
www.allitebooks.com

http://www.allitebooks.org

Learn Windows IIS
in a Month of Lunches
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learn Windows IIS
in a Month of Lunches

JASON HELMICK

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Renae Gregoire, Susanna Kline
20 Baldwin Road Copyeditor: Corbin Collins
PO Box 261 Proofreader: Alyson Brener
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Leslie Haimes

ISBN 9781617290978
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To my wife Michelle, my daughter Devon,
and my parents Faith and Jim.

 Your love, support, and patience
have made this book possible. I love you.
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents
1 ■ Before you begin 1

2 ■ Deploying the web server 12

3 ■ Exploring and launching a website 33

4 ■ Managing application pools 56

5 ■ Adding more websites to your server 71

6 ■ What every administrator should know about web
applications 88

7 ■ Securing your sites and web applications 111

8 ■ Securing the server 133

9 ■ Protecting data with certificates 148

10 ■ FTP and SMTP with IIS 169

11 ■ Sharing administrative responsibilities through remote
management 184

12 ■ Optimizing sites for users and search engines 199

13 ■ Building a web farm with Microsoft Network Load Balancing 219

14 ■ Building a web farm with Application Request Routing 231

15 ■ High availability for ARR using Microsoft NLB 245

16 ■ Sharing content and configuration to the web farm 250

17 ■ Sharing IIS configurations for a web farm 266
vii

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii
18 ■ Using the central certificate store for certificate
management 278

19 ■ Web farm provisioning with the Web Farm Framework 288

20 ■ Disaster recovery for IIS 304

21 ■ The final exam 313

22 ■ Never the end 317

23 ■ IIS PowerShell cheat sheet 321

24 ■ Lab setup guide 327
www.allitebooks.com

http://www.allitebooks.org

contents
preface xix
about this book xxi
acknowledgments xxiii

1 Before you begin 1
1.1 Introducing IIS 2
1.2 What you need before you start 4

Prerequisite knowledge 4 ■ IIS versions 7.0, 7.5, or 8 5
Windows PowerShell 6

1.3 How to use this book 6
One hour at a time 6 ■ Completing the labs 6
MoreLunches.com 7 ■ Ideas to try on your own 7

1.4 Setting up your lab environment 7
The basic environment 8 ■ Extending the basic environment 10

1.5 Taking immediate control over IIS 10

2 Deploying the web server 12
2.1 Locating and protecting the physical web server 13

Server location matters 13 ■ Protecting the web server with a single
firewall 15 ■ Protecting the back-end with multiple firewalls:
Working in the middle tier 16
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2.2 Installing IIS on Microsoft Windows Server 18
Installing IIS with Server Manager 19 ■ Performing a rapid
installation using PowerShell 22

2.3 Installing IIS on Server Core 26
Preparing Server Core for IIS 27 ■ Adding IIS to Server Core 28

2.4 Verifying a successful installation 28
Testing the default website 29 ■ Checking for problems 29

2.5 Lab 31
2.6 Ideas to try on your own 31

3 Exploring and launching a website 33
3.1 Locating website configuration settings 34

Locating website configuration settings using the IIS
manager 34 ■ Locating website configuration settings using
PowerShell 36

3.2 Creating new web pages for testing
and troubleshooting 38
Locating the website pages in the filesystem 38 ■ Making an easy
web page for testing a website 39 ■ Creating a web page using
server variables for better results 41 ■ Default Documents 45

3.3 Adding new folders and applications
in the default website 46
Adding normal folders and content 46 ■ Adding virtual
directories for better content control 47 ■ Adding application
folders to the website 48

3.4 Opening your first website for business 49
Opening the right ports in the firewall 50 ■ Getting an outside IP
address 51 ■ Configuring internet DNS for your website 51
Testing from the outside 51

3.5 Lab 52
3.6 Ideas to try on your own 54

4 Managing application pools 56
4.1 Creating and configuring standard application pool

settings 57
Locating application pools and settings 57 ■ Creating a new
application pool 58 ■ Moving a website or application into an
application pool 61

CONTENTS xi
4.2 Application pool recycling: increasing reliability and
availability 62
Recycling an application pool 63 ■ Modifying the default recycle
settings 65

4.3 Lab 69
4.4 Ideas to try on your own 70

5 Adding more websites to your server 71
5.1 Phase 1: Adding a new website using the IIS manager 73

Step 1: Enter the site name 74 ■ Step 2: Create the application
pool 75 ■ Step 3: Set the physical path 75

5.2 Phase 2: Uniquely identifying your websites
with bindings 76
Defining a unique name by type 78 ■ Defining a unique name by
IP address 79 ■ Defining a unique name by port 80 ■ Defining
a unique name by host name 81 ■ What happens if you create a
website with a non-unique binding? 83

5.3 An alternate way: adding a new website using PowerShell 83
Step 1: Create the directory for the website files using New-Item 84
Step 2: Make an application pool for the website using
New-WebAppPool 84 ■ Step 3: Make the new website using
New-Website 84

5.4 Lab 85
5.5 Ideas to try on your own 87

6 What every administrator should know about web applications 88
6.1 Configuring the basics for all applications 89

Locating the IIS configuration files 89 ■ Applying compression to
make your web pages faster 91 ■ Setting Default Documents to
automatically load web pages 93 ■ Directory Browsing for file
downloads 94 ■ Customizing the error pages 96

6.2 Supporting common web applications 97
Supporting applications running with IIS 6 Compatibility
Mode 99 ■ Supporting ASP and ASP.NET applications 100
Supporting CGI applications 102 ■ Supporting PHP
applications 102

6.3 Monitoring your applications 103
Search the logs for information and problems 104 ■ Enable Failed
Request Tracing 105

CONTENTSxii
6.4 Lab 108
6.5 Ideas to try on your own 110

7 Securing your sites and web applications 111
7.1 Controlling who can access your site 112

Configuring anonymous access 113 ■ Configuring Windows
authentication 115 ■ Using basic authentication 117

7.2 Setting site-level permissions: NTFS 120
Configuring permissions for users and groups 120 ■ Configuring
application pools permissions 125

7.3 Advanced/Optional access control 128
Setting authorization rules for ASP.NET applications 128
Forms-based authentication 129 ■ Client certificate
authentication 129

7.4 Lab 130
7.5 Ideas to try on your own 132

8 Securing the server 133
8.1 Network protection for IIS 134

What are you worried about? 134 ■ Firewall security 135
Using the Windows Firewall 138

8.2 Adding additional security 140
Blocking by network: IP and domain restrictions 140 ■ Block
common attacks using Request Filtering 142

8.3 Monitoring process for hacking 144
Logging files 144 ■ Using Process Explorer for IIS 145

8.4 Lab 146
8.5 Ideas to try on your own 147

9 Protecting data with certificates 148
9.1 Not all certificates are the same 149

Trusted and non-trusted certificates 149 ■ Types of
certificates 150 ■ Single and multiple certificates 151

9.2 Implementing certificates on a single IIS server 152
Generating a request 154 ■ Completing a request 156
Exporting/Importing a certificate for backup and additional
web servers 158

CONTENTS xiii
9.3 Securing your websites 161
Binding certificates 161 ■ Securing host name (header) sites with
SSL 162 ■ Assigning certificates with PowerShell 163
Checking for certificate expiration 165

9.4 Lab 166
9.5 Ideas to try on your own 168

10 FTP and SMTP with IIS 169
10.1 File transfers 169

Preparing for FTP 170 ■ Public-access FTP for anonymous
users 171 ■ Isolating users with FTP and SSL 175

10.2 SMTP for email 180
SMTP relays 180 ■ Installing and configuring SMTP 181

10.3 Lab 182
10.4 Ideas to try on your own 183

11 Sharing administrative responsibilities through
remote management 184

11.1 Implementing IIS remote management 185
Installing remote management using the IIS manager 186
Configuring remote management 186 ■ Connecting to a remote
web server 190

11.2 Implementing IIS Remote Management Service
on Server Core 191
Installing the Management Service 191 ■ Enabling the Remote
Management Service 192 ■ Assign a trusted certificate 192
Starting the Management Service 193

11.3 Delegating access to other administrators
and developers 193
Configuring permissions for websites and applications 193
Customizing feature access 196

11.4 Lab 197
11.5 Ideas to try on your own 198

12 Optimizing sites for users and search engines 199
12.1 Search Engine Optimization Toolkit 200

Installing and using the Search Engine Optimization Toolkit 200
Locating broken site links 201 ■ Preventing non-relevant content
from being searched 204

CONTENTSxiv
12.2 Improving SEO with URL Rewrite 206
Installing URL Rewrite 206 ■ Shortening long URLs for better
SEO 207

12.3 Using regular expressions to improve URL Rewrite 209
Basic regular expressions every admin should know 209 ■ Using
URL Rewrite to redirect website domains and improve SEO 213
Redirecting customers to a secured website 215

12.4 Lab 217
12.5 Ideas to try on your own 218

13 Building a web farm with Microsoft Network Load Balancing 219
13.1 Introduction to the load balancing web farm 220

Using Microsoft Network Load Balancing 221 ■ Benefits and
issues with Microsoft NLB 221 ■ When to use Microsoft
NLB 222

13.2 Deploying a web farm using Microsoft NLB 223
Creating the remote connections 223 ■ Installing the NLB
feature 224 ■ Creating and configuring the load balance with
Microsoft NLB 225

13.3 Deploying websites to a web farm using PowerShell 226
Deploying website files to remote servers 226 ■ Creating a website
for IIS 227

13.4 Health and verification for NLB 227
Checking the health of the load balance 227 ■ Verifying the
operation of the load balance 228

13.5 Lab 229
13.6 Ideas to try on your own 230

14 Building a web farm with Application Request Routing 231
14.1 Installing ARR 232

Requirements for Application Request Routing 233 ■ Installing
Application Request Routing 233

14.2 Creating a web farm with ARR 234
Creating a load balance with ARR 234

14.3 Configuring Application Request Routing 238
Examining the URL Rewrite rule 238 ■ Changing the load
balancing algorithm 239

CONTENTS xv
14.4 Logging and health monitoring with ARR 241
Checking the health of the load balance 241 ■ Health monitor
statistics 242

14.5 Lab 243
14.6 Ideas to try on your own 244

15 High availability for ARR using Microsoft NLB 245
15.1 Adding affordable high availability 246

Requirements for a highly available ARR 246 ■ Installation of
NLB for ARR 247 ■ Monitoring NLB: a quick review 248

15.2 Lab (optional) 249
15.3 Ideas to try on your own 249

16 Sharing content and configuration to the web farm 250
16.1 Sharing content for a web farm using PowerShell 251

Manually deploying local-stored content using PowerShell 251
Automating with PowerShell scripts 252

16.2 Sharing content using Distributed File System (DFS) 254
Installing DFS 254 ■ Creating a replication group 255
Adding web servers to the replication group 256 ■ Selecting the
replication topology and schedule 257 ■ Selecting the folders to
replicate 259

16.3 Sharing content from a single location 261
Creating a network share 261

16.4 Lab 264
16.5 Ideas to try on your own 265

17 Sharing IIS configurations for a web farm 266
17.1 Configuring Shared Configurations 267

Configuring Shared Configurations using a clustered network
share 268 ■ Exporting the configurations from the first (master)
web server 269 ■ Enabling Shared Configurations 271
Configuring IIS for Shared Configurations using DFS 273

17.2 Installing components with Shared Configurations 273
Installing new software using all-at-once 273
Installing new software using a staggered approach 274

17.3 Lab 275
17.4 Ideas to try on your own 277

CONTENTSxvi
18 Using the central certificate store for certificate management 278
18.1 Installing and configuring the central certificate store 279

Storing and naming certificates 280 ■ Installing CCS on a local
web server 280 ■ Creating the website bindings for SSL and
CCS 282

18.2 Using CCS on remote web servers 283
Installing CCS on remote servers 284 ■ Enabling CCS on remote
servers 284 ■ Web bindings for CCS on remote servers 285
Using CCS with Shared Configurations 286

18.3 Lab 286
18.4 Ideas to try on your own 287

19 Web farm provisioning with the Web Farm Framework 288
19.1 Implementing the Web Farm Framework with ARR 289

Configuring the environment 290 ■ Installing and configuring
the control server 291 ■ Preparing the primary and secondary
servers 294

19.2 Building the web farm 294
Creating the web farm on the control server 294 ■ Adding the
primary and secondary servers 297

19.3 Managing the web farm 299
Using the tools under the actions pane 300 ■ Changing the
provisioning settings 302 ■ Monitoring the web farm 302

19.4 Lab 303
19.5 Ideas to try on your own 303

20 Disaster recovery for IIS 304
20.1 Analyzing your environment for disaster recovery 305

The critical operational path 305 ■ Determining points of failure
in IIS 306

20.2 Back up the critical components and data 307
Determining your critical components to back up 307 ■ How to
back up and restore IIS 308 ■ What you may have missed 308
Planning disaster recovery for web farms 310 ■ Recovering from a
failure 310 ■ Don’t forget to monitor 310

20.3 Lab 312
20.4 Ideas to try on your own 312

CONTENTS xvii
21 The final exam 313
21.1 The lab setup 314
21.2 Your lab challenge 314

22 Never the end 317
22.1 Resources for the inadvertent IIS administrator 317
22.2 DevOps: the ever-changing job of the IIS

administrator 319

23 IIS PowerShell cheat sheet 321
■ Getting a list of IIS components 321
■ Installing IIS 321
■ Testing a default installation 321
■ Importing and viewing cmdlets for IIS 321
■ Viewing a website 321
■ Navigating to application pools 322
■ Getting information about application pools 322
■ Creating application pools 322
■ Changing a website to a new application pool 322
■ Getting a list of worker processes 322
■ Restarting an application pool 322
■ Setting application pool settings (managed runtime) 322
■ Setting application pool recycling settings (recycle time) 322
■ Setting application pool recycling settings (schedule) 322
■ Viewing events for application pools 322
■ Getting the application pool identity 322
■ Setting an application pool identity (example for NetworkService) 322
■ Setting your own custom application pool user account as the identity 322
■ Creating websites 323
■ Setting static compression for a server 323
■ Getting and setting static compression for a site 323
■ Adding dynamic compression 323
■ Changing directory browsing 323
■ Getting and setting the Default Documents 323
■ Adding IIS 6 compatability mode 323
■ Adding ASP and ASP.Net 323
■ Adding CGI 323
■ Listing all log files for every website 323
■ Listing all HTTP requests that occurred at 9:00 p.m. 324
■ Listing all requests from clients to a particular URL 324
■ Listing all requests to/from a particular IP address 324
■ Adding Failed Request Tracing 324
■ Getting a list of authentication mechanisms 324

CONTENTSxviii
■ Getting anonymous authentication settings 324
■ Disabling/enabling anonymous authentication for the entire web server 324
■ Enabling/disabling anonymous authentication for a website or application 324
■ Adding Windows authentication 324
■ Getting information about Windows authentication settings 324
■ Enabling/disabling Windows authentication 324
■ Enabling/disabling Windows authentication per site or application 324
■ Adding basic authentication 324
■ Getting configuration information about basic authentication 325
■ Enabling/disabling basic authentication 325
■ Enabling/disabling basic authentication per site or application 325
■ Installing certificates 325
■ Adding an SSL binding 325
■ Binding a certificate to a website 325
■ Installing Remote Management to multiple computers using PowerShell

Remoting 325
■ Installing a new certificate for Remote Management 325
■ Installing Microsoft NLB to multiple servers 326
■ Adding DNS records for websites 326
■ Deploying simple websites to a web farm 326
■ Making new sites on a web farm 326
■ Installing the central certificate store 326

24 Lab setup guide 327
24.1 Using Windows 7 or Windows 8 as a standalone

client 327
24.2 Choosing a virtualization platform 328

Hyper-V on Windows 8 328 ■ Hyper-V on Server 2008 R2 or
Server 2012 328 ■ Other options 328

24.3 Single-server environment 329
24.4 Two-server environment 329

Building the domain controller 329 ■ Installing Active Directory
Certificate Services (optional) 330 ■ The remaining Web1
server 330

24.5 The extended environment 330
Extended environment: basic 331 ■ Extended environment:
advanced 331

24.6 Final notes 331

index 333

preface
I sat in a darkly lit restaurant with Don Jones and Chris Gannon having a great conver-
sation about the importance of Don’s latest book in his “Month of Lunches” series—
and how no one until him seemed to be trying to help the working administrator—
the guy or gal in the trenches. As an IT pro teacher and speaker, his concepts of how
to best help admins is important to me and I wished other authors and teachers would
take up the charge. After venting my profound appreciation of his work, I noticed a
smile on Don and Chris’s faces. I was about to be set up. I was about to be tricked by
my two friends.

 Chris pointed out that I had written a book for admins about 15 years ago on IIS
4.0—in fact it could possibly be the first book written and published on IIS. He asked
why I hadn’t published another one—especially since I was so passionate about help-
ing the working administrator.

 I responded with the usual--no time, I have a wife and kid, too busy to sit down and
spend the long hours on writing—every excuse in the book. Don looked at me, smiled
with that snarky look that usually means I lost the argument before I even got a
chance to litigate. Don said, “Stretch yourself.” Before I could respond, he turned my
initial argument against me. How could he? I thought we were friends. He said, “You
have experience and knowledge about administrating IIS that could help thousands of
admins, and you refuse to share it because you don’t want to be inconvenienced to
work a little harder?” Yup, he won the argument.

 Later I found out that they had planned this little argument—ply me with a good
steak and a couple of martinis—but regardless of the set up, the truth still hit me. I
was just as passionate about trying to help my fellow working admins as he was. So I
looked at Don, then Chris, smiled and said, “Yes sir—count me in.”
xix

www.allitebooks.com

http://www.allitebooks.org

PREFACExx
 This book was written during the week at night, and on every weekend, until com-
pletion. There was always something that had to be done, something changed, some-
thing that needed to be dropped and replaced, research, experimentation, and just
learning to write better. When you’re almost finished writing a book, the publisher
asks you to write a preface. I’m surprised that they don’t get, “I’ll never do this again!”
I have to say that I’m the opposite. I will always stretch and push myself to do every-
thing I can to help. In other words, I’m glad I wrote this book and I hope you are too.
If you like it, let me know and I’ll write another one. In the end, the only thing that
kept me driving forward on this book and from giving up was my desire to help work-
ing admins get through their daily job in the best way possible.

 I hope you find this book worth the effort.

about this book
Almost everything you need to know about this book and how best to learn from it is
in Chapter 1. There are a few things I want to point out before you get started.

 First, this book is written for the IT pro that needs to learn about managing Micro-
soft Internet Information Services (IIS). To best experience the book, work through
the labs at the end of each chapter so you can try the concepts discussed. You should
build the lab environment described in Chapter 1 and try these labs out while you are
reading the other chapters. In other words, you should be in front of your computer,
ready for action.

 Second, you should read the book from the beginning to the end. After having
gone through the book, you can use it as a reference, flipping to the chapters you
need. The first time through, start at the beginning. I wrote the chapters in a logical
flow of working with the IIS product, building on each chapter to form a complete pic-
ture. Don’t miss these pieces by flipping to the end.

 Third, I use the graphical IIS Manager to demonstrate how to install and configure
each subject discussed. I also show how to manage IIS using the preferred manage-
ment tool from Microsoft called PowerShell. The PowerShell information I provide is
so that in the future you can automate the management of IIS and scale to larger envi-
ronments. This is important as your career with IIS progresses, however if PowerShell
is not currently a tool you work with, you don’t need to focus on that in the book.
Again, everything I describe I will demonstrate in the IIS Manager. I can’t teach you
how to use the tool PowerShell in this book—the focus stays on IIS—so if you want to
learn more about PowerShell, see Manning’s Learn Windows PowerShell 3 in a Month of
Lunches, Second Edition by Don Jones and Jeffrey Hicks.
xxi

ABOUT THIS BOOKxxii
Author Online
Purchase of Learn Windows IIS in a Month of Lunches includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum and subscribe to it, point your web browser to www.manning
.com/LearnWindowsIISinaMonthofLunches. This page provides information on how
to get on the forum once you’re registered, what kind of help is available, and the
rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you ask the author challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Jason is a 25-year IT veteran and Senior Technologist at Concentrated Technology.
He’s an avid supporter of the PowerShell community as board member and CFO of
PowerShell.org. He is a contributing author to Manning’s PowerShell Deep Dives, and a
columnist for TechNet Magazine and other industry publications. He’s a frequent
speaker at many conferences and can be contacted on Twitter: @theJasonHelmick.

www.manning.com/LearnWindowsIISinaMonthofLunches
www.manning.com/LearnWindowsIISinaMonthofLunches

acknowledgments
Stop! Books don’t write themselves and there are many people responsible for what
you hold in your hands. I want you to take a moment and join me in thanking them
for their hard work, late nights, and tenacious effort to make this book possible.

 To the entire staff at Manning Publications—from the editors, the copyeditors, the
technical reviewers, the graphics guys and gals—thank you for hard work. Special
thanks to my development editors Renae E. Gregoire and Susanna Kline. Renae, you
started me down the path, you taught me how to write better, when to ask myself the
right questions, and to keep the reader in mind. The knowledge you taught me will
serve me well for the rest of my writing career. Susanna, you took me to the end of the
process with an extremely high level of professionalism and poise. Thanks to your
encouragement and focus, the book is a better product. Both of you should be coau-
thors because of all your hard work. Thank you!

 To the folks from the Author Online forum who took the time to point out my mis-
takes, both in grammar and missing information—you made me think and try to
improve the book. This book is a product of your help, so pat yourselves on the back.

 To the technical reviewers listed below, and especially to Aleksandar Nikolic, my
technical proofreader—after spending long days at work, then writing at night, I
would make stupid and silly technical mistakes; sometimes I would forget entire pieces
to the puzzle. So thank you for finding those mistakes and pushing me to think about
how to present things better. You gave me ideas through your constructive criticism
and helped make this a much better book.

 The technical reviewers were: Alexander Esser, Andrew Westgarth, Bay Phillips,
Brian Young, Chad McAuley, Daniel Headley, Francis Setash, Glenn Swonk, Irfan
Patel, Jason Varisco, Jerry Warner, Margriet Bruggeman, Mick Wilson, Mike F. Robbins,
xxiii

ACKNOWLEDGMENTSxxiv
Nick Brattoli, Nikander Bruggeman, Patrick Curry, Richard Fieldsend, Sau Fai Fong,
Shane Beacom, and Victor Onate Acosta.

 To Microsoft, specifically the IIS Team and PowerShell Team—thank you for mak-
ing excellent, high-end products that IT pros can rely on. Your dedication to the suc-
cess of the business and the IT pro in this ever-changing world is truly amazing. Thank
you for the hard work.

 My warmest thanks to Don Jones, the extraordinary author of too many books to
count, and the editor of the Month of Lunches series. You have been my mentor and my
friend. Without you providing the opportunity, the encouragement, and the late-night
bar talks, this book would not have been written. Your passionate belief in reaching
out to help the admins of the world has helped us all.

Before you begin
Are you an inadvertent IIS administrator, or even a reluctant one? I used to be and
still am on occasion. I understand the life of a systems administrator—it’s all about
time management. We spend our days putting out fires, bringing new services
online, and keeping the network always available for our users and the business. As
an administrator I may have known IIS was lurking in my servers, waiting for me to
install it and build a website, but I didn’t want to use my time for that stuff. IIS
wasn’t that interesting to me, and I wanted to play with sexier technologies like
Microsoft Exchange and SharePoint. I chose to ignore IIS and left it to the other
system admins.

 But my reluctance to spend time learning IIS started to interfere with my job in
a surprising way, because IIS is more than a product to make websites; it’s a primary
communication gateway for many other products. Have you worked with
Exchange, SharePoint, SQL Server, or some other Microsoft enterprise product? If
so you’ve noticed that almost all of the enterprise servers have IIS as a software pre-
requisite. Consider this: any application you want to use via the internet—whether
it’s Outlook web access for Exchange, a portal system such as SharePoint, or man-
agement applications such as System Center—uses IIS for that communication. To
be an expert at those technologies, the person who can troubleshoot problems
(and increase your value to the company), you need to be an IIS expert.

 In addition to hindering my abilities with enterprise server products, my avoid-
ance of IIS became an even larger business issue. My company started a new prod-
uct initiative and needed someone who could set up and manage the websites for
1

2 CHAPTER 1 Before you begin
the new product line. Don’t get me wrong, they didn’t need me to develop the new
websites—I’m not a developer—but to configure, secure, and manage them. To be of
better service to my company and to give in to my slight but growing fascination with
this intriguing product, I chose to learn IIS.

 As soon as I dove into IIS, my understanding of and management abilities for those
other products soared. I could troubleshoot problems and manage the communica-
tions products better. I enjoyed working with IIS so much that I became the primary
“go to” web guy. I began building highly available web servers, taking developer-
written web applications, putting them into secured websites, and launching new
applications for the business. IIS proved to be as sexy and exciting as any other tech-
nology and has become my favorite web server product today.

 Throughout this book I do everything I can to open your eyes to the allure of IIS
while providing you with the best information to manage, deploy, secure, and trouble-
shoot it—even if you don’t find it as sexy as I do. I show you how to work with IIS using
traditional Microsoft graphical and downloadable tools. Because I’m reluctant to
spend more time than necessary on management, I also show you time-management
techniques I’ve found that use PowerShell to manage and automate processes in IIS.
Being proficient with IIS has increased my understanding of many technologies,
including the web, and elevated my career. Whether or not you’re an inadvertent IIS
administrator, you’ll find that learning to use the IIS tools covered in the pages of this
book will help you do your job better.

 This chapter starts with a high-level tour of IIS and then launches into the prereq-
uisites you need before you begin your next lunch. You’ll also learn the best ways to
use this book, as well as how to set up your lab environment. To best understand and
get the most from this book, you’ll experience IIS as you manage and support a small-
town bicycle shop with a basic website called WebBikez that will grow to a worldwide
bicycle distributor. Let’s begin with a closer look at IIS itself.

1.1 Introducing IIS
It helps to relate IIS—and web servers in general—to something you already know. In
most cases IIS performs the same job as a file server, serving web pages as files to a net-
work client across the internet. The client uses a browser that displays and runs those
files as a useful application.

 The same concerns you have about file servers regarding security and perfor-
mance still apply, and in many cases IIS is configured similarly. But there is much
more to IIS and its architecture, mainly due to the security challenges that impact any
server connected to the internet and the need to be able to run many different types
of web applications.

 Figure 1.1 is a simple description of how IIS works. It provides a good starting point
to get a handle on what to expect.

IIS contains a time-proven architecture that’s fast and highly secured. Flexibility
helps developers who are implementing modules—IIS allows for quick additions to

3Introducing IIS
support new applications—and IIS gives web administrators a web platform that will
grow into large-scale web farms for redundancy. Throughout this book you’ll dive into
this architecture from the perspective of a web administrator to design, configure,
secure, and maintain a web environment. But before all that, let’s look at the basics of
how IIS delivers web content:

1 The process begins with clients who request a website or other resource by typ-
ing a URL into their browser, such as www.WebBikez.com. The URL is resolved
into an IP address by DNS, and clients connect to the web server using the IP
address.

2 A component in the web server architecture called HTTP.SYS intercepts the
incoming request. HTTP.SYS calls the Windows Activation Service (WAS) and
WWW Service to determine the location and configuration of the website or

Figure 1.1 The workings of IIS

4 CHAPTER 1 Before you begin
resource. This process launches a w3wp.exe worker process that handles and
responds to the client request.

3 The web pages of the website can be physically located on the local web server
or on a remote share. This information, along with all the configuration set-
tings for the website, is made accessible through the graphical IIS manager or a
command-line tool such as PowerShell.

4 The client’s request is processed by the worker process, and the web page con-
tents are sent to the client, where the browser runs the web page code to display
the web application.

Look beyond this simple description and you can envision the challenges that this
book covers—from the installation of the web server, to the creation and configura-
tion of websites, to configuring and maintaining security, and finally to scaling into a
web farm for best performance and high availability. Let’s take a look at what you’ll
need to complete this journey.

1.2 What you need before you start
I assume that you’re an IT professional and not someone off the street reading this
book because you enjoy my entertaining prose. As an author who wants you to be suc-
cessful with IIS, I want to define what you need to know and have in hand before you
start so you can decide whether you should brush up on any weak points. As you use
this book, you may find some areas where you need some additional information or
training. That’s not a bad thing; it’s how most of us have been successful in our careers
with constantly changing technology—we find out what we’re missing and get that
information. I assume that’s why you’re holding this book. Congratulations—it gets
easier from here.

 This section covers what you need to know to begin this book—including how to
work with PowerShell and which versions of IIS will work with the “lunches” in this book.

1.2.1 Prerequisite knowledge

IIS is a technology that reaches throughout your company network and onto the inter-
net. To be an effective administrator for IIS, you need a lot of infrastructure knowl-
edge. You probably have most of it already in your head, and you can pick up the
missing parts as you go. Here are the things you should have basic to intermediate
knowledge of before you get started:

 First, you don’t need to know any development language such as ASP, ASP.NET,
Java, or anything else. Surprised? This book isn’t about developing web applica-
tions; it’s about managing IIS servers and websites. Have no fear, you’ll be fine.

 You do need an intermediate level of knowledge about TCP/IP and how to prop-
erly configure the protocol for the network addressing of your web servers. You
don’t need to know how to subnet an IP address, but you should be comfortable
assigning an IP address, subnet mask, and default gateway. And you should be

5What you need before you start
comfortable using commands such as Ping and Tracert to troubleshoot IP
communication issues.

 You need a basic understanding of routers, firewalls, and NAT (network address
translation). You may have engineers to configure this specialized equipment,
but you should understand the basics of how they work so you can request con-
figuration changes to the devices depending on your environment.

 You need to understand the basics of DNS and name resolution. In this book, as
in real life, you’ll need to request changes to DNS when you set up URLs for
your websites. Although you may not be the person who normally makes this
change, you’ll need to make the request to the folks who do. I show you how to
make the changes so you know exactly what to do.

 As an IT professional with Windows, assigning NTFS file system permissions and
share permissions should already be a comfortable process. You’ll need this skill
when we examine website security.

 You also need a basic understanding of Active Directory—nothing over the top
like group policies or replication troubleshooting, but the basics of creating a
user and a group.

1.2.2 IIS versions 7.0, 7.5, or 8

What version of IIS do you need? Fortunately for administrators, IIS versions 7.0, 7.5,
and 8 have similar configuration settings and management tools. No matter which ver-
sion you’re using, this book is for you. I use IIS 8 for the screenshots in this book, but I
also point out differences between IIS 8 and versions 7.x.

 What do you do if you’re using IIS 6? Consider upgrading to the new IIS 8 plat-
form. IIS 6 is similar in many respects to the newer versions, but you’re missing many
new features and capabilities. This book is still useful to you, though, and will help you
with IIS 6, but I don’t address specific issues with IIS 6.

I also don’t go back and address management and architecture changes. I understand
that updating can be a challenge, particularly if your web applications don’t support
the new versions. Remaining on the old version and not updating those web applica-
tions will prove to be more costly in the long run and much harder to secure. I recom-
mend you update to IIS 7.5 or IIS 8. You don’t want to miss out on what you can do
with the most current products.

Upgrading may be easier than you think
If you’re concerned that your web applications running on IIS 6 won’t run on IIS 7/8,
you may have an option that will still allow you to upgrade. IIS 7/8 have a series of
components called “IIS 6 compatibility mode.” This option may permit those older
applications to run and allow you to upgrade. I discuss IIS 6 compatibility mode, along
with other options, throughout the book.
www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Before you begin
1.2.3 Windows PowerShell

In addition to the prerequisites I’ve mentioned, you also need to know how to use
PowerShell to get the most out of this book. I spend a lot of time showing you how to
use PowerShell for IIS to automate and manage your web environment. In fact if you
have more than one IIS server, you need to use PowerShell to make your management
faster.

 Can you use this book and manage IIS without knowing PowerShell? Yes. I show
you how to perform the necessary tasks using graphical tools. But as your web server
environment grows, PowerShell can make your job much easier. Knowing PowerShell
also improves your management of other technology areas you’re responsible for.

 If you don’t know PowerShell, how do you learn it quickly? Check out Don Jones’s
Learn Windows PowerShell 3 in a Month of Lunches (www.manning.com/jones3/). Before
you dig into the next lesson in this book, I recommend you pick up that book and
work through the first 18 chapters. Yes, it will delay your learning IIS by 18 days (or
two full weekend days if you’re a masochist), but you won’t regret the time investment.

1.3 How to use this book
As an IT professional, I’m sure you’ve read countless books and scoured each page for
that one gem you need to complete your knowledge quest. This book is different, so
let me explain. This book is designed for the busy IT professional who never seems to
have enough time. I know you can’t plop down on the sofa for a week and curl up with
this book. In fact even if you do have that kind of time and want to curl up with it, you
shouldn’t. I need you to experience IIS, not merely read about it. With that in mind,
this book has been designed to be digested one chapter at a time, one hour at a time,
and provides labs and “ideas for on your own” to gain additional experience.

1.3.1 One hour at a time

I’ve written 24 chapters for you to digest along with your sandwich during lunch. As
you’re munching you can read one chapter in about 30 minutes. That leaves another
30 minutes to wash up and practice what the chapter showed you. The practice part is
the most important for understanding the concepts of the chapter. Each chapter
builds on the next, so get in the practice time to be sure you’re ready to move on.

 Some chapters don’t take the full hour, so spend whatever extra time you have to
practice cementing the concepts or returning to work. Don’t rush to the next chapter;
make sure you understand the current one. Try to stick with the schedule, and you’ll
be administering IIS in a month of lunches.

1.3.2 Completing the labs

To help you get the practice you need, the chapters also include short practice labs for
you to complete before moving on. This is a great way for you to test the information
you’ve learned while it’s still fresh in your mind. You’ll install, configure, and manage

www.manning.com/jones3/

7Setting up your lab environment
the WebBikez web servers and sites as they grow, so don’t skip the lab part of your
lunch. Each lab gives you a set of instructions and some hints, but no answers—not
within the book, anyway. Try to complete the labs without any additional assistance. If
you get stuck or want to see how I did the labs, the answers are online at More-
Lunches.com.

1.3.3 MoreLunches.com

Other than lab answers at MoreLunches.com you’ll find additional supplemental con-
tent, such as the latest on new updates to IIS and demonstration videos for some of the
chapters to help make your journey with IIS a pleasant one.

 I want you to have access to new ideas and resources. I’ll be adding blogs of my
favorite IIS resources and connecting you to great people to follow on Twitter. Learn-
ing IIS is a continuous process, due to ever-changing environments and web applica-
tions. I want to continue to help.

1.3.4 Ideas to try on your own

When I first learned IIS, back when dinosaurs roamed the internet, I found it a diffi-
cult task. I had much to learn, not only about the IIS product but about the internet
and how things such as DNS worked. I found that as soon as I’d learn something about
IIS, it’d spark some question or fascination in my mind that I’d quickly go off and
explore. At first I thought this was a curse that slowed me down and distracted me
from the important matters at hand, but it turned out that I gained a much deeper
understanding of both IIS and how websites worked on the internet.

 Now, many years later, when I sit down to learn a new product or some enhance-
ment in IIS, I still go off on these tangents and go beyond the surface of administra-
tion into the deeper regions. Because you may be as much of a technology geek as I
am, I include a section at the end of every chapter with some ideas to explore on your
own. With these ideas for exploration, I include additional information about how
things work at a deeper level. If you’re someone who wants to stay focused on the
administration of IIS and you don’t want the distraction, then feel free to check out
these ideas at a later time.

1.4 Setting up your lab environment
Learning a new technology is always a challenge—particularly a technology that
reaches to the internet—without a place to practice. I want you to do a lot of practic-
ing with IIS as you work through the book. That means you need an environment you
can safely practice on that won’t cause any disruption. Your company’s production
environment isn’t that safe place. Please don’t experiment on your company and
friends. I have a better, safer idea.

 I suggest that you create a virtual environment to work on for the month. Using
your laptop, desktop, or a spare computer at work, pick your favorite virtualization
software (Hyper-V, VMware, Parallels) and build the environment I describe in the

8 CHAPTER 1 Before you begin
next section. Keep in mind that you want to be able to access this environment during
your lunch; you’ll be doing a lot of practice, so create the environment wherever
you’re going to eat.

 If you can’t create a virtual environment on your laptop, another option is to use
one of the available cloud technologies, such as Vaasnet (www.vaasnet.com), Cloud-
Share (www.cloudshare.com), or Microsoft Windows Azure (www.windowsazure.com).
These aren’t free, but they’re a good alternative because you don’t have to set up any-
thing. You log in and tell them what you want. If you don’t want to deal with building
virtual machines, you can try this option.

 The next section provides details and instructions for creating both the basic and
extended setup environments needed for the labs in this book.

1.4.1 The basic environment

To get the most from this book, I recommend two different lab environments, begin-
ning with this basic lab environment. You’ll need the basic lab environment for chap-
ters 2 through 12. The basic environment is a single virtualized server (see figure 1.2)
running DNS and Active Directory.

 You may be tempted to use a client operating system such as Windows 7 or Win-
dows 8 because they both run IIS. I don’t recommend this because you’ll miss part of
the configuration process without DNS and Active Directory. Here’s all you need to get
started:

 A single virtualized server—You can use either Windows 2008 R2 or Microsoft
Server 2012. If you don’t have a copy of the software available, you can always
download the trial from Microsoft. Currently, Windows Server 2008 R2 is
located at http://mng.bz/2zqT. The best part about the trial is that it lasts for
180 days—5 more months than you need for this book.

 A domain controller—You need a domain controller so you have access to Active
Directory and can look at security permissions later in the book.

Figure 1.2 The virtual server setup you need for the labs

http://mng.bz/2zqT

9Setting up your lab environment
BUILDING THE DOMAIN CONTROLLER

I realize that building a domain controller isn’t something you probably do every day,
so this section outlines the basics of installing Active Directory. The process is similar
whether you use Windows Server 2008 R2 or Server 2012.

1 In your virtual software, create a new computer and install Windows Server. You
don’t need much memory for this—512 MB to 1024 MB is sufficient. You can
name the computer whatever you like and assign a password of your choosing
to the Administrator account.

2 Install the ADDS role and a domain controller. You do that in Server Manager
for Windows Server 2008 R2 and Microsoft Server 2012.

3 Install Active Directory. When asked for a Fully Qualified Domain Name for
your forest root domain, choose something simple. For this book I chose Com-
pany.loc.

4 Supply the Windows NetBIOS name for the domain. I’m using Company in my
environment.

5 When prompted to choose the forest and domain functional level, choose the
highest level, which will be Windows Server 2008 R2 or Microsoft Server 2012.

6 When prompted for Additional Domain Controller Options, select the option
to install DNS. Not only does Active Directory need DNS, but you’ll be using it
for your websites.

NOTE If you set up your virtual computer with a dynamically assigned IP
address, you’ll receive a warning message saying that this isn’t good practice.
You can quit the installation and set the IP address, but this is only a test envi-
ronment, so it’s okay to select “Yes, the computer will use a dynamically
assigned IP address.” If you receive a warning about a DNS delegation creation
problem, click “Yes” to continue.

7 When prompted for the file locations of the Active Directory files, accept the
default locations.

8 When prompted for a Restore Mode password, use the same password that you
set for the Administrator account. It’s okay because this is a test environment.

9 When the installation of Active Directory is complete, reboot.
10 Using Active Directory Users and Computers, create three or four users. Noth-

ing special. It can be John Doe1, John Doe2, and so on. You’ll need them in the
security sections.

Need more help?
If you find that the instructions provided here aren’t detailed enough, please go to
MoreLunches.com, where you’ll find a more detailed lab setup guide.

10 CHAPTER 1 Before you begin
At this point you’re ready to get started with the next lunch in your month of lunches.
 Feel free to enhance and add to your environment at any time. But keep in

mind that I’ll use this basic environment in my examples so that we stick together.
One enhancement you may want to make now is to extend this environment to a
couple more web servers. Take a look at the next section on how to extend the
basic environment.

1.4.2 Extending the basic environment

Many of the concepts discussed in chapter 13 and later involve multiple web servers—
topics such as load balancing and high availability. To be able to practice those con-
cepts, you’ll need to build an extended virtual environment. Although you don’t need
this environment to get started, you can save time by setting it up now and using it for
the labs.

 You’ll need two additional virtual servers, as shown in figure 1.3; the hardware
requirements are minor because each VM only needs 512 MB of RAM and will perform
limited processing. You should install the VMs on the same virtual network as the
domain controller. You’ll turn them into web servers later, so I suggest naming them
something like Web1 and Web2.

 If you have some IIS experience already, I recommend starting with the extended
environment now. Although you don’t need the extra servers for the first part of the
book, it’s a more accurate representation of the real world and will be better for your
overall experience. In a test environment like this one, I do my testing and manage-
ment from the domain controller as if it were a client computer. You could even go so
far as to add a Windows 7/8 client computer to your virtual environment and use that
for management, but I find the concept works fine without the extra virtual computer.

1.5 Taking immediate control over IIS
As an inadvertent and busy IIS administrator, the last thing I wanted to do was write a
book that had you spend countless hours on theories and background instead of
immediately starting to use IIS. In fact, taking immediate control is a phrase that I’ve
made my primary goal for this book.

Figure 1.3 The extended virtual environment for labs

11Taking immediate control over IIS
 The original designer of the Month of Lunches series, Don Jones, is passionate
about getting readers to be “immediately effective” with technology in the workplace.
I’m a firm believer in this practice. I’m paraphrasing Don from his Learn Windows
PowerShell 3 in a Month of Lunches book when I say I’ll do my best to focus each chapter
on something you need to use in your production environment right away. This
means that sometimes I may gloss over details when we’re starting a new chapter, but I
promise to circle back and hit those areas in depth in later sections. Like Don in his
book, I had to choose whether to write several chapters of architecture and theory or
dive right in and accomplish some administrative tasks with IIS. In almost every chap-
ter I chose to dive in so you can take immediate control over IIS.

 I explain all of those other nuances and theories at some point in the book or in
articles on MoreLunches.com, where they can be more effective. I won’t let you miss
anything important. Using this approach means you can start creating solutions with
IIS immediately.

 Now, wasn’t your first lunch good? I’ll see you back here for your next lunch,
where you’ll find a juicy “IIS deployment” on the menu.

Deploying the web server
I remember my first IIS server deployment. Back in those days it was a lot more dif-
ficult than it is now. Walking miles to the data center from my desk, in the snow,
uphill both ways. Those were the days. You younger administrators have it easy.

 Well, in fact, you don’t. Sure, the initial default installation of IIS is simple, and
you may have already done that, but you probably didn’t get all the software com-
ponents and configuration you needed. In fact for many years most administrators
would click a button to install IIS and walk away, leaving the rest of the installation
and configuration for an imaginary “someone else.” This method doesn’t result in
a successful web server. In this chapter I help you get your install right. As an added
bonus I also show you a few tricks I doubt you’ve heard of that can turn a deploy-
ment into an enjoyable task.

 I also explore the placement of the web server in your infrastructure in this
chapter and in the rest of the book. The physical location can affect website config-
uration, access to back-end applications such as databases, and firewall settings that
in turn affect your security. Your infrastructure will play a large role in the success
of your production web environment, so you need to think about where to locate
the web server and how it will be protected. In this book’s labs you’ll install and
begin to manage the WebBikez web server in Smalltown, U.S.A.

 In this chapter you’ll learn about how the physical location will impact your web
server and then move on to installing your first web server. You’ll learn how to
install IIS to both a GUI-based server and Server Core. When the installation is com-
plete, I show you how to test and verify that your installation was successful.

 Let’s start at the beginning by locating IIS in your infrastructure.
12

13Locating and protecting the physical web server
2.1 Locating and protecting the physical web server
Location, location, location. The first rule of buying a home or starting a new business
applies to your web servers as well. You should have your virtual environment ready to
go for the labs in this book, but at some point you’re going to need to put a real web
server into production.

 The location of the web server in your infrastructure will impact how people from
inside and outside your network access your websites. This will affect configuration
settings on firewalls, the Network Address Translation (NAT) device, and DNS. The
network team will make many of these decisions for you, but you’ll need to investigate
your infrastructure so you can determine whether it meets the best security and per-
formance strategy. As we dive deeper into performance and security, you may discover
that you need to request changes to the infrastructure. Perhaps you’re the network
team, and if that’s the case, as we move forward, I’ll take you through all of the con-
cerns, configurations, and troubleshooting problems that might occur. I start gradu-
ally and add infrastructure information as we go. In this section I work through some
basic infrastructure concepts:

 Where to locate your server and why it matters
 How to protect your server with a single firewall
 How to create and work in the middle tier with multiple firewalls

As you install and work with IIS during the next few chapters, I recommend you think
about your infrastructure and what configuration impact may occur.

2.1.1 Server location matters

Imagine connecting a web server directly to the internet with no protection of any
kind. Wow! It’s a fun experiment that I don’t recommend. Several years ago I did that
as a demonstration and it took less than an hour for it to be script-hacked. You protect
your internal network with a cascade of devices, most commonly known as firewalls.

 Properly locating your web servers requires an understanding of your network
environment. I find it helps to have a picture of the network structure and devices.
This picture should contain the following:

 The location and type of network devices
 The location of your clients and servers
 Most importantly, the communication path from the servers to the outside

internet

You can start by hand-drawing your network on a piece of paper, as shown in figure 2.1.
I often do this for a quick visual guide.

 For larger and more complicated networks I prefer to use a good visual-diagraming
tool such as Microsoft Visio. Figure 2.2 shows you what a complex network diagram
looks like. Don’t worry about all the pieces right now—this complex network resem-
bles what you’ll build up to as you work through the book.

14 CHAPTER 2 Deploying the web server
Figure 2.1 Hand-drawn
representation of a small network

Figure 2.2 Documenting
your complex network with
a diagramming tool like
Microsoft Visio

15Locating and protecting the physical web server
Once you’ve completed your network diagram, you’ll be able to decide the best loca-
tion for the web servers and make corrections to your network to best protect them.
For the first part of this book, your lab environment will be fairly simple to diagram,
but I want you to start thinking about your production environment. You can diagram
your network later on; I remind you to do so in the “Ideas to try on your own” section.
For now I give you a couple examples of the kinds of diagrams and decisions that you’ll
need to consider, starting with a basic network environment with a single firewall.

2.1.2 Protecting the web server with a single firewall

Perhaps you want to install a web server with some websites at home or in a small office.
Placing even a simple firewall between IIS and the internet will help reduce your attack
surface. Starting with a simple network diagram like figure 2.3 will help you make deci-
sions about the best location of the web server and security considerations.

 In a network with one firewall, the web server is located behind the firewall for best
protection. The decision becomes how to best configure the firewall based on client
traffic to the website.

Figure 2.3 Small network
with a single firewall for
basic protection
www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 2 Deploying the web server
 If the web applications you run on the web server are for internal clients only
(common with a product such as SharePoint), then you can block almost all
inbound traffic to the web server at the firewall.

 If you want folks from the outside to have access to your web applications, you’ll
need to carefully open up holes in that firewall to permit access.

NOTE Each manufacturer of firewalls has its own method of configuring port
access. You’ll need to review documentation for the one you choose for con-
figuration specifics.

In most situations you want clients to be able to access your websites from the internet.
The goal then is to open as few ports in the firewall as necessary to accomplish that
goal. Common ports for websites are port 80 for HTTP traffic and port 443 for HTTPS.
These may not be the only ports needed for your web applications, but I’ll cover that
as we progress through the book.

 Whether you’re building a new network environment as a test lab or for a small
office, having the firewall protection in place before you deploy IIS is important. The
risk of being attacked is too great.

If a simple single firewall is good, then two must be great, right? Web servers often
need access to back-end servers such as Active Directory domain controllers for
authentication and database servers for storage. Many network teams add additional
protection for these back-end servers, so let’s discuss that protection next.

2.1.3 Protecting the back-end with multiple firewalls:
Working in the middle tier

Back-end servers such as domain controllers and database servers are precious and
contain confidential information. Many network teams add an additional firewall
between the web servers and those back-end servers. This creates a middle tier in
which to place servers such as publicly accessible web servers. This middle tier
enhances security for the back-end servers and is one of the most common infrastruc-
ture designs.

 It’s always a physical firewall. Most firewalls today come with three network seg-
ments:

1 Internal network—For the prize back-end servers

What about the firewall for your virtual lab environment?
Keep in mind that in the virtual lab machine you set up for this book, Microsoft Win-
dows Server has already enabled a firewall for protection by default. Don’t turn this
off. In the next few chapters, you’ll work with this firewall to open up access to your
websites when needed.

17Locating and protecting the physical web server
2 Dirty demilitarized zone (DMZ)—The dangerous unprotected segment that con-
nects directly to the internet

3 Clean DMZ—A middle tier between the internal network and the dirty DMZ

These segments are protected by firewalls that block unwanted traffic. IIS is usually
placed in the middle tier if outside access is desired. The firewall closest to the inter-
net needs to have several ports open to accommodate public access to your various
websites. The firewall closest to the back-end servers will be much more restrictive,
preventing anyone from hacking past the web server into your internal network envi-
ronment. Figure 2.4 displays a typical network design for this approach.

 With this setup you have firewall configuration considerations in both directions.
You may be wondering which ports need to be open to support outside access to your
websites. (Hint: It could be more than ports 80 and 443.) Or which ports need to be
open so IIS has access to the domain controller and the database? I answer these ques-
tions and more in the coming chapters. For now I want you to get an idea of the

Figure 2.4 IIS protected in the
middle tier by two firewalls

18 CHAPTER 2 Deploying the web server
current infrastructure you have in place. Remember, you don’t want to deploy IIS into
an unsecured location. With your virtual lab machine, the Windows firewall is provid-
ing some protection for your deployment. In the future you’ll need to address the full
infrastructure.

Because your lab environment has protection enabled, and you’ve started to think
about a secured production environment, let’s look at how you can get IIS deployed
so you can start to see how all this works.

2.2 Installing IIS on Microsoft Windows Server
You can choose from several different methods of installing IIS. Why? Over the years,
Microsoft has tried to find more efficient ways to accomplish IT tasks. A quick search
on the internet is bound to turn up command-line tools such as Pkgmgr.exe and
ServerManagerCMD.exe. Each one of these has its own set of parameters and syntax.
Instead of reliving old commands such as these, we’re going to install IIS using the two
best methods: the graphical Server Manager and Microsoft’s standardized manage-
ment tool, PowerShell.

 You also have a choice of Windows Server operating systems on which to install IIS.
Most administrators start by installing IIS on a typical Windows Server 2008 R2 or Win-
dows Server 2012. The other option is to install IIS on Windows Server Core. My favor-
ite, and the one I think is the most powerful way, is Core, but I’m saving that for last
because you may not have started using Core in your company yet. In this section, I
walk you through two installations:

 Installing IIS using the graphical Server Manager, which is great for single-
server installations and configurations

 Installing IIS using PowerShell for rapid deployment (my favorite way)

We’ll start with the single-server installation method.

Should I set up a firewall now?
Keep in mind that the virtual machines you’re using for the labs in this book already
have a Windows firewall protecting them, so you’re good to go for the labs. When
you begin to deploy IIS in your own network environment, you should verify your fire-
wall protection. If you’re the person that configures this, you probably already know
the answer, but if you’re part of a network team that performs this operation, check
with them.

19Installing IIS on Microsoft Windows Server
2.2.1 Installing IIS with Server Manager

When you first install a Microsoft server, you get a simple server that can perform
basic file sharing. All the other software features must be added, including IIS. This is
a good practice Microsoft uses, and it’s called secured by default. It’s a practice you’ll
apply to IIS as well. You don’t want to install software you don’t need: less to update,
less to secure.

IMPORTANT Although I’m walking you through the how-to-install steps here,
don’t try the installation until you reach the lab. As we move through the chap-
ter, I walk you through two installation methods that you can use for Windows
Server 2008 R2 or Windows Server 2012. When you get to the lab at the end of
the chapter, you’ll be able to choose which method works best for you.

Microsoft loosely categorizes additional software into roles and features. Roles are ser-
vices that affect the entire network, such as Active Directory. Features only impact the
server, such as clustering. IIS has network impact, so it’s considered a role.

LOCATING THE IIS ROLE BY NAME ON SERVER 2008 R2
IIS is a role that can be added using Server Manager. In figure 2.5 I’ve opened Server
Manager and selected the Add Roles link in preparation for installing the IIS role.

 If you’ve run Server Manager before, and I assume you have, you know that from
here you only need to select the role you want to install, click the Next button, and
install the software. Installing IIS is no different, except for one challenge: what’s the
role called?

How big does your server need to be?
I teach IIS to both budding administrators and highly experienced enterprise admin-
istrators. It’s interesting that at the point of our first deployment, without fail, the first
questions I get concern server hardware. For example, “How big does my server need
to be?” Translation: how much RAM, processing, and disk space will I need to sup-
port my web applications?

At this stage, early in learning about IIS, this is like asking, “How many MPGs does
this vehicle get?” without knowing whether the vehicle in question is a car, truck,
motorcycle, or bicycle. You can’t determine this until you understand more about
what the vehicle is, what you need it to do in your environment, and what’s under
the hood.

Hold on to those questions about capacity planning. I promise I’ll get to them as you
progress through the book. For now, let’s get IIS installed and start figuring out
what’s under the hood.

20 CHAPTER 2 Deploying the web server
If you installed IIS in Windows NT, 2000, or 2003, the name of the software went
through a series of changes. In Microsoft Server 2000 it was named Internet Informa-
tion Server (IIS), and in Microsoft Server 2003 it was called Application Server. Take a
look at figure 2.6 and notice both—the dilemma and the solution.

 Bingo. We have both Application Server and Web Server (IIS). So which one is it?
You probably guessed correctly that the role you need to install is Web Server (IIS).

INSTALLING IIS ON MICROSOFT WINDOWS SERVER 2012
Fortunately most of the administrative tasks between IIS on Windows Server 2008 R2
and Windows Server 2012 are similar if not identical. The installation is no exception.
You’ll notice some visual screen differences between the two versions of Server Man-
ager, but adding the IIS role is virtually the same. In figure 2.7 notice that the Add
Roles and Features selection is located in a slightly different place. After selecting Add
Roles you’ll be able to select IIS and its additional services as we did earlier.

Figure 2.5 Using Server Manager to install a new role

Figure 2.6 Selecting the web server role for installation

21Installing IIS on Microsoft Windows Server
THE DEFAULT SOFTWARE COMPONENTS

After selecting the role and clicking next, you’re confronted with a long list of addi-
tional software components that you can add to IIS. Those selected by default are the
minimum components you need to run a static web page (figure 2.8).

Figure 2.7 Using Server Manager in Windows Server 2012

Figure 2.8 Viewing the default components

22 CHAPTER 2 Deploying the web server
This is where the phrase “Don’t install it if you don’t need it” comes in handy. You only
want to install the additional services you need for your web applications. By not add-
ing components you don’t need, you reduce the attack surface for hackers. Think of a
firewall— you don’t open ports that you don’t need because it’s risky.

 How do you know what components you’ll need for your environment? You should
base most of your additions on the needs of your web applications. An example would
be that you’re using a web application that uses ASP.NET, in which case you’ll need to
install ASP.NET. In most cases the application vendor’s documentation describes the
necessary services you need to add. You’ll be installing (and removing) various com-
ponents throughout your month-of-lunches journey.

The graphical installation of IIS is fairly quick and straightforward. Many administra-
tors in smaller environments use it exclusively. I want to show you a faster and, as
you’ll see later, better method that will work on a single server or hundreds. Time for
a rapid IIS installation with PowerShell.

2.2.2 Performing a rapid installation using PowerShell

I hope you spent some time getting familiar with PowerShell as I suggested in the first
chapter. Now you can put what you learned to work. The techniques you learn in this
chapter will pay off as you move forward through the book. We’ll start with PowerShell
v2 that ships with Windows Server 2008 R2 and then we’ll look at Windows Server
2012 and PowerShell v3.

NOTE PowerShell v3 is now available as an update to Windows Server 2008
and Windows Server 2008 R2. Although you should update to the new ver-
sion, I’m including the v2 instructions for those who haven’t performed the
update.

First I’d like to show you some slight differences before you do the installation in the lab.

USING POWERSHELL V2 ON WINDOWS SERVER 2008 R2
The capabilities of Server Manager, specifically the part that installs and removes roles
and features, are also available in PowerShell. Microsoft added three cmdlets:

Removing the IIS role
You can remove roles as easily as you add them. You may need to remove a web
server for a variety of reasons, such as moving a web application to another server
or if a failed install occurs. To remove a role, open Server Manager and select
Remove Roles.

Later in the book we’ll be working with the file system and the storage of your web-
sites. Note that when you remove the IIS role, the file system stays intact. This
means when you remove the IIS role, it won’t delete any of your files and web pages.

23Installing IIS on Microsoft Windows Server
 Get-WindowsFeature—Displays the roles and features available to install or
remove and displays the name of the software for the next two cmdlets

 Add-WindowsFeature—Installs one or more roles and features; you must use
the name of the software as it’s displayed by Get-WindowsFeature

 Remove-WindowsFeature—Removes one or more roles or features

These three cmdlets aren’t part of the core PowerShell commands that are loaded
when you open the shell. Instead they’re part of a separate module. Modules hold a
collection of cmdlets that can be loaded and unloaded as needed. The module you
want, called the ServerManager module, is shown in Figure 2.9. Use the following
command to see a list of available modules on your system:

PS> Get-Module –ListAvailable

To get access to the cmdlets in a module, you must first import the module with the
Import-Module cmdlet. You can get a list of cmdlets that are in a loaded module using
the Get-Command cmdlet (see figure 2.10):

PS> Import-Module ServerManager
PS> Get-Command –Module ServerManager

At this point, you can also use Get-Help to learn about the cmdlet parameters and see
examples of how to use them. But because that’s what I’m here for, I’ll show you how
to add IIS with the default installation using the Add-WindowsFeature cmdlet (see fig-
ure 2.11):

PS> Add-WindowsFeature Web-Server

Figure 2.9 Finding the list of modules available for import

A reminder about PowerShell modules
Often PowerShell needs additional cmdlets to manage products and perform tasks.
These cmdlets are stored in modules that can be imported when needed. To install
additional Windows and IIS components, you need the ServerManager module.

24 CHAPTER 2 Deploying the web server
It’s truly that simple and fast. Later in the book you’ll see examples of how to install to
multiple servers at once using this same cmdlet. If you haven’t started working with
PowerShell, this is a good time to start.

Figure 2.10 Using Get-Command to list the cmdlets in the module

Figure 2.11 Using Add-WindowsFeature to install the web server

Above and beyond
In PowerShell v2 the cmdlet that adds roles and features to a server is named
Add-WindowsFeature. In PowerShell v3 this has been changed to Install-
WindowsFeature. If you’re using PowerShell v3, you can still use the Add-Windows-
Feature name because it’s now an alias to the Install-WindowsFeature cmdlet.
I wanted to give you examples that worked for both versions of PowerShell, so I’m
using the Add-WindowsFeature cmdlet instead of the v3 only cmdlet Install-
WindowsFeature.

Three tips and a “gotcha”
Tip You can add additional services, roles, and features by separating the names
with a comma:
PS> Add-WindowsFeature Web-Server, Web-ASP

25Installing IIS on Microsoft Windows Server
USING WINDOWS SERVER 2012 AND POWERSHELL V3
One of the coolest and most convenient features of PowerShell v3 is the ability to
dynamically load modules when they’re needed. In short, you don’t have to import
the module to use its cmdlets.

 This is a feature of PowerShell v3, so if you’ve installed v3 on Windows Server 2008
R2, you can perform an IIS install even faster. In figure 2.12 I’m using Windows Server
2012 and PowerShell v3. Notice that you don’t need to import the ServerManager
module:

PS> Add-WindowsFeature Web-Server

The preceding alias cmdlet works, or you can use the name of the new cmdlet, as
follows:

PS> Install-WindowsFeature Web-Server

Huzzah! It takes the graphical Server Manager utility longer to initially load than it
takes to fire off that PowerShell command.

WARNING If you search Help for the Install-WindowsFeature cmdlet, you’ll
notice a switch parameter called –IncludeAllSubFeature. You may even see
someone on the internet using it. To use it yourself, do the following:
PS> Add-WindowsFeature Web-Server –IncludeAllSubFeature

Don’t use the -IncludeAllSubFeature when you’re working with IIS. Doing so will
install all of IIS, including every available service. Remember what I said earlier: you
only want to install what you need, for security reasons.

Tip To use Add-WindowsFeature you need to look up the name of the component
you want to install. The names of all roles and features are listed in the Name column
when you run Get-WindowsFeature.

Tip In PowerShell v2 you need to launch modules every time you launch a new shell.
A feature in PowerShell, called a Profile, can automatically load the modules for you.
But because you won’t need the ServerManager module that much, it’s best not to
put it in a Profile and waste environment memory.

Gotcha In Windows Server 2012 the GUI management console isn’t installed by
default when you use PowerShell. Add the management console component using
the Install-WindowsFeature Web-Mgmt-Console.

Figure 2.12 Installing a web server role on Windows Server 2012
www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 Deploying the web server
 So far I’ve walked you through an IIS installation using the GUI-based Server Man-
ager and the ServerManager PowerShell module. I’ll bet you’re ready to get to the lab
and get IIS installed, but I want to show you one more operating system option—one
that you’ll need to consider in the near future if you want the best performance from IIS.

2.3 Installing IIS on Server Core
Microsoft Server Core is my favorite installation option for Windows Server when
working with IIS. Its performance, ease of updates and management, and perfor-
mance are amazing. Yes, I said performance twice. You may not have had a chance to
experience Server Core, but you should if you’re the IIS administrator.

NOTE I recommend that you use only Windows Server 2008 R2 Server Core
or Server Core on Windows Server 2012. The prior version, Windows Server
2008, didn’t support ASP.NET, and it was hard for most administrators to con-
figure. Starting with 2008 R2, adoption of PowerShell has made Server Core
much easier to use.

Server Core has been performance-optimized by removing the entire graphical desk-
top. As you can see in figure 2.13, it has no start bar, no icons, and no graphical com-
ponents. The desktop is a blue background with a command prompt. You perform
the initial configuration of the Server Core at the command prompt using PowerShell
or a utility named SConfig.exe. Once it’s installed, you can manage IIS remotely using
the graphical tools or PowerShell.

 In almost every case placing IIS on this lightweight version of Windows Server is
the right choice. The stumbling block for most administrators is the command line.
Without the GUI, they feel lost. If you’ve been paying attention to the PowerShell cmd-
lets I’ve been demonstrating, you’ll excel at using Server Core.

 In this section you’ll prepare a Server Core for an IIS installation and install IIS
using PowerShell. Server Core requires a little more initial configuration than the
graphical server before installing IIS. The configuration utility SConfig.exe will help,
so we’ll start there.

Figure 2.13 Using IIS
on Server Core

27Installing IIS on Server Core
2.3.1 Preparing Server Core for IIS

Windows Server 2008 R2 made configuring Server Core much simpler with the intro-
duction of the SConfig.cmd (SConfig) utility. This utility lets you change the com-
puter name, set an IP address, and join a domain. It also permits you to enable
PowerShell and remote management.

 Before you can install IIS on Server Core, you need to first enable PowerShell. As
figure 2.14 illustrates, you do that by selecting option 4 and then enabling options 1,
2, and 3. This turns on PowerShell and gets you the ServerManager module you’ll
need for the install.

Why no desktop on Server Core?
Having a graphical desktop slows down the server, preventing it from accomplishing
the task of “serving” efficiently. The removal of the graphical desktop also means
fewer components to update and service pack.

Don’t let the lack of a graphical desktop keep you from using Server Core. You can
perform management remotely using graphical tools installed on your local computer
or through PowerShell.

In chapter 11 I show you how to configure IIS on Server Core for remote management
with both the graphical tools and PowerShell. You’ll find no differences in the man-
agement tasks you need to perform.

Figure 2.14 Enabling PowerShell on Server Core

28 CHAPTER 2 Deploying the web server
Once you’ve enabled PowerShell you’ll be able to install IIS easily. How are you going
to perform the install without a graphical tool? I’ll bet you already know the answer:
PowerShell. Let’s dive in.

2.3.2 Adding IIS to Server Core

This is one of those times when you might search the internet on how to install IIS on
Server Core and see a lot of old and bad stuff. Commands such as ocsetup.exe and
oclist.exe are the wrong direction—they’re unnecessarily complex and have been
replaced by a better tool: PowerShell. The only stumbling block is that when Server
Core boots initially, it runs the old CMD.exe.

 The fix is simple. Type PowerShell at the command prompt to load PowerShell.
After it loads, the process to install IIS is the same as I described in the preceding sec-
tion: import the ServerManager module and add the web server (see figure 2.15).

 That was easy. In fact, with PowerShell managing, Server Core is faster and more
efficient than the GUI-based installation. As you move through the book, all the Pow-
erShell commands will work on Server Core.

TIP If for some reason you can’t find the ServerManager module on Server
Core, open SConfig, select option 4, and then select option 3 (Allow Server
Manager Remote Management) again. This will get the module installed.

As we move along in the book I talk more about Server Core and why it might be
the best installation option for your server operating system and IIS. After complet-
ing any IIS installation, it’s best practice to test the web server to make sure it’s oper-
ating normally.

 Our last stop before running the lab will show you a quick method of testing the
web server.

2.4 Verifying a successful installation
After every installation of IIS, before I start configuring the containers that will hold
websites and web applications, I check to make sure IIS is installed properly and work-
ing normally. It’s rare for IIS to have problems during installation, but it’s good prac-
tice to always check. In this section you’ll learn how to test the web server using the

Figure 2.15 Installing IIS on Server Core

29Verifying a successful installation
default website and check for error events in the logs. To assist in the testing process,
Microsoft created a default website container that contains a simple HTML web page.

2.4.1 Testing the default website

During installation of IIS, a default website container
and web page is created. In your next lunch you’ll
dive into the details of this default website, but this is
a perfect chance to use this website to make sure the
web server is functioning as it should.

 After you install IIS, open your favorite web
browser and type the URL of the web server. If you’re
physically sitting at the new web server, you can use
any of the following URLs:

 http://localhost
 http://<ServerName>
 http://<IP Address>

If your test is successful, in your browser you’ll see
one of the welcome pages shown in figure 2.16.

 I prefer testing from another computer because it
tells me that the web server and all its networking
components are working. I also recommend that you
test in this way when you do the lab for this chapter.

 Speaking of the lab, I want to cover one last thing
before I turn you loose on it. It’s always best practice
to check for errors in the logs after an installation,
so let’s examine that. Then you can dig in to the lab
and try it yourself.

2.4.2 Checking for problems

Most network administrators check the Event Viewer for errors after an installation. I
don’t like the Event Viewer. It takes too long to load, and I have to surf through
hundreds of entries to locate a possible error message (see figure 2.17). You can fil-
ter and sort the views in Event Viewer in other ways, but I have a still better way.
Again, it’s that “inadvertent administrator” thing, and I don’t want to waste time.

Figure 2.16 The default web pages
displayed in a browser after a
successful installation

30 CHAPTER 2 Deploying the web server
A more useful way to quickly check for events regarding IIS is to use the PowerShell
cmdlet Get-EventLog (figure 2.18). This cmdlet searches any of the logs you have.
Let me show you how to focus it on IIS and errors in the system log:

PS> Get-EventLog –LogName System –Source IIS* -EntryType Error

I added the –EntryType parameter so that the cmdlet would only search for error
messages. This is much more efficient than dealing with Event Viewer, and if you
know a little about PowerShell, you can now export this information to a CSV, HTML
report, or text file for future reference. In the following example I export my results
to a CSV file:

PS> Get-EventLog –LogName System –Source IIS* -EntryType Error |

➥ Export-Csv c:\IISErrors.csv

You now have all the information you need to try out this lab. Are you excited? Go
wash your hands after your delicious lunch and get started.

Figure 2.17 The graphical Event Viewer is a slow method of checking for errors.

Figure 2.18 Using PowerShell to check the system log for installation errors

31Ideas to try on your own
2.5 Lab
Now it’s your turn. I want you to install IIS to support the future WebBikez website on
your lab computer. The bicycle shop has a network environment similar to your virtual
computer: a web server using Windows Firewall plugged into the internet. This lab
will only take a few minutes but will help ensure that you understand the concepts dis-
cussed in this chapter.

 If you get stuck on a task and need help, go to MoreLunches.com for a complete
walk-through of the lab. Open up your virtual environment and let’s get started.

TASK 1
For your first task go into Control Panel and verify that your firewall is turned on.
Remember, you don’t want to deploy IIS to an unprotected environment.

TASK 2
Install IIS with only the default components and services. For this installation you get
to choose the installation method—graphical or PowerShell. When the installation is
complete, move on to task 3 to test the web server.

TASK 3
After IIS is installed, test IIS to see if it’s working. On the web server open a browser
and type http://localhost in the address bar. You should see the default test page.

 I prefer to test a new installation on a different computer. If you created the multi-
VM environment described in chapter 1, open your domain controller and attempt to
access the new web server from a browser. The URL will be the IP address or hostname
of the new web server.

TASK 4
To make sure you had no errors during the installation, check the Event Logs for IIS
errors. Do this on the new web server using PowerShell and the Get-Eventlog cmdlet.

TASK 5
Here’s a challenge before you put down the book and go back to work. If you installed
IIS using the graphical Server Manager, consider trying the installation again using
PowerShell. If you have the extended environment, you can install IIS on the remain-
ing virtual machine. If you have only the one virtual machine, I want you to remove
IIS and reinstall it using PowerShell. Yup, do the install again.

 After you’ve successfully installed IIS, to double-check it test it again by opening a
browser and typing http://localhost. You should also use PowerShell to check for any
errors in the system log.

2.6 Ideas to try on your own
When you get a chance in your busy schedule, I have two ideas for you to try out. This
won’t be easy, but it’s something you should consider trying before you finish the book.

32 CHAPTER 2 Deploying the web server
 First start diagramming your own network environment. A hand-drawn picture is
fine, but if you already have a network schematic in something like Visio, that’s even
better. Diagramming will help you to decide how you may want to implement IIS in
your own environment.

 Try to install IIS on Server Core. If you haven’t worked with Server Core, this may
seem like a daunting task, but I’ll help you. I’ve posted a full installation on More-
Lunches.com, but let’s look at the highlights to get you started:

 Install Windows Server 2008 R2 Server Core or Windows Server 2012 Server
Core into a virtual environment with your existing lab computer. We’ll use your
existing domain controller.

 Using SConfig change the computer name to something like Web1.
 Using SConfig assign a static IP address.
 Using SConfig assign an IP address to your DNS server. This should be the IP

address of your virtual domain controller.
 Using SConfig join your existing domain.
 Using SConfig enable PowerShell.
 Using PowerShell install IIS with its default components.
 Test your installation and check for errors.

Exploring and launching
a website
It doesn’t matter if it’s a personal blog on your own IIS server at home or a new cor-
porate commerce site for your company’s newest product, there’s a certain amount
of joy in a successful website launch. The process has a lot of moving parts, usually
involving a team of people including the developers who wrote the website to the
web admins and network engineers who configure the communication and security
to the internet.

 One of my favorite launches was for a large customer that had warehouses all over
the world. They had been taking customer orders over the phone for many years and
wanted to move their order processing to the web. After the development team com-
pleted the new order process application, I completed the web server infrastructure,
security, and all the configuration changes and testing that had to be done to launch
the site on the internet (the same things you’ll do in a month of lunches).

 Seeing that first order get placed and processed through the new website was
pretty cool. The customer had a new communication line with their customers for
order processing, and I got to be a part of building the solution.

 Now I’ll take you through the process. Open up that lunch sack and start
munching, and let’s begin by creating a better test page for the default website,
exploring the options on the site, and creating new folders and applications for the
site. When you’ve completed that, I’ll show how to open the website to the real
world and which DNS settings to make.
33

34 CHAPTER 3 Exploring and launching a website
3.1 Locating website configuration settings
I want you to remember something I mentioned back in chapter 1: in most cases a
web server is very much like a file server serving web pages like files to a network client
across the internet. The client uses a browser to display and run those files like a use-
ful application.

 Don’t let the overly misused term website confuse you when working with IIS. In IIS
a website has two parts: the website container for configuration settings such as secu-
rity and reliability (configured in the IIS manager) and the actual web pages them-
selves on the filesystem, whether written by you or a development team.

 As a web administrator you’ll often create websites and web applications in the IIS
Manager or PowerShell. Think of these as containers that hold the web pages and
applications that a developer has written. You’ll configure the website container prop-
erties and configuration and then fill those containers with the developed web pages.

 When you installed IIS for the bicycle shop, it created a default website container
and placed a simple web page on your hard drive in a specific folder structure. You’ll
start adding containers to hold the bike shop’s website applications throughout this
chapter.

 First I show you how to find the default website and its configuration settings using
IIS Manager and PowerShell. Currently the bike shop is using the default website to
store pictures and building instructions, so you’ll need to make some simple “testing”
web pages until the development team has finished the “live” (real) web pages.

3.1.1 Locating website configuration settings using the IIS manager

The primary management tools for IIS are the graphical Internet Information Ser-
vices (IIS) Manager and the WebAdministration module for PowerShell. I’ll mention
other tools from time to time, but these are the main ones.

 The IIS manager graphical tool, installed during the deployment of IIS, is used to
display and manage the configuration of your web server, websites, and web applica-
tions. This tool has a unique interface, different from most other graphical tools on
the server, and is the primary graphical tool you’ll use for most of your administrative
tasks. There’s always PowerShell as well, but we’ll get to that later.

 When the IIS manager is first opened, it displays a Start Page with common and
useful information displayed in two panes, one for navigation and one with extra
information, such as the web server that you connected with and the latest news about

Above and beyond
The IIS manager tool can be opened on a server under Administrative Tools in Server
2008 R2 or the Tools menu option in Server Manager for Windows Server 2012.
Many admins prefer to run the IIS manager from their client using the Remote Admin-
istration Tools. You can download and install those tools for either Windows 7 or Win-
dows 8 (Windows 7 at http://mng.bz/l21g and Windows 8 at http://mng.bz/YGH9.)

http://mng.bz/l21g
http://mng.bz/YGH9

35Locating website configuration settings
IIS from Microsoft. Although the Start Page (see figure 3.1) isn’t normally the place
you’ll perform most of your management, you should still become familiar with it.

 In the left navigation pane, the Sites folder contains all your websites and applica-
tions. IIS can host multiple websites on a web server, and as the new admin for the bike
shop, you’ll be adding several websites in the next few chapters.

 When you click an element other than the Start Page—such as your web server,
application pools, or the Sites folder—the entire view changes to a management view
with three panes of information, as illustrated in figure 3.2.

 The center pane contains a list of the components installed with IIS. Remember
back in chapter 2 when you installed the default components for IIS? As you add more
components (throughout this book), this list changes, adding additional icons for
each component. Each icon has a set of configuration settings that will affect your web
server, website, and web applications. Some of these components are application-spe-
cific and configured by the developers of the application, and some you’ll need to
modify. Over the course of the next several chapters, you’ll discover how to configure
these components as they’re needed.

 The rightmost pane is where you find actions that can be performed on whatever
you selected in the navigation or center pane. The cool trick about the actions pane
is that it removes the need to right-click for additional options so prevalent in other
utilities.

Figure 3.1 Main layout of the Start Page for IIS manager
www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 3 Exploring and launching a website
The default website gives you a quick method of verifying (testing) the web server to
make sure it works. In production you may even decide to host your real website in the
default container. Most of Microsoft’s products that use IIS do this, such as Exchange,
SharePoint, RDS, and so on. In chapter 2 after the deployment, I had you “test” your
web server by typing the URL http://<servername>. Your browser connected to the
web server and opened this default website container and the web pages contained
inside. If it hadn’t opened you would have known that something had gone wrong
during installation.

 The graphical tool you’ve just been exploring displays the website configuration
settings, not the actual web pages that make up the website. To see those pages, and to
add pages to your default site (which you’ll do later), you need to find out where
they’re kept in the filesystem. Before you look for that, let’s make sure you can find
the default website’s configuration settings using PowerShell.

3.1.2 Locating website configuration settings using PowerShell

You have a choice when managing the bike shop (and your real websites) in the man-
agement tool you use, so I want to show you PowerShell whenever I can. When IIS is

Figure 3.2 The graphical IIS management tool is segmented into three parts. The left pane is for
navigating to your websites, the center pane is to access additional components and features, and the
right pane is for actions.

37Locating website configuration settings
installed on a server, an additional module for PowerShell is added, called WebAd-
ministration. The WebAdministration module contains cmdlets and PSProvider
WebAdministration which exposes the IIS: drive. You can view and change configura-
tion information using either the IIS cmdlets or the provider. In general most admins
prefer to use cmdlets (like me!), but as you’ll see throughout the book, there will be
instances when an IIS cmdlet just doesn’t achieve the goal, and that’s when the pro-
vider can be useful.

 To manage the bike shop in this book (and your own production sites in real life),
load the cmdlets and WebAdministration provider by importing the module. Once it’s
imported, get a list of the available IIS cmdlets using Get-Command:

PS> Import-Module WebAdministration
PS> Get-Command –Module WebAdministration

NOTE The WebAdministration module doesn’t need to be imported manu-
ally if you’ve updated to PowerShell v3. PowerShell v3 dynamically loads the
module when you attempt to use any of the IIS cmdlets. If you haven’t
upgraded your management client to PowerShell v3, you should stop right
now and do it. This feature alone will make your life easier using PowerShell.

There are a couple of other ways to find the cmdlets for IIS that may prove faster at
times. The cmdlets for IIS have the prefix Web in the noun portion of the cmdlet
name. Using this prefix you can use Get-Command or Get-Help to search for the cmd-
lets. I use Get-Help so much that it’s become natural for me to search for cmdlets this
way. Take a look at the two examples:

PS> Get-Command –Noun web*
PS> Get-Help *web*

The following are two examples of using cmdlets to get basic information about the
default website. The first uses an IIS cmdlet from the WebAdministration module; the
second uses the IIS: drive:

PS> Get-WebSite –Name Default*
PS> Get-ChildItem –Path iis:\sites

To locate the files for the website, use Get-ChildItem or the alias Dir:

PS> Get-ChildItem –Path c:\inetpub\wwwroot

TRY IT NOW On occasion I ask you to put down your sandwich and try some-
thing immediately. You may be tempted to keep eating and forgo this, but
now is a great time to reinforce the idea. So here is what I want you to do in
preparation for working with the bike shop: on the server where you installed
IIS, locate the default website using both the IIS manager and the Web-
Administration PowerShell module.

Now that you’ve had a chance to locate the default website in the IIS manager and
PowerShell, it’s time to build some better web pages for testing before we begin add-
ing components for the bike shop.

38 CHAPTER 3 Exploring and launching a website
3.2 Creating new web pages for testing
and troubleshooting
As an IIS administrator, one of your primary goals is to verify and test websites that
connect to the outside world. Imagine that your company is getting ready to launch a
new product. It will be your goal to create the website container, open access to the
outside world, and test for performance and security. In the lab you’ll experience this
with WebBikez—the company wants to launch a new site in the next two weeks to sup-
port the local shop.

 Sometimes you have the actual production website that you can load for testing, and
other times the web pages may still be in development, meaning you need to create
your own. I always start with my own test web pages before I load an actual developed
site so I have a chance to verify the configuration. That way if something goes wrong
after adding the developed site, I can isolate and troubleshoot the problem better.

 Before I can show you how to launch the default site to the internet, you need
some better web pages to use for testing. The default web pages that IIS installed into
the wwwroot folder don’t provide enough information to be useful for troubleshoot-
ing. In this section you’ll create two different web pages to use for testing every time
you create a new website.

 You may be wondering, “Do I need to become a developer to make great web
pages for testing and troubleshooting?” No, but you do need a little code to make the
web pages work. It’s nothing you can’t handle. Who knows? You might find that mak-
ing web pages and applications is something you enjoy and decide to learn more
about web development. (See manning.com for additional resources, such as the
book ASP.NET 4.0 in Practice by Scott Hanselman, Manning Publications, 2011.)

 You’ll make a simple test page for easy and quick testing and then a more compli-
cated one that produces useful information for troubleshooting website issues.

3.2.1 Locating the website pages in the filesystem

The web pages (files) for the default website are located on the filesystem. These files
are what you saw displayed in the browser in the previous chapter when we tested the
web server.

 You can access the IIS folder structure using File Explorer. Another method to
access the structure (and faster in my opinion) is to click the Explore option in the
actions pane of the IIS manager. Anytime you select a website in the navigation pane,
you can quickly get to the filesystem this way.

 The default folder C:\inetpub is created during the installation of IIS. It contains
folders that hold the web pages for the default website, as shown in figure 3.3. Addi-
tional folders in this structure contain custom error messages and connection logs
that we’ll examine later.

 Several default web pages make up the default website—a few more of them for
IIS 8—and they’re located in the wwwroot folder, shown in figure 3.4. Notice the file
extensions .htm and .png in that figure. By default Windows hides the extensions, and

manning.com

39Creating new web pages for testing and troubleshooting
you may not be able to see them. If that’s the case, open Control Panel or File
Explorer and turn this feature off so you can see the extensions.

 I prefer to avoid deleting these files unless absolutely necessary so I can have them
around for testing the website. These are simple HTML pages that under normal situa-
tions should always work. They’ll assist in troubleshooting problems later as you add
additional web pages that use components that need to be added to IIS, such as
ASP.NET.

 If you’re testing new web page content, and it’s failing to load, try checking these
default pages. If they work, you know the website is functioning but may be missing a
needed component.

3.2.2 Making an easy web page for testing a website

The default web page that’s displayed when you access the default website is far too
generic for most of the troubleshooting you’ll need to perform. WebBikez bike shop

Figure 3.3 The default folder structure created during the IIS installation. Future websites
can be located here, in other folders created by yourself, or on network shares.

Figure 3.4 Default web page
files and location

Above and beyond
You may be wondering: “Do all my websites have to go into the inetpub folder?” The
answer is no—not all of your websites have to be located there. When you add addi-
tional websites and applications, you can choose where to locate them. You can cre-
ate your own folder structure on the local server, such as C:\Sites, or use a network
share. We look at these options in Chapter 5.

40 CHAPTER 3 Exploring and launching a website
will grow to a complex, multi-website environment, and you’ll need specifically
labeled web pages to test the website communication and display useful information
before the developed website is loaded. The simple web pages you’ll make to test the
bike shop will provide information about the name of the web server and the specific
website you’re connecting to. This not only proves the website and its applications are
working, it prevents you from becoming confused if you have more than one applica-
tion or website. (In this chapter you’re going to add applications.)

 To remove future confusion between your websites, you’ll create your own web
page (figure 3.5). This simple HTML test page will work on a default installation of IIS
without any additional components. Now, you may be tempted to modify the existing
default web page or even replace its graphic with one of your own, but don’t. These
default pages serve as a good safety net. No matter what additional pages you add,
even if they don’t work for some reason, these default ones should always work.

 To create a simple web page that contains unique information is a simple process.
Notepad or your favorite text editor will work. The goal is to add a simple sentence
that describes the name of the website and the name of the web server that hosts the
website. This sentence needs to be surrounded by an opening and closing HTML para-
graph tag, like this:

<p> This is the default website located on server Web1 </p>

The next step is to save the file in the default website folder C:\inetpub\wwwroot, as
shown in figure 3.5. The text file needs a filename and extension so the website can
load it as a web page. In this case, because this is simple HTML, the extension will be
.htm. In my example I named the file Default.htm. IIS understands how to load this
file automatically without any additional configuration. If you name the file differently
at this point, it won’t load. In the next section I show you how to fix that.

 Once the file is saved, you can test the web page in a browser by typing HTTP://
<webserver> into the address bar (see Figure 3.6).

Figure 3.5 The location to save your
own web pages for testing and
troubleshooting in the default website

41Creating new web pages for testing and troubleshooting
TRY IT NOW In the wwwroot location, create a text file using Notepad. Name
this file Default.htm. Edit the file and add the following HTML tag and text:

<p> This is the default website for WebBikez located on my Web1 server </p>

Save the file. If your web page doesn’t load, one of the problems may be the
name of the file. Check to make sure you have extensions displayed and that
the file ends with .htm. Also, make sure you named the file Default.htm.

Congratulations! You just created a simple web page for testing. Make sure to test the
page using your browser too.

3.2.3 Creating a web page using server variables for better results

The simple web page you created in the last section is one I use all the time when pre-
paring to launch a website or web application. It’s very useful and is much better than
the Microsoft default web page because it identifies the website or web application
and the server where the page is hosted. This prevents me from getting confused
when I have multiple websites or applications. The other benefit of the simple web
page is that it runs with a default installation of IIS. It only uses HTML, so I don’t need
to add any components.

 The problem with the previous solution, though, is that you must edit and change
the web page for every new website, web application, and server you need to test to
uniquely identify the new site properly. There’s a better way, but it requires an addi-
tional component installed into IIS. Besides the new component, you’ll also need a lit-
tle more code under your belt. Again, it’s nothing you can’t handle. The code for our
new web page requires the additional component ASP or ASP.NET, so let’s get that
installed first.

INSTALLING THE ADDITONAL COMPONENTS ASP OR ASP.NET
You can install ASP.NET or ASP using the graphical Server Manager (see figure 3.7).

 You can also install using PowerShell, which is easy and fast. Here is how to install
ASP as an additional component:

PS> Add-WindowsFeature WEB-ASP

With the addition of ASP or ASP.NET, you can make a new test page that has more
intelligence. The new test page won’t require editing every time you copy it to another
site or application and it will contain much more useful information.

Figure 3.6 A simple, quick test page for your websites and applications

42 CHAPTER 3 Exploring and launching a website
TRY IT NOW Before we go any fur-
ther, go to your web server and
add the component ASP. You’ll
need this to test the new test page
you’ll make in the next section.
Feel free to use either Server Man-
ager or PowerShell for the task.

THE NEW TEST WEB PAGE

The ASP and ASP.NET components provide
the ability for a web page to display infor-
mation about the website or web applica-
tion that’s hosting the page. The
information about the web server, site,
application, and more can be displayed in
your web browser. This information is
dynamically built, so you only need to cre-
ate the web page once and copy it to each
new website or application container.

 The dynamic information this new web
page displays (see figure 3.8) is gathered

Figure 3.7 Installing additional components into IIS using Server Manager

Above and beyond
Server variables are pieces of infor-
mation about the client, website,
and web server—such as IIS version
and website location—stored in
memory on the web server. You can
open these variables and look at the
information or display it on a web
page. A complete list of all server
variables that can be used for a cus-
tom testing page is available at
http://mng.bz/J05R.

At that site, you’ll find other vari-
ables that may be useful to develop-
ers when they’re working on their
applications. You might consider
expanding your test page to include
some of those if you have an in-
house development team. Make
them buy you lunch for helping them!

http://mng.bz/J05R

43Creating new web pages for testing and troubleshooting
from server variables. Server variables hold a tremendous amount of useful informa-
tion, and as you progress through the book you’ll examine and use most of it.

 To gather the information from the server variables, you need a little more code.
The code in ASP or ASP.NET that I’m using has no official name but is often called
expression syntax or data binding. You don’t need to remember this, but what kind of
author would I be if I didn’t at least tell you what it was? The code you’re interested in
looks similar to the example in Figure 3.9.

 Notice the syntax between <%...%>. Everything else is just text I use to label the
information. In this example, instead of my hand-writing the server’s IP address into
the web page, the server variable populates it for me. See how this is going to save
time? I can easily copy this page to different websites and servers without modifying
it again.

 Using several server variables you can create a great dynamic web page that will
remove confusion by correctly identifying each and every new website and application
you create. The following listing shows the code for a new and improved web page.

Figure 3.8 New web page with dynamic information using server variables

Text title to display
in the web page

Open and closing code tags

The command to
request a server variable

Server
variable

Server IP =<%=Request.ServerVariables("LOCAL_ADDR")%>

Figure 3.9 Sample code requesting a server variable to retrieve the local IP address

44 CHAPTER 3 Exploring and launching a website

Var

sp

Vari

applic
<html>
Server Information

Server Name = <%= Request.ServerVariables("SERVER_NAME") %>

Server Protocol = <%= Request.ServerVariables("SERVER_PROTOCOL") %>

Server IP = <%= Request.ServerVariables("LOCAL_ADDR") %>

Server Port = <%= Request.ServerVariables("SERVER_PORT") %>

IIS Version = <%= Request.ServerVariables("SERVER_SOFTWARE") %>

Website Information

Application Physical Path = <%= Request.ServerVariables("APPL_PHYSICAL_PATH")

%>
 #C
Application Path = <%= Request.ServerVariables("PATH_INFO") %>

Application Translated Path = <%= Request.ServerVariables("PATH_TRANSLATED")

%>

</html>

I know it looks a little scary, but there really isn’t much here. The server variables I’m
using list basic information about the website and application, such as name, location,
IP address, and IIS server version. When you create this text file, save it with a filename
and special extension. This is very important or it won’t work correctly:

 If you installed the component ASP, the extension is .ASP

 If you installed the component ASP.NET, the extension is .ASPX

I usually name the file TestPage.asp or TestPage.aspx, which won’t automatically load
when you make a request to the website or application. You’ll need to include the
name in the URL:

http://web1/Testpage.asp

TRY IT NOW Take a moment and make your own version of this web page to
test the bike shop. Put a copy of the new web page into the default website
C:\inetpub\wwwroot and try the page to make sure it works. Remember to
save the file as TestPage.asp—you’ll need to include that as part of the URL.

If your page doesn’t automatically load, it’s probably because the page isn’t part of the
Default Document list in IIS. Each website and application can have its own list of doc-
uments that it will load when you request them. This is why the Default.htm document
you created earlier automatically loaded—it was in the list. In the next section, I show
you how to modify this list so that you can automatically load your Testpage.asp if
desired. Most of the time I don’t add it to the list because I only want it to load when I
specifically request it through the URL. You may find it more convenient to have it
automatically load, so I’ll demonstrate that at the same time as showing you how to
control the Default Documents.

Listing 3.1 Dynamic web page using server variables

Create line break

iables
with

ecific
info

ables
with

ation
info

45Creating new web pages for testing and troubleshooting
 I like to save this test page to an easily accessible folder such as C:\TestPage so I can
copy it to new websites and applications when needed. For a later lunch I show you
how to deploy your test pages to multiple servers all at once, but for now you can just
copy it when needed using Windows Explorer.

 Throughout this book I add variables to this test page to make it even more useful
later. As an example, this page will evolve to the point where it will help you trouble-
shoot everything from improperly configured websites to a misbehaving network load
balance with multiple servers (yes, you’ll do that in chapter 7!). Keep this file handy
because you’ll use it often.

3.2.4 Default Documents

IIS automatically loads documents (files) that have specific names and extensions. It
“knows” that it can load them for you automatically. This improves the end-user expe-
rience. How ridiculous would it be to be forced to type a URL with a document name
for every website or application you visit (http://web1/Default.htm)?

 In the preceding section you created a great web page for troubleshooting called
Testpage.asp. I want to show you how to have it automatically load so that you don’t
need to type it in the URL.

 In the center pane of the IIS manager, when you select Default Document, a list of
currently automatically loaded documents will appear, and you can add your own to
that list (figure 3.10).

Figure 3.10 Adding your
own automatically loaded
document types
www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 3 Exploring and launching a website
TRY IT NOW Open the Default Document list for the default website and
add your new TestPage.asp file to the list. Make sure you move it to the
top of the list so it’s the first page loaded. Try it by typing the URL into
your browser’s address bar, but this time without specifying the page
name: http://<servername>.

Now you have a test page for your sites and applications. Let’s put it to use and start
creating additional folders and applications to customize the default website. Once
these are working we’ll launch the website to the outside world.

3.3 Adding new folders and applications
in the default website
A website may start out small, meaning a few files (web pages) comprise the entire
site. As the needs of our bike shop grow, so will the desire to increase the size of the
website by adding new products and features for customers. This will dramatically
increase the number of web pages and make it harder and more confusing to keep
track of all those files.

 Think of your hard disk for a minute and all the files it contains. What if you didn’t
have any folders and stored all the files in the root of your hard disk? Can you imagine
the problems? Files with the same name overwriting each other, trying to find a single
file in the enormous list—security management would be almost impossible. The
same goes for your website.

 The bike shop website will contain files that the end-user can download, it will have
multiple web applications, and it will contain pictures of WebBikez’s latest bikes. You’ll
need to organize these files and make them available to users. There are three pri-
mary methods to do that, and you’ll try each one of them:

 Adding normal folders
 Adding virtual directories
 Adding new web applications

Let’s get started with normal folders.

3.3.1 Adding normal folders and content

You need to create additional folders for organizing pictures and files for the bike
shop website. The first type of folder, a normal folder, is in fact just a regular file folder
(directory) that appears in IIS. Normal folders are the easiest to create, but they have
no special IIS features or capabilities, so they’re the least used. (A better solution is vir-
tual directories, discussed later in this section). Normal folders do what any folders
do—store files, but without any special features, such as redirection to network stor-
age, they can be limiting in larger environments. You should be aware that these exist,
but you won’t use them much.

 When you create a new folder off the root location of your website, it becomes part
of the website and its URL. The default website is located in C:\inetpub\wwwroot.

47Adding new folders and applications in the default website
When I create a new folder such as JasonsNewFolder off of wwwroot, it’s displayed in
the IIS manager (see figure 3.11).

 Any files placed in the new folder will be available to any browser. You can put
downloadable content here or even new web pages.

TRY IT NOW Create a new folder under the location of the default website
C:\inetpub\wwwroot. Name the folder something like BikeShopDocs. Once
you have the new folder, view it in the IIS manager. It’s now become part of
the website. (Hint: you may need to refresh the IIS manager to see the
folder.) Next copy the test page you made in the preceding section to this
folder. See if you can display the page in your browser. Remember, the URL
should contain the new folder name and the name of the test page: http://
<server>/BikeShopDocs/TestPage.aspx.

Although using normal folders seems like a nice way of organizing multiple web pages
and files in your website, it’s limited to only local storage on the web server. This is
great for single-server websites, but when you need to load balance (provide fault tol-
erance) for a website, you need a better option that will permit you to store the web
pages off the local server and on a network share.

3.3.2 Adding virtual directories for better content control

Virtual directories provide better configuration options than normal folders for the
location of stored files or web pages. Virtual directories are the type you’ll want to use
for the bike shop files. For example, a virtual directory has an alias (a shortcut name)
that will become part of the URL. This alias should be short and memorable. Most
administrators like to name the physical folders that contain the files very descrip-
tively, but that’s generally not a good idea for the URL, especially if it has spaces. As an
example, I can name a folder “This is where I store bike pics,” which is very descrip-
tive, and give it the alias BikeImages. When an end user attempts to access the loca-
tion, they’ll use the alias name in the URL:

http://<servername>/BikeImages

Figure 3.11 Creating a normal
folder with files for your website

48 CHAPTER 3 Exploring and launching a website
Creating a virtual directory is as simple as specifying the alias and the physical path
you want to store the files in, as shown in figure 3.12.

 There’s another reason why virtual directories are better than normal folders. The
location of the folder can be virtual. The folder doesn’t need to be a physical location
on the local hard drive—it can be a network share on another server. Later in the
book when we start to look at multiple server deployments, this will become a very use-
ful feature.

TRY IT NOW This is a great time to create a virtual directory. Use the alias
name BikePics and the physical path C:\inetpub\wwwroot\PicsOfWheel-
Spokes. Copy your test page into the virtual directory and see if you can load
the page using a browser: http://<servername>/BikePics/TestPage.aspx.

3.3.3 Adding application folders to the website

So far I’ve described two methods of creating an organizational structure to the bike
shop website: normal and virtual directories. These are great for images and file
downloads. But the developers of the bike shop website have informed you that they
need to add web applications to the site for a shopping cart. A web application con-
tainer is different than a normal or virtual folder.

 Don’t let the term web application confuse you. A web application is a collection of
files that contain HTML, ASP, ASP.NET, or other code that a browser can execute. The
test page you created earlier can be considered a web application. In IIS you need to
treat applications differently than just image or download files by adding them to
application pools.

 What’s an application pool? For now, think of an application pool as a separate mem-
ory location for your application, similar to the virtual machines you built for labs in

Figure 3.12 Creating a virtual directory to store files

49Opening your first website for business
chapter 1. In chapter 4 I cover how to configure and control application pools for
your web applications.

 Placing a web application into its own self-contained pool of memory protects
other web applications and the IIS server in case something goes wrong with the appli-
cation. Remember the old computer days when applications would “hang”? Most
often you’d need to reboot your computer. That’s what an application pool protects
you from—bad applications crashing your entire system. Figure 3.13 demonstrates
how to create a new web application in the default website.

TRY IT NOW Try to create a new application for yourself as part of the
default website. Use the alias name BikeShopApp and the physical path
C:\inetpub\wwwroot\BikeShopApp. As you did with the virtual directory, copy
your test page into the physical path and try the URL in your browser: http:/
/<servername>/BikeShopApp/TestPage.asp.

Now we have the default website and multiple folders and applications. It’s time to
launch this website to the outside world.

3.4 Opening your first website for business
In the virtual machine environment you’ve built for the labs in this book, accessing
and testing a website from any one of the VMs is pretty simple: open the browser and
type the name of the server or its IP address.

Figure 3.13 The steps in creating a new application in the default website

50 CHAPTER 3 Exploring and launching a website
When you want to open a site to the public, or to people outside your network, there’s
more to the process. You need to check the firewalls and possibly open ports, get an
outside public IP address, and configure DNS. Figure 3.14 shows the process of open-
ing a website to the internet.

 Let’s give people access by opening holes in the firewall.

3.4.1 Opening the right ports in the firewall

The default website will respond to browsers making requests on port 80, which is the
default port for all browsers. It’s possible to specify other ports for your website, but I
cover that in chapter 5.

 On your firewall closest to the internet, port 80 must be opened to your web server.
Everyone uses different firewalls, so you’ll need to contact your firewall specialist to
figure out how to open yours. You probably have this port open already, because it’s a

Figure 3.14 Opening a website to the outside world

51Opening your first website for business
common and normal port to have open. But if something isn’t working when you test,
don’t forget to check this port.

TRY IT NOW Open Control Panel on the virtual machine you use for labs and
check the Windows Firewall advanced settings. Do you have port 80 open for
HTTP traffic?

3.4.2 Getting an outside IP address

Along with the firewall port opened, you’ll need a public (outside) IP address for your
web server. This confuses many administrators, especially if they’re not familiar with
how TCP/IP addressing works. See, a long time ago, in an internet far, far away, we ran
out of IP addresses. Every computer needs one, so a special set of new IP addresses was
created.

 Basically, you have an IP address scheme inside your office. In fact it probably
begins with the number 10. or 192. or 172. These are private IP addresses that can’t be
used for the internet. The internet uses public IP addresses. You need one of these
public addresses, and it must be mapped through a network device known as NAT to
the private address of your web server.

 You’ll need to contact your network team for an outside IP address that’s “NAT’d”
to your web server. If you’re the network team, you’ll contact your internet service
provider if you don’t already have a list of your public addresses.

3.4.3 Configuring internet DNS for your website

People on the internet find your websites using name resolution from the internet’s
DNS provider. Your company probably already has its own internet domain (as does
the bike shop), and if you want people to see your new website, you need to add a new
record to your DNS zone.

 The record you need to add is called an (A) record or Host record. The name you use
in the (A) record will become the first part of the URL people will use to access your
website. In figure 3.15 I’m adding a new record to my corporate zone called MyCom-
pany.com. The (A) record has the name WWW and points to my web server’s external
address of 208.48.4.11.

 If everything has been correctly configured, the last step is to test from outside
your network to make sure your website works.

TRY IT NOW There’s no way for you to test this using internet DNS without the
huge risk of breaking something important. The closest thing you can do—
and I want you to try this—is to modify the DNS on your VM. Pretend it’s the
internet DNS and add a www record to your zone.

3.4.4 Testing from the outside

To test your configuration, you need to go to a computer that’s outside your office net-
work. This can be a home computer or my favorite: an iPad or phone over 4G. The
phone option is handy because you don’t have to leave the office to get an outside test.

52 CHAPTER 3 Exploring and launching a website
The URL you used inside your office won’t work from the outside, so now you need to
use the proper URL created when you configured the internet DNS. In my example
the correct URL is http://www.mycompany.com.

 You can also test any additional web applications or virtual directories you create
under the default website by extending the URL. Here are a few examples from fold-
ers I created in this chapter:

http://www.mycompany.com/TestPage.aspx
http://www.mycompany.com/VirDir/Testpage.aspx
http://www.mycompany.com/MyWebApp/TestPage.aspx

 Okay, go wash your hands and let’s try the lab!

3.5 Lab
If you’ve been following along and performing the Try It Now sections, you already
have several test pages running under your default website. You can keep these if you
like, but I need you to start building the website structure that we’ll use throughout
the book. As you move on to later lunches, you’ll add more websites and applications
to your web server.

 Begin by building a website structure for the WebBikez bicycle shop. The owner of
the shop has hired some developers to create a simple website. You’ve been hired to
create the structure of the website and prepare the site for launch.

Figure 3.15 Configuring internet DNS for your new website. For this demonstration, I’m using Microsoft DNS.
Your actual public DNS will have its own unique screens and layout, but the concepts are the same.

53Lab
TRY IT NOW If you didn’t get a chance to perform the Try It Now sections, I
have repeated them here for your convenience. Once complete, you can start
the lab with task 1.

1 On the server where you installed IIS, locate the default website using both the
IIS manager and the WebAdministration PowerShell module.

2 In the wwwroot location, create a text file using Notepad. Name this file
Default.htm. Edit the file and add the following HTML tag and text:
<p> This is the default website for WebBikez located on my Web1 server
</p>

Save the file. If your web page doesn’t load, one of the problems can be the
name of the file. Check to make sure you have extensions displayed and that
the file ends with .htm. Also, make sure you named the file Default.

3 Go to your web server and add the additional component ASP. You’ll need this
to test the new test page. Feel free to use either Server Manager or PowerShell
for the task.

4 Take a moment and make your own version of the web page to test the bike
shop. Put a copy of the new web page into the default website C:\inetpub\
wwwroot and try the page to make sure it works. Remember, save the file as
TestPage.asp—you’ll need to include that as part of the URL.

5 Open the default document list for the default website and add your new
TestPage.aspx file to the list. Make sure you move it to the top of the list so it’s
the first page that will be loaded. Try it by typing the URL into your browser, but
this time without specifying the page name (http://<servername>).

6 Create a new folder under the location of the default website C:\inetpub\
wwwroot. Name the folder something like BikeShopDocs. Once you have the
new folder, view the folder in the IIS manager. Notice it has now become part of
the website. (Hint: you may need to refresh the IIS manager to see the folder.)
Next, copy the test page you made in the last section to this folder. See if you can
display the page in your browser. Remember, the URL should contain the new
folder name and the name of the test page: http://<server>/BikeShopDocs/
TestPage.aspx.

7 Go out to your server and create a virtual directory. Use the alias name BikePics
and the physical path C:\inetpub\wwwroot\PicsOfWheelSpokes. Copy your test
page into the virtual directory and see if you can load the page using a browser:
http://<servername>/bikepics/testpage.aspx.

8 Try to create a new application for yourself off the default website. Use the alias
BikeShopApp and the physical path C:\inetpub\wwwroot\BikeShopApp. As you
did with the virtual directory, copy your test page into the physical path and try
the URL in your browser: http://<Servername>/Bikeshopapp/Testpage.Aspx.

54 CHAPTER 3 Exploring and launching a website
9 Open Control Panel on your virtual machine that you use for labs and check
the Windows Firewall advanced settings. Do you have a port 80 open for HTTP
traffic?

10 There’s no way for you to test this using internet DNS without the huge risk of
breaking something important. The closet thing you can do (I want you to try
this) is to modify the DNS on your VM. Pretend it’s the internet DNS and add a
www record to your zone.

TASK 1
Create a virtual directory with the alias WebBikezPics and the physical path C:\inetpub\
wwwroot\BicyclePhotoLibrary.

 Add a basic HTML web page that automatically loads and displays This is the Web-
Bikez Photo Library. Include a copy of your test page.

TASK 2
Create a virtual directory with the alias WebBikezInstructions and the physical path
C:\inetpub\wwwroot\AssemblyInstructions.

 Add a basic HTML web page that automatically loads and displays Download area for
WebBikez assembly instructions. Include a copy of your test page.

TASK 3
Create two additional web applications:

1 Name the first application WebBikezShopping with the physical location
C:\inetpub\wwwroot\StoreFront.

2 Name the second application WebBikezCart with the physical location C:\inetpub\
wwwroot\Cart.

Add HTML web pages along with your test page to both application sites.

TASK 4
Open your favorite browser and test the sites you’ve created. Verify that the HTML
pages automatically load when you use the proper URL (http://<servername>/Bike-
Pics). Verify that your test page loads correctly (http://<servername>/WebBikezPics/
MyTestPage.aspx).

TASK 5
This website should be accessible using port 80 through the firewall. On your virtual
machine, verify that this port is open. (In chapter 5 I have you configure DNS for
unique site names and URLs. For now, perform your testing using the name of the vir-
tual machine: http://<servername>.)

3.6 Ideas to try on your own
The virtual machine environment you’re using for this book is great for testing most
of the concepts I’ll take you through over the remaining chapters. One of the chal-
lenges in real life is testing both the web applications the developers are making and
the full communication chain out to the internet.

55Ideas to try on your own
 Many web admins build a pre-launch environment for extensive testing of the
applications and the network configuration settings. This full environment can be
built virtually or with physical servers. They key to this environment is that it should
have the least amount of impact on production—even air-gapped from production if
possible. The environment should be designed to be destroyed; you should be able to
easily start over with a fresh environment for testing.

 Many admins have built lab environments like this for years, and if you aren’t one
of them, then you should consider building your own lab. If you haven’t built this kind
of lab environment before, don’t worry. I provide some guidance and instructions on
MoreLunches.com.

Managing
application pools
Let’s face it, as an administrator your biggest concern with IIS is this: will it keep
running your sites and applications reliably? Have you ever had a misbehaving
application, one that leaks memory and starts to slow down your computer? With-
out dealing with the situation, your computer will eventually crash and need to be
rebooted. Websites and applications are no different. Some of them are well-
behaved little children running on your web server. Others are nightmares eating
up memory and hogging processing. Without the ability to separate the good from
the bad, you’d find yourself going to the office in the middle of the night to restart
your web servers.

Application pools provide isolation to each website on a server, preventing one
site from harming (crashing) another. Using them increases the web server’s reli-
ability and the availability of each website. Think of the virtual machines you’re
using for the labs for this book; each one has its own memory and processing allo-
cation. If one VM crashes, it has no effect on the others, nor does it crash the host
operating system.

 You can use application pools to isolate websites and applications in several sce-
narios, such as the following:

 Isolating well-behaved applications from unstable ones
 Increasing security by preventing one application from accessing the

resources of another
56

57Creating and configuring standard application pool settings
 Increasing security by assigning unique identities to pools
 Grouping websites and applications that have the same pool configuration

settings

In this chapter I show you how to work through such scenarios, using the bicycle shop
website you started building in chapter 3. You’ll focus on creating and configuring
new application pools, setting the best security for the pools, and managing the recy-
cling and cleaning of the pools.

 So open your lunch sack and let’s get started with creating and configuring appli-
cation pools.

4.1 Creating and configuring
standard application pool settings
Application pools have basic configuration settings that will work for most websites
and applications right out of the box. Some applications—for example, misbehaving
ones that crash often—need to have their settings tweaked to increase their reliability.
I show you what to look for after examining the default settings. This section focuses
on the basic application pools settings, understanding which ones to use and alter for
the websites, and applications that comprise the environment of the bike shop.

4.1.1 Locating application pools and settings

When IIS was installed, it created the default website we explored and began adding
the bike shop to in the last lunch. Fortunately it also created a default application
pool we can explore. In this section I show you where to find the application pools
used for your websites and web applications, both in the graphical manager and using
PowerShell.

FINDING APPLICATION POOLS IN THE GUI TO MANAGE SETTINGS AND CONFIGURATION

In figure 4.1 you can see Application Pools under the navigation pane. When you
select this, the center pane lists all the currently defined application pools and the
basic settings for them. You’ll create new application pools for new websites and new
web applications for the bike shop here. You’ll view both basic and advanced settings
in the actions pane.

FINDING APPLICATION POOLS USING POWERSHELL TO MANAGE SETTINGS AND CONFIGURATION

In PowerShell using the WebAdministration module, you can gather the same infor-
mation. Much of the IIS information is stored under a PowerShell drive called IIS:. You
can access that drive and its information by navigating the directory system or directly
using the Get-Item cmdlet.

 To navigate the IIS: PowerShell drive, do this:

PS> Set-Location IIS:\appPools
PS> Get-ChildItem

To access the application pool information directly, do this:

PS> Get-Item –Path IIS:\appPools\defaultAppPool

58 CHAPTER 4 Managing application pools
TRY IT NOW Put down your sandwich for a minute and open the IIS manager.
Navigate to the default application pool and examine the basic settings by view-
ing them in the center pane or selecting Basic Settings in the actions pane.
While you’re at it, open up a PowerShell console, import the WebAdministra-
tion module, and locate the default application pool using the filesystem.

Now that you’ve located the default application pool and its basic settings, let’s deci-
pher what those settings do. You’ll understand those settings better if we start by creat-
ing a fresh, new application pool.

4.1.2 Creating a new application pool

Placing websites, and sometimes applications, in their own application pools is the
most reliable and most secure option. Application pools are isolated from each other
to prevent one application from bringing down another. As an added security benefit,
application pools also prevent one application from sneaking into another pool and
stealing information. The best practice is to place new websites into their own applica-
tion pools.

CREATING AN APPLICATION POOL WITH THE GUI

You don’t have multiple websites yet for WebBikez (you’ll do that in chapter 5), so
rather than use the default application pool, let’s experiment with one of our own
using both the GUI and PowerShell. You create a new application pool in IIS manager
by selecting Add Application Pool from the actions pane. A menu pops up prompt-
ing for a new name for the application pool, plus some additional settings, as shown
in figure 4.2.

Figure 4.1 Locating application pools and the configuration settings

59Creating and configuring standard application pool settings
Let’s look at each of these details, starting with the name.

NAME

The application pool name can be any unique alphanumeric name of your choice.
The best practice is to name your application pool the same as the website or applica-
tion that will run inside the pool, adding the suffix pool. That makes it easy to keep
track of which pool goes with which website or application.

 As an example, in chapter 5 you’ll be creating several new websites and applica-
tions. One of the websites might be named WebBikezBags. A great name for the appli-
cation pool would be WebBikezBagsPool. I prefer not to add spaces, dashes, or
underscores to an application pool name. Although it may be easier to read visually,
it’s harder to deal with when using PowerShell or other command-line utilities.

 In figure 4.2 I named the pool MyAppPool because I’m not using it for an applica-
tion yet. You can always rename an application pool later.

.NET FRAMEWORK VERSION

Many of the applications and websites that you’ll host on IIS require a special library
called the .NET Framework. Developers use this library to provide functionality for
their applications. The application pool will load the library so that the applications
will work properly.

 You’ll need to select the correct version of the .NET Framework for your applica-
tion. How do you know what is the correct version? You need to check the application
installation documentation to know for sure. For the bike shop, the developers are

Figure 4.2 Basic application pool settings

Above and beyond
An application pool can only support one version of the .NET Framework. All applica-
tions that run inside the pool must support the same version. If you need to have two
applications that need two different framework versions, create a new web applica-
tion and application pool for each.

60 CHAPTER 4 Managing application pools
developing the sites using .NET 4.0. Not all applications require the .NET Frame-
work—in fact you may have several that don’t. You’ll explore those types of applica-
tions in later chapters.

 Here are the options you’ll see when you click the .NET Framework dropdown:

 No Managed Code—Select this if your application or website doesn’t require
.NET Framework support.

 V2.0—Use this version of the framework to support applications written with
.NET Framework versions 2.0, 3.0, or 3.5.

 V4.0—Use this version of the framework to support applications written with
.NET Framework 4.0. Note also that you may not initially see this option; if that
happens, it’s because the .NET Framework 4.0 has not yet been installed on
your web server (this is common with IIS 7). After you download and install the
latest framework version from Microsoft (our short URL is http://mng.bz/
HnLw), the selection will appear.

MANAGED PIPELINE MODE

Starting with IIS 7 and IIS 8, a new method of handling requests, known as the Man-
aged Pipeline, was developed to make ASP.NET applications faster than in IIS 6. The
Integrated mode is the best selection almost every time. The only time you should
change it to Classic mode is if you have an older IIS 6 application that won’t use the
new mode.

CREATING AN APPLICATION POOL USING POWERSHELL

To create a new pool for the bike shop, use the New-WebAppPool cmdlet to create an
application pool with PowerShell and the WebAdministration module:

PS> New-WebAppPool –Name BikeTestPool

Then view the properties using Get-Item:

PS> Get-Item –Path IIS:\appPools\BikeTestPool | Format-List –Property *

The New-WebAppPool cmdlet doesn’t provide parameters to adjust the .NET Frame-
work version or pipeline mode. You can use the Set-ItemProperty cmdlet to change
the properties after the application pool is created. The names, shown in figure 4.3,
are a little different than in the IIS manager.

 Viewing is easy, but changing the properties of the .NET Framework version or the
Managed Pipeline is a little strange using PowerShell. There’s no cmdlet (such as Set-
WebAppPool) to change the properties. Instead—and this is common with IIS—you
access the properties through the WebAdministration provider IIS: drive and use Set-
ItemProperty. For the bike shop the application pools need to use .NET Framework
version 4.0. To change the value, do this:

PS> Set-ItemProperty –Path IIS:\appPools\TestBikePool –Name

➥ManagedRuntimeVersion –Value v4.0

http://mng.bz/HnLw
http://mng.bz/HnLw

61Creating and configuring standard application pool settings
TRY IT NOW If you’ve been following along, you may be so excited that you’ve
already created a new pool using PowerShell. If not, create your own applica-
tion pool named WebBikezBagPool using the GUI or PowerShell. It should
support the .NET Framework v4.0. Remember, if you don’t see the selection
for v4.0 you’ll need to download it from Microsoft.

You can remove an application pool using the IIS manager or the Remove-WebAppPool
cmdlet.

 Now that we have a new application pool, let’s move the default website into the
new custom pool so we can work on some advanced pool settings.

4.1.3 Moving a website or application into an application pool

There will be times when you want to create a custom application pool (as we just did)
and then test a website or application in that pool. Many commercial web applications
get updated to the latest .NET Framework version. Even in-house built apps get
updates, like our bike shop. You’ll want to create a new pool with a new configuration
and test those updated applications. Being able to move the website into the pool and
then back to its original pool if something goes wrong is an important part of the test-
ing process.

MOVING A WEBSITE USING THE GUI

The website or application Basic Settings link in the actions pane handles the applica-
tion pool selection. To move a website to a different pool, select it from the dropdown
list, as shown in figure 4.4.

MOVING A WEBSITE USING POWERSHELL

Here’s what you do to move the bike shop default website to a new application pool
using PowerShell and the WebAdministration module:

PS> Set-ItemProperty –Path “IIS:\Sites\Default Web Site” –Name

➥ApplicationPool –Value BikeTestPool

Figure 4.3 Viewing the application pool settings in PowerShell

62 CHAPTER 4 Managing application pools
TRY IT NOW Move the default website from its original pool to the new pool
you created earlier using either the IIS manager or PowerShell.

With a website in our newly created application pool, let’s take a look at how an appli-
cation pool keeps your websites clean and working smoothly.

4.2 Application pool recycling:
increasing reliability and availability
Even the best websites and applications can have small problems that cause them to
become memory bloated or performance lethargic or even crash. One of the benefits
of application pools is that they isolate applications so that they can only hurt them-
selves and no other applications. In our bike shop example, if the WebBikezBags site
should fail, it won’t crash the WebBikez site because it’s running in a separate pool.

 Application pools also have the benefit of being able to reset themselves, cleaning
up the fragmented memory and stalled processes of a misbehaving application and
then restarting the application in a clean environment. This process is known as recy-
cling. Application pools have default configuration settings on when to recycle. But
many times you’ll need to recycle a website or application immediately (on-demand)
or change the configuration settings to something that suits the application better.

 Recycling can occur for three primary reasons:

 On-demand—You determine there’s a problem and decide to manually recycle.
 Configuration changes—Changes to the IIS configuration can cause recycle

events.

Figure 4.4 Moving a website to a different application pool

63Application pool recycling: increasing reliability and availability
 Unhealthy website or application—IIS monitors applications, and if one begins
leaking memory or causes a problem, it can be automatically recycled.

This section focuses on recycling an application pool and changing the recycle set-
tings. Let’s start by examining what’s happening when an application pool recycles.
Then you’ll get a chance to try it for yourself.

4.2.1 Recycling an application pool

Every application pool you create has its own worker
process. Think of a worker process as similar to a waiter
in a restaurant. The waiter takes your order, goes
back to the kitchen to place the order, and then
brings the food to you. Similarly, the worker process
in an application pool handles your request for a
website (“Get me the web application”), passes the
request information to the application for process-
ing, and then gathers the response from the applica-
tion and returns it to you in the form of a web page.

 When a recycling event occurs, the worker process
is restarted, memory gets cleaned up, and the web
application is refreshed. This process helps keep problematic applications—those that
corrupt memory and hang processes—running smoothly (see figure 4.5). The web
administrator can force a recycle event, or the recycle can occur on a timed basis.

Figure 4.5 The recycling process

Above and beyond
You can see a worker
process in action using
the process view in Task
Manager. Look for a pro-
cess named w3wp.exe.
This is the worker pro-
cess for your application
pool. Each application
pool gets its own worker
process.

64 CHAPTER 4 Managing application pools
 Recycling (also known as process recycling) can cause the website or application to
appear to be offline until a new process is started. To compensate for this, during a
recycle, before the old w3wp.exe process is stopped, a new one is created to handle
incoming requests. This overlap of processing helps to ensure that the website
appears normal during the recycle.

 Overlapping recycles seem to be the perfect solution to cleaning up a bad web
application, but sometimes they aren’t. Some of your applications hold information
about the user (such as shopping cart contents), and a recycle will lose the session
state containing this information (the shopping cart suddenly clears its items). Well-
developed applications tend to store session-related information so that this isn’t an
issue, but some applications aren’t written to handle the recycle. Each application you
host will need to be tested to see how it handles a recycle. I’ll show you the default
recycle settings that I prefer for most applications.

RECYCLING AN APPLICATION POOL ON DEMAND USING THE GUI
Suppose you’re sitting at your desk when the phone rings. It’s one of the bike shop
managers complaining that the website isn’t letting customers buy products. After
checking the worker process, you determine the website has hung. Rather than reboot
the server, you decide to try to recycle the website application pool. This is recycling
on-demand.

 You can recycle an application pool and its worker process by selecting the applica-
tion pool from IIS manager and clicking Recycle in the actions pane. Figure 4.6 shows
a view of the w3wp.exe process in Task Manager. For a brief moment, there will be two
w3wp.exe processes listed for the application pool. This is the overlap occurring in
real time to handle requests while the old process is stopped.

 If you fail to see any worker processes (w3wp.exe) it’s because the website has
cooled down—not been accessed—for some time. Worker processes, like waiters, only
need to process orders when there are customers. If a website or application has no
activity (requests) for 20 minutes, the worker process stops. A new worker process
starts as soon as a new request comes to the website or application.

RECYCLING THE APPLICATION POOL ON DEMAND USING POWERSHELL

In PowerShell you can view w3wp.exe processes for the bike shop and restart the
application pool with certain commands.

 Here’s how to view a list of w3wp.exe processes running on your web server:

PS> Get-WmiObject –Class Win32_Process –Filter “name=’w3wp.exe’”

You may be familiar with using Get-Process to retrieve process information. The pre-
ceding code snippet could be achieved with Get-Process –Name w3wp. The reason I’m
not using that and instead using the WMI class is because I want more information
about the process than Get-Process provides. The next example is one of many cases
where the WMI class is more useful although a little more complicated.

65Application pool recycling: increasing reliability and availability
Here’s how you view a list of w3wp.exe processes and the application pools they’re
assigned to:

PS> Get-WmiObject win32_process -filter “name=’w3wp.exe’” | Select-Object

➥Name, ProcessId, @{n='AppPool';e={$_.GetOwner().user}}

To restart an application pool, do this:

PS> Restart-WebAppPool –Name BikeTestPool

TRY IT NOW Let’s recycle the application pool running the default website.
Start a w3wp.exe process by launching your browser and opening the default
page (this could be your custom page from chapter 3). Open Task Manager
or use PowerShell to view the w3wp.exe process. Try to notice the second
w3wp.exe process start when you recycle the pool.

4.2.2 Modifying the default recycle settings

Remember the bike shop website that hung in the last section? Let’s say it happens
when you’re not around—perhaps you’re on vacation. Or suppose you know from
your past experience with the application that it will hang after every five days if not
recycled. Wouldn’t it be nice to configure an automatic recycle to occur in four days—
before the crash? Default settings control the automatic recycling of application pools
to keep your applications running smoothly. In situations where an application
becomes slow or stops responding to requests, see if a recycle solves the problem. If it

Figure 4.6 The overlap recycling of a worker process

66 CHAPTER 4 Managing application pools
does you can modify the automatic recycle settings to handle the cleanup process for
you. I’ll show you how to do that now.

CHANGING THE RECYCLE SETTINGS IN THE GUI
You can access the recycle settings using the IIS manager after selecting an application
pool. In the actions pane click Recycling. Two screens will appear one after the other.
The first contains options for configuring the automatic recycling of the application
pool, as shown in figure 4.7.

 These default settings are generally best left alone unless you understand how a
specific application can benefit from making changes. Let me give you an example: I
don’t want the bike shop’s application pool to recycle during the normal business day
because it might cause an issue with customers connecting. I set a specific recycle time
of 9:00 p.m. rather than the default of every 1,740 minutes (29 hours).

 Another example is if the finished, developed web applications turn out to be well
behaved and don’t need to be recycled often, I set the interval to a few weeks rather
than every day.

 Doesn’t sound like I’m being helpful, but each misbehaving application may need
a different setting to keep it running smoothly. Keep in mind that most applications
will be fine with the default, but you’ll have a few that you’ll need to customize.

 The second window that appears after clicking the Next button in the Edit Appli-
cation Pool Recycling Settings dialog box is the logging options, shown in figure 4.8.
What do you want to log about your recycles?

 I don’t normally log on-demand recycles because I’m the guy that does them. But
if you’re in a shop with several other web administrators, you should log this to keep

Figure 4.7 Setting the conditions when an application pool recycles

67Application pool recycling: increasing reliability and availability
track of how often others are recycling a pool. If it’s happening frequently that’s an
indication that you should optimize your recycle settings and see if there’s a fix for
your application.

 Configuration changes that you make to the website or its applications using the
GUI manager or PowerShell will also cause recycling. I like to log these so I know
whether changes are being made. Keep this in mind and it’s worth repeating: if you
make configuration changes to a website or application, it will recycle the application
pool. For some applications recycling may make them appear to go offline for a brief
moment, and that will affect your customers.

 Many developers write their applications using Internet Server Application Pro-
gramming Interface (ISAPI) so that IIS can monitor the health of the application. The
application can look at itself, determine it isn’t working well, and request a recycle
event. I like to monitor for the event, so I enable the unhealthy ISAPI logging.

Figure 4.8 Setting the logging options for application pool recycling

Jason’s recycle defaults for most applications
I have a set of preferred recycle settings that I use for applications pools. I generally
start with these settings and then adjust them if necessary:

1 Turn off or set Regular Time intervals to 0.
2 Turn off or set Fixed Number of Requests to 0.
3 Set the recycle at a specific time parameter to late at night or during the time

of least use (such as 3:00 a.m.).
4 Enable all logging events (okay, not the on-demand if I’m the only web guy).

68 CHAPTER 4 Managing application pools
For a single application pool, setting the recycle settings using the IIS manager is
quick and easy, but later—when you have several pools—PowerShell is the way to go.
Take a look at the PowerShell commands for recycling before you try the lab at the
end of this chapter.

SETTING RECYCLING USING POWERSHELL: YOU’RE GOING TO WANT TO USE THIS METHOD!
Most admins stick to the GUI when setting recycle options. The reason they avoid
PowerShell is because they don’t see any easy-to-use cmdlets like Set-Recycle. How-
ever, there’s a way to configure the recycle settings with PowerShell. Let me tell you a
secret: when you have 30 application pools on 15 web servers that all need new recycle
settings, the last thing you want to use is the GUI. You’re going to want to automate
those changes with a script. Later in this book I show you how to make the script for
the ever-growing bike shop. For now you should know how to make a single change
using PowerShell.

 This may be different from what you would expect, but most of a web server’s con-
figuration can be done through the IIS: PowerShell drive mentioned in chapter 3.
Here are two examples to view and change the recycle properties.

 To view and change the default interval time, do this:

PS> Get-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.periodicRestart.time

PS> Set-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.periodicRestart.time -Value 3.00:00:00

And here’s how to view and change a scheduled time:

PS> Get-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.PeriodicRestart.schedule.collection

PS> Clear-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.PeriodicRestart.schedule.collection

PS C:\> Set-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.PeriodicRestart.schedule.collection -Value @{value='06:00:00'}

TRY IT NOW Take one of your existing application pools (or create a new
one) and change the recycle and logging settings. Set the recycle interval to
24 hours instead of 29 and turn on the logging for on-demand events and
unhealthy ISAPI.

VIEWING THE RECYCLING LOGS

You can use the Event Viewer to look for recycle events in the System log, but Power-
Shell is faster.

 Here’s how to check for recycle events using PowerShell:

PS> Get-Eventlog –LogName System –Source WAS

Perfect! Now you can monitor for recycling events. If an application begins recycling
more frequently than normal, you’ll know something is wrong with the application.

69Lab
Try to configure recycle intervals to minimize outages to your customers but still clean
the pools so the applications run smoothly.

 There are more recycling options that you can set using the Advanced Settings in
the IIS manager, and you’ll get to those in later chapters as we run into them. For now
let’s try a lab before we break from our lunch.

4.3 Lab
I want you to prepare several application pools for the beta applications that come
from the development team working on the bike shop. Normally the applications
would run in the same application pool as the website, but initially, for testing, sepa-
rating them is good practice.

 In this lab you’ll create new application pools for the applications, move the appli-
cations into those pools, and configure the recycle settings. After testing and recycling
the pools, I want you to check the logs for the recycle messages.

TRY IT NOW

If you didn’t get a chance to perform the Try It Now sections, I’ve repeated them here
for your convenience. Once complete, you can start the lab with task 1.

1 Navigate to the default application pool and examine the basic settings by view-
ing them in the center pane or selecting Basic Settings from the actions pane.
While you’re at it, open up a PowerShell console, import the WebAdministra-
tion module, and locate the default application pool using the filesystem.

2 Create your own application pool named WebBikezBagPool using the GUI or
PowerShell. It should support the .NET v4.0 Framework. Remember, if you
don’t see the selection for v4.0, you’ll need to download it from Microsoft and
install it.

3 Move the default website from its original pool to the new pool WebBikezBag-
Pool. Again, you can use either the IIS manager or PowerShell.

4 Time to test the recycling of the new pool. Start a w3wp.exe process by launch-
ing a browser and opening the default page. Open Task Manager or use Power-
Shell to view the w3wp.exe process. Recycle the pool and try to notice the
second w3wp.exe process start when the pool is recycled.

5 Change the recycle settings and log of the WebBikezBagPool. Set the recycle
interval to 24 hours instead of 29 and turn on the logging for on-demand events
and unhealthy ISAPI.

TASK 1
Create two new application pools for the web applications you created in the last
lunch. Name the first pool WebBikezShoppingPool and the second WebBikezCart-
Pool. Each pool should support the .NET 4.0 Framework and an integrated Managed
Pipeline.

70 CHAPTER 4 Managing application pools
TASK 2
Set the recycle settings for the default app pool to an automatic recycle every 48
hours. Because the applications are in beta and may quickly memory leak the environ-
ment during testing, set the automatic recycle settings for the WebBikezCartPool and
WebBikezShoppingPool to 4 hours.

TASK 3
Turn on the logging for all the application pools. Make sure to log on-demand as well
as configuration changes and unhealthy ISAPI.

TASK 4
While the applications are in beta, it’s best to protect the environment by moving
them into their own application pools. Move the Shopping application into the Web-
BikezShoppingPool and the Cart application into the WebBikezCartPool.

TASK 5
Time to test the application pools and the recycle logging. Verify using Task Manager
or PowerShell that there are worker processes for each application pool. (Remember,
they’ll stop after 20 minutes of inactivity.) If you need to start a worker process, open
your browser and access the site.

 Perform an on-demand recycle of each application pool. After the recycle events
have occurred, use PowerShell (or Event Viewer) to view the recycle events in the logs.

4.4 Ideas to try on your own
If you have an existing web server environment in production, carefully examine the
website application pools and recycle settings. Examine the logs to see if recycling has
been occurring on the configured schedule, or if an application has been recycling
more often. That could indicate an issue.

Adding more websites
to your server
From time to time every IIS admin will need to create additional websites for new
applications that the business needs to run, including applications for new product
launches and internal help desk ticketing applications. You’ll create and configure
websites to support many internal products like Microsoft System Center and
SharePoint.

 You may be wondering, “Why do I need additional websites? Can’t I create more
web applications in the default site? What’s the big deal?” Back in chapter 3 you
learned that it’s best to put new applications in their own application pools for iso-
lation purposes: if something bad happens to one application, other applications
won’t be affected. You get those new application pools by creating new websites.

 But there’s another, even more important, reason for creating new websites: it’s
all about the name, the URL. Often you want a unique URL—hopefully a simple
one, easy for people to remember—that clients will use to access a specific web
application. Here’s an example: let’s say you have a website dedicated to customers
wanting information about cool bicycles. The current URL for these customers is
www.WebBikez.com. Now consider that the business has added a new repair line
called WebBikezRepair, as shown in figure 5.1. Instead of directing customers who
need repairs to the original link, you can direct them to www.WebBikezRepair.com.
This is one of several reasons for a new, unique site.
71

72 CHAPTER 5 Adding more websites to your server
Another reason? You may want to have different customers with websites on the same
server, such as www.BikeCompetitor.com. You want the unique name and the website
isolation.

 Creating new sites is an important part of being the web administrator and sup-
porting the needs of the business. Also important is the way additional websites and
traffic can change the performance of your IIS server. By the time you’re done with
this chapter, not only will you be able to create new websites, you’ll be able to test their
performance. You’ll start off using the IIS manager to create new websites and bind-
ings. After you’ve had a chance to work with the concept, I show you how to do it with
PowerShell.

 At first you may think that adding a new website is straightforward. And it is, for the
most part—but only once you understand all the components. Many administrators

Figure 5.1 Hosting multiple
websites, each with a unique name

www.BikeCompetitor.com

73Phase 1: Adding a new website using the IIS manager
attempt to create a website without understanding all the parts, and that usually ends
in failure. Take a look at figure 5.2 to see why—several of the steps are rather complex.
One final note before we begin: I need you to bear with me through this lunch and
munch on your sandwich for the first two sections. Don’t jump into your VM yet—
until you finish learning the setup, you’ll wind up with errors. I’ll show you everything
you need to know to make additional websites. Then you can try it for yourself.

5.1 Phase 1: Adding a new website using the IIS manager
You can create a new website using the IIS manager or PowerShell. PowerShell
requires that you have complete understanding of the process, so I focus on the IIS
manager in the next two sections so that you have all the information you need to cre-
ate new websites. Then you’ll be able to appreciate the ease with which you can
accomplish the process with PowerShell.

 When you’re adding a new site, you start with the main GUI view, as shown in fig-
ure 5.3. In the navigation pane under your web server, you’ll see the Sites container
used to organize all your websites. This is where you’ll create additional websites and
see them displayed.

 To get started on the first phase, either right-click Sites in the navigation pane or
click Add Web Site in the actions pane. A website form will launch that’s designed to
make creating a new website fast and simple if you know what to do. As mentioned
earlier, the form is also confusing until you understand all the little settings.

Figure 5.2 Creating a new website isn’t as simple as it first seems. You’ll need several pieces of
information, and there are hidden traps to avoid.

74 CHAPTER 5 Adding more websites to your server
With this form open, you’re ready to begin phase 1, which happens in three steps:

1 Enter a new site name.
2 Create a new application pool for the site.
3 Specify the physical location of the web pages.

Figure 5.4 illustrates the portion of the form we’re working on now. So get that lunch
sack open and let’s make some websites.

5.1.1 Step 1: Enter the site name

The first step in creating a website is to give it a friendly and descriptive name. Unlike
the applications you created in chapter 3, this name won’t be used in the URL to iden-
tify and locate the site. It’s a name for your own organizational purposes. The unique

Figure 5.3 Creating a new website using the IIS manager

Figure 5.4 Phase 1: Adding
a site name, application pool,
and physical path for your
new website

75Phase 1: Adding a new website using the IIS manager
URL customers will use to access the website will be designated by the binding and
DNS discussed later in this chapter.

 I know you want to try this out, but don’t open your VM yet. Let me explain what
will happen when you enter the name. The GUI will take over and you may not like
what it does.

 When you enter the name into the form, you’ll notice that a name for a new appli-
cation pool is also entered for you automatically. The GUI tool is trying to help you
perform both the first step and the second step all at once. I personally don’t care
much for this, as I explain in step 2 when you prepare to create the application pool.

 The website name is fairly simple to handle, but I still need to discuss the applica-
tion pool and physical path.

5.1.2 Step 2: Create the application pool

When creating a new website, you may be a bit puzzled because the application pool
field is greyed out by default. I get this question often: “Why is this field greyed out
and how do I fix it?” The field is greyed out because it autofills with whatever name
you typed for the website. When the form is complete, a new pool is created automati-
cally for your website. This is a feature that helps you keep track of your websites and
application pools by naming them all the same.

 Remember back in chapter 4, when you created a new application pool for the
bike shop and moved a website into it? You can do the same thing here. I prefer to cre-
ate the application pool first and add the suffix pool to the pool name. Then later,
when you’re working with the site, you can use the Select button to choose the appli-
cation pool that has the name you want instead of the one with the automatically gen-
erated name. This is how you’ll add application pools in the lab for the bike shop’s
websites. For now, you can leave that default-created application pool and move on.

 Next up, let’s talk about how you set the physical path of the website and where it
can be located.

5.1.3 Step 3: Set the physical path

The physical path of the site is where your application files are stored. Remember
back to chapter 3 when you created a new web page for the default site? The path for
the default site was C:\inetpub\wwwroot. When you make a new website, you can
choose an existing path or create a new one to locate those web files.

Above and Beyond
Remember that the site name is for organizational purposes. It has no bearing on the
URL that customers will use to connect to the website. I prefer to use a site name
that describes the contents of the website. If the website contains bicycle parts, then
I might name the site BicycleParts. I prefer not to use spaces, dashes, or under-
scores because those make it harder to use command-line tools later.

76 CHAPTER 5 Adding more websites to your server
Many administrators, me included, prefer to create a new folder structure for the web
pages of new websites. I like to make a folder under C:\sites with the same name as the
website—it’s easier for me to keep track of the folder that way.

 You may have noticed the sub-setting called Pass-through authentication, which is
used to test communication to a path not located on the local server but on a remote
server (see figure 5.5).

 Having a website on a network share makes it easier to deploy it across multiple
web servers in a load balance and faster to update with changes. We’ll explore this
option later in the book, when you have multiple web servers.

Up to this point everything seems fairly simple, but we aren’t done yet. Now it’s time
to give your website a unique name the rest of the world can use for a URL. Time to
dig into bindings and uniquely identify your sites to the outside world.

5.2 Phase 2: Uniquely identifying
your websites with bindings
What if everyone in the world had the first name of John? A conversation might go
like this: “John told me that John and John were going to the concert, but John didn’t
want to see John playing guitar, he wanted to see John.” This doesn’t make any sense.
People have different names: John, Mary, Frank, Bob. But even that may not be good
enough if too many people are named Frank. So we also have last names, and even
middle names. This makes for a conversation that goes something like this: “Bob told
me that Mary and Frank were going to the concert, but Bob didn’t want to see Frank
Alves playing the guitar, he wanted to see Frank Moore.”

 In the same way websites must also have different—unique—names so that servers
know where to send requests. If they each had the same name, you wouldn’t know

Figure 5.5 Pass-through authentication settings for network shares

Above and beyond
A website’s physical path to the web pages doesn’t have to be located on the local
server. In fact, later in this book I show you how to store and access your web pages
from a network share. When you have multiple web servers running the same website
to provide redundancy, it helps to have the web pages located in a single location for
faster updates and changes to the web pages.

77Phase 2: Uniquely identifying your websites with bindings
which website you were going to get. To avoid that confusion you create a unique
name, or binding, for each website so that the URLs are different.

 A protocol binding is a set of communication rules that define a path between two
computers so they can communicate. A simple example is the internet. Everyone in
the world has agreed to use the protocol TCP/IP version 4 (that’s the binding rule).
Because everyone is using that rule, we can all communicate. If someone were to
break that rule and use a different protocol, like Novel NetWare’s IPX/SPX, they
wouldn’t be able to talk to anyone else. As amazing as it sounds, binding is one of the
most important concepts of a web server, any web server, and because it’s confusing
it’s one of the most misunderstood and misconfigured website settings, causing web
admins everywhere needless heartburn.

 How do you set a unique binding? Like humans, who use a first name, middle
name, and last name to differentiate ourselves in the world, a binding uses four parts
that, combined, uniquely identify a site:

 Type
 IP address
 Port
 Host name

Figure 5.6 illustrates the format (syntax) of the four parts. Each website on a single
web server must have something in the binding that makes the website unique.

Figure 5.6 Giving a website a unique name using the four parts of a binding

78 CHAPTER 5 Adding more websites to your server
You configure the bindings in the IIS manager (or PowerShell). Figure 5.7 shows you
where you set the bindings on the bottom half of the Add Web Site form.

 Each website you create must have something different in its name from every
other website you host on a server—in at least one of those four parts. Bob Smith and
Bob Jones have the same first name, but unique last names. Same thing goes with web-
sites: as long as one binding part is unique, your website will be unique.

 In the next four sections, I walk you through setting the type, IP address, port, and
host name for the bike website. This information will also work for every website you
create in the future. I show you how to do it through the GUI first; you’ll learn how to
do it using PowerShell in the last section of this chapter.

5.2.1 Defining a unique name by type

The first part of every website’s name begins with the type, or protocol, that browsers use
to access it (figure 5.8). The type is most commonly HTTP or HTTPS, but you’ll see
others in IIS, such as FTP and WCF.

Figure 5.7 Each website must have something unique in one of these four parts to set the binding.

Figure 5.8 The type specifies the protocol to use for client connections.

79Phase 2: Uniquely identifying your websites with bindings
Because several of your websites will contain the same type or protocol, type usually
isn’t enough to make a unique name. Let’s look at IP address and see if it helps.

5.2.2 Defining a unique name by IP address

A common method of creating a unique name for your website is to assign it a unique
IP address. In DNS, you can then create a host (A) record (such as www) that points to
that unique IP address. This is the second best method to create a unique binding for
multiple websites on the same server. The other best method is the host name, dis-
cussed shortly.

 Most administrators ignore the IP address option because they think they have
only one IP address for the entire web server. You can create virtual IP addresses in the
advanced network properties of your network adapter, adding as many unique IP
addresses as you like. When you create a binding using that unique address for a web-
site, anyone that makes a request of your server on that IP address is directed to the
correct site (see figure 5.9).

 The virtualized IP method of making a binding unique is one of the most common,
along with host names, which we’ll get to. But first there’s another, not-so-common
option you should be aware of: ports.

Figure 5.9 Defining a unique IP address for your website

80 CHAPTER 5 Adding more websites to your server
5.2.3 Defining a unique name by port

The practice of using port numbers to uniquely identify a binding for a website is an
old one riddled with many problems. In fact, virtualized IP addresses and host names
were created to replace the old port method. Why do we still have it? There may be a
rare time when you want to use it for something; it’s still common for developers to
use ports for internal website redirection—such as the shopping cart application
switching to the credit card authorization application. Another reason we still have
port numbers as part of the binding is because no one wants to get rid of them.

 You can see the Port option on the Add Website form in figure 5.10. I’ll only talk
about ports briefly because it’s not a good idea to use them for unique identification.
There are two problems with using port numbers. I’ll explain them, and then you can
play with the port yourself.

 The URL will be weird—Your website is listening on a unique port, so a customer
must use that port number in the URL to access your site. They must tack on a
colon followed by the port number, leading to a URL like this: http://
mySite:85. And this scheme assumes the customer knows to do that.

 Every time you use a unique port number, a firewall somewhere will need to be configured
for that port—Read that again. Security folks don’t like to open ports; sometimes
the only way to get them to do it is to buy them dinner. There’s a good reason
for that; it gets harder every day to protect against hackers. The normal ports to
have open are port 80 for HTTP and port 443 for HTTPS. We don’t want to open
more ports than we need to.

TRY IT NOW As an interesting test of ports, create a new site with the name
TestSite and a physical path of C:\Sites\TestSite. Change the port to 85. Copy
the test page you made in chapter 3 into the website’s physical path
(C:\Sites\TestSite) and access the site using the proper URL, which will be
something like http://<Server>:85. See? Not a pretty URL, and certainly not
one most customers will remember.

Now you can see why to avoid changing the port whenever possible. I don’t want you
to think that there’s never a time to use the port number, but it’s rare and generally

Figure 5.10 Assigning a port
number for your binding

81Phase 2: Uniquely identifying your websites with bindings
only for internal sites that don’t have firewalls in between them. Let’s try to avoid this
option altogether.

5.2.4 Defining a unique name by host name

Host name (also known as host header) is probably the hardest of the binding settings to
understand. Host names were all the rage a long time ago, before virtualized IP
addresses were big. Take a look at figure 5.11, pretending that you only have one IP
address and need to have several websites.

 In figure 5.11 the web server has a single IP address. To uniquely identify a binding
for two or more websites using the host name, one website may contain www.Web-
Bikez.com in the host name, and the other www.WebBikezRepair.com. In DNS both

Figure 5.11 Using a single IP address with
different host names: how IIS determines which
website a client request should be sent to when
using a single IP Address.

82 CHAPTER 5 Adding more websites to your server
(A) records point to the same IP address of the single web server. When the web server
receives a request, it looks at the requested URL and attempts to match it to the list of
host names. If a customer typed http://www.WebBikezRepair.com, the web server matches
it to the host name you created and sends the request to the correct website.
Figure 5.12 shows how this process plays out.

 Using host name and DNS, you can create bindings for websites that use entirely
different internet domain names, such as www.widget.com and www.MyCompany.com,
but point to the same website! As long as they’re registered and you have access to
DNS for the domains, you can host websites for anyone. You’ve started your own host-
ing company on a single web server!

 I know at first this may seem like an overwhelming amount of information merely
to make a new website. The important point is that each website needs to be uniquely
identified. The site name that you type into the top of the Add Website form is for
organizational purposes—it’s the bindings that truly identify the website. Something
in the binding must be unique. Figure 5.13 provides examples of valid bindings for
several websites on the same IIS server.

 Bindings can be confusing at first, so you’ll want to practice creating them in the
lab for the WebBikez website. WebBikez will need new websites, and you’ll get a
chance to try three of the four parts to create a unique binding for each website.
You’ll change the protocol part of the binding in a later chapter when you apply certif-
icate security.

Figure 5.12 Configuring a
host name binding

83An alternate way: adding a new website using PowerShell
5.2.5 What happens if you create a website with a non-unique binding?

This may seem a little strange, but I want you to break something for me so you can
see what happens when you add a new website incorrectly. The good news is that IIS is
so smart that if you even try to create a website with a non-unique binding, you receive
an error message, such as the one in figure 5.14, and the new site won’t start.

 Before we go any further, I want you to try this and see the error.

TRY IT NOW Create a new site with the name NoGood and a physical path of
C:\Sites\NoGood. Don’t change any of the binding information. When you
click OK, you’ll receive an error similar to figure 5.14.

The error message in figure 5.14 is IIS trying to tell you that you’ve made a mistake.
Don’t confirm the creation of the site: just say no! If you jumped ahead and did con-
firm the creation of the site, no big deal. Delete the site from the IIS manager.

 Once you know all the moving parts to making additional websites on a single
server, creating them in PowerShell becomes quick and easy.

5.3 An alternate way: adding a new website using PowerShell
The GUI is a practical, useful, and protective tool for creating websites. The GUI won’t
let you make too many mistakes; it protects you from forgetting things. PowerShell, on
the other hand, doesn’t. PowerShell sometimes requires a little more work, but it’s
much faster and will be a lifesaver in later chapters when you’ll have multiple servers
to work with.

 The pieces of the process for creating a new website are similar to those you follow
when using the GUI:

1 Create a directory to hold the website files.
2 Create the application pool for the website.
3 Create the new website, during which you include the unique binding physical

path to the files and the application pool name.

Figure 5.13 Examples
of unique bindings

Figure 5.14 Warning
message received when
bindings aren’t unique

84 CHAPTER 5 Adding more websites to your server
Figure 5.15 shows an example of the entire process in PowerShell.
 In this section I dive into the code for each of those three steps, breaking the indi-

vidual lines apart, so you can understand what’s happening.

5.3.1 Step 1: Create the directory for the website files using New-Item

The first task is to make the directory that will contain the website files. The cmdlet
New-Item lets you create files and directories, but you can also use the aliases md or
mkdir. (Believe it or not, I prefer New-Item; it looks longer to type, but if you use tab-
completion, it goes pretty fast.)

PS> New-Item –ItemType Directory –Path c:\PoshTestSite

Remember that this directory is empty, so before you test the completed website,
you’ll want to place a web page similar to the ones you created in chapter 3 into the
directory.

5.3.2 Step 2: Make an application pool for the website
using New-WebAppPool

Unlike the GUI, with PowerShell you need to make your application pool yourself. Do
you remember how I did this in chapter 4? You use the New-WebAppPool cmdlet.

PS> New-WebAppPool –Name PoshTestSitePool

5.3.3 Step 3: Make the new website using New-Website

Last step, time to make the website. Here are three important parameters to remem-
ber when using New-WebSite:

 The website’s file location
 The unique binding such as IP address, port, or host name (note: if a parameter

isn’t specified, the default will be used)
 The application pool for the website

PS> New-Website –Name PoshTestSite –Hostheader Posh.Widget.Com ‘

➥–PhysicalPath c:\PoshTestSite –ApplicationPool PoshTestSitePool

Figure 5.15 Creating a new website using PowerShell

85Lab
TRY IT NOW You’ve held off for a long time in this chapter; I can’t let you go
any further without trying to make a website of your own. I have one simple
rule for this exercise: don’t modify, stop, or delete the default website. I want
the default to work by typing http://<servername>. Make a test website called
TestTwo using PowerShell. Put a test web page in the new site so you can
make sure it works. (Hint: You need to have an idea how you’ll make the
binding unique. You can use a port, an IP address, or a host name.)

5.4 Lab
The developers working with WebBikez on the new site have requested that you create
a new website structure. They would like the default website left intact. But they need
additional website containers for the new applications. In the process of creating the
new sites, they’ve determined the URLs they want for each. You’ll create the sites, the
application pools, and the bindings for each of their requirements.

 You’ll also create new zones in DNS and test the bindings you configured for each
site. Two of the websites will use host naming, and the last one will use a virtualized IP
address.

TRY IT NOW

If you didn’t get a chance to perform the Try It Now sections, I have repeated them
here for your convenience. Once complete, you can start the lab with task 1.

 As an interesting test of ports, create a new site with the name TestSite and a
physical path of C:\Sites\TestSite. Change the port to 85. Copy the test page you
made in chapter 3 into the website’s physical path (C:\Sites\TestSite) and access
the site using the proper URL, which will be something like http://<Server>:85.
See? Not a pretty URL, and certainly not one most customers will remember.

 Create a new site with the name NoGood and a physical path of
C:\Sites\NoGood. Don’t change any of the binding information. When you click
OK, you’ll receive an error similar to figure 5.14.

 Don’t modify, stop, or delete the default website. I want the default to work by
typing http://<servername>. Make a test website called TestTwo using Power-
Shell. Put a test web page in the new site so you can make sure it works. (Hint:
You need to have an idea how you’ll make the binding unique. You can use a
port, an IP address, or a host name.)

TASK 1
Using the DNS server on your domain controller, create three new forward lookup
zones for WebBikez Bikes:

 WebBikez.com
 WebBikezRepair.com
 WebBikezUsed.com

Hint: They should be primary zones—you can integrate them into Active Directory.
No need to have them support dynamic updates.

86 CHAPTER 5 Adding more websites to your server
TASK 2
Two websites will use host name headers for resolution. Using IPConfig.exe get the IP
address of your web server. Using this IP address create a www record in DNS for Web-
Bikez.com that points to the web server IP address. Using the same IP address, create a
www record for WebBikezRepair.com.

 Open your web browser and test each URL (such as www.WebBikez.com). Notice
that you’re redirected to the default website. That will be corrected in the next task
when you create the new websites with host names.

TASK 3
Using the IIS manager or PowerShell, create two new websites based on the following
information:

 Website name—WebBikez
 Application pool—WebBikezPool (.NET 4 and Integrated Pipeline)
 Physical location—C:\Sites\WebBikez
 Binding: host name—www.WebBikez.com

For the second site

 Website name—WebBikezRepair
 Application pool—WebBikezRepairPool (.NET 4 and Integrated Pipeline)
 Physical location—C:\Sites\WebBikezRepair
 Binding: host name—www.WebBikezRepair.com

TASK 4
Create a simple default.htm file for each website and copy it to the proper physical
location. Here’s what I did:

 Default.htm—<p> WebBikez Bicycle Shop </p>

 Default.htm—<p> WebBikez Repair Shop </p>

Now the fun part: testing! If you have everything configured correctly, you should be
able to open your browser and type the two new URLs, and IIS (using host names) will
redirect you to the correct website.

TASK 5
Create a third website, this time using a virtualized IP address. First, though, open
your network settings and add a new IP address to use for the website. Hint: Make sure
the IP address is on the same network as your original IP (for example, 192.168.0.25).

 After you create the new IP address, create a new website using the following infor-
mation:

 Website name—WebBikezUsed
 Application pool—WebBikezUsedPool (.NET 4 and Integrated Pipeline)
 Physical location—C:\Sites\WebBikezUsed
 IP address—The virtualized IP you created

87Ideas to try on your own
Add a new DNS zone named WebBikezUsed.com and create a new www record using
the new virtualized IP address.

 Once again add a default.htm to the new site (for example, <p> WebBikez Used
Bike Sale </p>) and test using your browser.

5.5 Ideas to try on your own
Creating websites and unique URLs can be confusing, and you should take some addi-
tional time to practice it in your virtualized environment. Create one or two new web-
sites of your own using a port, IP address, and host name. Make sure to test each
website you create with a custom web page.

 But don’t stop there! Create a couple of applications and virtual directories under
one of those websites and use your browser to access them. Notice how the URL is
affected by adding web applications and virtual directories. Making structure deci-
sions becomes easier when you understand how your decisions will affect the URL.

What every administrator
should know about

web applications
Up to this point you’ve configured and tested the primary components (contain-
ers) that make up a web server with sites and web applications for the WebBikez
bike shop. Now it’s time for the final steps, placing the web application into those
containers.

 In some instances it will be as simple as copying the web pages into the folders
for the website. In other situations you may be asked to make additional configura-
tion changes for the application or add supporting components. Each situation is
unique, but I’ve found that understanding the configuration options always helps
me understand the application developer or documentation instructions for the
application. In this chapter I show you the ropes for the most common configura-
tions to watch for and some fast ways to get a variety of applications supported on
IIS. Many admins aren’t involved in the application deployment part of the process,
in particular if they have an internal development team that performs this process.
If this is the case for you, then you can use the information in this chapter to give
your developers some help when things aren’t working so well.

 The most important (but not complicated) part of this chapter for every admin
is the one about the monitoring and logging of web applications. Soon your
88

89Configuring the basics for all applications
application will go “live” to the customer, and it’s important to record how your cus-
tomers are accessing the websites. This information will be used for security and per-
formance, which I address in chapter 9, but now’s a great time to start with a few
monitoring/logging tricks so you can help developers troubleshoot a misbehaving
web application.

 Hungry? Me too. Let’s start lunch by talking about how IIS and web application
configurations are stored and the best ways to make the most common changes that
affect all applications, like compression, Directory Browsing, and customizing error
pages. Then you’ll add new components and platforms to your website to support
ASP.NET and PHP. I walk you through the process using the web server for the bike
shop. The bike shop has two websites that you need to prepare for applications, so
let’s get started.

6.1 Configuring the basics for all applications
The smart folks at Microsoft have already set up IIS to efficiently host your websites
and web applications by preconfiguring the basics by default. Each application you
install may benefit from tweaking the basic configuration, either in performance or
functionality. I want you to see what Microsoft has done so you can customize or mod-
ify these basic options when needed.

 It’s also time to remove a layer of black box or abstraction from how IIS stores all these
configuration settings. IIS 7/8 use an amazingly simple method of storing your configu-
ration settings that will provide a unique (and necessary) feature, covered in chapter 17,
known as Shared Configurations, for web farms that provide failover protection.

 After locating those configuration files, you’ll start changing them using the IIS
manager and PowerShell to support specific website application requirements such
as compression, Default Document settings, Directory Browsing, and customizing
error pages.

6.1.1 Locating the IIS configuration files

I’ve been waiting to tell you something—biting my lip, in fact, for the last five chapters
to stop myself until it was the best time. Now’s the time. Everything, and yes I mean
everything, you’ve done in the last three chapters and that you’ll do in the rest of the
book, everything from creating websites to configuring bindings to the configurations
you’ll perform in this chapter—all that configuration information is stored in a few
text files.

 What? You may have thought that all that would be stored in a huge database, and
it kind of is, except the database is a handful of XML text files located on the Windows
filesystem. XML (eXtensible Markup Language) is a special kind of text file that has a
schema and hierarchy. IIS uses it to store everything but the web pages for an applica-
tion. Think of it as the Windows Registry but in a giant text file.

 The reason for storing this configuration info as text files is simple: it’s quick to parse
(read) an XML text file. Text files are easy to back up—you copy them—and easy to

90 CHAPTER 6 What every administrator should know about web applications
restore if something goes wrong, such as file corruption. Later you’ll see more benefits,
but for right now understand that every time you use the IIS manager or the PowerShell
WebAdministration module—every change or new addition you make—is stored in a
collection of text files. The location for these files is described in figure 6.1. Don’t try
to remember the location or filenames. You’ll use the IIS manager or PowerShell to
make changes to them. I only want you to see where they exist. In chapter 17 you’ll
examine the file locations again when you use Shared Configurations for web farms.

 As you make configuration changes like the ones in this chapter, those changes are
stored in these configuration files. Most of the settings that affect your web server,
websites, and web application containers are stored in ApplicationHost.config and
Machine.config. Specific settings for the developed and installed applications are con-
trolled through the Web.config files.

 Do you need to know exactly what’s stored where? No. That’s why you have the IIS
manager and PowerShell—to make these changes and store them in the correct
places. As an example, I have no idea where my bank account information is stored in
my bank’s database, but I trust the bank’s website to show me my account information,
not someone else’s.

 Now that you know where the configuration settings are stored, let’s take a look at
the basic configuration settings for IIS websites and web applications and see how to
correctly make changes to support your needs. Let’s get started with compression.

Figure 6.1 The configuration files that control IIS and your web applications

91Configuring the basics for all applications
6.1.2 Applying compression to make your web pages faster

At some point in your IT career you’ve compressed a hard disk volume or folder. Com-
pression removes the white space—and does other magical math—to decrease file
sizes and increase available disk space. To improve performance, IIS can do the same
thing to your web pages before transmitting them over the internet to the client’s
browser. When the browser receives the compressed web pages, it uncompresses
(rehydrates) them and displays them. From the client’s perspective this improves the
performance of your website. For the two bike shop websites, you’ll view the default
compression and make some adjustments.

IIS has two types of compression, called static and dynamic, that you can configure
for a website or application. You have to install dynamic compression before using it,
but static compression is enabled by default and will compress your static web pages
(ones that don’t change like .htm and .html pages), squeezing them to be smaller and
faster to transmit. The compressed versions of the files are stored in the default loca-
tion (figure 6.2).

 Dynamic compression is a little more complicated. Most web applications today
produce content on the fly. The content on the web page changes dynamically each
time the user clicks. Because the content is constantly changing, it can’t be com-
pressed once and stored for everyone to use. Instead it must be compressed as
needed. Dynamic compression is a great option to install and enable in most situa-
tions, but keep in mind that the compression algorithm must be run constantly, and
this causes an increase in processor utilization on the web server. Here’s a tip: If your
web server is already exceeding 80% processor utilization, enabling dynamic compres-
sion will create no visible gain for the client. For an example of calculating the effects
of dynamic compression, see http://mng.bz/U2cV.

Above and beyond
One question I get from admins is this: “Can I edit the configuration files directly with
something like Notepad.exe?” Before you run out to the filesystem and start opening
up these files (and I know you will), be careful. It’s true that many developers directly
modify these files—for example, Web.config and the primary ASP.NET configuration
files—but doing so can be dangerous. The XML text files have a specific structure
and syntax. If you open one and make a small mistake, a typo, or even change some
of the spacing, the file is no longer valid. That means you may have stopped the web
application or the IIS server from functioning properly. You should back up (copy)
these files before modifying them.

It’s true that web developers generally do know the inner workings of these files and
often make direct changes to them—in particular, the Web.config files that affect
their application. For the most part, you’ll always have a better tool—the IIS manager
or PowerShell—that will safely (no typos) let you make configuration changes.

http://mng.bz/U2cV

92 CHAPTER 6 What every administrator should know about web applications
My best recommendation is to use
dynamic compression unless you
know your web server is running
high processor utilization. When
you install dynamic compression,
it’s automatically enabled.

 You have the hang of using the
Server Manager GUI for installing
additional web server components.
From this point on I focus on
showing you how to install compo-
nents using the faster method,
PowerShell (make sure you import
the ServerManager module):

PS> Add-WindowsFeature –Name Web-Dyn-Compression

Figure 6.2 Compression settings increase the web page performance for the client.

Above and beyond
Without a product like Microsoft System Cen-
ter Operations Manager, which is dedicated
to monitoring multiple servers, monitoring
the processor utilization on your web servers
can be challenging at best. You can config-
ure dynamic compression to automatically
turn on and off at a certain processor utiliza-
tion, without the need to monitor. Using
PowerShell you can view and set the attri-
butes dynamicCompressionEnableCpuUsage
and dynamicCompressionDisableCpuUsage.

93Configuring the basics for all applications
TRY IT NOW The bike shop websites will support dynamic compression. I want
you to enable it for them. First install dynamic compression. Then open the
compression settings for the WebBikez and WebBikezRepair websites and
make sure that dynamic and static compression are enabled. Hurry back, we
have more to do.

6.1.3 Setting Default Documents to automatically load web pages

Each web application you place on a web server will have a web page that starts the
application. Default Documents let you specify which start page to load automatically
so that clients don’t have to include the name of the page in the URL. You first ran
into this configuration option in chapter 3 when you created the custom web pages
for testing.

 You should verify that the start page for your application is listed in the Default
Documents. In the bike shop applications that the developers are creating, the start
pages are named Launch.htm. You’ll add this start page in a moment, but keep in
mind most web applications use a start page that’s already defined in IIS, such as
Default.htm, shown in figure 6.3.

Figure 6.3 Default Documents
automatically launch the web
application’s start page.

94 CHAPTER 6 What every administrator should know about web applications
You can always add a new filename to the Default Documents if your web application
has a different start page. Sometimes you don’t know until you’ve copied the web page
in place or checked the documentation.

 The Default Documents list is also listed in the order (priority) the pages will be
loaded. I make sure that the start page is ordered at the top of the priority list. If some-
one accidently places a lower priority file into the folder, it will never get a chance to
load because mine is the number one priority.

TRY IT NOW For the bike shop’s two websites, set the Default Document to
Launch.htm as the top priority. (Hint: You can adjust the priority in the
actions pane.) Create two simple web pages as you did in previous chapters,
one called Launch.htm and one called Default.htm. Using your web browser,
access the website and notice that the higher-priority web page is the one
automatically loaded.

After you configure the Default Documents and their priorities, it’s a good time to
check a configuration option that permits users to download files from your website. I
consider this an important security configuration: let me show you why with Directory
Browsing.

6.1.4 Directory Browsing for file downloads

Directory Browsing determines whether a consumer using a browser can see the files
inside a website, application, or virtual directory. This feature is installed but not
enabled by default, and in most cases you won’t use this feature.

 Directory Browsing was originally created so that if you had a virtual directory of
files you wanted people to download, they could click a nicely presented file list and
download files, similar to using Windows Explorer. You don’t want people browsing
your web application files and possibly downloading them, so don’t enable Directory
Browsing unless you specifically want this capability on a virtual directory.

USING THE IIS MANAGER TO CHANGE DIRECTORY BROWSING

If you do find yourself in need of Directory Browsing, you can enable it per virtual direc-
tory and select the file information that you want to be displayed, as shown in figure 6.4.

USING POWERSHELL TO CHANGE THE DIRECTORY BROWSING FEATURE

Using the WebAdministration module in PowerShell, you can accomplish the same
goals of getting the current configuration and enabling or disabling Directory
Browsing.

Above and beyond
Removing unused web pages from the Default Documents list will slightly improve
performance and prevent errors in ordering the list correctly. This setting—like many
of the IIS settings—can be set at the server level to enforce a corporate standard
across multiple websites.

95Configuring the basics for all applications
The following example retrieves the current setting to determine if the feature is
enabled:

PS> Get-WebConfigurationProperty -Filter system.webserver/directorybrowse –

➥PSPath iis:\ -Name enabled

Here’s how to disable the feature:

PS> Set-WebConfigurationProperty -Filter system.webserver/directorybrowse -

➥PSPath iis:\ -Name enabled -Value false

Figure 6.4 You can control the file information displayed in a directory listing.

Above and beyond
The IIS team hasn’t had a chance to provide cmdlets for every possible configura-
tion setting. Instead, they provide a set of generic cmdlets, such as Get-
WebConfiguration and Set-WebConfiguration, that gives you access to the con-
figuration files without the need to learn XML. You’ll see me start to use these cmd-
lets in this chapter and future ones. A word of caution about the –Filter parameter
for these cmdlets: the path is the XML configuration file path, or XPath. The / (fore-
word slash) must not be confused with the \ (backslash). If you’re curious and want
more information about XPath, see http://mng.bz/OJKT.

The second method to access the configuration is to use the IIS: PowerShell drive
and cmdlets such as Get-Childitem, Get-Item, and Set-Item. I like to use the
PowerShell drive for many things, but for configuration changes I prefer the first
method.

While searching the internet or at www.iis.net, you’ll also notice a command called
AppCmd.exe. This has been a popular command, but it’s being replaced with Power-
Shell, the standard Microsoft management command-line tool. I’ve not used AppCmd.

http://mng.bz/OJKT

96 CHAPTER 6 What every administrator should know about web applications
You probably won’t use this feature often, but it’s always good to check to make sure
it’s not enabled for your web applications.

6.1.5 Customizing the error pages

Have you ever typed in a URL and misspelled something? You received an error (like
404) in your web browser letting you know that there was a problem. These error
pages are fairly generic and don’t offer any assistance to the end user other than to say
something broke.

IIS supports creating customized error pages for the most common errors that
might happen, such as a mistyped URL or broken link. I like to customize the error
pages with helpful information such as a support number the user can call or at least
a personalized, company-branded message that provides better information about
the error.

 Figure 6.5 shows where you can access the default error pages and change these
simple .htm files in the text editor of your choice. Before you do that, do the following:

 See if the application has its own custom error messages. Many developers cre-
ate custom error pages for their applications.

 If the application has custom error messages, open the error pages and redirect
the request to those custom error pages.

USING THE IIS MANAGER FOR ERROR PAGES

You can view the current error pages and customize them using the IIS manager, as
shown in figure 6.5.

VIEWING THE ERROR PAGES IN POWERSHELL

Can you view the error page configuration and locations in PowerShell? Of course:

PS> Get-WebConfiguration -Filter system.webserver/httperrors//. -PSPath iis:\

➥| Format-List *

If a web application doesn’t have its own custom error messages, I like to take the time
to make the default ones more personal. If you modify the default error messages
they’ll apply to all websites and applications for the web server, and normally this is
exactly what you want. If you have a situation where each website needs its own custom
error messages, you can create a folder with error pages for each site. Open and
change the error page configuration for each website to redirect to the correct folder
for that site.

 You’ve verified and modified the basic settings for the two bike shop websites. The
next step is to install your web application. In the next section you’ll see how to pre-
pare for some of the more common applications. I even show you how to easily get
everything you need for the rare and bizarre web applications.

97Supporting common web applications
6.2 Supporting common web applications
There are so many different types of web applications and so many different require-
ments, it’s hard to keep up on the latest and greatest information. Fortunately for you
Microsoft has simplified the complexity for both developers and admins.

IIS contains many of the platform components (additional services) to support
both old and new web applications, as shown in figure 6.6. These components support
many of the web applications you may need to run, though not all of them.

Figure 6.5 Customize your error messages with support and contact information.

Figure 6.6 Built-in application support

98 CHAPTER 6 What every administrator should know about web applications
You may have a web application that requires components not shown in figure 6.6. In
the past this could make for a long day of research, downloads, and configuration
challenges. The situation has been greatly simplified with one of my favorite tools: the
Web Platform Installer (WebPI), shown in figure 6.7.

 How much is a tool like WebPI worth? How does free sound? You can get it from
http://www.iis.net or from Microsoft at http://mng.bz/7HXD.

NOTE You can also run WebPI from the command line using Web-
PICmd.exe, which is great for working on Windows Server Core. For more
information check out www.iis.net/downloads.

In this section you’ll discover which components you need to install, either built in or
from WebPI, to support the most common web applications.

Figure 6.7 WebPI, one of my favorite tools for installing additional application support

Stop! WebPI will install the components you need
I get questions from admins and developers all the time about how to install x. Before
you open a browser and start searching the internet, open WebPI. Platforms, frame-
works, applications, and everything else you’re looking for is in WebPI and has been
made easy to install. PHP, Azure addons, MVC, WordPress, and Joomla are a few
examples. If a developer asks you to install MVC (which they will), open WebPI and
install it. Microsoft spent a lot of time making WebPI easier than manually download-
ing and configuring these components. I only mention the major ones, so check
WebPI for your additional needs.

http://www.iis.net
http://mng.bz/7HXD
www.iis.net/downloads

99Supporting common web applications
Let’s get started with using the built-in support for the most common web applica-
tions like ASP and ASP.NET. I also show you how to add platforms using WebPI, such
as PHP.

6.2.1 Supporting applications running with IIS 6 Compatibility Mode

Not every application you install will be recently developed. Some, such as Microsoft
Exchange and SharePoint, may contain older code that requires special support
under IIS 7/8. Enter IIS 6 Compatibility Mode, a series of components you can install
to support web applications written with this older code or even written entirely for
IIS 6 (see figure 6.8).

 Those older web applications didn’t support the new Integrated Managed Pipeline
and application pools (remember chapter 4?). When you install Compatibility Mode,
IIS tries to emulate the older environment, Classic Pipeline, and older application
pools so that the web application will function.

 Websites and applications designed for IIS 7/8 use XML files to store their configu-
ration, but those older applications need something different. In IIS 6 and prior, con-
figuration information was stored in a special location called the Metabase. IIS 6
Compatibility Mode simulates the Metabase so those older applications function.

 This all sounds good, and it’s worth a try if you want to move the old application to
IIS 7/8, but it doesn’t always work. Keep in mind that IIS is simulating an old environ-
ment and it’s not perfect. Some older web applications won’t work even with Compat-
ibility Mode.

So what do you do if an older application won’t run on IIS 7/8 even with Compatibil-
ity Mode turned on? Keep running it on Server 2003 and IIS 6. I know that sounds like
a stupid answer, but until the day comes when you can update the web application,
perhaps with a new version, that’s the only solution left.

Figure 6.8 Some applications may require IIS 6 compatibility support.

Above and beyond
A question I’m often asked by students is, “Will I need IIS 6 Compatibility Mode for
newer applications?” The strange answer to that question is yes. One example is
Microsoft Exchange 2007 and 2010. In fact, Exchange won’t install without Compat-
ibility Mode installed first. In the installation instructions for Exchange, IIS 6 Com-
patibility Mode is one of the required prerequisites. If you manage a Microsoft
Exchange server, or any application that’s using IIS 6 Compatibility, don’t remove
this component.

100 CHAPTER 6 What every administrator should know about web applications
 You can install IIS 6 Compatibility Mode easily with PowerShell or the Server Man-
ager. Here’s how to do it with PowerShell and get all the compatibility components:

PS> Add-WindowsFeature web-mgmt-compat –IncludeAllSubFeature

Next up? Time to prepare your web server with the components for the most common
IIS applications: ASP and ASP.NET.

6.2.2 Supporting ASP and ASP.NET applications

Web developers use pre-built libraries of functionality to quickly develop web applica-
tions. These libraries make development faster because developers don’t have to write
every single little feature for the web page. Instead they can use one of the library
functions.

 If you want to run a web application built on a specific platform, the platform
needs to be installed on your web server. ASP and ASP.NET are two common platforms
for web applications and are easily installed to support those applications.

INSTALLING SUPPORT FOR ASP APPLICATIONS

ASP is an older development platform but still often used. If you have an ASP applica-
tion, installing support for it is fairly simple. You can install the component with the
IIS manager or PowerShell using this example:

PS> Add-WindowsFeature –Name Web-ASP

ASP has several configuration options listed in figure 6.9, but normally the developer
of the application has already made the necessary changes in the application’s config-
uration files. In fact, your job as admin may be as simple as to install the ASP compo-
nent and copy the web pages into the website folder without making any
configuration changes.

 For a single application on a single server, the IIS manager is a great tool to make
configuration changes. To do this on multiple servers, you’ll probably want to use the
WebAdministration module with PowerShell. Later in the book you’ll create multi-
server management scripts, but I want you to use this in the lab at the end of the chap-
ter to check the ASP settings:

PS C:\> Get-WebConfiguration -Filter system.webserver/asp -PSPath iis:\ |

➥Format-List *

TRY IT NOW Take a quick moment and view the current ASP configuration
for your web server. Later, in the lab, you’ll make changes to this configura-
tion, but try out the Get-WebConfiguration cmdlet right now.

INSTALLING SUPPORT FOR ASP.NET APPLICATIONS

Similar to ASP, ASP.NET is a web application development platform, but ASP.NET is the
current standard for IIS applications and is widely used by developers. This also means
that there are several configuration settings (hundreds), specific to the application,
that can be adjusted.

101Supporting common web applications
The good news is that the developers who created the web application will have
defined these configurations in the ASP.NET configuration web.config file. As an
administrator you may never need to access the ASP.NET configurations shown in fig-
ure 6.10, but you should check the application documentation to see if any changes
are expected.

 Installing support for ASP.NET is once again simple with PowerShell, and after it’s
installed, you’ll see all the configuration settings in the IIS manager:

PS> Add-WindowsFeature –Name Web-ASP-Net

Remember at the beginning of the chapter when you needed to configure support for
an ASP.NET application? You successfully accomplished that goal. You should review

Figure 6.9 Customizing ASP
web application settings

Figure 6.10 ASP.NET settings are
configured though the IIS manager,
web.config, or PowerShell.

102 CHAPTER 6 What every administrator should know about web applications
the application documentation to see whether you need to make any configuration
changes, but I expect most of that has already been done in the web.config.

ASP and ASP.NET are common components to add to your IIS web server to support
typical applications. Most Microsoft products such as Exchange, Lync, and SharePoint
require these components as well. The reason is simple: Microsoft created them for
developers to make web applications for IIS. What if you have something a little differ-
ent? Perhaps you have a web application that was created for any web server, not just
Microsoft IIS. IIS can easily support those other web applications.

6.2.3 Supporting CGI applications

One of the first web application technologies developed to make web apps better was
Common Gateway Interface (CGI). Most web applications at the time weren’t applica-
tions; they were simple, static HTML pages incapable of much more than displaying
text and hyperlinks. CGI changed that by creating a standard for web servers that per-
mitted content to be delivered to a web browser and scripts to execute to provide
functionality, such as submitting a form of information. CGI web applications are still
used today, so you should be happy to know that Microsoft IIS supports them. What I
find most useful is that IIS supports the newer platform technologies as well.

 The scripting languages used for CGI and the newer FastCGI are probably familiar
names to you, such as Python and Perl. Websites built using CGI initially ran on UNIX-
based web servers like Apache, but Microsoft IIS can also run them.

 You install support for CGI using Server Manager or the following PowerShell
command:

PS> Add-WindowsFeature –Name Web-CGI

Once installed the IIS manager will add a
new icon, as shown in figure 6.11, giving you
access to basic configuration settings.

 Support for CGI in IIS 7/8 is important if
you have older CGI-based applications. What
about the new stuff? IIS 7/8 supports the
new web platform technologies, including
one of the most important: PHP.

6.2.4 Supporting PHP applications

At the beginning of this chapter, I told you that you needed to support two web appli-
cations for the bike shop: one ASP.NET and one a Drupal content-management appli-
cation. You probably use many of the newer applications every day, such as WordPress,
Joomla, and Drupal, but never realized the underlying platform.

 I’m not a developer so I don’t know the specifics of making applications with these
technologies, but I do know that one of the requirements is PHP. PHP is a scripting
and development language similar to ASP.NET and is common outside of Microsoft-
developed web applications.

Figure 6.11 CGI settings in the IIS section

103Monitoring your applications
Installing PHP used to be a complicated task to perform, along with installing an appli-
cation on PHP, such as WordPress, into IIS. Today WebPI makes it easy. Open WebPI,
install PHP from the Products menu, and choose your application (such as Word-
Press) from the Applications menu, shown in figure 6.12.

 WebPI is the best place to start when you need a platform for IIS, but don’t forget
to check www.iis.net for more detailed information about the platforms and applica-
tions supported in IIS. Keep in mind that WebPI installs components—it doesn’t
remove them. If you’re upgrading one version of PHP to another, this isn’t an issue
because you normally don’t need to perform an uninstall first. If you do need to
uninstall something that was installed with WebPI, check http://forums.iis.net for
some help.

6.3 Monitoring your applications
Before you finish this lunch, there’s one more topic to discuss regarding your web
applications. As an admin you need to monitor the health and security of the web
server and its web applications. The job responsibilities for many admins will end
here, with basic monitoring. But I’m hoping you’ll hang with me as we build advanced
information on this topic throughout the book. This a great time to get started moni-
toring and logging your web applications, and I also want to share a few tips and tricks
up my sleeve that will help you find and fix website problems. You might even be able
to get a free lunch from a developer!

 The first step is diving into the logs that IIS creates for every client connection.
You’ll see how to search for information from the logs and improve troubleshooting
for yourself and developers by enabling Failed Request Tracing and ASP.NET tracing.

Figure 6.12 The WebPI application list makes installing new applications easy.

http://forums.iis.net

104 CHAPTER 6 What every administrator should know about web applications
6.3.1 Search the logs for information and problems

By default IIS logs every client connection to your web server and web applications.
You use these logs to look for security issues, performance and capacity problems, and
statistics such as who’s using your web application.

 As you progress through the book, the log files are going to start to fill up, and
you’ll use this information to find and solve problems. I want you to get started look-
ing at these now because, even with a single server, you can begin to monitor requests
coming to your websites. Without the need for complicated software, you can quickly
get an idea of how busy your websites are becoming and who’s accessing them.

 Figure 6.13 shows the log settings in the IIS manager and when you might need to
customize them, but most admins find the defaults work well.

 This same information can be viewed in PowerShell:

Get-WebConfigurationProperty system.applicationHost/sites/siteDefaults -Name

➥logfile

Figure 6.13 Configuring the log settings for your web server

105Monitoring your applications
The log files are text files and can be viewed in something as simple as Notepad. The
problem with that, though, is you’re only viewing a single log file, and it may contain
an enormous amount of data you don’t need to see. There’s a better way, and that’s by
searching (also known as parsing) the log files for specific information. PowerShell has
a great cmdlet for parsing large amounts of text data called Select-String.

The best part about using PowerShell to parse the log files is that instead of examining
one at a time, you can search across all log files for information. Let me give you a
couple of examples. To list all log files for every website:

PS> Get-ChildItem -Path C:\inetpub\logs -Filter *.log –Recurse

To list all HTTP requests that occurred at 9:00 p.m.:

PS> Get-ChildItem -Path C:\inetpub\logs -Filter *.log -Recurse |

➥Select-String -SimpleMatch "21:00"

To list all requests from clients to a particular URL:

PS> Get-ChildItem -Path C:\inetpub\logs -Filter *.log -Recurse |

➥Select-String -SimpleMatch "MySite/TestPage.asp"

To list all requests to/from a particular IP address:

PS> Get-ChildItem -Path C:\inetpub\logs -Filter *.log -Recurse |

➥Select-String -SimpleMatch "10.211.55.30"

Select-String is a wonderful cmdlet for parsing, and that’s merely the beginning. As
you progress through the book, I show you how to improve the search using regular
expressions, but for now this is a great way to start examining who’s accessing your
websites.

6.3.2 Enable Failed Request Tracing

Remember earlier when you looked at the error pages? Those error pages, even when
personalized, don’t provide much information about what’s causing a particular prob-
lem. Let’s fix that right now with a technique that will help you and web developers
trace problems. You can turn on better error messages, capture the results, and then
turn the feature off.

Above and beyond
The log parsing program called LogParser is common in the IIS world. You can down-
load it from www.iis.net. Many admins find LogParser harder to use than PowerShell
at first, but it’s a good tool. It requires a good grasp of SQL—but I have a suggestion
to help. David Makovec, one of the reviewers of this book, reminded me of a great
tool to help with using LogParser: LogParser Studio, available at http://mng.bz/
M6W7. This tool contains built-in queries to help you become immediately effective
with LogParser.

http://mng.bz/M6W7
http://mng.bz/M6W7

106 CHAPTER 6 What every administrator should know about web applications
Web applications can be complex, and many developers and admins would like to get
better error messages with highly detailed information when something goes wrong.
Failed Request Tracing (FRT) is a great solution for that.

 Before you can enable and configure FRT, you must first install it:

PS C:\> Add-WindowsFeature web-http-tracing

To enable and configure FRT, click its icon in the IIS manager and select the content
you want to trace. Tracing does require additional processing, so the goal is to only
trace the type of application platforms that are necessary. In figure 6.14 the default All
Content is selected. I prefer to narrow this down if I can, often only selecting ASP.NET.

 You have the option of tracing all possible errors, and if a web application is misbe-
having, you may want to start with
all of them. If possible try to nar-
row down the error that users are
complaining about. You can even
ask them, “What error are you
receiving?” If they’re receiving
404 errors, then trace for 404
errors only, as shown in
figure 6.15. Doing that doesn’t
impact the server performance as
much as tracing for all of them.

 The last configuration screen
for FRT is the level of verbosity
(how much detail) you’d like the
trace to produce. It’s best to pro-
vide the highest detail, which hap-
pens to be the default, as shown
in figure 6.16.

Figure 6.14 Select the content
that you want to have traced.

Figure 6.15 You can trace all errors, but
it’s better to only trace the specific ones
you believe may be the problem.

107Monitoring your applications
Let’s say you enable FRT for 404 errors, a common error to receive when a web page
isn’t found. If a browser tries to access a URL that doesn’t exist (http://MySite/
oops.htm), you’ll receive the typical 404 error page (or the custom one you created).
The error is traced and logged to a log file located in C:\inetpub\logs\failedreqlog-
files\w3svc1.

 To view the trace and receive a much more detailed error report, use your browser
to open the .xml file in the folder, and you’ll see a page similar to figure 6.17.

 This is an excellent source of detailed error information that you can use to trou-
bleshoot a web application or pass along to the developers of the web application.

ENABLING ASP.NET TRACING

If you’re monitoring an ASP.NET application and have a development team on site,
they most likely will want to enable detail error tracing at a web page level rather than
the site level that FRT provides. That allows developers to get closer to the web page
that generated the error and diagnose specifics.

 To be honest, configuring this requires some coding knowledge and is the respon-
sibility of the developer. The reason I mention it is that I want you to have some links
to information about how to configure this in case you have a developer that doesn’t
know how. Get them to buy you lunch!

 Here are some links to enable and use ASP.NET tracing:

 http://mng.bz/DDCJ
 http://mng.bz/ee6X
 http://mng.bz/DI2I

It’s time to take the concepts and work you’ve done in this chapter and put them into
practice. Before you return to work, try out the lab.

Figure 6.16 Verbosity (error detail
level) settings for the trace

http://mng.bz/DDCJ
http://mng.bz/ee6X
http://mng.bz/DI2I

108 CHAPTER 6 What every administrator should know about web applications
6.4 Lab
The development team is getting ready to hand over the web pages for the three web-
sites you created in your last lunch. In this lab you’ll prepare two application websites
and one website for file download testing. Here’s how to plan for the three sites:

 WebBikez is the main application site hosting ASP.NET pages.
 WebBikezRepair is the repair application site that will host Joomla CMS for

video content.
 WebBikezUsedBikes is the download site for used bike photos.

TRY IT NOW

If you didn’t get a chance to perform the Try It Now sections, I’ve repeated them here
for your convenience. Once complete, you can start the lab with task 1.

1 The bike shop websites will support dynamic compression. I want you to enable
it for them. First install dynamic compression. Then open the compression set-
tings for the WebBikez and WebBikezRepair websites and make sure that
dynamic and static compression are enabled.

Figure 6.17 Trace information located
in C:\inetpub\logs\failedreqlogfiles

109Lab
2 For the bike shop’s two websites, set the Default Document to Launch.htm as
the top priority. (Hint: You can adjust the priority in the actions pane.) Create
two simple web pages as you did in previous chapters, one called Launch.htm
and one called Default.htm. Using your web browser, access the website and
notice that the higher-priority web page is the one automatically loaded.

3 Take a quick moment and view the current ASP configuration for your web
server. You’re about to make changes to this configuration, but try out the Get-
WebConfiguration cmdlet right now.

TASK 1
Enable dynamic compression for the application websites WebBikez and WebBikez-
Repair. They should have a default start page of Launch.htm. The WebBikezUsed-
Bike site shouldn’t have a default start page and shouldn’t support dynamic
compression.

TASK 2
The UsedBike site will hold pictures of bicycles that customers can easily download.
The marketing team is taking the photos this week. To prepare the site for the photos,
enable Directory Browsing for this site. Copy some photos or simple text files into the
site. Using the site URL (www.WebBikezUsedBikes.com), access the site to verify that a
list of files is displayed.

TASK 3
The WebBikez site will host an ASP.NET application. The development team needs you
to install/enable ASP.NET for your web server.

TASK 4
You’ve decided to customize an error page for 404 errors (Page Not Found). You want
to brand it for the bicycle shop. Create an HTML document for the new error mes-
sage, named My404.htm, and place it into the WebBikez website root. Inside the file
add the following:

<p> Page not found, Contact WebBikez support at 555-5555 </p>

In the error pages for the WebBikez site, double-click the current 404 message and
select Execute a URL on this site. Enter the URL /My404.htm.

 Test the new error page by attempting to use a bad URL such as http://www.Web-
Bikez.com/oops.htm.

TASK 5
The video website (WebBikezRepair) will host several PHP applications and a Joomla
CMS for the videos. In preparation for the video CMS, the developers need you to add
PHP to your web server for this site. Using WebPI, add PHP to your web server. If you’d
like an added bonus, go ahead and install the Joomla or WordPress applications using
WebPI.

110 CHAPTER 6 What every administrator should know about web applications
6.5 Ideas to try on your own
When you have some extra time and want a challenge, I suggest you make your own
blog site using WordPress. Create a website in a virtualized environment such as
www.<YourName>.loc. Using WebPI add the Wordpress application and complete the
process to launch a personal blog. You can enhance your blog site by using WordPress
to download additional themes.

 You might even decide to launch your own personal blog site to the internet. In
that case, use a production web server and build your blog site. If you do launch a
blog, send me an email so I can visit!

Securing your sites
and web applications
For many web admins this may be the most important chapter and the most confus-
ing. The concept of security makes sense, but the process can be a little compli-
cated. This is a chapter that you’ll want to refer back to often when setting security
for your websites.

 I’ve run across many websites in IIS where it was clear that the admin didn’t
understand how to set up proper security and left the defaults in place. IIS is
secured by default, but many admins aren’t closing all the possible security holes
and thus aren’t providing a well-secured platform.

 Is this important? Yes. Web servers are the primary targets of hackers to gain
access into your company. Good security means you probably won’t have a prob-
lem. Bad or complacent security makes your websites a target.

 This chapter focuses on the different authentication methods, controlling who
can access your websites, and how best to secure the filesystem permissions for your
web pages. I mention some additional services for special cases along the way.

 I hope you have a vitamin-enriched lunch prepared for today because you’re
going to need all your mental power. Let’s get started.
111

112 CHAPTER 7 Securing your sites and web applications

authent
meth

use
7.1 Controlling who can access your site
Ask yourself this question: “When I create a website, who should be able to access it?”
You might follow that up by asking, “Does it contain confidential company informa-
tion or is it customer product information?” If you’ve ever configured security for a
file server on your network, these questions will be familiar.

 If a website has general, free information for the public, then you don’t care who
has access to it. But as soon as it contains confidential information, the who matters. In
our bike shop example, the main site WebBikez is a public site, but when it’s time to
order products you’ll need to know who. This section is about configuring who can
access your websites and your applications, depending on the type of content those
websites hold.

 Before we dive into this section, I want you to make some changes to the testpage.asp
I had you create in chapter 3. Currently that page gives you information about your web
server and website but not about the clients accessing them. I want you to add what you
see in the following listing to the bottom of testpage.asp so you can start to see client
information.

Client Information

Client Name = <%= Request.ServerVariables("REMOTE_HOST") %>

Client IP = <%= Request.ServerVariables("REMOTE_ADDR") %>

Client Port = <%= Request.ServerVariables("REMOTE_PORT") %>

Client Request = <%= Request.ServerVariables("REQUEST_METHOD") %>

*If not anonymous

Client User Type = <%= Request.ServerVariables("AUTH_TYPE") %>

Client User Name = <%= Request.ServerVariables("AUTH_USER") %>

There are several methods of controlling who has access to a website—in fact, in this
chapter there are five—but the three most important and frequently needed are cov-
ered in this section: anonymous access, Windows authentication, and basic authentica-
tion (see table 7.1). The remaining two methods, forms-based and authorization
rules, can be integrated at any time and are used for specific cases, so I’m saving those
for the end of the chapter.

Listing 7.1 Adding client information to your testpage.asp

Table 7.1 Authentication types

Authentication Type User Location Access Notes

Anonymous access External Best for public websites that don’t contain confi-
dential information

Windows authentication Internal Best for internal private sites (SharePoint) that
require confidential access

Basic authentication External Best for websites accessible from the outside that
contain confidential information

Report IP
address, port,
web request
protocol

Report
ication
od and
rname

113Controlling who can access your site
Each of the three authentication mechanisms is slightly different to configure. In this
section you’ll work with the main three: anonymous, Windows, and basic. Let’s start
with the default authentication method: anonymous.

7.1.1 Configuring anonymous access

Imagine if every website you browsed in the world required a username and password.
Imagine trying to remember them all! For websites providing general public informa-
tion, there’s no need for security to be that high.

 To make accessing public websites easier and less confusing, internet users are con-
sidered anonymous, much like the guest account in Windows, and don’t need to pro-
vide a username or password (see figure 7.1). As the web admin you don’t know who
anonymous truly is, so IIS gives anonymous users limited permissions to access a web-
site—for the most part, they’re granted the ability to read the web pages.

 Microsoft Windows is a highly secured operating system that requires credentials
(username/password) for every user. Anonymous access is mapped to the built-in
user account IUSR and the group account IIS_IUSRS. These accounts can further
restrict access using filesystem permissions. Microsoft has already done that for you to
a large extent by making sure that anonymous users can’t harm (delete or deface)
your websites.

 In most cases the preconfigured settings that Microsoft has implemented for anon-
ymous access for public websites are fine, but if you’re hosting more than one public
website on a web server, you can tighten up the security even further. I’ll show you the
default settings, but let me also show you what I prefer to do to control anonymous
access. The anonymous authentication settings are located in the IIS manager, as
shown in figure 7.2.

Figure 7.1 Anonymous
access is tightly restricted
by default.

114 CHAPTER 7 Securing your sites and web applications
Authentication settings lists all available authentication methods, and if you’ve been
following along with the book, you’ve probably only seen anonymous so far. You’ll
install other methods soon, but notice that you can enable/disable anonymous access.
By editing the settings you can control the user account that anonymous runs under
(figure 7.3). The default IUSR is sufficient in most cases. You can even create a custom
account if you want, but I prefer to change the user account to use the application
pool identity.

 By using the application pool identity (which is unique for every website), you iso-
late websites from each other on the same server. This is a better security practice
because it prevents the possibility of a hacked website accessing another website and
permits easier control of permissions.

 In a multiple web server environment, as discussed in chapter 19, you’ll automate
anonymous configuration settings. For now I want you to see how to use PowerShell for
a single website. You’ll use PowerShell and WebConfiguration cmdlets to make the
changes. The following are some examples. To get a list of authentication mechanisms:

PS> Get-WebConfiguration -Filter /system.WebServer/security/authentication |

➥Foreach-Object{$_.sections}

To get anonymous authentication settings:

PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -Name enabled |

➥Select-Object value

Figure 7.2 Authentication settings is where
you enable and disable authentication methods.

Figure 7.3 Using the
application pool identity
isolates websites from
each other.

115Controlling who can access your site
To enable/disable anonymous authentication for the entire web server (note the
example shows how to disable):

PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -Name enabled -

➥Value False

To enable/disable anonymous authentication for a website or application (note the
example shows how to disable):

PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -Name enabled -

➥Location MySite

PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -Name enabled -

➥Value False -Location MySite

TRY IT NOW Use one of your existing websites or make a new one for this
chapter and change the anonymous authentication user from IUSR to the
application pool identity. Make sure to verify that your website works using
the special test page you created in an earlier chapter.

Anonymous authentication is designed for public websites, but if you have a website
that provides confidential information (such as with SharePoint), you want users to
properly authenticate using a Windows account. The next two sections focus on
secured access using a username and password.

7.1.2 Configuring Windows authentication

Windows authentication is the best method for internal websites that contain confi-
dential or personalized information. Products such as Microsoft SharePoint and
Exchange are excellent examples that use Windows authentication for internal users,
as illustrated in figure 7.4.

 Windows authentication uses the username and password the user logged on to
their computer with and passes it to IIS (local accounts or Active Directory) for secu-
rity access. This means that users don’t need to re-type their username and password
every time they access the website; it’s handled automatically for them.

 First let’s look at installing Windows authentication, and then I’ll show you the
advanced configuration settings.

 Windows authentication isn’t installed or enabled by default. You can use Server
Manager or PowerShell to install it. Here’s an example using PowerShell:

PS> Add-WindowsFeature Web-Windows-Auth

After Windows authentication is installed, you need to enable the authentication on
the website in the IIS manager. You’ll do this shortly to the bike shop, but keep this in
mind: you need to disable anonymous authentication when you enable Windows
authentication or your internal users will continue to use anonymous. If you don’t see
the new authentication method you enabled, you may need to refresh or even restart

116 CHAPTER 7 Securing your sites and web applications
the IIS manager. Remember this throughout this book. Sometimes a refresh or a
restart of the GUI manager may be required to find the new component.

 Windows authentication includes advanced settings that increase security by pre-
venting authentication relay attacks. The new Extended Protection was introduced in
IIS 7.5 and is turned off by default. Clients’ computers must be able to communicate
with the new protection, so two settings are provided to support new and older clients.
The Accept setting (figure 7.5) is the best setting for most environments; for newer cli-
ents this setting uses the Extended Protection; for older clients it doesn’t. The
Required setting enforces Extended Protection, and older clients that can’t use this
will be rejected.

 Use the following examples as guides for configuring Windows authentication with
PowerShell. To get information about Windows authentication settings:

PS> Get-WebConfiguration -Filter system.WebServer/security/authentication/

➥windowsAuthentication | Format-List *

PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/windowsAuthentication -Name enabled | Select-Object value

To enable/disable Windows authentication (note example demonstrates how to
enable):

PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/windowsAuthentication -Name enabled -Value true

To enable/disable Windows authentication per site or application (note example
demonstrates enabling):

Figure 7.4 Internal users can use
Active Directory credentials with
Windows authentication.

117Controlling who can access your site
PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/windowsAuthentication -Name enabled -Location mysite -

➥Value true

TRY IT NOW Make sure you have a test page
with the client settings discussed at the
beginning of the chapter. Install and
enable Windows authentication. Be sure to
disable anonymous authentication. Access
the website (you may have to log on the
first time) and notice the client section on
the web page. It should display your Win-
dows authentication username, as shown in
figure 7.6.

Windows authentication works great for internal users accessing websites that contain
confidential data. But sometimes users will travel outside the company and still need
access to those websites. The basic authentication mechanism, covered in the next sec-
tion, allows outside users this access.

7.1.3 Using basic authentication

Basic authentication allows users from the internet to access private and confidential
content by providing a valid username and password. Basic authentication works in all
browsers and all firewalls and proxy servers, as illustrated in figure 7.7.

Figure 7.5 Configure Extended Protection to prevent authentication relay attacks.

Figure 7.6 Testpage.asp client section
displays current user accessing website.

118 CHAPTER 7 Securing your sites and web applications
The biggest challenge with basic authentication is that it transmits usernames and
passwords in clear text. Read that again—yes, I said it transmits usernames and pass-
words in clear text. Anyone with a protocol analyzer can capture your credentials.
Seems stupid to use this authentication right? When you use basic authentication
(and you will often), you must make sure that the communication from the client to
your web server is secured with certificates and Secured Socket Layer (SSL). You’ll
apply certificates and get SSL working in chapter 9 for this reason. For now it’s okay
because your VM’s aren’t a production environment.

 As with the Windows authentication you installed earlier, basic authentication must
be installed before it can be enabled. Use PowerShell to install basic authentication:

PS> Add-WindowsFeature Web-Basic-Auth

As with Windows authentication, after basic is installed you can enable it in the IIS
manager, as shown in figure 7.8.

 Once basic authentication is enabled (and secured with SSL), users from the out-
side can use their usernames and passwords to access websites and applications. By
default, users must also provide the domain name that contains their credentials, as
shown in figure 7.9.

Figure 7.7 Basic authentication
is for internet-based users.

Figure 7.8 Enable basic authentication
only after securing the website with SSL.

119Controlling who can access your site
You can make this easier for users by editing the basic authentication settings and
specifying a default domain, as shown in figure 7.10, so they no longer need to type
this additional information.

 As with the other authentication mechanisms, you can adjust these settings using
PowerShell. To get configuration information about basic authentication:

PS> Get-WebConfiguration -Filter system.WebServer/security/authentication/

➥BasicAuthentication | Format-List *

PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/BasicAuthentication -Name enabled | Select-Object value

To enable/disable basic authentication:

PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/BasicAuthentication -Name enabled -Value true

To enable/disable basic authentication per site or application:

PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/BasicAuthentication -Name enabled -Location MySite |

➥Select-Object value

TRY IT NOW In your virtual lab environment you can enable basic authentica-
tion for testing. But don’t do this in production until you’ve completed chap-
ter 9 and have secured this with SSL. If you want to try it out now, disable all
other authentication methods and enable basic. Access your website and note
that you’re prompted for a username and password.

Figure 7.9 Normal login process for users using basic authentication

Figure 7.10 Improve the
client experience by
setting the default domain.

120 CHAPTER 7 Securing your sites and web applications
Now that you can prompt for credentials and control who can access your websites, you
need to control what they can do to them. The next section focuses on using the authen-
tication credentials combined with NTFS security to control what a user can access.

7.2 Setting site-level permissions: NTFS
The three authentication credentials you configured in the last section control who
can access your web server and websites. Those credentials combined with NTFS secu-
rity permissions will control what they can do to the websites. As an example, you don’t
want anonymous users to have the ability to delete your web pages! The next step in
the process of securing a website is to take the authentication credentials and config-
ure them with the proper NTFS filesystem permissions to the web pages.

 By default, all authenticated users in your company can access every website and
application. This is rarely the type of access you want; I certainly don’t want everyone
accessing confidential accounting information. I only want an accountant to have
access to those web pages. You control access by setting the filesystem permissions.

 There are two different ways to configure what websites and pages a user can
access: NTFS permissions and URL authorization. The first method, NTFS permissions,
is the one I prefer because it works with any type of web application—ASP, ASP.NET,
CGI, PHP, and so on. This method is also the most familiar to Windows admins
because it’s the same process you perform when applying NTFS permissions to a file
server.

 The second method of controlling access—URL authorization, discussed in the last
section of this chapter—is a newer addition to IIS and applies only to ASP.NET web
applications.

 In this section you’ll configure permissions for users and groups and configure
permissions for the application pools using the most common method that supports
all applications. Let’s start with the one most familiar to admins: setting permissions
for users and groups.

7.2.1 Configuring permissions for users and groups

Configuring permissions for the web pages in your website and application containers
is the exact same process as it is for file servers. In fact, you’ll use those tools (the Secu-
rity tab) in this section as you’ve used them in the past when configuring file servers.

Above and beyond
I’m not using PowerShell in this section. Setting permissions using PowerShell is
complicated at best, and for a single server with a few websites, it isn’t the best tool.
Later in the book I show you a few methods using PowerShell to automate permission
assignments across multiple servers when the complexity is outweighed by the man-
agement gain.

121Setting site-level permissions: NTFS
In this section you’ll use the Security tab to assign custom permissions for users and
groups. You can use File Explorer and navigate to the website folders, but the IIS man-
ager can make it quicker and easier. Take a look a figure 7.11. Select your website or
application on the left and then choose Edit Permissions on the right.

 The Security tab will open to display the current (default) permissions. Once the
Security tab opens, as shown in figure 7.12, you’ll notice the default permissions. The
local Administrators group should always remain in this list, but the local Users group
is the one you want to remove and then replace with your own users and groups for
permissions.

 The permissions you see in the Security tab are inherited from the parent folder.
I’m sure you’ve run into this many times when setting file server permissions: you
won’t be able to edit the list of permissions until you block the inherited ones. There
are two steps to this process:

1 Blocking inherited permissions
2 Adding users and groups to the permission list

Figure 7.11 You can access file permissions
using the IIS manager or Windows File Explorer.

122 CHAPTER 7 Securing your sites and web applications
STEP 1: BLOCKING INHERITED PERMISSIONS

You probably have done this a hundred times in the past on a regular file server, but
just in case, let me show you again. As in figure 7.12, to block the inherited permis-
sions, on the Security tab click the Advanced button.

 When the Advanced Security Settings for the website dialog box appears (see
figure 7.13), click the Disable inheritance button. You’ll be prompted to convert
(copy) the parent permissions to this folder or remove all permissions and start with a
clean slate.

 Normally you want all the default permissions except for a few, so I prefer to con-
vert (copy) the permissions from the parent. This saves time and troubleshooting if I
forget a required permission assignment.

STEP 2: ADDING USERS AND GROUPS TO THE PERMISSIONS LIST

In figure 7.14 I added the user Bob Smith and the group Sales to the list of people
who can access the website. Notice that I removed the group Users, which was permit-
ting everyone to have access.

 In the lower pane you’ll set the desired permissions for the users and groups. The
default is to give them the most basic or minimum permissions, and this is normally
sufficient. Check the web application documentation to see whether it needs a higher
permission level. At this point in my example, the only people who can access the web-
site are Administrators, Sales, and the user Bob Smith.

Figure 7.12 The default users/
groups and permissions for a website

123Setting site-level permissions: NTFS
Figure 7.13 Block inheritance so
you can change file permissions.

Figure 7.14 Add users
and groups for custom
site permissions.

124 CHAPTER 7 Securing your sites and web applications
NTFS PERMISSIONS ARE DONE, BUT ONE MORE THING…
Many web administrators make a mistake at this point in the process. If this were a file
server, you’d be done setting permissions, but this is a web server, and there’s one
more “entity” that must have permissions. In fact, if you attempted to access this web-
site now, before finishing the process, you’d receive an error similar to figure 7.15.
Before we move into configuring the application pool security, you may be tempted to
try setting security settings for one of your websites. I’m good with that, but keep in
mind that because it’s not finished, you’ll receive an error like the one in figure 7.15.

TRY IT NOW If you want to start practicing with this now, you can, but remem-
ber it’s not going to work yet. Feel free to wait until after the next section. In
your lab environment, create a new Active Directory user you can use for test-
ing permission access. I created one called Bob Smith, but you can pick what-
ever name you like. And I want you to get a login prompt, so enable basic
authentication. Remember: do this only in your lab environment until I show
you how to secure basic in chapter 9. Assign Bob Smith (or whatever your
user is named) permissions to your website. Make sure to remove the Users
group. You can now attempt to log in, but remember you’ll get an error simi-
lar to the one in figure 7.15.

Assigning permissions for users and groups feels like the last step in the permissions
process because you’ve done it so many times on a file server in the past. For a web
server you still need to add one special identity to the NTFS security permissions: your
application pool.

Figure 7.15 Someone made a mistake—there’s still one more permission setting to make.

125Setting site-level permissions: NTFS
7.2.2 Configuring application pools permissions

The most common mistake when setting website and application permissions is to for-
get about the application pool for the site. Remember that application pools have a
worker process that handles client requests and supplies the web pages to the clients.
The worker process needs to have access to the web pages.

 Before you adjusted the permissions, the application pool gained access to the
website using the group Users. That group gets removed so you can customize permis-
sions as you did in the last section. There are two steps to this:

1 Setting the application pool identity
2 Setting the application pool permissions

Before you set the permissions for the application pool to the web pages, let’s make
sure the application pool is using the best identity for security.

STEP 1: SETTING THE APPLICATION POOL IDENTITY

Application pools have a special security context (identity) that provides the applica-
tion pool with minimum permissions required to operate. In the Advanced Settings of
the application pool, you can see this identity (see figure 7.16), called Application-
PoolIdentity.

Figure 7.16 Verify the application pool identity is set to ApplicationPoolIdentity
for best security.

126 CHAPTER 7 Securing your sites and web applications
The ApplicationPoolIdentity identity is the best and most secured one to use. The oth-
ers listed involve backwards-compatibility support for older versions of IIS applica-
tions, so don’t choose them unless needed by an older application.

You can also set the application pool identity using PowerShell. Here are some exam-
ples. Here’s how to get the current identity:

PS> Get-ItemProperty -Path IIS:\AppPools\MyTest –Name

➥ProcessModel.IdentityType

To set an identity (example for NetworkService):

PS> Set-ItemProperty -Path IIS:\AppPools\MyTest –Name

➥ProcessModel.IdentityType -Value 2

To set your own custom user account as the identity:

PS> Set-ItemProperty -Path IIS:\AppPools\MyTest -Name

➥processmodel.identityType -Value 3

PS> Set-ItemProperty -Path IIS:\AppPools\MyTest -Name processmodel.username -

➥Value Administrator

PS> Set-ItemProperty -Path IIS:\AppPools\MyTest -Name processmodel.password -

➥Value P@ssw0rd

With the identity configured, the second part of this process is to set the NTFS permis-
sions for the application pool.

Above and beyond
It’s possible to create a custom account (known as app pool isolation), but your best
bet is to use the default ApplicationPoolIdentity in IIS 7.5 and 8.

App pool isolation is used for web servers that are hosting multiple websites for dif-
ferent customers. The idea is to protect the website and application pool of Custom-
erA from CustomerB located on the same server. This is a common practice in large
hosted environments, but if you’re not dealing with that specific concern, stick to the
default identity.

Application pool identity values for PowerShell
When using PowerShell to change the app pool identity, you must use a specific num-
ber that represents the account. The values are Int32 (integers). I found this on
MSDN years ago, but here are the identities and their corresponding numbers:

LocalSystem = 0
LocalService = 1
NetworkService = 2
SpecificUser = 3
ApplicationPoolIdentity = 4

127Setting site-level permissions: NTFS
STEP 2: SETTING THE APPLICATION POOL PERMISSIONS

To assign permission for the application pool, open the Security tab for your website
as you did in the last section. Add a new entry, but instead of typing the name of a user
or group, notice the special name shown in figure 7.17.

 Using the unique (and required) syntax, enter your application pool into the list.
That’s it! Now when you attempt to log in to the website using a username that’s been
granted permission, as in figure 7.18, you’ll be successful.

Notice in my example that I
used the username BobS
(Bob Smith) to log in. The cli-
ent section of the testpage.asp
(see figure 7.19) will display
his name, confirming that the
user was permitted access.

Figure 7.17 Configuring permissions for an application pool

Figure 7.18 Login
prompt to test security
permissions

Figure 7.19 Successful authentication of a test user account

128 CHAPTER 7 Securing your sites and web applications
This is a great time to relax for a moment and try out this process. In the lab you’ll
perform this process again, but I find a simple example helps to understand the pro-
cess better.

TRY IT NOW Let’s try the same Try It Now you did earlier, except this time
you shouldn’t get an error. In your lab environment create a new Active
Directory user that you can use for testing permission access. I created one
called Bob Smith, but you can pick whatever name you like. Also, enable basic
authentication to get a login prompt. Remember, do this only in your lab
environment until I show you how to secure basic in chapter 9. Assign Bob
Smith (or whatever your user is named) permissions to your website. Make
sure to remove the Users group. Assign the website application pool permis-
sions and attempt to log in to the website.

Wow, you’ve accomplished a lot in this chapter so far and are probably ready for the
lab, but hang on—by my count you’ve only seen three of the five authentication meth-
ods. You’ve also configured NTFS permissions for your user and groups, but I still
need to show you a faster way to control permissions for ASP.NET sites.

7.3 Advanced/Optional access control
So far you’ve experienced the heart of setting up security for your websites and appli-
cations. In this section I want to briefly describe an additional (optional) way of assign-
ing security to a website or application written in ASP.NET. I also want to show you a
few more authentication methods, such as URL, forms-based, and client certificate
authentication, that you may find useful someday. Let’s start with another way to set
security for ASP.NET applications.

7.3.1 Setting authorization rules for ASP.NET applications

Authorization rules were introduced in IIS 7 as an easier method to assign permissions
for users and groups for ASP.NET applications. Many developers who write ASP.NET
applications prefer URL authorization and often configure security directly in the
Web.config file.

 To use URL authorization you must first install the component. Here’s how to
install it using PowerShell:

PS> Add-Windowsfeature web-url-auth

Once it’s installed you can open the URL authorization settings for your ASP.NET web-
site or application and configure the users and groups that should be permitted
access (see figure 7.20).

 You can use Windows identities or Active Directory identities or you can create
your own users and groups directly on the website.

 If you’re interested in going deeper into authorization rules, don’t worry. I’ll post
information on MoreLunches.com. You can also check out this article on Microsoft’s
TechNet: http://mng.bz/FULn.

http://mng.bz/FULn

129Advanced/Optional access control
7.3.2 Forms-based authentication

Forms-based authentication is common for products such as Microsoft Exchange and
SharePoint. Instead of seeing a login prompt, the client is redirected to a web page
where they can enter their credentials.

 Forms-based authentication permits the web designer/developer to create a
custom-branded web page for login rather than the ugly popup prompt. There isn’t
much for a web admin to do to configure forms-based authentication. Most of the
hard work, such as making the form page, is done by the developer. When you install
the component ASP.NET, forms-based authentication will appear in the IIS manager
authentication settings and can be enabled if needed.

 Forms-based authentication is like basic in that usernames and passwords are trans-
mitted in clear text, so you should have SSL in place before turning this feature on. In
chapter 9 you’ll set up certificates and SSL to protect this authentication mechanism.
For more information see http://mng.bz/tc11.

7.3.3 Client certificate authentication

Client certificate authentication uses certificates rather than usernames and pass-
words to give clients access to a website or application. The certificate is mapped to a
user account on the web server or from Active Directory which has permissions to the
website. When the client connects to the website and presents the certificate, they’re
granted access.

Figure 7.20 Configuring authorization
rules for ASP.NET applications

http://mng.bz/tc11

130 CHAPTER 7 Securing your sites and web applications
 This has the benefit of reducing possible attacks from hackers because clients
don’t type usernames and passwords (which hackers try to crack); instead they present
the certificate. If you don’t have the certificate, you don’t get access.

 To implement this type of authentication, you need a firm understanding of certif-
icates, certificate authorities, and mapping certificates to accounts. That’s outside the
scope of this book, but you should be aware of the capability. You can find additional
information about client certificate authentication at http://mng.bz/Cli9.

 Let’s move on to the lab and practice setting security on a couple of websites to test
the authentication mechanisms and NTFS filesystem security.

7.4 Lab
The security for outside users to access the bike shop websites has been determined,
but the bike shop hasn’t purchased and implemented certificates yet. Because of this,
they don’t want to test with outside users because usernames and passwords would
cross the internet in plain text (you’ll do this in chapter 9).

 To test security options at this time, the bike shop would like to perform internal
testing using users from their network. You’ll establish and test the internal security
model and later (in chapter 9) modify the security for outside user access.

 This lab is challenging. You’ll need to create some users in your VM Active Direc-
tory and assign security for them. When you make users, you can name them however
you like, but I provided some names to make the lab easier. Assign each user a pass-
word (which you’ll have to remember). Try your best to complete the tasks without
checking the answer key. If you get stuck, don’t hesitate to get the step-by-step answer
at MoreLunches.com.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I’ve repeated them
here for your convenience. Once complete, you can start the lab with task 1.

1 Use one of your existing websites or make a new one for this chapter and
change the anonymous authentication user from IUSR to the application pool
identity. Make sure to verify that your website works using the special test page
you created in an earlier chapter.

2 Make sure you have a test page with the client settings discussed at the begin-
ning of the chapter. Install and enable Windows authentication. Be sure to dis-
able anonymous authentication. Access the website (you may have to log on the
first time) and notice the client section on the web page. It should display your
Windows authentication username, as shown in figure 7.6.

3 In your virtual lab environment you can enable basic authentication for testing.
But don’t do this in production until you’ve completed chapter 9 and have
secured this with SSL. If you want to try it out now, disable all other authentica-
tion methods and enable basic. Access your website and note that you’re
prompted for a username and password.

http://mng.bz/Cli9

131Lab
4 If you want to start practicing with this now, you can, but remember it’s not
going to work yet. Feel free to wait until after the next section. In your lab envi-
ronment, create a new Active Directory user you can use for testing permission
access. I created one called Bob Smith, but you can pick whatever name you like.
And I want you to get a login prompt, so enable basic authentication. Remem-
ber: do this only in your lab environment until I show you how to secure basic in
chapter 9. Assign Bob Smith (or whatever your user is named) permissions to
your website. Make sure to remove the Users group. You can now attempt to log
in, but remember you’ll get an error similar to the one in figure 7.15.

TASK 1
First up, you need some users and groups to represent the internal network of the
bike shop. In Active Directory make three Organization Units with the following
users:

 OU named Sales with two users, Bob Smith and Sally Smith. Create a group
called Sales and add the two users to the group.

 OU named Mechanics with two users, Meefy and Millie. Assign them to a group
named Mechanics.

 OU named RegUsers with two users, Frank Smith and Jill Smith. Create and
assign the users to a group named RegUsers.

TASK 2
In this lab you’ll use basic authentication (not Windows authentication) to force a
login prompt for testing. If you use Windows authentication, you’ll need to log off/
log in to your entire desktop each time, so for the sake of convenience, basic authenti-
cation will be used.

 Enable basic authentication for all three websites. In your internal testing environ-
ment, there’s no risk in not having certificates at this time. Make sure to disable anon-
ymous authentication on each site.

TASK 3
Assign security for the three websites using the following security guidelines:

 The Administrator (you) should be able to access all websites.
 The WebBikez site should be accessible by the group RegUsers and Bob Smith.
 The WebBikezRepair site should be accessible by the group RegUsers and

Mechanics.
 The WebBikezUsedBike site should only be accessible to Jill Smith. Jill needs

write ability to copy photos into the site.

TASK 4
Before testing can begin, the application pools need to have permissions set to the
websites. Using PowerShell verify that the application pools all have the identity Appli-
cationPoolIdentity. Assign the application pools’ NTFS permissions to their respective
websites.

132 CHAPTER 7 Securing your sites and web applications
TASK 5
The bike shop wants you to use several test scenarios to validate the security model. In
each case you should access the website using your web browser and be prompted with
a login. Using the user accounts described, test whether they have access to the site.
Here are the scenarios:

 Can you (the Administrator) access all three sites? Why?
 Can Bob Smith access the WebBikez site? Why?
 Can Meefy access the WebBikez site? Why?
 Can Millie access the WebBikezRepair site? Why?
 Can Sally access the WebBikezUsedBike site? Why?

7.5 Ideas to try on your own
You can’t practice this enough. When you have some time, I want you to add your own
users and groups and set additional security. Make up your own scenarios and try
them out. The real test is to examine a production web server and see whether the
security is up to snuff.

 Also, try out URL authorization and add user access to ASP.NET websites with this
method. The WebBikez site is a good place to try that out.

Securing the server
Any time you “plug” something into the internet—a web server, mail server, or your
phone for the latest sport scores—you’ve opened up a hole that some malicious
person (or bot) can attack. You already know this. Preventing these attacks is a con-
stant battle.

 Can you prevent all possible attacks from the internet with 100% certainty? Yes,
if you don’t attach anything to the internet. That’s unreasonable, so the goal is to
protect your web server (and therefore your customers) as best you can within the
budget you have available.

 Internet security is a vast and complicated topic, and I can’t cover it all in a sin-
gle chapter. My goal in this chapter is to show you the types of attacks that may
affect you and suggest a common-sense approach with hardware and software fire-
walls to secure your web server. You’ll implement built-in IIS features such as IP/
domain restrictions to assist in the effort. I want you to have additional resources if
you need to go deeper. You’re not alone in this endeavor. From the developers writ-
ing the applications, Microsoft updating and patching IIS to prevent security weak-
nesses, and your overall network security (firewalls), you can provide a reasonably
secured environment.

 So far in this book you’ve built and secured the websites for the WebBikez bike
shop. Now the focus changes to securing the web server. Let’s first look at who and
what is attacking you and how to prevent those attacks.
133

134 CHAPTER 8 Securing the server
8.1 Network protection for IIS
You’ll examine several best practices in this chapter that will help you secure your web
servers, depending on how many you need to protect and your available budget. It
helps to have an understanding of what is attacking you. This section starts out by
describing the types of attacks commonly faced by your web server today and then
dives into firewall and monitoring options to protect your web server from these
attacks.

8.1.1 What are you worried about?

I find that the more I understand about security and the types of attacks that a web
server may face, the better I can help avoid those risks. As the web administrator you
can’t always control all aspects of securing your web servers with only IIS tools
(although you did a great job in the last chapter). You may need other people, or
teams of people, to help with network security. Most of the attacks can be mitigated
with a good third-party firewall, discussed in the next section.

 What kinds of attacks might you face? Mostly bots—automated script attacks. But
occasionally a human attempting to do harm may be behind an attack. I cover the
most common attacks here.

CROSS-SITE SCRIPTING

This type of attack is the most common attack today. It typically involves an attack
based on a weakness or security hole in the browser (called an exploit). A hacker uses
the exploit to inject a client-side script into web pages that other users are viewing.
The script is executed in the browser on the client, launching embarrassing ads and
infecting the client with malware. As an admin, recognizing a cross-site scripting
attack and alerting the security team is essential. Preventing this type of attack is done
through the web page code; the developer of the application should use good,
secured coding practices to help avoid these problems.

INFORMATION LEAKAGE

Information leakage is a generic term describing the possibility of attack from leaking sen-
sitive information or technical details through the normal use of a website. Typical
examples are error messages that provide too much detail about web servers and script-
ing comments that may contain database passwords. Good coding practices generally

Above and beyond
Want more information? I provide a good starting point for you here, but it’s not com-
plete or exhaustive by any means. Many internet resources have a wealth of addi-
tional information, but I like checking current attack trend reports, like the WhiteHat
Statistics report at www.whitehatsec.com.

135Network protection for IIS
have the most impact on this. It’s difficult for an admin to control this for all applica-
tions without the support of a third-party firewall.

CONTENT SPOOFING

This is a similar attack to cross-site scripting, only without the script. Instead the
hacker defaces the website, replacing images or adding banners. Content spoofing
can be prevented with good coding practices, third-party firewalls, and IIS’s request fil-
tering (discussed later in this chapter).

CROSS-SITE REQUEST FORGERY

Commonly abbreviated CSRF, this is an attack using the customer’s (user’s) existing,
trusted connection to another website. A user visits a new website that maliciously
attempts to use their stored credentials to access another website that the user fre-
quents, such as Facebook. The malicious site posts spam or other content to Facebook
without the user’s knowledge. Again, good coding practices, firewalls, and request fil-
tering will help avoid this, as discussed later.

SQL INJECTION ATTACKS

This type of attack is accomplished by including portions of SQL commands in a URL
that can exploit the database. You can prevent injection attacks by filtering the URLs
so that these commands aren’t permitted. IIS and most third-party firewalls have this
filtering capability. IIS has a request filter that can be enabled for this purpose.

 In fact IIS has components to help protect against all these types of attacks, and
you’ll learn those in this chapter. Although the components in IIS are helpful, you
should consider additional firewall products specifically designed to prevent these
attacks. The next section discusses the options available to you when considering addi-
tional firewall protection.

8.1.2 Firewall security

The best security for your web servers is a firewall to protect them. You have many
choices to choose from, including the built-in Windows Firewall and add-on third-
party firewalls. Choosing the right firewall for your company is a decision outside the
scope of this book, but your decision should employ protection from the type of web
attacks already discussed. My goal in this section is to illuminate some of the available
options based on size, price, and configuration complexity. You probably already have
a firewall in place working to protect your web servers, but if you don’t, this is a good
place to start gaining firewall knowledge.

 There’s a longstanding debate about hardware versus software firewalls, and I’m
certain that you’ve heard the arguments or even been part of them. I see advantages
to both types. Small web server implementations can save on costs without sacrificing
quality using a software firewall. Hardware-based firewalls are more expensive and
require more knowledge to configure but can handle much larger implementations
and traffic.

 Let’s talk about both options, starting with software-based firewalls.

136 CHAPTER 8 Securing the server
SOFTWARE FIREWALLS

Software-based firewalls are generally easier to implement and a little more cost-
effective for smaller web server implementations. There are two types:

 Windows Application Firewall (WAF)
 Infrastructure firewall

A WAF is a high-quality firewall that’s installed directly on the web server (see Figure 8.1).
The built-in Windows Firewall provides only basic port blocking, whereas WAFs provide
greater protection against the types of attacks discussed earlier. WAFs also collect and
monitor your IIS logs and display critical logging information, such as attacks from bots,
easily. This is an enormous benefit because trying to track and block an attack using
PowerShell or other simple IIS logging tools isn’t practical.

 Windows Application Firewalls are practical and affordable for single or small web
server implementations. They provide excellent protection and don’t require the
changes to your infrastructure that a hardware firewall requires. Products such as
Port80Software’s Server Defender (www.port80software.com) and those at www.white-
hatsec.com are great examples of WAF type software.

 An infrastructure firewall, although software-based, is similar to a hardware-based
firewall, as shown in figure 8.2. It’s placed between the web server and the internet.
All requests go through the firewall, where the requests can be scanned and filtered,
similar to a WAF. But with the firewall in front of the web server, it can protect more
web servers.

 Software firewalls, including WAFs, have graphical interfaces to make them easier to
configure and monitor, and they’re generally less expensive than their hardware-based

Figure 8.1 A WAF is a cost-effective
solution for even the smallest web
server implementation.

www.whitehatsec.com
www.whitehatsec.com

137Network protection for IIS
cousins. A typical example of a software-based firewall is Microsoft’s Threat Manage-
ment Gateway (TMG), which is a full-featured firewall that can prevent the types of
attacks discussed earlier.

 Software firewalls have incorrectly gotten a bad reputation for being slower than
hardware-based firewalls and not as secure. Although they generally aren’t designed
to handle as much traffic as a hardware-based firewall, you may not need that level of
performance. The security of the firewall, or the ability of a hacker to directly attack a
firewall, is a real concern, though not as much as it used to be. Years ago attacks to the
operating system the firewall software was installed on could open weaknesses, but
that’s largely been removed as a concern today.

 On the other hand, if performance is high on your list and you have many web
servers, you may need to consider a hardware firewall.

HARDWARE FIREWALLS

Cisco Systems and Barracuda Networks are great examples of top-of-the line hardware
firewall manufacturers. In fact many infrastructure and security specialists won’t con-
sider anything less. Hardware-based firewalls provide a high level of performance for
larger web server implementations (see figure 8.3). Choosing the best firewall for your
performance needs depends heavily on the amount of traffic (number of users) on
your websites and the number of web servers you need to protect. You’ll examine how
to collect performance data to assist in this decision later in the book, but keep in
mind that protecting web servers may in fact be only part of the decision process when
purchasing firewalls. The protection of other server types and resources, along with
firewall features such as VPN needed for other aspects of the business, will also play an
important role.

 Hardware firewalls have been traditionally trusted for network security; they’re fast
and reliable, mainly due to proprietary hardware and software. A hacker has a hard

Figure 8.2 Software-based firewalls
are less complex than hardware-
based firewalls but still provide good
performance for small and medium
companies.

138 CHAPTER 8 Securing the server
time cracking them because of the closely guarded secrets of the proprietary hard-
ware and operating system.

 The biggest challenge to implementing hardware-based firewalls is cost, and I
don’t mean merely the cost of the hardware, which can range from $500 to tens of
thousands of dollars, depending on performance and feature demands. Infrastruc-
ture and additional purchases of switches and cabling changes will need to be made,
not to mention an experienced engineer to configure the firewall. The total cost of own-
ership (TCO) should be planned for to make sure that it meets your company’s return
on investment (ROI). Purchasing and implementing a costly hardware-based solution
for a single web server that could have easily been protected with a WAF isn’t practical.
Don’t get me wrong—hardware-based firewalls are considered the best practice by
many security engineers. Make sure your firewall design meets your needs.

8.1.3 Using the Windows Firewall

This section on firewalls wouldn’t be complete without a brief discussion of the built-
in Windows Firewall. I’m sure you have plenty of experience with this firewall; it’s
turned on by default and lives on every Windows OS client and server.

 The Windows Firewall is a basic port-blocking firewall and, when combined with a
few of the built-in features of IIS, such as domain blocking and request filtering (dis-
cussed shortly), can provide some level of good protection. I do want to point out that
Windows Firewall isn’t intended to provide the kind of protection you get from a WAF,
Microsoft TMG, or other third-party firewall. It wasn’t designed for that purpose. That
doesn’t mean you should go turn it off. Every ounce of protection is helpful, but don’t
rely on it as your only option. A good WAF or hardware-based solution designed to
prevent the multitude of attacks discussed earlier is the best option.

Figure 8.3 For some security engineers
a hardware-based platform from Cisco or
Barracuda is the only answer.

139Network protection for IIS
One thing you do need to do regardless of your firewall solution is set the Windows
Firewall on the web server to allow access for the ports you use for your websites. By
default when IIS is installed on a server, it opens ports 80 and 443, so those are already
configured, as shown in figure 8.4.

 You should open Control Panel and check these settings to make sure ports 80 and
443 are open.

TRY IT NOW This is a good time to check the firewall on your web server to
verify that ports 80 and 443 are open. You can access Windows Firewall in
Control Panel, in the System and Security category. Select the Firewall option
and view the current configuration. The Windows Firewall will list HTTP and
HTTPS as being open.

The rule of thumb to follow is to not permit ports that you don’t need. For example,
later in this book you’ll secure several of the bike shop’s websites for HTTPS. If there
are no public websites that need HTTP (80), then you can close that port.

 The most common mistake made when using the Windows Firewall, or any firewall
for that matter, is that if you create a website binding that needs a different port than
80 or 443, you need to open that port at the firewall. You’ll see an example of that
when you configure the web server for remote management.

Figure 8.4 Windows Firewall
rules for HTTP and HTTPS

140 CHAPTER 8 Securing the server
 Once a good quality firewall is in place and configured, you’re ready to connect
your web server to the internet and allow the public to access your websites. IIS con-
tains more protection components that you may find useful as additions to your over-
all security plan. Let’s take a look at some of those in the next section.

8.2 Adding additional security
In today’s world, with bots constantly trying different types of attacks to penetrate web
servers, the best choice and the one easiest to manage is a third-party firewall solution,
as discussed earlier. Small companies starting out with a new website may not have the
initial budget to afford a software- or hardware-based firewall. For those cases, IIS con-
tains additional components that, when combined with Windows Firewall, can provide
a good level of security until a better solution can be employed.

 This section examines two of the more common protection components in IIS: IP
Address and Domain Restrictions, and Request Filtering. First up: blocking unwanted
networks and domains.

8.2.1 Blocking by network: IP and domain restrictions

IIS can provide IP address and domain blocking to prevent known hacker-based net-
works from accessing and attacking your server. You can manually add these addresses
to an Allow or Deny list. Normally this is handled by the firewall solutions discussed
earlier, but if you’re starting out and don’t have one of those firewalls yet, IP Address
and Domain Restrictions is a good feature to use if you know who’s attacking you.

The IP Address and Domain Restrictions component isn’t installed by default. It’s
listed under the Security categories, and you can quickly install it using PowerShell:

PS> Add-WindowsFeature Web-IP-security

Once installed, a new icon will appear in the IIS management section of the IIS man-
ager. As illustrated in figure 8.5, you can click to create Allow and Deny entries for the
networks you want to permit or block.

 By default you don’t have the ability to block by domain names; if you want that fea-
ture, you have to turn it on. The reason it’s not turned on by default is that it requires
the web server to do additional work every time a request is made. To block a domain,
the web server has to perform a reverse lookup in DNS, and that impacts performance.
To enable IP Address and Domain Restrictions, choose Edit Feature Settings from the
Actions menu and select Enable domain name restrictions, as illustrated in figure 8.5.

Above and beyond
For IIS 7.5 and IIS 8, a recently released Dynamic IP Address Blocking feature can be
added to IIS. This reduces the management time by dynamically building a Deny list.
Check www.IIS.Net for more details if you’re interested.

141Adding additional security
Also notice the performance-warning message that’s displayed when you enable this
feature (figure 8.5).

 When adding your own rule, you specify the IP address, network range, or domain
name to allow or block, as shown in Figure 8.6.

Figure 8.5 Enabling the domain blocking feature

Figure 8.6 Adding a rule to allow
or deny an IP address or domain

142 CHAPTER 8 Securing the server
Rules can be created at the server level, affecting all websites, and at the individual
website level for custom restrictions. The IP Address and Domain Restrictions compo-
nent of IIS is a good tool that’s only limited by the time-consuming management of
adding and removing restrictions. The time required will limit the number of web
servers and websites you’ll be able to maintain. Again, a better solution is a third-party
firewall that can make this easier. Many of those solutions automatically detect a poi-
son network and notify you to add the restriction.

TRY IT NOW The WebBikez web server is facing a series of attacks. The bicycle
shop would like you to add IP and domain restrictions. Install the component
and add the following restrictions:

IP address Deny: 208.48.139.160

IP network Deny: 208.48.140.0/24

Domain name Deny: RuffBikes.Com

Blocking networks and domains has limited usefulness; you can’t block everything, or
no one can visit your websites. Sometimes you have to examine the request that’s com-
ing into your web server and determine if it’s harmful. IIS has a component named
Request Filtering for this need.

8.2.2 Block common attacks using Request Filtering

The ability to examine and discard an HTTP request based on something you don’t
like inside the request is one of the most important tactics to prevent hackers from
ruining your websites. IIS’s Request Filtering is a powerful tool for web security special-
ists and developers because it adds a layer of request protection if no third-party solu-
tions are present on the network. Several different types of filters can be configured,
from blocking file types to preventing SQL strings (injection attacks).

 The challenge with the Request Filtering built into IIS is that you must know what
you want to block and then configure it for the server and individual websites. This is
similar to IP Address and Domain Restrictions in that you must already know what you
need to add. I don’t want to sound like a broken record, but this is another example
of why a WAF or hardware-based firewall, which already has these configurations and
can automatically add detected bad requests, is the best recommendation.

 Still, a small shop like our bicycle shop may find use for Request Filtering until the
time comes for a third-party solution. Figure 8.7 shows the categories of filters that can
be added.

143Adding additional security
Request Filtering can be configured to handle several types of situations, including
the following:

 File Name Extensions—List of filename extensions allowed or denied access. By
default IIS permits all file types. You may want to block the request of .gif files or
code pages such as .js.

 The Rules tab—Specific parameters such as headers and filename extensions
that will be scanned.

 Hidden Segments—A segment is the part of the URL path that lies between the
slash (/) marks. The request filter will deny access to hidden segments, which
don’t display in directory listings.

 Deny URL Sequences—Blocks specific URL text from being received such as dou-
ble dots (..). These double dots can be an indication a hacker is trying to move
out of the content area by moving up a level in the directory.

 HTTP Verbs—Specifies a list of HTTP verbs that will be allowed or denied access.
 Headers—Specifies the headers and their size limits that will be denied access.
 Query Strings—Blocks query strings such as those used for SQL injection attacks.

Configuring each selection is a straightforward click of a button. There are detailed
steps at http://mng.bz/mO01, but I bet you won’t need them. The challenge in add-
ing an Allow or Deny is discovering what needs to be added. Many third-party firewalls
can detect attacks and offer to adjust rules. Again, the details of web security are out-
side the scope of this book, but if you want to become part of the security team at your
company, look for a web security hacking book like Hacking Exposed Web Applications,
3rd Edition, by Joel Scambray, Vincent Liu, and Caleb Sima (McGraw-Hill, 2010).

 In the next section I discuss a couple more tools that may help if you think you’re
under attack, and then it’s time for a short lab before you end your lunch.

Figure 8.7 Adding Allow/Deny criteria to the different filters

http://mng.bz/mO01

144 CHAPTER 8 Securing the server
8.3 Monitoring process for hacking
Security, and web security in particular, is a career all by itself. As the web administra-
tor you should be able to properly secure your websites and servers (as you’re doing in
this book), but every additional ounce of knowledge about security can be used to
assist the security/firewall team and developers along the way.

 The tools mentioned here require additional research and study, but if you want to
become more involved in the security side of the web, this is a good place to start. Plan
to spend some time reading the Hacking Exposed series of books. If you dive in deep,
you may even consider a certification such as the Certified Information Systems Secu-
rity Professional (CISSP).

 In this section you’ll be exposed to a couple of methods for detecting whether
your server is under attack. Remember that a good firewall prevents this, but it’s
always good to check.

8.3.1 Logging files

One day in the office you receive a few emails complaining that the website seems
slow. After checking into it you notice that the website and the server are reacting
slowly without apparent reason, so you inspect the situation further by scanning the
log files.

 As discussed in chapter 6, you can parse (search) through the IIS log files for infor-
mation using PowerShell or a free tool such as Log Parser. Using PowerShell you can
create scripts to look for specific requests, the number of requests from an IP address,
and much more. Later in this book I show you how to make some scripts for perfor-
mance and capacity planning when monitoring your logs.

 When it comes to security monitoring, although it’s possible to write scripts to
monitor the logs for security events, it isn’t practical for two reasons:

 You need to script for every possible security threat that might impact your web
server, including injection attacks, content spoofing—all possibilities.

 You need to make decisions when an attack is occurring or has occurred, such
as adding an IP address Deny rule.

For experienced web security engineers, that’s a normal day, but for most of us inad-
vertent IIS admins, we need some help. Here’s an example: suppose you want to mon-
itor your logs for specific 404 errors that are generated when Request Filter denies an
HTTP request. You locate the 404 errors on Microsoft’s www.iis.net site (table 8.1).

Table 8.1 HTTP 404 sub-status codes

HTTP Sub-status Description

404.5 URL sequence denied

404.6 Verb denied

404.7 File extension denied

www.iis.net

145Monitoring process for hacking
You can use PowerShell to look for these errors in your logs. In chapter 6 you
searched your logs for basic information, but let me give you a reminder here of an
example scanning for a 404.5 error:

PS> Get-ChildItem -Path C:\inetpub\logs -Filter *.log -Recurse | Select-

➥String -SimpleMatch "404.5"

You could create a series of these searches and save them as a PowerShell script, but
that’s a lot of work. This is when I turn to my third-party firewall or WAF tool. Not only
do these tools monitor the log files for every request made of the web server, they can
also take action if a request looks suspicious. At 2:30 a.m. I’m sleeping, but my firewall
is actively blocking the bots attacking my server. Microsoft built IIS with many options
to support your security needs, but that assumes you’re a security specialist and can
manage the security throughout the day.

 For security monitoring of your logs, the best practice is to use one of the firewall
products discussed earlier and have those tools highlight issues and provide solutions.

8.3.2 Using Process Explorer for IIS

As a Windows administrator I’m sure you’ve heard of Sysinternals, a company origi-
nally run by diagnostic tool and security guru Mark Russinovich. Microsoft bought Sys-
internals back in 2006, and the diagnostic and troubleshooting tools are still
developed and released at http://mng.bz/sC82.

 These tools are free to download and cover a wide variety of troubleshooting and
diagnostic scenarios, such as locating non-legitimate processes and services and
memory-leaking processes. Two tools that many IIS admins (and Windows admins in
general) use are Process Explorer and Process Monitor. Think of Process Explorer as
an advanced version of the Windows Task Manager. Using Process Explorer you can
monitor processes and DLLs, see which files they have open, and find out who “owns”

404.8 Hidden namespace

404.10 Request header too long

404.11 URL double escaped

404.12 URL has high bit chars

404.13 Content length too large

404.14 URL too long

404.15 Query string too long

404.18 Query string sequence denied

404.19 Denied by filtering rule

Table 8.1 HTTP 404 sub-status codes (continued)

HTTP Sub-status Description

http://mng.bz/sC82

146 CHAPTER 8 Securing the server
the process. Process Monitor shows real-time process activities, processing access, and
registry entries and directories.

 For IIS admins Process Explorer and Process Monitor can help monitor applica-
tion pools and web application DLLs for memory leaks. A security person can use
these tools to identify processes and DLLs that have been compromised or that
shouldn’t be running at all. As an example, if you were monitoring the logs for the
bike shop website and noticed a lot of 404.14 errors (URL too long) from the Request
Filter, that could indicate a hacker trying to inject or upload a virus. Using IP Address
and Domain Restrictions, you block the attack, but then you notice your web server is
performing slowly. This could be an indication of a memory leak from the attack. You
could use Process Explorer and Process Monitor to identify the memory leak and pos-
sibly identify who attacked you before running your virus cleanup. If you think your
web server has been attacked or compromised or has a virus, these tools can help
identify and possibly trace the attack. For more, check out http://mng.bz/144G.

 Armed with all this security information, your lunch is coming to an end. Before
you go back to work, try the short lab.

8.4 Lab
This chapter focused on securing your network infrastructure to protect your web
servers, which makes for a rather unusual lab. If you didn’t do the chapter 8 Try It
Now sections, you should, but there’s something else I think you should do as well.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I’ve repeated
them here for your convenience. Once complete, you can do the lab (task 1 is the
only task).

 This is a good time to check the firewall on your web server to verify that ports
80 and 443 are open. You can access Windows Firewall in Control Panel, in the
System and Security category. Select the Firewall option and view the current
configuration. The Windows Firewall will list HTTP and HTTPS as being open.

 The WebBikez web server is facing a series of attacks. The bicycle shop would
like you to add IP and domain restrictions. Install the component and add the
following restrictions:

IP address Deny: 208.48.139.160
IP network Deny: 208.48.140.0/24
Domain name Deny: RuffBikes.Com

TASK 1
There’s only one task for this lab and it gives you a chance to explore more about pro-
tecting your server. Your lab VM is perfect for some experimentation. To learn about
firewalls and the protections they can provide, take a few minutes to download an eval-
uation copy of a WAF, such as Port80Software’s Server Defender. Although I don’t rec-
ommend any particular product, by trying out a WAF you can compare the amazing

http://mng.bz/144G

147Ideas to try on your own
amount of control and monitoring that a third-party tool provides to trying to manage
all of it yourself in IIS.

 Building experience with a WAF can help you understand the features and benefits
of other options, such as hardware-based firewalls. You’ll be better equipped with the
knowledge of which features to look for regarding web servers.

8.5 Ideas to try on your own
I’ve learned a lot about security from the real-world experience of working with IIS.
You can too without the risk of losing a production server or website. Consider trying
the following when you get a chance:

 If you have a spare computer around the office, install IIS with an evaluation
copy of a WAF, create a couple websites, and place the web server on the inter-
net if it’s permissible by your network team. You can also try this at home using
your internet connection. If possible, purchase an internet domain and set up a
DNS record that points to your website. Experiment and, more importantly,
monitor the types of attacks that are coming into your server and see how a
good firewall is protecting you. Get comfortable with the log monitor in the
tool you choose so you see and experience real attacks without danger. Good
virus protection is recommended, and you shouldn’t hesitate to format the
hard drive after your experimentation just in case.

 Adding a little extra research to your lunch diet will help you be better pre-
pared for the next big wave of attacks. By referencing a book from the Hacking
Revealed series or another of your choice, you can better help your networking
team and developers in their struggle to protect your websites and servers.

Protecting data
with certificates
Are you comfortable entering your credit card information into a website? How
about one that has no protection or encryption? Protecting sensitive data from pry-
ing eyes as it flies from your customer’s computer to your website is a top responsi-
bility of the administrator.

 Secure Socket Layer (SSL) is an encryption technology created by Netscape to
protect data from being stolen by encrypting the communication between the cus-
tomer and the server. Every time you add https:// to a URL, you’re using SSL
encryption to protect your confidential data. The web requests are encrypted and
(usually) sent through the firewall’s default port of 443 to the website, which
responds back over the encryption tunnel, as shown in figure 9.1.

 To create an SSL encryption tunnel for HTTPS, you install a certificate—often
purchased from a Certificate Authority (CA) or self-made. The certificate has an
encryption mechanism that protects your customer’s data from being stolen. The
science behind this is called Public Key Infrastructure (PKI), which is beyond what
we can cover here. But correctly obtaining, installing, and configuring certificates
for your websites is what you’ll do in this chapter.

 Along the way you’ll learn about the different certificate types and the process of
installing an SSL certificate using a simple example on your own test server. Then
you’ll help WebBikez configure the secured websites for email, shopping, and more.
148

149Not all certificates are the same
Let’s get started by examining the different types of certificates available so you can
decide which one is right for you.

9.1 Not all certificates are the same
Choosing a certificate for your website is an important step in the process of securing
transactions. Your users must feel comfortable supplying credit card and address
information to your websites. Not all certificates are the same, and the type of certifi-
cate you purchase is important.

 This section will help remove the confusion surrounding certificates so you can
purchase the correct one for your needs. We’ll examine trusted and non-trusted cer-
tificates and the primary types of certificates, such as High Assurance and Extended
Validation, as well as single and multiple certificates.

 Let’s start with the differences between trusted and non-trusted certificates.

9.1.1 Trusted and non-trusted certificates

First and foremost, the certificate you install for your secured website will be trusted or
non-trusted. Trusted means the customer’s browser recognizes that the certificate is
from a trusted Certificate Authority (CA) and will automatically install and use the cer-
tificate without displaying any error messages. To be a trusted certificate, the certifi-
cate must be generated from a trusted CA that appears in a list of trusted authorities in
the security options of the browser. I’m sure you’ve heard of one or two of the major
CAs, such as VeriSign, Thawte, and GoDaddy. For websites that need HTTPS, getting a
certificate from a trusted CA is the best choice.

 On the other hand, using a certificate that’s not trusted—one that you create your-
self (called Self-Signed) or one from a non-trusted authority—will result in a warning
message informing the user that the website isn’t trusted and could be harmful.

Figure 9.1 SSL (and certificates) encrypt
transmissions to protect data from hackers.

150 CHAPTER 9 Protecting data with certificates
Non-trusted certificates are often used during initial testing of a website because
they’re free and easy to make. You should never use a non-trusted certificate once the
website launches to customers, though, because of the warning messages customers
will get. The idea is that the customer, seeing the warning messages, won’t continue
on to the website because it could possibly steal information from them.

9.1.2 Types of certificates

There are three types of certificates available today for web servers. Two of them—
Extended Validation (EV) and High Assurance (HA)—are trusted, and one, Self-
Signed, isn’t. Self-Signed certificates should only be used for testing. Let’s look at each
of these options.

EXTENDED VALIDATION (EV) CERTIFICATE

The EV certificate, a trusted certificate, helps prevent phishing attacks. This certificate
supplies a much higher level of confidence to your customers than the other certifi-
cates discussed here, but is also much more expensive, costing around $1,000 as com-
pared to a $50 HA certificate. When you visit a website like www.verisign.com that uses
an EV certificate, the address bar in your browser will turn green, as seen in figure 9.2.
Obtaining an EV certificate also requires additional background checking and busi-
ness verification on the part of the CA. This is the main reason why the certificate is so
highly regarded.

High Assurance (HA) certificate
Most businesses purchase the High Assurance certificate. To obtain it, you need to
validate your business address and that you own the domain (not nearly as extensive
a check as for an EV certificate). When you visit a website that uses an HA certificate,
the address bar in your browser remains unchanged, as in figure 9.3. You can obtain
inexpensive HA certificates, ranging in price from $50 to a few hundred dollars from
places such as www.GoDaddy.com.

Figure 9.2 An Extended Validation certificate is the best choice, and the most expensive.

151Not all certificates are the same
NON-TRUSTED OR SELF-SIGNED CERTIFICATE

As I mentioned earlier, you should only use a non-trusted certificate during testing of
the website, not for production. Any certificate that has not been validated by an offi-
cial Certificate Authority is considered dangerous. When you visit a website that’s
using a non-trusted certificate, you’ll receive a warning message, and the navigation
bar will turn red, as in figure 9.4.

 A red bar is an indication that the website could be harmful. As you’ll see later, a Self-
Signed certificate is easy and quick to generate and is often used in the initial configu-
ration of HTTPS for testing purposes. If you use one for testing, don’t forget to replace
it with a genuine trusted certificate before you move the website into production.

 If your websites require SSL and are accessible to the public, you should use a
trusted certificate. The price range for a certificate varies based on encryption quality
and vendor, so you’ll need to do some research to choose the best options for you.

9.1.3 Single and multiple certificates

The number of certificates you’ll need to purchase is determined by two factors: the
number of websites and the virtual IP addresses you use.

WHEN YOU NEED A SINGLE CERTIFICATE

Single certificates are created based on the URL of the website for which you want to
use HTTPS. For the URL Shop.WebBikez.com, for example, you’ll create a certificate
using that URL. If you have additional websites such as Download.WebBikez.com and
mail.WebBikez.com, you’ll need to purchase an additional certificate for each URL.

 If you have several websites, this can start to get expensive. There are two other
types of certificates you can purchase to help reduce the cost.

Figure 9.3 High Assurance
certificates are a good,
economical choice.

Figure 9.4 Self-Signed certificates should only be generated and used for
testing purposes.

152 CHAPTER 9 Protecting data with certificates
WHEN YOU NEED MULTIPLE CERTIFICATES FOR THE SAME DOMAIN:
WILDCARD AND SAN CERTIFICATES

Suppose you have three websites on the same domain that all need SSL (HTTPS):

 Shop.WebBikez.com
 Download.WebBikez.com
 Mail.WebBikez.com

To save money, you don’t want to purchase individual certificates for each of them.
Because the websites are part of the same domain, you have two options: the Wildcard
certificate and the Subject Alternate Name (SAN) certificate.

 Wildcard certificate—A Wildcard certificate for this example would have the com-
mon URL of *.WebBikez.com. With this type of certificate, you could add as
many websites for the domain WebBikez.com as you wanted without the need to
purchase additional certificates. Choose Wildcard certificates when you need
the flexibility to be able to add a lot of sites quickly. Note that there’s a possible
security risk with Wildcard certificates in that a hacker could use your certificate
to bring up a spoof website called HACK.WebBikez.com, and it would appear to
be a trusted site. Although this type of hack is unlikely, you can prevent it with a
SAN certificate.

 SAN certificate—The SAN certificate was originally created to replace the Wild-
card because of the possibility of a spoofed website using your certificate. When
you register a SAN certificate, you specify the URLs for each website. One certifi-
cate is generated for those specific URLs. This provides better security and eas-
ier management with one certificate and still reduces the cost because you’re
only purchasing a single certificate for the sites. Choose the SAN certificate if
you’re in a more stable environment.

Now that you have an idea of what types of certificates are available and which may be
best for you, in the next section you’ll start off by installing a single certificate for a
single website. After getting that to work, you’ll see the benefits of Wildcard and SAN
certificates.

9.2 Implementing certificates on a single IIS server
Setting up certificates for your websites on IIS 7 and IIS 8 is virtually identical. I’ll start
by showing you the process of generating and completing a certificate request, and
then in the next section you’ll add an HTTPS binding and test the results. You’ll do
this on a simple default website first so you can get the process down. Then you’ll look
at adding the complexity of installing certificates for the WebBikez shop and face
some challenges—and learn some tricks to resolve them.

 The process begins in the IIS manager Server Certificates icon, as shown in figure
9.5. The Server Certificates storage is located on each web server, and certificates must
be imported (copied) to each of the web servers that need them. Certificates are stored
on each web server and assigned to a website by adding a new HTTPS binding.

153Implementing certificates on a single IIS server
NOTE IIS 8 has a new feature to store certificates in a single centralized loca-
tion for all of your web servers. This feature makes the management of certifi-
cate revokes and re-issues a snap compared to having them stored on the
individual web servers. I discuss this feature in later chapters, when you have
multiple web servers.

The server certificates pane is where you generate and complete a certificate request
with your Certificate Authority. The actions pane lists four different certificate
operations:

1 Import—This option imports an existing certificate into the Server Certificates.
This is primarily used if you already have an existing certificate.

2 Create/Complete Request—These are the options to obtain a new certificate from a
Certificate Authority. This process is the one I detail in this section.

3 Create Domain Certificate—A simpler version of the Create/Complete Request for
networks that have their own online Certificate Authority, such as Microsoft
Active Directory Certificate Services.

4 Create Self-Signed Certificate—Creates a non-trusted certificate for testing. This
certificate shouldn’t be used in production and will generate a red bar in a
browser. This is a great option for when you’re in the testing phase, though,
before you purchase a trusted certificate.

Figure 9.5 Certificates are
stored in Server Certificates
on a per-server basis.

154 CHAPTER 9 Protecting data with certificates
The first step in the process is to get a certificate from a trusted source. The IIS man-
ager will help you generate and complete the request from your preferred Certificate
Authority. Although you’re not going to purchase a real certificate now, let’s start by
generating the request.

9.2.1 Generating a request

Before a Certificate Authority can give you a certificate, you need to create a certificate
request that contains the name (URL) of the website to secure. This is important; cer-
tificates are generated for the URL that your customers will type into their browsers.

NOTE Although you won’t purchase a certificate as you work through this
chapter, I need to show you the process of working with a real CA to generate
and install a certificate. In the Try It Now and Lab sections, instead of buying
a certificate, I’ll have you create a Self-Signed certificate. The Self-Signed cer-
tificate will be non-trusted—it will produce a red address bar. This will be fine
for the lab, but make sure to refer back to this section when purchasing your
trusted certificate.

Some Certificate Authorities can generate and produce the entire certificate on their
website and will inform you of that when you buy it, but some don’t, so I’ll show you
the process using the Generate Request option built into the IIS manager.

NOTE Let me show you the process before you try it; wait for the Try It Now
section.

Clicking the Create Request option in the server certificates pane will start the process
of generating the request for your CA, as shown in figure 9.6.

 The Request Certificate form contains two important pieces of information that
are used to create and verify your certificate: the Common name and the Organiza-
tion. The Common name is the URL for the website you want to secure. This must
match the URL that your customers will type into their browser (without the https://).

 The Organization information, including address, is the legal name and location
of your company. During the validation process with your CA (you can expect a series
of phone calls), you’ll verify this information. Keep in mind that you can’t abbreviate
the City or State locations.

 The next step in the process is to select the cryptographic provider and bit key
length, as shown in figure 9.7.

 If you’re using the CA’s website to request your certificate, then the CA determines
which cryptographic provider you’ll use, based on whichever firms it has chosen to
support its certificates. If you’re using the IIS manager to request your certificate,
you’ll usually be okay using the default provider. If your CA wants a specific provider,
it’ll provide that information on its website.

 The key bit length determines the strength of your certificate: the larger the bit
length, the stronger the certificate. You’ll be tempted to create a bit length as large as

155Implementing certificates on a single IIS server
Figure 9.6 Generating a certificate request using IIS manager

Figure 9.7 The cryptographic
provider and bit length determine
the strength of the certificate.

156 CHAPTER 9 Protecting data with certificates
the CA supports, but keep two things in mind: one, the stronger the key, the more the
certificate will cost; and two, stronger keys can impact performance. It’s common
today to use a bit length of 1024, but this is gradually changing to the stronger 2048,
mainly due to increased security concerns.

 After the cryptographic properties are selected, specify a file location for the
request, as shown in figure 9.8.

 The request file contains your request, including the website URL and your com-
pany name. You’ll copy this text content in the next section into the CA to complete
the request. After the request is completed with the CA, you should delete this file.

TRY IT NOW Even if you aren’t ready to purchase a certificate with a real CA,
this is a good time to get familiar with the process and create a sample
request. Open the IIS manager, double-click the Server Certificates icon, and
click Create Certificate Request. You won’t be using this certificate, so use my
example information to create the request. Enter the following:

Common Name—www.TestDomain.com
Organization—My Company
Organization Unit—IT
City—Denver
State—Colorado
Country—US

Choose the default cryptographic properties and store the request to C:\test-
Req.txt. Using Notepad, open the request text file and view the content.

With the certificate request generated, let’s complete the certificate at a CA.

9.2.2 Completing a request

Once you have the request file, you’ll return to your CA’s website to complete the pro-
cess. Here are the general steps:

 Copy the request into the website.
 Select the type of certificate you want.

Figure 9.8 You’ll need the
content of the request file to
complete the process.

157Implementing certificates on a single IIS server
 Pay for it (not detailed—you have a credit card, right?).
 Download the certificate.

I want to demonstrate this process using Active Directory Certificate Services (ADCS).
You may not have this available, but the process is similar regardless of whom you pur-
chase your certificate from. Because you may not have ADCS available, I describe the
process in detail, so no need to try this yet. Read along as we get started by submitting
the request and selecting the certificate type.

SUBMITTING THE REQUEST

In figure 9.9 I’m using Microsoft Active Directory Certificate Services as my CA, so it
may be a little different from your CA, but it’s the same information.

 With your CA, you’ll copy the text from the request file into the CA’s website. A mis-
take many administrators make the first time they create a certificate is choosing the
wrong Certificate Template. Make sure to choose Web Server as the template. If you
miss this, you’ll need to contact the CA, delete the certificate, and start over.

COMPLETING AND DOWNLOADING THE REQUEST

In figure 9.10 the real certificate is generated and can be saved to disk or USB drive.
Your third-party CA will email you the certificate file (.cer) after they verify that your

Figure 9.9 Supply the request
information and select the Web
Server Certificate Template.

158 CHAPTER 9 Protecting data with certificates
company is a legal entity. Click the Complete Certificate Request option to complete
the process and install the certificate, as shown in figure 9.10.

 When you complete the process, you’ll assign the Friendly name. This name is dis-
played in the IIS manager and makes it easy to locate the certificate. I prefer to use the
URL of the website the certificate is generated for, which makes it easy for me to keep
track of.

 Before you look at how to assign this certificate to your website, I want to show you
how to put your certificate on multiple web servers using the Export/Import options.

9.2.3 Exporting/Importing a certificate for backup
and additional web servers

If your web server should fail, and you don’t have a backup of the certificate, you’ll
end up purchasing another one. Using a simple export process, you can make sure
you have a copy of the certificate just in case. Later in this book you’ll scale out IIS to
handle additional performance load and reliability using load balancing. In these
cases you’ll have the same website across multiple servers. You’ll need to have the cer-
tificate for the website located on each server as well. You can’t copy the certificate
from one server to another; you have to follow an export/import process.

 Let’s start by exporting a certificate that will act as a backup and that can also be
imported to other servers.

Figure 9.10 Completing the request
will install the new certificate.

159Implementing certificates on a single IIS server
EXPORTING A CERTIFICATE

On the server that currently holds the certificate, double-click the Server Certificates
icon, select the certificate, and choose the Export option, as shown in figure 9.11.

 Save the certificate as a .pfx file (an encrypted version of the certificate) and assign
the file a password (figure 9.11). In the future, to import this file into a different server
or restore the certificate to the same server, you’ll need to supply the password.

TRY IT NOW In the Server Certificates icon, create a Self-Signed certificate.
You can make the Friendly name anything you like; this is only for an experi-
ment. Once the certificate is created, note that it’s listed in the IIS manager.
Select the certificate and choose the Export option. Export the certificate to
your C:\ drive. Once completed, delete (remove) the certificate in the IIS
manager. Yup, go ahead and delete it as if a problem with the server occurred
and you lost the certificate. In the next Try It Now, I’ll have you import the
certificate back into the Server Certificates.

Figure 9.11 The process
of exporting a certificate

160 CHAPTER 9 Protecting data with certificates
Copy this file to a USB drive or someplace safe—don’t leave the file on the server
because it could be stolen. With a backup of your certificate, let’s see how to restore a
lost certificate or add the certificate to another server.

IMPORTING A CERTIFICATE

To import a certificate to another server, or back to the original server if the current
certificate was deleted, use the Import option in the Server Certificates icon, as shown
in figure 9.12.

 Once the certificate has been imported, you’ll see the certificate listed in the
Server Certificates icon in the IIS manager.

TRY IT NOW Bring back that certificate you deleted in the last Try It Now by
importing the .pfx file. When you’re finished, create a new certificate (Self-
Signed is fine) for the default website on your test computer. You’ll use this
new certificate in the next section. Make sure that the Common name
(Friendly name if using Self-Signed) matches the URL you type in the browser
to test the website. As an example, if you have www.Company.loc in DNS,
make sure the common name is www.Company.loc.

With a certificate safely installed on our web server, you’ll now assign the certificate to
the website. In the next section you’ll create a new binding for the website and test the
certificate. You’ll also explore and solve some of the challenges you might run into
with host-name–based bindings.

Figure 9.12 The process of
importing a certificate

161Securing your websites
9.3 Securing your websites
Once certificates have been installed and stored on the web server, you need to assign
those certificates to the correct websites. You assign a certificate to a website by adding
a new binding. (We looked at bindings in chapter 5—go head and review that chapter
if needed.)

 If you’ve been following along in this chapter, you’ll have a certificate (Self-Signed
is fine) on your web server created for the default website. The URL I’m using in this
example for the default website is www.Company.loc.

 In this section you’ll create a binding for the default site and test to make sure
HTTPS is working. Then you’ll create the certificates and binding for a more challeng-
ing set of websites for the WebBikez shop, using host names in the binding.

 Let’s start by adding a simple binding to the default website.

9.3.1 Binding certificates

Certificates stored on the web server are assigned to their respective websites using a
binding. As an example, in the IIS manager I’m adding a binding to the default web-
site. When adding the binding, change the protocol type of the binding to https, as
shown in figure 9.13. When you do that a new dropdown is added for the certificate.
Choose the correct certificate (the one that matches the URL) and click OK to accept
the new binding.

 At this point you can test the secured website by opening a browser and using
https://www.Company.loc as the URL. If you’re using a non-trusted, Self-Signed certif-
icate, you’ll get a warning message and a red address bar, but your website should still
appear. You’ve successfully secured the default website.

TRY IT NOW Try this with your default website: create a new binding for HTTPS
and select your certificate. Open your browser and test the HTTPS connection
to your site.

Figure 9.13 Assigning a
certificate to a website
with HTTPS binding

162 CHAPTER 9 Protecting data with certificates
As simple as this example has been—and most of your websites will be as easy—there
are two additional points to consider:

1 Should I delete the HTTP binding?—If you want your website to only respond to
HTTPS, then you should delete the HTTP binding. A word of caution: some
admins want customers to be able to use http in the URL rather than have them
redirected to https. This is common for email access—as an example, http://
mail.company.loc is redirected to https://mail.company.loc. If this is the case,
leave the HTTP binding for the redirection.

2 Should I require SSL settings?—Another way to require SSL (HTTPS) is to change
the website settings. In the IIS manager the icon SSL Settings has an option to
require SSL regardless of what additional bindings you may have for the website.

If you have a single server with one or two websites that need SSL, you now have the
solution to correctly applying certificates. If you’re like me and have several websites
(such as with the WebBikez shop) that use host names in the binding, it becomes a lit-
tle more complicated. In the last section of this chapter, you’ll see how to handle that
situation.

9.3.2 Securing host name (header) sites with SSL

You may run into a problem if you use host names in your bindings instead of using
virtual IP addresses for each website. A single IP address can only have one certificate.
If you use host name bindings that share a single IP address, you can only have a single
certificate that will apply to all those websites.

 Consider two websites and URLs for the WebBikez shop (you’ll try this later in
the lab):

 Shop.WebBikez.com
 Mail.WebBikez.com

Adding a certificate to these sites follows the procedure you learned in this chapter.
Create two certificates with the common names of Shop.WebBikez.com and one with
Mail.WebBikez.com. But if these websites share an IP address and use host name bind-
ings, that won’t work. In fact in IIS 7 the Host Name field will be greyed out com-
pletely when you try to add the HTTPS binding.

 There are two methods (secret tricks) around this issue.

METHOD 1
Notice that the top-level domain is the same for each website (WebBikes.com). If you
create a Wildcard certificate *.WebBikez.com and select that certificate when you cre-
ate the binding, the IIS manager will allow you to type in the host name, as shown in
Figure 9.14.

 With a Wildcard certificate you can assign as many websites as you want, as long as
the top-level domain matches. The one drawback is that all the websites use the same
certificate. This is fine if the sites are for the same company, as is the case with the

163Securing your websites
WebBikez shop. But if you’re hosting different company websites, this is a bad prac-
tice, and you’ll want a different certificate for each website. Take a look at method 2.

METHOD 2
Notice back in figure 9.14 the option to require Server Name Indication (SNI). This is
a new feature in IIS 8 and isn’t supported in IIS 7. This feature permits you to install
different certificates for websites that use host name bindings. Select the checkbox
and you can apply URL-specific certificates. I explore this feature in more detail later
when we start to scale IIS to multiple servers.

 Certificates can also be installed and HTTPS binding configured using PowerShell.
Before you try the lab, take a look at how to assign certificates using PowerShell.

9.3.3 Assigning certificates with PowerShell

Certificates can be installed and configured using PowerShell along with the Windows
native command-line utility CertUtil.exe. This capability becomes important when
working with Server Core, which has no GUI, or when deploying certificates to multi-
ple servers at once (discussed later in the book).

 With all the information you learned in this chapter, adding the PowerShell piece
is pretty simple. It’s the same as the GUI, only with commands. I’ll use a generic exam-
ple website (Shop.Company.com), but in the lab you’ll perform this for one of the
sites for the bike shop. Here’s the process:

 Copy the certificate (.pfx) to the destination web server.
 Install the certificate.
 Add an HTTPS binding for the website.
 Bind the certificate to the website binding.

Figure 9.14 Using a Wildcard
certificate for host name bindings

164 CHAPTER 9 Protecting data with certificates
Let me start by copying and importing the certificate, and then I’ll be able to add an
HTTPS binding and add the certificate to that binding.

COPYING AND INSTALLING A CERTIFICATE

Start the process by copying an exported certificate (.pfx) to the destination web
server that contains the websites you want to secure with HTTPS. You can connect
(map) a network drive or walk the certificate to the server on a USB stick.

 To install the certificate onto the server, use the Windows native command-line
utility CertUtil.exe, as in the following example. You must specify the password for the
certificate and the location of the .pfx file:

PS> certutil -p P@ssw0rd -importpfx c:\shop.Company.com.pfx

Make sure to delete the certificate .pfx file from the server after you successfully install
the certificate.

With the certificate installed on the server, the next step is to create an HTTPS binding
for the website you want secured.

ADDING AN HTTPS BINDING

Using the New-WebBinding cmdlet from the WebAdministration module makes this a
snap. The parameters for the cmdlet specify the site name, protocol, port, and IP
address for the site. The SSLFlags determines where the certificate is located, which
will be used for the binding. The certificate you installed is in Windows certificate stor-
age, but here are all the options:

 0—Regular certificate in Windows certificate storage
 1—SNI certificate
 2—Central certificate store
 3—SNI certificate in central certificate store

Here’s an example of how to do this:

PS> Import-Module WebAdministration

PS> New-WebBinding -Name shop -Protocol https -Port 443 -IPAddress

➥192.168.3.201 -SslFlags 0

The process isn’t complete yet; there’s one more step before the website is usable for
HTTPS.

Above and beyond
When you use CertUtil.exe, you need to specify the password for the .pfx file. If you’re
going to build a script, I recommend replacing the passwords with a variable that gets
the password from a prompt, such as the following:

PS> $Password = (Get-Credential).GetNetworkCredential().password

165Securing your websites
BINDING THE CERTIFICATE TO A WEBSITE

One last step remains, and it’s often overlooked and forgotten: linking the certificates
to the new website bindings. The graphical IIS manager hides this part of the process
from you and performs it in the background. You’ll have to remember to perform it
with commands if you want your sites to work with SSL. This is a two-phase process
beginning with getting the thumbprint (unique identifier) of the certificate and then
creating the binding. Here’s an example of storing the thumbprint of the Shop.Com-
pany.com certificate into a variable called $cert:

PS> $Cert = Get-ChildItem -Path Cert:\LocalMachine\My |

➥Where-Object {$_.subject -like "*shop*"} |

➥Select-Object -ExpandProperty Thumbprint

Using the thumbprint you can grab the entire certificate and assign it as an SSL bind-
ing for the website in one line. The next command uses Get-Item to grab the certifi-
cate and then New-Item to create the SSL binding. SSL bindings are created in the IIS:
drive IIS:\SSLBindings along with the binding information.

 In IIS binding information is normally displayed as IPAddress:Port:Hostname
(*:80:*). But PowerShell interprets the colon (:) as a path indicator. When using Pow-
erShell to set binding information, use the exclamation point (!) instead:

PS> Get-Item -Path "cert:\localmachine\my\$cert" |

➥New-Item -Path IIS:\SslBindings\192.168.3.201!443

The bindings are now complete, and the websites can be reached using HTTPS. Now
it’s time for you to try building several secure sites for the bike shop and applying cer-
tificates to each one. Take a few moments to complete the lab and help secure the
WebBikez shop.

9.3.4 Checking for certificate expiration

Once you add certificates for SSL, you need to check for when they expire. Checking
each certificate for a website using the IIS manager takes considerable time, and fail-
ing to locate an expiring certificate means the website will become unusable until the
certificate is replaced.

 Add to that the time it takes to get or renew a certificate, and you could lose access
to a website for a couple of days. That’s unacceptable, so you need to check the certif-
icates for their expiration dates. PowerShell makes this task simple and easy:

PS> Get-ChildItem -Path Cert:\LocalMachine\My |

➥Select-Object -Property PSComputerName, Subject, @{

➥n=’ExpireInDays’;e={($_.notafter – (Get-Date)).Days}} |

➥Where-Object {$_.ExpireInDays -lt 90}}

Notice the Where-Object. This line checks for certificates that will expire in less than
90 days. You can change the number to whatever you need, as long as you give yourself
plenty of time to renew and replace the certificate.

 Later in the book you’ll use the preceding command to check for expiring certifi-
cates on multiple web servers simultaneously. In large web environments certificate

166 CHAPTER 9 Protecting data with certificates
management becomes increasingly harder. In chapter 18 you’ll learn about a new fea-
ture in IIS 8 called the Central Certificate Store that completely removes the challenge
of managing certificates. If you’re not using IIS 8 yet, then the preceding command
will help.

9.4 Lab
Before you go back to work, I want you to secure some websites for the WebBikez
shop. The company has added a few websites for customer shopping and downloads,
plus a website for employee email, and needs your assistance in getting them secured.
You can perform this lab using the IIS manager or PowerShell, whichever you prefer.

 When you create certificates for this lab, you can create a simple Self-Signed certif-
icate. I’m also including tasks that are more realistic and require a CA such as ADCS.
In case you’d like to use ADCS on your VM, I’ve posted instructions for a quick installa-
tion on MoreLunches.com.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I’ve repeated them
here for your convenience. Once complete, you can start the lab with task 1.

1 Even if you aren’t ready to purchase a certificate with a real CA, this is a good
time to get familiar with the process and create a sample request. Open the IIS
manager, double-click the Server Certificates icon, and click Create Certificate
Request. You won’t be using this certificate, so use my example information to
create the request. Enter the following:

Common Name—www.TestDomain.com
Organization—My Company
Organization Unit—IT
City—Denver
State—Colorado
Country—US

2 Choose the default cryptographic properties and store the request to C:\test-
Req.txt. Using Notepad, open the request text file and view the content.

3 In the Server Certificates icon, create a Self-Signed certificate. You can make
the Friendly name anything you like; this is only for an experiment. Once the
certificate is created, note that it’s listed in the IIS manager. Select the certifi-
cate and choose the Export option. Export the certificate to your C:\ drive.
Once completed, delete (remove) the certificate in the IIS manager. Yup, go
ahead and delete it as if a problem with the server occurred and you lost the
certificate.

4 Bring back that certificate you deleted in the last Try It Now by importing the
.pfx file. When you’re finished, create a new certificate (Self-Signed is fine) for
the default website on your test computer. You’ll use this new certificate in the
next section. Make sure that the Common name (Friendly name if using

167Lab
Self-Signed) matches the URL you type in the browser to test the website. As an
example, if you have www.Company.loc in DNS, make sure the common name is
www.Company.loc.

5 Create a new binding for HTTPS and select your certificate. Open your browser
and test the HTTPS connection to your site.

TASK 1
Start by creating the following websites if they don’t already exist from a previous lab.
When you create the websites, uniquely identify their HTTP bindings using a host
name or virtual IP address. And make sure to add the DNS records and a sample page
on each website:

 Shop.WebBikez.com
 Download.WebBikez.com
 Mail.WebBikez.com

Test each website URL to verify that the sites are functioning normally before continu-
ing to the next task.

TASK 2
Using the Server Certificates in the IIS manager, create a Self-Signed certificate with a
Friendly name of SelfSigned.

TASK 3
Create an HTTPS binding for Shop.WebBikez.com and assign the Self-Signed certifi-
cate. Access the website using https://shop.WebBikez.com. You should be rewarded
with a secured connection, although you’ll be warned that this isn’t a trusted certifi-
cate, and your address bar will turn red.

TASK 4
You still have HTTP access to the Shop.WebBikez.com website. Prevent this by either
removing the binding or setting the Require SSL option in the IIS manager.

TASK 5
The other websites—download and mail—need to be secured as well. You can use the
same Self-Signed certificate, but if you have ADCS installed on your VM, create a Wild-
card certificate—*.WebBikez.com—and apply that certificate to all three websites.
Test to make sure that HTTPS is working for each.

TASK 6
Remove the Wildcard certificate from the websites you set up in task 5 and replace it
with unique certificates for the complete URL. As an example, create a certificate with
a common name Shop.WebBikez.com, and then Download.WebBikez.com, and so on.
Assign the certificates to their respective websites. You’ll receive an error on IIS 7
unless you created the websites with a unique virtual IP. If you’re using IIS 8, select the
SNI option to accomplish the task.

168 CHAPTER 9 Protecting data with certificates
TASK 7
Back up your certificates by exporting them to a .pfx file. Delete a certificate and see if
you can recover it again by re-importing it.

TASK 8
Before you leave this lab, make sure all three websites work correctly using HTTPS. If
you didn’t have a chance to try ADCS to make a better certificate, consider coming
back to this lab later.

9.5 Ideas to try on your own
Working with certificates can be a daunting task at first, and continuing to experiment
beyond the lab in this book is something you should consider. Creating your own web-
sites in your VM that match your work environment and adding certificates is good
practice for the future.

 You should locate the websites that are using certificates in your own work environ-
ment. A common administrative task is to check to see when those certificates are
going to expire. You can do this by viewing the installed certificates and examining
the expiration dates. You should record this information and plan to renew these cer-
tificates before they expire.

 FTP and SMTP with IIS
The internet and the technologies that make it useful have improved quickly in the
last 20 years. Along the way some technologies have slowly dropped off as they were
replaced by newer and better inventions. Demands for improvements in user expe-
rience, security, performance, and other web-related features have turned what
once were common, well-established internet services into fading memory. That’s
not to say that all the old services don’t still provide value—you’ll see that in this
chapter. But when was the last time you used Gopher to find something on the
internet? (If you haven’t heard of Gopher, that’s kind of my point.)

 Microsoft IIS supports two services you may still run across or need in your
career as a webmaster: the venerable File Transfer Protocol (FTP) and an email
relay service that uses Simple Mail Transfer Protocol (SMTP). In this chapter you’ll
help the WebBikez shop establish an FTP site for customers to download bicycle
manuals and a secured FTP site for the development team to upload new web appli-
cations. You’ll also get a chance to examine the Windows built-in SMTP relay service
sometimes used for transferring email.

 Open your lunch sack and get ready to help WebBikez shop with the first focus
of this chapter: FTP.

10.1 File transfers
You’ve downloaded files, books, PDFs, and other interesting things from a variety of
websites. In almost every case you click a link in your browser, and a file download
starts. Today, websites and applications transfer files over the HTTP/HTTPS protocol;
169

170 CHAPTER 10 FTP and SMTP with IIS
it’s fast and secure, but more importantly it’s easy for any user to understand—click it,
and it downloads.

 That wasn’t always the case. The standard method of downloading/uploading files
was to use a TCP/IP protocol, specifically designed for file transfers, called FTP. The
drawback to FTP is that it requires an additional client to perform the file transfers.
This confuses and frustrates most internet users and is the primary reason FTP sites are
gradually being replaced by web applications. That’s not to say FTP is dead. In fact FTP
is heavily used by IT pros to transfer files over the internet because of its reliability and
simplicity. IT pros don’t mind using an additional FTP client, and uploading/down-
loading files over the internet doesn’t require building a website and application.

 The WebBikez shop wants to use FTP for two goals: to provide a secured place for
the developers to upload new web applications and a general public download site
for bike manuals. Eventually the bike manuals FTP site will be replaced with a stan-
dard web application using HTTP for the file transfers, but until then a simple FTP
site will work.

 Before you start building the new FTP sites, let’s take a look at how FTP works and
the network configuration needed to handle it.

10.1.1 Preparing for FTP

FTP works by using client software to contact an FTP server and download/upload
files. To support it you’ll need to do the following:

 Open the required FTP ports on your firewalls
 Support active/passive FTP

To support FTP your network firewall needs to open two additional ports:

 Port 20 for the file transfer
 Port 21, the control port, for the initial connection from the client

FTP serves files to the client in one of two methods: active FTP and passive FTP. In
active FTP the FTP server tries to initiate sending the files; in passive FTP the client ini-
tiates the transfer. The client software—FTP commands, third-party, or browser—
determines the method that FTP will use by telling the server when the client makes
the initial request over the control port (21). In the case of active FTP, the client
makes a request (such as to download a file), and the FTP server then initiates a new
connection to the client to begin the download, as shown in figure 10.1.

 Most firewalls on the client side are designed to prevent new connections from
outside services initiating requests. This prevents hackers and viruses from download-
ing files to users’ computers without their knowledge. But the client can request the
FTP server to respond using passive FTP. The client software initiates both the initial
request over the control port 21 and the download request over port 20, as shown in
figure 10.1.

171File transfers
Although some FTP servers may force active connections, that’s generally no longer
the case. In fact most FTP client software defaults to using passive FTP, but it’s some-
thing to check in the software configuration if you’re having connection issues.

 In Microsoft IIS the FTP site (also known as FTP Server) is configured similarly to a
normal website. You can add FTP to an existing website or create a brand new site for
file transfers. Let’s start with a common, public-access FTP site for WebBikez.

10.1.2 Public-access FTP for anonymous users

Public FTP sites contain files that anyone on the internet can download using FTP cli-
ent software. Anonymous FTP doesn’t require special authentication and is simple for
an IT pro to configure without the overhead of a web application to perform the file
transfers.

 WebBikez shop would like to have a public FTP site for its bicycle manuals. As men-
tioned earlier, this FTP site will be replaced by a user-friendly web application later, but
for now it will serve as a simple way for customers to get the manuals. I’ll show you the
process, and you can either follow along and build the FTP site now or wait until the
lab. Microsoft supports a robust FTP implementation, and the process is similar to cre-
ating a website except that the GUI is different. The process can be somewhat confus-
ing your first time through.

Figure 10.1 Active FTP can be difficult to use because client firewalls today prefer passive FTP.

172 CHAPTER 10 FTP and SMTP with IIS
The FTP Server is a component of IIS you can install using the Server Manager or
PowerShell:

PS> Add-WindowsFeature –Name Web-FTP-Server –IncludeAllSubFeatures

Once the feature has been installed, new FTP options will appear in the IIS manager to
support the configuration of FTP sites. One such feature is Add FTP Site, as shown in
Figure 10.2 This menu command launches a wizard that guides you through the
entire process of configuring an FTP site.

 Instead of using the wizard, though, I’ll take you through the manual process of
creating an FTP site. I want you to see the steps involved so that if you have problems
you can troubleshoot them better. After you’re comfortable with the options dis-
cussed in this chapter, use the wizard anytime you need an FTP site as a fast configura-
tion method.

 To create an FTP site manually, start by creating an ordinary website as you’ve done
in the previous chapters. You should add a DNS record that points to the server and web-
site and test the site to make sure everything is working normally. In my example I cre-
ated a website named BikeManuals and added a DNS record Manuals.WebBikez.com.

TRY IT NOW Create a new website for FTP. You can use the naming conven-
tion I’m using or you can create your own.

The root of the website (its physical path) is the location that users will connect to
using FTP for downloading files. In the case of the WebBikez shop, the physical path
of the site is where the bike manuals will be copied.

Figure 10.2 The Add FTP
Site menu command
launches a wizard that
walks you through the
complete configuration.

Figure 10.3 Adding an FTP
binding to the website

173File transfers
Once the website is created, you won’t see any FTP configuration icons until you add a
new binding to the website. Figure 10.3 shows a new FTP binding being created using
the host name Manuals.WebBikez.com

 The only binding you’ll need for this site is the FTP binding. You can remove the
HTTP binding that was initially created when you made the website.

TRY IT NOW Create a binding using the FTP protocol for the website. I’m
using a host name, but if you created the website using a virtual IP, then no
additional host name is needed.

Note that a whole new section of icons appears in the IIS manager when you apply the
FTP binding, as shown in figure 10.4.

 The additional FTP icons are similar to their website brethren. You can configure
file type, domain, and IP address restrictions and even create a nice message that pops
up when an FTP client connects. You’ll have a chance to explore those in the lab.

 The process from this point is similar to the process of configuring an ordinary
website, so I think you’ll find this fairly straightforward. The next step is to select the
authentication for the FTP site. In the case of this public FTP site for WebBikez, you’ll
want to choose and enable Anonymous Authentication, as shown in figure 10.5.

Figure 10.4 The FTP
configuration icons
appear after you create
the FTP binding.

Figure 10.5 For a public FTP site, choose Anonymous Authentication.

174 CHAPTER 10 FTP and SMTP with IIS
Before the site can be accessed, you need to create an authorization rule for who is
allowed to access the FTP site. In the case of the public site for the bike shop, we want
anyone to be able to download a bike manual, so you’ll create a rule like that shown in
figure 10.6.

 Be careful when setting permissions for a public FTP site. You only want anony-
mous users to be able to read (download) files from the site. If you mistakenly give
anonymous users write access, a malicious user (or any user) can upload harmful files
such as viruses to your FTP site. This is a mistake you can’t afford to make, so be sure
to only assign read permissions for public FTP sites.

TRY IT NOW Enable anonymous access and create a rule that assigns read per-
missions to the new FTP site.

The last step for this basic configuration for the bike shop is to set the SSL settings for
the FTP site. For a public FTP site using anonymous access, change the SSL setting to
permit non-SSL FTP, as shown in figure 10.7.

 At this point your FTP site is ready for users to start downloading files. It’s best to
place some files in the web root and test the FTP site for download. You’ll need an
FTP client. Any one of them you find on the internet will do: I prefer a free one
called FileZilla.

Figure 10.6 Create an authorization rule and set permissions for a public FTP site.

175File transfers
Open the FTP client of your choice and enter the FTP site host name and the user-
name anonymous, as shown in figure 10.8. You should be able to connect and down-
load files.

 You can also test your FTP site using the Windows command-line built-in FTP cli-
ent, as shown in figure 10.9. It’s harder to use, but is great for testing.

 The current public FTP site serves the needs of the WebBikez shop for download-
ing manuals. In the next section you’ll create a secured FTP site for developers to
upload new web applications.

10.1.3 Isolating users with FTP and SSL

The WebBikez shop needs a secured place for developers to upload new web applica-
tions and code updates. A public website for anonymous users wouldn’t be the correct
choice. Remember, we don’t want just anyone uploading files to our server. Instead,
WebBikez wants a secured FTP site where each developer has his or her own private
storage location. Microsoft FTP can easily deliver this using SSL FTP user isolation.

Figure 10.7 Making SSL not
required for a public FTP site

Figure 10.8 You need an
FTP client to download
from the new FTP site. Get
one from the internet.

176 CHAPTER 10 FTP and SMTP with IIS
FTP user isolation has many levels of configuration, but you’re going to help Web-
Bikez by configuring the strictest level of isolation. What this means is that users will
authenticate by using an Active Directory account (or an IIS manager account) and be
placed into a folder that only they have access to. No one else gets permissions to the
folder; it’s a private location exclusively for them to store files.

 Once again, I won’t use the wizard. I want you to see how to do this manually. I’ll
start with a brand new website called WebBikezDevelopment, with a DNS record that
resolves to the new site using Dev.WebBikez.com.

TRY IT NOW This process is similar to the last section. Start by creating an FTP
binding as in the preceding section. You can remove the HTTP binding if
desired.

Start by selecting the authentication type for FTP, but this time you don’t want Anony-
mous. You’ll need to use a real credential from Active Directory or IIS manager users,
so Basic Authentication is the right choice, as shown in figure 10.10.

 Remember from previous chapters that Basic Authentication passes usernames
and passwords over the internet in clear text, which means you need to enforce SSL.
You’ll do that soon, but first you’ll need to configure FTP for the users and permis-
sions that will be allowed to use the new FTP site. In this case WebBikez wants all users
to be able to use the FTP site, and they need permissions to upload (write) files, as
shown in figure 10.11.

Figure 10.9 The Windows built-in
command-line FTP client

177File transfers
Unlike a public FTP site, in this case you can let logged-in users have write access to
upload files. Because you’re requiring authentication, anonymous users can’t access
the FTP site and upload bad files and viruses.

TRY IT NOW Select Basic Authentication for your FTP site and create a rule
that permits all users to read and write files.

Figure 10.10 Enable Basic
Authentication so users can
authenticate with credentials.

Figure 10.11 Specify users and permissions for the new FTP site.

178 CHAPTER 10 FTP and SMTP with IIS
Now it’s time to enforce SSL for the FTP site. You’ll need a certificate for the site as
you would for any other website using SSL. To assign a certificate, in the FTP SSL Set-
tings icon choose Require SSL connections and select the certificate, as shown in fig-
ure 10.12.

 At this point you have a secured FTP site that requires a user to authenticate, much
as you secured a regular website in chapter 9.

TRY IT NOW You can make a Self-Signed certificate or use a Wildcard certifi-
cate from chapter 9 for your FTP site. Require SSL and assign the certificate.

The next step is to configure FTP for user isolation. This places the users in their own
folder and prevents other users from having access to them. Select the isolation as
shown in figure 10.13.

 You have one step remaining before you can open up the new FTP site. For user
isolation to work correctly, there must be folders or virtual directories for each user to
log in to the FTP site. This process is similar to setting permissions on websites, which
you did in chapter 7. Create a folder for each user off the web root and assign the user
permissions to the folder.

 Users will need to configure their FTP client software to use SSL/TLS. Each FTP
client is different, but I configured FileZilla for one of the WebBikez developers (fig-
ure 10.14).

 When the user connects to the FTP site, they have their own private folder to
upload/download files.

TRY IT NOW Assign user isolation to the FTP site and create a folder for one
or two users in your Active Directory on your VM.

Figure 10.12 Enforce SSL and select a
certificate for secured FTP.

179File transfers
Figure 10.13 Configure user isolation.

Figure 10.14 Configuring an FTP client for SSL/TLS

180 CHAPTER 10 FTP and SMTP with IIS
As I mentioned at the beginning of this chapter, because FTP sites are more compli-
cated to use for file transfers than a website link using HTTP, FTP sites are gradually
becoming a thing of the past for regular users. FTP is still useful when you need to set
up a quick file transfer, so IT pros use it often. Microsoft IIS FTP is versatile and can be
configured for whatever situation you need.

 Before you start the lab and try building a couple FTP sites, I want to discuss one
more service.

10.2 SMTP for email
This book is focused on IIS, but I feel I need to also mention a service that touches IIS.
It’s not truly an IIS service, it isn’t a component of IIS, and it has nothing to do with
IIS, but it should be mentioned because it’s managed through an older version of the
IIS manager.

IT pros who work with email systems are familiar with the concept of an email relay
using SMTP. A relay takes email coming from the internet and relays it across your fire-
walls to the email servers inside your protected network. Windows servers and clients
have always supported running an SMTP relay service as an inexpensive solution,
although today a better choice is Microsoft TMG or a hardware-based solution that can
perform virus scanning and spam filtering.

 This short section takes a look at what an SMTP relay does and the simple SMTP ser-
vice that’s managed using the IIS manager.

10.2.1 SMTP relays

The old IIS 6 manager included configuration support for SMTP relays, and you can
still use that old functionality today. SMTP relays receive and send email to the inter-
net, as shown in figure 10.15. If the relay is receiving email, it then sends (relays) the
email to a mail server on the protected network. This configuration prevents a hacker
from directly accessing a mail server from the internet. Instead, the hacker hits the
relay and is prevented from hurting the mail server.

 This is still a common security strategy for email systems, but without using the
built-in SMTP components provided by Windows. Today’s IT pros working on email
systems will implement a smarter SMTP relay (gateway) that can prevent spam, scan
for viruses, and drop emails for users that don’t exist. Microsoft Exchange has a smart
relay called an Edge server, and Microsoft also has Threat Management Gateway to
perform this task. Several third-party smart mail relays are available from companies
like Symantec and Barracuda.

 The built-in Windows SMTP relay isn’t the correct choice today, and I mention it
only because you’ll still see it used. A smart relay is always a better choice. The reason
I’ve taken your time in mentioning this is in case you run across an old Windows-based
SMTP relay and are wondering where the management screens are located. Let me
briefly show you the installation and configuration for this in case you see it in real life.

181SMTP for email
10.2.2 Installing and configuring SMTP

To install an SMTP relay using the built-in Windows components is simple. You can use
Server Manager or PowerShell, but don’t go looking in the IIS sections for SMTP.
Here’s an example of installing SMTP:

PS> Get-WindowsFeature *smtp* | Add-WindowsFeature

SMTP has nothing to do with IIS other than its configuration using the old IIS 6.0 man-
ager. When you install the Remote Server Administration Tools (RSAT) for SMTP,
you’ll see SMTP listed in the old console, as shown in figure 10.16.

 If you truly need to use the Windows SMTP service, consider yourself an email engi-
neer and go ahead and create a mail domain. You can configure the rest of your mail
settings in the properties of the mail domain. I won’t dive into that part because it

Figure 10.15 An email
relay sends and receives
email to and from the
internet.

Figure 10.16
SMTP is configured
using the old IIS 6.0
manager.

182 CHAPTER 10 FTP and SMTP with IIS
applies to email systems, but if you’re more of an IIS pro than I thought, you should
know about this last forgotten service.

 Now, let’s get to the lab and make an FTP site.

10.3 Lab
You worked hard during this lunch building two FTP sites in the Try It Now sections. If
you didn’t have a chance to build those as you read through the chapter, now is the
time. I also want you to try the easy-to-use wizard now that you know all the details.

TRY IT NOW

Here are the Try It Now sections repeated for your convenience. Once complete, you
can start the lab with task 1.

1 Create a new website for FTP. You can use the naming convention I’m using or
you can create your own.

2 Create a binding using the FTP protocol for the website. I’m using a host name,
but if you created the website using a virtual IP then no additional host name is
needed.

3 Enable anonymous access and create a rule that assigns read permissions to the
new FTP site.

4 Create an FTP binding. You can remove the HTTP binding if desired.
5 Select Basic Authentication for your FTP site and create a rule that permits all

users to read and write files.
6 You can make a Self-Signed certificate or use a Wildcard certificate from chap-

ter 9 for your FTP site. Require SSL and assign the certificate.
7 Assign user isolation to the FTP site and create a folder for one or two users in

your Active Directory on your VM.

TASK 1
If you didn’t perform the Try It Now sections, create two FTP sites for WebBikez, one
for public access and one secured with user isolation:

 Manuals.WebBikez.com
 Dev.WebBikez.com

The FTP site for Manuals.WebBikez.com should be a public FTP site where users can
read (download) files but not write new files. The Dev site should support user isola-
tion and require users to authenticate. Make sure the site contains an SSL certificate
and permits users to upload (write) files.

TASK 2
To understand how FTP works, you created two sites—Manuals and Dev—from
scratch. Now it’s time to create a couple sites using the FTP wizard. Right-click the
Sites container in the IIS manager and choose Add FTP Site to launch the wizard.
Using the wizard, create two more sites, one for public access and the other for user
isolation.

183Ideas to try on your own
 Public site—FTP.WebBikez.com
 Secured site—Uploads.WebBikez.com

10.4 Ideas to try on your own
Do you have FTP running in your organization? If it’s not accomplishing your needs,
why not take a look at using Microsoft FTP? It may solve the problem.

Sharing administrative
responsibilities through

remote management
As your web environment grows, managing all the tasks involved becomes a monu-
mental job. You have to upload newly developed applications from the developers,
modify site settings, check the logs for problems, and keep the web server running
smoothly. More often than not I work with a team of people responsible for differ-
ent aspects of the web environment. In these situations delegating (assigning) per-
missions and responsibilities to other administrators lightens the load on a single
administrator.

 To be able to delegate, you have to enable the IIS web server to allow remote
administration support. This is beneficial even if you’re the sole administrator for
the environment. You’ll be able to access and manage the web server from any loca-
tion, not only from the IIS manager on the server. Once remote access has been
established, you can assign permissions for other administrators (and developers if
needed), being careful to assign only the permissions they need to manage without
giving them enough to cause trouble.

 In this chapter you’ll expand the management of the bike shop by providing
remote management capabilities to the server with a GUI and then my favorite:
Server Core. You’ll also delegate and manage permissions for other administrators.
184

185Implementing IIS remote management
As the primary IIS administrator, you automatically receive permissions to manage the
entire server and all the websites through the administrative login you provide when
authenticating to the server. Via a local Administrator account or an Active Directory
Domain Admin, you have permissions over the entire server and its websites.

 From time to time you’ll want other admins and developers to have management
access to specific parts of the web server, perhaps for a specific site or application.
Maybe another admin only needs to manage one or two of the websites on your server.
If you don’t want them to have complete access to the entire server, you can delegate
only the permissions they need to do their job.

 To delegate other admins and developers with permissions to specific websites and
applications, you must grant them access using their login accounts, either from the
local machine, Active Directory, or a collection of users you can create in the IIS man-
ager. Once permissions are granted, they’ll be able to open a local copy of the IIS man-
ager on their own computer and access the sites and applications you granted them.

 There are two common scenarios for when you should consider delegating
permissions:

 You aren’t the person responsible for the website content.
 You aren’t the person responsible for a specific website and its administration.

Delegating access for others to administer websites and applications lightens your
administrative load and gives those admins responsible for a site or its content the
control they need to perform their job.

 The task of setting up other admins with permissions is simple, but you have to do
something first. By default IIS servers don’t permit remote administration. Only the
server administrator can access the IIS manager on the physical web server. The first
task is to enable remote management for IIS. That’s what you’ll do in the next section.

11.1 Implementing IIS remote management
Remote administration isn’t enabled by default to prevent accidental administration
mistakes by other administrators on the network not familiar with IIS and to prevent
outside hackers from causing mischief. This situation forces you to visit the physical
server every time you want to make changes using the IIS manager. There’s a better way!

 Remote management of IIS is enabled first by installing the Management Service
component and then by configuring its security. In this section you’ll enable remote
management and connect to IIS, using the graphical IIS manager, and then do the
same thing using PowerShell on a Server Core server. In the lab you’ll set up the Web-
Bikez shop to cement the process. Let’s get started with enabling remote management
using the IIS manager.

186 CHAPTER 11 Sharing administrative responsibilities through remote management
11.1.1 Installing remote management using the IIS manager

To enable remote management of an IIS server using the graphical IIS manager, you
must be physically at the server or using Remote Desktop. The remote management
tools in the IIS manager only appear on the local computer.

 Does that mean there isn’t a remote method of enabling remote management?
No, there is, as I will show you later in this section using Server Core as an example.
But for your first time through the process, using the IIS manager makes it easier to
understand.

 First you must install the Remote Management Service. This is a component you
install using the graphical Server Manager or PowerShell. Here’s an example:

PS> Add-WindowsFeature Web-Mgmt-Service

Once the component is installed, a new series of icons appears at the bottom of the IIS
manager under a new Management section, as shown in figure 11.1.

 Here are the four main features (icons) that enable remote management and
assign permissions:

 Feature Delegation
 IIS Manager Permissions
 IIS Manager Users
 Management Service

I discuss these features throughout the rest of this chapter, but first let’s make sure you
have everything installed.

TRY IT NOW You can perform this on your single VM, but it would be best to
have an additional server VM with IIS installed, as described in chapter 1. On
the VM install the Management Service and open the IIS manager. Select the
Server icon in the navigation pane and make sure you see the Management
section and the four features.

With the Management Service installed, the next step is to configure and enable it.

11.1.2 Configuring remote management

The Remote Management Service requires additional information before you can
connect to a remote server. Double-clicking the Management Service icon brings up a
new window with many options.

 Let’s go through the process, starting with configuring the remote management
options.

Figure 11.1 New icons to
manage remote access
and delegate permissions

187Implementing IIS remote management
ENABLING REMOTE CONNECTIONS: IDENTITY CREDENTIALS

As tempting as it might be to check the Enable remote connections box and move on
to other tasks, you need to be aware of some important configuration settings that
affect who can use remote management and the security involved.

 The configuration form has three sections, and although the default settings will
work to get remote management functioning, they aren’t the most secured or best for
your environment. Let’s go down the list, starting with the first section, Identity Cre-
dentials.

 The default option for accessing an IIS server remotely is Windows credentials
only, which means you can use local Windows accounts or Active Directory accounts,
as shown in figure 11.2.

 This option works well in the following two cases:

 The IIS server is a member of the Active Directory domain, and you want to
assign domain credentials for remote access to the server.

 The server isn’t a member of the domain, and you want to create local Windows
accounts for each admin and developer.

Most of your publically accessible web servers won’t be members of an Active Direc-
tory domain for security reasons, and in that case creating local Windows accounts for
administration is the normal course of action.

IIS enables creation of user accounts specifically for management of the IIS server
and sites. In many cases I find IIS manager credentials to be a much better option
than creating local Windows accounts. It’s easier, and these accounts only apply to IIS
and no other applications that might be on the server, which improves security. Later
you’ll see how useful this feature can be, so my preference is to change the default to
the option that supports IIS manager credentials.

Figure 11.2 Setting the
identity credentials for
remote management

188 CHAPTER 11 Sharing administrative responsibilities through remote management
ENABLING REMOTE CONNECTIONS: CONNECTIONS

As with a new website, you can specify the IP address that the remote management ser-
vice will respond to when an admin attempts to connect, as shown in figure 11.3. In
most cases All Unassigned works fine, but if you’re like me and want to create a
unique DNS record for remote management (as you’ve done for other websites), then
setting a specific IP address in the dropdown is the way to go.

 Note that the Remote Management Service uses port 8172. If you’re going to
attempt to access the IIS server across a firewall (and many times this is the case), then
you need to make sure the firewall has this port open.

 You need to select a certificate to encrypt the remote management over SSL. The
default certificate WMSVC is a non-trusted temporary certificate that should be
replaced. (Refer back to chapter 9 on how to create and assign a new certificate.)

 When an admin connects to the Remote Management Service, the connections
are logged. Remote management uses a specific set of logs under the WMSVC direc-
tory so you can easily locate and view logs specific to remote connections. It’s good
practice to check these logs for unexpected or unknown client IP addresses that are
attempting to connect to your servers. These could indicate someone unknown from
the outside attempting to manage your servers.

ENABLING REMOTE CONNECTIONS: IP ADDRESS RESTRICTIONS

As with websites you can configure additional security by setting IP Address Restric-
tions. The default is to allow all clients, but I prefer to isolate this by denying access for
all clients except those that I specify, as shown in figure 11.4.

 You can allow or deny access based on a specific IP address or an entire network
range, similar to the IP restrictions for websites discussed in chapter 8. To prevent
unauthorized users from attempting access, setting these restrictions is a best practice,

Figure 11.3 Setting the IP address and certificate for remote management

189Implementing IIS remote management
but remember to check this setting when you add additional administrators. A com-
mon mistake is to add an administrator and forget to allow their IP address, causing a
few moments of confusion and troubleshooting.

ENABLING REMOTE MANAGEMENT

I prefer to make sure my configuration is complete and correct before clicking the
Enable setting at the top of the form. It’s my mental note that reminds me to verify the
list, but you can click the setting before you start configuring if you wish.

 When you’re finished, click the Apply button in the actions pane to save your con-
figuration. At this point the remote management service is still not ready for you to
attempt a remote connection. I often see this after applying the changes: an adminis-
trator will attempt to connect, only to receive an error message. That’s because the
WMSVC service must be started with the new configuration changes before remote
management will work. Let’s look at starting the service.

STARTING THE REMOTE MANAGEMENT SERVICE

The final step in configuring your server to support remote management is to start
the service. The actions pane is where you apply your configuration settings and start
the service. When the service starts, the configuration screen becomes greyed out,
meaning you can’t make any changes to the configuration.

 The most common mistake configuring the remote management service is failing
to start the service. Make sure to start the service before you leave the configuration
page. If you need to make configuration changes in the future, stop the service, make
the changes, and then start the service again.

TRY IT NOW On your server VM, configure the Remote Management Service
to prepare for the next task.

Once configured with the service running, you can connect to the web server
remotely from an IIS manager on your client computer. Let’s look at that process next.

Figure 11.4 Restricting
administrators by IP
address or network

190 CHAPTER 11 Sharing administrative responsibilities through remote management
11.1.3 Connecting to a remote web server

From your client computer or any other server that has the IIS manager, you can con-
nect to a web server that has the Remote Management Service enabled. If you’re the
server manager (Domain Admin or local Administrator), there’s no other configura-
tion to perform.

 From the IIS manager on your local computer, select Start Page in the navigation
pane and choose Connect to a server, as shown in figure 11.5.

 After specifying the server name and supplying your credentials, you’ll have a new
connection established. From there you can manage the server and its websites.

NOTE When you install the IIS manager on Windows 7 or Windows 8 through
Control Panel, you won’t see the Start Page option at the top of the naviga-
tion pane. You need to install an additional component that’s not available by
default on your client computer. Open the Web Platform Installer and install
the IIS Manager for Remote Administration component from Microsoft.

This is a good time to take a minute or two and make sure you can access your
remote server.

TRY IT NOW Open the IIS manager on a different computer in your VM envi-
ronment and connect to the remote server.

You’re ready to assign other administrators access to the remote server and delegate
access. But first I want to show you how you can implement remote management using
PowerShell. If you have multiple servers you need configured for remote management
or are working with Windows Server Core, the section after the next one (section 11.3)

Figure 11.5 Connecting to a remote web
server using the IIS manager

191Implementing IIS Remote Management Service on Server Core
is the best way available to accomplish the task of enabling remote management. Let’s
see how to configure remote management with PowerShell on Server Core.

11.2 Implementing IIS Remote Management Service
on Server Core
Configuring the Remote Management Service on Server Core is slightly complicated.
Server Core doesn’t have a graphical interface, and therefore no IIS manager, to per-
form the configuration. Physically standing at the server or using Remote Desktop
doesn’t help.

 But that’s not the only issue. To be honest, I can’t physically always be at the server
when I want to configure it. In fact I don’t want to have to be in some cold data cen-
ter to configure remote management. The other issue I have is that I need to config-
ure many IIS servers. It doesn’t make sense to run around configuring each server
one at a time.

 The solution is to use PowerShell and PowerShell Remoting to configure the
remote servers for remote management. The overall process is the same, but you use
PowerShell as the tool instead of the IIS manager.

 If you want to use PowerShell to manage IIS, you must have PowerShell Remoting
enabled on the IIS servers. There’s no avoiding it. There are tricks around this for
some tasks, but to fully manage an IIS server you must have PowerShell Remoting. If
you haven’t enabled PowerShell Remoting, you need to do so now. This isn’t a Power-
Shell book, but let me help you. Go get the free ebook Secrets of PowerShell Remoting
from http://mng.bz/GeHI. If you need help learning PowerShell, see Don Jones’s
book Learn PowerShell 3 in a Month of Lunches (Manning Publications, 2012).

 I’ve saved the Try It Now sections for the lab in this case. I want you to see the
entire process before you try it out. The process begins with connecting to the remote
servers and installing the Management Service.

11.2.1 Installing the Management Service

Installing the Management Service on remote servers is fairly simple using PowerShell
Remoting. The Invoke-Command cmdlet can send the installation commands to the
remote servers.

 The following example establishes two Remoting sessions to two servers named
Web1 and Web2. Keep in mind that this remote session will be used throughout the
entire process:

PS> $Sessions=New-PSSession –ComputerName web1,web2

By using that session with the Invoke-Command cmdlet, you can install the Manage-
ment Service (Web-Mgmt-Service), as in this example:

PS> Invoke-Command –Session $Sessions –ScriptBlock {Add-WindowsFeature Web-

➥Mgmt-Service}

At this point the Management Service is installed, but you need to enable and configure it.

http://mng.bz/GeHI

192 CHAPTER 11 Sharing administrative responsibilities through remote management
11.2.2 Enabling the Remote Management Service

There are no PowerShell WebAdministration cmdlets that will help in enabling the
Remote Management Service. Not to worry, though. You can enable the remote man-
agement of IIS by changing a Registry setting on the remote server. If you remember
back to the graphical method, this involves clicking the Enable Remote connections
check box. When the service is enabled, it has the default settings discussed earlier.
You can modify these using PowerShell as well. In this case, I’ll use Windows-only cre-
dentials, so no additional changes need to occur.

In the following example the Set-ItemProperty cmdlet changes the Registry key
under HKLM:\SOFTWARE\Microsoft\WebManagement\Server\EnableRemoteManagement
to enable the service:

PS> Invoke-command –Session $Sessions -ScriptBlock{Set-ItemProperty -Path

➥HKLM:\SOFTWARE\Microsoft\WebManagement\Server -Name

➥EnableRemoteManagement -Value 1}

Keep in mind that the default port number for the remote service is 817. You need to
enable that port on any firewalls between you and the remote server.

 One thing that you should always change is the default temporary certificate to a
trusted certificate. Let’s change the certificate in the next section.

11.2.3 Assign a trusted certificate

You should always change the certificate for remote management from the temporary
non-trusted certificate to a trusted one. This could be a third-party certificate that you
purchase or one that’s generated and trusted by your own certificate service, such as
Microsoft’s Active Directory Certificate Services.

 I also want to point out that you can change the certificate using the IIS manager
by remotely connecting to the server and opening the Management Service settings
and making the change. I’ll show you how to change the certificate using PowerShell.
(For reminders about using PowerShell and deploying certificates, refer to chapter 9.)

 The next example stores the trusted certificate installed on the remote server into
the variable $Cert. The variable will be used to change the certificate binding from
the temporary certificate to the trusted certificate in a later step:

PS> Invoke-Command -Session $sessions {$cert = Get-ChildItem -Path

➥Cert:\LocalMachine\My | where {$_.subject -like "*company*"} | Select-

➥Object -ExpandProperty Thumbprint}

If you remember the certificate bindings from chapter 9, the next step is to remove
the old binding for port 8172 and add a new one. This will change the temporary cer-
tificate to the new trusted certificate:

PS> Invoke-Command -Session $sessions {Import-Module WebAdministration}

PS> Invoke-Command -Session $sessions {Remove-Item -Path 0.0.0.0!8172}

PS> Invoke-Command -Session $sessions {Get-Item -Path

➥"cert:\localmachine\my\$cert" | New-Item -path

➥IIS:\SslBindings\0.0.0.0!8172}

193Delegating access to other administrators and developers
With the Management Service configured, the last step is to start it. In the next section
you’ll see how to start the service and configure it for automatic starting if the server
should reboot.

11.2.4 Starting the Management Service

This is an easy task, but many administrators forget to configure the service to auto-
matically start if the server reboots. Imagine the server rebooting, and you unable to
remotely manage it? The following example changes the WMSVC service startup type
from Manual to Automatic:

PS> Invoke-Command –Session $Sessions -ScriptBlock {Set-Service -Name WMSVC -

➥StartupType Automatic}

And finally, here’s how to start the service:

PS> Invoke-Command –Session $Sessions -ScriptBlock {Start-Service WMSVC}

Now you can open the IIS manager on your client computer and connect to the
remote servers as the server administrator. What if you have site administrators and
developers that need access to only parts of the web server? That answer is in the next
section.

11.3 Delegating access to other administrators
and developers
By default IIS is completely locked down, preventing other users from managing the
web server. Only members of the local Administrators group and the Active Directory
Domain Admins group have access.

 As I point out at the beginning of this chapter, there will be many times when you
want to delegate some web management responsibilities. After making the server
remotely accessible, as described in the previous sections, the process is as simple as
assigning administrators and developers to the websites and applications you want
them to manage. They’ll be able to open the IIS manager, connect to the remote web-
site, and perform their tasks without having more permissions than they need and
without being assigned administrative privileges over the entire web server.

 The steps for this section are simple: you’ll assign the users permissions and then
decide which management features you want them to have access to. Let’s get started.

11.3.1 Configuring permissions for websites and applications

You assign permissions for other admins using the IIS Manager Permissions icon in
the Management section. Start by selecting the website for which you want to assign
permissions. In figure 11.6 I selected the main website for the WebBikez bike shop. I
want a developer (Laura Bartlett) to be able to make changes to the main site.

 Once at the website, open the IIS Manager Permissions and add the user creden-
tials from Active Directory, the local Windows accounts, or IIS Manager Users (dis-
cussed shortly).

194 CHAPTER 11 Sharing administrative responsibilities through remote management
In this case Laura will need access to the website files to make content changes.

NOTE If you have admins or developers who need access to the web pages
themselves, make sure to add them to the NTFS security permissions for the
website. For a reminder of this, see chapter 7.

At this point Laura can open her local copy of the IIS manager and connect to the
website, as shown in figure 11.7.

 Before you go to the lab and try this out for yourself, I want to show you two addi-
tional features you can use to improve security.

USING IIS MANAGER USERS FOR REMOTE ACCESS

IIS Manager Users is one of my favorite features of remote management for website
admins or developers. Rather than using their Active Directory credentials or local
Windows credentials, which could give the users too many privileges, IIS Manager
Users are a set of credentials that only allow for IIS management. No other applica-
tions on the server are affected.

 To create accounts for admins, open the IIS Manager Users icon and add an
account and password for each website admin or developer, as shown in figure 11.8.

Figure 11.6 Assigning admins permissions to
remotely manage websites and applications

195Delegating access to other administrators and developers
Figure 11.7 A site administrator
connecting to a remote website for
management

Figure 11.8 Adding IIS
Manager Users to manage
websites and applications

196 CHAPTER 11 Sharing administrative responsibilities through remote management
There are a couple of drawbacks to using IIS Manager Users:

 If you have multiple servers, the accounts will need to be created for each web
server.

 Passwords must be managed and changed manually.
 The account names may be different from the user’s normal Active Directory

account.

These drawbacks are minor in most cases and necessary if your web server isn’t a mem-
ber of the Active Directory domain. Although not a major deal, I wanted you to know.

 In some cases you won’t want a site-level administrator to be able to change certain
features, such as Directory Browsing or IP Address Restrictions. The next section is
about restricting features that you as the server administrator don’t want modified.

11.3.2 Customizing feature access

As the server administrator you’ve configured the web server and the websites with the
settings and security you wanted. Some of those settings can be changed at the website
level, such as IP Address Restrictions and Directory Browsing. If you don’t want a site
administrator to be able to change these settings, select the website and open the Fea-
ture Delegation icon. You can control whether each feature can be modified or set to
read-only, as shown in figure 11.9.

Figure 11.9 Allowing site administrators access to only the features you want

197Lab
Now it’s time for you to try this out by helping the WebBikez shop enable remote man-
agement and delegate access for a couple of developers to the growing web environ-
ment. I hope you enjoyed your lunch. Now wash up and try the lab!

11.4 Lab
If you’re working with the complete lab environment described in chapter 1 (three
virtual machines) I want you to focus on only one of them for this lab. In the next sec-
tion, “Ideas to Try on Your Own,” I suggest you configure the other servers using Pow-
erShell Remoting.

 In this lab I want you to get remote management working on your primary server
and configure delegated access for one of your websites. If you followed along in the
Try It Now sections, you can skip to task 1.

TRY IT NOW

In case you didn’t get a chance to complete the Try It Now sections, I repeat them
here for your convenience. Once complete, you can start the lab with task 1.

1 You can perform this on your single VM, but it would be best to have an addi-
tional server VM with IIS installed, as described in chapter 1. On the VM install
the Management Service and open the IIS manager. Select the Server icon in
the navigation pane and make sure you see the Management section and the
four features.

2 On your server VM, configure the Remote Management Service to prepare for
the next task.

3 Open the IIS manager on a different computer in your VM environment and
connect to the remote server.

TASK 1
On your first VM, install and configure the Remote Management Service. I want you to
support IIS Manager User identities and apply a new certificate. Make sure to apply
the new configuration and start the WMSVC service.

TASK 2
Using the IIS manager, test connecting to the server remotely to verify that the Man-
agement Service is working and configured correctly.

TASK 3
Choose one of your websites for delegated access. I used the main WebBikez website
in my examples in the chapter. Configure custom site delegation in the Feature Dele-
gation icon and set the Default Document to read-only for your selected website.

TASK 4
Using the IIS Manager Permissions, assign an Active Directory user to manage the
website. Create a new user named Michelle if you like.

198 CHAPTER 11 Sharing administrative responsibilities through remote management
TASK 5
Create a new IIS Manager User named Bob and assign him a password. Using the IIS
Manager Permissions, assign Bob access to the site.

TASK 6
Using the IIS manager, create two connections to the remote website: one for Michelle
and one for Bob.

TASK 7
To confirm that the custom site delegation permissions are effective, attempt to
change the Default Documents using both Michelle and Bob. Note the information
message in the actions pane alerting you that the settings are read-only.

 Congratulations! You’ve enabled remote management of IIS servers, delegated
access to other admins to manage the server/websites, and restricted the permissions
for the admins.

11.5 Ideas to try on your own
The lab in this chapter focuses on remote management for a single server. Now that
you have an understanding of the complete process from beginning to end, you
should try to configure remote management with multiple servers.

 If you have the two additional VMs in your lab environment, see if you can config-
ure the servers using PowerShell as described in the chapter.

Optimizing sites for users
and search engines
One value of placing a business on the web is the opportunity to reach more cus-
tomers. Our WebBikez bike shop is one example of a company providing a unique
product and service that many people around the world are seeking. The goal of
many developers and web marketers is to reach those users organically (without pur-
chasing direct advertising) by optimizing the websites and pages for search engines
like Google and Bing. Search engines crawl through websites looking for keywords
and phrases that describe the website. When a user types a search term into the
search engine that matches one of these keywords or phrases, the website appears
in the list of returned search items. The better the keywords and phrases, the better
the search match for the user. Optimizing a website to provide the most relevant
information to the search engines (to get the best matches) is called search engine
optimization (SEO).

 As the administrator of a website, you can also help improve SEO by checking
for problems that will hinder SEO and repairing and redirecting websites to further
improve SEO. In this chapter you’ll search for problems such as broken links and
you’ll correct URLs that are too long. You’ll set up automatic redirects to help cus-
tomers find a website that’s moved and even help internal users quickly get to the
correct website URL.

 There’s a lot to accomplish in today’s lunch, so let’s get started by finding prob-
lems on your website that could negatively affect SEO.
199

200 CHAPTER 12 Optimizing sites for users and search engines
12.1 Search Engine Optimization Toolkit
Websites get larger over time—new pages are added for new products, and new fea-
tures are added to better serve customers, all of which grows the size and complexity
of the website. This growth introduces problems that affect the SEO of the site. These
problems often include broken links and non-relevant content—such as application
program files—that affect search results. Developers and web marketers have tools to
help them locate problems and optimize search results, and so do you.

 In this section you’ll use the free IIS add-on Search Engine Optimization (SEO)
Toolkit to find and repair the two most common problems with SEO: broken links and
hiding non-relevant content from the search engines.

 Let’s get started by installing the Search Engine Optimization Toolkit.

12.1.1 Installing and using the Search Engine Optimization Toolkit

The SEO Toolkit isn’t part of the default IIS installation options.
Rather it’s an additional free feature you can download and
install from www.iis.net. You can browse to the tool on the
iis.net website or use the Web Platform Installer discussed ear-
lier. I prefer the WebPI because finding the SEO Toolkit with it
is faster.

 When the SEO Toolkit is installed on your web server, a new
icon appears in the Management section of the IIS manager, as
shown in figure 12.1.

 Before going any further, take a moment to install the SEO
Toolkit on your web server so you can follow along.

TRY IT NOW Install the SEO Toolkit on your lab VM using the iis.net website or
the WebPI tool. Click the web server in the navigation pane of the IIS man-
ager and verify that the SEO Toolkit is installed in the Management section.

When you launch the tool, the three primary tasks it can perform—Site Analysis,
Sitemaps and Sitemap Indexes, and Robots Exclusion—will appear, as shown in fig-
ure 12.2.

 Site Analysis will crawl your website looking for problems that might affect SEO,
such as broken links. The Sitemaps tool creates a map of your website to help search
engines navigate the site looking for search terms. Robots Exclusion is a tool that pre-
vents a search engine from crawling non-relevant parts of your site that could confuse
the search results.

 Developers and web marketers use the toolkit (or something similar) in depth to
work on SEO. Not everything the toolkit finds as an issue is truly a problem, and many
issues require the developers to repair them. But as an admin you can use this advanced
tool to help improve SEO. Let’s start with Site Analysis and look for broken links.

Figure 12.1 The SEO
icon after installing the
SEO Toolkit

201Search Engine Optimization Toolkit
12.1.2 Locating broken site links

Nothing is more frustrating to a customer browsing a website than finding the perfect
product or solution to a problem only to click the link and get a “404 page not found”
error. It’s the curse of the broken link.

 Search engines don’t like broken links either, and it means your page doesn’t get
crawled for keywords. Although you as the admin may not be able to fix the broken
links (or certain other SEO issues), you can certainly help find them and alert the
developers. The Site Analysis tool scans your websites looking for issues that might
affect these broken link issues. When you start a new scan, the SEO tool needs two
basic options to run: a name for the scan and the URL of the website, as shown in fig-
ure 12.3.

 The scan’s advanced settings give you greater control over the scan, as shown in
figure 12.4. Typically I’m not the developer who will be fixing the issues, so I prefer
not to store local copies of the web pages. On a large or complex site, that can take a
lot of disk space.

 Notice that default authentication for the website is Anonymous. This setting
doesn’t normally need to be changed for a public site, but if you’re scanning a
secured site, such as a product-ordering application, you’ll want to scan the site as an
authenticated user.

Figure 12.2 The three primary SEO tools in the toolkit

202 CHAPTER 12 Optimizing sites for users and search engines
TRY IT NOW Open the Site Analysis tool and scan one of the websites you’ve
created throughout this book. You can also scan a real website such as your
company’s or even someone else’s.

When the scan is complete, a Site Analysis Report is created to display information dis-
covered during the scan, as shown in figure 12.5.

 The report provides a great amount of detail to developers and web marketers. As
the admin you want to look at the Violations section. Violations lists all the issues dis-
covered by the scan and provides detailed information about the problems and some
possible resolutions.

Figure 12.3
Performing a Site
Analysis scan to locate
problems for SEO

Figure 12.4 Advanced
scan settings

203Search Engine Optimization Toolkit
For my first scan I scanned a simple website. Notice the error that was discovered
under the Violations section in figure 12.6. Not only did it display detailed error infor-
mation that the URL is broken, but also suggested some possible solutions to fix the
problem.

 In the case of figure 12.6, the broken URL is due to a DNS error. The IP address for
the URL is listed in the error as 192.168.50.100. That’s not the correct address for the
site, so I easily fixed this issue.

Figure 12.5 Using the
Site Analysis Report to
discover problems
affecting SEO

Figure 12.6 Examining and correcting errors using the SEO Toolkit

204 CHAPTER 12 Optimizing sites for users and search engines
In figure 12.7 I ran the scan against one of my corporate websites. Note how many
possible issues the tool located.

 The warning and error messages discovered are mainly problems that I can’t fix, so
I’ll send them to our web team developers, including the most critical problems: the
broken links.

 The Site Analysis tool provides a wealth of information to help improve the SEO of
a website. As the admin you can scan your sites as often as needed and pass that infor-
mation to the developers.

 Another useful tool in the SEO Toolkit can prevent a search engine from crawling
certain non-relevant parts of your website to prevent bad searches. That’s up next.

12.1.3 Preventing non-relevant content from being searched

Websites contain pages that customers want, such as products, manuals, help forums,
and company contact information. This type of information is exactly what search
engines are looking for, too, to improve search results. But there’s also content that
could make the search engines less effective when scanning your site, such as the sup-
porting code pages that make the site operate or off-topic content that might be in a
forum. There’s also content that should never be searchable, such as shopping trans-
actions, invoices, or other corporate confidential data.

 One technique of preventing search engines from scanning non-relevant content
is to place a file on the site that informs crawling robots to not scan certain folders or
parts of the site. Often developers handle this, but if you’re adding content and appli-
cations to the site, you may want to control it as well. You’ll notice when you use the

Figure 12.7 Scanning a production website for SEO problems

205Search Engine Optimization Toolkit
Site Analysis tool that it will report when robots have been blocked so that you can ver-
ify that only correct content is being crawled for SEO.

 You can block an entire site or selected applications and folders. Choose Robots
Exclusion from the SEO Toolkit and select the website you want to add the exclusion
file to, as shown in figure 12.8.

 The tool lets you select the portions of your site that you want the search engines
to avoid when crawling the site, as shown in figure 12.9. Make sure to not mark con-
tent you want customers to find.

Figure 12.8 Choosing to block
content from the search engines

Figure 12.9 Selecting
specific non-relevant
site parts

206 CHAPTER 12 Optimizing sites for users and search engines
When you complete the process, a robots.txt file is placed in the website. The search
engines read this file and avoid crawling the non-relevant content, improving your SEO.

 A few more techniques regarding URLs can improve your SEO and help every
admin managing websites. Let’s get started with the basics of URL Rewrite.

12.2 Improving SEO with URL Rewrite
URL Rewrite is a powerful, free tool for web administrators and developers to create
URLs that are easy for customers to remember and for search engines to find for
crawling. Using rules you can transform complex URLs into simple ones. When mov-
ing sites you can redirect one URL to another and redirect users from non-secured
HTTP to secured HTTPS automatically. These are only a few of the tasks you can do
with URL Rewrite, but they’re the major ones you’ll do as web admin when you start
using the tool.

 I’m not going to beat around the bush: this is a complex tool that requires a great
amount of testing and experience. It also requires that you, the web admin, become
familiar with a text-parsing language known as regular expressions. Regular expressions
(regex) parses strings of text data for matches. This is useful when scanning IIS logs
for URLs or when using the URL Rewrite tool to transform URLs. Regex has many uses
outside of IIS and web administration; any need to scan files for matching text is a
good reason to know regular expressions.

 I’ll show you how to solve two of the most common issues with URL Rewrite—to go
deeper you’ll need a more complete and advanced knowledge of regular expressions.
Don’t worry, I’ll get you started on the right path. But consider reading Don Jones’s
Learn PowerShell 3 in a Month of Lunches (Manning Publications, 2012) and other books
specifically about regular expressions to build more experience.

 First you’ll locate and install the URL Rewrite tool and then dive into this complex
but powerful tool.

12.2.1 Installing URL Rewrite

Like the SEO Toolkit in the last section, the URL Rewrite tool is a free tool available
from www.iis.net. You can download and install it from the website or with the built-in
WebPI tool in the IIS manager.

TRY IT NOW Install the URL Rewrite tool
now so you can follow along. Use the Web
Platform Installer and search for URL
Rewrite.

After the URL Rewrite tool is installed, a new icon
will appear under the IIS section in the IIS manager,
as shown in figure 12.10.

 When the URL Rewrite tool is launched, it dis-
plays a list of currently applied rules. You won’t have

Figure 12.10 The URL Rewrite tool
in the IIS section of the IIS manager

207Improving SEO with URL Rewrite
any rules yet, so look to the actions pane for the Add Rule link. The Add Rule wizard
lets you transform URLs: inbound requests to the web server and outbound requests
leaving the server. Most of the time you’ll control the inbound and outbound rules by
starting with a blank rule. Launching the Add Rule wizard produces the screen shown
in figure 12.11.

 Most of the time you start with a blank rule template because it provides the most
options. In our case, we’re going to solve a typical real-world problem of transforming
long URLs to short URLs using the User-friendly URL wizard. This wizard doesn’t
require any knowledge of regex and is a good place to start.

12.2.2 Shortening long URLs for better SEO

Websites that produce dynamically created web pages create long URLs with query
strings in them. These URLs are difficult for search engines to crawl through and are a
nightmare for a customer to remember. You can create shortened URLs with URL
Rewrite to improve SEO and make it easier for customers to remember the web page.

 Figure 12.12 lists the entire web address, or URL. Note that I broke it into three
sections: the protocol (http or https), the host name, and the specific part of the
address that’s the URL. In URL Rewrite, the URL is everything past the slash (/). The
URL contains many parts as well, but this is good enough for now.

Figure 12.11 Adding new rules to the URL Rewrite tool

208 CHAPTER 12 Optimizing sites for users and search engines
The web URL in figure 12.12 is for our sample bike shop and will display bicycle tires.
The long URL is dynamically generated by ASP.NET, the language the developers used
to create the site. Such long and ugly URLs are a common issue with websites and
products such as SharePoint that use dynamically generated content.

 We want to make the URL something easier for customers to remember and type
into their browsers when they’re searching for tires. We also want to make it easier for
search engines to crawl the site and thus improve SEO. In a nutshell, what happens is
that when a user types the short URL, URL Rewrite rules transform it back into the
long URL to get the web page from the site.

 In figure 12.13, you can see how I created a User-friendly rule by pasting the long
URL into the first box. URL Rewrite then listed several short URLs to choose from. I
chose www.bikeshop.loc/bikes/tires/.

Figure 12.12 Making long URLs shorter

Figure 12.13 Using the User-
friendly rule to shorten a URL

209Using regular expressions to improve URL Rewrite
This is a great solution for web pages that customers commonly want but which have
long, complex URLs.

URL Rewrite can do more, including solving two other common issues: email and
domain name redirects. We’ll get to those later. First you need to learn about regular
expressions.

12.3 Using regular expressions to improve URL Rewrite
Regular expressions (regex) is a topic that most web administrators avoid. The expres-
sion syntax can seem deep and complicated when you’re getting started. It’s like an
onion: every layer takes you to a deeper layer. But to solve the common website redi-
rection problems discussed in this section, you don’t need to go that deep.

 A good way to think about regex patterns is as a filter. Only the data that passes the
filter (regex pattern) will be handled by a rule. You may also find that you start to use
regex for things other than those described in this chapter, such as searching IIS logs
and other text files. PowerShell has a powerful regex implementation for that reason.
Who knows? You may start to enjoy the game (yes, game) of creating better and faster
regex patterns to use for searching.

 For our purposes, you’ll use regex to create basic pattern matching to use with the
URL Rewrite tool. The tool even includes a way to test your regex patterns to make
sure they work. You’ll use that tool shortly to learn about regex. Let’s get started with
learning some regex basics.

12.3.1 Basic regular expressions every admin should know

This is a topic that’s better learned by seeing and doing than having everything
explained up front. Let’s dive in and start playing with regex. I want you to treat this
entire section as a Try It Now. It’s important to follow along on your VM and examine
the results so you can understand the process. After getting familiar with the regex
language and how matches are determined, you’ll solve a couple of real-world website
redirection problems using your new knowledge.

LAUNCHING THE URL REWRITE TOOL FOR PATTERN MATCHING

Launch the URL Rewrite tool and add a new blank rule. You’ll see several different sec-
tions, which I explain later. For now open the Conditions section. Click to add a new
condition. In the Condition input box, enter {HTTP_HOST}, as shown in figure 12.14.

Above and beyond
You can use PowerShell and the –match comparison operator to test pattern match-
ing, but IIS has a built-in tool to do this. If you’re using regex for other purposes
beyond IIS, you should try out the PowerShell –match and the Select-String cmdlet.

210 CHAPTER 12 Optimizing sites for users and search engines
The Condition input is for server variables (discussed in chapter 3). In this demon-
stration you’re going to try building regex patterns to test matches on the host name
(www.BikeShop.com) of an HTTP address.

 Click Test Pattern, and you’ll see a screen similar to figure 12.15. The top part of
the form is where you enter the test data and regex pattern (filter) for testing. When
you click the Test button, your results are displayed if there’s a match. You’ll run sev-
eral tests, but I’ll only show the graphic once, in figure 12.15.

 Note that the top box is where you type the data to be tested. The middle box is
where you enter the regex pattern. Let’s try a simple example. In the Pattern box, type
www.BikeShop.com. In the Input data to test box, enter www.bikeshop.com and click the
Test button. You should have a successful test. If you mistype the input data or the
regex pattern, you’ll notice no matches displayed.

 Using the test tool, I’ll show you some common regex patterns and language syn-
tax. Try these out as you go along to get a feel for how the patterns work.

USING REGEX TO FIND A MATCH
Regex looks for a pattern match in a string of data—for example, an HTTP request the
user types into a browser or a log file—and displays hits, or matches. The pattern
match works as a filter, and in the case of IIS you can build rules to control what hap-
pens next if a match is found. Simple regex patterns (filters) can produce unexpected
results. As an example, the test pattern of www.BikeShop.com will match several test data
results. You can try these in the test data, and they’ll all work:

 www.bikeshop.com
 wwww.bikeshop.com
 www.bikeshop.commm
 ThisIsCoolwww.bikeshop.comAndFun

Figure 12.14 Opening the tool to
start testing regex patterns

211Using regular expressions to improve URL Rewrite
They work even though they aren’t exact matches because our regex pattern doesn’t
limit the beginning or ending of the string. To make the match not permit the leading
or trailing characters, you use two special regex characters that signal to the pattern
the beginning and the end of the string. In this case begin the pattern with a ^ and
end the string with a $. Type this regex pattern: ^www.bikeshop.com$. Now try the pre-
ceding bullets again. This time the beginning and trailing characters don’t match,
and only the first bullet (www.bikeshop.com) works.

 One additional note: the periods need to be read by regex as characters you want
tested, so a backslash \ is placed before them. This \ is an escape character that means
check for the next character. For the best match so far, the pattern should look like this:

^www\.bikeshop\.com$

Figure 12.15 Testing regex patterns

212 CHAPTER 12 Optimizing sites for users and search engines
CHECKING FOR THIS OR THAT

Regex also has a special character that represents logic’s OR. For example, if a cus-
tomer sends an HTTP request that contains either www.bikeshop.com or www.bikeshop.net
in the URL, you want to redirect them to www.BikeShop.org. The pipe character | is
the regex OR operator. I’ll use parentheses to group the top-level domain and set a
regex pattern for .com or .net. The pattern would look like this:

^www\.bikeshop\.(com|net)$

 Try the following as test data and see how the pattern works:

 www.bikeshop.com
 www.bikeshop.net
 www.bikeshop.org

If you’ve been trying these out with me, note that www.bikeshop.org failed the test
because the .org portion wasn’t in our pattern. If you wanted .org to also pass the test,
here’s what it would look like:

^www\.bikeshop\.(com|net|org)$

EXTENDING A MATCH

Regex has two characters that permit patterns that extend further than what you
define. As an example, suppose I want a pattern that would be successful if a customer
typed one of the following:

 www.BikeShop.com
 www.BikeShopRepair.com
 www.BikeShopSales.com

The characters .* and .+ are similar. The .* means allow anything to follow (like the *
wildcard you use at the command line), and the .+ means something must follow. Notice
the distinction between the two. With .* anything can follow; with .+ something must
follow. Use the following pattern and try the preceding three bullets as test data.
Here’s the regex pattern:

^www\.BikeShop.*\.com$

All three worked. Now try with this pattern:

^www\.BikeShop.+\.com$

In this case the first bullet failed because the .+ requires that there be characters fol-
lowing BikeShop.

MAKING PARTS OPTIONAL WITH REGEX

Sometimes you’ll want to apply a rule on an HTTP request whether the customer
typed the entire URL or not. You want to make parts of the URL optional in the filter.
Customers may type a URL without the www—instead of typing www.BikeShop.Com,

213Using regular expressions to improve URL Rewrite
they type BikeShop.com. The character ? is the optional character in regex. Here’s an
example of making the www part of the address optional:

^(www\.)?BikeShop\.com$

You can test this in the tool. You’ll see that the user could type either www.bikeshop.com
or bikeshop.com. One last regex trick and then we’ll solve some real-world problems
with your new knowledge.

CHECK FOR ANY CHARACTERS WITH REGEX

Regex also allows you to check for specific characters and approve them or not. The
[] define a character class you want to check for. In my example I want to create a
regex pattern that will allow the customer to type the following URLs into their
browser:

 www.BikeShop.com
 www.BikeRepair.com
 www.MyShop123.com

For the domain portion of the address, I use [] and specify characters that are permit-
ted, such as:

[a-zA-Z0-9_]

That example would permit upper- and lowercase alphanumeric characters and the
underscore. To make the rule accept multiple characters, I need to include a .+ sym-
bol like this:

[a-zA-Z0-9_].+

To check for a web address using any characters in the domain, I could create a pat-
tern similar to the following:

^www\.[a-zA-Z0-9_].+\.com$

Try the bullet items and see that they all pass the test.

GOING DEEPER WITH REGEX

Earlier I said that I’d show you how to solve two common problems using the URL
Rewrite tool and regex. That’s coming up next. But I want you to know that there are
many ways to accomplish the same goal using regex. This has only been an introduc-
tion to some of the characters and symbols that regex uses.

 Now let’s solve two real-world problems.

12.3.2 Using URL Rewrite to redirect website domains and improve SEO

Let’s get right to the problem. Have you noticed in your web browsing that sometimes
you can type the www and sometimes you don’t have to? As an example www.Bike-
Shop.com and BikeShop.com both work. The reason BikeShop.com works is because an A
record entry in DNS points to the entire domain to your web server. This helpful

214 CHAPTER 12 Optimizing sites for users and search engines
feature is automatically set up in many DNS zones, and most websites respond this
way—but it can reduce your SEO and confuse customers.

 You shouldn’t disable/remove this feature, but to improve SEO, you want the web-
site, regardless of what was typed, to always redirect the browser to the proper address
and URL that has the www. To accomplish this, do the following:

1 Open the URL Rewrite tool and create a new inbound blank rule.
2 Enter the rule name and .* pattern for the URL (remember, the URL is every-

thing after the host name), as shown in figure 12.16.
3 Below the URL match is a sec-

tion named Conditions (not
displayed). This is where you
practiced regex patterns in the
preceding section. Add a new
condition that will analyze
only the host name of the
address. This is the
{HTTP_HOST} parameter, as
shown in figure 12.17.

4 The regex pattern is testing
the address that the user or
search engine used to get to
the website. You want a pat-
tern that tests for the site with-
out the www, such as
^BikeShop\.loc$.

Figure 12.16 Creating the rule
name for website redirection

Figure 12.17 Entering the pattern without the www
for the redirect

215Using regular expressions to improve URL Rewrite
5 In the Action section at the bottom, select Redirect in the Action type drop-
down and supply the correct and proper address with the www, as shown in fig-
ure 12.18.

6 Set the rule to make this redirect permanent so search engines keep the new
address.

Now whenever a customer or search engine browses to your website using BikeShop.loc
in the navigation bar, the address is automatically changed to www.BikeShop.loc. With
this one rule you’ve redirected customers to the correct website and improved SEO.

12.3.3 Redirecting customers to a secured website

The last common problem we’ll solve together using URL Rewrite and regular expres-
sions is so common it affects not only web admins but mail engineers with Microsoft
Exchange and SharePoint admins. Customers are so used to typing http:// for the pro-
tocol they forget to change this to https:// for secured websites. As the web admin, you
can do that for them automatically and make their lives easier.

 Consider that our bike shop has the following two secured websites for customers
and employees: one to purchase products from and one for employees to check their
email (notice the email site also includes an additional URL folder):

 https://shop.BikeShop.loc
 https://mail.BikeShop.loc/owa

Customers and employees use the HTTP protocol instead of HTTPS when they type
the address. That throws an error to the customer and isn’t nice. We want to automat-

Figure 12.18 Redirecting to the correct address

216 CHAPTER 12 Optimizing sites for users and search engines
ically redirect them to the correct site without their even knowing there was an issue.
You can solve this by setting up a redirect with URL Rewrite. Because the solution is
the same for both sites, I’ll focus on the email site. Employees often type http://
mail.BikeShop.loc to get to the email site. I’ll redirect them to the correct address and
URL and also change the protocol to HTTPS with one rule.

 Create the rule and add a condition to match the pattern for mail.BikeShop.loc, as
shown in figure 12.19.

 Add an additional condition to check that HTTPS isn’t being used, as shown in fig-
ure 12.20.

 Set the redirection to the correct address and URL, as shown in figure 12.21.
With this solution, whenever an employee types http://mail.bikeshop.loc into the navi-
gation bar of their browser, they’re automatically redirected to https://mail.bike-
shop.loc/owa/.

 Wow, that was a lot of information for today’s lunch. If you’ve been following
along, you should be getting a handle on how to improve the SEO of your websites.
Before you stop for the day, let’s try a lab.

Figure 12.19 Setting the
match for email address

Figure 12.20 Checking for HTTP by setting condition HTTPS to OFF

217Lab
12.4 Lab
Most of this chapter has been a giant lab for you to test and try things out as you
learned them, so I won’t overwhelm you with a lot more. I do want you to take a look
at the WebBikez websites and make some SEO corrections.

TRY IT NOW

If you didn’t get a chance to perform the Try It Now sections, I have repeated them
here for your convenience. Once complete, you can start the lab with task 1.

1 Install the SEO Toolkit on your lab VM using the iis.net website or the WebPI
tool. Click the web server in the navigation pane of the IIS manager and verify
that the SEO Toolkit is installed in the Management section.

2 Open the Site Analysis tool and scan one of the websites you’ve created
throughout this book. You can also scan a real website, such as your company’s
or even someone else’s.

3 Install the URL Rewrite tool. Use the Web Platform Installer and search for URL
Rewrite.

TASK 1
Using the SEO Toolkit analyze all the websites you’ve built for the WebBikez shop.
Although you won’t find much, this will help you get comfortable using the toolkit.
Try blocking part of a website from being searched by applying a robots.txt file.

TASK 2
Create a redirection so that if a customer types WebBikez.loc (without the www) into a
browser, they’re redirected to www.WebBikez.com.

Figure 12.21 Setting the correct address and URL for email

218 CHAPTER 12 Optimizing sites for users and search engines
TASK 3
Using the following regex pattern, write out an explanation of what this filter will
match, and include some examples that will match this filter and some that won’t:

^((http|https)://)?(www\.)?[a-zA-Z0-9_].+\.(com|net|org)$

12.5 Ideas to try on your own
The Search Engine Optimization Toolkit is a handy tool for developers and adminis-
trators alike. You’ve seen in this chapter that it can provide useful information regard-
ing SEO. Try using the SEO Toolkit for your own websites and see if you can detect and
possibly repair any issues discovered.

Building a web farm with
Microsoft Network

Load Balancing
Does your company rely on its websites for sales and customer support? At some
point all businesses learn that their web presence is critical to continued sales and
support, and losing that presence (through web server failure) can be financially
painful. Add to this the fact that many companies experience growth and an
increased demand for their web services. More and more customers regularly use
company websites, increasing the load on them and slowing them down. You can
fix these problems by adding additional web servers to a load balance. A load bal-
ance, known as a web farm in IIS, is a process of adding high availability to help pre-
vent the failures of your websites and increase overall performance.

 The concept of a load balance is simple: you place copies of your websites on
other web servers so that if one server fails, another server will pick up the load. It’s
similar to having an online backup ready to take over the work if something goes
wrong.

 In this chapter you’ll help the WebBikez shop protect its websites from failure
and increase the performance of this ever-growing company’s websites. To do that
you’ll deploy the built-in Microsoft Network Load Balancing software (NLB) to cre-
ate a new web farm and then deploy a website to the new farm. NLB is a great way to
219

220 CHAPTER 13 Building a web farm with Microsoft Network Load Balancing
learn and experience the confusing topic of load balancing, and that’s the reason I
wrote this chapter. It’s a good product and learning it is a good way to understand the
more complex solutions discussed in chapter 14.

 If you haven’t worked with a load balance or cluster before, the concepts can be a
little confusing at first. Let’s start by removing the mystery of load balancing.

13.1 Introduction to the load balancing web farm
As a web administrator I have this fear of losing a web server and the websites hosted
on it. As soon as a website goes live for production, my stomach turns if I have no pro-
tection from failure. A backup isn’t good enough—think how much time it would take
to build a new server and restore those websites and configurations. That’s why, as
soon as I create a website that the business relies upon, I create a web farm (load bal-
ance) to protect it.

 A simple web farm for IIS consists of two or more IIS servers, each with an exact
copy of the same websites (I discuss other configurations in later chapters). What
makes the web farm work is that customers access the web servers using an IP address
that connects to the load balance hardware/software, known as a cluster IP address.
The load balance then connects the users to the web servers and sites for any server
that’s online, as shown in figure 13.1.

 Should a web server fail, the load balance sends new requests to another server that’s
online. Simple load balancers direct users to the first server that responds. Therefore
if a server is gradually getting slow due to having too many users, another server will
respond faster, balancing the load. With a web farm you get the safety of having another
server in case one fails and an increase in performance for growing websites.

Figure 13.1 How a load balance works

221Introduction to the load balancing web farm
 In this section you’ll discover the advantages of using Microsoft NLB and some of
the drawbacks. NLB is built in to your server’s operating system and is simple to get
running. First I look at how NLB works differently from a hardware load balancer.

13.1.1 Using Microsoft Network Load Balancing

The Microsoft NLB works a little differently from many other hardware/software load
balancers. There’s no appliance in front of the servers to act as the load balancer or
traffic cop, so each of the servers in the Microsoft NLB must be aware of the online sta-
tus of the other servers. To do that each server has a local configuration containing a
list of all the servers in the load balance. Each server then uses a heartbeat (similar to
ping) packet to check the status of the other servers. If a server goes offline, all the
servers in the NLB detect it and update their local configuration so that no new traffic
is sent to the offline server, as illustrated in figure 13.2.

 This simple process of having the load balance software on each server provides
fault tolerance (the ability to handle a failure) and increased performance—without
the need for major networking changes to switches and cabling or for purchasing
additional appliances to perform the job of load balancing.

 Let’s look at some more advantages and a few of the disadvantages before you con-
figure NLB.

13.1.2 Benefits and issues with Microsoft NLB

The primary benefit to using Microsoft NLB is that you already own the software. It
performs well and provides great protection if a server fails.

NLB also provides an increase in performance because each server can respond to
customer requests. Here are some of the overall benefits of Microsoft NLB:

 Built-in to the server operating system
 Easier to configure than many hardware-based load balancers
 Requires no or minimal network changes
 Can grow up to 32 servers in a single load balance as your performance

demands grow

Figure 13.2 Microsoft NLB
uses a heartbeat to detect
server failures.

222 CHAPTER 13 Building a web farm with Microsoft Network Load Balancing
Microsoft NLB’s limitations are as important as its benefits. Microsoft NLB isn’t perfect
for every situation. Let’s look at some of the issues involved with using Microsoft NLB.

UNDERSTANDING THE ISSUES OF NLB
Microsoft NLB is a good product for small businesses on a tight budget to achieve a
better level of fault tolerance and performance. There are some issues with NLB that
may not make it the right product for you. Note that I still want you to do the lab even
if it’s not—the concepts you learn in this chapter are important for the following
chapters as you examine other options.

 What’s wrong with NLB? Well, nothing. It’s designed as a simple, no frills load bal-
ance that works well in the right situations. Let’s look at some of the situations where
it doesn’t work well.

NLB DETECTS SERVER FAILURES, NOT WEBSITE FAILURES

Microsoft NLB detects when a server, not an application, fails in the load balance. NLB
is a Layer 3 load balancer (Layer 3 in the OSI model), meaning that it only has enough
intelligence to detect whether a server’s network interface card is no longer respond-
ing to heartbeats. The entire server has crashed, the cable has been removed, or some
other network issue has occurred.

 If you have multiple websites running in your web farm, the Microsoft NLB can’t
detect a failure for an application such as a website. If a website stops functioning due
to a problem such as an application pool crash, NLB doesn’t switch to another server.
Customers therefore may still be redirected to the dead website because NLB has
detected no problem.

 The resolution to this issue is to use a load balancer that has more intelligence in
the application layer. I discuss one such load balancer in chapter 14.

ISSUES WITH SSL
Microsoft NLB is best used for web servers that host public websites, not ones that use
SSL. In Microsoft NLB, customers are connected directly to the server that has the
website they’re accessing. If a failure occurs, or if the customer needs to be moved to
another server to balance the load, the SSL connection is destroyed. That forces the
customer to create a new SSL tunnel, which usually means they have to log in to your
site again.

 A hardware/software appliance load balancer that sits in front of the web servers
doesn’t have this issue. The SSL connection is between the customer and the load bal-
ancer. On the back end, if a server fails and the load balancer switches to a different
server, the SSL connection is unaffected. The customer never knows there was a failure.

13.1.3 When to use Microsoft NLB

Knowing all that, when should you use it? Here’s a quick summary list of the best cases
for using NLB:

 When protecting public websites that don’t require SSL

 When you can’t afford the additional cost and complexity of a separate load bal-
ancing device

223Deploying a web farm using Microsoft NLB
 When detecting a server failure as opposed to an application failure is “good
enough” protection

 When you want an increase in performance without additional cost

I like Microsoft NLB—particularly for small companies—as long as the disadvantages
are clearly understood. Also NLB is a great way to learn and experience the confusing
topic of load balancing, which is one of the reasons I wrote this chapter. It’s a good
product and a good way to understand more complex solutions.

 Let’s dive into creating a Microsoft NLB so you can see exactly how it works.

13.2 Deploying a web farm using Microsoft NLB
Installing and configuring Microsoft NLB is fairly easy with the graphic utilities:

 Server Manager installs the NLB feature
 NLB Manager finishes the configuration

If this is the route you want to go, there are plenty of Google and Bing resources avail-
able, but this is one of those times when PowerShell is the best answer.

 You’ll install the NLB feature on your web servers and configure NLB on each
server. PowerShell Remoting makes that fast and simple. Also if you’re using Server
Core (as I am) for your web servers, this is the best solution. Rather than bore you
with countless graphic screens, let’s do this the easy way.

 In this section you’ll create a load balance for the WebBikez shop by performing
the following tasks:

 Creating the PowerShell Remoting connections to the web servers
 Installing the NLB feature
 Creating and configuring the load balance with Microsoft NLB

You can follow along on your own VMs during the Try It Now sections or wait until the
lab. Either way you should take the time to do this yourself—as I’ve said, the experi-
ence will be useful in future chapters.

 The first step is to create a PowerShell Remoting connection to the web servers.
After this connection is made, you’ll be able to install the required NLB feature to
build the load balance. Let’s start by creating the remote connections.

13.2.1 Creating the remote connections

The first step is to create PowerShell Remoting connections to the servers that will be
part of the load balance. To start you’ll need the two additional servers mentioned in
chapter 1. These will become part of the new load balance. The two web servers I’m
using for the WebBikez shop are named Web1 and Web2. They have PowerShell
Remoting enabled and haven’t had IIS or the NLB feature installed.

 You should perform all the PowerShell commands from your client computer (in
the lab you can pretend your domain controller is a client). In the real world most
admins don’t have direct access to the servers, and this is why PowerShell makes this
so easy. (Data centers are cold places anyway.)

224 CHAPTER 13 Building a web farm with Microsoft Network Load Balancing
 The first step is to create the remote sessions to the web servers using PowerShell
Remoting. I store the sessions into a variable called $Sessions as in this example:

PS> $Sessions = New-PSSession –ComputerName Web1, Web2

That connects you to the remote computers so that commands can be sent using the
Invoke-Command cmdlet.

TRY IT NOW Make a PowerShell Remoting connection to your two other VMs,
as in the example just given. Windows Server 2012 has PowerShell Remoting
enabled by default, so it should work. But if you’re using Windows Server
2008 R2, you may need to run the Enable-PSRemoting cmdlet on the remote
server first.

Now it’s time to install the features and roles needed for a web server and NLB.

13.2.2 Installing the NLB feature

The next step is to install the NLB feature on each of the servers that are to be a part
of the load balance. The name of the feature is NLB, and you can use the Install-
WindowsFeature cmdlet to perform the install.

Your servers don’t have the Web Server (IIS) role installed, so you’re going to install
both the Web Server (IIS) role and the NLB feature. You can use Get-WindowsFeature
to get the PowerShell names for the components, which are Web Server and NLB
respectively. I’ll show you how to install multiple features at the same time. I want to
make sure that the module for NLB is installed as well, so I include Remote Server
Administration Tools (RSAT-NLB).

 To install both the Web Server (IIS) role and the NLB feature, do this:

PS> Invoke-Command –Session $Sessions {Add-WindowsFeature Web-server, NLB,

➥RSAT-NLB}

When the installation completes you’ll receive a success message in the PowerShell
console. Remember that you can install additional web features such as ASP.NET using
that command.

TRY IT NOW Install the NLB feature and Web Server (IIS) role on your addi-
tional web servers.

Above and beyond
In PowerShell v2 the cmdlet that adds roles and features to a server is called Add-
WindowsFeature. In PowerShell v3 this has been changed to Install-
WindowsFeature. If you’re using PowerShell v3, you can still use the Add-
WindowsFeature name because it’s now an alias to the Install-WindowsFeature
cmdlet. I wanted to give you examples that worked for both versions of PowerShell,
so I’m using the Add-WindowsFeature cmdlet instead of the v3 only cmdlet
Install-WindowsFeature.

225Deploying a web farm using Microsoft NLB
With both servers equipped with the necessary software, it’s time to create and config-
ure the load balance.

13.2.3 Creating and configuring the load balance with Microsoft NLB

The Microsoft NLB feature includes a module of cmdlets called NetworkLoad-
BalancingClusters. These cmdlets can make the creation and configuration of a
Microsoft NLB quick and easy. If you’re using a client such as Windows 7 or Windows
8, you’ll need these cmdlets. To get them, install the RSAT for your client. An example
of creating the load balance using the New-NlbCluster cmdlet is shown in figure 13.3.
The PowerShell command in figure 13.3 configures the first server for the new load
balance. You add servers to the existing load balance like this:

PS> Get-NlbCluster -HostName Web1 | Add-NlbClusterNode -NewNodeName Web2 -

➥NewNodeInterface Ethernet

When the additional server (node) is added to the load balance, you’ll receive a suc-
cess message in the PowerShell console.

TRY IT NOW Create your own load balance on your two additional VMs. This
process may take around 5 minutes to complete.

Once all the servers are added to the load balance, you’ll want to add a DNS record
that points to the cluster IP address of the load balance. You can do that through the
graphical DNS management utility or with PowerShell if you have Server 2012 or using
the RSAT tools in Windows 8, as shown in this example:

PS> Add-DnsServerResourceRecordA -Name www -ZoneName company.loc -IPv4Address

➥192.168.3.200 -ComputerName DC.company.loc

Figure 13.3 Understanding the parameters with New-NlbCluster

226 CHAPTER 13 Building a web farm with Microsoft Network Load Balancing
In that example I install two new web servers and join them to a Microsoft NLB. I
haven’t added the WebBikez websites yet, but I still want to test to make sure every-
thing works. Here’s where the default website that’s installed automatically comes in
handy. Launch a web browser and connect to the default website:

PS> Start-Process –Name iexplore http://www.company.loc

Later in the chapter you’ll test the load balance to make sure it’s working properly by
failing a server, but let’s finish the deployment of the websites first.

13.3 Deploying websites to a web farm using PowerShell
There are several methods to deploy (or make available) your websites to web servers
in a load balance, including from a shared location. You’ll explore several of those
methods in later chapters, but for now let’s use the simplest and most direct method
of deploying web pages to the web servers and creating new websites in IIS to host
them. I think you’ll find that this simple, direct method works well for small environ-
ments with simple websites.

 In the next several chapters you’ll explore different methods of deploying websites
to a load balance using Microsoft Application Request Routing and Web Deploy. In
this section you’ll deploy the files for a single website, create the website using the
WebAdministration cmdlets, and then test the website.

 You’ll deploy your own websites in the lab, but I’ll demonstrate the process, start-
ing with copying the files to the web servers.

13.3.1 Deploying website files to remote servers

You can copy website files to your remote servers in several simple ways. You could
walk around to each server and copy the files from a USB stick or manually map net-
work drives using File Explorer and copy the files to each server one at a time. Both of
those methods are valid, so use whichever you prefer.

 But if you’ve been brushing up on your PowerShell skills, there’s a much simpler
method that will deploy the files to all servers at once. I prefer this method and will
teach it to you because you may have 10, 20, or 30 servers in a load balance, not 2.

 Create a variable that contains the names of the web servers:

PS> $Servers= ‘Web1’, ‘Web2’

I like to keep the files for each of my websites on my client under C:\sites. I may have
the following structure:

 C:\sites\Bikeshop
 C:\sites\Shopping
 C:\sites\Products

These are the folders for three different sites including the web pages. The following
example copies all three of them to the remote servers, keeping the same folder
structure:

227Health and verification for NLB
PS> $Servers | foreach{Copy-Item -Path c:\sites* -Destination \\$_\c$\sites

➥-Recurse -Force}

That’s all there is to it! Each server now has its own C:\sites folder with the files for
each website. The next task is to create an IIS website that uses those files.

13.3.2 Creating a website for IIS

Chapters 3–5 demonstrate using PowerShell to create websites and application pools.
This is a great chance to pull all the information together and create the websites on
multiple remote servers using PowerShell Remoting.

 For more details on each command, check the previous chapters, but I hope you’ll
remember most of this. There are three steps to the process (wait for the lab to try
these):

 Create a remote session to the web servers
 Create a new application pool to hold the website
 Create the website

Here are the PowerShell commands to perform those steps:

PS> $Sessions = New-PSSession –ComputerName Web1, Web2

PS> Invoke-Command -Session $Sessions {New-WebAppPool -Name BikeShop-pool}

PS> Invoke-Command -Session $Sessions {New-Website -Name BikeShop -HostHeader

➥www.BikeShop.loc -PhysicalPath C:\sites\BikeShop -ApplicationPool

➥BikeShop-pool}

Remember to add a DNS record for the new website using the NLB cluster IP address,
and you’ve completed your deployment to a web farm!

13.4 Health and verification for NLB
Once the load balance is built, and you have your websites established, it’s good prac-
tice to verify that the load balance is healthy and working before you put it into pro-
duction. In this brief section you’ll do that.

 Let’s start with the health check!

13.4.1 Checking the health of the load balance

When the load balance is created, all servers in the load balance must converge their
configuration files and check that each server is online. The load balance continues to
verify that each server is responding and healthy by sending a heartbeat. If the heart-
beat is successful with all servers, the load balance is converged. If a server stops func-
tioning due to a failure, the heartbeat fails and convergence is lost.

 You can check on the current status of the load balance using the graphical Net-
work Load Balancing Manager or the NLB cmdlet Get-NlbClusterNode, as shown in
figure 13.4.

 In the graphical tool, the servers (nodes) appear in green if they’re converged and
everything is functioning normally. The nodes appear in red if something’s wrong,

228 CHAPTER 13 Building a web farm with Microsoft Network Load Balancing
such as a server failure or a configuration problem that’s caused the nodes to lose con-
vergence.

TRY IT NOW If you built your NLB earlier in the chapter, check the status of
the load balance and verify that it’s converged. You can use the graphical Net-
work Load Balancing Manager or PowerShell.

You should check for convergence after you initially configure the load balance to make
sure no configuration issues occurred. If an issue has occurred, the bottom of the
graphical tool will display an error message that will help direct your troubleshooting.

 I also check the convergence during testing and verify the operation of the load
balance. Let’s do that next, and then you can try the lab.

13.4.2 Verifying the operation of the load balance

Don’t put a web farm into production unless you’ve tested that it will perform as
expected. You should intentionally “break” a server and verify that the load balance
flips to the good server.

 That’s easy. I like to test my load balance this way during a maintenance window
every couple months to ensure its proper operation. I start by placing a web page in
the default website called NLB.htm, which has the computer name of the server (such
as Web1). Then do the following:

Figure 13.4 Verifying convergence with
NLB Manager and PowerShell

229Lab
1 Connect to the web address of the load balance with a browser: http://
www.MyNLB.com/NLB.htm.

2 Record the name of the server displayed in the web browser. This is the server
you’re currently connected to in the load balance.

3 Turn off (not shut down) or remove the cable from the network interface of the
server you’re connected to.

4 Refresh the browser. A new web page should be displayed by the functioning
server saying that the load balance successfully redirected the browser.

If the test is successful, bring the “failed” server back online and check to make sure
all servers converge. If the test isn’t successful, check your configuration again to
make sure that all servers can converge before the test begins. Remember, if they can’t
converge before the test, then the load balance won’t function properly.

 To get a good feel for how the load balance works and the troubleshooting
involved, try the lab before you finish your lunch!

13.5 Lab
I would like you to deploy a new website to a web farm using Microsoft NLB. Make sure
you have two additional servers for this lab as described in chapter 1. In this lab, those
servers are named Web1 and Web2.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I repeat them here
for your convenience. Once complete, you can start the lab with task 1.

1 Make a PowerShell Remoting connection to your two other VMs. Windows
Server 2012 has PowerShell Remoting enabled by default, so it should work. But
if you’re using Windows Server 2008 R2, you may need to run the Enable-
PSRemoting cmdlet on the remote server first.

2 Install the NLB feature and Web Server (IIS) role on your additional web serv-
ers.

3 Create your own load balance on your two additional VMs. This process may
take around 5 minutes to complete.

4 If you built your NLB earlier in the chapter, check the status of the load balance
and verify that it’s converged. You can use the graphical Network Load Balanc-
ing Manager or PowerShell.

TASK 1
Configure the load balance of the two servers. Use 192.168.3.100 as the cluster IP
address. Add this IP address to DNS using an A record named www.

TASK 2
Create a local folder structure C:\sites\www. In the www folder, add a default.htm web
page. Deploy the folder and the web page to the two servers using PowerShell.

230 CHAPTER 13 Building a web farm with Microsoft Network Load Balancing
TASK 3
Using PowerShell Remoting, create an application pool and a website named Web-
BikezDefault on the two servers. Verify that the website works by testing, using the
browser on your domain controller: http://www.webBikez.com.

TASK 4
On each server, add a web page named NLB.htm. The page should contain the com-
puter name of the local host to help identify the unique server during NLB testing.

TASK 5
To test the load balance you created, open the browser on your domain controller
and type the address http://www.WebBikez.com/NLBhtm.

 Based on the computer name displayed in the browser, turn off the corresponding
VM. Refresh the browser to see a new web page displayed—this time with the remain-
ing server’s computer name.

13.6 Ideas to try on your own
In chapter 11 you learned how to enable remote management of web servers so you
could use the IIS manager. When you get a chance, enable the remote management of
the web servers in your load balanced environment.

Building a web farm
with Application
Request Routing
A simple load balancer such as Microsoft NLB is great for preventing downtime due
to a failing web server, but as your websites on a server grow in number, you need
something with more intelligence. Websites themselves may fail, as an application
pool stoppage, without shutting down the entire server. In these cases an applica-
tion layer (layer 7) load balancer such as Microsoft’s Application Request Routing
(ARR) is an excellent choice for many web farms. ARR (which is free) can detect a
failure to an individual website or application pool and then switch to a new web-
site on a different server that’s functioning. ARR also provides detailed health mon-
itoring and logging information along with easy management for a large web farm.

ARR is much more than a load balancer. It acts as a manager of the servers in a
load balance and helps in provisioning new sites and application frameworks and
caching content to increase performance. ARR includes rich health monitoring
tools, live URL testing, and performance statistics logging that far exceed the capa-
bilities of NLB. The drawback (if there is one) to ARR is that it requires an addi-
tional web server to act as the load balancer—similar to using a hardware load
balancer such as a Big-IP F5. Because ARR offers many more features and a better
load balancing environment, it’s also more complicated to configure and manage.
231

232 CHAPTER 14 Building a web farm with Application Request Routing
But don’t let that scare you away from ARR!
You’ll start at the beginning in this chapter
using ARR in its simplest form to replace
Microsoft NLB. Once you learn how to install,
create, and configure the web farm, you’ll
learn how to monitor the health of your new
farm. Over the course of the next several
chapters, you’ll experience more of ARR’s
features.

 The first section starts with a look at the
requirements and installation of ARR.

14.1 Installing ARR
Microsoft NLB provides fault tolerance by
detecting when a server no longer responds
to a heartbeat (something like ping). This
works well at the machine level if an entire
server crashes. ARR works at the application
layer, meaning it can test specific URLs
(HTTP requests) to detect whether a website
or application has failed and redirect those
requests to a functioning server.

 To achieve this ARR acts as a request man-
ager, directing the customers’ HTTP requests
to the available website, as shown in figure 14.1.

Figure 14.1 Application Request Routing as a load balancer redirecting requests

Above and beyond
One of the most common ques-
tions I hear is: “Should I use a
layer 7 hardware load balancer
instead of ARR?” Other hardware
and software load balancers
(such as Big-IP F5 or Cisco Pix)
are great solutions that support
load balancing for many purposes
beyond IIS. I’ve certainly used
many of these and find them to
be excellent solutions. The rea-
son I prefer ARR is because it
was written specifically for IIS by
Microsoft and is a lightweight
solution that can grow to web
farms of any size. It’s tightly inte-
grated into IIS and provides many
more features (such as provision-
ing) than basic load balancing.
You’ll experience many of those
features in later chapters, so
before you go out and buy a hard-
ware load balancer, finish the
book and give ARR a try.

233Installing ARR
ARR uses URL Rewrite rules to route the requests (remember chapter 12?) to the cor-
rect server and website. This is a fast, lightweight approach to load balancing that
ensures great performance even as your web farm grows.

14.1.1 Requirements for Application Request Routing

ARR is software that runs on a dedicated server, so if you’re going to run ARR, you’ll
have to add another server, either physical or virtual, that will act as the load balancer.
For most companies this is a minor expense compared to a hardware-based load bal-
ancing solution. You’ll also need the following:

 Server operating systems supported: 2008, 2008 R2, and 2012.
 IIS versions supported: 7, 7.5, and 8.
 IIS installed prior to installing ARR.
 During the installation of ARR, additional requirements—such as the Web Farm

Framework (discussed in chapter 19) and URL Rewrite—will be automatically
installed: I mention this because you’ll notice it during the installation process.

Let’s take a look at the installation process and the addition of ARR.

14.1.2 Installing Application Request Routing

Installing ARR is as simple as many of the components you’ve installed throughout this
book. It’s a free download from www.iis.net and can be easily installed using the
WebPI, which you’ll perform in the next Try It Now section.

 After the installation using WebPI, a new icon will appear under the IIS section in
the IIS manager. This icon is for viewing and managing performance-enhancing cache
settings (discussed in chapter 19). The important thing for this chapter is the addition
of the Server Farms folder in the navigation pane, as shown in figure 14.2.

 The Server Farms folder is where you’ll spend most of your time in this chapter.
This is where you’ll create your new load balance.

Figure 14.2 The new ARR icon and
Server Farms folder in the IIS manager

234 CHAPTER 14 Building a web farm with Application Request Routing
TRY IT NOW Before installing ARR make sure you remove the NLB you
installed in chapter 13. Here in this chapter use your domain controller as
the ARR control server. Install ARR to the domain controller and verify you
have the Server Farms folder added to the IIS manager. (Remember, you may
have to close and reopen the IIS manager.)

With ARR installed on the control server, you’re ready to build a new load balance. No
additional software is needed on the web servers that are running your websites. The
control server only needs to be able to see them (by IP address or host name) on the
network.

 In the next section you’ll build a simple web farm (load balance) using ARR.

14.2 Creating a web farm with ARR
I said you’d build a load balance with ARR in its simplest form. That doesn’t mean that
the load balance you build here won’t be useful for real production—in fact, quite the
opposite. In this chapter I don’t focus on the many additional features ARR includes,
such as automated provisioning, the Web Farm Framework, and multiple web farms.
We’ll save those for later. In this section your focus is on how easy ARR makes it to
build a load balance.

TRY IT NOW As in chapter 13, the web servers hosting the websites should
have IIS installed and a test page that displays the host name of the server in
place. Again, I prefer to put a web page in the default website for testing, such
as http://hostname/NLB.htm, or make a default.htm to keep the URL sim-
ple, such as http://hostname.

The control server (the one with ARR) is the load balancer, so DNS should
have an A record that points to the IP address of the control server. This is
where all HTTP requests need to be directed. See chapter 13 for review if
needed.

With ARR installed on the control server and the web servers hosting the websites in
place, let me show you how to create the load balance. Then you can try it in the Try It
Now section.

14.2.1 Creating a load balance with ARR

Creating the load balance using the IIS manager and ARR is quick and simple, as I
mentioned. This is a good time to use the graphical IIS manager to perform the tasks.

 Let’s create the container for the first load balance.

Above and beyond
It’s possible to perform these tasks with PowerShell using a snap-in (similar to a mod-
ule of cmdlets) called the Web Farm Framework (WFF). The version of WFF that installs
with ARR doesn’t yet have this snap-in—it’s something you’ll add in a later chapter—
but in the case of configuring the load balance, the graphical tool is a great solution.

235Creating a web farm with ARR
CREATING A NEW WEB FARM

To create the web farm container that holds the individual servers and the configura-
tion of the load balance, open the IIS manager and right click the Server Farms folder
to create a new farm.

 Enter a name for the web farm, as shown in figure 14.3, and select the farm to per-
form load balancing. ARR supports managing more than one load balance. The name
of the load balance can be as simple as Web Farm or it can be more related to the web-
sites that will be inside the farm. In that case, a name that describes the sites is a good
choice, such as BikeShop for the WebBikez shop websites.

 The next step is to add the web servers that are to be members of the load balance.

ADDING SERVERS TO THE WEB FARM

You can deploy the websites before or after the load balance is created. In chapter 19
you’ll see how to provision websites and components using ARR.

 You’ll add the web server by host name or IP address, as shown in figure 14.4.
 At this point you need to add a URL Rewrite rule that directs customer HTTP

requests to the load balance. You’ll see this rule in more detail shortly. But the wizard
will offer to create this rule for you automatically, as shown in figure 14.5. For single
web farms with one or two websites, the automatically created URL works well.

Figure 14.3 Creating the server
farm (web farm) for the load balance

236 CHAPTER 14 Building a web farm with Application Request Routing
Figure 14.4 Add web servers to
participate in the new load balance.

Figure 14.5 The wizard offers to
create a URL Rewrite rule automatically
to redirect HTTP requests.

Above and beyond
In more complicated (larger) load balance environments, the automatically created
rule is too basic, and you’ll want to create your own. I cover that in chapter 19, but
for your environment you may not need to add the additional complexity, and this
solution works great.

237Creating a web farm with ARR
The web farm is created using the default configuration (explored in the next sec-
tion), but the web farm is functioning as a load balance at this point. Take a few min-
utes and set it up for yourself.

TRY IT NOW Create a new web farm and add the two web server VMs that you
created for the lab environment.

Believe it or not, you’re done. See? ARR makes creating a load balance fast and simple.
When you select the new web farm in the IIS manager, you’ll see a series of manage-
ment icons, as shown in figure 14.6.

 Although I won’t go through all of them in this chapter, there are a few you’ll want
to check to make sure that the load balance is configured correctly and that you can
monitor the performance and statistics of the farm. You’ll do that in the next section.
First I’ll show you how to test the current default configuration.

TESTING THE WEB FARM

With the default configuration, the new web farm is load balanced and will work simi-
larly to the Microsoft NLB you examined in chapter 13. Using the default website, you
can once again add a web page with the computer name of the local server, connect to
the load balanced website using the cluster IP address or URL, and power off the active
server. When you refresh the browser, you’ll receive the web page from the new active
web server.

 I perform this quick test now to make sure the load balance is working before I
start changing the configuration. That way it’s easier to troubleshoot if something
goes wrong: I know it worked with the default configuration, so I must have made a
mistake with one of my new configuration changes.

TRY IT NOW Before we continue examining and changing the default config-
uration of the web farm, perform a quick test of the load balance to make
sure it’s working.

Figure 14.6 The configuration
icons for the new web farm

238 CHAPTER 14 Building a web farm with Application Request Routing
With the web farm performing its load balancing operations successfully, let’s exam-
ine the default configuration and take a look at some of the changes to the configura-
tion you may want to make for your environment.

14.3 Configuring Application Request Routing
The default configuration created during the installation of the web farm works well
for many environments. In this section you’ll examine some of the default settings of
the URL Rewrite and load balance and view the options you may want to change.

 Let’s start by examining the default URL Rewrite rule that was created automatically.

14.3.1 Examining the URL Rewrite rule

During the creation of the web farm, the wizard offers to create a URL Rewrite rule
that redirects all HTTP requests that the ARR server receives to the load balance. This
request is then subject to the load balancing algorithm (described shortly) that deter-
mines which physical server to send the request to.

 You can view the default rule in the URL Rewrite icon of the IIS manager. (If you
don’t remember URL Rewrite, see chapter 12.) The default rule matches all URLs and
has an action condition that points the requests to the correct web farm. Figure 14.7
shows the two sections of the default rule created by the wizard.

Figure 14.7 The default URL Rewrite rule
redirects all HTTP requests to the web farm.

239Configuring Application Request Routing
For simple environments with a single web farm and a few websites, this rule works
well. ARR supports managing more than one web farm and can handle thousands of
websites. In cases of larger and more complex environments, this rule is too simple. In
fact you may want to create your own rules that point specific websites to specific web
farms. An example would be to create a redirection rule similar to those in chapter 12.
An HTTP_HOST condition for www.company.loc may have an action that redirects the
requests to WebFarm1, whereas www.BikeShop.Com may have an action that redirects
to WebFarm2, but for now, for a single farm, the default rule works well.

WARNING I find that making changes to the existing rule causes problems, so
if I need to make changes, I delete the default rule and create my own.

Similarly the default load balance settings work well in a smaller environment. But
let’s take a look at those settings to be sure.

14.3.2 Changing the load balancing algorithm

One of the benefits of using ARR is the ability to control the load balancing algorithm
that ARR uses to redirect requests. This algorithm controls how servers are selected to
receive a new inbound request.

 You have several algorithm options to choose from. I’ll show you the more com-
mon ones first, and then you can experiment when you get to the lab. To locate the
load balance options, select your new web farm in the IIS manager. In the Load Bal-
ance options page, click the Load Balance icon, and the default option will be dis-
played, as shown in figure 14.8.

Figure 14.8 Changing the default load
balance algorithm from Least current
request to Weighted round robin for testing

240 CHAPTER 14 Building a web farm with Application Request Routing
The default algorithm is Least current request, which means ARR will route new
requests to the web server with the least number of current requests. This is a good
option that balances the request load among your servers.

 I don’t often need to change the default except when I’m testing to see if the load
balance is working. The challenge in testing the default option is that it’s hard to put
enough load on the first server so that it moves requests to the next one. I like to
change the algorithm to Weighted round robin, with an Even distribution, when test-
ing to see the load balance switch between servers. The round robin algorithm sends
requests to servers in a sequence rather than based on workload. As an example, when
I open a browser to test the load balance using http://www.company.loc, the URL for
my default website, it connects me to the first server available. Then as I press F5
(sometimes several times) to refresh the browser, it switches (round robin) to the
other servers in the load balance.

 By doing that, I can visually see that each server is responding by the changing dis-
play of the host names, as shown in figure 14.9. This is a simple testing method, but it
works well.

 After I finish testing I normally return the algorithm to its default setting of Least
current request, because I find it works well in most situations. There are additional
algorithms to choose from. Most of them are for special environments and lie outside
the scope of this book, but here are a few you might find useful:

 Weighted round robin—ARR distributes requests in round robin fashion, switching
from one server to the next. In general, unless you specifically want a round
robin, other algorithms are better.

 Weighted total traffic—ARR distributes requests based on size in bytes so that each
server is servicing the same amount of data. The server that currently has the
least amount of request data is the next server to receive a new request. This is
one of my preferred options when working with websites that produce large
amounts of data, such as streaming video and audio.

 Least current request—This is the default setting. ARR distributes request traffic to
the server that currently has the least number of requests. This works well for
websites that don’t produce heavy content like video and audio.

 Least response time—This is more like the traditional load balancing model. It dis-
tributes requests to the fastest responding server and is similar to NLB.

After checking the configuration of the load balance, it’s time to start monitoring its
health and statistics. In the next section you’ll look at the health monitor.

Figure 14.9 Browser displaying
the unique web page that
contains the host name of the
local server for testing

241Logging and health monitoring with ARR
14.4 Logging and health monitoring with ARR
Once your load balance is established, you should monitor its performance and
health to ensure it’s functioning the way you want. ARR includes health testing and
monitoring tools to make this task easier.

 This section covers the basics of the health monitoring statistics with ARR and is an
important building block for future chapters. Let’s perform some health tests for the
load balance.

14.4.1 Checking the health of the load balance

In addition to monitoring the status of the web servers in the farm, ARR can specifi-
cally monitor the health of a URL, such as your primary website. It verifies which
nodes (servers in the load balance) are serving the URL. If a server fails to respond, it’s
marked as unhealthy, and requests aren’t sent to it. When the server returns online
and is healthy again, requests to that URL can be sent to it once again.

 The Health Test icon for your web farm in the IIS manager is where all that hap-
pens. You enter the URL that you want tested at the top, along with the frequency of
the test. The default is to test the URL every 30 seconds and to wait for a response
(timeout) of 30 seconds, as shown in figure 14.10.

Figure 14.10 Configuring
a URL health test

242 CHAPTER 14 Building a web farm with Application Request Routing
ARR automatically replaces the URL domain with the IP address of each of the nodes
so that every server in the farm is tested. You should verify the URL test—to make sure
there are no typos—by clicking the Verify URL Test button at the bottom of the form,
and then apply the changes. You can see the health of the nodes in the health moni-
toring statistics discussed shortly.

 With the settings in figure 14.10, if you stop the website on one host, it will be listed
as unhealthy in about 30 seconds. ARR won’t send requests to it until it becomes
healthy again.

 Let’s take a look at the health monitor, where you can see the health of your nodes
and the current statistics of your web traffic.

14.4.2 Health monitor statistics

ARR includes a great health monitoring application to which we’ll return often in the
next several chapters. For now, let’s take a look at the traffic statistics and the health of
the nodes in the web farm.

 In the IIS manager, under your web farm folder, is a Health Monitoring icon. It dis-
plays information about the health of your nodes (available or not) along with statis-
tics about the number of current requests and response times that each node is
handling, as shown in figure 14.11.

Figure 14.11 Health statistics for the load balance

243Lab
Additional statistics specific to how the requests are being load balanced are dis-
played, such as request size and request distribution. By monitoring these statistics you
can determine whether your load balance is functioning properly and handling the
requests in a rapid manner.

 This chapter has included a lot of information, but once you try it a couple of
times, you’ll see why I like ARR so much. We’ll explore more features of ARR in later
chapters. I think you’ll find it to be a great solution. To make sure you have all the
information for the next chapter, try the lab before you finish lunch.

14.5 Lab
This lab is similar to the one you did in chapter 13. I want you to deploy a web farm
using ARR. Make sure you have two additional servers for this lab, as described in
chapter 1. In this lab, those servers are named Web1 and Web2.

TRY IT NOW

In case you you didn’t get a chance to perform the Try It Now sections, I repeat them
here for your convenience. Once complete, you can start the lab with task 1.

1 Before installing ARR make sure you remove the NLB you installed in chapter 13.
Here in this chapter use your domain controller as the ARR control server.
Install ARR to the domain controller and verify you have the Server Farms folder
added to the IIS manager. (Remember, you may have to close and reopen the IIS
manager.)

2 As in chapter 13, the web servers hosting the websites should have IIS installed
and a test page that displays the host name of the server in place. Again, I prefer
to put a web page in the default website for testing, such as http://hostname/
NLB.htm, or make a default.htm to keep the URL simple, such as http://host-
name.

3 The control server (the one with ARR) is the load balancer, so DNS should have
an A record that points to the IP address of the control server. This is where all
HTTP requests need to be directed. See chapter 13 for review if needed.

4 Create a new web farm and add the two web server VMs you created for the lab
environment.

TASK 1
If you didn’t get a chance to do this earlier in the chapter, install ARR on your domain
controller. This will become the control server for ARR.

TASK 2
Using the wizard, add a new web farm named WebBikezShop to ARR and include the
two web servers Web1 and Web2.

TASK 3
Add a DNS record for the URL www.WebBikez.com that points to the IP address of
your domain controller, the ARR control server.

244 CHAPTER 14 Building a web farm with Application Request Routing
TASK 4
Add a web page to Web1 and Web2 in the default site that contains the computer
name of the local server. This will be used for testing.

TASK 5
Configure the load balance algorithm for Weighted round robin.

TASK 6
Configure the health test with the URL www.WebBikez.com and a 15-second interval
with a 15-second timeout.

TASK 7
Open a browser on the domain controller with the URL www.WebBikez.com. Test and
verify the load balance by turning off the first server that responds to the request.
Check the Monitoring and Management page to see the server change its status to
unhealthy.

14.6 Ideas to try on your own
Combine the information you’ve learned so far by deploying additional websites and
web pages to the load balance using PowerShell. Also, if you haven’t tried this yet,
enable remote management and confirm you can manage the servers Web1 and Web2
using the IIS manager on your domain controller.

High availability for
ARR using Microsoft NLB
In chapter 14 you began using Application Request Routing (ARR) as the load bal-
ancer for your IIS web servers. Imagine what would happen if the ARR server went
offline. You’d lose the entire load balance, and customers wouldn’t be able to
access any websites. Protecting ARR from failure is just as important as protecting
your websites.

 In this very short chapter you’ll see how using Microsoft NLB is a great solution
for protecting your ARR load balancers in case one should fail. You already have
almost all the information you need to make this work from chapters 13 and 14. In
this chapter I help you tie it together.

 This is a short chapter, but don’t underestimate its importance. If you lose your
ARR server, the entire web farm fails. You need to protect your ARR server and pro-
vide failover capabilities.

 In this chapter I describe the concept by using Microsoft NLB to load balance
two ARR servers. If you want to follow along with the Try It Nows, you’ll need to
build another VM for the new ARR server and join it to your domain. You can do
that now or read the chapter to get the concept and wait until the lab.
245

246 CHAPTER 15 High availability for ARR using Microsoft NLB
15.1 Adding affordable high availability
ARR doesn’t have any failover or high availability features built in to the product. It’s
up to you to provide those capabilities. Many larger implementations use a hardware-
based—and expensive—load balancer for this; fortunately you can also use the free
load balancer NLB from Microsoft. Whichever you choose, the concepts are the same.

 Making ARR highly available requires two ARR servers instead of one, as shown in
figure 15.1. The ARR servers themselves are placed into a load balance by using a
hardware load balancer or Microsoft NLB. This does increase your hardware costs
(another ARR server), but it’s worth it if one of those servers should fail.

 Let’s look at the requirements for creating a highly available ARR environment.

15.1.1 Requirements for a highly available ARR

To achieve a highly available ARR environment, you’ll need an additional load bal-
ancer. As discussed in previous chapters, this can be a hardware load balancer such as
a BIG-IP F5. Again, I get the question all the time: “If I have a hardware load balancer,
would I even use ARR?” My answer is yes, ARR provides many features specific to IIS,
and I think it’s the best solution. But when you need to protect ARR and the function-
ality it’s providing from failure, a good hardware load balancer is a great choice.

 What do you do if you don’t have an available hardware load balancer lying
around? Microsoft recommends (and I agree with the recommendation) that NLB is
perfect for this situation. As you’ve already seen, NLB is easy to configure, and its limi-
tations don’t impact the ARR environment. It makes for a great, affordable solution.

Figure 15.1 Two ARR servers with
an additional load balancer such as
Microsoft NLB

247Adding affordable high availability
 If you’ve worked with Microsoft Clustering services, you can use it in place of NLB.
It does provide better health monitoring statistics than NLB, but I find, if I’m lacking a
hardware load balancer, NLB is the easiest and works well.

 One more requirement is very important: the two ARR servers need to share their
configuration with each other. Doing that is a simple process—I discuss it in chapter
16. You can use Shared Configurations for IIS for many purposes. I chose to place that
discussion after this chapter and before some of the other chapters that need it. I
remind you of turning on Shared Configuration for ARR in chapter 16. By sharing
their configuration, the two ARR servers will be synced with each other so that changes
made on one are reflected on the other.

 In this chapter I have chosen to use NLB to protect two ARR servers. Let me run
down the installation process for you.

15.1.2 Installation of NLB for ARR

Believe it or not this section is more of a review than anything else. If you worked
through chapters 13 and 14, you already know how to set this up, but this time you’ll
be performing it on the ARR servers instead of the web servers. Let’s review the pro-
cess just to make sure.

 The first step is installing ARR on a second server to be used in the load balance. I’ll
use PowerShell and PowerShell Remoting to install the NLB feature on the two ARR
servers and then configure the load balance for NLB. The following example creates a
PowerShell Remoting session to the two ARR servers and installs the NLB feature:

PS> $sessions = New-PSSession –ComputerName Arr1, Arr2

PS> Invoke-Command –Session $Sessions {Import-Module ServerManager}

PS> Invoke-Command –Session $Sessions {Add-WindowsFeature NLB}

TRY IT NOW If you built the extra VM, make sure to join it to your domain and
add IIS and ARR. From one of your VMs, connect and install NLB on the two
ARR servers using the cmdlets from the preceding code.

Once again I can use the NLB cmdlets to create the load balance and add the second
server to the load balance:

PS> New-NlbCluster -HostName ARR1 -InterfaceName Ethernet -ClusterName ARR -

➥ClusterPrimaryIP 192.168.3.200 -SubnetMask 255.255.255.0 -

➥OperationMode Multicast

PS> Get-NlbCluster -HostName ARR1 | Add-NlbClusterNode -NewNodeName ARR2 -

➥NewNodeInterface Ethernet

TRY IT NOW Complete the Microsoft NLB configuration using the New-
NlbCluster and Add-NlbClusterNode cmdlets. This is a good time to put the
cluster IP address into DNS as well.

248 CHAPTER 15 High availability for ARR using Microsoft NLB
At this point NLB is almost completely configured to protect your ARR servers in case
one fails. In chapter 17 you’ll complete this by adding the ARR servers to a Shared
Configuration—but it’s not time to do that yet, so don’t jump ahead.

 Let’s make sure NLB is working correctly by checking the Network Load Balance
Manager.

15.1.3 Monitoring NLB: a quick review

NLB doesn’t have all the health monitoring tools that ARR does, but then again it
really doesn’t need much. It’s important, both during the initial configuration of NLB
and on occasion while it runs (once a month), that you check to make sure that both
nodes are online and converged.

 You can use the NLB Manager to connect to the ARR load balance and check the
nodes or use the PowerShell cmdlet Get-NlbClusterNode from the NetworkLoadBal-
ancingClusters module, as shown in figure 15.2.

TRY IT NOW Check the convergence of the load balance using both the GUI
and the Get-NlbClusterNode cmdlet.

With all the nodes converged, I like to test NLB by intentionally failing one of the serv-
ers. But we have one more step to accomplish in chapter 16 before you should try that.

 All the labs in this book have been built around a specific setup that you created in
a virtual environment, and each lab has built on the previous. As you can tell from this
chapter, providing high availability to ARR means that you would need some extra

Figure 15.2 Checking the
convergence status of NLB

249Ideas to try on your own
virtual machines. I wrote the lab for this chapter to be completely independent of all
other labs. If you have the time and resources to build an extra virtual machine to test
the NLB for ARR, I highly recommend it. If not, go ahead and start the next chapter.
You can always return later and try out the lab at another time.

15.2 Lab (optional)
This lab is optional because it requires that you build a new VM as a second ARR con-
trol server for the load balance. If you have the resources and time, you should try this
out if you intend to use ARR.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I repeat them here
for your convenience. Once complete, you can start the lab with task 1.

1 If you built the extra VM, make sure to join it to your domain and add IIS and
ARR. From one of your VMs, connect and install NLB on the two ARR servers
using the cmdlets from the code (earlier in the chapter).

2 Complete the Microsoft NLB configuration using the New-NlbCluster and Add-
NlbClusterNode cmdlets. This is a good time to put the cluster IP address into
DNS as well.

3 Check the convergence of the load balance using both the GUI and the Get-
NlbClusterNode cmdlet.

TASK 1
Create a new VM and install the Windows server operating system of your choice.
Name the computer ARR2 and join it to your domain.

TASK 2
Install Microsoft NLB on both ARR control servers—your domain controller and the
new ARR2 server. Configure NLB to load balance between the two servers, as you did in
chapter 13.

TASK 3
At this point, don’t attempt to test the ARR load balance. You need to perform a con-
figuration change that’s discussed in chapter 16. When you reach that chapter, you’ll
share the configuration between the two ARR servers so that they’re identical.

15.3 Ideas to try on your own
If you’re currently running a production web farm environment, examine your cur-
rent load balancing solution. Is it hardware-based? If so, what kind is it and who’s
responsible for its configuration and maintenance? Is the load balancing solution
highly available in case the hardware fails?

 If you currently don’t have a load balancing solution, consider building a test envi-
ronment, matching your current production environment, that uses ARR.

Sharing content and
configuration to the web farm
Regardless of the load balancing and high availability technology you choose, sup-
plying the web content to your websites becomes a challenge as your web farm
grows. So far in this book you’ve had locally stored content (website files) on the
web server for each of your websites. That becomes challenging in a web farm when
you need to update or add to those files—you’ll find yourself running around copy-
ing files to each server in the farm. This chapter focuses on ways to make this pro-
cess more manageable by automating the file copy process using PowerShell or
Microsoft’s Distributed File System.

 Content doesn’t have to be locally stored; it can be centralized in a single loca-
tion and shared to all the web servers in the farm. This method creates a content
server that the websites access for the website files and works well for both small and
larger web farms. An increase in complexity is involved, so this solution may not be
for everyone. But you’ll have a chance to decide for yourself.

 This chapter focuses on three options for making your web farm content easier
to manage. You’ll share website content to the farm from a single location using a
network share and also using Microsoft’s Distributed File System (DFS).

 By the end of this chapter you’ll have these options in your arsenal for manag-
ing content in your web farm. Let’s get started with deploying that content with
PowerShell.
250

251Sharing content for a web farm using PowerShell
16.1 Sharing content for a web farm using PowerShell
Over the years several methods of adding and updating website files on web servers in
a web farm have been developed, some with scripts using various scripting languages,
some using commands such as Copy or Robocopy. All of these try to achieve the same
goal: quickly adding and updating website files on multiple servers.

 Remember, each web server in your web farm needs the same websites and website
files in order to provide fault tolerance. You can achieve that in two ways: one is to
make sure each server maintains a local copy of the website files that are updated; the
other is to create a central repository (content server) that holds all the content in
one location that each server shares. In this section, you’ll discover two different
methods of handling local copies of the websites:

 Manually deploy local content using PowerShell
 Automate the deployment with a PowerShell script

Let’s start with a manual deployment of website content to multiple servers using
PowerShell.

16.1.1 Manually deploying local-stored content using PowerShell

Manual deployment of web content is nothing more than a file copy. In fact you could
achieve the same results in this section by using the Copy or Robocopy commands.
PowerShell adds more flexibility in scripting automation, though, and is frankly easier
to use.

 You’ve already seen the basic PowerShell commands in chapter 13 when you ini-
tially deployed website content and created new websites for the load balance. Let’s do
a quick review and try it out again. Then you’ll put these commands into a script for
simple automation of the process.

DEPLOY (COPY) WEBSITE FILES

If you have a small web farm that rarely needs to have its content updated, then this
manual process—you have to run the commands—works well. If your farm grows or
you need to update content more often, you can automate these commands (which
you’ll do shortly) to reduce your workload.

 I’ll create a simple scenario with a new website so you can try this. You have two
web servers in a load balance, named Web1 and Web2. On your local computer you
have the folder C:\sites\WebBikezPhotos that contains the website files for a new web-
site. Using PowerShell you can copy that content to all the web servers in the farm and
then create a new website.

 You start by creating a variable that contains the names of the web servers, like this:

PS> $Servers = 'Web1', 'Web2'

Then, using the Copy-Item command in PowerShell, you copy the folder structure to
each of those web servers:

252 CHAPTER 16 Sharing content and configuration to the web farm
PS> $servers | foreach{Copy-Item -Path c:\sites* -Destination \\$_\c$\sites

➥-Recurse -Force}

You can copy specific sites or entire folders that contain multiple sites, as I’ve done.

TRY IT NOW Create a new folder C:\sites\WebBikesPhotos on your domain
controller (DC) and place a simple default web page in the folder that identi-
fies the website. You can even place some of your favorite photos into the
folder for fun. Deploy the folder to the servers in the web farm.

Once the content is copied to each of the web servers in the farm, you need to create
the new Photos website.

CREATE A NEW WEBSITE

Using PowerShell to create a new application pool and website for the Photos content
is the fastest way:

PS> $Sessions = New-PSSession –ComputerName Web1, Web2

PS> Invoke-Command -Session $Sessions {New-WebAppPool -Name

➥WebBikezPhotospool}

PS> Invoke-Command -Session $Sessions {New-Website -Name Photos -HostHeader

➥Photos.WebBikez.com -PhysicalPath C:\sites\WebBikezPhotos -

➥ApplicationPool WebBikezPhotospool}

TRY IT NOW Using the preceding commands create a new website and make
sure you can access the site and the default web page you created.

As you’ve seen in earlier chapters, you can also deploy certificates and set up remote
management, but let’s keep the focus on the content and websites for this chapter.

UPDATING WEBSITE CONTENT

In the future if you update the web pages on your computer, you’ll run the copy pro-
cess again to update the files on the remote computers. Make sure to fully test the
updated website content before you deploy to a production web farm:

PS> $Servers = ‘Web1’, ‘Web2’

PS> $Servers | foreach{copy-item -Path c:\sites* -Destination \\$_\c$ -

➥Recurse -Force}

What if you need to update website content often and for several websites? I like to
put those commands in a script so it’s easier to run (less typing). Let’s look at automat-
ing this example.

16.1.2 Automating with PowerShell scripts

One of the reasons I like to use PowerShell instead of older commands is that it’s
so much easier to automate PowerShell commands. In its simplest form, PowerShell
scripting involves taking commands that you’ve manually run and putting them
into a script file—similar to old DOS batch files. That creates a script that performs
automation.

253Sharing content for a web farm using PowerShell
A PowerShell script is a text file with the extension .ps1. You can create the text file
using any text editor of your choice, such as Notepad or the built-in PowerShell ISE.
Figure 16.1 shows a script file named Update-Content.ps1 in which I typed the copy
commands into the script.

 Anytime I need to update the files on the web servers in the farm, I can run the
script from a PowerShell prompt, as in the following example:

PS> C:\scripts\Update-Content.ps1

NOTE You need to have a script execution policy that permits you to run
scripts. By default PowerShell doesn’t permit this, so change your policy. You
can read more about this in the help files in PowerShell’s About
_Execution_Policy.

This simple script makes the process much easier, and you can quickly deploy new
content to both a test environment and your production environment.

TRY IT NOW Create your own version of the preceding script. Change the
default web page in your local C:\sites\WebBikezPhotos folder and run the
script to deploy the changes out to the web farm.

This process does have its challenges. If you make a mistake and forget to update one
of the web servers, it will be out of sync and deliver the customer old content. Also this
process requires that you initiate the copy process.

Above and beyond
You can further enhance those scripts by providing parameters and help information;
you can even turn your script into its own PowerShell cmdlet (advanced function). The
topic of advanced functions is more than we can cover here. It’s a PowerShell tool-
making topic covered extensively in Learn PowerShell Toolmaking in a Month of
Lunches by Don Jones and Jeffery Hicks (Manning, 2012).

Figure 16.1 A simple copy script to deploy new content to web servers

254 CHAPTER 16 Sharing content and configuration to the web farm
There’s another method of synchronizing your web servers’ content: using Microsoft’s
Distributed File System Replication.

16.2 Sharing content using Distributed File System (DFS)
Microsoft’s Distributed File System is designed to synchronize folders across file serv-
ers and has been around for a long time. No doubt you’ve run across it in your IT pro
career. IIS can take advantage of DFS to synchronize website content across web servers
in a web farm. Although it’s slightly more complicated to configure than the simple
script from the previous section, it overcomes a couple problems with the script.

 There are two drawbacks to the copy script:

 The copy process doesn’t delete or remove files. That leaves old content out on
your servers and increases disk usage. You can fix that by writing better scripts
and scheduling updates using PowerShell, but it requires a much greater
understanding of scripting.

 The web farm content is only updated when you run the script. If you make a mis-
take, you could have web servers that don’t get updated and have old content.

Microsoft DFS overcomes these drawbacks by continuously updating the folders of
your choice on each web server. If you delete a file or folder from one web server, it
will be deleted from the others. As you add and update files, DFS keeps all servers syn-
chronized. Sounds like a magical solution, and it’s one of my preferred solutions, but
it requires additional configuration on all the web servers in the farm.

DFS is used for many network situations beyond IIS and has extensive configura-
tion options. I’ll focus on the configuration of DFS for web servers in a farm. For a
more complete discussion of DFS, check out www.TechNet.com.

 I want you to wait for the lab before you try this; it will help you to see the complete
process first. Here’s the process for configuring DFS for a web farm:

1 Install DFS to the web servers.
2 Create a replication group.
3 Add web servers to the replication group.
4 Select the replication topology and schedule.
5 Select the folders to replicate.

16.2.1 Installing DFS

DFS is a role that must be installed on each of the web servers in the farm that will syn-
chronize content. You can install DFS using the graphical Server Manager or Power-
Shell. DFS has many components to support features outside of IIS. The one you want
for your web servers is called DFS Replication.

255Sharing content using Distributed File System (DFS)
 In the graphical Server Manager for Windows Server 2008 R2, DFS Replication is
located under the role File Server/Distributed File System. On Windows Server 2012
the role is located under File and Storage Services/File and ISCSI services. I find this
difference too complicated to remember, so I prefer using PowerShell to install the
role because it’s the same on both Windows Server 2008 R2 and Server 2012.

 To install the DFS Replication role and Management tool on a local web server:

PS> Add-WindowsFeature FS-DFS-Replication, RSAT-DFS-Mgmt-Con

To install DFS on remote web servers in the farm using PowerShell Remoting:

PS> Invoke-Command -ComputerName Web1, Web2 {Add-WindowsFeature -Name FS-DFS-

➥Replication}

After the roles have been installed, DFS is configured using the DFS Management tool
and by creating a new replication group.

16.2.2 Creating a replication group

The DFS Management tool contains a wizard that walks you through the process of
configuring replication between folders on each web server. The process begins by
creating a new replication group. A replication group is a collection of web servers that
replicates based on settings you provide to the wizard.

 To start the wizard, open the DFS Management tool and select New Replication
Group, as shown in figure 16.2.

 The wizard will prompt for configuration information to complete the process.
Remember that DFS can be used for many tasks outside of IIS, so some of these
options won’t be necessary for your web servers. I’m only showing the ones you need
for IIS. In figure 16.3 you can see how to select the type of replication group desired.
For web servers sharing content, the best option is Multipurpose.

Figure 16.2 Creating a new replication
group for the web servers

256 CHAPTER 16 Sharing content and configuration to the web farm
DFS supports multiple replication groups, so each group needs a name. In this exam-
ple, all the website content for the farm is located under folders in C:\sites, so I named
the group SharedContent, as shown in figure 16.4.

 After the replication group is created, the wizard will continue to walk you through
the process by letting you select which web servers should be members of the group.

16.2.3 Adding web servers to the replication group

You need to add the web servers that will share (replicate) content to the replication
group. The wizard provides a simple form to select the servers for the group. If you
try to add a server to this form, and it doesn’t have the DFS role installed, you’ll
receive an error.

Figure 16.3 Select Multipurpose replication group for sharing website content

Figure 16.4 Creating the name
for the replication group

257Sharing content using Distributed File System (DFS)
Figure 16.5 shows how you add servers to the replication group.
 You can return to the DFS management tool later to add or remove web servers

from the list. As your web farm grows, add the new servers, and the website content
will be automatically replicated.

16.2.4 Selecting the replication topology and schedule

If you’ve worked with Active Directory site topologies, this next step in the process will
be familiar. If you haven’t, a replication topology controls how content will be replicated
to the web servers in the replication group. There are three options:

 Full mesh—You can make a change to the content on any web server, and it will
be replicated to all other servers in the replication group. This is best for small
web farms of ten servers or less because of the two-way replication.

 Hub and spoke—One server is designated as the hub server. You make all your
changes to the hub, and then those changes are replicated out to the other
servers. Unlike full mesh, if you make changes to any of the other servers, those
will be overwritten when the hub replicates out. Hub and spoke is best for
larger farms because it reduces network traffic.

 Custom—You can create your own custom topology for DFS—however, this is
unnecessary for web farms both large and small. Full mesh or hub and spoke
are the best options.

The wizard provides the replication options for you to select, as shown in figure 16.6.
You can schedule replication to occur at specific times on specific days. That reduces
the network traffic during business hours if you have a large collection of files in DFS.
Web server content is small enough that it normally doesn’t require this type of sched-
uling, and in fact it could cause the web servers in the farm to be not fully up to date.

Figure 16.5 Adding web servers
to the replication group

258 CHAPTER 16 Sharing content and configuration to the web farm
The best option is to replicate continuously to make sure any changes are made
immediately, as shown in figure 16.7.

 Now that the replication topology and schedule have been configured, the last
steps involve selecting the folders (content) you want to replicate to all the web serv-
ers in the farm.

Figure 16.6 Selecting the
replication topology based on
the size of the web farm

Figure 16.7 Selecting continuous replication for web server content

259Sharing content using Distributed File System (DFS)
16.2.5 Selecting the folders to replicate

The time has arrived to select the content that will be replicated across all the web
servers in the farm. In this example all my content for all the WebBikez websites is
located under C:\sites, so I only need to add one folder to the replication.

 The wizard prompts for a primary server. In a full mesh topology, this is the server
that initially contains the content that will be replicated out to the other servers. After
the initial replication, changes made to any server will be fully replicated. If the topol-
ogy selection is hub and spoke, content will always be replicated from the primary to
the other servers, as shown in figure 16.8. If you make changes on a non-primary
server, those changes will be overwritten.

 The wizard provides a dropdown box to select the primary server, as shown in
figure 16.9.

Figure 16.8 Hub and spoke design

Figure 16.9 Selecting the primary server that contains the initial content to be replicated

260 CHAPTER 16 Sharing content and configuration to the web farm
Once the primary server is selected, choose the folder that you want replicated to all
other servers in the replication group, as shown in figure 16.10.

 The last step in the wizard is to specify into which folder location on the non-
primary servers to copy the content. You can choose all the remaining target servers
and type the directory (folder) location that you want the content copied to, as shown
in figure 16.11. When replication completes, you’ll have the new folder and all its con-
tent on each web server.

Figure 16.10 Choosing the folder
to replicate to the replication group

Figure 16.11 Setting the
folder location on the target
servers

261Sharing content from a single location
When the wizard has completed, you’ll be notified that replication will begin when
Active Directory informs the servers of the changes through a Group Policy update.
This could take several minutes. If you’re as impatient as I am, you can force the
Group Policy update on each server, so DFS starts replicating content, by typing the
following command:

PS> GPUpdate /Force

Within a moment you’ll see the folders and website files appear on each server—but
only if you try out the lab at the end of this chapter. I would have you do a Try It Now,
but this process takes several minutes for you to perform, so wait until the lab.

 As you add or remove files to the folder on any server, they’re automatically
updated on every server in the farm. Microsoft DFS is a great way to share content
between web servers and keep the content up to date.

16.3 Sharing content from a single location
The previous two sections demonstrated how to share and update locally stored con-
tent between web servers in a web farm. Whether you choose to manually do that with
PowerShell and script or have the local content updated continuously using Microsoft
DFS, you’ll greatly reduce mistakes and management time spent updating content.

 Another approach to sharing content with web servers in a farm is to centralize, or
store your content in one location, and then have the websites access that content
across the network. Here are some of the advantages to this approach over locally-
stored content:

 Content is stored in one location making updates easy.
 You can easily store content for hundreds of websites, creating a content server.
 It reduces the local storage requirements for each web server.

I have to be honest—this is my personal favorite in most cases, and I’ll use this same
concept in the next two chapters to make the web farm even easier to manage. You
may ask, “Well, if this is your favorite, then why didn’t we start with it?” The answer is
simple: although it’s easy to configure, there’s a danger that must be addressed if you
should lose access to the content server. By not having local content, if the content
server fails, then all websites fail. There’s a way to protect against this, and I’ll give you
direction on how to handle it. Let’s get started with the easy part: using content for
your websites from a central location.

16.3.1 Creating a network share

All your website content can be stored in a central location—a file server—that shares
that content to your websites. Each website is configured to access this remote con-
tent. That means you no longer need to have locally stored content and therefore can
reduce the complexity of your web farm by avoiding Microsoft DFS.

 Back in chapter 5, when you first started creating websites, I explained that a web-
site needs access to the physical web pages, which are stored locally. You configured a

262 CHAPTER 16 Sharing content and configuration to the web farm
physical path when you created the website to those files. The physical path doesn’t
need to point to a local folder. It can point to a network share—Universal Naming
Convention (UNC)—as shown in figure 16.12.

 In this example I created a simple network share on a file server and copied all the
website files to that share. The websites on web servers in the farm can access those
files through the network by connecting to the share.

TRY IT NOW Using the IIS manager examine the basic settings for one of the
websites you created earlier in the book. Note that the physical path points to
a local folder. In the upcoming lab you’ll change this to a network share.

As with any other file share you’ve set up in your network environment, you can create
a user account and assign permissions to the share. You’ll do this shortly in the lab,
but for the demonstration here I created an account in Active Directory called
SharedContent. The beauty of this solution is that your web servers don’t have to be
members of the AD domain—you could as easily create a local account and assign per-
missions. After typing the UNC to the share, click the Connect As button to enter the
user account to use to access the share, as shown in figure 16.13.

Figure 16.12 Configuring a
UNC path for the website files

Figure 16.13 Setting an AD or
local account with permissions
to the network share

263Sharing content from a single location
After setting the account, click the Test Settings button to make sure that the website
can authenticate to the network share and access the UNC path specified, as shown in
figure 16.14.

 Each website on each server is configured to get its website content from this net-
work share. Any changes you make to the content immediately affect all servers in the
web farm. This method of sharing content is easier to manage because you only need
to update the content in one location, and it reduces complexity because you don’t
need replication products like Microsoft DFS.

 The pain-point here, as I mentioned, occurs if something happens to that single
content server providing all the web pages for your websites. Imagine losing access to
that content. That’s why, if you’re going to use a content-sharing tactic like this, you
need to make sure the content is highly available.

Figure 16.14 Testing the
account to verify access to
the website files on the
network share

Above and beyond
The biggest risk to sharing content over a network share to a web farm is the possible
loss of the content server. If the content server fails, then all the web servers in the
farm lose access to the web pages.

This is why, as much as I prefer this option for sharing content, you need to evaluate
whether this is a good option for you. To provide high availability to the content server,
you need to cluster the file services on the file server. That requires two file servers,
configured and running the Microsoft Cluster service.

If you’ve performed this task, you know it’s not a small undertaking. It requires exten-
sive knowledge of Microsoft clustering and possibly costly hardware. Configuring a
cluster is more than I can cover here, but here’s a reference to a step-by-step guide
if you want to experiment in your lab environment: http://mng.bz/rYXK. You can
install a cluster on physical computers or virtual machines, so you have plenty of
options to work with.

I have you try a network share for content in the lab, but keep in mind that if you’re
going to use it for production, you need to make sure that content is always highly
available.

http://mng.bz/rYXK

264 CHAPTER 16 Sharing content and configuration to the web farm
It’s time to put away your lunch sack, wash up, and try the lab, where you’ll build your
own content-sharing solution.

16.4 Lab
In this lab you’ll try the different methods of deploying content to servers in a web
farm. You don’t need to have a load balancer, Microsoft NLB, or ARR configured on
your VMs for this lab, but if you do, all the better.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I repeat them here
for your convenience. Once complete, you can start the lab with task 1.

1 Create the new folder C:\sites\WebBikesPhotos on your DC and place a simple
default web page in the folder that identifies the website. You can even place
some of your favorite photos into the folder for fun. Deploy the folder to the
servers in the web farm.

2 Create your own version of the automation script. Change the default web page
in your local C:\sites\WebBikezPhotos folder and run the script to deploy the
changes out to the web farm.

3 Using the IIS manager, examine the basic settings for one of the websites you
created earlier in the book. Note that the physical path points to a local folder.
Shortly you'll change this to a network share.

TASK 1
Create three folders on your domain controller under C:\sites, named Website1,
Website2, and Website3. Add some files to each of these folders. These will be copied
to the web farm servers during this lab. They won’t become websites, so you can place
any files you want into the folders—just put at least a few in there so you can see that
the copy process works.

TASK 2
Create a PowerShell script that will copy the C:\sites\Website1 folder and all its con-
tents to your two web servers. Run the script and verify that the folders and files
appear on the web servers.

TASK 3
Install the DFS Replication role and DFS Management console on your domain con-
troller. This will become a primary server in a DFS replication group.

TASK 4
Install the DFS Replication role on your two web servers.

265Ideas to try on your own
TASK 5
Using the DFS Management tool, create a replication group with the following set-
tings:

 Multipurpose Replication group named SharedContent
 Members of the group: domain controller and the two web servers
 Full mesh topology that replicates continuously
 Primary server: domain controller
 Folders to replicate: C:\sites\Website2

TASK 6
Run GPUpdate on all servers and verify that replication has occurred. Each server
should now have the C:\sites\Website2 folder and its contents.

TASK 7
Create a central content location for one of the websites you created in a previous
chapter. Start by sharing the C:\sites folder on your domain controller. Create an AD
user named SharedContent and give it read permissions to the folder.

TASK 8
Using a website created in a previous lab, or using the default website on one of your
web servers, edit the basic site settings and change the physical path to the UNC for
the network share. Set the Connect As option for the user SharedContent and test the
website.

16.5 Ideas to try on your own
If centralized content is your goal, then take some time to learn and work with Micro-
soft clustering so you can provide a highly available content server. You can use the
two web server VMs and try the step-by-step guide on TechNet (http://mng.bz/Clqo).

http://mng.bz/Clqo

Sharing IIS
configurations
for a web farm
In chapter 16 you explored sharing website content to the web farm to reduce over-
head and management when updating web files. You can use the same technique
to make the configuration of websites and bindings across the web farm automatic
and simple.

 Each IIS server in a web farm can be configured to use a single set of configura-
tion files. When you create a new website or binding, it’s automatically created
across every server in the farm. Imagine adding servers to the farm—instead of con-
figuring the sites on each new server, the process occurs automatically with shared
configurations, making scaling your farm a breeze.

 Each server is configured to use a single set of configuration files stored on a
clustered network share or in DFS, as shown in figure 17.1.

 The process for configuring Shared Configurations isn’t complicated, although
it can be tricky when you need to add new software, such as from WebPI, that
requires binaries to be installed. This chapter covers the different configurations
using a network share and DFS. It also shows you how to master the installation of
additional products and avoid common problems and issues.
266

267Configuring Shared Configurations
Let’s start by working through the process of setting up a Shared Configuration. In
this chapter you’ll configure Shared Configurations using a network share and try it
out using DFS. You’ll also learn the process for performing staggered installations of
new components with Shared Configurations.

17.1 Configuring Shared Configurations
The configuration files that you want to share between servers in the farm are the
applicationHost.config and administration.config files mentioned back in chapter 6.
These files contain the entire configuration for the server: the websites, application
pools, and bindings you want to share. They don’t contain the individual website set-
tings normally stored in the web.config, but I come back to that in a bit.

 The reason this technique works is because the IIS team at Microsoft removed
server-specific information from these configuration files. Any number of servers can
successfully use the same set of configuration files. Changes made on one web server
will automatically occur on all other web servers in the farm. That means adding a
new website or changing a binding can be performed on only one server.

 Things that aren’t shared include specific changes to a website stored in the
web.config files for the website or application, such as compression settings. You need
to make sure that the web.config files are kept in sync across web servers, but if you
centralized your content as described in chapter 16, you don’t have to worry. Recy-
cling an application pool or resetting a web server isn’t synchronized across all servers
in the farm either. You can safely recycle an application pool without shutting down
the entire site!

NOTE Although bindings are synchronized, certificates aren’t. You’ll need to
deploy, install, and configure the certificates as described in chapter 9 or use
the new IIS 8 feature of centralized certificates described in chapter 18.

Figure 17.1 Shared configuration for the web farm

268 CHAPTER 17 Sharing IIS configurations for a web farm
The configuration files that you want to share are located in the default location of
C:\Windows\System32\inetsrv\config\, as shown in figure 17.2.

 The two files, administration.config and applicationHost.config, are the ones that
will be shared to the farm. The redirection.config file contains the information
for the Shared Configuration and is unique to each server. It won’t be part of the
configuration.

TRY IT NOW Using File Explorer or PowerShell, locate the default folder for
the configuration files.

You have two methods to share these files with the entire farm: network share or DFS.
Let’s start with my preferred method—over a clustered network share, where you’ll
export and configure the Shared Configurations.

17.1.1 Configuring Shared Configurations
using a clustered network share

You created a network share for content sharing in chapter 16, and you can do the
same thing for sharing configuration files. One set of configuration files is stored on a
network share, and each server is pointed to those files. If you make a change on a
web server (such as adding a new website), the change automatically occurs on every
other server.

 This is easy to set up and requires not much additional work other than configur-
ing IIS for the Shared Configuration—however, a devil is lurking that the unaware
administrator might miss: a server failure.

 As in chapter 16 with shared content, you must take special care to ensure that if
the server hosting the configuration files fails, there’s a backup. Creating the share on
a clustered file server is the most common way to prevent a single point of failure.
Remember, your web servers need those configuration files, and to lose them because
of a server failure could potentially take down the farm. The IIS team was pretty smart
about this. They designed IIS to run from cached copies of the configuration files in

Figure 17.2 Location of the default configuration files

269Configuring Shared Configurations
the event the server holding the Shared Configurations failed. If that happens, you’ll
want to get the network share back online quickly—something as simple as an IIS reset
will cause the web server to use the local configuration files and behave improperly.

Configuring a Shared Configuration between your
web servers begins by selecting a web server in the
farm as the master. The master is the server that the
configuration files are exported from to the network
share. All settings needed for the entire process are
located at the server level in the IIS manager in the
Management section, as shown in figure 17.3.

 I show you how to export the initial configura-
tions from the first server (the master) to the net-
work share, and then you can try it out.

17.1.2 Exporting the configurations from the first (master) web server

In a web farm using Shared Configurations, it helps to designate a master, or primary,
server. This is nothing more than the server you’ll export the configuration from to
the network share that all the other servers use. I generally select the first server I
bring in to the web farm as the master, but you can choose whichever you like. You can
change your mind anytime; it’s an arbitrary choice, not one written into the software.

 You want to set up a few things before you proceed to export the configuration.
You should do the following:

 Create a network share on a clustered file server.
 Create a user account and assign it Read/Write (Change) permissions to access

the network share. This account will be used by each of the web servers in the
farm. It can be an Active Directory account or a local account if the farm is out-
side your internal network.

 I always add Domain Admins to the network share with Full permissions and
remove the Everyone group.

For the figures in the rest of the chapter, I created a network share on a computer
named DC, called IISConfig, to hold the configuration files. I also created a user
named IISConfig and a password.

Above and beyond
Configuring a file server cluster is different for each version of the server OS. For this
reason, and because of the complexities of clustering, it’s more than we can cover
here. At www.TechNet.com you’ll find plenty of documentation to get you started
based on your version of the server OS.

Figure 17.3 The Shared
Configuration icon is located in
the Management section.

270 CHAPTER 17 Sharing IIS configurations for a web farm
TRY IT NOW Let’s get your network share set up. Create a folder structure on
your domain controller (DC) to hold the IIS configuration files. Create an AD
user named IISConfig. Share the folder and add Change permissions for IIS-
Config. Also add Domain Admins with Full control. This is a good time to
select which of your two web servers will be the master.

To export the configuration files from your master to the network share, open the
Shared Configuration feature under the Management section on the master web
server.

 On the right side of the screen, under the actions pane, select and double-click
Export Configuration. That launches the form displayed in figure 17.4.

 The next step is to supply the network path to the network share created earlier.
Click the Connect As button and specify the user with Change permissions to the
folder, as shown in figure 17.5.

 The encryption key is the last thing to deal with before exporting the configuration.
Think about this: the application pool identities and custom credentials you create will

Figure 17.4 Exporting the configuration files

271Configuring Shared Configurations
need to be accessible by each web server in
the farm. You don’t want these sent across
the network in clear text, so the encryption
key creates a secure method of storing and
using these credentials and is stored in a
file, as shown in figure 17.6.

 It’s important not to forget the encryp-
tion password because you’ll need it when
you join each web server to the farm. You
can delete the encryption key file because
it’s not needed after you join all web serv-
ers to the farm. Remember the password
in case you want to join additional servers
or make changes.

 The exported configuration files on
the network share will be accessed by all
web servers in the farm, including the mas-
ter server. I discuss backing up IIS in a later
chapter, and the configuration files on the
network share (along with shared content
files) are the files to back up in case of a
complete server failure.

TRY IT NOW Using the master web
server you designated earlier,
export the configuration files to
the network share you created on
the domain controller.

The next step in the process is to enable
each of the web servers to use the newly
exported configuration files on the net-
work share.

17.1.3 Enabling Shared Configurations

After the master server has exported its configuration to the network share, the last
step is to enable each web server to use the new configuration files.

 On each web server, open the Shared Configuration icon under the Management
section to enable and configure the feature, as shown in figure 17.7.

 After supplying the network path and user account, you’re prompted for the
encryption key. The server may appear to be using the new configuration files on the
network share, but it’s still using the local Administration.config until you perform an
IIS reset:

PS> IISRESET

Figure 17.5 Specifying the user account with
Change permissions to the network share

Figure 17.6 The exported files on the network
share

272 CHAPTER 17 Sharing IIS configurations for a web farm
For each web server in the farm, enable and configure
Shared Configuration and perform an IIS reset. Any addi-
tional websites, applications, or bindings created on one
server will now automatically appear on all servers, as
shown in figure 17.8. Keep in mind you’ll need the encryp-
tion key for each server added.

 A lot of admins like to delete the local copies of the con-
figuration files to prevent confusion and to prevent back-
ing up the wrong files. Although I’ve done this, I usually
don’t take the time to delete the local files because it’s unnecessary. I prefer to clearly
document the shared configuration settings to prevent confusion. I also check that
the backups are performed on the network share rather than locally and remind you
of that in chapter 20.

TRY IT NOW Enable the Shared Configuration settings on your master server
and one additional web server. When you create a new site on the master
server, note that it automatically appears on the other.

Using a network share on a clustered file server isn’t the only way to use Shared Con-
figurations. If you set up DFS as described in chapter 16, that’s an option as well.

 Let’s take a look at using DFS next.

Figure 17.7 Enabling the
Shared Configuration feature

Figure 17.8 New websites
and other configurations will
automatically appear on all
servers.

273Installing components with Shared Configurations
17.1.4 Configuring IIS for Shared Configurations using DFS

DFS is a great replication technology for shared content, as discussed in chapter 16.
You can also use it for Shared Configurations. I’d be remiss if I didn’t tell you that a lot
of admins prefer DFS because it’s easier than setting up a clustered file server.

 I tend to prefer clustered file servers and network shares if my web farm is for
internal clients such as with Microsoft SharePoint. With clustered file servers I know
exactly where my content and configuration are located, the system is easier to back
up, and my back end network already has several clustered servers. In the middle tier,
adding clustered servers for an outside-accessible web farm is more expensive and
complicated than using existing internal resources, so DFS clearly shines because it
doesn’t require additional servers and is fairly simple to get working.

 The benefit of DFS is that each server maintains a local copy of the configuration
instead of using a network share. If something should occur, and DFS fails, the web
server continues to use the local copy and can withstand a complete IIS reset or server
reboot. This small advantage over a single server network share is removed if you clus-
ter the network share.

 In the lab you’ll have a chance to use the DFS configuration you created earlier for
a Shared Configuration. Before you try that, let’s look at adding components to a web
farm that’s using Shared Configurations.

17.2 Installing components with Shared Configurations
Installing additional features with WebPI or a standalone product is a simple process
when working with a standalone web server. When the web servers in a farm are shar-
ing their configurations, it becomes a little more challenging.

 When you install new software components, binaries and other configuration files
need to be installed on each server. You don’t want the servers using a Shared Config-
uration during the installation and possibly corrupting the shared files. When you
need to install a new software product to IIS servers in a farm, you need to temporarily
disable the Shared Configuration. There are two simple procedures to accomplish
this goal: the all-at-once and staggered approaches. Let’s start with the first one, the one
I call the all-at-once method.

17.2.1 Installing new software using all-at-once

The all-at-once approach is the easiest of the two installation methods and in many
cases it’s the fastest. I like this approach when using PowerShell to install the software
quickly, but it does have a couple drawbacks:

 The web farm will become unavailable for the time it takes to complete.
 You run the risk of crashing all the servers or causing corruption if the install

fails.

Spend time testing in a lab environment before you do this!

274 CHAPTER 17 Sharing IIS configurations for a web farm
Why would I even mention this approach? Because some of the web farms you may
work on have maintenance windows for which this practice would be perfectly accept-
able. In other cases, the web farm may be a testing platform or development platform
that’s not publicly accessible and therefore would cause no business outage.

 Imagine you need to install a new software component for IIS, which has addi-
tional binaries and other configuration files, to the servers in your web farm. (You’ll
do that in chapter 19 with the ARR helper from WebPI.) Each server needs a copy of
the binaries and any local configuration changes that need to be made. To do that you
need to remove all servers from the Shared Configuration, install the software, and
then re-enable the Shared Configuration, as shown in figure 17.9.

 Here’s a summary of the all-at-once installation process:

 Remove (disable) all servers from the Shared Configuration. You’ll be
prompted to copy the network configuration as the new local configuration.

 Apply (install) the new software on each server.
 On the master server, export the new configuration back to the network, as

described earlier in this chapter.
 Join (enable) all servers to use the new network Shared Configuration.

Again, keep in mind that this process can cause the entire web farm to fall out of ser-
vice until the servers have rejoined the Shared Configuration. If uptime is important,
as in a publically available farm, then a staggered installation approach is best.

17.2.2 Installing new software using a staggered approach

A staggered install is the process I use most of the time when installing new compo-
nents or software that require additional binaries and configurations on each server. It
can be a little confusing at first, but the process is easy to master after you’ve done it
once or twice.

Figure 17.9 Performing software installs using the all-at-once process

275Lab
In the staggered install, the software is installed on only one server at a time. If there’s
a problem with the new software installing correctly, you can stop the installation pro-
cess without destroying the entire farm, as shown in figure 17.10.

 Here’s a summary of the staggered installation process:

 Remove (disable) the master server from the Shared Configuration. You’ll be
prompted to copy the network configuration as the new local configuration.
(Remember to perform an IIS reset.)

 Apply (install) the new software on the master server.
 After the software is successfully installed on the previous server, remove the

next server from the Shared Configuration and install the software.
 Continue with each server, one at a time, until the software has been success-

fully installed.
 On the master server, export the new configuration back to the network, as

described in section 17.1.2 earlier in this chapter.
 Join (enable) all servers to use the new network Shared Configuration.

The staggered installation process takes a little longer than the all-at-once process, but
it’s safer, in particular for business-critical web farms.

17.3 Lab
In this lab you’ll create a Shared Configuration between your web servers and add a
new website to test that it’s working properly. Having the servers in a load balance
(NLB or ARR) isn’t required for this lab.

TRY IT NOW

In case you didn’t get a chance to perform the Try It Now sections, I repeat them here
for your convenience. Once complete, you can start the lab with task 1.

Figure 17.10 Performing a staggered installation of software

276 CHAPTER 17 Sharing IIS configurations for a web farm
1 Using File Explorer or PowerShell, locate the default folder for the configura-
tion files.

2 Let’s get your network share set up. Create a folder structure on your domain
controller to hold the IIS configuration files. Create an AD user named IISCon-
fig. Share the folder and add Change permissions for IISConfig. Also add
Domain Admins with Full control. This is a good time to select which of your
two web servers will be the master.

3 Using the master web server you designated earlier, export the configuration
files to the network share you created on the domain controller.

4 Enable the Shared Configuration settings on your master server and one addi-
tional web server. When you create a new site on the master server, note that it
automatically appears on the other.

TASK 1
On your domain controller, create a folder structure to hold the Shared Configura-
tions. If you created a structure in the last chapter for shared content, you can use the
same structure. For example, create the folder C:\IIS\IISConfig.

TASK 2
If you didn’t perform this in the Try It Now, create a new Active Directory user with
the name IISConfig. This user will be used to assign permissions to the share in the
next task.

TASK 3
Share the IISConfig folder and assign the following permissions:

 Domain Admins: Full control
 IISConfig: Change
 Remove the Everyone group

TASK 4
On the master server, create two additional websites. These websites can use shared
content or local. The bindings aren’t important for this exercise, so you can assign dif-
ferent port numbers.

TASK 5
Export the master server’s configuration to the network share. Verify that the configu-
ration files are located on the share.

TASK 6
Enable the Shared Configuration on the master and then on the other server. Verify
that the websites you created on the master have appeared on the other server. Con-
gratulations! You have a Shared Configuration.

277Ideas to try on your own
17.4 Ideas to try on your own
When you get a chance, try using DFS for the Shared Configuration. This is a common
approach unless you have a clustered file server available. In chapter 19 you’ll install
additional software and be required to perform a staggered install. If you like, try that
out now using a component (such as the ARR helper) from WebPI.

Using the central
certificate store for

certificate management
Certificate management—the installing, revoking, and binding of certificates—is truly
an ongoing management headache. You saw in chapter 9 that working with certifi-
cates on remote servers can be challenging, even with PowerShell to help automate
the process. Remember the process of deploying and installing the certificates to
each web server and then creating an SSL binding for each website? Add to that the
challenge of searching through all those servers to determine when the certificates
will expire and need to be replaced. If you want to reduce your management time
and make the whole process much simpler, the new IIS 8 feature called the central
certificate store (CCS) is for you.

 The central certificate store is a simple concept, almost exactly the same as you
saw in chapters 16 and 17 on sharing content and configuration: store all the certif-
icates on a clustered network share and then have the website bindings point to
those certificates instead of locally installed ones. Need a new certificate? Put it in
the network share. Need to check for expiring certificates? Look in the network
share. If you’re already using shared content and configurations, you already have
everything you need to make this work, as shown in figure 18.1.
278

279Installing and configuring the central certificate store
CCS works for standalone web servers, web servers in a load balanced web farm, and web
servers on a farm that are sharing configurations. To participate in CCS, the only
requirement is that all web servers must be running Microsoft Server 2012 and IIS 8. If
you’re looking for an excuse to upgrade your web servers, you’ve found the best reason.

 As with the last two chapters, you start with a clustered network share. You create a
user account that has Read permissions to access the network share. You can use one
of the accounts you created for shared content or Shared Configurations, but I prefer
to create a special one for CCS, such as IISCert. This user account is needed during
the configuration of CCS.

 Once the network share is accessible by the other web servers using the user
account, you’ll be able to set up certificates in a central location. You finish this off by
setting the bindings on the remote servers to use the new certificate store. Let’s get
started with configuring the central store.

NOTE I realize you may not have Windows Server 2012 and IIS 8 on your VMs.
Because of that, there are no Try It Now sections in this chapter. I describe in
detail the entire process, so if you get a chance to use Server 2012, you can
refer back to this chapter. I include a complete lab to help you through the
entire process.

18.1 Installing and configuring the central certificate store
Each website configured with an HTTPS binding can use certificates that have been
installed locally or that are in the certificate store located on a network share. The
websites can be on standalone web servers or part of a web farm.

 With so much experience in this concept from the last two chapters, let’s dive
immediately into storing and naming your certificates for CCS.

Figure 18.1 Using the central certificate store (CCS) for certificate management

280 CHAPTER 18 Using the central certificate store for certificate management
18.1.1 Storing and naming certificates

Remember chapter 9, when you configured a website for SSL? You added an HTTPS
binding and selected the locally installed certificate for the website. When you enable
a site for CCS, the process is a little different. Rather then look for a locally installed
certificate, CCS checks the configured network share for the certificate. CCS locates
the correct certificate by using the host name of the website binding (the URL the
user types) and finding a certificate file that has the exact same name as the host
header plus the .pfx extension.

 For example, suppose you have two websites with the host names www.Web-
Bikez.com and www.MyCompany.com. The certificates should be stored in the net-
work share with the following names:

 www.WebBikez.com.pfx
 www.MyCompany.com.pfx

The file extension is important—the certificate needs to be a .pfx. When you pur-
chase a new certificate, you get the .pfx from the certificate vendor. If you already have
certificates installed on a web server that you want to use in CCS, you can export the
certificates to make a .pfx file. You can review how to export a certificate in chapter 9.

NOTE Wildcard certificates (*.MyCompany.com) should be named with an
underscore to replace the wildcard character: _.MyCompany.com.pfx.

As you add websites that need SSL, create or purchase new certificates and place them
into the network share. The next step in the process is to install the CCS component
on your web servers and then configure CCS and your websites.

18.1.2 Installing CCS on a local web server

The installation process is simple and can be accomplished using the graphical man-
agement tools or PowerShell. In this section I describe the process of installing CCS on
a local web server using the GUI so you can see how the process works. The last section
covers how to perform these tasks on remote web servers using PowerShell, including
my favorite: Server Core on Windows Server 2012.

 You must install the Centralized SSL Certificate Support feature on your web server
before you can use the certificates on a network share. You can use the graphical
Server Manager or the Install-WindowsFeature cmdlet in PowerShell:

PS> Install-WindowsFeature Web-CertProvider

When the new feature is installed, a new Centralized Certifi-
cates icon appears under the Management section of the IIS
manager, as shown in figure 18.2.

 Each web server that has secured websites needing access to
the certificates on the network share will need to be config-
ured for CCS. The CCS icon opens a form for the configura-
tion. This form contains many familiar options, such as the

Figure 18.2 The CCS
icon in the Management
section

281Installing and configuring the central certificate store
network path to the share and the user account required for permissions to access the
share, as shown in figure 18.3.

 You click the Enable Centralized Certificates check box to enable the centralized
certificates and then select the network physical path to the shared certificates. The
user account specified should have Read permissions to the share so that CCS can use
the certificates.

 At the bottom of the form is a place to specify a private key. When you export a cer-
tificate to a .pfx, you have the option of specifying a password, and most admins sup-
ply one. If the .pfx has been created with a password, you need to specify that here in
the form so it can be used with CCS.

 If the configuration and the private key password are set correctly, you’re rewarded
with a list of the available certificates, as shown in figure 18.4.

Figure 18.3 Configuring
CCS on each web server

282 CHAPTER 18 Using the central certificate store for certificate management
This scrollable screen also contains other useful information, such as when the certifi-
cates will expire. Managing certificates has never been easier, but you still need to set
the SSL bindings for the websites to use the certificates.

18.1.3 Creating the website bindings for SSL and CCS

The last step in the process is to create, modify, or add a new binding to your website
that uses the central store.

 In figure 18.5 I created a new binding for the Shop.WebBikez.Com site using the
option for the central certificate store.

Figure 18.4 Enabled
certificates for CCS

Figure 18.5 Creating a
binding using the central
certificate store

283Using CCS on remote web servers
Notice in figure 18.5 that the SSL Certificate setting is blank. That’s because all certifi-
cate requests will now be sent to the store for this website. If there’s a certificate file in
the store with the name Shop.WebBikez.Com or a wildcard certificate _.Web-
Bikez.Com, then SSL will work.

 Test the new certificate using the central certificate store, as shown in figure 18.6.
The process of enabling and using CCS on a local server is fairly easy. But what if you
need to enable and configure this on remote servers? That’s where the challenge
begins because you can’t do this through the IIS manager. Even with remote manage-
ment enabled, there’s no icon or other way to do it. If you have a web farm or remote
servers, you can accomplish all this using PowerShell, as explained in the next section.

18.2 Using CCS on remote web servers
At the time of this writing, the graphical IIS manager can’t enable and configure CCS
on a web server that you can’t physically (or RDP) access. If you’re using Server Core,
then even RDP won’t help, because you don’t have a graphical manager anyway.

 In this case the only solution is to use PowerShell. I’ll show you the same process
covered in the preceding section, only this time using PowerShell. Let’s get started by
installing the central provider component on a remote server and taking a look at the
cmdlets that become available.

Figure 18.6 Using HTTPS to
test the new certificate using
the central certificate store

284 CHAPTER 18 Using the central certificate store for certificate management
18.2.1 Installing CCS on remote servers

By now you know what’s coming next—the installation of the component on remote
servers using PowerShell Remoting.

 When you’re ready to do this on your Windows Server 2012 VMs, you start by creat-
ing a PowerShell Remoting session to the remote computers:

PS C:\> $Sessions = New-PSSession -ComputerName server2,server3

Install the CCS feature (Web-CertProvider) on the remote computers:

PS C:\> Invoke-Command -Session $Sessions {Install-WindowsFeature Web-

➥CertProvider}

And that’s all there is to the installation—to as many web servers as you want for CCS.
The next task is to enable and configure the feature.

18.2.2 Enabling CCS on remote servers

The IIS team at Microsoft created six cmdlets to assist in enabling and configuring the
central certificate store on the web server:

 Clear-WebCentralCertProvider
 Disable-WebCentralCertProvider
 Enable-WebCentralCertProvider
 Get-WebCentralCertProvider
 Set-WebCentralCertProvider
 Set-WebCentralCertProviderCredential

The cmdlets are fairly self-explanatory and have help files, but here’s an example of
using the Enable-WebCentralCertProvider cmdlet to enable and configure CCS on a
local web server:

PS> Enable-WebCentralCertProvider -CertStoreLocation \\dc\cert -UserName

➥company\IIScert -Password P@ssw0rd -PrivateKeyPassword P@ssw0rd

Here’s where it gets tricky, as I mentioned at the beginning of this section.
The Enable-WebCentralCertProvider cmdlet has a parameter called –CertStore-
Location that accepts a network share for the certificate location. The problem is that
the cmdlet attempts to verify the share location before it writes the information to the
Registry. In PowerShell Remoting this causes a multi-hop issue: you’re connected to a
remote computer that’s trying to connect to a remote computer, and that’s not sup-
ported by default. I’m sure at some point the IIS team will fix the cmdlet, but until
they do, here are two ways around the problem: enable CredSSP or add the entries to
the Registry manually. Because enabling CredSSP has other security implications, I
like to edit the Registry to solve this issue.

285Using CCS on remote web servers
To enable CCS on remote web servers:

PS> Invoke-Command -Session $Sessions {Set-ItemProperty -Path

➥HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\ -Name Enabled -Value

➥1}

To set the share location of the certificates:

PS> Invoke-Command -Session $Sessions {Set-ItemProperty -Path

➥HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\ -Name

➥CertStoreLocation -Value \\DC\CertStore}

You can’t set the username and password directly to the Registry, but the Set-
WebCentralCertProvider cmdlet will take care of the rest:

PS> Invoke-Command -Session $Sessions {Set-WebCentralCertProvider -Password

➥P@ssw0rd -UserName Company\certuser -PrivateKeyPassword P@ssw0rd}

At this point you can add or change web bindings on the remote servers to use the
central certificate store with the IIS manager. I demonstrate that with PowerShell in
chapters 16 and 17, but there’s one more issue that will cause a problem.

18.2.3 Web bindings for CCS on remote servers

I’m going to tell you this up front: currently the best way to enable web bindings using
CCS is to follow the process in the IIS manager I covered at the beginning of the chap-
ter. You can connect to the remote servers using IIS remote management and set the
bindings for your websites.

 At the time of this writing, configuring the bindings using PowerShell—or any
other method I’ve found—isn’t complete, so I won’t waste your time. When there’s a
complete solution, I’ll post it on MoreLunches.com. Until then remote manage the
bindings using the GUI, as shown in figure 18.7.

 You may find yourself making this change on a lot of websites. If you have a web
farm using Shared Configurations, the process is much simpler.

Above and beyond
If you’re deep into PowerShell, you can enable CredSSP, enable CCS, and then turn
off CredSSP. The process of enabling CredSSP and the security implications it has is
more than we can cover here, but if you already know how to do this, then it’s a quick
solution. If you’re not deep into PowerShell or don’t understand the security implica-
tions, then I don’t recommend it. Stick to the simple process I outline here to modify
the Registry directly.

286 CHAPTER 18 Using the central certificate store for certificate management
18.2.4 Using CCS with Shared Configurations

This topic is much too short for an entire section because you already know the
answer. If you’re using Shared Configurations from chapter 17 in a web farm, then the
central certificate store is your best friend. You already have the shared folder location
and a user account for the certificates. The rest is pure magic.

 To use CCS in a web farm with Shared Configurations, do the following:

 Install the Web-CertProvider component to each web server. This doesn’t
require a staggered install.

 Enable and configure the central certificate store on each server using the
PowerShell commands discussed in section 18.2.2.

 Add or change bindings on the master server using the IIS manager. Those
new bindings are automatically configured on all servers using the Shared
Configuration.

18.3 Lab
In this lab you can use the web farm with Shared Configuration from chapter 17 or try
it the first time on a standalone server. The following are the tasks you should per-
form.

Figure 18.7 Setting the
binding through remote
management with the GUI

287Ideas to try on your own
TASK 1
On your domain controller, create a folder structure to hold the certificates for the
central certificate store. If you created a structure in chapter 17 for Shared Configura-
tions, you can use the same structure. As an example, create the folder C:\IIS\IISCert.

TASK 2
Create a new Active Directory user with the name IISCert. This user will be used to
assign permissions to the share in task 3.

TASK 3
Share the IISCert folder and assign the following permissions:

 Domain Admins: Full control
 IISCert: Read
 Remove the Everyone group

TASK 4
Export a certificate for one of the secured websites you’ve already created or create a
new one. Save the exported .pfx to the network share as <hostname>.pfx. (For infor-
mation on exporting the certificate, see chapter 9.)

TASK 5
On a standalone web server or the master server in your web farm, install the Web-
CertProvider component.

TASK 6
Enable and configure the central certificate store on the web server and add or mod-
ify the website HTTPS binding to use the certificate on the store.

18.4 Ideas to try on your own
The central certificate store is an immediate time saver when working with secured
websites. The challenge you face in implementing this in production is that your web
servers need to be running IIS 8. Consider your existing environment and start the dis-
cussion around upgrading to IIS 8 to take advantage of this feature.

 Once you have IIS 8, add CCS to your environment for easier certificate manage-
ment. If you have an existing web farm, add CCS and start moving your certificates
into the store.

Web farm provisioning with
the Web Farm Framework
Whether you’re hosting multiple websites for customers or a single mission-critical
website for your business, provisioning (deploying), scaling, and managing your
growing web environment can be challenging. Consider the difficulty of adding a
single new server to a load balanced web farm. That requires you to install compo-
nents and platforms to support the web applications—the additional management
of websites, bindings, certificates, and content—which make adding a server or
website a complicated and lengthy process.

 In this chapter I discuss a solution that involves the technologies and concepts
you’ve been working with from chapters 14–17. By using Microsoft Application
Request Routing (ARR), combined with the additional components Web Farm
Framework (WFF) and Web Deploy, you can achieve an automated provisioning
process for rapid (elastic) scaling and site management.

WFF is a collection of additional features, including PowerShell cmdlets, that
makes the process of deploying and maintaining a web farm faster and easier to
manage. You can use WFF with ARR for load balancing or without ARR if you have
your own load balance solution.

WFF also offers administrators a collection of management tools to provide
many of the WFF features:
288

289Implementing the Web Farm Framework with ARR
 One-step automated server provisioning
 Automated deployment of new platforms to the web farm
 Automated application deployment to the farm
 Advanced status and trace logs

I only list a few of the features, but in a nutshell, fully implementing WFF makes
administering an IIS web farm fast and easy.

 I can’t take you through every aspect of WFF, but this chapter will get you up and
running and show you how to avoid many pitfalls. You’ll implement the Web Farm
Framework, build a new web farm using WFF, and manage the farm.

 Before you dive into your lunch and this chapter, I need to change a few of the
rules you’ve been following as you read this book. First, this chapter has no real lab at
the end. ARR and WFF take much longer than a lunch period to get installed and con-
figured, so I’ve included the full lab in the last chapter as your final exam. Second, I
didn’t include any Try It Now sections in this chapter. You need a new, clean virtual
environment with additional VMs, and I don’t want you to erase yours right now in
case you still want to work with previous chapters. For now, let me demonstrate ARR
and WFF to you and then you can use this chapter as a reference when you’re ready to
try it out in the final exam.

 One last note before you begin: the components discussed in this chapter are
always growing and changing to include new features and support. WFF is one of the
most exciting areas in IIS. It’s possible that by the time you read this chapter, some
changes may have occurred and improvements been made. Although the concepts
and process that I outline here will remain the same, you may expect some additional
features and changes to the screens shown in the figures in this chapter. But have no
fear—everything you need to know about updates, improvements, and more can be
found on www.iis.net. Enter Web Farm Framework into the search bar or go directly to
the download at www.iis.net/downloads/microsoft/web-farm-framework.

19.1 Implementing the Web Farm Framework with ARR
The architecture for WFF with ARR is similar to the ARR architecture you worked with
in chapter 14. Some important changes have been made to both the terminology and
functionality of the servers in the web farm to accommodate the provisioning and scal-
ing features. In this section you’ll install WFF and configure the control server. Once
complete, you’ll designate and configure your primary and secondary servers for the
web farm.

 The control server, shown in figure 19.1, is the server with the WFF and ARR com-
ponents. This server is used to create and manage the web farm, perform the load bal-
ancing, and provide log and tracing information for the web farm. As in chapter 14,
this is the server that receives the client web requests and then distributes them to the
web farm.

 The primary and secondary servers provide the websites and content for the web
farm. You’ll install the new components and platforms on the primary server using

www.iis.net/downloads/microsoft/web-farm-framework

290 CHAPTER 19 Web farm provisioning with the Web Farm Framework
WebPI. The secondary servers synchronize with the primary, getting the configuration
changes, the new components, and the web applications. This is similar in concept to
the Shared Configuration and content you experienced in chapters 16 and 17, but
without the manual processes involved. The automated deployment and synchroniza-
tion from the primary to the secondary servers is the magic sauce in removing the
complicated workload from your hands.

 It’s important to keep in mind that you can’t fudge on this architecture. This isn’t
a time to try and combine roles such as making the control server also a primary
server. The primary and secondary servers synchronize their configuration files and
will include website information, bindings, web application settings, application pool
settings—all the things needed to provide your content. The control server doesn’t
have this information and needs its own configuration files. The moral of the story:
don’t cheat.

 Although I don’t discuss it here in this chapter, the control server can be load bal-
anced to provide failover protection. I cover load balancing in chapter 15 and want to
remind you of it so you can protect the control servers.

 Let’s get started configuring the environment for a WFF and ARR web farm.

19.1.1 Configuring the environment

The requirements to run WFF are the same requirements you already experienced
using this book. WFF works on Windows Server 2008, 2008 R2, and Server 2012. Let’s
look at a couple of tasks you should perform before installing WFF.

Figure 19.1 The WFF and
ARR architecture

291Implementing the Web Farm Framework with ARR
WINDOWS FIREWALL SETTINGS

If you’re using the Windows Firewall, you need to open some additional ports to sup-
port WFF. You may in fact already have these open for other applications, but it’s
important to check. In the Windows Firewall settings, verify under the Core Network-
ing settings that the following Firewall Groups are open:

 Remote administration
 File and printer sharing

These need to be open on each server in the web farm, including the control server.

MANAGEMENT ACCOUNT

You need to create an account that has local administrative privileges on each of the
web farm servers. This account is required for automated application and platform
installs, along with the synchronization process. There are two ways to accomplish
this:

1 If the web farm servers are members of Active Directory, create an Active Direc-
tory user (IIS_Prov) and make the user a member of the Domain Admins
group.

2 If the web farm servers are standalone, create a local user that’s a member of
the local Administrators group on each server.

Once the administrative account has been created, the next step is to install IIS on the
control and web farm servers.

INSTALL IIS ON THE CONTROL AND WEB FARM SERVERS

All servers will need IIS, and if you don’t already have it installed, you’ll be able to
quickly install it using PowerShell. You don’t have to worry about all the additional
components you might need because you’ll install them using WFF later. Here’s an
example you can use when you’re ready to perform the install:

PS> Invoke-Command –ComputerName Controller, Primary, Secondary1, Secondary2

➥{Add-WindowsFeature –Name Web-Server –IncludeManagementTools}

When IIS is installed, you’ll be ready to install and configure WFF, along with ARR, on
the control server.

19.1.2 Installing and configuring the control server

The control server is the key to the entire web farm, and it’s the one you’ll spend most
of your time getting installed and configured. At the time of this writing, the process is
a little cumbersome. You need to install separate components in the correct sequence
to avoid running into brick walls. This section gets you through these pitfalls, but keep
in mind that newer versions of these components may exist when you try this, and the
process may change.

 The following is a list of the components—and versions—I downloaded for this sec-
tion. When you download these, if you encounter a version difference, you should
check the instructions in the download area to see if the installation order has changed.

292 CHAPTER 19 Web farm provisioning with the Web Farm Framework
 Web Deployment Tool 2.1
 Web Farm Framework 2.2 (with Web Deploy 2.0)
 Application Request Routing 2.5

I’ll show you the process of getting these components properly installed on the con-
trol server.

INSTALLING WFF AND ARR ON THE CONTROL SERVER

Most of the installation process on the control server entails getting components from
WebPI. The first step is to make sure you’ve installed WebPI on the control server, as
I’ve discussed before. You need to pay attention to the version of WebPI that’s
installed. The current version is 4.5, and it can’t install the correct version of the WFF.
I’m sure that will be fixed in a later release.

 If you have WebPI version 4 or later, you need to also install version 3 for the instal-
lation of the WFF component. You can download and install the Web Platform
Installer 3.0 from http://mng.bz/69oG.

 Once you’ve installed WebPI 3 on the control server, you’re ready to install the
components for WFF and ARR. Here are the steps:

1 Open WebPI and install the Web Deployment Tool 2.1.
2 Download and install the Web Farm Framework 2.2 from http://mng.bz/2mlG.

You must have WebPI version 3 or this component won’t install. WFF will also
install Web Deploy 2.0 automatically.

3 Open WebPI and install Application Request Router 2.5.
4 If desired (and you’ll get additional cmdlets for doing this), install Web Deploy

3.0 from WebPI.

After the installation is complete on the control server, I prefer to reboot the server.
This isn’t required, but I like to make sure I have a clean start before continuing.

 Now that the installation is complete, you need to perform a few post-installation
tasks.

POST-INSTALLATION BEST PRACTICES

The control server running ARR will be directing web requests to the web farm, as
mentioned in chapter 14. I’ll cover a few IIS configuration tasks that will improve the
control server’s response to and performance of these requests. Although these post-
installation tasks aren’t required, they’re considered best practices for the controller.
First the application pool for the default website will shut down its worker process in
20 minutes. That means the new requests could fail while waiting for a new worker
process to launch. In the Advanced Settings of the default application pool, change
the Idle Time-out Setting to 0, as shown in figure 19.2. This will stop the worker pro-
cess from shutting down.

 The default application pool will recycle on a regular interval of 29 hours. When
the pool recycles, web requests can be lost, so I prefer to stop the application pool
from automatically recycling. In the Recycling Settings for the default application
pool, clear the check boxes for the Recycling Conditions, as shown in figure 19.3.

http://mng.bz/69oG
http://mng.bz/2mlG

293Implementing the Web Farm Framework with ARR
Figure 19.2 Disabling
the Idle Time-out

Figure 19.3 Disabling the default application pool recycling

294 CHAPTER 19 Web farm provisioning with the Web Farm Framework
With the control server configuration complete, the next tasks are to configure the
primary and secondary servers. There isn’t much left to do, and then it will be time to
create the new web farm.

19.1.3 Preparing the primary and secondary servers

The bulk of the installation occurs on the control server, leaving some minor tasks for
the primary and secondary servers. Remember that the primary server will be the one
where new components and platforms will be installed and then synchronized out to
the secondary servers. Because of this, you can only have one primary server in a web
farm.

 You can install components directly to the primary server using WebPI, so the only
task remaining for the primary server is to make sure you’ve installed WebPI. At this
point, you can use WebPI to download and install the additional components and
platforms your web farm will need, but WFF will let you do this from the control server
using new management tools (which I demonstrate later in this chapter).

 Although the secondary servers don’t need any additional software installed, this is
a good time to make sure you have an administrative account for these servers as
described at the beginning of this section. When you create the web farm, you’ll need
this account.

19.2 Building the web farm
If you tried the lab for chapter 14, creating and configuring the web farm is almost
identical to the tasks you performed in that lab. In this section I’ll show you some
minor differences to the process.

19.2.1 Creating the web farm on the control server

After all the chapters you and I have been through together in this book, I’m sure you
know the answer to this question: what tools do I need to create and manage a web
farm? Answer: a GUI tool and PowerShell.

 I applaud the IIS team at Microsoft for continuing to add support for management
through PowerShell. In the case of WFF, you may not need to script deployments and
provisioning because WFF handles that for you. But if you’re someone who needs to
automate processes beyond WFF or web farm implementations, PowerShell makes the
automation easier. I won’t bore you with everything you can do, but let me introduce
you to both the PowerShell and GUI environment you can use with WFF.

 During the installation of the Web Farm Framework, a PowerShell snap-in with
additional cmdlets to create and populate a web farm was included on the control
server. Snap-ins are the older form of modules to extend PowerShell functionality and
are loaded a little differently than the WebAdministration module that you’ve seen
throughout this book. The name of the snap-in is WebFarmSnapin, and it can be
loaded using the PowerShell cmdlet Add-PSSnapin, as shown in figure 19.4.

295Building the web farm
Use Get-Command to receive a list of available cmdlets. You can then use Get-Help to
learn about and see examples of the cmdlets that interest you. I’ll use a couple of
these shortly when I create the web farm.

NOTE Additional cmdlets are available for managing provisioning when you
install Web Deploy 3. These are located in the snap-in WDeploySnapin3.0 and
can be added using the same method as the WebFarmSnapin.

For your first time setting up WFF and ARR, the IIS manager is the best choice because
you can see what’s happening in this complicated environment and the options that
are available. The IIS manager has a new navigation feature and new actions for the
web farm, as shown in figure 19.5.

 To create a new web farm that uses the provisioning and load balancing of WFF
and ARR, select Create Server Farm from the actions pane and fill out the web farm
details, as shown in figure 19.6.

Figure 19.4 Loading the WebFarmSnapin for PowerShell management and automation

Figure 19.5 The newly added
web farm navigation feature
and actions

296 CHAPTER 19 Web farm provisioning with the Web Farm Framework
You need to provide the web farm with a name for organizational purposes because
you can have multiple farms on a single controller. I prefer to name the web farm for
the customer or primary application. In larger hosting web farm environments, where
several websites for different customers are being hosted, I tend to create a web farm
name that describes the farm’s location rather than the customer’s. Remember from
chapter 14 that the web farm name is part of the URL Rewrite rule, so if you change
the name, make sure to check the rule.

 If you want ARR to perform the load balancing tasks, you need to select that option
when filling out the details for the farm. If you’re using a hardware load balancer for
the web farm servers, remove the check box.

 To get the features of the automated provisioning and elastic scaling, check the
Provision server farm check box.

Figure 19.6 Specifying the name of the web farm, load balancing, and provisioning account

297Building the web farm
 The last information to provide is the administrative account you created to man-
age the web farm servers. This can be an Active Directory account if your web servers
are joined to your domain, or a local administrative account on the individual web
servers.

 The last step is adding the web farm servers—both the primary and secondary serv-
ers—to the farm. The wizard guides you to that, as you’ll see in the next section, and
you can always add additional servers as your web farm grows. Next I’ll show you how
to add the web farm servers.

19.2.2 Adding the primary and secondary servers

After you create the web farm, the wizard will guide you in adding the primary and
secondary servers for the web farm. You can always add and remove servers later in the
IIS manager or with PowerShell, so don’t worry if you don’t get them all added at
once.

 In the wizard I start by adding the server I want designated as the primary server.
Add the server name and check the check boxes for load balancing and primary, as
shown in figure 19.7.

Figure 19.7 Adding the primary server to the web farm

298 CHAPTER 19 Web farm provisioning with the Web Farm Framework
Continue the process by adding the secondary servers. Note in figure 19.8 that the Pri-
mary Server check box is now greyed out.

 You can automate this process with PowerShell and the cmdlets from the WebFarm-
Snapin. In figure 19.9 the cmdlet New-WebFarm has parameters for everything you
need, including the web farm name and the management credentials. In my example
I supply the credentials using the Get-Credential cmdlet. The parameter –Enable
turns on load balancing, and –EnableProvisioning enables the provisioning.

 Adding the web farm servers is as easy with PowerShell. The New-Server cmdlet
requires that you specify the name of the web farm that will receive the servers and the
name of the new server. The –IsPrimary parameter designates the primary server,
and –Enable specifies that the servers are part of the load balance, as shown in
figure 19.10.

 At this stage, when completed, you’ll have a new web farm running WFF and ARR
with load balancing and automated provisioning capabilities. Although the manage-
ment and tasks are similar to ARR (discussed in chapter 14), you now have the new
provisioning icons in the IIS manager. Let’s briefly check those out.

Figure 19.8 Adding the secondary servers to the web farm

299Managing the web farm
19.3 Managing the web farm
Managing the new web farm is similar to the concepts and technologies you’ve already
seen in previous chapters, but now the management is more automated and easier.
The control server contains additional icons and actions to assist in component and
platform installation, along with better tracing and monitoring tools. In this section
I’ll show you those, but I don’t want you to lose sight of how this whole thing works.

 The control server is using ARR (and URL Rewrite) to send web requests to the
web farm and load balance those requests, as shown in figure 19.11. You saw this in
chapter 14. Those icons and settings are still the same.

 You also experienced the ease of management with Shared Configurations in
chapter 17. The concept is the same here except you don’t have to set up any addi-
tional configurations on each server. The primary server is the place where you create
websites and web applications and install additional components and platforms. Then
those things are synced out to the secondary servers, in a manner similar to the con-
cept of Shared Configurations.

 My point is that you know more about managing WFF with ARR than you may
think. You’re ready to go and can start getting your sites up and running. If you’re

Figure 19.9 Creating a web farm using PowerShell and the WebFarmSnapin cmdlet New-WebFarm

Figure 19.10 Adding primary and secondary servers to the new web farm

300 CHAPTER 19 Web farm provisioning with the Web Farm Framework
using Windows Server 2012, you can include the central certificate store for your cer-
tificate management. Content can be shared, as in chapter 16, or stored locally on the
primary and secondary servers for top performance. The Web Deploy snap-in even
has cmdlets to help copy and keep the content up to date across all your web farm
servers.

 The IIS manager has some helpful new built-in tools now that you’re using the
automated provisioning to help you out. You can use them from the control server. I
want to introduce a few of them, including performing actions across the entire farm,
adding new components, and monitoring the farm.

19.3.1 Using the tools under the actions pane

The graphical IIS manager contains several new actions to assist you in managing the
farm. Most of what you need is under the actions pane, as shown in figure 19.12. The
actions pane provides several farm-related actions:

 Take Server Farm Offline—For maintenance tasks such as service pack updates.
 Reboot Server Farm—Resets IIS and is sometimes needed after a new platform

installation and for other troubleshooting.
 Repair Server Farm—Resynchronizes the servers in the web farm. Useful for trou-

bleshooting, adding/removing a new server from the farm, or installing new
applications. The automatic sync times can be changed, as discussed shortly.

Figure 19.11 ARR using URL Rewrite to route the
web request to an available web server in the farm

301Managing the web farm
 Provision Platform and Applications—Deploys new platforms and applications to
the entire farm. This removes the need for you to perform the installation of an
application or platform on each server individually.

In addition to the actions discussed previously, one of my favorites is a management
tool listed in the actions pane as Server Farm Operations. This tool helps in perform-
ing several management tasks related to the entire web farm, as shown in figure 19.13.

Figure 19.12 New management
tools for the web farm

Figure 19.13 Server Farm Operations
performs several tasks for the entire farm.

302 CHAPTER 19 Web farm provisioning with the Web Farm Framework
Server Farm Operations is the main management tool and helps perform Windows
updating tasks, software queries, and diagnostics. Almost everything you need to per-
form, such as platform provisioning and WebPI product installations, can be done
from here. No need to run around to all the web servers anymore.

19.3.2 Changing the provisioning settings

The IIS manager includes icons that permit you to change the application and plat-
form provisioning settings. You can disable automatic provisioning and set the syn-
chronization time, as shown in figure 19.14.

 Application and platform provisioning normally require that the server be taken
offline for the installation, but if you know that a particular application doesn’t need
an IISreset, you can clear those check boxes.

 Along with new farm management tools, monitoring has been improved for the
server in the web farm.

19.3.3 Monitoring the web farm

In chapter 14 you explored the load balancing monitor tools. Those still exist and
should be checked for load balancing issues and performance. With WFF when you
select the server’s navigation container, the web farm operations, alerts, and provision-
ing status are displayed, as shown in figure 19.15.

 This additional monitoring support includes event messages that can help trouble-
shoot a problem. In figure 19.15 the servers are attempting to perform an AddServer
operation. The trace messages show an error during the process. Many of these trace
messages are valuable because they also contain actions to correct the problem. You
should check here often to make sure the farm is functioning normally, and if not,
check the trace to discover how best to resolve the problem.

Figure 19.14 The
default provisioning
settings for applications
and platforms

303Ideas to try on your own
19.4 Lab
To perform the implementation of ARR and WFF would require you to scrap your cur-
rent lab environment. I don’t want you to do that until the end of the last chapter in
case you still want to work with other chapters first. When you’re ready to test this out
in a clean environment, go to chapter 21 for your final exam.

19.5 Ideas to try on your own
The best idea I have for you is to build this environment and get some websites run-
ning. But don’t do this now. When you’re ready, go to chapter 21 and tackle the final
exam.

Figure 19.15 Monitoring
the web farm status

Disaster recovery for IIS
I hope this isn’t the first chapter you started to read when you picked up this book.
I know that in the middle of a crisis, sometimes you turn immediately to the infor-
mation you hope will help. This isn’t that chapter.

 Here’s why: disaster recovery for IIS is a planning process, not an immediate fix
for a failure. Part of this planning process requires that you fully understand the
web environment you’re responsible for so you know what needs to be recovered in
the event of a failure. To help accomplish that—and to become successful at disas-
ter recovery—I hope you’ve been reading through the book, one chapter at a time,
over your lunch, because then you’ll understand IIS and have a better understand-
ing of what needs to be protected.

 The best disaster-recovery planning starts with avoiding the disaster in the first
place. I’ve focused almost a third of this book on high-availability solutions that will
protect you from a server failure. No matter what size web environment you’re
working with, you must implement some form of high availability, even if it’s only
two servers in a simple Microsoft Network Load Balance with a Shared Configura-
tion. Products such as the Web Farm Framework and Application Request Routing
are excellent, free solutions for this.

 The hardest part of disaster-recovery planning is realizing that the concepts are
the same for everyone, but the implementation is completely different. For exam-
ple, I can tell you to back up your website content, but I can’t tell you the step-by-
step process for it because I don’t know what backup software you’re using. As you
304

305Analyzing your environment for disaster recovery
read through this chapter, keep in mind that I’m alerting you to the things you need
for disaster recovery—but you’ll have to determine how to best acquire them.

 The second part of preparing for disaster recovery is understanding the cost of fail-
ure. Does your company lose money if its website goes down? If so, how much per
hour? Disaster recovery for IIS isn’t difficult, nor is it expensive, but parts of your net-
work infrastructure could impact IIS, such as losing your internet connection. These
networking issues require money to make your network redundant. They can be
expensive. Understanding how much your company is willing to spend on those issues
is important as you make your disaster-recovery plans.

 In this chapter I take you through the important areas in IIS to back up and
recover when you’re planning your disaster-recovery process. Then I show you how to
get a good backup for the day you need to restore.

 Let’s get started by looking at what might go wrong.

20.1 Analyzing your environment for disaster recovery
The first step is to outline and diagram your environment so you have a complete
understanding of the components you need to protect. Do you have a single web
server with a single website? Or do you have a large WFF and ARR load balance with 14
servers and hundreds of websites? This is the critical operational path: understanding
all the components in your environment that might affect your customer’s web experi-
ence. Once you’ve taken this step, then I take you through common points of failure
to watch for with IIS.

 Using the knowledge you’ve gained in this book about IIS and how it works, you
know you need to document and understand your environment. Let me help you get
started.

20.1.1 The critical operational path

Whether you’re planning disaster recovery for a new implementation or an existing
one, understanding and documenting the entire communication and operational
path is essential to knowing what kinds of failures might occur and what you need to
plan to avoid or recover from them. As I’ve mentioned, I find that a good network dia-
gram—such as the one given in chapter 2—helps to understand this critical path.

 Here are some things you want to make sure you’ve documented:

 Where are your internet connection(s) and routers, and is there any redun-
dancy? If you have only one connection to the internet, and you lose that con-
nection, does it hurt your business? If so, is it worth getting another connection
installed?

 Who hosts your outside DNS, and how do you access it to add and change A
records for websites?

 Do you use internal DNS for internal websites? If so, is that DNS server
redundant?

306 CHAPTER 20 Disaster recovery for IIS
 Are there network devices (such as switches) that might fail and cause a web
outage? Is it worth the extra cost to make those redundant?

 What server hardware platform are you running IIS on? Are you virtualizing
your web servers with VMware or Hyper-V? If so, have you looked at the recov-
ery features included with those products?

I think you get the idea. Document the path from the customers outside your network
all the way to the website they’re using and see if you have any room for redundancy.
If not, then plan what to do when the disaster occurs. Find out who’s responsible for
fixing the problem, what that person’s phone number is, and how long it should take
to repair. This is often referred to as a Service Level Agreement (SLA). Although small
companies generally have verbal SLAs, such as I can recover the server in four hours, larger
companies often document these SLAs in their disaster-recovery planning, including
the responsible parties and their contact information.

20.1.2 Determining points of failure in IIS

When it comes to IIS and your web environment, the most common failure is losing
an entire web server. Let’s face it: it’s easier to avoid a complete outage than to recover
a server from failure. Let me review a few ways to avoid causing a critical outage:

 Implementing a load balance
 Implementing a load balance with Shared Configuration and Shared Content
 Implementing WFF and ARR for elastic automated provisioning

A simple load balance would prevent a complete outage of your web environment, but
recovering the server is more challenging than it needs to be. For example, suppose a
web server had a hard disk failure. Imagine the process of recovering that server and
putting it back into the load balance. You’d need to reinstall the operating system,
install IIS, install the additional components, platforms, and application-specific soft-
ware, recreate the websites, the bindings, and so on—arrrg!

 A load balance where you’re sharing the content and the configuration makes it
much easier to recover a server. Install the OS and IIS and turn on Shared Configura-
tion—this gets all the websites and bindings back, along with access to the content—
and you’re back in business.

 The best approach to handling server failures and recovery is with the full WFF and
ARR implementation discussed in chapter 19. Adding and removing a server is as easy
as adding it to the web farm. The new server is automatically provisioned, and you don’t
need to do anything else. That’s simple, fast, server-failure recovery—and because it’s
in a load balance with other servers, you avoided the web outage altogether.

 Besides a complete server failure, other things could go wrong on your web server,
most of which could be resolved with a simple backup (I go through backing up IIS in
a moment). Here are some other common failures to think about:

307Back up the critical components and data
 Corruption of the IIS configuration files—This rarely occurs, but it’s possible. This
kind of corruption could impact all your websites, and you’d repair them by
restoring the configuration files.

 Corruption of web application-specific configuration files such as web.config—This does
occur from time to time and could be the result of an application update or a
hacker attacking the application. If you maintain a backup of your web applica-
tions and their configuration files, you can easily recover the corrupted configu-
ration file.

 Loss or corruption of content—Keep in mind where your web content’s being
stored. Is it local, or is it shared from a clustered server or other content ser-
vice? Your content should be backed up regularly so that, in the event of cor-
ruption or loss, you can easily restore it.

 Loss or corruption of web components and platforms—Although uncommon, one or
more of the applications or platform components could become corrupt. This
can occur if the component is updated. In most cases you can remove and rein-
stall the component.

As you can see from the general cases I’ve outlined, the most common recovery tech-
nique if you aren’t using WFF and ARR is to restore the corrupted data from a backup.
Let’s look at how to get a good backup.

20.2 Back up the critical components and data
Backing up an IIS server isn’t as complicated as most administrators think. You know
the truth behind IIS: everything about your websites, bindings, and applications is in
the XML configuration files. XML files are text files, which means you can copy them
to a safe location, or even to a USB drive. Most administrators use a third-party backup
tool because they make it easy to manage the backup process. Regardless, the impor-
tant thing is to back up the IIS configurations, the website files and configurations,
and any other content you have to support those websites. In this section I show you
the critical configuration components, explain how to quickly and easily perform a
backup/restore, and give you a few notes about planning your disaster recovery as
well as recovering from a failure.

 Let’s start with the critical components and locations so you can point your backup
software to the right place.

20.2.1 Determining your critical components to back up

The following is a reminder list of the configuration files and their locations—if
you’re using a Shared Configuration, be sure to back up the network share that holds
the configuration files:

 The files applicationHost.config, administration.config, and redirection.config
are located at C:\%windir%\System32\inetsrv\config. These are the most critical

308 CHAPTER 20 Disaster recovery for IIS
files to be sure you’ve backed up because they contain the information about
your websites and configuration settings.

 The web.config files are application configuration files and are stored with your
website content. Be sure to back up your website content and all the configura-
tion files. If you’re using Shared Content, point your backup software to the
network share that’s hosting the content.

 IIS keeps its own backup of applicationHost.config in C:\inetpub\history. In
fact, every time you make a change to an IIS configuration, it makes a backup
and stores the last ten versions. I like to back up this folder, too.

You can use a third-party backup program to handle all of this, including the recovery
in the event of corruption or failure. I’ll show you one common way of backing up
these configuration files using a built-in IIS command.

20.2.2 How to back up and restore IIS

I normally have a third-party backup program do this task, but I like to be able to get a
quick copy of my configuration files before I make any changes to a system.

 Before PowerShell became the standard management tool across all product plat-
forms, IIS had its own command-line tool. Although I don’t use that tool in this
book—or in real life anymore—I do use it for the task of making a quick backup of
configuration files. You can use PowerShell and script your own solution, but the
older command is easier to use. The command, AppCmd.exe, is located in
C:\%windir%\System32\inetsrv. Here are examples that use the command to back up
and restore your configuration files.

 The following example will create a backup of your configuration files:

c:\%windir%\System32\inetsrv\appcmd.exe add backup “MyBackup”

Here’s an example to restore from a backup:

c:\%windir%\System32\inetsrv\appcmd.exe restore backup “MyBackup”

Here’s how to delete a backup:

c:\%windir%\System32\inetsrv\appcmd.exe delete backup “MyBackup”

Here’s an example of getting a list of backups currently stored on the system:

c:\%windir%\System32\inetsrv\appcmd.exe list backup

Now that you know what to back up on an IIS server, you’re almost ready to start your
own disaster-recovery planning process. But first let’s look at a few things that com-
monly get missed.

20.2.3 What you may have missed

Besides the configuration files, there are other pieces to your puzzle that may need to
be part of your backup and restore strategy. Often administrators miss backing up the
certificates that are needed for HTTPS and other custom components that may have

309Back up the critical components and data
been added by developers. The key here is to make sure you document and back up
anything that wasn’t part of the out-of-box experience. Let’s talk about a few items
that are often missed.

CERTIFICATES

Using IIS 8 and the new central certificate store makes backing up your certificates a
snap because they’re all in one place. Until you’re able to use this feature, each of
your web servers will contain the certificates you need for your HTTPS sites, and you
don’t want to lose them. Many admins skip this part, and when they lose a server they
find themselves buying new certificates.

 You should be proactive in making sure you have copies of your certificates locked
in a safe place. Chapter 9 shows you how to export a certificate to a .pfx file. If you lose
a server, you can reinstall the certificates quickly and easily. As you look around your
web servers, you should document the website bindings that require certificates, the
certificates they’re using, and make sure to have a backup of them.

THE REGISTRY

Most third-party backup software will back up your Registry—normally when recover-
ing IIS and your websites, you don’t have to worry about the Registry. The challenge
comes if you (or another admin) have made changes to the Registry with regard to IIS.
Generally that’s not recommended for most web servers because many of those set-
tings can be handled directly through IIS and the configuration files.

 The Registry contains settings for HTTP.SYS and other components, and if they’ve
been changed you need to make sure you get a system state backup (most third-party
software easily handles that). For a complete list of Registry settings (and there are
hundreds), check out the Microsoft support article at http://support.microsoft.com/
kb/954864.

CUSTOM COM AND .NET COMPONENTS

If you installed additional components with WebPI, recovering those is as easy as run-
ning WebPI again. Some web applications are written using custom COM and .NET
components created by the developers. These are usually installed as additional .dlls
that are registered with the system.

 Custom .dlls should be part of your backup process, along with the instructions on
how to reinstall them if a failure occurs. Many custom applications have an installer to
handle this, but some require you to copy the .dlls to the server and register them
using RegSrv32.exe. I don’t know which applications you’re using or how you got
them installed, so this might require a little research on your part. One way to quickly
tell if this is an issue is to build a test environment with your web applications running
on them. If you needed to install or register any specific components to get the web-
site to function, then you know you need to back those up along with the website files.

 If your web servers and applications are part of a web farm, then you’ve increased
your availability and can handle losing a server or website. But that doesn’t mean you
shouldn’t have a backup plan for emergencies. Let me give you some planning tips
and ideas for a web farm.

http://support.microsoft.com/kb/954864
http://support.microsoft.com/kb/954864

310 CHAPTER 20 Disaster recovery for IIS
20.2.4 Planning disaster recovery for web farms

If you’re using a web farm with a load balance (and you should be), I recommend
being careful when planning your backup and recovery. Remember that the configu-
ration files and content may in fact be located in a Distributed File System or on a net-
work share. Don’t back up the wrong thing. I keep the following important questions
in mind when I plan for backup and recovery in a web farm:

 Does the web farm use Shared Configuration? Where are those files located?
 Where’s the website content located? Locally? Or is it shared through DFS or a

network drive?
 What additional components (application and platform) need to be installed

on a web server to support its applications?
 Is there an ARR or a control server? If so, are its configuration files backed up

separately from the web farm server's?

I still recommend that the best disaster-recovery option in the event of a server failure
is WFF and ARR, with automatic provisioning. Because they’re free, they’re worth con-
sidering and testing.

20.2.5 Recovering from a failure

It all boils down to this: you get a phone call that the website’s down or a web server
failed—what do you do? This isn’t the time to try out your recovery options for the
first time.

 I know it sounds basic, and you probably already do this, but test and document
your recovery process before a failure happens. You may have a complicated web envi-
ronment, so make sure to test for multiple types of failures and how to recover from
them.

 I find that for smaller web environments, a virtualized test environment works well
for testing disaster recovery. That doesn’t always work well for larger environments,
and developers often create a full replica of the production environment. Keep in
mind that a good test environment is used for testing applications and new compo-
nents as well as for disaster recovery. It’s common to have a development environ-
ment, a test environment, and a production environment that are as identical as
possible.

 The best test environment exactly matches the production environment. This
match prevents surprises when you roll out new applications and offers you the
chance to fully test your recovery capabilities.

20.2.6 Don’t forget to monitor

Monitoring the operations of your websites and servers can sometimes be as compli-
cated as the disaster recovery process, should something fail. Throughout this book,
and notably in chapters 6 and 8, I gave you some tactics to get started on monitoring

311Back up the critical components and data
your environment. Let me give you a list to remind you of the tools you have at hand
and then I’ll conclude with some additional tools you might be able to use:

 Ping test—Even the simplest ping test can help you identify when a website
becomes unavailable. Although Ping.exe isn’t the best tool, PowerShell includes
Invoke-WebRequest, which allows you to specify a particular website and port to
test.

 Check your logs—Using a tool like LogParser or PowerShell, you can check the
responses of your websites. I also like to watch for application pool recycling,
which can indicate a problem with an application. Although it may not crash
my server, it’s resetting my website and could be causing issues with my cus-
tomer.

 Failed Request Tracing (FRT)—Sometimes the only way to know you’re having
issues is by trapping and noticing the problem. FRT is a great way to isolate
problems that may turn into larger issues.

 Process Explorer and Monitor—It’s not only for security. Process Explorer and Pro-
cess Monitor can help diagnose response problems and memory leaks that may
be occurring from custom application components.

 Your web farm statistics—If you’re using the Microsoft ARR and WFF, you’re pro-
vided with many health monitoring statistics. Check these often to see whether
a site is causing a failover.

Monitoring the state of your servers can involve more than tools for IIS. Many compa-
nies employ complete monitoring packages, such as Microsoft’s System Center Opera-
tions Manager (SCOM), that can provide reports and statistics on how the servers and
roles like IIS are behaving. Such analytical tools can warn you before an outage occurs
and even help drill down to the exact problem. Tools like SCOM also monitor the
entire server and infrastructure—a slow response to a website could be caused by a
network traffic issue. These advanced monitoring tools can identify those root causes.

 The drawback to the more advanced tools is that they aren’t free and they require
additional knowledge and installation. Larger companies, many of which already have
extensive monitoring tools, can easily add the web infrastructure to the monitoring list.
If you have a smaller environment, then something as simple as Invoke-WebRequest in
PowerShell might be the answer you need:

PS>Invoke-WebRequest –URI HTTP://www.company.loc

You can drill further into Invoke-WebRequest, but even in its simplest form you could
script several sites and return the status codes:

PS>Invoke-WebRequest –URI HTTP://www.company.loc | Select-Object –Property

➥StatusDescription

However you decide to monitor your web environment will be based on the tools you
have and the scale of the environment you need to monitor. I generally start simple,

312 CHAPTER 20 Disaster recovery for IIS
monitoring for outages with Invoke-WebRequest, and build my monitoring based on
the tools available.

20.3 Lab
For this lab I want you to throw caution to the wind and destroy a web server. Take one
of the lab VMs that you’ve been working on and make a backup of the configuration
files.

 I want you to then delete—yes, delete—the applicationHost.config file from
C:\%windir%\System32\inetsrv\config. Restart the server and see if any of the websites
still work. They won’t.

 Now recover the configuration files and test the websites again. Explore the IIS
manager and note that everything came back.

20.4 Ideas to try on your own
High availability and disaster recovery are the most important tasks a web administra-
tor can perform. Companies that rely on their websites for business and branding
need to be able to withstand failure and recover from disaster. Because your environ-
ment is different from mine, I want you to document, plan, and test for disaster recov-
ery. Examine and document your environment and try different scenarios for both
high availability and recovery.

The final exam
I have one more challenge for you. Equipped with the knowledge and experience
you’ve gained from this book, build a complete, highly reliable web environment—
from scratch. This chapter is fairly short and doesn’t require a whole lunch to read,
but as a lab it’s big and complicated—it may take several hours or even days to com-
plete, over the course of several lunches. You can come back to this lab anytime, or
create your own challenge. This chapter is meant to give you something to shoot
for if you want to try to put it all together. Go ahead and give it a quick read, and
when you’re ready, fire up some VMs and give it a try.

 If you take this challenge, keep in mind that you’ll likely get stuck and run into
problems. Use these problems as opportunities to try out the resources discussed in
previous chapters. Explore the forums and the internet for answers. Refer back to
sections in this book when you need to and don’t be afraid to make mistakes. I’ve
learned the most by breaking things.

 This “final exam” requires a new set of VMs—and perhaps some additional
ones—to support the WFF and ARR high availability. The first section takes you
through the requirements for those VMs, and the last section is the lab.

 You can change the lab to suit your own needs, and I encourage you to explore
different setups. My solution to this lab will be on MoreLunches.com, along with
the rest of the lab answers from this book.
313

314 CHAPTER 21 The final exam
21.1 The lab setup
This lab requires that you start your virtual environment from scratch. You can
remove all the work you’ve completed by uninstalling IIS and deleting your web con-
tent, or rebuild your VMs. I enjoy experiencing the whole process, so I prefer to build
the VMs from scratch. I encourage you to go beyond your current VM setup if your
hardware allows. In other words, three VMs are fine for this lab, but four or five would
create a better experience.

 You’ll be implementing a highly available web environment using WFF and ARR,
discussed in chapter 19. If you only have three VMs, your environment will be similar
to figure 21.1. The ARR control server will be installed on the Active Directory domain
controller; the remaining two VMs will be used as primary and secondary servers.
Choose the Windows operating system you prefer, but if possible consider using Win-
dows Server 2012.

 If you have the capacity and want to experience a more realistic approach, then a
larger lab environment is for you. If so, you’ll need five VMs, as shown in figure 21.2.

 When you’ve chosen your lab environment and you’ve built a clean set of VMs,
start the challenge in the next section. The lab assumes a domain name of Com-
pany.loc, but you can install Active Directory with whatever domain name you like.

21.2 Your lab challenge
You’ve been contracted by WebBikez.com to build a highly reliable web farm for its
growing website. You need to design and implement a web farm using the Web Farm
Framework and Application Request Router as both the load balancing and auto-
mated provisioning solutions. The bike shop has provided you with the following
information about the company’s needs.

Figure 21.1 The small
lab environment

315Your lab challenge
WEBSITES

The company has three websites that need to be highly available. All three need ASP
and ASP.NET to support their applications. Two of the websites are publicly available
and should allow anonymous access, but the third is a shopping site and should
require that users log in. The company wants the shopping site protected with SSL.
The websites are as follows:

 www.Company.loc—This is the default website in IIS.
 Product.Company.loc—This is the company product catalog.
 Shop.Company.loc—This is the secured shopping site.

The content for these websites should be centrally located and shared to the websites
during the initial development phase.

WEB FARM

The company needs a highly reliable web farm. They’d like to use the features of IIS to
accomplish that. Please implement WFF and ARR to provide this environment. (Hint:
chapter 19.)

MANAGEMENT

The company needs to be able to manage all web servers through the remote manage-
ment capabilities in IIS. The IIS manager on the control server should have a connec-
tion to each web server so that the administrator can view them and make changes if
necessary.

Figure 21.2 A large lab environment
gives the most realistic experience.

316 CHAPTER 21 The final exam
 Certificate management will become a challenge for the company—both locating
and replacing certificates. You’ll have to implement the central certificate store to
make this process easier (only if you’re using Server 2012).

DISASTER RECOVERY

Provide a process to back up the content and configuration of the IIS, both for the
control server and the web farm servers.

VERIFICATION

Demonstrate the disaster recovery process and the failover capabilities of the load
balance.

Never the end
It’s been a long road to get to this point in the book. You’ve almost reached the
end, but certainly not the end of IIS. You’ve gone beyond the basics, you’ve learned
and experienced IIS administration, and you’re equipped with the knowledge to go
further to support your web administration career. This short chapter won’t take
you a whole lunch to read, but hopefully you’ll return to it often when you’re look-
ing for additional resources to help you work with IIS.

 I include books and websites that will help you go beyond this book to advance
your skills in PowerShell, and I offer additional IIS references. In this chapter I
want to point you in the right direction to find out more about IIS to support your
environment and become a better web administrator. I’ll try not to ramble, but let’s
talk about the inadvertent IIS administrator one more time.

22.1 Resources for the inadvertent IIS administrator
The inadvertent IIS administrator has a busy work day, often spent putting out fires,
and in some cases putting out fires he or she started. If you’re an IIS administrator,
you’re probably responsible for many products and applications on your network
and don’t have much spare time. Although the goal of this book is to help a new IIS
administrator learn the ropes, the learning never ends. It’s time for you to explore
and advance your IIS and web knowledge even further.

 When I’m stuck and need more information, the following sites are where I go
to talk with other administrators and find resources. Although this isn’t an exhaus-
tive list, these are my favorites:
317

318 CHAPTER 22 Never the end
 IIS.NET (www.iis.net)—This website contains the latest information about IIS.
You should check it often. Many administrators ignore this site because it’s hard
to search and find information, but that’s because it’s packed with tons of infor-
mation. You should spend some time looking around. You’ll find thousands of
articles that go deep into information about the components and operation of
IIS. Often the solution to my problem is some nugget of information I found on
IIS.NET. Not only do IIS team members post articles, but MVPs and other IIS
experts also post to the site. You get both the Microsoft approach and the real-
world experience of thousands of people. If you have a question that you can’t
find the answer to, jump into the forums and post it. Don’t be afraid—the
responders are professionals working just like you and they want to help. Even-
tually you may take the time and answer a few questions as well.

 PowerShell.org (www.PowerShell.Org)—If you’re working with PowerShell and IIS,
trying to automate tasks, working with Server Core and remote servers, attempt-
ing to make heads or tails out of the web administration cmdlets, and so on,
then you should stop by the PowerShell and IIS forums. Along with several
other PowerShell administrators, I monitor the forums and look forward to
answering questions. I learn as much from you and your questions as I do from
working with IIS. Stop by and share your PowerShell/IIS experience and help
other inadvertent PowerShell/IIS administrators.

 The Web Platform Installer—WebPI is often updated with the latest and greatest
web components, many of which you could spend hours hunting down on the
internet. WebPI is an overlooked resource for admins trying to install the new
components demanded by today’s applications. You should open and check out
the spotlighted new additions to keep yourself familiar with what’s available.
Make sure to update your WebPI version (currently at 4.5) at www.iis.net.

 Search engines—Google and Bing are my best friends when I’m working with IIS.
Regardless of application or platform, you’ll find a vast wealth of knowledge
spread out on blogs from all over the world. Type in your problem starting with
Microsoft IIS, and you’ll find your answer.

 Books—A couple books on my bookshelf go deeper into areas of IIS and make
great reference material. I have a tremendous amount of respect for the
authors and I follow their blogs to learn from their experiences. Here they are,
one for IIS 7 and one for IIS 8. Enjoy.
– Professional IIS 7 by Kenneth Schaefer, Jeff Cochran, Scott Forsyth, and Rob

Baugh (Wrox, 2008)
– Professional Microsoft IIS 8 by Kenneth Schaefer, Jeff Cochran, Scott Forsyth,

and Dennis Glendenning (Wrox, 2012)
 Books for developers—I wrote this book for anyone who needs to learn how to

administer IIS. I teach the topic often and have had many developers as stu-
dents. The information in this book is often just what they needed to help clar-
ify some part of their deployment or management process. Sometimes they

www.iis.net
www.PowerShell.Org
www.iis.net

319DevOps: the ever-changing job of the IIS administrator
need to go deeper than an admin would normally go, and for that I recom-
mend starting at www.iis.net. If you mean to drill down into a technology such
as PHP, MVP, or even Azure, then check out www.manning.com for books on
those web development technologies.

 PowerShell books—The book you’re holding in your hands isn’t a PowerShell
book. PowerShell is an amazing tool for real-time management and automa-
tion. I couldn’t be successful in today’s world without it, particularly when I’m
working with large IIS implementations. Here are the books that I think will
help you the most to learn to use PowerShell to its fullest:
– Learn Windows PowerShell 3 in a Month of Lunches, Second Edition by Don Jones

and Jeffery Hicks (Manning Publications, 2012)
– Learn PowerShell Toolmaking in a Month of Lunches by Don Jones and Jeffery

Hicks (Manning Publications, 2012)
– PowerShell in Depth by Don Jones, Richard Siddaway, and Jeffery Hicks (Man-

ning Publications, 2013)
– PowerShell Deep Dives edited by Jeffery Hicks, Richard Siddaway, Oisin Grehan,

and Aleksandar Nikolic (Manning Publications, 2013)

Keep moving forward and learning as much as you can about IIS. It’s a great career
being the inadvertent IIS administrator.

22.2 DevOps: the ever-changing job of the IIS administrator
I’m often asked by administrators if I think they should learn how to build web appli-
cations, become a developer, and sink into the guts of the web. On the flip side, I
teach IIS to many developers who ask the same question about learning administra-
tion. The truth is, to be the most effective, administrators and developers should learn
a little about each other.

 Being effective working with IIS means you should understand the needs and chal-
lenges that both the administrators (formerly known as operators) and developers
face. By bridging the gap we become smarter, more effective and efficient, and better
at problem solving in an ever-growing web environment. This is known as DevOps.

 Does that mean that after reading this book you should run out and buy an
ASP.NET book and learn to build a website? Why not? Even if you learn only a little,
it’ll help you understand more about the applications and requirements that are
needed with IIS.

 If you’ve never programmed or scripted before, my recommendation is to get
started on the DevOps path with PowerShell. Not only will you be able to manage IIS
better, you’ll also start to learn the thinking process of a programmer through the
scripting and automation you create.

 If you’re fortunate enough to work in an environment where you have web devel-
opers on staff, why not take them to lunch, become friends, and learn from them?
You might be surprised; they’ll probably have as many questions for you as you have
for them.

320 CHAPTER 22 Never the end
 I find the more I understand about the IIS architecture—the guts inside that make
it go—the better I become at solving problems. This book isn’t designed to be a “deep
dive” into the internal workings of IIS, but as you work with it you’ll find additional
knowledge helpful. Many resources offer this information, and a good place to start is
on IIS.net.

 THE INADVERTENT IIS ADMINISTRATOR,
 JASON

IIS PowerShell cheat sheet
No one (including your author) knows what your particular PowerShell needs will
be when working with IIS. Fortunately PowerShell is designed to be flexible. This
chapter is a collection of my favorite PowerShell commands that I keep around.
Each of these is explored elsewhere in this book, but here they are together for
your reference. The list is always growing and changing, but this is a good start for
your own cheat sheet.

Getting a list of IIS components
PS> Import-Module ServerManager #only required for PowerShell v2
PS> Get-WindowsFeature –Name *web*

Installing IIS
PS> Import-Module ServerManager #only required for PowerShell v2
PS> Add-WindowsFeature Web-Server

Testing a default installation
PS> Start iexplore http://<ServerName>

Importing and viewing cmdlets for IIS
PS> Import-Module WebAdministration
PS> Get-Command –Module WebAdministration
PS> Get-Command –noun web*
PS> Get-Help *web*

Viewing a website
PS> Get-WebSite –Name Default*
PS> Get-Childitem –Path iis:\sites
PS> Get-Childitem –Path c:\inetPub\wwwroot
321

322 CHAPTER 23 IIS PowerShell cheat sheet
Navigating to application pools
PS> Set-location IIS:\appPools
PS> Get-Childitem

Getting information about application pools
PS> Get-Item –Path IIS:\appPools\defaultAppPool
PS> Get-Item –Path IIS:\appPools\defaultAppPool | Format-List –Property *

Creating application pools
PS> New-WebAppPool –Name BikeTestPool

Changing a website to a new application pool
PS> Set-ItemProperty –Path ‘IIS:\Sites\Default Web Site’ –Name

➥ApplicationPool –Value BikeTestPool

Getting a list of worker processes
PS> Get-WmiObject Win32_Process –filter ‘name=”w3wp.exe”’
PS> Get-WmiObject Win32_process -filter 'name="w3wp.exe"' | Select-Object

➥Name, ProcessId, @{n='AppPool';e={$_.GetOwner().user}}

Restarting an application pool
PS> Restart-WebAppPool –Name BikeTestPool

Setting application pool settings (managed runtime)
PS> Set-ItemProperty –Path IIS:\appPools\TestBikePool –Name

➥ManagedRuntimeVersion –Value v4.0

Setting application pool recycling settings (recycle time)
PS> Get-ItemProperty -Path IIS:\AppPools\DefaultAppPool –Name

➥recycling.periodicRestart.time
PS> Set-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.periodicRestart.time -Value 3.00:00:00

Setting application pool recycling settings (schedule)
PS> Get-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.PeriodicRestart.schedule.collection
PS> clear-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.PeriodicRestart.schedule.collection
PS C:\> set-ItemProperty -Path IIS:\AppPools\DefaultAppPool -Name

➥recycling.PeriodicRestart.schedule.collection -Value @{value='06:00:00'}

Viewing events for application pools
PS> Get-Eventlog –LogName System –Source WAS

Getting the application pool identity
PS> Get-ItemProperty -Path IIS:\AppPools\MyTest –Name

➥ProcessModel.IdentityType

Setting an application pool identity (example for NetworkService)
PS> Set-ItemProperty -Path IIS:\AppPools\MyTest –Name

➥ProcessModel.IdentityType -value 2

Setting your own custom application pool user account as the identity
PS> Set-ItemProperty -Path IIS:\AppPools\MyTest -Name

➥processmodel.identityType -Value 3
PS> Set-ItemProperty -Path IIS:\AppPools\MyTest -Name processmodel.username -

➥Value Administrator
PS> Set-ItemProperty -Path IIS:\AppPools\MyTest -Name processmodel.password -

➥Value P@ssw0rd

323Listing all log files for every website
Creating websites
PS> New-Item –ItemType Directory –Path c:\PoshTestSite
PS> New-WebAppPool –Name PoshTestSitePool
PS> New-Website –Name PoshTestSite –Hostheader Posh.Widget.Com

 ➥–PhysicalPath c:\PoshTestSite –ApplicationPool PoshTestSitePool

Setting static compression for a server
PS> Get-WebConfiguration -filter system.webserver/urlcompression

➥-PSPath iis:\ | fl *
PS> Get-WebConfigurationProperty -filter system.webserver/urlcompression

➥-PSPath iis:\ -name doStaticCompression
PS> set-WebConfigurationProperty -filter system.webserver/urlcompression

➥-PSPath iis:\ -name doStaticCompression -value True

Getting and setting static compression for a site
PS> Get-WebConfiguration -filter system.webserver/httpcompression -PSPath

➥iis:\ | fl *
PS> set-WebConfigurationProperty -filter system.webserver/urlcompression

➥-PSPath 'IIS:\Sites\Default Web Site' -name doStaticCompression

➥-value true
PS> Get-WebConfigurationProperty -filter system.webserver/httpcompression

➥-PSPath iis:\ -Name maxDiskSpaceUsage | fl *
PS> set-WebConfigurationProperty -filter system.webserver/httpcompression

➥-PSPath iis:\ -Name maxDiskSpaceUsage -Value 100

Adding dynamic compression
PS> Add-WindowsFeature –Name Web-Dyn-Compression

Changing directory browsing
PS> Get-WebConfigurationProperty -filter system.webserver/directorybrowse

➥–PSPath iis:\ -Name enabled
PS> Set-WebConfigurationProperty -filter system.webserver/directorybrowse

➥-PSPath iis:\ -Name enabled -Value true

Getting and setting the Default Documents
PS> Get-WebConfiguration -Filter system.webserver/defaultdocument/files/add -

➥PSPath iis:\ | select value
PS> Add-WebConfiguration -Filter system.webserver/defaultdocument/files -

➥PSPath iis:\ -Value 'jason.htm' -AtIndex 3 #If no index specified it

➥places it at the top

Adding IIS 6 compatability mode
PS> Add-WindowsFeature web-mgmt-compat –IncludeAllSubFeature

Adding ASP and ASP.Net
PS> Add-WindowsFeature –Name Web-ASP
PS> Add-WindowsFeature –Name Web-ASP-Net
PS C:\> Get-WebConfiguration -filter system.webserver/asp -PSPath iis:\ |

➥format-List *

Adding CGI
PS> Add-WindowsFeature –Name Web-CGI

Listing all log files for every website
PS> Get-childitem -Path C:\inetpub\logs -filter *.log –recurse

324 CHAPTER 23 IIS PowerShell cheat sheet
Listing all HTTP requests that occurred at 9:00 p.m.
PS> Get-childitem -Path C:\inetpub\logs -filter *.log -recurse | Select-

➥String -SimpleMatch "21:00”

Listing all requests from clients to a particular URL
PS> Get-childitem -Path C:\inetpub\logs -filter *.log -recurse | Select-

➥String -SimpleMatch "MySite/TestPage.asp"

Listing all requests to/from a particular IP address
PS> Get-childitem -Path C:\inetpub\logs -filter *.log -recurse | Select-

➥String -SimpleMatch "10.211.55.30"

Adding Failed Request Tracing
PS> Add-WindowsFeature web-http-tracing

Getting a list of authentication mechanisms
PS> Get-WebConfiguration -Filter /system.WebServer/Security/authentication |

➥foreach-Object{$_.sections}

Getting anonymous authentication settings
PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -name enabled |

➥select-Object value

Disabling/enabling anonymous authentication for the entire web server
PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -name enabled -

➥Value false

Enabling/disabling anonymous authentication for a website or application
PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -name enabled -

➥Location mysite
PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/anonymousAuthentication -PSPath IIS:\ -name enabled -

➥Value False -Location MySite

Adding Windows authentication
PS> Add-WindowsFeature Web-Windows-Auth

Getting information about Windows authentication settings
PS> Get-WebConfiguration -Filter system.WebServer/security/authentication/

➥windowsAuthentication | Format-List *
PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/windowsAuthentication -name enabled |

➥select-Object value

Enabling/disabling Windows authentication
PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/windowsAuthentication -name enabled -Value true

Enabling/disabling Windows authentication per site or application
PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/windowsAuthentication -name enabled -Location mysite |

➥select-Object value

Adding basic authentication
PS> Add-WindowsFeature Web-Basic-Auth

325Installing a new certificate for Remote Management
Getting configuration information about basic authentication
PS> Get-WebConfiguration -Filter system.WebServer/security/authentication/

➥BasicAuthentication | Format-List *
PS> Get-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/BasicAuthentication -name enabled | select value

Enabling/disabling basic authentication
PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/BasicAuthentication -name enabled -Value true

Enabling/disabling basic authentication per site or application
PS> Set-WebConfigurationProperty -Filter system.WebServer/security/

➥authentication/BasicAuthentication -name enabled -Location mysite |

➥select-Object value

Installing certificates
PS> certutil -p P@ssw0rd -importpfx c:\shop.Company.com.pfx

Adding an SSL binding
PS> New-WebBinding -name shop -Protocol https -Port 443 -IPAddress

➥192.168.3.201 -SslFlags 0}

Binding a certificate to a website
PS> $Cert=Get-ChildItem -Path Cert:\LocalMachine\My |

➥where-Object {$_.subject -like "*shop*"} |

➥Select-Object -ExpandProperty Thumbprint
PS> Get-Item -Path "cert:\localmachine\my\$cert" |

➥New-Item -path IIS:\SslBindings\192.168.3.201!443

Installing Remote Management to multiple computers
using PowerShell Remoting
PS> $Session=New-PsSession –ComputerName web1,web2
PS> Invoke-Command –Session $Session –ScriptBlock {Add-WindowsFeature Web-

➥Mgmt-Service}
PS> Invoke-command –Session $Session -FilterScript{Set-ItemProperty -Path

➥HKLM:\SOFTWARE\Microsoft\WebManagement\Server -Name

➥EnableRemoteManagement -Value 1}
PS> Invoke-command –Session $Session -FilterScript {Set-Service -name WMSVC -

➥StartupType Automatic}
PS> Invoke-command –Session $Session -FilterScript {Start-service WMSVC}

Installing a new certificate for Remote Management
PS> Invoke-Command -session $session {$cert=Get-ChildItem -Path

➥Cert:\LocalMachine\My | where {$_.subject -like "*company*"} | Select-

➥Object -ExpandProperty Thumbprint}
PS> Invoke-Command -session $session {Import-Module WebAdministration}
PS> Invoke-command -Session $session {remove-item -Path 0.0.0.0!8172}
PS> Invoke-Command -Session $session {get-item -Path

➥"cert:\localmachine\my\$cert" | new-item -path

➥IIS:\SslBindings\0.0.0.0!8172}

326 CHAPTER 23 IIS PowerShell cheat sheet
Installing Microsoft NLB to multiple servers
PS> $Sessions=New-PSSession –ComputerName Web1, Web2
PS> Invoke-Command –Session $Session {Install-WindowsFeature Web-server, NLB}
PS> New-NLBCluster –Hostname Web1 InterfaceName Ehternet –ClusterName web –

➥ClusterPrimaryIP 192.168.3.200 –SubnetMask 255.255.255.0 –

➥OperationMode Multicast
PS> Get-NlbCluster -HostName Web1 | Add-NlbClusterNode -NewNodeName Web2 -

➥NewNodeInterface Ethernet

Adding DNS records for websites
PS> Add-DnsServerResourceRecordA -name www -ZoneName company.loc -IPv4Address

➥192.168.3.200 -ComputerName DC.company.loc

Deploying simple websites to a web farm
PS> $Servers= ‘Web1’, ‘Web2’
PS> $servers | foreach{copy-item -Path c:\sites*.* -Destination \\$_\c$ -

➥recurse}

Making new sites on a web farm
PS> $Sessions=New-PSSession –ComputerName Web1, Web2
PS> Invoke-Command -Session $Session {New-WebAppPool -Name BikeShop-pool}
PS> Invoke-Command -Session $Session {New-Website -Name BikeShop -HostHeader

➥www.BikeShop.loc -PhysicalPath C:\sites\BikeShop -ApplicationPool

➥BikeShop-pool}

Installing the central certificate store
PS> Install-WindowsFeature Web-CertProvider
PS> Enable-WebCentralCertProvider -CertStoreLocation \\dc\cert -UserName

➥company\IIScert -Password P@ssw0rd -PrivateKeyPassword P@ssw0rd
PS> Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\

➥-Name Enabled -Value 1
PS> Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\

➥-Name CertStoreLocation -Value \\ServerDC\CertStore
PS> Set-WebCentralCertProvider -Password P@ssw0rd -UserName Company\certuser

➥-PrivateKeyPassword P@ssw0rd

Lab setup guide
This chapter gives you some additional options and instructions for your own lab
setup to work with this book. I think you’ll find that the lab environments I describe
aren’t difficult to build and will be very useful as testing environments while you
work through the book and try new ideas for your own production environment.

 The only software you’ll need is a copy of Server 2008 R2 or Server 2012. If you
don’t have a licensed copy available, you can download a 180-day free trial from
Microsoft at http://mng.bz/Wvv0.

 In this chapter you’ll see several options for a standalone client and selecting a
virtualization platform, as well as instructions for building the basic and extended
environments. Let’s get started with the advantages and disadvantages of using a
standalone client.

24.1 Using Windows 7 or Windows 8
as a standalone client
Keep in mind that to experience this book, the complexities of the IIS product, and
the network and DNS configurations for IIS to the fullest, using a single client oper-
ating system is not the best choice. I spend considerable time showing how to work
with IIS on a network that includes domain controllers and DNS servers—as you
would in real life. Without that experience, you’ll have additional troubleshooting
challenges and mistakes. But if you’re an IT pro who already has this experience,
there’s no reason to waste your time. For chapters 1–12, you can get a lot out of the
327

http://mng.bz/Wvv0

328 CHAPTER 24 Lab setup guide
book by running IIS on your client operating system without needing additional virtu-
alized servers.

 Remember that the labs are written for a server-based environment, so the steps
won’t match your standalone client, but the screenshots and the basic instructions will
all be the same.

 To install IIS on a Windows 8 client operating system, open Control Panel, choose
Programs, and select Turn Windows Features on or off. Check the check box for Inter-
net Information Services.

 For Windows 7 the process is almost identical. The local installation will provide
you with a local web server, the IIS PowerShell cmdlets, and the graphical IIS manager
you’ll need to try the labs in this book.

24.2 Choosing a virtualization platform
To build the server-based environments recommended for this book, you need access
to either a set of physical servers or a virtualization platform to create the server VMs. I
strongly recommend a virtualization platform because it’s easier to carry the VMs on
your laptop and have them with you, easier to build new VMs, and easier to destroy
VMs as you experiment.

 I assume you want to do this on a laptop. If not, if you’re using a separate server,
then your options are fairly simple as you’ll see. But let me explore all options in case
your laptop is your primary computer.

24.2.1 Hyper-V on Windows 8

If you are using Windows 8 as your client OS, then you already have a virtualization
platform called Hyper-V. Hyper-V permits you to build and run VMs locally. This is a
great feature for the IT pro and is the most affordable.

 You can install Hyper-V from Control Panel > Programs > Turn Windows Features
on or off > Hyper-V. I cover more on working with Hyper-V and creating VMs in the
next section, but you can also check out http://mng.bz/J5o9.

24.2.2 Hyper-V on Server 2008 R2 or Server 2012

If you have Server 2008 R2 or Server 2012 on your laptop, you have Hyper-V available
as your virtualization platform, just like with Windows 8. You can also install the Server
operating system on a separate computer to use Hyper-V.

 To install Hyper-V on the Server OS, open Server Manager, select Add new roles,
and choose Hyper-V. You can also use the PowerShell cmdlet Add-WindowsFeature
HyperV.

24.2.3 Other options

If you have Windows 7 or just want another option for a virtualization platform, con-
sider using VMware workstation (for PC clients) or Fusion (for Mac clients) as your vir-
tualization platform. If you choose VMware, the instructions in the next section will be

http://mng.bz/J5o9

329Two-server environment
slightly different when creating a new VM, but both Hyper-V and VMware are simple
to use. (I wrote this book and built the lab environments on a MacBook Pro using
VMware Fusion.)

24.3 Single-server environment
The labs are designed for a minimum of two servers in chapters 1–12. It’s possible to
work through those first chapters on a single-server VM that’s also a domain controller
with DNS. If you only want one server VM, here’s how to get started using Hyper-V:

1 Open Hyper-V Manager. Click Start > Administrative Tools > Hyper-V Manager.
2 From the actions pane, click New > Virtual Machine.
3 Proceed through the wizard to specify the custom settings you want to make.

You can click Next to move through each page of the wizard or click the name
of a page in the left pane to move directly to that page.

4 For a single server choose at least 1024 MB for memory.
5 Create a dynamic disk.
6 Attach the .iso file containing the server source files for the installation.
7 After you’ve finished configuring the virtual machine, click Finish.
8 Start the virtual machine and install Windows Server.

With the server installed, you’ll want to install Active Directory, covered in the next
section.

24.4 Two-server environment
The two-server environment is what I recommend for a much more realistic experi-
ence. Use the Hyper-V instructions from the single-server environment (the previous
section) to create two VMs. One VM should be named DC (this will become the
domain controller), and the other should be named Web1.

24.4.1 Building the domain controller

On the computer named DC, install Active Directory. I outline the process here, but
for a complete, graphical, step-by-step guide, see http://mng.bz/SvP9.

1 In your virtual software, create a new computer and install Windows Server. You
don’t need much memory for this—512 MB to 1024 MB is sufficient. Name the
computer DC and assign a password of your choosing to the Administrator
account.

2 Install the ADDS role and a domain controller. You can do that in Server Man-
ager for Windows Server 2008 R2 and Windows Server 2012.

3 Install Active Directory. When asked for a Fully Qualified Domain Name for
your forest root domain, choose something simple. For this book I chose Com-
pany.loc.

http://mng.bz/SvP9

330 CHAPTER 24 Lab setup guide
4 Supply the Windows NetBIOS name for the domain; I’m using Company in my
environment.

5 When prompted to choose the forest and domain functional level, choose the
highest level, which is Windows Server 2008 R2 or Windows Server 2012.

6 When prompted for Additional Domain Controller Options, select the option
to install DNS. Not only does Active Directory need DNS, but you’ll also be using
it for your websites.

NOTE If you set up your virtual computer with a dynamically assigned IP
address, you’ll receive a warning message saying that’s not good practice. You
can quit the installation and set the IP address, but this is only a test environ-
ment, so it’s okay to select “Yes, the computer will use a dynamically assigned
IP address.” If you receive a warning about a DNS delegation creation prob-
lem, click Yes to continue.

7 When prompted for the file locations of the Active Directory files, accept the
default locations.

8 When prompted for a Restore Mode password, use the same password you set
for the Administrator account; it’s okay because this is a test environment.

9 When the installation of Active Directory is complete, reboot.
10 Using Active Directory Users and Computers, create three or four users. Noth-

ing special—it can be John Doe1, John Doe2, and so on. You’ll need them in
the security sections.

24.4.2 Installing Active Directory Certificate Services (optional)

Throughout the book, you may want to experiment in generating and using certifi-
cates for SSL. In the book I have you generate a self-signed certificate, and ADCS isn’t
required. But if you’d like the most realistic experience, install the ADCS role.

 For complete instructions on installing ADCS on your domain controller, see
http://mng.bz/2317.

24.4.3 The remaining Web1 server

The second server simply needs to start with a default installation of the server operat-
ing system. Chapter 2 takes you through the process of installing IIS, so the second
server only needs to be the default installation. You should join the second computer
to the domain you created when you made the domain controller.

 I recommend that you run updates on both servers before beginning. You may
consider copying the VMs to separate storage so you can quickly rebuild the environ-
ment in the future. At this point, you’re ready to begin!

24.5 The extended environment
The extended environment is for the later chapters, starting with chapter 13. The
extended environment contains additional web servers for the load balancing and

http://mng.bz/2317

331Final notes
Application Request Routing labs. I encourage you to extend your environment to
practice those concepts. Each additional VM only needs 512 MB of RAM and a basic
server operating system installation, so not much disk space is required.

 Using the instructions from section 24.4, the following section discusses two differ-
ent environments I used in the book.

24.5.1 Extended environment: basic

The most basic extended environment to accomplish the load balancing and ARR
labs contains a total of three VMs:

1 Install and configure the domain controller (DC).
2 Install and configure ADCS (optional) on the domain controller.
3 Install two additional servers, Web1 and Web2.
4 Join the web servers to the domain and run updates.

24.5.2 Extended environment: advanced

The advanced extended environment isn’t really hard to build, it just requires several
more VMs. For chapters 19 and 21—when working with the Web Farm Framework—
it’s best to have one or two additional web servers that will act as control servers. I pre-
fer to load balance the control servers, so a total of four web servers is required, along
with the domain controller. Here’s what you’ll need for the final chapters:

1 Install and configure the domain controller (DC).
2 Install and configure ADCS (optional) on the domain controller.
3 Install four additional servers, Control1, Control2, Web1, and Web2.
4 Join the web servers to the domain and run updates.

24.6 Final notes
Regardless of which lab environment you choose—from running IIS directly on your
client operating system to building a large VM environment—I’m confident that you’ll
be successful in learning IIS from this book. You can reference back to chapters and
concepts when you’re challenged by a task in the real world.

 Feel free to get started with the book using the most basic environment and then
extend it as you go along. Don’t let the complexity of the VMs slow you down.

index

Numerics

404 errors 106–107, 109
443, port 16
80, port 16, 50
8172, port 188
85, port 80

A

(A) record 51, 79
access control

anonymous access 113–115
basic authentication

117–120
for remote management

configuring permissions
for websites 193–196

customizing feature
access 196–197

overview 193
using IIS Manager

Users 194–196
overview 112–113
Windows

authentication 115–117
Active Server Pages. See ASP
ADCS (Active Directory Certif-

icate Services) 153, 157,
192, 330

Add FTP Site command 172
Add Roles link 19
Add Website form 80, 82
Add-PSSnapin cmdlet 294
Add-WindowsFeature

cmdlet 23–24

administration.config file 267,
271

administrative account 291
alias 47
anonymous access, FTP

113–115, 171–175
anonymous

authentication 324
anonymous authorization 112
AppCmd.exe 308
application folders 48–49
application pools

configuring 322
in IIS Manager 57–58
using Powershell 57–58

creating
.NET Framework

version 59–60
managed pipeline

mode 60
name for 59
overview 58–59
using Powershell 60–61

defined 56–57
for new websites 75
getting identity of 322
getting information

about 322
moving website or applica-

tion into 61–62
moving website to 322
navigating to 322
permissions for 125–128
recycling

configuring
automated 65–69

logs for 68–69
on demand using GUI 64
on demand using

Powershell 64–65
overview 62–64

restarting 322
setting custom user account

as identity 322
setting identity for 322
viewing events for 322

application provisioning 302
Application Request Routing.

See ARR
applicationHost.config

file 267
ApplicationPoolIdentity

125–126, 131
applications

global configurations
compression 91–92
configuration files 89–90
Default Documents

settings 93–94
Directory Browsing

settings 94–96
error pages 96

monitoring
enabling ASP.NET

tracing 107
enabling FRT 105–107
searching logs 104–105

platform support
ASP 100
ASP.NET 100–102
CGI 102
in IIS 6 Compatibility

Mode 99–100
333

334 INDEX
applications, platform support
(continued)
PHP 102–103
Web Platform Installer

97–99
ARR (Application Request

Routing)
configuring

changing load balancing
algorithm 239–240

URL Rewrite rule 238–239
creating web farms

adding servers to 235–237
overview 234–235
testing 237–238

high availability using
installing NLB for

ARR 247–248
monitoring NLB 248–249
overview 245–246
requirements for 246–247

installing 232–234
installing, on control

server 292
monitoring

checking health of load
balance 241–242

health monitor
statistics 242–243

overview 243–244
requirements for 233
using with WFF 289–290

ASP (Active Server Pages)
authorization rules 128
enabling support for 100–102
enabling tracing for 107

authentication
anonymous 324
basic authentication

configuring 324
enabling/disabling for

server 325
enabling/disabling for

website 325
overview 117–120

client certificate
authentication 129–130

forms-based
authentication 129

listing mechanisms for 324
Windows

authentication 115–117
configuring 324
enabling/disabling for

server 324

enabling/disabling for
website 324

authorization rules 128
autofills 75
automated recycling of applica-

tion pools 65–69
automating PowerShell

252–254

B

backing up data
certificates 309
components to back up

307–308
custom .dlls 309
overview 307
Registry 309
using AppCmd.exe 308

basic authentication 112
access control using 117–120
configuring 324
enabling/disabling for

server 325
enabling/disabling for

website 325
BikeImages alias 47
bindings

adding for SSL 325
certificates 77, 161–162, 325
host name 81–82
IP address 79
non-unique binding 83
overview 76–78
port 80–81
protocol 78–79
using CCC

on local web server
282–283

on remote web servers 285
blocking traffic

domain restrictions
140–142

IP address restrictions
140–142

using Request Filtering
142–143

broken site links 201–204

C

CA (Certificate
Authority) 148–149, 151,
153–154

CCC (central certificate store)
installing 326
naming certificates 280
on local web server

installing 280–282
website bindings

using 282–283
on remote web servers

enabling 284–285
installing 284
using with Shared

Configurations 286
website bindings using 285

overview 278–279
$Cert variable 192
Certificate Authority. See CA
certificates

assigning for remote
management 192–193

assigning to websites
binding certificates

161–162
securing sites with

SSL 162–163
with PowerShell 163–165

backing up 309
binding to website 325
checking for expiration

165–166
creating

downloading request
157–158

generating request
154–156

submitting request 157
exporting 159–160
importing 160
installing 325
naming 280
on local web server

installing 280–282
website bindings

using 282–283
on remote web servers

enabling 284–285
installing 284
using with Shared

Configurations 286
website bindings using 285

overview 278–279
single vs. multiple

multiple certificate
configurations 152

single certificate
configurations 151

335INDEX
certificates (continued)
trusted vs. non-trusted

149–150
types of

Extended Validation
certificates 150

High Assurance
certificates 150–151

self-signed certificates 151
–CertStoreLocation

parameter 284
CGI (Common Gateway

Interface) 102, 323
client certificate

authentication 129–130
cluster IP address 220
clustered network share

268–269
cmdlets 321
Common Gateway Interface.

See CGI
Complete Certificate Request

option 158
components, listing 321
compression

configuring for server 323
configuring for website 323
dynamic 323
global configurations 91–92
web pages 91

configurations
compression 91–92
configuration files 89–90
Default Documents

settings 93–94
Directory Browsing settings

using IIS Manager 94–95
using Powershell 94–96

error pages
using IIS Manager 96–97
using Powershell 96

for web farms
configuring DFS 273
enabling Shared

Configurations
271–272

exporting configurations
269–271

files to share 267–268
overview 266–267
using clustered network

share 268–269
for websites

overview 34
using IIS manager 34–36
using PowerShell 36–37

Connect As button 262, 270
connections, remote

management 188
content spoofing 135
control server

best practices for 292–294
creating web farm on

294–297
installing WFF and ARR 292

Copy command 251
Create Certificate Request

option 156
critical operational path

305–306
cross-site scripting. See XSS
CSRF (cross-site request

forgery) 135
custom option 257

D

data, backing up
certificates 309
components to back up

307–308
custom .dlls 309
overview 307
Registry 309
using AppCmd.exe 308

DC (domain controller) 9–10,
270, 329–330

Default Documents
configuring 323
for websites 45–46
list 94
settings for 93–94

Default.htm file 41
demilitarized zone. See DMZ
deployment

importance of 13–15
multiple firewalls 16–18
overview 13
single firewall 15–16

DevOps 319–320
DFS (Distributed File System)

installing 254–255
sharing configurations in web

farm 273
sharing content for web

farms
adding web servers to repli-

cation group 256–257
configuring replication

group 257–258

creating replication
group 255–256

overview 253–254
selecting folders to

replicate 259–261
directory

browsing of 323
configuring using IIS

Manager 94–95
configuring using

Powershell 94–96
creating for new website 84

Disable inheritance button 122
disaster recovery

backing up data
certificates 309
components to back

up 307–308
custom .dlls 309
overview 307
Registry 309
using AppCmd.exe 308

critical operational
path 305–306

for web farms 310
monitoring 310–312
overview 304–305
points of failure 306–307
recovery process 310

Distributed File System. See DFS
DMZ (demilitarized zone) 17
DNS (Domain Name System)

adding records for
websites 326

configuring for website 51
domain controller. See DC
domains

redirecting 213–215
restrictions on 140–142

dynamic compression 91, 323

E

Edit Application Pool Recy-
cling Settings dialog
box 66

Enable Centralized Certificates
check box 281

–Enable parameter 298
–EnableProvisioning

parameter 298
Enable-WebCentralCert-

Provider cmdlet 284
enabling remote

management 189, 192

336 INDEX
–EntryType parameter 30
environment

basic environment 8–9
building domain

controller 9–10
configuring for using

WFF 291
multiple servers 10

errors
configuring error pages

using IIS Manager 96–97
using Powershell 96

verifying installation by
checking 29–30

EV (Extended Validation)
certificates 150

expiration of certificates
165–166

Explore option 38
exporting

certificates 159–160
configurations 269–271

expressions, regular
extending matches 212
finding matches 210–211
matching any character 213
optional matches 212–213
testing data 212
using with URL Rewrite

209–210
extended environment for

labs 330–331
Extended Validation. See EV cer-

tificates
eXtensible Markup Language.

See XML

F

Failed Request Tracing. See FRT
FastCGI 102
fault tolerance 221–222
Feature Delegation icon

196–197
file servers 261–264
File Transfer Protocol. See FTP
filesystem

NTFS permissions 120
users and groups 120–124
website pages in 38–39

FileZilla 174
–Filter parameter 95
firewalls

configuring for FTP 170–171
hardware firewalls 137–138

overview 135–136
server location

multiple firewalls 16–18
single firewall 15–16

software firewalls 136–137
Windows Firewall 138–140

folders
application folders 48–49
normal 46–47
selecting which to replicate in

DFS 259–261
virtual directories 47–48

forms-based authentication 129
FRT (Failed Request

Tracing) 105–107, 324
FTP (File Transfer Protocol)

anonymous users 171–175
firewall settings for 170–171
overview 169–170
SSL security for 175–180

full mesh option 257

G

Get-ChildItem cmdlet 95
Get-Command cmdlet 23, 37
Get-Credential cmdlet 298
Get-EventLog cmdlet 30–31
Get-Help cmdlet 37
Get-Item cmdlet 57, 95, 165
Get-NlbClusterNode

cmdlet 227
Get-Process cmdlet 64
Get-WebConfiguration

cmdlet 95, 100, 109
Get-WindowsFeature cmdlet 23
global configurations

compression 91–92
configuration files 89–90
Default Documents

settings 93–94
Directory Browsing settings

using IIS Manager 94–95
using Powershell 94–96

error pages
using IIS Manager 96–97
using Powershell 96

groups 120–124

H

HA (High Assurance)
certificates 150–151

hacking, monitoring for
logs 144–145

overview 144
using Process Explorer

145–146
hardware firewalls 137–138
health of load balance 227–228,

241–242
High Assurance. See HA certifi-

cates
high availability

installing NLB for ARR
247–248

monitoring NLB 248–249
overview 245–246
requirements for 246–247

host header 81
host name 79, 81–82
Host record 51
HTTP binding 162
HTTP requests 324
hub and spoke option 257
Hyper-V 328

I

Identity Credentials 187
Idle Time-out 293
IIS (Internet Information

Services) 20
architecture overview 2–4
installing 321
versions required for labs 5
web farms configurations

configuring DFS 273
enabling Shared

Configurations
271–272

exporting configurations
269–271

files to share 267–268
overview 266–267
using clustered network

share 268–269
IIS 6 Compatability Mode

99–100, 323
IIS Manager

application pools in
configuring 57–58
moving website into 61–62

changing Directory Browsing
settings 94–95

creating websites
application pool for 75
name for 74–75
overview 73–74
physical path 75–76

337INDEX
IIS Manager (continued)
error pages configuration 96
installing remote

management 186
remote management using

IIS Manager Users
194–196

website configuration
settings 34–36

IIS Manager Users 194
importing

certificates 160
cmdlets 321

Import-Module cmdlet 23
–IncludeAllSubFeature

parameter 25
iNetPub folder 39
information leakage 134–135
inherited permissions 122
installing

ARR 232–234
CCC 326

on local web server
280–282

on remote web servers 284
certificates 325
components to servers in web

farm 273–275
DFS 254–255
IIS 321
NLB for high

availability 247–248
options for 18–19
Remote Management 325
SEO Toolkit 200
on Server Core

enabling PowerShell
27–28

installing using
PowerShell 28

overview 26–27
SMTP 181–182
testing installation 321
URL Rewrite 206–207
verifying installation

checking for error
events 29–30

testing default website 29
with PowerShell

Windows Server 2008
R2 22–25

Windows Server 2012
25–26

with Server Manager
default software

components 21–22

overview 19
Windows Server 2008

R2 19–20
Windows Server 2012 20

Install-WindowsFeature
cmdlet 24–25, 224, 280

Internet Information Services.
See IIS

Internet Server Application Pro-
gramming Interface. See
ISAPI

Invoke-Command cmdlet 191
IP Address Restrictions

188–189
IP addresses

obtaining public 51
remote management

restrictions 188
restrictions on 140–142
website binding 79

ISAPI (Internet Server Applica-
tion Programming
Interface) 67

–IsPrimary parameter 298

L

lab environment 314–315
extended environment

330–331
single server

environment 329
two-server environment

building domain
controller 329–330

installing ACDS 330
using Windows 7 327–328
using Windows 8 327–328
virtualization 328

least current request 240
least response time 240
Load Balance options page 239
load balancing

checking health of load
balance 227–228

deploying web farm
configuring load

balance 225–226
creating remote

connections 223–224
overview 223

deploying websites to web
farm
copying files 226–227
creating website 227
overview 226

high availability using
installing NLB for

ARR 247–248
monitoring NLB 248–249
overview 245–246
requirements for 246–247

installing 224–225
overview 219–221
pros and cons

overview 221–222
SSL issues 222
website failures not

detected 222
use cases for 222–223
verifying operation of load

balance 228–229
local web server, CCC on

installing 280–282
website bindings using

282–283
location for server

importance of 13–15
multiple firewalls 16–18
overview 13
single firewall 15–16

logs
for application pools 68–69
monitoring for hacking

144–145
searching for web application

errors 104–105

M

managed pipeline mode 60
management

access control
configuring permissions

for websites 193–196
customizing feature

access 196–197
overview 193
using IIS Manager

Users 194–196
configuring

connection
information 188

enabling 189
Identity Credentials 187
IP Address

Restrictions 188–189
starting service 189

connecting to remote
server 190–191

installing using IIS
manager 186

338 INDEX
management (continued)
overview 184–185
on Server Core

assigning trusted
certificate 192–193

enabling 192
installing Management

Service 191
overview 191
starting Management

Service 193
Management Service

installing 191
starting 193

master server 269
matches, regex

extending matches 212
finding matches 210–211
matching any character 213
optional matches 212–213
testing data 212

Microsoft Visio 13–14
modules 23
monitoring

ARR
checking health of load

balance 241–242
health monitor

statistics 242–243
disaster recovery 310–312
for hacking

logs 144–145
overview 144
using Process

Explorer 145–146
NLB 248–249
web applications

enabling ASP.NET
tracing 107

enabling FRT 105–107
searching logs 104–105

web farms with WFF 302
MoreLunches.com 7
multiple certificate

configurations 152
Multipurpose replication

group 256

N

naming
application pools 59
new websites 74–75

NAT (Network Address Transla-
tion) device 13

.NET Framework version 59–60
Network Load Balancing. See

NLB
NetworkLoadBalancingClus-

ters cmdlet 225
New-Item cmdlet 84, 165
New-NlbCluster cmdlet 225
New-Server cmdlet 298
New-WebAppPool cmdlet 60,

84
New-WebFarm cmdlet 298
New-Website cmdlet 84
NLB (Network Load Balancing)

checking health of load
balance 227–228

deploying web farm
configuring load

balance 225–226
creating remote

connections 223–224
overview 223

deploying websites to web
farm
copying files 226–227
creating website 227
overview 226

high availability using
installing NLB for

ARR 247–248
monitoring NLB 248–249
overview 245–246
requirements for 246–247

installing 224–225
installing to multiple

servers 326
overview 219–221
pros and cons

overview 221–222
SSL issues 222
website failures not

detected 222
use cases for 222–223
verifying operation of load

balance 228–229
non-trusted certificates

149–150
See also self-signed certificates

non-unique binding 83

O

on-demand recycling, of appli-
cation pools

using GUI 64
using Powershell 64–65

optimization, of search engine
overview 199–200
SEO Toolkit

installing 200
locating broken site

links 201–204
preventing search for non-

relevant content
204–206

URL Rewrite
installing 206–207
overview 206
redirecting to secure

website 215–216
redirecting website

domains 213–215
shortening long

URLs 207–209
using regular

expressions 209–213

P

pages, website
in filesystem 38–39
overview 38
test pages 39–41
using server variables 41–45

parsing 105
pass-through authentication

settings 76
path for new websites 75–76
permissions

blocking inherited 122
for websites 193–196
site-level 125–128

filesystem users and
groups 120–124

overview 120
PHP 102–103
Pkgmgr.exe 18
PKI (Public Key

Infrastructure) 148
platform support

ASP 100
ASP.NET 100–102
CGI 102
IIS 6 Compatibility

Mode 99–100
PHP 102–103
Web Platform Installer 97–99

points of failure 306–307
pools, application

configuring 322
in IIS Manager 57–58
using Powershell 57–58

339INDEX
pools, application (continued)
creating 322

.NET Framework
version 59–60

managed pipeline
mode 60

name for 59
overview 58–59
using Powershell 60–61

defined 56–57
for new websites 75
getting identity of 322
getting information

about 322
moving website or applica-

tion into 322
using IIS Manager 61–62
using Powershell 61–62

navigating to 322
permissions for 125–128
recycling

configuring
automated 65–69

logs for 68–69
on demand using GUI 64
on demand using

Powershell 64–65
overview 62–64

restarting 322
setting custom user account

as identity 322
setting identity for 322
viewing events for 322

Port option, Add Website
form 80

ports
443 16
80 16, 50
8172 188
85 80
opening for websites 50–51
website binding 80–81

PowerShell
application pools in

configuring 57–58
creating 60–61
moving website into 61–62
recycling 64–65

assigning certificates to web-
sites
adding HTTPS

binding 164
binding certificate to

website 165
installing certificate 164

automating with scripts
252–254

changing Directory Browsing
settings 94–96

creating websites
application pool for 84
creating directory 84
overview 83–84
using New-Website

cmdlet 84
deploying websites to web

farm
copying files 226–227
creating website 227
overview 226

enabling on Server Core
27–28

error pages configuration
using 96

installing with
Server Core 28
Windows Server 2008

R2 22–25
Windows Server 2012

25–26
requirements for labs 5–6
sharing content for web

farms
copying website files

251–252
creating website 252
overview 251
updating website

content 252
website configuration

settings 36–37
primary servers

adding to web farm 297–298
overview 294

Process Explorer 145–146
process recycling 64
protocol 78–79
Public Key Infrastructure.

See PKI

R

recovery, after disaster
backing up data

certificates 309
components to back

up 307–308
custom .dlls 309
overview 307

Registry 309
using AppCmd.exe 308

critical operational
path 305–306

for web farms 310
monitoring 310–312
overview 304–305
points of failure 306–307
recovery process 310

recycling application pools
configuring automated

65–69
logs for 68–69
on demand using GUI 64
on demand using

Powershell 64–65
overview 62–64

redirecting
to secure website 215–216
website domains 213–215

redirection.config file 268
Registry 309
regular expressions

extending matches 212
finding matches 210–211
matching any character 213
optional matches 212–213
testing data 212
using with URL Rewrite

209–210
relays, SMTP 180
remote management

access control
configuring permissions

for websites 193–196
customizing feature

access 196–197
overview 193
using IIS Manager

Users 194–196
configuring

connection
information 188

enabling 189
Identity Credentials 187
IP Address

Restrictions 188–189
starting service 189

connecting to remote
server 190–191

installing 325
installing certificate for 325
installing using IIS

manager 186
overview 184–185

340 INDEX
remote management (continued)
on Server Core

assigning trusted
certificate 192–193

enabling 192
installing Management

Service 191
overview 191
starting Management

Service 193
Remote Management

Service 186, 188–192, 197
Remote Server Administration

Tools. See RSAT
remote web servers, CCC on

enabling 284–285
installing 284
using with Shared

Configurations 286
website bindings using 285

Remove-WebAppPool
cmdlet 61

Remove-WindowsFeature
cmdlet 23

replication groups, DFS
adding web servers to

256–257
configuring 257–258
creating 255–256

Request Filtering 142–143
requirements

IIS version 7.0 5
IIS version 7.5 5
IIS version 8 5
prerequisite knowledge 4–5
Windows PowerShell 6

resources 317–319
restarting application

pools 322
Robocopy command 251
RSAT (Remote Server Adminis-

tration Tools) 181

S

SAN (Subject Alternate Name)
certificates 152

SConfig utility 27
scripts, automating

PowerShell 252–254
search engine optimization

overview 199–200
SEO Toolkit

installing 200
locating broken site

links 201–204

preventing search for non-
relevant content
204–206

URL Rewrite
installing 206–207
overview 206
redirecting to secure

website 215–216
redirecting website

domains 213–215
shortening long

URLs 207–209
using regular

expressions 209–213
secondary servers

adding to web farm 297–298
overview 294

Secure Sockets Layer. See SSL
secure websites 215–216
secured by default 19
security

access control
anonymous access

113–115
overview 112–113
using basic authentication

117–120
using Windows

authentication
115–117

ASP.NET authorization
rules 128

blocking traffic
domain restrictions

140–142
IP address

restrictions 140–142
using Request

Filtering 142–143
client certificate

authentication 129–130
firewalls

hardware firewalls
137–138

overview 135–136
software firewalls 136–137
Windows Firewall 138–140

forms-based
authentication 129

monitoring for hacking
logs 144–145
overview 144
using Process

Explorer 145–146
NTFS permissions 120

site-level permissions
application pools

permissions 125–128
filesystem users and

groups 120–124
overview 120

threats
content spoofing 135
cross-site request

forgery 135
cross-site scripting 134
information leakage

134–135
overview 134
SQL injection attacks 135

Select-String cmdlet 105
self-signed certificates 150–151
SEO Toolkit

installing 200
locating broken site

links 201–204
preventing search for non-

relevant content 204–206
Server Certificate icon 156, 160
Server Core

installing on
enabling PowerShell

27–28
installing using

PowerShell 28
overview 26–27

remote management on
assigning trusted

certificate 192–193
enabling 192
installing Management

Service 191
overview 191
starting Management

Service 193
See also Windows Server

2008 R2
Server Farm Operations 301
Server Manager

default software
components 21–22

overview 19
Windows Server 2008 R2

19–20
Windows Server 2012 20

Server Name Indication. See SNI
server variables 42–43
ServerManager module 23, 25,

27–28
ServerManagerCMD.exe 18

341INDEX
servers
control

best practices for 292–294
creating web farm on

294–297
installing WFF and

ARR 292
primary

adding to web farm
297–298

overview 294
secondary

adding to web farm
297–298

overview 294
Set-Item cmdlet 95
Set-ItemProperty cmdlet 60,

192
Set-Recycle cmdlet 68
settings

overview 34
using IIS manager 34–36
using PowerShell 36–37

Set-WebAppPool cmdlet 60
Set-WebCentralCertProvider

cmdlet 285
Set-WebConfiguration

cmdlet 95
Shared Configurations

enabling 271–272
using CCC with 286

SharedContent 262
sharing content for web farms

from file server 261–264
using DFS

adding web servers to repli-
cation group 256–257

configuring replication
group 257–258

creating replication
group 255–256

installing DFS 254–255
overview 253–254
selecting folders to

replicate 259–261
using PowerShell

automating with
scripts 252–254

copying website files
251–252

creating website 252
overview 251
updating website

content 252

sharing IIS configurations
configuring DFS 273
enabling Shared

Configurations 271–272
exporting

configurations 269–271
files to share 267–268
overview 266–267
using clustered network

share 268–269
shortening long URLs 207–209
Simple Main Transfer Protocol.

See SMTP
single certificate

configurations 151
single server environment for

labs 329
Sites folder, IIS manager 35
SMTP (Simple Mail Transfer

Protocol) 169
installing 181–182
overview 180
relays 180

snap-ins 234
SNI (Server Name

Indication) 163
software firewalls 136–137
SQL injection attacks 135
SSL (Secure Sockets

Layer) 118, 148
adding binding for 325
for FTP 175–180
issues with NLB 222
securing sites with 162–163

Start Page, IIS manager 34
Subject Alternate Name.

See SAN certificates
suffix pool 59

T

Test Settings button 263
testing

installation 321
pages for 39–41
websites 51–52

TestPage.asp file 44
TestPage.aspx file 53
text files 89
threats

content spoofing 135
cross-site request forgery 135
cross-site scripting 134
information leakage

134–135

overview 134
SQL injection attacks 135

trusted certificates 149–150
two-server environment for labs

building domain
controller 329–330

installing ACDS 330

U

UNC (Universal Naming
Convention) 262

unique bindings 83
unique port numbers 80
Update-Content.ps1 file 253
URL Rewrite

configuring ARR 238–239
installing 206–207
overview 206
redirecting to secure

website 215–216
redirecting website

domains 213–215
shortening long URLs

207–209
using regular expressions

extending matches 212
finding matches 210–211
launching tool 209–210
matching any

character 213
optional matches 212–213
testing data 212

users 120–124

V

variables in web pages 41–45
virtual directories 47–48
virtualization 328

W

web applications 48
global configurations

compression 91–92
configuration files 89–90
Default Documents

settings 93–94
Directory Browsing

settings 94–96
error pages 96

monitoring
enabling ASP.NET

tracing 107

342 INDEX
web applications, monitoring
(continued)
enabling FRT 105–107
searching logs 104–105

platform support
ASP 100
ASP.NET 100–102
CGI 102
in IIS 6 Compatibility

Mode 99–100
PHP 102–103
Web Platform Installer

97–99
Web Deploy snap-in 300
Web Farm Framework. See WFF
web farms

adding primary and second-
ary servers 297–298

configuring on control
server 294–297

creating sites on 326
creating with ARR

adding servers to 235–237
overview 234–235
testing 237–238

deploying
configuring load

balance 225–226
creating remote

connections 223–224
overview 223

deploying websites to 326
copying files 226–227
creating website 227
overview 226

disaster recovery for 310
installing components to

servers 273–275
managing with WFF

application
provisioning 302

monitoring 302
overview 299–300
tools for 300–302

sharing content from file
server 261–264

sharing content using DFS
adding web servers to repli-

cation group 256–257
configuring replication

group 257–258
creating replication

group 255–256
installing DFS 254–255
overview 253–254

selecting folders to
replicate 259–261

sharing content using Power-
Shell
automating with

scripts 252–254
copying website files

251–252
creating website 252
overview 251
updating website

content 252
sharing IIS configurations

configuring DFS 273
enabling Shared

Configurations
271–272

exporting configurations
269–271

files to share 267–268
overview 266–267
using clustered network

share 268–269
See also ARR; NLB; WFF

Web Platform Installer 97–99
WebAdministration module 34,

37, 57–58, 60–61, 69
WebBikez 38, 108
WebBikezBagPool 59, 69
WebBikezCartPool 69
WebBikezDevelopment 176
WebBikezInstructions alias 54
WebBikezPics alias 54
WebBikezRepair 108
WebBikezShoppingPool 69
WebBikezUsedBikes 108
WebFarmSnapin 294–295,

298–299
WebPI (Web Platform

Installer) 98, 290, 292,
294, 302

websites
adding DNS records for 326
binding for

certificate 325
host name 81–82
IP address 79
non-unique binding 83
overview 76–78
port 80–81
protocol 78–79

compression for 323
configuration settings

overview 34
using IIS manager 34–36
using PowerShell 36–37

creating 323
creating using IIS Manager

application pool for 75
name for 74–75
overview 73–74
physical path 75–76

creating using Powershell
application pool for 84
creating directory 84
overview 83–84
using New-Website

cmdlet 84
default documents for 45–46
deploying to web farm 326
DNS 51
enabling/disabling authenti-

cation
anonymous

authentication 324
basic authentication 325
Windows

authentication 324
folders for

application folders 48–49
normal 46–47
virtual directories 47–48

moving into application pool
using IIS Manager 61–62
using Powershell 61–62

opening ports 50–51
pages for

in filesystem 38–39
overview 38
test pages 39–41
using server variables

41–45
permissions

application pools
permissions 125–128

filesystem users and
groups 120–124

overview 120
public IP address 51
redirecting to secure

215–216
testing from outside 51–52
viewing 321

weighted round robin 240
weighted total traffic 240
WFF (Web Farm

Framework) 234
control server

best practices for 292–294
creating web farm on

294–297

343INDEX
WFF (Web Farm Framework),
control server (continued)
installing WFF and

ARR 292
environment configuration

administrative
account 291

installing IIS on
servers 291

Windows Firewall
settings 291

managing web farm
application

provisioning 302
monitoring 302
overview 299–300
tools for 300–302

overview 288–289
primary and secondary servers

adding to web farm
297–298

overview 294
using ARR with 289–290
See also web farms

Wildcard certificates 152, 162–
163, 167

Windows 7 327–328
Windows 8

Hyper-V on 328
lab environment using

327–328
Windows authentication 112

access control using
115–117

configuring 324
enabling/disabling for

server 324
enabling/disabling for

website 324
Windows Firewall 138–140, 291
Windows PowerShell. See Power-

Shell

Windows Server 2008 R2
Hyper-V on 328
installing IIS with Server

Manager 19–20
installing with

PowerShell 22–25
See also Server Core

Windows Server 2012
Hyper-V on 328
installing IIS with Server

Manager 20
installing with

PowerShell 25–26
worker process 63–65, 70

X

XML (eXtensible Markup
Language) 89

XSS (cross-site scripting) 134

	Learn Windows IIS
	brief contents
	contents
	preface
	about this book
	Author Online
	About the author

	acknowledgments
	1 Before you begin
	1.1 Introducing IIS
	1.2 What you need before you start
	1.2.1 Prerequisite knowledge
	1.2.2 IIS versions 7.0, 7.5, or 8
	1.2.3 Windows PowerShell

	1.3 How to use this book
	1.3.1 One hour at a time
	1.3.2 Completing the labs
	1.3.3 MoreLunches.com
	1.3.4 Ideas to try on your own

	1.4 Setting up your lab environment
	1.4.1 The basic environment
	1.4.2 Extending the basic environment

	1.5 Taking immediate control over IIS

	2 Deploying the web server
	2.1 Locating and protecting the physical web server
	2.1.1 Server location matters
	2.1.2 Protecting the web server with a single firewall
	2.1.3 Protecting the back-end with multiple firewalls: Working in the middle tier

	2.2 Installing IIS on Microsoft Windows Server
	2.2.1 Installing IIS with Server Manager
	2.2.2 Performing a rapid installation using PowerShell

	2.3 Installing IIS on Server Core
	2.3.1 Preparing Server Core for IIS
	2.3.2 Adding IIS to Server Core

	2.4 Verifying a successful installation
	2.4.1 Testing the default website
	2.4.2 Checking for problems

	2.5 Lab
	2.6 Ideas to try on your own

	3 Exploring and launching a website
	3.1 Locating website configuration settings
	3.1.1 Locating website configuration settings using the IIS manager
	3.1.2 Locating website configuration settings using PowerShell

	3.2 Creating new web pages for testing and troubleshooting
	3.2.1 Locating the website pages in the filesystem
	3.2.2 Making an easy web page for testing a website
	3.2.3 Creating a web page using server variables for better results
	3.2.4 Default Documents

	3.3 Adding new folders and applications in the default website
	3.3.1 Adding normal folders and content
	3.3.2 Adding virtual directories for better content control
	3.3.3 Adding application folders to the website

	3.4 Opening your first website for business
	3.4.1 Opening the right ports in the firewall
	3.4.2 Getting an outside IP address
	3.4.3 Configuring internet DNS for your website
	3.4.4 Testing from the outside

	3.5 Lab
	3.6 Ideas to try on your own

	4 Managing application pools
	4.1 Creating and configuring standard application pool settings
	4.1.1 Locating application pools and settings
	4.1.2 Creating a new application pool
	4.1.3 Moving a website or application into an application pool

	4.2 Application pool recycling: increasing reliability and availability
	4.2.1 Recycling an application pool
	4.2.2 Modifying the default recycle settings

	4.3 Lab
	4.4 Ideas to try on your own

	5 Adding more websites to your server
	5.1 Phase 1: Adding a new website using the IIS manager
	5.1.1 Step 1: Enter the site name
	5.1.2 Step 2: Create the application pool
	5.1.3 Step 3: Set the physical path

	5.2 Phase 2: Uniquely identifying your websites with bindings
	5.2.1 Defining a unique name by type
	5.2.2 Defining a unique name by IP address
	5.2.3 Defining a unique name by port
	5.2.4 Defining a unique name by host name
	5.2.5 What happens if you create a website with a non-unique binding?

	5.3 An alternate way: adding a new website using PowerShell
	5.3.1 Step 1: Create the directory for the website files using New-Item
	5.3.2 Step 2: Make an application pool for the website using New-WebAppPool
	5.3.3 Step 3: Make the new website using New-Website

	5.4 Lab
	5.5 Ideas to try on your own

	6 What every administrator should know about web applications
	6.1 Configuring the basics for all applications
	6.1.1 Locating the IIS configuration files
	6.1.2 Applying compression to make your web pages faster
	6.1.3 Setting Default Documents to automatically load web pages
	6.1.4 Directory Browsing for file downloads
	6.1.5 Customizing the error pages

	6.2 Supporting common web applications
	6.2.1 Supporting applications running with IIS 6 Compatibility Mode
	6.2.2 Supporting ASP and ASP.NET applications
	6.2.3 Supporting CGI applications
	6.2.4 Supporting PHP applications

	6.3 Monitoring your applications
	6.3.1 Search the logs for information and problems
	6.3.2 Enable Failed Request Tracing

	6.4 Lab
	6.5 Ideas to try on your own

	7 Securing your sites and web applications
	7.1 Controlling who can access your site
	7.1.1 Configuring anonymous access
	7.1.2 Configuring Windows authentication
	7.1.3 Using basic authentication

	7.2 Setting site-level permissions: NTFS
	7.2.1 Configuring permissions for users and groups
	7.2.2 Configuring application pools permissions

	7.3 Advanced/Optional access control
	7.3.1 Setting authorization rules for ASP.NET applications
	7.3.2 Forms-based authentication
	7.3.3 Client certificate authentication

	7.4 Lab
	7.5 Ideas to try on your own

	8 Securing the server
	8.1 Network protection for IIS
	8.1.1 What are you worried about?
	8.1.2 Firewall security
	8.1.3 Using the Windows Firewall

	8.2 Adding additional security
	8.2.1 Blocking by network: IP and domain restrictions
	8.2.2 Block common attacks using Request Filtering

	8.3 Monitoring process for hacking
	8.3.1 Logging files
	8.3.2 Using Process Explorer for IIS

	8.4 Lab
	8.5 Ideas to try on your own

	9 Protecting data with certificates
	9.1 Not all certificates are the same
	9.1.1 Trusted and non-trusted certificates
	9.1.2 Types of certificates
	9.1.3 Single and multiple certificates

	9.2 Implementing certificates on a single IIS server
	9.2.1 Generating a request
	9.2.2 Completing a request
	9.2.3 Exporting/Importing a certificate for backup and additional web servers

	9.3 Securing your websites
	9.3.1 Binding certificates
	9.3.2 Securing host name (header) sites with SSL
	9.3.3 Assigning certificates with PowerShell
	9.3.4 Checking for certificate expiration

	9.4 Lab
	9.5 Ideas to try on your own

	10 FTP and SMTP with IIS
	10.1 File transfers
	10.1.1 Preparing for FTP
	10.1.2 Public-access FTP for anonymous users
	10.1.3 Isolating users with FTP and SSL

	10.2 SMTP for email
	10.2.1 SMTP relays
	10.2.2 Installing and configuring SMTP

	10.3 Lab
	10.4 Ideas to try on your own

	11 Sharing administrative responsibilities through remote management
	11.1 Implementing IIS remote management
	11.1.1 Installing remote management using the IIS manager
	11.1.2 Configuring remote management
	11.1.3 Connecting to a remote web server

	11.2 Implementing IIS Remote Management Service on Server Core
	11.2.1 Installing the Management Service
	11.2.2 Enabling the Remote Management Service
	11.2.3 Assign a trusted certificate
	11.2.4 Starting the Management Service

	11.3 Delegating access to other administrators and developers
	11.3.1 Configuring permissions for websites and applications
	11.3.2 Customizing feature access

	11.4 Lab
	11.5 Ideas to try on your own

	12 Optimizing sites for users and search engines
	12.1 Search Engine Optimization Toolkit
	12.1.1 Installing and using the Search Engine Optimization Toolkit
	12.1.2 Locating broken site links
	12.1.3 Preventing non-relevant content from being searched

	12.2 Improving SEO with URL Rewrite
	12.2.1 Installing URL Rewrite
	12.2.2 Shortening long URLs for better SEO

	12.3 Using regular expressions to improve URL Rewrite
	12.3.1 Basic regular expressions every admin should know
	12.3.2 Using URL Rewrite to redirect website domains and improve SEO
	12.3.3 Redirecting customers to a secured website

	12.4 Lab
	12.5 Ideas to try on your own

	13 Building a web farm with Microsoft Network Load Balancing
	13.1 Introduction to the load balancing web farm
	13.1.1 Using Microsoft Network Load Balancing
	13.1.2 Benefits and issues with Microsoft NLB
	13.1.3 When to use Microsoft NLB

	13.2 Deploying a web farm using Microsoft NLB
	13.2.1 Creating the remote connections
	13.2.2 Installing the NLB feature
	13.2.3 Creating and configuring the load balance with Microsoft NLB

	13.3 Deploying websites to a web farm using PowerShell
	13.3.1 Deploying website files to remote servers
	13.3.2 Creating a website for IIS

	13.4 Health and verification for NLB
	13.4.1 Checking the health of the load balance
	13.4.2 Verifying the operation of the load balance

	13.5 Lab
	13.6 Ideas to try on your own

	14 Building a web farm with Application Request Routing
	14.1 Installing ARR
	14.1.1 Requirements for Application Request Routing
	14.1.2 Installing Application Request Routing

	14.2 Creating a web farm with ARR
	14.2.1 Creating a load balance with ARR

	14.3 Configuring Application Request Routing
	14.3.1 Examining the URL Rewrite rule
	14.3.2 Changing the load balancing algorithm

	14.4 Logging and health monitoring with ARR
	14.4.1 Checking the health of the load balance
	14.4.2 Health monitor statistics

	14.5 Lab
	14.6 Ideas to try on your own

	15 High availability for ARR using Microsoft NLB
	15.1 Adding affordable high availability
	15.1.1 Requirements for a highly available ARR
	15.1.2 Installation of NLB for ARR
	15.1.3 Monitoring NLB: a quick review

	15.2 Lab (optional)
	15.3 Ideas to try on your own

	16 Sharing content and configuration to the web farm
	16.1 Sharing content for a web farm using PowerShell
	16.1.1 Manually deploying local-stored content using PowerShell
	16.1.2 Automating with PowerShell scripts

	16.2 Sharing content using Distributed File System (DFS)
	16.2.1 Installing DFS
	16.2.2 Creating a replication group
	16.2.3 Adding web servers to the replication group
	16.2.4 Selecting the replication topology and schedule
	16.2.5 Selecting the folders to replicate

	16.3 Sharing content from a single location
	16.3.1 Creating a network share

	16.4 Lab
	16.5 Ideas to try on your own

	17 Sharing IIS configurations for a web farm
	17.1 Configuring Shared Configurations
	17.1.1 Configuring Shared Configurations using a clustered network share
	17.1.2 Exporting the configurations from the first (master) web server
	17.1.3 Enabling Shared Configurations
	17.1.4 Configuring IIS for Shared Configurations using DFS

	17.2 Installing components with Shared Configurations
	17.2.1 Installing new software using all-at-once
	17.2.2 Installing new software using a staggered approach

	17.3 Lab
	17.4 Ideas to try on your own

	18 Using the central certificate store for certificate management
	18.1 Installing and configuring the central certificate store
	18.1.1 Storing and naming certificates
	18.1.2 Installing CCS on a local web server
	18.1.3 Creating the website bindings for SSL and CCS

	18.2 Using CCS on remote web servers
	18.2.1 Installing CCS on remote servers
	18.2.2 Enabling CCS on remote servers
	18.2.3 Web bindings for CCS on remote servers
	18.2.4 Using CCS with Shared Configurations

	18.3 Lab
	18.4 Ideas to try on your own

	19 Web farm provisioning with the Web Farm Framework
	19.1 Implementing the Web Farm Framework with ARR
	19.1.1 Configuring the environment
	19.1.2 Installing and configuring the control server
	19.1.3 Preparing the primary and secondary servers

	19.2 Building the web farm
	19.2.1 Creating the web farm on the control server
	19.2.2 Adding the primary and secondary servers

	19.3 Managing the web farm
	19.3.1 Using the tools under the actions pane
	19.3.2 Changing the provisioning settings
	19.3.3 Monitoring the web farm

	19.4 Lab
	19.5 Ideas to try on your own

	20 Disaster recovery for IIS
	20.1 Analyzing your environment for disaster recovery
	20.1.1 The critical operational path
	20.1.2 Determining points of failure in IIS

	20.2 Back up the critical components and data
	20.2.1 Determining your critical components to back up
	20.2.2 How to back up and restore IIS
	20.2.3 What you may have missed
	20.2.4 Planning disaster recovery for web farms
	20.2.5 Recovering from a failure
	20.2.6 Don’t forget to monitor

	20.3 Lab
	20.4 Ideas to try on your own

	21 The final exam
	21.1 The lab setup
	21.2 Your lab challenge

	22 Never the end
	22.1 Resources for the inadvertent IIS administrator
	22.2 DevOps: the ever-changing job of the IIS administrator

	23 IIS PowerShell cheat sheet
	Getting a list of IIS components
	Installing IIS
	Testing a default installation
	Importing and viewing cmdlets for IIS
	Viewing a website
	Navigating to application pools
	Getting information about application pools
	Creating application pools
	Changing a website to a new application pool
	Getting a list of worker processes
	Restarting an application pool
	Setting application pool settings (managed runtime)
	Setting application pool recycling settings (recycle time)
	Setting application pool recycling settings (schedule)
	Viewing events for application pools
	Getting the application pool identity
	Setting an application pool identity (example for NetworkService)
	Setting your own custom application pool user account as the identity
	Creating websites
	Setting static compression for a server
	Getting and setting static compression for a site
	Adding dynamic compression
	Changing directory browsing
	Getting and setting the Default Documents
	Adding IIS 6 compatability mode
	Adding ASP and ASP.Net
	Adding CGI
	Listing all log files for every website
	Listing all HTTP requests that occurred at 9:00 p.m.
	Listing all requests from clients to a particular URL
	Listing all requests to/from a particular IP address
	Adding Failed Request Tracing
	Getting a list of authentication mechanisms
	Getting anonymous authentication settings
	Disabling/enabling anonymous authentication for the entire web server
	Enabling/disabling anonymous authentication for a website or application
	Adding Windows authentication
	Getting information about Windows authentication settings
	Enabling/disabling Windows authentication
	Enabling/disabling Windows authentication per site or application
	Adding basic authentication
	Getting configuration information about basic authentication
	Enabling/disabling basic authentication
	Enabling/disabling basic authentication per site or application
	Installing certificates
	Adding an SSL binding
	Binding a certificate to a website
	Installing Remote Management to multiple computers using PowerShell Remoting
	Installing a new certificate for Remote Management
	Installing Microsoft NLB to multiple servers
	Adding DNS records for websites
	Deploying simple websites to a web farm
	Making new sites on a web farm
	Installing the central certificate store

	24 Lab setup guide
	24.1 Using Windows 7 or Windows 8 as a standalone client
	24.2 Choosing a virtualization platform
	24.2.1 Hyper-V on Windows 8
	24.2.2 Hyper-V on Server 2008 R2 or Server 2012
	24.2.3 Other options

	24.3 Single-server environment
	24.4 Two-server environment
	24.4.1 Building the domain controller
	24.4.2 Installing Active Directory Certificate Services (optional)
	24.4.3 The remaining Web1 server

	24.5 The extended environment
	24.5.1 Extended environment: basic
	24.5.2 Extended environment: advanced

	24.6 Final notes

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

