
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Marko Gargenta and Masumi Nakamura

SECOND EDITION

Learning Android

www.allitebooks.com

http://www.allitebooks.org

Learning Android, Second Edition
by Marko Gargenta and Masumi Nakamura

Copyright © 2014 Marko Gargenta and Masumi Nakamura. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Rachel Roumeliotis
Production Editor: Kara Ebrahim
Copyeditor: Kim Cofer
Proofreader: Amanda Kersey

Indexer: Meghan Jones
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

January 2014: Second Edition

Revision History for the Second Edition:

2014-01-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319236 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Learning Android, Second Edition, the image of a Little Owl, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-31923-6

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319236
http://www.allitebooks.org

Table of Contents

Preface. xi

1. Android Overview. 1
Android Overview 1

Comprehensive 1
Open Source Platform 2
Designed for Mobile Devices 2

History 3
Google’s Motivation 4
Android Compatibility 4
Open Handset Alliance 5

Android Versions 5
Android Flavors 7

Android Open Source Project 7
Manufacturer Add-Ons 7

Summary 8

2. Java Review. 9
Comments 12
Data Types: Primitives and Objects 13
Modifiers 14
Arrays 15
Operators 16
Control Flow Statements 16
Error/Exception Handling 19
Complex Example 22
Interfaces and Inheritance 26
Collections 27
Generics 28

iii

www.allitebooks.com

http://www.allitebooks.org

Threads 28
Summary 29

3. The Stack. 31
Stack Overview 31
Linux 31

Android != Linux 33
Native Layer 33

HAL 34
Native Libraries 34
Native Daemons 35
Native Tools 36

Dalvik 36
Android and Java 37

Application Framework 39
Applications 40

Android Application Package (APK) 40
Application Signing 41
Application Distribution 41

Summary 42

4. Installing and Beginning Use of Android Tools. 43
Installing Java Development Kit 43
Installing the Android SDK 45

Setting Up a PATH to Tools 45
Installing Eclipse 46
Eclipse Workspace 46
Setting Up Android Development Tools 46

Hello World! 48
Creating a New Project 48

Anatomy of an Android Project 50
Android Manifest File 51
String Resources 54
Layout XML Code 55

Drawable Resources 56
The R File 56
Java Source Code 57

Building the Project 58
Android Emulator 59

An Emulator Versus a Physical Phone 59

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Summary 62

5. Main Building Blocks. 63
A Real-World Example 63
Activities 64

Activity Life Cycle 64
Intents 68
Services 68
Content Providers 70
Broadcast Receivers 72
Application Context 72
Summary 74

6. Yamba Project Overview. 75
The Yamba Application 75
Design Philosophy 79
Project Design 80
Part 1: Android User Interface 81
Part 2: Intents, ActionBar, and More 82
Part 3: Android Services 82
Part 4: Content Providers 83
Part 5: Lists and Adapters 83
Part 6: Broadcast Receivers 84
Part 7: App Widgets 84
Part 8: Networking and the Web (HTTP) 85
Part 9: Live Wallpaper and Handlers 85
Summary 85

7. Android User Interface. 87
Two Ways to Create a User Interface 87

Declarative User Interface 87
Programmatic User Interface 88
The Best of Both Worlds 88

Views and Layouts 88
LinearLayout 89
TableLayout 90
FrameLayout 91
RelativeLayout 92

Starting the Yamba Project 93
The StatusActivity Layout 97

Important Widget Properties 101
Strings Resource 103

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

The StatusActivity Java Class 104
Inflating XML to Java 104
Initializing Objects 106
Handling User Events 107

Logging Messages in Android 108
LogCat 108
Compiling Code and Building Your Projects: Saving Files 109
Adding the Twitter API Library 112
Updating the Manifest File for Internet Permission 113

Threading in Android 114
Single Thread 114
Multithreaded Execution 115
AsyncTask 116

Other UI Events 119
Alternative Resources 124
Summary 127

8. Fragments. 129
Fragment Example 129
Fragment Life Cyle 136
Dynamically Adding Fragments 137
Summary 139

9. Intents, Action Bar, and More. 141
Preferences 141

Preference Resource 142
SettingsActivity 145
Update the Manifest File 147

The Action Bar 148
Creating a Blank Main Activity 149
The Menu Resource 150
Android System Resources 152
Loading the Menu 153
Updating StatusActivity to Handle Menu Events 154

Shared Preferences and Updating Status Fragment 155
The Filesystem Explained 157

Exploring the Filesystem 158
Filesystem Partitions 158
System Partition 158
SDCard Partition 158
The User Data Partition 160
Filesystem Security 161

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Summary 161

10. Services. 163
Our Example Service: RefreshService 164

Creating the RefreshService Java Class 164
Introducing IntentService 166
Update the Manifest File 167
Add Menu Items 168
Update the Options Menu Handling 168
Testing the Service 169

Pulling Data from Yamba 169
Testing the Service 172

Summary 172

11. Content Providers. 175
Databases on Android 175

About SQLite 176
DbHelper 176
The Database Schema and Its Creation 177
Four Major Operations 177
Cursors 178

Status Contract Class 179
Update RefreshService 181

Testing the Service 184
Content Providers 186
Creating a Content Provider 187

Defining the URI 187
Getting the Data Type 189
Inserting Data 191
Updating Data 192
Deleting Data 193
Querying Data 194
Updating the Android Manifest File 199
Updating RefreshService 200

Summary 201

12. Lists and Adapters. 203
MainActivity 203
Basic MainActivity 203
Timeline Fragment 205

Creating a List Item Layout 206
About Adapters 207

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Loading the Data 208
Custom Logic via ViewBinder 211
Details View 213

Details Fragment 214
Details Activity 216
Register with the Manifest File 217
Main Activity, Landscape View 217
Updating TimelineFragment 218

Summary 221

13. Broadcast Receivers. 223
About Broadcast Receivers 223
BootReceiver 224

Registering the BootReceiver with the Android Manifest File 225
Testing the Boot Receiver 225

Alarms and System Services 225
Broadcasting Intents 227

Notification Receiver 230
Summary 231

14. App Widgets. 233
Using Content Providers Through Widgets 233

Implementing the YambaWidget Class 234
Creating the XML Layout 237
Creating the AppWidgetProviderInfo File 238
Updating the Manifest File 238
Testing the Widget 239

Summary 239

15. Networking and Web Overview. 241
Quick Example 241
Networking Basics 242
HTTP API 244
Apache HTTP Client 245
HttpUrlConnection 248
Networking in the Background using AsyncTask and AsyncTaskLoader 251
Summary 251

16. Interaction and Animation: Live Wallpaper and Handlers. 253
Live Wallpaper 253
Handler 260

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Summary 262

Index. 263

Table of Contents | ix

Preface

This book sprang from years of delivering the Marakana Android Bootcamp training
class to thousands of software developers at some of the largest mobile companies lo‐
cated on four continents around the world. Teaching this class, over time I saw what
works and what doesn’t. This book is a distilled version of the Android Bootcamp train‐
ing course that I developed at Marakana and fine-tuned over numerous engagements.

My background is in Java from back before it was even called that. From the beginning,
I was very interested in embedded development as a way to program various devices
that surround us in everyday life. Because Java primarily took off in web application
development, most of my experience in the previous decade has been in building large
enterprise systems. Then Android arrived, and once again I became very excited about
building software for nontraditional computers. My current interests lie in using An‐
droid on devices that may not even resemble a typical phone. Masumi, my coauthor on
this updated second edition, brings with him a ton of experience in mobile, in addition
to Java.

This book teaches anyone who knows Java (or a similar language) how to develop a
reasonably complex Android application. I hope you find this book fairly comprehen‐
sive and that you find the example-based learning reasonably motivating. The goal of
Learning Android is to get you to think in Android terms.

What’s Inside
Chapter 1, Android Overview

An introduction to Android and its history.

Chapter 2, Java Review
Offers a quick review of Java.

xi

Chapter 3, The Stack
An overview of the Android operating system and all its parts from a very high
level.

Chapter 4, Installing and Beginning Use of Android Tools
Helps you set up your environment for Android application development.

Chapter 5, Main Building Blocks
Explains the Android components application developers use to put together an
app.

Chapter 6, Yamba Project Overview
Explains the Yamba application that we’ll build together throughout this book and
use as an example to learn Android’s various features.

Chapter 7, Android User Interface
Explains how to build the user interface for your application.

Chapter 8, Fragments
Covers the Fragments API, which helps you separate screens within an application.

Chapter 9, Intents, Action Bar, and More
Covers some of the operating system features that make an application developer’s
life easier.

Chapter 10, Services
Covers building an Android service to process background tasks.

Chapter 11, Content Providers
Explains the Android framework’s support for the built-in SQLite database and how
to use it to persist the data in your own application.

Chapter 12, Lists and Adapters
Covers an important feature of Android that allows large datasets to be linked ef‐
ficiently to relatively small screens.

Chapter 13, Broadcast Receivers
Explains how to use the publish-subscribe mechanism in Android to respond to
various system and user-defined messages.

Chapter 14, App Widgets
Shows how to design a content provider to share data between applications, in this
case using it to enable our app widget to display data on the home screen.

Chapter 15, Networking and Web Overview
Covers networking.

xii | Preface

Chapter 16, Interaction and Animation: Live Wallpaper and Handlers
Provides a taste of more advanced subjects.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/marakana/LearningAndroidYamba.

Preface | xiii

https://github.com/marakana/LearningAndroidYamba

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Android, Second Edition by Marko
Gargenta and Masumi Nakamura (O’Reilly). Copyright 2014 Marko Gargenta and Ma‐
sumi Nakamura, 978-1-449-31923-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/learning-android-2e.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com. Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Marko Gargenta
This book is truly a result of outstanding teamwork. First, I’d like to thank my coauthor
Masumi and the editor at O’Reilly, Andy Oram. Mas, I know it took longer than we
anticipated. Andy, your comments were spot-on and constructive. Thank you for stick‐
ing with the project.

I’d like to thank my team at Marakana, now part of Twitter: Aleksandar (Saša) Gargenta,
Ken Jones, Blake Meike—for bringing back firsthand feedback from teaching Android
both to Marakana clients and at Twitter to Twitter Engineers. This really made the
difference in the direction of the book.

And finally, a huge thanks to my wife Lisa, daughter Kylie, and son Kenzo. You guys are
the real inspiration for all this work. I love you!

Masumi Nakamura
I would like to thank first and foremost my coauthor Marko for agreeing to a collabo‐
ration on this edition—it has been an awesome ride. Also the people over at O’Reilly—
Andy Oram, Allyson MacDonald, and Rachel Roumeliotis, who have been patient and
wonderful to work with. Also, Blake Meike and Bill Schrickel for their technical com‐
ments and corrections, which have been invaluable.

Thanks also goes out to my family—Shinji, Yuri, Jiro, Toshihisa—who have been very
encouraging and supportive (even trying out some of the examples that I have written
over the years).

Preface | xv

http://oreil.ly/learning-android-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Of note is Jessamyn Hodge, who once again put up with me and supported me through‐
out the process. Thank you from the bottom of my heart.

Finally, I also would like to thank the Android community and Google, without which
this book’s very topic would not exist.

xvi | Preface

CHAPTER 1

Android Overview

In this chapter, you will learn how Android came about. We’ll take a look at its history
to help us understand its future. As this mobile environment enters a make-or-break
year, we look at the key players in this ecosystem, what motivates them, and what
strengths and weaknesses they bring to the table.

By the end of this chapter, you will better understand the ecosystem from a business
point of view, which should help clarify the technology choices and how they relate to
long-term advantages for various platforms.

Android Overview
Android is a comprehensive open source platform designed for mobile devices. It is
championed by Google and owned by Open Handset Alliance. The goal of the alliance
is to “accelerate innovation in mobile and offer consumers a richer, less expensive, and
better mobile experience.” Android is the vehicle to do so.

As such, Android is revolutionizing the mobile space. For the first time, it is a truly open
platform that separates the hardware from the software that runs on it. This allows for
a much larger number of devices to run the same applications and creates a much richer
ecosystem for developers and consumers.

Let’s break down some of these buzzwords and see what’s behind them.

Comprehensive
Android is a comprehensive platform, which means it is a complete software stack for
a mobile device.

For developers, Android provides all the tools and frameworks for developing mobile
apps quickly and easily. The Android SDK is all you need to start developing for

1

http://www.openhandsetalliance.com/

Android; you don’t even need a physical device. Yet, there are numerous tools, such as
Eclipse, for example, that help make the development life cycle more enjoyable.

For users, Android just works right out of the box. Additionally, users can customize
their phone experience substantially. It is, according to some studies, the most desirable
mobile operating system in the United States at the moment.

For manufacturers, it is the complete solution for running their devices. Other than
some hardware-specific drivers, Android provides everything else to make their devices
work. That means that manufacturers can innovate at the highest level and bring up
their game a notch.

Open Source Platform
Android is an open source platform. Most of the stack, from low-level native, Dalvik
virtual machine, application framework, and standard apps, is totally open.

Aside from the Linux kernel itself, Android is licensed under business-friendly licenses
(Apache/MIT/BSD) so that others can freely extend it and use it for variety of purposes.
Even some third-party open source libraries that were brought into the Android stack
were rewritten under new license terms.

So, as a developer, you have access to the entire platform source code. This allows you
to see how the guts of the Android operating system work. As a manufacturer, you can
easily port Android OS to your specific hardware. You can also add your own propri‐
etary secret sauce, and you do not have to push it back to the development community
if you don’t want to.

There’s no need to license Android. You can start using it and modifying it today, and
there are no strings attached. In addition, Android has many hooks at various levels of
the platform, allowing anyone to extend it in unforeseen ways.

There are couple of minor low-level pieces of code that are propriet‐
ary to each vendor, such as the software stack for the cellular, WiFi,
and Bluetooth radios. Android tries hard to abstract those compo‐
nents with interfaces so that vendor-specific code can be managed
easily.

Designed for Mobile Devices
Android is a purpose-built platform for mobile devices. When designing Android, the
team looked at which mobile device constraints likely were not going to change for the
foreseeable future. For one, mobile devices are battery powered, and battery perfor‐
mance likely is not going to get much better anytime soon. Second, the small size of
mobile devices means that they will always be limited in terms of memory and speed.

2 | Chapter 1: Android Overview

www.allitebooks.com

http://www.allitebooks.org

These constraints were taken into consideration from the get-go and were addressed
throughout the platform. The result is an overall better user experience.

Android was designed to run on all sorts of physical devices. Android doesn’t make any
assumptions about a device’s screen size, resolution, chipset, and so on. Its core is de‐
signed to be portable.

History
The history of Android is interesting and offers some perspective on what the future
might hold.

These are the key events of the past few years:

• In 2005, Google buys Android, Inc. The world thinks a “gPhone” is about to come
out.

• Everything goes quiet for a while.
• In 2007, the Open Handset Alliance is announced. Android is officially open

sourced.
• In 2008, the Android SDK 1.0 is released. The G1 phone, manufactured by HTC

and sold by the wireless carrier T-Mobile USA, follows shortly afterward.
• 2009 sees a proliferation of Android-based devices. New versions of the operating

system are released: Cupcake (1.5), Donut (1.6), and Eclair (2.0 and 2.1). More than
20 devices run Android.

• In 2010, Android is second only to BlackBerry as the best-selling smart phone
platform. Froyo (Android 2.2) is released and so are more than 60 devices that
run it.

• In 2011, Android is the #1 mobile platform by number of new activations and
number of devices sold. The battle for dominating the tablet market is on.

• In 2012, GoogleTV, powered by Android and running on Intel x86 chips, is released.
Android is now running on everything from the smallest of screens to the largest
of TVs.

• In 2013, Google Glass, a wearable computing platform with an optical head-
mounted display powered by Android is released to a select few.

• Beyond phones, tablets, and TVs, Android continues to be the big challenger to
Embedded Linux as the platform for developing a number of specialized devices,
such as home automation systems, car dashboards and navigation systems, as well
as NASA satellites.

History | 3

In 2005, when Google purchased Android, Inc., the world thought Google was about
to enter the smartphone market, and there were widespread speculations about a device
called the gPhone.

Google’s CEO, Eric Schmidt, made it clear right away that Android’s ambitions were
much larger than a single phone. Instead, Android engineers envisioned a platform that
would enable many phones and other devices.

Google’s Motivation
Google’s motivation for supporting the Android project seems to be having Android
everywhere and by doing that, creating a level playing field for mobile devices. Ulti‐
mately, Google is a media company, and its business model is based on selling adver‐
tising. If everyone is using Android, then Google can provide additional services on top
of it and compete fairly. This is unlike the business models of other software vendors
who depend on licensing fees.

Although Google does license some proprietary apps, such as Gmail and Google Maps,
and continues to make money off its Google Play service, its primary motivation is still
the advertising revenue that those apps bring in.

As Android growth and stiff competition continue to take even Google by surprise, it
is going to be essential to keep Android open for others to “remix” it in whatever way
they see fit.

Android Compatibility
From the get-go, Google created Compatibility Test Suite (CTS), defining what it means
to be an Android-compatible device. CTS is a combination of automated tests as well
as a document that specifies what an Android device must have, should have, or what
features are simply optional.

The goal of CTS is to ensure that, for a regular consumer, an average app from the market
will run on an average Android device if that device claims to be supporting a certain
version of Android. It is designed to prevent so-called fragmentation of the Android
operating system, such as the one that happened in the world of Linux desktops, for
example.

The issue with CTS is that it is up to the creator of a custom Android version to self-
test its compatibility. It appears that the only major “teeth” in enforcing CTS on the part
of manufacturers is Google itself, by simply not wanting to license its proprietary An‐
droid code to noncompatible devices. That proprietary code includes Google Play,
Gmail, Google Maps, and much more.

CTS helps to shield the average Joe from being disappointed by an app not running as
advertised due to lack of features on his device. However, CTS is by no means a must.

4 | Chapter 1: Android Overview

For example, Amazon has released Kindle Fire, a device built on top of the Android OS.
Kindle Fire was never designed with CTS in mind—Amazon simply wanted a great
ebook reader and saw in Android an open platform that would get it there faster.

This is a good thing, and hopefully the future of Android will stay compatible for an
average Android-branded device, yet open for custom purpose-built gadgets that want
to leverage its powerful software stack.

Note that manufacturers by no means have to adhere to CTS. Anyone is welcome to
download and “remix” Android in any way they see fit. And people do: Android has
been purpose-customized for everything from cars to satellites, and from photocopiers
to washing machines. The major reason manufacturers would want to ensure Android
compatibility is access to Google Play, and its rich set of apps.

Open Handset Alliance
For this to be bigger than just Google, Android is owned by the Open Handset Alliance,
a nonprofit group formed by key mobile operators, manufacturers, software companies,
and others. The alliance is committed to openness and innovation for the mobile user
experience.

In practice, the alliance is still very young and many members are still learning to work
with one another. Google happens to be putting the most muscle behind the Android
project at the moment.

Android Versions
Like any software, Android is improved over time, which is reflected in its version
numbers. However, the relationship between different version numbers can be confus‐
ing. Table 1-1 helps explain that.

Table 1-1. Android OS platform versions
Android version API level Codename

Android 1.0 1

Android 1.1 2

Android 1.5 3 Cupcake

Android 1.6 4 Donut

Android 2.0 5 Eclair

Android 2.01 6 Eclair

Android 2.1 7 Eclair

Android 2.2 8 Froyo (frozen yogurt)

Android 2.3 9 Gingerbread

Android 2.3.3 10 Gingerbread

Android Versions | 5

Android version API level Codename

Android 3.0 11 Honeycomb

Android 3.1 12 Honeycomb

Android 3.2 13 Honeycomb

Android 4.0 14 Ice Cream Sandwich

Android 4.0.3 15 Ice Cream Sandwich

Android 4.1 16 Jelly Bean

Android 4.2 17 Jelly Bean

Android 4.3 18 Jelly Bean

Android 4.4 19 KitKat

The Android version number itself partly tells the story of the software platform’s major
and minor releases. What is most important is the API level. Version numbers change
all the time, sometimes because the APIs have changed, and other times because of
minor bug fixes or performance improvements.

As an application developer, you will want to make sure you know which API level your
application is targeting in order to run. That API level will determine which devices can
and cannot run your application.

Typically, your objective is to have your application run on as many devices as possible.
So, with that in mind, try to shoot for the lowest API level possible. Keep in mind the
distribution of Android versions on real devices out there. Figure 1-1 shows a snapshot
of the Android Device Dashboard from mid-2013.

Figure 1-1. Historical Android version distribution through August 2013

6 | Chapter 1: Android Overview

http://bit.ly/X3KDsh

You may notice that there are a lot of users of Android 2.3.3+ and 4.1.x. This places the
latest and greatest (4.1.x) version as the second largest version currently in the wild.
This hasn’t always been the case because OEMs tended to be very slow in upgrading
their OS versions. However, this has changed with Google’s strong push to get everyone
onto the latest and greatest. Unfortunately, there are still a lot of people who have the
2.3.3 version because they have yet to upgrade their phones to a phone with the hardware
capable of handling the newer version. This is changing now because people can upgrade
their phones automatically when they renew their plans.

With that in mind, you will probably choose 2.3.3 as your minimum development target,
unless you truly need the features of the latest version.

Android Flavors
Android is open, and as such, many parties download it, modify it, and release their
own flavors of it. Let’s take a look at the options in this space.

Android Open Source Project
The official version of Android, the one that comes from Google, is technically referred
to as Android Open Source Project, or AOSP for short. Think of AOSP as a reference
version of Android, a vanilla flavor. You may rarely find AOSP version on a consumer
device. It is often spiced up, or mixed in with some other flavors to create a better overall
experience.

Manufacturer Add-Ons
Before Android, many original equipment manufacturers (OEMs) used to have teams
of engineers working on low-level components of the OS that they now get for free with
Android. So they started differentiating their devices by moving the innovation from
reinventing the wheel to much higher-level components that their users desire. This has
opened up a revolution of innovation in the mobile space.

Companies such as HTC, Motorola, and Samsung often add many useful features to
vanilla Android. These additional features are sometimes referred to as overlays, skins,
or mods, and are officially known as add-ons.

Some add-ons may be simple changes in the set of applications shipped with that version
of Android. Others may be much more profound overhauls of the entire Android stack,
such as in HTC Sense.

Often, these modification still adhere to Android Compatibility Test Suite, and make
for a better user experience. Overall, the add-ons showcase the power of an open op‐
erating system and, as such, are very welcome in pushing mobile computing to the next
level.

Android Flavors | 7

Summary
The Android operating system was designed from the ground up to be a comprehensive
open source platform for mobile devices. It is a game changer in the industry and has
enjoyed great success.

In Chapter 3, we’ll take a look at the entire Android operating system at a high level to
gain a technical understanding of how all the pieces fit together.

8 | Chapter 1: Android Overview

CHAPTER 2

Java Review

The purpose of this chapter is to do a quick review of Java syntax and concepts. This is
not in any way a true in-depth introduction to Java (for that we suggest Oracle’s Java
Tutorial). Rather, the intention is to provide a quick run-through from the very basics
to more complex concepts that you will definitely need to be comfortable with in order
to program for the Android platform. It is assumed that you have installed the Java
Development Kit (JDK) 1.6 on the development machine (see Chapter 4 to install the
JDK).

As with all opening examples for most languages, let us first cover the basic Java program
and its execution with the classic “Hello World” example:

1. Open up a text editor and add the code as shown in Example 2-1.
2. Save this file as HelloWorld.java.
3. As shown in Example 2-2, compile using the javac command at a command

prompt. This should create a file called HelloWorld.class.
4. Then using the java command (Example 2-2), execute the program.
5. The output should look like Example 2-3.

Example 2-1. Hello World
public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }
}

9

http://docs.oracle.com/javase/tutorial
http://docs.oracle.com/javase/tutorial

Example 2-2. Hello World compile and execute
javac HelloWorld.java

java HelloWorld

Example 2-3. Hello World output
Hello World

At this stage we are looking at a really basic program that does not get into any of Java’s
syntax and utility. It does contain within it the three main elements of Java: a class, a
variable, and a method. A variable can be considered a noun, and a method can be
considered a verb. Both are parts of a class. The method that is contained is the line
public static void main(String[] args). This main method is what the Java run‐
time system calls (it’s an entry point, so to speak). Without this method in the class that
is specified to the Java interpreter, an error occurs and the program terminates. Now
onto the simple example, SimpleExample.java:

1. Open up a text editor and add the code as shown in Example 2-4.
2. Save this file as SimpleExample.java.
3. As shown in Example 2-5, compile using the javac command at a command

prompt.
4. Then using the java command (Example 2-5), execute the program.
5. The output should look like Example 2-6.

Example 2-4. A simple example
package com.marakana.examples;

/*
 A simple example class with a basic main method
 that instantiates several objects of the class,
 manipulates the objects, and outputs information
 about the object
*/
public class SimpleExample {

 private int number;

 public SimpleExample() { }

 public void setValue(int val) {
 number = val;
 }

 public int getNumber() {
 return number;

10 | Chapter 2: Java Review

 }

 public static void main(String[] args) {
 for(int i=0;i<10;i++) {
 SimpleExample example = new SimpleExample();

 if(i/2 <= 2) {
 example.setValue(i);
 } else {
 example.setValue(i*10);
 }

 System.out.println("SimpleExample #"+i+
 "'s value is "+example.getNumber());
 }
 }
}

Example 2-5. SimpleExample compile and execute
javac -d . SimpleExample.java

java -cp . com.marakana.examples.SimpleExample

Example 2-6. SimpleExample sample output
SimpleExample #0's value is 0
SimpleExample #1's value is 1
SimpleExample #2's value is 2
SimpleExample #3's value is 3
SimpleExample #4's value is 4
SimpleExample #5's value is 5
SimpleExample #6's value is 60
SimpleExample #7's value is 70
SimpleExample #8's value is 80
SimpleExample #9's value is 90

Note the use of the -d parameter with the javac command, which tells the compiler
that the destination of the compiled class (SimpleExample) and its directory structure’s
root is the local directory in which the Java file is located. What this means is that a
directory named com will be created. Within this com directory, an examples directory
is placed, and within examples, SimpleExample.class is generated (see Figure 2-1). This
structure follows that of the package com.marakana.examples; line dictated at the top
of the Java file. The purpose of this packaging structure is to avoid collision of class
names. For example, “com.marakana.examples.SimpleExample” and “org.samples.Sim‐
pleExample” are both classes named “SimpleExample” but they reside in different
namespaces. This naming structure tends to follow these conventions:

Java Review | 11

• Package names are all lowercase.
• Packages in the Java language begin with “java” or “javax.”
• Generally, companies use their Internet domain in reverse order (so a company like

oreilly.com would become com.oreilly, nonprofit.org would become org.nonprofit,
etc.). If the domain contains some special characters (nonalphanumeric) or con‐
flicts with a reserved Java keyword, it is either not used or an underscore (_) is used
instead.

Figure 2-1. Package tree

It is this package naming scheme that is used when executing the program (i.e.,
“com.marakana.examples.SimpleExample”). With the java command, the -cp (class‐
path) option is used to designate where the command should seek out the specified
class(es). In Example 2-5 . is used to designate that the root directory for the classes is
the current local directory. The java and javac commands have a variety of other
options that are useful to check out.

Now that we have an example that runs and is a bit more substantial, let’s dive into some
of the specifics.

Comments
Comments are sections in the code that are either explanatory or contain code that is
not intended to execute. Comments are expressed in one of two ways: either with // to
denote a single-line comment, or with /* */ to denote a multiline comment (see
Example 2-7). The single-line case dictates that everything on that line to the right
of // is a comment. The multiline case spans from the /* (everything to the right of it)
to the left of */.

Example 2-7. Comments
// This is an example of a single line comment

/* This is an example
 of a multi line
 comment */

12 | Chapter 2: Java Review

www.allitebooks.com

http://www.allitebooks.org

Data Types: Primitives and Objects
Java is an object-oriented, statically typed language. Object-oriented is a programming
paradigm that is based on the concept of objects. This idea is often analogous to that of
the real world, where we have things (such as cars and people) and the things have
properties (such as doors and legs) and behavior/actions (such as turning right and
walking). What statically typed means is that Java checks the declaration of the data type
of every variable in the program at compile time. This enforcement of the data type
ensures that variables cannot change what they mean within the program once they
have been declared (e.g., a number cannot be swapped for text or vice versa). The types
of data fall into two camps: primitive data types and objects.

Following are the eight primitive data types in Java:
boolean

1-bit true (1) or false (0) value

byte
8-bit signed whole number (no decimals) with values ranging from –128 to 127

short
16-bit signed whole number with values ranging from –32,768 to 32,767

int
32-bit signed whole number with values ranging from –2,147,483,648 to
2,147,483,647

long
64-bit signed whole number with values ranging from –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

float
Single-precision 32-bit floating-point number (has decimal)

double
Double-precision, 64-bit floating-point number

char
A single, 16-bit Unicode character; for example, the letter “A” (note that “a” and “A”
are different characters)

The other data type that everything else falls under is an object. An object is a complex
type in that within each object are a variety of properties (also called fields or vari‐
ables) and methods (also called functions). All objects are defined by a blueprint called
a class (making objects an instance of a class). In many cases, the class is described as a
file with the file extension of .java (such as SimpleExample.java) and is compiled into
a machine-readable file with the file extension .class (see Example 2-5).

Data Types: Primitives and Objects | 13

Taking a look at the SimpleExample.java class (Example 2-4), there is only one variable
that is declared within it: number (private int number). This integer number is not
expressly assigned and so by default is set to 0 (all number cases default to the value 0
respective to their type). In the case of a boolean, the default value is false, whereas in
the case of char it is \u0000 (in other words, zero expressed as a UNICODE value). If
a variable is an object and it was not assigned anything, the default value would be
something called null. null is a special value that means “not assigned” or “unknown”
(it’s a bit more complex than that, but we are trying to keep things simple).

Continuing on with the example, there is a method called setValue() that takes in int
(integer) as its input and then sets the number variable to that integer. To access the value
of the number variable, another method is declared called getNumber() that returns the
number variable. These two are examples of what a typical method declaration may look
like. A method declaration is made up of six pieces:
Modifier

This defines the access type (e.g., public) and kind (e.g., static).

Return type
This defines the data type that is returned (e.g., int). If no data type is to be returned,
void is used.

Name
The name of the method.

Input parameter list
A comma-delimited list of parameters preceded with their data type (e.g., int
val, String str, double num).

Exception list
A comma-delimited list of exception types that are thrown by the method.

Body
The logic/code between the braces of the method.

There is what looks like a method using the name of the class but does not have a return
type (public SimpleExample()). This is called a constructor—its purpose is to enable
object instances of the class to be instantiated via the use of the new operator (Sim
pleExample example = new SimpleExample()).

Modifiers
Modifiers are split into two categories: access modifiers (public, protected, private, and
no-access modifier) and nonaccess modifiers (static, final, strictfp, abstract,

14 | Chapter 2: Java Review

synchronized, volatile, transient, and native). We will cover the access modifiers and
only one of the nonaccess modifiers, static.

Access modifiers define the level of access a method or variable has. It is a type of security
in that a hierarchy of control is established when using them:
public

Everyone can see and access this code.

protected
The class this is defined in, classes within the same package, or classes that are
subclasses of the class this is defined in can view and access this code.

default/nonaccess modifier
The class this is defined in and classes within the same package can view and access
this code.

private
Only the class that this is contained within can see and access this code.

When an object is instantiated from the class blueprint, it has a distinct copy of the
instance variables of its own. With the use of the static modifier, the variable is associated
directly with the class and only one is ever created. This static variable becomes a com‐
mon variable across the object’s instances of the class. In the same way, static methods
are only accessible at the class level. For example, the main method (public static
void main(String[] args)), ensures that only one main method exists for this class
and exists as an entry point to the execution of the program.

Arrays
Looking at the main method’s input, we have the variable args. args is a string array
(String[] args) denoted with the []. An array is a container object that holds a fixed
number of values of a specific type—in essence, it is a list of values. The declaration of
the array sets the type that is held within each element of the array, and the size is fixed
when it is assigned (see Example 2-8). Each element of the array is accessed by its nu‐
merical index, which is a number representing where it is located in the ordered list.
Note that the index starts at 0 and increments up by 1 until the last element is one less
than the total size.

Example 2-8. Array declarations and value assigning
double[] someArray; // declaring

someArray = new double[4]; // assigning size of 4

int[] integerArray = new int[10]; // declaring and assigning size of 10

Arrays | 15

integerArray[0] = 32; // assigning the first element
integerArray[1] = 12;
integerArray[2] = 333;
integerArray[3] = 3343;
integerArray[4] = 1;
integerArray[5] = 99;
integerArray[6] = 42;
integerArray[7] = -33;
integerArray[8] = 32;
integerArray[9] = 0; // assigning the last element

// another way to declare and assign

 // declaring and assigning 3 elements directly
String[] anotherArray = {"Some String","a","strings"}

Operators
Operators are special characters that denote actions performed on a variable. Such
operators include things such as basic math, boolean logic, and assignment. The oper‐
ators have an order of hierarchy as to what operations are done first. The following
shows a table of operators in order of priority:

postfix	expr++ expr--		
unary	++expr --expr +expr -expr ~ !		
multiplicative	* / %		
additive	+ -		
shift	<< >> >>>		
relational	< > <= >= instanceof		
equality	== !=		
bitwise AND	&		
bitwise exclusive OR	^		
bitwise inclusive OR			
logical AND	&&		
logical OR			
ternary	? :		
assignment	= += -= *= /= %= &= ^=	= <<= >>= >>>=	

Control Flow Statements
Moving on to more complex forms of code logic, we now discuss control flow state‐
ments. Control flow statements are blocks of code that break up the flow of execution
(the main flow being top to bottom) and provide a means for branching and looping.

The simplest control flow statements are if-then and if-then-else.

The SimpleExample program in Example 2-4 contains the following section of code:

if(i/2 <= 2) {
 example.setValue(i);

16 | Chapter 2: Java Review

} else {
 example.setValue(i*10);
}

This describes the logic of “IF current value of i divided by 2 is less than or equal to 2,
THEN call the method setValue on the example object and pass in the current value
of i, ELSE call the method setValue on the example object and pass in the current value
of i times 10.” As you can see, the point of the if-else type control statement is to create
decision points based on states within the code.

Another control statement that is very similar to if-else is the switch statement (see
Example 2-9). The switch statement provides multiple execution paths that depend on
the conditions of the state.

Example 2-9. Switch case
int somenumber = 0;

// some logic changes somenumber's value making it either 0, 1, or 2

switch(somenumber) {
 case 0: doSomething();
 break;
 case 1: doSomethingOne();
 break;
 case 2: doSomethingTwo();
 break;
}

The next type of control statement is the loop. There are four types of loops within Java
(see Example 2-10). The first is the while loop, which executes the code within its block
so long as the input (expression) to the while statement’s state is true. The second loop
is the do-while loop. This differs from the while loop in that the block of code within
the do portion is executed first, and then the expression within the while portion is
checked. This ensures that the code in the do portion executes at least once. Next is the
for loop. The for loop executes the loop until a condition defined within the loop’s input
is met. This enables the programmer to create a conditional and incremental loop. Lastly,
the for-each loop provides a quick and easy way for the programmer to iterate through
a variable list.

Example 2-10. Different loops
//-- the while loop

int i = 0;

// until i is equal or greater than 10 does the loop continue
while(i < 10) {
 System.out.println(String.valueOf(i));
 i++;

Control Flow Statements | 17

}

//-- the do while loop

int k = 0;

// until k is equal or greater than 10 does the loop continue
do {
 System.out.println(String.valueOf(k));
 k++;
} while(k < 10);

//-- the for loop

// the loop initializes j to 0, then increments it by +1
// (the j++) until j is equal to or greater than 10
for(int j=0;j<10;j++) {
 System.out.println(String.valueOf(j));
}

//-- for each loop

String[] arr = {"The","Quick","Brown","Fox"};

// the loop iterates through the entire array
for(String a: arr) {
 System.out.println(a);
}

The final control flow statements are the branching statements: break, continue, and
return (see Example 2-11). A break statement terminates the most innermost loop or
switch statement it is in. The continue statement causes a skip ahead (to the next iter‐
ation, thus skipping only the current one) to occur within a loop. The return statement
exits from the current method and may or may not pass a value.

Example 2-11. Break, continue, and return in a loop
 // forloop1
for(int i=0;i<10;i++) {

 // if i is even then continue to the next iteration of forloop1
 if(i%2 == 0) continue;
 else {
 // forloop2
 for(int j=0;j<5;j++) {
 // if j%i has no remainder then jump out of
 // forloop2 and back to forloop1

 if(j%i != 0) break;
 else return i;

18 | Chapter 2: Java Review

 // else return the integer value i
 // and then stops the complete flow
 }
 }
}

Error/Exception Handling
We have now covered the basics shown in the SimpleExample.java case. Before we
launch into some more complex subjects, we need to cover the concept of error/excep‐
tion handling. To do this, we can take the SimpleExample case and add to it to do some
error handling as shown in Example 2-12. The resulting output would look like
Example 2-13.

Example 2-12. SimpleExample with error handling
package com.marakana.examples;

/*
 A simple example class with a basic main method
 that instantiates several objects of the class,
 manipulates the objects, and outputs information
 about the object
*/
public class SimpleExampleWErrorHandling {

 private int number;

 public SimpleExampleWErrorHandling() { }

 //------- ERROR HANDLING PART 1
 public void setValueWithException(int val) throws Exception {
 if(val < 0) throw new Exception(
 "setValue Exception- Value that is set is Negative!");
 number = val;
 }

 public int getNumber() {
 return number;
 }

 // here we override toString so the set value
 // is returned rather than the object's textual
 // representation

 @Override
 public String toString() {
 return value;
 }

Error/Exception Handling | 19

 public static void main(String[] args) {
 for(int i=0;i<10;i++) {
 SimpleExample example = new SimpleExample();

 if(i/2 <= 2) {
 //------- ERROR HANDLING PART 4
 try { example.setValue(i); }
 catch (Exception e) { e.printStackTrace(); }
 } else {
 //------- ERROR HANDLING PART 4
 try { example.setValue(i*10); }
 catch (Exception e) { e.printStackTrace(); }
 }

 System.out.println("SimpleExample #"+i+
 "'s value is "+example.getNumber());
 }

 showErrorHandling(); //------- ERROR HANDLING PART 2

 }

 //------- ERROR HANDLING PART 3
 public static void showErrorHandling() {
 // here we show Error Handling
 try {
 System.out.println();
 System.out.println("SimpleExample BadValue Insert Case Start");
 SimpleExample example = new SimpleExample();
 example.setValueWithException(-10);
 System.out.println("SimpleExample BadValue's value is "+
 example.getNumber());
 System.out.println("SimpleExample BadValue Insert Case End");

 } catch (Exception e) {

 System.err.println("SimpleExample BadValue "+
 "Insert Case threw an exception");
 e.printStackTrace();

 } finally {

 System.out.println("SimpleExample BadValue "+
 "Insert Case Finally Called");

 }
 }
}

20 | Chapter 2: Java Review

Example 2-13. SimpleExample with error handling output
SimpleExample #0's value is 0
SimpleExample #1's value is 1
SimpleExample #2's value is 2
SimpleExample #3's value is 3
SimpleExample #4's value is 4
SimpleExample #5's value is 5
SimpleExample #6's value is 60
SimpleExample #7's value is 70
SimpleExample #8's value is 80
SimpleExample #9's value is 90

SimpleExample BadValue Insert Case Start
SimpleExample BadValue Insert Case threw an exception
java.lang.Exception: setValue Exception- Value that is set is Negative!
 at com.marakana.examples.SimpleExampleWErrorHandling.setValue
 (SimpleExample.java:17)
 at com.marakana.examples.SimpleExampleWErrorHandling.showErrorHandling
 (SimpleExample.java:51)
 at com.marakana.examples.SimpleExampleWErrorHandling.main
 (SimpleExample.java:40)
SimpleExample BadValue Insert Case Finally Called

An exception is an event that disrupts the normal flow of program execution. This can
be deemed as an error because it breaks from the normal flow. When the error occurs,
an object, called an exception object, is generated with information about the error and
is passed to the runtime system. Creating an exception and passing it to the runtime
system is called “throwing an exception.”

In Example 2-12, a comment stating ERROR HANDLING PART 1 is right above the method
called setValue(). Here the original method changed to declare the terms “throws
Exception.” This states that the method could throw an exception object of class Excep
tion (a variety of subclasses could be specified, such as IOException). The logic in this
method has also been changed. Should the input value be negative, the logic explicitly
instantiates an Exception object and then “throws” it (throw new Exception(""set
Value Exception- Value that is set is Negative!"")).

The comment stating ERROR HANDLING PART 2 refers to the method that is referenced
below the ERROR HANDLING PART 3 comment. This method, showErrorHandling(),
contains within its body the mechanism to handle the error/exception. The mechanism
is the try-catch-finally block. Code within the “try” section is covered in that should an
exception get thrown, and the exception type is the same class or a subclass of the
exception type that is defined in the catch, then the catch’s body is executed. Note that
the lines of code after the method call that throws the exception never get executed.
Whether or not an exception is thrown, the finally block’s code will always get executed
after the catch or try completes. Note that because setValue() now throws an exception,

Error/Exception Handling | 21

we had to wrap the other setValue calls in the main() method with try-catch blocks (as
shown by the ERROR HANDLING PART 4 sections).

Complex Example
This section walks through a series of examples to illustrate some of the more complex
topics related to Android programming:

1. Open up a text editor and copy and paste six files: Example 2-14, Example 2-15,
Example 2-16, Example 2-17, Example 2-18, and Example 2-19.

2. As shown in Example 2-20, compile using the javac command at a command
prompt.

3. Using the java command (Example 2-20), execute the program.
4. The output should look something like Example 2-21 (the output will vary because

there is a random element in play).

Example 2-14. Complex Example—ComplexExample.java
package com.marakana.examples;

/*
 In this example, ComplexExample has a main method when executed
 instantiates a MsgGenerator object and then passes this object to a
 Thread. The Thread's process is then started and then the main thread
 waits till the generator object notifies that it is done (via the
 notifyAll()). At this point the generator's printList method is called
 and information about what was in the generator's list is printed out.
*/
public class ComplexExample {

 public static void main(String[] args) {
 System.out.println("ComplexExample start");

 MsgGenerator generator = new MsgGenerator();

 Thread thread = new Thread(generator);
 thread.start();

 try {
 synchronized(generator) {
 generator.wait();
 }
 } catch (InterruptedException ie) {
 System.err.println("Generator Wait Interrupted!!!");
 ie.printStackTrace();
 } finally {
 System.out.println("Generator Wait End");
 }

22 | Chapter 2: Java Review

www.allitebooks.com

http://www.allitebooks.org

 generator.printList();

 System.out.println("ComplexExample end");
 }
}

Example 2-15. ComplexExample—MsgInterface.java
package com.marakana.examples;

public interface MsgInterface {
 void setMsg(String msg);
 String getMsg();
 String getMsgType();
}

Example 2-16. ComplexExample—MsgTypeImplementation.java
package com.marakana.examples;

public class MsgTypeImplementation implements MsgInterface {

 private String msg;

 public void setMsg(String msg) {
 this.msg = msg;
 }

 public String getMsg() {
 return this.msg;
 }

 public String getMsgType() {
 return "MsgTypeImplementation";
 }
}

Example 2-17. ComplexExample—MsgTypeAdditional.java
package com.marakana.examples;

public class MsgTypeAdditional implements MsgInterface {

 private String msg;

 public MsgTypeAdditional() { }

 public MsgTypeAdditional(String msg) {
 setMsg(msg);
 }

 public void setMsg(String msg) {

Complex Example | 23

 this.msg = msg + " 2";
 }

 public String getMsg() {
 return this.msg;
 }

 public String getMsgType() {
 return "MsgTypeAdditional";
 }
}

Example 2-18. ComplexExample—MsgTypeOneExtended.java
package com.marakana.examples;

public class MsgTypeImplementationExtended extends MsgTypeImplementation {

 @Override
 public String getMsgType() {
 return "MsgTypeImplementationExtended";
 }

 // here we Overload the getMsg() method so we now have an
 // additional method that adds something to the getMsg() string

 public String getMsg(String pre) {
 return pre+" "+getMsg();
 }

 // and again we Overload the getMsg() method this time with a int

 public String getMsg(int post) {
 return " -- "+post;
 }
}

Example 2-19. ComplexExample—MsgGenerator.java
package com.marakana.examples;

import java.util.ArrayList;
import java.util.Random;

public class MsgGenerator implements Runnable {
 private ArrayList<MsgInterface> list;

 public MsgGenerator() {
 list = new ArrayList<MsgInterface>();
 }

 public void run() {

24 | Chapter 2: Java Review

 Random rand = new Random();
 int r = 0;
 ArrayList<MsgInterface> localList =
 new ArrayList<MsgInterface>();

 while((r = rand.nextInt(20)) < 18) {
 MsgInterface msg = null;

 switch (rand.nextInt(3)) {
 case 0: msg = new MsgTypeImplementation();
 break;
 case 1: msg = new MsgTypeAdditional();
 break;
 case 2: msg =
 new MsgTypeImplementationExtended();
 break;
 }

 msg.setMsg("Num is: "+r);

 localList.add(msg);
 }

 synchronized(this) {
 list = localList;
 this.notifyAll();
 }
 }

 public void printList() {
 ArrayList<MsgInterface> localList;
 synchronized (this) {
 localList = list;
 }

 System.out.println("List Contents:");
 for(MsgInterface msg : localList) {
 System.out.println(" "+msg.getMsgType()+" msg = "+msg.getMsg());
 if(msg.getMsgType().equals("MsgTypeImplementationExtended")) {
 System.out.println(" *** Overloaded getMsg : "+
 ((MsgTypeImplementationExtended) msg).getMsg("Special") +
 ((MsgTypeImplementationExtended) msg).getMsg(99));
 }
 }
 System.out.println("List Size: "+list.size());
 }
}

Compile using the javac command in a command prompt, and then use the java
command to execute the program, as shown in Example 2-20.

Complex Example | 25

Example 2-20. SimpleExample compile and execute
javac -d . ComplexExample.java MsgInterface.java MsgTypeImplementation.java \
 MsgTypeAdditional.java MsgTypeImplementationExtended.java \
 MsgGenerator.java

OR

javac -d . *.java

java -cp . com.marakana.examples.ComplexExample

The output should look something like Example 2-21 (the output will vary because there
is a random element in play).

Example 2-21. ComplexExample sample output
ComplexExample start
Generator Wait End
List Contents:
 MsgTypeAdditional msg = Num is: 2 2
 MsgTypeAdditional msg = Num is: 7 2
 MsgTypeImplementationExtended msg = Num is: 13
 *** Overloaded getMsg : Special Num is: 13 -- 99
 MsgTypeImplementation msg = Num is: 13
 MsgTypeImplementationExtended msg = Num is: 6
 *** Overloaded getMsg : Special Num is: 6 -- 99
 MsgTypeImplementationExtended msg = Num is: 2
 *** Overloaded getMsg : Special Num is: 2 -- 99
 MsgTypeAdditional msg = Num is: 2 2
 MsgTypeAdditional msg = Num is: 16 2
 MsgTypeAdditional msg = Num is: 9 2
 MsgTypeImplementation msg = Num is: 15
 MsgTypeImplementation msg = Num is: 13
 MsgTypeImplementationExtended msg = Num is: 2
 *** Overloaded getMsg : Special Num is: 2 -- 99
 MsgTypeImplementationExtended msg = Num is: 6
 *** Overloaded getMsg : Special Num is: 6 -- 99
 MsgTypeImplementation msg = Num is: 10
 MsgTypeAdditional msg = Num is: 10 2
 MsgTypeImplementationExtended msg = Num is: 10
 *** Overloaded getMsg : Special Num is: 10 -- 99
List Size: 16
ComplexExample end

Interfaces and Inheritance
The ComplexExample program in the preceding section used multiple classes. Of these,
look closely at MsgTypeImplementation, MsgTypeAdditional, and MsgTypeImplemen
tationExtended. Both MsgTypeImplementation and MsgTypeAdditional use the term
implements and reference MsgInterface. The file MsgInterface.java, unlike the other

26 | Chapter 2: Java Review

files, uses the term interface rather than class. An interface is a reference type similar to
a class, but only contains within it constants, method signatures, and nested types. In
the MsgInterface case we only have method signatures, which are skeleton descriptions
of methods (name, return type, and argument types are described). MsgTypeImplemen
tation and MsgTypeAdditional implement MsgInterface; they are fleshed-out ver‐
sions of MsgInterface. By doing this, both classes must have defined within them the
methods described in MsgInterface. What this does is enable the code in MsgGenera
tor to view instances of MsgTypeImplementation and MsgTypeAdditional as instances
of MsgInterface. Note that classes may implement multiple interfaces, thus being per‐
ceived as multitypes.

The class MsgTypeImplementationExtended uses the term extends and then references
MsgTypeImplementation. This is inheritance, where one class is a subclass of another.
Unlike the case where a class may implement multiple interfaces, only one class may be
extended. Thus, there is a clear chain of parent-to-child-class that is defined. In this
case, because MsgTypeImplementationExtended is a subclass of MsgTypeImplementa
tion, it too is a class that implements MsgInterface. However, because MsgTypeImple
mentationExtended is a subclass of MsgTypeImplementation, and MsgTypeImplemen
tation has defined the methods that MsgInterface described, MsgTypeImplementatio
nExtended has no need to define the methods. It can, however, override a method and
make it its own, as in the case of getMsgType.

One other thing that we have done within MsgTypeImplementationExtended is to create
two methods similar to the basic getMsg() that all MsgInterfaces must have:
getMsg(String pre) and getMsg(int post). Note that the return type is the same
(String) and the method name is the same (getMsg), but we have included an input
variable (String pre and int post). This is called overloading and is specifically de‐
fined as the ability to have more than one method with the same name in a class. What
distinguishes them is the difference in the parameter list (inputs). In MsgTypeImplemen
tationExtended, both getMsg() and getMsg(String pre) can coexist and the compiler
is able to figure out which method to call based on the inputs passed. Notice that in the
printList() method of MsgGenerator, we see if the MsgInterface in question is a
MsgTypeImplementationExtended class ((MsgTypeImplementationExtended) msg)
and then we call both the getMsg(String pre) and getMsg(int post) methods. We
have to cast the msg object as a MsgTypeImplementationExtended in order to call the
two methods because msg is initially referenced as a MsgInterface, which does not have
the two methods in question.

Collections
In this example, MsgGenerator has a variable called a list. This list is an instance of a
special class called ArrayList. ArrayList is part of the java.util package and is part of

Collections | 27

a group of classes called collections. A collection is an object that groups multiple objects
into a single unit. In this case, ArrayList is a list of objects that are kept in a specific
order and each object may be referenced by an index (much like an array). It is a very
good idea to become familiar with the collections type such as Map (key-value paired set
of objects) and Set (a group of objects that are guaranteed to be unique within the set).

Generics
The ArrayList defined in MsgGenerator references <MsgInterface>. This is the use of
generics. Though a full description of generics is out of scope for this review, we wish
to point out the strong typing that this brings about because this is heavily relied upon
throughout Android. In this case, the ArrayList can only hold classes that are of type
MsgInterface (which MsgTypeOne, MsgTypeTwo, and MsgTypeThree all are). Any other
type of object placed into the ArrayList will cause an exception to be thrown. This also
enables the programmer to not have to cast an object that is grabbed from the ArrayList.

Threads
In this section we cover a very basic example of a two-threaded program. A thread is
an execution process. The first thread is the main thread that is started by calling
main(). The second thread is instantiated and started within main(). Here a Thread
object is instantiated and the generator class is passed as an argument. The MsgGenera
tor class implements a interface called Runnable. A Runnable class must implement a
method called run(). The newly created Thread, upon having the start() method
called, leaps up and proceeds to run in parallel to the main thread and executes the
MsgGenerator object’s run method.

ComplexExample’s first thread (main) is dependent on the second thread. More specif‐
ically, the first thread ends up calling generateList on the generator object, which
prints out to the console the list of objects and their respective message values. Because
we want to get a printout of all objects in the list, we must wait for the list to get filled.
However, because the two processes are running in parallel, it is difficult to figure out
when the list is filled up. To find this out, there needs to be a signalling method between
the two threads. In this case we use the wait-notify (notifyAll) method. When the
main thread calls wait on the generator object the main thread, is effectively paused, or
waiting. In the meantime, the generator object proceeds on until after the list is filled.
It then calls notifyAll, which proceeds to let all objects waiting on it know that the list
is done. At this point, the main thread stops pausing and proceeds.

In Java 5 and above, there is a whole package named java.util.concurrent that contains
a whole set of classes dedicated toward handling and simplifying threading, such as

28 | Chapter 2: Java Review

ThreadPools and Schedulers. It is highly recommend that you become familiar with
this package.

Summary
This chapter covered a very quick review of Java, from its basic syntax to more complex
topics.

Summary | 29

CHAPTER 3

The Stack

This chapter offers a 9,000-foot overview of the Android platform. Although you’re
concerned primarily with writing Android applications, understanding the layout of
the system will help you understand what you can or cannot easily do with Android.

By the end of this chapter, you’ll understand how the whole system works, at least from
a high level. You should be able to identify each of the main layers of the platform and
have a general understanding of its purpose.

Stack Overview
The Android operating system is like a cake consisting of various layers. Each layer has
its own characteristics and purpose—but the layers are not always cleanly separated and
often seep into one another.

As you read through this chapter, keep in mind that we are concerned only with the big
picture of the entire system and will get into the nitty-gritty details later on. Figure 3-1
shows the parts of the Android stack.

Linux
Android is built on top of the Linux kernel. Linux is a great operating system, and is the
poster child of open source. Its kernel has been hardened and tightened over the years
by many engineers continually improving it. Many users depend on Linux every day
(often unknowingly).

There are many good reasons for choosing Linux as the base of the Android stack. Some
of the main ones are its portability, security, and features:

31

Figure 3-1. Android stack

Portability
Linux is a flexible platform that is relatively easy to port to various hardware ar‐
chitectures. What Linux brings to Android is a level of hardware abstraction. Be‐
cause Android is based on the Linux kernel, we don’t have to worry too much about
underlying hardware features. Most low-level parts of Linux have been written in
fairly portable C code, which allows for third parties to port Android to a variety
of devices.

Security
Linux is a highly secure system, having been tried and tested through some very
harsh environments over the decades. Android relies heavily on Linux for security,
and all Android applications run as separate Linux processes with permissions set
by the Linux system. As such, Android passes many security concerns to the un‐
derlying Linux system. Unlike some other Java-based mobile platforms, in Android

32 | Chapter 3: The Stack

www.allitebooks.com

http://www.allitebooks.org

the kernel is the sole enforcer of Android permissions. This allows for a simple, yet
very powerful, security mechanism. It also allows Android apps access to native
code, such as fast C implementations of various libraries via the Java Native
Interface.

Features
The Linux kernel comes with a lot of very useful features. Android leverages many
of them, such as support for memory and power management, as well as networking
and radio functionality.

Android != Linux
Keep in mind that Android is not just another flavor of Linux, in the way that Ubuntu,
Fedora, or Red Hat are. Many things you’d expect from a typical Linux distribution
aren’t available in Android, such as the X11 window manager, the ability to add a person
as a Linux user (e.g., user Bob), or even the glibc standard C library.

On the other hand, Android adds quite a bit to the Linux kernel, such as an improved
power management that is well-suited for mobile battery-powered devices, a very fast
interprocess communication mechanism based on Binder, and a mechanism for sand‐
boxing applications so they are isolated from one another.

The Linux kernel is licensed under General Public License (GPL), so
any modifications and additions to it must also be licensed under the
same GPL open source license. Remember that Google’s vision for
Android is to create a platform that runs on many different devices.
As such, Google expects other companies to dedicate their engi‐
neers to work on additional Android features. For that to be com‐
mercially viable, it is helpful to allow those companies to own their
derivative work and be able to license it under whatever license they
see fit: open or closed source. Because the GPL doesn’t allow for that,
Android tries hard to keep GPL code out of the rest of the Android
stack. Sometimes those legal and business issues result in some in‐
teresting software architecture choices.

Native Layer
The native layer is a set of code that is written mostly in C/C++. Unlike the Linux layer,
the native layer is in the so-called user space. This part of the stack consists of couple of
different parts, such as HAL, native libraries, native daemons, and native tools.

Native Layer | 33

HAL
HAL stands for hardware abstraction layer. If you recall from “Linux” on page 31, Linux
was picked because of its ability to run on many various hardware boards. Indeed, Linux
probably has the widest device driver support of any other operating system on the
planet. The problem, however, is that access to the device drivers is usually not very
standardized. That means that an application would need to know how to access a
particular piece of hardware depending on the hardware manufacturer specifications
and its device driver.

Android was designed to run on many different hardware configurations, and an An‐
droid app shouldn’t care about specifics of certain boards. To solve this problem, An‐
droid abstracts each major device driver with a shared native library. This library is a
shared object that adheres to a common interface supporting any major hardware driver.
What that means is that each manufacturer needs to implement a common library and
abstract out the intricacies of its specific device design.

HAL basically provides the unified device driver model that is missing in standard
Linux. This is its primary role. Secondarily, it has an additional feature of keeping the
GPL code out of the user space. Basically, most device drivers are implemented as Linux
kernel modules, and are often built into the kernel itself. That makes them subject to
GPL license rules that would possibly require any code that uses such drivers to also be
licensed under GPL. As more and more people develop and customize the Android
platform, having this restriction on the licensing of derived code might discourage
commercial programmers, because they would be giving their intellectual property away
under the same GPL rules. HAL provides a nice buffer between kernel space and the
rest of the Android stack, allowing for much more flexible licensing of any derived work
in the upper layers of the stack.

Native Libraries
The native libraries are C/C++ libraries. Their primary job is to support the Android
Application Framework layer, which we’ll explore next.

Some of these libraries are purpose-built for the Android OS, whereas others are often
taken from the open source community in order to complete the operating system.

Some of the notable purpose-built Android native libraries include:
Bionic

An Android-specific implementation of libc library, derived from the BSD project
and updated for needs of Android OS. Bionic also helps keep LGPL code out of
user space.

34 | Chapter 3: The Stack

GNU libc, the default C library for Linux, is licensed under a Lesser
General Public License (LGPL), which requires any changes that you
release publicly to be pushed back to the open source community. As
such, it might not be the most business-friendly open source license
when a company wants to keep its derivative work proprietary. Bi‐
onic, on the other hand, is licensed under an Apache/MIT license,
which doesn’t require derivative works to be open sourced.

Binder
A very fast inter-process communication mechanism that allows for one Android
app to talk to another.

Framework libraries
Various libraries designed to support system services, such as location, media,
package installer, telephony, WiFi, voip, and so on.

Other open source libraries include:
Webkit

A fast web-rendering engine used by Safari, Chrome, and other browsers.

SQLite
A full-featured SQL database that the Android app framework exposes to applica‐
tions.

Apache Harmony
An open source implementation of Java libraries.

OpenGL
3D graphics libraries.

OpenSSL
The secure socket layer, allowing for secure point-to-point connectivity.

Native Daemons
Native daemons are executable code that usually runs to support some kind of system
service. Examples of native daemons include:
Service Manager (servicemanager)

The umbrella process running all other framework services. It is the most critical
native daemon.

Radio interface layer daemon (rild)
Responsible for supporting the telephony functionality via GSP or CDMA, usually.

Native Layer | 35

Installation daemon (installd)
Supports management of apps, including installation, upgrades, as well as granting
of permissions.

Media server (mediaserver)
Supports camera, audio, and other media services.

Android Debug Bridge (adbd)
Supports developer connectivity from your PC to the device (including the emu‐
lator) so that you can develop apps for Android.

There are about a dozen other native services. Most of these services are started by the
init process, which we’ll explore next.

Native Tools
Native tools include many standard Linux command-line tools, as well as the init
process that is responsible for starting all the native daemons, among other things.

Like most other operating systems, Android has a command-line shell where developers
can poke around the system. On Android, developers access this shell via ADB, which
we’ll go over later. However, if you are an experienced Linux user, you’ll quickly notice
that the set of commands available in the standard Android release is far smaller than
other typical Linux distributions. That’s because Android uses toolbox to support most
of these command-line tools, such as cd, ls, ps, top, df, and so on. If you are used to
Linux, do not expect to find grep, vi, less, more, or any other of the common developer
tools. That’s why platform developers often tend to replace the standard Android tool
box with the Linux busybox. However, doing that is well beyond the scope of this book,
because it gets into details of the Android internals.

Dalvik
Dalvik is a purpose-built virtual machine designed specifically for Android.

The Java virtual machine (VM) was designed to be a one-size-fits-all solution, and the
Dalvik team felt it could do a better job by focusing strictly on mobile devices. It looked
at which constraints specific to a mobile environment are least likely to change in the
future. One of these is the limited battery life, and the other is the size of ever-shrinking
mobile devices. Dalvik was built from the ground up to address those constraints.

To address the battery constraint, Dalvik was designed as a registry-based virtual ma‐
chine, which makes it suitable for ARM-based chips. ARM tends to run much cooler
than the equivalent Intel x86 type of architecture, and thus consumes less battery, which
x86 chips tend to waste on heat. The standard Java VM, by comparison, is stack-based,

36 | Chapter 3: The Stack

making it suitable for today’s powerful PCs and servers, most of which are plugged into
the wall.

To address the size issue, Dalvik does some interesting things. When instantiating an
object, the standard Java VM would locate the class file for that object on the disk and
then load it into RAM. That makes sense because the disk on a typical PC or server is
mechanical, thus it reads and writes at relatively slow speeds compared to RAM. Mobile
devices, on the other hand, do not use hard drives but rely on solid state memory for
both RAM as well as “disk” storage. To minimize doubling of limited available memory,
Dalvik “loads” the class file directly on the disk, by pointing to its location. It copies into
RAM only things that change, using a copy-on-write algorithm. This allows for much
lower total memory usage.

Also, each Android application runs in its own process in order to provide for applica‐
tion sandboxing, which is the cornerstone of the Android security model. That means
that at any point in time, your Android device may have a dozen or more Dalvik VMs
loaded in memory. To minimize total memory consumption, Dalvik itself is made to
have a tiny memory footprint, as well as to share system libraries instead of creating a
copy for each instance.

Another side effect of replacing the Java VM with the Dalvik VM is the licensing.
Whereas the Java language, Java tools, and Java libraries are free, the Java virtual machine
is not. This was more of an issue back in 2005 when the work on Dalvik started. Nowa‐
days, there are open source alternatives to Sun’s Java VM, namely the OpenJDK and
Apache Harmony projects. Though Android uses Apache Harmony for its Java libraries,
it relies on Dalvik for the execution of the code.

By developing a truly open source and license-friendly virtual machine, Android yet
again provides a full-featured platform that others are encouraged to adopt for a variety
of devices without having to worry about the license.

Dalvik was developed by Dan Bornstein and his team at Google. He
named it after Dalvik, a fisherman village in Iceland. As a tribute to
this virtual machine, the author got a California license plate that says
DALVIK. Honk if you see it on the road!

Android and Java
In Java, you write your Java source file, compile it into Java byte code using the Java
compiler, and then run this byte code on the Java VM. In Android, things are different.
You still write the Java source file, and you still compile it to Java byte code using the
same Java compiler. But at that point, you recompile it once again to Dalvik byte code
using the Dalvik compiler. It is this Dalvik byte code that is then executed on the Dalvik

Dalvik | 37

http://openjdk.java.net/
http://harmony.apache.org/

VM. Figure 3-2 illustrates this comparison between standard Java (on the left) in An‐
droid using Dalvik (on the right).

Figure 3-2. Java versus Dalvik

It might sound like you have to do a lot more work with Android
when it comes to Java. However, all these compilation steps are au‐
tomated by tools such as Eclipse or Ant, and you never notice the
additional steps.

You may wonder, why not compile straight from Java into the Dalvik byte code? There
are a couple of good reasons for the extra steps. Back in 2005, when work on Dalvik
started, the Java language was going through frequent changes, but the Java byte code
was more or less set in stone. So, the Android team chose to base Dalvik on Java byte
code instead of Java source code.

A side effect of this is that you can write Android applications in another language that
compiles down to Java byte code. For example, you could use Scala, or Python, or Ruby
to code your Android app. We’re seeing some early development of apps and frameworks
to support other languages and make Android development appealing to an even wider
developer audience.

38 | Chapter 3: The Stack

Another thing to keep in mind is that Android Java is a nonstandard collection of Java
classes. Java typically ships in:
Java Standard Edition

Used for development on basic desktop-type applications

Java Enterprise Edition (a.k.a. J2EE or JavaEE)
Used for development of enterprise applications

Java Micro Edition (a.k.a. J2ME or JavaME)
Java for mobile applications

Android’s Java set of libraries is closest to Java Standard Edition. The major difference
is that Java user interface libraries (AWT and Swing) have been taken out and replaced
with Android-specific user interface libraries. Android also adds quite a few new fea‐
tures to standard Java while supporting most of Java’s standard features. So, you have
most of your favorite Java libraries at your disposal, plus many new ones.

Application Framework
The application framework is a rich environment that provides numerous libraries and
services to help you, the app developer, get your job done. This is the best-documented
and most extensively covered part of the platform because it is this layer that empowers
developers to get creative and bring fantastic applications to the market.

In the application framework layer, you will find numerous Java libraries specifically
built for Android. These purpose-built Android classes live in android.* packages.

Yes, you also have access to most of the standard Java libraries, such as java.lang.*,
java.utils.*, java.io.*, java.net.*, and so on. But some, such as java.awt.* and
javax.swing.*, have been taken out. We discussed this a bit in “Android and Java” on
page 37.

You will also find many services (or managers) that provide the ecosystem of capabilities
your application can tap into, such as location, sensors, WiFi, telephony, and so on. We
will talk about system services later in the book.

As you explore Android application development, most of your focus will be on this
part of the stack, and you will get to use many of the application framework components.

Application Framework | 39

The Android.com website provides a very good reference documen‐
tation for the entire application framework layer. While there, no‐
tice that in the top-right corner you have a search box allowing you
to quickly find a reference to any Android library. On the left side of
the page, you can even use the filter to filter the results based on the
API level that you are developing for. For example, if you’re develop‐
ing your app specifically for Ice Cream Sandwich, you’d set API lev‐
el to 14.

Applications
At the end of the day, we have apps. After all, the whole point of the entire set of layers
of the stack below is to support the applications in providing some sort of utility to the
user.

Apps can come preinstalled on the device by the carrier or manufacturer or can be
downloaded by the user from one of the Android markets.

Android Application Package (APK)
An application is a single file. We call it an Android application package, or APK for
short. An APK file has a couple of main components archived together. It is a ZIP file
that you can unzip and look inside, if you’re curious.

An APK consists of the following major components:
Android Manifest file

This is the main file that provides the big picture about your app—all of its com‐
ponents, permissions, version, and minimum API level needed to run it, to name
a few. We’ll explore AndroidManifest.xml in much more detail in “Hello World!”
on page 48.

Dalvik executable
This is all your Java source code compiled down to a Dalvik executable. The Dalvik
executable is the code that runs your application. It is located in a file called
classes.dex.

Resources
Resources are everything that is not code. Your application may contain a number
of images and audio/video clips, as well as numerous XML files describing layouts,
language packs, and so on. Collectively, these items are the resources. They are in
a file called resources.ap_ inside the APK archive as well as in subdirectories such
as drawable for images.

40 | Chapter 3: The Stack

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html

Native libraries
Optionally, your application may include some native code, such as C/C++ libraries.
These libraries could be packaged together with your APK file.

Signatures
Your APK file also contains a digital signature certifying that you are the author of
this application. Signatures are in the META-INF folder. The next section describes
application signing.

Application Signing
Android applications must be signed before they can be installed on a device. For de‐
velopment purposes, we’ll be signing our example applications with a debug key—a key
that you already have on your development platform. However, when you distribute
your application commercially, you must sign it with your own key. The Android de‐
veloper document titled “Signing Your Application” has the details.

Application Distribution
One way in which Android is quite different from other platforms is the distribution of
its apps. On most other platforms, such as iOS, a single vendor holds a monopoly over
the distribution of applications. Android allows many different stores, or markets. Each
market has its own set of policies with respect to what is allowed, how the revenue is
split, and so on. As such, Android is much more of a free market space in which vendors
compete for business.

In practice, this free market is very much an oligopoly, with a few big markets and many
smaller boutiques.

Google Play
The biggest market currently is Google Play, also known as Play Store (formerly “An‐
droid Market”), run by Google. All the major carriers and manufacturers have it pre‐
installed on their devices in order to provide users with the most apps. Google knows
this and uses this near-monopoly as the tool to ensure those devices adhere to Android
Compatibility Test Suite, or CTS for short. We discussed CTS in “Android Compatibil‐
ity” on page 4.

Other markets
In addition to Google’s own market, there are many smaller boutiques. Some of them
are sponsored by carriers, such at T-Mobile, Sprint, and Verizon. Others may be run by
specific manufacturers, such as Cisco and its enterprise app market to support the Cisco
Cius business tablet. Additionally, enterprises are starting to roll out their own private
boutiques to support their workforce, such as various US government departments.

Applications | 41

http://developer.android.com/guide/publishing/app-signing.html

A notable exception in this group is Amazon’s App Store, which has big ambitions. It is
also designed to support its Kindle Fire, an Android device that does not adhere to CTS
and thus doesn’t get the access to Google Play.

Side-loading apps
Applications can also be distributed via the network or via the USB cable. When you
download an APK file from a website through the browser, the application represented
by the APK file is installed automatically on your phone. In the development mode,
we’ll be using the ADB over USB to install apps on the device.

What about viruses, malware, spyware, and other bad things?
Given Android’s decentralized application distribution system, it is certainly possible
for an unsuspecting user to download a malicious app that consequently does bad things.
For example, there have been reports of phishing attacks via fake banking apps. Android
has succeeded at becoming the number one platform for vicious apps.

Doesn’t all this create an issue for the users? It certainly appears so. Android leaves it to
the marketplace to sort itself out. Eventually, there will be stores that are more reputable
and those that are less so, at least in theory. Google relies on user reports for policing
its Google Play, but other markets may choose to do more proactive testing and raise
the bar on what gets into the store in the first place.

Summary
In this chapter, you got a big-picture overview of what comprises the Android operating
system and how its various pieces fit together. You now understand what makes Android
so complete, open, and attractive to developers.

In the next chapter, we’ll look at how to set up your development environment so you
can get up to speed quickly. We’ll also look at a simple “Hello World” application and
dissect it to help you understand the various pieces of an Android application.

42 | Chapter 3: The Stack

www.allitebooks.com

http://aol.it/18kjpmu
http://info.publicintelligence.net/DHS-FBI-AndroidThreats.pdf
http://www.allitebooks.org

CHAPTER 4

Installing and Beginning Use of
Android Tools

In this chapter, you will learn how to set up your environment for Android development.
We’ll go beyond just listing where you can download the software, and will cover some
of the best practices in getting set up. We’ll look at choices for development operating
systems as well as the Android tools available. You will see the good, the bad, and the
ugly of the various tool and platform choices that you’re about to make (or that someone
else has already made for you).

By the end of this chapter, you will have your entire development environment set up.
You’ll be able to write a Hello World application, build it, and run it on the emulator (or
a physical device, if you want).

We use ~ to refer to your home directory. On Mac OS X, that’s typi‐
cally something like /Users/marko. On Linux, it would be /home/
marko, on Windows Vista and 7, it would be C:\Users\marko, and on
Windows XP it would be C:\Documents and Settings\marko. To keep
things simple and consistent, we’re going to use Unix-style forward
slashes and not Windows backslashes to denote file path separators.
So, if you’re on Windows, just change ~ to C:\Users\ YourUser‐
Name and / to \. Other than that, everything should be pretty much
the same for different operating systems, regardless of whether you
use OS X, Linux, or Windows.

Installing Java Development Kit
Android development is based on Java language, tools, and libraries. So one of the first
requirements is that you install Java on your machine. Before proceeding, you may want

43

to check whether you already have Java, and whether it’s an up-to-date version. To do
this, open your command-line terminal:
On Windows

Click Start, choose Run, and type cmd. This should open up a command prompt
window.

On Mac
Start the Terminal application located in the /Applications/Utilities/ folder.

On Linux
Open the Terminal application.

In your terminal, type java -version and press Enter. If the Java runtime environment
is set up, you should see a version number. Make sure it is 1.6 or greater.

Next, type javac -version to check whether you have a Java compiler installed. You
should see a version number of 1.6 or greater as well. Example 4-1 shows an example
of the desired outcome.

Example 4-1. Example of Java command-line output
[marko:~]> java -version
java version "1.6.0_31"
Java(TM) SE Runtime Environment (build 1.6.0_31-b04-413-10M3623)
Java HotSpot(TM) 64-Bit Server VM (build 20.6-b01-413, mixed mode)
[marko:~]> javac -version
javac 1.6.0_31

If you pass these two tests, you can proceed to “Installing the Android SDK” on page
45. Otherwise, continue.

Mac users can install Java directly from the Software Update app. Linux users may have
an automated package installation utility, depending on the Linux flavor. Windows users
should install it via a download from the official Oracle site. You want the Java Devel‐
opment Kit (JDK) Standard Edition (SE), version 1.6 or later.

Java comes as a Runtime Environment (JRE) and Development Kit (JDK). To program
for Java, you need the JDK, which includes the Runtime Environment. The JRE on its
own is good only for running existing Java code.

Java also ships in three editions: Standard Edition (JavaSE), which is your basic Java;
Enterprise Edition (JavaEE, also known as J2EE), which is a bloated enterprise superset
of libraries and tools; and Mobile Edition (JavaME), which is used by some mobile
devices, but not by Android devices. What you need is Java SE.

Regarding versions, Android was initially based on Java version 1.5, a.k.a. Java 5. Since
Gingerbread, it has been upgraded to Java 1.6, a.k.a. Java 6. So, version 1.6 is what you
want. Note that as of right now, Java 1.7 or Java 7 is not fully supported by Android, nor

44 | Chapter 4: Installing and Beginning Use of Android Tools

http://bit.ly/TEA7iC

does Android need any Java 7 features. So if possible, stay away from it. If you must use
it, you can make it work for Android by setting it to behave as Java 1.6 (in Eclipse, go
to Preferences → Java → Compiler and set the Compiler compliance level to 1.6 or
above).

After you download Java Development Environment Standard Edition 1.6 or later for
your appropriate operating system, you can usually set it up just by running the auto‐
mated installation script. Repeat the command-line terminal tests discussed at the be‐
ginning of this section to make sure the installation was successful and you have the
right version of Java installed.

Installing the Android SDK
The Android Software Development Kit (SDK) is necessary to develop applications for
Android. The SDK comes with a set of tools as well as a platform where you can run
programs and see it all work. You can download the Android SDK for your particular
platform from the Android SDK Download page.

Once you download it, unzip (or on Linux, untar) it into a folder that is easy to get to.
Further examples in the book will assume your SDK is in the folder ~/android-sdk. If
it’s in a different location, use that location instead of ~/android-sdk. For example:
Windows

C:\apps\android-sdk-windows

Linux
/home/YourUserName/android-sdk-linux_86

Mac OS X
/Users/YourUserName/android-sdk-mac_86

For Windows users, we strongly recommend choosing directories
whose names contain no spaces. This is because we’ll be doing work
on the command line and spaces just complicate things. Because the
Windows XP home directory is in C:\Documents and Settings, we
would recommend putting android-sdk in a top-level directory that
you create, such as C:\apps.
However, on Windows Vista or 7, you can simply extract android-
sdk into C:\Users\YourUserName.

Setting Up a PATH to Tools
The major tools in the Android SDK are located in two folders. Because we’re going to
use these tools from the command line, it is very helpful to add your ~/android-sdk/
tools/ and your ~/android-sdk/platform-tools/ directories to your system PATH variable.

Installing the Android SDK | 45

http://bit.ly/sdkandroid

This will make it easier to access your tools without having to navigate to their specific
location every single time.

Details for setting up the PATH variable depend on the platform; see step 2 of the docu‐
ment Installing Android SDK.

Installing Eclipse
Eclipse is an open source collection of programming tools originally created by IBM
for Java. Nowadays, most developers in the Java community favor Eclipse as their In‐
tegrated Development Environment (IDE) of choice. Eclipse lives at http://eclipse.org.

Eclipse has a lot of time-saving features, which we’ll be pointing out as we continue.
Keep in mind that, although powerful, Eclipse tends to be very resource hungry, so you
might want to restart it once a day if it starts running sluggishly.

Although you can do Android development with any text editor or IDE, most developers
seem to be using Eclipse, and thus that’s what we use in this book.

If you choose not to use Eclipse, please refer to “Setting Up an Exist‐
ing IDE”.
In May 2013, at Google I/O, the Android team announced it would
move away from Eclipse to a new standard platform based on Gra‐
dle. Some time will pass before the tools are stable, though, so we
recommend you use the existing Eclipse platform for now.

Download Eclipse. We recommend Eclipse IDE for Java Developers (not the twice-as-
large Eclipse for Java EE Developers). You can install it in any directory you’d like.

Eclipse Workspace
Eclipse organizes all your work by projects. All your projects are placed in a workspace,
which is a location you choose. So, your decision about where to put your workspace is
significant. We recommend ~/workspace as a simple place for your code. On Windows,
however, we recommend storing your workspace in a directory that doesn’t have spaces
in it (they complicate anything you might do at the command line). C:\workspace is a
good choice for Windows users.

Setting Up Android Development Tools
After installing Eclipse and the ADK, you need to set up Android Tools for Eclipse. The
instructions are as follows:

1. Start Eclipse, then select Help → Install New Software (see Figure 4-1).

46 | Chapter 4: Installing and Beginning Use of Android Tools

http://developer.android.com/sdk/installing.html
http://eclipse.org
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://www.eclipse.org/downloads/

2. In the Available Software dialog, click Add.
3. In the Add Site dialog that appears, enter a name for the remote site (for example,

“Android Plugin”) in the Name field.
4. In the Location field, enter this URL: https://dl-ssl.google.com/android/

eclipse/.
5. Click OK.
6. Back in the Available Software view, you should now see Developer Tools added to

the list. Select the checkbox next to Developer Tools, which will automatically select
the nested tools Android DDMS and Android Development Tools. Click Next.

7. In the resulting Install Details dialog, the Android DDMS and Android Develop‐
ment Tools features are listed. Click Next to read and accept the license agreement
and install any dependencies, then click Finish.

8. Restart Eclipse.

Figure 4-1. Install new software

Installing the Android SDK | 47

If you have trouble downloading the plug-in, you can try using “http”
in the URL instead of “https” (https is preferred for security reasons).

Eclipse is a very feature-rich development environment with many
useful shortcuts and features. To help you pick up Eclipse features in
the shortest time possible, we recommend watching Dan Rosen’s vid‐
eo tutorial Introduction to Eclipse - Driving Java Productivity. It’s only
30 minutes long and will likely save you hours as you venture into
Android development.

Hello World!
To make sure everything is set up properly, we’re going to write a simple Hello World
program. As a matter of fact, there’s not much for us to write, but a lot to understand.
This is because Eclipse will create the project shell for us from some predefined
templates.

Creating a New Project
In Eclipse, choose File → New → Android Project. Sometimes (especially the first time
you run Eclipse) the Android tools may not be appear there right away. They should
show up in the future after you’ve used them for the first time. If Android Project is not
an option under File → New, choose Other and look for Android Project in there.

In the New Android Project dialog window (Figure 4-2), fill out the following:

• Project name is an Eclipse construct. Eclipse organizes everything into projects. A
project name should be one word. We like to use the CamelCase naming convention
here. For this example, type HelloWorld. Click Next.

48 | Chapter 4: Installing and Beginning Use of Android Tools

http://marakana.com/f/595
http://en.wikipedia.org/wiki/Camel_case_(programming)

Figure 4-2. HelloWorld New Project dialog

• Choose the build target, which tells the build tools which version of the Android
platform to build the app for. Here you should see a list of available platforms and
add-ons you have installed as part of your SDK. Pick one of the newer ones, such
as Android 4.x (but don’t choose the targets named Google APIs—those are Goo‐
gle’s proprietary extensions to the Android platform). For our purposes, we’ll stick
to Android Open Source versions of the Android platform. Click Next.

Hello World! | 49

• Fill out your project properties. The application name is the plain English name of
your application. Enter something like Hello, World!!!.

• The package name is a Java construct. In Java, all source code is organized into
packages. Packages are important because, among other things, they control which
objects are visible to Java classes in your project. In Android, packages are also
important for application signing purposes. Your package name should be the re‐
verse of your domain name with optional subdomains. We might use com.exam
ple.calculator if we were building a calculator app and our domain name was
example.com. This example uses com.marakana.android.hello, but you should
choose a unique domain name.

• You can optionally specify an activity. We haven’t covered activities yet (you’ll learn
about them in Chapter 7), but think of them as corresponding to the various screens
in your application. An activity is going to be represented by a Java class, so its name
should adhere to Java class naming conventions: start with an uppercase letter and
use CamelCase to separate words. Here, therefore, type HelloWorld for your activity
name.

• The minimum SDK version is the minimum version of Android—represented by
its API level—that is required for the device to run this application. You want this
number to be as low as possible (depending on your business requirements for your
app) so that your app can run on as many devices as possible. We’ll put 10 here to
represent Android 2.3.3, which is the oldest significant version of Android. See
Android’s section on platform versions for the most current data.

After you fill out the form as shown in Figure 4-3, click Finish, and Eclipse will create
your project.

Anatomy of an Android Project
You have created a Hello World project, but so far you haven’t written much. Yet Eclipse
has created a whole new project populated with numerous files. The directory structure
with all these files can be viewed in Eclipse’s Package Explorer window (Figure 4-4).
These boilerplate files represent a structure of a typical Android project. In this section,
we’ll review its major parts.

50 | Chapter 4: Installing and Beginning Use of Android Tools

http://developer.android.com/resources/dashboard/platform-versions.html

Figure 4-3. HelloWorld New Project dialog: Application Info

Android Manifest File
The manifest file glues everything together. It explains what the application consists of,
what all its main building blocks are, what permissions it requires, and so on. To look
at its contents, double-click the AndroidManifest.xml file in Eclipse’s Package Explorer
window.

Anatomy of an Android Project | 51

Figure 4-4. Eclipse Package Explorer of our Hello World project

Certain types of XML resources are specific to Android. Eclipse recognizes these special
resources and opens those files in an Android-specific view rather than showing you
the raw source code of that file.

Some people find this fill-in-the-form interface intuitive and easier to use. For the most
part, we prefer the raw source of the file, because it is easier to see the entire content at
once, and easier to explain what we’re doing.

In order to see the raw source, when opening those “known” XML resources, look for
a tab that appears at the bottom of each file’s window. In case of the AndroidMani‐
fest.xml file, the bottom tab bar contains Manifest, Application, Permissions, Instru‐
mentation, and AndroidManifest.xml tabs. These are different views of the same source
file, and it’s the Eclipse attempt at providing hand-holding in editing the file itself. In
order to get to the actual source of the file, choose the AndroidManifest.xml tab on the
bottom right, as shown in Figure 4-5.

52 | Chapter 4: Installing and Beginning Use of Android Tools

www.allitebooks.com

http://www.allitebooks.org

Figure 4-5. Eclipse—Java perspective

Example 4-2 contains the source code of this file.

Example 4-2. AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.hello"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".HelloWorldActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Anatomy of an Android Project | 53

Going forward, we’ll assume you have basic understanding of XML file structure. In a
nutshell, this file is used to declare basic information about your app, such as:

• The package under which it’s registered
• The version of the app, both code and name
• The Android SDK that it is targeting and requiring in order to run
• The permissions that it uses in order to run (the user gets asked to grant them at

install time)
• Custom permissions that it declares and may require from other components
• The application and all its main building blocks: activities, services, providers, and

receivers

An Android Manifest file is usually about one to two screens in length in a medium-
sized application. You will find yourself editing this file whenever you create a new
component, need to use a permission, or similar changes to the environment of the app.

Next, we’ll look at some of the resources that are created for our Hello, World project.

String Resources
Moving up the list of significant files created from the boilerplate template for a new
Android project, the first resource file, strings.xml, is located in the res/values/ folder of
your project.

This is another XML file that contains all the text that your application uses: for example,
the names of buttons, labels, default text, and similar types of strings. This is the best
practice for separating the concerns of various files, even if they are XML files. In other
words, layout.xml is responsible for the layout of widgets, but strings.xml is responsible
for their textual content (see Example 4-3).

Just as with the Manifest file, you can view this file with the so-called Android Locali‐
zation Files Editor, or you look at the raw source code by clicking the values/
strings.xml tab on the bottom right. Again, we prefer the source code view so you can
see the entire file in its entirety.

Example 4-3. The res/values/strings.xml file
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<resources>
 <string name="hello">Hello World, HelloWorldActivity!</string>
 <string name="app_name">Hello, World!!!</string>
</resources>

The strings resource file is simply a set of name-value pairs, where the name is the name
of a string resource and the value is its actual text. By referring to strings by their

54 | Chapter 4: Installing and Beginning Use of Android Tools

made-up names, we can later change the actual value without changing any of our Java
code. This is an important feature, because any changes to code would require additional
testing of the application before releasing it to the user base.

Additionally, by using a name rather than the actual value, we can provide multiple sets
of values for the same string resource. In other words, the same text could be provided
in multiple languages. We’ll explore this feature in more detail in “Alternative Resour‐
ces” on page 124. For now, it’s good to know you can have multiple versions of the
strings.xml file for each language you want your app to be supported in. The Android
OS will automatically determine the most appropriate “language pack” to use, or will
just revert to default one in case there’s nothing that matches user’s preferred locale.

Layout XML Code
Next up is the res/layout folder, containing the main.xml file. This is an XML file de‐
claring the layout of our screen.

As before, there are two ways to look at this file: graphically and as the raw XML. When
working with layouts, graphical view can be a very valuable tool. There you can drag
and drop various widgets on the screen, move them around, and right-click particular
component to set one of numerous properties. The graphical layout for our basic
main.xml file is shown in Figure 4-6.

Figure 4-6. Graphical layout view

As before, you can click the bottom-right tab to see the actual source code of this file,
as shown in Example 4-4.

Anatomy of an Android Project | 55

Example 4-4. The res/layout/main.xml file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</LinearLayout>

You can think of this XML file as an HTML page. It declares the components of a single
screen in our Android app. Just as tools such as Adobe’s Dreamweaver allow you to
create a web page in What-You-See-Is-What-You-Get (WYSIWYG) mode as well as in
raw HTML view, Eclipse lets you use both graphical layout view as well as edit the raw
XML source code.

Drawable Resources
Next, the list of files in our Hello World project in the Eclipse Package Explorer is a set
of drawable folders. They are also resources, but this time they are images. If you expand
all these various drawable folders, you’ll notice that they all contain the ic_launch‐
er.png file. This is the icon that appears in the Launcher app that we click to launch our
application.

The reason that we have three or four separate folders is that each one is for a different
density of the screen. So drawable-hdpi will be used when the app is running on a device
with a high-density screen (240 dots per inch), drawable-mdpi is used on medium
screens (160 dpi), and drawable-ldpi is used on low-density screens (80 dpi). And al‐
though it appears they all contain the same image, the images are actually different sizes,
so that on various screens they appear correct, taking into account number of pixels
available per inch.

This is an example of how alternative resources work. The same functionality is available
to all other resources as well. We briefly discussed this in “String Resources” on page 54
and will cover it in more detail in “Alternative Resources” on page 124.

The R File
We are finally making it up to the world of Java files. The gen folder is where all the auto-
generated files are located. For now, R.java is the only significant one, with

56 | Chapter 4: Installing and Beginning Use of Android Tools

BuildConfig.java being introduced in later versions of the Ice Cream Sandwich release
of tools (ADK R18).

The R file is the glue between the world of Java and the world of resources (see
Example 4-5). It is an automatically generated file, and as such, you never modify it. It
is recreated every time you change anything in the res directory; for example, when you
add an image or modify an XML file.

You don’t need to look at this file much in the future. We will use the data in it quite a
bit, but we’ll use Eclipse to help us refer to values stored in this file.

Example 4-5. gen/com/marakana/R.java
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.marakana;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

This file represents a set of various pointers that allow Java to locate app resources at
runtime. The entire file, including the obscure values, is automatically generated by an
SDK tool called aapt and has little value to humans. We’ll see later on how we use this
file, starting with the Java source code in the following section.

Java Source Code
At the top, we finally have our Java code, which drives everything. It represents the core
logic behind our application. As such, it is the main starting point of our app execution.

Example 4-6 contains the source of our Java code representing the Hello World activity;
in other words, the logic behind the single screen that we have in our app.

Drawable Resources | 57

Example 4-6. HelloWorld.java
package com.marakana.android.hello;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorldActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

What goes on in this file will become much more apparent later on. For now, just notice
that we’re subclassing the Activity class, which we included from the Android
framework.

So now that we’ve covered all the significant files that make up the Hello World project,
we’re ready to test-drive this application.

Building the Project
Thus far, we haven’t talked about how to build our project. In a traditional software
project, at some point you have to compile it, link it with other libraries, and finally
create a shippable product that users can install and run.

Eclipse actually takes care of much of the build process for you. This is because, by
default, the Build Automatically feature is enabled under the File → Project menu. If it’s
not, you may want to enable it, because it is usually a very useful feature. When Build
Automatically is on, every time you change any file, or anything in your project, Eclipse
automatically rebuilds the application. The by-products of this build are under the bin
folder in your project. If you look under the bin folder, you will find the following:
classes folder

This is where your Java source code is compiled into Java byte code, or .class files.

classes.dex file
Once your Java is compiled, it is recompiled once again into the Dalvik byte code,
and classes.dex is the archive containing all those recompiled Dalvik classes. We
talked about this process in “Android and Java” on page 37.

res folder
This is where any binary resources are copied over, such as images, movies, and
audio clips.

58 | Chapter 4: Installing and Beginning Use of Android Tools

resources.ap file
This file is an archive of all the XML resource files encoded in an efficient and easy-
to-parse format.

HelloWorld.apk
This is our final shippable product. The APK (Android Package) file represents our
application in its entirety. It is the archive containing all the Dalvik executable code
and all the resources, as well as the Android Manifest file that describes the appli‐
cation’s metainformation.

Now that we have the final shippable product in the form of our HelloWorld.apk file,
we’re ready to execute it on an Android device.

Android Emulator
The Emulator is a tool that ships with Android SDK. It allows you to run any number
of Android Virtual Devices (AVDs) right on your computer without needing a real
Android device for development purposes. The Emulator not only opens Android app
development to way more programmers, but it also makes the whole program-deploy-
test cycle shorter, making the Android development more enjoyable.

A simulator and an emulator sound very similar, but are fundamen‐
tally different. To emulate means to imitate the machine executing the
binary code. So, an emulator is sort of like a virtual machine. A sim‐
ulator merely simulates the behavior of the code at a higher level.
Android SDK ships with a true emulator, based on QEMU.

An Emulator Versus a Physical Phone
For the most part, running your application on the emulator is identical to running it
on a physical phone. That is because the emulator is an actual code emulator, meaning
it runs the same code base as the actual device, all the way down to the machine layer.

There are some notable exceptions, mostly things that are just hard to virtualize, such
as sensors. Other hardware-related features, such as telephony and location services,
can be simulated in the emulator.

Unless otherwise noted, we’re going to be agnostic to the fact that your code may be
running on a real devices versus an emulated device.

Android Emulator | 59

http://wiki.qemu.org/Main_Page

Until the Honeycomb version of Android, the Emulator was reason‐
ably fast, and for the most part we’d prefer testing our code on the
emulated device versus the real one. With Honeycomb, the Emula‐
tor became extremely slow and painful to use. This mostly has to do
with lack of multicore support and lack of GPU support that real
devices enjoy and that are missing from the Emulator. The Android
team realized this shortcoming and, since later versions of Ice Cream
Sandwich (ADT R18), th Emulator supports GPU, making it sub‐
stantially faster. It is, once again, enjoyable to test development code
on it.

To use the emulator, we’ll have to create an Android Virtual Device (AVD). The easiest
way to do that is to start Android Virtual Device tool in Eclipse.

To create a new AVD, start the Android Virtual Device Manager. You can start this tool
from Eclipse by clicking the icon or by choosing Window → AVD Manager in the
Eclipse menu bar. You should get a dialog window that looks similar to Figure 4-7.

Figure 4-7. Android Virtual Device Manager

From within the Android Virtual Device Manager window, choosing New pops up a
Create New AVD dialog window (see Figure 4-8). In this dialog, specify the parameters
for your new AVD. The name can be any name you choose. The target designates which

60 | Chapter 4: Installing and Beginning Use of Android Tools

version of Android you want installed on this particular AVD. The list of possible targets
is based on platforms and add-ons that you have installed into your SDK. If you don’t
have any targets, go back to the Android SDK and AVD Manager window and choose
the “Available packages” tab to install at least one platform, for example, Android 4.1
(API level 16).

Each AVD can have an SD card. You can just specify a number here for your built-in
card, in megabytes. The skin is the look and feel of your device as well as its form factor.
The Hardware option lets you fine-tune what this AVD does and doesn’t support.

Figure 4-8. Android Virtual Device Manager: Create New AVD dialog

Once you are done with this dialog, you will have a new Android Virtual Device in your
list. Go ahead and start it by clicking Start and then Launch, and an emulator will pop
up (see Figure 4-9).

Android Emulator | 61

Figure 4-9. Emulator

Summary
Setting up the Android development environment basically involves setting up Java,
Android SDK, and Eclipse with Eclipse tools for Android (ADT). Once you have set up
your development environment, a good way to test that everything is working is to use
Eclipse to create a simple Hello, World project and run it in the emulator. If that runs
fine, you are almost certain that your system is set up and ready for further development.

By now, you should have a general knowledge of what makes up an Android application
and what the major parts are. In the following chapter, we’ll look at how to architect an
Android app using Android’s main building blocks.

62 | Chapter 4: Installing and Beginning Use of Android Tools

CHAPTER 5

Main Building Blocks

In this chapter, you will learn Android’s capabilities by looking at the big features it
offers. We’ll give you a high-level overview of what activities are, how intents work,
when and how to use services, how to use broadcast receivers and content providers to
make your app scale, and much more.

By “main building blocks,” we refer to the pieces of an application that Android offers
you to put together into an Android app. When you start thinking about your applica‐
tion, it is good to take a top-down approach. For instance, most programmers design
applications in terms of screens, features, and the interactions between them. You start
with a conceptual drawing, something that you can represent in terms of “lines and
circles.” This approach to application development helps you see the big picture—how
the components fit together and how it all makes sense.

By the end of this chapter, you will understand the main Android components for
building applications. You should conceptually know when you’d use what component.
You will also see how these components relate to a real-world application.

A Real-World Example
In this book, we’re going to build an app to use Twitter. We know that the user should
be able to post status updates. We also know the user should be able to see what her
friends are up to. Those are basic features. Beyond that, the user should also be able to
update her username and password for the online account. So now we know we should
have the following three screens: a screen for users to update their own status, a screen
to see the status timelines of their friends, and a screen to set the preferences for the
app.

Next, we would like this app to work quickly regardless of the network connection or
lack thereof. To achieve that, the app has to pull the data from the cloud when it’s online

63

and cache the data locally. That will require a service that runs in the background as
well as a database.

We also know that we’d like this background service to be started when the device is
initially turned on, so by the time the user first uses the app, there’s already up-to-date
information in the local cache.

Finally, we will want to display the latest status from the friends’ timelines on the home
screen, as an Android Widget.

These are some straightforward requirements. Android building blocks make it easy to
break them down into conceptual units so that you can work on them independently,
and then easily put them together into a complete package.

As you’ll see later, these building blocks make up an application. Essentially, an app is
not much more than a loose collection of activities, services, providers, and receivers.

Activities
An activity is usually a single screen that the user sees on the device at one time. An
application typically has multiple activities, and the user flips back and forth among
them. As such, activities are the most visible part of your application.

We usually use a website as an analogy for activities. Just as a website consists of multiple
pages, so does an Android application consist of multiple activities. Just as a website has
a “home page,” an Android app has a “main” activity, usually the one that is shown first
when you launch the application. And just as a website has to provide some sort of
navigation among various pages, an Android app should do the same.

On the Web, you can jump from a page on one website to a page on another. Similarly,
in Android, you could be looking at an activity of one application, but shortly afterward
you could start another activity in a completely separate application. For example, if
you are in your Contacts app and you choose to text a friend, you’d be launching the
activity to compose a text message in the Messaging application.

Activity Life Cycle
Launching an activity can be quite expensive. It may involve creating a new Linux pro‐
cess, allocating memory for all the UI objects, inflating all the objects from XML layouts,
and setting up the whole screen. Because the operating system is doing a lot of work to
launch an activity, it would be a waste to just toss it out once the user leaves that screen.
To avoid this waste, the activity life cycle is managed by the Activity Manager, a service
that runs inside the Android Framework layer of the stack.

The Activity Manager is responsible for creating, destroying, and managing activities.
For example, when the user starts an application for the first time, the Activity Manager

64 | Chapter 5: Main Building Blocks

will create its activity and put it onto the screen. Later, when the user switches screens,
the Activity Manager will move that previous activity to a holding place. This way, if the
user wants to go back to an older activity, it can be started more quickly. Older activities
that the user hasn’t used in a while will be destroyed in order to free more space for the
currently active one. This mechanism is designed to help improve the speed of the user
interface and thus improve the overall user experience.

Programming for Android is conceptually different from programming for some other
environments. In Android, you find yourself responding to certain changes in the state
of your application rather than driving that change yourself. It is a managed, container-
based environment similar to programming for Java applets or servlets. So, when it
comes to an activity life cycle, you don’t get to say what state the activity is in, but you
have plenty of opportunity to say what happens during the transitions from state to
state. Figure 5-1 shows the states that an activity can go through. The following sections
describe how to handle each state.

Figure 5-1. Activity life cycle

Starting state
When an activity doesn’t exist in memory, it is in a starting state. As it starts, the activity
invokes a set of callback methods that you as a developer have an opportunity to fill out.
These callbacks include onCreate(), onStart(), and onResume(). Eventually, the

Activities | 65

activity will be in a running state, which means that it will be fully displayed on the
screen, in focus, waiting for user to interact with it.

Keep in mind that this transition from starting state to running state is one of the most
expensive operations the application will perform in terms of computing time, and this
also directly affects the battery life of the device. This is the exact reason we don’t au‐
tomatically destroy activities that are no longer shown. The user might want to come
back to them, so the operating system, via Activity Manager, keeps them around for
some time.

Running state
Only one activity on a device can be in a running state: it’s the one that is currently on
the screen and interacting with the user. We also say this activity is in focus, meaning
that all user interactions—such as typing, touching the screen, and clicking buttons—
are handled by this one activity.

The running activity has priority in terms of getting the memory and resources it needs
to run as quickly as possible. This is because Android wants to make sure the running
activity is zippy and responsive to the user.

Paused state
When an activity is not in focus (i.e., not interacting with the user) but still visible on
the screen, we say it’s in a paused state. This is not a typical scenario, because the device’s
screen is usually small, and an activity is either taking up the whole screen or none at
all. We often see this case with dialog boxes that come up in front of an activity, causing
it to become paused. All activities go through a paused state en route to being stopped.

Paused activities still have high priority in terms of getting memory and other resources.
This is because they are visible and cannot be removed from the screen without making
it look very strange to the user. The Activity Manager calls onPause() when putting
your application into the paused state, but we don’t use that hook to perform any ac‐
tivities in this book.

Stopped state
When an activity is not visible, but still in memory, we say it’s in a stopped state. A
stopped activity could be brought back to the front to become a running activity again.
Or, it could be destroyed and removed from memory, which is an operating system
choice beyond your control.

The system keeps activities around in a stopped state because it is likely that the user
will still want to get back to those activities some time soon, and restarting a stopped
activity is far cheaper than starting an activity from scratch. That is because the Activity

66 | Chapter 5: Main Building Blocks

Manager already has all the objects loaded in memory and simply has to bring them all
up to the foreground.

Stopped activities can be removed from memory at any point. It is up to Activity Man‐
ager’s discretion to do so. The Activity Manager calls onStop() when putting your ap‐
plication into this state, so it is wise in this method to do anything you need in order to
save the state of your app, such as writing data to disk or a database.

Destroyed state
A destroyed activity is no longer in memory. The Activity Manager decided that this
activity is no longer needed and has removed it. Before the activity is destroyed, it can
perform certain actions, such as save any unsaved information. However, there’s no
guarantee that your activity will be destroyed from the destroyed state. It is possible for
a stopped activity to be destroyed as well. For that reason, it is better to do important
work, such as saving unsaved data, in the onStop() rather than the onDestroy()
callback.

The fact that an activity is in a running state doesn’t mean it’s doing
much. It could be just sitting there and waiting for user input. Simi‐
larly, an activity in a stopped state is not necessarily doing nothing.
The state names mostly refer to how active the activity is with re‐
spect to user input; in other words, whether an activity is visible, in
focus, or not visible at all.

Why is the process of managing the activity life cycle so complex? On
a typical desktop PC, when you are done with an application, such as
Microsoft Word or Excel, you close it. Essentially, what you as a user
are doing is memory managing your PC. Android’s team felt that users
shouldn’t have to manage memory and have delegated that responsi‐
bility to the Activity Manager. Sure, humans would likely do a bet‐
ter job of quitting apps they no longer need, but the automatic way is
good enough and makes the overall experience better for the user. We
sometimes compare Activity Manager to automatic transmission on
a car, or garbage collection in languages such as Java. Yes, humans do
a better job with switching manual gears or allocating and freeing
memory manually, but that’s just extra work that, in today’s day and
age, machines do well enough.

Because the user interface is a big part of most Android apps, we’ll explore how to create
activities in detail in Chapter 7.

Activities | 67

There are currently two ways to create activity user interfaces: the
standard and older activity views and the newer fragments. Frag‐
ments were introduced in Android version 3.0 as a means to simpli‐
fy the handling of different screen sizes and devices. We will explore
this in Chapter 8.

Intents
Intents are messages that are sent among the major building blocks. They trigger an
activity to start up, tell a service to start, stop, or bind to, or are simply broadcasts. Intents
are asynchronous, meaning the code that sends them doesn’t have to wait for them to
be completed. To use our analogy with a website, intents would be the links connecting
various pages together. Just like a web link, an intent can be internal to a single app or,
just as easily, connect to components in other apps. And just like links, intents can carry
small amounts of primitive data with them.

An intent could be explicit or implicit. In an explicit intent, the sender clearly spells out
which specific component should be on the receiving end. In an implicit intent, the
sender specifies just the type of receiver. For example, your activity could send an intent
saying it simply wants someone to open up a web page. In that case, any application that
is capable of opening a web page could “compete” to complete this action.

When you have competing applications, the system will ask you which one you’d like
to use to complete a given action. You can also set an app as the default. This mechanism
works very similarly to your desktop environment, for example, when you downloaded
Firefox or Chrome to replace your default Internet Explorer or Safari web browsers.

This type of messaging allows the user to replace any app on the system with a custom
one. For example, you might want to download a different SMS application or another
browser to replace your existing ones. Figure 5-2 shows how intents can be used to
“jump” between various activities, in the same application or in another app altogether.

You will learn about how to create and use intents in “The Action Bar” on page 148 when
we talk about the Action Bar in Android.

Services
Services run in the background and don’t have any user interface components. They
can perform the same actions as activities, but without any user interface. Services are
useful for actions that you want to perform for a while, regardless of what is on the
screen. For example, you might want your music player to play music even as you are
flipping between other applications.

68 | Chapter 5: Main Building Blocks

Figure 5-2. Intents

Don’t confuse the Android services that are part of an Android app
with native Linux services, servers, or daemons, which are much
lower-level components of the operating system.

Services have a much simpler life cycle than activities (see Figure 5-3). You either start
a service or stop it. Also, the service life cycle is more or less controlled by the developer,
and not so much by the system. Consequently, developers have to be mindful to run
services so that they don’t consume shared resources unnecessarily, such as the CPU
and battery.

Figure 5-3. Service life cycle

Services | 69

Just because a service runs in the background doesn’t necessarily mean
it runs on a separate thread. By default, services and activities run on
the same main application thread, often called the UI thread. If a
service is doing some processing that takes a while to complete (such
as performing network calls), you would typically invoke a separate
thread to run it. Otherwise, your user interface will run noticeably
slower. As of the Honeycomb release of Android, you are actually not
even allowed to perform network or other potentially long opera‐
tions on the UI thread.

We’ll look at how to create a new service in Chapter 10.

Content Providers
Content providers are interfaces for sharing data between applications. By default, An‐
droid runs each application in its own sandbox so that all data that belongs to an ap‐
plication is totally isolated from other applications on the system. Although small
amounts of data can be passed between applications via intents, content providers are
much better suited for sharing persistent data between possibly large datasets. As such,
the content provider API nicely adheres to the CRUD principle. Figure 5-4 illustrates
how the content provider’s CRUD interface pierces the application boundaries and al‐
lows other apps to connect to it to share data. The methods that content providers use
to implement the four critical operations are:

Operation Method

Create insert()

Read query()

Update update()

Delete delete()

The Android system uses this mechanism all the time. For example:

• The Contacts Provider exposes all user contact data to various applications.
• The Settings Provider exposes system settings to various applications, including the

built-in Settings application.
• The Media Store is responsible for storing and sharing various media, such as pho‐

tos and music, across various applications.

Figure 5-5 illustrates how the Contacts app uses the Contacts Provider, a totally separate
application, to retrieve data about users’ contacts. The Contacts app itself doesn’t have
any contacts data, and the Contacts Provider doesn’t have any user interface.

70 | Chapter 5: Main Building Blocks

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Figure 5-4. Content provider

Figure 5-5. Contacts application using the Contacts Provider to get the data

This separation of data storage and the actual user interface application offers greater
flexibility to mash up various parts of the system. For example, a user could install an
alternative address book application that uses the same data as the default Contacts app.
Or he could install widgets on the home screen that allow for easy changes in the System
Settings, such as turning on or off the WiFi, Bluetooth, or GPS features. Many phone
manufacturers take advantage of content providers to add their own applications on
top of standard Android to improve the overall user experience, such as HTC Sense.

Content Providers | 71

http://en.wikipedia.org/wiki/HTC_Sense

Content providers are relatively simple interfaces. The insert(), update(), delete(),
and query() methods look a lot like standard database methods, so it is relatively easy
to implement a content provider as a proxy to the database.

Although content providers are relatively easy to use, they are somewhat tricky to im‐
plement properly. We’ll explore how to create a new content provider in Chapter 11.

Broadcast Receivers
Broadcast receivers are Android’s implementation of a system-wide publish/subscribe
mechanism, or more precisely, an Observer pattern. The receiver is simply dormant
code that gets activated by the occurrence of an event to which the receiver is subscribed.
The “event” takes the form of an intent.

The system itself broadcasts events all the time. For example, when an SMS arrives, a
call comes in, the battery runs low, or the system completes booting up, all those events
are broadcast, and any number of receivers could be triggered by them.

Broadcast receivers themselves do not have any visual representation, nor are they ac‐
tively running in memory. But when triggered, they get to execute some code, such as
starting an activity, a service, or something else.

In our sample app mentioned earlier, we want to trigger the update of the local data
from the cloud every once in a while. To do that, we can set up an alarm that fires a
broadcast intent on some interval, and that intent triggers our receiver to start the refresh
service. So we have an intent triggering a receiver via one type of intent that later starts
a service via another type of intent. This chaining of intents is common in Android and
provides for a loosely coupled architecture. We’ll talk about that in the next section.

You will learn more about broadcast receivers and how to implement them in Chap‐
ter 13.

Application Context
So far you have seen activities, services, content providers, and broadcast receivers.
Together, they make up an application. They are the basic building blocks, loosely cou‐
pled, of an Android app.

Think of an application in Android as a container to hold together your blocks. Your
activities, services, providers, and receivers do the actual work. The container that they
work in is the shared Linux process with common Dalvik VM, private filesystem, shared
resources, and similar things.

To use our website analogy, an app would be the website domain. Users never really go
to Amazon.com (the domain), but rather visit a web page (which you could compare
to an Android activity) within that domain, or consume a web service (an Android

72 | Chapter 5: Main Building Blocks

http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Observer_pattern

service). So web pages and web services are building blocks for a website, and the website
itself is just a container to hold them all together under one roof. This is very similar to
what an Android application does for its components.

Application context refers to the application environment and the process within which
all its components are running (see Figure 5-6). It allows applications to share the data
and resources between various building blocks. It has its own Linux user ID and its own
Linux process, with a dedicated Dalvik virtual machine, a dedicated filesystem for stor‐
ing application files, and so on.

Figure 5-6. Application context

The application context is uniquely identified on a device based on the package name
of that application. For example, com.marakana.android.yamba would be a package
name of our app. There cannot be another app with the same package name (unless it
comes from us, and we want to use shared user IDs).

An application context gets created whenever the first component of this application
starts up, regardless of whether that component is an activity, a service, or something
else. The application context lives as long as your application is alive. As such, it is
independent of the activity’s life cycle. So as long as any of the activities, services, pro‐
viders, or receivers are alive, your application context is around to hold them. Once the

Application Context | 73

Activity Manager terminates all other building blocks of your app, it also gets rid of the
application context because it’s no longer needed.

You can easily obtain a reference to the context by calling Context.getApplication
Context() or Activity.getApplication(). Keep in mind that activities and services
are already subclasses of the context, and therefore inherit all its methods.

Activities and services are also subclasses of the Context class, which
is different from the application context we’re talking about here.

Summary
In this chapter, you learned about some of the most important Android application
components.

In the next chapter, we’ll outline a Yamba application as an example of how all these bits
and pieces come together to form a working Android app.

74 | Chapter 5: Main Building Blocks

CHAPTER 6

Yamba Project Overview

The best way to learn is by example. After working with thousands of new Android
developers and using various example applications to explain some of the unique con‐
cepts that this platform has to offer, we have concluded that the best example should
meet the following criteria:
Be comprehensive

A great example app should demonstrate most of the unique aspects of building
apps for Android. It should cover all main building blocks and their typical usage.

Provide motivation
There should be a good reason to use a specific feature. A great example app will
defend the most effective design that also relies on Android building blocks.

Be familiar
The example application should be simple to understand. We want to focus on
software design and implementation, and not on explaining user features.

The Yamba Application
The application we picked for this book is a Twitter-like application. We call it Yamba,
which stands for Yet Another Micro Blogging App. Yamba lets a user connect to a cloud
web service, pull down friends’ statuses, and update his own status.

Yamba covers most of the main Android building blocks in a natural way. As such, it’s
a great sample application to illustrate both how various components work individually
and how they fit together. Services such as Twitter are more or less familiar to most
people, so the features of the application do not require much explanation.

75

Yamba Versus Twitter.com
Yamba will not work with Twitter.com, at least not out of the box. We
are using the same Twitter API. However, Twitter.com has recently
changed to OAuth for its authentication and no longer supports sim‐
ple (username and password) login. Although we could implement
OAuth in Yamba, we felt that doing so dramatically changes our
learning objectives and the flow of the material. OAuth would take us
on a tangent that is not primary to learning Android development
philosophy.
Additionally, when Marko runs Android training courses, expecting
students to have Twitter accounts (try that in China!) and to experi‐
ment live with them on an app still in development, is not practical.
Plus, we often run into Twitter’s rate limit designed to prevent spam
and DoS attacks. Sometimes our test code may seem to be doing just
that.
So we have set up our own instance of a cloud service adhering to
same Twitter API as the real Twitter.com. Our site is at http://
yamba.marakana.com/. It doesn’t enforce rate limits, and creating an
account is easy. As such, it is designed for learning purposes and
testing of your app. You, too, can roll out your own Twitter-like ser‐
vice using the Status.net open source platform.

The following figures show what a finished product could look like. Figure 6-1 shows
how Yamba displays a list of status messages from your friends. Figure 6-2 shows the
initial Yamba screen, and Figure 6-3 shows the user preferences.

76 | Chapter 6: Yamba Project Overview

https://dev.twitter.com/
http://oauth.net/
http://yamba.marakana.com/
http://yamba.marakana.com/
http://status.net/open-source

Figure 6-1. List of status messages from other people, called a timeline

The Yamba Application | 77

Figure 6-2. Screen where the user can enter a status message

78 | Chapter 6: Yamba Project Overview

Figure 6-3. User settings

Design Philosophy
We’re going to adopt a certain design philosophy in tackling this project. This philos‐
ophy will help guide us in our development and serve as a north star when in doubt
about what to do next. Spelling out the design philosophy here should also help eliminate
some confusion in the process we’re following:
Small increments

The Yamba application will start out small and will constantly grow in functionality
and complexity. Initially, the app will not do much, but it will grow organically one
step at a time. Along the way, we’ll explain each step so that you’re expanding your
skills as you go.

Always whole and complete
The application must always work. In other words, we’ll add new features in small,
self-contained chunks and pull them back into the main project so that you can see
how it fits together as a whole.

Design Philosophy | 79

Refactoring code
Once in a while, we’ll have to take a step back and refactor the application to remove
duplicate code and optimize the design. The goal is to reuse the code and not re‐
invent the wheel. But we are going to cross those bridges as we get to them, providing
the motivation for refactoring along the way. This process will teach you about some
general software development best practices as well.

Project Design
If you remember from Chapter 5, an Android application is a loose collection of activ‐
ities, services, content providers, and broadcast receivers. These are the components
from which we put together an application. Figure 6-4 shows the design of the entire
Yamba application, which incorporates most of the main Android building blocks.

Figure 6-4. Yamba design diagram

To help understand the diagrams as we keep moving through the the design, Figure 6-5
provides a quick legend of the design language that we have developed specifically for
purposes of illustrating how Yamba comes together.

80 | Chapter 6: Yamba Project Overview

Figure 6-5. Design language

Part 1: Android User Interface
This part, covered in Chapters 7 and 8, will focus on developing the first component of
the Yamba application: the Status Update screen. Our tasks are building an activity,
networking and multithreading, and debugging:
Building an activity

We are going to start by introducing the Android user interface (UI) model. In its
UI, Android is quite different from some other paradigms that you might be familiar
with. This is done with a dual approach to UI using both Java and XML.

In this chapter, you will learn how to develop the user interface, as shown in
Figure 6-2, where the user updates her status. Through this process, you will use
XML and Java to put together a working UI. You will learn about views and layouts,
units in Android, how to work with images, and how to make the UI look pretty.

Our approach will focus on best practices in UI development so that your applica‐
tion looks good and works well on any Android device, regardless of screen size
and resolution. We’re going to develop a single app that will look great on phones,
tablets, and TVs.

Networking and multithreading
Once we have a working screen, we will want to post the user input to the cloud
service. For that purpose, we are going to use a library to help us with the Twitter
API web service calls.

Part 1: Android User Interface | 81

Making the network calls is subject to the unpredictable nature of the network. To
address that, we will introduce multithreading in Android and explain how to de‐
velop an app that works well regardless of external circumstances.

Debugging Android apps
A few things are going to go wrong in this section of the book. This is by design,
because debugging is a normal part of application development. We’ll show you
how to use the Android SDK tools to quickly find and fix problems. Debugging will
become second nature to you.

Fragments
Android 3.0 called for a newer approach to the user interface. The need to handle
multiple screen sizes and orientations led to the introduction of fragments. We will
tackle this UI framework by taking what we have done before and converting them
over to this new approach.

Part 2: Intents, ActionBar, and More
This part, covered in Chapter 9, is about using Android intents as a way to connect
multiple parts together. At the end of this part, your Yamba application will have two
screens: one for status updates and the other for setting up the preferences. At this point,
Yamba is configurable for various users and starts being a useful app. The elements we’ll
create at this stage are the activity, the menu system, and intents to glue them all together:
The Preference activity

First, we’ll create the screen as an activity, one of Android’s basic building blocks.
You will see the steps involved and understand what it takes to create new screens.

Intents, ActionBar, and menu system
Next, we’ll need a way to get to that screen. For that purpose, we’ll introduce Action
Bar as a menu system in Android and show how it works. You will also learn about
intents and how to send these to open up a specific activity.

Filesystem
Finally, we’ll learn about the filesystem on a typical Android device. You will gain
a deeper understanding of how the operating system is put together, and you will
also learn more about Android security.

Part 3: Android Services
This part, covered in Chapter 10, introduces background services. By the end of this
part, your Yamba application will be able to periodically connect to the cloud and pull
down your friends’ status updates:

82 | Chapter 6: Yamba Project Overview

Services
Android services are very useful building blocks. They allow a process to run in the
background without requiring any user interface. This is perfect for Yamba, because
we’ll have an update process connect to the cloud periodically and pull the data. In
this section, you will also learn about multithreading considerations as they apply
to background services.

Intent services
These are a convenient way to run a task off the main thread so that thread can
continue to handle user interaction. We’ll use one to get updates from Twitter.

Part 4: Content Providers
We now have the data from our refresh service, so we need a place to store it. In this
part, covered in Chapter 11, we’ll introduce you to Android’s support for content pro‐
viders, and data sources in general. By the end of that chapter, our data from the cloud
will be persisted in the database:
SQLite and Android’s support

Android ships with a built-in database called SQLite. In addition to this cool little
database, the Android framework offers a rich API that makes SQLite easier for us
to use. In this section, you will learn how to use SQLite and the API for it. You do
not have to be a SQL buff to understand what is going on, but some basic under‐
standing of SQL always helps.

The dbHelper class
To let you invoke the most common database operations without using SQL, An‐
droid rovides a class with the common insert(), query(), update(), and de
lete() operations.

ContentProvider
We’ll implement a new Android component to hold cached data and connect our
app to it.

Part 5: Lists and Adapters
It might sound like we’re back in UI mode, but lists and adapters are more organizational
aids than user interface elements in Android. They form very powerful components
that allow our tiny UI to connect to very large datasets in an efficient and scalable
manner. In other words, users will be able to use Yamba in the real world without any
performance hits in the long run.

Part 4: Content Providers | 83

Currently the data is all there in the database, but we have no way to view it. In this part,
covered in Chapter 12, the Yamba application will get the much-needed TimelineAc
tivity and a way for the user to see what his friends are chatting about online.

Part 6: Broadcast Receivers
Here we develop a third activity, doing so in multiple stages. First, we’ll use our existing
knowledge of the Android UI and put something together. It will work, but will not be
as optimal as it could be. Finally, we’ll get it right by introducing Lists and Adapters to
the mix to use them to tie the data to our user interface.

In this part, covered in Chapter 13, we’ll equip Yamba with receivers so it can react to
events around it in an intelligent way. For that purpose, we’ll use broadcast receivers.
We show how to use Android permissions to make sure other people can’t post statuses
under the user’s name:
Boot and network receivers

In our example, we want to start our updates when the device is powered up. We
also want to stop pulling the data from the cloud when the network is unavailable,
and start it again only when we’re back online. This goal will introduce us to one
type of broadcast receiver.

Timeline receiver
This type of receiver will exist only at certain times. Also, it won’t receive messages
from the Android system, but from other parts of our own Yamba application. This
will demonstrate how we can use receivers to put together loosely coupled com‐
ponents in an elegant and flexible way.

Permissions
At this point in the development process you know how to ask for system permis‐
sions, such as access to the Internet or filesystem. In this section, you’ll learn how
to define your own permissions and how to enforce them. After all, Yamba com‐
ponents might not want to respond to any other application for some Yamba-
specific actions.

Part 7: App Widgets
In this part, covered in Chapter 14, we’ll look at how to use Android app widgets to
create a home screen widget that displays the latest tweets:
Android widgets

But who will remember to pull up our app? To demonstrate the usefulness of our
new status data, we’ll put together an app widget. App widgets are those little com‐
ponents that the user can put on the home screen to see weather updates and such.

84 | Chapter 6: Yamba Project Overview

We’ll create a widget that will pull the latest status update from the Yamba database
via the status data content provider and display it on the home screen.

Part 8: Networking and the Web (HTTP)
Up till now we have provided the underlying communication piece to our example
application via a library. Here we want to take a brief step back and talk about how this
communication is done and what Android’s APIs provide to communicate via HTTP.

Part 9: Live Wallpaper and Handlers
As a final piece to the application, we wanted to provide some more interaction at a
system level. One of those ways is a fun, recently added concept in Android called Live
Wallpaper, which runs on the home screen of the device. We build out a basic Live
Wallpaper that interacts with the user and displays the messages communicated through
the backend service. We also cover an important class called the Handler that enables
another means to interact with the main UI thread from a different thread.

Summary
This chapter is intended as a road map for the next eight chapters. By the end of all these
iterations, you will have built a medium-size Android app from scratch. Even more, you
will understand various constructs and how to put them together into a meaningful
whole. The hope is that you’ll start developing a way of thinking in Android.

Part 8: Networking and the Web (HTTP) | 85

CHAPTER 7

Android User Interface

In this chapter, you will learn how to build a user interface in Android. You will create
your first activity, create an XML layout for it, and see how to connect it to your Java
code. You will learn about views (a.k.a. widgets) and layouts, and learn how to handle
Java events, such as button clicks. Additionally, you’ll add support for a Twitter-like API
into your project as an external .jar file so your app can make web service calls to the
cloud.

By the end of this chapter, you will have written your own Twitter-like Android app.
The app will feature a single screen that will prompt the user for her current status update
and post that update online.

Two Ways to Create a User Interface
There are two ways to create a user interface (UI) in Android: declaratively and pro‐
grammatically. They are quite different but often are used together to get the job done.

Declarative User Interface
The declarative approach involves using XML to declare what the UI will look like,
similar to creating a web page using HTML. You write tags and specify elements to
appear on your screen. If you have ever handcoded an HTML page, you did pretty much
the same work as creating an Android screen.

One advantage of the declarative approach is that you can use WYSIWYG tools. Some
of these tools ship with the Eclipse Android Development Tools (ADT) extension, and
others come from third parties. Additionally, XML is fairly human-readable, and even
people who are unfamiliar with the Android platform and framework can readily de‐
termine the intent of the user interface.

87

The disadvantage of a declarative UI approach is that you can get only so far with XML.
XML is great for declaring the look and feel of your user interface, but it doesn’t provide
a good way of handling user input. That’s where the programmatic approach comes in.

Programmatic User Interface
A programmatic user interface involves writing Java code to develop the UI. If you have
ever done any Java AWT or Java Swing development, Android is pretty much the same
in that respect. It is similar to many UI toolkits in other languages as well.

Basically, if you want to create a button programmatically, you have to declare the button
variable, create an instance of it, add it to a container, and set any button properties that
may make sense, such as color, text, text size, background, and so on. You probably also
want to declare what the button does once it’s clicked, so that’s another piece of code.
All in all, you end up writing quite a few lines of Java.

Everything you can do declaratively, you can also do programmatically. But Java also
allows you to specify what happens when that button is actually clicked. This is the main
advantage of a programmatic approach to the user interface.

The Best of Both Worlds
So which approach to use? The best practice is to use both. Use the declarative (XML)
approach to declare everything about the user interface that is static, such as the layout
of the screen, all the widgets, etc. Then switch to a programmatic (Java) approach to
define what goes on when the user interacts with the various widgets in the user interface.
In other words, you’d use XML to declare what the “button” looks like and Java to specify
what it does.

Note that there are two approaches to developing the actual user
interface, but at the end of the day, all the XML is actually “inflated”
into Java memory space as if you actually wrote Java code. So it’s only
Java code that runs.

Views and Layouts
Android organizes its UI elements into views and layouts. Everything you see, such as
a button, label, or text box, is a view. Layouts organize views, such as grouping together
a button and label or a group of these elements.

If you have prior experience with Java AWT or Swing, layouts are similar to Java con‐
tainers and views are similar to Java components. Views in Android are sometimes
referred to as widgets.

88 | Chapter 7: Android User Interface

Don’t confuse widgets in the Android UI with App Widgets. The latter
are miniature application views that can be embedded in other ap‐
plications (such as the home screen application). Here, we are refer‐
ring to widgets as the views in our activities.

A layout can contain other children. Those children can furthermore be layouts them‐
selves, allowing for a complex user interface structure (Figure 7-1). A layout is respon‐
sible for allocating space for each child.

Figure 7-1. Layouts and views relationship

Some of the most common layouts follow. There are others, but they are used less
frequently.

LinearLayout
LinearLayout is one of the simplest and most common layouts (see Figure 7-2). It
simply lays out its children next to one another, either horizontally or vertically. The
order of the children matters. As LinearLayout asks its children how much space they
need, it allocates the desired space to each child in the order it is added. So if an “older”
child comes along and asks for all the space on the screen, there won’t be much left for
the subsequent widgets in this layout.

One important property for LinearLayout is layout_orientation. Its valid options
are vertical or horizontal.

Views and Layouts | 89

Figure 7-2. LinearLayout

Although LinearLayout is probably the simplest and most common‐
ly used layout, it is not always the best choice. A good rule of thumb
is that if you start to nest multiple LinearLayouts, you should prob‐
ably use a different layout, such as RelativeLayout. Too many nes‐
ted layouts can have major consequences on the time needed to in‐
flate the UI and on overall CPU and battery consumption.

TableLayout
TableLayout lays out its children in a table, and the views it contains are TableRow
widgets (see Figure 7-3). Each TableRow represents a row in a table and can contain
other UI widgets. TableRow widgets are laid out next to each other horizontally, like
LinearLayout with a horizontal orientation.

For those familiar with HTML, TableLayout is similar to the <table> element, and
TableRow is similar to the <tr> element. Whereas HTML also offers <td> to represent
each cell in the table, Android determines the columns dynamically based on the num‐
ber of views you add to a TableRow.

An important property for TableLayout is stretch_columns, indicating which column
of the table to stretch. You can also use * to stretch all columns.

90 | Chapter 7: Android User Interface

Figure 7-3. TableLayout

FrameLayout
FrameLayout places its children on top of each other so that the latest child is covering
the previous one, like a deck of cards (see Figure 7-4). This layout policy is useful for
tabs, as one example. FrameLayout is also used as a placeholder for other widgets that
will be added programmatically at some later point in time.

Figure 7-4. FrameLayout

Views and Layouts | 91

RelativeLayout
RelativeLayout lays out its children relative to each other (see Figure 7-5). It is very
powerful because it doesn’t require you to nest extra layouts to achieve a certain look.
For instance, if you have a two-by-two matrix of widgets, you can lay them out in a
single RelativeLayout instead of two horizontal LinearLayouts within a vertical Lin
earLayout.

By streamlining the number of layouts you use, RelativeLayout can minimize the total
number of widgets that need to be drawn, thus improving the overall performance of
your application. On the other hand, RelativeLayout adds a bit of complexity by re‐
quiring each child view to have an ID so that you can position it relative to other children.

Once hard to use, RelativeLayout is becoming the most versatile and efficient layout
of them all. Android Tools for Eclipse, as well as Android Studio, both have very good
support for visually setting the relationship constraints of the view’s layout using
RelativeLayout.

Figure 7-5. RelativeLayout

92 | Chapter 7: Android User Interface

Starting the Yamba Project
We are about to start our Yamba project. So fire up Eclipse and click File → New →
Android Application Project.

You will get a dialog window asking you about your new Android project (see
Figure 7-6). Let’s explain again all the significant fields:

Figure 7-6. New Project dialog

Application Name
This is the name of your application as generally visible to the users. It can be pretty
much any text, and you can easily change it later. We’ll simply call our app “Yamba.”

Project Name
The name under which Eclipse organizes our project. It is a good idea not to use
any spaces in your project name. This makes it easier to access from the command
line later. Enter Yamba here.

Starting the Yamba Project | 93

Package Name
This field designates a Java package, so it needs to adhere to Java package naming
conventions. In a nutshell, you want to use the reverse of your domain name for
your package. We’re going to use “com.marakana.android.yamba” here.

Min Required SDK Version
Represents the minimum version of Android SDK that must be installed on the
device for it to run this particular application. At this point, this is a business choice
concerning how far back you want to support your app. In other words, should this
app be able to run on very old devices? There’s a certain programming cost involved
in backward support. An analogy to this would be building a website that has to
work on IE6, where you have to deal with a lot of quirks. In our case, we choose
that the app should work on API level 11 (Android 3.0, Honeycomb).

Target SDK and Compile With
These fields indicate the type of Android system on which you intend to run this
application. This could be any Android platform, either standard or proprietary.
We assume we’re working with Android 4.3 (API level 18). Typically, these two
fields will be the same, and will point to the latest available API, unless there’s a
known bug or another reason you’d downgrade either one of them.

Click Next. The next screen lets you choose whether to create a custom launcher icon
(we do!), create an activity (yes!), make this project be a library project (nope), and
choose the location on the filesystem. Usually, you don’t need to change anything on
this screen—just accept the defaults, and click Next.

The Configure Launcher Icon diagram in Figure 7-7 gives you an opportunity to create
a custom icon that the users will click to launch your application. You can load an image
from your computer, create an icon using the clip art image, or make some text be that
image. Go ahead and play with the options! Notice that we’ll end up creating not one,
but four different images. They are all the same image, but with different sizes. This is
because Android runs on thousands of different devices with a variety of screen densi‐
ties. Some older devices have about 160 dots per inch (dpi), whereas the newer ones are
pushing 400 dpi. Depending on the type of the display, Android OS will pick the right
image to render.

94 | Chapter 7: Android User Interface

http://en.wikipedia.org/wiki/Java_package#Package_naming_conventions
http://en.wikipedia.org/wiki/Java_package#Package_naming_conventions

Figure 7-7. Configure the Launcher Icon

Once you are happy with that image, click Next. On the Create Activity screen, choose
to create an activity, and leave it at just the Blank Activity. We’ll start with an empty
canvas and build on top of that. Click Next.

On the Blank Activity screen in Figure 7-8, pick the name of the activity. While you’re
here, keep in mind that your activity will be represented by a Java class. Thus, for the
activity name, you must adhere to Java class naming conventions. Doing that simply
means using upper camel case. We’ll enter StatusActivity here.

Starting the Yamba Project | 95

http://en.wikipedia.org/wiki/Naming_convention_(programming)#Java
http://en.wikipedia.org/wiki/CamelCase

Figure 7-8. Blank Activity setup

Typically, an activity will have a layout file associated with it. This file is an XML file.
While we have a strong naming convention in Java, the XML resources could be named
both using the camel case as well as the underscores. In this case, go with what Eclipse
ADT is suggesting—“activity_status”—so go ahead and accept that.

Click Finish. Your Yamba project should now appear in Eclipse’s Package Explorer, as
shown in Figure 7-9.

96 | Chapter 7: Android User Interface

Figure 7-9. Eclipse with the boilerplate Yamba project

The StatusActivity Layout
Let’s start by designing the user interface for our screen, where we’ll enter the new status
and click a button to update it.

To start creating this screen, open the res/layout/activity_status.xml file. Eclipse will
recognize this file and open it using a graphical layout. As a matter of fact, this file should
have already been opened when you created the project initially.

Notice that you can toggle between the graphical layout and the actual generated code
via the tabs at the bottom of the window. Think of this tool as a Dreamweaver or similar
HTML authoring tool where you can easily create a UI, and the tool generates the
underlying code.

The StatusActivity Layout | 97

Notice that on the left side of the tool you have the Palette with various widgets. We’re
going to use these widgets in the graphical mode to create our UI. But first, go ahead
and select the “Hello world!” text in the window, and delete it. Now you have a blank
screen to work with.

Our StatusActivity screen will have these components:

• Button to post a tweet
• Text area to type the text of the message
• Box that contains it all, also known as a layout

The layout is already given to us. This is the big white area. It’s of type RelativeLay
out. We discussed the layout types earlier in this chapter.

We’ll begin with a button to click to update the status. This will be a Button widget.
Locate it under the Form Widgets section of the Palette and drag it to the top-right
corner of your screen. The button will sort of glue to that corner.

Next, we need a big text area to type our 140-character status update. We’ll use an
EditText widget for this purpose. You can locate this widget under the Text Fields
section of the Palletes. Although there are a few choices, most of them are the same
element with just a different visual appearance. Pick Multiline Text for our case. Drag
it just below the button, “gluing” it to the left margin.

To make the text area large, right-click it and choose Layout Width→Match Parent. Do
the same for the height.

Next, let’s update the text. Right-click the button and choose “Edit Text.” Now, you could
simply change the word “Button” to something else, but instead, choose “New String”
(Figure 7-10). Under “New R.string.” type button_tweet. This will be the ID of this
particular piece of text. Under String type the actual English value, for example the word
“Tweet,” then click OK, and OK again in the underlying window.

98 | Chapter 7: Android User Interface

Figure 7-10. Create New String dialog

Repeat the same steps for the big text area, but this time around right-click and choose
“Edit Hint.” For the ID of the new string, let’s pick “hint_status.”

At this point, our screen looks like Figure 7-11.

The StatusActivity Layout | 99

Figure 7-11. StatusActivity graphical layout

There is one more thing we should do: initialize the IDs of elements we’ll care about
programmatically. In our case, we will want to be able to lookup the button and the text
area in Java. To do that, we want to assign them meaningful IDs. Eclipse already created
IDs such as button1 and editText1, but those don’t tell the story. To change them, right-
click the button, pick “Edit ID,” then type buttonTweet and click OK. Do the same for
the status text area and type editStatus for the ID.

You could also peek at the actual generated code by clicking the tab at the bottom of the
screen. Example 7-1 contains the source code for our StatusActivity layout.

Example 7-1. The res/layout/activity_status.xml file
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".StatusActivity" >

100 | Chapter 7: Android User Interface

 <Button
 android:id="@+id/buttonTweet"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:layout_marginRight="17dp"
 android:text="@string/button_tweet" />

 <EditText
 android:id="@+id/editStatus"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/buttonTweet"
 android:layout_marginTop="10dp"
 android:ems="10"
 android:hint="@string/hint_status"
 android:inputType="textMultiLine" >

 <requestFocus />
 </EditText>

</RelativeLayout>

Though you could just copy-paste this file into your project, note that
it references couple of string resources in another file. So just copy‐
ing this file may not work. More on strings later in this chapter.

Important Widget Properties
The properties you are most likely to use regularly are:
layout_height and layout_width

Define how much space this widget is asking from its parent layout to display itself.
Although you could enter a value in pixels, inches, or something similar, that is not
a good practice. Because your application could run on many different devices with
various screen sizes, you want to use relative size for your components, not an
absolute size. So the best practice is to use either match_parent or wrap_content
for the value. match_parent means that your widget wants all the available space
from its parent. wrap_content means that it requires only as much space as it needs
to display its own content. Prior to API 8, match_parent was known as fill_par
ent. Some developers still use the older name, which still works.

The StatusActivity Layout | 101

layout_weight

The layout weight is a number between 0 and 1 that implies the weight of our layout
requirements. For example, if our Status EditText had a default layout weight of
0 and required a layout height of fill_parent, the Update button would be pushed
out of the screen because Status and its request for space came before the button.
However, when we set the Status widget’s layout weight to 1, we are saying we want
all available space along the dimension of height, but will yield to any other widget
that also may need space, such as the Update button. Note that layout_weight
doesn’t apply to a relative layout.

layout_gravity

Specifies how this particular widget is positioned within its parent layout, both
horizontally and vertically. Values can be top, center, left, and so on.

gravity

Specifies how the content of this widget is positioned within the widget. The dif‐
ference between gravity and layout_gravity is explained after this list.

text

Not all widgets have this property. Some widgets with text include Button, Edit
Text, and TextView. This property simply specifies the text to show in the widget.
However, it is not a good practice to just enter the text, because then your layout
will work in only one locale/language. Best practice is to define all text in a
strings.xml resource file and refer to a particular string using this notation: @string/
titleStatusUpdate.

id

id is simply the unique identifier for this particular widget in a particular layout
resource file. Not every widget needs an id, and we recommend removing unnec‐
essary ids to minimize clutter. But widgets that you need to manipulate later from
Java do need ids. An id has the format @+id/someName, where someName is
whatever you want to call your widget. The naming convention we use is to put in
the type followed by the name, for example, @+id/buttonUpdateStatus.

The difference between gravity and layout_gravity is subtle, but will be easy to un‐
derstand after you try them out. gravity controls what happens inside a widget: you
would use it, for example, to left-justify or center text within the widget. layout_grav
ity deals with the relationship between the widget and its parent. For instance, if our
Title TextView had its width set to wrap_content, we could specify layout_gravi
ty="center_horizontal" to center it horizontally within its parent LinearLayout. If
you’ve worked with web pages, you can consider gravity to be like padding in CSS,
whereas layout_gravity is like margins.

102 | Chapter 7: Android User Interface

Strings Resource
Android tries hard to keep data in separate files. So layouts are defined in their own
resources, and all text values (such as button text, title text, etc.) should be defined in
their own file called strings.xml. This allows you later to provide multiple versions of
string resources for various languages, such as English, Japanese, or Russian.

As usual, Eclipse ADT provides an easy editor to manage known resource types, which
include strings. The editor window looks like Figure 7-12.

Figure 7-12. Strings resources editor

To see the underlying source code, choose the “strings.xml” tab at the bottom of that
editor window. Example 7-2 shows what our strings.xml file looks like at this point.

Example 7-2. The res/values/strings.xml file
<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="app_name">Yamba</string>

The StatusActivity Layout | 103

 <string name="action_settings">Settings</string>
 <string name="hello_world">Hello world!</string>
 <string name="button_tweet">Tweet</string>
 <string name="hint_status">What\'s going on?</string>

</resources>

The file simply contains sets of name-value pairs.

The StatusActivity Java Class
Now that we have our UI designed in XML, we are ready to switch over to Java. Re‐
member from earlier in this chapter that Android provides two ways for building a user
interface. One is by declaring it in XML, which is what we just did, and we got as far as
we could (for now). The other one is to build it programmatically in Java. We also said
earlier that the best practice is to get as far as possible in XML and then switch over to
Java.

Our Java class for this is StatusActivity.java, and the Eclipse New Project dialog has
already created the stub for this class. The class is part of the com.marakana.an
droid.yamba Java package, and as such is part of that directory.

Inflating XML to Java
As with all main building blocks in Android, such as activities, services, broadcast re‐
ceivers, and content providers, you usually start by subclassing a base class provided by
the Android framework and overriding certain inherited methods. In this case, we sub‐
class Android’s Activity class and override its onCreate() method. As you recall, ac‐
tivities have a certain life cycle or state machine (see “Activity Life Cycle” on page 64)
through which they go. We as developers do not control what state the activity is in, but
we do get to say what happens during a transition to a particular state. In this case, the
transition we want to override is the onCreate() method that the system’s Activity
Manager invokes when the activity is first created (i.e., when it goes from a starting to
a running state). This sort of programming, when we subclass a system class and fill in
the blanks, is also known as the Template pattern.

In addition to doing some standard housekeeping, our onCreate() will carry out two
major tasks that the application needs done just once, at the beginning: set up our button
so it responds to clicks, and connect to the cloud.

Notice that onCreate() takes a Bundle as a parameter. This is a small amount of data
that can be passed into the activity once it is being shut down so that the new instance
of this activity can recreate its original state. This is a common case when rotating the
screen, in which case the activity typically gets reinitialized. The data provided in a
Bundle is typically limited to basic data types; more complex ones need to be specially

104 | Chapter 7: Android User Interface

http://en.wikipedia.org/wiki/Template_method_pattern

encoded. For the most part, we’re not going to be using Bundle in our Yamba example,
because the application has no real need for it.

Keep in mind that whenever you override a method, you first want to make a call to the
original method provided by the parent. That’s why we have a super.onCreate() call
here.

So once you subclass the framework’s class, override the appropriate method, and call
super’s method in it, you are still back where you started: your code does the same thing
the original class did. But now you have a placeholder where you can add your own
code.

The very first thing you typically do in an activity’s onCreate() is to load the UI from
the XML file and inflate it into the Java memory space. In other words, write some Java
code that opens up your XML layout file, parses it, and for each element in XML, creates
a corresponding Java object in your memory space. For each attribute of a particular
XML element, this code will set that attribute on your Java object. The line of code that
does all this is setContentView(R.layout.activity_status);.

Remember that the R class is the automatically generated set of point‐
ers that helps connect the world of Java to our world of XML and
other resources in the /res folder. Similarly, R.layout.activity_sta
tus points to our /res/layout/activity_status.xml file.

This setContentView() method does a lot of work, in other words. It reads the XML
file, parses it, creates all the appropriate Java objects to correspond to XML elements,
sets object properties to correspond to XML attributes, sets up parent/child relation‐
ships between objects, and overall inflates the entire view. At the end of this one line,
our screen is ready for drawing.

The Eclipse boilerplate code also includes the onCreateOptionsMenu() method. For
now, we’ll ignore this method. We’ll get back to it in “The Action Bar” on page 148.
Example 7-3 shows the code that ADT produces once we run through this New Project
wizard.

Example 7-3. StatusActivity.java, boilerplate code given by ADT
package com.marakana.android.yamba;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class StatusActivity extends Activity { //

 @Override

The StatusActivity Java Class | 105

 protected void onCreate(Bundle savedInstanceState) { //
 super.onCreate(savedInstanceState); //
 setContentView(R.layout.activity_status); //
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.status, menu);
 return true;
 }

}

Every activity is a subclass of the Activity class.
We override the onCreate() method in order to add some specific logic.
Remember to call the super in all the life cycle methods.
This is the main work of this entire code. This is where the activity loads up the
XML from res/layout/activity_status.xml. For each element in that XML file, the
call creates the corresponding Java object of the same class as the name.

Initializing Objects
Once we inflate the objects into the Java memory space, we have to find the objects that
we actually care about and assign them to Java variables. To do that, we declare these
variables, usually as private and class-global. Next, we use findViewById() method to
look them up:

...
 private EditText editStatus; //
 private Button buttonTweet;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_status);

 editStatus = (EditText) findViewById(R.id.editStatus); //
 buttonTweet = (Button) findViewById(R.id.buttonTweet);
 }
...

This is where we define the Java variable as private and class-global.
We look up the actual object from the Java memory space using findView
ById(), but only after inflating the XML using setContentView().

106 | Chapter 7: Android User Interface

Handling User Events
Your objects are not the only ones that define methods and respond to external stimuli.
Android’s user interface objects do that, too. Thus, you can tell your Button to execute
certain code when it’s clicked. To do that, you need to define a method named on
Click() and put the code there that you want executed. You also have to run the
setOnClickListener method on the Button. Pass this as an argument to setOnClick
Listener, because your current object (the activity) is where you define onClick().
Example 7-4 shows our first version of StatusActivity.java, with some additional ex‐
planation following the code.

Example 7-4. StatusActivity.java, version 1
package com.marakana.android.yamba;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

public class StatusActivity extends Activity implements
 OnClickListener { //
 private static final String TAG = "StatusActivity";
 private EditText editStatus;
 private Button buttonTweet;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_status);

 editStatus = (EditText) findViewById(R.id.editStatus);
 buttonTweet = (Button) findViewById(R.id.buttonTweet);

 buttonTweet.setOnClickListener(this); //
 }

 @Override
 public void onClick(View view) { //
 String status = editStatus.getText().toString(); //
 Log.d(TAG, "onClicked with status: " + status); //
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.status, menu);

The StatusActivity Java Class | 107

 return true;
 }

}

To make StatusActivity capable of being a button listener, it needs to
implement the OnClickListener interface.
Register the button to notify this (i.e., StatusActivity) when it gets clicked.
The method that is called when button is clicked, as part of the OnClickListen
er interface.
We look up the value of the actual text of the status in the UI.
Use the log system to print out the value so we know this is working.

Logging Messages in Android
Android offers a system-wide logging capability. You can log from anywhere in your
code by calling Log.d(TAG, message), where TAG and message are some strings. TAG
should be a tag that is meaningful to you given your code. Typically, a tag would be the
name of your app, your class, or some module. Good practice is to define TAG as a Java
constant for your entire class, such as:

private static final String TAG = "StatusActivity";

When you add logging to your app, before your code will compile,
you need to import the Log class. Eclipse has a useful feature under
Source → Organize Imports, or Ctrl-Shift-O for short. Usually, this
feature will automatically organize your import statements. Howev‐
er, in the case of Log, often there is a conflict because there are mul‐
tiple classes named Log. This is where you have to use your com‐
mon sense and figure it out. In this case, the ambiguity is between the
Android Log and Apache Log classes, so the choice should be easy.

Note that Log takes different severity levels. .d() is for debug level, but you can also
specify .e() for error, .w() for warning, or .i() for info. There’s also a .wtf() severity
level for errors that should never happen. (It stands for “what a terrible failure,” in case
you were wondering.) Eclipse color codes log messages based on their severity level.

LogCat
The Android system log is outputted to LogCat, a standardized system-wide logging
mechanism. LogCat is readily available to all Java code. The developer can easily view
the logs and filter their output based on severity, such as debug, info, warning, or error,

108 | Chapter 7: Android User Interface

or based on custom-defined tags. As with most things in Android development, there
are two ways to view the LogCat: via Eclipse or via the command line.

To view LogCat in Eclipse, you need to open the LogCat View (see Figure 7-13). Typi‐
cally, Eclipse will automatically open this view for you upon running of the application,
but you can also manually open it up by going to Window → Show View → Other →
Android → LogCat.

Figure 7-13. LogCat in Eclipse

You can define filters for LogCat as well. Click the little green plus button, and the LogCat
Filter dialog will come up. You can define a filter based on a tag, severity level, or process
ID. This will create another window within LogCat that shows you only the log entries
that match your filter.

Compiling Code and Building Your Projects: Saving Files
After you make changes to your Java or XML files, make sure you save them before
moving on. Eclipse builds your project automatically every time you choose File → Save
or press Ctrl-S. So it is important to save files and make sure you do not move to another
file until the current file is fine. You will know your file is fine when there are no little
red x symbols in your code and the project builds successfully. Because Java depends
on XML and vice versa, moving to another file while the current one is broken just
makes it even more difficult to find errors.

Logging Messages in Android | 109

Java errors typically are easy to find because the little red x in the code navigates you
straight down to the line number where the error occurred. By putting your mouse right
on that error, Eclipse will tell you what the error is and will also offer you some possible
fixes. This Eclipse feature is very useful and is analogous to the spellchecker in a word
processor.

At this point, you can run your application. Right-click the Yamba project in the Package
Explorer, and choose Run As → Android Application (Figure 7-14).

Figure 7-14. Running the app

At this point, your application should show up on your emulator (Figure 7-15), or your
real device for that matter.

110 | Chapter 7: Android User Interface

Figure 7-15. Yamba on the emulator

Next, we’re going to start working on getting our application to post to the cloud via a
web service call.

A Brief History of the Twitter API and This Book’s Substitute
In 2006, Twitter introduced its first API in response to those who were simply scraping
the site in order to get the tweets. This API is based on the RESTful interface serving
JSON and XML data.

Twitter also used to support simple authentication, where all you’d need to provide to
authenticate your request with the web service was your username and password. Twit‐
ter has since moved to OAuth authentication—a smarter way to give apps access to your
account without giving them your login credentials.

In the early days, Yamba applications did indeed work with the real Twitter.com service.
Since then, Twitter has changed its original API, making it harder for third-party apps
to use the service. Specifically, the new API replaced simple authentication with the more
secure but also more complex OAuth authentication. It has also introduced rate limiting,

Logging Messages in Android | 111

http://oauth.net/

which makes it harder for multiple people to use one account at the same IP, thus creating
friction for classroom learning environments.

OAuth works based on an exchange of tokens. Though in general this is a better way to
authenticate, we felt that for learning purposes it threw the flow of this tutorial-style
approach off on a tangent that is not all that relevant at this point in learning Android.
There are numerous articles written about how to use OAuth with your Android app,
including these:

• OAuth in Android
• Authentication with OAuth 2.0

Instead of depending on the ever-changing world of the Twitter API, we have created a
Twitter-like service at http://yamba.marakana.com. This service, built using the Sta‐
tus.net Twitter-compatible API, implements the Twitter API 1.0 and captures the spirit
of what we intend to showcase in our Yamba example without all the complications of
the real Twitter service.

Adding the Twitter API Library
To process web service API calls, you need an HTTP library and an XML parser. Al‐
though a number of open source libraries provide general HTTP and XML parsing
capabilities, including a couple of Android-specific options, you need to know more
about Java networking than Android programming to implement web service calls.

To make our life with web services and the Twitter API easier, we’re going to use a third-
party library, YambaClientLib, which we created. This library contains a simple Java
class that interacts with the online service and abstracts all the intricacies of making
network calls and passing the data back and forth. Again, if there were no higher-level
library for what we needed to do, we could have used standard Java networking libraries
to get the job done. It just would have been more work, and that work is not directly
relevant to learning Android.

The YambaClientLib library has been designed specifically for the purposes of this book.
It has been stripped down to the bare essentials, making it easy for you to peek at its
source code and see the its inner workings, if you care to do so. It also supports Twitter’s
older API that allows for simple authentication (username and password) versus the
new OAuth authentication.

After you download this library, you can put it inside your project in Eclipse. Simply
drag the yambaclientlib.jar file and drop it in the libs folder of your Eclipse project in
the Package Manager window. This makes the file part of the project. More so,
any .jar file dropped in this special libs folder of your project automatically becomes
part of the project’s classpath, where the Java compiler will look for the libraries it
needs to load.

112 | Chapter 7: Android User Interface

http://marakana.com/forums/android/examples/312.html
http://bit.ly/1gc7WoJ
http://yamba.marakana.com
http://status.net/wiki/Twitter-compatible_API
http://status.net/wiki/Twitter-compatible_API
https://github.com/marakana/YambaClientLib

Updating the Manifest File for Internet Permission
Before this application can work, we must ask the user to grant us the right to use the
Internet. Android manages security by specifying the permissions needed for certain
dangerous operations. The user then must explicitly grant those permissions to each
application when he first installs it. The user has the binary choice of granting all or no
permissions requested by the application; there’s no middle ground. Also, the user is
not prompted about permissions when upgrading an existing app.

Because we are running this application in debug mode and instal‐
ling it via a USB cable, Android doesn’t prompt us for permissions
like it would the end user. However, we still must specify that the
application requires certain permissions.

In this case, we want to ask the user to grant this application the INTERNET permission.
We need Internet access to connect to the online service. So open up the AndroidMani‐
fest.xml file by double-clicking it. Note that Eclipse typically opens this file in a WYSI‐
WYG editor with many tabs on the bottom. As always, you can make most of the changes
to this file via this interface, but because Eclipse tools are limited and sometimes buggy,
we prefer to go straight into the XML view of this file. So, choose the rightmost tab at
the bottom that says_AndroidManifest.xml_, and add a <uses-permission> element
within the <manifest> block (see Example 7-5).

Example 7-5. AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.yamba"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="18" />

 <!-- -->
 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.marakana.android.yamba.StatusActivity"
 android:label="@string/app_name" >
 <intent-filter>

Logging Messages in Android | 113

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Defines the <uses-permission> element for the INTERNET permission.

Threading in Android
A thread is a sequence of instructions executed in order. Although each CPU core can
process only one instruction at a time, most operating systems are capable of handling
multiple threads on multiple CPU cores, or interleaving them on a single CPU. Different
threads need different priorities, so the operating system determines how much time
to give each one if they have to share a CPU.

The Android operating system is based on Linux, and as such, is fully capable of running
multiple threads at the same time. However, you need to be aware of how applications
use threads in order to design your application properly.

Single Thread
By default, an Android application runs on a single thread. Single-threaded applications
run all commands serially, meaning that no command starts until the previous one is
done. Another way of saying this is that each call is blocking.

This single thread is also known as the UI thread because it’s the thread that processes
all the user interface commands. The UI thread is responsible for drawing all the ele‐
ments on the screen as well as processing all the user events, such as touches on the
screen, clicks of the button, and so on. Figure 7-16 shows the execution of our code on
a single UI thread.

Figure 7-16. Single-threaded execution

The problem with running StatusActivity on the single thread comes with our net‐
work call to update the status. As with all network calls, the time it takes to execute is

114 | Chapter 7: Android User Interface

outside of our control. Our call to post to the cloud service is subject to all the network
availability and latency issues. We don’t know whether the user is on a super fast WiFi
connection or is using a much slower protocol to connect to the cloud. In other words,
our application cannot respond until the network call is completed.

Prior to Honeycomb (API 11), doing network calls on the UI thread was doable by
default, but not recommended. Newer versions of Android OS will throw an exception,
in this case, android.os.NetworkOnMainThreadException.

The Android system will offer to kill any application that is not re‐
sponding within a certain time period, typically around five seconds
for activities. This is known as the Application Not Responding dia‐
log, or ANR for short (see Figure 7-17).

Figure 7-17. Application Not Responding dialog

Multithreaded Execution
A much better solution is to run the potentially long operations on a separate thread.
When multiple tasks run on multiple threads at the same time, the operating system
slices the available CPU time so that no one task dominates the execution. As a result,
it appears that multiple tasks are running in parallel at the same time.

In our example, we could put the actual network call for updating our status in the cloud
in a separate thread. That way our main UI thread will not block while we’re waiting for
the network, and the application will appear much more responsive. We tend to talk of
the main thread as running in the foreground and the additional threads as running in
the background. They’re really all equal in status, alternating their execution on the
device’s CPU, but from the point of view of the user, the main thread is in the foreground
because it deals with the UI. Figure 7-18 shows the execution of our code’s two threads
—the main UI thread, as well as the auxiliary thread we use to perform potentially long-
running network calls.

Threading in Android | 115

Figure 7-18. Multithreaded execution

There are several ways to accomplish multithreading. Java has a Thread class that allows
for many of these operations. We could certainly use any of the regular Java features to
put the network call in the background.

However, using the standard Java Thread class is somewhat problematic. Imagine that
after we post to the cloud we want to notify the user of the success or failure of that
operation. We would have to update the UI. But, in Android, a thread that didn’t create
the UI widget is not allowed to update the UI—this would not be thread-safe. We would
need to synchronize these threads somehow, and that would be a job on its own.

Because this is a common task in Android, the framework provides the utility class
AsyncTask specifically designed for this purpose.

AsyncTask
AsyncTask is an Android mechanism created to help handle long operations that need
to report to the UI thread. To take advantage of this class, we need to create a new
subclass of AsyncTask and implement its doInBackground(), onProgressUpdate(),
and onPostExecute() methods. In other words, we are going to fill in the blanks for
what to do in the background, what to do when there’s some progress, and what to do
when the task completes.

We’ll extend our earlier example with an asynchronous posting to the cloud. The first
part of Example 7-6 is very similar to the code in Example 7-4, but hands off the posting
to the asynchronous task. A new AsyncTask does the posting in the background.

Example 7-6. StatusActivity.java, version 2
package com.marakana.android.yamba;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;

116 | Chapter 7: Android User Interface

import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class StatusActivity extends Activity implements OnClickListener {
 private static final String TAG = "StatusActivity";
 private EditText editStatus;
 private Button buttonTweet;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_status);

 editStatus = (EditText) findViewById(R.id.editStatus);
 buttonTweet = (Button) findViewById(R.id.buttonTweet);

 buttonTweet.setOnClickListener(this);
 }

 @Override
 public void onClick(View view) {
 String status = editStatus.getText().toString();
 Log.d(TAG, "onClicked with status: " + status);

 new PostTask().execute(status); //
 }

 private final class PostTask extends
 AsyncTask<String, Void, String> { //

 @Override
 protected String doInBackground(String... params) { //
 YambaClient yambaCloud =
 new YambaClient("student", "password");
 try {
 yambaCloud.postStatus(params[0]); //
 return "Successfully posted";
 } catch (YambaClientException e) {
 e.printStackTrace();
 return "Failed to post to yamba service";
 }
 }

 @Override
 protected void onPostExecute(String result) { //

Threading in Android | 117

 super.onPostExecute(result);

 Toast.makeText(StatusActivity.this, result,
 Toast.LENGTH_LONG).show(); //
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.status, menu);
 return true;
 }

}

Once we have our AsyncTask set up, we can run it. To do so, we simply instantiate
it and call execute() on it. The argument that we pass in is what goes into the
doInBackground() call. Note that in this case we are passing a single string that
is being converted into a string array in the actual method later on, which is an
example of Java’s variable number of arguments feature. It is important to
remember that this method executes on a separate thread, so you cannot update
the UI from it.
The PostTask class in this case is an inner class of StatusActivity. It also
subclasses AsyncTask. Notice the use of Java generics to describe the data types
that this AsyncTask will use in its methods. We’ll explain these three types
following this list. The first data type is used by doInBackground(), the second
by onProgressUpdate(), and the third by onPostExecute().
doInBackground() is the callback that specifies the actual work to be done on
the separate thread, acting as if it’s executing in the background. The argument
String… is the first of the three data types that we defined in the list of generics
for this PostTask inner class. The three dots indicate that this is an array of
Strings, and you have to declare it that way, even though you want to pass only
a single status.
This is the call to the Yamba Client library that does all the magic of encoding
it into a web service call. We’re passing the first parameter of the input, which
is the actual text of the status that comes in via the execute() call from on
Click().
onPostExecute() is called when our task completes. This is our callback method
to update the user interface and tell the user that the task is done. It is important
to know that this method executes on the application’s main thread, which we
also refer to as the UI thread.

118 | Chapter 7: Android User Interface

http://en.wikipedia.org/wiki/Variadic_function
http://en.wikipedia.org/wiki/Generics_in_Java

In this particular case, we are using a Toast feature of the Android UI to display
a quick message on the screen. Notice that Toast uses the makeText() static
method to make the actual message. Also, do not forget to include show();
otherwise, your message will never be displayed, and no error will be reported
—a hard bug to find. The argument that this method gets is the value that
doInBackground() returns, in this case a string. This also corresponds to the
third generics data type in the PostTask class definition. The reference to Sta
tusActivity.this represents the Context that our application is in. As a rule
of thumb, whenever in an activity, pass that activity as the context object.

At this point, when the user clicks “Update Status,” our activity creates a separate thread
using AsyncTask and places the actual network operation on that thread. When done,
the AsyncTask will update the main UI thread by popping up a Toast message to tell
the user that the operation either succeeded or failed.

Other UI Events
So far, you have seen how to handle the click events by implementing OnClickListen
er and providing the onClick() method, which is invoked when the button is clicked.
Imagine that we want to provide a little counter telling the user how many characters
of input are still available out of the maximum of 140. The counter must change as the
user is typing, without waiting for a click. To do that, we need another type of listener.

Android provides many different listeners for various events, such as touch and click.
In this case, we’re going to use TextWatcher to watch for text changes in the edit text
field. Steps for this listener are similar to the steps for OnClickListener and many other
listeners.

From the user’s standpoint, we’ll add another TextView to our layout to indicate how
many characters are still available. This text will change color, from green to yellow to
red, as the user approaches the 140-character limit.

In Java, we’ll implement TextWatcher and attach it to the field where the user is typing
the actual text. The TextWatcher methods will be invoked as the user changes the text,
and based on the amount of text entered, we’ll update the counter.

To start, we’ll add another text view onto our layout. In Graphical Layout, we picked
Small Text from the Form Widgets Palette, and dragged it to the top-left corner. We
changed its ID to textCount and hardcoded the text to 140. Although hardcoding values
is not a good practice because it precludes internationalization, in our case this value is
just temporarily there to help us visually see what we’re working on—we’ll be updating
it programmatically. See Example 7-7 for the source of the final result.

Other UI Events | 119

Example 7-7. The res/layout/status_activity.xml file
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".StatusActivity" >

 <Button
 android:id="@+id/buttonTweet"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:layout_marginRight="17dp"
 android:text="@string/button_tweet" />

 <EditText
 android:id="@+id/editStatus"
 android:gravity="top"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/buttonTweet"
 android:layout_marginTop="10dp"
 android:ems="10"
 android:hint="@string/hint_status"
 android:inputType="textMultiLine" >

 <requestFocus />
 </EditText>

 <TextView //
 android:id="@+id/textCount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/editStatus"
 android:layout_alignTop="@+id/buttonTweet"
 android:text="140"
 android:textAppearance="?android:attr/textAppearanceSmall" />

</RelativeLayout>

New TextView that represents how many characters are still available for the
user to type. We start at 140 and then go down as the user enters text.

120 | Chapter 7: Android User Interface

The version of StatusActivity shown in Example 7-8 implements the TextWatcher
interface, and the new methods in this example appear at the end of the class. Initially
the text of the counter is in green to indicate we can keep on typing. As we approach
the maximum, the text turns yellow and eventually changes to red to indicate we are
beyond the maximum message size.

Example 7-8. StatusActivity.java, final version
package com.marakana.android.yamba;

import android.app.Activity;
import android.graphics.Color;
import android.os.AsyncTask;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.util.Log;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class StatusActivity extends Activity implements OnClickListener {
 private static final String TAG = "StatusActivity";
 private EditText editStatus;
 private Button buttonTweet;
 private TextView textCount; //
 private int defaultTextColor; //

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_status);

 editStatus = (EditText) findViewById(R.id.editStatus);
 buttonTweet = (Button) findViewById(R.id.buttonTweet);
 textCount = (TextView) findViewById(R.id.textCount); //

 buttonTweet.setOnClickListener(this);

 defaultTextColor =
 textCount.getTextColors().getDefaultColor(); //
 editStatus.addTextChangedListener(new TextWatcher() { //

 @Override
 public void afterTextChanged(Editable s) { //

Other UI Events | 121

 int count = 140 - editStatus.length(); //
 textCount.setText(Integer.toString(count));
 textCount.setTextColor(Color.GREEN); //
 if (count < 10)
 textCount.setTextColor(Color.RED);
 else
 textCount.setTextColor(defaultTextColor);
 }

 @Override
 public void beforeTextChanged(CharSequence s,
 int start, int count,
 int after) { //
 }

 @Override
 public void onTextChanged(CharSequence s,
 int start, int before,
 int count) { //
 }

 });
 }

 @Override
 public void onClick(View view) {
 String status = editStatus.getText().toString();
 Log.d(TAG, "onClicked with status: " + status);

 new PostTask().execute(status);
 }

 private final class PostTask extends
 AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... params) {
 YambaClient yambaCloud =
 new YambaClient("student", "password");
 try {
 yambaCloud.postStatus(params[0]);
 return "Successfully posted";
 } catch (YambaClientException e) {
 e.printStackTrace();
 return "Failed to post to yamba service";
 }
 }

 @Override
 protected void onPostExecute(String result) {
 super.onPostExecute(result);

122 | Chapter 7: Android User Interface

 Toast.makeText(StatusActivity.this, result,
 Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.status, menu);
 return true;
 }

}

textCount is our text view, defined in Example 7-7.
This variable will hold the default text color. Because we don’t now what theme
the application may use down the road, we don’t want to make any assumptions
about the default color of the text. Rather, we’ll calculcate it at runtime.
First, we need to find the textCount in the inflated layout.
This is where we determine the default color of the text.
We attach the TextWatcher listener to the status text area. Unlike in onClick
Listener, we chose to implement the TextWatcher as an anonymous inner class.
This is a very standard practice in Android, especially for the UI event handlers.
TextWatcher has a number of callbacks, but we use only afterTextCh
anged(). This method is called once the user makes a change in the actual text
field. Here, we set the initial text to 140 because that’s the maximum length of a
status message in our app. Note that TextView takes text as a value, so we convert
a number to text here.
Here we do some math to figure out how many characters are left, given the 140-
character limit.
The textCount field will change color dynamically based on the number of
remaining characters. In this case, we start with the defaultTextColor, and
switch to java.awt.Color.RED once the user has fewer than 10 characters left.
Notice that the Color class is part of the Android framework and not Java. In
other words, we’re using android.graphics.Color and not java.awt.Color.
Color.RED is one of the few colors defined as a constant in this class (more on
colors in the next section). Next, based on the availability of the text, we update
the color of the counter. So, if more than 10 characters are available, we are still
in the green. Fewer than 10 means we are approaching the limit, thus the counter
turns yellow. If we are past the limit of 140 characters, the counter turns red.

Other UI Events | 123

http://en.wikipedia.org/wiki/Anonymous_class#Unnamed

This method is called just before the actual text replacement is completed. In
this case, we don’t need this method, but as part of implementing the TextWatch
er interface, we must provide its implementation, even though it’s empty.
Similarly, we are not using onTextChanged() in this case, but must provide its
blank implementation. Figure 7-19 shows what the TextWatcher looks like in
our application when running.

Figure 7-19. StatusActivity with text counter

Alternative Resources
Android supports multiple competing sets of resources. For example, you could have
multiple versions of a strings.xml file, activity_status.xml layout, or other resources. You
might want multiple versions of the same resource so that the best version can be used
under different circumstances. We touched on this in “Drawable Resources” on page 56.

Imagine that your application is used in another country with a different language. In
that case, you could provide a strings.xml version specifically for that language. Or
imagine that a user runs your application on a different device, with a different screen

124 | Chapter 7: Android User Interface

that has more pixels. In that case, you’d want versions of your images specifically for
this screen’s pixel density. Similarly, users might simply rotate the device from portrait
to landscape mode. Our application will redraw properly, but there are further en‐
hancements we could make to the layout of the UI given the orientation of the screen.

Android provides for all these cases in an elegant way. Basically, you simply need to
create alternative folders for specific constraints. For example, our standard layout files
go into the /res/layout folder, but if we wanted to provide an alternative layout specifi‐
cally for landscape mode, we’d simply create a new file called /res/layout-land/activi‐
ty_status.xml. And if we wanted to provide a translated version of our strings.xml file
for users who are in a French-speaking part of Canada, we’d put it in file called res/
values-fr-rCA/strings.xml.

As you see from these examples, alternative resources work by specifying the qualifiers
in the names of their resource folders. In the case of the French Canadian strings, An‐
droid knows that the first qualifier -fr refers to language, and the second qualifier -
rCA specifies that the region is Canada. In both cases, we use two-letter ISO codes to
specify the country. So in this case, if the user is in Quebec and her device is configured
to favor the French language, Android will look for string resources in the /res/values-
fr-rCA/strings.xml file. If it doesn’t find a specific resource, it will fall back to the de‐
fault /res/values/strings.xml file. Also, if the user is in France, Android will use the default
resource, because our French Canadian qualifiers do not match French for France.

Using qualifiers, you can create alternative resources for languages and regions, screen
sizes and orientations, device input modes (touch screen, stylus), keyboard or no key‐
board, and so on. But how do you figure out this naming convention for resource folder
names?

Let’s create an alternative resource for the landscape view of our screen. The easiest
solution is to use Eclipse’s New Android XML File dialog (see Figure 7-20). To open the
New Android XML File dialog, choose File → New → Android XML File from the
Eclipse menu. Choose Layout as the resource type, and name it the same as our layout
filename, i.e., activity_status.xml. Click Next, and on the next screen choose Orientation
→ Landscape. Click Finish. This will create a new file under res/layout-land/activi‐
ty_status.xml.

The easiest way to create our landscape layout is to start with the default one that we
have already created. To do that, copy and paste the XML from res/layout/activi‐
ty_status.xml to res/layout-land/activity_status.xml. Then, customize the user interface
for that orientation, for example, moving the button and the counter to the right and
giving the text area a bit more vertical space so that the keyboard doesn’t obstruct it
(Figure 7-21).

Alternative Resources | 125

http://www.loc.gov/standards/iso639-2/php/code_list.php

Figure 7-20. Alternative resources with the New Android XML File dialog

Figure 7-21. Landscape layout

126 | Chapter 7: Android User Interface

You can now run your application and try to rotate the screen in order to see how the
system will render the appropriate resource file. On the emulator, use Crtl-F11.

Summary
By the end of this chapter, your application should run and should look like
Figure 7-22. It should also successfully post your tweets to your Twitter account. You
can verify it is working by logging in to an online service of your choice that supports
the Twitter API, such as http://yamba.marakana.com, using the same username and
password that are hardcoded in the application.

Figure 7-22. StatusActivity

Figure 7-23 illustrates what we have done so far as part of the design outlined in
Figure 6-4.

Summary | 127

http://yamba.marakana.com

Figure 7-23. Yamba, as created by the end of this chapter

128 | Chapter 7: Android User Interface

CHAPTER 8

Fragments

In Android 3.0 (API Level 11), Android introduced the Fragments API. This was in
response to a growing need to accommodate multiple screen sizes (such as tablets versus
phones) and orientations (landscape versus portrait). To do this, it was necessary to
modularize the views (the UI) such that it would be easy to separate the Activity con‐
tainer from the UI. This enables the developer to create a more responsive and easy-to-
build interface to the user’s needs—such as changing the interface on the fly rather than
having to create completely new containers for every configuration.

Fragment Example
To show how easy it is to convert an activity into a fragment, let’s start with the Status
Activity we created in a previous chapter. For reference, Example 8-1 is a copy of the
old StatusActivity.java file and Example 8-2 is a copy of the layout XML (the activi‐
ty_status.xml file) for StatusActivity.

Example 8-1. Old StatusActivity
package com.marakana.android.yamba;

import android.app.Activity;
import android.graphics.Color;
import android.os.AsyncTask;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.util.Log;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

129

import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class StatusActivity extends Activity implements OnClickListener {
 private static final String TAG = "StatusActivity";
 private EditText editStatus;
 private Button buttonTweet;
 private TextView textCount;
 private int defaultTextColor;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_status);

 editStatus = (EditText) findViewById(R.id.editStatus);
 buttonTweet = (Button) findViewById(R.id.buttonTweet);
 textCount = (TextView) findViewById(R.id.textCount);

 buttonTweet.setOnClickListener(this);

 defaultTextColor = textCount.getTextColors().getDefaultColor();
 editStatus.addTextChangedListener(new TextWatcher() {

 @Override
 public void afterTextChanged(Editable s) {
 int count = 140 - editStatus.length();
 textCount.setText(Integer.toString(count));
 textCount.setTextColor(Color.GREEN);
 if (count < 10)
 textCount.setTextColor(Color.RED);
 else
 textCount.setTextColor(defaultTextColor);
 }

 @Override
 public void beforeTextChanged(CharSequence s,
 int start, int count,
 int after) {
 }

 @Override
 public void onTextChanged(CharSequence s,
 int start, int before,
 int count) {
 }

 });
 }

130 | Chapter 8: Fragments

 @Override
 public void onClick(View view) {
 String status = editStatus.getText().toString();
 Log.d(TAG, "onClicked with status: " + status);

 new PostTask().execute(status);
 }

 private final class PostTask extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... params) {
 YambaClient yambaCloud =
 new YambaClient("student", "password");
 try {
 yambaCloud.postStatus(params[0]);
 return "Successfully posted";
 } catch (YambaClientException e) {
 e.printStackTrace();
 return "Failed to post to yamba service";
 }
 }

 @Override
 protected void onPostExecute(String result) {
 super.onPostExecute(result);

 Toast.makeText(StatusActivity.this, result,
 Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.status, menu);
 return true;
 }

}

Example 8-2. Old StatusActivity layout: activity_status.xml
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".StatusActivity" >

Fragment Example | 131

 <Button
 android:id="@+id/buttonTweet"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:layout_marginRight="17dp"
 android:text="@string/button_tweet" />

 <EditText
 android:id="@+id/editStatus"
 android:gravity="top"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/buttonTweet"
 android:layout_marginTop="10dp"
 android:ems="10"
 android:hint="@string/hint_status"
 android:inputType="textMultiLine" >

 <requestFocus />
 </EditText>

 <TextView
 android:id="@+id/textCount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/editStatus"
 android:layout_alignTop="@+id/buttonTweet"
 android:text="140"
 android:textAppearance="?android:attr/textAppearanceSmall" />

</RelativeLayout>

To switch to the Fragment API, we need to move the StatusActivity logic into a
Fragment extended class. Example 8-3 creates a StatusFragment that extends Frag
ment and continues to implement OnClickListener and TextWatcher just like the
StatusActivity. If you carefully compare the two examples, you will notice that they
are extremely similar. This shows just how simple the switch is.

Example 8-3. StatusFragment
package com.marakana.android.yamba;

import android.app.Fragment;
import android.graphics.Color;
import android.os.AsyncTask;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.util.Log;

132 | Chapter 8: Fragments

import android.view.LayoutInflater;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class StatusFragment extends Fragment implements OnClickListener {
 private static final String TAG = "StatusFragment";
 private EditText editStatus;
 private Button buttonTweet;
 private TextView textCount;
 private int defaultTextColor;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 View view = inflater
 .inflate(R.layout.fragment_status, container, false);

 editStatus = (EditText) view.findViewById(R.id.editStatus);
 buttonTweet = (Button) view.findViewById(R.id.buttonTweet);
 textCount = (TextView) view.findViewById(R.id.textCount);

 buttonTweet.setOnClickListener(this);

 defaultTextColor = textCount.getTextColors().getDefaultColor();
 editStatus.addTextChangedListener(new TextWatcher() {

 @Override
 public void afterTextChanged(Editable s) {
 int count = 140 - editStatus.length();
 textCount.setText(Integer.toString(count));
 textCount.setTextColor(Color.GREEN);
 if (count < 10)
 textCount.setTextColor(Color.RED);
 else
 textCount.setTextColor(defaultTextColor);
 }

 @Override
 public void beforeTextChanged(CharSequence s,
 int start, int count,
 int after) {
 }

Fragment Example | 133

 @Override
 public void onTextChanged(CharSequence s,
 int start, int before,
 int count) {
 }

 });

 return view;
 }

 @Override
 public void onClick(View view) {
 String status = editStatus.getText().toString();
 Log.d(TAG, "onClicked with status: " + status);

 new PostTask().execute(status);
 }

 private final class PostTask extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... params) {
 YambaClient yambaCloud =
 new YambaClient("student", "password");
 try {
 yambaCloud.postStatus(params[0]);
 return "Successfully posted";
 } catch (YambaClientException e) {
 e.printStackTrace();
 return "Failed to post to yamba service";
 }
 }

 @Override
 protected void onPostExecute(String result) {
 super.onPostExecute(result);

 Toast.makeText(StatusFragment.this.getActivity(),
 result, Toast.LENGTH_LONG).show();
 }
 }
}

134 | Chapter 8: Fragments

To add Fragments, we had to import three additional classes: android.app.Fragment,
android.view.LayoutInflater, and android.view.ViewGroup. Our StatusFrag
ment class overrides the onCreateView method, and creates a view there that performs
the activities done by onCreate in the original StatusActivity. The rest of the code is
the same as before. The following line in the onCreateView() method:

View view = inflater.inflate(R.layout.fragment_status, container, false);

uses the inflater from LayoutInflater to establish a view for the fragment.

The layout XML for the this new fragment is also simple. Rename the activity_sta‐
tus.xml file that is located in res/layout to fragment_status.xml (keeping it in res/
layout). This is so we are clear what the layout file is for. (Technically, we could have
reused the activity_status.xml file as is by referring to it in the inflater logic as R.lay
out.status.)

Now that the fragment is out of the way, we can change the StatusActivity
(Example 8-4) to reflect the new setup. This change in fact simplifies the StatusActiv
ity greatly, because all we do now within the activity is specify a new content view layout.

Example 8-4. New StatusActivity
package com.marakana.android.yamba;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

public class StatusActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.new_activity_status);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.status, menu);
 return true;
 }
}

It is this new layout (shown in Example 8-5) that supplies the hook to the newly created
fragment. You should put the code for the layout in a file called new_activity_sta‐
tus.xml in the res/layout directory, As you can see, a new <fragment /> tag is placed
there, referencing the new fragment class: com.marakana.android.yamba.Status
Fragment.

Fragment Example | 135

Example 8-5. StatusActivity layout: new_activity_status.xml
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <fragment
 android:id="@+id/fragment_status"
 android:name="com.marakana.android.yamba.StatusFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</FrameLayout>

Fragment Life Cyle
The fragment life cycle is extremely important to understand, particularly how and
when methods in the fragment are called during the activity’s life cycle. Fragments go
through a life cycle similar to activities: they are created, started and stopped, resumed
and paused, and finally destroyed. As with an activity, you should save to disk or to a
database any data in the fragment you want persisted in your onPause method for the
fragment. Figure 8-1 shows the fragment methods in parallel to the activity’s states. The
important methods to note are the following:
onCreateView()

Called when the view is created

onResume()

Called when the activity’s onResume() is called

onPause()

Parallel’s the activity’s onPause()

onDestroyView()

Called when the view is destroyed

This is why, in our example, we inflated the layout in onCreateView() so that when the
activity is created, the view is created accordingly.

136 | Chapter 8: Fragments

Figure 8-1. Activity and fragment life cycle

Dynamically Adding Fragments
In Example 8-5, we have added our status fragment to the activity by creating an XML
layout file that our activity inflated, at which time the fragment was also loaded and
created. Because initialization of the fragment happens in an XML file, this is called
static initialization. At a closer look, you may notice that most of the XML file itself is
almost just noise—it’s there just to define that we need to load a fragment.

As you know from before, XML ultimately always becomes Java, so everything that can
be done statically can also be done dynamically. Sometimes one approach is cleaner

Dynamically Adding Fragments | 137

than others. Just for comparison purposes, let’s refactor our code to attach status frag‐
ment to status activity dynamically.

Our status activity can now be seen in Example 8-6, which shows how to load a fragment
dynamically (in other words, without the need for an XML file).

Example 8-6. StatusActivity, refactored
package com.marakana.android.yamba;

import android.os.Bundle;

public class StatusActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Check if this activity was created before
 if (savedInstanceState == null) { //
 // Create a fragment
 StatusFragment fragment = new StatusFragment(); //
 getFragmentManager()
 .beginTransaction()
 .add(android.R.id.content, fragment,
 fragment.getClass().getSimpleName())
 .commit(); //
 }
 }

}

We no longer call setContentView(). Instead, we check whether this is the first
time this activity is created, because we could also have gotten to this point in
the code when the activity exists and the screen has been rotated by the user.
First time around, we need to instantiate the status fragment.
Next, in one go, we obtain the fragment manager from the current context, start
a transaction, attach this new fragment to the root of this activity identified by
the system ID android.R.id.content, and commit this transaction. That’s it.

We no longer need res/layout/activity_status.xml—you can safely delete this file because
it’s never read.

At this point, the app looks like Figure 8-2.

138 | Chapter 8: Fragments

Figure 8-2. Status activity

Summary
In this chapter, we covered the basics of the Fragments API by converting one of the
activities we created in a prior chapter. We also explained the modularity that the Frag‐
ments API provides.

Figure 8-3 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

Summary | 139

Figure 8-3. Yamba completion

140 | Chapter 8: Fragments

CHAPTER 9

Intents, Action Bar, and More

In this chapter, you will learn how to create preferences for your application, how the
filesystem is organized, and how to use intents and the options menu to jump from one
activity to another.

Preferences
Preferences are user-specific settings for an application. They usually consist of some
configuration data as well as a user interface to manipulate that data.

In the user interface, preferences can be simple text values, checkboxes, selections from
a pull-down menu, or similar items. From a data point of view, preferences are a col‐
lection of name-value pairs, also known as key-value or attribute-value pairs. The values
are basic data types, such as integers, booleans, and strings.

Our micro-blogging application needs to connect to a specific server in the cloud using
specific user account information. For that, Yamba needs to know the username and
password for that account as well as the URL of the server it’s connecting to. This URL
is also known as the API root. So our interface will have three fields where the user can
enter and edit his username, his password, and the API root. This data will be stored as
strings.

To enable our app to handle user-specific preferences, we need to build a screen to enter
the information, Java code to validate and process that information, and some kind of
mechanism to store the information.

All this sounds like a lot of work, but Android provides a framework to help streamline
working with user preferences. First, we’ll define what our preference data looks like in
a preference resource file.

141

http://en.wikipedia.org/wiki/Attribute-value_pair

To create preferences for our application, we need to:

1. Create a Preference resource file called settings.xml.
2. Implement the SettingsActivity.java file that inflates that resource file.
3. Register this new activity with the AndroidManifest.xml file.
4. Provide a way to start that activity from the rest of the application.

Preference Resource
We are going to start by creating settings.xml, a resource file that outlines what our
preference screen will look like. The easiest way to create it is to use the New Android
XML File tool in Eclipse, as shown in Figure 9-1. To start the New Android XML File
dialog, go to File → New → Android XML File.

The key is to give the new file a name, in this case settings.xml, and to choose Preference
for the type of resource. The tool should automatically suggest creating this new file in
the /res/xml folder and that the root element for the XML file should be Preferen
ceScreen. As discussed in “Alternative Resources” on page 124, we could create alter‐
native versions of this same resource by applying various qualifiers, such as screen size
and orientation, language and region, etc.

When you click Finish, Eclipse will create a new file for you and open it. Eclipse typically
opens XML files that it has some specific knowledge about in a view that lets you easily
manipulate the content—a developer-friendly view.

In this view, you can create the username preference entry by selecting PreferenceScreen
on the left, and then choosing Add → EditTextPreference. On the right side, expand the
“Attributes from Preferences” section. Eclipse will offer you a number of attributes to
set for this EditTextPreference.

Not all attributes are equally important. Typically, you will care about the following:
Key

A unique identifier for each preference item. This is how we’ll look up a particular
preference later.

Title
The preference name that the user will see. It should be a short name that fits on a
single line of the preference screen.

Summary
A short description of this preference item. This is optional, but highly recom‐
mended so you and other people can understand later what you’ve created.

142 | Chapter 9: Intents, Action Bar, and More

Figure 9-1. New Android XML file

For the username preference, we’ll put “username” for its key. We will define the Title
and Summary in strings.xml, because this is the best practice.

Instead of modifying the strings.xml file directly, you can use an Eclipse shortcut. Here’s
how it goes:

1. Click Browse and select New String. This will open a dialog to create a new string
resource.

2. Enter username for the R.string. value and Username for the String value.
3. Click OK. Eclipse will insert a new string resource in strings.xml.

You can now pick that value from the list of resources.

Preferences | 143

Using these instructions for adding the Username preference item, you can now repeat
the same steps for the Password and API Root items.

You can switch to the actual XML code by clicking the tab at the bottom of the window,
shown in Figure 9-2.

Figure 9-2. Prefs.xml in developer-friendly view

The raw XML for the preference resource looks like the code shown in Example 9-1.

Example 9-1. The res/xml/settings.xml file
<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >

 <EditTextPreference
 android:key="username"
 android:summary="@string/username_summary"
 android:title="@string/username" />
 <EditTextPreference
 android:inputType="textPassword"
 android:title="@string/password"
 android:key="password" android:summary="@string/password_summary"/>
</PreferenceScreen>

<PreferenceScreen> is the root element that defines our main preference screen. It has
three children, all of the EditTextPreference type. This widget is simply a piece of

144 | Chapter 9: Intents, Action Bar, and More

editable text. Other elements commonly used to enter preferences are <CheckBoxPre
ference>, <ListPreference>, and so on.

The main property of any of these elements is the key. The key is how we’ll look up
these values later on. Remember, preferences are just a set of key-value pairs at the end
of the day.

As we said earlier, although Eclipse does provide developer-friendly tools to manage
XML files, you often run into certain limitations with Eclipse. For example, we would
like to hide the actual text that the user types in the password field, which is a common
practice. Android provides support for that, but Eclipse tools haven’t yet integrated this
function. Because we can always edit the XML directly, in this case we add an an
droid:inputType="textPassword" property to our password property. This will cause
the password to be masked while the user types it in.

SettingsActivity
Now that we have the preferences defined in their own XML resource file, we can create
the activity to display these preferences. You may recall from “Activities” on page 64 that
every screen in an Android app is an activity. So, to display the screen where a user
enters the username and password for his online account, we’ll create an activity to
handle that screen. This will be a special preference-aware activity.

To create an activity, we create a new Java class. In Eclipse, select your package under
your src folder, right-click the package, and select New→Class. A New Java Class window
will pop up. Enter SettingsActivity for the Name and click Finish. This will create a
SettingsActivity.java file under your package in your source folder. Then do the same
thing and create a SettingsActivity class.

Our SettingsActivity class, shown in Example 9-2, is a very simple Java file. This is
because we inherit from Activity and use the SettingsFragment class shown in
Example 9-3. The SettingsFragment class extends the SettingsActivity class, an
Android framework class that knows how to handle preferences.

Example 9-2. SettingsActivity.java
package com.marakana.android.yamba;

import android.os.Bundle;

public class SettingsActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Check whether this activity was created before
 if (savedInstanceState == null) {

Preferences | 145

 // Create a fragment
 SettingsFragment fragment = new SettingsFragment(); //
 getFragmentManager()
 .beginTransaction()
 .add(android.R.id.content, fragment,
 fragment.getClass().getSimpleName())
 .commit(); //
 }
 };
}

As before, in case this is the first time we’re creating this activity, we create the
instance of the fragment that will be housed here.
Next, we obtain the fragment transaction from the fragment manager, and add
this fragment to the activity’s main content.

Next, we get to create the actual settings fragment.

Example 9-3. SettingsFragment.java
package com.marakana.android.yamba;

import android.content.Intent;
import android.content.SharedPreferences;
import android.content.SharedPreferences.OnSharedPreferenceChangeListener;
import android.os.Bundle;
import android.preference.PreferenceFragment;
import android.preference.PreferenceManager;

public class SettingsFragment extends PreferenceFragment implements
 OnSharedPreferenceChangeListener { //
 private SharedPreferences prefs;

 @Override
 public void onCreate(Bundle savedInstanceState) { //
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.settings); //
 }

 @Override
 public void onStart() {
 super.onStart();
 prefs = PreferenceManager.getDefaultSharedPreferences(getActivity());
 prefs.registerOnSharedPreferenceChangeListener(this);
 }

}

Unlike regular fragments, SettingsFragment will subclass (i.e., extend) the
PreferenceFragment class.

146 | Chapter 9: Intents, Action Bar, and More

Just like any other fragment, we override the onCreate() method to initialize
the fragment.
Our preference fragment sets its content from the settings.xml file via a call to
addPreferencesFromResource().

Update the Manifest File
Whenever we create one of these main building blocks (activities, services, broadcast
receivers, or content providers), we need to define them in the AndroidManifest.xml
file. In this case, we have a new SettingsActivity and must add it to the manifest file.

Just as with any Android XML file, opening AndroidManifest.xml in Eclipse typically
will bring up the developer-friendly view of that file. In this file view, you could choose
the Application tab, and then under Application Nodes, choose Add → Activity and
name it .SettingsActivity.

However, we can also do this straight from the raw XML by clicking the AndroidMani‐
fest.xml tab on the bottom of this window. We find Eclipse to be useful for the initial
creation of XML files, but after that, editing the raw XML is often faster and gives you
much more control.

When editing code in Eclipse, you can use the Ctrl-spacebar key
shortcut to invoke the type-ahead feature of Eclipse. This is very useful
for both XML and Java code and is context-sensitive, meaning Eclipse
is smart enough to know what could possibly be entered at that point
in the code. Using Ctrl-spacebar makes your life as a programmer
much easier because you don’t have to remember long method names
and tags, and it helps avoid typos.

So our manifest file now looks like the code shown in Example 9-4.

Example 9-4. AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.yamba"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET" />

 <application

Preferences | 147

 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.marakana.android.yamba.StatusActivity"
 android:label="@string/status_update" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- -->
 <activity
 android:name="com.marakana.android.yamba.SettingsActivity"
 android:label="@string/action_settings" >
 </activity>
 </application>

</manifest>

Defines the new SettingsActivity.

We now have a new preference activity, but there’s no good way for the user to get at it
yet and express preferences. We need a way to launch this new activity. For that, we use
the options menu.

The Action Bar
The options menu is an Android user interface component that provides standardized
menus to applications. Pre-Honeycomb, options menus appear at the bottom of the
screen when the user presses the Menu button on the device. Now, options menu has
been replaced by the Action Bar. From a developer’s point of view, the Action Bar is the
same as the older system, with couple of additional features. From a user’s point of view,
though, the Action Bar shows at the top of the application, as a navigation bar would
on a web page.

To add support for the options menu to an application, we need to do the following:

1. Create the main.xml resource where we specify what the menu consists of.
2. Add onCreateOptionsMenu() to the activity that should have this menu. This is

where we inflate the menu.xml resource.
3. Provide handling of menu events in onOptionsItemSelected().

148 | Chapter 9: Intents, Action Bar, and More

Creating a Blank Main Activity
Status activity is the view from which we tweet. But, that’s likely not going to be the entry
point into the application. After all, the user much more frequently consumes the time‐
line than tweets status updates. So, we’re going to introduce a main entry point into our
app, the Main Activity. For now, this activity will be just an empty screen, but it will also
load our menus.

So go ahead and create a new blank activity using File → New → Other → Android
Activity and call it MainActivity:

Eclipse ADT will register your new activity in the manifest file, but you may have to
manually designate MainActivity to actually be the main entry point into the app. To
do that, you need to move the intent filter that we had on the Status Activity over to
Main Activity. Your new code would look like Example 9-5.

Example 9-5. AndroidManifest.xml with Main Activity
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.yamba"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="17" />

The Action Bar | 149

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.marakana.android.yamba.StatusActivity"
 android:label="@string/status_update" >
 </activity>
 <activity android:name="com.marakana.android.yamba.MainActivity" >
 <!-- -->
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.marakana.android.yamba.SettingsActivity"
 android:label="@string/action_settings" >
 </activity>
 </application>

</manifest>

This particular intent filter makes this particular activity the one that opens when
the user starts the app. By moving these four lines from Status Activity over to
Main Activity, we made Main Activity the home page of our app.

The Menu Resource
Once you create the Main Activity using Eclipse, the ADT plug-in will create a new
folder called /res/menu that contains the main.xml file and will open this file in the
developer-friendly view (see Figure 9-3).

150 | Chapter 9: Intents, Action Bar, and More

Figure 9-3. Menu.xml in developer-friendly view

In this view, you can click Add → Item, which will add a new menu item to your menu.
In the Attributes section on the right, you can see more than a dozen attributes that we
can set for this menu item. Just as before, not all attributes are equally important. We’ll
make sure to set these:
Id

The unique identifier of this resource. Just as when we designed the layout in
Chapter 7, this identifier is typically of the form @+id/someId, where someId is the
name that you give it. This name should contain only letters, numbers, and the
underscore character.

Title
The title of this menu as it will appear on the display. Keep in mind that screen space
typically is limited, so keep the title short. Additionally, you can provide a “Title
condensed” attribute to specify a shorter version of the title that will be shown
instead if space is limited. Just like before, best practice is to define the actual text

The Action Bar | 151

value of the title in the strings.xml resource and just refer to the defined text value
here.

Icon
The icon that displays along with the menu item’s title. Although not required, it is
a very useful visual cue from a usability point of view. In this case it also illustrates
how to point to Android system resources.

The next section describes these resources in more detail.

Android System Resources
Just as your application can have resources, so can the Android system. Like most other
operating systems, Android comes with some preloaded images, graphics, sound clips,
and other types of resources. Recall that our app resources are in /res. To refer to Android
system resources, prefix them with the android: keyword in XML; for example, @an
droid:drawable/ic_menu_preferences. If you are referring to an Android system re‐
source from Java, use android.R instead of the usual R reference.

The actual resource files are in your SDK, inside a specific platform
folder. For example, if you are using Android 9 (Gingerbread), the
resource folder would be android-sdk/platforms/android-9/data/res/.

Now, we’re going to create a menu resource with a couple of buttons that our application
will use, such as Tweet, Settings, Refresh, and Purge. The raw XML of main.xml is shown
in Example 9-6.

Example 9-6. The res/menu/main.xml file
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/action_settings"
 android:orderInCategory="100"
 android:showAsAction="never"
 android:title="@string/action_settings"/>
 <item
 android:id="@+id/action_tweet"
 android:icon="@android:drawable/ic_menu_add"
 android:showAsAction="always|withText"
 android:title="@string/tweet"/>
 <item
 android:id="@+id/action_refresh"
 android:icon="@android:drawable/ic_menu_rotate"
 android:showAsAction="always"
 android:title="@string/refresh"/>

152 | Chapter 9: Intents, Action Bar, and More

 <item
 android:id="@+id/action_purge"
 android:icon="@android:drawable/ic_menu_delete"
 android:title="@string/purge">
 </item>

</menu>

Next, we need to display this menu.

Loading the Menu
Recall that the options menu is loaded by your activity when the user clicks her device’s
Menu button. The first time the Menu button is pressed, the system calls the activity’s
onCreateOptionsMenu() method to inflate the menu from the menu.xml resource. This
process is similar to inflating the user interface from layout resources, discussed in “The
StatusActivity Java Class” on page 104. Basically, the inflater reads the XML code, creates
a corresponding Java object for each element, and sets each XML object’s properties
accordingly.

From that point on, the menu is in memory, and onCreateOptionsMenu() doesn’t get
called again until the activity is destroyed. Each time the user selects a menu item,
though, onOptionsItemSelected() gets called to process that click. We’ll talk about
this in the next section.

You need to update the StatusActivity to load the options menu. To do that, add an
onCreateOptionsMenu() method to StatusActivity. This method gets called only the
first time the user clicks Menu, as Example 9-7 illustrates.

Example 9-7. onCreateOptionsMenu() callback of Main Activity
 // Called to lazily initialize the action bar
 @Override
 public boolean onCreateOptionsMenu(Menu menu) { //
 // Inflate the menu items to the action bar.
 getMenuInflater().inflate(R.menu.main, menu); //
 return true; //
 }

Called the first time this menu needs to be displayed, such as the first time this
activity is rendered on the screen.
Get the MenuInflater object from the context view getMenuInflater(). Then
use the inflater to inflate the menu from the XML resource.
You must return true for this menu to be displayed.

The Action Bar | 153

Updating StatusActivity to Handle Menu Events
You also need a way to handle various clicks on the menu items. To do that, add another
callback method, onOptionsItemSelected(). This method is called every time the user
clicks a menu item, as Example 9-8 illustrates.

Example 9-8. Main Activity, final
// Called when an options item is clicked
package com.marakana.android.yamba;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 // Called to lazily initialize the action bar
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu items to the action bar.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 // Called every time user clicks on an action
 @Override
 public boolean onOptionsItemSelected(MenuItem item) { //
 switch (item.getItemId()) { //
 case R.id.action_settings:
 startActivity(new Intent(this, SettingsActivity.class)); //
 return true; //
 case R.id.action_tweet:
 startActivity(new Intent("com.marakana.android.yamba.action
 .tweet"));
 return true;
 default:
 return false;
 }
 }
}

onOptionsItemSelected() is called when user selects an item in the menu.

154 | Chapter 9: Intents, Action Bar, and More

Because the same method is called regardless of which item the user clicks, you
need to figure out the ID of that item, and based on that, switch to a specific
case to handle each item. At this point, we have only one menu item, but that
might change in the future. Switching an item ID is a very scalable approach
and will adapt nicely as our application grows in complexity.
The startActivity() method in context launches a new activity. In this case,
we are creating a new intent that specifies starting the SettingsActivity class.
As you remember from “Intents” on page 68, intents are Android’s way of
specifying what is the target of your request to startActivity(). In this case,
we’re starting our settings activity.
Return true to consume the event here.

Just as before, you could use the Eclipse shortcut Source→Override/
Implement Methods to add both onCreateOptionsMenu() and onOp
tionsItemSelected().

You should be able to run your application at this point and see the new SettingsAc
tivity by clicking Menu → Settings in StatusActivity (see Figure 9-4). Try changing
your username and password, then reboot your phone, restart the app, and verify that
the information is still there.

Shared Preferences and Updating Status Fragment
Now that we have a preference activity and a way to save our username and password,
it is time to make use of the preferences. To do so programmatically, use the SharedPre
ference class provided by the Android framework.

This class is called SharedPreference because this preference is easily accessible from
any component of this application (activities, services, broadcast receivers, and content
providers).

In StatusFragment, add a definition for the prefs object globally to the class:

 SharedPreferences prefs;

Now, to get the preference object, add the code in Example 9-9 to doInBackground().

Shared Preferences and Updating Status Fragment | 155

Figure 9-4. SettingsActivity

Example 9-9. StatusFragment, reading username/password from the settings
...
 @Override
 protected String doInBackground(String... params) {
 try {
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(getActivity()); //
 String username = prefs.getString("username", ""); //
 String password = prefs.getString("password", "");

 // Check that username and password are not empty.
 // If empty, Toast a message to set login info and bounce
 // to SettingActivity.
 // Hint: TextUtils.
 if (TextUtils.isEmpty(username) ||
 TextUtils.isEmpty(password)) { //
 getActivity().startActivity(
 new Intent(getActivity(), SettingsActivity.class));
 return "Please update your username and password";
 }

156 | Chapter 9: Intents, Action Bar, and More

 YambaClient cloud = new YambaClient(username, password);
 //
 cloud.postStatus(params[0]);
 ...

Each application has its own shared preferences available to all components of
this application context. To get the instance of this SharedPreferences, we use
PreferenceManager.getDefaultSharedPreferences() and pass it this as the
current context for this app. The name “shared” could be confusing. To clarify,
it means that this preference object contains data shared by various parts of this
application only; it is not shared with any other application.
Get the username and password from the shared preference object. The first
parameter in getString() is the key we assigned to each preference item, such
as username and password. The second argument is the default value in case
such a preference is not found. Keep in mind that the first time a user runs your
application, the preference file doesn’t exist, so defaults will be used. So, if the
user hasn’t set up her preferences in SettingsActivity, this code will attempt
to log in with an empty username and password, and thus fail. However, the
failure will happen when the user tries to do the actual status update because
that’s how the yambaclientlib library is designed.
This is just a quick check that we actually have some legit values already
configured in settings. If we don’t, we’ll communicate that to the user so she can
go ahead and update her username and password first.
Log in to the Yamba service with user-defined preferences.

The default username and password for the yamba.marakana.com
service is student/password. Again, we assume you are using the ser‐
vice at http://yamba.marakana.com/ with the API root of http://
yamba.marakana.com/api using login/password: “student"/"pass‐
word”. Shhh, please don’t tell anyone!

At this point, your app is working with user-specified login credentials. Next, we’ll look
at how the filesystem is organized on a typical Android device.

The Filesystem Explained
So, where does the device store these preferences? How secure are the username and
password? To answer that, we need to look at how the Android filesystem is organized.

The Filesystem Explained | 157

http://yamba.marakana.com/
http://yamba.marakana.com/api
http://yamba.marakana.com/api

Exploring the Filesystem
There are two ways for you to access the filesystem on an Android device: via Eclipse
or via the command line.

In Eclipse, use the File Explorer view to access the filesystem. To open up the File Ex‐
plorer view, go to Window → Show View → Other → Android → File Explorer. You can
also access the File Explorer view via the DDMS perspective. Select the DDMS per‐
spective icon in the top-right corner of Eclipse or go to Window → Open Perspective
→ Other → DDMS. If you have multiple devices connected to your workstation, make
sure you select which one you are working with in the Devices view. You should now
be able to navigate through the device’s filesystem.

If you prefer the command line, you can always use adb shell to get to the shell of the
device. From there you can explore the filesystem like you would on any other Unix
platform. We’ll show this use of the shell momentarily.

Filesystem Partitions
There are three main parts of the filesystem on every Android device. As shown in
Figure 9-5, they are:

• The system partition (/system/)
• The SDCard partition (/sdcard/)
• The user data partition at (/data/)

System Partition
Your entire Android operating system is located in the system partition. This is the main
partition that contains all your preinstalled applications, system libraries, Android
framework, Linux command-line tools, and so on.

The system partition is mounted read-only, meaning that you as developer have very
little influence over it. As such, this partition is of limited interest to us.

The system partition in the Emulator corresponds to the system.img file in your platform
images directory, located in the android-sdk/platforms/android-8/images folder.

SDCard Partition
The SDCard partition is a free-for-all mass storage area. Your app can read files from
this partition as well as write files to it if it holds the WRITE_TO_EXTERNAL_STORAGE
permission. This is a great place to store large files, such as music, photos, videos, and
similar items.

158 | Chapter 9: Intents, Action Bar, and More

http://developer.android.com/guide/developing/tools/ddms.html

Figure 9-5. The filesystem as seen via File Explorer in Eclipse

Starting with the FroYo version of Android, the /sdcard mount point
appears in the Eclipse File Explorer under the /mnt/sdcard location.
This is due to the new feature in FroYo that allows for storing and
running applications on the SDCard as well.

As an app developer, the SDCard partition is very useful and important to you. At the
same time, this partition is not very structured.

This partition typically corresponds to sdcard.img in your Android Virtual Device
(AVD) directory. This directory is in your ~/.android/avd/ folder and will have a
subdirectory for each specific virtual device. On the physical device, it is an actual SD
card.

The Filesystem Explained | 159

http://en.wikipedia.org/wiki/Secure_Digital
http://en.wikipedia.org/wiki/Secure_Digital

The User Data Partition
As a user and app developer, the most important partition is the user data partition.
This stores all your user data, all the downloaded apps, and most importantly, all the
applications’ data. This includes preinstalled apps as well as user-downloaded apps.

So, while user apps are stored in the /data/app folder, the most important folder to us
as app developers is the /data/data folder. Within this folder is a subfolder correspond‐
ing to each app. This folder is identified by the Java package that this app used to sign
itself. Again, this is why Java packages are important to Android security.

The Android framework provides a number of handy methods as part of its context
that help you access the user data filesystem from within your application. For example,
take a look at getFilesDir().

The user data partition typically corresponds to user-data.img in your Android Virtual
Device (AVD) directory. As before, this directory is in your ~/.android/avd/ folder and
will have a subdirectory for each specific virtual device.

When you create a new app, you assign your Java code to a specific package. Typically,
this package follows the Java convention of reverse domain name plus app name. For
example, the Yamba app is in the com.marakana.android.yamba package. So, once in‐
stalled, Android creates a special folder just for this app under /data/data/com.mara‐
kana.android.yamba/. This folder is the cornerstone of the private, secured filesystem
dedicated to each app.

There will be subfolders in /data/data/com.marakana.android.yamba/, but they are well
defined. For example, the preferences are in /data/data/com.marakana.android.yamba/
shared_prefs/. As a matter of fact, if you open up the DDMS perspective in Eclipse and
select File Explorer, you can navigate to this folder. You will probably see the com.mar‐
akana.android.yamba_preferences.xml file in there. You could pull this file and examine
it, or use adb shell.

adb shell is common adb subcommands to access the shell of your device (either
physical or virtual). For instance, you could just open up your command-line terminal
and type:

[user:~]> adb shell
cd /data/data/com.marakana.android.yamba/shared_prefs
cat com.marakana.android.yamba_preferences.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="password">password</string>
<string name="username">student</string>
</map>
#

160 | Chapter 9: Intents, Action Bar, and More

http://bit.ly/1gc9JKq

This XML file represents the storage for all our preference data for this application. As
you can see, our username, password, and API root are all stored in there.

Filesystem Security
So, how secure is this? This is a common question posed by security folks. Storing
usernames and passwords in clear text always raises eyebrows.

To answer this question, we usually compare it to finding someone’s laptop on the street.
Although we can easily gain access to the “hard drive” via the adb tool, that doesn’t mean
we can read its data. Each folder under /data/data belongs to a separate user account
managed by Linux. Unless our app is that app, it won’t have access to that folder. So,
short of an intruder reading byte by byte on the physical device, even clear-text data is
secure.

On the Emulator, we have root permissions, meaning we can explore the entire file‐
system. This is useful for development purposes.

Summary
At this point, the user can specify her username and password for the micro-blogging
site. This makes the app usable to way more people than the previous version in which
this information was hardcoded.

Figure 9-6 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

Summary | 161

Figure 9-6. Yamba completion

162 | Chapter 9: Intents, Action Bar, and More

CHAPTER 10

Services

Services are among the main building blocks in Android. Unlike an activity, a service
doesn’t have a user interface; it is simply a piece of code that runs in the background of
your application.

Services are used for processes that should run independently of activities, which may
come and go. Our Yamba application, for example, needs to create a service to period‐
ically connect to the cloud and check for new statuses from the user’s friends. This service
will be always on and always running, regardless of whether the user ever starts the
activity.

Just like an activity, a service has a well-defined life cycle. As the developer, you get to
define what happens during transitions between states. Whereas an activity’s state is
managed by the runtime’s ActivityManager, service state is controlled more by intents.
First, you must create the service. Whenever an activity needs the service, the activity
will invoke the service through an intent, as described in “Intents” on page 68. This is
called starting the service. A running service can receive the start message repeatedly
and at unanticipated times. You can also stop a service, which is called destroying it.

A service can be bound or unbound. Bound services can provide more specific APIs to
other applications via an interface called the Android Interface Definition Language
(AIDL). We’ll focus on unbound services, where the life cycle of a service is not tied to
the life cycle of the activities that started them. The only states for unbound services are
started and stopped (destroyed).

In this chapter, you will create a service. The purpose of this service is to run in the
background and update your app with the latest timeline from the user’s Yamba account.
Initially, the service will just print your friends’ timeline to the logfile. The service will
create a separate thread, so you will learn about concurrency in this chapter as well. You
will also learn about toasts and understand the context in which services and activities
run.

163

By the end of this chapter, you will have a working app that can both post to Yamba and
periodically check what friends are up to.

Our Example Service: RefreshService
As mentioned in the introduction to this chapter, we need a service to run as an always-
on background process, pulling the latest Yamba statuses into a local database. The
purpose of this pull mechanism is to cache updates locally so our app can have data even
when it’s offline. We’ll call this service RefreshService.

Steps to creating a service are:

1. Create the Java class representing your service.
2. Register the service in the AndroidManifest.xml file.
3. Start the service.

Creating the RefreshService Java Class
The basic procedure for creating a service, as with activities and other main building
blocks, is to subclass a Service class provided by the Android framework.

To create the new service, we need to create a new Java file. Go ahead and select your
Java package in the src folder, right-click and choose New→Class, and type in Refresh
Service as the class name. This will create a new RefreshService.java file as part of your
package.

You may recall from “Services” on page 68 that a typical unbound service goes through
the life cycle illustrated in Figure 10-1.

Figure 10-1. Service life cycle

Next, we want to override some of the main life cycle methods:
onCreate()

Called when the service is created for the first time

164 | Chapter 10: Services

onStartCommand()

Called each time the service is started

onDestroy()

Called when the service is terminated

To do that, you can use the Eclipse tool Source→Override/Implement Methods and
select those three methods.

At this point, in the spirit of producing a minimally working app at each stage of learning,
we’ll write just a little code that logs a note in each of the overridden methods. So the
shell of our service looks like the code in Example 10-1.

Example 10-1. RefreshService.java, version 1
package com.marakana.android.yamba;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

public class RefreshService extends Service {
 static final String TAG = "RefreshService"; //

 @Override
 public IBinder onBind(Intent intent) { //
 return null;
 }

 @Override
 public void onCreate() { //
 super.onCreate();
 Log.d(TAG, "onCreated");
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) { //
 super.onStartCommand(intent, flags, startId);
 Log.d(TAG, "onStarted");
 return START_STICKY;
 }

 @Override
 public void onDestroy() { //
 super.onDestroy();
 Log.d(TAG, "onDestroyed");
 }
}

Our Example Service: RefreshService | 165

As in all major classes, we like to add the TAG constant because we use Log.d()
quite a bit.
onBind() is used in bound services to return the actual implementation of
something called a binder. Because we are not using a bound service, we can just
return null here.
onCreate() is called when the service is initially created. It is not called for
subsequent startService() calls, so it is a good place to do work that needs to
be done only once during the life of a service.
onStartCommand() is called each time the service receives a startService()
intent. A service that is already started could get multiple requests to start again,
and each will cause onStartCommand() to execute. START_STICKY is used as a
flag to indicate this service is started and stopped explicitly, which is what we
want in our case.
onDestroy() is called just before the service is destroyed by the stopSer
vice() request. This is a good place to clean up things that might have been
initialized in onCreate().

Introducing IntentService
It’s important to note that your service is going to run on the main thread of the appli‐
cation, i.e., the UI thread. Because our service is going to be connecting to the cloud to
pull down the latest data, we once again have the problem of networking on the UI
thread.

One solution to this problem would be to handle our own Thread or Runnable, but this
gets messy. It turns out that Android SDK provides an alternative subclass of service,
called IntentService.

An intent service is similar to regular service, with two main exceptions: whatever work
is to be done in onHandleIntent() will execute on a separate worker thread, and once
it’s done, the service will stop.

Example 10-2 shows a minimal version of an intent service.

Example 10-2. RefreshService.java using IntentService
package com.marakana.android.yamba;

import android.app.IntentService;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;

public class RefreshService extends IntentService {
 static final String TAG = "RefreshService"; //

166 | Chapter 10: Services

 public RefreshService() { //
 super(TAG);
 }

 @Override
 public void onCreate() { //
 super.onCreate();
 Log.d(TAG, "onCreated");
 }

 // Executes on a worker thread
 @Override
 protected void onHandleIntent(Intent intent) { //
 Log.d(TAG, "onStarted");
 }

 @Override
 public void onDestroy() { //
 super.onDestroy();
 Log.d(TAG, "onDestroyed");
 }
}

This is the usual tag that we’ll use for logging.
IntentService requires a default constructor. In that constructor, you need to
call super() and pass a name of this service. TAG variable comes in handy for
this.
Just as in a regular service, onCreate() is called when the service is created for
the first time.
onHandleIntent() is where we do the main work. This work will be executed
on a separate thread. This is one of the main differences between a service and
an intent service.
Just as in a regular service, onDestroy() is called when the service is about to
be stopped. Unlike a regular service, onDestroy() is called as soon as onHand
leIntent() terminates.

Update the Manifest File
Now that we have the shell of our service, we have to define it in the manifest file, just
like any other main building block; otherwise, we won’t be able to call our service. Simply
open AndroidManifest.xml, click the rightmost tab to see the raw XML code, and add
the following <service> tag within the <application> element:

Our Example Service: RefreshService | 167

...
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 ...
 <service android:name=".RefreshService" /> <!-- -->
 ...
 </application>
...

RefreshService definition.

Services are equal in importance to activities as Android building blocks, so they appear
at the same level in the manifest file.

Add Menu Items
Now that we have defined and declared the service, we need a way to start and stop it.
The easiest way would be to add a menu button to our options menu that we have already
created. Later on, we’ll have a more intelligent way of starting services, but for now this
manual approach is easier to understand.

To add start/stop menu buttons, we’ll add two more menu items to our menu.xml
resource, just as we created the Prefs menu item in “The Menu Resource” on page
150. The updated menu.xml now looks like Example 10-3.

Example 10-3. menu.xml
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/itemPrefs" android:title="@string/titlePrefs"
 android:icon="@android:drawable/ic_menu_preferences"></item> <!-- -->
 <item android:title="@string/titleRefresh"
 android:id="@+id/itemServiceStart"
 android:icon="@android:drawable/ic_menu_rotate"></item> <!-- -->
</menu>

This is the item we defined in the previous chapter.
The ServiceStart item has the usual id, title, and icon attributes. This icon
is another Android system resource.

Now that the menu resource has been updated, it’s time to handle those items when the
user clicks them.

Update the Options Menu Handling
To handle new menu items, we need to update the onOptionsItemSelected() method
in StatusActivity, just as we did in “Updating StatusActivity to Handle Menu
Events” on page 154. So open your StatusActivity.java file and locate the onOptionsI

168 | Chapter 10: Services

temSelected() method. We now have a framework in this method to support any
number of menu items. To add support for starting and stopping our service, we launch
intents pointing to our RefreshService via the startService() call. The final code
looks like this:

// Called when an options item is clicked
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.itemRefresh:
 startService(new Intent(this, RefreshService.class)); //
 break;
 case R.id.itemPrefs:
 startActivity(new Intent(this, PrefsActivity.class));
 break;
 default:
 return false;
 }

 return true;
}

Creates an intent to start RefreshService. If the service doesn’t already exist,
the runtime calls the service’s onCreate() method. Then onStartCommand() is
called, regardless of whether this service is new or already running.

In this example, we are using explicit intents (explained in “Intents” on page 68) to
specify exactly which class the intents are intended for, namely RefreshService.class.

Testing the Service
At this point, you can restart your application. Note that you do not need to restart the
emulator. When your application starts up, click the menu, and your new buttons should
appear in the menu options. You can now freely click the start and stop service buttons.

To verify that your service is working, open up your LogCat and look for the appropriate
log messages that you generated in your service code. Remember from “Logging Mes‐
sages in Android” on page 108 that you can view the LogCat both in Eclipse and via the
command line.

Your service is now working, although it’s not doing much at this point.

Pulling Data from Yamba
We now have a framework and are ready to make the actual connection to the online
Twitter-like service, pull the status data, and display that data in our application. Twitter
and Twitter-like services offer many different APIs to retrieve our friends’ updates. The

Pulling Data from Yamba | 169

yambaclientlib.jar library exposes most of them to us via the YambaClient class. Perhaps
one of the most appropriate methods is getTimeline(), which returns the 20 most
recent posts made over the past 24 hours from the user and her friends.

To use this Twitter API feature, we need to connect to the online service. And to do that,
we need the username, password, and root API for our online service. We’ve written
most of this code before when we needed to post to Twitter API as well.

Now we can write new code for RefreshService and have it connect to the online API
to pull the latest status updates from our friends. Example 10-4 shows the final version.

Example 10-4. RefreshService.java, final version
package com.marakana.android.yamba;
package com.marakana.android.yamba;

import java.util.List;

import android.app.IntentService;
import android.content.ContentValues;
import android.content.Intent;
import android.content.SharedPreferences;
import android.net.Uri;
import android.preference.PreferenceManager;
import android.text.TextUtils;
import android.util.Log;
import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClient.Status;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class RefreshService extends IntentService {
 private static final String TAG = "RefreshService";

 public RefreshService() {
 super(TAG);
 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.d(TAG, "onCreated");
 }

 // Executes on a worker thread
 @Override
 protected void onHandleIntent(Intent intent) {
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(this); //
 final String username = prefs.getString("username", "");
 final String password = prefs.getString("password", "");

170 | Chapter 10: Services

 // Check that username and password are not empty
 if (TextUtils.isEmpty(username) || TextUtils.isEmpty(password)) {
 //
 Toast.makeText(this,
 "Please update your username and password",
 Toast.LENGTH_LONG).show();
 return;
 }
 Log.d(TAG, "onStarted");

 YambaClient cloud = new YambaClient(username, password); //
 try {
 List<Status> timeline = cloud.getTimeline(20); //
 for (Status status : timeline) { //
 Log.d(TAG,
 String.format("%s: %s", status.getUser(),
 status.getMessage())); //
 }

 } catch (YambaClientException e) { //
 Log.e(TAG, "Failed to fetch the timeline", e);
 e.printStackTrace();
 }

 return;
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d(TAG, "onDestroyed");
 }

}

We get the reference to the shared preferences and extract the username and
password. This is the same code as we did when posting to the cloud in “Shared
Preferences and Updating Status Fragment” on page 155.
This is a minimal check to make sure username and password are not empty. If
they are, we tell the user via a toast, and return, meaning the service stops right
here.
We get the reference to YambaClient object so we can connect to the cloud.

Pulling Data from Yamba | 171

We call getYambaClient() in YambaApplication to get the yamba object, and
then call getTimeline() on it to get the last 20 status posts from the past 24
hours. Note that this is the actual method that implements the web service call
to our cloud service. As such, it could take some time to complete, depending
on the network latency. Because we run this in our dedicated thread, we won’t
affect the main user interface thread while we wait for the network operation to
complete. We are using Java generics to define the timeline variable as a List
of Status instances.
Now that we have initialized the timeline list, we can loop over it. The easiest
approach is to use Java’s “for each” loop, which automatically iterates over our
list, assigning each element in turn to the status variable.
For now, we simply print out the statuses of who said what to the LogCat output.
A network call can fail for any number of reasons. Here we handle failure by
printing the stack trace of what went wrong. The actual printout will be visible
in LogCat.

Testing the Service
Now we can run our application, click Refresh in the menu to start the service, and see
the list of our friends’ statuses in the LogCat:

D/RefreshService(310): Marko Gargenta: it is great that you got my message
D/RefreshService(310): Marko Gargenta: hello this is a test message from my phone
D/RefreshService(310): Marko Gargenta: Test
D/RefreshService(310): Marko Gargenta: right!
...

Summary
We now have a working service, which we start manually whenever we want to refresh
the data. The service connects to the cloud service and pulls down the status posts from
our friends. For now, we just print this data in the LogCat, but in the next chapter we’ll
insert the data into the database.

Figure 10-2 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

172 | Chapter 10: Services

http://en.wikipedia.org/wiki/Generics_in_Java

Figure 10-2. Yamba completion

Summary | 173

CHAPTER 11

Content Providers

In this chapter, you will learn about content providers, one of the main building blocks
of Android. In a nutshell, think of a content provider as an interface to your app’s data.
Before we get to that, we need the data. So, we’ll talk about databases first.

In this chapter, you will learn how Android supports databases. You will learn to create
and use a database inside the Yamba application to store your status updates locally.
Local data will help Yamba display statuses to the user quickly, without having to wait
for the network to provide the data. Our service will run in the background and peri‐
odically update the database so that the data is relatively fresh. This will improve the
overall user experience of the application.

Databases on Android
The Android system uses databases to store useful information that needs to be persisted
even when the user kills the app or even shuts down the device and powers it back on.
The data includes contacts, system settings, bookmarks, and so on.

So, why use a database in a mobile application? After all, isn’t it better to keep our data
in a cloud where it’s always backed up instead of storing it in a mobile device that is
easily lost or damaged?

A database in a mobile device is very useful as a supplement to the online world. Al‐
though in many cases it is much better to count on the data living in the cloud, it is
useful to store it locally in order to access it more quickly and have it available even
when the network is not available. In this case, we are using a local database as a cache.
This is also how we use it in our Yamba application.

175

About SQLite
SQLite is an open source database that has been around for a long time, is quite stable,
and is popular on many small devices, including Android. There are couple of good
reasons why SQLite is a great fit for Android app development:

• It’s a zero-configuration database. That means there’s absolutely no database con‐
figuration for you as the developer. This makes it relatively simple to use.

• It doesn’t have a server. There’s no SQLite database process running. It is basically
a set of libraries that provides the database functionality. Not having a server to
worry about is also a good thing.

• It’s a single-file database. This makes database security straightforward, because it
boils down to filesystem security. We already know that Android sets aside a special,
secure sandbox for each application.

• It’s open source.

The Android framework offers several ways to use SQLite easily and effectively, and
we’ll look at the basic usage in this chapter. You may be pleased to find that, although
SQLite uses SQL, Android provides a higher-level library with an interface that is much
easier to integrate into an application.

Although SQLite support is built into Android, it is by no means your
only option when it comes to data persistence for your app. You can
always use another database system, such as JavaDB or MongoDB,
but you’d have to bundle the required libraries with your app and
would not be able to rely on Android’s built-in database support.
SQLite is not an alternative to a full SQL server; instead, it is an
alternative to using a local file with an arbitrary format.

DbHelper
Android provides an elegant interface for your app to interact with an SQLite database.
To access the database, you first need a helper class that provides a “connection” to the
database, creating the connection if it doesn’t already exist. This class, provided to you
by the Android framework, is called SQLiteOpenHelper. The database class it returns
is an instance of SQLiteDatabase.

The following subsections explain some of the background concepts you should un‐
derstand when working on building DbHelper, a class that extends SQLiteOpenHelp
er. We won’t explain SQL or basic database concepts such as normalization, because
there are hundreds of good places to find that information, and we expect most of our
readers already know it. However, this chapter should give you enough to get started,
even if your knowledge of databases is spotty.

176 | Chapter 11: Content Providers

The Database Schema and Its Creation
A schema is just a description of what’s in a database. In our Yamba database, for in‐
stance, we want fields for the following information about each message we retrieve
from Yamba:
user

The user who sent the message

message

The text of the message

created_at

The date when the message was sent

So each row in our table will contain the data for one message, and these three items
will be the columns in our schema, along with a unique ID for each tweet. We need the
ID so we can easily refer to a tweet. SQLite, like most databases, allows us to declare the
ID as a primary key and even assigns a unique number automatically to each tweet
for us.

The schema has to be created when our application starts, so we’ll do it in the on
Create() method of DbHelper. We might add new fields or change existing ones in a
later version of our application, so we’ll assign a version number to our schema and
provide an onUpgrade() method that we can call to alter the schema.

onCreate() and onUpgrade() are the only methods in our application when we need
to use SQL. We’ll execute CREATE TABLE in onCreate() to create a table in our database.
In a production application, we’d use ALTER TABLE in onUpgrade() when the schema
changes, but that requires a lot of complex introspection of the database, so for now
we’ll use DROP TABLE and recreate the table. Of course, DROP TABLE destroys any data
currently in the table, but that’s not a problem for our Yamba application. It always refills
the table with tweets from the past 24 hours, which are the only ones our users will care
about.

Four Major Operations
The DbHelper class offers you a high-level interface that’s much simpler than SQL. The
developers realized that most applications use databases for only four major operations,
which go by the appealing acronym CRUD: create, read (query), update, and delete. To
fulfill these requirements, DbHelper offers:
insert()

Inserts one or more rows into the database

query()

Requests rows matching the criteria you specify

Databases on Android | 177

update()

Replaces ones or more rows that match the criteria you specify

delete()

Deletes rows matching the criteria you specify

Each of these methods has variants that enhance it with other functions. To use one of
the methods, create a ContentValues container and place in it the information you want
inserted, updated, etc. This chapter will show you the process for an insert, and the other
operations work in similar ways.

So, why not use SQL directly? There are several good reasons:

• From a security point of view, a SQL statement is a prime candidate for a security
attack on your application and data, known as a SQL injection attack. That is because
the SQL statement takes user input, and unless you check and isolate it very care‐
fully, this input could embed other SQL statements with undesirable effects.

• From a performance point of view, executing SQL statements repeatedly is highly
inefficient because you’d have to parse the SQL every time the statement runs.

• The DbHelper methods are more robust and less likely to pass through the compiler
with undetected errors. When you include SQL in a program, it’s easy to create
errors that turn up only at runtime.

Android’s database framework supports only prepared statements for standard CRUD
operations: INSERT, UPDATE, DELETE, and SELECT. If you need to execute other SQL
statements, you need to pass them directly to SQLite. That’s why we used execSQL() to
run the code to CREATE TABLE. This is OK because that code doesn’t depend on any user
input, and as such SQL injection is not possible. Additionally, that code runs very rarely,
so there’s no need to worry about the performance implications.

Cursors
A query returns a set of rows along with a pointer called a cursor. You can retrieve results
one at a time from the cursor, causing it to advance each time to the next row. You can
also move the cursor around in the result set. An empty cursor indicates that you’ve
retrieved all the rows.

In general, anything you do with SQL could lead to an SQL exception because its code
is interacting with a system that’s outside of our direct control. For example, the database
could be running out of space or somehow corrupted. So, it is a good practice to handle
all the SQLExceptions by surrounding your database calls in try/catch blocks.

It’s easy to do this using the Eclipse shortcut:

178 | Chapter 11: Content Providers

http://en.wikipedia.org/wiki/SQL_injection

1. Select the code for which you’d like to handle exceptions. Typically this would be
most of your SQL calls.

2. In the Eclipse menu, choose Source→Surround With→Try/catch Block. Eclipse will
generate the appropriate try/catch statements around your code for the proper ex‐
ception class.

3. Handle this exception in the catch block. This might be a simple call to Log.e() to
pass the tag, message, and the exception object itself.

Status Contract Class
It turns out that we’ll need to have a whole bunch of constants that identify things like
the name and version of our database, the column names, the table the data lives in, and
so on. It is the best practice to store these constants in a separate class, usually named
something-Contract.

Example 11-1 shows the StatusContract at this point in our development.

Example 11-1. StatusContract.java
package com.marakana.android.yamba;

import android.net.Uri;
import android.provider.BaseColumns;

public class StatusContract {

 // DB specific constants
 public static final String DB_NAME = "timeline.db"; //
 public static final int DB_VERSION = 1; //
 public static final String TABLE = "status"; //

 public static final String DEFAULT_SORT = Column.CREATED_AT + " DESC"; //

 public class Column { //
 public static final String ID = BaseColumns._ID; //
 public static final String USER = "user";
 public static final String MESSAGE = "message";
 public static final String CREATED_AT = "created_at";
 }
}

This is the actual SQLite file that will contain the database.
Database schemas are versioned. You can give it any version number, so we’ll
start with 1.
This is the actual SQL table that will contain the data.

Status Contract Class | 179

The default sort order will sort by the timestamp (the CREATED_AT column), with
latest status showing up first.
These will be our column names.
Although the ID could be any name, there’s a convention in Android to name
it _id, for which it provides an API-level contract as well. You should try to use
this whenever you define an ID field.

So now we’re going to create our own helper class to help us open our Yamba database
(see Example 11-2). We’ll call the class DbHelper. It will create the database file if one
doesn’t already exist, or it will upgrade the user’s database if the schema has changed
between versions.

Like many other classes in Android, we usually start by subclassing a framework class,
in this case SQLiteOpenHelper. We then need to implement the class’s constructor, as
well as onCreate() and onUpgrade() methods.

Example 11-2. DbHelper.java, version 1
package com.marakana.android.yamba;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class DbHelper extends SQLiteOpenHelper { //
 private static final String TAG = DbHelper.class.getSimpleName();

 public DbHelper(Context context) {
 super(context, StatusContract.DB_NAME, null, StatusContract.DB_VERSION);
 //
 }

 // Called only once first time we create the database
 @Override
 public void onCreate(SQLiteDatabase db) {
 String sql = String
 .format("create table %s (%s int primary key, %s text,
 %s text, %s int)",
 StatusContract.TABLE,
 StatusContract.Column.ID,
 StatusContract.Column.USER,
 StatusContract.Column.MESSAGE,
 StatusContract.Column.CREATED_AT);
 //
 Log.d(TAG, "onCreate with SQL: "+sql);
 db.execSQL(sql); //
 }

180 | Chapter 11: Content Providers

 // Gets called whenever existing version != new version, i.e. schema changed
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //
 // Typically you do ALTER TABLE ...
 db.execSQL("drop table if exists " + StatusContract.TABLE);
 onCreate(db);
 }

}

Start by subclassing SQLiteOpenHelper.
We override the constructor and pass in the database name and version from
our contracts class. Doing this explicitly in code is reasonable because this
information doesn’t change all that much.
This is the actual SQL that we’ll pass on to the database to have it create the
appropriate SQL schema that we need. We plug five strings we defined earlier
into an SQL statement.
Once we have a string containing an SQL statement that creates the database,
run execSQL() on the database object that was passed into onCreate().
onUpgrade() is called whenever the user’s database version is different from the
application version. This typically happens when you change the schema and
release the application update to users who already have older version of your
app.

As mentioned earlier, you would typically execute an SQL state‐
ment, ALTER TABLE, in onUpgrade(). Because we don’t have an old
database to alter, we are assuming this application is still in prere‐
lease mode and are just deleting any user data when recreating the
database.

Next, we need to update the service in order to have it open up the database connection,
fetch the data from the network, and insert it into the database.

Update RefreshService
Remember that our RefreshService connects to the cloud and gets the data. So Re
freshService also is responsible for inserting this data into the local database.

In Example 11-3, we update the RefreshService to pull the data from the cloud and
store it in the database.

Update RefreshService | 181

Example 11-3. RefreshService.java, version 1
package com.marakana.android.yamba;

import java.util.List;

import android.app.IntentService;
import android.content.ContentValues;
import android.content.Intent;
import android.content.SharedPreferences;
import android.net.Uri;
import android.preference.PreferenceManager;
import android.text.TextUtils;
import android.util.Log;
import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClient.Status;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class RefreshService extends IntentService {
 private static final String TAG = RefreshService.class.getSimpleName();

 public RefreshService() {
 super(TAG);
 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.d(TAG, "onCreated");
 }

 // Executes on a worker thread
 @Override
 protected void onHandleIntent(Intent intent) {
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(this);
 final String username = prefs.getString("username", "");
 final String password = prefs.getString("password", "");

 // Check that username and password are not empty
 if (TextUtils.isEmpty(username) || TextUtils.isEmpty(password)) {
 Toast.makeText(this,
 "Please update your username and password",
 Toast.LENGTH_LONG).show();
 return;
 }
 Log.d(TAG, "onStarted");

 DbHelper dbHelper = new DbHelper(this); //
 SQLiteDatabase db = dbHelper.getWritableDatabase(); //

182 | Chapter 11: Content Providers

 ContentValues values = new ContentValues(); //

 YambaClient cloud = new YambaClient(username, password);
 try {
 List<Status> timeline = cloud.getTimeline(20);
 for (Status status : timeline) {
 values.clear(); //
 values.put(StatusContract.Column.ID, status.getId());
 values.put(StatusContract.Column.USER,
 status.getUser());
 values.put(StatusContract.Column.MESSAGE,
 status.getMessage());
 values.put(StatusContract.Column.CREATED_AT, status
 .getCreatedAt().getTime());

 db.insertWithOnConflict(StatusContract.TABLE, null, values,
 SQLiteDatabase.CONFLICT_IGNORE);//

 }

 } catch (YambaClientException e) {
 Log.e(TAG, "Failed to fetch the timeline", e);
 e.printStackTrace();
 }

 return;
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d(TAG, "onDestroyed");
 }

}

Create the instance of DbHelper and pass this as its context. This works because
the Android Service class is a subclass of Context. DbHelper will figure out
whether the database needs to be created or upgraded.
Get the writable database so we can insert new statuses into it. The first time we
make this call, onCreate() in DbHelper will run and create the database file for
this user.
ContentValues is a simple data structure consisting of name-value pairs that
map database table names to their respective values.
For each record, we create a content value. We are reusing the same Java object,
clearing it each time we start the loop and populating appropriate values for the
status data.

Update RefreshService | 183

We insert the content value into the database via an insertWithOnConflict()
call to the SQLiteDatabase object. Notice that we are not piecing together an
SQL statement here, but rather using a prepared statement approach to inserting
into the database.

A word about insert() versus insertWithOnConflict(). Because we keep asking for
the latest timeline from the cloud, we’ll be getting statuses that we’ve already inserted
into the database. If we blindly tried to insert the old statuses, we’d violate the require‐
ment that the ID for each status be unique, and the database would complain. Because
we know this is going to be the case, we use insertWithOnConflict(), which allows us
to specify what to do in case of a constract violation (e.g., duplicate ID). Our call passes
the CONFLICT_IGNORE parameter to tell the database to just silently ignore our attempt
to update it.

We are now ready to run our code and test it to make sure everything works.

Testing the Service
At this point, we can test whether the database was created properly and whether the
service has populated it with some data. We’re going to do this step by step.

Verify that the database was created
If the database file was created successfully, it will be located in the /data/data/
com.marakana.android.yamba/databases/timeline.db file. You can use the Eclipse
DDMS perspective and File Explorer view to look at the filesystem of the device, or you
can use adb shell on your command line, and then run this to make sure the file is
there:

ls /data/data/com.marakana.android.yamba/databases/timeline.db

To use File Explorer in Eclipse, either open the DDMS perspective in the top-right corner
of your Eclipse or go to Windows → Show View → Other → Android → File Explorer.
This will open the view of the filesystem of the device you are currently looking at.

So far, you know that the database file is there, but don’t really know whether the database
schema was created properly. The next section addresses that.

Using sqlite3

Android ships with the command-line tool sqlite3. This tool gives you access to the
database itself.

To see whether your database schema was created properly:

1. Open up your terminal or command-line window.

184 | Chapter 11: Content Providers

2. Type adb shell to connect to your running emulator or physical phone.
3. Change the directory to the location of your database file by typing cd /data/data/

com.marakana.android.yamba/databases/.
4. Connect to the database with the sqlite3 timeline.db command.

At this point, you should be connected to the database. Your prompt should be
sqlite>, indicating that you are inside the SQLite database:

[user:~]> adb shell
cd /data/data/com.marakana.android.yamba/databases/
ls
timeline.db
sqlite3 timeline.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

At this point, you can send two types of commands to your SQLite database:

• Standard SQL commands, such as INSERT, UPDATE, DELETE, and SELECT, as well as
CREATE TABLE, ALTER TABLE, and so on. Note that SQL is another language alto‐
gether, and is not covered in this book. We assume here that you have a very basic
knowledge of SQL or can pick it up from the many sources of information that
exist. Also note that in sqlite3, you must terminate your SQL statements with a
semicolon (;).

• sqlite3 commands. These are commands that are specific to SQLite. They are
distinguished by an initial period. You can see the list of all commands by typ‐
ing .help at the sqlite3> prompt. For now, we’ll just use .schema to verify that the
schema was created:

sqlite3 timeline.db
SQLite version 3.6.22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .schema
CREATE TABLE android_metadata (locale TEXT);
CREATE TABLE timeline (_id integer primary key,created_at integer,
 user text, message text);

The last line tells us that our database table timeline indeed was created and looks like
we expected, with the columns _id, created_at, message, and user.

Update RefreshService | 185

http://en.wikipedia.org/wiki/SQL

New Android developers often execute the sqlite3 timeline.db com‐
mand in a wrong folder, and then wonder why the database table wasn’t
created. SQLite will not complain if the file you are referring to doesn’t
exist; it will simply create a brand-new database. So, make sure you are
either in the correct folder (/data/data/com.marakana.android.yamba/
databases/) when you execute sqlite3 timeline.db, or run the com‐
mand specifying the full path to your file:

sqlite3 /data/data/com.marakana.android.yamba/databases/timeline.db

Now that we have a way to create and open up our database, we are ready to update the
service that will insert the data into the database.

At this point we should be getting the data from the online service as well as inserting
that data in the database. We can also verify that the data is indeed in the database by
using sqlite3. This can be done with the dump command at the sqlite3 prompt:

sqlite> .dump

Content Providers
Content providers are Android building blocks that can expose data across the bound‐
aries between application sandboxes. As you recall, each application in Android runs
in its own process with its own permissions. This means that an application cannot see
another app’s data. But sometimes you want to share data across applications. This is
where content providers become very useful.

Take your contacts, for example. You might have a large database of contacts on your
device, which you can view via the Contacts app as well as via the Dialer app. Some
devices, such as HTC Android models, might even have multiple versions of the Con‐
tacts and Dialer apps. It would not make a lot of sense to have similar data live in multiple
databases.

Content providers let you centralize content in one place and have many different ap‐
plications access it as needed. In the case of the contacts on your phone, there is actually
a ContactProvider application that contains a content provider, and other applications
access the data via this interface. The interface itself is fairly simple: it has the same
insert(), update(), delete(), and query() methods we saw in “Databases on An‐
droid” on page 175.

Android uses content providers quite a bit internally. In addition to contacts, your set‐
tings represent another example, as do all your bookmarks. All the media in the system
is also registered with MediaStore, a content provider that dispenses images, music, and
videos in your device.

186 | Chapter 11: Content Providers

Creating a Content Provider
We’re going to create a content provider, StatusProvider, that is internal to our app.
This is a best practice—your data should be exposed via a provider and nobody but the
provider should be concerned with where it comes from, in our case the database. As
we said before, the content provider is simply an interface to data, so it is agnostic to
the actual data storage.

To create a content provider:

1. Create a new Java class that subclasses the system’s ContentProvider class.
2. Declare your CONTENT_URI.
3. Implement all the unimplemented methods, such as insert(), update(), de

lete(), query(), getID(), and getType().
4. Declare your content provider in the AndroidManifest.xml file.

We are going to start by creating a brand-new Java class in the same package as all other
classes. Its name will be StatusProvider. This class, like any of Android’s main building
blocks, will subclass an Android framework class, in this case ContentProvider.

In Eclipse, select your package, click File → New → Java Class, and enter StatusPro‐
vider. Then, update the class to subclass ContentProvider, and organize the imports
(Ctrl-Shift-O) to import the appropriate Java packages. The result should look like this:

package com.marakana.android.yamba;

import android.content.ContentProvider;

public class StatusProvider extends ContentProvider {

}

Of course, this code is now broken because we need to provide implementations for
many of its methods. The easiest way to do that is to click the class name and choose
“Add unimplemented methods” from the list of quick fixes. Eclipse will then create stubs,
or templates, of the missing methods.

Defining the URI
Objects within a single app share an address space, so they can refer to each other simply
by variable names. But objects in different apps don’t recognize the different address
spaces, so they need some other mechanism to find each other. Android uses a Uniform
Resource Identifier, a string that identifies a specific resource, to locate a content pro‐
vider. A URI has three or four parts, shown in Figure 11-1.

Creating a Content Provider | 187

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Figure 11-1. Parts of a URI

• Part A, content://, is always set to this value. This is written in stone.
• Part B, com.marakana.android.yamba.StatusProvider, is the so-called authori‐

ty. It is typically the name of the class, all in lowercase. This authority must match
the authority that we specify for this provider when we later declare it in the manifest
file.

• Part C, status, indicates the type of data that this particular provider provides. It
could contain any number of segments separated with a slash, including none at all.

• Part D, 47, is an optional ID for the specific item that we are referencing. If not set,
the URI will represent the entire set. Number 47 is an arbitrary number picked for
this example.

Sometimes you need to refer to the content provider in its entirety, and sometimes to
only one of the items of data it contains. If you refer to it in its entirety, you leave off
part D; otherwise, you include that part to identify one item within the content provider.
Actually, because we have only one table, we do not need part C of the URI.

One way to define the constants for our example is shown in Example 11-4.

Example 11-4. Updated StatusContract.java
package com.marakana.android.yamba;

import android.net.Uri;
import android.provider.BaseColumns;

public class StatusContract {

 // DB specific constants
 public static final String DB_NAME = "timeline.db";
 public static final int DB_VERSION = 1;
 public static final String TABLE = "status";

 // Provider specific constants
 // content://com.marakana.android.yamba.StatusProvider/status
 public static final String AUTHORITY = "com.marakana.android.yamba
 .StatusProvider";

188 | Chapter 11: Content Providers

 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY
 + "/" + TABLE);
 public static final int STATUS_ITEM = 1;
 public static final int STATUS_DIR = 2;
 public static final String STATUS_TYPE_ITEM =
 "vnd.android.cursor.item/vnd.com.marakana.android.yamba.provider.status";
 public static final String STATUS_TYPE_DIR =
 "vnd.android.cursor.dir/vnd.com.marakana.android.yamba.provider.status";
 public static final String DEFAULT_SORT = Column.CREATED_AT + " DESC";

 public class Column {
 public static final String ID = BaseColumns._ID;
 public static final String USER = "user";
 public static final String MESSAGE = "message";
 public static final String CREATED_AT = "created_at";
 }
}

In “Getting the Data Type” on page 189, we’ll explore the reason for two MIME types. We
are also going to define the status data object in a class-global variable so that we can
refer to it, as Example 11-5 illustrates.

Example 11-5. StatusProvider.java, onCreate()
public class StatusProvider extends ContentProvider {
 private static final String TAG = StatusProvider.class.getSimpleName();
 private DbHelper dbHelper;

 @Override
 public boolean onCreate() {
 dbHelper = new DbHelper(getContext());
 Log.d(TAG, "onCreated");
 return true;
 }
 ...
}

Getting the Data Type
A content provider must return the MIME type of the data it is returning. The MIME
type indicates either a single item or all the records for the given URI. Earlier in this
chapter we defined the single-record MIME type as vnd.android.cursor.item/
vnd.marakana.yamba.status and the directory of all statuses as vnd.android.cur
sor.dir/vnd.marakana.yamba.status. To let others retrieve the MIME type, we must
define the call getType().

The first part of the MIME type is either vnd.android.cursor.item or vnd.an
droid.cursor.dir, depending on whether the type represents a specific item or all
items for the given URI. The second part, vnd.marakana.yamba.status or vnd.mara

Creating a Content Provider | 189

http://en.wikipedia.org/wiki/MIME

kana.yamba.mstatus for our app, is a combination of the constant vnd followed by your
company or app name and the actual content type.

As you may recall, the URI can end with a number. If it does, that number is the ID of
the specific record. If it doesn’t, the URI refers to the entire collection.

Example 11-6 shows the implementation of getType() as well as the getId() helper
method that we’ve already used several times.

Example 11-6. StatusProvider, uri matcher and getType()
public class StatusProvider extends ContentProvider {
 ...
 private static final UriMatcher sURIMatcher = new UriMatcher(
 UriMatcher.NO_MATCH);
 static {
 sURIMatcher.addURI(StatusContract.AUTHORITY, StatusContract.TABLE,
 StatusContract.STATUS_DIR);
 sURIMatcher.addURI(StatusContract.AUTHORITY, StatusContract.TABLE
 + "/#", StatusContract.STATUS_ITEM);
 }

 @Override
 public String getType(Uri uri) {
 switch (sURIMatcher.match(uri)) {
 case StatusContract.STATUS_DIR:
 Log.d(TAG, "gotType: " + StatusContract.STATUS_TYPE_DIR);
 return StatusContract.STATUS_TYPE_DIR;
 case StatusContract.STATUS_ITEM:
 Log.d(TAG, "gotType: " + StatusContract.STATUS_TYPE_ITEM);
 return StatusContract.STATUS_TYPE_ITEM;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }
 }

 ...
}

getType() uses sURIMatcher, an instance of the UriMatcher API class, to
determine whether the URI has an ID part. Based on the type of URI we have,
getType() returns the appropriate MIME type that we’ve defined previously in
StatusContract.

Although our data is very simple, and we hardly need getType(), this is the best practice
for implementing it. You could have a much more complex dataset. Take Android’s
MediaStore, for example. This is a content provider that contains most of your images,
movies, and music—very distinct files.

190 | Chapter 11: Content Providers

Inserting Data
To insert a record into a database via the content provider interface, we need to override
the insert() method. The caller provides the URI of this content provider (without an
ID) and the values to be inserted. A successful call to insert the new record returns the
ID for that record. We end by returning a new URI concatenating the provider’s URI
with the ID we just got back, as Example 11-7 illustrates.

Example 11-7. StatusProvider.java, insert()
public class StatusProvider extends ContentProvider {
 ...
 @Override
 public Uri insert(Uri uri, ContentValues values) {
 Uri ret = null;

 // Assert correct uri //
 if (sURIMatcher.match(uri) != StatusContract.STATUS_DIR) {
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 SQLiteDatabase db = dbHelper.getWritableDatabase(); //
 long rowId = db.insertWithOnConflict(StatusContract.TABLE, null,
 values, SQLiteDatabase.CONFLICT_IGNORE); //

 // Was insert successful?
 if (rowId != -1) { //
 long id = values.getAsLong(StatusContract.Column.ID);
 ret = ContentUris.withAppendedId(uri, id); //
 Log.d(TAG, "inserted uri: " + ret);

 // Notify that data for this uri has changed
 getContext().getContentResolver()
 .notifyChange(uri, null); //
 }

 return ret;
 }
 ...
}

First, we check whether the URI is valid. The URI that specifies a specific item
—for example, content://com.marakana.android.yamba.StatusProvider/
status/47—is not valid for insert because the ID is not known after the insert
happens.
Open the database for writing.
We attempt to insert the values into the database and, upon a successful insert,
receive the ID of the new record from the database.

Creating a Content Provider | 191

If anything fails during the insert, the database will return –1. We can then throw
a runtime exception because this is an error that should never have happened.
If the insert was successful, we use the ContentUris.withAppendedId() helper
method to craft a new URI containing the ID of the new record appended to the
standard provider’s URI.
We notify the observers of this content provider that this particular data has
changed. This is going to be more obvious in Chapter 12.

Updating Data
To update the data via the Content Provider API, we need:
The URI of the provider

This may or may not contain an ID. If it does, the ID indicates the specific record
that needs to be updated, and we can ignore the selection. If the ID is not specified,
it means that we are updating many records and need the selection to indicate which
are to be changed.

The values to be updated
The format of this parameter is a set of name-value pairs that represents column
names and new values.

Any selection and arguments that go with it
These together make up a WHERE clause in SQL, selecting the records that will
change. The selection and its arguments are omitted when there is an ID, because
the ID is enough to select the record that is being updated.

The code that handles both types of update—by ID and by selection—can be seen in
Example 11-8.

Example 11-8. StatusProvider.java, update()
public class StatusProvider extends ContentProvider {
 ...

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 String where;

 switch (sURIMatcher.match(uri)) { //
 case StatusContract.STATUS_DIR:
 // so we count updated rows
 where = selection; //
 break;
 case StatusContract.STATUS_ITEM:
 long id = ContentUris.parseId(uri);
 where = StatusContract.Column.ID

192 | Chapter 11: Content Providers

 + "="
 + id
 + (TextUtils.isEmpty(selection) ? "" : " and ("
 + selection + ")"); //
 break;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 //
 }

 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int ret = db.update(StatusContract.TABLE, values,
 where, selectionArgs); //

 if(ret>0) { //
 // Notify that data for this URI has changed
 getContext().getContentResolver().notifyChange(uri, null);
 }
 Log.d(TAG, "updated records: " + ret);
 return ret;
 }
 ...
}

First, we check the type of URI that was passed in.
If the URI doesn’t contain the ID, we don’t have much else to worry about.
However, if the URI does have an ID as part of the path, we need to extract it
and update our WHERE statement to account for that ID.
We shouldn’t be seeing any other type of URI.
Open the database for writing the updates and call update(), passing in this
data.
If the update was successful (i.e., the number of affected rows is more than zero),
we notify any interested parties that the data has changed.

Deleting Data
Deleting data is similar to updating data. The URI may or may not contain the ID of
the particular record to delete, as Example 11-9 illustrates.

Example 11-9. StatusProvider.java, delete()
public class StatusProvider extends ContentProvider {
 ...
 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 String where;

 switch (sURIMatcher.match(uri)) {

Creating a Content Provider | 193

 case StatusContract.STATUS_DIR:
 // so we count deleted rows
 where = (selection == null) ? "1" : selection;
 break;
 case StatusContract.STATUS_ITEM:
 long id = ContentUris.parseId(uri);
 where = StatusContract.Column.ID
 + "="
 + id
 + (TextUtils.isEmpty(selection) ? "" : " and ("
 + selection + ")");
 break;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int ret = db.delete(StatusContract.TABLE, where, selectionArgs);

 if(ret>0) {
 // Notify that data for this uri has changed
 getContext().getContentResolver().notifyChange(uri, null);
 }
 Log.d(TAG, "deleted records: " + ret);
 return ret;
 }
 ...
}

Querying Data
Unlike insert(), update(), and delete(), query() returns the actual data and it
doesn’t modify the underlying dataset. It is analogous to SQL’s SELECT statement.

To query the data via a content provider, we override the query() method. This method
has a long list of parameters, but usually we just forward most of them to the database
call with the same name, as Example 11-10 illustrates.

Example 11-10. StatusProvider.java, query()
public class StatusProvider extends ContentProvider {
 ...
 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder(); //
 qb.setTables(StatusContract.TABLE); //

 switch (sURIMatcher.match(uri)) { //
 case StatusContract.STATUS_DIR:
 break;

194 | Chapter 11: Content Providers

 case StatusContract.STATUS_ITEM:
 qb.appendWhere(StatusContract.Column.ID + "="
 + uri.getLastPathSegment()); //
 break;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 String orderBy = (TextUtils.isEmpty(sortOrder))
 ? StatusContract.DEFAULT_SORT
 : sortOrder; //

 SQLiteDatabase db = dbHelper.getReadableDatabase(); //
 Cursor cursor = qb.query(db, projection, selection, selectionArgs,
 null, null, orderBy); //

 // register for uri changes
 cursor.setNotificationUri(getContext().getContentResolver(), uri);
 //

 Log.d(TAG, "queried records: "+cursor.getCount());
 return cursor; //
 }

 ...
}

Here we use SQLiteQueryBuilder to make it easier to put together a potentially
complex query statement.
Don’t forget to specify what table you are working on.
Again, we use the matcher to see what type of the URI we got.
If the URI contains the ID of the record to query, we need to extract that ID and
include it in the query. This is where SQLiteQueryBuilder makes it easier than
building a long string.
Specify the sort order for the returned data, using default if sort order hasn’t
been provided.
We need to open the database, in this case just for reading.
Note that the database call has two additional parameters that correspond to the
GROUPING and HAVING components of a SELECT statement in SQL. Because
content providers do not support this feature, we simply pass in null.
Tell this cursor that it depends on the data as specified by this URI. In other
words, when the insert(), update(), or delete() notify the app that the data
has changed, this cursor will know that it may want to refresh its data.
Return the actual data in the form of a cursor.

Creating a Content Provider | 195

At this point, we have the entire content provider implemented. Example 11-11 shows
what the complete code looks like.

Example 11-11. StatusProvider, final
package com.marakana.android.yamba;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class StatusProvider extends ContentProvider {
 private static final String TAG = StatusProvider.class.getSimpleName();
 private DbHelper dbHelper;

 private static final UriMatcher sURIMatcher = new UriMatcher(
 UriMatcher.NO_MATCH);
 static {
 sURIMatcher.addURI(StatusContract.AUTHORITY, StatusContract.TABLE,
 StatusContract.STATUS_DIR);
 sURIMatcher.addURI(StatusContract.AUTHORITY, StatusContract.TABLE
 + "/#", StatusContract.STATUS_ITEM);
 }

 @Override
 public boolean onCreate() {
 dbHelper = new DbHelper(getContext());
 Log.d(TAG, "onCreated");
 return true;
 }

 @Override
 public String getType(Uri uri) {
 switch (sURIMatcher.match(uri)) {
 case StatusContract.STATUS_DIR:
 Log.d(TAG, "gotType: " + StatusContract.STATUS_TYPE_DIR);
 return StatusContract.STATUS_TYPE_DIR;
 case StatusContract.STATUS_ITEM:
 Log.d(TAG, "gotType: " + StatusContract.STATUS_TYPE_ITEM);
 return StatusContract.STATUS_TYPE_ITEM;
 default:
 throw new IllegalArgumentException("Illegal URI: " + uri);
 }
 }

196 | Chapter 11: Content Providers

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 Uri ret = null;

 // Assert correct uri
 if (sURIMatcher.match(uri) != StatusContract.STATUS_DIR) {
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 SQLiteDatabase db = dbHelper.getWritableDatabase();
 long rowId = db.insertWithOnConflict(StatusContract.TABLE, null,
 values, SQLiteDatabase.CONFLICT_IGNORE);

 // Was insert successful?
 if (rowId != -1) {
 long id = values.getAsLong(StatusContract.Column.ID);
 ret = ContentUris.withAppendedId(uri, id);
 Log.d(TAG, "inserted uri: " + ret);

 // Notify that data for this uri has changed
 getContext().getContentResolver().notifyChange(uri, null);
 }

 return ret;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 String where;

 switch (sURIMatcher.match(uri)) {
 case StatusContract.STATUS_DIR:
 // so we count updated rows
 where = selection;
 break;
 case StatusContract.STATUS_ITEM:
 long id = ContentUris.parseId(uri);
 where = StatusContract.Column.ID
 + "="
 + id
 + (TextUtils.isEmpty(selection) ? "" : " and ("
 + selection + ")");
 break;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int ret = db.update(StatusContract.TABLE, values, where,
 selectionArgs);

Creating a Content Provider | 197

 if(ret>0) {
 // Notify that data for this uri has changed
 getContext().getContentResolver().notifyChange(uri, null);
 }
 Log.d(TAG, "updated records: " + ret);
 return ret;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 String where;

 switch (sURIMatcher.match(uri)) {
 case StatusContract.STATUS_DIR:
 // so we count deleted rows
 where = (selection == null) ? "1" : selection;
 break;
 case StatusContract.STATUS_ITEM:
 long id = ContentUris.parseId(uri);
 where = StatusContract.Column.ID
 + "="
 + id
 + (TextUtils.isEmpty(selection) ? "" : " and ("
 + selection + ")");
 break;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int ret = db.delete(StatusContract.TABLE, where, selectionArgs);

 if(ret>0) {
 // Notify that data for this uri has changed
 getContext().getContentResolver().notifyChange(uri, null);
 }
 Log.d(TAG, "deleted records: " + ret);
 return ret;
 }

 // SELECT username, message, created_at FROM status WHERE user='bob' ORDER
 // BY created_at DESC;
 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
 qb.setTables(StatusContract.TABLE);

 switch (sURIMatcher.match(uri)) {
 case StatusContract.STATUS_DIR:

198 | Chapter 11: Content Providers

 break;
 case StatusContract.STATUS_ITEM:
 qb.appendWhere(StatusContract.Column.ID + "="
 + uri.getLastPathSegment());
 break;
 default:
 throw new IllegalArgumentException("Illegal uri: " + uri);
 }

 String orderBy = (TextUtils.isEmpty(sortOrder))
 ? StatusContract.DEFAULT_SORT
 : sortOrder;

 SQLiteDatabase db = dbHelper.getReadableDatabase();
 Cursor cursor = qb.query(db, projection, selection, selectionArgs,
 null, null, orderBy);

 // register for uri changes
 cursor.setNotificationUri(getContext().getContentResolver(), uri);

 Log.d(TAG, "queried records: "+cursor.getCount());
 return cursor;
 }

}

Updating the Android Manifest File
As with any major building block, we want to define our content provider in the An‐
droidManifest.xml file. Notice that in this case the android:authorities property
specifies the URI authority permitted to access this content provider. Typically, this
authority would be your content provider class—which we use here—or your package:

<application>
 ...
 <provider
 android:name="com.marakana.android.yamba.StatusProvider"
 android:authorities="com.marakana.android.yamba.StatusProvider"
 android:exported="false" />

 ...
</application>

Notice that we also specify that this provider is not exported at this time. This is for
security reasons: we don’t want anyone who happens to know the provider’s authority
to be able to access its data. At this point, we are the only ones using this provider, so
android:exported="false" makes sense.

Creating a Content Provider | 199

Updating RefreshService
Currently, our content provider is not used by anyone. At the same time, the Refresh‐
Service goes directly to the database, making it tightly coupled with the storage of the
data. What we want to do is refactor this so that the service only talks to the provider,
and not to the database, as Example 11-12 illustrates.

Example 11-12. RefreshService, refactored to use StatusProvider instead of the database
directly
public class RefreshService extends IntentService {
 ...
 @Override
 protected void onHandleIntent(Intent intent) {
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(this);
 final String username = prefs.getString("username", "");
 final String password = prefs.getString("password", "");

 // Check that username and password are not empty
 if (TextUtils.isEmpty(username) || TextUtils.isEmpty(password)) {
 Toast.makeText(this,
 "Please update your username and password",
 Toast.LENGTH_LONG).show();
 return;
 }
 Log.d(TAG, "onStarted");

 ContentValues values = new ContentValues();

 YambaClient cloud = new YambaClient(username, password);
 try {
 int count = 0;
 List<Status> timeline = cloud.getTimeline(20);
 for (Status status : timeline) {
 values.clear();
 values.put(StatusContract.Column.ID,
 status.getId());
 values.put(StatusContract.Column.USER,
 status.getUser());
 values.put(StatusContract.Column.MESSAGE,
 status.getMessage());
 values.put(StatusContract.Column.CREATED_AT,
 status.getCreatedAt().getTime());

 Uri uri = getContentResolver().insert(
 StatusContract.CONTENT_URI, values); //
 if (uri != null) {
 count++; //
 Log.d(TAG,
 String.format("%s: %s", status.getUser(),
 status.getMessage()));

200 | Chapter 11: Content Providers

 }
 }

 } catch (YambaClientException e) {
 Log.e(TAG, "Failed to fetch the timeline", e);
 e.printStackTrace();
 }

 return;
 }

 ...
}

The only difference is that we now use getContentResolver() from the current
context to get the access to content provider’s insert(). The actual provider to
use is resolved via the URI that we pass: StatusContract.CONTENT_URI, which
is registered with the system via the application AndroidManifest.xml file. This
is how the content resolver knows that it’s StatusProvider on the receiving end
of this insert() call.
This is a minor addition to start counting how many successful inserts we
actually had. For now, we just print out this number.

Summary
At this point, Yamba can pull the statuses of our friends from the cloud and post them
into the local database via a content provider. We still don’t have a way to view this data,
but we can verify that the data is there in the database.

Figure 11-2 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

Summary | 201

Figure 11-2. Yamba completion

202 | Chapter 11: Content Providers

CHAPTER 12

Lists and Adapters

In this chapter, you will learn how to create selection widgets, such as a ListView. But
this isn’t just a chapter about user interface elements. We are deepening our under‐
standing of data from the previous chapter by learning how to read and use data from
the status database. At first we’ll simply output it to the screen as scrollable text. You
will then learn about adapters in order to connect your database directly with the list
and create a custom adapter to implement some additional functionality. You will link
this new activity with your main activity so that the user can both post and read tweets.

By the end of this chapter, your app will be able to post new tweets, as well as pull them
from Twitter, store them in the local database, and let the user read the statuses in a nice
and efficient UI. At that point, your app will have three activities and a service.

MainActivity
We’re going to create a new MainActivity. This activity will become the entry point
into the application and for the most part will contain the TimelineFragment that will
pull the data from the content provider and show it to the user.

Basic MainActivity
As in earlier chapters, the MainActivity just loads and inflates the layout, plus handles
the Action Bar events, as Example 12-1 illustrates.

Example 12-1. MainActivity
package com.marakana.android.yamba;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;

203

import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main); //
 }

 // Called to lazily initialize the action bar
 @Override
 public boolean onCreateOptionsMenu(Menu menu) { //
 // Inflate the menu items to the action bar.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 // Called every time user clicks on an action
 @Override
 public boolean onOptionsItemSelected(MenuItem item) { //
 switch (item.getItemId()) {
 case R.id.action_settings:
 startActivity(new Intent(this, SettingsActivity.class));
 return true;
 case R.id.action_tweet:
 startActivity(new Intent(
 "com.marakana.android.yamba.action.tweet"));
 return true;
 case R.id.action_refresh:
 startService(new Intent(this, RefreshService.class));
 return true;
 case R.id.action_purge:
 int rows = getContentResolver().delete(
 StatusContract.CONTENT_URI, null, null);
 Toast.makeText(this, "Deleted "+rows+" rows",
 Toast.LENGTH_LONG).show();
 return true;
 default:
 return false;
 }
 }
}

Inflate the new layout of the main activity.
This is where we load up the action bar menu items.
Finally, we process the menu bar clicks.

Not much of this is new.

204 | Chapter 12: Lists and Adapters

However, this activity will load the XML layout resource that will include a Timeline
Fragment that will actually process the timeline and display it to the user, as
Example 12-2 illustrates.

Example 12-2. The res/layout/activity_main.xml file
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >

 <!-- Timeline Fragment -->
 <fragment
 android:id="@+id/fragment_timeline"
 android:name="com.marakana.android.yamba.TimelineFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_centerHorizontal="true" />

</RelativeLayout>

This is where we reference the TimelineFragment class.

Timeline Fragment
The timeline fragment will eventually display the data, but for now, we’ll just set up the
new fragment. We’ll subclass ListFragment as a special kind of fragment that already
contains a list view, as Example 12-3 illustrates.

Example 12-3. Barebones TimelineFragment, no data
...
public class TimelineFragment extends ListFragment {
 private static final String TAG = TimelineFragment.class.getSimpleName(); //
 private static final String[] FROM = { StatusContract.Column.USER,
 StatusContract.Column.MESSAGE, StatusContract.Column.CREATED_AT,
 StatusContract.Column.CREATED_AT }; //
 private static final int[] TO = { R.id.list_item_text_user,
 R.id.list_item_text_message, R.id.list_item_text_created_at,
 R.id.list_item_freshness }; //
 private SimpleCursorAdapter mAdapter; //

 @Override
 public void onActivityCreated(Bundle savedInstanceState) { //
 super.onActivityCreated(savedInstanceState);

Timeline Fragment | 205

 mAdapter = new SimpleCursorAdapter(getActivity(), R.layout.list_item,
 null, FROM, TO, 0); //

 setListAdapter(mAdapter); //
 }

}

The usual TAG, which we’ll use for debugging purposes.
This is the list of column names that map to the database tables, which provide
our data.
These are the view IDs to which we’ll bind the data. The IDs are from a custom
view, R.layout.list_item, which we’ll cover next.
Our adapter, to which we’ll connect both the data and the view.
onActivityCreated() is called when the activity hosting this fragment has been
created.
Here, we create the adapter that glues together the data (right now null) to the
custom view R.layout.list_item. It does that by binding the database columns
defined by the FROM array to view IDs identified by the TO array.
We finally attach this adapter to the ListView that is already embedded in the
ListFragment, of which TimelineFragment is a subclass.

Creating a List Item Layout
Next, let’s see what this custom view list_item is. We simply need to define how a single
unit of data will be displayed. We’ll have a layout with three simple text views displaying
who said what and when, as Example 12-4 illustrates.

Example 12-4. R.layout.list_item
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_content"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:descendantFocusability="blocksDescendants"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin" >

 <!-- -->
 <TextView
 android:id="@+id/list_item_text_user"
 android:layout_width="wrap_content"

206 | Chapter 12: Lists and Adapters

 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:text="Slashdot"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <!-- -->
 <TextView
 android:id="@+id/list_item_text_created_at"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/list_item_text_user"
 android:layout_alignBottom="@+id/list_item_text_user"
 android:layout_alignParentRight="true"
 android:text="10 minutes ago"
 android:textAppearance="?android:attr/textAppearanceSmall"
 android:textColor="@android:color/secondary_text_light" />

 <!-- -->
 <TextView
 android:id="@+id/list_item_text_message"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/list_item_text_created_at"
 android:autoLink="web"
 android:focusable="false"
 android:linksClickable="true"
 android:text="Android just became the #1 OS on the planet.
 Take that, Microsoft! http://t.co/123"
 android:textAppearance="?android:attr/textAppearanceSmall" />

</RelativeLayout>

Displays the user who posted this tweet.
This is the data at which the tweet has been posted, displaying in the top-right
corner of the tweet.
Finally, the message of the tweet appears below.

About Adapters
A ScrollView will work for a few dozen records. But what if your status database has
hundreds or even thousands of records? Waiting to get and print them all would be
highly inefficient. The user probably doesn’t even care about all of the data anyhow.

To address this issue, Android provides adapters. These are a smart way to connect a
View with some kind of data source (see Figure 12-1). Typically, your view would be a
ListView and the data would come in the form of a Cursor or Array. So adapters come

About Adapters | 207

as subclasses of CursorAdapter or ArrayAdapter. In our case, we have the data in the
form of a cursor, so we’ll use CursorAdapter.

Figure 12-1. Adapter

Loading the Data
Next, we need the data. Our data is already available via the StatusProvider we wrote
earlier. Now, loading the data from the database could possibly take a long time—we
may have a lot of tweets in our timeline. To do that properly, we need to load the data
on a separate thread. Once again, we have the problem of not wanting to block the main
UI thread.

Android SDK provides a construct called CursorLoader designed exactly for this pur‐
pose. It consists of an interface and couple of callbacks that are called by the system
when the data is ready for us, thus allowing for asynchronous loading, as Example 12-5
illustrates.

Example 12-5. TimelineFragment, with CursorLoader
...
public class TimelineFragment extends ListFragment implements
 LoaderCallbacks<Cursor> { //
 private static final String TAG = TimelineFragment.class.getSimpleName();
 private static final String[] FROM = { StatusContract.Column.USER,
 StatusContract.Column.MESSAGE, StatusContract.Column.CREATED_AT,
 StatusContract.Column.CREATED_AT };
 private static final int[] TO = { R.id.list_item_text_user,
 R.id.list_item_text_message, R.id.list_item_text_created_at,
 R.id.list_item_freshness };
 private static final int LOADER_ID = 42; //
 private SimpleCursorAdapter mAdapter;

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {

208 | Chapter 12: Lists and Adapters

 super.onActivityCreated(savedInstanceState);

 mAdapter = new SimpleCursorAdapter(getActivity(), R.layout.list_item,
 null, FROM, TO, 0);
 mAdapter.setViewBinder(VIEW_BINDER);

 setListAdapter(mAdapter);

 getLoaderManager().initLoader(LOADER_ID, null, this); //
 }

 // --- Loader Callbacks ---

 // Executed on a non-UI thread
 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) { //
 if (id != LOADER_ID)
 return null;
 Log.d(TAG, "onCreateLoader");

 return new CursorLoader(getActivity(), StatusContract.CONTENT_URI,
 null, null, null, StatusContract.DEFAULT_SORT); //
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) { //
 Log.d(TAG, "onLoadFinished with cursor: " + cursor.getCount());
 mAdapter.swapCursor(cursor); //
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) { //
 mAdapter.swapCursor(null);
 }
}

We implement LoaderCallbacks<Cursor>, which is the set of callbacks that will
be called when the data is available.
This is an arbitrary ID that will help us make sure that the loader calling back
is the one we initiated.
When the fragment is created, we initiate the loading of the data. This is now
done on a separate thread, not blocking the rest of this method, which as
everything else, runs on the UI thread.
onCreateLoader() is where the data is actually loaded. Again, this runs on a
worker thread and may take a long time to complete.
A CursorLoader loads the data from the content provider.

Loading the Data | 209

Once the data is loaded, the system will call back our code via onLoadFinish
ed(), passing in the data.
We update the data that the adapter is using to update the list view. The user
finally gets the fresh timeline.
In case the data is stale or unavailable, we remove it from the view.

At this point, MainActivity is complete, but not yet registered with the manifest file.
To register it, we’ll make MainActivity the entry point into the app, as Example 12-6
illustrates.

Example 12-6. AndroidManifest file
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.yamba"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <!-- -->
 <activity
 android:name="com.marakana.android.yamba.StatusActivity"
 android:label="@string/status_update" >
 <intent-filter>
 <action android:name="com.marakana.android.yamba.action.tweet" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 <!-- -->
 <activity android:name="com.marakana.android.yamba.MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.marakana.android.yamba.SettingsActivity"

210 | Chapter 12: Lists and Adapters

 android:label="@string/action_settings" >
 </activity>
 <service android:name="com.marakana.android.yamba.RefreshService" >
 </service>

 <provider
 android:name="com.marakana.android.yamba.StatusProvider"
 android:authorities="com.marakana.android.yamba.StatusProvider"
 android:exported="false" />

 </application>

</manifest>

StatusActivity is no longer the main entry point into the app. We moved the
main <intent-filter /> to MainActivity.
<activity android:name="com.marakana.android.yamba.MainActivity" >

is now the entry point into the app because of the new <intent-filter /> block.

We can now run the app. However, if we were to run this activity, we’d quickly notice
that the timestamp doesn’t look quite the way we imagined it.

Remember that we are storing the status creation time in the database as a long value
representing the number of milliseconds since January 1, 1970. And because that’s the
value in the database, that’s the value we show on the screen as well. This is the standard
Unix time, which is very useful for representing actual points in time. But the value is
not very meaningful to users. Instead of showing value 1287603266359, it would be
much nicer to represent it to the user as “10 minutes ago.” This friendly time format is
known as relative time, and Android provides a method to convert from one format to
the other.

The question is where to inject this conversion. As it stands right now, the SimpleCur
sorAdapter is capable only of mapping straight from a database value to layout view.
This doesn’t work for our needs, because we need to add some business logic in between
the data and the view. To do this, we’ll create our own adapter.

Custom Logic via ViewBinder
ViewBinder allows us to attach certain business logic to the mapping that the adapter
does en route from the cursor to the view.

To attach business logic to an existing SimpleCursorAdapter, use its setViewBind
er() method. We will need to supply the method with an implementation of ViewBind
er. ViewBinder is an interface that specifies setViewValue(), where the actual binding
of a particular date element to a particular view happens.

Custom Logic via ViewBinder | 211

http://en.wikipedia.org/wiki/Unix_time

Again, we discovered the setViewBinder() feature of this SimpleCursorAdapter
framework class by reading its reference documentation.

When importing ViewBinder, make sure it is android.widget.Sim
pleCursorAdapter.ViewBinder because there are multiple options.

In our final iteration of Adapter, we create a custom ViewBinder as a constant and attach
it to the stock SimpleCursorAdapter, as shown in Example 12-7.

Example 12-7. TimelineFragment with ViewBinder
 ...
 public class TimelineFragment extends ListFragment implements
 LoaderCallbacks<Cursor> {
 ...
 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 setEmptyText("Loading data...");

 adapter = new SimpleCursorAdapter(getActivity(), R.layout.row, null,
 FROM, TO, CursorAdapter.FLAG_REGISTER_CONTENT_OBSERVER);
 adapter.setViewBinder(new TimelineViewBinder()); //

 setListAdapter(adapter);

 getLoaderManager().initLoader(0, null, this);
 }

 /** Handles custom binding of data to view. */
 class TimelineViewBinder implements ViewBinder { //

 @Override
 public boolean setViewValue(View view, Cursor cursor,
 int columnIndex) { //
 if (view.getId() != R.id.text_created_at) //
 return false;

 // Convert timestamp to relative time
 long timestamp = cursor.getLong(columnIndex); //
 CharSequence relativeTime = DateUtils
 .getRelativeTimeSpanString(timestamp); //
 ((TextView) view).setText(relativeTime); //

 return true; //
 }
 }
 ...

212 | Chapter 12: Lists and Adapters

We attach a custom ViewBinder instance to our stock adapter. VIEW_BINDER is
defined later in our code.
The actual implementation of a ViewBinder instance. Notice that we are
implementing it as an inner class. There’s no reason for any other class to use it,
and thus it shouldn’t be exposed to the outside world. Also notice that it is static
final, meaning that it’s a constant.
The only method that we need to provide is setViewValue(). This method is
called for each data element that needs to be bound to a particular view.
First we check whether this view is the view we care about, i.e., our TextView
representing when the status was created. If not, we return false, which causes
the adapter to handle the bind itself in the standard manner. If it is our view, we
move on and do the custom bind.
We get the raw timestamp value from the cursor data.
Using the same Android helper method we used in our previous example, Da
teUtils.getRelativeTimeSpanString(), we convert the timestamp to a
human-readable format. This is that business logic that we are injecting.
Update the text on the actual view.
Return true so that SimpleCursorAdapter does not process bindView() on this
element in its standard way.

Details View
Would it be nice if the user was able to click a specific tweet and get to see its details?
We’ll do exactly that by creating a new details view. This view will simply display just
that one particular selected tweet.

Sometimes this view will need to take an entire screen, such as when the user is on the
phone and in portrait mode. Other times, the details view could be right alongside the
timeline list.

So this example is going to illustrate the use of fragments again, but more so even the
communication between fragments.

Details View | 213

Details Fragment
Let’s start with the fragment, which represents the reusable piece of UI. Example 12-8
is the code for this fragment. Note that it reuses our R.layout.list_item to render the
view (thus not really showing a whole lot more details, but that’s not the point).

Example 12-8. DetailsFragment
package com.marakana.android.yamba;

import android.app.Fragment;
import android.content.ContentUris;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.text.format.DateUtils;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class DetailsFragment extends Fragment { //
 private TextView textUser, textMessage, textCreatedAt;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.list_item, null, false); //

 textUser = (TextView) view.findViewById(R.id.list_item_text_user);
 textMessage = (TextView) view.findViewById(
 R.id.list_item_text_message);
 textCreatedAt = (TextView) view
 .findViewById(R.id.list_item_text_created_at);

 return view;
 }

 @Override
 public void onResume() {
 super.onResume();
 long id = getActivity().getIntent().getLongExtra(
 StatusContract.Column.ID, -1); //

 updateView(id);
 }

 public void updateView(long id) { //
 if (id == -1) {
 textUser.setText("");
 textMessage.setText("");

214 | Chapter 12: Lists and Adapters

 textCreatedAt.setText("");
 return;
 }

 Uri uri = ContentUris.withAppendedId(StatusContract.CONTENT_URI, id);

 Cursor cursor = getActivity().getContentResolver().query(uri, null,
 null, null, null);
 if (!cursor.moveToFirst())
 return;

 String user = cursor.getString(cursor
 .getColumnIndex(StatusContract.Column.USER));
 String message = cursor.getString(cursor
 .getColumnIndex(StatusContract.Column.MESSAGE));
 long createdAt = cursor.getLong(cursor
 .getColumnIndex(StatusContract.Column.CREATED_AT));

 textUser.setText(user);
 textMessage.setText(message);
 textCreatedAt.setText(DateUtils.getRelativeTimeSpanString(createdAt));
 }
}

This is a basic fragment, a reusable piece of UI. We’ll attach it to an activity later.
As we said before, we’re inflating the R.layout.list_item view that we also use
for the list. In another example, you may have a more sophisticated view, but
here we want to illustrate something else.
In onResume() we know that this fragment just got redisplayed on the screen.
So, we need to update it. To do so, we need to extract the ID for the tweet that
we are updating for. We’ll assume that whoever requested this fragment to be
displayed has passed on that ID to us via the intent that started the activity this
fragment is part of. This is similar to a web page for an ecommerce website that
you pass in the SKU ID in order to pick the right product to display.
This custom function goes out and pulls the data for the given ID from the
content provider, and updates the view of this fragment.

Next, we need to put this fragment somewhere to be visible. There are multiple ways
we can do that. One is to make it have the timeline fragment and the details fragment
be alongside each other, such as in the case of a larger screen, e.g., tablet or landscape
orientation. The other way would be to have each fragment simply be shrink-wrapped
in its own minimal activity. Figure 12-2 illustrates both the former and the latter.

Details View | 215

Figure 12-2. Fragments can be packaged together or separate

Details Activity
Let’s take the case where we’d just shrink-wrap the details fragment into an activity.
Example 12-9 shows what that code could look like.

Example 12-9. DetailsActivity
package com.marakana.android.yamba;

import android.os.Bundle;

public class DetailsActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Check if this activity was created before
 if (savedInstanceState == null) { //
 // Create a fragment
 DetailsFragment fragment = new DetailsFragment(); //
 getFragmentManager()
 .beginTransaction()
 .add(android.R.id.content, fragment,
 fragment.getClass().getSimpleName()).commit(); //
 }
 }
}

216 | Chapter 12: Lists and Adapters

We only create the new fragment when onCreate() is called first time around.
Create a new instance of the fragment.
Get the fragment transaction from the manager, and add this fragment to this
activity.

Register with the Manifest File
Next, just like with every other activity, we need to register it with the manifest file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.yamba"
 android:versionCode="1"
 android:versionName="1.0" >

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 ...

 <!-- -->
 <activity android:name="com.marakana.android.yamba.DetailsActivity" >
 </activity>

 ...

 </application>
</manifest>

We define the DetailsActivity so the system can find it when we try to launch
it.

Main Activity, Landscape View
But suppose our activity is viewed on a larger screen? To illustrate that, we’ll create a
landscape version of the main activity in Example 12-10.

Example 12-10. The res/layout-land/activity_main.xml file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >

 <!-- -->
 <fragment

Details View | 217

 android:id="@+id/fragment_timeline"
 android:name="com.marakana.android.yamba.TimelineFragment"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 tools:layout="@android:layout/list_content" />

 <!-- -->
 <fragment
 android:id="@+id/fragment_details"
 android:name="com.marakana.android.yamba.DetailsFragment"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 tools:layout="@layout/list_item" />

</LinearLayout>

This is the timeline fragment.
The second fragment is our details fragment. These two fragments will split the
horizontal space evenly. This is done via the android:layout_weight="1"
property, which defines that they both equally yield to one another for the
desired width.

Updating TimelineFragment
Finally, we’re ready to display DetailsFragment. We’ll accomplish this by adding an
onListItemClick() callback to TimelineFragment. When the list is clicked, this meth‐
od will get called and it’ll update the details view. Example 12-11 describes the entire
TimelineFragment.

Example 12-11. TimelineFragment, final version with support for details view
package com.marakana.android.yamba;

import android.app.ListFragment;
import android.app.LoaderManager.LoaderCallbacks;
import android.content.CursorLoader;
import android.content.Intent;
import android.content.Loader;
import android.database.Cursor;
import android.os.Bundle;
import android.text.format.DateUtils;
import android.util.Log;
import android.view.View;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.SimpleCursorAdapter.ViewBinder;
import android.widget.TextView;
import android.widget.Toast;

218 | Chapter 12: Lists and Adapters

public class TimelineFragment extends ListFragment implements
 LoaderCallbacks<Cursor> {
 private static final String TAG = TimelineFragment.class.getSimpleName();
 private static final String[] FROM = { StatusContract.Column.USER,
 StatusContract.Column.MESSAGE, StatusContract.Column.CREATED_AT,
 StatusContract.Column.CREATED_AT };
 private static final int[] TO = { R.id.list_item_text_user,
 R.id.list_item_text_message, R.id.list_item_text_created_at,
 R.id.list_item_freshness };
 private static final int LOADER_ID = 42;
 private SimpleCursorAdapter mAdapter;

 private static final ViewBinder VIEW_BINDER = new ViewBinder() {

 @Override
 public boolean setViewValue(View view, Cursor cursor,
 int columnIndex) {
 long timestamp;

 // Custom binding
 switch (view.getId()) {
 case R.id.list_item_text_created_at:
 timestamp = cursor.getLong(columnIndex);
 CharSequence relTime = DateUtils
 .getRelativeTimeSpanString(timestamp);
 ((TextView) view).setText(relTime);
 return true;
 case R.id.list_item_freshness:
 timestamp = cursor.getLong(columnIndex);
 ((FreshnessView) view).setTimestamp(timestamp);
 return true;
 default:
 return false;
 }
 }
 };

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 mAdapter = new SimpleCursorAdapter(getActivity(), R.layout.list_item,
 null, FROM, TO, 0);
 mAdapter.setViewBinder(VIEW_BINDER);

 setListAdapter(mAdapter);

 getLoaderManager().initLoader(LOADER_ID, null, this);
 }

 @Override

Details View | 219

 public void onListItemClick(ListView l, View v, int position, long id) {
 //

 // Get the details fragment
 DetailsFragment fragment = (DetailsFragment) getFragmentManager()
 .findFragmentById(R.id.fragment_details); //

 // Is details fragment visible?
 if (fragment != null && fragment.isVisible()) { //
 fragment.updateView(id); //
 } else {
 startActivity(new Intent(getActivity(), DetailsActivity.class)
 .putExtra(StatusContract.Column.ID, id)); //
 }
 }

 // --- Loader Callbacks ---

 // Executed on a non-UI thread
 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 if (id != LOADER_ID)
 return null;
 Log.d(TAG, "onCreateLoader");

 return new CursorLoader(getActivity(), StatusContract.CONTENT_URI,
 null, null, null, StatusContract.DEFAULT_SORT);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // Get the details fragment
 DetailsFragment fragment = (DetailsFragment) getFragmentManager()
 .findFragmentById(R.id.fragment_details);

 // Is details fragment visible?
 if (fragment != null && fragment.isVisible() && cursor.getCount()
 == 0) {
 fragment.updateView(-1);
 Toast.makeText(getActivity(), "No data",
 Toast.LENGTH_LONG).show();
 }

 Log.d(TAG, "onLoadFinished with cursor: " + cursor.getCount());
 mAdapter.swapCursor(cursor);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
 }
}

220 | Chapter 12: Lists and Adapters

onListItemClick() is called when an item in the list is clicked on.
We ask the fragment manager for DetailsFragment.
It is quite possible that DetailsFragment is not visible, such as with the portrait
orientation of the small phone screen. In that case, DetailsFragment will be
null.
If DetailsFragment is not null, it’s visible. In that case, we simply call our method
updateView() to have the fragment fetch the data from the content provider and
update its view.
Otherwise, we launch the details activity, which will do the same once it creates
and attaches this fragment to it. Our app now looks like Figure 12-3.

Figure 12-3. Final app

Summary
At this point, Yamba can post a new status as well as list the statuses of our friends. Our
application is complete and usable.

Summary | 221

Figure 12-4 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

Figure 12-4. Yamba completion

222 | Chapter 12: Lists and Adapters

CHAPTER 13

Broadcast Receivers

In this chapter, you will learn about broadcast receivers and when to use them. We’ll
create a couple of different receivers that illustrate different usage scenarios. First, you’ll
create a broadcast receiver that will set up the alarms to autostart your refresh timeline
service every so often.

Next, you will create a receiver that will be notified when there’s a new tweet, and post
that notification to the user.

In this chapter, in addition to using broadcast receivers, you will also learn how to take
advantage of Android’s OS system services.

By the end of this chapter, your app will have most of the functionality that a user would
need. The app can send status updates, get friends’ timelines, update itself, and start
automatically. It works even when the user is not connected to the network (although
of course it cannot send or receive new messages).

About Broadcast Receivers
Broadcast receivers are Android’s implementation of the publish/subscribe messaging
pattern, or more precisely, the observer pattern. Applications (known as publishers) can
generate broadcasts to simply send events without knowing who, if anyone, will get
them. Receivers (known as subscribers) that want the information subscribe to specific
messages via filters. If the message matches a filter, the subscriber is activated (if it’s not
already running) and notified of the message.

As you may recall from “Broadcast Receivers” on page 72, a BroadcastReceiver is a
piece of code to which an app subscribes in order to get notified when an action happens.
That action is in the form of an intent broadcast. When the right intent is fired, the
receiver wakes up and executes. The “wakeup” happens in the form of an onRe
ceive() callback method.

223

http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Observer_pattern

BootReceiver
In our Yamba application, the RefreshService is responsible for periodically updating
the data from the online service. Currently, the user needs to start the service manually,
which she does by starting the application and then clicking the Refresh action bar
button.

It would be much cleaner and simpler if somehow the system automatically started
RefreshService when the device powered up. To do this, we create BootReceiver, a
broadcast receiver that the system will launch when the boot is complete. Example 13-1
sets up our broadcast receiver.

Example 13-1. BootReceiver.java
package com.marakana.android.yamba;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver { //

 @Override
 public void onReceive(Context context, Intent intent) { //
 context.startService(new Intent(context, RefreshService.class)); //
 Log.d("BootReceiver", "onReceived");
 }

}

We create BootReceiver by subclassing BroadcastReceiver, the base class for
all receivers.
The only method that we need to implement is onReceive(). This method gets
called when an intent matches this receiver.
We launch an intent to start our Updater service. The system passed us a Con
text object when it invoked our onReceive() method, and we are expected to
pass it on to the Updater service. The service doesn’t happen to use the Con
text object for anything, but we’ll see an important use for it later.

At this point, we have our BootReceiver. But in order for it to get called—in other
words, in order for the activity to start at boot—we must register it with the system.

224 | Chapter 13: Broadcast Receivers

Registering the BootReceiver with the Android Manifest File
To register BootReceiver, we add it to the manifest file, shown in Example 13-2. We
also add an intent filter to this file. This intent filter specifies which broadcasts trigger
the receiver to become activated.

Example 13-2. AndroidManifest.xml: <application> section
...
<receiver android:name=".BootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
</receiver>
...

In order to get notifications for this particular intent filter, we must also specify that
we’re using a specific permission it requires, in this case android.permission.RE
CEIVE_BOOT_COMPLETED (see Example 13-3).

Example 13-3. AndroidManifest.xml: <manifest> section
...
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
...

If we don’t specify the permission we require, we simply won’t be
notified when this event occurs, and we won’t have the chance to run
our startup code. We won’t even know we aren’t getting notified, so
this is potentially a hard bug to find.

Testing the Boot Receiver
At this point, you can reboot your device. Once it comes back up, your RefreshSer
vice should be up and running. You can verify this either by looking at the LogCat and
verifying that BootReceiver did log the “onReceived” message we put in the code.

Alarms and System Services
For now, we got our service started once at the boot time. But what we’d really like to
do is have this service be periodically restarted. After all, each trigger of RefreshSer
vice will pull down the latest timeline data from the cloud. The question is how to create
these periodic triggers.

It turns out the Android operating system offers a number of system services that pro‐
vide useful runtime functionality, and one of them, the Alarm service, has a way to
periodically trigger the alarms.

Alarms and System Services | 225

System services, unlike libraries we’ve dealt with thus far, are always-on-always-running
processes. There are around 60+ of these services, such as Alarm, Audio, Camera, Media,
Location, Sensors, Telephony, USB, and WiFi, to name a few.

Each service has its own API that is fairly well documented. What is common for all of
them is that they are readily available to your app via the context:

AlarmManager alarmManager = (AlarmManager) context
 .getSystemService(Context.ALARM_SERVICE);

So, let’s see how we can use this particular Alarm service to have our RefreshService
started every so often in Example 13-4.

Example 13-4. BootReceiver, final
package com.marakana.android.yamba;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.preference.PreferenceManager;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver { //
 private static final String TAG = BootReceiver.class.getSimpleName();
 private static final long DEFAULT_INTERVAL =
 AlarmManager.INTERVAL_FIFTEEN_MINUTES; //

 @Override
 public void onReceive(Context context, Intent intent) { //

 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(context);
 long interval = Long.parseLong(prefs.getString("interval",
 Long.toString(DEFAULT_INTERVAL))); //

 PendingIntent operation = PendingIntent.getService(context, -1,
 new Intent(context, RefreshService.class),
 PendingIntent.FLAG_UPDATE_CURRENT); //

 AlarmManager alarmManager = (AlarmManager) context
 .getSystemService(Context.ALARM_SERVICE); //

 if (interval == 0) { //
 alarmManager.cancel(operation);
 Log.d(TAG, "cancelling repeat operation");
 } else {
 alarmManager.setInexactRepeating(AlarmManager.RTC,
 System.currentTimeMillis(), interval, operation);

226 | Chapter 13: Broadcast Receivers

 //
 Log.d(TAG, "setting repeat operation for: " + interval);
 }
 Log.d(TAG, "onReceived");
 }
}

The BootReceiver is a broadcast receiver, so as with any other building block,
we start by subclassing something from the SDK, in this case the BroadcastRe
ceiver class.
This is going to be our default interval, 15 minutes expressed in milliseconds.
The main callback in broadcast receivers is onReceive(), called when the
receiver is triggered.
We may have added a property for interval to our settings for the application,
alongside the username and password. If not, we’ll just use the default value of
15 minutes.
This is where we create our pending intent to be sent by the alarm to trigger the
service. Think of the pending intent as an intent plus the action on it, such as
start a service.
This is how we get the reference to the system service from the current context.
In case the interval is set to zero, presumably the user doesn’t want this service
to ever run.
Otherwise, we use the alarm manager’s API to repeat this operation every
interval, or so.

If you install your app now, and reboot the device, at boot time, the BootReceiver will
install the alarms that will trigger this sevice to repeat on the given interval.

Broadcasting Intents
In the previous case, the intent that triggered BootReceiver was broadcasted by the
system. But, you can also broadcast your own intents. Let’s say we want to notify the
user when there’s a new tweet by posting a notification message in the notification bar.
To do that, we need to send a broadcast first. We can send that broadcast using the
sendBroadcast() method in context.

A good place to send the broadcast would be our RefreshService—because that’s the
code that knows there’s something new, as Example 13-5 illustrates.

Broadcasting Intents | 227

Example 13-5. RefreshService, final
package com.marakana.android.yamba;

import java.util.List;

import android.app.IntentService;
import android.content.ContentValues;
import android.content.Intent;
import android.content.SharedPreferences;
import android.net.Uri;
import android.preference.PreferenceManager;
import android.text.TextUtils;
import android.util.Log;
import android.widget.Toast;

import com.marakana.android.yamba.clientlib.YambaClient;
import com.marakana.android.yamba.clientlib.YambaClient.Status;
import com.marakana.android.yamba.clientlib.YambaClientException;

public class RefreshService extends IntentService {
 private static final String TAG = RefreshService.class.getSimpleName();

 public RefreshService() {
 super(TAG);
 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.d(TAG, "onCreated");
 }

 // Executes on a worker thread
 @Override
 protected void onHandleIntent(Intent intent) {
 SharedPreferences prefs = PreferenceManager
 .getDefaultSharedPreferences(this);
 final String username = prefs.getString("username", "");
 final String password = prefs.getString("password", "");

 // Check that username and password are not empty
 if (TextUtils.isEmpty(username) || TextUtils.isEmpty(password)) {
 Toast.makeText(this,
 "Please update your username and password",
 Toast.LENGTH_LONG).show();
 return;
 }
 Log.d(TAG, "onStarted");

 ContentValues values = new ContentValues();

 YambaClient cloud = new YambaClient(username, password);

228 | Chapter 13: Broadcast Receivers

 try {
 int count = 0; //
 List<Status> timeline = cloud.getTimeline(20);
 for (Status status : timeline) {
 values.clear();
 values.put(StatusContract.Column.ID,
 status.getId());
 values.put(StatusContract.Column.USER,
 status.getUser());
 values.put(StatusContract.Column.MESSAGE,
 status.getMessage());
 values.put(StatusContract.Column.CREATED_AT,
 status.getCreatedAt().getTime());

 Uri uri = getContentResolver().insert(
 StatusContract.CONTENT_URI, values);
 if (uri != null) {
 count++; //
 Log.d(TAG,
 String.format("%s: %s", status.getUser(),
 status.getMessage()));
 }
 }

 if (count > 0) {
 sendBroadcast(new Intent(
 "com.marakana.android.yamba.action.NEW_STATUSES")
 .putExtra("count", count)); //
 }

 } catch (YambaClientException e) {
 Log.e(TAG, "Failed to fetch the timeline", e);
 e.printStackTrace();
 }

 return;
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d(TAG, "onDestroyed");
 }

}

Initialize the count of new tweets to zero.
If there was a new tweet, increment the counter.
In case we have at least one new tweet, let’s use sendBroadcast() to send a
broadcast to whoever cares about that.

Broadcasting Intents | 229

Notification Receiver
Now we can create a receiver that will receive this broadcast from us, and use another
system service to post a notification to the user, as Example 13-6 illustrates.

Example 13-6. NotificationReceiver
package com.marakana.android.yamba;

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class NotificationReceiver extends BroadcastReceiver { //
 public static final int NOTIFICATION_ID = 42;

 @Override
 public void onReceive(Context context, Intent intent) { //
 NotificationManager notificationManager = (NotificationManager)
 context
 .getSystemService(Context.NOTIFICATION_SERVICE); //

 int count = intent.getIntExtra("count", 0); //

 PendingIntent operation = PendingIntent.getActivity(context, -1,
 new Intent(context, MainActivity.class),
 PendingIntent.FLAG_ONE_SHOT); //

 Notification notification = new Notification.Builder(context)
 .setContentTitle("New tweets!")
 .setContentText("You've got " + count + " new tweets")
 .setSmallIcon(android.R.drawable.sym_action_email)
 .setContentIntent(operation)
 .setAutoCancel(true)
 .getNotification(); //
 notificationManager.notify(NOTIFICATION_ID, notification); //
 }
}

As before, each receiver subclasses from BroadcastReceiver.
Again, the magic happens in onReceive().
Similarly to the Alarm service, we get the notification service by calling getSys
temService() from the context.
The intent that triggered this receiver was posted in RefreshService, and in
there we attached a primitive integer representing the count of new tweets. Here,
we extract it from that receiving intent.

230 | Chapter 13: Broadcast Receivers

We create a pending operation—in other words, what will happen once a user
clicks this specific notification. In this case, we launch MainActivity so the user
can quickly read new tweets.
To post a notification, first we need to build it. This code uses the Notifica
tion.Builder class to help build a notification with the minimal set of bells and
whistles.
Finally, we post this notification to the notification manager.

Summary
Yamba is now complete and ready for prime time. Our application can now send status
updates to our online service, get the latest statuses from our friends, start automatically
at boot time, and refresh the display when a new status is received.

Figure 13-1 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

Summary | 231

Figure 13-1. Yamba completion

232 | Chapter 13: Broadcast Receivers

CHAPTER 14

App Widgets

In Android, the idea of showing mini application views embedded in other applications,
the most common case being that of the home screen, is a very important and useful
feature. These are called app widgets, or widgets for short. These widgets not only pro‐
vide a small window into an easily accessible view, but also can receive updates and thus
provide a more dynamic experience to your application.

Using Content Providers Through Widgets
As mentioned before, content providers make the most sense when you want to expose
the data to other applications. It is a good practice to always think of your application
as part of a larger Android ecosystem and, as such, a potential provider of useful data
to other applications.

To demonstrate how content providers can be useful, we’ll create a home screen widget.
We’re not using the term widget here as a synonym for Android’s View class, but as a
useful embedded service offered by the home screen.

Android typically ships with a few home screen widgets. You can access them by going
to your home screen, long-pressing on it to pull up an Add to Home Screen dialog, and
choosing Widgets. Widgets that come with Android include Alarm Clock, Picture
Frame, Power Controls, Music, and Search. Our goal is to create our own Yamba widget
that the user will be able to add to the home screen.

The Yamba widget will be simple, displaying just the latest status update. To create it,
we’ll make a new YambaWidget class that subclasses AppWidgetProviderInfo. We’ll also
have to register the widget with the manifest file.

Implementing the YambaWidget Class
YambaWidget is the main class for our widget. It is a subclass of AppWidgetProvider, a
special system class that makes widgets. This class itself is a subclass of BroadcastRe
ceiver, so our Yamba widget is a broadcast receiver automatically. Basically, whenever
our widget is updated, deleted, enabled, or disabled, we’ll get a broadcast intent with
that information. So this class inherits the onUpdate(), onDeleted(), onEnabled(),
onDisabled(), and onReceive() callbacks. We can override any of these, but typically
we care mostly about the updates and general broadcasts we receive.

Now that we understand the overall design of the widget framework, Example 14-1
shows how we implement it.

Example 14-1. YambaWidget.java
package com.marakana.android.yamba;
package com.marakana.android.yamba;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.text.format.DateUtils;
import android.util.Log;
import android.widget.RemoteViews;

public class YambaWidget extends AppWidgetProvider { //
 private static final String TAG = YambaWidget.class.getSimpleName();

 @Override
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) { //
 Log.d(TAG, "onUpdate");

 // Get the latest tweet
 Cursor cursor = context.getContentResolver().query(
 StatusContract.CONTENT_URI, null, null, null,
 StatusContract.DEFAULT_SORT); //

 if (!cursor.moveToFirst()) //
 return;

 //
 String user = cursor.getString(cursor
 .getColumnIndex(StatusContract.Column.USER));
 String message = cursor.getString(cursor
 .getColumnIndex(StatusContract.Column.MESSAGE));
 long createdAt = cursor.getLong(cursor

234 | Chapter 14: App Widgets

234

 .getColumnIndex(StatusContract.Column.CREATED_AT));

 PendingIntent operation = PendingIntent.getActivity(context, -1,
 new Intent(context, MainActivity.class),
 PendingIntent.FLAG_UPDATE_CURRENT);

 // Loop through all the instances of YambaWidget
 for (int appWidgetId : appWidgetIds) { //

 // Update the view
 RemoteViews view = new RemoteViews(context.getPackageName(),
 R.layout.widget); //

 // Update the remote view
 view.setTextViewText(R.id.list_item_text_user, user);
 view.setTextViewText(R.id.list_item_text_message, message);
 view.setTextViewText(R.id.list_item_text_created_at,
 DateUtils.getRelativeTimeSpanString(createdAt));
 view.setOnClickPendingIntent(R.id.list_item_text_user,
 operation);
 view.setOnClickPendingIntent(R.id.list_item_text_message,
 operation);

 // Update the widget
 appWidgetManager.updateAppWidget(appWidgetId, view); //
 }

 }

 @Override
 public void onReceive(Context context, Intent intent) { //
 super.onReceive(context, intent);
 AppWidgetManager appWidgetManager = AppWidgetManager
 .getInstance(context); //
 this.onUpdate(context, appWidgetManager, appWidgetManager
 .getAppWidgetIds(new ComponentName(context,
 YambaWidget.class))); //

 }
}

As mentioned before, our widget is a subclass of AppWidgetProvider, which
itself is a BroadcastReceiver.
This method is called whenever our widget is to be updated, so it’s where we’ll
implement the main functionality of the widget. When we register the widget
with the system in the manifest file later, we’ll specify the update frequency we’d
like. In our case, this method will be called about every 30 minutes.

Using Content Providers Through Widgets | 235

We finally get to use our content provider. The whole purpose of the widget in
this chapter is to illustrate how to use the StatusProvider that we created earlier.
As you saw earlier when we implemented the content provider, its API is quite
similar to the SQLite database API. The main difference is that instead of passing
a table name to a database object, we’re passing a content URI to the Conten
tResolver. We still get back the very same Cursor object as we did with databases
in “Databases on Android” on page 175.
In this particular example, we care only about the very latest status update from
the online service. So we position the cursor to the first element. If one exists,
it’s our latest status update.
In the next few of lines of code, we extract data from the Cursor object and store
it in local variables.
Because the user could have multiple Yamba widgets installed, we need to loop
through them and update them all. We don’t particularly care about the specific
appWidgetId because we’re doing identical work to update every instance of the
Yamba widget. The appWidgetId becomes an opaque handle we use to access
each widget in turn.
The actual view representing our widget is in another process. To be precise, our
widget is running inside the Home application, which acts as its host and is the
process we are updating. Hence the RemoteViews constructor. The Remote
Views framework is a special shared memory system designed specifically for
widgets.
Once we have the reference to our widget views’ Java memory space in another
process, we can update those views. In this case, we’re setting the status data in
the row that represents our widget.
Once we update the remote views, the AppWidgetManager call to updateApp
Widget() actually posts a message telling the system to update our widget. This
will happen asynchronously, but shortly after onUpdate() completes.
The call to onReceive() is not necessary in a typical widget. But because a widget
is a broadcast receiver, and because our Updater service does send a broadcast
when we get a new status update, this method is a good opportunity to invoke
onUpdate() and get the latest status data updated on the widget.
If it was, we get the instance of AppWidgetManager for this context.
We then invoke onUpdate().

At this point, we have coded the Yamba widget, and as a receiver, it will be notified
periodically or when there are new updates, and it will loop through all instances of this
widget on the home screen and update them.

236 | Chapter 14: App Widgets

Next, we need to set up the layout for our widget.

Creating the XML Layout
The layout for the widget is fairly straightforward. In Example 14-2, we just include it
along with a little title and an icon to make it look good on the home screen.

Example 14-2. The res/layout/widget.xml file
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_content"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:drawable/dialog_holo_dark_frame"
 android:descendantFocusability="blocksDescendants"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin" >

 <TextView
 android:id="@+id/list_item_text_user"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:text="Slashdot"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/list_item_text_created_at"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/list_item_text_user"
 android:layout_alignBottom="@+id/list_item_text_user"
 android:layout_alignParentRight="true"
 android:text="10 minutes ago"
 android:textAppearance="?android:attr/textAppearanceSmall" />

 <TextView
 android:id="@+id/list_item_text_message"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/list_item_text_created_at"
 android:autoLink="web"
 android:focusable="false"
 android:linksClickable="true"
 android:text="Andriod just became the #1 OS on the planet.
 Take that, Microsoft! http://t.co/123"
 android:textAppearance="?android:attr/textAppearanceSmall" />

Using Content Providers Through Widgets | 237

</RelativeLayout>

This layout is simple enough, but it does the job for our particular needs. Next, we need
to define some basic information about this widget and its behavior.

Creating the AppWidgetProviderInfo File
The XML file shown in Example 14-3 is responsible for describing the widget. It typically
specifies which layout this widget uses, how frequently it should be updated by the
system, and its size.

Example 14-3. The res/xml/yamba_widget.xml file
<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minHeight="40dp"
 android:minWidth="250dp"
 android:resizeMode="none"
 android:updatePeriodMillis="1800000"
 android:widgetCategory="home_screen|keyguard" >
</appwidget-provider>

In this case we specify that we’d like to have our widget updated every 30 minutes or so
(1,800,000 milliseconds). Here, we also specify the layout to use, the title of this widget,
and its size.

Updating the Manifest File
Finally, we need to update the manifest file and register the widget:

 ...
 <application .../>
 ...
 <receiver
 android:name="com.marakana.android.yamba.YambaWidget"
 android:exported="false" >
 <intent-filter>
 <action android:name=
 "com.marakana.android.yamba.action.NEW_STATUSES" />
 </intent-filter>
 <intent-filter>
 <action android:name=
 "android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>

 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/yamba_widget" />
 </receiver>

238 | Chapter 14: App Widgets

 ...
 </application>
 ...

Notice that the widget is a receiver, as we mentioned before. So, just like other broadcast
receivers, we declare it within a <receiver> tag inside an <application> element. It is
important to register this receiver to receive ACTION_APPWIDGET_UPDATE updates. We
do that via the <intent-filter>. The <meta-data> specifies the meta information for
this widget in the yamba_widget_info XML file described in the previous section.

That’s it. We now have the widget and are ready to test it.

Testing the Widget
To test this widget, install your latest application on the device. Next, go to the home
screen, long-press it, and click the Widgets choice. You should be able to navigate to the
Yamba widget at this point. After adding it to the home screen, the widget should display
the latest status update.

If your Updater service is running, the latest updates should show up on the home
screen. This means your widget is running properly.

Summary
At this point, the Yamba app is complete. Congratulations! You are ready to fine-tune
it, customize it, and publish it to the market.

Figure 14-1 illustrates what we have done so far as part of the design outlined earlier in
Figure 6-4.

Summary | 239

Figure 14-1. Yamba completion

240 | Chapter 14: App Widgets

CHAPTER 15

Networking and Web Overview

Networking is one of the fundamental tasks of mobile development. In today’s world,
the power of the smartphone lies not so much in its computational abilities as in its
connections to the greater collection of servers and clients that make up the Internet.
Understanding the role of networking within the Android development environment
is critical. With this in mind, this chapter will cover a common form of networking:
sending web data over HTTP.

Quick Example
Let us do a quick simple example of an HTTP network connection to give an idea of
what we are going to cover. First, copy the code in Example 15-1 to a file called
QuickHttpExample.java and run it (Example 15-2). This will produce the output as
shown in Example 15-3 (we truncated the output because it is very long). What this
example does is creates an HTTP connection to http://yamba.marakana.com/api/
statuses/public_timeline.json (if you copy this URL into a browser you will see some
very long data that is similar to the long output in the output of the program). It then
proceeds to check the response status (getResponseCode()), read in the server’s output,
and write that out to the system console. It terminates the connection after it is done
(disconnect()).

Example 15-1. Quick example with HttpUrlConnection
package com.marakana.examples;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.net.HttpURLConnection;

public class QuickHttpExample {
 public static void main(String[] args) {

241

http://yamba.marakana.com/api/statuses/public_timeline.json
http://yamba.marakana.com/api/statuses/public_timeline.json

 HttpURLConnection urlConnection = null;
 try {
 URL url =
 new URL(
 "http://yamba.marakana.com/api/statuses/public_timeline.json");

 urlConnection = (HttpURLConnection) url.openConnection();

 int statusCode = urlConnection.getResponseCode();
 System.out.println("Response Code: "+statusCode);

 BufferedReader in = new BufferedReader(
 new InputStreamReader(urlConnection.getInputStream()));

 String textline = null;

 while((textline = in.readLine()) != null) {
 System.out.println(textline);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if(urlConnection != null) urlConnection.disconnect();
 }
 }
}

Example 15-2. Compiling and running the quick example
javac -d . QuickHttpExample.java

java -cp . com.marakana.examples.QuickHttpExample

Example 15-3. Output of quick example (we truncated the text because it is very long)
Response Code: 200
[{"text":"as","truncated":false,"created_at".....

So now that we have a quick example that runs at the command line, let’s take a dive
into some of the details around networking and HTTP libraries, and then proceed to
tackle some Android-specific methods of network communication.

Networking Basics
Computer networks rely on a set of standards to enable communication between end‐
points. Most of this communication using the Internet is based on the Internet Protocol
(IP), which describes the addressing and formatting of the data being sent between
endpoints. The network socket (in this case an “Internet Socket”) is the interface that
sits on top of this standard. By using a network socket the developer can ship data based
on a standard protocol or communication process. In the case of the World Wide Web

242 | Chapter 15: Networking and Web Overview

(WWW) we are speaking of HTTP (HyperText Transfer Protocol). HTTP relies on a
connection-oriented socket, which is a network socket that uses the Transmission Con‐
trol Protocol (TCP) to describe how the communication is to occur (initiating a con‐
nection, data transmission, signaling transmission and acknowledgment, and termi‐
nating a connection).

So what does this all mean? When you browse the Web, you use a web browser with
which you type in a URL (uniform resource locator) that describes a destination for
your browser to point to. This destination is in the form of scheme://server/request-uri
(generally the “scheme” portion is “http” or “https”). The browser then executes the
communication process, which opens an HTTP socket connection to the server (the
request) and upon receiving the data from the server (the response) proceeds to interpret
it and then display the interpretation to you. The connection is generally terminated
once the data is processed.

The request sent via the browser uses a small set of methods, depending on the type of
request that is being sent. The most common methods are GET and POST. The
HTTP/1.0 standard defines the GET, POST, and HEAD methods. HTTP/1.1 adds GET, POST,
HEAD, OPTIONS, PUT, DELETE, TRACE, and CONNECT. The methods are used as follows:
GET

Data retrieval

POST

Passes data with the attached payload (used often with submission of web forms)

HEAD

Like the GET method, but requests only metadata, not the data itself

OPTIONS

Requests the methods supported by the server

PUT

Puts data at the specified URI

DELETE

Deletes data dictated by the specified URI

TRACE

Echoes back the request so the client originator may see what occurs to it

CONNECT

Converts the requested connection to a transparent TCP/IP tunnel for things such
as proxying an encrypted communication

Aside from the request method, the requester generally supplies some metadata about
itself, as well as the payload of data if it is needed (such as when using POST and PUT). A

Networking Basics | 243

typical GET request, for instance, sends over things like User-Agent, which describes
what the client is (IE 8 on Windows 7, etc.) and Accept-Encoding, which can help specify
compression schemes for the data being transmitted. The request and metadata is sent
in simple, plain text lines, such as in Example 15-4.

Example 15-4. Sample GET
GET / HTTP/1.0
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)
Accept: */*
Host: hostname:port
Accept-Encoding: gzip

The response from the server includes header information describing the response,
followed by the data (should a data payload be requested and no error occur). The header
information includes the content length in bytes, the content type (text, binary media,
etc.), and the status code of the response. The response code also follows the HTTP
specification with a three-digit number code. Codes of the form 2xx indicate success,
3xx indicate redirection, 4xx indicate some sort of client error (404 being the most
famous), and 5xx indicate a server error.

Example 15-5 shows an example of a successful response.

Example 15-5. Sample response
HTTP/1.0 200 OK
Server: Apache/2.2.16
Date: Mon, 01 Apr 2013 19:14:30 GMT
Last-modified: Mon, 17 Dec 2012 09:26:13 GMT
Content-length: 6372
Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>
HTML DOCUMENT TITLE
</TITLE>
</HEAD>
<BODY>
HTML DOCUMENT DATA
</BODY>
</HTML>

HTTP API
So, given all of the communication protocols and processes we’ve described, thankfully
Android has provided within its APIs several classes and methods of generating an
HTTP connection and handling the subsequent responses easily. The first of these is

244 | Chapter 15: Networking and Web Overview

the Apache HTTP client classes: DefaultHttpClient and AndroidHttpClient. These
client classes are suitable for web browsers and encompass quite a bit of functionality.
Unfortunately, due to the classes’ complexity, the Android team at Google is not actively
working on them, so you can use them only on the Eclair (2.0) and Froyo (2.1/2.2)
versions of Android. For Gingerbread (2.3) or above, another class (HttpUrlConnec
tion) is the better choice.

Whenever you wish to have your application connect out to the In‐
ternet, you need to include the android.permission.INTERNET per‐
mission in the Manifest.xml file, as follows:

<uses-permission android:name="android.permission.INTERNET">

Apache HTTP Client
The Apache HTTP Client (found in the package org.apache.http.impl.client.De
faultHttpClient) and the Android HTTP Client (found in android.net.http.An
droidHttpClient) are convenience classes to handle connecting and retrieving data via
HTTP. Both DefaultHttpClient and AndroidHttpClient implement the
org.apache.http.client.HttpClient interface. (Be aware that, even though the class
overview for AndroidHttpClient states that it is an implementation of DefaultHttp
Client, that is not the case). There are some differences however. DefaultHttp
Client has been around since Android 1.0 (see Example 15-6), whereas AndroidHttp
Client was introduced in Froyo (2.2) (see Example 15-7). Also, AndroidHttpClient
allows for SSL management, easy methods to specify the UserAgent string, and other
nice utility methods to set the header information for a request. Instance generation is
differs in each class’s case: with DefaultHttpClient you create an instance via one of
its constructors, whereas AndroidHttpClient has a factory method called newIn
stance() that takes in UserAgent information (which may be null if no UserAgent string
is needed).

Example 15-6. DefaultHttpClient instantiation
DefaultHttpClient client = new DefaultHttpClient();

Example 15-7. AndroidHttpClient instantiation
AndroidHttpClient client = AndroidHttpClient.newInstance(null);

In either class’s case you may wish to change some client parameters such as the con‐
nection timeout or the socket timeout. A connection timeout is the amount of time the
client waits for the server to respond, whereas a socket timeout is the amount of time
the client waits when data is coming in and the flow of data is interrupted. DefaultHttp
Client, by default, does not set the connection timeout or socket timeout (their values

Apache HTTP Client | 245

are 0), which means the client will not time out at all. AndroidHttpClient sets both
timeouts to 60 seconds by default. In order to change these parameters, use the HttpPar
ams and HttpConnectionParams classes (see Example 15-8 and Example 15-9).

Example 15-8. DefaultHttpClient instantiation with parameters
HttpParams params = new BasicHttpParams();
 // setting connection timeout to 10000 ms (10 seconds)
HttpConnectionParams.setConnectionTimeout(params, 10000);
 // setting socket timeout to 10000 ms (10 seconds)
HttpConnectionParams.setSoTimeout(params, 10000);
DefaultHttpClient client = new DefaultHttpClient(params);

Example 15-9. AndroidHttpClient instantiation with parameters
AndroidHttpClient client = AndroidHttpClient.newInstance(null);
HttpParams myParams = client.getParams();
 // setting connection timeout to 10000 ms (10 seconds)
HttpConnectionParams.setConnectionTimeout(myParams, 10000);
 // setting socket timeout to 10000 ms (10 seconds)
HttpConnectionParams.setSoTimeout(myParams, 10000);

After a client (using either client class) is generated and configured, an HTTP request
may be made. To do this, generate a request object (a class implementing HttpUriRe
quest) and call the client’s execute() method. Let’s look at two examples: a GET request
and a POST request.

In the case of a GET request, you need just specify the URI you want to retrieve and
execute the GET request (see Example 15-10). The URI is provided as an input to the
HttpGet class constructor. The return value is the HttpResponse.

Example 15-10. GET request
HttpClient client = new DefaultHttpClient();

String getURL = "http://www.someserver.com/getrequest;
HttpGet get = new HttpGet(getURL);

HttpResponse responseGet = client.execute(get);

In the case of a POST request, you add your data as part of the request payload. This is
done in one of two ways: a key-value paired list or a binary multipart data stream. To
pass key-value pairs, create a list of NameValuePairs and pass it into the HttpPost
instance (see Example 15-11). Finish by executing this instance.

Example 15-11. POST request passing a key-value list
HttpClient client = new DefaultHttpClient();

String postURL = "http://www.someserver.com";
HttpPost post = new HttpPost(postURL);

246 | Chapter 15: Networking and Web Overview

List<NameValuePair> params = new ArrayList<NameValuePair>();
params.add(new BasicNameValuePair("key1", "value1"));
params.add(new BasicNameValuePair("key2", "value2"));
UrlEncodedFormEntity ent = new UrlEncodedFormEntity(params,HTTP.UTF_8);
post.setEntity(ent);

HttpResponse responsePOST = client.execute(post);

To pass a multipart file (binary or text), add it as a “part” to the HttpPost instance, as
Example 15-12 illustrates.

Example 15-12. POST request passing a multipart file
HttpClient client = new DefaultHttpClient();

File file = new File("somefile.txt");

String postURL = "http://www.someserver.com";
HttpPost post = new HttpPost(postURL);
FileBody bin = new FileBody(file);
MultipartEntity reqEntity =
 new MultipartEntity(HttpMultipartMode.BROWSER_COMPATIBLE);
reqEntity.addPart("someFile", bin);
post.setEntity(reqEntity);

HttpResponse response = client.execute(post);

After you execute your code, and the server handles it successfully, the library returns
an HttpResponse instance. The communication happens synchronously—that is, the
execute call does not return until the server responds. So at this point in the code, the
client thread is now waiting for the response. This would block the device’s user from
doing anything if you ran the code in the main UI thread (such as running this directly
as part of an activity), so using the main thread is not allowed. The issue can be addressed
by using AsyncTask or AsyncTaskLoader, which we cover in “Networking in the Back‐
ground using AsyncTask and AsyncTaskLoader” on page 251. Once the HttpResponse is
returned, the status code can be retrieved, as well as the underlying data payload. The
payload is returned as an InputStream and thus must be managed like any other I/O
stream of data, as Example 15-13 illustrates.

Example 15-13. The full deal using AndroidHttpClient: doing a POST and handling
the response
AndroidHttpClient client = AndroidHttpClient.newInstance(null);
HttpParams myParams = client.getParams();
HttpConnectionParams.setConnectionTimeout(myParams, 10000);
HttpConnectionParams.setSoTimeout(myParams, 10000);

String postURL = "http://www.someserver.com";
HttpPost post = new HttpPost(postURL);
List<NameValuePair> params = new ArrayList<NameValuePair>();

Apache HTTP Client | 247

params.add(new BasicNameValuePair("key1", "value1"));
params.add(new BasicNameValuePair("key2", "value2"));
UrlEncodedFormEntity ent = new UrlEncodedFormEntity(params,HTTP.UTF_8);
post.setEntity(ent);

HttpResponse responsePOST = client.execute(post);

HttpEntity resEntity = response.getEntity();

if (resEntity != null) {
 System.out.println("Response Code: "+
 resEntity.getStatusLine().getStatusCode());
 System.out.println("Response Content Length: "+
 resEntity.getContentLength());
 System.out.println("Response Content Encoding: "+
 resEntity.getContentEncoding().getValue());
 InputStream is = resEntity.getContent();
 // then read in the InputStream and Do Something
 is.close();
}

HttpUrlConnection
The HttpUrlConnection class (found in java.net.HttpUrlConnection) is a light-
weight HTTP client. The quick example we did at the beginning of this chapter uses
this class. Be aware that prior to Froyo (2.1/2.2), there were a number of bugs associated
with this class, so it is recommended that applications needing to support Froyo and
Eclair should use the Apache HTTP Client for those platforms. Because HttpUrlCon
nection is intended to be lightweight, it does not have all the nice convenience methods
and wrapper classes that the Apache HTTP Client classes do. Connections are made
directly and responses are read in directly from the InputStream that is established.

Example 15-14 shows a GET request. It doesn’t use many of the trappings of HttpGet
objects, but instead establishes the connection with an openConnection() method. The
status code is read with a convenience method called getResponseCode(), and then the
input is read directly.

Example 15-14. GET with HttpUrlConnection
URL url = new URL("http://www.someserver.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
try {
 int statusCode = urlConnection.getResponseCode();
 System.out.println("Response Code: "+statusCode);

 InputStream in =
 new BufferedInputStream(urlConnection.getInputStream());
 // do something with the InputStream
} finally {

248 | Chapter 15: Networking and Web Overview

 urlConnection.disconnect();
}

In the case of a POST, once again, using HttpUrlConnection is pretty simple. You can
send a list of key-value pairs by stringing together the list and writing it out directly to
the OutputStream. A method called setDoOutput() must be set to true. Request pa‐
rameters such as Content-Type are specified directly as well.

Because we know the length of the data in this example (we find it through a data.get
Bytes().length() call), we provide it to the connection using setFixedLengthStrea
mingMode(). When the data size is unknown—such as when streaming data—and the
server is HTTP/1.1-compliant, don’t use setFixedLengthStreamingMode(). Instead,
set a chunk size through setChunkedStreamingMode(0), as Example 15-15 illustrates.

Example 15-15. POST key-value list using HttpUrlConnection
String data = "key1=" + URLEncoder.encode("value1","UTF-8")+
 "&key2=" + URLEncoder.encode("value2","UTF-8");

URL url = new URL("http://www.someserver.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
try {
 urlConnection.setDoOutput(true);
 urlConnection.setRequestMethod("POST");
 urlConnection.setFixedLengthStreamingMode(data.getBytes().length()); i
 urlConnection.setRequestProperty("Content-Type",
 "application/x-www-form-urlencoded");

 OutputStream out =
 new BufferedOutputStream(urlConnection.getOutputStream());
 out.print(data);
 out.flush();
 out.close();

 InputStream in =
 new BufferedInputStream(urlConnection.getInputStream());
 // do something with the InputStream
} finally {
 urlConnection.disconnect();
}

Unfortunately, the side effect of this simplicity is that when it comes to a slightly more
complex thing such as posting a file as a multipart file stream, things get a tad compli‐
cated, as shown in Example 15-16. Essentially, you must provide some HTTP wrapper
information manually as strings.

Example 15-16. POST file using HttpUrlConnection
String attachmentName = "somefile";
String attachmentFileName = "somefile.bmp";

HttpUrlConnection | 249

String crlf = "\r\n";
String twoHyphens = "--";
File file = new File(attachmentFileName);

URL url = new URL("http://www.someserver.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
try {
 urlConnection.setDoOutput(true);
 urlConnection.setFixedLengthStreamingMode(file.getBytes().length()); i
 urlConnection.setRequestProperty("Content-Type",
 "multipart/form-data;boundary=" + boundary");

 DataOutputStream request =
 new DataOutputStream(httpUrlConnection.getOutputStream());

 request.writeBytes(twoHyphens + boundary + crlf);
 request.writeBytes("Content-Disposition: form-data; name=\"" +
 attachmentName + "\";filename=\"" +
 attachmentFileName + "\"" + crlf);
 request.writeBytes(crlf);

 request.write(convertFileToBytes(file)); // must convert file to bytes

 request.writeBytes(crlf);
 request.writeBytes(twoHyphens + boundary + twoHyphens + crlf);

 request.flush();
 request.close();

 InputStream in = new BufferedInputStream(urlConnection.getInputStream());
 // do something with the InputStream
} finally {
 urlConnection.disconnect();
}

However, you could dispense with posting as a multipart file and stream the data directly,
as shown in Example 15-17.

Example 15-17. POST file as stream using HttpUrlConnection
File file = new File("somefile.txt");

URL url = new URL("http://www.someserver.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
try {
 urlConnection.setDoOutput(true);
 urlConnection.setRequestMethod("POST");
 setChunkedStreamingMode(0);

 OutputStream out = urlConnection.getOutputStream());
 out.print(convertFileToBytes(file)); // must convert file to bytes
 out.flush();

250 | Chapter 15: Networking and Web Overview

 out.close();

 InputStream in =
 new BufferedInputStream(urlConnection.getInputStream());
 // do something with the InputStream
} finally {
 urlConnection.disconnect();
}

Networking in the Background using AsyncTask and
AsyncTaskLoader
As discussed earlier, the various ways of doing an HTTP request/response transmission
all use synchronized communication, and because this introduces delays, it cannot be
done in the the UI thread. Therefore, you should run these methods in a background
thread class such as AsyncTask. Because AsyncTask was covered previously in “Asyn‐
cTask” on page 116, we’ll just provide an example using HttpUrlConnection in an
AsyncTask (see Example 15-18).

Example 15-18. AsyncTask with HttpUrlConnection
private class GetConnectionTask extends AsyncTask<URL, Void, String>{
 @Override
 protected String doInBackground(URL... urls) {
 HttpURLConnection aHttpURLConnection =
 (HttpURLConnection) url[0].openConnection();

 InputStream in = aHttpURLConnection.getInputStream();

 return convertInputStreamToString(in);
 }

 @Override
 protected void onPostExecute(String result) {
 // do something with the result
 }
}

// To use
GetConnectionTask task = new GetConnectionTask();
task.execute(new URL("http://www.someserver.com/"));

Summary
In this chapter, we took a brief step back to cover a fundamental piece of mobile devel‐
opment: HTTP network communication. The intent was to provide more detail such
that you may be able to communicate with the larger world via the Internet and provide
more capability with your application to your user.

Networking in the Background using AsyncTask and AsyncTaskLoader | 251

CHAPTER 16

Interaction and Animation: Live Wallpaper
and Handlers

This chapter covers the animated LiveWallpaper API that allows developers to create
interactive wallpaper that users may choose to run as part of their home page. We also
cover handlers, an essential part of the Android thread system that enhances
interactivity.

Live Wallpaper
Android 2.1 (API Level 7) introduced live wallpaper. A live wallpaper is a wallpaper (a
background set on the home screen) that may be animated and enabled for interaction.
It has access to the other services and APIs as normal Android applications: network,
GPS, etc. The primary class to use when creating a live wallpaper is the LiveWallpaper
Service (located in android.service.wallpaper.WallpaperService).

For an example, we will put together a live wallpaper that is touch-enabled and utilizes
the Internet (via the Yamba Manager) in order to place some text at the point of touch.
To do this, you must add a service definition within the main Manifest (see
Example 16-1). Next, create a Service Resource (see Example 16-2).

Example 16-1. LiveWallpaper Service Manifest entry
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.android.yamba">

 <application>

 <service
 android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:name=".YambaWallpaper"
 android:permission="android.permission.BIND_WALLPAPER">

253

 <intent-filter>
 <action
 android:name="android.service.wallpaper.WallpaperService" />
 </intent-filter>
 <meta-data android:name="android.service.wallpaper"
 android:resource="@xml/wallpaper" />
 </service>

 </application>
</manifest>

Example 16-2. LiveWallpaper Service Resource XML
<?xml version="1.0" encoding="utf-8"?>

<!-- the wallpaper.xml file is located in res/xml -->

<wallpaper xmlns:android="http://schemas.android.com/apk/res/android" />

Once the service references are created, write the WallpaperService code
(Example 16-3). The WallpaperService has within it a special method called onCrea
teEngine(). It is called at creation time and returns a WallpaperService.Engine object.
That object is responsible for handling the wallpaper’s life cycle as well as the graphical
and interactive aspects of the wallpaper. We’ll explain the lengthy code in the sections
that follow.

To achieve a simple animation effect, we’ll be drawing on a canvas. The wallpaper will
display recent Yamba status updates, and we’ll interact with the user by letting her choose
where on the screen the updates should appear. This code gives you a flavor of what
user interaction can look like on Android, but drawing and animation in general are
beyond the scope of this book.

Example 16-3. LiveWallpaper service
package com.marakana.android.yamba;

import java.util.List;

import com.marakana.android.yamba.clientlib.YambaClient;

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.os.Handler;
import android.service.wallpaper.WallpaperService;
import android.view.MotionEvent;
import android.view.SurfaceHolder;

public class YambaWallpaper extends WallpaperService {

 @Override

254 | Chapter 16: Interaction and Animation: Live Wallpaper and Handlers

 public Engine onCreateEngine() {
 return
 new YambaWallpaperEngine(((YambaApplication) getApplication()).
 getYambaClient());
 }

 private class YambaWallpaperEngine extends Engine implements Runnable {

 private Handler handler = new Handler();
 private ContentThread contentThread = new ContentThread();
 private YambaClient yambaclient;

 private Paint paint;

 private String[] content = new String[20];
 private TextPoint[] textPoints = new TextPoint[20];
 private int current = -1;
 private boolean running = true;
 private float offset = 0;

 public YambaWallpaperEngine(YambaClient client) {
 yambaclient = client;

 paint = new Paint();
 paint.setColor(0xffffffff);
 paint.setAntiAlias(true);
 paint.setStrokeWidth(1);
 paint.setStrokeCap(Paint.Cap.SQUARE);
 paint.setStyle(Paint.Style.FILL);
 paint.setTextSize(40);
 }

 @Override
 public void onCreate(SurfaceHolder surfaceHolder) {
 super.onCreate(surfaceHolder);
 running = true;
 contentThread.start();

 // enable touch events
 setTouchEventsEnabled(true);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 handler.removeCallbacks(this);

 running = false;

 synchronized(contentThread) {
 contentThread.interrupt();
 }

Live Wallpaper | 255

 }

 @Override
 public void onVisibilityChanged(boolean visible) {
 if (visible) {
 drawFrame();
 } else {
 handler.removeCallbacks(this);
 }
 }

 @Override
 public void onSurfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {
 super.onSurfaceChanged(holder, format, width, height);
 drawFrame();
 }

 @Override
 public void onSurfaceCreated(SurfaceHolder holder) {
 super.onSurfaceCreated(holder);
 }

 @Override
 public void onSurfaceDestroyed(SurfaceHolder holder) {
 super.onSurfaceDestroyed(holder);
 handler.removeCallbacks(this);
 }

 @Override
 public void onOffsetsChanged(float xOffset, float yOffset,
 float xStep, float yStep, int xPixels, int yPixels) {
 offset = xPixels;

 drawFrame();
 }

 @Override
 public void onTouchEvent(MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 current++;

 if(current >= textPoints.length) {
 current = 0;
 }

 String text = content[current];
 if(text != null) {
 textPoints[current] =
 new TextPoint(text, event.getX() -
 offset, event.getY());
 }

256 | Chapter 16: Interaction and Animation: Live Wallpaper and Handlers

 }
 super.onTouchEvent(event);
 }

 @Override
 public void run() {
 drawFrame();
 }

 private void drawFrame() {
 final SurfaceHolder holder = getSurfaceHolder();

 Canvas c = null;
 try {
 c = holder.lockCanvas();
 if (c != null) {
 // draw text
 drawText(c);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (c != null) {
 holder.unlockCanvasAndPost(c);
 }
 }

 // Reschedule the next redraw
 handler.removeCallbacks(this);

 if (isVisible()) {
 handler.postDelayed(this, 40); // 40 ms = 25 frames per second
 }
 }

 private boolean getContent() {
 List<YambaClient.Status> timeline = null;

 try {
 timeline = yambaclient.getTimeline(20);

 int i = -1;
 content = new String[20];
 if(timeline != null) {
 for(YambaClient.Status status: timeline) {
 i++;
 content[i] = status.getMessage();
 }
 }
 } catch (Exception e) {}
 return timeline != null && !timeline.isEmpty();
 }

Live Wallpaper | 257

 private void drawText(Canvas c) {
 c.drawColor(Color.BLACK);

 for(TextPoint textpoint: textPoints) {
 if(textpoint != null) {
 c.drawText(textpoint.text,
 textpoint.x + offset,
 textpoint.y, paint);
 }
 }

 }

 private class TextPoint {
 public String text;
 public float x;
 public float y;

 public TextPoint(String t, float xp, float yp) {
 text = t;
 x = xp;
 y = yp;
 }
 }

 private class ContentThread extends Thread {
 public void run() {
 while(running) {
 try {
 boolean hascontent = getContent();
 if(hascontent) {
 Thread.sleep(60000); // 1 min
 } else {
 Thread.sleep(2000); // 2 s
 }
 } catch (InterruptedException ie) {
 return;
 } catch (Exception e) {}
 }
 }
 }
 }
}

This long sample of code defines four classes: YambaWallpaper, YambaWallpaperEn
gine, TextPoint, and ContentThread. YambaWallpaper is the primary class, extending
the base class WallpaperService. Within YambaWallpaper, we create the YambaWallpa
perEngine private class and create it via the onCreateEngine() method.

258 | Chapter 16: Interaction and Animation: Live Wallpaper and Handlers

YambaWallpaperEngine itself contains the other two classes. TextPoint is a data struc‐
ture containing a string (the text) and two coordinates (x and y) that represent screen
locations. ContentThread is a special thread that loops continuously. At regular intervals
it invokes the getContent() method, which attempts to get YambaClient.Status ob‐
jects via the getTimeline() method in the YambaClient. These objects contain text
statuses that have been sent to the Yamba API Web Service. If content comes back, we
store the text of these statuses and then wait a minute before checking for content again.
If there is no content during this call, we wait two seconds and see again whether we
can get content.

YambaWallpaperEngine is the most important class within this example, however. As a
class that extends android.service.wallpaper.WallpaperService.Engine, it is the
piece of code that handles the life cycle and drawing that occurs in the wallpaper. When
the engine is created, the runtime calls its onCreate() method, where we start the
ContentThread. After the engine is created, the next major event is making the wallpaper
visible, which takes place in onVisibilityChanged(). At this point, the first call to
drawFrame() is made. This method hooks into the underlying Canvas (the paintable
screen), and we proceed to draw upon it through the drawText() method. draw
Frame() is also called after someone starts an app and then puts it into the background,
so that the wallpaper becomes visible again. A change in visibility is reported to us by
the runtime, which calls onVisibilityChanged(). Should there be a change to the
SurfaceHolder (the display surface), then surfaceChanged() is called. When that oc‐
curs we also do a drawFrame() call.

drawText() draws recently received updates on the screen. The color and style of the
text are taken from the Paint object generated in the constructor for YambaWallpaper
Engine.

The text that is to be drawn is derived from the TextPoint objects in the textPoints
array. These objects are generated in the onTouchEvent() method that is triggered when
the user touches the wallpaper’s screen surface. When the user touches the screen, we
capture the touch event’s x and y positions as well as select one of the list of text statuses
that was received via the getContent() method. Each element of the textPoints array
thus contains an x and y position where text will be drawn, along with a string to hold
a recent status update. We step through the array, drawing a new text each time the user
touches the wallpaper.

In the drawFrame() method we get the surface holder using getSurfaceHolder(), lock
the canvas using holder.lockCanvas(), draw on the canvas, and then unlock it and
push the changes through holder.unlockCanvasAndPost(). By repeating this over and
over every 40 ms, we generate an ongoing animation at 25 fps (frames per second). One
thing to note is that when the SurfaceHolder is destroyed, onSurfaceDestroyed() is
called, and we break the animation cycle.

Live Wallpaper | 259

Handler
Example 16-3 uses a Handler for interaction. Every Handler is associated with a Loop
er and through that Looper a special kind of thread and that thread’s message queue.
This special kind of thread extends the generic Java thread. In Android, this special
thread may have an associated MessageQueue that is established via a call to the Loop
er class. This establishes a queue within which Message objects are placed and may be
retrieved and handled by a Handler. Through this mechanism, other threads may com‐
municate with the thread that has the message queue. The Main UI thread is an example
of such a thread with a message queue.

You can associate handlers explicitly when the Handler object is instantiated via a direct
reference to the constructor in the Handler:

new Handler(Looper looper)

If you pass no argument, the Handler is associated with the thread within which it is
created. In the wallpaper example, the Handler is instantiated at the time the Yamba
WallpaperEngine is instantiated via onCreateEngine(), so the Handler is associated
with the Main UI thread. This Handler handles the Main UI’s message queue and thus
is able to interact with the main UI.

One way to use a Handler is to post a Runnable to it (see Example 16-4). This is what
the wallpaper example did, but it invoked the postDelayed() method, which adds a
specified delay in milliseconds prior to running.

Example 16-4. Handler post Runnable
Handler handler = new Handler();

handler.post(new Runnable() {
 @Override
 public void run() {
 // do something
 }
 });

To dig further into how exactly the YambaWallpaperEngine uses its Handler, take a look
at Example 16-5. This example is a simpler version of what the YambaWallpaperEn
gine is doing. The Handler is created with the name handler, a Runnable object named
runner is created, and this Runnable object is passed to the handler’s postDelayed
method. That adds the runner to the message queue.

Forty milliseconds later, the Runnable’s run method is called. It prints the word “run”
and then removes the callback method reference in the handler. This removeCall
backs method ensures that the Runnable is cleared out of the message queue. (In the
live wallpaper example, for instance, we call removeCallbacks in the onDestroy()

260 | Chapter 16: Interaction and Animation: Live Wallpaper and Handlers

method in case the service is being destroyed, and thus stop the execution of that
Runnable from occurring.) Then we generate a random true or false value, and if it is
true, we add the runner back into the message queue to start all over again. Otherwise,
the run method ends and the program completes.

Example 16-5. Handler postdelayed and remove
final Handler handler = new Handler();

final Runnable runner = new Runnable() {
 @Override
 public void run() {
 System.out.println("run"):

 handler.removeCallbacks(runner);

 // random true or false
 if((new Random()).nextBoolean()) {
 // if true, do a post delay of
 // 40 ms and run the run again
 handler.postDelayed(runner, 40);
 }
 }
 };

handler.postDelayed(runner, 40);

A second way to use a Handler is to post a Message object to the message queue
(Example 16-6). The message is handled either by a specified Handler.Callback or by
the Handler’s own handleMessage().

Example 16-6. Handler handleMessage
Handler handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 // do something with msg
 }
};

A Message object has a variety of fields and methods that you can use to pass message
content to the callback object (see Example 16-7).

Example 16-7. Handler handleMessage detailed example
final Handler handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 if(msg.what == 1) {
 System.out.println("Msg: "+((String) msg.obj));
 doSomethingOnMainUIThread(msg.obj);
 }

Handler | 261

 }
};

Thread someThread = new Thread() {
 @Override
 public void run() {
 Messege msg = Message.obtain();
 msg.what = 1;
 msg.obj = new String("Some String");
 handler.sendMessage(msg);
 }
};

Although the Message constructor is public and thus could be directly instantiated, you
should call either Message.obtain() or Handler.obtainMessage() (or one of its de‐
rivatives) to get a Message object from a global pool of recycled objects to reduce re‐
source usage.

Summary
In this final chapter we introduced some of the concepts used for doing animation and
creating effects in the background. Handlers allow delayed events, as well as those that
occur at regular intervals. A wide range of techniques can be used to spruce up the user’s
main screen through LiveWallpaper.

262 | Chapter 16: Interaction and Animation: Live Wallpaper and Handlers

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
aapt, 57
access modifiers, 14
Action Bar, 82, 148–155

Android system resources for, 152
loading, 153
menu events, handling, 154
menu resource, 150–152

ActionBar, 82
activities, 64–68

blank, creating, 149
converting into fragments, 129–135
life cycle of, 64–67
states of, 64–67

activity building, 81
adapters, 83
Amazon, 5
Android, 1–8

as open source platform, 2
as purpose-built platform, 2
Compatibility Test Suite for, 4
comprehensiveness of, 1
development history, 3–5
filesystem, 157–161
Java and, 37–39
licensing, 2
Linux vs., 33
LogCat mechanism, 108
logging in, 108

manifest file, 51–54
manufacturer add-ons to, 7
projects, anatomy of, 50–58
stack, 31–42
system resources, 152
version history, 5–7

Android Application Package (APK), 40
Android Debug Bridge, 36
Android Emulator, 59–61

physical phone vs., 59
Android Interface Definition Language, 163
Android Open Source Project, 7
Android Software Development Kit, 45–48

PATHs, setting up, 45
Android Virtual Devices (AVDs), 59
Androids support, 83
Apache Harmony, 35
Apache HTTP client, 245–247
APK (see Android Application Package)
APK major components, 40
application components, 63–74

activities, 64–68
broadcast receivers, 72
content providers, 70–72
context, 72
intents, 68
requirements, defining, 63
services, 68

application context, 72

263

application framework, 39
application names, 93
applications, 40–42

Android Application Package, 40
debugging, 82
distributing, 41
signing, 41
widgets, 233–239

AppWidgetProviderInfo file, 238
arrays, in Java, 15
AsyncTask class, 251

threading and, 116–119
AsyncTaskLoader class, 251
attributes

icon, 152
id, 151
key, 142
summary, 142
title, 142, 151

B
binders, 35
bionic libraries, 34
blocking, 114
body (method), 14
boolean data types, 13
boot receivers, 84
branching statements, 18
break statements, 18
broadcast receivers, 72, 84, 223–231

alarms, 225–227
intents, 227–231
notifications, 230
registering in manifest file, 225
system services, 225–227
usage, 224

byte data types, 13

C
casts, 27
char data types, 13
classes, 13, 26
classes folder, 58
classes.dex file, 58
collections, in Java, 27
Compatibility Test Suite (CTS), 4

enforcing, 5
goal of, 4

issues with, 4
manufacturer add-ons and, 7

CONNECT (method), 243
constructors, 14
content providers, 70–72, 83, 175–201

adding to manifest file, 199
creating, 187
data type, finding, 189
databases, 175–179
defining URI for, 187–189
deleting data in, 193
inserting data in, 191
querying data, 194–199
updating data in, 192
using through widgets, 233

contentProvider (component), 83
continue statements, 18
contract classes with databases, 179–181
control flow statements in Java, 16–18
creating databases, 184
CRUD operations on databases, 177
CTS (see Compatibility Test Suite)
cursors, database, 178

D
daemons, native, 35
Dalvik, 36–39
Dalvik executable, 40
databases, 175–179

contract classes and, 179–181
creating, 184
cursors, 178
DbHelper and, 177
operations on, 177
pulling data from, 181–186
schema creation, 177
SQL support, 83
SQLite, 35, 176
SQLiteOpenHelper class, 176
testing connection to, 184–186

DbHelper class, 83, 177
delete(), 178
insert(), 177
query(), 177
update(), 178

debugging Android apps, 82
declarative user interface, 87
default modifiers, 15
DELETE (method), 243

264 | Index

delete() (operation), 178
destroyed state, 67
development tools, 43–62

Android Emulator, 59–61
Android Software Development Kit, 45–48
Eclipse, 48–50
Java Development Kit, 43–45
project, anatomy of, 50–58
setting up, 46–48

distributing applications, 41
do-while loop, 17
double data types, 13
drawable resources, 56–58

java source code for, 57
R.java file, 56

drawFrame() (method), 259
drawText() (method), 259

E
Eclipse

adding API libraries, 112
blank Main Activities, adding, 149
building projects in, 58, 109
compiling code, 109
installing, 46
new projects, creating, 48–50
projects, starting, 93–96
user interface, designing, 97–102
workspace, 46

error handling, in Java, 19–22
errors, 21
event listeners, 119–124
exception handling, in Java, 19–22
exception list (method), 14
exceptions, throwing, 21
execute (call), 247
explicit intents, 68
extends, 27

F
fields, 13
filesystem, 157–161

exploring, 158
SDCard partition, 158
security, 161
system partition, 158
user data partition, 160

filesystems, 82

float data types, 13
for loop, 17
for-each loop, 17
fragment methods

onCreateView(), 136
onDestroyView(), 136
onPause(), 136
onResume(), 136

fragmentation, 4
fragments, 82, 129–139

converting activities into, 129–135
dynamically adding, 137
life cycle of, 136

FrameLayout, 91
framework libraries, 35
functions, 13

G
General Public License (GPL), 33
GET (method), 243
Gmail, 4
Google Glass, 3
Google Maps, 4
Google Play store, 41
gravity (properties), 102

H
HAL (see hardware abstraction layer)
handlers, 85, 260–262

for user events, 107
hardware abstraction layer, 34
HEAD (method), 243
HelloWorld.apk, 59
HTC, 7
HTTP API, 244
HttpUrlConnection class, 248–250

I
icons, 152
id (properties), 102
ids, 151
implements, 26
implicit intents, 68
inflaters, 153
input parameter list (method), 14
insert() (operation), 177
installation daemon, 36

Index | 265

instances, 13
int data types, 13
intent broadcasts, 223
intent filters, 225
intent services, 83
intents, 68, 82

broadcasting, 227–231
explicit, 68
implicit, 68

IntentService class, 166
internet permissions, 113

J
Java, 9–29

Android and, 37–39
arrays, 15
collections, 27
comments, 12
complex example sample code, 22–26
constructors, 14
control flow statements, 16–18
data types, 13
error handling, 19–22
exception handling, 19–22
generics, 28
inheritance, 26
interfaces, 26
modifiers, 14
object data types, 13
objects, initializing, 106
operators, 16
primitive data types, 13
program basics, 9–12
threading in, 28
user event handlers, 107
XML, inflating to, 104–106

Java Development Kit, 43–45
on Linux, 44
on Mac, 44
on Windows, 44

Java Development Kit (JDK), 9
Java Enterprise Edition, 39, 44
Java Micro Edition, 39
Java Mobile Edition (JavaME), 44
Java Runtime Environment (JRE), 44
Java Standard Edition, 39
Java Virtual Machine (VM), 36
JavaSE, 44

K
keys, 142
Kindle Fire, 5

L
layout folder, 55
layout gravity (properties), 102
layout height (properties), 101
layout weight (properties), 102
layout width (properties), 101
layouts, 88–92

common properties for, 101
FrameLayout, 91
LinearLayout, 89
RelativeLayout, 92
strings resources, 103
TableLayout, 90

Lesser General Public License (LGPL), 35
libraries, native, 34
life cycle methods, 164

onCreate(), 164
onDestroy(), 165
onStartCommand(), 165

LinearLayout, 89
Linux features, 33
Linux kernel, 31
Linux portabilities, 32
Linux securities, 32
Linux vs. Android, 33
listeners, 119–124
lists, 83
live wallpaper, 85, 253–259
LogCat mechanism, 108
logging, 108

LogCat mechanism, 108
long data types, 13
loops, 17

M
Macintosh, installing Java on, 44
Main Activity, creating, 149
mangers, 39
manifest file, 40, 51–54

adding activities to, 147
adding content providers to, 199
adding services to, 167
internet permissions and, 113

266 | Index

registering broadcast receivers in, 225
widgets and, 238

media servers, 36
menu events, handling, 154
menu resource, 150–152
menu system, 82
messages, 108
methods, 13
modifier (method), 14
Motorola, 7
multithreading, 81, 115

N
name (method), 14
native layer, 33–36

native daemons, 35
native libraries, 34
native tools, 36

native libraries, 41
network receivers, 84
networking, 81, 85, 242–244

AsyncTask and, 251
AsyncTaskLoader and, 251
HTTP API, 244

nonaccess modifiers, 14, 15
notifications, receiving, 230

O
OAuth, 76
object data types, 13
object-oriented programming, 13
onCreate() (method), 164
onCreateView() (method), 136
onDestroy() (method), 165
onDestroyView() (method), 136
onPause() (method), 136
onResume() (method), 136
onStartCommand() (method), 165
Open Handset Alliance, 5
OpenGL, 35
OpenSSL, 35
operators, in Java, 16
OPTIONS (method), 243
original equipment manufacturers (OEMs), 7
overloading, 27

P
package names, 94
partitions, 157–161

SDCard partition, 158
system partition, 158
user data partition, 160

paused state, 66
permissions, 84
POST (method), 243
preference activity, 82
preferences, 141–148

adding to manifest file, 147
implementing, 84
resources for, 142–145
shared, 155–157

primitive data types, 13
private modifiers, 15
programmatic user interface, 88
project design, 80
project, anatomy of

drawable resources, 56–58
layout folder, 55
manifest file, 51–54
string resources, 54

projects, naming, 93
properties, 13
protected modifiers, 15
public modifiers, 15
publishers, 223
PUT (method), 243

Q
query() (operation), 177

R
R.java file, 56
radio interface layer daemon, 35
refactoring code, 80
relative time, 211
RelativeLayout, 92
res folder, 58
resources, 40

alternative, 124–127
Android system, 152
menu, 150–152
strings, 103

resources.ap, 59

Index | 267

return statements, 18
return type (method), 14
running state, 66

S
Samsung, 7
SDCard partition, 158
SDK version, 94
service manager, 35
services, 68, 82, 163–172

adding to manifest file, 167
connecting to databases with, 179–181
creating Java classes for, 164–166
intent, 83
IntentService class, 166
menu handling of, 168
pulling data with, 169–172
starting/stopping, 168
testing, 169

shared preferences, 155–157
short data types, 13
signatures, 41
single thread execution, 114
SQL support, 83
SQLite, 35, 176
sqlite3, 184
SQLiteOpenHelper class, 176
stack, 31–42

anatomy of, 31
application framework, 39
applications, 40–42
Dalvik, 36–39
HAL, 34
Linux kernel, 31
native layer, 33–36

starting state, 65
states (of activities), 64–67
static initialization, 137
static modifiers, 15
statically typing, 13
stopped state, 66
string resources, 54
subscribers, 223
summaries, 142
system partition, 158

T
TableLayout, 90

TAG, 108
target SDK, 94
text (properties), 102
threading, 114–119

AsyncTask class and, 116–119
in Java, 28
multi-, 115
single thread, 114

throwing exceptions, 21
timeline receivers, 84
titles, 142, 151
tools, native, 36
TRACE (method), 243
Twitter

API, history of, 111
Yamba vs., 76

U
update() (operation), 178
user data partition, 160
user interface, 81, 87–127

alternative resources for, 124–127
creating, 87
declarative, 87
designing in Eclipse, 97–102
events, handling, 107
implementing, 104–108
layouts, 88–92
listeners, 119–124
programmatic, 88
views, 88–92

V
variables, 13
views, 88–92

W
web protocols, 241–251

Apache HTTP client, 245–247
AsyncTask and, 251
AsyncTaskLoader and, 251
HTTP API, 244
HttpUrlConnection class, 248–250
networking, 242–244

web services, 85
Webkit, 35
while loop, 17

268 | Index

widget properties, 101
gravity, 102
id, 102
layout gravity, 102
layout height, 101
layout weight, 102
layout width, 101
text, 102

widgets, 84, 233–239
AppWidgetProviderInfo file, 238
implementing, 234–236
layout, creating, 237
manifest file and, 238
testing, 239
using content providers through, 233

X
XML

inflating to Java, 104–106

widget layout, creating, 237

Y
Yamba

design philosophy of, 79
project design, 80
project overview, 75–85
SettingsActivity class, 84
Twitter vs., 76

Yamba messages, 177
created at, 177
message, 177
user, 177

YambaWallpaperEngine (class), 259

Index | 269

About the Authors
Marko Gargenta is the director of Twitter University, where he manages the training
of Twitter Engineers in Android and other open source technologies. Previously he was
cofounder of Marakana (acquired by Twitter), a firm that trained thousands of Android
developers at Intel, Cisco, Qualcomm, Motorola, the Department of Defense, and other
institutions. Marko is also the creator of Android Bootcamp course and cofounder of
San Francisco Android Users’ Group.

Masumi Nakamura, VP of Engineering at Placester, Inc., has spent over 15 years in
software doing everything from mobile development and scaling large backend systems,
to running a data science team at Paypal. He also spends a lot of his time advising and
working closely with a variety of startup companies.

Colophon
The animal on the cover of Learning Android, Second Edition is a Little Owl.

The Little Owl is part of the taxonomic family Strigdae, which is informally known as
“typical owl” or “true owl” (the other taxonomic family includes barn owls). True to its
name, the Little Owl is small, measuring between 23 and 27.5 centimeters in length. It
is native to the warmer areas of east Asia (particularly Korea), Europe, and North Africa
and has been introduced and naturalized in Great Britain and the South Island of New
Zealand.

The Little Owl is characterized by long legs and a round head with yellow eyes and white
eyebrows; the eyebrows are said to give the owl a serious expression. The most wide‐
spread species, Athene noctua, is white and speckled brown on top and white-and-
brown streaked on bottom. A species commonly found in the Middle East, A. n. lilith,
or the Syrian Little Owl, is a pale grayish-brown.

The sedentary Little Owl typically makes its home in open country, such as parkland
and farmland. It preys on amphibians, earthworms, insects, and even smaller mammals
and birds; despite its diminutive stature, the Little Owl is able to attack many game birds.
Unlike many of its true owl family members, the Little Owl is diurnal, or active during
the day, during which it often perches openly. Depending on the habitat, the Little Owl
builds nests in cliffs, rocks, holes in trees, river banks, and buildings. Little Owls that
live in areas with human activity tend to get used to people and may perch in full view
when humans are present.

The cover image is from Cassell’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	What’s Inside
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Marko Gargenta
	Masumi Nakamura

	Chapter 1. Android Overview
	Android Overview
	Comprehensive
	Open Source Platform
	Designed for Mobile Devices

	History
	Google’s Motivation
	Android Compatibility
	Open Handset Alliance

	Android Versions
	Android Flavors
	Android Open Source Project
	Manufacturer Add-Ons

	Summary

	Chapter 2. Java Review
	Comments
	Data Types: Primitives and Objects
	Modifiers
	Arrays
	Operators
	Control Flow Statements
	Error/Exception Handling
	Complex Example
	Interfaces and Inheritance
	Collections
	Generics
	Threads
	Summary

	Chapter 3. The Stack
	Stack Overview
	Linux
	Android != Linux

	Native Layer
	HAL
	Native Libraries
	Native Daemons
	Native Tools

	Dalvik
	Android and Java

	Application Framework
	Applications
	Android Application Package (APK)
	Application Signing
	Application Distribution

	Summary

	Chapter 4. Installing and Beginning Use of Android Tools
	Installing Java Development Kit
	Installing the Android SDK
	Setting Up a PATH to Tools
	Installing Eclipse
	Eclipse Workspace
	Setting Up Android Development Tools

	Hello World!
	Creating a New Project

	Anatomy of an Android Project
	Android Manifest File
	String Resources
	Layout XML Code

	Drawable Resources
	The R File
	Java Source Code

	Building the Project
	Android Emulator
	An Emulator Versus a Physical Phone

	Summary

	Chapter 5. Main Building Blocks
	A Real-World Example
	Activities
	Activity Life Cycle

	Intents
	Services
	Content Providers
	Broadcast Receivers
	Application Context
	Summary

	Chapter 6. Yamba Project Overview
	The Yamba Application
	Design Philosophy
	Project Design
	Part 1: Android User Interface
	Part 2: Intents, ActionBar, and More
	Part 3: Android Services
	Part 4: Content Providers
	Part 5: Lists and Adapters
	Part 6: Broadcast Receivers
	Part 7: App Widgets
	Part 8: Networking and the Web (HTTP)
	Part 9: Live Wallpaper and Handlers
	Summary

	Chapter 7. Android User Interface
	Two Ways to Create a User Interface
	Declarative User Interface
	Programmatic User Interface
	The Best of Both Worlds

	Views and Layouts
	LinearLayout
	TableLayout
	FrameLayout
	RelativeLayout

	Starting the Yamba Project
	The StatusActivity Layout
	Important Widget Properties
	Strings Resource

	The StatusActivity Java Class
	Inflating XML to Java
	Initializing Objects
	Handling User Events

	Logging Messages in Android
	LogCat
	Compiling Code and Building Your Projects: Saving Files
	Adding the Twitter API Library
	Updating the Manifest File for Internet Permission

	Threading in Android
	Single Thread
	Multithreaded Execution
	AsyncTask

	Other UI Events
	Alternative Resources
	Summary

	Chapter 8. Fragments
	Fragment Example
	Fragment Life Cyle
	Dynamically Adding Fragments
	Summary

	Chapter 9. Intents, Action Bar, and More
	Preferences
	Preference Resource
	SettingsActivity
	Update the Manifest File

	The Action Bar
	Creating a Blank Main Activity
	The Menu Resource
	Android System Resources
	Loading the Menu
	Updating StatusActivity to Handle Menu Events

	Shared Preferences and Updating Status Fragment
	The Filesystem Explained
	Exploring the Filesystem
	Filesystem Partitions
	System Partition
	SDCard Partition
	The User Data Partition
	Filesystem Security

	Summary

	Chapter 10. Services
	Our Example Service: RefreshService
	Creating the RefreshService Java Class
	Introducing IntentService
	Update the Manifest File
	Add Menu Items
	Update the Options Menu Handling
	Testing the Service

	Pulling Data from Yamba
	Testing the Service

	Summary

	Chapter 11. Content Providers
	Databases on Android
	About SQLite
	DbHelper
	The Database Schema and Its Creation
	Four Major Operations
	Cursors

	Status Contract Class
	Update RefreshService
	Testing the Service

	Content Providers
	Creating a Content Provider
	Defining the URI
	Getting the Data Type
	Inserting Data
	Updating Data
	Deleting Data
	Querying Data
	Updating the Android Manifest File
	Updating RefreshService

	Summary

	Chapter 12. Lists and Adapters
	MainActivity
	Basic MainActivity
	Timeline Fragment
	Creating a List Item Layout

	About Adapters
	Loading the Data
	Custom Logic via ViewBinder
	Details View
	Details Fragment
	Details Activity
	Register with the Manifest File
	Main Activity, Landscape View
	Updating TimelineFragment

	Summary

	Chapter 13. Broadcast Receivers
	About Broadcast Receivers
	BootReceiver
	Registering the BootReceiver with the Android Manifest File
	Testing the Boot Receiver

	Alarms and System Services
	Broadcasting Intents
	Notification Receiver

	Summary

	Chapter 14. App Widgets
	Using Content Providers Through Widgets
	Implementing the YambaWidget Class
	Creating the XML Layout
	Creating the AppWidgetProviderInfo File
	Updating the Manifest File
	Testing the Widget

	Summary

	Chapter 15. Networking and Web Overview
	Quick Example
	Networking Basics
	HTTP API
	Apache HTTP Client
	HttpUrlConnection
	Networking in the Background using AsyncTask and AsyncTaskLoader
	Summary

	Chapter 16. Interaction and Animation: Live Wallpaper and Handlers
	Live Wallpaper
	Handler
	Summary

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

