string.

NOTE Depending on the computer you query, you may not get a BIOS serial
number that needs normalizing. In fact, you might not get a value at all!
That’s just the way WMI behaves. But the BIOS for this test computer offered a
reasonable teaching opportunity, so we ran with it.

17.3 Creating a script method

Because our MOL.SystemInfo object represents a computer, we want to provide a

quick way of pinging the computer over the network. Because that accesses external

resources, we’ll implement it as a ScriptMethod named CanPing(). The next listing

shows our revised C:\MOLTools.ps1xml file.

<?xml version="1.0" encoding="utf-8" ?>
<Types>
  <Type>
    <Name>MOL.SystemInfo</Name>
    <Members>
      <ScriptProperty>
        <Name>NormalizedBIOSSerial</Name>
        <GetScriptBlock>
            $this.biosserial -replace ' ',''
        </GetScriptBlock>
        </ScriptProperty>
        <ScriptMethod>
          <Name>CanPing</Name>
          <Script>
            Test-Connection -ComputerName $this.ComputerName -Quiet
          </Script>
        </ScriptMethod> 
    </Members>
  </Type>
</Types>

We highlighted the new ScriptMethod in bold. Notice that it comes between the

<Members> and </Members> tag, just like the ScriptProperty did, because these two

Listing 17.3 The revised C:\MOLTools.ps1xml file



179Testing the extension

extensions each modify the same MOL.SystemInfo object. Notice that, just as with the

ScriptProperty we created, we were able to use the $this variable to refer to the

actual object. That gave us access to the ComputerName property, which is where we

directed the ping.

17.4 Loading the extension

First, let’s run our Get-MOLSystemInfo command and see what kind of object it’s pro-

ducing. This will be the “before” in our “before and after” test:

PS C:\> Get-MOLSystemInfo -ComputerName localhost | Get-Member

   TypeName: MOL.SystemInfo

Name         MemberType   Definition
----         ----------   ----------
Equals       Method       bool Equals(System.Object obj)
GetHashCode  Method       int GetHashCode()
GetType      Method       type GetType()
ToString     Method       string ToString()
BIOSSerial   NoteProperty System.String BIOSSerial=Parallels-D5 A7 11 4...
ComputerName NoteProperty System.String ComputerName=localhost
Manufacturer NoteProperty System.String Manufacturer=Parallels Software...
Model        NoteProperty System.String Model=Parallels Virtual Platform
OSVersion    NoteProperty System.String OSVersion=6.2.8250
SPVersion    NoteProperty System.UInt16 SPVersion=0

Now we’ll use Update-TypeData to load our ETS XML file into memory. We’ll use the

–PrependPath parameter, so that our new ETS data goes into memory before whatever

PowerShell has already loaded. Review the command’s help for information on its

other option, -AppendPath.

PS C:\> Update-TypeData -PrependPath .\MOLTools.ps1xml

As with most things in PowerShell, no news is good news. No error messages means

that our XML parsed correctly and was loaded into the shell. 

17.5 Testing the extension

Let’s see what our command output looks like now:

PS C:\> Get-MOLSystemInfo -ComputerName localhost | Get-Member

   TypeName: MOL.SystemInfo

Name                 MemberType     Definition
----                 ----------     ----------
Equals               Method         bool Equals(System.Object obj)
GetHashCode          Method         int GetHashCode()
GetType              Method         type GetType()
ToString             Method         string ToString()
BIOSSerial           NoteProperty   System.String BIOSSerial=Parallels-...
ComputerName         NoteProperty   System.String ComputerName=localhost
Manufacturer         NoteProperty   System.String Manufacturer=Parallel...
Model                NoteProperty   System.String Model=Parallels Virtu...
OSVersion            NoteProperty   System.String OSVersion=6.2.8250



180 CHAPTER 17 Creating a custom type extension

SPVersion            NoteProperty   System.UInt16 SPVersion=0
CanPing              ScriptMethod   System.Object CanPing();
NormalizedBIOSSerial ScriptProperty System.Object NormalizedBIOSSerial ...

Our two type extensions have been added! Let’s try the ScriptProperty first:

PS C:\> Get-MOLSystemInfo -ComputerName localhost |
>> Select-Object -Property ComputerName,OSVersion,NormalizedBIOSSerial |
>> Format-Table -AutoSize
>>

ComputerName OSVersion NormalizedBIOSSerial
------------ --------- --------------------
localhost    6.2.8250  Parallels-D5A711486C634280ABE690AFC4D3FCDC

Perfect! That’s exactly what we wanted in the serial number. Now let’s try the

ScriptMethod. For this, we’re going to get just one object and save it in a variable, so

that we can easily test the method:

PS C:\> $obj = Get-MOLSystemInfo -ComputerName localhost
PS C:\> $obj.CanPing()
True

Perfect! Now let’s see how we could use that with multiple computers, to filter out

those that don’t respond to a ping:

PS C:\> Get-MOLSystemInfo -ComputerName localhost,NOTONLINE |
>> Where-Object -FilterScript { $_.CanPing() }
>>

ComputerNa Mfgr                 Model                OSVersion  SP
me
---------- ----                 -----                ---------  --
localhost  Parallels Softwar... Parallels Virtual... 6.2.8250   0
WARNING: NOTONLINE failed

Perfect! Although...well, let’s think about this. Get-MOLSystemInfo itself relies on

network connectivity, right? So that sort of means everything it can connect to will

also respond to a ping, right? Well, not necessarily. A computer can respond to

Get-MOLSystemInfo’s use of WMI but still have a local firewall blocking the ICMP

ports used by ping. So we’re still conducting a useful check. At the very least, it’s a

straightforward example of how to create a ScriptMethod!

17.6 Adding the extension to a manifest

Now let’s move MOLTools.ps1xml into the folder used by the MOLTools module:

PS C:\> move .\MOLTools.ps1xml C:\Users\donjones\Documents\WindowsPowerShel
l\Modules\MOLTools

We need to have the type extension load at the same time that the rest of the module

loads. We could use New-ModuleManifest to create the necessary manifest, as we did

in the chapter on creating a custom format view. But we already have a manifest, so

why not just modify it? The following listing shows our modified MOLTools.psd1 mani-

fest, with our one change highlighted in bold.



181Adding the extension to a manifest

#
# Module manifest for module 'MOLTools'
#
# Generated by: Don & Jeff
#
# Generated on: 5/6/2012
#

@{

# Script module or binary module file associated with this manifest
RootModule = '.\MOLTools.psm1'

# Version number of this module.
ModuleVersion = '1.0'

# ID used to uniquely identify this module
GUID = '9b230d35-c473-4498-91a5-58f2b8c7425a'

# Author of this module
Author = 'Don & Jeff'

# Company or vendor of this module
CompanyName = 'Month of Lunches'

# Copyright statement for this module
Copyright = '(c)2012 Don Jones and Jeffery Hicks'

# Description of the functionality provided by this module
Description = 'Sample Module for Month of Lunches'

# Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = '3.0'

# Name of the Windows PowerShell host required by this module
# PowerShellHostName = ''

# Minimum version of the Windows PowerShell host required by this module
# PowerShellHostVersion = ''

# Minimum version of the .NET Framework required by this module
# DotNetFrameworkVersion = ''

# Minimum version of the common language runtime (CLR) required by this 
module

# CLRVersion = ''

# Processor architecture (None, X86, Amd64) required by this module
# ProcessorArchitecture = ''

# Modules that must be imported into the global environment prior to 
importing this module

# RequiredModules = @()

# Assemblies that must be loaded prior to importing this module
# RequiredAssemblies = @()

# Script files (.ps1) that are run in the caller's environment prior to 
importing this module

# ScriptsToProcess = @()

Listing 17.4 Adding our ETS file to MOLTools.psd1



182 CHAPTER 17 Creating a custom type extension

# Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = "MOLTools.ps1xml"

# Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = 'MOLTools.format.ps1xml'

# Modules to import as nested modules of the module specified in RootModule/
ModuleToProcess

# NestedModules = @()

# Functions to export from this module
FunctionsToExport = '*'

# Cmdlets to export from this module
CmdletsToExport = '*'

# Variables to export from this module
VariablesToExport = '*'

# Aliases to export from this module
AliasesToExport = '*'

# Commands to export from this module as Workflows
# ExportAsWorkflow = @()

# List of all modules packaged with this module
# ModuleList = @()

# List of all files packaged with this module
# FileList = @()

# Private data to pass to the module specified in RootModule/ModuleToProcess
# PrivateData = ''

# HelpInfo URI of this module
# HelpInfoURI = ''

# Default prefix for commands exported from this module. Override the default 
prefix using Import-Module -Prefix.

# DefaultCommandPrefix = ''

}

With this change, we can import our module and it’ll load our commands, our format

view, and our type extension, all at once.

17.7 Lab

Revisit the advanced function that you wrote for Lab A in chapters 6 through 14 of

this book. Create a custom type extension for the object output by that function. Your

type extension should be a ScriptMethod named CanPing(), as outlined in this chap-

ter. Save the type extension file as PSHTools.ps1xml. Modify the PSHTools module

manifest to load PSHTools.ps1xml, and then test your revised module to make sure the

CanPing() method works.



183

Creating
 PowerShell workflows

Workflows are an important new feature of PowerShell v3. They’re an incredibly

rich, complex technology that we can’t possibly cover comprehensively in this chap-

ter; they really deserve their own book. But they are a type of tool you can create

and make great use of, so we wanted to include this chapter as an introduction

to them.

18.1 Workflow overview

Workflows are a type of PowerShell command, just as cmdlets and functions are

types of commands. One of the easiest ways to understand workflows is to contrast

them with their closest cousin: functions.

 Functions are declared with the function keyword, as you’ve seen several

times in earlier chapters; workflows are declared with the workflow keyword.

Functions are executed by PowerShell itself; workflows are translated to the .NET

Framework’s Windows Workflow Foundation (WF) and executed by WF external

to PowerShell. Both functions and workflows execute a given set of commands in

a specific sequence, but workflows—thanks to WF—include detailed logging and

tracking of each and include the ability to retry steps that fail because of, for

example, an intermittent network hiccup or other transitory issue. Functions do

one thing at a time; workflows can do one thing at multiple times—parallel multi-

tasking. Functions start, run, and finish; a workflow can pause, stop, and restart. If

you turn off your computer in the middle of a function, the function is lost; if you

do so while a workflow is running, the workflow can potentially be recovered and

resumed automatically. 



184 CHAPTER 18 Creating PowerShell workflows

Table 18.1 illustrates some of the differences between a function and a workflow.

 Workflows are incorporated into the shell by running Import-Module PSWorkflow;

that module extends PowerShell to understand workflows and to execute them prop-

erly. Workflows are exposed as commands, meaning you execute them just like com-

mands. For example, if you created a workflow named Do-Something, you’d just run

Do-Something to execute it or run Do-Something –AsJob to run it in PowerShell’s back-

ground job system. Executing a workflow as a job is cool, because you can then use the

standard –Job cmdlets (like Get-Job and Receive-Job) to manage them. There are

also Suspend-Job and Resume-Job commands to pause and resume a workflow job.

18.1.1 Common parameters for workflows

Just by using the workflow keyword, you give your workflow command a pretty large

set of built-in common parameters. We’re not going to provide an extensive list, but

here are some of the more interesting ones (and you can consult PowerShell’s docu-

mentation for the complete list):

■ -PSComputerName—A list of computers to execute the workflow on

■ -PSParameterCollection—A list of hash tables that specify different parameter

values for each target computer, enabling the workflow to have variable behav-

ior on a per-machine basis

■ -PSCredential—The credential to be used to execute the workflow

■ -PSPersist—Force the workflow to save (checkpoint) the workflow data and

state after executing each step (we’ll show you how you can also do this manually)

There are also a variety of parameters that let you specify remote connectivity options, such

as –PSPort, -PSUseSSL, -PSSessionOption, and so on; these correspond to the similarly

named parameters of Remoting commands like Invoke-Command and New-PSSession.

 The values passed to these parameters are accessible as values within the workflow.

For example, a workflow can access $PSComputerName to get the name of the com-

puter that particular instance of the workflow is executing against right then. 

Table 18.1 Function or workflow

Function Workflow

Executed by PowerShell Executed by workflow engine

Logging and retry attempts through compli-

cated coding

Logging and retry attempts part of the 

workflow engine

Single-action processing Supports parallelism

Runs to completion Can run, pause, and restart

Data loss possible during network problems Data can persist during network problems

Full language set and syntax Limited language set and syntax

Runs cmdlets Runs activities



185Workflow overview

18.1.2 Activities and stateless execution

Workflow is built around the concept of activities. Each PowerShell command that you

run within a workflow is a single, standalone activity.

 The big thing to get used to in workflow is that each command, or activity, exe-

cutes entirely on its own. Because a workflow can be interrupted and later resumed,

each command has to assume that it’s running in a completely fresh, brand-new envi-

ronment. Variables created by one command can’t be used by the next command,

which can get a bit weird. Workflow does support an InlineScript block, which will

execute all commands inside the block within a single PowerShell session. Everything

within the block is a standalone script. 

 Now, this isn’t to say that variables don’t work at all; that would be pretty pointless.

For example, consider the script in the following listing (we’ve included this as a num-

bered listing so that you can run it for yourself in the PowerShell ISE, if you like).

Import-Module PSWorkflow

workflow Test-Workflow {

    $a = 1
    $a

    $a++
    $a

    $b = $a + 2
    $b

}

Test-Workflow

TRY IT NOW Run this, and you should see the output 1, 2, and 4, with each
number on its own line. That’s the expected output, and seeing that will help
you verify that workflow is operating on your system.

Now try the example in this listing.

Import-Module PSWorkflow

workflow Test-Workflow {

    $obj = New-Object -TypeName PSObject
    $obj | Add-Member -MemberType NoteProperty `
                      -Name ExampleProperty `
                      -Value 'Hello!'
    $obj | Get-Member
}

Test-Workflow

Listing 18.1 Example workflow with variables

Listing 18.2 Example workflow that won’t work properly



186 CHAPTER 18 Creating PowerShell workflows

This doesn’t produce the intended results, in that the object in $obj won’t have an

ExampleProperty property containing “Hello!” That’s because Add-Member runs in its

own space, and its modification to $obj doesn’t persist to the third command in the

workflow. To make this work, we could wrap the entire set of commands as an

InlineScript, forcing them to all execute at the same time, within a single

PowerShell instance. The following listing shows this example.

Import-Module PSWorkflow

workflow Test-Workflow {

    InlineScript {
        $obj = New-Object -TypeName PSObject
        $obj | Add-Member -MemberType NoteProperty `
                          -Name ExampleProperty `
                          -Value 'Hello!'
        $obj | Get-Member
    }
}

Test-Workflow

TRY IT NOW Try each of these three examples and compare their results.
Workflows do take a bit of getting used to, and these simple examples will
help you to start understanding workflow’s key differences.

18.1.3 Persisting state

The state of a workflow consists of its current output, the task that it’s currently exe-

cuting, and other information. It’s important that you help workflow maintain this

state, especially when kicking off a long-running command that might be executed.

To do so, run the Checkpoint-Workflow command (or the Persist workflow activity).

You can force this to happen after every single command is executed by running the

workflow with the –PSPersist switch.

18.1.4 Suspending and resuming workflows

A workflow can suspend itself if you run Suspend-Workflow within the workflow. You

might do this, for example, if you’re about to run some high-workload command that

can only be run during a maintenance window. Before running the command, you

check the time, and if you’re not in the window, you suspend the workflow. Someone

would need to manually resume the workflow (or schedule it in Task Scheduler) by

running Resume-Job and providing the necessary job ID.

18.1.5 Inherently remotable

Workflows are designed from the ground up to be remoted, which is why all workflow

commands get a –PSComputerName parameter automatically. If you run a workflow

with one or more computer names, PowerShell connects to the remote computers via

Listing 18.3 Example workflow using InlineScript



187Workflow overview

Remoting (which must be enabled) and has those computers run the workflow using

their local resources. This means the remote computers must also be running Power-

Shell 3.0. But the following core PowerShell commands always run locally on the

machine where the workflow was initiated:

These are run locally mainly for performance reasons; if you need one of these to run

on a targeted remote computer, wrap it in an InlineScript{} block. 

18.1.6 Parallelism

Windows workflow is designed to execute tasks in parallel, and PowerShell exposes

that capability through a modified ForEach scripting construct and a new Parallel

construct. They work a bit differently.

 With Parallel, the commands inside the construct can run in any order. Within

the Parallel block, you can use the Sequence keyword to surround a set of com-

mands that must be executed in order; that batch of commands may begin executing

at any point, for example:

Workflow Test-Workflow {
    "This will run first"

    parallel {
        "Command 1"
        "Command 2"

        sequence {
            "Command A"
            "Command B"
        }
    }
}

■ Add-Member ■ Compare-Object

■ ConvertFrom-Csv, ConvertFtom-Json, 
ConvertFrom-StringData

■ Convert-Path

■ ConvertTo-Csv, ConvertTo-Html, 
ConvertTo-Xml

■ ForEach-Object

■ Get-Host ■ Get-Member

■ Get-Random ■ Get-Unique

■ Group-Object ■ Measure-Command

■ Measure-Object ■ New-PSSessionOption,
New-PSTransportOption

■ New-TimeSpan ■ Out-Default, Out-Host,
Out-Null, Out-String

■ Select-Object ■ Sort-Object

■ Update-List ■ Where-Object

■ Write-Debug, Write-Error, Write-Host, 
Write-Output, Write-Progress, Write-
Verbose, Write-Warning

 



188 CHAPTER 18 Creating PowerShell workflows

The output here might be

Command 1
Command A
Command B
Command 2

Command B will always come after Command A, but Command A might come first, second,

or last—there’s no guarantee. The commands actually execute at the same time,

meaning Command 1, Command 2, and the sequence may all kick off at once, which is

what makes the output somewhat nondeterministic. This is useful for when you have

several tasks to complete, don’t care about the order in which they run, and want

them to finish as quickly as possible.

 The parallelized ForEach is somewhat different:

Workflow Test-Workflow {
    Foreach –parallel ($computer in $computerName) {
        Do-Something –computerName $computer
    }
}

Here, WF may launch multiple simultaneous Do-Something commands, each target-

ing a different computer. Execution should be roughly in whatever order the comput-

ers are stored in $ComputerName, although because of varying execution times the

order of the results is nondeterministic. 

18.2 General workflow design strategy

It’s important to understand that the entire contents of the workflow get translated

into WF’s own language, which only understands activities. With the exception of a few

commands that we’ll list at the end of this chapter, Microsoft has provided WF activi-

ties that correspond to most of the core PowerShell cmdlets. That means most of

PowerShell’s built-in commands—the ones available before any modules have been

imported—work fine.

 That isn’t the case with add-in modules, though. Further, because each workflow

activity executes in a self-contained space, you can’t even use Import-Module by itself

in a workflow. You’d basically import a module, but it would then go away by the time

you tried to run any of the module’s commands. 

 The solution is to think of a workflow as a high-level task coordination mecha-

nism. You’re likely to have a number of InlineScript{} blocks within a workflow,

because the contents of those blocks execute as a single unit, in a single PowerShell

session. Within an InlineScript{}, you can import a module and then run its com-

mands. Each InlineScript{} block that you include runs independently, so think of

each one as a standalone script file of sorts: Each should perform whatever setup

tasks are necessary for it to run successfully. You’ll see an example of this approach

in this chapter.



189Writing the workflow

18.3 Example workflow scenario

As an example scenario, we’re going to pretend we have a new in-house corporate

application update that needs to be deployed. We’ve already taken care of getting the

necessary executables deployed to our client computers, but the developers neglected

to make a few critical configuration changes as part of the installer. It’s up to us to

make those changes. We need to do the following:

■ Add an HKEY_LOCAL_MACHINE\SOFTWARE\Company\LOBApp\Settings registry

key, adding the setting Rebuild with a value of 0 (zero).

■ Register a new PowerShell Remoting endpoint (or session configuration)

named LOBApp. There’s already a local session configuration file stored on

each computer that defines this endpoint’s capabilities; the file should be in

C:\CorpApps\LOBApp\LOBApp.psc1. 

■ Set the service named LOBApp to start automatically, and ensure that the ser-

vice is started.

■ Run Set-LOBRebuildMode –Mode 1—that command is located in a module

named LOBAppTools, which is already deployed to the client computers.

None of these need to be done in any particular order. Keep in mind that the con-

tents of our workflow are intended to be remoted, so we can assume that everything

we’re doing is running locally, and they’ll be deployed to the remote computers and

executed there. 

DON’T TRY IT NOW Because we’re using made-up stuff in this example, you
won’t be able to follow along. 

18.4 Writing the workflow

Here’s the workflow we might write to accomplish our example scenario.

workflow Set-LOBAppConfiguration {

    parallel {

        InlineScript {
            New-Item -Path HKLM:\SOFTWARE\Company\LOBApp\Settings
            New-ItemProperty -Path HKLM:\SOFTWARE\Company\LOBApp\Settings `
                             -Name Rebuild `
                             -Value 0
        }

        InlineScript {
            Set-Service -Name LOBApp -StartupType Automatic
            Start-Service -Name LOBApp
        }

        InlineScript {
            Register-PSSessionConfiguration `
                -Path C:\CorpApps\LOBApp\LOBApp.psc1 `

Listing 18.4 A sample workflow



190 CHAPTER 18 Creating PowerShell workflows

                -Name LOBApp
        }

        InlineScript {
            Import-Module LOBAppTools
            Set-LOBRebuildMode -Mode 1
        }

    }

} 

You can see that we’ve followed the general strategy of breaking each distinct task into

its own InlineScript{} block, allowing each of those to execute independently. Each

can assume it’s accessing local resources, because the contents of the workflow will be

remoted out to whatever machines we target. We’d run this like so:

PS C:\> Set-LOBAppConfiguration –PSComputerName one,two,three

That would run the workflow on computers named ONE, TWO, and THREE. 

18.5 Workflows vs. functions

Workflows seem so similar to functions that it can be tempting to assume they’re just a

fancy kind of function. In many ways, it’s safe to think of them that way, which is one

of their most appealing aspects: If you already know a lot about functions, you can

move that knowledge right into workflows with very little additional learning. That

said, there are a few major differences. Specifically, workflows differ from functions in

the following ways:

■ You can’t use the BEGIN, PROCESS, and END script blocks that we’ve been using in

our advanced functions.

■ You can’t use subexpressions, like $myvar = "$($service.name)". 

■ You can’t access drive-qualified variables like $env:computername; use

Get-Content ENV:ComputerName instead. 

■ Variable names may only contain letters, digits, -, and _.

■ You can’t execute methods of objects. This is tricky, but there’s a good reason:

In order to execute a method, you need a live object. If the workflow resumes

from interruption, however, all you’ll have is a persisted, deserialized object,

which has no methods. If you create an object within an InlineScript block,

then you can execute its methods within that block, because the block ensures

that the commands all execute together.

■ You can’t assign values to object properties—again, doing so assumes a live

object, which you won’t necessarily have.

■ You can’t dot source scripts or use the invocation (&) operator.

■ Advanced function parameter validation (like the mandatory attribute and

other attributes we’ve used) aren’t supported on workflows that are contained

within other workflows. Technically, they’re not allowed at all, but PowerShell

fakes it for the outermost workflow.



191Lab

■ Positional parameters aren’t permitted on commands within a workflow. This

forces you to follow what you should be doing anyway and list the parameter name

for every parameter you use. This means Dir C:\ won’t work, but Dir –Path C:\ will.

■ The old Trap error-handling statement isn’t supported. Use Try...Catch

...Finally instead.

■ The Switch statement doesn’t work the same within a workflow; we recommend

not using it at all in a workflow.

■ Workflows can’t use comment-based help. If you want to include help for a

workflow command, you must create an external XML file in the appropriate

MAML format; we won’t be covering that in this book.

■ Within a workflow, you can’t change the value of a variable that has already

been defined in a parent scope. In a normal PowerShell function, doing so cre-

ates a new local-scope variable of the same name; in workflow, you get an error.

PowerShell adds a new $workflow scope identifier to provide access to a work-

flow’s scope from any child scope. For example, $workflow:myvar will provide

access to the $myvar variable defined in the workflow scope. This syntax is man-

datory for any child scope; were one of them to try to modify $myvar without

specifying $workflow:myvar, it would get an error.

NOTE This isn’t a comprehensive list of things that are legal in a function but
not in a workflow, but the list does cover every function-related thing we’ve
shown you in this book (including stuff in upcoming chapters). 

Most of these restrictions come from the fact that a workflow is eventually translated

into an external language usable by WF, meaning a workflow can’t contain anything

for which there’s no WF equivalent. There are also a few native PowerShell commands

that can’t be used inside a workflow, mainly because in most cases they make no sense:

■ Get-Alias, Export-Alias, Import-Alias, New-Alias, Set-Alias
■ Update-FormatData
■ Add-History, Clear-History, Get-History, Invoke-History

■ New-PSDrive, Remove-PSDrive
■ Set-StrictMode
■ Start-Transcript, Stop-Transcript

■ Remove-TypeData, Update-TypeData

■ Clear-Variable, Get-Variable, New-Variable

18.6 Lab

Because workflows are necessarily complex, and because we’ve only provided you with

an overview of them in this chapter, we won’t be asking you to complete a lab involv-

ing workflows.

NOTE If you’d like to learn more about PowerShell workflows, get a copy of
PowerShell in Depth: An Administrator’s Guide by Don Jones, Richard Siddaway, and
Jeffery Hicks. You’ll find a chapter on this feature along with many examples.



192

Troubleshooting
 pipeline input

Part of what makes PowerShell so unique and powerful is its object-oriented pipe-

line. When you’re writing tools, it’s especially important that you understand how

the pipeline works, how your tools can work within it and—most important of all—

that you know how to troubleshoot what’s happening in the pipeline. That’s what

this chapter will cover.

19.1 Refresher: how pipeline input works

Whenever you pipe one command to another—say, Get-Service | Where Status

–eq 'Running' | Sort Name | Export-CSV services.csv—output is taken from one

command and passed to the next. There’s no magic way for that output to be

passed along: PowerShell commands can accept input only via their parameters. In

this example, PowerShell has to take the output of Get-Service and figure out

which parameter of Where-Object can accept those objects. After Where-Object

runs, its output goes into the pipeline, and PowerShell has to figure out which

parameter of Sort-Object can accept that. This process of figuring out is called

pipeline parameter binding.

 PowerShell has two modes for pipeline parameter binding. The first mode, or Plan

A, as we call it, is called ByValue. In this mode, PowerShell looks to see if the receiving

command has a parameter that can accept the exact type of object that was put into

the pipeline by the sending command. For example, in the command

Get-Service –Name BITS | Stop-Service, Get-Service is the sending command,

and it’s producing objects of the type ServiceController. You can verify this by

running Get-Service –Name BITS | Get-Member and looking at the first line of



193Introducing Trace-Command

output. Stop-Service is the receiving command, and its –InputObject parameter is

capable of accepting objects of the type ServiceController, from the pipeline, ByValue.

The help file for Stop-Service confirms this capability (run Help Stop-Service –full

and see for yourself). So the service objects are bound to the –InputObject parameter.

 When the receiving command doesn’t have a parameter capable of accepting the

type of object in the pipeline ByValue, PowerShell shifts to Plan B, which is called

ByPropertyName. In this mode, the type of the object doesn’t matter. Rather, Power-

Shell makes an inventory of the receiving command parameters that are programmed

to accept pipeline input ByPropertyName (you can read the full help for a command

to inventory those parameters on your own). PowerShell then looks at the objects in

the pipeline and matches any properties that happen to be spelled the same as the

receiving parameters.

 For example, in the command Get-Service | Stop-Process –whatIf (which

you’re welcome to run, if you want to see what happens), we know that the sending

command produces objects of the type ServiceController. The receiving command

has no parameters capable of accepting that type of object, so Plan A, ByValue, is out

of the question. Stop-Process has two parameters capable of accepting pipeline

input ByPropertyName, which is Plan B. Those parameters are –Id and –Name. So

PowerShell will take the ID property of the pipeline objects and feed their values to

the –Id parameter. It’ll also take the Name property of the pipeline objects and feed

those values to the –Name parameter. As it turns out, ServiceController objects don’t

have an ID property, so it’ll just be the –Name parameter that receives the values of the

objects’ Name properties. 

NOTE This pipeline parameter-binding process is PowerShell 101. Hopefully
if you’re engaged in toolmaking, you’re already familiar with the basic pro-
cess. If you’re not, we suggest reading Learn Windows PowerShell 3 in a Month of
Lunches, which covers the process in more depth.

Being able to think about that process in your head and predict what PowerShell will

do with any given command is an important skill, because it lets you create your own

combinations of commands. But what can be even better—especially for trouble-

shooting—is to see it happening. Remember, most errors are the result of a bad

assumption or prediction. If you have an expectation for how PowerShell will bind

two commands together, then you can use what we’re about to show you to confirm

or correct that expectation.

19.2 Introducing Trace-Command

PowerShell’s built-in Trace-Command cmdlet provides a number of useful diagnostic

and troubleshooting capabilities, but in this chapter we’re going to focus on its ability

to reveal what PowerShell is doing with pipeline parameter binding. As an example,

let’s take this command:

Import-CSV computers.csv |
Get-WmiObject –class Win32_BIOS



194 CHAPTER 19 Troubleshooting pipeline input

Our assumption is that Computers.csv looks like this:

Computername
SERVER-R2
DC01
LOCALHOST
CLIENTA

Running the import command by itself results in the following:

PS C:\> import-csv .\computers.csv

computername
------------
SERVER-R2
DC01
LOCALHOST
CLIENTA

The command has produced four objects, each of which has a ComputerName prop-

erty. Our expectation is that those properties will bind, ByPropertyName, to the

–ComputerName parameter of Get-WmiObject. In this fashion, we expect it to retrieve

the Win32_BIOS class from each of those four computers.

DON’T TRY IT NOW Don’t bother running this command just yet. Our goal
isn’t to try it but rather to predict what it will do and then test that prediction
by using a troubleshooting tool.

The basic usage format for Trace-Command is as follows:

Trace-Command –Name Parameterbinding –PSHost –Expression { }

Inside the expression {} block, you put whatever command you want to test. That

command will execute, so if it’s doing something dangerous, use appropriate caution.

In addition to the command executing, the shell will capture and display some inter-

nals about what it’s doing. So we’ll run the following:

PS C:\> Trace-Command -name ParameterBinding -PSHost -Expression { Import-C
sv .\computers.csv | Get-WmiObject -Class Win32_BIOS }

19.3 Interpreting trace-command output

We’re going to paste in a chunk of the trace output and provide an explanation for

what we’re seeing:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Import-Csv]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Import-Csv]
DEBUG: ParameterBinding Information: 0 :     BIND arg [.\computers.csv] to
 parameter [Path]

This means that PowerShell is binding named and positional parameters. It’s han-

dling whatever parameters we’ve typed manually. Those always get bound first and



195Interpreting trace-command output

override anything piped in that might have attached to those parameters. Here you

can see that our path, .\computers.csv, is being attached to the –Path parameter: 

DEBUG: ParameterBinding Information: 0 :         Binding collection
parameter Path: argument type [String], parameter type [System.String[]],
collection type Array, element type [System.String], no coerceElementType
DEBUG: ParameterBinding Information: 0 :         Creating array with
element type [System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 :         Argument type String is
not IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 :         Adding scalar element of
type String to array position 0
DEBUG: ParameterBinding Information: 0 :         Executing VALIDATION
metadata: [System.Management.Automation.ValidateNotNullOrEmptyAttribute]
DEBUG: ParameterBinding Information: 0 :         BIND arg
[System.String[]] to param [Path] SUCCESSFUL

The –Path parameter of Import-CSV requires an array. Because we specified only one

value, PowerShell is creating an array and adding our single value to that array. The

last thing it does is validate that the –Path parameter is not null, and not empty,

before declaring the –Path parameter’s binding successful: 

DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Import-Csv]

The shell just checked to make sure all mandatory parameters of Import-Csv were

provided. They were, or we’d have seen error messages. So we’re ready to move on to

the next command: 

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-WmiObject]
DEBUG: ParameterBinding Information: 0 :     BIND arg [Win32_BIOS] to
parameter [Class]
DEBUG: ParameterBinding Information: 0 :         COERCE arg to
[System.String]
DEBUG: ParameterBinding Information: 0 :             Parameter and arg
types the same, no coercion is needed.
DEBUG: ParameterBinding Information: 0 :         BIND arg [Win32_BIOS] to
param [Class] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Get-WmiObject]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-WmiObject]

All of that was for Get-WmiObject. Here, the –Class parameters wants a String, which

is what we gave it, so PowerShell acknowledges that no data type conversion (coer-

cion) is necessary. We’ve provided all of the mandatory parameters, so we’re cleared

for takeoff.

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing

Those two lines indicate that we’re starting to run the cmdlets: 



196 CHAPTER 19 Troubleshooting pipeline input

DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Get-WmiObject]
DEBUG: ParameterBinding Information: 0 :     PIPELINE object TYPE =
[System.Management.Automation.PSCustomObject]

This is the key bit of the process. Here, PowerShell is saying, “Okay, Import-Csv pro-

duces objects of the type PSCustomObject. Those are in the pipeline, so we need to

bind them to the next command, which is Get-WmiObject.”

DEBUG: ParameterBinding Information: 0 :     RESTORING pipeline
parameter's original values
DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Out-Default]

You’ll almost always see Out-Default in the trace code, because it’s hardcoded,

behind the scenes, at the end of every pipeline. Even though we didn’t explicitly type

it, it’s there and PowerShell has to deal with it. 

DEBUG: ParameterBinding Information: 0 :     PIPELINE object TYPE =
[System.Management.Automation.ErrorRecord]
DEBUG: ParameterBinding Information: 0 :     RESTORING pipeline
parameter's original values
DEBUG: ParameterBinding Information: 0 :     Parameter [InputObject]
PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 :     BIND arg [The input object
cannot be bound to any parameters for the command either because the
command does not take pipeline input or the input and its properties do
not match any of the parameters that take pipeline input.] to parameter
[InputObject]

This isn’t good. It means PowerShell couldn’t find any parameters of Get-WmiObject

that could accept our pipeline objects, either ByValue or ByPropertyName. Our com-

mand is failing. Much of the rest of the trace output is just PowerShell dealing with

the error and preparing an error record for our display.

 So what went wrong? Take a look at the full help for Get-WmiObject. No parameter

accepts an object of the type PSCustomObject, so Plan A, ByValue, fails. That leaves it

trying to attach the ComputerName property to the –ComputerName parameter, which is

unfortunately not programmed, in this case, to accept pipeline input. So the com-

mand failed. Had we read the help thoroughly ahead of time, we probably could have

predicted that!

 Let’s run a second command through the process—this time, one that should

work, so that you can see what a successful binding looks like. We’ll use a similar com-

mand but one whose –computerName parameter is wired up for pipeline input:

PS C:\> Trace-Command -name ParameterBinding -PSHost -Expression { Import-C
sv .\computers.csv | Get-Service -Name * }
DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Import-Csv]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Import-Csv]
DEBUG: ParameterBinding Information: 0 :     BIND arg [.\computers.csv] to
 parameter [Path]



197Interpreting trace-command output

Once again, we’ve started by binding the filename to the –Path parameter of

Import-Csv:

DEBUG: ParameterBinding Information: 0 :         Binding collection
parameter Path: argument type [String], parameter type [System.String[]],
collection type Array, element type [System.String], no coerceElementType
DEBUG: ParameterBinding Information: 0 :         Creating array with
element type [System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 :         Argument type String is
not IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 :         Adding scalar element of
type String to array position 0
DEBUG: ParameterBinding Information: 0 :         Executing VALIDATION
metadata: [System.Management.Automation.ValidateNotNullOrEmptyAttribute]
DEBUG: ParameterBinding Information: 0 :         BIND arg
[System.String[]] to param [Path] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Import-Csv]

PowerShell created a single-item array, validated it, and ensured we provided all man-

datory parameters.

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-Service]
DEBUG: ParameterBinding Information: 0 :     BIND arg [*] to parameter
[Name]
DEBUG: ParameterBinding Information: 0 :         COERCE arg to
[System.String[]]
DEBUG: ParameterBinding Information: 0 :             Trying to convert
argument value from System.String to System.String[]
DEBUG: ParameterBinding Information: 0 :             ENCODING arg into
collection
DEBUG: ParameterBinding Information: 0 :             Binding collection
parameter Name: argument type [String], parameter type [System.String[]],
collection type Array, element type [System.String], coerceElementType
DEBUG: ParameterBinding Information: 0 :             Creating array with
element type [System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 :             Argument type String
is not IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 :             COERCE arg to
[System.String]
DEBUG: ParameterBinding Information: 0 :                 Parameter and arg
 types the same, no coercion is needed.
DEBUG: ParameterBinding Information: 0 :             Adding scalar element
 of type String to array position 0
DEBUG: ParameterBinding Information: 0 :         BIND arg
[System.String[]] to param [Name] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Get-Service]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Service]

The –Name parameter of Get-Service also needs an array, so we can see PowerShell

creating a single-item array from our value of *. Keep in mind that, to this point, the



198 CHAPTER 19 Troubleshooting pipeline input

cmdlets haven’t actually executed; this is just the setup. PowerShell can’t do pipeline

parameter binding until it sees what the first command outputs.

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Get-Service]
DEBUG: ParameterBinding Information: 0 :     PIPELINE object TYPE =
[System.Management.Automation.PSCustomObject]
DEBUG: ParameterBinding Information: 0 :     RESTORING pipeline
parameter's original values

Now we’re executing commands, and PowerShell knows that it needs to bind our CSV

objects to something on Get-Service.

DEBUG: ParameterBinding Information: 0 :     Parameter [ComputerName]
PIPELINE INPUT ValueFromPipelineByPropertyName NO COERCION
DEBUG: ParameterBinding Information: 0 :     BIND arg [SERVER-R2] to
parameter [ComputerName]

PowerShell has chosen the –ComputerName parameter, and it sees that no data coer-

cion is needed. So our first value, SERVER-R2, is being attached to the –ComputerName

parameter.

DEBUG: ParameterBinding Information: 0 :         Binding collection
parameter ComputerName: argument type [String], parameter type
[System.String[]], collection type Array, element type [System.String], no
 coerceElementType
DEBUG: ParameterBinding Information: 0 :         Creating array with
element type [System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 :         Argument type String is
not IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 :         Adding scalar element of
type String to array position 0
DEBUG: ParameterBinding Information: 0 :         Executing VALIDATION
metadata: [System.Management.Automation.ValidateNotNullOrEmptyAttribute]
DEBUG: ParameterBinding Information: 0 :         BIND arg
[System.String[]] to param [ComputerName] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Service]

Once again, an array is expected, so the shell creates a single-item array from our

SERVER-R2 value, checks its validation rules on the parameter, and ensures we’ve pro-

vided all the mandatory parameters for the command: 

DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Out-Default]
DEBUG: ParameterBinding Information: 0 :     PIPELINE object TYPE =
[System.Management.Automation.ErrorRecord]
DEBUG: ParameterBinding Information: 0 :     RESTORING pipeline
parameter's original values
DEBUG: ParameterBinding Information: 0 :     Parameter [InputObject]
PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 :     BIND arg [Cannot open Service
 Control Manager on computer 'SERVER-R2'. This operation might require



199Lab

other privileges.] to parameter [InputObject]
DEBUG: ParameterBinding Information: 0 :         BIND arg [Cannot open
Service Control Manager on computer 'SERVER-R2'. This operation might
require other privileges.] to param [InputObject] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Out-Default]

What you’re seeing here is an error record being sent to Out-Default, because the

Get-Service command couldn’t contact the Service Control Manager on SERVER-R2.

That’s okay; the command is working, but that computer might not be online or

might be behind a firewall. The remaining trace output is more or less a repetition of

the previous, with the remaining values from our CSV file. At the end, we see the com-

mand’s error regarding SERVER-R2:

Get-Service : Cannot open Service Control Manager on computer
'SERVER-R2'. This operation might require other privileges.
At line:1 char:89
+ ... omputers.csv | Get-Service -Name * }
+                    ~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : NotSpecified: (:) [Get-Service], InvalidOpe
   rationException
    + FullyQualifiedErrorId : System.InvalidOperationException,Microsoft.
   PowerShell.Commands.GetServiceCommand

PS C:\>

And now you know how to troubleshoot pipeline parameter binding: Using

Trace-Command, you can see what data is going to which parameters, helping you val-

idate your expectations. But if you didn’t have any expectations, you can’t trouble-

shoot. It’s still important (as we explained in the chapter on debugging) to have an

understanding of what should be happening, so that you can spot the problem when

things don’t happen that way.

19.4 Lab

Create a text file named C:\Computers.csv. In it, place the following content:

ComputerName
LOCALHOST
NOTONLINE

Be sure there are no extra blank lines at the end of the file. Then, consider the follow-

ing command:

Import-CSV C:\Computers.txt | Invoke-Command –Script { Get-Service }

The help file for Invoke-Command indicates that its –ComputerName parameter accepts

pipeline input ByValue. Therefore, our expectation is that the computer names in the

CSV file will be fed to the –ComputerName parameter. But if you run the command, that

isn’t what happens. Troubleshoot this command using the techniques described in this

chapter, and determine where the computer names from the CSV file are being bound.



200

Using object hierarchies
 for complex output

Way back in chapter 7, we showed you how to create custom objects to use as the

output of your functions. To this point, the objects you’ve created have essentially

been flat, meaning they could be easily represented in a flat data file structure such

as a CSV file or in an Excel spreadsheet or in a simple table. That’s because your

objects, to this point, have represented only a single entity, such as a computer sys-

tem. In this chapter, we’re going to show you how to work with more complex

objects that include multiple entities in a single, hierarchical object.

20.1 When a hierarchy might be necessary

Typically, a single object should represent one single kind of thing. That might be a

computer system, a disk drive, a user, or a file. The properties of those objects

should directly relate to the entity that the object represents. For example, if you’re

creating an object to represent a computer system, then it might have properties

such as these:

■ Computer name

■ Operating system version

■ BIOS serial number

■ Manufacturer name

A computer object like that wouldn’t usually contain much information about the

computer’s disk drives. That’s because the disk drives are their own entity. They’re

usually removable from the computer system, and the properties of a disk drive

have little or nothing to do with the computer system itself. A disk drive has a size,



201Hierarchies and CSV: not a good idea

which doesn’t change when it’s moved to a dif-

ferent computer system or when it’s removed

from any computer altogether.

 But there’s obviously a relationship between

computers and disk drives, right? A computer

system usually contains disk drives. Windows

Explorer shows this relationship in a tree view,

as shown in figure 20.1.

 In PowerShell, you can represent that rela-

tionship using an object hierarchy. Such a hierar-

chy might be needed anytime you want to

combine information about many distinct yet related entities into a single output object.

20.2 Hierarchies and CSV: not a good idea

Before we show you how to create and manipulate these object hierarchies, we want to

caution you against outputting them to a CSV file. For example, try running this com-

mand in PowerShell:

Get-Service | Export-CSV services.csv

TRY IT NOW Go ahead and run this for yourself; the output is worth looking at,
and it’s a bit more than we’re able to completely share in the pages of this book.

Opening the Services.csv file in Notepad looks something like figure 20.2. What you’re

seeing is what happens when PowerShell has to convert a hierarchy of objects into a flat-

file format like CSV. For example, you’ll see that the second column of this CSV file is

RequiredServices, which lists the services each service depends on. But the data rows

for that column show System.ServiceProcess.ServiceController[], which is Power-

Shell’s way of saying, “What should go here is a bunch of ServiceController objects,

but this file format doesn’t let me show child objects.”

Figure 20.2 Looking at object 

hierarchies in a CSV file

Figure 20.1 Windows Explorer uses a 

tree view to illustrate the relationship be-

tween a computer and its disk drives.



202 CHAPTER 20 Using object hierarchies for complex output

The CliXML format used by Export-CliXML and Import-CliXML is much better at rep-

resenting object hierarchies. Try exporting a list of services to CliXML and looking at

the result in Windows Notepad. Anytime you see an object type name followed by [],

such as ServiceController[], PowerShell is letting you know, “I’d like to display mul-

tiple subobjects here, but I can’t.”

20.3 Creating nested objects

Let’s walk through a complete example. We’re going to create a function named

Get-DetailedSystemInfo. We want the main, top-level object to contain the com-

puter name and the version numbers for both the operating system and its service

pack. Each object will also contain a Disks property, which will list additional informa-

tion for each local, fixed disk installed in the computer. The following listing shows

the completed script file, which includes a line at the end to run the function.

function Get-DetailedSystemInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True)][string[]]$computerName
    )
    PROCESS {
        foreach ($computer in $computerName) {
            $params = @{computerName=$computer;        
                        class='Win32_OperatingSystem'}        
            $os = Get-WmiObject @params                

            $params = @{computerName=$computer;    
                        class='Win32_LogicalDisk';         
                        filter='drivetype=3'}      
            $disks = Get-WmiObject @params         
            
            $diskobjs = @()                 
            foreach ($disk in $disks) { 
                $diskprops = @{Drive=$disk.DeviceID;     
                               Size=$disk.size;         
                               Free=$disk.freespace}    
                $diskobj = new-object -Type PSObject -Property $diskprops
                $diskobjs += $diskobj                    
            }

            $mainprops = @{ComputerName=$computer;  
                           Disks=$diskobjs;
                           OSVersion=$os.version;
                           SPVersion=$os.servicepackmajorversion}
            $mainobject = New-Object -Type PSObject -Property $mainprops
            Write-Output $mainobject
        }
    }
}

Get-DetailedSystemInfo -computerName localhost,DONJONES1D96

Listing 20.1 Example of creating an object hierarchy

Get OS infoB

Get disk infoC

Empty 
array for disks

D

Create disk 
objectE

Add disk 
to arrayF

Create top-
level objectG



203Working with nested objects

Within the PROCESS block of this function, we start by B creating a hashtable contain-

ing the parameters for our first Get-WmiObject call and then executing that call. This

technique is called splatting, and it can make it visually easier to add several parame-

ters to a single command. Next, C we do the same thing with the Get-WmiObject call

that’s retrieving our disk information.

 We take the time to create an empty array D, named $diskobjs. We’ll use this

later. Because each computer we query might well have several disks installed, we use a

ForEach loop to go through each one. For each one, E we assemble a hashtable of

the properties we want to save for each of those disks. We then create a new object

having those properties and F add that object to our $diskobjs array. 

 Once all of the disk objects have been created and saved into the $diskobjs

array, G we create the top-level output object. We define its properties, one of which

is Disks, to which we assign our $diskobjs array. We then output the main object.

The output of the script, run against two computers, looks like this:

ComputerName              SPVersion Disks                   OSVersion   
------------              --------- -----                   ---------   
localhost                         0 {@{Drive=C:; Free=52... 6.2.8250    
DONJONES1D96                      0 {@{Drive=C:; Free=52... 6.2.8250

Now, we’ll replace the last line in the script

Get-DetailedSystemInfo -computerName localhost,DONJONES1D96

with this:

Get-DetailedSystemInfo -computerName localhost |
Select-Object -ExpandProperty Disks

This queries only one computer, but it’s asking the shell to expand the Disks

property. Remember, that property can contain multiple subobjects, each of which

represents a single disk that’s installed in the computer. The results look something

like this:

Drive                        Free                           Size
-----                        ----                           ----
C:                    52591726592                    68717375488
E:                    75673727263                    94746282712

NOTE We’ve used the term disks a bit liberally; we’re really querying logical
disks, which Windows also calls partitions. 

This has been a good example of why, when, and how you’d use object hierarchies. 

20.4 Working with nested objects

Whether you create your own object hierarchies or merely have some that were out-

put from existing commands, you need to know how to work with them effectively.

There are four main techniques:



204 CHAPTER 20 Using object hierarchies for complex output

■ Use Select-Object to expand a property that contains subobjects, enabling

you to see the individual subobjects.

■ Use Format-Custom to expand the entire object hierarchy.

■ Use a ForEach loop.

■ Use PowerShell’s array syntax to work with individual subobjects.

To illustrate each of these techniques, we’ll use Get-Service. The objects produced

by this command have several properties that are child objects (which we’ve also been

calling nested objects or subobjects). Those properties include ServicesDependedOn

(also known as RequiredServices) and DependentServices.

20.4.1 Using Select-Object to expand child objects

The –ExpandProperty parameter of Select-Object can expand the content of a sin-

gle property. When given a property that contains a single value, such as a string, the

parameter returns that value. When given a property that contains subobjects, the

parameter returns those subobjects. 

PS C:\> Get-service | select -ExpandProperty ServicesDependedOn

Status   Name               DisplayName                           
------   ----               -----------                           
Running  RPCSS              Remote Procedure Call (RPC)           
Running  RpcSs              Remote Procedure Call (RPC)           
Running  CryptSvc           Cryptographic Services                
Stopped  AppID              AppID Driver                          
Running  RpcSs              Remote Procedure Call (RPC)           
Running  ProfSvc            User Profile Service                  
Stopped  MMCSS              Multimedia Class Scheduler            
Running  RpcSs              Remote Procedure Call (RPC)           
Running  AudioEndpointBu... Windows Audio Endpoint Builder        
Running  rpcss              Remote Procedure Call (RPC)           
Running  RpcSs              Remote Procedure Call (RPC)           
Running  WfpLwfs            WFP LightWeight Filters               
Running  RpcSs              Remote Procedure Call (RPC)           
Running  EventSystem        COM+ Event System                     

We’ve truncated this output, but it’s showing you every “service depended on”

for every service on the system. You’ll notice some repetition, such as the Remote

Procedure Call service, because that service is depended upon by several other ser-

vices. This technique is often most useful when you’re working with only a single

top-level object:

PS C:\> Get-service -Name BITS | select -ExpandProperty ServicesDependedOn

Status   Name               DisplayName                           
------   ----               -----------                           
Running  RpcSs              Remote Procedure Call (RPC)           
Running  EventSystem        COM+ Event System   

Here, we’ve retrieved only a single service, BITS, so we can more clearly see the ser-

vices that it depends on: RpcSs and EventSystem.



205Working with nested objects

20.4.2 Using Format-Custom to expand an object hierarchy

The Format-Custom command, which when used with an object for which there is no

predefined view, will expand the object’s entire hierarchy:

PS C:\> get-service | format-custom -Property *

class ServiceController
{
  Name = AllUserInstallAgent
  RequiredServices = 
    [
      class ServiceController
      {
        Status = Running
        Name = RPCSS
        DisplayName = Remote Procedure Call (RPC)
      }
    ]

  CanPauseAndContinue = False
  CanShutdown = False
  CanStop = False
  DisplayName = Windows All-User Install Agent
  DependentServices = 
    [
    ]

  MachineName = .
  ServiceName = AllUserInstallAgent
  ServicesDependedOn = 
    [
      class ServiceController
      {
        Status = Running
        Name = RPCSS
        DisplayName = Remote Procedure Call (RPC)
      }
    ]

  ServiceHandle = 
    class SafeServiceHandle
    {
      IsInvalid = False
      IsClosed = False
    }
  Status = Stopped
  ServiceType = Win32ShareProcess
  Site = 
  Container = 
}

class ServiceController
{
  Name = AppIDSvc
  RequiredServices = 
    [



206 CHAPTER 20 Using object hierarchies for complex output

      class ServiceController
      {
        Status = Running
        Name = RpcSs
        DisplayName = Remote Procedure Call (RPC)
      }
      class ServiceController
      {
        Status = Running
        Name = CryptSvc
        DisplayName = Cryptographic Services
      }
      class ServiceController
      {
        Status = Stopped
        Name = AppID
        DisplayName = AppID Driver
      }
    ]

  CanPauseAndContinue = False
  CanShutdown = False
  CanStop = False
  DisplayName = Application Identity
  DependentServices = 
    [
    ]

  MachineName = .
  ServiceName = AppIDSvc
  ServicesDependedOn = 
    [
      class ServiceController
      {
        Status = Running
        Name = RpcSs
        DisplayName = Remote Procedure Call (RPC)
      }
      class ServiceController
      {
        Status = Running
        Name = CryptSvc
        DisplayName = Cryptographic Services
      }
      class ServiceController
      {
        Status = Stopped
        Name = AppID
        DisplayName = AppID Driver
      }
    ]

  ServiceHandle = 
    class SafeServiceHandle
    {
      IsInvalid = False



207Working with nested objects

      IsClosed = False
    }
  Status = Stopped
  ServiceType = Win32ShareProcess
  Site = 
  Container = 
}

In this listing, you can see that each service has been expanded, and both the

ServicesDependedOn (also shown as RequiredServices) and DependentServices

properties have been expanded to show their subobjects. You can also see that the

ServiceHandle property contains subobjects of the type SafeServiceHandle and

that those subobjects each have two properties. We’ve shown only two services here

to save room, but it’s a good illustration of how Format-Custom can be used.

20.4.3 Using a ForEach loop to enumerate subobjects

ForEach loops are a perfect way to enumerate objects, and nested ForEach loops let

you recursively work with subobjects, for example:

$services = Get-Service
foreach ($main_service in $services) {
    Write "  $($main_service.name) depends on:"
    foreach ($sub_service in $main_service.requiredservices) {
        
        Write "`t $($sub_service.name)"
    }
}

Here’s a portion of the output from that short script:

  AeLookupSvc depends on:
  ALG depends on:
  AllUserInstallAgent depends on:
     RPCSS
  AppIDSvc depends on:
     CryptSvc
     AppID
     RpcSs
  Appinfo depends on:
     RpcSs
     ProfSvc
  AppMgmt depends on:
  AudioEndpointBuilder depends on:
  Audiosrv depends on:
     AudioEndpointBuilder
     MMCSS
     RpcSs
  AxInstSV depends on:
     rpcss
  BDESVC depends on:
  BFE depends on:
     RpcSs
     WfpLwfs



208 CHAPTER 20 Using object hierarchies for complex output

  BITS depends on:
     RpcSs
     EventSystem
  BrokerInfrastructure depends on:
     DcomLaunch
     RpcEptMapper
     RpcSs
  Browser depends on:
     LanmanWorkstation
     LanmanServer

How you structure your loops will depend on how you plan to use the information,

but as you can see, you get a great deal of fine control over how you enumerate the

object hierarchy.

20.4.4 Using PowerShell’s array syntax to access individual subobjects

Finally, you can access individual subobjects and their properties by using Power-

Shell’s array notation syntax:

PS C:\> $services = get-service

PS C:\> $services[4].requiredservices[0].name
RpcSs

PS C:\>

Here, we pulled a list of all services into $services. We then accessed the fifth service

(index number 4), its RequiredServices property, the first required service (index

number 0), and that service’s Name property, which turned out to be RpcSS.

20.5 Lab

Create a new function in your existing PSHTools module. Name the new function

Get-ComputerVolumeInfo. This function’s output will include some information that

your other functions already produce, but this particular function is going to combine

them all into a single, hierarchical object.

 This function should accept one or more computer names on a –ComputerName

parameter. Don’t worry about error handling at this time. The output of this function

should be a custom object with the following properties:

■ ComputerName
■ OSVersion (Version from Win32_OperatingSystem)

■ SPVersion (ServicePackMajorVersion from Win32_OperatingSystem)

■ LocalDisks (all instances of Win32_LogicalDisk having a DriveType of 3)

■ Services (all instances of Win32_Service)

■ Processes (all instances of Win32_ProcessS)

The function will therefore be making at least four WMI queries to each specified

computer.



209

Globalizing a function

PowerShell v2 introduced a data language element for the shell, designed to help sep-

arate text from the functional code of a script or command. By separating text, you

can make it easier to swap out alternate versions of that text. Separating text is referred

to as globalizing, a process of making your script ready for localization. Localization lets

you swap out your original language text strings for an alternate language—or mul-

tiple languages. We’ll acknowledge up front that this is a fairly specialized feature and

that few administrators will typically use it. We’re including it to help ensure that this

book is as complete as possible, but we’ll keep it brief. You can find additional

help in two of PowerShell’s help files: about_script_internationalization

and about_data_sections. 

21.1 Introduction to globalization

Globalization (or internationalization, a term some prefer) is implemented through

several specific features in PowerShell:

■ A data section, which we’ll discuss next, that contains all of the text strings

intended for display or other output. 

■ Two built-in variables, $PSCulture and $PSUICulture, that store the name of

the user interface language in use by the current system. This lets you detect

the language that the current user is utilizing in Windows. $PSCulture con-

tains the language used for regional settings such as date, time, and currency

formats, whereas $PSUICulture contains the language for user interface ele-

ments such as menus and text strings.

■ ConvertFrom-StringData, a cmdlet that converts text strings into a hash

table, which makes it easier to import a batch of strings in a specific language



210 CHAPTER 21 Globalizing a function

and then utilize them from within your script. By varying the batch that you

import, you can dynamically vary what your script outputs.

■ The .psd1 file type, which in addition to being used for module manifests can

also be used to store language-specific strings. You provide a single .psd1 file for

each language you want to support.

■ Import-LocalizedData, a cmdlet that imports translated text strings for a spe-

cific language into a script. 

We figure the best way to show you all of this is to dive into a sample project and

explain as we go, so that’s what we’ll do. We’re going to start with a script that’s func-

tionally simple. Shown in listing 21.1, it includes several Write-Verbose statements

that output strings of text. We’re going to focus on those for our internationalization

efforts. For our examples, we’re using Google Translate to produce non-English text

strings; we hope any native speakers of our chosen languages will forgive any transla-

tion errors!

function Get-OSInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
        [string[]]$computerName
    )
    BEGIN {
        Write-Verbose "Starting Get-OSInfo"
    }
    PROCESS {
        ForEach ($computer in $computername) {
            try {
                $connected = $True
                Write-Verbose "Attempting $computer"
                $os = Get-WmiObject -ComputerName $computer `
                                    -class Win32_OperatingSystem `
                                    -EA Stop
            } catch {
                $connected = $false
                Write-Verbose "Connection to $computer failed"
            }
            if ($connected) {
                Write-Verbose "Connection to $computer succeeded"
                $cs = Get-WmiObject -ComputerName $computer `
                                    -class Win32_ComputerSystem
                $props = @{ComputerName=$computer;
                           OSVersion=$os.version;
                           Manufacturer=$cs.manufacturer;
                           Model=$cs.model}
                $obj = New-Object -TypeName PSObject -Property $props
                Write-Output $obj
            }
        }

Listing 21.1 Our starting point, Global.psm1



211PowerShell’s data language

    }
    END {
        Write-Verbose "Ending Get-OSInfo"
    }
}

NOTE We’ve used the backtick (`) character in this code listing so that lon-
ger lines could be broken into multiple physical lines. If you’re typing this in,
be sure to include the backtick character, and make sure it’s the very last
thing on the line—it can’t be followed by any spaces or tabs. We don’t think
it’s the prettiest way to type code, but it makes it easier to fit it within the con-
straints of the printed page.

We’ve saved this script as \Documents\WindowsPowerShell\Modules\Global\Global

.psm1. That enabled us to load it into the console by running Import-Module

global and to test it by then running Get-OSInfo –computername localhost. If

you’re going to follow along, make sure that you can successfully complete those

steps before continuing.

21.2 PowerShell’s data language

Currently, our script has hardcoded strings—primarily the Write-Verbose statements,

which we’re going to address, but also the output object’s property names. We could

also localize the property names, but we’re not going to. Generally speaking, even

Microsoft doesn’t translate those, because other bits of code might take a dependency

on the property names, and translating them would break that dependency. If we

wanted the property names to display with translated column names, then we could

utilize a custom view to do that.

 Take a look at the following listing, where we’ve added a data section to contain

our default strings.

$msgTable = Data {                      
    # culture="en-US"
    ConvertFrom-StringData @'
        attempting = Attempting
        connectionTo = Connection to
        failed = failed
        succeeded = succeeded
        starting = Starting Get-OSInfo
        ending = Ending Get-OSInfo
'@
}

function Get-OSInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
        [string[]]$computerName
    )

Listing 21.2 Adding a data section to Global.psm1

Data 
sectionB



212 CHAPTER 21 Globalizing a function

    BEGIN {
        Write-Verbose $msgTable.starting          
    }
    PROCESS {
        ForEach ($computer in $computername) {
            try {
                $connected = $True
                Write-Verbose "$($msgTable.attempting) $computer"
                $os = Get-WmiObject -ComputerName $computer `
                                    -class Win32_OperatingSystem `
                                    -EA Stop
            } catch {
                $connected = $false
                Write-Verbose "$($msgTable.connectionTo) $computer 

  ➥ $($msgTable.failed)"
            }
            if ($connected) {
                Write-Verbose "$($msgTable.connectionTo) to $computer 

  ➥ $($msgTable.succeeded)"
                $cs = Get-WmiObject -ComputerName $computer `
                                    -class Win32_ComputerSystem
                $props = @{ComputerName=$computer;
                           OSVersion=$os.version;
                           Manufacturer=$cs.manufacturer;
                           Model=$cs.model}
                $obj = New-Object -TypeName PSObject -Property $props
                Write-Output $obj
            }
        }
    }
    END {
        Write-Verbose $msgTable.ending
    }
}

Export-ModuleMember -function "Get-OSInfo"         

We’ve added a data section at B. This utilizes the ConvertFrom-StringData cmdlet

to convert a here-string into a hashtable. The result is a $msgTable object, with prop-

erties named connectionTo, starting, ending, and so on. The properties will contain

the English-language values shown in the script. We can then use those properties

atC, whenever we want to display the associated text. Because this is a script module,

it would ordinarily make the $msgTable variable accessible to the global shell, once

the module is imported. We don’t want that; we’d rather $msgTable remain internal

use only within this module. So we also added an Export-ModuleMember call atD. By

exporting our Get-OSInfo function, everything else, that is, everything we don’t

explicitly export, remains private to the module and accessible only to other things

within the script file. 

 We’re going to test this by removing the module, reimporting it, and then running

it. We’ll make sure to use the –Verbose switch so that we can test our localized output.

Here’s what it should look like:

Using a 
stringC

Export-
ModuleMember

D



213Storing translated strings

PS C:\> remove-module global
PS C:\> import-module global
PS C:\> Get-OSInfo -computerName localhost

Manufacturer      OSVersion         ComputerName     Model
------------      ---------         ------------     -----
VMware, Inc.      6.1.7601          localhost        VMware Virtua...

PS C:\> Get-OSInfo -computerName localhost -verbose
VERBOSE: Starting Get-OSInfo
VERBOSE: Attempting localhost
VERBOSE: Connection to to localhost succeeded

Manufacturer      OSVersion         ComputerName     Model
------------      ---------         ------------     -----
VMware, Inc.      6.1.7601          localhost        VMware Virtua...
VERBOSE: Ending Get-OSInfo

As you can see, our changes seem to be successful. Our verbose output is displaying

with the correct English-language strings. Now we can move on to the next step: creat-

ing translated versions of those strings.

21.3 Storing translated strings

We need to set up some new text files and a directory structure to store the translated

strings. Each text file will contain a copy of our data section. We’ll start by creating the

following new directories and files:

■ \Documents\WindowsPowerShell\Modules\Tools\de-DE\Tools.psd1

■ \Documents\WindowsPowerShell\Modules\Tools\es\Tools.psd1

This creates two localized languages, German and Spanish. The es and de-DE, as well as

the en-US used in our data section, are language codes defined by Microsoft. You have

to use the correct codes, so be sure to consult the list at http://msdn.microsoft.com/

en-us/library/ms533052(v=vs.85).aspx. 

 With the files created, we’re going to copy our ConvertFrom-StringData com-

mand from the original script and into the two new .psd1 files. We’ll then translate the

strings. The next two listings show our final result. As we said earlier, we’re just using

Google Translate here; we’re sure the results will be amusing to anyone who knows

what these actually mean!

    ConvertFrom-StringData @'
        attempting = Versuch
        connectionTo = Der anschluss an
        failed = gescheitert
        succeeded = gelungen
        starting = Ab Get-OSInfo
        ending = Ende Get-OSInfo
'@

Listing 21.3 de-DE version of Global.psd1

http://msdn.microsoft.com/en-us/library/ms533052(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms533052(v=vs.85).aspx


214 CHAPTER 21 Globalizing a function

    ConvertFrom-StringData @'
        attempting = Intentar
        connectionTo = Conexion a
        failed = fracasado
        succeeded = exito
        starting = A partir Get-OSInfo
        ending = Final Get-OSInfo
'@

NOTE The way in which you type the here-strings is specific. The closing '@
can’t be indented; it must be typed in the first two characters of a line, all by
itself. Read about_here_strings in PowerShell for more information on these.

We’re not quite ready to retest our script; we need to modify it to load the translated

data. That’s done with the Import-LocalizedData cmdlet, and one of the two built-in

variables we mentioned earlier will play a role. The cmdlet automatically uses

$PSUICulture’s contents to figure out which .psd1 file to import. That means this can

be tricky to test on a single-language Windows installation! We used our international

MVP contacts, who own localized versions of Windows, to help us test this. The follow-

ing listing shows the changes to Global.psm1 that we’ve made.

$msgTable = Data {
    # culture="en-US"
    ConvertFrom-StringData @'
        attempting = Attempting
        connectionTo = Connection to
        failed = failed
        succeeded = succeeded
        starting = Starting Get-OSInfo
        ending = Ending Get-OSInfo
'@
}
Import-LocalizedData -BindingVariable $msgTable       

function Get-OSInfo {
    [CmdletBinding()]
    param(
        [Parameter(Mandatory=$True,ValueFromPipeline=$True)]
        [string[]]$computerName
    )
    BEGIN {
        Write-Verbose $msgTable.starting
    }
    PROCESS {
        ForEach ($computer in $computername) {
            try {
                $connected = $True

Listing 21.4 es version of Global.psd1

Listing 21.5 Modifying Global.psm1 to import the current language

Importing the 
current language

B



215Storing translated strings

                Write-Verbose "$($msgTable.attempting) $computer"
                $os = Get-WmiObject -ComputerName $computer `
                                    -class Win32_OperatingSystem `
                                    -EA Stop
            } catch {
                $connected = $false
                Write-Verbose "$($msgTable.connectionTo) $computer 

  ➥ $($msgTable.failed)"
            }
            if ($connected) {
                Write-Verbose "$($msgTable.connectionTo) to $computer 

  ➥ $($msgTable.succeeded)"
                $cs = Get-WmiObject -ComputerName $computer `
                                    -class Win32_ComputerSystem
                $props = @{ComputerName=$computer;
                           OSVersion=$os.version;
                           Manufacturer=$cs.manufacturer;
                           Model=$cs.model}
                $obj = New-Object -TypeName PSObject -Property $props
                Write-Output $obj
            }
        }
    }
    END {
        Write-Verbose $msgTable.ending
    }
}

Export-ModuleMember -function "Get-OSInfo"

You can see where we added the Import-LocalizedData command at B. Because this

isn’t contained in a function, it’s executed when our module is loaded. The neat thing

about this command is that it automatically reads $PSUICulture, which we men-

tioned, and looks for the .psd1 file in the appropriate subfolder. If it doesn’t find the

right file, then it doesn’t do anything. That leaves $msgTable populated with our orig-

inal English-language strings, making those our defaults.

A bit more about data sections

The data section in our script has a strict syntax. In general, it can contain only sup-

ported cmdlets like ConvertFrom-StringData. It can also support PowerShell oper-

ators (except –match), so that you can do some logical decision making using the

If...ElseIf...Else construct; no other scripting language constructs are permit-

ted. You can access the $PSCulture, $PSUICulture, $True, $False, and $Null built-

in variables but no others. You can add comments, too. There’s a bit more to them,

but that’s the general overview of what’s allowed. You’re not meant to put much code

in there; data sections are intended to separate string data from your code, not to

contain a bunch more code.



216 CHAPTER 21 Globalizing a function

21.4 Do you need to globalize?

We don’t see a lot of cases where administrators need to write localized scripts, but we

can certainly imagine them. Larger, international organizations might well want to

make the effort to localize scripts, especially when the output will be shown to end

users rather than other administrators. PowerShell’s built-in support for handling

multi-language scripts is fairly straightforward to use, and as you’ve seen here, it’s not

even difficult to convert a single-language script to this multi-language format.

21.5 Lab

As we mentioned in this chapter, we don’t see a lot of instances where administrators

need to use globalization. For that reason, we’re not giving you a lab for this chapter.

But we do encourage you to follow along with the example in this chapter, so that you

know how globalization works in the event you ever have a use for it.



217

Crossing the line:
 utilizing the .NET Framework

Until now, we’ve focused on keeping you entirely within PowerShell. Everything

we’ve shown you to this point has utilized native PowerShell commands, tech-

niques, and capabilities. The sole exception was our brief dip into databases,

which required us to utilize the underlying .NET Framework. In that case, we still

tried to hide the Framework a bit by providing you with PowerShell-style functions

to use for database access. We’ve taken this approach because we truly believe that

PowerShell is at its easiest and most consistent when you use it in the way we’ve

been doing.

 In this chapter, we’re going to cross the line and use the Framework more

directly. This isn’t an approach that we advocate when you can accomplish your

task using native PowerShell capabilities, but we recognize that sometimes you can’t

rely solely on what’s built into, and for, PowerShell. There’s a price to pay for using

the Framework, though: We’re exiting the somewhat tidy world of PowerShell.

There will be no built-in help, and the online documentation we’ll rely on is writ-

ten for professional programmers, not administrators or scripters. Our PowerShell

scripts will necessarily start to look more like C# applications, and we’ll have to rely

more on programming techniques than on command-line approaches.

22.1 .NET classes and instances

The .NET Framework is organized into a massive set of classes. A class is basically a

hunk of code that handles some specific set of related tasks. For example, the

Framework includes a class named System.Math, which provides capabilities for

performing arithmetic calculations. Most Framework classes have a multipart name



218 CHAPTER 22 Crossing the line: utilizing the .NET Framework

like that, indicating that the Math class is part of the System namespace. For the most

part, a namespace is an organizational element, much like a filesystem directory. 

 You get an instance when you load a class into memory, often giving it parameters

to tie it to a specific element or behavior. For example, when you run this

$var = 'Hello!'

you create a new instance of System.String and store it in the variable $var. This

instance of System.String is unique and stands independently of any other instances

you may have created. 

 Classes define a number of properties, methods, and events for themselves, which

are collectively referred to as its members. You’ve already worked extensively with prop-

erties and methods in PowerShell, because the objects generated by most PowerShell

commands are just instances of some Framework class. For example, Get-Process

produces instances of the System.Diagnostics.Process class, and those instances

have all of the properties and methods that you’re accustomed to working with.

22.2 Static methods of a class

Many classes—System.Math being one example—have static methods. A static

method is one that’s accessible as part of the class itself, without actually creating an

instance of the class. Static methods often perform generic tasks that can be com-

pleted entirely by the arguments passed to the method. For example, the Abs()

method of the Math class returns the absolute value of a given number:

PS C:\> [System.Math]::Abs(-5)
5

That also shows the syntax for accessing a static method: Include the complete class

name in square brackets. Follow the closing bracket with two colons, and then specify

the method name. Methods are always followed by parentheses, which contain a

comma-separated list of the method’s arguments. There should be no spaces any-

where in this syntax; everything must run together as we’ve shown.

 Usually, you can shorten the class name:

PS C:\> [math]::abs(-5)
5

This is typically permitted when you’re working with a class that has a unique, unam-

biguous name, meaning the Framework can figure out what you’re asking for without

wondering, “Do you mean System.Math or SomethingElse.Math?” 

 The Framework is enormous and isn’t all physically loaded into PowerShell by

default. On disk, the Framework’s code is divided among a variety of assemblies, which

are typically DLL files. We’ve found that most of the classes under the top-level System

namespace are available by default, but for other namespaces you may need to explic-

itly load the necessary assembly in order to begin using the classes. For example, the

Microsoft.VisualBasic.VBMath class isn’t loaded by default, as you can see from the

error message when we try to use its Rnd() method:



219Instantiating a class

PS C:\> [microsoft.visualbasic.vbmath]::rnd()
Unable to find type [microsoft.visualbasic.vbmath]: make sure that the
assembly containing this type is loaded.
At line:1 char:1
+ [microsoft.visualbasic.vbmath]::rnd()
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidOperation: (microsoft.visualbasic.vb
   math:TypeName) [], RuntimeException
    + FullyQualifiedErrorId : TypeNotFound

In these cases, you can manually load the necessary assembly:

PS C:\> [system.reflection.assembly]::loadwithpartialname('Microsoft.Visual
Basic') | Out-Null

Here, we’ve piped the output to Out-Null to suppress that output. We usually do that

when loading assemblies in a script, so that the output of LoadWithPartialName()

doesn’t mess up our script’s intended output. 

 We should note that using LoadWithPartialName() is easy but is considered a poor

practice. The .NET Framework documentation lists the method as deprecated, meaning

it may be removed from future versions of the Framework. There’s a great blog post by

one of PowerShell’s developers, Lee Holmes, that explains the details and offers alter-

natives (and a helper script) at http://www.leeholmes.com/blog/2006/01/17/

how-do-i-easily-load-assemblies-when-loadwithpartialname-has-been-deprecated/. We

admit that we continue to use LoadWithPartialName() because it’s so much simpler

and because we’re willing to do any necessary debugging on the rare occasions when it

doesn’t work the way we need it to.

22.3 Instantiating a class

PowerShell’s New-Object cmdlet creates a new instance of a class. It does this by call-

ing a class’s constructor, which may require you to supply one or more arguments in

order to create the instance. For example, the only constructor for the System

.IO.DriveInfo class requires you to provide a drive name:

PS C:\> $drive = New-Object -TypeName System.IO.DriveInfo -Argument 'C:'

When multiple arguments are required, provide them to the –ArgumentList parame-

ter as a comma-separated list. Some classes have multiple constructors; New-Object

will choose the correct one based upon the arguments you provide. For example, the

System.String class offers a variety of constructors. Here are a few:

■ String(Char)
■ String(Char[])
■ String(Char, Int32)
■ String(Char[], Int32, Int32)

Each of these constructs a new System.String based on slightly different input. The

last one, for example, accepts an array of characters and then constructs a string start-

ing at the designated character and including the specified number of characters.

This can get pretty complex, but the point is that the type of data you provide in your

http://www.leeholmes.com/blog/2006/01/17/how-do-i-easily-load-assemblies-when-loadwithpartialname-has-been-deprecated/
http://www.leeholmes.com/blog/2006/01/17/how-do-i-easily-load-assemblies-when-loadwithpartialname-has-been-deprecated/


220 CHAPTER 22 Crossing the line: utilizing the .NET Framework

arguments and the order in which you list those arguments must line up to one of the

provided constructors. You couldn’t construct a new System.String using an argu-

ment list like 1,2,3 because none of the class’s constructors are expecting three inte-

gers in a row. 

22.4 Using Reflection

PowerShell’s super-handy Get-Member cmdlet utilizes a .NET Framework feature called

Reflection. In essence, Reflection lets you see an object’s members—its properties,

methods, and events—simply by looking at it. Any .NET Framework instance can be

piped to Get-Member, and the cmdlet will show you what you’re dealing with. This

applies only to instances, not to static classes; running [System.Math] | Get-Member

won’t produce useful output. 

 For example, we’ll create an instance of the System.IO.DriveInfo class, pointing

it to our C: drive, and then ask Get-Member to show us the instance’s members:

PS C:\> $drive = New-Object -TypeName System.IO.DriveInfo -ArgumentList 'C:'
PS C:\> $drive | Get-Member

   TypeName: System.IO.DriveInfo

Name               MemberType Definition
----               ---------- ----------
Equals             Method     bool Equals(System.Object obj)
GetHashCode        Method     int GetHashCode()
GetObjectData      Method     System.Void GetObjectData(System.Runtime....
GetType            Method     type GetType()
ToString           Method     string ToString()
AvailableFreeSpace Property   long AvailableFreeSpace {get;}
DriveFormat        Property   string DriveFormat {get;}
DriveType          Property   System.IO.DriveType DriveType {get;}
IsReady            Property   bool IsReady {get;}
Name               Property   string Name {get;}
RootDirectory      Property   System.IO.DirectoryInfo RootDirectory {get;}
TotalFreeSpace     Property   long TotalFreeSpace {get;}
TotalSize          Property   long TotalSize {get;}
VolumeLabel        Property   string VolumeLabel {get;set;}

This same information is available on the class’s documentation page at http://

msdn.microsoft.com/en-us/library/system.io.driveinfo, but being able to access it

from within the shell is convenient. 

22.5 Finding class documentation

Google, Bing, or some other search engine is your best bet for finding .NET Frame-

work documentation. You can also start at http://msdn.microsoft.com/en-us/

library/gg145045, which is the top-level page (at the time of this writing) for the

entire Framework’s documentation library. 

 Figure 22.1 shows a portion of one class’s documentation page. As you can see, the

top of the page lists the class name (Math, part of the System namespace), and we’ve

highlighted a static member of the class. The big S icon next to the method name tells

http://msdn.microsoft.com/en-us/library/system.io.driveinfo
http://msdn.microsoft.com/en-us/library/system.io.driveinfo
http://msdn.microsoft.com/en-us/library/gg145045
http://msdn.microsoft.com/en-us/library/gg145045


221Finding class documentation

us that this is a static method; we could click the method name to learn more about

how to use it.

 In figure 22.2, we’ve switched to the System.Diagnostics namespace and the

Process class contained therein. We’ve highlighted both an instance property

Figure 22.1 Finding a class’s assembly name and its static methods

Figure 22.2 Instance properties and methods



222 CHAPTER 22 Crossing the line: utilizing the .NET Framework

(WorkingSet) and an instance method (BeginOutputReadLine()). Remember that

both of these are accessible only from an active instance of the class, rather than as

static members.

 Finally, in figure 22.3 we’re showing the System.String class and highlighting

some of its constructors. These constructors provide various ways of creating a new

instance of the class.

 If the documentation looks a little programmer-ish, well, it’s supposed to. Remem-

ber, we’ve left the comfortable confines of PowerShell and ventured into the program-

mers’ world. We’re using their stuff, so we have to read their docs. 

 Note that there are more than a few versions of the .NET Framework out there;

PowerShell v3 uses Framework v4, so you’ll often want to look specifically at documen-

tation for version 4. 

22.6 PowerShell vs. Visual Studio

The more extensively you use the .NET Framework, the less efficient PowerShell

becomes at helping you do so. That’s because PowerShell wasn’t designed as a .NET

development environment; Microsoft offers Visual Studio for that. If you find that you

need to borrow a bit of the Framework in a PowerShell script, you’re probably fine; if

you’re looking at a PowerShell script that’s grown to hundreds of lines and consists

mainly of Framework stuff, you’d probably have an easier time switching to Visual Stu-

dio and embracing C# or another .NET language (like Visual Basic). We’ve seen

administrators crank out hundreds of lines of what is essentially simplified C# code

(PowerShell’s syntax is, after all, based in part on C# syntax), offering the excuse, “I

Figure 22.3 Constructors of the System.String class



223Lab

don’t have time to learn C#.” The time savings Visual Studio could have offered them

would have more than made up for the learning curve. Visual Studio offers a develop-

ment environment, tools, debugging experience, and so on that are specifically

designed for working with .NET.

 This is something we want you to keep in mind. If working with .NET in PowerShell

seems a bit tricky sometimes, it’s because PowerShell wasn’t ever designed to make that

a super-smooth experience. The ability to access the Framework from PowerShell is

something you should think of as bonus functionality, not PowerShell’s primary mission.

22.7 Lab

The .NET Framework contains a class named Dns, which lives within the System.Net

namespace. Read its documentation at http://msdn.microsoft.com/en-us/library/

system.net.dns. Pay special attention to the static GetHostEntry() method. Use this

method to return the IP address of www.MoreLunches.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://msdn.microsoft.com/en-us/library/system.net.dns
http://msdn.microsoft.com/en-us/library/system.net.dns
http://www.MoreLunches.com


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part 4

Creating tools for
 delegated administration

In this last part of the book, we’re going to look at toolmaking from one of its

most common use cases: delegated administration. We’re going to show you how

to build tools that are intended for less-technical or less-privileged users.

Whether you’re deploying a GUI-based tool to end users or setting up delegated

administration for your organization’s help desk, these techniques are ones

you’ll use again and again.

 These techniques get more complex than what we’ve covered up to this

point, and they draw on a wide range of technologies that are technically outside

of PowerShell itself. We’re going to stick with our mission of not trying to be

comprehensive but rather of focusing on the basics and helping you understand

them thoroughly. These chapters will leave plenty of room for further indepen-

dent exploration, but we’ll make sure you know enough to be effective at that.

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



227

Creating a GUI tool,
 part 1: the GUI

In this chapter and the two after it, we’re going to show you how to use PowerShell

to build a graphical user interface (GUI) application, suitable for distribution to

end users. Note that there’s no way to compile this into an executable that doesn’t

need PowerShell in order to run, but we’ll be able to make this look a lot like a real

Windows application.

 Before writing this chapter, we thought long and hard about what directions to

take, because when it comes to building a GUI we have several. We decided to use

Windows Forms (WinForms), one of two .NET Framework GUI systems. We also

decided, for the most part, to rely on a commercial tool named PowerShell Studio

(http://primaltools.com) to build this GUI application. We won’t belabor the rea-

sons behind those decisions here; we’d rather get on with the task at hand. But you

should understand our reasoning and your other options, so we’ve written a brief

appendix to this book, which you’ll find online at http://www.manning.com/

LearnPowerShellToolmakinginaMonthofLunches. There we explain the different

choices we were faced with and why we went the way we did. We realize that there’s

a financial investment with PowerShell Studio, but we assume most of our readers

are IT professionals working in a corporate environment, where presumably there’s

a budget for tools to do your job.

http://www.manning.com/LearnPowerShellToolmakinginaMonthofLunches
http://www.manning.com/LearnPowerShellToolmakinginaMonthofLunches
http://primaltools.com


228 CHAPTER 23 Creating a GUI tool, part 1: the GUI

23.1 Introduction to WinForms

WinForms is the older of Microsoft’s two GUI systems in the .NET Framework. It was

joined in .NET v3.5 by Windows Presentation Foundation (WPF), which is an indepen-

dent system. WPF doesn’t replace WinForms, but it does offer somewhat more modern

capabilities. We find WinForms to be simpler to work with, so that’s what we decided

to use.

 WinForms applications are based on the idea of a form, or window. Each window in

your application—a dialog box, an output screen, or whatever—is a form. Each item on

a form is referred to as a control, and they might include things like buttons, labels, text

boxes, radio buttons, check boxes, and all of the other familiar Windows GUI elements.

 Each form and control has a variety of properties that control their appearance and

in some regards their behavior. Controls are just a kind of object, much like the

objects produced by PowerShell commands. Like objects, they have properties. They

also have events, which represent things that can happen to the control. For example,

clicking a button fires a specific event for that control. We can attach PowerShell com-

mands as event handlers, and WinForms will execute those commands in response to

the event. That’s how we’ll make our form interactive. 

 Forms and controls are created by instantiating an instance of their respective class.

Once you have an instance of a control, you can set its properties and attach event

handlers. Controls are given names, which enable you to refer to them more easily. In

PowerShell, we’ll store the controls in a variable, so that referring to them is easier yet.

The controls on a form include properties that tell WinForms where to position the

control on the form. By manipulating those properties, you can create the exact lay-

out that you need.

 We should point out that we’re not going to try to make you a WinForms expert in

this series of three chapters—we’d need an entire book for that. Our goal is to intro-

duce you to the technology and its techniques through a simple example, as a way of

getting you started. From there, you can continue to learn and explore on your own.

We suggest Microsoft’s own MSDN Library as a great reference to WinForms; visit

http://msdn.microsoft.com/en-us/library/cc656767 for the WinForms Portal. 

23.2 Using a GUI to create the GUI

It’s entirely possible to create a GUI using nothing more than PowerShell’s native ISE

editor, but it’s a huge pain in the neck. We’re going to show you how to do that any-

way, but we’re going to start with a tool that takes most of the pain out of the process.

That tool, PowerShell Studio, is a commercial tool, meaning you have to pay for it. It

does have a free 45-day trial, so we’re hoping that’ll be sufficient to get you through

this book. Its maker, SAPIEN Technologies, also offers a free community edition of the

tool’s predecessor, PrimalForms. That version is a bit less functional, but if you’re only

worried about creating simple scripts that utilize a single form (window), then it’ll

probably do a great job for you. In this series of chapters, we’ll be relying on Power-

Shell Studio 2012; if you’re using a different version, then expect your screen shots to

be at least somewhat different.

http://msdn.microsoft.com/en-us/library/cc656767


229Using a GUI to create the GUI

As shown in figure 23.1, we’ll start by creating a new forms project. This gives us a

basic, blank form to start with. 

TRY IT NOW We strongly encourage you to follow along with this step-by-step
demonstration. Doing so will give you a better feel for the toolset and help get
you working on your own projects a lot more quickly.

We’ll then customize the form a bit. We won’t bother resizing it right now—we’ll wait

until we get some controls in place to do that—but we will configure some of its other

appearances and behaviors. Using the Properties list on the right-hand side of the

application, we’ll set the following:

■ FormBorderStyle to FixedDialog—This makes a non-resizable form, although

we’ll still be able to adjust the size we want while we’re designing it.

■ MinimizeBox and MaximizeBox to False—These remove the window title bar’s

minimize and maximize buttons but leave the close button.

■ StartPosition to CenterScreen—This controls where the form appears when

it first opens.

■ Text to “Toolmaking Demo”—This customizes the text in the window title bar.

TIP It’s often easier if you change the Property list to list properties alphabet-
ically, by clicking the A-Z button just above the list.

Figure 23.1 Starting a new forms project in PowerShell Studio



230 CHAPTER 23 Creating a GUI tool, part 1: the GUI

Figure 23.2 shows the form so far.

 Now we’ll add some controls, as shown in figure 23.3. We’ve added two Labels, a

TextBox, a ComboBox, and a Button. These were dragged out of the Toolbox, which is

on the left-hand side of the application’s window.

Figure 23.2 Our WinForms project so far, with the form appearance customized

Figure 23.3 Laying out the controls on the form



231Using a GUI to create the GUI

Now we need to adjust the properties of these controls.

■ First Label:

– Set Text to “Enter computer name:”
■ TextBox:

– Set Name to “ComputerName”
■ Second Label:

– Set Text to “Select Event Log:”

– Set Visible to False
■ ComboBox:

– Set Name to “EventLogName”

– Set DropDownStyle to “DropDownList”

– Set Visible to False
■ Button:

– Set Name to “OKButton”

– Set Text to “OK”

Figure 23.4 shows the revised form layout.

 That’s basically all we need to do! We’ll make sure to save the project at this point, so

that we don’t lose anything if something goes wrong, but the overall form design is done.

Note that we did need to think about what this would do, and we haven’t shared that design

process with you because we’re focusing now on the mechanics of getting this done.

Figure 23.4 Finalizing the form design



232 CHAPTER 23 Creating a GUI tool, part 1: the GUI

23.3 Manually coding the GUI

The neat thing about PowerShell Studio is that it can create the PowerShell script

needed to implement the GUI we’ve designed. We used its Export to Clipboard File

option to create the script shown in figure 23.5.

 This script is massive: almost 230 lines are required just to create the simple GUI

that we designed. We’re not going to list the entire thing here, but we do want to call

your attention to a few snippets. First is the section that loads the .NET Framework

pieces required to create the GUI:

    [void][reflection.assembly]::Load("System, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089")

    [void][reflection.assembly]::Load("System.Windows.Forms, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089")

    [void][reflection.assembly]::Load("System.Drawing, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")

    [void][reflection.assembly]::Load("mscorlib, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089")

    [void][reflection.assembly]::Load("System.Data, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089")

    [void][reflection.assembly]::Load("System.Xml, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089")

    [void][reflection.assembly]::Load("System.DirectoryServices, 
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a")

Figure 23.5 Here’s how the GUI gets created in code, rather than in a GUI designer tool.



233Manually coding the GUI

Next is the code to create the various GUI elements we designed. Notice that the vari-

able names reflect the Name property that we assigned in PowerShell Studio. Our but-

ton, for example, is represented by $OKButton and our text box by $ComputerName.

The elements for which we didn’t assign a specific name have been given generic

names, such as $LabelSelectEventLog. 

    [System.Windows.Forms.Application]::EnableVisualStyles()
    $MainForm = New-Object 'System.Windows.Forms.Form'
    $OKButton = New-Object 'System.Windows.Forms.Button'
    $labelSelectEventLog = New-Object 'System.Windows.Forms.Label'
    $EventLogName = New-Object 'System.Windows.Forms.ComboBox'
    $ComputerName = New-Object 'System.Windows.Forms.TextBox'
    $labelEnterComputerName = New-Object 'System.Windows.Forms.Label'
    $InitialFormWindowState = New-Object 

'System.Windows.Forms.FormWindowState'

Finally, there are several sections that assign our initial property values. Here, for

example, are the properties for the main form and for our button:

    #
    # MainForm
    #
    $MainForm.Controls.Add($OKButton)
    $MainForm.Controls.Add($labelSelectEventLog)
    $MainForm.Controls.Add($EventLogName)
    $MainForm.Controls.Add($ComputerName)
    $MainForm.Controls.Add($labelEnterComputerName)
    $MainForm.ClientSize = '282, 129'
    $MainForm.FormBorderStyle = 'FixedDialog'
    $MainForm.MaximizeBox = $False
    $MainForm.MinimizeBox = $False
    $MainForm.Name = "MainForm"
    $MainForm.StartPosition = 'CenterScreen'
    $MainForm.Text = "Toolmaking Demo"
    $MainForm.add_Load($OnLoadFormEvent)
    #
    # OKButton
    #
    $OKButton.Location = '190, 94'
    $OKButton.Name = "OKButton"
    $OKButton.Size = '75, 23'
    $OKButton.TabIndex = 4
    $OKButton.Text = "OK"
    $OKButton.UseVisualStyleBackColor = $True

That’s exactly what hand-coding this GUI would look like. As you can see, it’s pretty

extensive. There’s also a lot of trial and error involved, especially around the con-

trols’ Location and Size properties. To be blunt, we’ve done this hand-coded stuff

before, and we’ll never do it again. The price for PowerShell Studio is more than

fair considering how much time we’ve wasted trying to hand-code these little things

in the past.



234 CHAPTER 23 Creating a GUI tool, part 1: the GUI

23.4 Showing the GUI

Showing the GUI is a simple matter of running the script. We can do this right within

PowerShell Studio, by clicking Run Project on the Home tab of its ribbon. Or, because

we’ve already exported the script to the clipboard and pasted it into the PowerShell

ISE, we could run it there. When we do so, we get the display shown in figure 23.6.

 Everything isn’t perfect. As you can see, our Enter Computer Name: label is cut off

a bit. That was visible in PowerShell Studio earlier, and we declined to fix it then. We can

go ahead and do that now, while making any other visual tweaks that are needed. Our

Select Event Log label, for example, was a bit short, so the bottom of the g was getting

cut off. That’s also easy to fix, by adjusting the label back in PowerShell Studio. After mak-

ing all of our visual tweaks, we’re finished with the form and ready to move on to the code.

TRY IT NOW We’re going to continue building on this GUI example in the
next two chapters, so we encourage you to make sure you’re following along.

23.5 Lab

In this lab you’re going to start a project that you’ll work with over the next few chapters,

so you’ll want to make sure you have a working solution before moving on. Developing

a graphical PowerShell script is always easier if you have a working command-line script.

We’ve already done that part for you in the following listing.

Figure 23.6 Running the GUI-based script for the first time



235Lab

Function Get-ServiceData {
[cmdletbinding()]
Param(
[parameter(Position=0,Mandatory=$True,HelpMessage="Enter a computername")]
[ValidateNotNullorEmpty()]
[string]$Computername,
[Parameter(Position=1)]
[ValidateSet("Running","Stopped","All","%")]
[string]$Filter="All"
)

Try {
    Write-Verbose "Getting $filter services from $computername"
    if ($Filter -eq "All") {
        $filter='%'
        Write-Verbose "Using WMI filter: state Like '$Filter'"
    }
    $services=Get-WmiObject -Class Win32_Service -ComputerName $Computername

   ➥ -filter "State Like '$Filter'"
    #write selected results to the pipeline
    $services | Select Name,Displayname,State,StartMode,StartName
}
Catch {
    Write-Warning "Failed to get services from $Computername.

   ➥ $_.Exception.Message"
}

} #end function

You can either retype or download the script from MoreLunches.com.

 The function takes a computer name as a parameter and gets services via WMI

based on user-supplied filter criteria. The function writes a subset of data to the pipe-

line. From the command line it might be used like this:

Get-servicedata $env:computername -filter running | Out-GridView

Your task in this lab is to create the graphical

form using PowerShell Studio. You should

end up with something like the form shown

in figure 23.7. 

 Make the Running radio button checked

by default. You’ll find it easier later if you

put the radio buttons in a GroupBox control,

plus it looks cooler. The script you’re creat-

ing doesn’t have to do anything for this lab

except display this form.

Listing 23.1 Command-line PowerShell script

Figure 23.7 Form layout



236

Creating a GUI tool,
 part 2: the code

In the previous chapter, we created the graphical user interface for our PowerShell

script; in this chapter, we’ll start adding the code needed to make that GUI func-

tional. We’ll continue working in PowerShell Studio. But everything we’re doing

will be much more code intensive, meaning you could choose to use the tool just to

create the GUI, copy and paste the GUI-creation code into the PowerShell ISE, and

then work in the ISE from there.

24.1 Addressing GUI objects

When we had PowerShell Studio create the script that implements the GUI, it

assigned our GUI controls to variables. Those variables were named based on what

we assigned to the Name property of our controls, so our Computername text box is

in the $ComputerName variable. For controls we didn’t name explicitly, the tool

made up a name—often based on the controls’ Text property, such as

$LabelEnterComputerName. We always make a point to explicitly name any control

we plan to work with or have users interact with, so that we can have a concise and

sensible variable name. 

 We’ll use those variables to address and access the GUI controls, or objects. When

followed by a period, they’ll let us access properties, such as $ComputerName.Text,

which provides access to whatever was typed in the text box.

24.2 Example: text boxes

The text box is a good example. We don’t need to worry when the user is doing some-

thing with it; we’ll just let them type whatever they want. When they’re finished,



237Example: button clicks

they’ll click the OK button, and we’ll read the contents of the text box—that is, whatever

they typed—by using $ComputerName.Text.

 There might be times when you do care about user interaction with a text box; you

might, for example, want to be able to take some action as a user is typing. You can

definitely do that; just double-click the text box in PowerShell Studio, and you’ll open

an empty event handler for the text box’s Change event, which fires every time the

contents of the text box change. Be careful with that, because if from within that event

handler you change the contents of the text box, you’ll trigger another Change event,

which can result in an infinite loop.

TIP If you want a computer name text box to default to the local computer,
in the script panel find the form Load function and add a line of code to
update the Text value of your control like this:

$formMenu_Load={
    #TODO: Initialize Form Controls here
    $Computername.text=$env:computername
    
}

We suggest using the environmental variable instead of localhost because some com-

mands won’t recognize localhost as a computer name.

24.3 Example: button clicks

The OK button is a bit different. We do care about user interactions with that control.

We’re going to have it do double duty, meaning we’ll have users click it once to popu-

late and display our drop-down list box and again to query a list of event log entries.

 In PowerShell Studio, we’ll double-click the button to create and open an event

handler for the button’s Click event. This takes us into a code, or script, view, where

we can enter the commands we want to run when the button is clicked. For now, we’ll

put in a few pieces of code, as shown in figure 24.1. But we’ll be populating most of

this code in the next section when we deal with our list box.

 Our code so far looks like this:

$OKButton_Click={
    if ($EventLogName.Visible) {
        # retrieve event log
    } else {
        # populate event log list
        $logs = Get-EventLog -ComputerName $ComputerName.Text `
                             -List
    }
}

What we’re doing is checking the state of our $EventLogName drop-down list box, spe-

cifically, the state of its Visible property. If the drop-down list isn’t visible (which it

isn’t to start with, because we set that property to False when we designed the GUI in

the previous chapter), then we’ll populate the drop-down list with event log names.



238 CHAPTER 24 Creating a GUI tool, part 2: the code

We’ll eventually add code to make the list visible. If the list is visible when OK is

clicked, then we’ll retrieve the selected event log.

 Clicks aren’t the only type of event a button can fire. Most controls trigger dozens

of events—everything from the mouse moving over the control to various control-

specific events like clicks or changes. The point is that you only attach event handlers

to the events you care about—those events that you want to have some prepro-

grammed response for. In PowerShell Studio, you can right-click any control in the

design view, select Add Event, and get a complete list of available events. The MSDN

Library (we provided a link in the previous chapter to that) documents what events

each control offers and what each event is for.

24.4 Example: list boxes

This is the tricky part of our script. Fortunately, PowerShell Studio gives us a helper

function that makes it easier to populate our drop-down list. To use that, we’ll need

to retrieve a list of event log names as plain strings, which we’ll store in the vari-

able $logs:

$logs = Get-EventLog -ComputerName $ComputerName.Text `
                     -List |
        Select-Object -ExpandProperty Log

Figure 24.1 Populating the button’s Click event handler



239Example: list boxes

Note that the –ExpandProperty parameter of Select-Object is crucial here. Nor-

mally, Get-EventLog returns a collection of objects, and the event log name is in the

Log property of those objects. We need to extract that information so that it’s a plain

String, because plain Strings are what we need to put into the drop-down list box.

 We then call the Load-ComboBox helper function. Again, that’s inserted by Power-

Shell Studio whenever we include a ComboBox control in our project; this isn’t a native

PowerShell command. Here’s how we’ll use that helper function and how we’ll make

the drop-down list and its label visible afterward:

Load-ComboBox -ComboBox $EventLogName `
              -Items $logs
$EventLogName.Visible = $true
$labelSelectEventLog.Visible = $true

What if we weren’t using PowerShell Studio and didn’t have that Load-ComboBox

helper function? Populating the list box still isn’t that difficult. Again assuming that

the list of log names is in the variable $logs, exactly as just shown, we’d do this to pop-

ulate the list box:

Foreach ($log in $logs) {
    $EventLogName.Items.Add($log)
}

The key is to try to add only plain Strings to the drop-down list; you can’t add any

other kind of complex object. If you’re working with complex objects, such as the

original list of event logs returned by Get-EventLog, you’ll have to first extract the

desired property contents, which we did using Select-Object –ExpandProperty. 

 Once the list is populated and visible, the user will be able to select a log and click

OK again. We don’t want them clicking OK unless a log has been selected from the list;

the way to check for that is to look at the drop-down list’s SelectedIndex property.

It’ll be -1 if no item is selected. So we’ll build a quick check for that:

if ($EventLogName.SelectedIndex -gt -1) {

}

That way, if OK is clicked with no item selected, nothing will happen. From there, we

need to have the script query the selected log:

if ($EventLogName.SelectedIndex -gt -1) {
    $entries = Get-EventLog -ComputerName $ComputerName.Text `
                            -LogName $EventLogName.SelectedItem
}

We’ve used the drop-down list’s SelectedItem property to access the text of the

currently selected list item. Because we know that’s a valid log name (we got if from

Get-EventLog, remember), it should work fine. Note that the validity concern is why

we changed this from a normal ComboBox to a DropDownList when we designed the

GUI. A ComboBox would allow the user to select an item from the list or enter a value of

their own. We didn’t want that; we wanted to limit their choices to those log names

returned by Get-EventLog. 



240 CHAPTER 24 Creating a GUI tool, part 2: the code

As you can see, we’re combining familiar PowerShell commands with the properties

of our GUI controls. It takes a bit of getting used to, but with a bit of practice you’ll get

there.

 At this point, we’ve saved the requested event log entries into the variable

$entries, and we’re ready to do something with that information. Figure 24.2 shows

our OK button’s Click event handler so far.

TRY IT NOW Make sure you’re following along. In the next chapter, we’ll con-
tinue to build on this, so we don’t want to lose you!

Here’s the complete code (we’ve truncated it a little):

$OKButton_Click={
    if ($EventLogName.Visible) {
        # retrieve event log
        if ($EventLogName.SelectedIndex -gt -1) {
            $entries = Get-EventLog -Computer $ComputerName.Text `
                                    -Log $EventLogName.SelectedItem
        }
    } else {
        # populate event log list
        $logs = Get-EventLog -ComputerName $ComputerName.Text `
                             -List |

Figure 24.2 The OK button’s Click event handler



241Example: radio buttons

                Select-Object -ExpandProperty Log
        Load-ComboBox -ComboBox $EventLogName `
                      -Items $logs
        $EventLogName.Visible = $true
        $labelSelectEventLog.Visible = $true
    }
}

NOTE If you’re using PowerShell Studio, make sure you download the sam-
ple code for this book from http://MoreLunches.com. We’ve included the
complete PowerShell Studio project file for the completed project, so you can
pop it open and run it for yourself.

24.5 Example: radio buttons

The example we’ve been working with

doesn’t need them, but we want to make

sure you see a few more controls in action

that you’re likely to use. First are radio but-

tons. A radio button is a set of mutually

exclusive choices. By that we mean that only

one radio button can be checked at a time.

The control has a Checked property that you

can test or set. The value is either $True or

$False. Here’s a sample form in figure 24.3.

 We recommend setting a default radio button for your form. To use, test each

radio button to see if it is checked. Here’s a code sample that goes behind this form:

$buttonOK_Click={
    #TODO: Place custom script here
    if ($radiobuttonServices.Checked) {
        $Title="Services for $($computername.Text)"
        Get-Service -ComputerName $Computername.Text | Out-GridView -Title

   ➥ $Title
    }
    elseif ($radiobuttonProcesses.Checked) {
        $Title="Processes for $($computername.Text)"
        Get-Process -ComputerName $Computername.Text | Out-GridView -Title

   ➥ $Title
    }
    elseif ($radiobuttonDiskSpace.Checked) {
        $Title="DiskSpace for $($computername.Text)"
        Get-WMIObject -Class Win32_LogicalDisk -Filter "DriveType=3" -

ComputerName $Computername.Text | 
        Select DeviceID,Size,Freespace,Volume Out-GridView -Title $Title
    }
    else {
        #this should never happen
        Write-Warning "Failed to determine what radio button is checked"
    }

}

Figure 24.3 Radio buttons

http://MoreLunches.com


242 CHAPTER 24 Creating a GUI tool, part 2: the code

Remember we said that you can have

only one radio button checked at a time?

That’s per form or grouping. If you have

a set of radio buttons, you can add a

GroupBox control and drop your radio

buttons into it. Within the grouping you

can only have one radio button checked.

Figure 24.4 demonstrates what this

might look like.

 You still need to test the Checked

property of each radio button control.

24.6 Example: check boxes

Another similar control is the check

box. Whereas radio buttons are mutually

exclusive, you can have as many boxes

checked as you’d like. These too have a

Checked property that you can set and

test. Figure 24.5 illustrates what a check

box form might look like.

 As with radio buttons, you can test

the Checked property and respond

accordingly.

$buttonOK_Click={
    #TODO: Place custom script here
    if ($checkboxPing.Checked) {
      if (Test-Connection -ComputerName $Computername.Text -Quiet) {
          $pinged=$true 
        }
     else {
            Write-Warning "Failed to ping $($computername.text)"
            $pinged=$False
        }
     }
    else {
        #don't test ping, assume we can.
        $pinged=$True
    }

    If ($pinged) {
    $data=Get-WmiObject -Class Win32_ComputerSystem -ComputerName 

$Computername.Text
    }
    if ($checkboxLogResults.Checked) {
        $export=Join-Path -Path "$env:userprofile\documents" -ChildPath

   ➥ "$($Computername.Text)-CS.xml"
        $data | Export-Clixml -Path $export
        Get-Item $export | out-gridview

Figure 24.4 Grouped radio buttons

Figure 24.5 Check boxes



243Lab

    }
    else {
        $data | out-gridview
    }
}

For complex forms, you can also drop check boxes into GroupBox controls.

NOTE PowerShell Studio obviously offers more controls than we can cover
here. You can right-click a control and get help on it. The Help menu also has
a link to a number of samples, so you can see many of these controls in action.

24.7 Lab

In this lab you’re going to continue where you left off in chapter 23. If you didn’t fin-

ish, please do so first or download the sample solution from MoreLunches.com. Now

you need to wire up your form and put some actions behind the controls.

 First, set the Computername text box so that it defaults to the actual local com-

puter name. Don’t use localhost.

TIP Look for the form’s Load event function.

Then, connect the OK button so that it runs the Get-ServiceData function from the

lab in chapter 23 and pipes the results to the pipeline. You can modify the function if

you want. Use the form controls to pass parameters to the function. 

TIP You can avoid errors if you set the default behavior to search for running
services. 

You can test your form by sending output to Out-String and then Write-Host. For

example, in your form you could end up with a line like this:

<code to get data> | Out-String | Write-Host

In the next chapter you’ll learn better ways to handle form output.

http://www.MoreLunches.com


244

Creating a GUI tool,
 part 3: the output

In the previous two chapters, we showed you how to create a GUI and add function-

ality to it. In this chapter, we’ll take that functionality and use it to create some out-

put for the application’s user. We’ll focus on two techniques: the easy, built-in way

of generically displaying output and the harder, more customized way of building

your own output form. 

25.1 Using Out-GridView

We’ll start by using the Out-GridView cmdlet, which will be available on any com-

puter that has the PowerShell ISE installed. We’ll make one minor change to our

application’s OK button handler; the complete handler is listed here:

$OKButton_Click={
    if ($EventLogName.Visible) {
        # retrieve event log
        if ($EventLogName.SelectedIndex -gt -1) {
            $entries = Get-EventLog -Computer $ComputerName.Text `
                                    -Log $EventLogName.SelectedItem
            $entries | Out-GridView
        }
    } else {
        # populate event log list
        $logs = Get-EventLog -ComputerName $ComputerName.Text `
                             -List |
                Select-Object -ExpandProperty Log
        Load-ComboBox -ComboBox $EventLogName `
                      -Items $logs
        $EventLogName.Visible = $true
        $labelSelectEventLog.Visible = $true
    }
}



245Using Out-GridView

We’ve piped $entries to Out-GridView. We could have piped the output of

Get-EventLog directly to Out-GridView, but having the log entries in the $entries

variable will make it easier for us to demonstrate the next output technique. Now we’ll

run our script for the first time, by clicking Run Project inside PowerShell Studio. Fig-

ure 25.1 shows the first form that appears.

 We’ll enter “localhost” and click OK. As shown in figure 25.2, we’re then given a

drop-down list of all available application logs from that computer. We’ll select Appli-

cation, and click OK a second time.

Figure 25.1 Running our script displays the first form.

Figure 25.2 Selecting an event log



246 CHAPTER 25 Creating a GUI tool, part 3: the output

Finally, figure 25.3 shows what Out-GridView does: It displays our output in a sortable,

filterable, interactive grid. We think this is a great way to display even complex output

to end users, because it lets them continue to work with the data and requires zero

effort on our part!

 Now for some troubleshooting notes:

■ PowerShell Studio can run scripts in one of two modes on a 64-bit system: 32-bit

and 64-bit. On our 64-bit Windows 8 computer, we needed to run the script in 64-

bit mode in order for Out-GridView to work. You can choose this mode using a

drop-down list in the Home tab of PowerShell Studio.

■ The Get-EventLog cmdlet requires the Remote Registry Service on remote

computers (even if you’re connecting to localhost), which was disabled on our

Windows 8 computer. We had to enable and start the service in order for the

cmdlet to work. When we didn’t, we got an error when trying to populate the

drop-down list.

■ If User Account Control (UAC) is on, you may need to run your scripts in Ele-

vated mode. That’s also chosen from the drop-down list on PowerShell Studio’s

Home tab.

Figure 25.3 The results, shown in Out-GridView



247Creating a form for output

25.2 Creating a form for output

If you choose not to use Out-GridView, or if it isn’t suitable for your needs, then you’ll

need to “roll your own” output form. To continue our example, we’re going to com-

ment out the Out-GridView command in our OK button’s event handler:

$OKButton_Click={
    if ($EventLogName.Visible) {
        # retrieve event log
        if ($EventLogName.SelectedIndex -gt -1) {
            $entries = Get-EventLog -Computer $ComputerName.Text `
                                    -Log $EventLogName.SelectedItem
            # $entries | Out-GridView
        }
    } else {
        # populate event log list
        $logs = Get-EventLog -ComputerName $ComputerName.Text `
                             -List |
                Select-Object -ExpandProperty Log
        Load-ComboBox -ComboBox $EventLogName `
                      -Items $logs
        $EventLogName.Visible = $true
        $labelSelectEventLog.Visible = $true
    }
}

That way, we can take an entirely new approach. We’re going to construct a second

form inside our PowerShell Studio project. This form will also be a fixed dialog box,

and it’ll just display the computer name and the number of event log entries that were

found in the specified log. In figure 25.4, you’ll see that we used the File tab to open

the New menu, selecting New Form.

Figure 25.4 Creating a new form for our project



248 CHAPTER 25 Creating a GUI tool, part 3: the output

Figure 25.5 shows that PowerShell Studio offers a number of ready-made form tem-

plates. We’ll start with a blank one.

 We’ll set the following properties for the form:

■ Name: Results

■ ControlBox: False

■ FormBorderStyle: FixedDialog

■ Text: Results

Next, we’ll add three labels and a button to the form, which is shown in figure 25.6. You’ll

notice that we changed the TextAlign property of all three labels to MiddleCenter.

We also named them (from top to bottom) ComputerNameLabel, LogNameLabel,

EventCountLabel. We named the button OKButton2, and set its Text property to OK. We

saved everything to be safe.

 It’s important to remember that each form in our project gets bundled into its own

standalone function, and these functions are bundled together into the final script.

Because each function has its own scope, no one form can “see” anything from inside

the other forms. That can make it a bit tricky to move data from one form to another,

but that’s what we’ll show you how to do next.

 First, we need to add our new Results form to our Toolmaking project. Because we

created the new form from the File tab, it was created as a standalone file. So now, in

the application’s Project Explorer (on the left), we’ll right-click our Toolmaking proj-

ect and select Add Existing File, as shown in figure 25.7.

Figure 25.5 Selecting the template for the new form



249Creating a form for output

Figure 25.6 Adding controls to the form

Figure 25.7 Adding the Results form file to our Toolmaking project



250 CHAPTER 25 Creating a GUI tool, part 3: the output

As shown in figure 25.8, we’ll also select the option to have the file copied into the

project’s folder. That way, all of the files are contained in a single folder, which is more

convenient. Now, we certainly could have created the form right within the project to

begin with, by right-clicking the Toolmaking project folder inside PowerShell Studio

and selecting Add New File from there. But the way we did it is a common approach,

and we wanted to make sure you know how to deal with it.

25.3 Populating and showing the output

Our script, should we export the entire project to a .PS1 script file, would now consist

of three functions. The Main() function is what gets the script up and running and

displays the initial form window. That’s handled by the Call-MainForm_pff function.

A second function, Call-Results_pff, now implements the new Results form.

Because all three of these functions live within the script, they can “see” each other,

although they can’t see inside each other. Our Results form and all of its controls don’t

even exist until Call-Results_pff is called, so that’ll be the first thing we have to do

in our main OK button event handler:

$OKButton_Click={
    if ($EventLogName.Visible) {
        # retrieve event log
        if ($EventLogName.SelectedIndex -gt -1) {

Figure 25.8 Copying the Results form file to the Toolmaking project folder



251Populating and showing the output

            $entries = Get-EventLog -Computer $ComputerName.Text `
                                    -Log $EventLogName.SelectedItem
            #$entries | Out-GridView
            Call-Results_pff
        }
    } else {
        # populate event log list
        $logs = Get-EventLog -ComputerName $ComputerName.Text `
                             -List |
                Select-Object -ExpandProperty Log
        Load-ComboBox -ComboBox $EventLogName `
                      -Items $logs
        $EventLogName.Visible = $true
        $labelSelectEventLog.Visible = $true
    }
}

Doing that instantly shows the form as well, which doesn’t look so good right now

because we haven’t populated it. The trick will be to somehow pass our information

into the new function, so that the Results form can “see” the information we want it to

use. There are a lot of ways in which we could do that, but we’re going to do it by

opening the Globals.ps1 file that PowerShell Studio automatically created in our proj-

ect. At the top, we’ll declare a new variable named $global_events and set it to be an

empty array. Figure 25.9 shows this addition.

Figure 25.9 Adding the $global_events variable to Globals.ps1 in our project



252 CHAPTER 25 Creating a GUI tool, part 3: the output

Back in our OK button event handler, we’ll now put the results of Get-EventLog into

$global_events instead of $entries. Figure 25.10 shows this modification.

 Because $global_events is global, it’ll be visible to our Results form, too. There’s

already an event handler in the Results form’s script that will run when the form is

loaded. Figure 25.11 shows what we’ve added to it.

Figure 25.10 Putting the event log results into the new global variable

Figure 25.11 Populating the Results form’s Load event handler



253Populating and showing the output

We’ll run this quickly to see what it’s looking like, and figure 25.12 shows the results.

 Because we haven’t yet added code to our OK button on the Results form, we have

to use the red Stop Script button in PowerShell Studio to close the script. Right now, we

have another problem, too. We were able to pull the computer name from the event log

entries, but the entries themselves don’t contain any record of what log they’re from. We

populated the second label with the Source property of an event, but that didn’t turn

out to be the log name. Here’s what we’ll need to do to finish this project:

■ Create a new variable, $global_logname, in Globals.ps1.

■ In the OK event handler in the main form, set $global_logname equal to

$EventLogName.SelectedItem prior to running Call-Results_pff.

■ In the Results form’s Load event handler, use $global_logname to set

$LogNameLabel.Text.

■ Add a Click event handler for the Results form’s OK button, and add

$Results.Close() to it.

TIP To see all of these changes, download this book’s sample scripts from
MoreLunches.com. We’ve provided the original PowerShell Studio files for
this project as well as the complete chapter 25 script, which you can run as is
from PowerShell or the PowerShell ISE. If you open that script in the ISE, you
can also see the exact code we added to finish this project.

Figure 25.12 A quick test run of the new script

http://www.MoreLunches.com


254 CHAPTER 25 Creating a GUI tool, part 3: the output

25.4 Lab

We’ll keep things pretty simple for this lab. Using the PowerShell Studio lab project

from chapter 24, add a RichTextBox control to display the results. Here are some

things to remember:

■ Configure the control to use a fixed-width font like Consolas or Courier New.

■ The Text property must be a string, so explicitly format data as strings by using

Out-String.

In-form options

If you don’t want to create additional forms, there are several controls you can use

within the form itself to display your results. You can use a Label control for a simple

one-line result. Just set the Text property. 

$labelDeviceID.Text=$data.deviceID
$labelFreespace.Text=$data.FreeGB
$labelSize.Text=$data.SizeGB 
$labelVolume.Text=$data.Volumename

You could use a RichTextBox control. This control has some interesting visual prop-

erties you can experiment with. If you use this control, set the font to a fixed-width

font like Consolas, especially if you want to display PowerShell output. Both of these

controls expect strings, so you might need to reformat any PowerShell output by pip-

ing it to Out-String.

#clear any existing text box values
$RichTextBoxResults.Clear()
$data=<my command>
$RichTextBoxResults.Text=$data | Out-String

The last option, although the most complicated of the bunch, is a DataGridView
control. This is like what you get when you pipe results to Out-Gridview, except the

table is in your form. You put data in the control via its DataSource property, which

is an array of binding values. Fortunately, PowerShell Studio has a helper function

called Load-DataGridView that makes it easier to populate it. Here’s a code snippet

of what that might look like:

#clear the grid
    $datagridview1.ClearSelection()
    #get data
    $data=Get-WmiObject Win32_LogicalDisk -Filter "drivetype=3" 

-ComputerName $Computername.Text | 
    Select "DeviceID",@{Name="SizeGB";Expression={"{0:N2}" -f ($_.Size/

1GB)}},
    @{Name="FreeGB";Expression={"{0:N2}" -f ($_.Freespace/

1GB)}},"VolumeName"
    #add the data to the control
    Load-DataGridView -DataGridView $datagridview1 -Item $data

You’ll find demo PowerShell Studio project files for these controls on MoreLunches

.com.

http://www.MoreLunches.com
http://www.MoreLunches.com
http://www.MoreLunches.com
http://www.MoreLunches.com


255Lab

■ Use the control’s Clear() method to reset it or clear out any existing results.

■ If you need to move things around on your form, that’s okay.

You can download a sample solution at MoreLunches.com.

http://www.MoreLunches.com


256

Creating proxy functions

A proxy function acts as a wrapper around an existing function, cmdlet, or other

command. In its simplest form, a proxy function passes all parameter input

through to the wrapped command. Proxy functions are commonly used to add

parameters, remove parameters, or otherwise expand or restrict the underlying

command, becoming a useful tool for delegated administration. For example, you

might provide users with a proxy function that removes a command parameter that

you don’t want the user to have access to. When loaded, a proxy function somewhat

hides the real, wrapped command. Combined with techniques like constrained

remoting endpoints (which we cover in the next chapter), proxy functions can

completely hide the wrapped command, becoming the only means by which a user

can accomplish a given task.

26.1 What are proxy functions?

A proxy function, which some folks call a wrapper function, is designed to sit on

top of an existing command. For example, if you create a proxy function named

ConvertTo-HTML, it will hide the real ConvertTo-HTML cmdlet. Whatever parame-

ters you provide as part of the proxy function will become the only ones available to

users, enabling you to take away functionality, add functionality, and so forth.

 Proxy functions can also be used to create entirely new commands that, under

the hood, leverage the functionality of an existing command. For example, we’ll

show you how to create an Export-HTML command that internally utilizes

ConvertTo-HTML and Out-File, while still leaving both of those native cmdlets

independently accessible.



257Creating the proxy function template

26.2 Creating the proxy function template

The first step in creating a proxy function is to create the template. PowerShell does

this for you, so it’s a pretty easy step. The result is a function that looks and works

exactly like the original one—essentially a copy of it. You’ll use this template as a start-

ing point for renaming the function, adding parameters, or removing parameters. 

 We’re going to start with the ConvertTo-HTML cmdlet. Our goal is to create a proxy

function named Export-HTML, which adds a –FilePath parameter so that the con-

verted HTML can be written directly to a file. We’re also going to remove the entire

parameter set that includes the –Fragment parameter, because it doesn’t make sense

(for our use case, at least) to write an HTML fragment to a file. Because we’re not nam-

ing our function ConvertTo-HTML, the original cmdlet will remain accessible.

 We’ll start by running these two commands:

PS C:\> $metadata = New-Object System.Management.Automation.CommandMetaData
 (Get-Command ConvertTo-HTML)
PS C:\> [System.Management.Automation.ProxyCommand]::Create($metadata) | Ou
t-File NewScript.ps1

TRY IT NOW We strongly encourage you to follow along with our commands
and script edits. The script produced by PowerShell doesn’t fit neatly within
the pages of this book, but we’ll limit the number of changes we make to that
formatting to try to keep our script as consistent as possible to what you’ll see
if you do this on your own.

This results in a file, NewScript.ps1, which is shown in the following listing. You’ll

notice that this is just a script, not an actual function.

[CmdletBinding(DefaultParameterSetName='Page', HelpUri='http://
go.microsoft.com/fwlink/?LinkID=113290', RemotingCapability='None')]

param(
    [Parameter(ValueFromPipeline=$true)]
    [psobject]
    ${InputObject},

    [Parameter(Position=0)]
    [System.Object[]]
    ${Property},

    [Parameter(ParameterSetName='Page', Position=3)]
    [string[]]
    ${Body},

    [Parameter(ParameterSetName='Page', Position=1)]
    [string[]]
    ${Head},

    [Parameter(ParameterSetName='Page', Position=2)]
    [ValidateNotNullOrEmpty()]
    [string]
    ${Title},

Listing 26.1 NewScript.ps1



258 CHAPTER 26 Creating proxy functions

    [ValidateNotNullOrEmpty()]
    [ValidateSet('Table','List')]
    [string]
    ${As},

    [Parameter(ParameterSetName='Page')]
    [Alias('cu','uri')]
    [ValidateNotNullOrEmpty()]
    [System.Uri]
    ${CssUri},

    [Parameter(ParameterSetName='Fragment')]
    [ValidateNotNullOrEmpty()]
    [switch]
    ${Fragment},

    [ValidateNotNullOrEmpty()]
    [string[]]
    ${PostContent},

    [ValidateNotNullOrEmpty()]
    [string[]]
    ${PreContent})

begin
{
    try {
        $outBuffer = $null
        if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
        {
            $PSBoundParameters['OutBuffer'] = 1
        }
        $wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand('ConvertTo-

Html', [System.Management.Automation.CommandTypes]::Cmdlet)
        $scriptCmd = {& $wrappedCmd @PSBoundParameters }
        $steppablePipeline = 

$scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)
        $steppablePipeline.Begin($PSCmdlet)
    } catch {
        throw
    }
}

process
{
    try {
        $steppablePipeline.Process($_)
    } catch {
        throw
    }
}

end
{
    try {
        $steppablePipeline.End()
    } catch {
        throw



259Creating the proxy function template

    }
}
<#

.ForwardHelpTargetName ConvertTo-Html

.ForwardHelpCategory Cmdlet

#>

We’re going to wrap this in a function named Export-HTML. Also, to make this a bit

easier to load and use, we’ll immediately resave the file as a script module. We’ll save

the file as ..\Documents\WindowsPowerShell\Modules\Proxies\Proxies.psm1. 

 We’re also going to go ahead and rename the proxy function, as shown in listing 26.2,

because this proxy no longer uses the same syntax as the original command. While we’re

at it, we’ll also remove the link to Microsoft’s online command documentation. Changes

in the following listing are shown in boldface.

function Export-HTML {
    [CmdletBinding(DefaultParameterSetName='Page', 
                   RemotingCapability='None')]
    param(
        [Parameter(ValueFromPipeline=$true)]
        [psobject]
        ${InputObject},

        [Parameter(Position=0)]
        [System.Object[]]
        ${Property},

        [Parameter(ParameterSetName='Page', Position=3)]
        [string[]]
        ${Body},

        [Parameter(ParameterSetName='Page', Position=1)]
        [string[]]
        ${Head},

        [Parameter(ParameterSetName='Page', Position=2)]
        [ValidateNotNullOrEmpty()]
        [string]
        ${Title},

        [ValidateNotNullOrEmpty()]
        [ValidateSet('Table','List')]
        [string]
        ${As},

        [Parameter(ParameterSetName='Page')]
        [Alias('cu','uri')]
        [ValidateNotNullOrEmpty()]
        [System.Uri]
        ${CssUri},

        [Parameter(ParameterSetName='Fragment')]
        [ValidateNotNullOrEmpty()]

Listing 26.2 Renaming the proxy function to Export-HTML



260 CHAPTER 26 Creating proxy functions

        [switch]
        ${Fragment},

        [ValidateNotNullOrEmpty()]
        [string[]]
        ${PostContent},

        [ValidateNotNullOrEmpty()]
        [string[]]
        ${PreContent})

    begin
    {
        try {
            $outBuffer = $null
            if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
            {
                $PSBoundParameters['OutBuffer'] = 1
            }
            $wrappedCmd = 

$ExecutionContext.InvokeCommand.GetCommand('ConvertTo-Html', 
[System.Management.Automation.CommandTypes]::Cmdlet)

            $scriptCmd = {& $wrappedCmd @PSBoundParameters }
            $steppablePipeline = 

$scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)
            $steppablePipeline.Begin($PSCmdlet)
        } catch {
            throw
        }
    }

    process
    {
        try {
            $steppablePipeline.Process($_)
        } catch {
            throw
        }
    }

    end
    {
        try {
            $steppablePipeline.End()
        } catch {
            throw
        }
    }
    <#

    .ForwardHelpTargetName ConvertTo-Html
    .ForwardHelpCategory Cmdlet

    #>
}



261Removing a parameter

26.3 Removing a parameter

We’ll start by removing the –Fragment parameter, which is the only parameter in the

Fragment parameter set. It’s the third-to-last parameter defined in the script right

now, after $CssUri and before $PostContent. The next listing shows the modified

Proxies.psm1 file, which now lacks a –Fragment parameter.

function Export-HTML {
    [CmdletBinding(DefaultParameterSetName='Page', 
                   RemotingCapability='None')]
    param(
        [Parameter(ValueFromPipeline=$true)]
        [psobject]
        ${InputObject},

        [Parameter(Position=0)]
        [System.Object[]]
        ${Property},

        [Parameter(ParameterSetName='Page', Position=3)]
        [string[]]
        ${Body},

        [Parameter(ParameterSetName='Page', Position=1)]
        [string[]]
        ${Head},

        [Parameter(ParameterSetName='Page', Position=2)]
        [ValidateNotNullOrEmpty()]
        [string]
        ${Title},

        [ValidateNotNullOrEmpty()]
        [ValidateSet('Table','List')]
        [string]
        ${As},

        [Parameter(ParameterSetName='Page')]
        [Alias('cu','uri')]
        [ValidateNotNullOrEmpty()]
        [System.Uri]
        ${CssUri},

        [ValidateNotNullOrEmpty()]
        [string[]]
        ${PostContent},

        [ValidateNotNullOrEmpty()]
        [string[]]
        ${PreContent})

    begin
    {
        try {
            $outBuffer = $null
            if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))

Listing 26.3 Removing the –Fragment parameter



262 CHAPTER 26 Creating proxy functions

            {
                $PSBoundParameters['OutBuffer'] = 1
            }
            $wrappedCmd = 

$ExecutionContext.InvokeCommand.GetCommand('ConvertTo-Html', 
[System.Management.Automation.CommandTypes]::Cmdlet)

            $scriptCmd = {& $wrappedCmd @PSBoundParameters }
            $steppablePipeline = 

$scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)
            $steppablePipeline.Begin($PSCmdlet)
        } catch {
            throw
        }
    }

    process
    {
        try {
            $steppablePipeline.Process($_)
        } catch {
            throw
        }
    }

    end
    {
        try {
            $steppablePipeline.End()
        } catch {
            throw
        }
    }
    <#

    .ForwardHelpTargetName ConvertTo-Html
    .ForwardHelpCategory Cmdlet

    #>
}

At this point, we can hop into the shell and try this out:

PS C:\> import-module proxies
PS C:\> help export-html

NAME
    ConvertTo-Html

SYNTAX
    ConvertTo-Html [[-Property] <Object[]>] [[-Head] <string[]>]
    [[-Title] <string>] [[-Body] <string[]>] [-InputObject <psobject>]
    [-As <string> {Table | List}] [-CssUri <Uri>] [-PostContent
    <string[]>] [-PreContent <string[]>]  [<CommonParameters>]

    ConvertTo-Html [[-Property] <Object[]>] [-InputObject <psobject>]
    [-As <string> {Table | List}] [-Fragment] [-PostContent <string[]>]
    [-PreContent <string[]>]  [<CommonParameters>]



263Adding a parameter

You can see that the help content is still showing ConvertTo-HTML, and the –Fragment

parameter is still showing up. That’s okay; what’s important is that the shell recog-

nized our Export-HTML command. The help file confusion is coming from these two

lines at the end of the function:

    <#

    .ForwardHelpTargetName ConvertTo-Html
    .ForwardHelpCategory Cmdlet

    #>

We’ll remove those two lines now, resave the script, and try it again:

PS C:\> remove-module proxies; import-module proxies
PS C:\> help export-html

NAME
    Export-HTML

SYNTAX
    Export-HTML [[-Property] <Object[]>] [[-Head] <string[]>] [[-Title]
    <string>] [[-Body] <string[]>] [-InputObject <psobject>] [-As
    <string> {Table | List}] [-CssUri <Uri>] [-PostContent <string[]>]
    [-PreContent <string[]>]  [<CommonParameters>]

Ah, that’s much better. The Fragment parameter set is gone, and the help correctly

shows our function’s name.

26.4 Adding a parameter

We’ll start by declaring a –FilePath parameter. We’ll do this at the end of the existing

parameter list, so we’ll show you the last original parameter by way of reference. Note

that we needed to add a comma after the last original parameter, so that the parame-

ter list would continue to include our new one. We also needed to move the closing )

from the Param block:

        [ValidateNotNullOrEmpty()]     
        [string[]]                            
        ${PreContent},                 

        [Parameter(Mandatory=$True)]   
        [ValidateNotNullOrEmpty()]              
        [string]                       
        $FilePath)                     

We used $FilePath rather than ${FilePath}; both have the same effect. The tem-

plate produced by PowerShell uses only the curly brackets as a kind of better-safe-

than-sorry precaution; we know that $FilePath is a legal variable name, so we don’t

need the curly brackets.

 Now we need to make our new parameter work. To do that, locate this section of

the template:

Original –PreContent 
parameter

New –FilePath 
parameter



264 CHAPTER 26 Creating proxy functions

    begin
    {
        try {
            $outBuffer = $null
            if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
            {
                $PSBoundParameters['OutBuffer'] = 1
            }
            $wrappedCmd = 

$ExecutionContext.InvokeCommand.GetCommand('ConvertTo-Html', 
[System.Management.Automation.CommandTypes]::Cmdlet)

            $scriptCmd = {& $wrappedCmd @PSBoundParameters }
            $steppablePipeline = 

$scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)
            $steppablePipeline.Begin($PSCmdlet)
        } catch {
            throw
        }
    }

We only need to modify around this one line:

   $scriptCmd = {& $wrappedCmd @PSBoundParameters }

The new code will look like this:

$PSBoundParameters.Remove('FilePath') | Out-Null
$scriptCmd = {& $wrappedCmd @PSBoundParameters | Out-File $filePath }

This removes our –FilePath parameter from the parameter collection, because the

underlying ConvertTo-HTML won’t know what to do with it. We then allow the original

ConvertTo-HTML to run but pipe its output to Out-File and provide Out-File with our

$filePath parameter’s value. Whatever other parameters were specified to our function

will all be in $PSBoundParameters, and because they’re all valid with ConvertTo-HTML,

we’re just passing them along by “splatting” them as @PSBoundParameters. The following

listing shows the revised Proxies.psm1.

function Export-HTML {
    [CmdletBinding(DefaultParameterSetName='Page', 
                   RemotingCapability='None')]
    param(
        [Parameter(ValueFromPipeline=$true)]
        [psobject]
        ${InputObject},

        [Parameter(Position=0)]
        [System.Object[]]
        ${Property},

        [Parameter(ParameterSetName='Page', Position=3)]
        [string[]]
        ${Body},

Listing 26.4 The final Proxies.psm1



265Adding a parameter

        [Parameter(ParameterSetName='Page', Position=1)]
        [string[]]
        ${Head},

        [Parameter(ParameterSetName='Page', Position=2)]
        [ValidateNotNullOrEmpty()]
        [string]
        ${Title},

        [ValidateNotNullOrEmpty()]
        [ValidateSet('Table','List')]
        [string]
        ${As},

        [Parameter(ParameterSetName='Page')]
        [Alias('cu','uri')]
        [ValidateNotNullOrEmpty()]
        [System.Uri]
        ${CssUri},

        [ValidateNotNullOrEmpty()]
        [string[]]
        ${PostContent},

        [ValidateNotNullOrEmpty()]
        [string[]]
        ${PreContent},

        [Parameter(Mandatory=$True)]
        [ValidateNotNullOrEmpty()]
        [string]
        $FilePath)

    begin
    {
        try {
            $outBuffer = $null
            if ($PSBoundParameters.TryGetValue('OutBuffer', [ref]$outBuffer))
            {
                $PSBoundParameters['OutBuffer'] = 1
            }
            $wrappedCmd = 

$ExecutionContext.InvokeCommand.GetCommand('ConvertTo-Html', 
[System.Management.Automation.CommandTypes]::Cmdlet)

            $PSBoundParameters.Remove('FilePath') | Out-Null
            $scriptCmd = {& $wrappedCmd @PSBoundParameters | Out-File 

$filePath }
            $steppablePipeline = 

$scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)
            $steppablePipeline.Begin($PSCmdlet)
        } catch {
            throw
        }
    }

    process
    {



266 CHAPTER 26 Creating proxy functions

        try {
            $steppablePipeline.Process($_)
        } catch {
            throw
        }
    }

    end
    {
        try {
            $steppablePipeline.End()
        } catch {
            throw
        }
    }
}

As a quick test, we reimported our module and tried to export a list of running pro-

cesses to HTML. Figure 26.1 shows the results. At the bottom of the screen you can see

the commands we ran, and Internet Explorer shows the resulting file.

Figure 26.1 Testing the Export-HTML command



267Lab

26.5 Loading the proxy function

There are a few rules regarding proxy functions when it comes time to load them.

Because our example used a new command name, Export-HTML, it’s able to coexist

with the original wrapped command, ConvertTo-HTML. 

 But if we’d named our function ConvertTo-HTML, then we’d have effectively

removed easy access to the original ConvertTo-HTML. When two loaded commands

have the same name, PowerShell runs the last one loaded by default. To run the origi-

nal, we’d have had to run something like this:

PS C:\> Get-Process | Microsoft.PowerShell.Utility\ConvertTo-HTML

By specifying the name of the module that the original command lives in, we can access

it and bypass a proxy function that uses the same name. Of course, this ability to bypass

the proxy function might not be something you want to allow. In that case, you’d need

to only provide access to your proxy function via Remoting. By creating a constrained

Remoting endpoint (that’s the topic of the next chapter), you can allow only your proxy

function to be visible to users, denying them access to the original command while still

enabling the proxy function to utilize the original command’s functionality.

26.6 Lab

Create a proxy function for the Export-CSV cmdlet. Name the proxy function

Export-TDF. Remove the –Delimiter parameter, and instead hardcode it to always use

–Delimiter "`t" (that’s a backtick, followed by the letter t, in double quotation

marks). 

 Work with the proxy function in a script file. At the bottom of the file, after the

closing } of the function, put the following to test the function:

Get-Service | Export-TDF c:\services.tdf

Run the script to test the function, and verify that it creates a tab-delimited file named

c:\services.tdf.



268

Setting up constrained
 remoting endpoints

The ability to create constrained endpoints has existed since PowerShell v2, but

PowerShell v3 makes them easier to create and makes them an effective way to set

up delegated administration capabilities within your environment. We’ll walk you

through the complete process of creating and configuring these and give you some

ideas for how you might utilize them in your own organization.

27.1 Refresher: Remoting architecture

Figure 27.1 provides a quick overview of PowerShell’s Remoting architecture. You

use the Web Services for Management (WS-MAN) protocol to communicate

between computers (or even between two services on the same computer). WS-MAN

utilizes either HTTP or HTTPS, with HTTP being the default. On the remote com-

puter, a Windows Remote Management (WinRM) service receives the incoming WS-

MAN traffic and routes that traffic to one or more endpoints. When those endpoints

connect to PowerShell, a session configuration determines the capabilities of that par-

ticular connection. The default session configurations created when you enable

Remoting (by running Enable-PSRemoting) are basically unrestricted and may

only be utilized by Administrators. 

NOTE For a more in-depth look at how Remoting works, we recommend
Learn Windows PowerShell 3 in a Month of Lunches. You can also refer to
Don’s free Secrets of PowerShell Remoting guide, which is available at http://
PowerShellBooks.com. 

For this chapter, we’ll assume that the computer you’re working on already has

Remoting enabled (run Enable-PSRemoting as an Administrator accepting all

defaults, and ensure that the command completes without error). 

http://PowerShellBooks.com
http://PowerShellBooks.com


269What are constrained endpoints?

27.2 What are constrained endpoints?

A constrained endpoint, or constrained session configuration, is an endpoint that has

limited capabilities. You can also create endpoints that run all commands under a

specified user credential, rather than running commands under the credential of the

connected user (which is the default behavior).

 Limitations can include preloading specified PowerShell modules or scripts, restrict-

ing the commands visible to the connected user, limiting or eliminating PowerShell’s

scripting language (which enables the endpoint only to run commands), and so on. 

 Why might you do any of these things? Delegated administration is perhaps the

perfect example. Suppose that we’ve created a user group named NetTechs and popu-

lated it with users who we want to be able to perform specific network-related tasks on

a computer. We don’t, however, want to give those users permission to perform those

tasks. We could set up a constrained endpoint that includes only the commands we

want them to run and configure the endpoint to run all commands under an alter-

nate credential—one that does have permissions to run those commands. We’d further

restrict the endpoint to accept only connections from that NetTechs group. Members

of that group would be able to connect and run the supplied commands but not do

anything else—a perfect example of delegated administration. By not giving them

Figure 27.1

PowerShell Remoting 

architecture



270 CHAPTER 27 Setting up constrained remoting endpoints

direct permission to run those commands, we’d ensure that they could run them only

through the endpoint we provide them. That would allow us to severely restrict their

capabilities to a closely defined set of tasks. We could, for example, load the endpoint

with proxy functions, forcing our NetTechs users to perform their tasks through what-

ever limited interface we provide. That would help ensure they didn’t stray outside

the boundaries of what we wanted to allow them to do and help prevent them from

causing collateral damage on the computers they were working with.

27.3 Creating the endpoint definition

There are two steps to creating the endpoint, and the first is to create its definition,

which PowerShell calls a session configuration. The result of this is a configuration

file, which contains information on the endpoint’s capabilities. The fact that this is

created in a file is a crucial advantage in automation endpoint creation: You can cre-

ate a single-session configuration file and then copy it to multiple computers or even

store it in a shared folder on the network. Multiple computers can then register a new

endpoint using that configuration file, helping to make each of them consistent. 

 The file is created by running New-PSSessionConfigurationFile; we’ll leave it to

you to read the command’s help to explore its full set of capabilities. For now, here’s

the command we’ll run:

New-PSSessionConfigurationFile -Path C:\NetTechEndpoint.pssc `
                               -Description 'For NetTech use' `
                               -ExecutionPolicy Restricted `
                               -ModulesToImport NetAdapter,NetSecurity `
                               -PowerShellVersion 3.0 `
                               -VisibleFunctions 'Get-NetAdapter',
                                               'Set-NetAdapter',
                                               'Show-NetFirewallRule' `
                               -VisibleProviders FileSystem `
                               -SessionType RestrictedRemoteServer

TRY IT NOW If you’re using a Windows 8 or Windows Server 2012 computer,
you should be able to run this command exactly as is. We recommend that
you do so, so that you can follow along with this chapter’s overall example.

Briefly, our new endpoint will include only two modules, NetAdapter and NetSecurity.

Further, it will expose only three commands from those modules. It will not permit script

execution. It will only run PowerShell v3 and will only permit PSDrives to be mapped to

regular filesystem drives, meaning the registry, WS-MAN configuration, and other drives

won’t be available within the endpoint. The –SessionType parameter is especially impor-

tant: Rather than choosing Default, which loads most PowerShell cmdlets, or Empty,

which loads none, we’ve selected RestrictedRemoteServer. That adds a set of about

eight core cmdlets, including ones that let a connected user disconnect from the session

and close it.

 You must be very careful when deciding what commands to make visible.

The New-PSSessionConfigurationFile cmdlet will let you limit cmdlets

(-VisibleCmdlets) or functions (-VisibleFunctions). You have to know the com-

mand type. Don’t assume that everything in a module is a cmdlet. In the previous



271Registering the endpoint

example, the Get-NetAdapter command is a function, which you can verify with

Get-Command. If we’d used –VisibleCmdlets, it would have had no effect and noth-

ing would have been restricted.

 The other potential gotcha is that sometimes you can still end up with unexpected

visible commands. When you do, as in the NetTechs example, if you run Get-Command

you’ll still see some cmdlets. That’s because the NetSecurity module contains both func-

tions and cmdlets. Even though we’re limiting functions from the module, all the cmd-

lets are still visible. We haven’t found any way using New-PSSessionConfigurationFile

to set –VisibleCmdlets to nothing. The best workaround we can offer is to manually edit

the .pscc file, remove the comment character in front of VisibleCmdlets, and set it equal

to ''. Next we’ll cover connecting to the endpoint.

27.4 Registering the endpoint

This is the second step in creating a custom endpoint, and it reads in the session con-

figuration file that we just created. It then registers that configuration with the WinRM

service, officially putting the endpoint into action. We’ll run this command:

Register-PSSessionConfiguration -Path C:\NetTechEndpoint.pssc `
                                -Name NetTechs `
                                -ShowSecurityDescriptorUI `
                                -AccessMode Remote `
                                -RunAsCredential Administrator

A few things happen when we run this. First, as shown in figure 27.2, we’re prompted

for the password of the Run As credential that we specified. This password will be

Figure 27.2 Providing the Run As account password



272 CHAPTER 27 Setting up constrained remoting endpoints

securely embedded within the endpoint’s configuration, and that account will be used

to execute all commands within the endpoint. Note that the command will ultimately

fail, and the endpoint won’t be registered, if you don’t provide the correct password.

 As shown in figure 27.3, we’re also prompted to register the endpoint and then

again to restart the WinRM service. This is necessary in order to make the new end-

point active. An additional parameter of Register-PSSessionConfiguration will sup-

press this prompt and not restart the service, but the new endpoint won’t be active

until either the service or the entire computer is restarted.

 Finally, as shown in figure 27.4, we’re prompted to set the security of the endpoint.

We’ll add the NetTechs user group and give them Read and Execute permissions. This

dialog was displayed because we specified –ShowSecurityDescriptorUI. Had we not

done so, we’d have needed to provide the endpoint’s permissions using the Security

Descriptor Definition Language (SDDL), which we can never make heads or tails of.

Using the UI is a lot easier for us and helps us get the exact permissions we want on

the endpoint. 

TRY IT NOW If you’re following along, then you’ll need to make sure you pro-
vide the correct password for your computer’s Administrator account. If you
want to skip adding the specific permissions for a local NetTechs group, then
just accept the defaults on the permissions dialog. That user group doesn’t
exist by default, but you can certainly create it on your computer and add a
user account to it if you’d like to test it.

Figure 27.3 The “Are you sure?” prompt to register the endpoint



273Connecting to the endpoint

If all goes well, you should be able to retrieve the endpoint once it’s created:

PS C:\> Get-PSSessionConfiguration -Name Net*

Name          : NetTechs
PSVersion     : 3.0
StartupScript : 
RunAsUser     : Administrator
Permission    : 

27.5 Connecting to the endpoint

To connect to a custom endpoint, use Invoke-Command or Enter-PSSession, provid-

ing the –ConfigurationName parameter to specify the configuration name. Without

that parameter, you’ll connect to the computer’s default PowerShell endpoint, which

is fully functional and (by default) restricted to Administrator use.

PS C:\> Enter-PSSession -ComputerName localhost -ConfigurationName nettechs

You need to run this command in a session that’s running under credentials for a user

who belongs to the NetTechs group or use the –Credential parameter to specify the

credentials. Once connected, you can run Get-Command to verify that only your

desired commands are visible within the endpoint. If you try to run an unapproved

command like Get-Service, you’ll get an error, which is exactly what we wanted.

Figure 27.4 Specifying the permissions on the endpoint



274 CHAPTER 27 Setting up constrained remoting endpoints

TIP Normally in a remote session, you can use Exit to leave the session. But
in a constrained session this is an unapproved command. Instead, use the
Exit-PSSession cmdlet.

27.6 Lab

Create a new, local user named TestMan on your computer. Be sure to assign a pass-

word to the account. Don’t place the user in any user groups other than the default

Users group.

 Then, create a constrained endpoint on your computer. Name the endpoint

ConstrainTest. Design it to include only the SmbShare module and to make only the

Get-SmbShare command visible (in addition to a small core set of cmdlets like

Exit-PSSession, Select-Object, and so forth). After creating the session configura-

tion, register the endpoint. Configure the endpoint to permit only TestMan to con-

nect (with Read and Execute permissions), and configure it to run all commands as

your local Administrator account. Be sure to provide the correct password for

Administrator when you’re prompted.

 Use Enter-PSSession to connect to the constrained endpoint. When doing so, use

the –Credential parameter to specify the TestMan account, and provide the proper

password when prompted. Ensure that you can run Get-SmbShare but not any other

command (such as Get-SmbShareAccess). 



275

Never the end

Welcome to the end! Well, the end of the book—this is just the beginning of your

career as a PowerShell toolmaker!

28.1 Welcome to toolmaking

At the outset of this book, we defined toolmaking as a second kind of PowerShell audi-

ence. You’re now a part of that audience; you’re no longer constrained to using the

tools and commands provided to you by others but can instead combine those to

make your own task-specific tools. Whether those are tools you’ll use on your own or

ones you’ll delegate to other less-technical or less-privileged users, you’re now in a

position to harness the shell to automate tasks within your environment. 

 What’s next? The third PowerShell audience—after tool users and tool makers—

is developers. Those are the folks who use Visual Studio to develop applications that

host PowerShell and harness its powers or who make more complex tools by pro-

gramming in C#, Visual Basic, or another .NET Framework language. Frankly, we

find that we can usually get just about anything we need done using the techniques

we’ve presented in this book.

 We want to reiterate one thing from this book’s introduction: Our goal wasn’t to

provide a comprehensive reference to you. Instead, we wanted to provide a tutorial

of the core toolmaking techniques, and that’s what we’ve done. Almost everything

we’ve shown you can be expanded, tweaked, and extended to do more and to meet

specific scenarios. For example, there are lots of other things you can do with

advanced function parameters, more you can do with custom views, a ton more you

can do with workflow, and so on. We’ll leave it up to you to research those addi-

tional capabilities; now that you have the basics under your belt, adopting

additional techniques should come pretty easily.



276 CHAPTER 28 Never the end

28.2 Cool ideas for tools

You probably already have existing PowerShell or VBScript scripts that might benefit

from a makeover into a reusable tool. Or if you are looking for some suggestions, see

if you can develop a PowerShell tool for the following tasks: 

■ Get the password age of the local Administrator account from a remote computer.

■ Create a drive report tool that shows you drive utilization on a server’s drives.

■ Create a tool to back up and clear event logs on remote computers.

■ Create a tool to display file usage by owner for a given folder on a given computer.

■ Create a tool to display uptime and last boot time for a group of mission-critical

servers.

■ Try your hand at developing a PowerShell workflow that configures several ser-

vices, creates a folder structure, copies some files, and creates a new local

Administrator account.

■ Create a tool to query a computer for services running under a local or domain

account.

■ Create a tool to query a computer for all expired certificates.

Note that some of these might even benefit from a GUI treatment.

28.3 What’s your next step?

Our best advice is to dig in. Come up with an idea for a tool that you can use in your own

environment, and start writing it. You’ll likely get stuck at some point, and you’re wel-

come to hop on http://bit.ly/AskDon to post a question to us (both of us answer ques-

tions there). We’ll do our best to help. You’ll find other topical expertise at http://

powershell.com/cs/forums/default.aspx?GroupID=24, so you’ll be able to get help for

domain-specific topics like IIS, SQL Server, SharePoint, Windows, Exchange, and more. 

 Above all, don’t delay. You should still have a lot of fresh material in your mind from

this book, and the time to put it to use is now. Of course, you can always flip back through

the pages of this book to refresh your memory. We’ll caution you a bit about doing so:

Keep in mind that, in many chapters, we provided scripts that actually had errors, so that

we could run across those and fix them. Make sure you’re not referring to an erroneous

script! We’ll also give you a biased recommendation: Get a copy of PowerShell In Depth:

An Administrator’s Guide, which we co-authored with fellow MVP Richard Siddaway. It’s

intended more as a long-term reference than this book (which is meant as a tutorial),

and it covers just about everything you might need to do in PowerShell.

 Good luck!

http://bit.ly/AskDon
http://powershell.com/cs/forums/default.aspx?GroupID=24
http://powershell.com/cs/forums/default.aspx?GroupID=24


277

appendix
GUI technologies
 and PowerShell

In chapters 23–25, we showed you how to build a graphical user interface (GUI) as

part of a PowerShell script. We chose to use the WinForms technologies, and we

made heavy use of a tool called PowerShell Studio (formerly PrimalForms), sold by

SAPIEN Technologies (http://sapien.com). In this appendix, we want to briefly

explain some of those decisions in more detail. Frankly, there’s very little technol-

ogy associated with those decisions—they’re more practical and political—which is

why we’ve pulled this discussion into an appendix, so that we didn’t have to inter-

rupt the main narrative of the book.

A.1 WinForms vs. WPF

We had to choose between two distinct ways of building the GUI: Windows Forms,

which folks refer to as WinForms, or Windows Presentation Foundation, which is

usually called WPF.

 WinForms is the older technology, dating back to the first version of the .NET

Framework. It utilizes GUI components that are, for the most part, native to Win-

dows itself; the .NET Framework is merely a way of accessing them. We find Win-

Forms to be fairly straightforward to work with and more than sufficient for

building the more straightforward tools that administrators usually want to create.

 WPF is a newer technology, having been introduced in .NET Framework v3.5. It’s

capable of creating much more complex and richer GUIs and has a number of

unique capabilities, like the ability to quickly change a GUI’s overall appearance

(but not layout) by “skinning” the UI elements. Some developers refer to these

capabilities as eye candy, although WPF is a bit deeper than that. 

 In WPF, the GUI is defined in an XML file using a format called XAML. That

means the definition of the GUI—what elements are located where—is separate

http://sapien.com


278 APPENDIX GUI technologies and PowerShell

from the code that makes the GUI work. Developers tend to like that separation,

because it enables a lot of different workflows, such as having a designer create the

GUI and letting a developer focus on bringing the GUI to life.

 WPF provides more and better capabilities for working with media, documents, 3D

content, and more. You can get additional information on the major differences at

http://joshsmithonwpf.wordpress.com/2007/09/05/wpf-vs-windows-forms/. It’s an

older article, and WPF has certainly come a long way since then, but it’s still a good,

concise summation of some key differences.

 Given that we wanted to focus on pretty simple GUIs, WinForms was more than suf-

ficient, which is a big part of why we chose it. But that wasn’t the only reason.

A.2 PrimalForms / PowerShell Studio

We tell you, it killed us to have to write a book around a commercial, third-party tool.

Not that PowerShell Studio isn’t worth your consideration—we think it’s great. We just

hate that you bought this book to learn to do something, and now we’re telling you to

shell out another few hundred bucks for this tool. Why are we doing that?

 As far as we’ve been able to discover, PowerShell Studio is the only tool of its kind

in the world. It provides a GUI-based experience for designing your GUI, which we

feel is absolutely essential. Hand-coding the elements in a GUI gets complicated if

you have anything more than a text box and a button; we wouldn’t have even put

chapters 23–25 in the book if we’d been forced to hand-code everything we did. Bot-

tom line: We wouldn’t touch PowerShell-based GUI development without a tool like

PowerShell Studio, and it’s the only one there is.

 We’ve assuaged our guilt on this score by noting that SAPIEN continues to provide

a free Community Edition of the older PrimalForms product (you have to log in to

their website in order to access their Downloads section, and that’s where you’ll find

the free tools). 

 Our decision to use WinForms was driven in part by the fact that PowerShell

Studio outputs WinForms-based code. We feel that (a) you need a tool to do the

GUI design, (b) the only tool out there uses WinForms, and so (c) we tend to stick

with WinForms.

 Some of PowerShell Studio’s other features seal the deal for us in terms of using

the tool, like its ability to bundle your script into an encrypted executable that can run

under alternate credentials. Because that particular feature is exactly what we, as

administrators, want to do with our scripts, it pretty much justifies the tool’s purchase

price. Don’t forget: You can download the software and try it out for yourself during a

trial period.

A.3 Other options

Our decision to use PowerShell Studio doesn’t necessarily need to be your decision.

We do recognize that it’s a pricey tool, although we do enough work with it that, for

us, it’s well worth the price given how much time it saves us. 

http://joshsmithonwpf.wordpress.com/2007/09/05/wpf-vs-windows-forms/


279Other options

 You could elect to use WinForms and hand code everything. You could also get a

free Visual Studio Express edition from Microsoft, use its graphical GUI builder, and

translate the resulting C# or Visual Basic code into PowerShell. Microsoft may not

always offer a free version of Visual Studio that does WinForms development, though,

so that—as well as the time it takes to translate the C# or Visual Basic code to Power-

Shell—is something to keep in mind.

 You could also elect to use WPF. Again, you could use Visual Studio to graphically

develop your UI and just take the resulting XAML and somehow use it in a PowerShell

script. There’s an open source effort called Show-UI that’s built around the idea of

using WPF from within PowerShell; http://show-ui.com provides a basic starting point

and download link, and searching for “Show-UI” in your favorite Internet search

engine will turn up tutorials and walkthroughs. Your resulting script will have a depen-

dency on the Show-UI module, which means you’ll have to find a way to distribute that

along with your scripts in order for them to work.

 Whatever you decide is fine with us. Most of the concepts we’ve shown you in this

book carry over no matter what you decide to do.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://show-ui.com


 

 

 

 

 

 

 

 

 

 



281

index

Symbols

` character 32, 211
; character 22
() characters 18–19, 103
{} characters 58, 103
& operator 190
#> character 82
<# character 82
= (assignment operator) 16
$ character 16

A

A-Z button 229
about_.txt file 86
about_data_sections file 209
about_script_internationalization 

file 209
Abs() method 218
access, database 143–156

functions for 147–156
module for 143
setting up environment 

for 143–147
-Action parameter 174
activities, in workflows 185–186
Add Event option 238
Add Existing File option 248
Add New File option 250
Add-Member command 186
Add-WindowsFeature power-

shell-ise 7
adding controls, to forms 249
Administrator privileges, as 

prerequisite 5–6

AdminPasswordStatus 63
advanced functions 53–79

accepting pipeline input
70–73

design preparations 54–55
functional code for 57–59
output for 59–63
parameters for 55–57

aliases for 69–70
help for 76–77
mandatory 66–67
switch parameter 75–76
validating 73–75

template for 53–54
verbose output 68–69

[Alias()] attribute 70
aliases, for parameters 69–70
AllScopes 42
%APPDATA% variable 43
architecture, for remoting 268
Argument type 195, 197–198
ArgumentList parameter

168, 219
array syntax, for nested 

objects 208
assignment operator 16
audience, targeting 4–5
automation 9

B

backtick character 32, 211
backward compatibility 128
backward scans 91
BEGIN block 54, 58, 68
BIOSSerial property 55

BITS service 26, 167
BITS.ToUpper() method 19
block comment characters 82
Break keyword 25–26
breakpoints, debugging 

with 113–116
broken functions 117
bugs

fixing 115
types of 102

button clicks 237–238

C

C:PS> prompt 84
Call-MainForm_pff 

function 250
Call-Results_pff function

250, 253
CanPing() method

178, 180, 182
Catch block 93, 97
cd $pshome 119
CenterScreen 229
Change event 237
Change() method 167–168
check boxes 242–243
Checked property 241–242
Checkpoint-Workflow 

command 186
classes, in .NET Framework

documentation for 220–222
instantiating 219–220
overview 217–218

Clear() method 255
ClearSelection() method 254



INDEX282

CLI (command-line interface) 9
Click event 237–238, 240
CloudShare.com 6
[CmdletBinding()] 

attribute 54, 82, 110, 
165–166, 170

color coding 13–14
$Color variable 42
column headers, removing 127
ComboBox control 239
comma-separated values. See CSV
command-line interface. See CLI
commands

creating scripts from 28–33
overview 27–28
parameters for 31–33

comment-based help 80–84
<CommonParameters> 90
comparison operators 19–20
compatibility 128
$computer variable 18, 40–41
ComputerName column 125
ComputerName parameter

86–87, 157–158, 194, 
196, 198–199

ComputerName property
55, 131, 153, 179, 194, 196

$ComputerName variable
57, 67, 73, 233, 236

$ComputerName.Text 
property 236–240

ComputerNameLabel 248
<Configuration></Configura-

tion> tag pair 124
ConfigurationName 

parameter 273
Confirm parameter 150, 163, 

165–167, 174
ConfirmImpact 164–168, 

170, 173
$ConfirmPreference 

variable 166–167, 169–170
connecting, to constrained 

remoting endpoints 273
ConnectionString 

property 148–149, 155
connectionTo property 212
Consolas font 254
constrained remoting 

endpoints 268–274
and remoting 

architecture 268
connecting to 273
creating definition for

270–271

overview 269–270
registering 271–273

Continue keyword 25–26
Continue value 88
controls

adding to forms 249
WinForms 228

ConvertFrom-StringData 
cmdlet 212–213

ConvertTo-HTML cmdlet
48, 256–257, 263–264, 267

ConvertToDateTime() 
method 65

Copyright statement 181
Courier New font 254
Credential parameter 273–274
$CssUri parameter 261
CSV (comma-separated values) 

format, and object 
hierarchies 201–202

CSV data 107
CSV file 48, 107–112, 199–201
culture codes 86
curly bracket characters 17, 21, 

58, 103
current scope 91

D

data section, of functions
209, 211–213

$data variable 111
database access 143–156

functions for 147–156
module for 143
setting up environment 

for 143–147
databases, creating 146
DataGridView control 254
DataSource property 254
<de-DE> folder 85
-Debug parameter 114, 166
–Debug switch 110
$debug variable 18
debugging 102–118

adding breakpoints 113–116
adding trace code 109–113
and expectations 116
process for 103–109
types of bugs 102
typos 103
views 126–128

Default section 22
definitions, for constrained 

remoting endpoints 270–271

-Delimiter parameter 267
DependentServices 204–207
design guidelines, for 

functions 47–52
functional tools 49
input tools 48–49
output tools 49–50

design strategies, for 
workflows 188

designer tool, GUI 232
designs, for advanced 

functions 54–55
developers 275
DeviceID property 106
Dir function 36
disk drives 201
$diskobjs array 202–203
Disks property 202–203
displaying messages, for 

errors 95–97
Displayname property 131
Do-Something command

184, 188
Do...While constructs 23
documentation, for classes in 

.NET Framework 220–222
dollar sign character 16
domain controllers 6
dot sourcing, for functions

36–37
DotNetTypes.format.ps1xml

119, 124
double quotation marks 17
DriveType property 105

E

editors, for scripting 14
Elevated mode 246
Else block 21, 109
ElseIf block 109
ElseIf expression 21
ElseIf statements 21
empty format file 123
<en-US> folder 85
Enable-PSRemoting 

command 7, 28, 157, 268
END block 54
ending property 212
endpoints, remoting 268–274

and remoting 
architecture 268

connecting to 273
creating definition for

270–271



INDEX 283

endpoints, remoting (continued)
overview 269–270
registering 271–273

$entries variable 240, 245
enumerating, with ForEach 

loop 207–208
environment diagram 6, 9
environments, setting up for 

database access 143–147
-eq operator 19
error handling 88, 94–101

$ErrorActionPreference 
variable 88–90

displaying message for 95–97
in SmbShare module 

example 159
saving error in variable 90–91
Trap constructs 91–92
Try…Catch…Finally 

constructs 92–95
error messages 103
$ErrorActionPreference 

variable 88–90
ErrorFile parameter 99, 159
ErrorLog parameter 54, 56, 63, 

86, 97–98, 140
$ErrorLog variable 67, 76
errors

handling 88–101
$ErrorActionPreference 

variable 88–90
color coding 13
displaying message for

95–97
saving error in variable

90–91
Trap constructs 91–92
Try…Catch…Finally 

constructs 92–95
saving variables 90–91

–errorvariable 97
–ErrorVariable parameter 90
ETS file 176, 181
–EV parameter 90
event handlers, WinForms 228
event log results 252
EventCountLabel 248
$EventLogName variable 237
$EventLogName.SelectedItem

253
events, WinForms 228
$everything_ok variable 95
.EXAMPLE sections 82
ExampleProperty property 186
Execute button 146

execution policies 10
Exit-PSSession cmdlet 274
-ExpandProperty parameter 239
expectations

and debugging 116
validating 103

export function 117
Export to Clipboard File 

option 232
Export-CliXML 202
Export-CSV cmdlet 48, 267
Export-HTML function

256–257, 259, 261, 263–264, 
266–267

Export-ModuleMember 
command 140–141

Express install 144
Express Management Tools 7
extensions, type 175–182

adding to manifest 180–182
loading 179
overview 175–177
ScriptMethod for 178–179
ScriptProperty for 177–178
testing 179–180

extra column header, 
removing 127

F

F8 key 104
$False variable 20
FilePath parameter

257, 263–264
$FilePath variable 263
-Filter parameter 105
$filter1 18
$filter2 18
final form 49
firing, WinForms 228
FixedDialog 229
folders, for modules 132–133
For constructs 25
Force parameter 174
ForEach constructs 24–25, 108, 

187
ForEach loop 73, 203–204, 

207–208
ForEach syntax 24
ForEach-Object cmdlet 24–25
form design 231
form layout 235
form options 254
form templates 248
format file, empty 123

Format-Custom command
overview 204–205
using with nested 

objects 205–207
Format-MyPrettyDisplay 

command 50
Format-Table 48
.format.ps1xml files 119
–FormatsToProcess 

parameter 138
FormBorderStyle 229
forms

adding controls to 249
sending output to 247–254

Fragment parameter 261, 263
Framework class 217–218
$fred variable 91
FreeSpace property 64, 106, 130
function keyword 54, 84, 183
<function_name> tag 63, 77, 

98–99
functional code, for 

functions 57–59
functional tools 49
functions 35–38, 53–79

accepting pipeline input
70–73

and modules 38
broken 117
calling from scripts 37–38
creating from scripts 33–35
design guidelines for 47–52

functional tools 49
input tools 48–49
output tools 49–50

design preparations 54–55
dot sourcing for 36–37
for database access 147–156
functional code for 57–59
globalization of 209–216

benefits of 216
data section for 211–213
overview 209–211
translated strings for

213–215
output for 59–63
parameters for 55–57

aliases for 69–70
help for 76–77
mandatory 66–67
switch parameter 75–76
validating 73–75

proxy 256–267
creating templates for

257–260



INDEX284

functions (continued)
loading 267
overview 256
parameters for 261–266

template for 53–54
verbose output 68–69
vs. workflows 190–191

G

-ge operator 20
Get-ADComputer 48
Get-CimInstance command

28, 31, 35, 104
Get-Command –noun 

variable 17
Get-ComputerDetails 

function 49
Get-ComputerVolumeInfo 

function 208
Get-DetailedSystemInfo 

function 202–203
Get-EventLog cmdlet 246
Get-Job command 184
Get-Member command 18, 106
Get-MOLDatabaseData

148–150, 153–154
Get-MOLSystemInfo 

command 134–135, 
150, 155

Get-MOLSystemInfo –computer-
name localhost 137

Get-NetAdapter command 271
Get-OSInfo –computername 

localhost 211
Get-OSInfo function 35–36, 

40, 212
Get-Process command 31
Get-RemoteSmbShare 

function 157–159
Get-Service command 16, 31, 

145, 199, 273
Get-ServiceData function 243
Get-SmbShare command 274
Get-SmbShareAccess 

command 274
Get-SystemInfo command

82, 132, 134–135, 139, 142
Get-SystemInfo function 64, 80, 

92, 159
Get-Verb command 29
Get-WmiObject command

59, 94–95, 202–203
GetHashCode() method 106, 

111, 123, 179, 220

GetHostEntry() method 223
GetType() method 106, 111, 

123, 179, 220
global scopes 39–40
global variables 252
$global_events variable 251
$global_logname variable 253
Global.psd1 213–214
Global.psm1 210–211, 214
globalization, of functions

209–216
benefits of 216
data section for 211–213
overview 209–211
translated strings for 213–215

Globals.ps1 251
$go_ahead variable 20
Google Translate 210, 213
GPO (Group Policy object) 133
graphical user interface. See GUI
$GREAT variable 84, 169
grids 246
Group Policy object. See GPO
GroupBox controls

235, 242–243
-gt operator 20
GUI (graphical user interface) 

tools 227–255
button clicks 237–238
check boxes 242–243
creating GUI

manually 232–233
using PowerShell 

Studio 228–231
creating GUI for, outputting 

to 247–254
list boxes 238–241
naming objects in 236
radio buttons 241–242
showing GUI 234
text boxes 236–237
using Out-GridView 

cmdlet 244–246
WinForms, overview 228

GUI designer tool 232

H

handling errors 88–101
$ErrorActionPreference 

variable 88–90
displaying message for 95–97
saving error in variable 90–91
Trap constructs 91–92

Try…Catch…Finally 
constructs 92–95

hash table 60
help 80, 86–87

comment-based 80–84
for parameters 76–77
for SmbShare module 

example 158
XML-based 84–86

Help Editor tool 86
help system 84
Home tab 234
–HostName parameter 70
HTML page 48

I

i18n (internationalization). See 
globalization

IBM prefix 122
Id parameter 193
ID property 193
ID SQLEXPRESS instance 145
ideas, for tools 276
If construct 20, 22–23, 25
If keyword 20
if statement 5, 21
impact levels, for making 

changes 166–167
Import-CliXML 202
Import-CSV 48
Import-LocalizedData 

command 210, 214–215
Import-Module command 138
Import-Module MOLTools 134
Import-Module 

PSWorkflow 184–186
in keyword 24
InfoPath template 85
InlineScript block 185, 190
InlineScript command 186
input mode 72
input parameters 54
INPUT section 84
input tools 48–49
input, for functions 70–73
InputObject parameter 193
Inquire value 89
Insert() method 122
installation folder, 

PowerShell 119
instantiating

classes in .NET 
Framework 219–220

forms and controls 228



INDEX 285

invocation operator 190
Invoke-CimMethod

164–168, 173
Invoke-Command command 31
Invoke-MOLDatabaseQuery 

function 148–151, 154–155, 
163, 171

Invoke-WmiMethod
164, 167–168

isSQLServer property 148–151, 
153–155

J

–Job cmdlets 184

K

keywords 82

L

Label control 254
$LabelEnterComputerName 

variable 236
languages, culture codes 86
-le operator 20
-like operator 20
$line.total 115
list boxes 238–241
Load function 237, 243
Load-ComboBox function

239, 241
loading

proxy functions 267
type extensions 179
views 126–128

LoadWithPartialName() 
method 219

$global:variable 43
LOBAppTools module 189–190
LocalDB install 144
localization 209
Location property 233
Log property 239
LogErrors parameter 76, 95, 

99, 141
$LogErrors variable 76, 93
logic error 102
logical constructs 20–23

Break keyword in 25–26
If constructs 20–21
Switch constructs 21–23

logical disks 203
LogNameLabel 248
$LogNameLabel.Text 253
$logs variable 239
looping constructs 23–25

Break keyword in 25–26
Continue keyword in 25–26
Do...While constructs 23
For constructs 25
ForEach constructs 24–25

-lt operator 20

M

Main() method 250
making changes 163–174

-Confirm parameter 163
-WhatIf parameter 163
impact levels for 166–167
ShouldProcess() 

method 164–174
MAML file 85
MAML format 85
mandatory parameters, for 

functions 66–67
manifest

adding type extensions 
to 180–182

for modules 137–138
manually creating GUI 

tools 232–233
Manufacturer column 125
Manufacturer property 55
Math class 218
MaximizeBox 229
messages, displaying for 

errors 95–97
Microsoft InfoPath 8, 85
Microsoft.VisualBasic.VBMath 

class 218
MiddleCenter 248
MinimizeBox 229
Model column 125
Model property 55
modes, testing 72
module example, 

SmbShare 157–159
creating module 159
design for 157–158
handling errors in 159
help for 158
parameters for 158

module-level variable 141

modules 132–142
contents of 134–135
creating from script 135–137
defined 38
folder for 132–133
for database access 143
manifest for 137–138
name for 133–134
variables for 139–141

MOL prefix 134
MOL.ComputerSystemInfo 130
MOL.DiskInfo 130
MOL.ServiceProcessInfo 131
MOL.SystemInfo object

176, 178–179
MOLDatabase folder 147
MOLDatabase module 149
MOLDatabase.psm1

147–148, 154
$MOLErrorLogPreference 

variable 139–141
MOLTools folder 134
MOLTools module

149–150, 165
MOLTools.format.ps1xml 137
MOLTools.psd1 135
MOLTools.psm1 135, 137–139, 

164–165, 168, 170
MSDN Library 238
$msgTable object 212
msgTable variable 212
multiple computers, as 

prerequisite 6–7
My Documents folder 85

N

Name parameter 193, 197
Name property 131, 193, 208, 

233, 236
naming

controls 228
modules 133–134
objects in GUI 236

-ne operator 19
nested objects

array syntax for 208
creating 202–203
enumerating with ForEach 

loop 207–208
using Format-Custom com-

mand with 205–207
using Select-Object command 

with 204



INDEX286

.NET Framework 143–144, 149, 
217–223

classes in
documentation for

220–222
instantiating 219–220
overview 217–218

in PowerShell vs. Visual 
Studio 222–223

static methods in 218–219
using Reflection 220

NetAdapter module 270
NetSecurity module 270–271
NetTechs group 269, 272–273
New Form option 247
New Query button 146–147
New-Alias command 41–42
New-ModuleManifest 

command 137
New-PSSession command 184
New-PSSessionConfiguration-

File 270–271
New-Variable command 17, 42
NewGuid() method 138
NewScript.ps1 file 257
non-terminating error 88–89
-notlike operator 20
$numbers variable 16

O

$obj variable 122
object hierarchies 200–208

and CSV format 201–202
nested objects

array syntax for 208
creating 202–203
enumerating with ForEach 

loop 207–208
using Format-Custom com-

mand with 205–207
using Select-Object com-

mand with 204
when necessary 200–201

objects, output 121–123
ODBC database 143
-Off parameter 43
$OKButton variable 233
OKButton2 248
Option parameter 42
OSVersion column 125
OSVersion property 55
Out-GridView cmdlet 244–247
Out-Null command 153

output
for functions 59–63
for GUI tools, sending to 

form 247–254
for Trace-Command 

cmdlet 194–199
output objects, type name 

for 121–123
OUTPUT section 84
output tools 49–50

P

Parallel construct 187
parallelism, of workflows

187–188
Param() method 32, 56, 76
parameter attributes 66
parameter block 54
parameter help, adding 76
.PARAMETER keyword 82
parameter mode 72
[Parameter()] attribute

67, 71, 77
parameters

for commands 31–33
for functions 55–57

aliases for 69–70
help for 76–77
mandatory 66–67
switch parameter 75–76
validating 73–75

for proxy functions 261–266
for SmbShare module 

example 158
for workflows 184

parentheses 18–19, 103
partitions 203
pasted-in XML, modifying 125
Path parameter 138, 195, 197
PeakPageFile property 131
Persist workflow activity 186
persisting state, in 

workflows 186
pipeline input

accepting in functions 70–73
overview 192–193
troubleshooting, with Trace-

Command cmdlet 192–199
PIPELINE object 196, 198
pipeline, and scripting 15–16
Play icon 10, 28
$PostContent parameter 261
PowerShell command 31–32, 

191–192, 217–218, 239–240

PowerShell console 128
PowerShell Help Editor tool 86
PowerShell ISE, as 

prerequisite 7
PowerShell runspace 40
PowerShell script 235
PowerShell Studio 8, 228–231
PowerShell v3, as prerequisite 5
PowerShell, vs. Visual 

Studio 222–223
PreContent parameter 263
PrependPath parameter

126, 179
prerequisites 5–8

Administrator privileges 5–6
multiple computers 6–7
PowerShell ISE 7
PowerShell v3 5
SQL Server 7

PrimalForms 8
PROCESS block 54, 57
Process class 64, 221
ProcessID property 64
ProcessName property 131
Properties list 229
properties, WinForms 228
$props variable 60
Proxies.psm1 file 259, 261, 264
proxy functions 256–267

creating templates for
257–260

loading 267
overview 256
parameters for 261–266

.PS1 filename extension 11
$PSBoundParameters

258, 260–262, 264–265
PSBreakpoint 114, 116
$psCmdlet 168–169, 173
-PSComputerName 

parameter 184, 186
$PSComputerName 

variable 184
-PSCredential parameter 184
$PSCulture variable 209, 215
.psd1 file 210, 214–215
PSHTools module 142, 147, 208
PSHTools.format.ps1xml 142
PSModulePath variable

132–134, 137
PSObject 60, 121
-PSParameterCollection 

parameter 184
-PSPersist parameter 184
–PSPort parameter 184



INDEX 287

-PSSessionOption 
parameter 184

$PSUICulture variable
209, 214–215

-PSUseSSL parameter 184
$PSVersionTable variable 5
Public Documents folder 85

Q

Qty column 109
Query property 149
quotation marks 17–18

R

radio buttons 241–242
Reboot() method 164
Receive-Job command 184
Reflection, for .NET 

Framework 220
reformatted scripts 107
Register-

PSSessionConfiguration
272

registering, constrained remot-
ing endpoints 271–273

remote computer 29
remote procedure calls. See RPCs
Remote Registry Service 246
remoting

architecture for 268
endpoints 268–274

and remoting 
architecture 268

connecting to 273
creating definition for

270–271
overview 269–270
registering 271–273

with workflows 186–187
Remoting architecture 269
RequiredServices 204–205, 

207–208
Restart-CimComputer 

command 167
Restart-Computer command

48, 164
Restart-MOLCimComputer

164–166, 170, 173
RestrictedRemoteServer 270
$result variable 22
Results form 248–249
$Results.Close() method 253

Resume-Job command 184, 186
resuming workflows 186
Return keyword 62
RichTextBox control 254
Rnd() method 218
–RootModule parameter 138
RPCs (remote procedure 

calls) 54, 204
Run As account password 271
Run Project option 234, 245
Run Selection option 104
running scripts 10–11
runspaces 40

S

SafeServiceHandle 205–207
SAPIEN Technologies 228
scope 39–43

best practices for 43
overview 39–41
strict mode for 42–43
working out of 41–42

-Scope parameter 42
script blocks 54
script editing pane, ISE 15
script execution 5
script module 85
script scope 40–42
Script.ps1 file 41
scripting 9–26

and execution policies 10
and pipeline 15–16
comparison operators for

19–20
editing 11–13
editors for 14
logical constructs 20–23

Break keyword in 25–26
If constructs 20–21
Switch constructs 21–23

looping constructs 23–25
Break keyword in 25–26
Continue keyword in 25–26
Do...While constructs 23
For constructs 25
ForEach constructs 24–25

objects in 18–19
overview 9
parentheses in 19
quotation marks in 17–18
running 10–11
variables in 16–17

ScriptMethod, for type 
extensions 178–179

ScriptProperty, for type 
extensions 177–178

scripts 4
and modules 38
calling functions from 37–38
creating from commands

28–33
creating functions from

33–35
creating modules from

135–137
running 11

SDDL (Security Descriptor Defi-
nition Language) 272

Select command 106
Select Event Log label 234
Select-Object cmdlet 204, 274
SelectedIndex property 239
SelectedItem property 239
semicolon character 22
Sequence keyword 187
SERVER2 computer 33
$servername variable 22
$service variable 24
ServiceController objects 201
ServiceHandle property 207
ServicePackMajorVersion 63
$services variable 24
Services.csv file 201
ServicesDependedOn 204–207
session configuration 268
-SessionType parameter 270
Set-ComputerState function 174
Set-ExecutionPolicy 

command 5, 10, 31
Set-PSBreakpoint 114
Set-StrictMode command 42–43
ShouldProcess() method

164–167, 169–174
–ShowSecurityDescriptorUI 272
Siddaway, Richard 276
SilentlyContinue 89–90
simple scripts, and 

functions 27–38
single quote marks 18
Size property 64, 106, 233
SmbShare module 

example 157–159
creating module 159
design for 157–158
handling errors in 159
help for 158
parameters for 158

Sort command 105–106
Source property 253



INDEX288

SPVersion column 125
SPVersion property 55
SQL Server Express 7, 143
SQL Server, as prerequisite 7
SQLEXPRESS instance 145
standalone script 79
starting points 100
starting property 212
StartPosition 229
State property 64
state, in workflows 186
static methods, in .NET 

Framework 218–219
Stop value 89
Stop() method 24
strict mode, for scope 42–43
String object 62
subexpression 17
SupportsShouldProcess 

attribute 150, 164, 166, 
168, 173

Suspend-Job command 184
Suspend-Workflow 

command 186
suspending workflows 186
$svc variable 18
Switch constructs 21–23
switch parameter, for 

functions 75–76
Switch statement 109, 191
syntax errors 13
System.Diagnostics.Process 

class 176, 218
System.Globalization.Culture-

Info type 120
System.IO.DriveInfo class

219–220
System.String class 219, 222

T

Tab key 32
Table column 120
<TableColumnHeader/> 

tag 126–127
<TableColumnHeader/> XML 

tag 120
templates

for advanced functions 53–54
for proxy functions 257–260

terminating errors 88
terminating exceptions

89–90, 93
test environment diagram 6, 9
Test-Path cmdlet 23

test.format.ps1xml 137
Test.ps1 file 85
Test.psm1 module 85
testing, type extensions 179–180
TestMan account 274
text boxes 236–237
Text property 236, 248, 254
Text value 237
TextAlign property 248
third-party add-ins 111
ThreadCount property 131
throwaway code 56–57, 62
toolmaking

defined 3–4
ideas for 276

Toolmaking Demo 229
Tools.ps1 file 34, 37
top-level scope 40
ToString() method 106, 111, 

123, 179, 220
Total column 109
$totalbought variable 115
$totalsold variable 114–115
ToUpper method 18
trace code, debugging 

with 109–113
Trace-Command cmdlet

193–194
output for 194–199

Transaction column 108–109
Transaction property 108
translated strings, for globaliza-

tion of functions 213–215
Trap constructs 91–92
tree view 201
troubleshooting, pipeline 

input 192–199
output for 194–199
with Trace-Command 

cmdlet 193–194
$True variable 20
Try…Catch…Finally 

constructs 92–95
Try{} construct 93
type extensions 175–182

adding to manifest 180–182
loading 179
overview 175–177
ScriptMethod for 178–179
ScriptProperty for 177–178
testing 179–180

type name, for output 
objects 121–123

TypeName 121
typos, debugging 102–103

U

UAC (User Account 
Control) 246

underscore character 17
unexpected errors 90
Update-FormatData 126
Update-Help command 81

V

v1.0 mode 43
v2.0 mode 43
ValidateCount() method 153
validating

expectations 103
parameters 73–75

validation attribute 74
ValueFromPipelineByParameter-

Name attribute 153
var variable 16, 41
variable prefixes 18
variables 16–17

for modules 139–141
saving error in 90–91

verbose output, for 
functions 68–69

–Verbose parameter 166
–Verbose switch 212
<View> tag 119–120, 124–125, 

127, 142
<ViewDefinitions></ViewDefini-

tions> tag pair 124
views 119–131

and type name for output 
objects 121–123

creating 123–126
debugging 126–128
loading 126–128
overview 119–121
using 128–129

Visible property 237
-VisibleCmdlets cmdlet 270
-VisibleFunctions function 270
Visual Studio, vs. 

PowerShell 222–223
VMSize property 131
Volume class 51

W

warning messages, adding 95
Web Services for Management 

protocol. See WS-MAN



INDEX 289

WF (Workflow Foundation) 183
-WhatIf parameter 163
$WhatIfPreference variable 166
While constructs. See Do...While 

constructs
–wildcard option 22
Win32_ComputerSystem 

class 65
Win32_OperatingSystem 

class 32, 55, 64–65, 164, 174
Win32Shutdown method 174
Windows Management Instru-

mentation. See WMI
Windows Presentation Founda-

tion. See WPF
Windows Remote Management. 

See WinRM
Windows Workflow 

Foundation 183
Windows, English version of 86
WindowsPowerShell folder 85
WinForms 228

WinRM (Windows Remote 
Management) 268

WMI (Windows Management 
Instrumentation) 7, 54, 163

WMI command 163, 168
WMI queries 73, 98, 100
WMI Win32_Volume class 51
$workflow:myvar 191
Workflow Foundation. See WF
workflow keyword 183–184
$workflow scope identifier 191
workflows 183–191

activities concept in 185–186
designing 188
example of 189–190
overview 183–184
parallelism of 187–188
parameters for 184
persisting state 186
remoting with 186–187
resuming 186
suspending 186
vs. functions 190–191

WPF (Windows Presentation 
Foundation) 228

Write-Debug command 109
Write-Debug statements 114
Write-Host command 72
Write-Output command

56, 58–63
Write-Verbose command 68–69
Write-Warning 

$_.Exception.Message 97
WS-MAN (Web Services for Man-

agement) protocol 164, 268

X

$x variable 39
XML editor 8
XML file 85–86, 121, 123, 

128–129, 179, 191
XML formats 85
XML tags 120
XML-based help 84–86




	PowerShell Toolmaking
	brief contents
	contents
	preface
	about this book
	Author Online

	about the authors
	acknowledgments
	Part 1: Introduction to toolmaking
	Chapter 1: Before you begin
	1.1 What is toolmaking?
	1.2 Is this book for you?
	1.3 Prerequisites
	1.3.1 PowerShell v3
	1.3.2 Admin privileges
	1.3.3 Multiple computers
	1.3.4 SQL Server
	1.3.5 PowerShell ISE
	1.3.6 Optional prerequisites

	1.4 How to use this book

	Chapter 2: PowerShell scripting overview
	2.1 What is PowerShell scripting?
	2.2 PowerShell’s execution policy
	2.3 Running scripts
	2.4 Editing scripts
	2.5 Further exploration: script editors
	2.6 Lab

	Chapter 3: PowerShell’s scripting language
	3.1 One script, one pipeline
	3.2 Variables
	3.3 Quotation marks
	3.4 Object members and variables
	3.5 Parentheses
	3.6 Refresher: comparisons
	3.7 Logical constructs
	3.7.1 If construct
	3.7.2 Switch construct

	3.8 Looping constructs
	3.8.1 Do...While construct
	3.8.2 ForEach construct
	3.8.3 For construct

	3.9 Break and Continue in constructs
	3.10 Lab

	Chapter 4: Simple scripts and functions
	4.1 Start with a command
	4.2 Turn the command into a script
	4.3 Parameterize the command
	4.4 Turn the script into a function
	4.5 Testing the function
	4.5.1 Dot sourcing
	4.5.2 Calling the function in the script
	4.5.3 A better way ahead: modules

	4.6 Lab

	Chapter 5: Scope
	5.1 What is scope?
	5.2 Seeing scope in action
	5.3 Working out of scope
	5.4 Getting strict with scope
	5.5 Best practices for scope
	5.6 Lab


	Part 2: Building an inventory tool
	Chapter 6: Tool design guidelines
	6.1 Do one thing, and do it well
	6.1.1 Input tools
	6.1.2 Functional tools
	6.1.3 Output tools

	6.2 Labs
	6.2.1 Lab A
	6.2.2 Lab B
	6.2.3 Lab C


	Chapter 7: Advanced functions, part 1
	7.1 Advanced function template
	7.2 Designing the function
	7.3 Declaring parameters
	7.4 Testing the parameters
	7.5 Writing the main code
	7.6 Outputting custom objects
	7.7 What not to do
	7.8 Coming up next
	7.9 Labs
	7.9.1 Lab A
	7.9.2 Lab B
	7.9.3 Lab C
	7.9.4 Standalone lab


	Chapter 8: Advanced functions, part 2
	8.1 Making parameters mandatory
	8.2 Verbose output
	8.3 Parameter aliases
	8.4 Accepting pipeline input
	8.5 Parameter validation
	8.6 Adding a switch parameter
	8.7 Parameter help
	8.8 Coming up next
	8.9 Labs
	8.9.1 Lab A
	8.9.2 Lab B
	8.9.3 Lab C
	8.9.4 Standalone lab


	Chapter 9: Writing help
	9.1 Comment-based help
	9.2 XML-based help
	9.3 Coming up next
	9.4 Labs
	9.4.1 Lab A
	9.4.2 Lab B
	9.4.3 Lab C
	9.4.4 Standalone lab


	Chapter 10: Error handling
	10.1 It’s all about the action
	10.2 Setting the error action
	10.3 Saving the error
	10.4 Error handling v1: Trap
	10.5 Error Handling v2+: Try…Catch…Finally
	10.6 Providing some visuals
	10.7 Coming up next
	10.8 Labs
	10.8.1 Lab A
	10.8.2 Lab B
	10.8.3 Lab C
	10.8.4 Standalone lab


	Chapter 11: Debugging techniques
	11.1 Two types of bugs
	11.2 Solving typos
	11.3 The real trick to debugging: expectations
	11.4 Dealing with logic errors: trace code
	11.5 Dealing with logic errors: breakpoints
	11.6 Seriously, have expectations
	11.7 Coming up next
	11.8 Lab

	Chapter 12: Creating custom format views
	12.1 The anatomy of a view
	12.2 Adding a type name to output objects
	12.3 Making a view
	12.4 Loading and debugging the view
	12.5 Using the view
	12.6 Coming up next
	12.7 Labs
	12.7.1 Lab A
	12.7.2 Lab B
	12.7.3 Lab C


	Chapter 13: Script and manifest modules
	13.1 Introducing modules
	13.1.1 Module location
	13.1.2 Module name
	13.1.3 Module contents

	13.2 Creating a script module
	13.3 Creating a module manifest
	13.4 Creating a module-level setting variable
	13.5 Coming up next
	13.6 Lab
	13.6.1 Lab A
	13.6.2 Lab B
	13.6.3 Lab C


	Chapter 14: Adding database access
	14.1 Simplifying database access
	14.2 Setting up your environment
	14.3 The database functions
	14.4 About the database functions
	14.5 Using the database functions
	14.6 Lab

	Chapter 15: Interlude: creating a new tool
	15.1 Designing the tool
	15.2 Writing and testing the function
	15.3 Dressing up the parameters
	15.4 Adding help
	15.5 Handling errors
	15.6 Making a module
	15.7 Coming up next


	Part 3: Advanced toolmaking techniques
	Chapter 16: Making tools that make changes
	16.1 The –Confirm and –WhatIf parameters
	16.2 Passthrough ShouldProcess
	16.3 Defining the impact level
	16.4 Implementing ShouldProcess
	16.5 Lab

	Chapter 17: Creating a custom type extension
	17.1 The anatomy of an extension
	17.2 Creating a script property
	17.3 Creating a script method
	17.4 Loading the extension
	17.5 Testing the extension
	17.6 Adding the extension to a manifest
	17.7 Lab

	Chapter 18: Creating PowerShell workflows
	18.1 Workflow overview
	18.1.1 Common parameters for workflows
	18.1.2 Activities and stateless execution
	18.1.3 Persisting state
	18.1.4 Suspending and resuming workflows
	18.1.5 Inherently remotable
	18.1.6 Parallelism

	18.2 General workflow design strategy
	18.3 Example workflow scenario
	18.4 Writing the workflow
	18.5 Workflows vs. functions
	18.6 Lab

	Chapter 19: Troubleshooting pipeline input
	19.1 Refresher: how pipeline input works
	19.2 Introducing Trace-Command
	19.3 Interpreting trace-command output
	19.4 Lab

	Chapter 20: Using object hierarchies for complex output
	20.1 When a hierarchy might be necessary
	20.2 Hierarchies and CSV: not a good idea
	20.3 Creating nested objects
	20.4 Working with nested objects
	20.4.1 Using Select-Object to expand child objects
	20.4.2 Using Format-Custom to expand an object hierarchy
	20.4.3 Using a ForEach loop to enumerate subobjects
	20.4.4 Using PowerShell’s array syntax to access individual subobjects

	20.5 Lab

	Chapter 21: Globalizing a function
	21.1 Introduction to globalization
	21.2 PowerShell’s data language
	21.3 Storing translated strings
	21.4 Do you need to globalize?
	21.5 Lab

	Chapter 22: Crossing the line: utilizing the .NET Framework
	22.1 .NET classes and instances
	22.2 Static methods of a class
	22.3 Instantiating a class
	22.4 Using Reflection
	22.5 Finding class documentation
	22.6 PowerShell vs. Visual Studio
	22.7 Lab


	Part 4: Creating tools for delegated administration
	Chapter 23: Creating a GUI tool, part 1: the GUI
	23.1 Introduction to WinForms
	23.2 Using a GUI to create the GUI
	23.3 Manually coding the GUI
	23.4 Showing the GUI
	23.5 Lab

	Chapter 24: Creating a GUI tool, part 2: the code
	24.1 Addressing GUI objects
	24.2 Example: text boxes
	24.3 Example: button clicks
	24.4 Example: list boxes
	24.5 Example: radio buttons
	24.6 Example: check boxes
	24.7 Lab

	Chapter 25: Creating a GUI tool, part 3: the output
	25.1 Using Out-GridView
	25.2 Creating a form for output
	25.3 Populating and showing the output
	25.4 Lab

	Chapter 26: Creating proxy functions
	26.1 What are proxy functions?
	26.2 Creating the proxy function template
	26.3 Removing a parameter
	26.4 Adding a parameter
	26.5 Loading the proxy function
	26.6 Lab

	Chapter 27: Setting up constrained remoting endpoints
	27.1 Refresher: Remoting architecture
	27.2 What are constrained endpoints?
	27.3 Creating the endpoint definition
	27.4 Registering the endpoint
	27.5 Connecting to the endpoint
	27.6 Lab

	Chapter 28: Never the end
	28.1 Welcome to toolmaking
	28.2 Cool ideas for tools
	28.3 What’s your next step?


	appendix: GUI technologies and PowerShell
	A.1 WinForms vs. WPF
	A.2 PrimalForms / PowerShell Studio
	A.3 Other options

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


