

Learning C# 3.0

Other resources from O’Reilly

Related titles C# 3.0 Cookbook™

C# 3.0 Design Patterns

C# 3.0 in a Nutshell

Programming ASP.NET 3.5

Programming C# 3.0

Programming .NET 3.5

Programming WCF Services

Programming WPF

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Learning C# 3.0

Jesse Liberty and Brian MacDonald

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Learning C# 3.0
by Jesse Liberty and Brian MacDonald

Copyright © 2009 Jesse Liberty and Brian MacDonald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn

Production Editor: Sumita Mukherji

Copyeditor: Audrey Doyle

Proofreader: Sada Preisch

Indexer: Angela Howard

Interior Designer: David Futato

Cover Illustrator: Karen Montgomery

Illustrator: Jessamyn Read

Printing History:

November 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning C# 3.0, the image of a butterflyfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Java™ is a trademark of Sun Microsystems, Inc. .NET is a registered trademark of Microsoft
Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-52106-6

[M]

v

Table of Contents

Preface . xv

1. C# and .NET Programming . 1
Installing C# Express 2

C# 3.0 and .NET 3.5 3

The .NET Platform 4

The .NET Framework 4

The C# Language 5

Your First Program: Hello World 6

The Compiler 10

Examining Your First Program 11

The Integrated Development Environment 16

Summary 17

Test Your Knowledge: Quiz 18

Test Your Knowledge: Exercise 19

2. Visual Studio 2008 and C# Express 2008 . 20
Before You Read Further 22

The Start Page 22

Projects and Solutions 22

Project Types 24

Templates 25

Inside the Integrated Development Environment 26

Building and Running Applications 28

vi | Table of Contents

Menus 29

The File Menu 29

The Edit Menu 30

The View Menu 36

The Refactor Menu 41

The Project Menu 41

The Build Menu 41

The Debug Menu 41

The Data Menu 41

The Format Menu 42

The Tools Menu 42

The Window Menu 43

The Help Menu 44

Summary 44

Test Your Knowledge: Quiz 45

Test Your Knowledge: Exercises 45

3. C# Language Fundamentals . 46
Statements 46

Types 47

Numeric Types 48

Nonnumeric Types: char and bool 49

Types and Compiler Errors 50

WriteLine() and Output 51

Variables and Assignment 52

Definite Assignment 54

Implicitly Typed Variables 55

Casting 56

Constants 58

Literal Constants 58

Symbolic Constants 58

Enumerations 60

Strings 63

Whitespace 63

Summary 64

Test Your Knowledge: Quiz 65

Test Your Knowledge: Exercises 66

Table of Contents | vii

4. Operators . 68
Expressions 68

The Assignment Operator (=) 69

Mathematical Operators 69

Simple Arithmetic Operators (+, –, *, /) 70

The Modulus Operator (%) 71

Increment and Decrement Operators 72

The Calculate and Reassign Operators 72

Increment or Decrement by 1 73

The Prefix and Postfix Operators 73

Relational Operators 75

Logical Operators and Conditionals 77

The Conditional Operator 78

Operator Precedence 79

Summary 81

Test Your Knowledge: Quiz 82

Test Your Knowledge: Exercises 83

5. Branching . 85
Unconditional Branching Statements 86

Conditional Branching Statements 88

if Statements 88

Single-Statement if Blocks 90

Short-Circuit Evaluation 92

if...else Statements 94

Nested if Statements 95

switch Statements 98

Fall-Through and Jump-to Cases 101

Switch on string Statements 102

ReadLine() and Input 103

Iteration (Looping) Statements 104

Creating Loops with goto 105

The while Loop 106

The do...while Loop 108

The for Loop 109

Summary 118

Test Your Knowledge: Quiz 119

Test Your Knowledge: Exercises 120

viii | Table of Contents

6. Object-Oriented Programming . 121
Creating Models 123

Classes and Objects 123

Defining a Class 124

Class Relationships 125

The Three Pillars of Object-Oriented Programming 126

Encapsulation 126

Specialization 127

Polymorphism 128

Object-Oriented Analysis and Design 129

Summary 130

Test Your Knowledge: Quiz 131

Test Your Knowledge: Exercises 131

7. Classes and Objects . 133
Defining Classes 134

Instantiating Objects 135

Creating a Box Class 137

Access Modifiers 138

Method Arguments 139

Return Types 141

Constructors 142

Initializers 144

Object Initializers 146

Anonymous Types 146

The this Keyword 147

Static and Instance Members 148

Invoking Static Methods 149

Using Static Fields 151

Finalizing Objects 154

Memory Allocation: The Stack Versus the Heap 155

Summary 161

Test Your Knowledge: Quiz 162

Test Your Knowledge: Exercises 163

8. Inside Methods . 165
Overloading Methods 165

Table of Contents | ix

Encapsulating Data with Properties 168

The get Accessor 171

The set Accessor 172

Automatic Properties 173

Returning Multiple Values 173

Passing Value Types by Reference 175

out Parameters and Definite Assignment 177

Summary 178

Test Your Knowledge: Quiz 178

Test Your Knowledge: Exercises 179

9. Basic Debugging . 180
Setting a Breakpoint 181

Using the Debug Menu to Set Your Breakpoint 183

Setting Conditions and Hit Counts 183

Examining Values: The Autos and Locals Windows 184

Setting Your Watch 188

The Call Stack 189

Stopping Debugging 190

Summary 191

Test Your Knowledge: Quiz 192

Test Your Knowledge: Exercises 193

10. Arrays . 197
Using Arrays 197

Declaring Arrays 198

Understanding Default Values 199

Accessing Array Elements 199

Arrays and Loops 200

The foreach Statement 203

Initializing Array Elements 204

The params Keyword 204

Multidimensional Arrays 205

Rectangular Arrays 206

Jagged Arrays 210

Array Methods 213

Sorting Arrays 214

x | Table of Contents

Summary 216

Test Your Knowledge: Quiz 217

Test Your Knowledge: Exercises 218

11. Inheritance and Polymorphism . 219
Specialization and Generalization 219

Inheritance 222

Implementing Inheritance 222

Calling the Base Class Constructor 225

Hiding the Base Class Method 225

Controlling Access 226

Polymorphism 227

Creating Polymorphic Types 227

Overriding Virtual Methods 230

Using Objects Polymorphically 230

Versioning with new and override 232

Abstract Classes 234

Sealed Classes 237

The Root of All Classes: Object 237

Summary 240

Test Your Knowlege: Quiz 241

Test Your Knowledge: Exercises 241

12. Operator Overloading . 243
Designing the Fraction Class 243

Using the operator Keyword 244

Creating Useful Operators 248

The Equals Operator 248

Conversion Operators 253

Summary 257

Test Your Knowledge: Quiz 258

Test Your Knowledge: Exercises 259

13. Interfaces . 260
What Interfaces Are 260

Implementing an Interface 262

Defining the Interface 265

Implementing the Interface on the Client 266

Implementing More Than One Interface 267

Table of Contents | xi

Casting to an Interface 270

The is and as Operators 270

Extending Interfaces 276

Combining Interfaces 279

Overriding Interface Methods 280

Explicit Interface Implementation 285

Summary 288

Test Your Knowledge: Quiz 290

Test Your Knowledge: Exercises 290

14. Generics and Collections . 292
Generics 292

Collection Interfaces 293

Creating Your Own Collections 293

Creating Indexers 293

Indexers and Assignment 298

Indexing on Other Values 298

Generic Collection Interfaces 302

The IEnumerable<T> Interface 303

Framework Generic Collections 307

Generic Lists: List<T> 307

Generic Queues 319

Generic Stacks 322

Dictionaries 325

Summary 328

Test Your Knowledge: Quiz 329

Test Your Knowledge: Exercises 330

15. Strings . 331
Creating Strings 332

String Literals 332

Escape Characters 332

Verbatim Strings 333

The ToString() Method 333

Manipulating Strings 334

Comparing Strings 334

Concatenating Strings 336

Copying Strings 337

xii | Table of Contents

Testing for Equality 339

Other Useful String Methods 341

Finding Substrings 344

Splitting Strings 346

The StringBuilder Class 348

Regular Expressions 350

The Regex Class 351

Summary 353

Test Your Knowledge: Quiz 354

Test Your Knowledge: Exercises 355

16. Throwing and Catching Exceptions . 357
Bugs, Errors, and Exceptions 358

Throwing Exceptions 358

Searching for an Exception Handler 358

The throw Statement 359

The try and catch Statements 361

How the Call Stack Works 364

Creating Dedicated catch Statements 366

The finally Statement 368

Exception Class Methods and Properties 370

Custom Exceptions 374

Summary 377

Test Your Knowledge: Quiz 378

Test Your Knowledge: Exercises 378

17. Delegates and Events . 380
Delegates 381

Events 385

Publishing and Subscribing 386

Events and Delegates 387

Solving Delegate Problems with Events 394

The event Keyword 395

Using Anonymous Methods 399

Lambda Expressions 400

Summary 401

Test Your Knowledge: Quiz 402

Test Your Knowledge: Exercises 403

Table of Contents | xiii

18. Creating Windows Applications . 404
Creating a Simple Windows Form 404

Using the Visual Studio Designer 405

Creating a Real-World Application 411

Creating the Basic UI Form 412

Populating the TreeView Controls 415

Handling the TreeView Events 422

Handling the Button Events 426

Source Code 431

Summary 439

Test Your Knowledge: Quiz 440

Test Your Knowledge: Exercises 441

19. Windows Presentation Foundation . 442
Your First WPF Application 443

WPF Differences from Windows Forms 447

Using Resources 450

Animations 452

Triggers and Storyboards 453

Animations As Resources 456

C# and WPF 460

Grids and Stack Panels 461

Adding Data 466

Using the Data in the XAML 468

Defining the ListBox 468

Event Handling 470

The Complete XAML File 471

Summary 474

Test Your Knowledge: Quiz 476

Test Your Knowledge: Exercises 476

20. ADO.NET and Relational Databases . 477
Relational Databases and SQL 478

Installing the Northwind Database 478

Tables, Records, and Columns 481

Normalization 482

Declarative Referential Integrity 482

SQL 483

xiv | Table of Contents

The ADO.NET Object Model 485

DataTables and DataColumns 485

DataRelations 485

Rows 485

DataAdapter 486

DbCommand and DbConnection 486

DataReader 486

Getting Started with ADO.NET 486

Summary 489

Test Your Knowledge: Quiz 490

Test Your Knowledge: Exercises 491

21. LINQ . 492
Querying In-Memory Data 492

Anonymous Types and Implicitly Typed Variables 497

Lambda Expressions 499

Ordering and Joining 500

Using LINQ with SQL 505

Using the Object Relational Designer 508

Summary 513

Test Your Knowledge: Quiz 514

Test Your Knowledge: Exercises 515

Appendix: Answers to Quizzes and Exercises . 517

Index . 649

xv

Preface

Congratulations! You’ve decided to learn to program. Maybe you’re learning it for a
class, maybe you’re learning it to get ahead at work, or maybe you’re learning it just
for fun. Whatever the reason, we’ve written this book to help you learn C#. You
don’t need a language reference, or a code analysis book; you want to start from
square one and learn to program. In that respect, your desire to learn how to pro-
gram is more important than which specific language you choose. There are plenty of
modern languages out there, and lots of them are quite similar, under the hood.

Why, out of all the languages you could learn, should you pick C#? There are sev-
eral good reasons:

• C# is the preferred language for use with Microsoft’s .NET platform. That
means C# was created for writing Windows applications, and as you know, the
majority of the world’s computers run Windows.

• C# is supported by Visual Studio and its counterpart, Visual C# Express. Visual
Studio makes writing code easier and faster in hundreds of different ways. And
did we mention C# Express is free?

• C# is designed to be powerful enough to write serious business applications, but
simple enough to be easy to learn. C# was influenced by the older, and hugely
popular, languages C++ and Java™, but was intended to bring all the good fea-
tures of those languages without the quirks that they’ve acquired over the years.

So, although there are plenty of languages you could learn, we think that C# is an
excellent choice to start with.

We could tell you about the new features of C# 3.0, or why we enjoy programming in
C# after learning C++, but we suspect most of that won’t matter to you. We wrote
this book for people with no experience with C# or any other programming lan-
guages, so the differences between C# 2.0 and C# 3.0 probably don’t impress you
much. What we can tell you is that C# 3.0 means that the Microsoft .NET team has
been refining the language since 2000, and we think the result is a stable, powerful,
easy-to-learn language. We commend you on your choice to learn C#, and we’ll try to
make the experience as smooth as possible.

xvi | Preface

About This Book
Learning C# 3.0 is an introductory book. We don’t assume that you have any prior
programming experience, so we start with the very basic fundamentals of the lan-
guage. We take it slowly and steadily, one concept per chapter, each one building on
the last. We don’t shy away from the complicated stuff—we introduce object-
oriented programming in Chapter 6, and we use object-oriented concepts from there
on out. By the latter half of the book, we’ll be using intermediate topics like inter-
faces and delegates, building on what you’ve already learned. We finish up with two
chapters on Windows programming, and two chapters on data, which is the interest-
ing stuff that everybody wants to know about.

The goal of the book is not to get you to write fancy applications without under-
standing what they do. Our goal is to give you a good grasp of the basics of the
language. Once you have that down, you can pick up a more advanced C# book and
get the full benefit from it (and of course, we recommend O’Reilly’s excellent line of
C# books). Even better, once you’ve learned to think in a modern, object-oriented
language, it becomes that much easier to learn others. The first programming lan-
guage is always the hardest to learn; once you’ve learned C#, learning Visual Basic,
or Java, or PHP is mostly just a matter of translating what you already know.

When you’re learning a new language, clear, concise explanations are always help-
ful, and we’ve got those. Example applications that you can work through yourself
are critical, and we have those too. But what really cements the language in your
mind is practice, practice, practice, which we’ll provide in each chapter. We’ve spent
a lot of time coming up with quiz questions and exercises that underscore what
you’ll learn in each chapter, and give you the confidence that comes from writing
your own code.

Who This Book Is For
We wrote Learning C# 3.0 for people with no programming experience at all. If
you’re a student just starting to learn to program, this book is for you. If you have
some experience with web design or system administration, and you want to learn
about programming, this book is for you. If you’re learning on your own because you
want to know what this programming thing is all about, good for you! We’ll help
you get there.

If you already know another programming language, but you haven’t run into object-
oriented concepts yet, the material in Chapters 1 through 5 will probably be familiar
to you in concept, even if you don’t recognize the syntax. We recommend that you
still read the first five chapters, but Chapter 6 is where it’ll get really interesting for
you. If you’re familiar with C++, you’ll find a lot of the syntax in this book familiar,

Preface | xvii

but there’s a lot that’s new as well (you can say goodbye to pointers, for one thing),
so we suggest that you at least skim the early chapters. If have some experience with
another language such as Visual Basic, Java, or Ruby, there’s a lot here that you’ll be
familiar with, but with enough syntax differences to trip you up if you’re not careful.

If you’re proficient in another object-oriented language and you’re looking to pick up
the changes as you transition to C#, we suggest you look into this book’s compan-
ion volume, Programming C# 3.0, by Jesse Liberty and Donald Xie. That book
assumes that you have some programming experience already and ramps up to the
complex stuff more quickly.

How This Book Is Organized
Here’s a short summary of the chapters in this book and what you’ll find inside:

Chapter 1, C# and .NET Programming
Here, we’ll introduce you to the C# language and the .NET platform that supports
it. That’s important background information so that you can see how C# fits into
the larger scheme. More important, though, we’ll get you started writing real code.
You’ll create your first working program and see how easy it is to program in C#.

Chapter 2, Visual Studio 2008 and C# Express 2008
When you build something, be it a house, a book, or a program, you have to
know your tools. The tools for C# are Visual Studio 2008 and its free counter-
part, C# Express. In this chapter, we’ll walk you through them so that you’re
more comfortable with the interface.

Chapter 3, C# Language Fundamentals
Now that you have your feet wet, it’s time to begin at the beginning. In this
chapter we’ll introduce the most basic concepts of C#: statements, types, and
variables. We’ll also discuss constants and enumerations. And because you want
your code to show you something, we’ll demonstrate strings and how to write to
the screen.

Chapter 4, Operators
After you’ve learned about variables, you’ll want to do something with them,
and that’s where operators come in. We’ll start with the most basic operator, for
assignment, and then we’ll show you the mathematical operators, and the opera-
tors for comparison.

Chapter 5, Branching
Without branching, your program would proceed in a straight line from start to
finish. Branching lets your program respond to the values contained in your vari-
ables, often using the comparison operators. You’ll also learn about the various
looping statements that you’ll use quite often to carry out an action several
times.

xviii | Preface

Chapter 6, Object-Oriented Programming
Object-oriented programming is what makes C# a modern programming lan-
guage. It’s a different way of thinking about programming than you’ve been
learning in the previous five chapters, but it’s a natural outgrowth too. In this
chapter, we’ll put aside the coding for just a bit and talk about what object ori-
entation means, and why it matters to you.

Chapter 7, Classes and Objects
Classes, and the objects you get from classes, are the foundation of object-
oriented programming. Now that you have the theory down, this chapter lets
you get your hands dirty with objects: creating them, using them, and seeing
how they work.

Chapter 8, Inside Methods
You’ve been using methods through all the preceding chapters, but after learn-
ing about objects, it’s time to find out a little more about methods and how they
interact with objects. You’ll find out about what you put into methods and what
comes back out, how to overload methods to make them more versatile, and
how properties make writing methods easier.

Chapter 9, Basic Debugging
Stuff goes wrong, in life and in code. At this point in the book, you know
enough to be dangerous, which means you’ll have generated some errors. Fortu-
nately, Visual Studio has a bunch of tools to make errors easier to find and fix.
We’ll show you how to do that now, to increase your peace of mind for the rest
of the book.

Chapter 10, Arrays
If objects are good, a bunch of objects, all of the same type, can be better. This
chapter shows you a special language feature, called an array, that lets you
handle lots of objects as a group.

Chapter 11, Inheritance and Polymorphism
As you’ll learn in Chapter 6, specialization and generalization are two key com-
ponents of object-oriented programming, and C# implements them with inherit-
ance and polymorphism. You’ll see how you can use classes to beget other
classes for specialized purposes.

Chapter 12, Operator Overloading
When you create your own classes, you’ll often need a way to define whether
one of your objects is equal to another. You can do that by defining just what
“equal” means for your class, and from there, you can define the = operator
itself, for your class. You’ll see how to redefine other operators as well.

Chapter 13, Interfaces
Interfaces build on the concepts of inheritance and polymorphism introduced in
Chapter 11. An interface is a contract that states what a class that implements
that interface can do, and how to interact with it. That flexibility lets you work

Preface | xix

with objects without knowing exactly what types they are, as long as you know
what interfaces they use.

Chapter 14, Generics and Collections
This chapter puts together what you learned in Chapters 10, 11, and 13. Collec-
tions are another way of keeping bunches of objects together, but with generics,
you don’t need to know exactly what type of objects you have in your collec-
tion; interfaces make that possible.

Chapter 15, Strings
This chapter is all about text, which C# refers to as strings. Strings are a bit more
complicated than other data types, but you can do some very interesting manip-
ulation with them, as you’ll find out.

Chapter 16, Throwing and Catching Exceptions
Your code runs in an imperfect world, which means sometimes things will go
wrong. Users will enter bad data, network connections will go down, and files
will vanish without warning. However, just because something goes wrong
doesn’t mean your program has to crash. In this chapter you’ll learn how to
anticipate certain error conditions and allow for them.

Chapter 17, Delegates and Events
Up to this point, your methods have called other methods specifically. With
events, and the delegates that work with them, your object can simply announce
that something has happened, and let any other interested objects worry about
what to do next. Events are the foundation of how the Windows operating sys-
tem works.

Chapter 18, Creating Windows Applications
With knowledge of events in your hand, it’s time to have some fun and write a
Windows application or two. The topic of Windows applications could warrant
an entire book on its own, but we’ll get you started in this chapter.

Chapter 19,Windows Presentation Foundation
The Windows Presentation Foundation (WPF) is a new feature that gives you
more control over just how your applications look to the user. WPF offers a lot
of enhancements over Windows Forms, and we’ll show you a few of them in this
chapter.

Chapter 20, ADO.NET and Relational Databases
All the code you’ve written in the book so far has used short-lived data that van-
ishes as soon as the program ends. In the real world, data is stored in databases,
and in this chapter, you’ll see how to interact with them.

Chapter 21, LINQ
Language Integrated Query (LINQ) is a new feature in C# 3.0 that greatly sim-
plifies how your code interacts with data storage. Most interesting of all, you can
use it to access data stored elsewhere in the same program. This is another topic
that could warrant a book in itself, but we’ll introduce you to it here.

xx | Preface

Appendix, Answers to Quizzes and Exercises
The appendix features the answers to every quiz question and exercise found in
the book. We’ll provide the complete code for the answers, but more important,
we’ll explain why the answers are what they are.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Used for pathnames, filenames, Internet addresses (such as domain names and
URLs), and new terms where they are defined

Constant width

Used for command lines and options that should be typed verbatim, C# key-
words, and code examples

Constant width italic

Used for replaceable items, such as variables or optional elements, within syntax
lines or code

Constant width bold

Used for emphasis within program code

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

Support: A Note from Jesse Liberty
I provide ongoing support for my books through my website. You can obtain the
source code for all of the examples in Learning C# 3.0 at:

http://www.jesseliberty.com

There, you’ll also find access to a book support discussion group that has a section
set aside for questions about Learning C# 3.0. Before you post a question, however,
please check my website to see whether there is a Frequently Asked Questions (FAQ)
list or an errata file. If you check these files and still have a question, please go ahead
and post it to the discussion center. The most effective way to get help is to ask a pre-
cise question or to create a small program that illustrates your area of concern or
confusion, and be sure to mention which edition of the book you have.

Preface | xxi

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning C# 3.0, by Jesse Liberty
and Brian MacDonald. Copyright 2009 Jesse Liberty and Brian MacDonald, 978-0-
596-52106-6.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for this book where we list examples and any plans for future
editions. You can access this information at:

http://www.oreilly.com/catalog/9780596521066

To comment on the book, send email to:

bookquestions@oreilly.com

For more information about this book and others, as well as additional technical arti-
cles and discussion on C# and the .NET Framework, see the O’Reilly website:

http://www.oreilly.com

xxii | Preface

and the O’Reilly .NET DevCenter:

http://www.ondotnet.com/dotnet/

ONDotnet.com provides independent coverage of fundamental, interoperable, and
emerging Microsoft .NET programming and web service technologies.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

Jesse Liberty
Thank you to Nicholas Paldino and Glyn Griffiths who helped make this book bet-
ter than what I’d written, and it must be acknowledged that Brian MacDonald has
helped to create an extraordinarily valuable on-ramp to the C# language that is
unprecedented in the industry.

Very special thanks to my wife and daughters who have put up with “80-hour days”
for far too many months.

I believe that this edition of Learning C# may be the best C# book we’ve written, in
large measure thanks to the work of others, and I’m very grateful. With this, a book
on Programming .NET, our books on ASP.NET, and the forthcoming book on Sil-
verlight, we offer a complete course on programming for the Microsoft platform, and
that reflects a joyous and wonderful leap of faith from O’Reilly.

Brian MacDonald
Above all, thanks to Jesse for asking me back for another book. I’m also grateful to
John Osborn, who first got me involved with O’Reilly, many years ago now. Nick
Paldino and Glyn Griffiths provided first-rate technical review, and key insight on
both ends of the experience spectrum. Marlowe Shaeffer, Sumita Mukherji, and
Rachel Monaghan deserve thanks for their patience and professionalism on the pro-
duction side, and Audrey Doyle provided an excellent copyedit.

Preface | xxiii

Thanks also to Doug Bellew, a great friend and a great developer, who helped me
brainstorm the exercises. Thank you to my son, Alex, for his patience while I locked
myself in my office to work on the book. And finally, thanks to my wife, Carole, who
always provides both moral and technical support for my books, but who went
above and beyond this time.

1

CHAPTER 1

C# and .NET Programming

Welcome to Learning C# 3.0. We’re here to teach you the C# language from the
ground up. If you’ve never done any programming before, in any language, start here
in Chapter 1, and we’ll have you writing real working applications in no time flat—
before you reach the end of this chapter. If you have a little programming back-
ground in VB 6, PHP 4, or another non-object-oriented language, you’ll find a lot in
this book that’s familiar, but also a lot that’s new. You’ll probably find the code in
the first few chapters to be recognizable, but you may want to read the chapters any-
way to get the hang of the syntax. Classes and objects are at the core of how C#
works, though, so we’ll get to those quickly, once we’ve covered the basics.

If you’re a programmer migrating from Java or C++, you may find the
material in Programming C# 3.0 by Jesse Liberty and Donald Xie
(O’Reilly) a more appropriate fit for your skills.

To start at the very beginning, C# is a modern language created by Microsoft as part
of its .NET platform of languages. .NET is a layer of software that makes it easier for
you to write programs that can communicate with the operating system (in this case,
Windows). As the name implies, C# has its roots in C++, but over three versions, it
has evolved its own techniques and elements that make it distinct. Most important,
C# has the backing of the .NET Framework behind it, which we’ll get into shortly.
We’re not going to assume that you have any C++ experience, so we won’t frame
our discussions of C# in terms of C++, or any other programming language. What
you need to know right now is that you can write applications in C# that will do just
about anything you need to do. You can write applications to manage your com-
pany’s inventory (interacting with a database); you can write applications to analyze
documents; you can write games; you can create an entire operating system in C# if
you have a mind to. The .NET Framework allows C# to operate seamlessly with
Windows, and take advantage of the familiar Windows features that users all over
the world already know. You can also create C# applications that you can use on the
Web, in much the same way.

2 | Chapter 1: C# and .NET Programming

To be completely honest, most modern object-oriented languages are rather similar
underneath. The choice of one over the other is usually just a matter of personal pref-
erence. C# and Visual Basic have the advantage of the .NET Framework, but third-
party languages can interact with the framework, too. C#’s similarity to C++ and
Java makes it easy to learn for programmers familiar with those languages, but it’s
also easy to learn as your first language. Once you have the basics of C# down,
you’ll find it much easier to learn any other language you want to.

Unless we specifically say otherwise, when we refer to C# in this book, we mean C#
3.0; when we refer to .NET, we mean the .NET 3.5 Framework; and when we refer
to Visual Studio, we mean Visual Studio 2008. We could spend some time telling you
about the cool new features of C# 3.0 over its predecessors—and we’re pretty
excited about them—but if you’re new to the language, it’s all new to you, so there’s
little point in calling attention to specific features.

Finally, when we refer to using Visual Studio 2008, you may be using Visual C#
2008 Express Edition instead. C# Express is the free version of Visual Studio,
designed for students and home users, but that doesn’t mean it’s a toy. In fact, the
examples in this book were written and tested using C# Express. C# Express has the
same compiler and libraries as Visual Studio, and within the examples in this book,
you won’t find any significant differences. There are some small differences in look
and feel, or in feature names, and any time those come up, we’ll mention them.

Installing C# Express
Visual C# 2008 Express Edition has all the features you’ll need for the examples in
this book, and it has the additional advantage of being completely free from
Microsoft. Getting C# Express is very simple—just go here:

http://www.microsoft.com/express/download/

Here, you’ll find download links for each of the free Visual Studio 2008 Express Edi-
tions. Scroll down to the Visual C# box (it’s the green one), select your language,
and click the Download link. Save the installer to your hard drive, and then run it.
Most of the installation is pretty standard, but there is one step you should pay atten-
tion to, shown in Figure 1-1: the installation options.

The MSDN Library contains useful help files, and if you have the space available,
you should install it, but it’s not strictly necessary for this book. The second option,
Microsoft SQL Server 2005 Express Edition, allows you to access databases with
your code. You won’t need it for a while if you’re reading this book straight through,
but we do use it in Chapters 20 and 21, so you may want to install it now. (You can
install it separately later, if you want.) The Silverlight runtime is an amazing new
technology from Microsoft, but we won’t be covering it in this book, so you can skip
that.

C# 3.0 and .NET 3.5 | 3

The rest of the installation is mostly automatic. When you’re done, you’ll find a link
in your Start menu, ready to go.

We’ll give you a full tour of Visual Studio and C# Express in the next chapter. For
this chapter, we’ll tell you exactly what to do and when. Right now, we’ll look a lit-
tle more closely into the .NET platform to get you started, and then it’ll be time to
write some code.

C# 3.0 and .NET 3.5
In the past, you might have learned a language such as C or Java without much con-
cern about the platform on which you would be programming. These languages had
versions available for various operating systems, whether that was a Unix box or a
PC running Windows.

C#, however, was created specifically for .NET. Although cross-platform versions of
.NET do exist, for now the overwhelming majority of .NET programs will be written
to run on a machine running one of the Windows operating systems.

Figure 1-1. During the C# Express installation, select the MSDN Library if you have the space and
the SQL Server 2005 Express option if you want to work through the data examples in Chapters 20
and 21.

4 | Chapter 1: C# and .NET Programming

The .NET Platform
When Microsoft announced C# 1.0 in July 2000, its unveiling was part of a much
larger event: the announcement of the .NET platform. The .NET platform is a devel-
opment framework that provides a new way to create Windows applications. How-
ever, .NET goes beyond traditional Windows programming to facilitate creating web
applications quickly and easily.

Microsoft reportedly devoted 80% of its research and development budget to .NET
and its associated technologies. The results of this commitment were very impres-
sive. In 2005, Microsoft rolled out version 2 of the language, the platform, and the
tools. Its goal was to radically reduce the amount of boilerplate code you have to
write, and to make the creation of web and desktop applications easier by “encapsu-
lating” much of the “plumbing” of a typical application into objects. That means
that rather than writing a lot of the code to connect to databases, the Internet, or
your filesystem, .NET provides fully tested objects that will do all the heavy lifting
for you.

In 2007, .NET version 3.0 brought .NET up-to-date with Microsoft’s new Vista and
Windows Server 2008 operating systems. The most visible change in this version of
the framework was to provide support for the Windows Presentation Foundation
(WPF), which opens up new graphics possibilities, such as those you’ll find in Win-
dows Vista, as you’ll see later in this book. And now, with the release of Visual Stu-
dio 2008, .NET version 3.5 supports more new features, including LINQ, a new
feature that allows you to query databases with a more natural, object-oriented
syntax.

The scope of .NET is huge. The platform consists of three separate product groups:

• A set of languages, including C# and Visual Basic .NET; a set of development
tools, including Visual Studio 2008; and powerful tools for building applica-
tions, including the Common Language Runtime (CLR), a platform for compil-
ing, debugging, and executing .NET applications

• A set of Enterprise Servers, including SQL Server 2008, Exchange, BizTalk, and
so on, that provide specialized functionality for relational data storage, email,
business-to-business (B2B) commerce, and so forth

• .NET-enabled non-PC devices, from cell phones to game boxes

The .NET Framework
Central to the .NET platform is a development environment known as the .NET
Framework. The framework provides a lot of features, but for now all you need to
know is that the C# language provides you with the elements that allow you to
access the framework to make your programs work. You will learn about these ele-
ments in the chapters ahead.

The C# Language | 5

The .NET Framework sits on top of any flavor of the Windows operating system.
The most important components of the framework are the CLR, which is what
allows you to compile and execute applications, and the Framework Class Library
(FCL), which provides an enormous number of predefined types or classes for you to
use in your programs. You will learn how to define your own classes in Chapter 7.

Detailed coverage of all the FCL classes is beyond the scope of this
book. For more information, see C# 3.0 in a Nutshell by Joseph Alba-
hari and Ben Albahari (O’Reilly), and the MSDN Library (http://msdn.
microsoft.com/library).

The C# Language
The C# language is disarmingly simple, which makes it good for beginners, but C#
also includes all the support for the structured, component-based, object-oriented
programming that one expects of a modern language built on the shoulders of C++
and Java. In other words, it’s a fully featured language appropriate for developing
large-scale applications, but at the same time it is designed to be easy to learn.

A small team led by two distinguished Microsoft engineers, Anders Hejlsberg and
Scott Wiltamuth, developed the original C# language. Hejlsberg is also known for
creating Turbo Pascal, a popular language for PC programming, and for leading the
team that designed Borland Delphi, one of the first successful integrated develop-
ment environments (IDEs) for client/server programming.

The goal of C# is to provide a simple, safe, object-oriented, high-performance lan-
guage for .NET development. C# is simple because there are relatively few key-
words. Keywords are special words reserved by the language that have a specific
meaning within all C# programs, including if, while, and for. You’ll learn about
these keywords in the coming chapters.

C# is considered safe because the language is type-safe, which is an important mech-
anism to help you find bugs early in the development process, as you’ll see later. This
makes for code that is easier to maintain and programs that are more reliable.

C# was designed, from the very start, to support object-oriented programming. In
this book, we’ll explain not only how to write object-oriented programs, but also
why object-oriented programming has become so popular. The short answer is this:
programs are becoming increasingly complex, and object-oriented programming
techniques help you manage that complexity.

C# was designed for .NET, and .NET was designed (in part) for developing web and
web-aware programs. The Internet is a primary resource in most .NET applications.

6 | Chapter 1: C# and .NET Programming

Your First Program: Hello World
At the most fundamental level, a C# application consists of source code. Source code
is human-readable text written in a text editor. A text editor is like a word processor,
but it puts no special characters into the file to support formatting, only the text.
You could use any old text editor to write your code, but since you’ll be using Visual
Studio throughout this book, that’s the best choice. Start up C# Express or Visual
Studio. The first thing you’ll see is the Start Page, which will look similar to
Figure 1-2.

There’s a lot of news in the middle, which you don’t need to pay attention to right
now. We’ll give you a full tour of the Visual Studio interface in Chapter 2, but for
now you need the Recent Projects box on the left. If you just installed Visual Studio,
that box is empty at the moment, because you haven’t created any projects yet.
That’s about to change. Click Project, next to the Create link. The New Project dia-
log box opens, as you can see in Figure 1-3.

There are lots of options here that we’ll discuss later, but for now we just want to get
you started. Select Console Application from the row of templates at the top. When
you do that, the content of the Name field at the bottom will change to

Figure 1-2. The Start Page for Visual C# 2008 Express. It looks pretty empty now, but that won’t
last long. You’ll be using the Create link on the lefthand side.

Your First Program: Hello World | 7

ConsoleApplication1, which is a fine name, but not very descriptive. Change it to
HelloWorld (without a space) and then click OK.

Visual Studio creates the project for you, along with the necessary files. Again, you
don’t need to know about most of this yet, but it’s nice that Visual Studio does it for
you. It also creates the program where you’ll write your code, called Program.cs.
Finally, Visual Studio opens Program.cs in an editing window for you to work on.
Visual Studio provides some basic code that’s common to all C# console programs,
called a skeleton, which saves you even more time. Your Visual Studio screen should
now look like Figure 1-4.

In this first example, you will create a very simple application that does nothing more
than display the words Hello World to your monitor. This console application is the
traditional first program for learning any new language, and it demonstrates some of
the basic elements of a C# program.

After you write your Hello World program and compile it, we’ll provide a line-by-
line analysis of the source code. This analysis will give you a brief preview of the lan-
guage; we’ll describe the fundamentals much more fully in Chapter 3.

As we mentioned, the skeleton of the program is already there for you, but you still
need to write a little code. The editing window you’re looking at now works much
like any word processing program you’re familiar with, or even like Windows Note-
pad. However, you’ll find that Visual Studio has a lot of helpful features for writing

Figure 1-3. This is where you’ll create all your Visual Studio projects. There are a lot of template
options here, but for now just select Console Application and type HelloWorld in the Name field.

8 | Chapter 1: C# and .NET Programming

code that those other applications lack. Right now, click after the open brace ({)
underneath static void Main. Press Enter once to open up some space (notice that
Visual Studio indents for you automatically—this is a good thing), and then type the
following:

// every console app starts with Main
System.Console.WriteLine("Hello World!");

As you type, you’ll notice that Visual Studio automatically colors your code, and that
it’ll open small windows (called IntelliSense windows) suggesting code that you
might want to include. Don’t worry about any of that for now; just type the code as
shown here.

Example 1-1 shows the code that you should see in your editing window right now.
The lines that you added are shown here in bold. Be sure to pay attention to the capi-
talization, especially capitals where you wouldn’t normally expect them, as in
WriteLine. C# is case-sensitive, and if you lowercase the L here, you’ll get an error
message (and not necessarily a helpful error message).

Figure 1-4. Visual Studio does all the work of setting up your application automatically, which
saves a lot of time. It even creates this program skeleton for you, ready for you to add your own
code.

Your First Program: Hello World | 9

You should save your code before you go any further. Click the Save All button ()
on the toolbar. You’ll see a dialog box asking you where you want to save your work;
the My Documents/Visual Studio 2008/Projects folder is the default, but you can save
your work wherever you like. Each project you create will have its own subfolder.

We’ll explain this program detail in a bit. For now, just look at the language—the
program is readable; it is in normal text. The words may be strange and the layout
unusual, but there are no special characters—just the normal text produced by your
keyboard.

The source code makes up a set of instructions for the application to follow. The syn-
tax for these instructions is strictly defined by the language. In C#, source code con-
sists of a series of statements. A statement is an instruction to the compiler. Each
instruction must be formed correctly, and one task you’ll face when learning C# will
be to learn the correct syntax of the language. For example, in C#, every statement
ends with a semicolon.

Each instruction has a semantic meaning that expresses what you are trying to
accomplish. Although you must follow the rules of C# syntax, the semantics of the
language are far more important in developing effective object-oriented programs.
This book will provide insight into both the syntax and the semantics of good C#
programs.

We know you’ll want to run your new program right away, but bear with us for just
a moment while we explain just what Visual Studio has to do to make that happen.

Example 1-1. A simple source code file; this application doesn’t look like much, but it’s a fully
functional application that you’ll run in just a moment

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 // every console app starts with Main
 System.Console.WriteLine("Hello World!");
 }
 }
}

10 | Chapter 1: C# and .NET Programming

The Compiler
After you write your program in an editor and save it to disk, you must compile it.
Compiling is the process of turning the code that you can read into code that the
machine can read. For that, you need a compiler. Then, once you’ve compiled the
program, you need to run and test it.

The job of the compiler is to turn your source code into a working program. It turns
out to be just slightly more complicated than that because .NET uses an intermedi-
ate language called Microsoft Intermediate Language (MSIL, sometimes abbreviated
as IL). The compiler reads your source code and produces MSIL. When you run the
program, the .NET Just In Time (JIT) compiler reads your MSIL code and produces
an executable application in memory. You won’t see any of this happen, but it’s a
good idea to know what’s going on behind the scenes.

The MSIL code is actually stored in an .exe file, but this file does not
contain executable code. It contains the information needed by the JIT
to execute the code when you run it.

Visual Studio provides a built-in compiler that you’ll use pretty much all the time. To
compile and run Hello World, select Debug ➝ Start Without Debugging, and your
program executes, as shown in Figure 1-5. You can also press Ctrl-F5 to do the same
thing. You may notice a button on the toolbar () that will also compile and run
your program, but you don’t want to use that this time. If you do (and feel free to try
this), your program will still execute, but the console window will close immedi-
ately, before you have a chance to see what you’ve done. Start Without Debugging
opens the window, but adds the line “Press any key to continue...” after your pro-
gram’s output. Go ahead and press a key now to dismiss the window and end the
program.

Presto! You are a C# programmer. That’s it, close the book, you’ve done it. OK,
don’t close the book—there are details to examine, but take a moment to congratu-
late yourself. Have a cookie.

Granted, the program you created is one of the simplest C# programs imaginable,
but it is a complete C# program, and it can be used to examine many of the ele-
ments common to C# programs.

If your program didn’t run as anticipated, don’t panic. If something is wrong in the
code, Visual Studio will pop up a dialog box saying “There were build errors. Would
you like to continue and run the last successful build?” In a program this simple, you
most likely made what’s called a syntax error, which is a term programmers use
because they don’t want to admit they made a typo, which is usually what hap-
pened. Select No in this dialog and Visual Studio will open an error window at the
bottom of the interface with a message that may or may not be helpful, depending on
exactly what’s wrong.

Examining Your First Program | 11

Go back and check your code very carefully, and make sure it matches the code in
Example 1-1 exactly. Make sure there’s a semicolon at the end of the line containing
the WriteLine, and that you’ve capitalized correctly. Make sure you have open and
close quotation marks around “Hello World” and make sure you have open and
close parentheses around the quotes. Make sure the first line you added starts with
two forward slashes (//); the entire line should appear in green, if you’ve done it cor-
rectly. Make any necessary fixes, and then try to build and run the program again.

Examining Your First Program
The single greatest challenge when learning to program is that you must learn every-
thing before you can learn anything. Even this simple Hello World program uses
many features of the language that we will discuss in coming chapters, including
classes, namespaces, statements, static methods, objects, strings, blocks, and libraries.

It’s as though you were learning to drive a car. You must learn to steer, accelerate,
brake, and understand the flow of traffic. Right now, we’re going to get you out on
the highway and just let you steer for a while. Over time, you’ll learn how to speed
up and slow down. Along the way, you’ll learn to set the radio and adjust the heat so
that you’ll be more comfortable. In no time you’ll be driving, and then won’t your
parents begin to worry.

Hang on tight; we’re going to zip through this quickly and come back to the details
in subsequent chapters.

Figure 1-5. These are the results you’ll see in the command window after you’ve compiled and run
Hello World.

12 | Chapter 1: C# and .NET Programming

The first four lines in the program are called using statements:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Visual Studio inserted these for you automatically. These using statements provide a
shorthand way to access various parts of the .NET Framework that you might want
to use in your program. In fact, you used only the first one this time around, but it
doesn’t hurt anything to have the others there. We’ll discuss the System part in just a
minute.

The next line in the program defines a namespace:

namespace HelloWorld
{

You will create many names when programming in C#. Every object and every type
of object must be named. It is possible for the names you assign to conflict with the
names assigned by Microsoft or other vendors. A namespace is a way of distinguish-
ing your names from anybody else’s.

In this program, you’ve created a namespace called HelloWorld. Visual Studio
assigned this namespace for you automatically because that was the name you gave
your project. The items defined in your namespace must be enclosed in braces ({}).
Thus, the second line of the Hello World program is an open brace to mark the
beginning of the HelloWorld namespace. The open brace is matched by a closing
brace at the end of the program. Get used to seeing these braces—you’ll use them a
lot in C#, usually with braces nested inside braces. Forgetting to include a closing
brace is a common syntax mistake. Some programmers like to type the closing brace
immediately after the opening one, but on a new line, and then go back and fill in the
code between the braces.

Within the braces of the namespace, you write other programming constructs. For
instance, you might define a class. Classes define a category, or type, of object. The
.NET Framework provides thousands of classes, and you can define new ones of
your own as well. Classes are used to define the attributes and behavior of Win-
dows controls (buttons, listboxes, and so on), as well as constructs that mimic the
important attributes or behavior of things in the world, such as employees, stu-
dents, telephones, and so on.

Classes are the core of C# and object-oriented programming. You’ll learn about
classes in detail in Chapters 6 and 7.

Every class named within the namespace braces is implicitly prefixed with the name
HelloWorld. The dot operator (.) separates the namespace from the name of the
class within the namespace. Thus, if you were to create the class MyClass within the
namespace HelloWorld, the real name of that class would be HelloWorld.MyClass.

Examining Your First Program | 13

You can read this as either “HelloWorld dot MyClass” or “HelloWorld MyClass.”
Like the braces, you use the dot operator quite a lot; you’ll see various other uses as
we proceed.

The third line in our Hello World program creates a class named Program. Again, this
is the default name for the class, which Visual Studio provided for you. Like a
namespace, a class is defined within braces. The following code represents the open-
ing of the Program class definition:

class Program
{

A method is a relatively small block of code that performs an action. Methods are
always contained within classes. The Main() method is a special method in C#—it’s
the “entry point” for every C# application; it is where your program begins. The
next few lines in Hello World mark the beginning of the Main() method:

static void Main(string[] args)
{

We cover methods in detail in Chapter 8, but we mention them in virtually every
chapter in this book.

A comment (shown here in bold) appears just after the start of the Main() method:

static void Main(string[] args)
{
 // every console app starts with Main

A comment is just a note to yourself. You insert comments to make the code more
readable to yourself and other programmers. You’ll be surprised how helpful those
comments are six months later when you have no idea what a line of code you wrote
actually does.

You can place comments anywhere in your program that you think the explanation
will be helpful; they have no effect on the running program. The compiler knows to
ignore them.

C# recognizes three styles of comments. The comment in Hello World begins with
two slashes (//). The slashes indicate that everything to the right on the same line is a
comment.

The second style is to begin your comment with a forward slash followed by an aster-
isk (/*) and to end your comment with the opposite pattern (*/). These pairs of char-
acters are called the opening C-style comment and the closing C-style comment,
respectively.

These comment symbols were inherited from the C language—thus
the names used to identify them. They are also used in C++ and Java.

14 | Chapter 1: C# and .NET Programming

Everything between these comment symbols is a comment. C-style comments can
span more than one line, as in the following:

/* This begins a comment
This line is still within the comment
Here comes the end of the comment */

The third and final style of comments uses three forward slashes (///). This is an
XML-style comment and is used for advanced documentation techniques, so we
won’t discuss it in this book.

You will note that we don’t use many comments in the examples in
this book. Most of that is for space reasons; we’d rather explain what
the code does in the text than clutter the pages with comments.

Notice that the Main() method is defined with the keywords static and void:

static void Main(string[] args)

The static keyword indicates that you can access this method without having an
object of your class available. Whereas a class defines a type, each instance of that
type is an object (much as Car defines a type of vehicle and your aging rust-bucket or
shiny roadster is an individual instance of Car). Thus, whereas Button defines a type
of control for a Windows program, any individual program will have many Button

objects, each with its own label (such as OK, Cancel, or Retry).

Normally, methods can be called only if you have an object, but static methods are
special and are called without an object. (We’ll cover the use of static methods, other
than Main(), in Chapter 7.)

The second keyword in the statement defining the Main() method is void:

static void Main(string[] args)

Typically, one method calls, or invokes, another method. The called method will do
the work, and it can return a value to the method that called it. (You’ll see how
methods call one another and return values in Chapter 8.) If a method does not
return a value, it is declared void. The keyword void is a signal to the compiler that
your method will not return a value to the calling method.

The operating system calls Main() when the program is invoked. It is possible for
Main() to return a value (typically an error code) that might be used by the operating
system. In this case, though, you’ve declared that Main() will not return a value.

Every method name is followed by parentheses:

static void Main(string[] args)

When you create your own method, you may want it to use data from elsewhere in
your application. To do that, you pass values into your method so that the method

Examining Your First Program | 15

can manipulate or use those values. These values are called parameters or argu-
ments. (We cover method parameters in Chapter 8.) When you pass in values, those
values are contained inside the parentheses. In this case, Main() has a single parame-
ter: string[] args. Don’t worry about that for now; that’s another bit of code Visual
Studio inserted for you, but it doesn’t make a difference in this program. You can
delete that parameter, and your program will still run the same. Don’t delete the
parentheses, though; all method calls must be followed by the parentheses, even if
the parentheses are empty.

The body of the method is always enclosed within braces. Within the braces for
Main() is a single line of code:

System.Console.WriteLine("Hello World!");

The Console is an object that represents the window on your screen. The Console class
is defined within the System namespace, and so its full identification is System.Console.

The Console class has a static method, WriteLine(), which you access not with an
instance of Console, but through the Console class itself. Because you access the
method with the dot operator, you write System.Console.WriteLine.

The WriteLine() method declares a single parameter: the text you want to display. In
C#, a set of characters is referred to as a string. You’ll learn a lot more about strings
in Chapter 15, but for now, just know that a string is a block of text in quotes. When
you pass a string in to the method, the string is an argument. The argument ("Hello
World") corresponds to the parameter the method expects, and the string is dis-
played. The complete call to the method is:

System.Console.WriteLine("Hello World!");

If you will use many objects from the System namespace (and you will), you can save
typing by telling the compiler that many of the objects you’ll refer to are in that
namespace. That’s what the using directive is for at the beginning of your program:

using System;

With this line in place, you can use the Console class name without explicitly identi-
fying that it is in the System namespace. With the using declaration, you can rewrite
the contents of Main() as follows:

Console.WriteLine("Hello World!");

The final series of lines close the various nested opening braces. The first closes the
brace for Main(), the second closes the brace for the class, and the third closes the
brace for the namespace. Each opening brace must be matched by a closing brace.

The class is defined within the namespace declaration, and thus you do not close the
namespace until after you’ve closed the class. Similarly, the method Main() is
declared within the class, so you do not close the class until after you’ve closed the
method.

16 | Chapter 1: C# and .NET Programming

Whew! That was a lot to take in all at once! Don’t panic; in coming chapters, we’ll
explain in detail all the concepts we introduced here.

The Integrated Development Environment
Although you can perform all of these writing and compiling tasks using Notepad
and various command-line tools, your programming life will be much easier if you
use the integrated development environment (IDE) called Visual Studio 2008. Visual
Studio 2008 was designed with .NET development in mind, and it greatly simplifies
the writing of C# program code. This book assumes you are using Visual C# 2008
Express or Visual Studio 2008, both of which provide the Visual Studio 2008 devel-
opment environment.

The overwhelming majority of C# programmers will be building Win-
dows and web applications for the .NET platform using Visual Studio
2008 or Visual C# 2008 Express, and we’ve tested all the examples for
this book in that environment.

Excellent open source C# compilers are available, such as those from
the Mono project (http://www.mono-project.com) and #develop (http://
www.icsharpcode.net/OpenSource/SD/). Everything in this book should
work with those compilers, but we have not tested with them and can-
not guarantee 100% compatibility.

The Visual Studio 2008 IDE provides enormous advantages to the C# programmer.
This book tacitly assumes that you’ll use Visual Studio 2008 or Visual C# 2008
Express for your work. However, the discussion focuses more on the language and
the platform than on the tools.

Nonetheless, Chapter 2 provides an introduction to the IDE in some detail.
Chapter 9 returns to the IDE to examine the debugger, which will help you find and
correct problems in your code.

You can use the C# language to develop four types of applications:

Console applications
A console application runs in a console window, as you saw with Hello World.
A console window (or DOS box) provides simple text-based output. Console
applications are very helpful when you’re learning a language because they strip
away the distraction of the Windows graphical user interface (GUI). Rather than
spending your time creating complex windowing applications, you can focus on
the details of the language constructs, such as how you create classes and meth-
ods, how you branch based on runtime conditions, and how you loop. We will
cover all of these topics in detail in later chapters.

Summary | 17

Windows applications
A Windows application runs on a PC’s desktop. You are already familiar with
Windows applications such as Microsoft Word and Excel. Windows applica-
tions are much more complex than console applications and can take advantage
of the full suite of menus, controls, and other widgets you’ve come to expect in a
modern desktop application. In this book, you’ll learn how to create Windows
Forms applications in Chapter 18, and the fancier WPF applications in
Chapter 19.

ASP.NET applications
An ASP.NET application runs on a web server and delivers its functionality
through a browser such as Internet Explorer or Firefox, typically over the Web.
ASP.NET technology facilitates developing web applications quickly and easily.
You’ll learn more about ASP.NET applications in Chapter 18.

For an introduction to ASP.NET, see Learning ASP.NET 3.5 by Jesse
Liberty et al. (O’Reilly).

Web services
Web services are complex applications that can be accessed using standard
Internet protocols, and that can provide services such as current stock quotes,
ISBN-to-title conversions, and so forth that other applications can use. Web ser-
vices are an advanced topic, and we won’t cover them in this book.

This book will focus primarily on the basics of the C# language, using simple con-
sole applications for most of the examples, to illustrate language fundamentals.

Summary
• C# was initially created specifically for use with the .NET platform.

• C# is used with the .NET Framework, which allows you access to a number of
libraries that are specifically intended for use with Windows.

• The Common Language Runtime (CLR) is the component of the .NET Frame-
work that allows you to compile and execute applications written in either C#
or Visual Basic .NET.

• C# is designed to be simple, type-safe, object-oriented, and high-performance.

• C# applications consist of human-readable source code, written in a text editor.
The source code is compiled into Microsoft Intermediate Language (MSIL)
which, at runtime, is compiled into machine code.

• A namespace is a way of grouping the names that you assign to elements in your
application so that they don’t conflict with other names, either yours or those
assigned by Microsoft or other developers.

18 | Chapter 1: C# and .NET Programming

• Classes are the core building blocks of C# and object-oriented programming
because they allow you to create new types that model types in the “problem
domain”—that is, that model things in the area you are concerned with.

• A method is a named block of code that performs an action and that may return
a value.

• A comment is a note for the programmer and does not affect the running of the
application.

• A string is a set of text characters enclosed in quotes.

• You can use C# to develop console applications, Windows applications, web
applications, and web services.

This chapter wasn’t that long and yet you’ve come a very long way. You got a crash-
course introduction to the C# language, and you saw a little of what went into creat-
ing it and what goes on underneath. Most important, though, you wrote, compiled,
and ran a real working application. You can already call yourself a C# programmer.
Granted, creating an application with Notepad and the command-line compiler is a
bit painful, and there’s no reason why you should be fumbling around with a unicy-
cle when you’ve got a fully loaded Ferrari just waiting for you to slip behind the
wheel. So, we’re going to take just a quick break in the next chapter to show you
around the Visual Studio IDE, and then we’ll come right back to the fundamentals of
the language.

Test Your Knowledge: Quiz

Question 1-1. What is the CLR?

Question 1-2. What is the .NET Framework?

Question 1-3. What does it mean to say that C# is a “safe” language?

Question 1-4. What is a keyword?

Question 1-5. What does the compiler do?

Question 1-6. What is MSIL?

Question 1-7. What is the JIT?

Question 1-8. What is a namespace?

Test Your Knowledge: Exercise | 19

Question 1-9. What is a string?

Question 1-10. What are the four types of applications you can build in Visual Studio
2008?

Test Your Knowledge: Exercise

Exercise 1-1. Write an application that emits the words “What a great book!” to the
console window.

Hint: open Visual Studio, create a console application, and, if you get stuck, con-
sider copying or modifying the code shown in the chapter. Remember, these exer-
cises are for your own edification, no one is grading them, and making mistakes is an
opportunity to explore and learn more—this is true in just about everything except
nuclear physics.

So, Don’t Panic!

20

CHAPTER 2

Visual Studio 2008 and C# Express 2008

In Chapter 1, you learned that you can create your C# applications using Notepad.
In this chapter, you’ll learn why you never will. Microsoft developed Visual Studio
2008 to facilitate the creation of Windows and web applications. You will find that
this integrated development environment (IDE) is a very powerful tool that will
greatly simplify your work.

Visual Studio 2008 offers many advantages to the .NET developer, among them:

• A modern interface, using a tabbed document metaphor for code and layout
screens, and dockable toolbars and information windows.

• Convenient access to multiple design and code windows (this will make more
sense when you are creating web applications, as shown in Chapter 20).

• WYSIWYG (What You See Is What You Get) visual design of Windows and
Web Forms.

• Code completion, which allows you to enter code with fewer errors and less typing.

• IntelliSense, which displays tips for every method, providing the return type and
the types of all the parameters.

• Dynamic, context-sensitive help, which allows you to view topics and samples
relevant to the code you are writing at the moment. You can also search the
complete SDK library from within the IDE.

• Immediate flagging of syntax errors, which allows you to fix problems as they
are entered.

• A Start Page, which provides easy access to new and existing projects.

• The same code editor for all .NET languages, which shortens the learning curve.
Each language can have specialized aspects, but all languages benefit from
shared features, such as incremental search, code outlining, collapsing text, line
numbering, and color-coded keywords.

Visual Studio 2008 and C# Express 2008 | 21

• An HTML editor, which provides both Design and HTML views that update
each other in real time.

• A Solution Explorer, which displays all the files that make up your solution in
outline form.

• An integrated debugger, which allows you to step through code, observe pro-
gram runtime behavior, and set breakpoints, even across multiple languages and
multiple processes.

• Customization capability, which allows you to set user preferences for IDE
appearance and behavior.

• Integrated support for source control software.

• A built-in task list.

• The ability to modify your controls’ properties, either declaratively or through
the Properties window.

• The ability to integrate custom controls that you create or purchase from a third
party.

• Rapid and easy deployment, including the ability to copy an entire website
development project from one machine to another.

• The ability to integrate third-party tools into Visual Studio.

• The ability to program extensions to Visual Studio.

• The ability to rename methods, properties, and so forth and have them renamed
automatically throughout the program.

• A Server Explorer, which allows you to log on to servers that you have network
access to, access the data and services on those servers, drag-and-drop data
sources onto controls, and perform a variety of other chores.

• Integrated build and compile support.

• The ability to drag-and-drop controls onto your web page, either in Design
mode or in HTML mode.

Visual Studio 2008 and Visual C# 2008 Express are highly useful tools that can save
you hours of repetitive tasks. They are also large and complex programs, so it is
impossible for us to explore every nook and cranny in this chapter. Instead, we’ll
take you on a quick tour of the interface and lay the foundation for understanding
and using C# Express, which is our IDE of choice for this book, as well as point out
some of the nastier traps you might run into along the way.

Just about every feature we describe in this chapter can also be found
in Visual Studio 2008. If there are any significant differences, we’ll
point them out specifically, but for the most part, you can treat the
two IDEs as identical.

22 | Chapter 2: Visual Studio 2008 and C# Express 2008

Before You Read Further
This chapter has a lot of information in it, and you won’t need all of it all at once. In
fact, much of the information will not even apply to console applications, but will be
valuable when you are ready to create Windows or web applications.

Many readers like to skim this chapter the first time through, and then come back for
the details later. But it is your book, you paid for it (you did pay for it, didn’t you?),
and so you are free to read the entire chapter, take notes as you go, skip it entirely, or
otherwise use it to your best advantage.

Whether or not you read this chapter, we do strongly recommend that you spend
time (lots and lots of time) exploring C# Express in detail. You will forever be sur-
prised at how much is in there and how much you can set it up to behave as you
want; it is your principal development tool. Ignoring C# Express would be like a
race car driver never looking under the hood. In time, you not only want to know
how to change the oil, but also want to understand how the valves work and why the
linkage sticks.

The Start Page
The Start Page is the first thing you see when you open C# Express (unless you config-
ure it otherwise). From here, you can create new projects or open a project you worked
on in a previous session. You can also find out what is new in .NET, access .NET
newsgroups and websites, search for help online, download useful code, or adjust C#
Express to your personal requirements. Figure 2-1 shows a typical Start Page, which
you already saw briefly in Chapter 1.

The Start Page has a window on the left that includes a list of your recent projects;
you can click on any one to open it. Below those links, you’ll find the Open link,
which lets you open any existing project on your computer. Under that is the Create
link, which lets you create a new project. The Getting Started box on the lower left
provides links to features and helpful sites. Most of the real estate on the Start Page is
taken up by the large box in the middle, which contains useful articles from MSDN
online, if you have an active Internet connection.

Projects and Solutions
A C# program is built from source files, which are text files containing the code you
write. Source code files are named with the .cs extension. The Program.cs file you
created in Chapter 1 is an example.

A typical C# Express 2008 application can have a number of other files (such as
assembly information files, references, icons, data connections, and more). C#
Express 2008 organizes these files into a container called a project.

Projects and Solutions | 23

C# Express 2008 provides two types of containers for your source code, folders,
files, and related material: the project and the solution. A project is a set of files that
work together to create an executable program (.exe) or a dynamic link library (.dll).
Large, complex projects may contain multiple .dll files.

A solution is a set of related projects, although it may also have just one project—
which is what you’ll do most often in this book. Each time you create a new project,
C# Express 2008 either adds it to an existing solution or creates a new solution.

Solutions are defined within a file named for the solution, and they have the exten-
sion .sln. The .sln file contains metadata, which is basically information about the
data. The metadata describes the projects that compose the solution and informa-
tion about building the solution. You won’t have to worry about these for the most
part.

Visual Studio 2008 also creates a file with the same base name as the
.sln file, but with the filename extension .sou (such as mySolution.sln
and mySolution.sou). The .sou file contains metadata used to custom-
ize the IDE for the specific user.

Figure 2-1. The C# Express Start Page is the first thing you’ll see when you start C# Express.
From here, there are many different links to get you started.

24 | Chapter 2: Visual Studio 2008 and C# Express 2008

There are a number of ways to open an existing solution. The simplest way is to
select Open Project from the Start menu (which opens a project and its enclosing
solution). Alternatively, you can open a solution in C# Express 2008 just by double-
clicking the .sln file in Windows Explorer.

Typically, the build process results in the contents of a project being compiled into
an executable (.exe) file or a dynamic link library (.dll) file. This book focuses on cre-
ating executable files.

The metadata describing the project is contained in a separate file
named after the project with the extension .csproj. The project file
contains version information, build settings, and references to other
source files to include as part of the project.

Project Types
You can create many types of projects in the full version of Visual Studio 2008,
including:

• Console Application projects

• Windows Application projects

• Windows Service projects

• WPF Application projects

• WPF Browser Application projects

• Windows Control Library projects

• Web Control Library projects

• Class Library projects

• Smart device templates

• Crystal Reports Windows Application projects

• SQL Server projects

• Word and Excel Document and Template projects

Note that web applications are missing from this list. Web applications do not use
projects, just solutions.

Visual C# Express, being a “light” version of the Visual Studio product, can’t pro-
duce nearly as many types of projects. C# Express is limited to console applications,
Windows Forms applications, WPF applications, WPF browser applications, and
class libraries.

A typical .NET application comprises many items: source files (such as .cs files),
assemblies (such as .exe and .dll files) and assembly information files, data sources

Projects and Solutions | 25

(such as .mdb files), references, and icons, as well as miscellaneous other files and
folders. Visual Studio 2008 makes all of this easier for you by organizing these items
into a folder that represents the project. The project folder is housed in a solution.
When you create a new project, Visual Studio 2008 automatically creates the solution.

Templates
When you create a new project with C# Express, you’ll see the New Project dialog
box, shown in Figure 2-2.

In the New Project dialog, if you’re using Visual C# Express, you’ll see only the tem-
plates you can choose from for your project. If you’re using Visual Studio 2008, this
dialog box will look different, with two panes. You select the project type (in the left-
hand pane) and the template (in the right). There are a variety of templates for each
project type. A template is a file that C# Express 2008 uses to set up the initial state
of your project.

If you’re using Visual Studio 2008, for the examples in this book you’ll always
choose Visual C# for the project type, and in most cases you’ll choose Console
Application as the template. Specify the name of the directory in which your project
will be stored in the Location box and name your project in the Name box. C#
Express doesn’t give you the option of choosing the file location; the files are stored
in your localMy Documents folder, in a subfolder called Visual Studio 2008.

Figure 2-2. The New Project dialog is where every new C# application starts.

26 | Chapter 2: Visual Studio 2008 and C# Express 2008

Project names can contain any standard characters, except leading or
trailing spaces, Windows or DOS keywords, and any of the following
special characters: # % & * | \ : ” < > ? /.

Inside the Integrated Development Environment
The C# Express IDE is centered on its editor. An editor is much like a word proces-
sor, except that it produces simple text (that is, text with no formatting, such as bold
and italics). All source code files are simple text files. The color that you saw applied
to some of the text in the Hello World project in Chapter 1 isn’t just formatting; it’s
a form of highlighting that Visual Studio applies to help you differentiate between
keywords, comments, and other kinds of code elements.

The C# Express IDE also provides support for building graphical user interfaces
(GUIs), which are integral to Windows and web projects. The following pages intro-
duce some of the key features of the IDE.

The IDE is a Multiple Document Interface (MDI) application, much like other Win-
dows applications you may be used to, such as Word and Excel. There is a main win-
dow, and within the main window are a number of smaller windows. The central
window is the text editing window. Figure 2-3 shows the basic layout.

Figure 2-3. The IDE is where you’ll be spending most of your time as a C# developer. Notice that
the interface contains multiple windows.

Inside the Integrated Development Environment | 27

To the left of the editing window are a number of tabbed windows that contain tools
you may need when creating Windows and web applications. To the right of the
editing window are both stacked and tabbed windows. Shown on top is the Solution
Explorer, which allows you to examine and manipulate the files in the solution.
Below the Solution Explorer is the Properties window. The Properties window is
used extensively when you’re creating web and Windows desktop applications, but
you won’t see it when you create console applications.

In Visual Studio 2008, at the bottom of the IDE are five tabbed windows—Error List,
Task List, Output, Find Results, and Find Symbol Results—but they don’t appear in
C# Express.

All of these windows, plus the Toolbox, are resizable and dockable. You can resize
any of them by placing the mouse cursor over the edge you want to move. The cur-
sor will change to a double-arrow resizing cursor, at which point you can drag the
window edge one way or the other, just like most other windows in the Windows
interface.

Right-clicking on the title bar of a dockable window pops up a menu with five mutu-
ally exclusive check items:

Floating
The window will not dock when dragged against the edge of the C# Express
2008 window. The floating window can be placed anywhere on the desktop,
even outside the C# Express 2008 window.

Dockable
The window can be dragged and docked along any side of the C# Express 2008
window, as you’ll see later in this chapter.

Tabbed Document
The window occupies the work surface, with a set of tabs for navigation.

Auto Hide
The window will disappear, indicated only by a tab, when the cursor is not over
the window. It will reappear when the cursor is over the tab. A pushpin in the
upper-right corner of the window will be pointing down when Auto Hide is
turned off and pointing sideways when it is turned on.

Hide
The window disappears. To see the window again (to unhide it), use the View
main menu item.

If you click the title bar of a window and drag it, it floats free. You can now place it
where you want. C# Express 2008 provides guides to help you with locating the win-
dow. To see this at work, grab the Properties window and pull it free of its current
position. As you move about, the IDE positioning indicators appear, as shown in
Figure 2-4.

28 | Chapter 2: Visual Studio 2008 and C# Express 2008

As you click on each positioning indicator, a shadow appears to show you where the
window would go if you release the mouse. Notice in the center of the editing win-
dow that there is a cluster of five indicators. If you choose the center square, the win-
dow will be tabbed with the current window. To put the Properties window back
where it belongs, hover over the Solution Explorer window; a five-part indicator will
appear, and you can select the lower indicator to place the Properties window below
the tabbed set of the Solution Explorer.

You can also double-click on either the title bar or the tab to dock and undock the
window. Double-clicking on the title while docked undocks the entire group.
Double-clicking on the tab undocks just the one window, leaving the rest of the
group docked.

Building and Running Applications
You can run your application at any time by selecting either Start or Start Without
Debugging from the Debug menu, or you can accomplish the same results by press-
ing either F5 or Ctrl-F5, respectively. You can also start the program by clicking the
Start icon () on the Standard toolbar.

Figure 2-4. You can reposition all of the windows in the IDE wherever you like. The arrow icons
are a help when you’re positioning windows.

Menus | 29

For console applications, as we mentioned in Chapter 1, the advantage of running
the program with Ctrl-F5 is that C# Express 2008 will open your application in a
console window, display its results, and then add a line to press a key when you are
ready. This keeps the window open until you’ve seen the results and pressed a key, at
which point the window will close. If you choose Start (with debugging) on a con-
sole application, if the application doesn’t require any user input (as Hello World
doesn’t), the console window may appear and disappear too quickly for you to see
what it did.

You can build the program (that is, generate the .exe and .dll files) by selecting a com-
mand under the Build menu. You have the option of building the entire solution or
only the currently selected project.

Menus
The menus provide access to many of the commands and capabilities of C# Express
2008. The more commonly used menu commands are duplicated with toolbar but-
tons for ease of use.

The menus and toolbars are context-sensitive, meaning that the available selection
depends on what part of the IDE is currently selected, and what activities are
expected or allowed. For example, if the current active window is a code-editing win-
dow for a console application such as Hello World, the top-level menu commands
are File, Edit, View, Refactor, Project, Build, Debug, Data, Tools, Test (only in the
full Visual Studio), Window, and Help.

Many of the menu items have keyboard shortcuts, listed adjacent to the menu item
itself. These are composed of one or more keys (referred to as a chord), pressed
simultaneously. Shortcut keys can be a huge productivity boost because you can use
them to perform common tasks quickly, without removing your hands from the key-
board, but it’s really a matter of personal preference.

The following sections describe some of the more important menu items and their
submenus, focusing on those aspects that are interesting and different from com-
mon Windows commands.

The File Menu
The File menu provides access to a number of file-, project-, and solution-related
commands. Many of these commands are context-sensitive.

As in most Windows applications, the New menu item creates new items to work
on, the Open item opens existing items, and the Save item saves your work. One
item you may not have seen before is Save All, which will save all the open files in an
open solution. This can be very useful when you’re working with a large solution.

30 | Chapter 2: Visual Studio 2008 and C# Express 2008

The Edit Menu
The Edit menu contains the text editing and searching commands that one would
expect, but also includes commands useful in editing code. The most useful are dis-
cussed next.

The Clipboard Ring

The Clipboard Ring is like copy-and-paste on steroids. You can copy a number of dif-
ferent selections to the Windows clipboard, using the Edit ➝ Cut (Ctrl-X) or Edit ➝

Copy (Ctrl-C) command. Then use Ctrl-Shift-V to cycle through all the selections,
and paste the correct one when it comes around.

You can change C# Express hot keys systematically or individually;
the ones we refer to here and throughout this book are the “standard
keys” used when programming in C#. Your mileage may vary.

This submenu item is context-sensitive and is visible only when editing a code window.

Find and Replace

C# Express 2008 includes a number of advanced Find and Replace options that
you’ll use frequently. The most common ones are discussed in this section.

Quick Find and Quick Replace. These are just slightly jazzed names for slightly jazzed ver-
sions of the typical Find and Replace. You can access Quick Find with Ctrl-F and
Quick Replace with Ctrl-H. Both commands bring up essentially the same dialog
boxes, switchable by a tab at the top of the dialog box, as shown in Figure 2-5.

The search string defaults to the text currently selected in the code window, or, if
nothing is selected, to the text immediately after the current cursor location.

The “Look in” drop-down offers a choice of Current Document, All Open Docu-
ments, Current Project, Entire Solution, or Current Method.

You can expand or collapse the search options by clicking on the plus/minus button
next to the “Find options” item. By default, “Search hidden text” is checked, which
allows the search to include code sections currently collapsed in the code window.
The Use checkbox allows the use of either regular expressions or wildcards.

Regular expressions are a language unto themselves, expressly designed
for incredibly powerful and sophisticated searches. A full explanation
of regular expressions is beyond the scope of this book, and isn’t really
necessary for the sorts of searches you normally conduct when writing
code. For a complete discussion of regular expressions, see the SDK
documentation, or Mastering Regular Expressions, Third Edition, by
Jeffrey E. F. Friedl (O’Reilly).

Menus | 31

If the Use checkbox is checked, the Expression Builder button to the right of the
“Find what” text box becomes enabled, providing a very handy way to insert valid
regular expression or wildcard characters.

Once you’ve entered a search string in the “Find what” text box, the Find Next but-
ton becomes enabled. In Quick Find mode, there is also a Bookmark All button,
which finds all occurrences of the search string and places a bookmark (described
shortly) next to the code.

In Quick Replace mode, there is also a “Replace with” text box, and buttons for
replacing either a single occurrence or all occurrences of the search string.

Find in Files. Find in Files (Ctrl-Shift-F) is a very powerful search utility that finds text
strings anywhere in a directory or in subdirectories (subfolders). It presents the dialog
box shown in Figure 2-6. Checkboxes present several self-explanatory options, includ-
ing the ability to search using either wildcards or regular expressions. Depending on
how many files you have in your solution, you may want to use this kind of search as
your default first choice.

Find Symbol. Clicking the Find Symbol command (Alt-F12) will bring up the Find
Symbol dialog box, which allows you to search for symbols (such as namespaces,
classes, and interfaces) and their members (such as properties, methods, events, and

Figure 2-5. The Find and Replace features work mostly like they do in any Windows application,
although in C# Express, you have the option of searching single files or the whole solution, and
other advanced features such as regular expressions.

32 | Chapter 2: Visual Studio 2008 and C# Express 2008

variables). It also allows you to search in external components for which the source
code is not available.

The search results will be displayed in a window labeled Find Symbol Results. From
there, you can move to each location in the code by double-clicking on each result.

Go To

The Go To command brings up the Go To Line dialog box, which allows you to
enter a line number and immediately go to that line. It is context-sensitive and is visi-
ble only when editing a text window.

Insert File As Text

The Insert File As Text command allows you to insert the contents of any file into
your source code, as though you had typed it in. It is context-sensitive and is visible
only when editing a text window.

Figure 2-6. The Find and Replace in Files feature lets you search in files other than the one you’re
working with right now.

Menus | 33

You’ll see a standard file-browsing dialog box to search for the file you want to
insert. The default file extension will correspond to the project language, but you can
search for any file with any extension.

Advanced

The Advanced command is context-sensitive and is visible only when editing a code
window. It has many submenu items. These include commands for:

• Viewing whitespace (making tabs and space characters visible on the screen)

• Toggling word wrap

• Commenting and uncommenting blocks of text

• Increasing and decreasing line indenting

• Incremental searching (see “Incremental search”)

The following three options are available only in Visual Studio, not C# Express:

• Creating or removing tabs in a selection (converting spaces to tabs and vice
versa)

• Forcing selected text to uppercase or lowercase

• Deleting horizontal whitespace

Incremental search

Incremental search allows you to search an editing window by entering the search
string character by character. As you enter each character the cursor moves to the
first occurrence of matching text.

To use incremental search in a window, select the command on the Advanced sub-
menu, or press Ctrl-I. The cursor icon will change to a pair of binoculars with an
arrow indicating the direction of the search. Begin typing the text string to search for.

The case sensitivity of an incremental search will come from the previous Find,
Replace, Find in Files, or Replace in Files search (described earlier).

The search will proceed downward and from left to right from the current location.
To search backward, use Ctrl-Shift-I.

The key combinations listed in Table 2-1 apply to incremental searching.

Table 2-1. Incremental searching

Key combination Description

Esc Stop the search.

Backspace Remove a character from the search text.

Ctrl-Shift-I Change the direction of the search.

Ctrl-I Move to the next occurrence in the file for the current search text.

34 | Chapter 2: Visual Studio 2008 and C# Express 2008

Bookmarks

Bookmarks are useful for marking spots in your code and easily navigating from
marked spot to marked spot. There are several context-sensitive commands on the
Bookmarks submenu (listed in Table 2-2). Note that, unless you add the item to the
task list, bookmarks are lost when you close the file, although they are saved when
you close the solution (as long as the file was still open).

This menu item appears only when the current window is a code window.

Outlining

C# Express 2008 allows you to outline, or collapse and expand, sections of your
code to make it easier to view the overall structure. When a section is collapsed, it
appears with a plus sign in a box along the left edge of the code window. Clicking on
the plus sign expands the region.

You can nest the outlined regions so that one section can contain one or more other
collapsed sections. Several commands are available to facilitate outlining (shown in
Table 2-3).

Table 2-2. Bookmark commands

Command Description

Toggle Bookmark Places or removes a bookmark at the current line. When a bookmark is
set, a blue rectangular icon will appear in the column along the left edge
of the code window.

Enable/Disable Enables or disables the checkboxes for all bookmarks in the Bookmarks
window (does not remove bookmarks).

Previous Bookmark Moves to the previous bookmark.

Next Bookmark Moves to the next bookmark.

Clear Removes the bookmark.

Previous Bookmark in Folder (Visual Studio only) Moves to the previous bookmark in the folder.

Next Bookmark in Folder (Visual Studio only) Moves to the next bookmark in the folder.

Previous Bookmark in Document Moves to the previous bookmark in the current document.

Next Bookmark in Document Moves to the next bookmark in the current document.

Add Task List Shortcut Adds an entry to the task list (described in “The View Menu” later in this
chapter) for the current line. When a task list entry is set, a curved arrow
icon appears in the column along the left edge of the code window.

Table 2-3. Outlining commands

Command Description

Toggle Outlining Expansion Reverses the current outlining state of the innermost section in which the cursor lies.

Toggle All Outlining Sets all sections to the same outlining state. If some sections are expanded and some are col-
lapsed, all will become collapsed.

Menus | 35

You can set the default behavior of outlining using the Tools ➝ Options menu item.
Go to Text Editor, and then the specific language for which you want to set the
options.

IntelliSense

Microsoft IntelliSense technology makes your life much easier. It has real-time,
context-sensitive help available, which appears right under your cursor. Code com-
pletion automatically completes your thoughts for you, drastically reducing your typ-
ing (and therefore, your typing errors). Drop-down lists provide all methods and
properties possible in the current context, available at a keystroke or mouse click.

You can configure the default IntelliSense features by going to Tools ➝ Options and
then the language-specific pages under Text Editor.

Most of the IntelliSense features appear as you type inside a code window or allow
the mouse to hover over a portion of the code. In addition, the Edit ➝ IntelliSense
menu item offers numerous commands, the most important of which are shown in
Table 2-4.

Stop Outlining Expands all sections and removes the outlining symbols from view.

Collapse to Definitions Automatically creates sections for each procedure in the code window and collapses them all.

Table 2-4. IntelliSense commands

Command Description

List Members Displays a list of all possible members available for the current context. Keystrokes incremen-
tally search the list. Press any key to insert the highlighted selection into your code; that key
becomes the next character after the inserted name. Use the Tab key to select without entering
any additional characters.

This can also be accessed by right-clicking and selecting List Member from the context-sensitive
menu.

Parameter Info Displays a list of numbers, names, and types of parameters required for a method, sub, func-
tion, or attribute.

Quick Info Displays the complete declaration for any identifier (such as a variable name or class name) in
your code. This is also enabled by hovering the mouse cursor over any identifier.

Complete Word Automatically completes the typing of any identifier once you type in enough characters to
uniquely identify it. This works only if the identifier is being entered in a valid location in the
code.

Insert Snippet Displays a selection of code snippets to insert, such as the complete syntax for a switch case
block or an if block.

Surround With Displays a selection of code snippets to surround a block of code, such as a class declaration.

Table 2-3. Outlining commands (continued)

Command Description

36 | Chapter 2: Visual Studio 2008 and C# Express 2008

The member list presents itself when you type a dot operator following any class or
member name.

Every member of the class is listed, and each member’s type is indicated by an icon.
There are icons for methods, fields, properties, events, and so forth. In addition, each
icon may have a second icon overlaid to indicate the accessibility of the member:
public, private, protected, and so on. If there is no accessibility icon, the member is
public.

If the member list does not appear, make sure you have added all the
necessary using statements.

Two of the subcommands under the IntelliSense menu item, Insert Snippet and Sur-
round With, tap into a great feature to reduce typing and minimize errors: code
snippets. A code snippet is a chunk of code that replaces an alias. A short alias is
replaced with a much longer code snippet. For example, the alias switch would be
replaced with:

switch (switch_on)
{
 default:
}

with the expression switch_on highlighted in yellow and the cursor in place, ready to
type in your own expression. In fact, all the editable fields will be highlighted, and
you can use the Tab key to navigate through them, or Shift-Tab to go backward. Any
changes made to the editable field are immediately propagated to all the instances of
that field in the code snippet. Press Enter or Esc to end the field editing and return to
normal editing.

To do a straight alias replacement, either select Insert Snippet from the menu, or
more easily, press Ctrl-K, Ctrl-X. Or, just type an alias in the code window and an
IntelliSense menu will pop up with a list of aliases, with the current one highlighted.
Press Tab to insert the snippet.

Alternatively, a code snippet can surround highlighted lines of code—say, with a for

construct. To surround lines of code with a code snippet construct, highlight the
code and then either select Surround With from the menu or press Ctrl-K, Ctrl-S.

The View Menu
The View menu is a context-sensitive menu that provides access to the myriad win-
dows available in the C# Express 2008 IDE. You will probably keep many of these
windows open all the time; others you will use rarely, if at all.

Menus | 37

The View menu is context-sensitive. For example, with an ASP.NET content file on
the work surface, the first three menu items will be Code, Designer, and Markup; the
Code and Designer menu items will be omitted if you’re looking at a code-behind
file. You don’t need to worry about what these terms mean for now; you’ll see them
in the closing chapters of the book.

When the application is running, a number of other windows, primarily used for
debugging, become visible or available. You access these windows via the Debug ➝

Windows menu item, not from the View menu item.

C# Express 2008 can store several different window layouts. In particular, it remembers
a completely different set of open windows during debug sessions than it does during
normal editing. These layouts are stored per-user, not per-project or per-solution.

Class View

The Class View window (Ctrl-Shift-C) shows all the classes in the solution in a hier-
archical manner. A typical Class View window, somewhat expanded, is shown in
Figure 2-7.

As with the Solution Explorer, you can right-click any item in the Class View win-
dow, which exposes a pop-up menu with a number of context-sensitive menu items.
This can provide a convenient way to sort the display of classes in a project or solu-
tion, or to add a method, property, or field to a class.

Code Definition

The Code Definition window (Ctrl-W, D) is used in developing web pages, but is
available only in the full version of Visual Studio.

Error List

The Error List window (Ctrl-W, Ctrl-E), which is available in all editor views, dis-
plays errors, warnings, and messages generated as you edit and compile your project.
Syntax errors flagged by IntelliSense are displayed here, as well as deployment errors.
Double-clicking on an error in this list will open the offending file and move the cur-
sor to the error location.

Output

The Output window (Ctrl-Alt-O) displays status messages from the IDE, such as
build progress. You can set the Output window to display by default when a build
starts by going to Tools ➝ Options ➝ Projects and Solutions ➝ General and checking
“Show Output window when build starts”.

This window is available in all editor views.

38 | Chapter 2: Visual Studio 2008 and C# Express 2008

Properties

The Properties window (F4) displays all the properties for the currently selected
item. Some of the properties (such as Font) may have subproperties, indicated by a
plus sign next to their entries in the window. The property values on the right side of
the window are editable.

Figure 2-7. The Class View window, obviously enough, shows the classes in your solution. You
won’t have many of these at first, but Windows applications will have plenty.

Menus | 39

One thing that can be confusing is that certain items have more than one set of prop-
erties. For example, a Form content file can show two different sets of properties,
depending on whether you select the source file in the Solution Explorer or the form
as shown in the Design view.

A typical Properties window is shown in Figure 2-8.

The name and type of the current object are displayed in the field at the top of the
window. In Figure 2-8, it is an object named Form1, of type Form, contained in the
System.Windows.Forms namespace.

You can edit most properties in place in the Properties window. The Font property
has subproperties that you can set directly in the window by clicking on the plus sign
to expand its subproperties, and then editing the subproperties in place.

The Properties window has several buttons just below the name and type of the
object. The first two buttons on the left toggle the list by category or alphabetically.
The next two buttons from the left toggle between displaying properties for the
selected item and displaying events for the selected item. The rightmost button dis-
plays property pages for the object, if there are any.

Figure 2-8. You won’t use the Properties window much with console applications, but when you
design Windows Forms, you’ll use it a lot.

40 | Chapter 2: Visual Studio 2008 and C# Express 2008

Some objects have both a Properties window and property pages. The
property pages display additional properties not shown in the Proper-
ties window.

The box below the list of properties displays a brief description of the selected property.

Task List

In large applications, keeping a to-do list can be quite helpful. C# Express 2008 pro-
vides this functionality with the Task List window.

Toolbox

The Toolbox command (Ctrl-Alt-X) displays the Toolbox if it is not currently dis-
played. If it is currently displayed, nothing happens—it does not toggle the display.
To hide the Toolbox, click on the X in the Toolbox title bar.

Other Windows

Several other windows have been relegated to a submenu called Other Windows.
These include:

The Command window (Ctrl-Alt-A)
You use this window to enter commands directly.

The Object Test Bench window
This window lets you conduct tests on your classes as you write them, but only
in Visual Studio.

The Property Manager window
You use this window only for C++ projects; it isn’t available in C# Express.

The Resource View window (Ctrl-Shift-E)
This window displays the resource files included in the project. Resources are
nonexecutable data deployed with an application, such as icons and graphics,
culture-specific text messages, and persisted data objects.

The Macro Explorer window (Alt-F8)
Visual Studio 2008 offers the ability to automate repetitive chores with macros.
A macro is a set of instructions written in VB.NET, either created manually or
recorded by the IDE, saved in a file. The Macro Explorer is the one of the main
tools for viewing, managing, and executing macros. It provides access into the
Macro IDE.

The Start Page
This item simply reopens the Start Page, if you closed it.

The Web Browser
This item opens a web browser within the Visual Studio window.

Menus | 41

The Refactor Menu
Refactoring is the process of taking code duplicated in various parts of your program
and extracting it out to a callable method. This is an advanced procedure, so you
won’t see any refactoring in this book.

For details on refactoring, we highly recommend the book Refactoring:
Improving the Design of Existing Code, by Martin Fowler et al. (Addison-
Wesley Professional).

The Refactor menu item is available when you’re looking at a code window for a web
page, user control, or language source code file. It is also available from context
menus when you right-click on an identifier in a Class View, Object Browser, or
Solution Explorer window.

The refactoring menu items will modify your code—for example, extracting com-
mon code to a method and then calling that method in the place from which it was
extracted.

The Project Menu
The Project menu provides functionality related to project management. It is visible
only when the solution is selected in the Solution Explorer. All of the functionality
exposed by the Project menu is also available in the Solution Explorer, by right-clicking
on the solution.

The Build Menu
The Build menu offers menu items for building the current project (highlighted in
the Solution Explorer) or the solution. It also exposes the Configuration Manager for
configuring the build process.

The Debug Menu
The Debug menu allows you to start an application with or without debugging, set
breakpoints in the code, and control the debugging session.

The Data Menu
The context-sensitive Data menu is visible only when in Design mode when creat-
ing, for example, web applications.

42 | Chapter 2: Visual Studio 2008 and C# Express 2008

The Format Menu
The Format menu is visible only in Design mode when creating, for example, web
applications; further, the commands under it are context-sensitive to the control(s)
currently selected.

The Tools Menu
The Tools menu presents commands accessing a wide variety of functionality, rang-
ing from connecting to databases to accessing external tools to setting IDE options.
Some of the more useful commands are described in the following sections.

Connect to Device

The Connect to Device command (available only in Visual Studio) brings up a dia-
log box that allows you to connect to either a physical mobile device or an emulator.

Device Emulator Manager

The Device Emulator Manager command (also available only in Visual Studio) helps
you keep track of the various settings for devices and their emulators for which you
may be developing.

Connect to Database

The Connect to Database command brings up the dialog box that allows you to
select a server, log in to that server, and connect to the database on the server.
Microsoft SQL Server is the default database (surprise!), but the Change button
allows you to connect to any number of other databases, including any for which
there are Oracle or ODBC providers.

Connect to Server

The Connect to Server command (available only in Visual Studio) brings up a dialog
box that lets you enter a remote server to connect to, either by name or by IP
address.

Code Snippets Manager

The Code Snippets Manager command (Ctrl-K, Ctrl-B) brings up the Code Snippets
Manager dialog box, which allows you to maintain the code snippets (described in
“IntelliSense” earlier in this chapter). This dialog box allows you to add or remove
code snippets for any of the supported languages. You can also import code snippets
and search online for code snippets.

Menus | 43

Choose Toolbox Items

The Choose Toolbox Items command brings up the Choose Toolbox dialog box, allow-
ing you to add COM components and custom controls. The details of doing so are
beyond the scope of this book, but they are covered in full in Programming ASP.NET 3.
5 by Jesse Liberty et al. (O’Reilly).

External Tools

Depending on the options selected at the time C# Express 2008 was installed on
your machine, you may have one or more external tools available on the Tools
menu. These might include tools such as Create GUID and Dotfuscator Community
Edition. (Use of these tools is beyond the scope of this book.)

The Tools ➝ External Tools command allows you to add additional external tools to
the Tools menu. When you select this command, you are presented with the Exter-
nal Tools dialog box. This dialog box has fields for the tool title, the command to
execute the tool, any arguments and the initial directory, as well as several check-
boxes for different behaviors.

Import and Export Settings

The Import and Export Settings command brings up the Import and Export Settings
dialog box, which is a wizard for importing and exporting IDE settings. With this
wizard, you can transfer your carefully wrought IDE settings from one machine to
the next.

Options

The Options command also brings up the Options dialog box that allows you to set
a wide variety of options, ranging from the number of items to display in lists of
recently used items to HTML Designer options.

The Window Menu
The Window menu is the same as the Window menu you’ll find in most standard
Windows applications. It displays a list of all the currently open windows, allowing
you to bring any window to the foreground by clicking on it. Note that all the file
windows currently displayed in the IDE also have tabs along the top edge of the
work surface, below the toolbars (unless you have selected MDI mode in Tools ➝

Options ➝ Environment ➝ General), and you can select windows by clicking on a
tab.

44 | Chapter 2: Visual Studio 2008 and C# Express 2008

The Help Menu
The Help menu provides access to a number of submenus.

If you are developing on a machine with enough horsepower, Dynamic Help is a
wonderful thing. Otherwise, it can diminish the responsiveness of the IDE.

Summary
• Visual Studio 2008 is a powerful tool with many features to make writing pro-

grams easier.

• The Start Page provides an overview of your programming environment and a
list of recent projects.

• A solution is a set of related projects, and a project is a set of related code files
and associated resources, such as images and so on.

• Visual Studio 2008 has a number of templates that allow you to create particu-
lar types of projects, such as windows or web applications.

• Among other things, C# Express 2008 provides WYSIWYG support for build-
ing, testing, and debugging graphical user interfaces (GUIs).

• Every window in C# Express 2008 can be resized and moved.

• To run your application, select Start or Start Without Debugging, or press F5 or
Ctrl-F5.

• The Clipboard Ring can hold a number of different selections that you can cycle
through.

• The Find and Replace feature lets you locate text strings in the current file or
other files, using normal text or regular expressions.

• Bookmarks enable you to mark spots in your code so that you can easily find
them later.

• IntelliSense saves you keystrokes and can help you discover methods and
required arguments by (for example) listing possible completions to what you’re
typing.

• The Properties window displays properties for the currently selected item.

There’s your whirlwind tour of the C# Express interface. If you’re new to program-
ming, the IDE probably looks quite intimidating—it has a lot more features and
windows than your average Windows application. As with any Windows applica-
tion, though, you’ll quickly find that you use some of the features quite often, and
those will become second nature, allowing you to ignore the rest until you need
them. We don’t expect you to be an expert on the IDE after just reading this chap-
ter, but we do hope you’re a bit more comfortable with it. Now, enough poking

Test Your Knowledge: Exercises | 45

about in the Toolbox—let’s hammer some nails! It’s time to start learning the basics
of the C# language, starting with types, variables, and constants, and that’s what’s
ahead in Chapter 3.

Test Your Knowledge: Quiz

Question 2-1. What is the difference between a project and a solution?

Question 2-2. How do you move windows in the IDE?

Question 2-3. What does the pushpin do on a window?

Question 2-4. What is the difference between pressing F5 and pressing Ctrl-F5 from
within C# Express 2008?

Question 2-5. What is the Clipboard Ring?

Question 2-6. How do you retrieve items from the Clipboard Ring?

Question 2-7. What is Find Symbol for?

Question 2-8. What are bookmarks?

Question 2-9. What is IntelliSense?

Question 2-10. What is a code snippet?

Test Your Knowledge: Exercises

Exercise 2-1. Insert a bookmark before the Console.Writeline() statement in Hello
World. Navigate away from it and then use the Bookmarks menu item to return to it.

Exercise 2-2. Undock the Solution Explorer window from the right side of the IDE
and move it to the left. Leave it there if you like, or move it back.

Exercise 2-3. Insert a code snippet for a for loop from the Edit ➝ IntelliSense menu
into your Hello World program after the WriteLine() statement. (It won’t do any-
thing for now; you’ll learn about for loops in Chapter 5.)

46

CHAPTER 3

C# Language Fundamentals

Chapter 1 demonstrates a very simple C# program that prints the text string “Hello
World!” to the console screen and provides a line-by-line analysis of that program.
However, even that simple program was complex enough that we had to skip some
of the details. In this chapter, we’ll begin an in-depth exploration of the syntax and
structure of the C# language. The syntax of a language is the order of the keywords,
where you put semicolons, and so forth. The semantics are what you are expressing
in the code, and how your code fits together. Syntax is trivial and unimportant, but
because compilers are absolute sticklers for correct syntax, novice programmers pay
a lot of attention to syntax until they are comfortable. Fortunately, Visual Studio
2008 makes managing syntax much easier so that you can focus on semantics, which
are far more important.

In this chapter, we’ll introduce statements and expressions, the building blocks of
any program. You’ll learn about variables and constants, which let you store values
for use in your program. We’ll also begin an explanation of types, and we’ll take a
look at strings, which you saw briefly in the Hello World program. This is all very
basic stuff, but it’s the foundation you need to start getting fancy. Without variables,
your applications can’t actually process any data. All variables need types, and vari-
ables are used in expressions. You’ll see how neatly this all fits together.

Statements
In C#, a complete program instruction is called a statement and each statement ends
with a semicolon (;). Forgetting a semicolon is a very common mistake for novice
programmers, but Visual Studio will catch you if you do it. Programs consist of
sequences of statements, such as the following:

int myVariable; // a statement
myVariable = 23; // another statement
int anotherVariable = myVariable; // yet another statement

Types | 47

The compiler starts at the beginning of a source code file and reads downward, exe-
cuting each statement in the order in which the compiler encounters it. This would
be entirely straightforward, and terribly limiting, were it not for branching. Branch-
ing allows you to change the order in which statements are evaluated, and even take
different paths depending on the value of your variables, but let’s not get ahead of
ourselves. We’ll get to branching in Chapter 5.

Types
C# is a strongly typed language. That means that every object you create or use in a
C# program must have a specific type. In other words, you must declare the object
to be an integer or a string or a Dog or a Button. Essentially, the type indicates the
characteristics of the object and what it can do.

Types come in two flavors: those that are built into the language (intrinsic types) and
those you create yourself (classes and interfaces, discussed in Chapters 7 and 13). C#
offers a number of intrinsic types, shown in Table 3-1.

Table 3-1. The intrinsic types built into C#

C# type Size (in bytes) .NET type Description

byte 1 Byte Unsigned (values between 0 and 255).

char 2 Char Unicode characters (a modern way of storing most characters,
including international language characters).

bool 1 Boolean True or false.

sbyte 1 SByte Signed (values between –128 and 127).

short 2 Int16 Signed (short) (values between –32,768 and 32,767).

ushort 2 UInt16 Unsigned (short) (values between 0 and 65,535).

int 4 Int32 Signed integer values between –2,147,483,648 and
2,147,483,647.

uint 4 UInt32 Unsigned integer values between 0 and 4,294,967,295.

float 4 Single Floating-point number. Holds the values from approximately +/
–1.5 × 10–45 to approximately +/–3.4 × 1038 with seven sig-
nificant figures.

double 8 Double Double-precision floating-point. Holds the values from approxi-
mately +/–5.0 × 10–324 to approximately +/–1.8 × 10308 with
15 to 16 significant figures.

decimal 12 Decimal Fixed-precision up to 28 digits and the position of the decimal
point. This type is typically used in financial calculations.
Requires the suffix “m” or “M” when you declare a constant.

long 8 Int64 Signed integers ranging from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

ulong 8 UInt64 Unsigned integers ranging from 0 to approximately 1.85 × 1019.

48 | Chapter 3: C# Language Fundamentals

Each type has a name (such as int) and a size (such as 4 bytes). The size tells you
how many bytes each object of this type occupies in memory. Programmers gener-
ally don’t like to waste memory if they can avoid it, but with the cost of memory
these days, you don’t need to be particular about the memory cost of types. Most of
the time, if you’re using whole numbers you’ll use an int, even if a short would be
fine. Likewise, double is the commonly used type for decimal numbers, even though
float is just fine in most cases. The Description column in Table 3-1 lists the mini-
mum and maximum values you can hold in objects of each type.

Each C# type corresponds to an underlying .NET type. Thus, what
C# calls an int, .NET calls an Int32. This is interesting only if you
care about sharing objects across languages.

Intrinsic types aren’t very flexible, although you’ll use them a lot. You can use them
to add two numbers together, and they can display their values as strings. User-
defined types can do a lot more; their abilities are determined by the methods you
create, which we’ll get to in Chapter 8.

Objects of an intrinsic type are called variables, and we’ll talk about those later in
this chapter.

Numeric Types
Most of the intrinsic types are used for working with numeric values (byte, sbyte,
short, ushort, int, uint, float, double, decimal, long, and ulong).

You can divide the numeric types into two sets: unsigned and signed. An unsigned
value (byte, ushort, uint, ulong) can hold only positive values. A signed value (sbyte,
short, int, long) can hold positive or negative values, but in a different range of val-
ues. For example, short and ushort are both 16-bit values, which means they can
hold one of 65,536 possible values (216). The ushort holds only positive (unsigned)
numbers, so the range is from 0 to 65,535 (not 65,536, because you need one spot
for zero). A short is signed, and can hold values from –32,768 to 32,767 (again, not
32,768, because you need one spot for zero).

You also can categorize types into those used for integer values (whole numbers) and
those used for floating-point values (fractional or rational numbers). The byte, sbyte,
ushort, uint, ulong, short, int, and long types all hold whole number values.

The byte and sbyte types are not used very often, and we won’t
describe them in this book.

Types | 49

The double and float types hold fractional values. Although double is larger than
float, and you would think that float would suffice most of the time, the compiler
assumes that any number with a decimal point in it is a double unless you follow the
number with the letter f. That is, 4.7 is assumed to be double, but 4.7f is a float. The
decimal value type was added to the language to support scientific and financial
applications; to use it, you append an m to the end, just as you do with the f for a
float. The float and double types have a very slight amount of imprecision to them
if the values are very large or very small—not something you’ll need to worry about
in this book, certainly, but it might cause problems if you were trying to do very pre-
cise scientific or financial calculations, which is why decimal is there.

Typically, you decide which size integer to use (short, int, or long) based on the
magnitude of the value you want to store. For example, a ushort can only hold val-
ues from 0 through 65,535, whereas a uint can hold values from 0 through
4,294,967,295.

That being said, in real life most of the time you’ll simply declare your numeric vari-
ables to be of type int, unless there is a good reason to do otherwise. (Most program-
mers choose signed types unless they have a good reason to use an unsigned value.
This is, in part, just a matter of tradition.)

Suppose you need to keep track of inventory for a book warehouse. You expect to
house up to 40,000 or even 50,000 copies of each book. A signed short can only hold
up to 32,767 values. You might be tempted to use an unsigned short (which can
hold up to 65,535 values), but it is easier and preferable to just use a signed int (with
a maximum value of 2,147,483,647). That way, if you have a runaway bestseller,
your program won’t break (if you anticipate selling more than 2 billion copies of
your book, perhaps you’ll want to use a long!).

Throughout this book, we will use int wherever it works, even if short
or byte might be usable alternatives. Memory is cheap these days, and
programmer time is expensive. There are circumstances where the dif-
ference in memory usage would be significant (for example, if you are
going to hold 1 billion values in memory), but we’ll keep things sim-
ple by using the int type whenever possible.

Nonnumeric Types: char and bool
In addition to the numeric types, the C# language offers two other types: char and
bool.

The char type is used from time to time when you need to hold a single character.
The char type can represent a simple character (A), a Unicode character (\u0041), or
an escape sequence ('\n'). We won’t discuss Unicode characters in this book, and
you’ll see escape sequences later, where we’ll explain them in context. When you
refer to a char in your code, you need to surround it with single quotes, like this: 'A'.

50 | Chapter 3: C# Language Fundamentals

The one remaining important type is bool, which holds a Boolean value. A Boolean
value is one that is either true or false. Boolean values are used frequently in C#
programming, as you’ll see throughout this book. Virtually every comparison (is
myDog bigger than yourDog?) results in a Boolean value.

The bool type was named after George Boole (1815–1864), an English
mathematician who published An Investigation into the Laws of
Thought, on Which Are Founded the Mathematical Theories of Logic
and Probabilities, and thus created the science of Boolean algebra.

Types and Compiler Errors
The compiler will help you by complaining if you try to use a type improperly. The
compiler complains in one of two ways: it issues a warning or it issues an error.

You are well advised to treat warnings as errors. Stop what you are
doing, figure out why there is a warning, and fix the problem. Never
ignore a compiler warning unless you are certain that you know
exactly why the warning was issued and that you know something the
compiler does not.

To have Visual Studio enforce this for you, follow these steps:

1. Right-click on a project in the Solution Explorer, and select Prop-
erties from the pop-up menu.

2. Click on the Build tab in the Properties window.

3. In the “Treat all warnings as errors” section of the page, select the
All radio button.

Programmers talk about design time, compile time, and runtime. Design time is
when you are designing the program, compile time is when you compile the pro-
gram, and runtime is (surprise!) when you run the program.

The earlier in your development process that you unearth a bug, the better. It is easier
to fix a bug in your logic at design time than to fix the bug once it has been written into
code. Likewise, it is better (and cheaper) to find bugs in your program at compile time
than at runtime. Not only is it better, it is more reliable. A compile-time bug will fail
every time you run the compiler, but a runtime bug can hide. Runtime bugs can slip
under a crack in your logic and lurk there (sometimes for months), biding their time,
waiting to come out when it will be most expensive (or most embarrassing) to you.

It will be a constant theme of this book that you want the compiler to find bugs. The
compiler is your friend (though we admit, at times it feels like your nemesis). The
more bugs the compiler finds, the fewer bugs your users will find.

A strongly typed language such as C# helps the compiler find bugs in your code.
Here’s how: suppose you tell the compiler that milo is of type Dog. Sometime later

WriteLine() and Output | 51

you try to use milo to display text (calling the ShowText method). Oops, Dogs don’t
display text. Your compiler will stop with an error:

Dog does not contain a definition for 'ShowText'

Very nice. Now you can go figure out whether you used the wrong object or you
called the wrong method.

Visual Studio .NET actually finds the error even before the compiler does. When you
try to add a method, as soon as you type the dot character, IntelliSense pops up a list
of valid methods to help you, as shown in Figure 3-1.

When you try to add a method that does not exist, it won’t be in the list. That is a
pretty good clue that you are not using the object properly.

WriteLine() and Output
The .NET Framework provides a useful method for displaying output on the screen
in console applications: System.Console.WriteLine(). How you use this method will
become clearer as you progress through the book, but the fundamentals are straight-
forward. You call the method, and in the parentheses you pass in a string that you
want printed to the console (the screen), as in the Hello World application in
Chapter 1.

That’s useful; a string is fixed text, and you might want to output a value that can
change, depending on the content of your program. For that, you can also pass in
substitution parameters. A substitution parameter is just a placeholder for a value you
want to display. For example, you might pass in the substitution parameter {0} as
part of the string, and then when you run the program, you’ll substitute the value
held in the variable myInt so that its value is displayed where the parameter {0}

appears in the WriteLine() statement.

Figure 3-1. IntelliSense is your friend. When you start to type in a method, IntelliSense helpfully
provides a list of possible methods, to ensure that you pick a valid one.

52 | Chapter 3: C# Language Fundamentals

Here’s how it works. Each substitution parameter is a number between braces, start-
ing with 0 for the first parameter, 1 for the next, and so on. So, if you’re using just
one substitution parameter, it might look like this:

System.Console.WriteLine("Age of student: {0}", myInt);

Notice that you follow the quoted string with a comma and then a variable name.
The value of the variable will be substituted into the parameter. If myInt has the value
15, the statement shown previously causes the following to display:

Age of student: 15

If you have more than one parameter, the variable values will be substituted in the
order they appear in the method, as in the following:

System.Console.WriteLine("Age of first student: {0},
 age of second student: {1}", myInt, myOtherInt);

If myInt has the value 15 and myOtherInt has the value 20, this will cause the follow-
ing to display:

Age of first student: 15, and age of second student: 20.

There are other special characters that you can use to format the output, like this:

System.Console.WriteLine("Student ages:\nFirst student:\t{0}\n
 Second student:\t{1}", myInt, myOtherInt);

This produces output that looks like this:

Student ages:
First student: 15
Second student: 20

The characters that begin with a slash character (\) are called escaped characters. The
slash is a signal to the compiler that what follows is an escaped character. The code
and the slash together are considered a single character. The escaped character \t

indicates a tab, and the character \n indicates a newline (a line feed, or a carriage
return). The string here will print the characters Student ages: followed by a newline
(\n), then the text First student: followed by a tab (\t), then the value of the first
parameter ({0}), and a newline character (\n), then the text Second student: fol-
lowed by a tab (\t), and finally the value of the second parameter ({1}).

You’ll see a great deal more about WriteLine() in later chapters.

Variables and Assignment
A C# variable is roughly the same as the variables you remember from your ninth
grade algebra class: it’s a placeholder for a value. To put it more technically, a vari-
able is an instance of an intrinsic type (such as int) that can hold a value:

int myVariable = 15;

Variables and Assignment | 53

You initialize a variable by writing its type (int in this case), its identifier, and then
assigning a value to that variable. The equals sign (=) is the operator for assignment.
You’re not defining an equation in a mathematical sense; you’re telling the compiler
to set the contents of the variable on the left of the operator to the value of whatever
is on the right of the operator. In this specific case, you’re saying “myVariable is an
int, and it’s assigned the value of 15.” There are other operators, and we’ll cover
them in Chapter 4, but you need to know about assignment now because variables
aren’t much good without it.

An identifier is just an arbitrary name you assign to a variable, method, class, or other
element. In this case, the variable’s identifier is myVariable.

You can define variables without initializing them; just leave off the assignment and
the value:

int myVariable;

You can then assign a value to myVariable later in your program:

int myVariable;
// some other code here
myVariable = 15; // assign 15 to myVariable

You can also change the value of a variable later in the program. That is why they’re
called variables; their values can vary, and that’s what makes them useful.

int myVariable;
// some other code here
myVariable = 15; // assign 15 to myVariable
// some other code here
myVariable = 12; // now it is 12

Technically, a variable is a named storage location (that is, stored in memory) with a
type. After the final line of code in the previous example, the value 12 is stored in the
named location myVariable.

Example 3-1 illustrates the use of variables. To test this program, open Visual Studio
.NET and create a console application, just as you did with Hello World in
Chapter 1. Type in the code shown in bold in Example 3-1.

Example 3-1. You initialize a variable by declaring its type and assigning it a value; later, you can
assign it a different value

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_3_1_ _ _ _Using_variables
{
 class Values
 {
 static void Main()

54 | Chapter 3: C# Language Fundamentals

Press Ctrl-F5, or select Debug ➝ Start Without Debugging to build and run this
application. As we mentioned in Chapter 1, if you press F5, the console window will
disappear almost immediately; using Ctrl-F5 allows the window to stick around so
that you can read it. The output looks like this:

Initialized, myInt: 7
After assignment, myInt: 5

Example 3-1 initializes the variable myInt to the value 7, displays that value, reas-
signs the variable with the value 5, and displays it again.

Definite Assignment
C# requires definite assignment; you have to initialize a variable, or assign a value to
it, before you can “use” it—that is, before you can output it or manipulate it in any
way. To test this rule, change the line that initializes myInt in Example 3-1 to:

int myInt;

Save the revised program shown in Example 3-2.

 {
 int myInt = 7;
 System.Console.WriteLine("Initialized, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("After assignment, myInt: {0}", myInt);
 }
 }
}

Example 3-2. You have to initialize variables before you can use them; this code won’t compile

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_3_2_ _ _ _Definite_Assignment
{
 class Values
 {
 static void Main()
 {
 int myInt;
 System.Console.WriteLine("Initialized, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("After assignment, myInt: {0}", myInt);
 }
 }
}

Example 3-1. You initialize a variable by declaring its type and assigning it a value; later, you can
assign it a different value (continued)

Variables and Assignment | 55

When you try to compile Example 3-2, the C# compiler will open the Error List win-
dow in the IDE, and will display the following error message:

Use of unassigned local variable 'myInt'

You can’t use an uninitialized variable in C#; doing so violates the rule of definite
assignment. In this case, “using” the variable myInt means passing it to WriteLine().

So, does this mean you must initialize every variable? No, but if you don’t initialize
your variable, you must assign a value to it before you attempt to use it. Example 3-3
illustrates a corrected program.

You can even assign the same value to multiple variables, like this:

int a, b, c, d;
a = b = c = d = 5;

In this case, a, b, c, and d would all have the value 5. This works because the C#
compiler performs the rightmost assignment first; that is, d = 5. That assignment
itself returns a value, the value 5. The compiler then assigns that returned value to c.
That second assignment also returns a value, and so on, until all the variables have
been assigned.

Implicitly Typed Variables
There’s one additional type of variable we can discuss, now that you understand
assignment: the implicitly typed variable. The C# compiler can determine the type of
a variable by analyzing the type of the value that you assign to it. For example, look
at these assignment statements:

Example 3-3. This code fixes Example 3-2; you don’t have to initialize the variable when you create
it, but you do have to assign some value to it before you use it

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_3_3_ _ _ _Definite_assignment
{
 class Values
 {
 static void Main()
 {
 int myInt;
 //other code here...
 myInt = 7; // assign to it
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("Reassigned, myInt: {0}", myInt);
 }
 }
}

56 | Chapter 3: C# Language Fundamentals

var firstVariable = 6;
var secondVariable = 3.5;
var thirdVariable = "I'm a string!";

The compiler assigns firstVariable as type int, secondVariable as type double, and
thirdVariable as type string. You don’t have to explicitly assign the type.

Be very clear, though: these variables are typed, and if you later try to assign an
object of the wrong type to them you will generate a compiler error. And once the
implicit type is set, it cannot be changed, not even explicitly. If you try to do some-
thing like this, you’ll get an error:

firstVariable = secondVariable;

Just as if you had explicitly declared firstVariable to be of type int, once it is
implicitly typed, you cannot assign the value of a variable of type double to it,
because you would lose part of the value, as you’ll see in Chapter 4.

You may be wondering: if the compiler can determine the types of the variables for
you, why not just use var all the time, instead of bothering with explicitly declaring
types? A key reason is that implicit types make your code harder to read, and thus
harder to maintain. This is more than enough reason to avoid using var except where
needed. A second reason is that the compiler may guess incorrectly, and thus intro-
duce small but nasty errors into your code. If you were writing a math program, and
you used var with your assignments like this:

var a = 12;
var b = 7;

the compiler will decide that both a and b should be of type int. But if you were
thinking they should be of type double, and later try something like this:

 a = 7.4;
 b = 5.5;

you’ll get an error, because the compiler can’t read your mind.

Casting
You can cause the compiler to ignore its rules of type safety and treat an object of
one type as though it were an object of another type, if the types are compatible. This
is called casting. Casting can be either implicit or explicit.

An implicit conversion happens automatically; the compiler takes care of it for you. If
you have a short, and you assign it to a variable of type int, the compiler automati-
cally (and silently) casts it for you. You don’t have to take any action. This is safe,
because an int variable can hold any value that might have been in a short variable.

short myShort = 5;
// other code here...
int myint = myShort; // implicit conversion

Casting | 57

Programmers often talk about this as though the short were being turned into an
int. What is actually happening is that the compiler is accepting a short where it
expects to find an int, because that is a safe thing to do.

Implicit conversion works only when there is no possibility of loss of data, though.
Take a look at this:

int myInt;
double myDouble = 4.7;
myInt = myDouble;

If you try that assignment, the compiler gives you an error message because you can’t
squeeze a decimal number into an integer space. You would lose the fractional part (.7).
In fact, even if you wrote:

int myInt;
double myDouble = 4
myInt = myDouble;

the compiler would still generate an error. Although there is no fractional part to lose
in this case (the double is holding a whole number), the compiler can’t take the
chance that something might happen that could change the conditions, so it simply
rejects all assignments of a double to an int.

This is where explicit conversions come in—when there is danger of losing data. For
example, although the compiler will let you convert an int to a double implicitly
(there’s no chance you can lose data), it will not let you implicitly convert a double to
an int, as you’ve seen.

If you happen to know that it is perfectly safe in your particular situation to make the
assignment—if you know what you are doing—you can force the compiler to accept
the assignment with an explicit cast.

Again, some programmers talk about “casting the double into an integer,” but you’re
not really changing either variable at all; you’re just instructing the compiler to
ignore its type-safety rules for this moment and accept the assignment of the value
held by the double variable to the integer variable. The compiler will comply, and it
will in fact throw away any fractional part.

You specify an explicit conversion by placing the type you want to assign to in paren-
theses, immediately in front of the variable with the risky value:

int myDouble = 4.7;
// other code here...
int myInt = (int) myDouble; // explicit conversion

The keyword (int) is necessary to make the explicit conversion; without it the com-
piler will generate an error. Notice, though, that in this case, you’re slicing off the
fractional value of the double; and myInt will have only the integral part (4), which is
why we say you should know what you’re doing.

58 | Chapter 3: C# Language Fundamentals

Sometimes you need an explicit conversion (though not often), but it is usually when
you are taking an object out of a collection and you need to convert it to its “real”
type, all of which we’ll discuss in a later chapter. Even then, you test to make sure
the object you have is what you think it is. With this sort of explicit conversion, you
are almost guaranteed to lose value sooner or later.

Constants
Variables are a powerful tool, but sometimes you want to use a defined value, one
whose value you want to ensure remains constant. A constant is like a variable in that
it can store a value. However, unlike a variable, you cannot change the value of a
constant while the program runs.

For example, you might need to work with the Fahrenheit freezing and boiling
points of water in a program simulating a chemistry experiment. Your program will
be clearer if you name the variables that store these values FreezingPoint and
BoilingPoint, but you do not want to permit their values to be changed while the
program is executing. The solution is to use a constant. Constants come in three
flavors: literals, symbolic constants, and enumerations.

Literal Constants
A literal constant is just a value. For example, 32 is a literal constant. It does not have
a name; it is just a literal value. And you can’t make the value 32 represent any other
value. The value of 32 is always 32. You can’t assign a new value to 32, and you can’t
make 32 represent the value 99 no matter how hard you might try. You’ll use literal
constants a lot, but you probably won’t think of them as such.

Symbolic Constants
Symbolic constants assign a name to a constant value. You declare a symbolic con-
stant using the following syntax:

const type identifier = value;

The const keyword is followed by a type, an identifier, the assignment operator (=),
and the value to assign to the constant.

This is similar to declaring a variable except that you start with the keyword const

and symbolic constants must be initialized. Once initialized, a symbolic constant
cannot be altered. For example, in the following declaration, 32 is a literal constant
and FreezingPoint is a symbolic constant of type int:

const int FreezingPoint = 32;

Example 3-4 illustrates the use of symbolic constants.

Constants | 59

Example 3-4 creates two symbolic integer constants: FreezingPoint and BoilingPoint.
(See the “Naming Conventions” sidebar for a discussion of how to name symbolic
constants.)

These constants serve the same purpose as using the literal values 32 and 212 for the
freezing and boiling points of water, respectively, in expressions that require them.
However, because the constants have names, they convey far more meaning. It might
seem easier to just use the literal values 32 and 212 instead of going to the trouble of
declaring the constants, but if you decide to switch this program to Celsius, you can
reinitialize these constants at compile time to 0 and 100, respectively, and all the rest
of the code should continue to work.

If you try to run the program shown in Example 3-4, you’ll receive the following error:

The left-hand side of an assignment must be a variable, property or indexer

That’s because the assignment in this line is illegal:

BoilingPoint = 21;

You can’t assign a new value to a constant, so the compiler complains. To fix this
problem, simply comment out the offending line by adding two slashes in front of it,
like this:

// BoilingPoint = 21;

Now the program runs as expected, without an error.

Example 3-4. This program defines two symbolic constants and outputs their values; it won’t
compile, though, because of the attempt to assign a new value to a constant

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_3_4_ _ _ _Symbolic_Constants
{
 class Values
 {
 static void Main()
 {
 const int FreezingPoint = 32; // degrees Fahrenheit
 const int BoilingPoint = 212;

 System.Console.WriteLine("Freezing point of water: {0}",
 FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 BoilingPoint);

 BoilingPoint = 21;
 }
 }
}

60 | Chapter 3: C# Language Fundamentals

Enumerations
Enumerations provide a powerful alternative to literal or simple symbolic constants.
An enumeration is a distinct value type, consisting of a set of named constants (called
the enumerator list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might want to add a number of other useful constants to this list as well, such
as:

const int LightJacketWeather = 60;
const int SwimmingWeather = 72;
const int WickedCold = 0;

Notice, however, that this process is somewhat cumbersome; also, this syntax
doesn’t show any logical connection among these various constants—they’re just a set
of unrelated values. You know that these constants all refer to temperature, but the
compiler has no way of knowing that. C# provides an alternative construct, the enu-
meration, which allows you to group logically related constants, as in the following:

enum Temperatures
{
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWeather = 72,
 BoilingPoint = 212,
}

Naming Conventions
Microsoft has issued instructions on how you should name the variables, constants,
and other objects in your program. They define two types of naming conventions:
Camel notation and Pascal notation.

In Camel notation, names begin with a lowercase letter. Multiword names (such as
“my button”) are written with no spaces and no underscore and with each word after
the first capitalized. Thus, the correct name for “my button” is myButton.

Pascal notation is just like Camel notation except that the first letter is also uppercase
(FreezingPoint).

Microsoft suggests that variables be written with Camel notation and constants with
Pascal notation. In later chapters, you’ll learn that member variables are named using
Camel notation, whereas methods and classes are named using Pascal notation.

Constants | 61

The entries in the enumeration are separated by commas. Many pro-
grammers like to leave a comma after the last entry in an enumeration
as a convenience for adding more values later. Other programmers
find this, at best, sloppy. The code will compile either way.

The syntax for specifying an enumeration uses the enum keyword, as follows:

enum identifier [:base-type] {enumerator-list};

In a specification statement such as the preceding example, the square
brackets indicate an optional element. Thus, you can declare an enum
with no base type, simply by leaving it out (leave out the square brack-
ets as well).

There are also optional attributes and modifiers you can use, but you don’t need
them right now. An enumeration begins with the keyword enum, which is generally
followed by an identifier; in this case, Temperatures:

enum Temperatures

The base type is the underlying type for the enumeration. You might specify that you
are declaring constant ints, constant longs, or something else. If you leave out this
optional value (and often you will), it defaults to int, but you are free to use any of
the integral types (ushort, long) except for char. For example, the following frag-
ment declares an enumeration with unsigned integers (uint) as the base type:

enum ServingSizes : uint
{
 Small = 1,
 Regular = 2,
 Large = 3
}

Notice that an enum declaration ends with the enumerator list, which contains the
constant assignments for the enumeration, each separated by a comma. Example 3-5
rewrites Example 3-4 to use an enumeration.

Example 3-5. An enumeration represents a set of values that you don’t want to change while your
program is running

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_3_5_ _ _ _Enumerations
{
 class Values
 {
 // declare the enumeration

62 | Chapter 3: C# Language Fundamentals

In Example 3-5, you declare an enumerated constant called Temperatures. When you
want to use any of the values in an enumeration in a program, the values of the enu-
meration must be qualified by the enumeration name. That is, you can’t just refer to
FreezingPoint; instead, you use the enumeration identifier (Temperature) followed by
the dot operator and then the enumerated constant (FreezingPoint). This is called
qualifying the identifier FreezingPoint. Thus, to refer to the FreezingPoint, you use
the full identifier Temperature.FreezingPoint.

You might want to display the value of an enumerated constant to the console, as in
the following:

Console.WriteLine("The freezing point of water is {0}",
 (int) Temperature.FreezingPoint);

To make this work properly, you must cast the constant to its underlying type (int). In
this case, you are saying, “Treat this enumerated constant as an int.” Because you
know the underlying type is int, this is safe to do. (See “Casting” earlier in this chapter.)

In Example 3-5, the values in the two enumerated constants FreezingPoint and
BoilingPoint are both cast to type int; then that integer value is passed to
WriteLine() and displayed.

Each constant in an enumeration corresponds to a numerical value. In Example 3-5,
each enumerated value is an integer. If you don’t specifically set it otherwise, the
enumeration begins at 0 and each subsequent value counts up from the previous.
Thus, if you create the following enumeration:

enum SomeValues
{

 enum Temperatures
 {
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWeather = 72,
 BoilingPoint = 212,
 }

 static void Main()
 {
 System.Console.WriteLine("Freezing point of water: {0}",
 (int)Temperatures.FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 (int)Temperatures.BoilingPoint);
 }
 }
}

Example 3-5. An enumeration represents a set of values that you don’t want to change while your
program is running (continued)

Whitespace | 63

 First,
 Second,
 Third = 20,
 Fourth
}

the value of First will be 0, Second will be 1, Third will be 20, and Fourth will be 21.

Strings
It is nearly impossible to write a C# program without creating strings, and we
wouldn’t want to deprive you of them here. Strings are actually complex classes that
we’ll cover much more thoroughly in Chapter 15. For now, though, all you need to
know is that a string object holds a series of characters.

You declare a string variable using the string keyword much as you would create an
instance of any type:

string myString;

You specify a string literal by enclosing it in double quotes:

"Hello World"

You already used a string literal back in Chapter 1, in the Hello World example.

You’ll frequently initialize a string variable by assigning it a string literal:

string myString = "Hello World";

Whitespace
In the C# language, spaces, tabs, and newlines are considered to be whitespace (so
named because you see only the white of the underlying “page”). Extra whitespace is
generally ignored in C# statements. Thus, you can write:

myVariable = 5;

or:

myVariable = 5 ;

and the compiler will treat the two statements as identical. The key is to use
whitespace to make the program more readable to the programmer; the compiler is
indifferent.

The exception to this rule is that whitespace within a string is treated as literal; it is
not ignored. If you write:

Console.WriteLine("Hello World")

each space between “Hello” and “World” is treated as another character in the
string. (In this case, there is only one space character.)

64 | Chapter 3: C# Language Fundamentals

Problems arise only when you do not leave space between logical program elements
that require it. For instance, the expression:

int myVariable = 5 ;

is the same as:

int myVariable=5;

but it is not the same as:

intmyVariable =5;

The compiler knows that the whitespace on either side of the assignment operator is
extra, but at least some whitespace between the type declaration int and the vari-
able name myVariable is not extra; it is required.

This is not surprising; the whitespace allows the compiler to parse the keyword int

rather than some unknown term intmyVariable. You are free to add as much or as lit-
tle whitespace between int and myVariable as you care to, but there must be at least
one whitespace character (typically a space or tab).

Visual Basic programmers take note: in C#, the end-of-line has no
special significance. Statements are ended with semicolons, not new-
line characters. There is no line continuation character because none is
needed.

Summary
• A complete program instruction is called a statement. Each statement ends with

a semicolon (;).

• All objects, variables, and constants must have a specific type.

• Most of the intrinsic types are used for working with numeric values. You will
commonly use int for whole numbers and double or float for fractional values.

• The char type is used for holding a single character.

• The bool type can hold only the value true or false.

• A variable is an instance of a type. You initialize a variable by creating it with an
assigned value.

• You can use the var keyword to create a variable without a type, but only if you
assign it immediately. The complier will determine the type of the variable from
the value assigned.

• You can cast a value from one type to another as long as the compiler knows
how to turn the original type into the cast-to type. If no information can be lost,
you may cast from one type to another implicitly. If information may be lost,
you must cast explicitly. You accomplish the cast by prefacing the variable with
the name of the type you want to cast to, in parentheses.

Test Your Knowledge: Quiz | 65

• A constant is similar to a variable, but the value cannot be changed while the
program is running. Literal constants are simply values used on their own. Sym-
bolic constants, indicated with the const keyword, are values with assigned
names, which you use like variables, but the values cannot change.

• An enumeration is a value type that consists of a set of named constants.

• A string object holds a series of characters (such as a word or sentence). A string
literal is simply text enclosed by double quotes. You can assign a string to a
string variable, just as you would make any other assignment.

• Extra whitespace (spaces, tabs, and newline characters) is ignored by the com-
piler, unless it appears within a string.

We promised you fundamentals in this chapter, and that’s what you got. Just about
every programming language you want to learn starts with data types, variables, and
assignment. Without variables to hold your data, there isn’t much to program with.
So, now you know how to hold onto data within the bounds of your program. But
what can you do with it? At the moment, you know how to print it out to the screen,
and that’s about it. That will change in Chapter 4. There, we’ll show you how to
manipulate the data with some basic operators, just like you remember from math
class. We’ll also show you how to compare variables too, which may not sound like
much, but it’s critically important, as you’ll see in Chapter 5.

Test Your Knowledge: Quiz

Question 3-1. What defines a statement in C#?

Question 3-2. What values can a bool type have?

Question 3-3. What are the two kinds of types in C#, and what’s the difference
between them?

Question 3-4. What is the difference between a float and a double?

Question 3-5. What’s the definition of a variable?

Question 3-6. What does definite assignment mean?

Question 3-7. Which of the following code statements will compile?

 int myInt = 25;
 long myLong = myInt;
 int newInt = myLong;

66 | Chapter 3: C# Language Fundamentals

Question 3-8. For each of the following pieces of data, which variable type would you
use, and which should be represented with constants?

• Your age in years

• The speed of light in meters per second

• The number of widgets in your warehouse

• The amount of money in your bank account

• The text of the U.S. Declaration of Independence

Question 3-9. Given the following declaration, how would you refer to the constant
for Green and what would its value be?

enum WavelengthsOfLight
{
 Red = 7000,
 Orange = 6200,
 Yellow = 5800,
 Green = 5300,
 Blue = 4700,
 Violet = 4200
}

Question 3-10. How do you indicate a string literal?

Test Your Knowledge: Exercises

Exercise 3-1. We’ll start easy for this project. Write a short program that creates five
variables, one of each of the following types: int, float, double, char, and string.
Name the variables whatever you like. Initialize the variables with the following values:

• int: 42

• float: 98.6

• double: 12345.6789

• char: Z

• string: The quick brown fox jumped over the lazy dogs.

Then, output the values to the console.

Exercise 3-2. As you gain more experience with programming, you’ll frequently find
yourself adapting some code that you wrote before, instead of writing a new pro-
gram from scratch—and there’s no time like the present to start. Modify the program
in Exercise 3-1 so that after you’ve output the values of the variables the first time,
you change them to the following:

Test Your Knowledge: Exercises | 67

• int: 25

• float: 100.3

• double: 98765.4321

• char: M

• string: A quick movement of the enemy will jeopardize six gun boats.

Then output the values to the console a second time.

Exercise 3-3. Write a new program to declare a constant double. Call the constant Pi,
set its value to 3.14159, and output its value to the screen. Then change the value of Pi
to 3.1 and output its value again. What happens when you try to compile this program?

Exercise 3-4. Write a new program and create a constant enumeration with constants
for each month of the year. Give each month the value equal to its numeric place in
the calendar, so January is 1, February is 2, and so on. Then output the value for
June, with an appropriate message.

68

CHAPTER 4

Operators

An operator is a symbol (such as =, +, or >) that causes C# to take an action. That
action might be an assignment of a value to a variable, the addition of two values, a
comparison of two values, and so forth. In that respect, most C# operators aren’t
much different from the ones you remember from math class, and they’re intended
to be just that intuitive. There are some special operators whose meanings aren’t
obvious, and we’ll cover those, too.

In the preceding chapter, you were introduced to the assignment operator. The sin-
gle equals sign (=) is used to assign a value to a variable; in this case, the value 15 to
the variable myVariable:

myVariable = 15;

C# has many different operators that you’ll learn about in this chapter. There’s a full
set of mathematical operators, and a related set of operators just for incrementing and
decrementing in integral values by one, which actually are quite useful for controlling
loops, as you’ll learn in Chapter 5. Operators are also available for comparing two val-
ues that are used in the branching statements, as we’ll also demonstrate in Chapter 5.

Expressions
Any statement that returns a value is an expression. You’ve already seen the assign-
ment expression, which we’ll discuss in more detail in a moment, and we’ve men-
tioned that the assignment expression returns the value that’s assigned. In this chapter,
you’ll see a number of mathematical expressions, which return a computed value, and
also comparison expressions, which return the Boolean value true or false.

Mathematical Operators | 69

The Assignment Operator (=)
As you saw in Chapter 3, the assignment operator causes the operand on the left side
of the operator to have its value changed to whatever is on the right side of the oper-
ator. The following expression assigns the value 15 to myVariable:

myVariable = 15;

The operand on the right doesn’t have to be a constant; it can be another variable.
For example, if myVariable is set to 15, you can then write this:

myOtherVariable = myVariable;

This means that myOtherVariable is now equal to the value in myVariable, which is
15. Remember that in assignment, it’s the variable on the left that gets the assigned
value.

The assignment operator also allows you to chain assignments, assigning the same
value to multiple variables, as follows:

myOtherVariable = myVariable = 15;

The preceding statement assigns 15 to myVariable, and then also assigns the value
(15) to myOtherVariable. This works because the statement:

myVariable = 15;

is an expression; it evaluates to the value assigned. That is, the expression:

myVariable = 15;

itself evaluates to 15, and it is this value (15) that is then assigned to
myOtherVariable.

It is important not to confuse the assignment operator (=) with the
equality, or equals, operator (==), which has two equals signs and is
described later in the chapter. The assignment operator does not test
for equality; it assigns a value.

Mathematical Operators
C# uses five mathematical operators: four for standard calculations and one to
return the remainder when dividing integers. The following sections consider the use
of these operators.

70 | Chapter 4: Operators

Simple Arithmetic Operators (+, –, *, /)
C# offers four operators for simple arithmetic: the addition (+), subtraction (–), mul-
tiplication (*), and division (/) operators. The + and – operators are obvious, and
work as you might expect. The * operator for multiplication may look a bit odd if
you’re not used to it, but there’s nothing else special about it. Division, however, is
slightly unusual, depending on the types you’re dividing.

When you divide two integers, C# divides like a child in the third grade: it throws
away any fractional remainder. Thus, dividing 17 by 4 returns a value of 4 (C# dis-
cards the remainder of 1).

This limitation is specific to integer division. If you do not want the fractional part
thrown away, you can use one of the types that support decimal values, such as
float or double. Division between two floats (using the / operator) returns a decimal
answer. Integer and floating-point division is illustrated in Example 4-1.

Example 4-1. Integer division is different from float division; in integer division, C# discards the
remainder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_4_1_ _ _ _Integer_and_Float_Division
{
 class Program
 {
 public static void Main()
 {
 int smallInt = 5;
 int largeInt = 12;
 int intQuotient;
 intQuotient = largeInt / smallInt;
 Console.WriteLine("Dividing integers. {0} / {1} = {2}",
 largeInt, smallInt, intQuotient);

 float smallFloat = 5;
 float largeFloat = 12;
 float FloatQuotient;
 FloatQuotient = largeFloat / smallFloat;
 Console.WriteLine("Dividing floats. {0} / {1} = {2}",
 largeFloat, smallFloat, FloatQuotient);

 }
 }
}

Mathematical Operators | 71

The output looks like this:

Dividing integers. 12 / 5 = 2
Dividing floats. 12 / 5 = 2.4

The Modulus Operator (%)
Of course, you might want to calculate the remainder from an integer division, not
throw it away. For that, C# provides a special operator, modulus (%), to retrieve the
remainder. For example, the statement 17%4 returns 1 (the remainder after integer
division).

You read that statement as “Seventeen modulo four equals one” or,
for short, “Seventeen mod four.”

Example 4-2 demonstrates the effect of division on integers, floats, doubles, and dec-
imals. Notice the escaped characters used in the output, which we discussed in
“WriteLine() and Output” in Chapter 3.

Example 4-2. The modulus operator (%) is what you use to get the remainder from an integer
division operation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_4_2_ _ _ _Modulus_operator
{
 class ValuesProgram
 {
 static void Main()
 {
 int firstInt, secondInt;
 float firstFloat, secondFloat;
 double firstDouble, secondDouble;
 decimal firstDecimal, secondDecimal;

 firstInt = 17;
 secondInt = 4;
 firstFloat = 17;
 secondFloat = 4;
 firstDouble = 17;
 secondDouble = 4;
 firstDecimal = 17;
 secondDecimal = 4;
 Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}",
 firstInt / secondInt, firstFloat / secondFloat);
 Console.WriteLine("double:\t\t{0}\ndecimal:\t{1}",
 firstDouble / secondDouble, firstDecimal / secondDecimal);

72 | Chapter 4: Operators

The output looks like this:

Integer: 4
float: 4.25
double: 4.25
decimal: 4.25
Remainder(modulus) from integer division: 1

The modulus operator is more than a curiosity; it greatly simplifies
finding every nth value, as you’ll see in Chapter 5.

Increment and Decrement Operators
You’ll often find yourself needing to manipulate the value in a variable, and then
store that result back in the original variable. Suppose, for example, that you have a
variable inventory, which you use to keep track of the quantity of widgets you have
in your warehouse. You wouldn’t want to have to create new variables every time
inventory increases or decreases; you want the current value to always be available in
inventory. C# provides several operators for just these kinds of calculations.

The Calculate and Reassign Operators
Suppose you want to increase the mySalary variable by 5,000 (congratulations on
your raise!). You can do this by writing:

mySalary = mySalary + 5000;

In simple arithmetic, this would make no sense, but that’s because it’s not an equa-
tion, it’s a C# assignment expression. In C#, this line means “add 5,000 to the value
in mySalary, and assign the sum back to mySalary.” Thus, after this operation com-
pletes, mySalary will have been incremented by 5,000. You can perform this kind of
assignment with any mathematical operator:

mySalary = mySalary * 5000;
mySalary = mySalary - 5000;

and so forth.

 Console.WriteLine("\nRemainder (modulus) from integer division:\t{0}",
 firstInt % secondInt);

 }
 }
}

Example 4-2. The modulus operator (%) is what you use to get the remainder from an integer
division operation (continued)

Increment and Decrement Operators | 73

The need to perform this kind of manipulation is so common that C# includes spe-
cial operators for self-assignment. These operators are +=, -=, *=, /=, and %=, which,
respectively, combine addition, subtraction, multiplication, division, and modulus
with self-assignment. Thus, you can write the previous three examples as:

mySalary += 5000;
mySalary *= 5000;
mySalary -= 5000;

These three instructions, respectively, increment mySalary by 5,000, multiply
mySalary by 5,000, and subtract 5,000 from the mySalary variable.

Increment or Decrement by 1
You may have noticed from the preceding section that C# developers like to save
keystrokes. Another mathematical operation you’ll use a lot is incrementing and dec-
rementing by exactly 1. You’ll find that you need counters of all sorts, starting with
loop controllers in Chapter 5. C# provides two additional special operators for these
purposes: increment (++) and decrement (--).

So, if you want to increment the variable myAge by 1, you can write:

myAge++;

This is equivalent to writing either of the following:

myAge = myAge + 1;
myAge += 1;

The Prefix and Postfix Operators
To complicate matters further, you might want to increment a variable and assign
the results to a second variable:

resultingValue = originalValue++;

That raises a question: do you want to assign before you increment the value, or
after? In other words, if originalValue starts out with the value 10, do you want to
end with both resultingValue and originalValue equal to 11, or do you want
resultingValue to be equal to 10 (the original value) and originalValue to be equal
to 11?

C# offers two specialized ways to use the increment and decrement operators: prefix
and postfix. The way you use the ++ operator determines the order in which the
increment/decrement and assignment take place.

To use the prefix operator to increment, place the ++ symbol before the variable
name; to use the postfix operator to increment, place the ++ symbol after the vari-
able name:

result = ++original; // prefix
result = original++; // postfix

74 | Chapter 4: Operators

It is important to understand the different effects of prefix and postfix, as illustrated
in Example 4-3. Note the output.

The output looks like this:

After prefix: 11, 11
After postfix: 12, 11

Look at the prefix increment from Example 4-3 again:

result = ++original;

The semantics of the prefix increment operator are “increment the value of original
and then assign the incremented value to result.” So, original starts with a value of
10, you increment that to 11, and assign it to result. In the end, both variables have
the value of 11.

Now look at the postfix increment:

result = original++;

The semantics here are “assign the value of original to result, and then increment
original.” The value of original is 11 at this point, which gets assigned to result,
and then original is incremented.

The prefix and postfix operators work the same way with the decrement operators,
for the same reasons, as shown in Example 4-4. Again, note the output.

Example 4-3. The prefix and postfix operators behave slightly differently; the prefix operator
increments before you assign; the postfix operator assigns, then increments

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_4_3_ _ _ _Prefix_and_Postfix
{
 class Program
 {
 static void Main()
 {
 int original = 10;
 int result;

 // increment then assign
 result = ++original;
 Console.WriteLine("After prefix: {0}, {1}", original, result);

 // assign then increment
 result = original++;
 Console.WriteLine("After postfix: {0}, {1}", original, result);
 }
 }
}

Relational Operators | 75

The output looks like this:

After prefix: 9, 9
After postfix: 8, 9

The increment operators are meant to be a convenient shortcut to save you key-
strokes, and as you go through this book, you’ll see them used in various common
ways, such as controlling loops. Remember, though, that one of the goals of good
programming is readability. If you overuse the prefix and postfix operators in an
attempt to be efficient with your typing, but six months from now you’re trying to
puzzle out what your code does and how, you haven’t really saved any time. If you
think that using these operators will make your code confusing, go ahead and write
out the expression the long way. You may thank yourself later.

Relational Operators
Relational operators compare two values and then return a Boolean value (true or
false, as described in Chapter 3). The greater than operator (>), for example, returns
true if the value on the left of the operator is greater than the value on the right.
Thus, 5>2 returns the value true, whereas 2>5 returns the value false.

Example 4-4. Decrementing with the prefix and postfix operators works the same as incrementing

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_4_4_ _ _ _Decrement_Operators
{
 using System;
 class Program
 {
 static void Main()
 {
 int original = 10;
 int result;

 // increment then assign
 result = --original;
 Console.WriteLine("After prefix: {0}, {1}", original, result);

 // assign then increment
 result = original--;
 Console.WriteLine("After postfix: {0}, {1}", original, result);
 }
 }
}

76 | Chapter 4: Operators

The relational operators for C# are shown in Table 4-1. This table assumes two vari-
ables: bigValue and smallValue, in which bigValue has been assigned the value 100,
and smallValue the value 50.

Each of these relational operators acts as you might expect. Notice that most of these
operators are composed of two characters. For example, the “greater than or equal
to” operator (>=) is made up of the greater-than symbol (>) and the equals sign (=).
The symbols must appear in that order for the operator to be valid; =< isn’t a valid
operator, and => is a different operator altogether, but one you won’t see until much
later in the book.

Notice also that the equals operator is made up of two equals signs (==) because the
single equals sign alone (=) is reserved for the assignment operator.

A very common beginner mistake is to confuse the assignment opera-
tor (=) with the equals operator (==). Even experienced programmers
do this from time to time. Just remember that the latter has two equals
signs, and the former only one.

The C# equals operator (==) tests for equality between the objects on either side of
the operator. This operator evaluates to a Boolean value (true or false). Thus, the
statement:

myX == 5;

evaluates to true if and only if the myX variable has a value of 5.

Table 4-1. C# relational operators (assumes bigValue = 100 and smallValue = 50)

Name Operator Given this statement The expression evaluates to

Equals == bigValue == 100
bigValue == 80

True
False

Not equals != bigValue != 100
bigValue != 80

False
True

Greater than > bigValue >
smallValue

True

Greater than or equal to >= bigValue >=
smallValue
smallValue >=
bigValue

True

False

Less than < bigValue <
smallValue

False

Less than or equal to <= smallValue <=
bigValue
bigValue <=
smallValue

True

False

Logical Operators and Conditionals | 77

Logical Operators and Conditionals
As you program, you’ll often want to test whether a condition is true; for example,
using the if statement, which you’ll see in the next chapter. C# provides a set of log-
ical operators for this: and, or, and not. These operators work with the Boolean vari-
ables introduced in Chapter 3. Remember that a bool variable can hold only one of
two values: true or false. Boolean expressions can be a bit confusing if you’re not
used to them, but they’re critical to controlling the flow of your program, as you’ll
learn in Chapter 5. Let’s take this slowly, with some examples. Start with three bool

variables:

bool p = true;
bool q = false;
book r = true;

The variable p, by itself, evaluates to true, as does r, and q by itself evaluates to
false. Easy enough. The and operator, which uses the symbol &&, evaluates to true

only if both variables are true:

p && q // evaluates false
p && r // evaluates true

The or operator, which uses the symbol ||, evaluates to true if either variable is true:

p || q // evaluates true

The only way for an or expression to evaluate to false is if both variables are false.
Of course, if both variables are true, the expression still evaluates to true.

The not operator is slightly different; it operates on only a single variable, and evalu-
ates to the opposite of the value of the variable:

!p // evaluates false
!q // evaluates true

You may have noticed that the and and or operators use doubled sym-
bols (&& and ||) instead of single ones (& and |). The single symbols
are for logical or bitwise operations, which you don’t need to bother
with in this chapter.

Let’s make things a bit more complicated. Often you will want to test whether two
conditions are true, whether only one is true, or whether neither is true. An individ-
ual expression is enclosed in parentheses, and that expression is evaluated before
anything else. Table 4-2 shows some more examples. The examples in this table
assume two variables, x and y, in which x has the value 5 and y has the value 7.

78 | Chapter 4: Operators

The first line in Table 4-2 uses the and operator:

(x == 3) && (y == 7)

The entire expression evaluates false because one side (x == 3) is false. (Remember
that x has the value 5 and y has the value 7.)

With the or operator, only one side must be true; the expression is false only if both
sides are false. So, in the case of the example in Table 4-2:

(x == 3) || (y == 7)

the entire expression evaluates true because one side (y == 7) is true.

With a not operator, the statement is true if the expression is false, and vice versa.
So, in the accompanying example:

!(x == 3)

the entire expression is true because the tested expression (x == 3) is false. (The logic
is: “it is true that it is not true that x is equal to 3.”)

Boolean logic takes a little time and practice to get used to before you can “read”
these expressions naturally, but with a little experience it becomes second nature.
You’ll be seeing them a lot, starting in the next chapter. Conditional operators are
what allow your program to take actions in response to certain data values. Without
them, your program could run in only a straight line, from start to finish.

The Conditional Operator
Although most operators are unary (they require one term, such as myValue++) or
binary (they require two terms, such as a+b), there is one ternary operator, which
requires three terms, named the conditional operator (? :):

cond-expr ? expression1 : expression2

This operator evaluates a conditional expression (an expression that returns a value
of type bool) and then invokes either expression1 if the value returned from the con-
ditional expression is true, or expression2 if the value returned is false. The logic is:
“if this is true, do the first; otherwise, do the second.” Example 4-5 illustrates this
concept.

Table 4-2. Logical operators

Name Operator Given this statement
The expression
evaluates to Logic

And && (x == 3) && (y == 7) False Both must be true.

Or || (x == 3) || (y == 7) True Either or both must be true.

Not ! !(x == 3) True Expression must be false.

Operator Precedence | 79

The output looks like this:

ValueOne: 10, valueTwo: 20, maxValue: 20

In Example 4-5, the ternary operator is being used to test whether valueOne is greater
than valueTwo. If so, the value of valueOne is assigned to the integer variable maxValue;
otherwise, the value of valueTwo is assigned to maxValue.

As with the increment operator, although the conditional operator can save you
some keystrokes, you can achieve the same effect with an if statement, which we’ll
discuss in Chapter 5. If you think there may be some confusion as a result of using
the conditional operator, you’re probably better off writing it out.

Operator Precedence
The compiler must know the order in which to evaluate a series of operators. For
example, if you write:

myVariable = 5 + 7 * 3;

there are three operators for the compiler to evaluate (=, +, and *). It could, for exam-
ple, operate left to right, which would assign the value 5 to myVariable, then add 7 to
the 5 (12) and multiply by 3 (36)—but of course, then it would throw that 36 away.
This is clearly not what is intended.

Example 4-5. The ternary operator is a simple kind of control flow statement; depending on the value
of the expression, it can take one of two stated actions

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_4_5_ _ _ _Ternary_Operator
{
 class ValuesProgram
 {
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

 Console.WriteLine("ValueOne: {0}, valueTwo: {1}, maxValue: {2}",
 valueOne, valueTwo, maxValue);

 }
 }
}

80 | Chapter 4: Operators

The rules of precedence tell the compiler which operators to evaluate first. As is the
case in algebra, multiplication has higher precedence than addition, so 5+7 × 3 is
equal to 26 rather than 36. Both multiplication and addition have higher precedence
than assignment, so the compiler will do the math and then assign the result (26) to
myVariable only after the math is completed.

In C#, you can also use parentheses to change the order of precedence much as you
would in algebra. Thus, you can change the result by writing:

myVariable = (5+7) * 3;

Grouping the elements of the assignment in this way causes the compiler to add 5+7,
multiply the result by 3, and then assign that value (36) to myVariable.

Table 4-3 summarizes operator precedence in C#, using x and y as possible terms to
be operated upon.*

The operators are listed in precedence order according to the category in which they
fit. That is, the primary operators (such as x++) are evaluated before the unary opera-
tors (such as !). Multiplication is evaluated before addition.

There are a lot of operators in this table, and you don’t need to memorize their order
of precedence. It never hurts to use parentheses if you’re not sure of the exact order.

* This table includes operators that are beyond the scope of this book. For a fuller explanation of each, please
see Programming C#, Fifth Edition, by Jesse Liberty and Donald Xie (O’Reilly).

Table 4-3. Operator precedence

Category Operators

Primary (x) x.y x->y f(x) a[x] x++ x–– new typeof sizeof checked unchecked
stackalloc

Unary + - ! ~ ++x ––x (T)x *x &x

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is as

Equality == !=

Logical (bitwise) AND &

Logical (bitwise) XOR ^

Logical (bitwise) OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

Summary | 81

The compiler doesn’t mind if you use them where they’re not needed, and it may
help to make the operation clearer to readers of your code.

In some complex equations, you might need to nest parentheses to ensure the proper
order of operations. For example, say you want to know how many seconds a hypo-
thetical family wastes each morning. The adults spend 20 minutes over coffee each
morning and 10 minutes reading the newspaper. The children waste 30 minutes
dawdling and 10 minutes arguing.

Here’s the algorithm:

(((minDrinkingCoffee + minReadingNewspaper)* numAdults) +
((minDawdling + minArguing) * numChildren)) * secondsPerMinute;

An algorithm is a well-defined series of steps to accomplish a task.

Although this works, it is hard to read and hard to get right. It’s much easier to use
interim variables:

wastedByEachAdult = minDrinkingCoffee + minReadingNewspaper;
wastedByAllAdults = wastedByEachAdult * numAdults;
wastedByEachKid = minDawdling + minArguing;
wastedByAllKids = wastedByEachKid * numChildren;
wastedByFamily = wastedByAllAdults + wastedByAllKids;
totalSeconds = wastedByFamily * 60;

The latter example uses many more interim variables, but it is far easier to read,
understand, and (most importantly) debug. As you step through this program in
your debugger, you can see the interim values and make sure they are correct. See
Chapter 9 for more information.

Summary
• An operator is a symbol that causes C# to take an action.

• The assignment operator (=) assigns a value to an object or variable.

• C# includes four simple arithmetic operators, +, -, *, and /, and numerous varia-
tions such as +=, which increments a variable on the left side of the operator by
the value on the right side.

• When you divide integers, C# discards any fractional remainder.

• The modulus operator (%) returns just the remainder from integer division.

• C# includes numerous special operators, such as the self-increment (++) and
self-decrement (--) operators.

82 | Chapter 4: Operators

• To increment a value before assigning it, you use the prefix operator (++x); to
increment the value after assigning it, use the postfix operator (x++). The same
rule applies to the decrement operator.

• The relational operators compare two values and return a Boolean. These opera-
tors are often used in conditional statements.

• The conditional operator (? :) is the only ternary operator found in C#. The
test condition is found to the left of the question mark; it invokes the expression
to the left of the colon if the tested condition evaluates true and the expression
to the right of the colon if the tested condition evaluates false.

• The compiler evaluates operators according to a series of precedence rules, and
parentheses have the “highest” precedence.

• It is good programming practice to use parentheses to make your order of prece-
dence explicit if there may be any ambiguity.

You saw a lot of math in this chapter, which is certainly useful, because your pro-
grams will often perform mathematical operations. We also mentioned several times
that these operators will be useful in Chapter 5. Chapter 5 deals with branching, the
technique by which you enable your program to take different actions depending on
the values contained in the variables. Chapter 5 is going to tie together what you’ve
learned so far, and enable you to take the next step with your programming skills.

Test Your Knowledge: Quiz

Question 4-1. What is the difference between the = and == operators?

Question 4-2. Suppose I have four different variables, a, b, c, and d. What’s the short-
est way to assign them all the value 36?

Question 4-3. What’s the difference between dividing two ints and dividing two
doubles?

Question 4-4. What is the purpose of the % operator?

Question 4-5. What is the output of these operations?

• 4 * 8

• (4 + 8) / (4 – 2)

• 4 + 8 / 4 – 2

Test Your Knowledge: Exercises | 83

Question 4-6. Let myInt = 25 to start. What is the value of myInt at each stage of the
following code?

myInt += 5;
myInt -= 15;
myInt *= 4;
myInt /= 3;

Question 4-7. Describe the difference between the prefix and postfix operators.

Question 4-8. Let x = 25 and y = 5. What do these expressions evaluate to?

(x >= y)
(x >= y * 5)
(x == y)
(x = y)

Question 4-9. Let x = 25 and y = 5. What do these expressions evaluate to?

(x >= y) && (y <= x)
!(x > y)
!(x < y) && (x > y)
((x > y) || !(x < y)) && (x > y)
((x > y) && ((y < x) || (x > y))) && (x == y)

Question 4-10. Arrange these operators in order of precedence:

%
!=
?:
&&
++

Test Your Knowledge: Exercises

Exercise 4-1. Write a program that assigns the value 25 to variable x, and 5 to vari-
able y. Output the sum, difference, product, quotient, and modulus of x and y.

Exercise 4-2. What will be the output of the following method? Why?

static void Main()
{
 int varA = 5;
 int varB = ++varA;
 int varC = varB++;
 Console.WriteLine("A: {0}, B: {1}, C: {2}", varA, varB, varC);
}

84 | Chapter 4: Operators

Exercise 4-3. Imagine an amusement park ride that holds two passengers. Because of
safety restrictions, the combined weight of the two passengers must be more than
100 pounds, but no more than 300 pounds. Now imagine a family of four who want
to ride this ride. Abby weighs 135 pounds, Bob weighs 175 pounds, their son Char-
lie weighs 55 pounds, and their daughter Dawn weighs 45 pounds.

Write a program that calculates whether the weight of the two combined passengers
falls within the accepted range. Use constants for the maximum and minimum
weights, and for the weight of each family member. The output should look some-
thing like this, for Abby and Dawn:

Abby and Dawn can ride? True

Calculate three separate cases: whether the two parents can ride together, just Bob
and Charlie, and just the kids.

Exercise 4-4. Now it’s time for a little high school math. Take a sphere of radius 5.
Calculate and output the surface area, and the volume of the sphere. Then use the
ternary operator to indicate which of the two is greater. Make Pi a constant float,
and use a value of 3.14159 for precision. You should probably also make the radius a
constant.

85

CHAPTER 5

Branching

All the statements in your program execute in order. Unfortunately, that’s not very
useful, unless you want your program to do exactly the same thing every time you
run it. In fact, often you won’t want to execute all the code, but rather you’ll want
the program to do one thing if a variable has a certain value and something different
if the variable has another value. That means you need to be able to cause your pro-
gram to pick and choose which statements to execute based on conditions that
change as the program runs. This process is called branching, and there are two ways
to accomplish it: unconditionally and conditionally.

As the name implies, unconditional branching happens every time the branch point
is reached. An unconditional branch happens, for example, whenever the compiler
encounters a new method call. We introduced you to methods in Chapter 1, and
you’ve been using the Main() and WriteLine() methods extensively in the past three
chapters. When the compiler reaches the WriteLine() call, the compiler stops execu-
tion in the Main() method and branches to the WriteLine() method, which exists
elsewhere in the .NET Framework. When the WriteLine() method completes its exe-
cution—or returns—execution picks up in the original method on the line just below
the branch point (the line where the WriteLine() method was called).

Conditional branching is more complicated. Methods can branch based on the eval-
uation of certain conditions that occur at runtime. For instance, you might create a
branch that will calculate an employee’s federal withholding tax only when his earn-
ings are greater than the minimum taxable by law. C# provides a number of state-
ments that support conditional branching, such as if, else, and switch. We’ll show
you how to use each of these statements later in this chapter.

A second way that methods break out of their mindless step-by-step processing of
instructions is by looping. A loop causes the method to repeat a set of steps until
some condition is met (for example, “Keep asking for input until the user tells you to
stop or until you receive 10 values”). C# provides many statements for looping,
including for, while, and do...while, which are also discussed in this chapter.

86 | Chapter 5: Branching

Unconditional Branching Statements
The simplest example of an unconditional branch is a method call. You’ve caused a
method branch with the WriteLine() methods you’ve used so far, but any method,
whether a built-in part of the language or a method you create yourself (as you’ll see
in Chapter 8), causes program execution to branch. When a method call is reached,
the program doesn’t test to evaluate the state of any variable; the program execution
branches immediately (and unconditionally) to the start of the new method.

You call a method by writing its name; for example:

UpdateSalary(); // invokes the method UpdateSalary

As we explained, when the compiler encounters a method call, it stops execution of
the current method and branches to the new method. When that new method com-
pletes its execution, the compiler picks up where it left off in the original method.
You can see how this works in Figure 5-1.

As Figure 5-1 shows, called methods can call other methods in turn, and you’ll often
see unconditional branching several methods deep. In Figure 5-1, execution begins in
a method called Main(). Statement1 and Statement2 execute; then the compiler sees a
call to Method1(). The program execution branches unconditionally to the first line
of Method1(), where the first three statements are executed. At the call to Method1A(),
the execution branches again, this time to the start of Method1A().

Figure 5-1. Branching allows the execution to move around to different parts of your program,
instead of simply proceeding in a straight line.

Main

Statement 1
Statement 2
Method1()
Statement 3
Method2()
Statement 4
Statement 5
End program

Method1()

Statement 1
Statement 2
Statement 3
Method1A()
Statement 4
Statement 5
End method

Method1A()

Statement 1
Statement 2
Statement 3
Statement 4
End method

Method2()

Statement 1
Statement 2
Statement 3
Statement 4
Statement 5
End method

Unconditional Branching Statements | 87

The four statements in Method1A() are executed, and Method1A() returns. Execution
resumes on the first statement after the method call in Method1(), which is
Statement4. Execution continues until Method1() ends, at which time execution
resumes back in Main() at Statement3. At the call to Method2(), execution branches
again; all the statements in Method2() execute, and then Main() resumes at
Statement4. When Main() ends, the program itself ends. As you can see, branching
takes straight-line program execution and breaks it up quite a bit—and this is just a
simple example. However, the program always retains a strict order of execution;
nothing is skipped.

You can see the effect of method calls in Example 5-1. Execution begins in Main(),
but branches to a method named SomeMethod(). The WriteLine() statements in each
method assist you in seeing where you are in the code as the program executes.

The output looks like this:

In Main! Calling SomeMethod()...
Greetings from SomeMethod!
Back in Main().

Each method in this example outputs a handy message to indicate where the execu-
tion is. The program flow begins in Main() and proceeds until SomeMethod() is
invoked. (Invoking a method is often referred to as calling the method.) At that
point, program flow branches to the method. When the method completes, program
flow resumes at the next line after the call to that method.

Example 5-1. Executing a method is the most common form of unconditional branching; when a
method is called, execution jumps to the method code; when the method is complete, execution picks
up where it left off in the calling method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_1_ _ _ _Branching_to_a_Method
{
 class Program
 {
 static void Main()
 {
 Console.WriteLine("In Main! Calling SomeMethod()...");
 SomeMethod();
 Console.WriteLine("Back in Main().");
 }
 static void SomeMethod()
 {
 Console.WriteLine("Greetings from SomeMethod!");
 }
 }
}

88 | Chapter 5: Branching

You can also create an unconditional branch by using one of the
unconditional branch keywords: goto, break, continue, return, or
throw. The first three of these are discussed later in this chapter, the
return statement is discussed in Chapter 7, and the final statement,
throw, is discussed in Chapter 16.

Conditional Branching Statements
Although methods branch unconditionally, often you will want to branch within a
method depending on a condition that you evaluate while the program is running.
This is known as conditional branching. Conditional branching statements allow you to
write logic such as “If you are over 25 years old, then you may rent a car.” This is
where the comparison operators you learned about in Chapter 4 become really useful.

C# provides a number of constructs that allow you to write conditional branches
into your programs, including the if, else, and switch statements.

if Statements
The simplest branching statement is if. An if statement says, “If a particular condi-
tion is true, then execute the following statement; otherwise, skip it.” The condition
is a Boolean expression. As you learned in Chapters 3 and 4, a Boolean expression
evaluates to either true or false, which makes it a perfect fit for the if statement.

The formal description of an if statement is:

if (expression)
Statement1

This is the kind of description of the if statement you are likely to find in your com-
piler documentation. It shows you that the if statement takes an expression (a state-
ment that returns a value) in parentheses, and executes Statement1 if the expression
evaluates true. Statement1 doesn’t have to be just one statement—it can actually be a
block of statements within braces. As long as you include the braces, the compiler
treats your code as just one statement. Example 5-2 shows how this works.

Example 5-2. The if statement evaluates an expression, and executes a statement if the expression is
true, or skips it if the expression is false

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_2_ _ _ _The_if_Statement
{
 class Program
 {

Conditional Branching Statements | 89

Just about anywhere in C# that you are expected to provide a state-
ment, you can instead provide a block of statements within braces.
(See the “Brace Styles” sidebar in this chapter.)

In this simple program, you declare three variables, valueOne, valueTwo, and
valueThree, with the values 10, 20, and 30, respectively. In the first if statement, you
test whether valueOne is greater than valueTwo:

if (valueOne > valueTwo)
{
 Console.WriteLine("ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
}

Because valueOne (10) is less than valueTwo (20) this if statement fails (the condition
returns false). Therefore, the body of the if statement (the statements within the
braces) doesn’t execute, and the WriteLine never executes.

You then test whether valueThree is greater than valueTwo:

if (valueThree > valueTwo)
{
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);
} // end if

 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;
 int valueThree = 30;

 Console.WriteLine("Testing valueOne against valueTwo...");
 if (valueOne > valueTwo)
 {
 Console.WriteLine("ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
 }

 Console.WriteLine("Testing valueThree against valueTwo...");
 if (valueThree > valueTwo)
 {
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);
 }
 }
 }
}

Example 5-2. The if statement evaluates an expression, and executes a statement if the expression is
true, or skips it if the expression is false (continued)

90 | Chapter 5: Branching

Because valueThree (30) is greater than valueTwo (20), the test returns true, and thus
the statement executes. The statement in this case is the block in which you call the
WriteLine() method, shown in bold. The output reflects that the first if fails but the
second succeeds:

Testing valueOne against valueTwo...
Testing valueThree against valueTwo...
ValueThree: 30 larger than ValueTwo: 20

Single-Statement if Blocks
Notice that the if statement blocks shown in Example 5-2 each contain only a single
statement, one call to WriteLine(). In such cases, you can leave out the braces
enclosing the if block. Thus, you might rewrite Example 5-2 as shown in
Example 5-3.

It is generally a good idea, however, to use the braces even when your if block has
only a single statement. There are two reasons for this advice. First, the code is some-
what easier to read and understand with the braces. Code that is easier to read is eas-
ier to maintain.

Example 5-3. When your if statement block contains only a single statement, you can leave out the
braces

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_3_ _ _ _if_Block_without_Braces
{
 class Program
 {
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;
 int valueThree = 30;

 Console.WriteLine("Testing valueOne against valueTwo...");
 if (valueOne > valueTwo)
 Console.WriteLine("ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);

 Console.WriteLine("Testing valueThree against valueTwo...");
 if (valueThree > valueTwo)
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);
 }
 }
}

Conditional Branching Statements | 91

When programmers talk about maintaining code, they mean either
adding to the code as requirements change or fixing the code as bugs
are discovered. You may find yourself maintaining code that you
wrote months or years ago, or maintaining code somebody else wrote.
In those cases, clear, readable code is a lifesaver.

The second reason for using braces is to avoid a common error: adding a second
statement to the if and forgetting to add the braces. Consider the code shown in
Example 5-4. The programmer has changed the value of valueThree to 10 and added
a second statement to the second if block, as shown in bold.

Now, before reading any further, review the code and decide what the output should
be. Don’t cheat by looking past this paragraph. Then, when you think you know
what the output will be, take a look at this:

Testing valueOne against valueTwo...
Testing valueThree against valueTwo...
Good thing you tested again!

Example 5-4. When you add a second statement to an if block, be sure to enclose it in the braces, or
you may get unexpected results

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_4_ _ _ _Adding_to_an_if_Block
{
 class Program
 {
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;
 int valueThree = 10;

 Console.WriteLine("Testing valueOne against valueTwo...");
 if (valueOne > valueTwo)
 Console.WriteLine("ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);

 Console.WriteLine("Testing valueThree against valueTwo...");
 if (valueThree > valueTwo)
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);
 Console.WriteLine("Good thing you tested again!");
 }
 }
}

92 | Chapter 5: Branching

Were you surprised?

The programmer was fooled by the lack of braces and the indentation. Indentation is
whitespace, and as we mentioned in Chapter 3, whitespace is ignored by the compiler.
From the perspective of the programmer, the second statement (“Good thing...”)
looks to be part of the if block:

if (valueThree > valueTwo)
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);
 Console.WriteLine("Good thing you tested again!");

The compiler, however, considers only the first statement after the if test to be part
of the if statement. The second statement is not part of the if statement. To the
compiler, the if statement looks like this:

if (valueThree > valueTwo)
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);

Console.WriteLine("Good thing you tested again!");

If you want the second statement to be part of the if statement, you must use braces,
as in the following:

if (valueThree > valueTwo)
{
 Console.WriteLine("ValueThree: {0} larger than ValueTwo: {1}",
 valueThree, valueTwo);
 Console.WriteLine("Good thing you tested again!");
}

Because of this potential for confusion, many C# programmers use braces with every
if statement, even if the statement is only one line.

Short-Circuit Evaluation
Consider the following code snippet:

int x = 8;
int y = 15;
if ((x == 8) || (y == 12))

The if statement here is a bit complicated. The entire if statement is in parentheses,
as are all if statements in C#. Thus, everything within the outer set of parentheses
must evaluate true for the if statement to be true.

Within the outer parentheses are two expressions, (x == 8) and (y == 12), which are
separated by an or operator (||). Because x is 8, the first term (x == 8) evaluates true.
There is no need to evaluate the second term (y == 12). It doesn’t matter whether y is
12; the entire expression will be true, because the first part is true. (Remember, for

Conditional Branching Statements | 93

an or statement to evaluate true, just one of the expressions has to be true.) Simi-
larly, consider this snippet:

int x = 8;
int y = 12;
if ((x == 5) && (y == 12))

Again, there is no need to evaluate the second term. Because the first term is false,
the and must fail. (Remember, for an and statement to evaluate true, both tested
expressions must evaluate true.)

In cases such as these, the C# compiler will short-circuit the evaluation; the second
test will never be performed. This allows you to create if statements in which you

Brace Styles
There are many ways you can form braces around an if statement (and around other
blocks of code), but most C# programmers will use one of three styles:

if (condition)
{
 // statement
}

if (condition)
{

 // statement
}

if (condition){
 // statement
}

The first style, used throughout this book, is to put the braces under the keyword if

and to indent the contents of the if block. The second style, which is not very popular
anymore, is to indent the braces with the contents of the if block. The third style is to
put the opening brace on the same line as the if statement and the closing brace under
the if statement.

The third style is called K&R style, after Brian W. Kernighan and Dennis M. Ritchie,
the authors of the seminal book The C Programming Language (Prentice Hall). Their
book was so influential that many programmers feel a strong commitment to this style
of braces. Although it does save room in a book, we consider the K&R style to be a bit
less clear, and so this book will use the first style.

Of course, most software departments have standards or guidelines of their own,
which usually include rules about indentation and braces. You should always follow
your company’s official guidelines, but know that all three of these styles work.

94 | Chapter 5: Branching

first check a value before you take action on it, avoiding the possibility of an excep-
tion. Here’s a short example:

public bool QuotientOverTwenty(float dividend, float divisor)
{
 if ((divisor != 0) && (dividend / divisor > 20))
 {
 return true;
 }
 return false;
}

In this code, you want to determine whether the quotient is greater than 20, but you
must first make sure you are not dividing by zero (division by zero causes the system
to throw an exception). With short-circuiting, the second part of the if statement
(the division) will never occur if the first part is false (that is, if the divisor is zero).

if . . . else Statements
Often, you will find that you want to take one set of actions when the condition tests
true, and a different set of actions when the condition tests false. This allows you to
write logic such as “If you are over 25 years old, then you may rent a car; otherwise,
you must take the train.”

The otherwise portion of the logic follows the else statement. For example, you can
modify Example 5-2 to print an appropriate message whether or not valueOne is
greater than valueTwo, as shown in Example 5-5.

Example 5-5. Adding an else statement to your if statement lets you take an action if the condition in
the if statement is false—it’s the “or” to the if’s “either”

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_5_ _ _ _The_else_Statement
{
 class Program
 {
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 Console.WriteLine("Testing valueOne against valueTwo...");
 if (valueOne > valueTwo)
 {
 Console.WriteLine("ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else

Conditional Branching Statements | 95

The output looks like this:

Testing valueOne against valueTwo...
Nope, ValueOne: 10 is NOT larger than ValueTwo: 20

Because the test in the if statement fails (valueOne is not larger than valueTwo), the
body of the if statement is skipped and the body of the else statement is executed.
Had the test succeeded, the if statement body would execute and the else state-
ment would be skipped.

Nested if Statements
You’ve seen how to make your if statement take action for two possible options, but
what if there are more than two choices? In that case, you can nest if statements—
that is, contain one if inside another—to handle complex conditions. For example,
suppose you need to write a program to evaluate the temperature and specifically to
return the following types of information:

• If the temperature is 32 degrees or lower, the program should warn you about
ice on the road.

• If the temperature is exactly 32 degrees, the program should tell you that there
may be water on the road.

• If the temperature is higher than 32 degrees, the program should assure you that
there is no ice.

There are many good ways to write this program. Example 5-6 illustrates one
approach using nested if statements.

 {
 Console.WriteLine("Nope, ValueOne: {0} is NOT larger than ValueTwo:
 {1}", valueOne, valueTwo);
 }
 }
 }
}

Example 5-6. You can nest if statements safely, one inside the other

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_6_ _ _ _Nested_if_Statements
{
 class Program
 {
 static void Main()

Example 5-5. Adding an else statement to your if statement lets you take an action if the condition in
the if statement is false—it’s the “or” to the if’s “either” (continued)

96 | Chapter 5: Branching

The logic of Example 5-6 is that it tests whether the temperature is less than or equal
to 32. If so, it prints a warning:

if (temp <= 32)
{
 Console.WriteLine("Warning! Ice on road!");

The program then checks whether the temperature is equal to 32 degrees. If so, it
prints one message; if not, the temperature must be less than 32, and the program
prints the next message. Notice that this second if statement is nested within the
first if, so the logic of the else statement is: “because it has been established that the
temperature is less than or equal to 32, and it isn’t equal to 32, it must be less than
32.”

Another way you can chain together more than one possibility with if statements is
to use the else if idiom. The program tests the condition in the first if statement. If
that first statement is false, control passes to the else statement, which is immedi-
ately followed by another if that tests a different condition. For example, you could
rewrite Example 5-6 to test whether the temperature is greater than, less than, or
exactly equal to freezing with three tests, as shown in Example 5-7.

 {
 int temp = 32;

 if (temp <= 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 if (temp == 32)
 {
 Console.WriteLine("Temp exactly freezing, beware of water.");
 }
 else
 {
 Console.WriteLine("Watch for black ice! Temp: {0}", temp);
 }
 }
 else
 {
 Console.WriteLine("No ice; drive with confidence.");
 }
 }
 }
}

Example 5-7. The else if construct is another way of chaining together if statements without
nesting

using System;
using System.Collections.Generic;
using System.Linq;

Example 5-6. You can nest if statements safely, one inside the other (continued)

Conditional Branching Statements | 97

In this case, the condition in the first if statement tests whether temp is less than 32,
not less than or equal to 32. Because temp is hardwired to exactly 32, the first expres-
sion is false, and control passes to the else if statement. The second statement is
true, so the third case, the else statement, never executes. Please note, however, that
this code is identical (as far as the compiler is concerned) to the following:

static void Main()
{
 int temp = 32;
 if (temp < 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 }
 else
 {
 if (temp == 32)
 {
 Console.WriteLine("Temp exactly freezing, beware of water.");
 }
 else
 {
 Console.WriteLine("No ice; drive with confidence.");
 }
 }
}

using System.Text;

namespace Example_5_7_ _ _ _else_if
{
 class Program
 {
 static void Main()
 {
 int temp = 32;

 if (temp < 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 }
 else if (temp == 32)
 {
 Console.WriteLine("Temp exactly freezing, beware of water.");
 }
 else
 {
 Console.WriteLine("No ice; drive with confidence.");
 }
 }
 }
}

Example 5-7. The else if construct is another way of chaining together if statements without
nesting (continued)

98 | Chapter 5: Branching

In any case, if you do use the else if idiom, be sure to use an else (not an else if) as
your final test, making it the default case that will execute when nothing else does.

switch Statements
Nested if statements are hard to read, hard to get right, and hard to debug. When
you have a complex set of choices to make, the switch statement is a more powerful
alternative. The logic of a switch statement is this: “pick a matching value and act
accordingly.”

switch (expression)
{

case constant-expression:
 statement

jump-statement

 [default:
statement]

}

The expression you are testing (or “switching on”) is put in parentheses in the head of
the switch statement. Each case statement compares a constant value with the expres-
sion. The constant expression can be a literal, symbolic, or enumerated constant.

The compiler starts with the first case statement and works its way down the list,
looking for a value that matches the expression. If a case is matched, the statement
(or block of statements) associated with that case is executed.

The case block must end with a jump statement. Typically, the jump statement is
break, which abruptly ends the entire switch statement. When you execute a break in
a switch statement, execution continues after the closing brace of the switch state-
ment. (We’ll consider the use of the optional default keyword later in this section.)

In the next, somewhat whimsical listing (Example 5-8), the user is asked to choose
her political affiliation among Democrat, Republican, or Progressive. To keep the
code simple, we’ll hard-wire the choice to be Democrat.

Example 5-8. Use a switch statement to compare a value to a set of constants, and take action
accordingly; a switch statement is easier to use and more readable than nested if statements

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_8_ _ _ _The_switch_Statement
{
 class Program
 {
 enum Party
 {
 Democrat,

Conditional Branching Statements | 99

The output looks like this:

You voted Democratic.
Thank you for voting.

Rather than using a complicated if statement, Example 5-8 uses a switch statement.
The user’s choice is evaluated in the head of the switch statement, and the block of
statements that gets executed depends on whatever case matches (in this instance,
Democrat).

The statements between the case statement and the break are executed in series. You
can have more than one statement here without braces; in effect, the case statement
and the closing break statement act as the braces.

We hardwired the choice here, but if you’re accepting user input instead, it is possi-
ble that the user will not make a choice among Democrat, Republican, and Progres-
sive. You may want to provide a default case that will be executed whenever no valid
choice has been made. You can do that with the default keyword, as shown in
Example 5-9. This example already has some built-in safety, because you can’t hard-
wire a choice that’s not a member of the enum, and the switch statement has a block
for each possible member of the enum. We’ve commented out the Democrat choice,
making it invalid, so that you can see the default statement at work.

 Republican,
 Progressive
 }
 static void Main()
 {
 // hardwire to Democratic
 Party myChoice = Party.Democrat;

 // switch on the value of myChoice
 switch (myChoice)
 {
 case Party.Democrat:
 Console.WriteLine("You voted Democratic.");
 break;
 case Party.Republican:
 Console.WriteLine("You voted Republican.");
 break;
 case Party.Progressive:
 Console.WriteLine("You voted Progressive.");
 break;
 }
 Console.WriteLine("Thank you for voting.");
 }
 }
}

Example 5-8. Use a switch statement to compare a value to a set of constants, and take action
accordingly; a switch statement is easier to use and more readable than nested if statements

100 | Chapter 5: Branching

The output looks like this:

You did not make a valid choice.
Thank you for voting.

If the user does not choose one of the values that correspond to a case statement, the
default statement will execute. In this case, a message is simply printed telling the user
she did not make a valid choice; in production code, you would put all this in a while

loop, re-prompting the user until a valid choice is made (or the user elects to quit).

Example 5-9. The default statement gives you a backup that will always be executed, if the user
doesn’t make a valid choice

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_9_ _ _ _The_default_statement
{
 class Program
 {
 enum Party
 {
 Democrat,
 Republican,
 Progressive
 }
 static void Main()
 {
 // hardwire to Democratic
 Party myChoice = Party.Democrat;

 // switch on the value of myChoice
 switch (myChoice)
 {
 /* case Party.Democrat:
 Console.WriteLine("You voted Democratic.");
 break; */
 case Party.Republican:
 Console.WriteLine("You voted Republican.");
 break;
 case Party.Progressive:
 Console.WriteLine("You voted Progressive.");
 break;
 default:
 Console.WriteLine("You did not make a valid choice.");
 break;
 }
 Console.WriteLine("Thank you for voting.");
 }
 }
}

Conditional Branching Statements | 101

Fall-Through and Jump-to Cases
If two cases will execute the same code, you can create what’s known as a “fall-through”
case, grouping the case statements together with the same code, as shown here:

case CompassionateRepublican:
case Republican:
 Console.WriteLine("You voted Republican.\n");
 Console.WriteLine("Don't you feel compassionate?");
 break;

In this example, if the user chooses either CompassionateRepublican or Republican,
the same set of statements will be executed.

Note that you can fall through only if the first case executes no code. In this exam-
ple, the first case, CompassionateRepublican, meets that criterion. Thus, you can fall
through to the second case.

If, however, you want to execute a statement with one case and then fall through to the
next, you must use the goto keyword to jump to the next case you want to execute.

The goto keyword is an unconditional branch. When the compiler sees
this word, it immediately transfers the flow (jumps) to wherever the
goto points. Thus, even within this conditional branching statement,
you’ve inserted an unconditional branch.

For example, if you create a NewLeft party, you might want the NewLeft voting choice
to print a message and then fall through to Democrat (that is, to continue on with the
statements in the Democrat case). You might (incorrectly) try writing the following:

case NewLeft:
 Console.WriteLine("The NewLeft members are voting Democratic.");
case Democrat:
 Console.WriteLine("You voted Democratic.\n");
 break;

This code will not compile; it will fail with the error:

Control cannot fall through from one case label (case '4:') to another

This is a potentially misleading error message. Control can fall through from one
case label to another, but only if there is no code in the first case label.

Notice that the error displays the name of the case with its numeric
value (4) rather than its symbolic value (NewLeft). Remember that
NewLeft is just the name of the constant. Behind the scenes of your
enum, the values look like this:

const int Democrat = 0;
const int CompassionateRepublican = 1;
const int Republican = 2;
const int Progressive = 3;
const int NewLeft = 4;

102 | Chapter 5: Branching

Because the NewLeft case has a statement, the WriteLine() method, you must use a
goto statement to fall through:

case NewLeft:
 Console.WriteLine("The NewLeft members are voting Democratic.");
 goto case Democrat;
case Democrat:
 Console.WriteLine("You voted Democratic.\n");
 break;

This code will compile and execute as you expect.

The goto can jump over labels; you do not need to put NewLeft just
above Democrat. In fact, you can put NewLeft last in the list (just before
default), and it will continue to work properly.

Switch on string Statements
In the previous example, the switch value was an integral constant. C# also offers
the ability to switch on a string. Thus, you can rewrite Example 5-9 to switch on the
string "NewLeft", as in Example 5-10.

Example 5-10. You can switch on a string, as well as on an integral constant

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_10_ _ _ _Switching_on_a_String
{
 class Program
 {
 static void Main()
 {
 String myChoice = "NewLeft";

 // switch on the string value of myChoice
 switch (myChoice)
 {
 case "NewLeft":
 Console.WriteLine(
 "The NewLeft members are voting Democratic.");
 goto case "Democrat";
 case "Democrat":
 Console.WriteLine("You voted Democratic.\n");
 break;
 case "CompassionateRepublican": // fall through
 case "Republican":
 Console.WriteLine("You voted Republican.\n");
 Console.WriteLine("Don't you feel compassionate?");
 break;

ReadLine() and Input | 103

ReadLine() and Input
In Chapter 3, you learned how to use WriteLine() to output messages to the con-
sole. Up until now, though, we haven’t shown you how to get any input from your
users. The looping statements that we’ll introduce in the next section often go well
with user input, so we’ll cover that now. C# has a ReadLine() statement that corre-
sponds to WriteLine(), and as you might guess, it reads in a string from the console
into a string variable. The use of ReadLine() is rather simple. To take input from the
console and assign it to the string inputString, you’d do this:

string inputString;
inputString = Console.ReadLine();

Whatever the user types at the console, until he presses Enter—in other words, one
line—is assigned to inputString.

It usually helps to give the user a prompt to let him know what he should be enter-
ing at a ReadLine(), so it makes sense to start with a WriteLine():

Console.WriteLine("Enter your input string.")
inputString = Console.ReadLine();

Often, though, you’ll want the user to enter his input on the same line, immediately
after the prompt. In that case, you can use Write() instead of WriteLine(). Write()
outputs text to the console, the same as WriteLine(), but it doesn’t send a newline
character. In other words, if you follow a Write() with a ReadLine(), the cursor waits
at the end of the output for the user’s input:

Console.Write("Enter your name here: ");
string userName = Console.ReadLine();

You’ll notice that ReadLine() accepts only a string, which can be a problem if you
want your user to enter a number that you want to calculate with. C# will happily
accept the number, but as a string, and you’ll quickly find that C# doesn’t implicitly
convert from string to int, for example. So, this won’t work:

Console.Write("Enter your age: ");
string myInt = Console.ReadLine();

 case "Progressive":
 Console.WriteLine("You voted Progressive.\n");
 break;
 default:
 Console.WriteLine("You did not make a valid choice.");
 break;
 }
 Console.WriteLine("Thank you for voting.");
 }
 }
}

Example 5-10. You can switch on a string, as well as on an integral constant (continued)

104 | Chapter 5: Branching

if (myInt >= 18)
 Console.WriteLine("You may buy a ticket.");

Fortunately, this is an easy problem to fix. You just need to convert the string to an
int32 type, and for that, C# offers the Convert class. You can fix the error in the code
we just showed you like this:

Console.Write("Enter your age: ");
string inputAge = Console.ReadLine();
int myInt = Convert.ToInt32(inputAge);
if (myInt >= 18)
 Console.WriteLine("You may buy a ticket.");

You can even combine the input and conversion into a single step, like this:

int myInt = Convert.ToInt32(Console.ReadLine());

The Convert class can convert to a number of classes, including ToInt32 (and various
other types of int), ToDouble, ToBoolean, ToChar, and ToString. However, there are
some limitations, most of which are easy to predict. You can convert a char to a
string easily (you get a string with just one character), but you can’t convert a string

to a char if it’s more than one character long. You can’t convert a char to a double, no
matter what you do, because the two types are incompatible. This means that if your
code requires a conversion, you should include some error-checking code to ensure
that your program doesn’t crash if the user enters bad data—for example, if the user
enters “Q” in the age-checking code we just showed you. We’ll get to that in
Chapter 16; for the time being, we’ll assume that you have perfect users who always
do just what they’re told, and never enter bad data. (When you’re done with them,
can you send them over our way? We’d love to meet them.)

Iteration (Looping) Statements
There are many situations in which you will want to do the same thing again and
again, perhaps slightly changing a value each time you repeat the action. This is
called iteration, or looping. Typically, you’ll iterate (or loop) over a set of items, tak-
ing the same action on each item in the collection. This is the programming equiva-
lent of an assembly line. On an assembly line, you might take 100 car bodies and put
a windshield on each one as it comes by. In an iterative program, you might work
your way through a collection of text boxes on a form, retrieving the value from each
in turn and using those values to update a database.

C# provides an extensive suite of iteration statements, including for and while, and
also do...while and foreach loops. You can also create a loop by using the goto state-
ment. In the remainder of this chapter, we’ll consider the use of goto, for, while, and
do...while. However, we’ll postpone coverage of foreach until Chapter 10, until
after we’ve introduced you to arrays.

Iteration (Looping) Statements | 105

Creating Loops with goto
We used the goto statement earlier in this chapter as an unconditional branch in a
switch statement. The more common use of goto, however, is to create a loop. In
fact, the goto statement is the seed from which all other looping statements have
been germinated. Unfortunately, it is a semolina seed, producer of “spaghetti code”
(see the “Spaghetti Code” sidebar) and endless confusion.

Because of the problems created by the goto statement, it is rarely used in C# out-
side of switch statements, but in the interest of completeness, here’s how you create
goto loops:

1. Create a label.

2. goto that label.

The label is an identifier followed by a colon. You place the label in your code, and
then you use the goto keyword to jump to that label. The goto command is typically
tied to an if statement, as illustrated in Example 5-11.

Spaghetti Code
goto can cause your method to loop back and forth in ways that are difficult to follow.
If you were to try to draw the flow of control in a program that makes extensive use of
goto statements, the resulting morass of intersecting and overlapping lines might look
like a plate of spaghetti—hence the term spaghetti code.

Spaghetti code is a contemptuous epithet; no one wants to write spaghetti code, and
so most experienced programmers avoid using goto to create loops.

Example 5-11. You can use the goto statement to create a loop, but there are much better ways to do
it

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_11_ _ _ _The_goto_Statement
{
 class Program
 {

 public static void Main()
 {
 int counterVariable = 0;

 repeat: // the label

106 | Chapter 5: Branching

The output looks like this:

counterVariable: 0
counterVariable: 1
counterVariable: 2
counterVariable: 3
counterVariable: 4
counterVariable: 5
counterVariable: 6
counterVariable: 7
counterVariable: 8
counterVariable: 9

This code is not terribly complex; you’ve used only a single goto statement. How-
ever, with multiple such statements and labels scattered through your code, tracing
the flow of execution becomes very difficult.

Back in the days before compilers, goto was the only option for branching, but it
resulted in some unsightly code. It was the phenomenon of spaghetti code that led to
the creation of alternatives, such as the while loop.

The while Loop
The semantics of the while loop are “While this condition is true, do this work.” The
syntax is:

while (Boolean expression) statement

As usual, the Boolean expression is any expression that evaluates to true or false. The
statement executed within the while statement can of course be a block of state-
ments within braces. Example 5-12 illustrates the use of the while loop.

 Console.WriteLine("counterVariable: {0}", counterVariable);

 // increment the counter
 counterVariable++;

 if (counterVariable < 10)
 {
 goto repeat; // the dastardly deed
 }
 }
 }
}

Example 5-11. You can use the goto statement to create a loop, but there are much better ways to do
it (continued)

Iteration (Looping) Statements | 107

The output looks like this:

counterVariable: 0
counterVariable: 1
counterVariable: 2
counterVariable: 3
counterVariable: 4
counterVariable: 5
counterVariable: 6
counterVariable: 7
counterVariable: 8
counterVariable: 9

The code in Example 5-12 produces results identical to the code in Example 5-11,
but the logic is a bit clearer. The while statement is nicely self-contained, and it reads
like an English sentence: “while counterVariable is less than 10, print this message
and increment counterVariable.”

Notice that the while loop tests the value of counterVariable before entering the
loop. This ensures that the loop will not run if the condition tested is false. Thus, if
counterVariable is initialized to 11, the loop will never run.

Example 5-12. The while loop accomplishes the same result as the goto loop in the previous example,
but it’s clearer and easier to maintain

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_12_ _ _ _The_while_Loop
{
 class Program
 {
 public static void Main()
 {
 int counterVariable = 0;

 // while the counter variable is less than 10
 // print out its value
 while (counterVariable < 10)
 {
 Console.WriteLine("counterVariable: {0}", counterVariable);
 counterVariable++;
 }
 }
 }
}

108 | Chapter 5: Branching

The do . . . while Loop
There are times when a while loop might not serve your purpose. In certain situa-
tions, you might want to reverse the semantics from “Run while this is true” to the
subtly different “Do this, and repeat while this condition remains true.” In other
words, take the action, and then, after the action is completed, check the condition.
Such a loop will always run at least once.

To ensure that the action is taken before the condition is tested, use a do...while

loop:

do statement while (boolean-expression);

The syntax is to write the keyword do, followed by your statement (or block), the
while keyword, and the condition to test in parentheses. The statement must end
with a semicolon, unlike the plain while loop.

Example 5-13 rewrites Example 5-12 to use a do...while loop.

The output looks like this:

counterVariable: 11

In Example 5-13, counterVariable is initialized to 11 and the while test fails, but only
after the body of the loop has run once.

Example 5-13. The do...while loop is similar to the while loop, but the condition is tested at the end,
meaning that the loop is always guaranteed to run at least once

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_13_ _ _ _The_do._._.while_Loop
{
 class Program
 {
 public static void Main()
 {
 int counterVariable = 11;

 // display the message and then test that the value is
 // less than 10
 do
 {
 Console.WriteLine("counterVariable: {0}", counterVariable);
 counterVariable++;
 } while (counterVariable < 10);
 }
 }
}

Iteration (Looping) Statements | 109

The for Loop
A careful examination of the while loop in Example 5-12 reveals a pattern often seen
in iterative statements: initialize a variable (counterVariable=0), test the variable
(counterVariable<10), execute a series of statements, and increment the variable
(counterVariable++). The for loop allows you to combine all these steps in a single
statement. You write a for loop with the keyword for, followed by the for header,
inside the parentheses, using the syntax:

for ([initializers]; [expression]; [iterators]) statement

The first part of the header is the initializer, in which you initialize a variable. The
second part is the Boolean expression to test. The third part is the iterator, in which
you update the value of the counter variable. These three parts correspond to the three
parts of the while loop we mentioned earlier. All of this is enclosed in parentheses.

A simple for loop is shown in Example 5-14.

The output looks like this:

counter: 0
counter: 1
counter: 2
counter: 3
counter: 4
counter: 5
counter: 6
counter: 7
counter: 8
counter: 9

Example 5-14. A for loop combines several features of the while loop into a single expression,
simplifying your code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_14_ _ _ _The_for_Loop
{
 class Program
 {

 public static void Main()
 {
 for (int counter = 0; counter < 10; counter++)
 {
 Console.WriteLine("counter: {0} ", counter);
 }
 }
 }
}

110 | Chapter 5: Branching

The counter variable is initialized to zero in the initializer:

for (int counter=0; counter<10; counter++)

The value of counter is tested in the expression part of the header:

for (int counter=0; counter<10; counter++)

Finally, the value of counter is incremented in the iterator part of the header:

for (int counter=0; counter<10; counter++)

The initialization part runs only once, when the for loop begins. The integer value
counter is created and initialized to zero, and the test is then executed. Because
counter is less than 10, the body of the for loop runs and the value is displayed.

After the loop completes, the iterator part of the header runs and counter is incre-
mented. The value of the counter is tested, and, if the test evaluates true, the body of
the for statement is executed again.

Your iterator doesn’t just have to be ++. You can use --, or any other
expression that changes the value of the counter variable, as the needs
of your program dictate. Also, for the purposes of a for loop,
counter++ and ++counter will have the same result.

The logic of the for loop is as though you said, “For every value of counter, which I
initialize to zero, take this action if the test returns true, and after the action, update
the value of counter.”

Controlling a for loop with the modulus operator

Remember the modulus operator, which we introduced in Chapter 4 and which we
said would be useful later? Well, it really comes into its own in controlling for loops.
When you perform modulus n on a number that is a multiple of n, the result is zero.
Thus, 80%10=0 because 80 is an even multiple of 10. This fact allows you to set up
loops in which you take an action every nth time through the loop by testing a
counter to see whether %n is equal to zero, as illustrated in Example 5-15.

Example 5-15. The modulus operator is perfect for controlling a for loop; here, you use it to find the
10th iteration

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_15_ _ _ _The_Modulus_Operator
{
 class Program
 {

Iteration (Looping) Statements | 111

The output looks like this:

1 2 3 4 5 6 7 8 9 10 10
11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99 100 100

In Example 5-15, the value of the counter variable is incremented each time through
the loop. Within the loop, the value of counter is compared with the result of modu-
lus 10 (counter % 10). When this evaluates to zero, the value of counter is evenly
divisible by 10, and the value is printed in the righthand column.

Breaking out of a for loop

It is possible to exit from a for loop even before the test condition has been fulfilled.
To end a for loop prematurely, use the unconditional branching statement break.

The break statement halts the for loop, and execution resumes after the for loop
statement (or closing brace), as in Example 5-16.

 public static void Main()
 {
 for (int counter = 1; counter <= 100; counter++)
 {
 Console.Write("{0} ", counter);

 if (counter % 10 == 0)
 {
 Console.WriteLine("\t{0}", counter);
 }
 }
 }
 }
}

Example 5-16. You can use the break statement to exit a for loop prematurely

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_16_ _ _ _The_break_Statement

Example 5-15. The modulus operator is perfect for controlling a for loop; here, you use it to find the
10th iteration (continued)

112 | Chapter 5: Branching

The output looks like this:

counter: 0
counter: 1
counter: 2
counter: 3
counter: 4
counter: 5
Breaking out of the loop
For loop ended

In this for loop, you test whether the value counter is equal to 5. If that value is
found (and in this case, it always will be), you break out of the loop.

The continue statement

Rather than breaking out of a loop, you may at times want to say, “Don’t execute
any more statements in this loop, but start the loop again from the top of the next
iteration.” To accomplish this, use the unconditional branching statement continue.

break and continue generate multiple exit points and make for hard-
to-understand, and thus hard-to-maintain, code. Use them with care.

{
 class Program
 {
 public static void Main()
 {
 for (int counter = 0; counter < 10; counter++)
 {
 Console.WriteLine("counter: {0} ", counter);

 // if condition is met, break out.
 if (counter == 5)
 {
 {
 Console.WriteLine("Breaking out of the loop");
 break;
 }
 }

 }
 Console.WriteLine("For loop ended");
 }
 }
}

Example 5-16. You can use the break statement to exit a for loop prematurely (continued)

Iteration (Looping) Statements | 113

Example 5-17 illustrates the mechanics of both continue and break. This code, sug-
gested by one of our technical reviewers, Donald Xie, is intended to create a traffic
signal processing system.

Example 5-17. The break and continue statements allow you to exit a loop or to skip to the next
iteration of the loop, but having multiple ways out of a loop is bad practice

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_17_ _ _ _The_break_and_continue_Statements
{
 class Program
 {
 public static int Main()
 {
 string signal = "0"; // initialize to neutral
 while (signal != "X") // X indicates stop
 {
 Console.Write("Enter a signal. 0 for normal conditions,
 X to stop, A to Abort: ");
 signal = Console.ReadLine();

 // do some work here, no matter what signal you
 // receive
 Console.WriteLine("Received: {0}", signal);

 if (signal == "A")
 {
 // faulty - abort signal processing
 // Log the problem and abort.
 Console.WriteLine("Fault! Abort\n");
 break;
 }

 if (signal == "0")
 {
 // normal traffic condition
 // log and continue on
 Console.WriteLine("All is well.\n");
 continue;
 }

 // Problem. Take action and then log the problem
 // and then continue on
 Console.WriteLine("{0} -- raise alarm!\n", signal);
 }
 return 0;
 }
 }
}

114 | Chapter 5: Branching

The signals are simulated by entering numerals and uppercase characters from the
keyboard, using the Console.ReadLine() method, which reads a line of text from the
keyboard. ReadLine() reads a line of text into a string variable. The program ends
when you press the A key.

The algorithm is simple: receipt of a “0” (zero) means normal conditions, and no fur-
ther action is required except to log the event. (In this case, the program simply
writes a message to the console; a real application might enter a timestamped record
in a database.)

On receipt of an Abort signal (simulated with an uppercase A), the problem is logged
and the process is ended. Finally, for any other event, an alarm is raised, perhaps
notifying the police. (Note that this sample does not actually notify the police,
though it does print out a harrowing message to the console.) If the signal is X, the
alarm is raised but the while loop is also terminated.

Here’s one sample output:

Enter a signal. X = stop. A = Abort: 0
Received: 0
All is well.
Enter a signal. X = stop. A = Abort: 1
Received: 1
1 -- raise alarm!
Enter a signal. X = stop. A = Abort: X
Received: X
X -- raise alarm!

Here’s a second sample output:

Enter a signal. X = stop. A = Abort: A
Received: A
Fault! Abort

The point of this exercise is that when the A signal is received, the action in the if

statement is taken and then the program breaks out of the loop, without raising the
alarm. When the signal is 0, it is also undesirable to raise the alarm, so the program
continues from the top of the loop.

Be sure to use uppercase when entering X or A. To keep the code
simple, there is no code to check for lowercase letters or other inap-
propriate input.

Optional for loop header elements

You will remember that the for loop header has three parts—initialization, expres-
sion, and iteration—and the syntax is as follows:

for ([initializers]; [expression]; [iterators]) statement

Iteration (Looping) Statements | 115

Each part of the for loop header is optional. You can, for example, initialize the
value outside the for loop, as shown in Example 5-18.

The output looks like this:

counter: 3
counter: 4
counter: 5
counter: 6
counter: 7
counter: 8
counter: 9

In this example, the counter variable was initialized and modified before the for loop
began. Notice that a semicolon is used to hold the place of the missing initialization
statement.

You can also leave out the iteration step if you have reason to increment the counter

variable inside the loop, as shown in Example 5-19. Skipping the increment step
undermines the purpose of using a for loop, and isn’t recommended. If you do hap-
pen to use it, you must be certain that the counter will increment every time through
the loop, no matter what the rest of the code in the loop does. If you somehow skip
the increment step, your loop may never end.

Example 5-18. You can use a for loop without initializing the control variable, but you’ll need to be
sure to initialize it somewhere else in your code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_18_ _ _ _for_Loop_Without_Initialization
{
 class Program
 {

 public static void Main()
 {
 int counter = 0;
 // some work here
 counter = 3;
 // more work here

 for (; counter < 10; counter++)
 {
 Console.WriteLine("counter: {0} ", counter);
 }
 }
 }
}

116 | Chapter 5: Branching

You can mix and match which statements you leave out of a for loop.

If you create a for loop with no initializer or incrementer, like this:

for (; counter < 10 ;)

you have a while loop in for loop’s clothing; and of course that con-
struct is silly, and thus not used very often.

It is even possible to leave all the statements out, creating what is known as a forever
loop:

for (;;)

You can also create a forever loop with a while(true) loop:

while (true)

You break out of a forever (or while(true)) loop with a break statement. A forever
loop is shown in Example 5-20.

Example 5-19. You can also use a for loop without the iterator step, but you’ll have to increment the
variable inside the loop somewhere

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_19_ _ _ _for_Loop_Without_Iterator
{
 class Program
 {

 public static void Main()
 {

 for (int counter = 0; counter < 10;) // no increment
 {
 Console.WriteLine("counter: {0} ", counter);

 // do more work here

 counter++; // increment counter
 }
 }
 }
}

Iteration (Looping) Statements | 117

The output looks like this:

counter: 0
counter: 1
counter: 2
counter: 3
counter: 4
counter: 5
counter: 6
counter: 7
counter: 8
counter: 9
counter: 10

Use a forever loop to indicate that the “normal” case is to continue the loop indefi-
nitely; for example, if your program is waiting for an event to occur somewhere in
the system. The conditions for breaking out of the loop would then be exceptional
and managed inside the body of the loop.

Although it is possible to use a forever loop to good effect, Example 5-20 is a degen-
erate case. The initialization, increment, and test would be done more cleanly in the
header of the for loop, and the program would then be easier to understand. It is
shown here to illustrate that a forever loop is possible.

Example 5-20. A forever loop runs without ever ending

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_5_20_ _ _ _A_Forever_Loop
{
 class Program
 {
 public static void Main()
 {
 int counterVariable = 0; // initialization

 for (; ;) // forever
 {
 Console.WriteLine("counter: {0} ", counterVariable++); // increment

 if (counterVariable > 10) // test
 {
 break;
 }
 }
 }
 }
}

118 | Chapter 5: Branching

Summary
• Branching causes your program to depart from a top-down statement-by-statement

execution.

• A method call is the most common form of unconditional branching. When the
method completes, execution returns to the point where it left off.

• Conditional branching enables your program to branch based on runtime condi-
tions, typically based on the value or relative value of one or more objects or
variables.

• The if construct executes a statement if a condition is true and skips it otherwise.

• When the condition in an if statement is actually two conditions joined by an or

operator, if the first condition evaluates to true, the second condition will not be
evaluated at all. This is called short-circuiting.

• The if...else construct lets you take one set of actions if the condition tested
evaluates true, and a different set of actions if the condition tested evaluates
false.

• if statements can be nested to evaluate more complex conditions.

• The switch statement lets you compare the value of an expression with several
constant values (integers, enumerated constants, or strings), and take action
depending on which value matches.

• It is good programming practice for switch statements to include a default state-
ment that executes if no other matches are found.

• Iteration, or looping, allows you to take the same action several times consecu-
tively. Iterations are typically controlled by a conditional expression.

• The goto statement is used to redirect execution to another point in the
program, but its use is typically discouraged.

• The while loop executes a block of code while the tested condition evaluates
true. The condition is tested before each iteration.

• The do...while loop is similar to the while loop, but the condition is evaluated
at the end of the iteration so that the iterated statement is guaranteed to execute
at least once.

• The for loop is used to execute a statement a specific number of times. The
header of the for loop can be used to initialize one or more variables, test a logi-
cal condition, and modify the variables. The typical use of a for loop is to initial-
ize a counter once, test that a condition is using that counter before each
iteration, and modify the counter after each iteration.

Now you’ve seen how you can control the flow of your programs, and combined
with user input, we hope you can see how your programs are now a lot more power-
ful. The ability to react to changes in data is what most applications are all about.

Test Your Knowledge: Quiz | 119

That completes our tour of the fundamentals of programming, and now you’re ready
to take the next step. Everything you’ve done so far is what’s called procedural
programming, but in Chapter 6, that’s going to change. There’s nothing wrong with
procedural programming; in fact, most modern languages have their roots in proce-
dural programming, and you’ll probably find that you now can understand the fun-
damentals of other languages with procedural roots, such as Visual Basic and
JavaScript.

The basic data types you have to work with right now, though, form a somewhat
short list—you can do plenty of math, determine true or false, and work with text in
the form of strings. That’s a good start, but what if you want to model a somewhat
more complex object with your code—a dog, for example, or an employee, or a
book? You need a data type that’s much more advanced, one that you define your-
self. That’s object-oriented programming, and that’s the subject of the next chapter.

Test Your Knowledge: Quiz

Question 5-1. What statements are generally used for conditional branching?

Question 5-2. True or false: an if statement’s condition must evaluate to an expression.

Question 5-3. Why should you use braces when there is only one statement following
the if?

Question 5-4. What kind of expression can be placed in a switch statement?

Question 5-5. True or false: you can never fall through in a switch statement.

Question 5-6. Name two uses of goto.

Question 5-7. What is the difference between while and do...while?

Question 5-8. What are the three parts of a for loop header?

Question 5-9. What does the keyword continue do?

Question 5-10. What are two ways to create a loop that never ends until you hit a
break statement?

120 | Chapter 5: Branching

Test Your Knowledge: Exercises

Exercise 5-1. Create a program that counts from 1 to 10 three times, using the while,
do...while, and for statements, and outputs the results to the screen.

Exercise 5-2. Create a program that prompts a user for input, accepts an integer, then
evaluates whether that input is zero, odd or even, a multiple of 10, or too large (more
than 100) by using multiple levels of if statements.

Exercise 5-3. Rewrite the program from Exercise 5-2 to do the same work with a
switch statement.

Exercise 5-4. Create a program that initializes a variable i at 0 and counts up, and ini-
tializes a second variable j at 25 and counts down. Use a single for loop to incre-
ment i and decrement j simultaneously, and output the values of i and j at each
iteration of the loop. When i is greater than j, end the loop and print out the mes-
sage “Crossed over!”

121

CHAPTER 6

Object-Oriented Programming

Windows and web programs are enormously complex programs that present infor-
mation to users in graphically rich ways, offering complicated user interfaces, com-
plete with drop-down and pop-up menus, buttons, listboxes, and so forth. Behind
these interfaces, programs model complex business relationships, such as those
among customers, products, orders, and inventory. Users can interact with such a
program in hundreds, if not thousands, of different ways, and the program must
respond appropriately every time.

To manage this complexity, programmers have developed a technique called object-
oriented programming. It is based on a very simple premise: you manage complexity
by modeling its essential aspects. The closer your program models the problem you
are trying to solve, the easier it is to understand (and thus to write and to maintain)
that program.

Programmers refer to the problem you are trying to solve and all the information you
know that relates to your problem as the problem domain. For example, if you are
writing a program to manage the inventory and sales of a company, the problem
domain would include everything you know about how the company acquires and
manages inventory, makes sales, handles the income from sales, tracks sales figures,
and so forth. The sales manager and the stock room manager would be problem-
domain experts who can help you understand the situation better.

A well-designed object-oriented program is filled with objects (things) from the prob-
lem domain. For example, if the problem domain is an ATM for banking, the things
(objects) in your domain might include customers, accounts, monthly statements, and
so forth.

At the first level of design, you’ll think about how these objects interact and what
their state, capabilities, and responsibilities are:

State
A programmer refers to the current conditions and values of an object as that
object’s state. For example, you might have an object representing a customer.

122 | Chapter 6: Object-Oriented Programming

The customer’s state includes the customer’s address, phone number, and email,
as well as the customer’s credit rating, recent purchase history, and so forth. A
different customer would have different state.

Capabilities
The customer has many capabilities, but a developer cares about modeling only
those that are relevant to the problem domain. Thus, a customer object might be
able to make a deposit, transfer funds, withdraw cash, and so forth.

Responsibilities
Along with capabilities come responsibilities. The customer object is responsi-
ble for managing its own address. In a well-designed program, no other object
needs to know the details of the customer’s address. The address might be
stored as data within the customer object, or it might be stored in a database,
but it is up to the customer object to know how to retrieve and update her own
address. (The monthly-statement object should not know the customer’s address,
though it might ask the customer object for the customer address. This way,
when the customer moves, the responsibility for knowing the new address is
located in a single object: the customer.) This ability for an object to own respon-
sibility for its own internal state and actions is known as encapsulation.

Of course, all of the objects in your program are just metaphors for the objects in
your problem domain.

Metaphors
Many of the concepts used throughout this book, and any book on programming, are
actually metaphors. We get so used to the metaphors that we forget they are meta-
phors. You are used to talking about a window in your program, but of course there is
no such thing; there is just a rectangle with text and images in it. It looks like a window
into your document, so we call it a window. Of course, you don’t actually have a doc-
ument either, just bits in memory. No folders, no buttons—these are all just
metaphors.

There are many levels to these metaphors. When you see a window on the screen, the
windowmetaphor is enhanced by an image drawn on your monitor. That image is cre-
ated by lighting tiny dots, called pixels. These pixels are lit in response to instructions
written in your C# program. Each C# instruction is itself a metaphor; there is just a
series of 1s and 0s. Of course, the 1s and 0s are just metaphors for electricity in wires.
Of course, electricity is a metaphor, as are electrons, as is quantum physics. You get
the idea.

Good metaphors can be very powerful. The art of object-oriented programming is
really the art of conceiving good metaphors to simplify solving complex problems.

Classes and Objects | 123

Creating Models
Humans are model-builders. We create models of the world to manage complexity
and to help us understand problems we’re trying to solve. You see models all the
time. Street maps are models of roadways. Globes are models of the Earth. Atomic
models are models of the interaction of subatomic particles.

Models are simplifications. There is little point to a model that is as complex as the
object in the problem domain. If you had a map of the United States that had every
rock, blade of grass, and bit of dirt in the entire country, the map would have to be
as big as the country itself. Your road atlas of the United States eschews all sorts of
irrelevant detail, focusing only on those aspects of the problem domain (such as the
country’s roads) that are important to solving the problem (getting from place to
place). If you want to drive from Boston to New York City, you don’t care where the
trees are; you care where the exits and interchanges are located. Therefore, the net-
work of roads is what appears in the atlas.

Albert Einstein once said: “Things should be made as simple as possible, but not any
simpler.” A model must be faithful to those aspects of the problem domain that are rel-
evant. For example, a road map must provide accurate relative distances. The distance
from Boston to New York must be proportional to the actual driving distance. If 1 inch
represents 25 miles at the start of the trip, it must represent 25 miles throughout the
trip, or the map will be unusable. (Although not every map has to include a strict scale,
depending on what you’re using it for, but a road map needs to.)

A good object-oriented design is an accurate model of the problem you are trying to
solve. Your design choices influence not only how you solve the problem, but also
how you think about the problem. A good design, like a good model, allows you to
examine the relevant details of the problem without confusion or distraction.

Classes and Objects
We perceive the world to be composed of things. Look at your computer. You do
not see various bits of plastic and glass amorphously merging with the surrounding
environment. You naturally and inevitably see distinct things: a computer, a key-
board, a monitor, speakers, pens, paper. Things.

More importantly, even before you decide to do it, you’ve categorized these things.
You immediately classify the computer on your desk as a specific instance of a type
of thing: this computer is one of type computer. This particular pen in your pocket is
an instance of a more general type of thing, pens. It is so natural you can’t avoid it,
and yet the process is so subtle, it’s difficult to articulate. When I see my dog Milo, I
can’t help also seeing him as a dog, not just as an individual entity.

124 | Chapter 6: Object-Oriented Programming

The theory behind object-oriented programming is that for computer programs to
accurately model the world, the programs should reflect this human tendency to
think about individual things and types of things. In C#, you do that by creating a
class to define a type and creating an object to model a thing.

A class defines a new type of thing. The class defines the common characteristics of
every object of that new type. For example, you might define a class Car. Every car
will share certain characteristics (wheels, brake, accelerator, and so on). Your car and
my car both belong to the class of Cars; they are of type Car.

An object is an individual instance of a class. Each individual car (your particular car,
my particular car) is an instance of the class Car, and thus is an object. An object is
just a thing.

Defining a Class
When you define a class, you describe the characteristics and behavior of objects of
that type. In C#, you describe characteristics with member fields:

class Dog
{
 private int weight; // member field
 private string name; // member field
}

Member fields are used to hold each object’s state. For example, the state of the Dog

is defined by its current weight and name. The state of an Employee might be defined
by (among other things) her current salary, management level, and performance rat-
ing. Classes can have instances of other classes as member fields; a Car class might
include an Engine class with its own members. Chapter 7 includes a full discussion of
member fields.

You define the behavior of your new type with methods. Methods contain code to
perform an action:

class Dog
{
 private int weight;
 private string name;

 public void Bark() // member method
 {
 // code here to bark
 }
}

Class Relationships | 125

The keywords public and private are known as access modifiers,
which are used to specify what methods of which classes can access
particular members. For instance, public members can be called from
methods in any class, whereas private members are visible only to the
methods of the class defining the member. Thus, objects of any class
can call Bark on an instance of Dog, but only methods of the Dog class
have access to the weight and name of a Dog. We discuss access modifi-
ers in Chapter 7.

A class typically defines a number of methods to do the work of that class. A Dog

class might contain methods for barking, eating, napping, and so forth. An Employee

class might contain methods for adjusting salary, submitting annual reviews, and
evaluating performance objectives.

Methods can manipulate the state of the object by changing the values in member
fields, or a method could interact with other objects of its own type or with objects of
other types. This interaction among objects is crucial to object-oriented programming.

For example, a method in Dog might change the state of the Dog (for example, a Feed

method might change the Dog’s weight), interact with other Dogs (Bark and Sniff), or
interact with People (BegForFood). A Product object might interact with a Customer

object, and a Video object might interact with an EditingWindow object.

Designing a good C# program is not unlike forming a good team; you look for play-
ers (or objects, in the case of a program) who have different skills and to whom you
can delegate the various tasks you must accomplish. Those players cooperate with
one another to get the job done.

In a good object-oriented program, you will design objects that represent things in
your problem domain. You will then divide the work of the program among your
objects, assigning responsibility to objects based on their ability.

Class Relationships
The heart of object-oriented design is establishing relationships among the classes.
Classes interact and relate to one another in various ways.

The simplest interaction is when a method in one class is used to call a method in a
second class. For example, the Manager class might have a method that calls the
UpdateSalary method on an object of type Employee. We then say that the Manager

class and the Employee class are associated. Association among classes simply means
they interact.

126 | Chapter 6: Object-Oriented Programming

Some complicated types are composed of other types. For example, an automobile
might be composed of wheels, engine, transmission, and so forth. You might model
this by creating a Wheel class, an Engine class, and a Transmission class. You could then
create an Automobile class, and each automobile object would have four instances of
the Wheel class and one instance each of the Engine and Transmission classes. This is
commonly called the has-a relationship. Another way to view this relationship is to say
that the Automobile class aggregates the Wheel, Engine, and Transmission classes, or that
the Automobile class is composed of Wheel, Engine, and Transmission objects.

Some programming languages (such as C++) distinguish between the
is-composed-of (composition) and the has-a (aggregation) relation-
ships, but this distinction does not apply in C#, and they are treated
as equivalent.

This process of aggregation (or composition) allows you to build very complex
classes by assembling and combining relatively simple classes. The .NET Framework
provides a String class to handle text strings. You might create your own Address

class out of five text strings (address line 1, address line 2, city, state, and zip code).
You might then create a second class, Employee, which has as one of its members an
instance of Address.

The Three Pillars of Object-Oriented Programming
Object-oriented programming is built on three pillars: encapsulation, specialization,
and polymorphism.

Each class should be fully encapsulated; that is, it should fully define the state and
responsibilities of that type. Specialization allows you to establish hierarchical rela-
tionships among your classes. Polymorphism allows you to treat a group of hierar-
chically related objects in a similar way and have the objects sort out how to
implement the programming instructions.

Encapsulation
The first pillar of object-oriented programming is encapsulation. The idea behind
encapsulation is that you want to keep each type or class discrete and self-contained
so that you can change the implementation of one class without affecting any other
class.

A class that provides a method that other classes can use is called a server. A class
that uses that method is called a client. Encapsulation allows you to change the
details of how a server does its work without breaking anything in the implementa-
tion of the client.

The Three Pillars of Object-Oriented Programming | 127

This is accomplished by drawing a bright and shining line between the public inter-
face of a class and its private implementation. The public interface is a contract issued
by your class that consists of two parts. The first part says, “I promise to be able to
do this work.” Specifically, you’ll see that a public interface says, “Call this method,
with these parameters, and I’ll do this work, and return this value.” The second part
says, “You are allowed to access these values (and no others).” C# implements this
second part of the interface through properties (discussed in Chapter 8).

A client can rely on a public interface not to change. If the public interface does
change, the client must be recompiled and perhaps redesigned.

On the other hand, the private implementation is, as its name implies, private to the
server. The designer of the server class is free to change how it does the work prom-
ised in the public interface, as long as it continues to fulfill the terms of its implicit
contract: it must take the given parameters, do the promised work, and return the
promised value and allow access to the public properties.

For example, you might have a public method NetPresentValue() that promises as
follows: “Give me a dollar amount and a number of years, and I’ll return the net
present value.” How you compute that amount is your business; as long as you
return the net present value given a dollar amount and number of years, the client
doesn’t care whether you look it up in a table, compute the value, or ask your friend
who is really good at math.

You might implement your Net Present Value interface initially by keeping a table of
values. Sometime later, you might change your program to compute the net present
value using the appropriate algebra. That is encapsulated within your class, and it does
not affect the client. As long as you don’t change the public interface (that is, as long as
you don’t change the number or type of parameters expected, or change the type of the
return value), your clients will not break when you change the implementation.

Specialization
The second pillar of object-oriented programming, specialization, is implemented in
C# through inheritance; specifically, by declaring that a new class derives from an
existing class. The specialized class inherits the characteristics of the more general
class. The specialized class is called a derived class, and the more general class is
known as a base class.

The specialization relationship is referred to as the is-a relationship. A dog is a mam-
mal; a car is a vehicle. (Dog would be derived from the base class Mammal and Car from
the base class Vehicle.)

For example, a Manager is a special type of Employee. The Manager adds new capabili-
ties (hiring, firing, rewarding, praising) and a new state (annual objectives, manage-
ment level, and so on). The Manager, however, also inherits the characteristics and

128 | Chapter 6: Object-Oriented Programming

capabilities common to all Employees. Thus, a Manager has an address, a name, and an
employee ID, and Managers can be given raises, can be laid off, and so forth.

Specialization allows you to create a family of objects. In Windows, a button is a
control. A listbox is a control. Controls have certain characteristics (color, size, loca-
tion) and certain abilities (can be drawn, can be selected). These characteristics and
abilities are inherited by all of their derived types, which allows for a very powerful
form of reuse. Rather than cutting and pasting code from one type to another, the
derived type inherits the shared fields and methods. If you change how a shared abil-
ity is implemented in the base class, you do not have to update code in every derived
type; they inherit the changes.

You’ll see specialization at work in Chapter 11.

Polymorphism
Polymorphism, the third pillar of object-oriented programming, is closely related to
inheritance. The prefix poly means “many”; morph means “form.” Thus, polymor-
phism refers to the ability of a single type or class to take many forms.

About the Examples in This Book
Object-oriented programming is designed to help you manage complex programs.
Unfortunately, it is very difficult to show complex problems and their solutions in a
primer on C#. The complexity of these problems gets in the way of what you’re trying
to learn about. Because of necessity, the examples in this book will be simple. The sim-
plicity may hide some of the motivation for the technique, but it makes the technique
clearer. You’ll have to take it on faith, for now, that these techniques scale up well to
very complex problems.

Most of the chapters of this book focus on the syntax of C#. You need the syntax of
the language to be able to write a program at all, but it’s important to keep inmind that
the syntax of any language is less important than its semantics. The meaning of what
you are writing and why you’re writing it is the real focus of object-oriented program-
ming, and thus of this book.

Don’t let concern with syntax get in the way of understanding the semantics. The com-
piler can help you get the syntax right (if only by complaining when you get it wrong),
and the documentation can remind you of the syntax, but understanding the seman-
tics—the meaning of the construct—is the hard part. Throughout this book, we work
hard to explain not only how you do something, but also why and when you do it.

Object-Oriented Analysis and Design | 129

Sometimes you will know you have a collection of a general type—for example, a
collection of controls—but you do not know (or care) about the specific subtype of
each control (one may be a button, another a listbox). The important thing is that
you know they all inherit shared abilities (such as the Draw method) and that you can
treat them all as controls. If you write a programming instruction that tells each con-
trol to draw itself, the Draw() method is implemented properly on a per-control basis
(buttons draw as buttons, listboxes draw as listboxes). You do not need to know
how each subtype accomplishes this; you only need to know that each type is
defined to be able to draw.

Polymorphism allows you to treat a collection of disparate derived types (buttons,
listboxes) as a group. You treat the general group of controls the same way, and each
individual control does the right thing according to its specific type. Chapter 11 pro-
vides details and examples.

Object-Oriented Analysis and Design
Before you program anything, other than a trivial demonstration program, you need
to take two steps: analysis and design. Analysis is the process of understanding and
detailing the problem you are trying to solve. Design is the actual planning of your
solution.

With trivial problems (such as computing the Fibonacci series), you may not need an
extensive analysis period, but with complex business problems the analysis process
can take weeks, or even months. One powerful analysis technique is to create what
are called use-case scenarios, in which you describe in some detail how the system
will be used. Among the other considerations in the analysis period are determining
your success factors (how do you know whether your program works?) and writing a
specification of your program’s requirements.

Once you’ve analyzed the problem, you design the solution. Imagining the classes
you will use and their interrelationships is key to the design process. You might
design a simple program on the fly, without this careful planning; but in any serious
business application, you will want to take some time to think through the issues.

There are many powerful design techniques you might use. How much time you put
into design* before you begin coding will depend on the philosophy of the organiza-
tion you work for; the size of your team; and your background, experience, and
training.†

* See The Unified Modeling Language User Guide, Second Edition, by Grady Booch et al. (Addison-Wesley).

† See Agile Software Development Principles, Patterns, and Practices by Robert C. Martin (Prentice Hall).

130 | Chapter 6: Object-Oriented Programming

Jesse says: My approach to managing complexity is to keep team size
very small. I have worked on large development teams, and over the
years I’ve come to agree with one of the best developers I’ve ever met,
Ed Belove, that the ideal size for a team of developers is three. Three
highly skilled programmers can be incredibly productive, and with
three, you don’t need a manager. Three people can have only one con-
versation at a time. Three people can never be evenly split on a deci-
sion. One day I’ll write a book on programming in teams of three, but
this isn’t it, so we’ll stay focused on C# programming, rather than on
design debates.

Summary
• Object-oriented programming helps programmers manage complexity by model-

ing essential aspects of the real-world problem.

• A class defines a new type in your program and is typically used as a representa-
tion for a type of thing in the problem domain.

• An object is an instance of a class.

• State is the current condition of an object.

• Many classes define member fields, which are typically private variables visible
to every method of the class, but not outside the class.

• The behavior of the class is defined with methods, which contain code to per-
form an action. Methods can manipulate the state of the object and interact with
other objects.

• The three pillars of object-oriented programming are encapsulation, specializa-
tion, and polymorphism.

• Encapsulation requires that each class should be discrete and self-contained.
Each class should “know” or “do” one discrete thing or set of things.

• Specialization is implemented by deriving more specific classes from generalized
(base) classes through inheritance.

• Polymorphism allows you to treat a collection of objects of types, all derived
from a common base, as though each was an instance of that base type.

• Analysis is the process of detailing the problem you’re trying to solve.

• Design is the planning of the solution to the problem.

This chapter was a bit of a departure from what we’ve been teaching you so far. We
got away from the hands-on code to talk in broader terms about object-oriented pro-
gramming and the theory behind it. That’s an indication of how important these
object-oriented concepts are to C#—this is the only time in this book we’ll devote a

Test Your Knowledge: Exercises | 131

chapter purely to theory without letting you put your hands on the code. But now
that we’ve taken a timeout to teach you the theory, it’s time to get back in the game.
Chapter 7 shows you how to create and use classes and objects, and then Chapter 8
goes into more detail about methods.

Test Your Knowledge: Quiz

Question 6-1. How do you create a user-defined type in C#?

Question 6-2. What is the difference between a class and an object?

Question 6-3. Why should member fields be private?

Question 6-4. What is encapsulation?

Question 6-5. What is specialization and how is it implemented in C#?

Question 6-6. What is polymorphism?

Question 6-7. What is the difference between the is-a and the has-a relationship?

Question 6-8. What are access modifiers?

Question 6-9. Describe the differences between state, capabilities, and responsibilities.

Question 6-10. What is a use-case scenario?

Test Your Knowledge: Exercises

Exercise 6-1. A visual representation of a class, its member fields and methods, and its
place in the hierarchy is called a class diagram. There are several accepted methods
for drawing a class diagram, but we won’t hold you to any of those right now. For
this exercise, simply draw a class diagram for a class named vehicle, listing some
member fields and methods that you think that class should have. Then add to your
diagram the derived classes car, boat, and plane, and list their fields and methods
(remember that all derived classes inherit the fields and methods of their parent
class).

132 | Chapter 6: Object-Oriented Programming

Exercise 6-2. You’ve defined a class as a diagram; now try defining one in code.
Define a class Book, in which a book has a title, author, and ISBN, and the book can
be read or shelved. You don’t need to fill in the code for any methods you include;
simply include a comment in the body, like we did for the Dog class earlier in the
chapter.

133

CHAPTER 7

Classes and Objects

In Chapter 3, we introduced you to the intrinsic types built into the C# language.
Those simple types allow you to hold and manipulate numeric values and strings.
The true power of C#, however, lies in its capacity to let the programmer define new
types to suit particular problems. That ability to create new types is what character-
izes an object-oriented language. You specify new types in C# by declaring and
defining classes.

Particular instances of a class are called objects. The difference between a class and
an object is the same as the difference between the concept of a Dog and the particu-
lar dog who is sitting at your feet as you read this. You can’t play fetch with the defi-
nition of a Dog, only with an instance.

A Dog class describes what dogs are like; they have weight, height, eye color, hair
color, disposition, and so forth. They also have actions they can take, such as eat,
walk, bark, and sleep. A particular dog (such as Jesse’s dog, Milo) will have a spe-
cific weight (62 pounds), height (22 inches), eye color (black), hair color (yellow),
disposition (angelic), and so forth. He is capable of all the actions—methods, in pro-
gramming parlance—of any dog (though if you knew him, you might imagine that
eating is the only method he implements).

The huge advantage of classes in object-oriented programming is that classes encap-
sulate the characteristics and capabilities of a type in a single, self-contained unit.

Suppose, for example, that you want to sort the contents of an instance of a
Windows listbox control. The listbox control is defined as a class. One of the proper-
ties of that class is that it knows how to sort itself. Sorting is encapsulated within the
class, and the details of how the listbox sorts itself are not made visible to other
classes. If you want a listbox sorted, you just tell the listbox to sort itself and it takes
care of the details.

So, you simply write a method that tells the listbox to sort itself—and that’s what
happens. How it sorts is of no concern; that it does so is all you need to know.

134 | Chapter 7: Classes and Objects

As we noted in Chapter 6, this is called encapsulation, which, along with polymor-
phism and specialization, is one of three cardinal principles of object-oriented pro-
gramming. Chapter 11 discusses polymorphism and inheritance.

An old programming joke asks: how many object-oriented programmers does it take
to change a lightbulb? Answer: none, you just tell the lightbulb to change itself. This
chapter explains the C# language features that are used to specify new classes. The
elements of a class—its behaviors and its state—are known collectively as its class
members.

Class behavior is created by writing methods (sometimes called member functions).
A method is a routine that every object of the class can execute. For example, a Dog

class might have a Bark method, and a listbox class might have a Sort method.

Class state is maintained by fields (sometimes called member variables). Fields may
be primitive types (an int to hold the age of the dog or a set of strings to hold the
contents of the listbox), or fields may be objects of other classes (for example, an
Employee class may have a field of type Address).

Finally, classes may also have properties, which act like methods to the creator of the
class, but look like fields to clients of the class. A client is any object that interacts
with instances of the class.

Defining Classes
When you define a new class, you define the characteristics of all objects of that
class, as well as their behaviors. For example, if you create your own windowing
operating system, you might want to create screen widgets (known as controls in
Windows). One control of interest might be a listbox, a control that is very useful for
presenting a list of choices to the user and enabling the user to select from the list.

Listboxes have a variety of characteristics: height, width, location, and text color, for
example. Programmers have also come to expect certain behaviors of listboxes—they
can be opened, closed, sorted, and so on.

Object-oriented programming allows you to create a new type, ListBox, which
encapsulates these characteristics and capabilities.

To define a new type or class, you first declare it and then define its methods and
fields. You declare a class using the class keyword. The complete syntax is:

[attributes] [access-modifiers] class identifier [:base-class]
{class-body}

Attributes are used to provide special metadata about a class (that is, information
about the structure or use of the class). You won’t need to use attributes in this
book, but you may run into them if you venture into more advanced topics.

Defining Classes | 135

Access modifiers are discussed later in this chapter. (Typically, your classes will use
the keyword public as an access modifier.)

The identifier is the name of the class that you provide. Typically, C# classes are
named with nouns (Dog, Employee, ListBox). The naming convention (not required, but
strongly encouraged) is to use Pascal notation. In Pascal notation, you don’t use under-
bars or hyphens, but if the name has two words (Golden Retriever), you push the two
words together, each word beginning with an uppercase letter (GoldenRetriever).

As we mentioned earlier, inheritance is one of the pillars of object-oriented program-
ming. The optional base class is key to inheritance, as we’ll explain in Chapter 11.

The member definitions that make up the class body are enclosed by open and closed
curly braces ({}):

class Dog
{
 int age; // the dog's age
 int weight; // the dog's weight
 Bark() { //... }
 Eat() { // ... }
}

Methods within the class definition of Dog define all the things a dog can do. The
fields (member variables) such as age and weight describe all of the dog’s attributes
or state.

Instantiating Objects
To make an actual instance, or object, of the Dog class, you must declare the object
and allocate memory for the object. These two steps combined are necessary to cre-
ate, or instantiate, the object. Here’s how you do it.

First, you declare the object by writing the name of the class (Dog) followed by an
identifier (name) for the object or instance of that class:

Dog milo; // declare milo to be an instance of Dog

This is not unlike the way you create a local variable; you declare the type (in this
case, Dog), followed by the identifier (milo). Notice also that by convention, the iden-
tifier for the object is written in Camel notation. Camel notation is just like Pascal
notation except that the very first letter is lowercase. Thus, a variable or object name
might be myDog, designatedDriver, or plantManager.

The declaration alone doesn’t actually create an instance, however. To create an
instance of a class, you must also allocate memory for the object using the keyword
new:

milo = new Dog(); // allocate memory for milo

136 | Chapter 7: Classes and Objects

You can combine the declaration of the Dog type with the memory allocation into a
single line:

Dog milo = new Dog();

This code declares milo to be an object of type Dog and also creates a new instance of
Dog. You’ll see what the parentheses are for in “Constructors” later in this chapter.

In C#, everything happens within a class. No methods can run outside a class, not
even Main(). The Main() method is the entry point for your program; it is called by
the operating system, and it is where execution of your program begins. Typically,
you’ll create a small class to house Main(), because like every method, Main() must
live within a class. Some of the examples in this book use a class named Tester to
house Main():

public class Tester
{
 public static void Main()
 {
 //...
 }
}

Even though Tester was created to house the Main() method, you’ve not yet instanti-
ated any objects of type Tester. To do so, you would write:

Tester myTester = new Tester(); // instantiate an object of type Tester

As you’ll see later in this chapter, creating an instance of the Tester class allows you
to call other methods on the object you’ve created (myTester).

Classes Versus Objects
One way to understand the difference between a class and an instance (object) is to
consider the distinction between the type int and a variable of type int.

You can’t assign a value to a type:

int = 5; // error

Instead, you assign a value to an object of that type (in this case, a variable of type int):

int myInteger;
myInteger = 5; // ok

Similarly, you can’t assign values to fields in a class; you must assign values to fields in
an object. Thus, you can’t write:

Dog.weight = 5;

This is not meaningful. It isn’t true that every dog’s weight is 5 pounds. You must
instead write:

milo.weight = 5;

This says that a particular dog’s weight (Milo’s weight) is 5 pounds.

Defining Classes | 137

Creating a Box Class
We’ll start out with a very simple class—a three-dimensional box. The internal state
of the box should keep track of the length, width, and height of the box. You proba-
bly also want some way to show the box to the user. In a graphical environment, you
would probably draw the box, but because we’re working with console applications,
we’ll compromise and just output the dimensions.

You might implement such a class by defining a single method and three variables, as
shown in Example 7-1.

This code creates a new user-defined type: Box. The Box class definition begins with
the declaration of a number of member variables: Length, Width, and Height.

The keyword private indicates that these values can be accessed only by methods of
this class. The private keyword is an access modifier, explained later in this chapter.

Example 7-1. The Box class is a very simple class with just three member fields and one method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_7_1_ _ _ _The_Box_Class
{
 public class Box
 {
 // private variables
 private int length;
 private int width;
 private int height;

 // public methods
 public void DisplayBox()
 {
 Console.WriteLine("Stub for displaying the box.");
 }
 }

 public class Tester
 {
 static void Main()
 {
 Box boxObject = new Box();
 boxObject.DisplayBox();
 }
 }
}

138 | Chapter 7: Classes and Objects

Many C# programmers prefer to put all of the member fields together,
either at the very top or at the very bottom of the class declaration,
though that is not required by the language.

The only method declared within the Box class is the method DisplayBox(). The
DisplayBox() method is defined to return void; that is, it will not return a value to the
method that invokes it. For now, the body of this method has been “stubbed out.”

Stubbing out a method is a temporary measure you might use when you first write a
program to allow you to think about the overall structure without filling in every
detail when you create a class. When you stub out a method body, you leave out the
internal logic and just mark the method, perhaps with a message to the console:

public void DisplayBox()
{
 Console.WriteLine("Stub for displaying the box.");
}

After the closing brace, a second class, Tester, is defined. Tester contains our now
familiar Main() method. In Main(), an instance of Box is created, named boxObject:

Box boxObject = new Box();

Technically, an unnamed instance of Box is created in an area of mem-
ory called the heap, and a reference to that object is returned and used
to initialize the Box reference named boxObject. Because that is cum-
bersome, we’ll simply say that a Box instance named boxObject was
created.

Because boxObject is an instance of Box, Main() can make use of the DisplayBox()

method defined for objects of that type and can call it to display the dimensions of
the box:

boxObject.DisplayBox();

You invoke a method on an object by writing the name of the object (boxObject) fol-
lowed by the dot operator (.), the method name (DisplayBox), and the parameter list
in parentheses (in this case, the list is empty). You’ll see how to pass in values to ini-
tialize the member variables in “Constructors” later in this chapter.

Access Modifiers
An access modifier determines which class methods—including methods of other
classes—can see and use a member variable or method within a class. Table 7-1 sum-
marizes the C# access modifiers.

Method Arguments | 139

Public methods are part of the class’s public interface: they define how this class
behaves. Private methods are “helper methods” used by the public methods to
accomplish the work of the class. Because the internal workings of the class are pri-
vate, helper methods need not (and should not) be exposed to other classes.

The Box class and its method DisplayBox() are both declared public so that any other
class can make use of them. If DisplayBox() had been private, you wouldn’t be able
to invoke DisplayBox() from any method of any class other than methods of Box

itself. In Example 7-1, DisplayBox() was invoked from a method of Tester (not Box),
and this was legal because both the class (Box) and the method (DisplayBox) were
marked public.

It is good programming practice to explicitly set the accessibility of all
methods and members of your class. Although you can rely on the fact
that class members are declared private by default, making their
access explicit indicates a conscious decision and is self-documenting.

Method Arguments
The behavior of a class is defined by the methods of that class. To make your meth-
ods as flexible as possible, you can define parameters: information passed into the
method when the method is invoked. Thus, rather than having to write one method
when you want to sort your listbox from A to Z, and a second method when you
want to sort it from Z to A, you define a more general Sort() method and pass in a
parameter specifying the order of the sort.

Methods can take any number of parameters. The parameter list follows the method
name and is enclosed in parentheses. Inside the parentheses, you provide the type of
the parameter and the name that the method will use to refer to that parameter.

Table 7-1. Access modifiers

Access modifier Restrictions

public No restrictions. Members that are marked public are visible to any method of any class.

private The members in class A that are marked private are accessible only to methods of class A.

protected The members in class A that are marked protected are accessible to methods of class A
and also to methods of classes derived from class A. The protected access modifier is used
with derived classes, as explained in Chapter 11.

internal The members in class A that are marked internal are accessible to methods of any class in
A’s assembly. An assembly is a collection of files that appear to the programmer as a single
executable or DLL.

protected internal The members in class A that are marked protected internal are accessible to methods
of class A, to methods of classes derived from class A, and also to any class in A’s assembly.
This is effectively protected or internal; there is no concept of protected and internal.

140 | Chapter 7: Classes and Objects

The terms argument and parameter are often used interchangeably,
though some programmers insist on differentiating between the
parameter declaration and the arguments passed in when the method
is invoked.

For example, the following declaration defines a method named MyMethod() that
returns void (that is, it returns no value at all) and takes two parameters (an int and
a Button):

void MyMethod (int firstParam, Button secondParam)
{
 // ...
}

Within the body of the method, the parameters act as local variables, as though you
had declared them in the body of the method and initialized them with the values
passed in. Example 7-2 illustrates how you pass values into a method; in this case,
values of type int and float.

Here is the output:

Here are the parameters received: 5, 3.14

Example 7-2. To pass parameters into a method, you include them in parentheses after the method
name

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine("Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }
}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }
}

Return Types | 141

When you instantiate a float with a decimal part (3.14), you must
append the letter f (as in 3.14f) to signal to the compiler that the value
is a float and not a double.

The method SomeMethod() takes two parameters, firstParam and secondParam, and
displays them using Console.WriteLine(). firstParam is an int, and secondParam is a
float. These parameters are treated as local variables within SomeMethod(). Local
variables are used only within the method. You can manipulate these values within
the method, but they go out of scope and are discarded after the method ends. When
you pass value-type parameters to a method, you aren’t passing the variables them-
selves; you’re creating local variables with the same type and value as the parameters
you pass in. In this case, you can’t manipulate the values of howManyPeople or pi

within SomeMethod(), because SomeMethod() has access only to firstParam and
secondParam. (Notice that the names used inside the method don’t need to be the
same as the names used for the same values outside the method.) Sometimes you’ll
want the method to change the value of the parameter, not the local variable, and
you can do that with reference parameters, which we’ll discuss in Chapter 8.

The scope of a variable refers to the parts of the program where you can use that vari-
able. The scope of a local variable is the method where it’s used. You can’t refer to
firstParam in Main(), for example, because Main() is outside the scope of
firstParam.

In the calling method (Main), two local variables (howManyPeople and pi) are created
and initialized. These variables are passed as the parameters to SomeMethod(). The
compiler maps howManyPeople to firstParam and pi to secondParam, based on their
relative positions in the parameter list.

Return Types
You’ve seen in several places so far in this book that methods can return a type, or
they can return nothing at all if the return type is void. You’ve mostly used void

methods up until now, specifically Main(), although WriteLine() is a void method as
well. The constructors you’ve worked with do return a value—they return an
instance of the class.

What you may not know is that you can use a method call in place of an object, if
the method returns the appropriate type. For example, suppose you have a class
Multiplier, such as this:

public class Multiplier
{
 public int Multiply(int firstOperand, int secondOperand)
 {
 return firstOperand * secondOperand;
 }
}

142 | Chapter 7: Classes and Objects

You can call that Multiply() method anyplace you’d expect an int, like this:

int x = 4;
int y = 10;
Multiplier myMultiplier = new Multiplier();
int result = myMultiplier.Multiply(x, y);

Here, you’re assigning the return value of the Multiply() method to an int, which
works fine, because the return type of the Multiply() method is int. You can do the
same with any of the intrinsic types, or with classes you create.

Constructors
In Example 7-1, notice that the statement that creates the Box object looks as though
it is invoking a Box() method, because of the parentheses:

Box boxObject = new Box();

In fact, a member method is invoked whenever you instantiate an object. This
method is called a constructor. Each time you define a class, you are free to define
your own constructor, but if you don’t, the compiler will provide one for you invisi-
bly and automatically.

The job of a constructor is to create an instance of the object specified by a class and
to put it into a valid state. Before the constructor runs, the object is just a blob of
memory; after the constructor completes, the memory holds a valid instance of the
class.

The Box class of Example 7-1 does not define a constructor, so the compiler implic-
itly provides one. The constructor provided by the compiler creates the object but
takes no other action.

Any constructor that takes no arguments is called a default construc-
tor. The constructor provided by the compiler takes no arguments,
and hence is a default constructor. This terminology has caused a
great deal of confusion. You can create your own default constructor,
and if you do not create a constructor at all, the compiler will create a
default constructor for you, by default.

If you do not explicitly initialize your member variables, they are initialized to innoc-
uous values (integers to 0, strings to an empty string, and so on). Table 7-2 lists the
default values assigned to some of the common types.

Table 7-2. Primitive types and their default values

Type Default value

Numeric (int, long, and so on) 0

Bool False

Char The null character ('\0')

Constructors | 143

Typically, you’ll want to define your own constructor and provide it with arguments
so that the constructor can set the initial state for your object. In Example 7-3, you’ll
pass in some initial values for Box so that the object is created with meaningful data.

You declare a constructor like you do any other member method, except:

• The name of the constructor must be the same as the name of the class.

• Constructors have no return type (not even void).

If there are arguments to be passed, you define an argument list just as you would for
any other method. Example 7-3 declares a constructor for the Box class that accepts
three arguments, one each for the length, width, and height for the new Box object
you are creating.

Enum 0

Reference null

Example 7-3. To create a constructor, you create a method with the same name as the class that
initializes the internal variables

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_7_3_ _ _ _Constructor
{
 public class Box
 {
 // private variables
 private int length;
 private int width;
 private int height;

 // public methods
 public void DisplayBox()
 {
 Console.WriteLine("Length: {0}, Width: {1}, Height: {2}",
 length, width, height);
 }

 // constructor
 public Box(int theLength, int theWidth, int theHeight)
 {
 length = theLength;
 width = theWidth;
 height = theHeight;
 }
 }

Table 7-2. Primitive types and their default values (continued)

Type Default value

144 | Chapter 7: Classes and Objects

The output looks like this:

Length: 4, Width: 8, Height: 3

In this example, the constructor takes a series of integer values and initializes all the
member variables based on these parameters.

When the constructor finishes, the Box object exists and the values have been initial-
ized. When DisplayBox() is called in Main(), the values are displayed.

Try commenting out one of the assignments and running the program again. You’ll
find that each member variable that isn’t assigned to by you is initialized by the com-
piler to zero. Integer member variables are set to zero if you don’t otherwise assign
them. Remember that value types (such as integers) must be initialized; if you don’t
tell the constructor what to do, it sets innocuous values.

Initializers
If you know that certain member variables should always have the same value when
the object is created, you can initialize the values of these member variables in an
initializer, instead of having to do so in the constructor. You create an initializer by
assigning an initial value to a class member:

private int Second = 30; // initializer

Suppose that, for whatever reason, the boxes you’re creating in your program are
always 6 inches high. You might rewrite your Box class to use an initializer so that the
value of height is always initialized, as shown in bold in Example 7-4.

 public class Tester
 {
 static void Main()
 {
 Box boxObject = new Box(4, 8, 3);
 boxObject.DisplayBox();
 }
 }
}

Example 7-4. You use an initializer to set the value of a member variable within the class itself, so
you don’t need to do it in the constructor

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Example 7-3. To create a constructor, you create a method with the same name as the class that
initializes the internal variables (continued)

Initializers | 145

The output looks like this:

Length: 4, Width: 8, Height: 6

If you do not provide a specific initializer, the constructor initializes each integer
member variable to zero (0). In the case shown, however, the height member is ini-
tialized to 6:

 private int height = 6;

Later in this chapter, you will see that you can have more than one constructor. If
you assign 6 to height in more than one of these, you can avoid the problem of hav-
ing to keep all the constructors consistent with one another by initializing the height

member, rather than assigning 6 in each of the constructors.

namespace Example_7_4_ _ _ _Initializer
{
 public class Box
 {
 // private variables
 private int length;
 private int width;
 private int height = 6;

 // public methods
 public void DisplayBox()
 {
 Console.WriteLine("Length: {0}, Width: {1}, Height: {2}",
 length, width, height);
 }

 // constructor
 public Box(int theLength, int theWidth)
 {
 length = theLength;
 width = theWidth;
 }
 }

 public class Tester
 {
 static void Main()
 {
 Box boxObject = new Box(4, 8);
 boxObject.DisplayBox();
 }
 }
}

Example 7-4. You use an initializer to set the value of a member variable within the class itself, so
you don’t need to do it in the constructor (continued)

146 | Chapter 7: Classes and Objects

Object Initializers
Although you normally set the properties of your object with a constructor, that’s
not the only way to do it. C# also offers object initializers, which let you set any
accessible members of your object when you create it. Notice that we said accessible,
which means you can set public members, but not private ones. Suppose you have
this Dog class, with member fields that are public:

public class Dog
{
 public string name;
 public int weight;

 // constructor
 public Dog(string myName)
 {
 name = myName;
 }
}

Notice here that the constructor takes a string to set the dog’s name, but it doesn’t
take a weight. That’s fine, because weight is public, so you could easily set it later,
like this:

Dog milo = new Dog("Milo");
Milo.weight = 5;

With an object initializer, though, you can set the public weight immediately after
you create the object, like this:

Dog milo = new Dog("Milo") { weight = 5 };

There’s not a whole lot of reason to do this; you could just rewrite the constructor to
accept the weight. In fact, it’s generally a bad idea to have your member fields be
public, as we’ve said. However, this technique has some advantages with anonymous
types.

Anonymous Types
From time to time you find yourself creating a class only so that you can create a sin-
gle instance of it, never to use that class again. C# allows you to dispense with all
that and combine object initializers and implicitly typed variables, which you learned
about back in Chapter 3, to create a class with no name at all: an anonymous type.

You create an instance of an anonymous type with the keyword new, just as you
would if you were instantiating an object of a declared class. Instead of passing
parameters to a constructor, though, you use braces and define the member fields
that you want your anonymous class to contain, like this:

new { Color = "Blue", Size = 13 }

The this Keyword | 147

The compiler creates a new class with two member fields. Notice that we’ve capital-
ized the names of the fields in this declaration, which is contrary to the naming
scheme we’ve been using. That’s because these aren’t fields, but properties, which
we’ll explain more fully in the next chapter. In brief, properties look like fields to the
users of your class, and look like methods to the creator of your class.

This new class contains two properties, Color and Size. Just as with implicitly typed
variables, the compiler can determine that Color is a String and Size is an int, and it
types them accordingly. And as with implicitly typed variables, you can’t declare the
property without assigning it a value, because the compiler needs that value to deter-
mine the property’s type.

Of course, the compiler does assign your class a name for its own internal purposes;
it just doesn’t tell you what that name is. So how do you use an anonymous class?
You can use the var keyword to assign an instance of that class to a variable:

var myShoe = new { Color = "Blue", Size = 13 };

You can now access each of the properties using dot notation:

Stirng whatColor = myShoe.Color;
int howBig = myShoe.Size;

These fields are read-only, however. If you try to assign a new value to one of them,
you’ll get an error:

myShoe.Size = 12; // error

This technique is only really useful when your class contains only read-only data,
and no methods. That might seem like a rather limited use, but it’s very handy with
LINQ, so you’ll see anonymous methods again in Chapter 21, but not before then.

The this Keyword
The keyword this refers to the current instance of an object. The this reference is a
hidden parameter in every nonstatic method of a class (we’ll discuss static methods
shortly). There are three ways in which the this reference is typically used. The first
way is to qualify instance members that have the same name as parameters, as in the
following:

public void SomeMethod (int length)
{
 this.length = length;
}

In this example, SomeMethod() takes a parameter (length) with the same name as a
member variable of the class. The this reference is used to resolve the ambiguity.
Whereas this.length refers to the member variable, length refers to the parameter.

You can, for example, use the this reference to make assigning to a field more
explicit:

148 | Chapter 7: Classes and Objects

public void SetBox(int length, int newWidth, int newHeight)
{
 this.length = length; // use of "this" required
 this.width = newWidth; // use of "this" optional
 height = newHeight; // use of "this" not needed

If the name of the parameter is the same as the name of the member variable, you
must use the this reference to distinguish between the two, but if the names are dif-
ferent (such as newWidth and newHeight), the use of the this reference is optional.

The argument in favor of naming the argument to a method that is the
same as the name of the member is that the relationship between the
two is made explicit. The counterargument is that using the same
name for both the parameter and the member variable can cause con-
fusion as to which one you are referring to at any given moment.

The second use of the this reference is to pass the current object as a parameter to
another method, as in the following code:

class SomeClass
{
 public void FirstMethod(OtherClass otherObject)
 {
 otherObject.SecondMethod(this);
 }
 // ...
}

This code snippet establishes two classes, SomeClass and OtherClass (the definition of
OtherClass isn’t shown here). SomeClass has a method named FirstMethod(), and
OtherClass has a method named SecondMethod().

Inside FirstMethod(), we’d like to invoke SecondMethod(), passing in the current
object (an instance of SomeClass) for further processing. To do so, you pass in the
this reference, which refers to the current instance of SomeClass.

The third use of this is with indexers, which we cover in Chapter 14.

Static and Instance Members
The fields, properties, and methods of a class can be either instance members or static
members. Instance members are associated with instances of a type, whereas static
members are associated with the class itself, and not with any particular instance. All
methods are instance methods unless you explicitly mark them with the keyword
static.

The vast majority of methods will be instance methods. The semantics of an instance
method are that you are taking an action on a specific object. From time to time,
however, it is convenient to be able to invoke a method without having an instance
of the class, and for that, you will use a static method.

Static and Instance Members | 149

You access a static member through the name of the class in which it is declared. For
example, suppose you have a class named Button and have instantiated objects of
that class named btnUpdate and btnDelete.

Suppose that the Button class has an instance method Draw() and a static method
GetButtonCount(). The job of Draw() is to draw the current button, and the job of
GetButtonCount() is to return the number of buttons currently visible on the form.
Since GetButtonCount() applies to more than just the one button, it wouldn’t make
sense to call it on a specific instance of Button; therefore, it’s static.

You access an instance method through an instance of the class—that is, through an
object:

btnUpdate.SomeMethod();

You access a static method through the class name, not through an instance:

Button.GetButtonCount();

Invoking Static Methods
Static methods are said to operate on the class, rather than on an instance of the
class. They do not have a this reference, as there is no instance to point to.

Static methods cannot directly access nonstatic members. You will remember that
Main() is marked static. For Main() to call a nonstatic method of any class, including
its own class, it must instantiate an object. In addition, static methods can access
only static member fields of the same class.

For the next example, use Visual Studio to create a new console application named
StaticTester. Visual Studio creates a namespace, StaticTester, and a class named
Program. Rename Program to Tester. Delete the args parameter to Main(). When you
are done, your source code should look like this:

using System;
namespace StaticTester
{
 class Tester
 {
 static void Main()
 {
 }
 }
}

That is a good starting point. Until now, you’ve always done all the work of the pro-
gram right in the Main() method, but now you’ll create an instance method, Run().
The work of the program will now be done in the Run() method, rather than in the
Main() method.

Within the class, but not within the Main() method (that is, just before Main()),
declare a new instance method named Run().

150 | Chapter 7: Classes and Objects

When you declare a method, you write the accessor (public), followed by the return
type, the identifier, and then parentheses:

public void Run()

The parentheses can hold parameters, but Run() won’t have any parameters, so you
can just leave the parentheses empty. Create braces for the method, and within the
braces, add a statement to print “Hello World” to the console:

public void Run()
{
 Console.WriteLine("Hello World");
}

Run() is an instance method. Main() is a static method and so it cannot invoke Run()

directly. Therefore, to call Run() from inside Main(), you need to create an instance
of the Tester class and call Run() on that instance. Add this line inside Main():

Tester t = new Tester();

When you type the keyword new, IntelliSense tries to help you with the class name.
You’ll find that Tester is in the list; it is a legitimate class like any other. On the next
line, invoke Run() on your Tester object t:

t.Run();

When you type t followed by the dot operator, IntelliSense presents all the public
methods of the Tester class, as shown in Figure 7-1.

Figure 7-1. IntelliSense knows the names of the methods of your class, and presents them to you
when you type the dot operator.

Static and Instance Members | 151

Notice that the Tester class has a number of methods you did not cre-
ate (Equals, GetHashCode, and others). Every class in C# derives from
the Object class, and these methods are part of the Object class. We
cover this in Chapter 11.

When your program is complete, it looks like Example 7-5.

The output looks like this:

Hello World

This is the model you’ll use from now on in most console applications. The Main()

method will be limited to instantiating an object and then invoking the Run()

method.

Using Static Fields
A common use of static member variables, or fields, is to keep track of the number of
instances/objects that currently exist for your class. In the next example, you’ll cre-
ate a Cat class. The Cat class might be used in a pet-store simulation.

Example 7-5. You use an instance method to invoke a method from within a static method, such as
Main()

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_7_5_ _ _ _Instance_Methods
{
 // create the class
 class Tester
 {
 // Run is an instance method
 public void Run()
 {
 Console.WriteLine("Hello World");
 }

 // Main is static
 static void Main()
 {
 // create an instance
 Tester t = new Tester();

 // invoke the instance method
 t.Run();
 }
 }
}

152 | Chapter 7: Classes and Objects

For this example, the Cat class has been stripped to its absolute essentials. The com-
plete listing is shown in Example 7-6. An analysis follows the example.

Example 7-6. Use static fields to keep track of data that applies to the class, not to a specific instance
of the class, such as a counter that tracks the number of objects created of that class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_7_6_ _ _ _Static_Fields
{
 // declare a Cat class, stripped down
 public class Cat
 {
 // a private static member to keep track of how many Cat objects
 // have been created
 private static int instances = 0;
 private int weight;
 private String name;

 // cat constructor, increments the count of Cats
 public Cat(String name, int weight)
 {
 instances++;
 this.name = name;
 this.weight = weight;
 }

 // Static method to retrieve the current number of Cats
 public static void HowManyCats()
 {
 Console.WriteLine("{0} cats adopted", instances);
 }
 public void TellWeight()
 {
 Console.WriteLine("{0} is {1} pounds", name, weight);
 }
 }

 class Tester
 {
 public void Run()
 {
 Cat.HowManyCats();
 Cat frisky = new Cat("Frisky", 5);
 frisky.TellWeight();
 Cat.HowManyCats();
 Cat whiskers = new Cat("Whiskers", 7);

Static and Instance Members | 153

Here is the output:

0 cats adopted
Frisky is 5 pounds
1 cats adopted
Whiskers is 7 pounds
2 cats adopted

The Cat class begins by defining a static member variable, instances, that is initial-
ized to zero. When you initialize a static variable, the initialization always takes place
before any reference is made to that variable. This static member field will keep track
of the number of Cat objects created. Each time the constructor runs (creating a new
object), the instances field is incremented.

The Cat class also defines two instance fields: name and weight. These track the name
and weight of each individual Cat object.

The Cat class defines two methods: HowManyCats() and TellWeight(). HowManyCats()
is static. The number of Cats is not an attribute of any given Cat; it is an attribute of the
entire class. That is, there’s only one instance of the instances variable for all Cat
objects. TellWeight() is an instance method. The name and weight of each cat is unique
for each instance—each Cat has its own instance of the name and weight variables.

The Main() method accesses the static HowManyCats() method directly, through the
class name:

Cat.HowManyCats();

Main() then creates an instance of Cat and accesses the instance method, TellWeight(),
through the instance of Cat:

Cat frisky = new Cat()
frisky.TellWeight();

Each time a new Cat is created, HowManyCats() reports the increase.

 whiskers.TellWeight();
 Cat.HowManyCats();
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 7-6. Use static fields to keep track of data that applies to the class, not to a specific instance
of the class, such as a counter that tracks the number of objects created of that class (continued)

154 | Chapter 7: Classes and Objects

Finalizing Objects
Unlike many other programming languages (C, C++, Pascal, and so on), C# pro-
vides garbage collection. Your objects are destroyed after you are done with them—
although not immediately after; they’re destroyed when the garbage collection
process runs, which is determined by the system. You do not need to worry about
cleaning up after your objects unless you use unmanaged or scarce resources. An
unmanaged resource is an operating-system feature outside the .NET Framework,
such as a connection to a database. A scarce resource is a resource that you have in
limited quantity, perhaps because of licensing limitations or limited bandwidth.
Graphics resources, such as fonts and brushes, are considered scarce because of the
way the operating system works.

If you do control an unmanaged resource, you need to explicitly free that resource
when you are done with it. Typically, you’ll manage this by implementing the
IDisposable interface. (You will learn more about interfaces in Chapter 13.)

The IDisposable interface requires you to create a method named Dispose(), which
will be called by your clients.

If you provide a Dispose() method, you should stop the garbage collector from call-
ing your object’s destructor. To stop the garbage collector, call the static method
GC.SuppressFinalize(), passing in the this reference for your object. Your finalizer
can then call your Dispose() method. Thus, you might write:

using System;
class Testing : IDisposable
{
 bool is_disposed = false;
 protected virtual void Dispose(bool disposing)
 {
 if (!is_disposed) // only dispose once!
 {
 if (disposing)
 {
 // OK to reference other objects
 }
 // perform cleanup for this object
 Console.WriteLine("Disposing...");
 }
 this.is_disposed = true;
 }
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
}

Memory Allocation: The Stack Versus the Heap | 155

For some objects, you’d rather have your clients call a Close() method because that
is the keyword they use historically (such as File.Close()).You can implement this
by creating a private Dispose() method and a public Close() method and having
your Close() method invoke Dispose().

Because you cannot be certain that your user will call Dispose() reliably, and
because finalization is nondeterministic (that is, you can’t control when the garbage
collector will run), C# provides a using statement to ensure that Dispose() is called
at the earliest possible time. The idiom is to declare which objects you are using and
then to create a scope for these objects with curly braces. When the close brace is
reached, the Dispose() method will be called on the object automatically, as illus-
trated here:

using System.Drawing;
class Tester
{
 public static void Main()
 {

using (Font theFont = new Font("Arial", 10.0f))
 {
 // use the font
 }
 }
}

The keyword using is overdetermined—that is, it is used in two ways in C#. The first
way is to indicate that you are using a namespace, as you see in the preceding code
snippet:

using System.Drawing

The second way is in the using statement that creates a scope to ensure finalization,
as you see in this line:

using (Font theFont = new Font("Arial",10.0f))

Because Windows lets you have only a small number of Font objects, we want to dis-
pose of it at the earliest opportunity. In this code snippet, the Font object is created
within the using statement. When the using statement ends, Dispose() is guaran-
teed to be called on the Font object.

Memory Allocation: The Stack Versus the Heap
Objects created within methods are called local variables, as we discussed earlier.
They are local to the method, as opposed to belonging to the whole object, as mem-
ber variables are. The object is created within the method, used within the method,
and then destroyed sometime after the method ends. Local objects are not part of the
object’s state—they are temporary value holders, useful only within the particular
method.

156 | Chapter 7: Classes and Objects

Local variables of intrinsic types such as int are created on a portion of memory
known as the stack. The stack is allocated and de-allocated as methods are invoked.
When you start a method, all its local variables are created on the stack. When the
method ends, local variables are destroyed.

These variables are referred to as local because they exist (and are visible) only dur-
ing the lifetime of the method. They are said to have local scope. When the method
ends, the variable goes out of scope and is destroyed.

C# divides the world of types into value types and reference types. Value types are
created on the stack. All the intrinsic types (int, long) are value types (as are structs,
discussed later in this chapter), and thus are created on the stack.

Objects, on the other hand, are reference types. Reference types are created on an
undifferentiated block of memory known as the heap. When you declare an instance
of a reference type, what you are actually declaring is a reference, which is a variable
that refers to another object. The reference acts like an alias for the object.

That is, when you write:

Dog milo = new Dog();

the new operator creates a Dog object on the heap and returns a reference to it. That
reference is assigned to milo. Thus, milo is a reference object that refers to a Dog

object on the heap. It is common to say that milo is a reference to a Dog, or even that
milo is a “Dog object,” but technically that is incorrect. milo is actually a reference
that refers to an (unnamed) Dog object on the heap.

The reference milo acts as an alias for that unnamed object. For all practical pur-
poses, however, you can treat milo as though it were the Dog object itself. In other
words, it’s fine to go on referring to milo as a Dog object. He won’t mind.

The implication of using references is that you can have more than one reference to
the same object. To see this difference between creating value types and reference
types, examine Example 7-7. A complete analysis follows the output.

Example 7-7. Value types are created on the stack, and reference types are created on the
heap

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_7_7_ _ _ _Value_and_Reference_Types
{
 public class Dog
 {
 public int weight;
 }

Memory Allocation: The Stack Versus the Heap | 157

 class Tester
 {
 public void Run()
 {
 // create an integer
 int firstInt = 5;

 // create a second integer
 int secondInt = firstInt;

 // display the two integers
 Console.WriteLine("firstInt: {0} secondInt: {1}",
 firstInt, secondInt);

 // modify the second integer
 secondInt = 7;

 // display the two integers
 Console.WriteLine("firstInt: {0} secondInt: {1}",
 firstInt, secondInt);

 // create a dog
 Dog milo = new Dog();

 // assign a value to weight
 milo.weight = 5;

 // create a second reference to the dog
 Dog fido = milo;

 // display their values
 Console.WriteLine("milo: {0}, fido: {1}",
 milo.weight, fido.weight);

 // assign a new weight to the second reference
 fido.weight = 7;

 // display the two values
 Console.WriteLine("milo: {0}, fido: {1}",
 milo.weight, fido.weight);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 7-7. Value types are created on the stack, and reference types are created on the
heap (continued)

158 | Chapter 7: Classes and Objects

The output looks like this:

firstInt: 5 secondInt: 5
firstInt: 5 secondInt: 7
Milo: 5, fido: 5
Milo: 7, fido: 7

The program begins by creating an integer, firstInt, and initializing it with the value
5. The second integer, secondInt, is then created and initialized with the value in
firstInt. Their values are displayed as output:

firstInt: 5 secondInt: 5

These values are identical. Because int is a value type, a copy of the firstInt value is
made and assigned to secondInt; secondInt is an independent second variable, as
illustrated in Figure 7-2.

Then the program assigns a new value to secondInt:

secondInt = 7;

Because these variables are value types, independent of one another, the first vari-
able is unaffected. Only the copy is changed, as illustrated in Figure 7-3.

When the values are displayed, they are different:

firstInt: 5 secondInt: 7

Your next step is to create a simple Dog class with only one member variable, called
weight. Note that this field is given an access modifier of public, which specifies that
any method of any class can access this field. (Generally, you will not make member
variables public. The weight field was made public to simplify this example.)

You instantiate a Dog object and save a reference to that dog in the reference milo:

Dog milo = new Dog();

You assign the value 5 to milo’s weight field:

milo.weight = 5;

Figure 7-2. secondInt is a copy of firstInt.

Figure 7-3. Only the copy is changed.

firstInt
5

secondInt
5

firstInt
5

secondInt
7

Memory Allocation: The Stack Versus the Heap | 159

You commonly say that you’ve set milo’s weight to 5, but actually you’ve set the
weight field of the unnamed object on the heap to which milo refers, as shown in
Figure 7-4.

Next, you create a second reference to Dog and initialize it by setting it equal to milo.
This creates a new reference to the same object on the heap.

Dog fido = milo;

Notice that this is syntactically similar to creating a second int variable and initializ-
ing it with an existing int, as you did before:

int secondInt = firstInt;
Dog fido = milo;

The difference is that Dog is a reference type, so fido is not a copy of milo—it is a sec-
ond reference to the same object to which milo refers. That is, you now have an
object on the heap with two references to it, as illustrated in Figure 7-5.

When you change the weight of that object through the fido reference:

fido.weight = 7;

you change the weight of the same object to which milo refers. The output reflects
this:

Milo: 7, fido: 7

It isn’t that fido is changing milo; it is that by changing the (unnamed) object on the
heap to which fido refers you simultaneously change the value of milo because they
refer to the same unnamed object.

Figure 7-4. milo is a reference to an unnamed Dog object.

5 LBS

milo

Heap

160 | Chapter 7: Classes and Objects

If you had used the keyword new when creating fido, you’d have cre-
ated a new instance of Dog on the heap, and fido and milo would not
point to the same Dog object.

Figure 7-5. fido is a second reference to the Dog object.

Structs
Structs are value types, but they are similar to classes in that they can contain construc-
tors, properties, methods, and fields, all explained in this chapter. Structs can also sup-
port operators and indexers (see Chapter 14).

On the other hand, structs don’t support inheritance or destructors (see Chapter 11)
or field initialization. You define a struct almost exactly like you define a class:

[attributes] [access-modifiers] struct identifier [:interface-list]
{ struct-members }

Structs implicitly derive from Object (as do all types in C#, including the built-in types)
but cannot inherit from any other class or struct (as classes can). Structs are also implic-
itly sealed (that is, no class or struct can derive from a struct; see Chapter 11); this is
not true for classes.

The goal of structs is to be “lightweight”—requiring little memory overhead—but
their use is so constrained, and the savings are so minimal, that most programmers
make little use of them.

C++ programmers beware: structs in C++ are identical to classes (except for visibility)—
that is not true in C#.

5 LBS

milo fido

Summary | 161

If you need a class that acts as a value object, you can create a struct (see the
“Structs” sidebar). The use of structs is so unusual that we do not cover them
(beyond the sidebar) for the rest of this book. You should know what they are, but
you’ll probably never need to use one.

Summary
• When you define a new class, you declare its name with the class keyword, and

then define its methods, fields, and properties.

• To instantiate an object, you declare the name of the class, followed by an iden-
tifier for the object, much as you would a local variable. You then need to allo-
cate memory for the actual (unnamed) object that will be created on the heap;
you do so with the keyword new.

• You invoke a method on an object by writing the name of the object, followed
by the dot operator, and the method name followed by parentheses. Parameters,
if any, are placed within the parentheses.

• Access modifiers dictate which methods of external classes can see and use a
variable or method within a class. All members of the class are visible to all
methods of its own class.

• Members marked public have no restrictions, and are visible to methods of any
class.

• Members marked private are visible only to methods within the same class.

• Members marked protected are visible to methods within the same class, and
methods in derived classes.

• If you know the return type of a method, you can use a method call anyplace you
would use an instance of that type.

• A constructor is a special method invoked when a new object is created. If you
do not define any constructors at all for your class, the compiler will provide a
default constructor that does nothing. A default constructor is a constructor that
takes no parameters. You are free to create your own default constructor for
your class.

• You can initialize the values of your member variables when you define them in
your class.

• Object initializers allow you to set the public fields of an object immediately
after you create the object.

• Anonymous types allow you to create a class with no name, and initialize its
fields immediately. The compiler will implicitly assign types to those fields. You
can use the var keyword to create an instance of the anonymous object.

• The this keyword is used to refer to the current instance of an object.

162 | Chapter 7: Classes and Objects

• Every nonstatic method of a class has an implicit this variable passed into the
method.

• Static members are associated with the class itself, not with a particular instance.
Static members are declared with the keyword static, and are invoked through
the class name. Static methods do not have a this parameter because there is no
instance to refer to.

• C# does not specifically require a finalizer method in your classes because the
framework will destroy any object that is not in use.

• You should provide a Dispose() method if your class uses unmanaged resources.

• Local value type variables are created on the stack. When the method ends,
these variables go out of scope and are destroyed.

• Objects are reference types, and are created on the heap. When you declare an
instance of a reference type, you are actually creating a reference to that object’s
location in memory. If you declare a reference to an object on the heap within a
method, when the method ends that reference is destroyed. If there are no
remaining references to the object on the heap, the object itself is destroyed by
the garbage collector at some later time.

• You can define a reference to an existing object by declaring the class and an
identifier and then assigning to that identifier an existing object; the two identifi-
ers now both refer to the same (unnamed) object on the heap.

You spent the preceding chapter learning the theory, and now you’ve seen some of
the practice behind the most powerful concept in C#. Hopefully by this point,
you’ve seen how you can model just about anything with carefully defined classes
and methods. You may have noticed a few limitations of the methods we’ve shown
you so far, though. For example, methods can return only a single value—what if
you want to manipulate and return two or more values? Or what if you’re not quite
sure how many parameters you’ll have when you call the method? Maybe you’ll cre-
ate a Dog object with a name and a weight, but perhaps sometimes you just have the
name, and you’ll need to add the weight later. C# methods are flexible enough to
handle all of these cases, and in the next chapter, you’ll spend time looking at them
more closely.

Test Your Knowledge: Quiz

Question 7-1. What is the difference between a class and an object?

Question 7-2. What does the keyword private do?

Test Your Knowledge: Exercises | 163

Question 7-3. What does the keyword public do?

Question 7-4. What method is called when you create an object?

Question 7-5. What is a default constructor?

Question 7-6. What types can a constructor return?

Question 7-7. How do you initialize the value of a member variable in a class?

Question 7-8. What does the keyword this refer to?

Question 7-9. What is the difference between a static method and an instance
method?

Question 7-10. Where are reference types created? Where are value types created?

Test Your Knowledge: Exercises

Exercise 7-1. Write a program with a Math class that has four methods: Add, Subtract,
Multiply, and Divide, each of which takes two parameters. Call each method from
Main() and provide an appropriate output statement to demonstrate that each
method works. You don’t need to have the user provide input; just provide the two
integers to the methods within Main().

Exercise 7-2. Modify the program from Exercise 7-1 so that you do not have to create
an instance of Math to call the four methods. Call the four methods again from Main()

to demonstrate that they work.

Exercise 7-3. Create a class Book that you could use to keep track of book objects.
Each Book object should have a title, author, publisher, and ISBN (which should be a
string, rather than a numeric type, so that the ISBN can start with a 0 or include an
X). The class should have a DisplayBook() method to output that information to the
console. In Main(), create three Book objects with this data.

Because all three books have the same publisher, you should initialize that field in
your class.

Programming C# 3.0 Jesse Liberty and Donald Xie O’Reilly 9780596527433

C# 3.0 In a Nutshell Joseph Albahari and Ben Albahari O’Reilly 9780596527570

C# 3.0 Cookbook Jay Hilyard and Stephen Teilhet O’Reilly 9780596516109

164 | Chapter 7: Classes and Objects

Exercise 7-4. You might think it isn’t possible to draw geometric shapes using the
console output, and you’d be mostly right. We can simulate drawing shapes, though,
by imagining a graph and displaying, say, the coordinates of the four corners of a
square. Start with a class called Point. This is a simple enough class; it should have
members for an x coordinate and a y coordinate, a constructor, and a method for
displaying the coordinates in the form (x,y). For now, make the x and y members
public, to keep things simple.

Now create a class Square. Internally, the class should keep track of all four points of
the square, but in the constructor, you should accept just a single Point and a length
(make it an integer, to keep it simple). You should also have a method to output the
coordinates of all four points. In Main(), create the initial Point, then create a Square

and output its corners.

165

CHAPTER 8

Inside Methods

In Chapter 7, you saw that classes consist of fields and methods. Fields hold the state
of the object, and methods define the object’s behavior.

In this chapter, you’ll explore how methods work in more detail. You’ve already seen
how to create methods, and in this chapter you’ll learn about method overloading, a
technique that allows you to create more than one method with the same name. This
enables your clients to invoke the method with different parameter types.

This chapter also introduces properties. To clients of your class, properties look like
member variables, but properties are implemented as methods. This allows you to
keep your data members safe from outside interference, which is called data hiding,
while providing your clients with convenient access to the state of your class.

Chapter 7 described the difference between value types (such as int and long) and
reference types. The most common value types are the “built-in” or “primitive”
types, and the most common reference types are the user-defined types. This chapter
explores the implications of passing value types to methods and shows how you can
pass value types by reference, allowing the called method to act on the original object
in the calling method.

Overloading Methods
Often, you’ll want to have more than one method with the same name. The most
common example of this is to have more than one constructor with the same name,
which allows you to create the object with different types of parameters, or a differ-
ent number of parameters. For example, if you were creating a Box object, you might
have circumstances where you want to create the Box object by passing in the length,
width, and height. Other times, you might want to create a Box object by passing in
an existing Box object. Still other times, you might want to pass in just a length, with-
out width and height. Overloading the constructor allows you to provide these vari-
ous options.

166 | Chapter 8: Inside Methods

Chapter 7 explained that your constructor is automatically invoked when your object
is created. Let’s return to the Box class created in that chapter. The constructor in
that chapter took three integers for length, width, and height. That works fine for
most boxes, but suppose you have a situation where some of the boxes might need a
color. That’s an entirely different parameter, and with a different data type, as well (a
string, in this case). Some boxes might need a color; others might not. You can pro-
vide separate constructors for the colored and noncolored boxes.

To overload your constructor, you must make sure that each constructor has a
unique signature. The signature of a method is composed of its name and its parame-
ter list, but not its return type. Two methods differ in their signatures if they have
different names or different parameter lists, which means having different numbers
or types of parameters. The following four lines of code show how you might distin-
guish methods by signature:

void MyMethod(int p1);
void MyMethod(int p1, int p2); // different number
void MyMethod(int p1, string s1); // different types
void SomeMethod(int p1); // different name

You can overload any method, not just constructors. The first three methods are all
overloads of the MyMethod() method. The first method differs from the second and
third in the number of parameters. The second method closely resembles the third
version, but the second parameter in each is a different type. In the second method,
the second parameter (p2) is an integer; in the third method, the second parameter
(s1) is a string. These changes to the number or type of parameters are sufficient
changes in the signature to allow the compiler to distinguish the methods.

The fourth method differs from the other three methods by having a different name.
This is not method overloading, just different methods, but it illustrates that two
methods can have the same number and type of parameters if they have different
names. Thus, the fourth method and the first have the same parameter list, but their
names are different.

A class can have any number of methods, as long as each one’s signature differs from
that of all the others. Example 8-1 illustrates a new version of the Box class with two
constructors: one that takes three integers and one that takes three integers and a
string for the color.

Example 8-1. Overloading a method is a way to provide flexibility in the parameters that clients
provide to your class methods

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_8_1_ _ _ _Overloading
{

Overloading Methods | 167

The output looks like this:

Length: 4, Width: 8, Height: 3 Color: brown
Length: 3, Width: 5, Height: 7 Color: blue

 public class Box
 {
 // private variables
 private int length;
 private int width;
 private int height;
 private string color;

 // public methods
 public void DisplayBox()
 {
 Console.WriteLine("Length: {0}, Width: {1}, Height: {2}
 Color: {3}", length, width, height, color);
 }

 // constructor
 public Box(int theLength, int theWidth, int theHeight)
 {
 length = theLength;
 width = theWidth;
 height = theHeight;
 color = "brown";
 }

 public Box(int theLength, int theWidth, int theHeight,
 string theColor)
 {
 length = theLength;
 width = theWidth;
 height = theHeight;
 color = theColor;
 }
 }

 public class Tester
 {
 static void Main()
 {
 Box box1 = new Box(4, 8, 3);
 box1.DisplayBox();
 Box blueBox = new Box(3, 5, 7, "blue");
 blueBox.DisplayBox();
 }
 }
}

Example 8-1. Overloading a method is a way to provide flexibility in the parameters that clients
provide to your class methods (continued)

168 | Chapter 8: Inside Methods

If a function’s signature consisted only of the function name, the compiler would not
know which constructors to call when constructing the new Box objects, box1 and
blueBox. However, because the signature includes the parameters and their types, the
compiler is able to match the constructor call for blueBox with the constructor whose
signature requires a string object:

Box blueBox = new Box(3, 5, 7, "blue");

public Box(int theLength, int theWidth, int theHeight, string theColor)

Likewise, the compiler is able to associate the box1 constructor call with the con-
structor whose signature specifies just three integer arguments:

Box box1 = new Box(4, 8, 3);

public Box(int theLength, int theWidth, int theHeight)

Notice that the constructor that doesn’t take a color automatically assigns a color of
“brown” to all boxes created with that constructor. We changed the DisplayBox()

method to output the color of the box, so you see that box1 is brown in the output.

When you overload a method, you must change the signature (the
name, number, or type of the parameters). You are free, as well, to
change the return type, but this is optional. Changing only the return
type does not overload the method, and creating two methods with
the same signature but differing return types generates a compile error.

Encapsulating Data with Properties
Most of the time, you’ll want to designate the member variables of a class as private.
This means that only member methods of that class can access their value. When
you prevent methods outside the class from directly accessing member variables,
you’re enforcing data hiding, which is an aspect of the encapsulation of a class, as we
discussed in Chapter 6.

That’s fine, but if the members are private, how do your other classes access that
data? The answer for C# programmers is properties. Properties allow other methods
(called clients) to access the state of your class as though they were accessing mem-
ber fields directly, although you’re actually implementing that access through a class
method.

This solution is ideal. The client wants direct access to the state of the object. As the
class designer, though, you want to hide the internal state of the class in class fields
and provide indirect access through a method. For example, you might want exter-
nal classes to be able to read a value, but not change it; or you might want to write
some code so that the internal field can accept only values in a certain range. If you
grant external classes free access to your member fields, you can’t control any of that.

Encapsulating Data with Properties | 169

The property provides both the illusion of direct access for the client and the reality
of indirect access for the class developer.

By separating the class state from the method that accesses that state (a process
called decoupling), you’re free to change the internal state of the object whenever you
need to. When the Box class is first created, the length value might be stored as a
member variable. Later on, you might redesign the class so that the length value is
computed or maybe retrieved from a database. If the client had direct access to the
original length member variable, changing how that value is resolved would break
the client. By decoupling and forcing the client to go through a property, the Box

class can change how it manages its internal state without breaking client code.

In short, properties provide the data hiding required by good object-oriented design.
Example 8-2 creates a property called length, which is then discussed in the para-
graphs that follow.

Example 8-2. Properties provide data hiding by supplying the client with a method that looks like the
client is accessing the member variable directly

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_8_2_ _ _ _Properties
{
 public class Box
 {
 // private variables
 private int length;
 private int width;
 private int height;

 // property
 public int Length
 {
 get
 {
 return length;
 }
 set
 {
 length = value;
 }
 }

 // public methods
 public void DisplayBox()
 {
 Console.WriteLine("Length: {0}, Width: {1}, Height:
 {2}", length, width, height);
 }

170 | Chapter 8: Inside Methods

The output should look something like this:

Length: 3, Width: 5, Height: 7
Length of box is: 3
Length: 4, Width: 5, Height: 7

You create a property by writing the property type and name followed by a pair of
braces. Within the braces, you can declare the get and set accessors. These acces-
sors are very similar to methods, but they are actually part of the property itself.

 // constructor
 public Box(int theLength, int theWidth, int theHeight)
 {
 length = theLength;
 width = theWidth;
 height = theHeight;
 }

 }

 public class Tester
 {
 public void Run()
 {
 // create a box for testing and display it
 Box testBox = new Box(3, 5, 7);
 testBox.DisplayBox();

 // access the length, store it in a local variable
 int testLength = testBox.Length;
 Console.WriteLine("Length of box is: {0}", testLength);

 // increment the length
 testLength++;

 // assign the new value to the member variable
 testBox.Length = testLength;

 // display the box again to test the new value
 testBox.DisplayBox();
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 8-2. Properties provide data hiding by supplying the client with a method that looks like the
client is accessing the member variable directly (continued)

Encapsulating Data with Properties | 171

The purpose of these accessors is to provide the client with simple ways to retrieve
and change the value of the private member length, as you’ll see.

Neither of these accessors has explicit parameters, though the set accessor has an
implicit parameter called value, which is used to set the value of the member variable.

By convention, property names are written in Pascal notation (initial
uppercase), and member fields have initial lowercase. This isn’t man-
datory, but it makes it easier to distinguish between the field and the
property.

In Example 8-2, the declaration of the length property creates both get and set

accessors:

 // property
 public int Length
 {
 get
 {
 return length;
 }
 set
 {
 length = value;
 }
 }

Each accessor has an accessor body, which does the work of retrieving or setting the
property value. The property value might be stored in a database (in which case, the
accessor would do whatever work is needed to interact with the database), or it
might just be stored in a private member variable (in this case, length):

private int length;

The get Accessor
The body of the get accessor (sometimes called a “getter”) is similar to a class
method that returns an object of the type of the property. In Example 8-2, the acces-
sor for the Length property is similar to a method that returns an int. It returns the
value of the private member variable length in which the value of the property has
been stored:

get
{
 return length;
}

In this example, the value of a private int member variable is returned, but you could
just as easily retrieve an integer value from a database or compute it on the fly.

172 | Chapter 8: Inside Methods

Remember, this description is from the perspective of the author of the
Box class. To the client (user) of the Box class, Length is a property, and
how the Box class returns its length is encapsulated within the Box
class—the client doesn’t know or care.

Whenever you need to retrieve the value (other than to assign to it), the get accessor
is invoked. For example, in the following code, the value of the Box object’s Length

property is assigned to a local variable. You use the dot operator to call the accessor,
exactly as you would if you were accessing a public property.

To the client, the local variable testLength is assigned the value of the Length prop-
erty of testBox (the Box object). To the creator of the Box object, however, the get

accessor is called, which in this case returns the value of the length member variable:

Box testBox = new Box(3, 5, 7);
int testLength = testBox.Length;

The set Accessor
The set accessor (sometimes called a “setter”) sets the value of a property. When you
define a set accessor, you must use the value keyword to represent the argument
whose value is assigned to the property:

set
{
 length = value;
}

Here, again, a private member variable is used to store the value of the property, but
the set accessor could write to a database or update other member variables as needed.

When external code assigns a value to the property, the set accessor is automatically
invoked, and the implicit parameter value is set to the value you assign:

testLength++;
testBox.Length = testLength;

The first line increments a local variable named testLength. As far as the client is
concerned, that new value is assigned to the Length property of the local Box object
testBox. Again, this looks the same as though you were assigning to a public vari-
able. To the author of the Box class, however, the local variable testLength is passed
in to the set accessor as the implicit parameter value and assigned (in this case) to the
local member variable length.

The advantage of this approach is that the client can interact with the properties
directly, without sacrificing the data hiding and encapsulation sacrosanct in good
object-oriented design.

Returning Multiple Values | 173

You can create a read-only property by not implementing the set part
of the property. Similarly, you can create a write-only property by not
implementing the get part.

Automatic Properties
Although we mentioned that the accessors may calculate values on the fly, or access
a database to obtain a value, most of the time you’ll just use them to retrieve or set
an internal member directly, like you saw with the Length property:

public int Length
{
 get
 {
 return length;
 }
 set
 {
 length = value;
 }
}

As you can imagine, if you have a lot of private member fields in your class, creating
accessors for all of them is both repetitive and mindless. Therefore, if all you’re doing
is retrieving or setting a private member, you can use a shortcut syntax called auto-
matic properties. That syntax works like this:

public int Length { get; set; }

Simple, isn’t it? This syntax will save you a lot of typing in complicated classes.
Remember, though, that if you want to do anything other than simply retrieve or
assign the value, you’ll need to create the accessor by hand. It’s also worth mention-
ing that if you use the automatic properties, you shouldn’t also create the private
members; the compiler will do that for you behind the scenes.

Returning Multiple Values
Methods can return only a single value, but this isn’t always convenient. Suppose
you have a class called Doubler, which contains a method we’ll call DoubleInt() that
takes two integers and doubles them. Simple enough, right?

The problem is that although DoubleInt() can accept two integers, and can process
them both, it can return only one of them. Example 8-3 shows a way that you might
try to write DoubleInt().

174 | Chapter 8: Inside Methods

The output will look something like this:

Before doubling:
First number: 5, Second number: 10
After doubling:
First number: 5, Second number: 10

Obviously, that’s not the desired result. The problem is with the parameters. You
pass in two integer parameters to DoubleInt(), and you modify those two parame-
ters in DoubleInt(), but when the values are accessed back in Run() they are
unchanged. This is because integers are value types.

Example 8-3. This is our first attempt at retrieving multiple values

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_8_3_ _ _ _Returning_multiple_values
{
 class Doubler
 {
 public void DoubleInt(int firstNum, int secondNum)
 {
 firstNum = firstNum * 2;
 secondNum = secondNum * 2;
 }
 }
 class Tester
 {
 public void Run()
 {
 int first = 5;
 int second = 10;
 Console.WriteLine("Before doubling:");
 Console.WriteLine("First number: {0}, Second number: {1}",
 first, second);

 Doubler d = new Doubler();
 d.DoubleInt(first, second);
 Console.WriteLine("After doubling:");
 Console.WriteLine("First number: {0}, Second number: {1}",
 first, second);
 }

 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Returning Multiple Values | 175

Passing Value Types by Reference
As we discussed in Chapter 7, C# divides the world of types into value types and ref-
erence types. All intrinsic types (such as int and long) are value types. Instances of
classes (objects) are reference types.

When you pass a value type (such as an int) into a method, a copy is made. When
you make changes to the parameter, you’re actually making changes to the copy.
Back in the Run() method, the original integer variables—first and second—are
unaffected by the changes made in DoubleInt().

What you need is a way to pass in the integer parameters by reference so that
changes made in the method are made to the original object in the calling method.
When you pass an object by reference, the parameter refers to the same object. Thus,
when you make changes in DoubleInt(), the changes are made to the original vari-
ables in Run(). You do this by prefacing the parameters with the keyword ref.

Technically, when you pass a reference type, the reference itself is
passed by value; but the copy that is made is a copy of a reference, and
thus that copy points to the same (unnamed) object on the heap as did
the original reference object. That is how you achieve the semantics of
“pass by reference” in C# using pass by value. However, that’s all
behind-the-scenes stuff, and it’s acceptable to say that you’re passing
objects by reference.

This requires two small modifications to the code in Example 8-3. First, change the
parameters of the DoubleInt() method to indicate that the parameters are ref (refer-
ence) parameters:

public void DoubleInt(ref int firstNum, ref int secondNum)

Second, modify the call to DoubleInt() to pass the arguments as references:

d.DoubleInt(ref first, ref second);

If you leave out the second step of marking the arguments with the
keyword ref, the compiler will complain that the argument cannot be
converted from an int to a ref int.

These changes are shown in Example 8-4.

Example 8-4. You can use the ref keyword to pass by reference

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_8_4_ _ _ _Passing_by_Reference

176 | Chapter 8: Inside Methods

This time, the output looks like this:

Before doubling:
First number: 5, Second number: 10
After doubling:
First number: 10, Second number: 20

These results are more like what you’d expect.

By declaring these parameters to be ref parameters, you instruct the compiler to pass
them by reference. Instead of a copy being made, the parameters in DoubleInt() are
references to the corresponding variables (first and second) that were created in Run().
When you change these values in DoubleInt(), the change is reflected in Run().

Keep in mind that ref parameters are references to the actual original value—it is as
though you said, “Here, work on this one.” Conversely, value parameters are
copies—it is as though you said, “Here, work on one just like this.”

{
 class Doubler
 {
 public void DoubleInt(ref int firstNum, ref int secondNum)
 {
 firstNum = firstNum * 2;
 secondNum = secondNum * 2;
 }
 }
 class Tester
 {
 public void Run()
 {
 int first = 5;
 int second = 10;
 Console.WriteLine("Before doubling:");
 Console.WriteLine("First number: {0}, Second number: {1}",
 first, second);

 Doubler d = new Doubler();
 d.DoubleInt(ref first, ref second);
 Console.WriteLine("After doubling:");
 Console.WriteLine("First number: {0}, Second number: {1}",
 first, second);
 }

 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 8-4. You can use the ref keyword to pass by reference (continued)

Returning Multiple Values | 177

out Parameters and Definite Assignment
As we noted in Chapter 4, C# imposes definite assignment, which requires that all
variables be assigned a value before they are used. Suppose you have a method for
returning all three parameters from a Box object. You’d call the method something
like this:

myBox.GetDimensions(ref myLength, ref myWidth, ref myHeight);

Because of definite assignment, though, you’d have to initialize those three variables
before you can pass them to your method:

int myLength = 0;
int myWidth = 0;
int myHeight = 0;
myBox.GetDimensions(ref myLength, ref myWidth, ref myHeight);

It seems silly to initialize these values, because you immediately pass them by refer-
ence into GetDimensions() where they’ll be changed; but if you don’t initialize them,
the compiler will raise an error for each of the variables.

C# provides the out modifier for situations such as this, in which initializing a
parameter is only a formality. The out modifier removes the requirement that a refer-
ence parameter be initialized. The parameters to GetDimension(), for example, pro-
vide no information to the method; they are simply a mechanism for getting
information out of it. Thus, by marking all three as out parameters using the out key-
word, you eliminate the need to initialize them outside the method.

Within the called method, the out parameters must be assigned a value before the
method returns. Here are the altered parameter declarations for GetDimensions():

public void GetDimensions(out int theLength, out int theWidth
 out int theHeight)
{
 theLength = length;
 theWidth = width;
 theHeight = height;
}

Here is the new invocation of the method in Run():

int myLength;
int myWidth;
int myHeight;
myBox.GetDimensions(out myLength, out myWidth, out myHeight);

The keyword out implies the same semantics as the keyword ref, except that it also
allows you to use the variable without first initializing it in the calling method.

178 | Chapter 8: Inside Methods

Summary
• Overloading is the act of creating two or more methods with the same name, but

that differ in the number, type of parameters, or both.

• Properties appear to clients to be members, but appear to the designer of the
class to be methods. This allows the designer to modify how the property
retrieves its value without breaking the semantics of the client program.

• Properties include get and set accessors that are used to retrieve and modify a
member field, respectively. The set accessor has an implicit parameter named
value that represents the value to be assigned through the property.

• Automatic properties provide a shorthand way of creating properties, if all you
want to do is set or retrieve a value, as opposed to doing any other processing in
the accessor.

• When you “pass by reference,” the called method affects the object referred to in
the calling method. When you pass by value, the changes in the called method
are not reflected in the calling method. You can pass value types by reference by
using either the ref or the out keyword.

• The out parameter eliminates the requirement to initialize a variable before pass-
ing it to a method.

Now you have an idea of how methods work, and just how essential they are to your
classes. Classes with no methods can still be very useful for holding data, but they
won’t be able to do much on their own. You’ll be seeing methods extensively
throughout the rest of this book, to the point where you probably won’t even think
much about them anymore. You may have noticed that method calls make the flow
of your program much more complicated than the straight line it was in the early
chapters. That’s entirely appropriate, but one side-effect of complicating the flow is
that it can become harder to find bugs. If your program has methods that call other
methods that call still more methods, and it crashes, where should you start to look
for the bug? Fortunately, Visual Studio can help you out; it has a whole set of tools
designed to help you find and diagnose bugs. We’ll take a quick break from the C#
theory to examine those tools in Chapter 9. We think you’ll thank us for it in later
chapters.

Test Your Knowledge: Quiz

Question 8-1. What is the purpose of method overloading?

Question 8-2. How must overloaded methods differ from each other?

Test Your Knowledge: Exercises | 179

Question 8-3. What is the signature of a method?

Question 8-4. What are properties?

Question 8-5. What object-oriented programming principle do properties enforce?

Question 8-6. How do you create a read-only property?

Question 8-7. What is the purpose of automatic properties?

Question 8-8. How do you retrieve more than one return value from a method?

Question 8-9. Where must you use the keyword ref?

Question 8-10. What is the keyword out used for?

Test Your Knowledge: Exercises

Exercise 8-1. Write a program with an overloaded method for tripling the value of the
argument. You don’t need to create a separate class for this; just use static methods
right in Tester. One version of the method should triple an int value, and the other
version should triple a float value. Call both methods to demonstrate that they
work.

Exercise 8-2. Create a Dog class, where the Dog objects have both a weight and a color,
hidden from the client. Create a Dog object, then retrieve its color and display it to
the user. Ask the user for a weight, and use that input to set the Dog’s weight.

Exercise 8-3. Write a program with just one method that takes an int value, supplied
by the user, and returns both double and triple that value. You don’t need a separate
class; just put the method in Tester. In Run(), output the results to the console to
make sure it worked.

Exercise 8-4. Modify the program from Exercise 8-3 so that you don’t need to initial-
ize the variables that will hold the doubled and tripled values before calling the
method.

180

CHAPTER 9

Basic Debugging

Mistakes happen. It’s a simple fact of life, and it’s true in programming, too. Even
the most experienced programmers make mistakes, sometimes the same mistakes
over and over. You’ve probably made a few as you’ve gone through the exercises in
this book. Mistakes are normal, and they are easy to make, especially in a program-
ming language such as C#; we even have a special word for programming mistakes:
bugs. You’ve probably noticed that the compiler (that’s Visual Studio or C# Express)
catches a lot of your bugs, and tells you what’s wrong. It’s even right a lot of the
time, although it’s certainly not perfect. The more you learn, and the more you have
the basics of the language down, the more complicated your mistakes become. Star-
ing at the code and puzzling it out isn’t an effective way to find bugs anymore. For
that, you need a debugger. Fortunately, Visual Studio (including C# Express) comes
with a great debugger built right in.

The debugger is your friend. There is simply no tool more powerful than a debugger
for learning C# and for writing quality C# programs. Put simply, the debugger is a
tool that helps you understand what is really going on when your program is run-
ning. It is the X-ray of software development, allowing you to see inside programs
and diagnose potential problems.

Without a debugger, you are guessing; with a debugger, you are seeing. It is as sim-
ple as that. Whatever time you invest in learning to use your debugger is time well
spent.

The debugger is also a powerful tool for understanding code written by others. By
putting someone else’s code into the debugger and stepping through it, you can see
exactly how the methods work and what data they manipulate.

The Visual Studio debugger provides a number of windows for watching and inter-
acting with your program while it executes. Getting comfortable with the debugger
can mean the difference between finding bugs quickly and struggling for hours or
days. Now that you’re programming with classes, and execution that jumps around
to different methods, it’s an appropriate time to take a break from learning the

Setting a Breakpoint | 181

specifics of the language and to learn some debugging techniques that will help
reduce your frustration later on.

Debugging is one of the very few areas where Visual Studio 2008 and
C# Express differ dramatically. The full Visual Studio offers several
windows and options that just aren’t available in C# Express. Most of
the basic functionality is in both versions, but Visual Studio makes it
easier to get to, and has some extra bells and whistles. We’ll tell you
whenever there’s a difference between the products.

Setting a Breakpoint
To get started with the debugger, return to Example 8-1 in Chapter 8. You’ll be put-
ting a breakpoint on the first line of Main() to see how this code actually works. A
breakpoint is an instruction to the debugger to stop running. You set a breakpoint,
run the program, and the debugger runs the program up until the breakpoint. Then
you have the opportunity to examine the value of your variables at this point in the
execution. Examining your program as it runs can help you untangle otherwise
impenetrable problems. You’ll often set multiple breakpoints, which allows you to
skip through your program, examining the state of your object at selected locations.

You can set a breakpoint in many different ways. The easiest is to click in the left
margin of the code window. This causes a red dot to appear in the margin next to the
relevant line of code, which is also highlighted in red, as shown in Figure 9-1
(although you can’t see the color in the book). Open Example 8-1 from Chapter 8, if
you haven’t already, and click in the gray margin next to the first line of Main()

(Tester t = new Tester()). Notice that as you hover over the breakpoint, a tool tip
tells you the line on which the breakpoint appears.

You are now ready to run the program to the breakpoint. To do so, you must be sure
to run in debug mode, which you can do by clicking the Start button () or by
choosing the Start Debugging item from the Debug menu. In any case, the program
starts and runs to the breakpoint, as shown in Figure 9-2.

Up until now, we’ve encouraged you to select Start Without Debug-
ging so that your console window won’t vanish on you. If you want to
use the debugger, though, you’ll need to “start with debugging,” obvi-
ously. Any breakpoint you set will keep your console window from
vanishing.

The first thing to notice is that the program has stopped execution just before execut-
ing the statement with the breakpoint. In this case, that means the Tester object t
hasn’t yet been created. Your console window is open, but blank, because your pro-
gram hasn’t done anything yet. You’ll also notice that the red breakpoint symbol

182 | Chapter 9: Basic Debugging

now has a yellow arrow in it. If you had more than one breakpoint in your program,
the arrow would show you which one you’re stopped at now. The statement that’s
about to be executed is highlighted in yellow to help you find it. Also, a number of
helpful windows are open, and we’ll get to those in a moment.

The most useful feature of the debugger is the ability to step into the code, or exe-
cute the program one line at a time, watching the changes that happen with each
line. To step into the code, press the F11 function key twice. With the first key press,
the Tester object is created. The second key press moves you to the next line in the
code, which calls the Run() method. Press the key once more to step inside the code
for the Run() method where the program creates a new Box object, box1.

F11 and F10 are the step command keys. The difference is that F10 steps over
method calls, whereas F11 steps into them. With F10, the methods are executed, but
you don’t see each step within the method in the debugger; the highlighting jumps to
the next statement after the method call. When you step into the method call with
F11, on the other hand, the highlighting will move to the first line of the called
method.

If you use F11 to step into a method you actually meant to step over, Shift-F11 will
step you out. The method you stepped into will run to completion, and you’ll break
on the first line back in the calling method.

Figure 9-1. Setting a breakpoint is easy; just click in the left margin. A red dot appears to show
where the breakpoint is set.

Setting a Breakpoint | 183

Using the Debug Menu to Set Your Breakpoint
In Visual Studio, but not C# Express, instead of clicking in the margin to set your
breakpoint, you can use Debug ➝ New Breakpoint ➝ Break at Function (or use the
keyboard shortcut for the menu item, Ctrl-D, N). This brings up the New Break-
point dialog box, as shown in Figure 9-3. In this dialog box, you can specify the
name of the method where you want to break, and even the line and character within
the method, if you know them.

You can also examine and manipulate all the breakpoints together in the Break-
points window, as shown in Figure 9-4. You can access this window in Visual Studio
by selecting Debug ➝ Windows ➝ Breakpoints, or by pressing Ctrl-Alt-B. Unfortu-
nately, this window is completely unavailable in C# Express, which is probably the
greatest deficiency in its debugging suite.

Setting Conditions and Hit Counts
The default behavior is for the breakpoint to cause the program to break every time
you pass that line of code. Sometimes you only want to break (for example) every 20th
time it passes that line of code, or only if the value of some variable is greater than, for
example, 0. You can set conditions on the breakpoint by right-clicking on it in the Edi-
tor window or in the Breakpoints window, as shown in Figure 9-5.

Figure 9-2. When execution stops at the breakpoint, the red breakpoint icon sprouts a yellow
arrow.

184 | Chapter 9: Basic Debugging

In C# Express, you’ll see only the first two options on this menu: Delete Breakpoint
and Disable Breakpoint. In Visual Studio, you can choose either Hit Count or Condi-
tion. If you choose Hit Count, you are offered variations such as “break when the hit
count is a multiple of”, as shown in Figure 9-6.

If you choose Condition, an open-ended condition text box is provided. In
Figure 9-7, we have typed in theValue > 20 as an example.

Examining Values: The Autos and Locals Windows
Look at the tabs below the code window—if you’re using Visual Studio, you’ll find a
Locals window and an Autos window, possibly as tabs in a single window along with
some others. If you’re using C# Express, the Autos window won’t be there, but
Locals will be. Both of these display your local variables. The difference is that the
Autos window shows variables used in the current statement and the previous state-
ment. (The current statement is the statement at the current execution location,

Figure 9-3. The New Breakpoint dialog lets you set a breakpoint down to the character, if you want
to be that precise.

Figure 9-4. The Breakpoints window lets you manage your breakpoints, but only if you’re using
Visual Studio.

Examining Values: The Autos and Locals Windows | 185

which is highlighted automatically in the debugger—thus, the window’s name.) The
Locals window displays all the variables in the current method, including parameters,
as shown in Figure 9-8, along with each variable’s current value and type.

The debugger stacks the Autos and Locals windows together with
other tabs, as shown in Figure 9-8. You are free to separate these win-
dows or to move them to be tabbed with other windows. You can sim-
ply drag-and-drop the windows where you want them. When you
drop one window onto another, the two windows are tabbed together.

Figure 9-5. In Visual Studio, the Breakpoint menu allows you to select various options for your
breakpoint settings.

Figure 9-6. The Breakpoint Hit Count dialog lets you choose how often you want this point to be
reached before breaking.

186 | Chapter 9: Basic Debugging

To see how this works, put a breakpoint on the first line of the Run() method and
run the program. When the program stops, press F10 to step over the creation of the
new Box object. The Autos window shows you that the new Box has been created, as
shown in Figure 9-9.

Because box1 has just been created, it is shown in red. Notice the plus sign (+) next
to box1. box1 is a member of the Box class, as you know, and that class has several
members. Clicking the plus sign reveals the internal state of this object, as shown in
Figure 9-10.

Press F11 a few more times, and you’ll see that the Autos window changes to show
you the new values, appropriate to the current line of code.

As mentioned earlier, the Locals window lets you look at all the variables in the
current method simultaneously. If you look at the Locals window while the execu-
tion is in the Box constructor, you’ll see the local variables theLength, theWidth, and
theHeight (the parameters to the constructor) and this (the current object).

Figure 9-7. The Breakpoint Condition dialog is more open-ended, offering greater flexibility in your
breakpoints.

Figure 9-8. The Locals window shows the values of the variables in the method you’re currently in.

Examining Values: The Autos and Locals Windows | 187

Expand the this variable, and you’ll see the Box object, with its members uninitial-
ized. Press F11 to progress through the assignment of values to the member vari-
ables of the Box class. As you press the F11 key, the update is reflected in the Locals
window, as shown in Figure 9-11.

Figure 9-9. The Autos window is similar to the Locals window, but shows values from the current
statement.

Figure 9-10. Expanding the variable gives you a look at the state of the object.

Figure 9-11. If you watch the Locals window as you step through the application, you can see the
assignment of the object’s member fields.

188 | Chapter 9: Basic Debugging

Explore the Locals and Autos windows as you step through the program. When you
want to stop, choose the Stop Debugging item from the Debug menu to stop pro-
cessing and return to the editor.

Setting Your Watch
When you’re debugging a program with many local variables, you usually don’t want
to watch all of them; you need to keep track of only a few. You can track specific
variables and objects in the Watch window. You can have up to four Watch win-
dows at a time in Visual Studio, but just the one in C# Express. Watch windows are
like by-invitation versions of the Locals window; they list the objects you ask the
debugger to keep an eye on, and you can see their values change as you step through
the program, as illustrated in Figure 9-12.

The Watch windows are usually tabbed with the Locals window. You can add a
watch by right-clicking on a variable and choosing Add Watch or you can just drag
the variable to the Watch window. The variable will be added to your Watch win-
dow. To remove a variable that you’ve added to your Watch window, you can right-
click on it in the Watch list and select Delete Watch.

In Visual Studio only, if you just need to peek at a variable, and perhaps to experi-
ment with manipulating its value, you can right-click on it and choose QuickWatch,
which opens a dialog box with watch information about a single object, as shown in
Figure 9-13.

You can enter any expression into the Expression field and evaluate it from within
the QuickWatch window. For example, suppose you had a QuickWatch on the
length variable, which is set to 4.

Figure 9-12. A Watch window lets you keep an eye on just the variables you want to track.

The Call Stack | 189

If you want to know the impact of multiplying length by width (set to 8), enter:

length * width

into the Expression window and click Reevaluate. The value is shown in the Value
window, as in Figure 9-14.

If you decide that you want to add the variable to a Watch window after all, click the
Add Watch button.

The Call Stack
As you step in and out of methods, the Call Stack window keeps track of the order
and hierarchy of method calls. Figure 9-15 shows a close-up picture of the Call Stack
window. You can see that the Box constructor was called by the Run() method, while
the Run() method was in turn called by Main().

In this case, if you double-click on the second line in the Call Stack window, the
debugger shows you the line in Run() that called the Box constructor, as shown in
Figure 9-16. Notice that the debugger puts a green curved arrow on the line in the
call stack you’ve double-clicked on, and a matching arrow in the editor to the line
that corresponds to that call. This way, if you’re debugging a method and you think
the data causing the problem came from outside the method, you can quickly find
where the method call came from and check the values at that point.

Figure 9-13. The QuickWatch window lets you examine the properties of a specific variable.

190 | Chapter 9: Basic Debugging

Stopping Debugging
Sometimes, as you’re debugging, you’ll realize that something has gone wrong
enough that there’s no point in running the program to its end, or maybe you just
want to fix the problem right now, before running any further. When that happens,
you want to just end the program where it is, stop the debugging, and go back to

Figure 9-14. The QuickWatch recalculation feature lets you test out various adjustments to a
variable without rewriting your code.

Figure 9-15. The Call Stack window keeps track of the various method calls in your program, no
matter how deep you nest them.

Summary | 191

your editing window. Fortunately, that’s pretty easy. To stop debugging and end the
program, just click Debug ➝ Stop Debugging, or click the Stop button () on the
Debugging toolbar.

Summary
• Visual Studio includes a powerful debugger that lets you step through your pro-

gram and examine the value of variables and objects as methods execute.

• You can set breakpoints in your code, which causes execution to stop when it
reaches that point. Breakpoints can be set to stop every time, every nth time, or
when a particular condition is true.

• Press F11 to step into called methods, and F10 to skip over method calls.

• The Autos window displays the values of the variables used in the current state-
ment and the previous statement. The Locals window shows the values of all the
variables in the current method.

• The Watch window allows you to keep an eye on variables or objects as your
method executes, not only revealing their value, but in the case of complex
objects, allowing you to “drill down” into their internal state.

• The QuickWatch window displays information about a single object, and allows
you to manipulate that object without changing the value of the object in the
running program.

Figure 9-16. If you click on a method in the Call Stack window, Visual Studio will take you to that
line.

192 | Chapter 9: Basic Debugging

• The Call Stack window shows you the method that called your currently execut-
ing method, and the method that invoked that method, and so forth, so that you
can see how you arrived at the currently executing method.

We hope that at this point, you’re comfortable enough with Visual Studio’s various
debugging tools that you’ll have an increased sense of confidence as you approach
the rest of the chapters in this book. The tools won’t prevent you from making mis-
takes, because that is normal and is nothing to worry about. They will help you find
those mistakes more quickly, and get you back on your way.

Before we get back into the intensively object-oriented content, there’s one more
piece of the puzzle that you should know about. Up to this point, you’ve written pro-
grams that dealt with just one object at a time. That’s about to change. The next
chapter deals with arrays, which are a way to handle a group of similar objects as
though they were one object.

Test Your Knowledge: Quiz

Question 9-1. What is the easiest way to set a breakpoint?

Question 9-2. What does the breakpoint icon look like when the execution stops?

Question 9-3. How do you step over or into a method?

Question 9-4. How can you disable breakpoints, and set conditions on breakpoints?

Question 9-5. What is the difference between the Locals window and the Autos
window?

Question 9-6. How can you see the internal state of an object in the Locals window?

Question 9-7. What is the easiest way to set a watch on a variable?

Question 9-8. How do you open a QuickWatch window?

Question 9-9. What does the call stack show and why is it useful?

Question 9-10. How can you find a particular method call in your code from the Call
Stack window?

Test Your Knowledge: Exercises | 193

Test Your Knowledge: Exercises

Exercise 9-1. You’ll use the following program for this exercise. Either type it into
Visual Studio, or copy it from this book’s website. Note that this is spaghetti code—
you’d never write method calls like this, but that’s why this is the debugging chapter.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_9_1
{
 class Tester
 {
 public void Run()
 {
 int myInt = 42;
 float myFloat = 9.685f;
 Console.WriteLine("Before starting: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 // pass the variables by reference
 Multiply(ref myInt, ref myFloat);
 Console.WriteLine("After finishing: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 }
 private static void Multiply (ref int theInt,
 ref float theFloat)
 {
 theInt = theInt * 2;
 theFloat = theFloat *2;
 Divide(ref theInt, ref theFloat);
 }
 private static void Divide (ref int theInt,
 ref float theFloat)
 {
 theInt = theInt / 3;
 theFloat = theFloat / 3;
 Add(ref theInt, ref theFloat);
 }
 public static void Add(ref int theInt,
 ref float theFloat)
 {
 theInt = theInt + theInt;
 theFloat = theFloat + theFloat;
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

194 | Chapter 9: Basic Debugging

1. Place a breakpoint in Run() on the following line, and then run the program:

Console.WriteLine("Before starting: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);

What are the values of myInt and myFloat at the breakpoint?

2. Step into the Multiply() method, up to the call to Divide(). What are the val-
ues of theInt and theFloat at this point?

3. Stop debugging, run the program again, and when it reaches the breakpoint in
Run(), set a watch on myInt. Step through the methods. When does the value of
myInt change?

4. Set another breakpoint in Add() at this line:

theInt = theInt + theInt;

Run the program. How many calls are in the call stack when the program
reaches this breakpoint?

Exercise 9-2. The program in this exercise is similar to the first, but it has a logic
error. Type this program into Visual Studio, or download it from this book’s website:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_9_2
{
 class Tester
 {
 public void Run()
 {
 int myInt = 42;
 float myFloat = 9.685f;
 Console.WriteLine("Before starting: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 // pass the variables by reference
 Multiply(ref myInt, ref myFloat);
 Console.WriteLine("After finishing: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 }
 private static void Multiply (ref int theInt,
 ref float theFloat)
 {
 theInt = theInt * 2;
 theFloat = theFloat *2;
 Divide(ref theInt, ref theFloat);
 }
 private static void Divide (ref int theInt,
 ref float theFloat)

Test Your Knowledge: Exercises | 195

 {
 theInt = theInt * 3;
 theFloat = theFloat * 3;
 Add(ref theInt, ref theFloat);
 }
 public static void Add(ref int theInt,
 ref float theFloat)
 {
 theInt = theInt - theInt;
 theFloat = theFloat - theFloat;
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

If you run this program, you will not get the same results as you did in the preceding
exercise. Use the debugging tools you just learned about to find the error. Correct
the error, and then run the program again to see whether the results are correct.

Exercise 9-3. Type the following program into Visual Studio, or download it from the
book’s website:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_9_3
{
 class Program
 {
 public static int Factorial(int myInt)
 {
 int result = 1;
 for (int i = 1; i < myInt; i++)
 {
 result = result * i;
 }
 return result;
 }

 static void Main()
 {
 int input = 5;
 Console.WriteLine("{0} factorial is {1}",
 input, Factorial(input));
 }
 }
}

196 | Chapter 9: Basic Debugging

This program is supposed to take the factorial of the value of input, except it’s not
working properly. (The factorial of n is the product of all the positive integers less
than or equal to n. So, the factorial of 5 is 5 × 4 × 3 × 2 × 1=120.) Find the error and
resolve it.

197

CHAPTER 10

Arrays

Almost all of the examples in previous chapters have dealt with one object at a time.
In many applications, however, you want to work with a collection of objects all at
the same time. The simplest collection in C# is the array, and it’s the only collection
type for which C# provides built-in support. The other collection types, such as
stack and queue, are not part of the language; they are part of the Framework Class
Library, and we’ll cover those in detail in Chapter 14. The cool thing about arrays is
that you can pass them around as though they were a single object, yet they contain
several objects of the same type. Arrays really come into their own in combination
with loops, which you learned about back in Chapter 5. In this chapter, you will
learn to work with three types of arrays: one-dimensional arrays, multidimensional
rectangular arrays, and jagged arrays.

Using Arrays
An array is a collection of objects, all of the same type (all ints, all strings, and so
on). Arrays are also indexed, meaning that the language provides a way for you to say
“Get me the third item in the array.” Indexing also means that the items in the array
are stored in a specific order, which further means that you can loop through the
contents of the array in order. That process is called iteration, and we’ll show you
how to do it in a minute. Arrays are a standard feature of almost all modern lan-
guages, and C# provides built-in syntax for declaring and using arrays.

Arrays are a bit tricky to visualize at first—a bunch of objects occupying the space of
a single object. To picture a basic array (also called a one-dimensional array—you’ll
see why it’s called that shortly), imagine a series of mailboxes, all lined up one after
the other, as shown in Figure 10-1. Each mailbox can hold exactly one object in C#.
Each mailbox also has a number (an address in the real world; an index in C#), so
you can identify which item is in which box. Unlike real-world mailboxes, though,
all the mailboxes must hold the same kind of object; you declare the type of object
that the mailboxes will hold when you declare the array.

198 | Chapter 10: Arrays

The important thing about arrays is that you can treat the entire array (the set of
mailboxes) as a single entity, with a single name. As you’ll see, using loops, you can
easily perform an operation on each element within an array in turn.

Declaring Arrays
The syntax for arrays uses the square bracket characters []. For starters, you declare
a C# array with the following syntax:

type[] array name;

For example:

int[] myIntArray;

As usual, you are not actually declaring an array. Technically, you are
declaring a variable (myIntArray) that will hold a reference to an array
of integers. As always, we’ll use the shorthand and refer to myIntArray
as the array, knowing that we really mean it is a variable that holds a
reference to an (unnamed) array.

The square brackets tell the C# compiler that you are declaring an array, and the
type specifies the type of the elements it will contain. In the previous example,
myIntArray is an array of integers.

To instantiate a new array, you use the new keyword. Inside the square brackets, you
specify how many elements you want to be in the array. For example:

myIntArray = new int[5];

This statement creates and initializes an array of five integers, all of which are initial-
ized to the value zero.

It is important to distinguish between the array (which is a collection) and the ele-
ments held in the array (which can be of any type, as long as all the elements in the
array are the same type). myIntArray is the array; its elements are the five integers it
holds.

Figure 10-1. An array of five integers. Each “mailbox” is one item in the array, which has its own
address (the index), and can hold exactly one object.

32 -640 8 273 42

int[] myArray = new int[5];

0 1 2 3 4

Using Arrays | 199

C# arrays are reference types, created on the heap. Thus, the array to which the vari-
able myIntArray refers is allocated on the heap. The elements of an array are allocated
based on their own type. Because integers are value types, the elements in myIntArray

will be value types, and thus all the elements will be created inside the block of mem-
ory allocated for the array. Because an array is a reference type, it will always be
passed by reference, even if the elements in the array are value types.

Understanding Default Values
When you create an array of value types, each element initially contains the default
value for the type stored in the array (see Table 3-1 in Chapter 3). The statement you
saw earlier:

myIntArray = new int[5];

creates an array of five integers, with the value of each set to 0, which is the default
value for integer types.

If you create an array of reference types (anything other than the primitive types), those
objects are not initialized to their default value. Instead, the references held in the array
are initialized to null. If you attempt to access an element in an array of reference types
before you have specifically initialized the elements, you will generate an exception.

Suppose you have created a Button class. You’d declare an array of Button objects
with the following statement:

Button[] myButtonArray;

and instantiate the actual array like this:

myButtonArray = new Button[3];

You can shorten this to:

Button[] myButtonArray = new Button[3];

This statement does not create an array with references to three Button objects.
Instead, this creates the array myButtonArray with three null references. To use this
array, you must first create and assign the Button objects for each reference in the
array, using the Button class’s constructor as usual. You can construct the objects in
a loop that adds them one by one to the array, as you’ll see later in this chapter.

Accessing Array Elements
You can access a single element of an array using square brackets ([]), which are
called the index operator. Each element of the array has an index, and you can access
the element at a particular index by placing the index number of the element you
want inside the brackets. For example, if you have an array of ints, and you want to
assign the element with index 3 to another variable, you’d do it like this:

int myInt = myIntArray[3];

200 | Chapter 10: Arrays

There are two things to remember here. The first is that myIntArray[3] isn’t an array;
it’s just an int, like any other int. It just happens to be an int that’s an element of an
array. The second thing is that myIntArray[3] isn’t the third element in the array—
it’s actually the fourth element. Arrays in C# are zero-based, which means that the
index of the first element is always zero—in this case, myIntArray[0]. This also
means that if you declared myIntArray[] to have five elements, the highest index is 4,
not 5. If you try to access myIntArray[5], you’ll get an error. We know this is coun-
terintuitive, but you’ll get used to it quickly enough.

Arrays also have a property called Length, which tells you how many objects the
array holds—this is useful, because you won’t always know this when you write your
code. Because the indexes start at 0, that means the highest index in an array is
always equal to Length - 1. Or to put it another way, arrays are indexed from 0 to
Length - 1.

Arrays and Loops
We mentioned earlier that arrays really come into their own when you combine them
with loops. Suppose you want to have an array of the first 10 even integers. You need
to start with an array of size 10:

int[] myIntArray = new int[10];

Easy enough. Then you need to populate the array with even integers. You can do
that with a for loop like this:

for (int i = 0; i < myIntArray.Length; i++)
{
 myIntArray[i] = 2 * (i + 1);
}

Take a closer look at the for loop. The loop control variable i starts at 0, which is
also the first element in the array. You want the loop to fill each element in the array,
so the condition for ending the loop is i < myIntArray.Length. Remember that
myIntArray.Length is going to be 10 in this case, but you want the loop to stop when
i is equal to 9. Since i starts at 0, that means the loop will run 10 times. Therefore,
it’s important to use <, not <=, in the condition.

Inside the loop, you use myIntArray[i] to iterate through the loop. That is, the first
time through, you’ll be setting myIntArray[0]; the next time, myIntArray[1]; and so
on. 2 * (i + 1) simply calculates the next even number, and assigns it to the current
element of the array. (We used 2 * (i + 1) instead of 2 * i so that the first element in
the array would be 2, rather than 0.)

To output the contents of the array to the console, you use a similar loop:

for (int i = 0; i < myIntArray.Length; i++)
{
 Console.WriteLine("Value in index {0} is {1}.", i, myIntArray[i]);
}

Using Arrays | 201

Notice that the header of the for loop is exactly the same as the previous one. This is
how you iterate through the array and take an action on each element. You also
don’t need to know how many elements are in the array when you write the for

loop; you stop the loop when i reaches myIntArray.Length.

Example 10-1 shows the whole program, brief as it is.

The output should look like this:

Value in index 0 is 2.
Value in index 1 is 4.
Value in index 2 is 6.
Value in index 3 is 8.
Value in index 4 is 10.
Value in index 5 is 12.
Value in index 6 is 14.
Value in index 7 is 16.

Example 10-1. for loops are the most common way to work with arrays

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_1_ _ _ _Using_arrays
{
 class Tester
 {
 public void Run()
 {
 int[] myIntArray = new int[10];

 //populate the array
 for (int i = 0; i < myIntArray.Length; i++)
 {
 myIntArray[i] = 2 * (i + 1);
 }

 //output the array
 for (int i = 0; i < myIntArray.Length; i++)
 {
 Console.WriteLine("Value in index {0} is {1}.",
 i, myIntArray[i]);
 }

 }
 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

202 | Chapter 10: Arrays

Value in index 8 is 18.
Value in index 9 is 20.

Go ahead and change the < in the first loop to <=, and run the program again. You’ll
get yourself a nice crash. That’s because when the loop runs the final time (when i

equals 10), the body of the loop tries to assign a value to myIntArray[10], which
doesn’t exist. You’re trying to write into an area of memory that’s not there, and the
compiler doesn’t like that.

You can use arrays with user-defined classes as well, of course, but you have to do a
bit of extra work because the objects won’t be initialized automatically.
Example 10-2 shows a simple Employee class being used with an array. Notice that
the class includes an automatic property for the Employee ID, as introduced in
Chapter 8.

Example 10-2. You can use objects with arrays almost as easily as primitive types

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_2_ _ _ _Arrays_and_Objects
{
 // a simple class to store in the array
 public class Employee
 {
 public int EmpID { get; set; }

 public Employee(int empID)
 {
 EmpID = empID;
 }
 }
 public class Tester
 {
 static void Main()
 {
 Employee[] empArray;
 empArray = new Employee[3];

 // populate the arrays
 for (int i = 0; i < empArray.Length; i++)
 {
 empArray[i] = new Employee(i + 1005);
 }

 // output array values
 Console.WriteLine("\nemployee IDs:");
 for (int i = 0; i < empArray.Length; i++)
 {

The foreach Statement | 203

The output looks like this:

employee IDs:
1005
1006
1007

In this example, the Employee IDs start at 1005 and proceed from there. You see that
you need to create each Employee object with the new keyword in the for loop. To
access the EmpID member of each Employee object, you use the dot notation:
empArray[i].EmpID. Notice that the dot comes after the square brackets. Remember
that empArray represents the entire array, but empArray[i] represents a single
Employee, so you can access the member fields and methods of each individual
object.

The foreach Statement
The foreach statement allows you to iterate through all the items in an array or other
collection, examining each item in turn. The syntax for the foreach statement is:

foreach (type identifier in expression) statement

You can update Example 10-1 to replace the second for statement (the one that iter-
ates over the contents of the populated array) with a foreach statement, as shown in
Example 10-3.

The output will be nearly the same. Note that in this case, though, i doesn’t repre-
sent the index of the array element; it represents the array element itself. In
Example 10-1, we used i to output the index as well as the value. Here, that’s not an
option. If you specifically want to output the index as well as the value, you’re better
off using the for loop.

 Console.WriteLine(empArray[i].EmpID);
 }
 }
 }
}

Example 10-3. You can use the foreach statement to iterate through an array instead of using a for
loop

foreach (int i in myIntArray)
{
 Console.WriteLine("The value is {0}.", i);
}

Example 10-2. You can use objects with arrays almost as easily as primitive types (continued)

204 | Chapter 10: Arrays

Initializing Array Elements
You can initialize the contents of an array at the time you create it by providing a list
of values delimited by curly braces ({}). C# provides a longer and a shorter syntax:

int[] myIntArray = new int[5] { 2, 4, 6, 8, 10 };
int[] myIntArray = { 2, 4, 6, 8, 10 };

In the shorter syntax, C# automatically creates an array of the proper size for the
number of elements in the braces. There is no practical difference between these two
statements, and most programmers will use the shorter syntax.

The params Keyword
One of the more unusual uses of arrays is the params keyword. If you have a method
that accepts an array, the params keyword allows you to pass that method a variable
number of parameters, instead of explicitly declaring the array. Of course, the
parameters must all be of the same type. Because of the params keyword, the method
will receive an array of that type.

In the next example, you create a method, DisplayVals(), that takes a variable num-
ber of integer arguments:

public void DisplayVals(params int[] intVals)

Inside the method, you can iterate over the array as you would over any other array
of integers:

foreach (int i in intVals)
{
 Console.WriteLine("DisplayVals {0}",i);
}

The calling method, however, need not explicitly create an array: it can simply pass
in integers, and the compiler will assemble the parameters into an array for the
DisplayVals() method:

t.DisplayVals(5,6,7,8);

You are also free to pass in an array if you prefer:

int [] explicitArray = new int[5] {1,2,3,4,5};
t.DisplayVals(explicitArray);

You can use only one params argument for each method you create,
and the params argument must be the last argument in the method’s
signature.

Example 10-4 illustrates using the params keyword.

Multidimensional Arrays | 205

The output looks like this:

DisplayVals 5
DisplayVals 6
DisplayVals 7
DisplayVals 8
DisplayVals 1
DisplayVals 2
DisplayVals 3
DisplayVals 4
DisplayVals 5

Multidimensional Arrays
If we simplify the mailbox analogy from earlier in the chapter, you can think of an
array as a long row of slots into which you can place values. This single row of slots
is called a one-dimensional array. Now imagine 10 rows of slots, stacked on top of
each other. What you’re picturing is a classic two-dimensional array of rows and col-
umns. The rows run across the array and the columns run up and down the array, as
shown in Figure 10-2.

Example 10-4. You can use the params keyword to pass a variable number of parameters to a
method that accepts an array

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_4_ _ _ _params_keyword
{
 public class Tester
 {
 static void Main()
 {
 Tester t = new Tester();
 t.DisplayVals(5, 6, 7, 8);
 int[] explicitArray = new int[] { 1, 2, 3, 4, 5 };
 t.DisplayVals(explicitArray);
 }

 public void DisplayVals(params int[] intVals)
 {
 foreach (int i in intVals)
 {
 Console.WriteLine("DisplayVals {0}", i);
 }
 }
 }
}

206 | Chapter 10: Arrays

Two-dimensional arrays aren’t too hard to picture, but a third dimension is a bit
harder to imagine, but still not too hard, if you remember your high school geome-
try. OK, now imagine four dimensions. Now imagine 10.

Those of you who are not string-theory physicists have probably given up, as have
we. Maybe we can’t picture what 10-dimensional arrays look like, but that doesn’t
matter to C#. Multidimensional arrays can be useful, even if you can’t quite picture
them.

C# supports two types of multidimensional arrays: rectangular and jagged. In a rect-
angular array, every row is the same length. A jagged array, however, is an array of
arrays, each of which can be a different length.

Rectangular Arrays
A rectangular array is an array of two (or more) dimensions. In the classic two-
dimensional array, the first dimension is the number of rows and the second dimen-
sion is the number of columns.

To declare a two-dimensional array, use the following syntax:

type [,] array name

For example, to declare and instantiate a two-dimensional rectangular array named
myRectangularArray that contains two rows and three columns of integers, you would
write:

int [,] myRectangularArray = new int[2,3];

To retrieve the value of the element in the second row and the first column, you’d do
something like this:

int myInt = myRectangularArray[1,0];

Remember that the indexes start at 0 for multidimensional arrays, too.

Figure 10-2. Rows and columns create a multidimensional array.

Col 0 Col 5 Col 10

Row 1

Row 2

Row 3

Row 4

Row 5

Multidimensional Arrays | 207

Two-dimensional arrays also work well with for loops, but to iterate over both
dimensions, you need two for loops, one nested inside the other. For example, if you
have a 4 × 3 array, you might populate it like this:

const int rows = 4;
const int columns = 3;

for (int i = 0; i < rows; i++)
{
 for (int j = 0; j < columns; j++)
 {
 rectangularArray[i, j] = i + j;
 }
}

Each time through the outer for loop, the inner loop iterates completely from j = 0 to
j < columns, which fills one row of the two-dimensional array. Then i is incre-
mented, j is reset to 0, and it starts over again.

Example 10-5 declares, instantiates, initializes, and prints the contents of a two-
dimensional array. In this example, a for loop is used to initialize the elements of the
array.

Example 10-5. A rectangular array is a two-dimensional array (consisting of rows and columns)
where each row is the same length

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_5_ _ _ _Rectangular_array
{
 public class Tester
 {
 static void Main()
 {
 const int rows = 4;
 const int columns = 3;

 // declare a 4x3 integer array
 int[,] rectangularArray = new int[rows, columns];

 // populate the array
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 rectangularArray[i, j] = i + j;
 }
 }

 // report the contents of the array

208 | Chapter 10: Arrays

The output looks like this:

rectangularArray[0,0] = 0
rectangularArray[0,1] = 1
rectangularArray[0,2] = 2
rectangularArray[1,0] = 1
rectangularArray[1,1] = 2
rectangularArray[1,2] = 3
rectangularArray[2,0] = 2
rectangularArray[2,1] = 3
rectangularArray[2,2] = 4
rectangularArray[3,0] = 3
rectangularArray[3,1] = 4
rectangularArray[3,2] = 5

The brackets in the int[,] declaration indicate that the type is an array of integers,
and the comma indicates the array has two dimensions (two commas would indicate
three dimensions, and so on). The actual instantiation of rectangularArray with new

int[rows, columns] sets the size of each dimension. Here, the declaration and instan-
tiation have been combined:

int[,] rectangularArray = new int[rows, columns];

The program fills the rectangle with a pair of nested for loops, iterating through each
column in each row. Thus, the first element filled is rectangularArray[0,0], fol-
lowed by rectangularArray[0,1] and rectangularArray[0,2]. Once this is done, the
program moves on to the next rows: rectangularArray[1,0], rectangularArray[1,1],
rectangularArray[1,2], and so forth, until all the columns in all the rows are filled.

Just as you can initialize a one-dimensional array using bracketed lists of values, you
can initialize a two-dimensional array using similar syntax. Example 10-6 declares a
two-dimensional array (rectangularArray), initializes its elements using bracketed
lists of values, and then prints out the contents.

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 Console.WriteLine("rectangularArray[{0},{1}] = {2}",
 i, j, rectangularArray[i, j]);
 }
 }
 }
 }
}

Example 10-5. A rectangular array is a two-dimensional array (consisting of rows and columns)
where each row is the same length (continued)

Multidimensional Arrays | 209

The output looks like this:

rectangularArray[0,0] = 0
rectangularArray[0,1] = 1
rectangularArray[0,2] = 2
rectangularArray[1,0] = 3
rectangularArray[1,1] = 4
rectangularArray[1,2] = 5
rectangularArray[2,0] = 6
rectangularArray[2,1] = 7
rectangularArray[2,2] = 8
rectangularArray[3,0] = 9
rectangularArray[3,1] = 10
rectangularArray[3,2] = 11

The preceding example is very similar to Example 10-5, but this time you imply the
exact dimensions of the array by how you initialize it:

int[,] rectangularArray =
{

Example 10-6. You can initialize a multidimensional array just as you would a one-dimensional
array

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_6_ _ _ _Initializing_multidimensional_arrays
{
 public class Tester
 {
 static void Main()
 {
 const int rows = 4;
 const int columns = 3;

 // imply a 4x3 array
 int[,] rectangularArray =
 {
 {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
 };

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 Console.WriteLine("rectangularArray[{0},{1}] =
 {2}", i, j, rectangularArray[i, j]);
 }
 }
 }
 }
}

210 | Chapter 10: Arrays

 {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
};

Assigning values in four bracketed lists, each consisting of three elements, implies a
4 (rows) × 3 (columns) array.

If you had written this as:

int[,] rectangularArray =
{
 {0,1,2,3}, {4,5,6,7}, {8,9,10,11}
};

you would instead have implied a 3 × 4 array.

You can see that the C# compiler understands the implications of the way you
grouped the input values, because it is able to access the objects with the appropri-
ate offsets, as illustrated in the output.

C# arrays are “smart” and they keep track of their bounds. When you imply a 4 × 3
array, you must treat it as such, and not as a 3 × 4 array, or just an array of 12 inte-
gers (as you can with some other C-family languages).

Jagged Arrays
The easiest way to think of a jagged array is as an array of arrays—that is, imagine an
array where each element is also an array itself. It is called “jagged” because each row
need not be the same size as all the others, and thus a graphical representation of the
array would not be square.

When you create a jagged array, you declare the number of rows in your array. Each
row will hold an array, which can be of any length. These arrays must each be
declared. You can then fill in the values for the elements in these “inner” arrays.

In a jagged array, each dimension is a one-dimensional array. To declare a jagged
array, use the following syntax, where the number of brackets indicates the number
of dimensions of the array:

type [] []...

For example, you would declare a two-dimensional jagged array of integers named
myJaggedArray, as follows:

int [] [] myJaggedArray;

You would access the fifth element of the third array by writing myJaggedArray[2][4].

Example 10-7 creates a jagged array named myJaggedArray, initializes its elements,
and then prints their content. To save writing code, the program takes advantage of
the fact that integer array elements are automatically initialized to zero, and it initial-
izes the values of only the nonzero elements.

Multidimensional Arrays | 211

Example 10-7. A jagged array is an “array of arrays”; each row can have a variable number of
elements

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_7_ _ _ _Jagged_arrays
{
 class Program
 {
 public class Tester
 {
 static void Main()
 {
 const int rows = 4;

 // declare the jagged array as 4 rows high
 int[][] jaggedArray = new int[rows][];

 // the first row has 5 elements
 jaggedArray[0] = new int[5];

 // a row with 2 elements
 jaggedArray[1] = new int[2];

 // a row with 3 elements
 jaggedArray[2] = new int[3];

 // the last row has 5 elements
 jaggedArray[3] = new int[5];

 // Fill some (but not all) elements of the rows
 jaggedArray[0][3] = 15;
 jaggedArray[1][1] = 12;
 jaggedArray[2][1] = 9;
 jaggedArray[2][2] = 99;
 jaggedArray[3][0] = 10;
 jaggedArray[3][1] = 11;
 jaggedArray[3][2] = 12;
 jaggedArray[3][3] = 13;
 jaggedArray[3][4] = 14;

 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("jaggedArray[0][{0}] = {1}",
 i, jaggedArray[0][i]);
 }

 for (int i = 0; i < 2; i++)
 {
 Console.WriteLine("jaggedArray[1][{0}] = {1}",
 i, jaggedArray[1][i]);

212 | Chapter 10: Arrays

The output looks like this:

jaggedArray[0][0] = 0
jaggedArray[0][1] = 0
jaggedArray[0][2] = 0
jaggedArray[0][3] = 15
jaggedArray[0][4] = 0
jaggedArray[1][0] = 0
jaggedArray[1][1] = 12
jaggedArray[2][0] = 0
jaggedArray[2][1] = 9
jaggedArray[2][2] = 99
jaggedArray[3][0] = 10
jaggedArray[3][1] = 11
jaggedArray[3][2] = 12
jaggedArray[3][3] = 13
jaggedArray[3][4] = 14

In this example, a jagged array is created with four rows:

int[][] jaggedArray = new int[rows][];

Notice that the second dimension is not specified. This value is set by creating a new
array for each row. Each of these arrays can have a different size:

// the first row has 5 elements
jaggedArray[0] = new int[5];
// a row with 2 elements
jaggedArray[1] = new int[2];
// a row with 3 elements
jaggedArray[2] = new int[3];
// the last row has 5 elements
jaggedArray[3] = new int[5];

 }

 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("jaggedArray[2][{0}] = {1}",
 i, jaggedArray[2][i]);
 }
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("jaggedArray[3][{0}] = {1}",
 i, jaggedArray[3][i]);
 }
 }
 }
 }
}

Example 10-7. A jagged array is an “array of arrays”; each row can have a variable number of
elements (continued)

Array Methods | 213

Once an array is specified for each row, you only need to populate the various mem-
bers of each array and then print out their contents to ensure that all went as
expected.

Another way of outputting the values would be to use two nested for loops, and use
the Length property of the array to control the loop:

for (int i = 0; i < jaggedArray.Length; i++)
{
 for (int j = 0; j < jaggedArray[i].Length; j++)
 {
 Console.WriteLine("jaggedArray[{0}][{1}] = {2}",
 i, j, jaggedArray[i][j]);
 }
}

In this case, the “outer” for loop iterates over the rows in the array. The “inner” loop
outputs each column in the given row. Because you’re using Length to control how
many times the loop runs, it doesn’t matter that each row is a different length. If you
didn’t use Length, and simply tried to use the maximum dimensions, you’d get an
error the first time the program tried to access a null element in a short row.

Notice that when you access the members of the rectangular array, you put the
indexes all within one set of square brackets:

rectangularArrayrectangularArray[i,j]

whereas with a jagged array, you need a pair of brackets:

jaggedArray[i][j]

You can keep this straight by thinking of the first as a single array of more than one
dimension and the jagged array as an array of arrays.

Array Methods
Although you’ve been using arrays as built-in types throughout this chapter, an array is
actually an object of type System.Array. Arrays in C# thus provide you with the best of
both worlds: easy-to-use syntax underpinned with an actual class definition so that
instances of an array have access to the methods and properties of System.Array.
You’ve seen the Length property of arrays used several times already. Some of the other
important methods and properties appear in Table 10-1.

Table 10-1. System.Array methods and properties

Method or property Purpose

BinarySearch() Overloaded public static method that searches a one-dimensional sorted array

Clear() Public static method that sets a range of elements in the array either to zero or to a null ref-
erence, depending on the element type

Copy() Overloaded public static method that copies a section of one array to another array

214 | Chapter 10: Arrays

Sorting Arrays
Two useful static methods from Table 10-1 that deserve a closer look are Sort() and
Reverse(). These methods do what you think they would: Reverse() reverses the
order of elements in the array, and Sort() sorts the elements in order. These two
methods are fully supported for arrays of the built-in C# types, such as string, so
sorting an array of strings puts the elements in alphabetical order, and sorting an
array of ints puts them in numeric order. Making the Sort() method work with your
own classes is a bit trickier, because you must implement the IComparable interface
(see Chapter 13 for more on interfaces). Example 10-8 demonstrates the use of these
two methods to manipulate String objects.

CreateInstance() Overloaded public static method that instantiates a new instance of an array

IndexOf() Overloaded public static method that returns the index (offset) of the first instance of a
value in a one-dimensional array

LastIndexOf() Overloaded public static method that returns the index of the last instance of a value in a
one-dimensional array

Reverse() Overloaded public static method that reverses the order of the elements in a one-
dimensional array

Sort() Overloaded public static method that sorts the values in a one-dimensional array

Length Public property that returns the length of the array

Example 10-8. Array.Sort and Array.Reverse are static methods that let you sort and reverse the
contents of an array

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_10_8_ _ _ _Sorting_and_Reversing_Arrays
{
 public class Tester
 {
 public static void PrintMyArray(string[] theArray)
 {

 foreach (string str in theArray)
 {
 Console.WriteLine("Value: {0}", str);
 }
 Console.WriteLine("\n");
 }

 static void Main()

Table 10-1. System.Array methods and properties (continued)

Method or property Purpose

Sorting Arrays | 215

The output looks like this:

Value: Proust
Value: Faulkner
Value: Mann
Value: Hugo

Value: Hugo
Value: Mann
Value: Faulkner
Value: Proust

Value: We
Value: Hold
Value: These
Value: Truths
Value: To
Value: Be
Value: Self
Value: Evident

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These
Value: To

 {
 String[] myArray =
 {
 "Proust", "Faulkner", "Mann", "Hugo"
 };

 PrintMyArray(myArray);
 Array.Reverse(myArray);
 PrintMyArray(myArray);

 String[] myOtherArray =
 {
 "We", "Hold", "These", "Truths",
 "To", "Be", "Self", "Evident",
 };

 PrintMyArray(myOtherArray);
 Array.Sort(myOtherArray);
 PrintMyArray(myOtherArray);

 }
 }
}

Example 10-8. Array.Sort and Array.Reverse are static methods that let you sort and reverse the
contents of an array (continued)

216 | Chapter 10: Arrays

Value: Truths
Value: We

The example begins by creating myArray, an array of strings with the words:

"Proust", "Faulkner", "Mann", "Hugo"

This array is printed, and then passed to the Array.Reverse() method, where it is
printed again to see that the array itself has been reversed:

Value: Hugo
Value: Mann
Value: Faulkner
Value: Proust

Similarly, the example creates a second array, myOtherArray, containing the words:

"We", "Hold", "These", "Truths",
"To", "Be", "Self", "Evident",

This is passed to the Array.Sort() method. Then Array.Sort() happily sorts them
alphabetically:

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These
Value: To
Value: Truths
Value: We

Array.Sort() and Array.Reverse() are static methods, meaning you
call them on the class, not the object, as we discussed in Chapter 7.
That means you don’t call myArray.Reverse() to reverse the elements;
instead, you call the static method and pass in the array as an argu-
ment, like this:

Array.Reverse(myArray);

Summary
• An array is an indexed collection of objects, all of the same type.

• You declare an array by giving the type of objects the array contains, followed by
the square bracket operator ([]), followed by the name of the array. You then
instantiate the array with the new keyword and the number of elements the array
will contain.

• The index of the first element in the array is always zero, and the index of the
last element in the array is always Length-1.

• You can use a for loop to iterate through the array, by using the loop’s counter
as the index to the array.

Test Your Knowledge: Quiz | 217

• The foreach statement allows you to iterate through the items in the array (or
any other collection) without the need for a counter.

• The elements of an array can be initialized when the array is created by provid-
ing the values of the members in curly braces ({}).

• The params keyword lets you pass an arbitrary number of parameters of the same
type into a method; the method will treat the parameters as a single array.

• Arrays can contain more than one dimension. A two-dimensional array has two
indexes, which you can think of as rows and columns.

• A rectangular array is a two-dimensional array in which all the rows have the
same number of columns.

• A jagged array is an array of arrays—the rows do not need to be all the same
length.

• The Length property of an array returns the total number of elements in the
array.

• The array class contains a number of methods for searching, sorting, and manip-
ulating the elements.

Although arrays may seem like a simple topic more suited to discussing with the fun-
damentals of C#, they work equally well with objects, so we delayed showing them
to you until after we’d discussed classes and methods. Arrays, along with the other
collection types, are some of the easiest ways to pass a bunch of similar objects to a
method. It’s time to get back into the serious object-oriented stuff, though. Back in
Chapter 6, we told you that the three pillars of object-oriented programming are
encapsulation, specialization, and polymorphism. You saw how encapsulation works
in Chapters 7 and 8. Now the next chapter deals with both specialization and poly-
morphism, in the form of inheritance.

Test Your Knowledge: Quiz

Question 10-1. What is the index of the seventh member of an array?

Question 10-2. Can an array hold objects of varying types?

Question 10-3. How do you specify the number of elements in an array?

Question 10-4. Are arrays reference types or value types? Where are the elements of
the array created?

Question 10-5. How do you specify the highest index in any array?

218 | Chapter 10: Arrays

Question 10-6. What are the two ways to initialize an array of three values?

Question 10-7. What are two ways to iterate through the items in an array?

Question 10-8. What does the params keyword do?

Question 10-9. What are the two types of multidimensional arrays and what is the dif-
ference between them?

Question 10-10. If you have a random array of float values, and you need them to be
in order, with the largest value first, what methods should you use?

Test Your Knowledge: Exercises

Exercise 10-1. Declare a Dog class with two private members: weight (an int) and name

(a string). Be sure to add properties to access the members. Then create an array
that holds three Dog objects (Milo, 26 pounds; Frisky, 10 pounds; and Laika, 50
pounds). Output each dog’s name and weight.

Exercise 10-2. Create an array of 10 integers. Populate the array by having the user
enter integers at the console (use Console.Readline). Don’t worry about error check-
ing for this exercise. Output the integers sorted from greatest to least.

Exercise 10-3. Extend Exercise 10-1 by creating a two-dimensional array that repre-
sents a collection of strings that indicate the awards each dog has won at dog shows.
Each dog may have a different number of awards won. Output the contents of the
array to check its validity.

Exercise 10-4. Create a two-dimensional array that represents a chessboard (an 8 × 8
array). Each element in the array should contain the string “black” or the string
“white”, depending on where it is on the board. Create a method that initializes the
array with the strings. Then create a method that asks the reader to enter two inte-
gers for the coordinates of a square, and returns whether that square is black or
white.

219

CHAPTER 11

Inheritance and Polymorphism

In Chapter 6, we explained how classes derive from one another and described how
classes can inherit properties and methods from their parent classes. In Chapter 7,
you learned how to create your own classes and use objects of those classes, but you
didn’t see how the inheritance aspect works in practice. That’s about to change.

We mentioned in Chapter 6 that the three key principles of object-oriented program-
ming are encapsulation (discussed in Chapter 7), specialization, and polymorphism.
This chapter focuses on specialization, which is implemented in C# through inherit-
ance. You’ll see how to create your own class hierarchy, and how to enforce that
child classes implement the methods of their parent classes. You’ll even see how to
create completely abstract classes, and why you’d want to. You can’t create an
instance of an abstract class; you can only inherit from it. This chapter also explains
how instances of a child class can be treated as though they were instances of one of
the child class’s ancestor classes, a process known as polymorphism. This chapter
ends with a consideration of sealed classes, which cannot be specialized, and a dis-
cussion of the root of all classes, the Object class.

Specialization and Generalization
Before we can start to show you the syntax of inheritance, we first have to give you a
little more object-oriented background, so you can see why inheritance works the
way it does. Classes and their instances (objects) do not exist in a vacuum, but rather
in a network of interdependencies and relationships, just as we, as social animals,
live in a world of relationships and categories.

One of the most important relationships among objects in the real world is special-
ization, which can be described as the is-a relationship. When we say that a dog is a
mammal, we mean that the dog is a specialized kind of mammal. It has all the char-
acteristics of any mammal (it bears live young, nurses with milk, has hair), but it spe-
cializes these characteristics to the familiar characteristics of Canis domesticus. A cat
is also a mammal. As such, we expect it to share certain characteristics with the dog

220 | Chapter 11: Inheritance and Polymorphism

that are generalized in Mammal, but to differ in those characteristics that are special-
ized in cats.

The specialization and generalization relationships are both reciprocal and hierarchi-
cal. Specialization is just generalization in the opposite direction: Mammal generalizes
what is common among dogs and cats, and dogs and cats specialize mammals to
their own specific subtypes.

These relationships are hierarchical because they create a relationship tree, with spe-
cialized types branching off from more generalized types. As you move “up” the hier-
archy, you achieve greater generalization. You move up toward Mammal to generalize
that dogs, cats, and horses all bear live young. As you move “down” the hierarchy,
you specialize. Thus, the cat specializes Mammal in having claws (a characteristic) and
purring (a behavior).

To use a more programming-specific example, every widget that you see in a stan-
dard Windows interface is called a control. So, when you say that ListBox and Button

are Controls, you indicate that there are characteristics and behaviors of Controls
that you expect to find in both of these types. In other words, Control generalizes the
shared characteristics of both ListBox and Button, while each specializes its own par-
ticular characteristics and behaviors.

To put it another way, all Controls, which includes ListBoxes and Buttons, have cer-
tain common behaviors—they’re all drawn on the screen, for one thing. But a Button

can be clicked, which a ListBox can’t. A ListBox has contents, which can be sorted.
A Button can’t do that.

The Unified Modeling Language (UML) is a standardized language for describing an
object-oriented system. UML has many different visual representations, but in this
case, all you need to know is that classes are represented as boxes. The name of the
class appears at the top of the box, and (optionally) methods and members can be
listed in the sections within the box.

You can use UML to model specialization relationships, as shown in Figure 11-1.
Note that the arrow points from the more specialized class up to the more general
class. In the figure, the more specialized Button and ListBox classes point up to the
more general Control class.

When you start out designing classes from scratch, you’ll often find that you have
several classes that do the same thing. When this occurs, you can factor out these
commonalities into a shared base class, which is more general than the specialized
classes. This factoring is beneficial to you, because it allows you to reuse common
code, and anytime you can reuse code instead of copying it to a new class is a good
thing. That gives you code that is easier to maintain, because the changes are located
in a single class rather than scattered among numerous classes.

For example, suppose you started out creating a series of objects, as illustrated in
Figure 11-2. After working with RadioButtons, CheckBoxes, and Command buttons for a

Specialization and Generalization | 221

while, you realize that they share certain characteristics and behaviors that are more
specialized than Control, but more general than any of the three. You might factor
these common traits and behaviors into a common base class, Button, and rearrange
your inheritance hierarchy, as shown in Figure 11-3. This is how you’d use generali-
zation in object-oriented development.

Figure 11-1. An is-a relationship between ListBox, Button, and Control. Both ListBoxes and
Buttons are specialized versions of Controls.

Figure 11-2. The four lower classes are all specialized forms of Control.

Figure 11-3. You can factor the Button class to isolate common traits.

Button

Control

ListBox

RadioButton

Control

CheckBox Command ListBox

RadioButton

CheckBox Command

Button ListBox

Control

222 | Chapter 11: Inheritance and Polymorphism

The UML diagram in Figure 11-3 depicts the relationship among the factored classes
and shows that both ListBox and Button derive from Control, and that Button is spe-
cialized into CheckBox and Command. Finally, RadioButton derives from CheckBox. You
can thus say that RadioButton is a CheckBox, which in turn is a Button, and that
Buttons are Controls.

This is not the only, or even necessarily the best, organization for these objects.
Whenever you design your own classes, you’ll probably come up with several differ-
ent ways to organize them. It’s a reasonable starting point for understanding how
these types (classes) relate to one another, though.

Inheritance
Now that you have the background of specialization down, and a starting-point
example to work with, you can see how to use this idea in your code. In C#, the spe-
cialization relationship is implemented using a principle called inheritance. This is
not the only way to implement specialization, but it is the most common and most
natural way.

Saying that ListBox inherits from (or derives from) Control indicates that it special-
izes Control. Control is referred to as the base class, and ListBox is referred to as the
derived class. That is, ListBox derives its characteristics and behaviors from Control

and then specializes to its own particular needs.

You’ll often see the immediate base class referred to as the parent class
and the derived class referred to as the child class, whereas the top-
most class, Object, is called the root class.

Implementing Inheritance
In C#, you create a derived class by adding a colon after the name of the derived
class, followed by the name of the base class:

public class ListBox : Control

This code declares a new class, ListBox, which derives from Control. You can read
the colon as “derives from.”

The derived class inherits all the members of the base class (both member variables
and methods). In other words, suppose Control has member fields called top and
left, to indicate where on the screen the upper-left corner of the Control will be
drawn. If ListBox derives from Control, ListBox also has the member fields top and
left. The same is true of methods: if Control has a method called DrawControl(),
ListBox does too.

Methods of the derived class have access to all the public and protected members of
the base class. That means that if the drawControl() method in Control is marked as

Inheritance | 223

protected, the ListBox class can call that method, whereas a class that doesn’t derive
from Control wouldn’t be able to.

The derived class is free to implement its own version of a base class method—that
is, ListBox can have its own drawControl() method. This is called hiding the base
class method and is accomplished by marking the method with the keyword new.
(Many C# programmers advise never hiding base class methods as it is unreliable,
hard to maintain, and confusing.) The new keyword indicates that the derived class
has intentionally hidden and replaced the base class method. (We also discuss the
new keyword in “Versioning with new and override” later in this chapter.)

This is a different use of the keyword new than you saw earlier in this
book. In Chapter 7, we used new to create an object on the heap; here,
we’re using new to replace the base class method. Programmers say the
keyword new is overloaded, which means that the word has more than
one meaning or use.

Example 11-1 shows the ListBox class inheriting from Control, and demonstrates all the
features we just talked about. Note that although Control and ListBox are the names of
legitimate Windows classes, that’s not what we’re showing you here. These are custom
classes with familiar names to help you understand the inheritance relationship.

Example 11-1. You can derive a new class ListBox from its parent, Control

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_11_1_ _ _ _Inheritance
{
 public class Control
 {
 // these members are private and thus invisible
 // to derived class methods

 private int top;
 private int left;

 // constructor takes two integers to
 // fix location on the console
 public Control(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the control
 public void DrawControl()
 {

224 | Chapter 11: Inheritance and Polymorphism

The output looks like this:

Drawing Control at 5, 10
Drawing Control at 20, 30
Writing string to the ListBox: Hello world

Example 11-1 starts with the declaration of the base class Control. This class imple-
ments a constructor and a simple DrawControl() method. There are two private

 Console.WriteLine("Drawing Control at {0}, {1}", top, left);
 }

 }

 // ListBox derives from Control
 public class ListBox : Control
 {
 private string mListBoxContents; // new member variable

 // constructor adds a parameter
 public ListBox(int top, int left, string theContent)
 : base(top, left) // call base constructor
 {
 mListBoxContents = theContent;
 }

 // a new version (note the keyword) because in the
 // derived method we change the behavior
 public new void DrawControl()
 {
 base.DrawControl(); // invoke the base method
 Console.WriteLine("Writing string to the ListBox: {0}",
 mListBoxContents);
 }
 }

 public class Tester
 {
 public static void Main()
 {
 // create a base instance
 Control myControl = new Control(5, 10);
 myControl.DrawControl();

 // create a derived instance
 ListBox lb = new ListBox(20, 30, "Hello world");
 lb.DrawControl();
 }
 }
}

Example 11-1. You can derive a new class ListBox from its parent, Control (continued)

Inheritance | 225

member variables, top and left. That’s the basic part; after that, it gets interesting.
We’ll analyze the rest of the program in detail in the following sections.

Calling the Base Class Constructor
In Example 11-1, the new class ListBox derives from Control:

public class ListBox : Control

ListBox has its own constructor, which takes three parameters, as opposed to two for
Control. This is often the case with derived classes: the constructor does what the
parent’s constructor does, plus a bit more. In cases such as these, it saves code for
the derived class simply to call the parent class’s constructor, and then do whatever
special setup the derived class needs.

In this case, the ListBox constructor invokes the constructor of its parent by placing a
colon (:) after the parameter list and then invoking the base class constructor with
the keyword base:

public ListBox(int top, int left, string theContent)
 : base(top, left) // call base constructor

Because classes cannot inherit constructors, a derived class must implement its own
constructor and can only make use of the constructor of its base class by calling it
explicitly.

If the base class has an accessible default constructor, the derived constructor is not
required to invoke the base constructor explicitly; instead, the default constructor is
called implicitly as the object is constructed. However, if the base class does not have
a default constructor, every derived constructor must explicitly invoke one of the
base class constructors using the base keyword. The keyword base identifies the base
class for the current object.

As we discussed in Chapter 7, if you do not declare a constructor of
any kind, the compiler creates a default constructor for you. Whether
you write it yourself or you use the one provided by the compiler, a
default constructor is one that takes no parameters. Note, however,
that once you do create a constructor of any kind (with or without
parameters), the compiler does not create a default constructor for
you.

Hiding the Base Class Method
As we mentioned, Control has a simple method called DrawControl(), which simu-
lates drawing the control on the screen. The ListBox inherits the DrawControl()

method, but the ListBox also needs to simulate writing text to the ListBox. There-
fore, the ListBox implements its own DrawControl() method, using the new keyword
to indicate that this method hides the parent method:

226 | Chapter 11: Inheritance and Polymorphism

public new void DrawControl()
{
 base.DrawControl(); // invoke the base method
 Console.WriteLine("Writing string to the ListBox: {0}",
 mListBoxContents);
}

As we mentioned, hiding the parent class’s method is frowned upon. A better way to
implement the ListBox control’s new method is with a virtual method, which we’ll
discuss in a moment.

Controlling Access
You can restrict the visibility of a class and its members through the use of access
modifiers, such as public, private, and protected. (See Chapter 8 for a discussion of
access modifiers.)

As you’ve seen, public allows a member to be accessed by the member methods of
other classes, whereas private indicates that the member is visible only to member
methods of its own class. The protected keyword extends visibility to methods of
derived classes.

Classes, as well as their members, can be designated with any of these accessibility
levels. If a class member has a different access designation than the class, the more
restricted access applies. In other words, if you define a class, MyClass, as follows:

public class MyClass
{
 // ...
 protected int myValue;
}

the accessibility for myValue is protected, even though the class itself is public. A pub-
lic class is one that is visible to any other class that wishes to interact with it. If you
create a new class, MyOtherClass, which derives from MyClass, like this:

public class MyClass : MyOtherClass
{
 Console.WriteLine("myValue: {0}", myValue);
}

MyOtherClass can access myValue, because MyOtherClass derives from MyClass, and
myValue is protected. Any class that doesn’t derive from MyClass would not be able to
access myValue.

It is more common to make properties and methods protected than it
is to make member variables protected. Member variables are almost
always private.

Polymorphism | 227

Polymorphism
There are two powerful aspects to inheritance. One is code reuse. When you create a
ListBox class, you’re able to reuse some of the logic in the base (Control) class.

What is arguably more powerful, however, is the second aspect of inheritance: poly-
morphism. Poly means many and morph means form. Thus, polymorphism refers to
being able to use many forms of a type without regard to the details.

When the phone company sends your phone a ring signal, it does not know what
type of phone is on the other end of the line. You might have an old-fashioned West-
ern Electric phone that energizes a motor to ring a bell, or you might have an elec-
tronic phone that plays digital music.

As far as the phone company is concerned, it knows only about the “base type”
phone and expects that any “derived” instance of this type knows how to ring. When
the phone company tells your phone to ring, it, effectively, calls your phone’s ring

method, and old-fashioned phones ring, digital phones trill, and cutting-edge phones
announce your name. The phone company doesn’t know or care what your individ-
ual phone does; it treats your telephone polymorphically.

Creating Polymorphic Types
Because a ListBox is a Control and a Button is a Control, you expect to be able to use
either of these types in situations that call for a Control. For example, a form might
want to keep a collection of all the derived instances of Control it manages (buttons,
lists, and so on) so that when the form is opened, it can tell each of its Controls to draw
itself. For this operation, the form does not want to know which elements are ListBoxes
and which are Buttons; it just wants to tick through its collection and tell each one to
“draw.” In short, the form wants to treat all its Control objects polymorphically.

You implement polymorphism in two steps:

1. Create a base class with virtual methods.

2. Create derived classes that override the behavior of the base class’s virtual methods.

To create a method in a base class that supports polymorphism, you mark the
method as virtual. For example, to indicate that the method DrawControl() of class
Control in Example 11-1 is polymorphic, add the keyword virtual to its declaration,
as follows:

public virtual void DrawControl()

Each derived class is free to inherit and use the base class’s DrawControl() method as
is, or to implement its own version of DrawControl(). If a derived class does override
the DrawControl() method, that overridden version will be invoked for each instance
of the derived class. You override the base class virtual method by using the keyword

228 | Chapter 11: Inheritance and Polymorphism

override in the derived class method definition, and then add the modified code for
that overridden method.

Example 11-2 shows how to override virtual methods. The Control and ListBox

classes are back, and they’ve brought along a Button class, which also derives from
Control.

Example 11-2. Virtual methods allow derived classes to implement their own version of the
method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_11_2_ _ _ _Polymorphism
{
 public class Control
 {
 // these members are protected and thus visible
 // to derived class methods.
 protected int top;
 protected int left;

 // constructor takes two integers to
 // fix location on the console
 public Control (int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the control
 public virtual void DrawControl()
 {
 Console.WriteLine("Control: drawing Control at {0}, {1}",
 top, left);
 }

 }

 // ListBox derives from Control
 public class ListBox : Control
 {
 private string listBoxContents; // new member variable

 // constructor adds a parameter
 // and calls the base constructor
 public ListBox(int top, int left, string contents)
 : base(top, left)
 {
 listBoxContents = contents;
 }

Polymorphism | 229

 // an overridden version (note keyword) because in the
 // derived method we change the behavior
 public override void DrawControl()
 {
 base.DrawControl(); // invoke the base method
 Console.WriteLine("Writing string to the ListBox: {0}",
 listBoxContents);
 }

 } // end ListBox

 // Button also derives from Control
 public class Button : Control
 {
 // constructor has no body because it simply calls
 // the base class constructor
 public Button(int top, int left) : base(top, left)
 { }

 // an overridden version (note keyword) because in the
 // derived method we change the behavior
 public override void DrawControl()
 {
 Console.WriteLine("Drawing a button at {0}, {1}\n",
 top, left);
 }
 } // end Button

 public class Tester
 {
 static void Main()
 {
 Control myControl = new Control(1, 2);
 ListBox myListBox = new ListBox(3, 4,
 "Standalone listbox");
 Button myButton = new Button(5, 6);
 myControl.DrawControl();
 myListBox.DrawControl();
 myButton.DrawControl();

 Control[] controlArray = new Control[3];
 controlArray[0] = new Control(1, 2);
 controlArray[1] = new ListBox(3, 4,
 "Listbox in array");
 controlArray[2] = new Button(5, 6);

 for (int i = 0; i < controlArray.Length; i++)
 {
 controlArray[i].DrawControl();
 } // end for
 } // end Main

Example 11-2. Virtual methods allow derived classes to implement their own version of the
method (continued)

230 | Chapter 11: Inheritance and Polymorphism

The output looks like this:

Control: drawing Control at 1, 2
Control: drawing Control at 3, 4
Writing string to the ListBox: Standalone listbox
Drawing a button at 5, 6

Control: drawing Control at 1, 2
Control: drawing Control at 3, 4
Writing string to the ListBox: Listbox in array
Drawing a button at 5, 6

Overriding Virtual Methods
In Example 11-2, ListBox derives from Control and implements its own version of
DrawControl(), using the override keyword:

public override void DrawWindow()
{
 base.DrawWindow(); // invoke the base method
 Console.WriteLine ("Writing string to the listbox: {0}",
 listBoxContents);
}

The keyword override tells the compiler that this class has intentionally overridden
how DrawControl() works. Similarly, you override DrawControl() in another class
that derives from Control: the Button class.

The only reason this override works is because in the base class (Control), the
DrawControl() method is marked as virtual:

public virtual void DrawControl()
{
 Console.WriteLine("Control: drawing Control at {0}, {1}",
 top, left);
}

If DrawControl() weren’t marked as virtual, the derived classes wouldn’t be able to
override it.

Using Objects Polymorphically
The really interesting part of this example, from a polymorphic point of view, hap-
pens in the body of the example. You create three objects: a Control, a ListBox, and a
Button. Then you call DrawControl() on each:

 } // end Tester
}

Example 11-2. Virtual methods allow derived classes to implement their own version of the
method (continued)

Polymorphism | 231

Control myControl = new Control(1, 2);
ListBox myListBox = new ListBox(3, 4, "Standalone listbox");
Button myButton = new Button(5, 6);
myControl.DrawControl();
myListBox.DrawControl();
myButton.DrawControl();

This works much as you might expect. The correct DrawControl() method is called
for each. So far, nothing polymorphic has been done, because each of the three classes
has its own version of DrawControl(), which is what you’re calling here. The real
magic starts when you create an array of Control objects. As you learned in
Chapter 10, an array can contain only objects of the same type. On the face of it,
then, you wouldn’t expect that you could store a Control, a ListBox, and a Button all
in the same array.

But because a ListBox is a Control, you are free to place a ListBox into an array of
Controls. Similarly, you can add a Button to a collection of Controls, because a
Button is a Control.

Control[] controlArray = new Control[3];
controlArray[0] = new Control(1, 2);
controlArray[1] = new ListBox(3, 4, "Listbox in array");
controlArray[2] = new Button(5, 6);

The first line of the preceding code declares an array named controlArray that will
hold three Control objects. The next three lines add new Control objects to the array.
The first adds an object of type Control. The second adds an object of type ListBox

(which is a Control because ListBox derives from Control), and the third adds an
object of type Button, which is also a type of Control.

What happens when you call DrawControl() on each of these objects?

for (int i = 0; i < 3; i++)
{
 controlArray[i].DrawControl();
}

This code calls DrawControl() on each element in the array in turn. All the compiler
knows is that it has three Control objects and that you’ve called DrawControl() on
each. If you had not marked DrawControl() as virtual, Control’s original
DrawControl() method would be called three times.

However, because you did mark DrawControl() as virtual, and because the derived
classes override that method, when you call DrawControl() on the array the right
thing happens for each object in the array. Specifically, the compiler determines the
runtime type of the actual objects (a Control, a ListBox, and a Button) and calls the
right method on each. This is the essence of polymorphism—that the for loop, and
the code within it, have no idea what kinds of objects are going to be in the array,
except that they all derive from Control, and therefore have valid DrawControl()

methods. The for loop doesn’t need to know any more than that.

232 | Chapter 11: Inheritance and Polymorphism

The runtime type of an object is the actual (derived) type. At compile
time, you do not have to decide what kinds of objects will be added to
your collection, as long as they all derive from the declared type (in
this case, Control). At runtime, the actual type is discovered and the
right method is called. This allows you to pick the actual type of
objects to add to the collection while the program is running.

The compiler now knows to use the overridden method when treating these objects
polymorphically. The compiler is responsible for tracking the real type of the object
and for handling the late binding so that ListBox.DrawControl() is called when the
Control reference really points to a ListBox object.

Versioning with new and override
In C#, the programmer’s decision to override a virtual method is made explicit with
the override keyword. This helps you release new versions of your code; changes to
the base class will not break existing code in the derived classes. The requirement to
use the override keyword helps to prevent that problem.

Here’s how: assume for a moment that Company A wrote the Control base class you
saw previously in Example 11-2. Suppose also that the ListBox and RadioButton

classes were written by programmers from Company B, using a purchased copy of
Company A’s Control class as a base. The programmers in Company B have little or
no control over the design of the Control class, including future changes that Com-
pany A might choose to make.

Now suppose that one of the programmers for Company B decides to add a Sort()

method to ListBox:

public class ListBox : Control
{
 public virtual void Sort() {...}
}

This presents no problems until Company A, the author of Control, releases version
2 of its Control class, and the programmers in Company A also add a Sort() method
to their public class Control:

public class Control
{
 // ...
 public virtual void Sort() {...}
}

In other object-oriented languages (such as C++), the new virtual Sort() method in
Control would now act as a base virtual method for the Sort() method in ListBox,
which is not what the developer of ListBox intended.

Polymorphism | 233

C# prevents this confusion. In C#, a virtual function is always considered to be the
root of virtual dispatch; that is, once C# finds a virtual method, it looks no further up
the inheritance hierarchy.

If a new virtual Sort() function is introduced into Control, the runtime behavior of
ListBox is unchanged.

When ListBox is compiled again, however, the compiler generates a warning:

...\class1.cs(54,24): warning CS0114: 'ListBox.Sort()' hides
inherited member 'Control.Sort()'.
To make the current member override that implementation,
add the override keyword. Otherwise add the new keyword.

Never ignore a warning. Treat it as an error, until you are satisfied that
you understand it and that not only is it innocuous, but also there is
nothing you can do to eliminate it. Your goal, (almost) always, is to
compile warning-free code.

To remove the warning, the programmer must indicate what he intends. He can
mark the ListBox Sort() method as new to indicate that it is not an override of the
virtual method in Control:

public class ListBox : Control
{
 public new virtual void Sort() {...}

This action removes the warning. If, on the other hand, the programmer does want
to override the method in Control, he need only use the override keyword to make
that intention explicit:

public class ListBox : Control
{
 public override void Sort() {...}

To avoid this warning, it might be tempting to add the new keyword to
all your virtual methods. This is a bad idea. When new appears in the
code, it ought to document the versioning of the code. It points a
potential client to the base class to see what you are intentionally not
overriding. Using new scattershot undermines this documentation and
reduces the utility of a warning that exists to help identify a real issue.

If the programmer now creates any new classes that derive from ListBox, those
derived classes will inherit the Sort() method from ListBox, not from the base
Control class.

234 | Chapter 11: Inheritance and Polymorphism

Abstract Classes
Each type of Control has a different shape and appearance. Drop-down ListBoxes
look very different from Buttons. Clearly, every subclass of Control should imple-
ment its own DrawControl() method—but so far, nothing in the Control class
enforces that they must do so. To require subclasses to implement a method of their
base, you need to designate that method as abstract, rather than virtual.

An abstract method has no implementation. It creates a method name and signature
that must be implemented in all derived classes. Furthermore, making at least one
method of any class abstract has the side effect of making the entire class abstract.

Abstract classes establish a base for derived classes, but it is not legal to instantiate
an object of an abstract class. Once you declare a method to be abstract, you pro-
hibit the creation of any instances of that class.

Thus, if you were to designate DrawControl() as an abstract method in the Control

class, the Control class itself would become abstract. Then you could derive from
Control, but you could not create any Control instances. That makes sense, because
the Control class is an abstraction—there is no such thing as a simple Control object,
only objects derived from Control.

Making Control.DrawControl() abstract means that each class derived from Control

would have to implement its own DrawControl() method. If the derived class failed
to implement the abstract method, that derived class would also be abstract, and
again no instances would be possible.

The Idea Behind Abstraction
Abstract classes should not just be an implementation trick; they should represent the
idea of an abstraction that establishes a “contract” for all derived classes. In other
words, abstract classes mandate the public methods of the classes that will implement
the abstraction.

The idea of an abstract Control class ought to lay out the common characteristics and
behaviors of all Controls, even though you never intend to instantiate the abstraction
Control itself.

The idea of an abstract class is implied in the word abstract. It serves to implement the
abstraction “Control” that will bemanifest in the various concrete instances of Control,
such as button, listbox, drop-down, and so forth. The abstract class establishes what
a Control is, even though you never intend to create a plain “Control” by itself. An
alternative to using abstract is to define an interface, as we describe in Chapter 13.

Abstract Classes | 235

You designate a method as abstract simply by placing the abstract keyword at the
beginning of the method definition:

abstract public void DrawControl();

(Because the method can have no implementation, there are no braces, only a
semicolon.)

If one or more methods are abstract, the class definition must also be marked
abstract, as in the following:

public abstract class Control

Example 11-3 illustrates the creation of an abstract Control class and an abstract
DrawControl() method.

Example 11-3. Abstract methods form a contract so that all derived classes must implement their
own versions of the method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_11_3_ _ _ _Abstract_Methods
{
 public abstract class Control
 {
 protected int top;
 protected int left;

 // constructor takes two integers to
 // fix location on the console
 public Control(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the control
 // notice: no implementation
 public abstract void DrawControl();

 } // end class Control

 // ListBox derives from Control
 public class ListBox : Control
 {
 private string listBoxContents; // new member variable

 // constructor adds a parameter
 public ListBox(int top, int left, string contents)
 : base(top, left) // call base constructor
 {

236 | Chapter 11: Inheritance and Polymorphism

The output looks like this:

Writing string to the listbox: First ListBox
Writing string to the listbox: Second ListBox
Drawing a button at 5, 6

In Example 11-3, the Control class has been declared abstract and therefore cannot
be instantiated. If you replace the first array member:

controlArray[0] = new ListBox(1,2,"First ListBox");

 listBoxContents = contents;
 }

 // an overridden version implementing the
 // abstract method
 public override void DrawControl()
 {
 Console.WriteLine("Writing string to the listbox: {0}",
 listBoxContents);
 }
 } // end class ListBox

 public class Button : Control
 {
 public Button(int top, int left) : base(top, left) { }

 // override the abstract method
 public override void DrawControl()
 {
 Console.WriteLine("Drawing a button at {0}, {1}\n",
 top, left);
 }
 } // end class Button

 public class Tester
 {
 static void Main()
 {
 Control[] controlArray = new Control[3];
 controlArray[0] = new ListBox(1, 2, "First ListBox");
 controlArray[1] = new ListBox(3, 4, "Second ListBox");
 controlArray[2] = new Button(5, 6);

 for (int i = 0; i < 3; i++)
 {
 controlArray[i].DrawControl();
 } // end for loop
 } // end main
 } // end class Tester
}

Example 11-3. Abstract methods form a contract so that all derived classes must implement their
own versions of the method (continued)

The Root of All Classes: Object | 237

with this code:

controlArray[0] = new Control(1,2);

the program generates the following error at compile time:

Cannot create an instance of the abstract class or interface 'Control'

You can instantiate the ListBox and Button objects because these classes override the
abstract method, thus making the classes concrete (that is, not abstract).

Often, an abstract class will include nonabstract methods. Typically, these will be
marked virtual, providing the programmer who derives from your abstract class the
choice of using the implementation provided in the abstract class, or overriding it.
Once again, however, all abstract methods must, eventually, be overridden to make
an instance of the (derived) class.

Sealed Classes
The opposite side of the design coin from abstract is sealed. In contrast to an abstract
class, which is intended to be derived from and to provide a template for its sub-
classes to follow, a sealed class does not allow classes to derive from it at all. The
sealed keyword placed before the class declaration prevents any classes from deriv-
ing from it. Classes are most often marked sealed to prevent accidental (or inten-
tional) inheritance.

If you change the declaration of Control in Example 11-3 from abstract to sealed

(eliminating the abstract keyword from the DrawControl() declaration as well), the
program fails to compile. If you try to build this project, the compiler returns the fol-
lowing error message:

'ListBox' cannot inherit from sealed type 'Class'

among many other complaints (such as that you cannot create a new protected mem-
ber in a sealed class).

Microsoft recommends using sealed when you know that you won’t need to create
derived classes, and also when your class consists of nothing but static methods and
properties.

The Root of All Classes: Object
All C# classes, of any type, ultimately derive from a single class: Object. Object is the
base class for all other classes.

A base class is the immediate “parent” of a derived class. A derived class can be the
base to further derived classes, creating an inheritance tree or hierarchy. A root class
is the topmost class in an inheritance hierarchy. In C#, the root class is Object. The
nomenclature is a bit confusing until you imagine an upside-down tree, with the root

238 | Chapter 11: Inheritance and Polymorphism

on top and the derived classes below. Thus, the base class is considered to be
“above” the derived class.

Object provides a number of methods that subclasses can override. These include
Equals(), which determines whether two objects are the same, and ToString(),
which returns a string to represent the current object. Specifically, ToString()

returns a string with the name of the class to which the object belongs. Table 11-1
summarizes the methods of Object.

In Example 11-4, the Dog class overrides the ToString() method inherited from
Object, to return the weight of the Dog. You wouldn’t expect to be able to convert a
Dog object to a string, but if you override the ToString() method, that’s essentially
what you’re doing.

Table 11-1. The Object class

Method What it does

Equals() Evaluates whether two objects are equivalent

GetHashCode() Allows objects to provide their own hash function for use in collections (see Chapter 14)

GetType() Provides access to the type of the object

ToString() Provides a string representation of the object

Finalize() Cleans up nonmemory resources; implemented by a finalizer

Example 11-4. Overriding the ToString() method of Object allows a user-defined class to return a
string

using System;

public class Dog
{
 private int weight;

 // constructor
 public Dog(int weight)
 {
 this.weight = weight;
 }

 // override Object.ToString
 public override string ToString()
 {
 return weight.ToString();
 }
}

public class Tester
{
 static void Main()
 {

The Root of All Classes: Object | 239

The output looks like this:

The value of i is: 5
My dog Milo weighs 62 pounds

Some classes (such as Console) have methods that expect a string (such as WriteLine()).
These methods will call the ToString() method on your class if you’ve overridden the
inherited ToString() method from Object. This lets you pass a Dog to Console.

WriteLine, and the correct information will display.

This example also takes advantage of the startling fact that intrinsic types (int, long,
and so forth) can also be treated as though they derive from Object, and thus you can
call ToString() on an int variable! Calling ToString() on an intrinsic type returns a
string representation of the variable’s value.

The documentation for Object.ToString() reveals its signature:

public virtual string ToString();

It is a public virtual method that returns a string and takes no parameters. All the
built-in types, such as int, derive from Object and so can invoke Object’s methods.

The Console class’s Write() and WriteLine() methods call ToString()
for you on objects that you pass in for display. Thus, by overriding
ToString() in the Dog class, you did not have to pass in milo.ToString(),
but rather could just pass in milo!

If you comment out the overridden function, the base method will be invoked. The
base class default behavior is to return a string with the name of the class itself. Thus,
the output would be changed to the meaningless:

My dog Milo weighs Dog pounds

Classes do not need to declare explicitly that they derive from Object;
the inheritance is implicit.

 int i = 5;
 Console.WriteLine("The value of i is: {0}", i.ToString());

 Dog milo = new Dog(62);
 Console.WriteLine("My dog Milo weighs {0} pounds", milo);
 }
}

Example 11-4. Overriding the ToString() method of Object allows a user-defined class to return a
string (continued)

240 | Chapter 11: Inheritance and Polymorphism

Summary
• Specialization is described as the is-a relationship; the reverse of specialization is

generalization.

• Specialization and generalization are reciprocal and hierarchical—that is, spe-
cialization is reciprocal to generalization, and each class can have any number of
specialized derived classes but only one parent class that it specializes: thus cre-
ating a branching hierarchy.

• C# implements specialization through inheritance.

• The inherited class derives the public and protected characteristics and behav-
iors of the base class, and is free to add or modify its own characteristics and
behaviors.

• You implement inheritance by adding a colon after the name of the derived class,
followed by the name of its base class.

• A derived class can invoke the constructor of its base class by placing a colon
after the parameter list and invoking the base class constructor with the key-
word base.

• Classes, like members, can also use the access modifiers public, private, and
protected, though the vast majority of nonnested classes will be public.

• A method marked as virtual in the base class can be overridden by derived
classes if the derived classes use the keyword override in their method defini-
tion. This is the key to polymorphism: when you call the virtual method on a
derived object, the overridden behavior is invoked.

• A derived class can break the polymorphism of a derived method but must sig-
nal that intent with the keyword new. This is unusual and complex, and can be
confusing, but it is provided to allow for versioning of derived classes. Typically,
you will use the keyword override (rather than new) to indicate that you are
modifying the behavior of the base class’s method.

• A method marked as abstract has no implementation—instead, it provides a
virtual method name and signature that all derived classes must override. Any
class with an abstract method is an abstract class, and cannot be instantiated.

• Any class marked as sealed cannot be derived from.

• In C#, all classes (and built-in types) are ultimately derived from the Object class
implicitly, and thus inherit a number of useful methods, such as ToString.

The topics in this chapter were a bit more complex than anything we’ve discussed up
to this point, but they allow you to see the power and scope of C# in particular and
object-oriented languages in general. We think it’s pretty impressive that every object
built into C# derives from just one class (Object), and once you grasp that, you can
see how you might harness that power to create your own derived classes.

Test Your Knowledge: Exercises | 241

You also saw a lot of overloading in this chapter, and you can see how derived
classes can build in their parents’ method implementations to create new and differ-
ent methods. In the next chapter, you’ll take that to the extreme, and see that you
can even override simple operators, such as + and -, in almost the same way as you
did with methods.

Test Your Knowlege: Quiz

Question 11-1. What is the relationship between specialization and generalization?

Question 11-2. How is specialization implemented in C#?

Question 11-3. What is the syntax for inheritance in C#?

Question 11-4. How do you implement polymorphism?

Question 11-5. What are the two meanings of the keyword new?

Question 11-6. How do you call a base class constructor from a derived class?

Question 11-7. What is an abstract method?

Question 11-8. What is a sealed class?

Question 11-9. What is the base class of Int32?

Question 11-10. What is the base class of any class you create if you do not otherwise
indicate a base class?

Test Your Knowledge: Exercises

Exercise 11-1. Create a base class, Telephone, and derive a class ElectronicPhone from
it. In Telephone, create a protected string member phonetype and a public method
Ring() which outputs a text message such as this: “Ringing the <phonetype>.” In
ElectronicPhone, the constructor should set the phonetype to “Digital.” In the Run()

method, call Ring() on the ElectronicPhone to test the inheritance.

Exercise 11-2. Extend Exercise 11-1 to illustrate a polymorphic method. Have the
derived class override the Ring() method to display a different message.

242 | Chapter 11: Inheritance and Polymorphism

Exercise 11-3. Change the Telephone class to abstract, and make Ring() an abstract
method. Derive two new classes from Telephone: DigitalPhone and TalkingPhone.
Each derived class should set the phonetype, and override the Ring() method.

Exercise 11-4. Phones these days do a lot more than ring, as you know. Add a method
to DigitalPhone called VoiceMail() that outputs the message “You have a message.
Press Play to retrieve.” Now add a new class, DigitalCellPhone, that derives from
DigitalPhone and implements a version of VoiceMail() that outputs the message
“You have a message. Call to retrieve.”

243

CHAPTER 12

Operator Overloading

Back in Chapters 3 and 4, you learned about the C# built-in types, such as integer
(int) and Boolean (bool), and the various operators that let you work with those
types, from the simple mathematical operators (such as + and %) to the comparison
operators (== and <=) to the logical operators (&& and ||). Using most of these opera-
tors with the basic types is simple and intuitive. If you try to use those operators with
classes you’ve created in the past few chapters, though, you’ll get an error. Back in
Chapter 8, you saw how to overload the methods of your class, giving them addi-
tional functions, depending on the parameters. C# lets you extend that overloading
ability to operators—arithmetic ones, comparison ones, and even the operator for
casting one type to another—which is what we’ll show you in this chapter. Although
being able to overload the arithmetic operators is great, it’s the equality operators
that are really useful to overload, as you’ll see.

Designing the Fraction Class
For example, suppose you define a type to represent fractional numbers; you might
reasonably name it Fraction. The following constructors establish two Fraction

objects, the first representing 1/2 and the second representing 3/4:

Fraction firstFraction = new Fraction(1,2); // create 1/2
Fraction secondFraction = new Fraction(3,4); // create 3/4

It’s reasonable to create this class so that the first parameter will represent the
numerator and the second parameter will represent the denominator. In general,
when you create your classes, you should stick to an obvious and intuitive interpreta-
tion whenever you can.

If you want your Fraction class to have all the functionality of the built-in types,
you’ll need to be able to perform arithmetic on instances of your fractions (add two
fractions, multiply them, and so on). You should also be able to convert fractions to
and from built-in types, such as int.

244 | Chapter 12: Operator Overloading

Hypothetically, you could implement methods for each of these operations. For
example, for your Fraction type, you might create an Add() method, which you
would invoke like this:

// add 1/2 and 3/4
Fraction theSum = firstFraction.Add(secondFraction);

This works just fine, but it’s not very obvious. It’s hard to read, and it’s not how the
user would automatically expect addition to work. It also doesn’t look like addition
of the built-in types, such as int. It would be much better to be able to write:

// add 1/2 and 3/4 using + operator
Fraction theSum = firstFraction + secondFraction;

Statements that use operators (in this case, the plus sign) are intuitive and easy to
use. Equally important, this use of operators is consistent with how built-in types are
added, multiplied, and so forth.

The C# syntax for overloading an operator is to write the keyword operator fol-
lowed by the operator to overload. The next section demonstrates how you might do
this for the Fraction class.

Using the operator Keyword
In C#, operators are static methods. The return value of an operator represents the
result of an operation. The operator’s parameters are the operands.

You can define an addition operator for a Fraction class as you would any other class
method, but with a bit of a difference. Instead of a method name, you use the C#
syntax of combining the operator keyword with the plus sign (+) operator, com-
bined with the keyword static. For example, the overloaded addition operator (the
operator+ method) takes two Fraction objects (the fractions you want to add) as
parameters and returns a reference to another Fraction object representing the sum
of the two parameters. Here is its signature:

public static Fraction operator+(Fraction lhs, Fraction rhs)

And here’s what you can do with it. Assume, for instance, that you’ve defined two
fractions representing the portion of a pie you’ve eaten for breakfast and lunch,
respectively. (You love pie.)

Fraction pieIAteForBreakfast = new Fraction(1,2); // 1/2 of a pie
Fraction pieIAteForLunch = new Fraction(1,3); // 1/3 of a pie

The overloaded operator+ allows you to figure out how much pie you’ve eaten in
total. (And there’s still 1/6 of the pie leftover for dinner!) You would write:

Fraction totalPigOut = pieIAteForBreakfast + pieIAteForLunch;

The compiler takes the first operand (pieIAteForBreakfast) and passes it to
operator+ as the parameter lhs; it passes the second operand (pieIAteForLunch) as

Using the operator Keyword | 245

rhs. These two Fractions are then added, and the result is returned and assigned to
the Fraction object named totalPigOut.

It is our convention to name the parameters to a binary operator lhs
and rhs. A binary operator is an operator that takes two operands. The
parameter name lhs stands for “lefthand side” and reminds us that the
first parameter represents the lefthand side of the operation. Similarly,
rhs stands for “righthand side.”

To see how this works, you’ll create a Fraction class, as described previously. We’ll
show you the complete listing first, in Example 12-1, and then we’ll take it apart and
explain what it does.

Example 12-1. Implementing operator+ for Fraction isn’t difficult; you define it as you would any
method of the class, but using the keyword operator

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_12_1_ _ _ _Overloading_Addition
{
 public class Fraction
 {
 private int numerator;
 private int denominator;

 // create a fraction by passing in the numerator
 // and denominator
 public Fraction(int numerator, int denominator)
 {
 this.numerator = numerator;
 this.denominator = denominator;
 }

 // overloaded operator + takes two fractions
 // and returns their sum
 public static Fraction operator+ (Fraction lhs, Fraction rhs)
 {
 // like fractions (shared denominator) can be added
 // by adding their numerators
 if (lhs.denominator == rhs.denominator)
 {
 return new Fraction(lhs.numerator + rhs.numerator,
 lhs.denominator);
 }

 // simplistic solution for unlike fractions
 // 1/2 + 3/4 == (1*4) + (3*2) / (2*4) == 10/8
 // this method does not reduce.

246 | Chapter 12: Operator Overloading

The output looks like this:

firstFraction: 3/4
secondFraction: 2/4
firstFraction + secondFraction = sumOfTwoFractions: 5/4

Let’s take this one step at a time, so you can see how this class works. In
Example 12-1, you start by creating a Fraction class. The private member data is the
numerator and denominator, stored as integers:

public class Fraction
{
 private int numerator;
 private int denominator;

 int firstProduct = lhs.numerator * rhs.denominator;
 int secondProduct = rhs.numerator * lhs.denominator;
 return new Fraction(firstProduct + secondProduct,
 lhs.denominator * rhs.denominator);
 }

 // return a string representation of the fraction
 public override string ToString()
 {
 String s = numerator.ToString() + "/" + denominator.ToString();
 return s;
 }
 }

 public class Tester
 {
 public void Run()
 {
 Fraction firstFraction = new Fraction(3, 4);
 Console.WriteLine("firstFraction: {0}", firstFraction.ToString());

 Fraction secondFraction = new Fraction(2, 4);
 Console.WriteLine("secondFraction: {0}", secondFraction.ToString());

 Fraction sumOfTwoFractions = firstFraction + secondFraction;
 Console.WriteLine("firstFraction + secondFraction =
 sumOfTwoFractions: {0}", sumOfTwoFractions.ToString());

 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 12-1. Implementing operator+ for Fraction isn’t difficult; you define it as you would any
method of the class, but using the keyword operator (continued)

Using the operator Keyword | 247

The constructor just initializes these values; that’s simple enough.

The overloaded addition operator takes two Fraction objects, returns a Fraction,
and is marked static:

public static Fraction operator+ (Fraction lhs, Fraction rhs)
{

As you’d expect for adding fractions, if the denominators for the fractions are the
same, you add the numerators and return a new Fraction object created by passing
in the sum of the numerators as the new numerator and the shared denominator as
the new denominator:

if (lhs.denominator == rhs.denominator)
{
 return new Fraction(lhs.numerator + rhs.numerator,
 lhs.denominator);
}

The Fraction object’s firstFraction and secondFraction are passed in to the over-
loaded addition operator as lhs and rhs, respectively. The new Fraction is returned
to the calling method, Run(), where it is assigned to sumOfTwoFractions:

Fraction sumOfTwoFractions = firstFraction + secondFraction;
Console.WriteLine("firstFraction + secondFraction = sumOfTwoFractions: {0}",
 sumOfTwoFractions.ToString());

Back in the implementation of the operator, if the denominators are different, you
cross-multiply before adding, which is the standard method for adding unlike fractions:

 int firstProduct = lhs.numerator * rhs.denominator;
 int secondProduct = rhs.numerator * lhs.denominator;
 return new Fraction(firstProduct + secondProduct,
 lhs.denominator * rhs.denominator);

The two local variables, firstProduct and secondProduct, are temporary; they are
destroyed when the method returns. The new Fraction created, however, is not tem-
porary; it returned to Run() as in the case where the denominators are equal.

A good Fraction class would, no doubt, implement all the arithmetic
operators (addition, subtraction, multiplication, division). To overload
the multiplication operator, you would write operator*; to overload the
division operator, you would write operator/.

The Fraction class also overrides the ToString() method (inherited from Object, as
discussed in Chapter 11) to allow you to display the fractions by passing them to
Console.WriteLine():

public override string ToString()
{
 String s = numerator.ToString() + "/" + denominator.ToString();
 return s;
}

248 | Chapter 12: Operator Overloading

When you run this application, you can see that the ToString() method works as
planned, and the overloaded operator allows you to add firstFraction and
secondFraction as intuitively as though they were ints.

Creating Useful Operators
Operator overloading can make your code more intuitive and enable you to use
instances of your classes as though they were built-in types. However, when you
overload an operator for your class, the way you’re using it has to make sense. If you
start to give your operators values that don’t naturally follow from their traditional
meanings, you’ll just confuse anyone else who tries to use your class, possibly includ-
ing yourself.

For example, although it might be tempting to overload the increment operator (++)
on an employee class to invoke a method incrementing the employee’s pay level, this
can create tremendous confusion. The increment operator normally means “increase
this scalar value by one.” Giving it the new meaning of “increase this employee’s pay
level” may be obvious when you implement the operator, but confusing to other pro-
grammers who have to maintain the code. It is best to use operator overloading spar-
ingly, and only when its meaning is clear and consistent with how the built-in classes
operate. You’ll find that there aren’t very many situations where it makes sense to
overload the traditional arithmetic operators.

The Equals Operator
Although we’ve just warned you away from wildly implementing overloaded arith-
metic operators, the comparison operators, especially ==, are another story. It’s very
common to overload the == operator to determine whether two objects are equal.
What “equal” means is up to you, although your criteria should be reasonable. You
might decide that two Employee objects are equal if they have the same name, or you
may decide that simply having the same employee ID is sufficient.

Overloading the == operator works the same as overloading any other operator. Sim-
ply use the keyword operator with the == symbol, and place your code inside the
method. The == operator always returns a Boolean (true or false), so you’ll need to
declare the operator as a public static bool. For example, for the Fraction class,
your operator might look like this:

public static bool operator== (Fraction lhs, Fraction rhs)
{
 if (lhs.denominator == rhs.denominator &&
 lhs.numerator == rhs.numerator)
 {
 return true;
 }
 // code here to handle unlike fractions

The Equals Operator | 249

 return false;
}

Notice that there’s no else clause here. If the numerator and denominator are equal,
the operator returns true, and exits. If they’re not equal, the return statement after
the if is executed, so there’s no need for an else.

C# insists that if you overload the equals operator, you must also overload the not-
equals operator (!=). It’s good programming practice to have the inequality operator
delegate its work to the equality operator, like this:

public static bool operator !=(Fraction lhs, Fraction rhs)
{
 return !(lhs==rhs);
}

As you can see, the != operator will return the opposite of the value of the == opera-
tor, which is exactly what you want. This way, if you change your definition of
equality, you can change the code in the == operator overload, and the != operator
will still return the opposite.

Similarly, the less than (<) and greater than (>) operators must be paired, as must the
less than or equal to (<=) and greater than or equal to (>=) operators.

The Object class (which is the root of every class in C#) offers a virtual method
called Equals(). (We discuss virtual methods in Chapter 11.) If you overload the
equals operator (==), it is recommended that you also override the Equals() method.

Overriding the Equals() method allows your class to be compatible with other .NET
languages that do not overload operators (but do support method overloading). That
way, even if you can’t use the == operator, you can still use the Equals() method to
do the same thing.

The Object class implements the Equals() method with this signature:

public virtual bool Equals(object o)

From this signature, you can see that your override of this method will take an
object as a parameter, and return a bool (true if the two objects are equal, where
“equality” is however you define it).

By overriding this method, you allow your Fraction class to act polymorphically with
all other objects. For example, anywhere you can call Equals() on two Objects, you
can call Equals() on two Fractions.

Inside the body of Equals(), you need to ensure that you are comparing one
Fraction object with another Fraction object. If the other object is not a fraction,
they cannot be equal, and you’ll return false:

public override bool Equals(object o)
{

 if (! (o is Fraction))

250 | Chapter 12: Operator Overloading

 {
 return false;
 }
 return this == (Fraction) o;
}

The is operator is used to check the runtime type of an object (in this case,
Fraction). Therefore, o is Fraction evaluates true if o is, in fact, a Fraction or a type
derived from Fraction.

Once you know that you are comparing two Fractions, you can delegate the deci-
sion as to their equality to the overloaded operator (operator==) that you’ve already
written, just as you did with the != operator. This allows you to avoid duplicate
code. Notice, though, that before you can compare this to o, you need to cast o to a
Fraction. We discussed casting with intrinsic types back in Chapter 3.

In this way, the Equals() method determines only that you do in fact have two frac-
tions. If so, it delegates deciding whether the two fractions are truly equal to the
already implemented operator ==.

The complete modification of the Fraction class is shown in Example 12-2, followed
by the analysis.

Example 12-2. Implementing the == operator is similar to implementing the addition operator
before. However, you also have to implement != and Equals()

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_12_2_ _ _ _Overloading_Equality
{
 public class Fraction
 {
 private int numerator;
 private int denominator;

 // create a fraction by passing in the numerator
 // and denominator
 public Fraction(int numerator, int denominator)
 {
 this.numerator = numerator;
 this.denominator = denominator;
 }

 // overloaded operator+ takes two fractions
 // and returns their sum
 public static Fraction operator+ (Fraction lhs, Fraction rhs)
 {
 // like fractions (shared denominator) can be added
 // by adding their numerators
 if (lhs.denominator == rhs.denominator)

The Equals Operator | 251

 {
 return new Fraction(lhs.numerator + rhs.numerator,
 lhs.denominator);
 }

 // simplistic solution for unlike fractions
 // 1/2 + 3/4 == (1*4) + (3*2) / (2*4) == 10/8
 // this method does not reduce.
 int firstProduct = lhs.numerator * rhs.denominator;
 int secondProduct = rhs.numerator * lhs.denominator;
 return new Fraction(firstProduct + secondProduct,
 lhs.denominator * rhs.denominator);
 }

 // test whether two Fractions are equal
 public static bool operator== (Fraction lhs, Fraction rhs)
 {
 if (lhs.denominator == rhs.denominator &&
 lhs.numerator == rhs.numerator)
 {
 return true;
 }
 // code here to handle unlike fractions
 return false;
 }

 // delegates to operator ==
 public static bool operator !=(Fraction lhs, Fraction rhs)
 {
 return !(lhs == rhs);
 }

 // tests for same types, then delegates
 public override bool Equals(object o)
 {
 if (!(o is Fraction))
 {
 return false;
 }
 return this == (Fraction)o;
 }

 // return a string representation of the fraction
 public override string ToString()
 {
 String s = numerator.ToString() + "/"
 + denominator.ToString();
 return s;
 }
 }

Example 12-2. Implementing the == operator is similar to implementing the addition operator
before. However, you also have to implement != and Equals() (continued)

252 | Chapter 12: Operator Overloading

The output looks like this:

f1: 3/4
f2: 2/4
f1 + f2 = f3: 5/4
f4: 5/4 == F3: 5/4
f4: 5/4 != F2: 2/4
5/4.Equals(5/4)

 public class Tester
 {
 public void Run()
 {
 Fraction f1 = new Fraction(3, 4);
 Console.WriteLine("f1: {0}", f1.ToString());

 Fraction f2 = new Fraction(2, 4);
 Console.WriteLine("f2: {0}", f2.ToString());

 Fraction f3 = f1 + f2;
 Console.WriteLine("f1 + f2 = f3: {0}", f3.ToString());

 Fraction f4 = new Fraction(5, 4);

 if (f4 == f3)
 {
 Console.WriteLine("f4: {0} == F3: {1}",
 f4.ToString(), f3.ToString());
 }

 if (f4 != f2)
 {
 Console.WriteLine("f4: {0} != F2: {1}",
 f4.ToString(), f2.ToString());
 }

 if (f4.Equals(f3))
 {
 Console.WriteLine("{0}.Equals({1})",
 f4.ToString(), f3.ToString());
 }

 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 12-2. Implementing the == operator is similar to implementing the addition operator
before. However, you also have to implement != and Equals() (continued)

Conversion Operators | 253

Example 12-2 implements the overloaded equals operator, operator==. If the frac-
tions have the same denominator, you test whether the numerators are equal. If they
are, you return true; otherwise, you return false.

public static bool operator== (Fraction lhs, Fraction rhs)
{
 if (lhs.denominator == rhs.denominator &&
 lhs.numerator == rhs.numerator)
 {
 return true;
 }
 // code here to handle unlike fractions
 return false;
}

We’ve simplified the math here to keep the example readable. Testing
for true equality (such as 3/4 = 6/8) is an interesting challenge you
might want to try.

This method is invoked in the Run() method when you write:

if (f4 == f3)

The if statement expects a Boolean value, which is what operator== returns. The
next thing the class does is implement the != operator, which as we discussed simply
returns the opposite of the == operator.

In addition to implementing the == and != operators, you implement the Equals()

method, for the reasons explained previously:

public override bool Equals(object o)
{
 if (!(o is Fraction))
 {
 return false;
 }
 return this == (Fraction)o;
}

If the two objects are not both Fractions, you return false; otherwise, you delegate to
the == operator, casting o to a Fraction type. Put a breakpoint on the return line, and
you’ll find that you step back into operator==. The value returned by operator== is
the value returned by the Equals() method if both objects are fractions.

Conversion Operators
As you learned back in Chapter 3, C# will convert (for example) an int to a long

implicitly but will only allow you to convert a long to an int explicitly. The conver-
sion from int to long is implicit because you know that any int will fit into a long

without losing any information. The reverse operation, from long to int, must be
explicit (using a cast) because it is possible to lose information in the conversion:

254 | Chapter 12: Operator Overloading

int myInt = 5;
long myLong;
myLong = myInt; // implicit
myInt = (int) myLong; // explicit

It would certainly be useful to convert your Fraction objects to intrinsic types (such
as int) and back. Given an int, you can support an implicit conversion to a fraction
because any whole value is equal to that value over 1 (15 == 15/1).

Given a fraction, you might want to provide an explicit conversion back to an integer,
understanding that some information might be lost. Thus, you might convert 9/4 to
the integer value 2 (truncating to the nearest whole number).

A more sophisticated Fraction class might not truncate, but rather
round to the nearest whole number. Again, we’re trying to keep this
example simple, but feel free to implement a more sophisticated
method.

To implement the conversion operator, you still use the keyword operator, but
instead of the symbol you’re overriding, you use the type that you’re converting to.
For example, to convert your Fraction to an int, you’d do this:

public static implicit operator Fraction(int theInt)

You use the keyword implicit when the conversion is guaranteed to succeed and no
information will be lost; otherwise, you use explicit. implicit and explicit are
actually operators, often called cast or casting operators because their job is to cast
from one type to another (int to Fraction or Fraction to int).

Example 12-3 illustrates how you might implement implicit and explicit conversions
in your Fraction class. We’ve omitted the overloaded addition and equality opera-
tors from the example code in the book, because those haven’t changed, but they’re
still there. We’ll explain how it works afterward.

Example 12-3. Overriding the conversion operators allows both implicit and explicit conversion
between types

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_12_3_ _ _ _Conversion_Operators
{
 public class Fraction
 {
 private int numerator;
 private int denominator;

 // create a fraction by passing in the numerator
 // and denominator

Conversion Operators | 255

 public Fraction(int numerator, int denominator)
 {
 this.numerator = numerator;
 this.denominator = denominator;
 }

 // overload the constructor to create a
 // fraction from a whole number
 public Fraction(int wholeNumber)
 {
 Console.WriteLine("In constructor taking a whole number");
 numerator = wholeNumber;
 denominator = 1;
 }

 // convert ints to Fractions implicitly
 public static implicit operator Fraction(int theInt)
 {
 Console.WriteLine("Implicitly converting int to Fraction");
 return new Fraction(theInt);
 }

 // convert Fractions to ints explicitly
 public static explicit operator int(Fraction theFraction)
 {
 Console.WriteLine("Explicitly converting Fraction to int");
 return theFraction.numerator / theFraction.denominator;
 }

 // operator + goes here
 // equality operators go here

 // return a string representation of the fraction
 public override string ToString()
 {
 String s = numerator.ToString() + "/" + denominator.ToString();
 return s;
 }
 }

 public class Tester
 {
 public void Run()
 {
 Fraction f1 = new Fraction(3, 4);
 Fraction f2 = new Fraction(2, 4);
 Fraction f3 = f1 + f2;

 Console.WriteLine("adding f3 + 5...");
 Fraction f4 = f3 + 5;
 Console.WriteLine("f3 + 5 = f4: {0}", f4.ToString());

Example 12-3. Overriding the conversion operators allows both implicit and explicit conversion
between types (continued)

256 | Chapter 12: Operator Overloading

The output looks like this:

adding f3 + 5...
Implicitly converting int to Fraction
In constructor taking a whole number
f3 + 5 = f4: 25/4

Assigning f4 to an int...
Explicitly converting Fraction to int
When you truncate f4 you get 6

In Example 12-3, you add a second constructor that takes a whole number and cre-
ates a Fraction:

public Fraction(int wholeNumber)
{
 Console.WriteLine("In constructor taking a whole number");
 numerator = wholeNumber;
 denominator = 1;
}

Notice that in this and the following code samples, you add
WriteLine() statements to indicate when you’ve entered the method.
This is an alternative to stepping through in a debugger. Although
using the debugger is usually more effective, this kind of output can
help you trace the execution of your program for review at a later time.

You want to be able to convert Fractions to and from ints. To do so, you create the
conversion operators. As discussed previously, converting from a Fraction to an int

requires truncating the value, and so must be explicit:

public static explicit operator int(Fraction theFraction)
{
 Console.WriteLine("Explicitly converting Fraction to int");
 return theFraction.numerator / theFraction.denominator;
}

 Console.WriteLine("\nAssigning f4 to an int...");
 int truncated = (int)f4;
 Console.WriteLine("When you truncate f4 you get {0}",
 truncated);
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 12-3. Overriding the conversion operators allows both implicit and explicit conversion
between types (continued)

Summary | 257

Note the use of the explicit keyword, indicating that this requires an explicit cast
from a Fraction to an int. The method itself simply divides the numerator by the
denominator. Since you’re returning an int, this is integer division, which means
that any remainder will be discarded.

You see the cast in the Run() method:

int truncated = (int) f4;

The cast from an int to a Fraction, on the other hand, is perfectly safe, so it can be
implicit. This is what it looks like in the Run() method:

Fraction f4 = f3 + 5;

Notice that there is no explicit cast in this statement. When you add the int to the
Fraction, the int is implicitly cast to a Fraction. The implementation of this is to cre-
ate a new Fraction object and to return it:

public static implicit operator Fraction(int theInt)
{
 Console.WriteLine("Implicitly converting int to Fraction");
 return new Fraction(theInt);
}

Using the implicit cast operator causes the constructor to be invoked:

public Fraction(int wholeNumber)
{
 Console.WriteLine("In constructor taking a whole number");
 numerator = wholeNumber;
 denominator = 1;
}

You see this sequence of events represented in the output:

Implicitly converting int to Fraction
In constructor taking a whole number

Summary
• You can overload operators in much the same way that you would overload

methods.

• To overload an operator, use the static keyword with the operator keyword,
and the name of the operator you’re overloading.

• It is good programming practice to use operator overloading sparingly and to be
sure that the meaning of the overload is obvious and intuitive.

• When you overload the equals (==) operator, you should also override the
Equals() method for compatibility with other .NET languages.

• If you overload the == operator, you must also overload the != operator. Simi-
larly, the < and > operators are paired, as are the <= and >= operators.

258 | Chapter 12: Operator Overloading

• You can also overload conversion operators to allow one type to be implicitly or
explicitly cast to another type. When doing so, you must use the keyword
implicit when the conversion is guaranteed to succeed without loss of informa-
tion, and explicit when there is a risk that information might be lost.

Now you know how to overload constructors, regular class methods, and even opera-
tors. That’s a lot of overloading going on, but it’s all with good reason—to make your
user-defined classes flexible and extensible. In the next chapter, we’ll look at yet
another method of extension: interfaces. Interfaces let you dictate the methods that a
class will have, without using inheritance. It’s complicated, but powerful, as you’ll see.

Test Your Knowledge: Quiz

Question 12-1. What is operator overloading?

Question 12-2. Are operators implemented as properties, static methods, or instance
methods?

Question 12-3. What keyword do you use to overload an operator?

Question 12-4. How does the compiler translate:

Fraction f3 = f2 + f1;

assuming that f2 and f1 are Fraction objects and you have overloaded the + operator
for the Fraction class?

Question 12-5. Which of the following overloads are reasonable?

1. Overloading the == operator for a Dog class such that two Dog objects with the
same name are equal

2. Overloading the - operator of a Box class such that subtracting one Box object
from another produces a new Box object with a volume equal to the difference
between the other two Box objects

3. Overloading the -- operator of an Employee class so that the employee’s hours
are reduced

4. Overloading the + operator of a BankAccount class to merge the balance of two
accounts

Question 12-6. Which of the comparison operators are paired?

Question 12-7. What should you also do if you overload the == operator?

Test Your Knowledge: Exercises | 259

Question 12-8. What is the purpose of the Equals() method?

Question 12-9. What keyword(s) do you use to overload the conversion operators?

Question 12-10. When should you use implicit conversion, and when should you use
explicit conversion?

Test Your Knowledge: Exercises

Exercise 12-1. Create a class Invoice, which has a string member vendor and a double
member amount, as well as a method to output the two properties of the invoice.
Overload the addition operator so that if the vendor properties match, the amount

properties of the two invoices are added together in a new invoice. If the vendor

properties do not match, the new invoice is blank. Include some test code to test the
addition operator.

Exercise 12-2. Modify the Invoice class so that two invoices are considered equal if
the vendor and amount properties match. Test your methods.

Exercise 12-3. Modify the Invoice class once more so that you can determine whether
one invoice is greater than or less than another. Test your methods.

Exercise 12-4. Create a class Foot and a class Meter. Each should have a single param-
eter that stores the length of the object, and a simple method to output that length.
Create a casting operator for each class: one that converts a Foot object to a Meter

object, and one that converts a Meter object to a Foot object. Test these operators to
make sure they work.

260

CHAPTER 13

Interfaces

Back in Chapter 11, you saw how inheritance and abstract methods can dictate the
methods that a class has to implement. However, it isn’t always necessary to create a
new parent class, even an abstract one, to guarantee the behaviors of your class. For
example, you might want to dictate that your class must be storable (capable of being
written to disk) or printable. “Storable” isn’t a good candidate for a class, because it
doesn’t model an object; instead, it describes a set of behaviors that you want your
class to have. Such a description is called an interface. The interface defines the
methods that a class must implement, but it doesn’t dictate how the class imple-
ments these required methods. This provides a lot of flexibility on the part of the
class designer, yet it allows client classes to use those methods with confidence,
because the interface methods are guaranteed to be implemented. There are a lot of
interesting things you can do with interfaces, including implementing multiple inter-
faces, combining them, inheriting them, and casting to them. All of it can be tricky to
understand at first, so we’ll describe them all thoroughly in this chapter.

What Interfaces Are
An interface is a contract. When you design an interface, you’re saying, “If you want
to provide this capability, you must implement these methods, provide these proper-
ties and indexers, and support these events.” The implementer of the interface agrees
to the contract and implements the required elements.

You saw methods and properties in Chapter 8. We’ll discuss indexers
in Chapter 14 and events in Chapter 17. We promise you don’t need
to know about them for this chapter.

When you specify interfaces, it is easy to get confused about who is responsible for
what. There are three concepts to keep clear:

What Interfaces Are | 261

The interface
This is the contract. By convention, interface names begin with a capital I, so
your interface might have a name such as IPrintable. The IPrintable interface
might require, among other things, a Print() method. This states that any class
that wants to implement IPrintable must implement a Print() method, but it
does not specify how that method works internally. That is up to the designer of
the implementing class.

The implementing class
This is the class that agrees to the contract described by the interface. For exam-
ple, Document might be a class that implements IPrintable and thus implements
the Print() method in whatever way the designer of the Document class thinks is
appropriate.

The client class
The client calls methods on the implementing class. For example, you might
have an Editor class that has an array of IPrintable objects (every object in the
class is an instance of a type that implements IPrintable, even if they aren’t all
the same type). The client can expect to be able to call Print() on each object,
and although each individual object may implement the method differently, each
will do so appropriately and without complaint.

Interfaces Versus Abstract Base Classes
Programmers learning C# often ask about the difference between an interface and an
abstract base class. The key difference is that an abstract base class serves as the base
class for a family of derived classes, and an interface is meant to be mixed in with other
inheritance chains. That is, a class can inherit from only a single parent class, but it can
implement multiple interfaces.

In addition, when you derive from an abstract class, you must override all the abstract
methods in the abstract base class, but you don’t have to override any nonabstract
methods. You can simply use the implementation that the base class provides. This is
called partial implementation, and it’s very common with abstract classes. Interfaces
don’t have any implementation, so you must implement every method defined in the
interface. You can’t partially implement an interface.

Inheriting from an abstract class implements the is-a relationship, introduced in
Chapter 6. Implementing an interface defines a different relationship, one you’ve not
seen until now: the implements relationship. These two relationships are subtly differ-
ent. A car is a vehicle, but it might implement the CanBeBoughtWithABigLoan capa-
bility (as can a house, for example).

262 | Chapter 13: Interfaces

One critical thing to remember about interfaces is that an interface is not a class, and
you can’t instantiate an instance of an interface. For example, this won’t work:

IPrintable myPrintable = new IPrintable();

Interfaces aren’t classes, so they don’t have constructors, and you can’t have an
instance of an interface. However—and this is where it gets a bit confusing—if you
have a class that implements the interface, you can create a reference to an object of
that class, of the type of the interface. Confused? Look at an example. Suppose you
have a Document class that you know implements IPrintable. Although you can’t cre-
ate an IPrintable object, you can do this:

IPrintable myPrintable = new Document();

myPrintable is called a reference, which in this case refers to some (unnamed)
Document object. All your code needs to know about myPrintable is that it refers to
some object that implements the IPrintable interface—it could be a Document, it
could be a Memo, it could be a GreatAmericanNovel. Doesn’t matter. This lets you treat
interface references polymorphically, just like you can use inheritance to treat objects
polymorphically (see Chapter 11 for a refresher, if you need it). You’ll see how this
works a little later in the chapter.

Interfaces are a critical addition to any framework, and they are used extensively
throughout .NET. For example, the collection classes (stacks, queues, and dictionar-
ies, which we’ll cover in detail in Chapter 14) are defined, in large measure, by the
interfaces they implement.

Implementing an Interface
The syntax for defining an interface is very similar to the syntax for defining a class:

[attributes] [access-modifier] interface interface-name [:base-list]
{interface-body}

The optional attributes are beyond the scope of this book. In short,
every .NET application contains code, data, and metadata. Attributes
are objects that are embedded in your program (invisible at runtime)
and contain metadata—that is, data about your classes and your pro-
gram. You don’t need to worry about them for our purposes here.

Access modifiers (public, private, and so forth) work just as they do with classes. (See
Chapter 7 for more about access modifiers.) The interface keyword is followed by an
identifier (the interface name). It is recommended (but not required) to begin the name
of your interface with a capital I (IStorable, ICloneable, IGetNoKickFromChampagne, and
so on). We will discuss the optional base list later in this chapter.

Implementing an Interface | 263

Now, suppose you are the author of a Document class, which specifies that Document
objects can be stored in a database. You decide to have Document implement the
IStorable interface. It isn’t required that you do so, but by implementing the
IStorable interface, you signal to potential clients that the Document class can be used
just like any other IStorable object. This will, for example, allow your clients to add
your Document objects to an array of IStorable references:

IStorable[] myStorableArray = new IStorable[3];

As we discussed earlier, the array doesn’t specifically need to know that it holds a
Document object, just that it holds objects that implement IStorable.

To implement the IStorable interface, use the same syntax as though the new
Document class were inheriting from IStorable—a colon (:) followed by the interface
name:

public class Document : IStorable

You can read this as “define a public class named Document that implements the
IStorable interface.” The compiler distinguishes whether the colon indicates inherit-
ance or implementation of an interface by checking to see whether IStorable is
defined, and whether it is an interface or base class.

If you derive from a base class and you also implement one or more interfaces, you
use a single colon and separate the base class and the interfaces by commas. The
base class must be listed first; the interfaces may be listed in any order.

public MyBigClass : TheBaseClass, IPrintable, IStorable, IClaudius, IAndThou

In this declaration, the new class MyBigClass derives from TheBaseClass and imple-
ments four interfaces.

Suppose that the definition of IStorable requires a void Read() method, and a void
Write() method that takes an object. In that case, your definition of the Document

class that implements the IStorable interface might look like this:

public class Document : IStorable
{
 public void Read() {...}
 public void Write(object obj) {...}
 // ...
}

It is now your responsibility, as the author of the Document class, to provide a mean-
ingful implementation of the IStorablemethods. Having designated Document as imple-
menting IStorable, you must implement all the IStorable methods, or you will
generate an error when you compile. Example 13-1 illustrates defining and implement-
ing the IStorable interface. Have a look at it first, and we’ll take it apart afterward.

264 | Chapter 13: Interfaces

Example 13-1. Implementing an interface simply requires implementing all of its properties and
methods, in whatever way is best for your class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_13_1_ _ _ _Implementing_Interface
{
 interface IStorable
 {
 void Read();
 void Write(object obj);
 int Status { get; set; }
 }

 public class Document : IStorable
 {

 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);
 }

#region IStorable

 public void Read()
 {
 Console.WriteLine("Executing Document's Read
 Method for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine("Executing Document's Write
 Method for IStorable");
 }

 // property required by IStorable
 public int Status { get; set;}

#endregion

 }

 class Tester
 {
 public void Run()
 {
 Document doc = new Document("Test Document");
 doc.Status = -1;
 doc.Read();

Implementing an Interface | 265

The output looks like this:

Creating document with: Test Document
Executing Document's Read Method for IStorable
Document Status: -1

Defining the Interface
In Example 13-1, the first few lines define an interface, IStorable, which has two
methods (Read() and Write()) and a property (Status) of type int:

interface IStorable
 {
 void Read();
 void Write(object obj);
 int Status { get; set; }
 }

Notice that the IStorable method declarations for Read() and Write() do not
include access modifiers (public, protected, internal, private). In fact, providing an
access modifier generates a compile error. Interface methods are implicitly public
because an interface is a contract meant to be used by other classes. In addition, you
must declare these methods to be public, and not static, when you implement the
interface.

In the interface declaration, the methods are otherwise defined just like methods in a
class: you indicate the return type (void), followed by the identifier (Write), followed
by the parameter list (object obj), and, of course, you end all statements with a semi-
colon. The methods in the interface declaration have no body, however.

An interface can also require that the implementing class provide a property (see
Chapter 8 for a discussion of properties). Notice that the declaration of the Status

property does not provide an implementation for get() and set(), but simply desig-
nates that there must be a get() and a set():

int Status { get; set; }

You can’t define member variables in an interface, but defining properties like this
has the same practical effect.

 Console.WriteLine("Document Status: {0}", doc.Status);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 13-1. Implementing an interface simply requires implementing all of its properties and
methods, in whatever way is best for your class (continued)

266 | Chapter 13: Interfaces

Implementing the Interface on the Client
Once you’ve defined the IStorable interface, you can define classes that implement
your interface. Keep in mind that you cannot create an instance of an interface;
instead, you instantiate a class that implements the interface.

The class implementing the interface must fulfill the contract exactly and com-
pletely. Thus, your Document class must provide both a Read() and a Write() method
and the Status property:

public class Document : IStorable
{

This statement defines Document as a class that defines IStorable. We also like to sep-
arate the implementation of an interface in a region—this is a Visual Studio conve-
nience that allows you to collapse and expand the code within the region to make
the code easier to read:

#region IStorable
 //...
#endregion

Within the region, you place the code that implements the two required methods
and the required property. In this case, we’re not really reading or writing anything.
To keep things simple in the example, we’re just announcing to the console that
we’ve invoked the appropriate method; you’ll have to use your imagination a bit:

public void Read()
{
 Console.WriteLine("Executing Document's Read
 Method for IStorable");
}

public void Write(object o)
{
 Console.WriteLine("Executing Document's Write
 Method for IStorable");
}

Notice that the Write() method takes an instance of class object as a parameter,
even though the method never uses it. Perhaps your specific implementation would
do something with an object, but it doesn’t have to. Exactly how your Document class
fulfills the requirements of the interface is entirely up to you.

Although IStorable dictates that Document must have a Status property, it does not
know or care whether Document stores the actual status as a member variable or looks
it up in a database. Example 13-1 implements the Status property with an automatic
property (introduced in Chapter 8). Another class that implements IStorable could
provide the Status property in an entirely different manner (such as by looking it up
in a database).

Implementing More Than One Interface | 267

Implementing More Than One Interface
Classes can derive from only one class (and if it doesn’t explicitly derive from a class,
it implicitly derives from Object).

Some languages, such as C++, support inheritance from multiple base
classes. C# allows inheritance from only a single class, but interfaces
don’t have that limitation.

When you design your class, you can choose not to implement any interfaces, you
can implement a single interface, or you can implement more than one. For exam-
ple, in addition to IStorable, you might have a second interface, ICompressible, for
files that can be compressed to save disk space. This new interface might have meth-
ods of Compress() and Decompress(), for example. If your Document class can be
stored and compressed, you might choose to have Document implement both the
IStorable and ICompressible interfaces.

Both IStorable and ICompressible are interfaces created for this book
and are not part of the standard .NET Framework.

Example 13-2 shows the complete listing of the new ICompressible interface and
demonstrates how you modify the Document class to implement the two interfaces.

Example 13-2. Implementingmultiple interfaces isn’t muchmore difficult than implementing a single
one; you just have to implement the required methods for both interfaces

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_13_2_ _ _ _Multiple_Interfaces
{
 interface IStorable
 {
 void Read();
 void Write(object obj);
 int Status { get; set; }
 }

 // here's the new interface
 interface ICompressible
 {
 void Compress();
 void Decompress();
 }

268 | Chapter 13: Interfaces

 public class Document : IStorable, ICompressible
 {
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);
 }

 #region IStorable

 public void Read()
 {
 Console.WriteLine("Executing Document's Read Method
 for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine("Executing Document's Write Method
 for IStorable");
 }

 public int Status{ get; set;}

 #endregion // IStorable

 #region ICompressible

 public void Compress()
 {
 Console.WriteLine("Executing Document's Compress Method
 for ICompressible");
 }
 public void Decompress()
 {
 Console.WriteLine("Executing Document's Decompress Method
 for ICompressible");
 }
 #endregion // ICompressible

 }

 class Tester
 {
 public void Run()
 {
 Document doc = new Document("Test Document");
 doc.Status = -1;
 doc.Read(); // invoke method from IStorable
 doc.Compress(); // invoke method from ICompressible
 Console.WriteLine("Document Status: {0}", doc.Status);
 }

Example 13-2. Implementingmultiple interfaces isn’t muchmore difficult than implementing a single
one; you just have to implement the required methods for both interfaces (continued)

Implementing More Than One Interface | 269

The output looks like this:

Creating document with: Test Document
Executing Document's Read Method for IStorable
Executing Document's Compress Method for ICompressible
Document Status: -1

As Example 13-2 shows, you declare the fact that your Document class will implement
two interfaces by adding the second interface to the declaration (in the base list), sep-
arating the two interfaces with commas:

public class Document : IStorable, ICompressible

Once you’ve done this, the Document class must also implement the methods speci-
fied by the ICompressible interface. ICompressible has only two methods, Compress()
and Decompress(), which are specified as:

interface ICompressible
{
 void Compress();
 void Decompress();
}

In this simplified example, Document implements these two methods as follows, print-
ing notification messages to the console:

public void Compress()
{
 Console.WriteLine("Executing Document's Compress
 Method for ICompressible");
}
public void Decompress()
{
 Console.WriteLine("Executing Document's Decompress
 Method for ICompressible");
}

Once again, these methods don’t really do anything other than output a message
announcing their intentions; that’s deliberate, to keep the example short.

As you can see, implementing multiple interfaces isn’t hard at all; each interface
mandates additional methods that your class has to provide. You could implement
several interfaces in this way.

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 13-2. Implementingmultiple interfaces isn’t muchmore difficult than implementing a single
one; you just have to implement the required methods for both interfaces (continued)

270 | Chapter 13: Interfaces

Casting to an Interface
You can access the members of an interface through an object of any class that
implements the interface. For example, because Document implements IStorable, you
can access the IStorable methods and property through any Document instance:

Document doc = new Document("Test Document");
doc.Status = -1;
doc.Read();

At times, though, you won’t know that you have a Document object; you’ll only know
that you have objects that implement IStorable, for example, if you have an array of
IStorable objects, as we mentioned earlier. You can create a reference of type
IStorable, and assign that to each member in the array, accessing the IStorable

methods and property. You cannot, however, access the Document-specific methods
because all the compiler knows is that you have an IStorable, not a Document.

As we mentioned before, you cannot instantiate an interface directly; that is, you
cannot write:

IStorable isDoc = new IStorable;

You can, however, create an instance of the implementing class and then assign that
object to a reference to any of the interfaces it implements:

Document myDoc = new Document(...);
IStorable myStorable = myDoc;

You can read this line as “assign the IStorable-implementing object myDoc to the
IStorable reference myStorable.”

You are now free to use the IStorable reference to access the IStorable methods and
properties of the document:

myStorable.Status = 0;
myStorable.Read();

Notice that the IStorable reference myStorable has access to the IStorable auto-
matic property Status. However, myStorable would not have access to the Document’s
private member variables, if it had any. The IStorable reference knows only about
the IStorable interface, not about the Document’s internal members.

Thus far, you have assigned the Document object (myDoc) to an IStorable reference.

The is and as Operators
Sometimes, however, you may not know at compile time whether an object sup-
ports a particular interface. For instance, if you have an array of IStorable objects,
you might not know whether any given object in the collection also implements
ICompressible (some do, some do not). Let’s set aside the question of whether this is
a good design, and move on to how we solve the problem.

The is and as Operators | 271

Anytime you see casting, you can question the design of the program.
It is common for casting to be the result of poor or lazy design. That
being said, sometimes casting is unavoidable, especially when dealing
with collections that you did not create. This is one of those situations
where experience over time will help you tell good designs from bad.

You could try casting each member blindly to ICompressible. If the object in ques-
tion doesn’t implement ICompressible, an error will be raised. You could then han-
dle that error, using techniques we’ll explain in Chapter 16. That’s a sloppy and
ineffective way to do it, though. The is and as operators provide a much better way.

The is operator lets you query whether an object implements an interface (or derives
from a base class). The form of the is operator is:

if (expression is type)

The is operator evaluates true if the expression (which must be a reference type, such
as an instance of a class) can be safely cast to type without throwing an exception.

The as operator is similar to is, but it goes a step further. The as operator tries to
cast the object to the type, and if an exception would be thrown, it instead returns
null:

ICompressible myCompressible = myObject as ICompressible
if (myCompressible != null)

The is operator is slightly less efficient than using as, so the as opera-
tor is slightly preferred over the is operator, except when you want to
do the test but not actually do the cast (a rare situation).

Example 13-3 illustrates the use of both the is and the as operators by creating two
classes. The Note class implements IStorable. The Document class derives from Note

(and thus inherits the implementation of IStorable) and adds a property (ID) along
with an implementation of ICompressible.

In this example, you’ll create an array of Note objects (which could be either Notes or
Documents) and then, if you want to access either ICompressible or the ID, you’ll need
to test the Note to see whether it is of the correct type. Both the is and the as opera-
tors are demonstrated. The entire program is documented fully immediately after the
source code.

Example 13-3. The is and as operators allow you to determine whether an object can be cast to an
interface

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

272 | Chapter 13: Interfaces

namespace Example_13_3_ _ _ _is_and_as
{
 interface IStorable
 {
 void Read();
 void Write(object obj);
 int Status { get; set; }
 }

 interface ICompressible
 {
 void Compress();
 void Decompress();
 }

 public class Note : IStorable
 {
 private string myString;

 public Note(string theString)
 {
 myString = theString;
 }

 public override string ToString()
 {
 return myString;
 }

 #region IStorable

 public void Read()
 {
 Console.WriteLine("Executing Note's Read Method
 for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine("Executing Note's Write Method
 for IStorable");
 }

 public int Status { get; set; }

 #endregion // IStorable

 }

 public class Document : Note, ICompressible
 {

Example 13-3. The is and as operators allow you to determine whether an object can be cast to an
interface (continued)

The is and as Operators | 273

 private int documentID;
 public int ID
 {
 get { return this.documentID; }
 }

 public Document(string docString, int documentID)
 : base(docString)
 {
 this.documentID = documentID;
 }

 #region ICompressible

 public void Compress()
 {
 Console.WriteLine("Executing Document's Compress Method
 for ICompressible");
 }
 public void Decompress()
 {
 Console.WriteLine("Executing Document's Decompress Method
 for ICompressible");
 }
 #endregion // ICompressible

 } // end Document class

 class Tester
 {
 public void Run()
 {
 string testString = "String ";
 Note[] myNoteArray = new Note[3];

 for (int i = 0; i < 3; i++)
 {
 string docText = testString + i.ToString();
 if (i % 2 == 0)
 {
 Document myDocument = new Document(
 docText, (i + 5) * 10);
 myNoteArray[i] = myDocument;
 }
 else
 {
 Note myNote = new Note(docText);
 myNoteArray[i] = myNote;
 }
 }

Example 13-3. The is and as operators allow you to determine whether an object can be cast to an
interface (continued)

274 | Chapter 13: Interfaces

 foreach (Note theNote in myNoteArray)
 {
 Console.WriteLine("\nTesting {0} with IS", theNote);

 theNote.Read(); // all notes can do this
 if (theNote is ICompressible)
 {
 ICompressible myCompressible =
 theNote as ICompressible;
 myCompressible.Compress();
 }
 else
 {
 Console.WriteLine("This storable object is
 not compressible.");
 }

 if (theNote is Document)
 {
 Document myDoc = theNote as Document;

 // clean cast
 myDoc = theNote as Document;
 Console.WriteLine("my documentID is {0}", myDoc.ID);
 }
 }

 foreach (Note theNote in myNoteArray)
 {
 Console.WriteLine("\nTesting {0} with AS", theNote);
 ICompressible myCompressible = theNote as ICompressible;
 if (myCompressible != null)
 {
 myCompressible.Compress();
 }
 else
 {
 Console.WriteLine("This storable object is
 not compressible.");
 } // end else

 Document theDoc = theNote as Document;
 if (theDoc != null)
 {
 Console.WriteLine("My documentID is {0}",
 ((Document)theNote).ID);
 }
 else
 {
 Console.WriteLine("Not a document.");
 }

Example 13-3. The is and as operators allow you to determine whether an object can be cast to an
interface (continued)

The is and as Operators | 275

The output looks like this:

Testing String 0 with IS
Executing Note's Read Method for IStorable
Executing Document's Compress Method for ICompressible
my documentID is 50

Testing String 1 with IS
Executing Note's Read Method for IStorable
This storable object is not compressible.

Testing String 2 with IS
Executing Note's Read Method for IStorable
Executing Document's Compress Method for ICompressible
my documentID is 70

Testing String 0 with AS
Executing Document's Compress Method for ICompressible
My documentID is 50

Testing String 1 with AS
This storable object is not compressible.
Not a document.

Testing String 2 with AS
Executing Document's Compress Method for ICompressible
My documentID is 70

The best way to understand this program is to take it apart piece by piece.

Within the namespace, you declare two interfaces, IStorable and ICompressible, and
then two classes: Note, which implements IStorable; and Document, which derives
from Note (and thus inherits the implementation of IStorable) and which also imple-
ments ICompressible. Finally, you add the class Tester to test the program.

Within the Run() method of the Tester class, you create an array of Note objects, and
you add to that array two Document instances and one Note instance. You use the
counter i of the for loop as a control—if i is even, you create a Document object; if it’s
odd, you create a Note.

 }
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 } // end class Tester
}

Example 13-3. The is and as operators allow you to determine whether an object can be cast to an
interface (continued)

276 | Chapter 13: Interfaces

You then iterate through the array, extracting each Note in turn, and use the is opera-
tor to test first whether the Note can safely be assigned to an ICompressible reference:

if (theNote is ICompressible)
{
 ICompressible myCompressible = theNote as ICompressible;
 myCompressible.Compress();
}
else
{
 Console.WriteLine("This storable object is not compressible.");
}

If it can, you cast theNote to ICompressible, and call the Compress() method.

Then you check whether the Note can safely be cast to a Document:

if (theNote is Document)
{
 Document myDoc = theNote as Document;

 // clean cast
 myDoc = theNote as Document;
 Console.WriteLine("my documentID is {0}", myDoc.ID);
}

In the case shown, these tests amount to the same thing, but you can imagine that
you could have a collection with many types derived from Note, some of which
implement ICompressible and some of which do not.

You can use the interim variable as we’ve done here:

myDoc = theNote as Document;
Console.WriteLine("my documentID is {0}", myDoc.ID);

Or, you can cast and access the property all in one ugly but effective line, as you do
in the second loop:

Console.WriteLine("My documentID is {0}",
 ((Document) theNote).ID);

The extra parentheses are required to ensure that the cast is done before the attempt
at accessing the property.

The second foreach loop uses the as operator to accomplish the same work, and the
results are identical. (The second foreach loop actually generates less intermediate
language code, and thus is slightly more efficient.)

Extending Interfaces
You can extend an existing interface to add new methods or members. For exam-
ple, you might extend ICompressible with a new interface, ILoggedCompressible,
which extends the original interface with methods to keep track of the bytes saved.

Extending Interfaces | 277

One such method might be called LogSavedBytes(). The following code creates a
new interface named ILoggedCompressible that is identical to ICompressible except
that it adds the method LogSavedBytes:

interface ILoggedCompressible : ICompressible
{
 void LogSavedBytes();
}

Classes are now free to implement either ICompressible or ILoggedCompressible,
depending on whether they need the additional functionality. If a class does imple-
ment ILoggedCompressible, it must implement all the methods of both
ILoggedCompressible and ICompressible. Objects of that type can be cast either to
ILoggedCompressible or to ICompressible.

Example 13-4 extends ICompressible to create ILoggedCompressible, and then casts
the Document first to be of type IStorable and then to be of type ILoggedCompressible.
Finally, the example casts the Document object to ICompressible. This last cast is safe
because any object that implements ILoggedCompressible must also have imple-
mented ICompressible (the former is a superset of the latter). This is the same logic
that says you can cast any object of a derived type to an object of a base type (that is,
if Student derives from Human, then all Students are Human, even though not all Humans
are Students).

Example 13-4. You can extend an interface to create a new interface with additional methods or
members

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_13_4_ _ _ _Extending_Interfaces
{
 interface ICompressible
 {
 void Compress();
 void Decompress();
 }

 // extend ICompressible to log the bytes saved
 interface ILoggedCompressible : ICompressible
 {
 void LogSavedBytes();
 }

 public class Document : ILoggedCompressible
 {

 public Document(string s)
 {

278 | Chapter 13: Interfaces

 Console.WriteLine("Creating document with: {0}", s);
 }

 #region

 public void Compress()
 {
 Console.WriteLine("Executing Compress");
 }

 public void Decompress()
 {
 Console.WriteLine("Executing Decompress");
 }

 public void LogSavedBytes()
 {
 Console.WriteLine("Executing LogSavedBytes");
 }

 #endregion //ILoggedCompressible

 }

 class Tester
 {
 public void Run()
 {
 Document doc = new Document("Test Document");

 ILoggedCompressible myLoggedCompressible =
 doc as ILoggedCompressible;
 if (myLoggedCompressible != null)
 {
 Console.Write("\nCalling both ICompressible and ");
 Console.WriteLine("ILoggedCompressible methods...");
 myLoggedCompressible.Compress();
 myLoggedCompressible.LogSavedBytes();
 }
 else
 {
 Console.WriteLine("Something went wrong!
 Not ILoggedCompressible");
 }
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }

Example 13-4. You can extend an interface to create a new interface with additional methods or
members (continued)

Combining Interfaces | 279

The output looks like this:

Creating document with: Test Document

Calling both ICompressible and ILoggedCompressible methods...
Executing Compress
Executing LogSavedBytes

Example 13-4 starts by creating the ILoggedCompressible interface, which extends the
ICompressible interface:

// extend ICompressible to log the bytes saved
interface ILoggedCompressible : ICompressible
{
 void LogSavedBytes();
}

Notice that the syntax for extending an interface is the same as that for deriving from
a class. This extended interface defines only one new method (LogSavedBytes()), but
any class implementing this interface must also implement the base interface
(ICompressible) and all its members. (In this sense, it is reasonable to say that an
ILoggedCompressible object is an ICompressible object.)

Combining Interfaces
You can also create new interfaces by combining existing interfaces and optionally
adding new methods or properties. For example, you might decide to combine the
definitions of IStorable and ICompressible into a new interface called
IStorableCompressible. This interface would combine the methods of each of the
other two interfaces, but would also add a new method, LogOriginalSize(), to store
the original size of the precompressed item:

interface IStorableCompressible : IStorable, ILoggedCompressible
{
 void LogOriginalSize();
}

Having created this interface, you can now modify Document to implement
IStorableCompressible:

public class Document : IStorableCompressible

You now can cast the Document object to any of the four interfaces you’ve created so
far:

IStorable storableDoc = doc as IStorable;
ILoggedCompressible logCompressDoc = doc as ILoggedCompressible;

 }
}

Example 13-4. You can extend an interface to create a new interface with additional methods or
members (continued)

280 | Chapter 13: Interfaces

ICompressible compressDoc = doc as ICompressible;
IStorableCompressible storCompressDoc = doc as IStorableCompressible;

When you cast to the new combined interface, you can invoke any of the methods of
any of the interfaces it extends or combines. The following code invokes four meth-
ods on iscDoc (the IStorableCompressible object). Only one of these methods is
defined in IStorableCompressible, but all four are methods defined by interfaces that
IStorableCompressible extends or combines.

if (iscDoc != null)
{
 storCompressDoc.Read(); // Read() from IStorable
 storCompressDoc.Compress(); // Compress() from ICompressible
 storCompressDoc.LogSavedBytes(); // LogSavedBytes() from
 // ILoggedCompressible
 storCompressDoc.LogOriginalSize(); // LogOriginalSize() from
 // IStorableCompressible
}

Overriding Interface Methods
When you create an implementing class, you’re free to mark any or all of the meth-
ods from the interface as virtual. Derived classes can then override or provide new
implementations, just as they might with any other virtual instance method.

For example, a Document class might implement the IStorable interface and mark its
Read() and Write() methods as virtual. In an earlier example, we created a base class
Note and a derived class Document. While the Note class implements Read() and
Write() to save to a file, the Document class might implement Read() and Write() to
read from and write to a database.

Example 13-5 uses the Note and Document classes, but we’ve taken out the extra com-
plexity we added in the last few examples, to focus on overriding an interface imple-
mentation. Note implements the IStorable-required Read() method as a virtual
method, and Document overrides that implementation.

Notice that Note does not mark Write() as virtual. You’ll see the impli-
cations of this decision in the analysis that follows Example 13-5.

The complete listing is shown in Example 13-5.

Example 13-5. You can override an interface implementation in the same way that you would
override any virtual method of a parent class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Overriding Interface Methods | 281

namespace Example_13_5_ _ _ _Overriding_Interface_Implementation
{
 interface IStorable
 {
 void Read();
 void Write();
 }

 public class Note : IStorable
 {
 public Note(string s)
 {
 Console.WriteLine("Creating Note with: {0}", s);
 }

 // Note's version of Read() is virtual
 public virtual void Read()
 {
 Console.WriteLine("Note Read Method for IStorable");
 }

 // Note's version of Write() is NOT virtual!
 public void Write()
 {
 Console.WriteLine("Note Write Method for IStorable");
 }
 }

 public class Document : Note
 {
 public Document(string s) : base(s)
 {
 Console.WriteLine("Creating Document with: {0}", s);
 }

 // override the Read method
 public override void Read()
 {
 Console.WriteLine("Overriding the Read method
 for Document!");
 }

 // implement my own Write method
 public new void Write()
 {
 Console.WriteLine("Implementing a new Write method
 for Document!");
 }
 }

 class Tester

Example 13-5. You can override an interface implementation in the same way that you would
override any virtual method of a parent class (continued)

282 | Chapter 13: Interfaces

The output looks like this:

Creating Note with: Test Document
Creating Document with: Test Document
Overriding the Read method for Document!
Note Write Method for IStorable

Overriding the Read method for Document!
Note Write Method for IStorable

 {
 public void Run()
 {
 Note theNote = new Document("Test Document");

 theNote.Read();
 theNote.Write();

 Console.WriteLine("\n");

 IStorable isStorable = theNote as IStorable;
 if (isStorable != null)
 {
 isStorable.Read();
 isStorable.Write();
 }
 Console.WriteLine("\n");

 // This time create a reference to the derived type
 Document theDoc = new Document("Second Test");

 theDoc.Read();
 theDoc.Write();
 Console.WriteLine("\n");

 IStorable isStorable2 = theDoc as IStorable;
 if (isStorable != null)
 {
 isStorable2.Read();
 isStorable2.Write();
 }
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 13-5. You can override an interface implementation in the same way that you would
override any virtual method of a parent class (continued)

Overriding Interface Methods | 283

Creating Note with: Second Test
Creating Document with: Second Test
Overriding the Read method for Document!
Implementing a new Write method for Document!

Overriding the Read method for Document!
Note Write Method for IStorable

In Example 13-5, the IStorable interface is simplified for clarity’s sake:

interface IStorable
{
 void Read();
 void Write();
}

The Note class implements the IStorable interface:

public class Note : IStorable

The designer of Note has opted to make the Read(...) method virtual but not to
make the Write(...) method virtual:

public virtual void Read()
public void Write()

In a real-world application, you would almost certainly mark both meth-
ods as virtual, but we’ve differentiated them to demonstrate that the
developer is free to pick and choose which methods are made virtual.

The new class, Document, derives from Note:

public class Document : Note

It is not necessary for Document to override Read(), but it is free to do so and has done
so here:

public override void Read()

To illustrate the implications of marking an implementing method as virtual, the
Run() method calls the Read() and Write() methods in four ways:

• Through the Note class reference to a Document object

• Through an interface reference created from the Note class reference to the
Document object

• Through a Document object

• Through an interface reference created from the Document object

Virtual implementations of interface methods are polymorphic, just like the virtual
methods of classes.

284 | Chapter 13: Interfaces

When you call the nonpolymorphic Write() method on the IStorable interface cast
from the derived Document, you actually get the Note’s Write method, because Write()

is implemented in the base class and is nonvirtual.

To see polymorphism at work with interfaces, you’ll create a reference to the Note

class and initialize it with a new instance of the derived Document class:

Note theDocument = new Document("Test Document");

Invoke the Read and Write methods:

theDocument.Read();
theDocument.Write();

The output reveals that the (virtual) Read() method is called polymorphically—that is,
the Document class overrides the Note class’s Read(), and the nonvirtual Write() method
of the Note class is invoked because the Write() method was not made virtual.

Overriding the Read method for Document!
Note Write Method for IStorable

The overridden method of Read() is called because you’ve created a new Document

object:

Note theDocument = new Document("Test Document");

The nonvirtual Write method of Note is called because you’ve assigned theDocument

to a reference to a Note:

Note theDocument = new Document("Test Document");

To illustrate calling the methods through an interface that is created from the Note class
reference to the Document object, create an interface reference named isDocument. Use
the as operator to cast the Note (theDocument) to the IStorable reference:

IStorable isDocument = theDocument as IStorable;

Then invoke the Read() and Write() methods for theDocument through that interface:

if (isDocument != null)
{
 isDocument.Read();
 isDocument.Write();
}

The output is the same: once again, the virtual Read() method is polymorphic, and
the nonvirtual Write() method is not:

Overriding the Read method for Document
Note Write Method for IStorable

Next, create a second Document object, this time assigning its address to a reference to
a Document, rather than a reference to a Note. This will be used to illustrate the final
cases (a call through a Document object and a call through an interface created from
the Document object):

Document theDoc = new Document("Second Test");

Explicit Interface Implementation | 285

Call the methods on the Document object:

theDoc.Read();
theDoc.Write();

Again, the virtual Read() method is polymorphic and the nonvirtual Write() method
is not, but this time you get the Write() method for Document because you are calling
the method on a Document object:

Overriding the Read method for Document!
Implementing a new Write method for Document!

Finally, cast the Document object to an IStorable reference and call Read() and Write():

IStorable isDocument2 = theDoc as IStorable;
if (isDocument != null)
{
 isDocument2.Read();
 isDocument2.Write();
}

The Read() method is called polymorphically, but the Write() method for Note is
called because Note implements IStorable, and Write() is not polymorphic:

Overriding the Read method for Document!
Note Write Method for IStorable

Explicit Interface Implementation
In the implementation shown so far, the class that implements the interface
(Document) creates a member method with the same signature and return type as the
method detailed in the interface. It is not necessary to explicitly state that Document is
implementing IStorable, for example; the compiler understands this implicitly.

What happens, however, if the class implements two interfaces, each of which has a
method with the same signature? This might happen if the class implements interfaces
defined by two different organizations or even two different programmers. The next
example creates two interfaces: IStorable and ITalk. ITalk implements a Read()

method that reads a book aloud. Unfortunately, this conflicts with the Read() method
in IStorable.

Because both IStorable and ITalk have a Read() method, the implementing Document

class must use explicit implementation for at least one of the methods. With explicit
implementation, the implementing class (Document) explicitly identifies the interface
for the method:

void ITalk.Read()

Marking the Read() method as a member of the ITalk interface resolves the conflict
between the identical Read() methods. There are some additional aspects you should
keep in mind.

286 | Chapter 13: Interfaces

First, the explicit implementation method cannot have an access modifier:

void ITalk.Read()

This method is implicitly public. In fact, a method declared through explicit imple-
mentation cannot be declared with the abstract, virtual, override, or new keyword,
either.

Most importantly, you cannot access the explicitly implemented method through the
object itself. When you write:

theDoc.Read();

the compiler assumes you mean the implicitly implemented interface for IStorable.
The only way to access an explicitly implemented interface is through a cast to the
interface:

ITalk itDoc = theDoc as ITalk;
if (itDoc != null)
{
 itDoc.Read();
}

Explicit implementation is demonstrated in Example 13-6. Note that there is no need
to use explicit implementation with the other method of ITalk:

public void Talk()

Because there is no conflict, this can be declared as usual.

Example 13-6. Explicit implementation allows you to avoid conflicts when two interfaces have
methods with the same name

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_13_6_ _ _ _Explicit_Interfaces
{
 interface IStorable
 {
 void Read();
 void Write();
 }

 interface ITalk
 {
 void Talk();
 void Read();
 }

 // Modify Document to also implement ITalk
 public class Document : IStorable, ITalk
 {

Explicit Interface Implementation | 287

 // the document constructor
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);
 }

 // Implicit implementation
 public virtual void Read()
 {
 Console.WriteLine("Document Read Method for IStorable");
 }

 public void Write()
 {
 Console.WriteLine("Document Write Method for IStorable");
 }

 // Explicit implementation
 void ITalk.Read()
 {
 Console.WriteLine("Implementing ITalk.Read");
 }

 public void Talk()
 {
 Console.WriteLine("Implementing ITalk.Talk");
 }
 }

 class Tester
 {
 public void Run()
 {
 // Create a Document object
 Document theDoc = new Document("Test Document");
 IStorable isDoc = theDoc as IStorable;
 if (isDoc != null)
 {
 isDoc.Read();
 }

 // Cast to an ITalk interface
 ITalk itDoc = theDoc as ITalk;
 if (itDoc != null)
 {
 itDoc.Read();
 }

 theDoc.Read();
 theDoc.Talk();
 }

Example 13-6. Explicit implementation allows you to avoid conflicts when two interfaces have
methods with the same name (continued)

288 | Chapter 13: Interfaces

The output looks like this:

Creating document with: Test Document
Document Read Method for IStorable
Implementing ITalk.Read
Document Read Method for IStorable
Implementing ITalk.Talk

The first thing the program does is create an IStorable reference to a Document. Then
it invokes the Read() method of IStorable:

IStorable isDoc = theDoc as IStorable;
if (isDoc != null)
{
 isDoc.Read();
}

Then you cast the document to an ITalk interface, and invoke the Read() method of
ITalk:

ITalk itDoc = theDoc as ITalk;
if (itDoc != null)
{
 itDoc.Read();
}

The output shows that both of these calls work as expected.

The next thing you do is to call the Read() and Talk() methods directly on the
Document:

theDoc.Read();
theDoc.Talk();

As you can see in the output, the Read() method defaults to the version from
IStorable, because that version is implicit. The Talk() method is the version from
ITalk, because that’s the only interface here with a Talk() method.

Summary
• An interface is a contract through which a class guarantees that it will imple-

ment certain methods, provide certain properties and indexers, and support cer-
tain events, all of which are specified in the interface definition.

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 13-6. Explicit implementation allows you to avoid conflicts when two interfaces have
methods with the same name (continued)

Summary | 289

• You cannot create an instance of an interface. To access the interface methods,
you need to create an instance of a class that implements that interface.

• You declare an interface much like you would a class, but using the keyword
interface. You can apply access modifiers to the interface, as you would with a
class.

• In the interface definition, the method declarations cannot have access modifiers.

• To implement an interface on a class, you use the colon operator, followed by
the name of the interface, similar to the syntax for inheritance.

• Classes can derive from no more than one class, but can implement any number
of interfaces. If a class has a base class and one or more interfaces, the base class
must be listed first (after the colon). Separate the base class and interface names
by commas.

• When you define a class that implements an interface, you must then imple-
ment all the required members of that interface.

• In situations where you don’t know what type of object you have, and you know
only that the object implements a specific interface, you can create a reference to
the interface and assign the object to that reference, providing you with access to
the implemented interface methods.

• You can use the is operator to determine whether an object derives from a base
class or implements an interface. The is operator returns a Boolean value indi-
cating whether the cast is valid, but it does not perform the cast.

• The as operator attempts to cast a reference to a base type or an interface, and
returns null if the cast is not valid.

• You can extend an interface to add new methods or members. In the new inter-
face definition, use the colon operator followed by the name of the original inter-
face. This is very similar to derivation in classes.

• The extended interface subsumes the original interface, so any class that imple-
ments the extended interface must also implement the original interface as well.

• A class that implements an interface may mark any of the interface methods as
virtual. These methods may then be overridden by derived classes.

• When a class implements two or more interfaces with methods that have the
same name, you resolve the conflict by prefixing the method name with the
name of the interface and the dot operator (for example, IStorable.Write()). If
you do this, you cannot specify an access modifier, as the method is implicitly
public.

You saw in this chapter how interfaces encourage polymorphism, allowing you to
dictate the methods your classes implement, while still providing flexibility in your
designs. They’re admittedly somewhat tricky to understand at first, but as you get
more practice with them, you’ll get more comfortable with them. In this chapter, you
used arrays to demonstrate the polymorphic features of interfaces, and that’s a pretty

290 | Chapter 13: Interfaces

common use. However, the array isn’t the only collection class in C#. In fact,
although arrays are simplest to understand, which is why we introduced them first,
in many ways they’re the most limited of the collection classes. In the next chapter,
you’ll learn about the other collection classes, and how you can use them with gener-
ics to get even more flexibility.

Test Your Knowledge: Quiz

Question 13-1. What is the difference between an interface and a class that imple-
ments an interface?

Question 13-2. What is the difference between an interface and an abstract base class?

Question 13-3. How do you create an instance of an interface?

Question 13-4. How do you indicate that class MyClass derives from class MyBase and
implements the interfaces ISuppose and IDo?

Question 13-5. What two operators can tell you whether an object’s class implements
an interface?

Question 13-6. What is the difference between the is and as operators?

Question 13-7. What does it mean to “extend” an interface?

Question 13-8. What is the syntax for extending an interface?

Question 13-9. What does it mean to override an interface implementation?

Question 13-10. What is explicit interface implementation and why would you use it?

Test Your Knowledge: Exercises

Exercise 13-1. Define an interface IConvertible that indicates that the class can con-
vert a block of code to C# or VB. The interface should have two methods:
ConvertToCSharp and ConvertToVB. Each method should take a string and return a
string.

Test Your Knowledge: Exercises | 291

Exercise 13-2. Implement that interface and test it by creating a class ProgramHelper

that implements IConvertible. You don’t have to write methods to convert the
string; just use simple string messages to simulate the conversion. Test your new
class with a string of fake code to make sure it works.

Exercise 13-3. Extend the IConvertible interface by creating a new interface,
ICodeChecker. The new interface should implement one new method,
CodeCheckSyntax, which takes two strings: the string to check and the language to
use. The method should return a bool. Revise the ProgramHelper class from
Exercise 13-2 to use the new interface.

Exercise 13-4. Demonstrate the use of is and as. Create a new class,
ProgramConverter, which implements IConvertible. ProgramConverter should imple-
ment the ConvertToCSharp() and ConvertToVB() methods. Revise ProgramHelper so
that it derives from ProgramConverter and implements ICodeChecker. Test your class
by creating an array of ProgramConverter objects, some of which are
ProgramConverters and some of which are ProgramHelpers. Then call the conversion
methods and the code check methods on each item in the array to test which ones
implement ICodeChecker and which ones do not.

292

CHAPTER 14

Generics and Collections

You saw in Chapter 10 that arrays are useful for when you have a group of objects of
the same type, and you need to treat them as a group—as a collection. Arrays are the
simplest collection in C#, and they’re the one that you learn when you’re starting
out, to get you accustomed to thinking about collections. However, arrays are proba-
bly the least flexible of the standard collections used in C#, because you have to
define the size of an array when you create it. C# actually has a bunch of collection
classes, but the five most commonly used are:

• Array

• List

• Stack

• Queue

• Dictionary

This chapter will introduce each of the latter four collections, and will show how the
C# feature called generics is used to make these collections type-safe—and why type
safety is important.

You can also create classes that act like collections, and you can provide support for
your collection classes so that they support some or all of the behavior expected of
collections, such as the ability to be used in a foreach loop or to access their mem-
bers using an indexer:

Employee joe = MyCompany[EmployeeID]

Generics
Before generics, all the collection classes (then just ArrayList, Stack, and Queue) were
defined to hold objects of type Object (the root class). Thus, you could add integers
and strings to the same collection, and when you took items out of the collection,
you had to cast them to their “real” type. This was ugly, and it was error-prone (the
compiler could not tell whether you had a collection of integers and added a string).

Creating Your Own Collections | 293

With generics, the designer of the class (the person who creates the Stack class) can
say, “This class will hold only one type, and that type will be defined by the devel-
oper who makes an instance of this class.”

The user of the generic Stack class (that’s you) defines an instance of the Stack and
the type it will hold. The compiler can now enforce that only objects of the desig-
nated type are stored in the collection—that’s type safety. That’s important because,
as you’ve seen, you’ll often want to use a collection polymorphically, and if there’s a
string lurking in what you think is a collection of ints, you may be surprised when
you try to divide each of them by 2.

The designer adds a type placeholder (technically called a type parameter), which is
usually represented by the letter T in angle brackets:

class Stack<T>

The user of the Stack class puts in the actual type when instantiating the class, like
this:

Stack<Employee> = new Stack<Employee>

You can create your own generic classes, but that’s an advanced topic
we won’t get into here.

Collection Interfaces
The .NET Framework provides a number of interfaces, such as IEnumerable and
ICollection, which the designer of a collection must implement to provide full col-
lection semantics. For example, ICollection allows your collection to be enumer-
ated in a foreach loop. You’ll see how these work in a little bit, when we explain the
C# collection types. First, though, we’re going to show you how to make your own
collections, so you can understand how they work.

Creating Your Own Collections
The goal in creating your own collections is to make them as similar to the standard
.NET collections as possible. This reduces confusion, and makes for easier-to-use
classes and easier-to-maintain code.

Creating Indexers
One feature you should provide is to allow users of your collection to add to or
extract from the collection with an indexer, just as you would do with an array.

For example, suppose you create a ListBox control named myListBox that contains a
list of strings stored in a one-dimensional array, a private member variable named

294 | Chapter 14: Generics and Collections

myStrings. A ListBox control contains member properties and methods in addition to
its array of strings, so the ListBox itself is not an array. However, it would be conve-
nient to be able to access the ListBox array with an index, just as though the ListBox

itself were an array.* For example, such a property would let you do things like this:

string theFirstString = myListBox[0];
string theLastString = myListBox[Length-1];

An indexer is a C# construct that allows you to treat a class as though it were an
array. In the preceding example, you are treating the ListBox as though it were an array
of strings, even though it is more than that. An indexer is a special kind of property,
but like all properties, it includes get and set accessors to specify its behavior.

You declare an indexer property within a class using the following syntax:

type this [type argument]{get; set;}

For example:

public string this[int index]
{
 get {...};
 set {...};
}

The return type determines the type of object that will be returned by the indexer,
and the type argument specifies what kind of argument will be used to index into the
collection that contains the target objects. Although it is common to use integers as
index values, you can index a collection on other types as well, including strings.
You can even provide an indexer with multiple parameters to create a multidimen-
sional array.

The this keyword is a reference to the object in which the indexer appears. As with a
normal property, you also must define get and set accessors, which determine how
the requested object is retrieved from or assigned to its collection.

Example 14-1 declares a ListBox control (ListBoxTest) that contains a simple array
(myStrings) and a simple indexer for accessing its contents.

* The actual ListBox control provided by both Windows Forms and ASP.NET has a collection called Items
that is a collection, and it is the Items collection that implements the indexer.

Example 14-1. Creating a simple indexer is very similar to creating a property

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_1_ _ _ _Simple_Indexer
{
 // a simplified ListBox control

Creating Your Own Collections | 295

 public class ListBoxTest
 {
 private string[] strings;
 private int ctr = 0;

 // initialize the ListBox with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the ListBox
 public void Add(string theString)
 {
 if (ctr >= strings.Length)
 {
 // handle bad index
 }
 else
 strings[ctr++] = theString;
 }

 // allow array-like access

 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }
 set
 {
 // add new items only through the Add method
 if (index >= ctr)
 {
 // handle error
 }
 else
 {
 strings[index] = value;
 }

Example 14-1. Creating a simple indexer is very similar to creating a property (continued)

296 | Chapter 14: Generics and Collections

The output looks like this:

lbt[0]: Hello
lbt[1]: Universe
lbt[2]: Proust
lbt[3]: Faulkner
lbt[4]: Mann
lbt[5]: Hugo

To keep Example 14-1 simple, we’ve stripped the ListBox control down to the few fea-
tures we care about. The listing ignores everything else a ListBox can do, and focuses
only on the list of strings the ListBox maintains, and methods for manipulating them.
In a real application, of course, these are a small fraction of the total methods of a
ListBox, whose principal job is to display the strings and enable user choice.

 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }
 }

 public class Tester
 {
 static void Main()
 {
 // create a new ListBox and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Proust");
 lbt.Add("Faulkner");
 lbt.Add("Mann");
 lbt.Add("Hugo");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;

 // access all the strings
 for (int i = 0; i < lbt.GetNumEntries(); i++)
 {
 Console.WriteLine("lbt[{0}]: {1}", i, lbt[i]);
 }
 }
 }
}

Example 14-1. Creating a simple indexer is very similar to creating a property (continued)

Creating Your Own Collections | 297

The first things to notice in this example are the two private members:

private string[] strings;
private int ctr = 0;

The ListBox maintains a simple array of strings, cleverly named strings. The mem-
ber variable ctr will keep track of how many strings have been added to this array.
Initialize the array in the constructor with the statement:

strings = new string[256];

The Add() method of ListBoxTest does nothing more than append a new string to its
internal array (strings), though a more complex object might write the strings to a
database or other more complex data structure. The Add() method also increments
the counter, so the class has a reliable count of how many strings it holds.

The key item in ListBoxTest is the indexer. An indexer uses the this keyword:

public string this[int index]

The syntax of the indexer is very similar to that for properties. There is either a get

accessor, a set accessor, or both. In the case shown, the get accessor endeavors to
implement rudimentary bounds checking, and assuming the index requested is
acceptable, it returns the value requested:

get
{
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
}

How you handle a bad index is up to you. For the purposes of this example, we’ll
assume there aren’t any. However, you’ll see how to deal with these sorts of errors in
Chapter 16.

The set accessor checks to make sure that the index you are setting already has a
value in the ListBox. If not, it treats the set as an error. The way this class is set up,
you can add new elements only with the Add() method, so it’s illegal to try to add
one with set. The set accessor takes advantage of the implicit parameter value that
represents whatever is assigned using the index operator:

set
{
 if (index >= ctr)
 {
 // handle error
 }
 else
 {
 strings[index] = value;
 }
}

298 | Chapter 14: Generics and Collections

Thus, if you write:

lbt[5] = "Hello World"

the compiler will call the indexer set accessor on your object and pass in the string
Hello World as an implicit parameter named value.

Indexers and Assignment
In Example 14-1, you cannot assign to an index that does not have a value. Thus, if
you write:

lbt[10] = "wow!";

you will trigger the error handler in the set accessor, which will note that the index
you’ve passed in (10) is larger than the counter (6).

This code is kept simple, and so we don’t handle any errors, as we mentioned. There
are any number of other checks you’d want to make on the value passed in (for
example, checking that you were not passed a negative index and that it does not
exceed the size of the underlying strings[] array).

In Main(), you create an instance of the ListBoxTest class named lbt and pass in two
strings as parameters:

ListBoxTest lbt = new ListBoxTest("Hello", "World");

Then, call Add() to add four more strings:

// add a few strings
lbt.Add("Proust");
lbt.Add("Faulkner");
lbt.Add("Mann");
lbt.Add("Hugo");

Before examining the values, you modify the second value (at index 1):

string subst = "Universe";
lbt[1] = subst;

Finally, you display each value with a loop:

for (int i = 0;i<lbt.GetNumEntries();i++)
{
 Console.WriteLine("lbt[{0}]: {1}",i,lbt[i]);
}

Indexing on Other Values
C# does not require that you always use an integer value as the index to a collec-
tion. Using integers is simply the most common method, because that makes it eas-
ier to iterate over the collection with a for loop. When you create a custom
collection class and create your indexer, you are free to create indexers that index on
strings and other types. In fact, you can overload the index value so that a given

Creating Your Own Collections | 299

collection can be indexed, for example, by an integer value and also by a string value,
depending on the needs of the client.

Example 14-2 illustrates a string index. The indexer calls FindString(), which is a
helper method that returns a record based on the value of the string provided. Notice
that the overloaded indexer and the indexer from Example 14-1 are able to coexist.

Example 14-2. Overloading an index allows you the flexibility of indexing with an integer, or some
other type

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_2_ _ _ _Overloaded_Indexer
{
 // a simplified ListBox control
 public class ListBoxTest
 {
 private string[] strings;
 private int ctr = 0;

 // initialize the ListBox with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the ListBox
 public void Add(string theString)
 {
 if (ctr >= strings.Length)
 {
 // handle bad index
 }
 else
 {
 strings[ctr++] = theString;
 }
 }

 // allow array-like access
 public string this[int index]
 {

300 | Chapter 14: Generics and Collections

 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }
 set
 {
 // add only through the add method
 if (index >= ctr)
 {
 // handle error
 }
 else
 {
 strings[index] = value;
 }
 }
 }

 private int FindString(string searchString)
 {
 for (int i = 0; i < strings.Length; i++)
 {
 if (strings[i].StartsWith(searchString))
 {
 return i;
 }
 }
 return -1;
 }

 // index on string
 public string this[string index]
 {
 get
 {
 if (index.Length == 0)
 {
 // handle bad index
 }
 return this[FindString(index)];
 }
 set
 {
 // no need to check the index here because
 // find string will handle a bad index value
 strings[FindString(index)] = value;
 }
 }

Example 14-2. Overloading an index allows you the flexibility of indexing with an integer, or some
other type (continued)

Creating Your Own Collections | 301

The output looks like this:

lbt[0]: GoodBye
lbt[1]: Universe
lbt[2]: Proust
lbt[3]: Faulkner
lbt[4]: Mann
lbt[5]: Hugo

Example 14-2 is identical to Example 14-1 except for the addition of an overloaded
indexer, which can match a string, and the method FindString, created to support
that index.

The FindString method simply iterates through the strings held in myStrings until it
finds a string that starts with the target string used in the index. We’re using a
method of the string class called StartsWith(), which, as you might imagine,

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }
 }

 public class Tester
 {
 static void Main()
 {
 // create a new ListBox and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Proust");
 lbt.Add("Faulkner");
 lbt.Add("Mann");
 lbt.Add("Hugo");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;
 lbt["Hel"] = "GoodBye";
 // lbt["xyz"] = "oops";

 // access all the strings
 for (int i = 0; i < lbt.GetNumEntries(); i++)
 {
 Console.WriteLine("lbt[{0}]: {1}", i, lbt[i]);
 }
 }
 }
}

Example 14-2. Overloading an index allows you the flexibility of indexing with an integer, or some
other type (continued)

302 | Chapter 14: Generics and Collections

indicates whether a string starts with a specified substring. You’ll learn more about
the string methods in Chapter 15. If found, the FindString method returns the index
of that string; otherwise, it returns the value -1. If more than one entry meets the cri-
terion, FindString returns the matching entry with the lowest numerical index; that
is, the one that comes first.

You can see in Main() that the user passes in a string segment to the index, just as
with an integer:

lbt["Hel"] = "GoodBye";

This calls the overloaded index, which does some rudimentary error-checking (in
this case, making sure the string passed in has at least one letter) and then passes the
value (Hel) to FindString. It gets back a numerical index and uses that index to index
into myStrings:

return this[FindString(index)];

The set value works in the same way:

myStrings[FindString(index)] = value;

The careful reader will note that if the string does not match, a value
of -1 is returned, which is then used as an index into myStrings. This
action then generates an exception (System.NullReferenceException),
as you can see by uncommenting the following line in Main():

lbt["xyz"] = "oops";

Again, this is an issue that you would handle in real-world code. We
haven’t explained exception handling yet (that’s in Chapter 16), so for
the moment you don’t need to worry about it.

Generic Collection Interfaces
The .NET Framework provides standard interfaces for enumerating and comparing
collections. These standard interfaces are type-safe, but the type is generic; that is,
you can declare an ICollection of any type by substituting the actual type (int,
string, or Employee) for the generic type in the interface declaration (<T>).

For example, if you were creating an interface called IStorable, but you didn’t know
what kinds of objects would be stored, you’d declare the interface like this:

interface IStorable<T>
{
 // method declarations here
}

Later on, if you wanted to create a class Document that implemented IStorable to
store strings, you’d do it like this:

public class Document : IStorable<String>

replacing T with the type you want to apply the interface to (in this case, string).

Creating Your Own Collections | 303

Shockingly, perhaps, that is all there is to generics. The creator of the
class says, in essence, “This applies to some type <T> to be named later
(when the interface or class is used) and the programmer using the
interface or collection type replaces <T> with the actual type (for exam-
ple, int, string, Employee, and so on).”

The key generic collection interfaces are listed in Table 14-1. C# also provides non-
generic interfaces (ICollection, IEnumerator—without the <T> after them), but we
will focus on the generic collections, which should be preferred whenever possible as
they are type-safe.

The IEnumerable<T> Interface
You can support the foreach statement in ListBoxTest by implementing the
IEnumerable<T> interface.

You read this as “IEnumerable of <T>” or “the generic interface
IEnumerable.”

IEnumerable has only one method, GetEnumerator(), whose job is to return an imple-
mentation of IEnumerator<T>. The C# language provides special help in creating the
enumerator, using the new keyword yield, as demonstrated in Example 14-3 and
explained shortly.

Table 14-1. Generic collection interfaces

Interface Purpose

ICollection<T> Base interface for generic collections

IEnumerator<T>
IEnumerable<T>

Required for collections that will be enumerated with foreach

IComparer<T>
IComparable<T>

Required for collections that will be sorted

IList<T> Used by indexable collections (see “Generic Lists: List<T>” later in this chapter)

IDictionary<K,V> Used for key/value-based collections (see “Dictionaries” later in this chapter)

Example 14-3. Making a ListBox an enumerable class requires implementing the IEnumerable<T>
interface

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_3_ _ _ _Enumerable_Class
{

304 | Chapter 14: Generics and Collections

 public class ListBoxTest : IEnumerable<String>
 {
 private string[] strings;
 private int ctr = 0;

 // Enumerable classes return an enumerator
 public IEnumerator<string> GetEnumerator()
 {
 foreach (string s in strings)
 {
 yield return s;
 }
 }
 // required to fulfill IEnumerable
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 throw new NotImplementedException();
 }

 // initialize the ListBox with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the ListBox
 public void Add(string theString)
 {
 strings[ctr] = theString;
 ctr++;
 }

 // allow array-like access
 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }

Example 14-3. Making a ListBox an enumerable class requires implementing the IEnumerable<T>
interface (continued)

Creating Your Own Collections | 305

The output looks like this:

Value: Hello
Value: Universe
Value: Proust

 set
 {
 strings[index] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }

 }

 public class Tester
 {
 static void Main()
 {
 // create a new ListBox and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Proust");
 lbt.Add("Faulkner");
 lbt.Add("Mann");
 lbt.Add("Hugo");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;

 // access all the strings
 foreach (string s in lbt)
 {
 if (s == null)
 {
 break;
 }

 Console.WriteLine("Value: {0}", s);
 }
 }
 }
}

Example 14-3. Making a ListBox an enumerable class requires implementing the IEnumerable<T>
interface (continued)

306 | Chapter 14: Generics and Collections

Value: Faulkner
Value: Mann
Value: Hugo

The program begins in Main(), creating a new ListBoxTest object and passing two
strings to the constructor. When the object is created, an array of Strings is created
with enough room for 256 strings. Four more strings are added using the Add

method, and the second string is updated, just as in the previous example.

The big change in this version of the program is that a foreach loop is called, retriev-
ing each string in the ListBox. The foreach loop looks very simple, and it’s supposed
to, but it’s actually much more complicated behind the scenes. For a foreach loop to
work properly, it needs a reference to an IEnumerator<T> (which is, remember, not an
object itself, but an object that implements IEnumerator<T>). However, you don’t
need to worry about how to create an enumerator, because of the IEnumerable<T>

interface. IEnumerable<T> has just one method, GetEnumerator(), which returns a ref-
erence to an IEnumerator<T>. (Remember that IEnumerable and IEnumerator are not
the same things.)

The foreach loop automatically uses the IEnumerable<T> interface, invoking
GetEnumerator().

The GetEnumerator method near the top of the class is declared to return an
IEnumerator of type string:

public IEnumerator<string> GetEnumerator()

The implementation iterates through the array of strings, yielding each in turn:

foreach (string s in strings)
{
 yield return s;
}

It doesn’t look like this method returns an IEnumerator, but it does, and that’s
because of yield. The keyword yield is used here explicitly to return a value to the
enumerator object. By using the yield keyword, all the bookkeeping for keeping
track of which element is next, resetting the iterator, and so forth is provided for you
by the framework, so you don’t need to worry about it.

The method we just showed you is for the generic IEnumerator<T> interface. Note
that our implementation also includes an implementation of the nongeneric
GetEnumerator() method. This is required by the definition of the generic
IEnumerable<T>. Even though it’s required to be there, you won’t use it, and so it’s
typically defined to just throw an exception, since you don’t expect to call it:

// required to fulfill IEnumerable
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
 throw new NotImplementedException();
}

Framework Generic Collections | 307

Again, we’ll explain exceptions in Chapter 16, but this is basically just a way of say-
ing, “Don’t use this method. If you do use this method, something has gone wrong.”

The difference between Examples 14-3 and 14-2 is just the foreach loop, but that
small difference means that your ListBoxTest class in Example 14-3 needs to imple-
ment IEnumerable<T>, which means it has to implement both the generic and the
nongeneric versions of GetEnumerator().

As you can see, you need a lot of “plumbing” to make foreach work, and it may not
seem like it’s worth it. The framework collections, though, all do support foreach,
and all that plumbing is hidden from you, making it appear like a very simple loop. If
you want your collection to work like the framework collections (and you do, right?),
you’ll need to support foreach as well. Fortunately, the IEnumerable<T> interface and
the yield keyword do a lot of the work for you, and you can use them without know-
ing exactly what they do. (If you want to find out, though, you can check out the
Microsoft Developer Network at http://msdn2.microsoft.com for more detail than you
ever wanted.)

Framework Generic Collections
We spent time explaining what generic collections are and how they work so that
you’d have an appreciation for how they’re created and what they can do. Most of
the time, you won’t need to create your own collection, because the .NET Frame-
work provides four very useful generic collections, as we discussed earlier (List,
Stack, Queue, and Dictionary). We describe each in turn in the next few sections.

Generic Lists: List<T>
The classic problem with the Array type is its fixed size. If you do not know in advance
how many objects an array will hold, you run the risk of declaring either too small an
array (and running out of room) or too large an array (and wasting memory).

The generic List class is, essentially, an array whose size is dynamically increased as
required. Lists provide a number of useful methods and properties for their manipu-
lation. Some of the most important are shown in Table 14-2.

Table 14-2. List properties and methods

Method or property Purpose

Capacity Property to get or set the number of elements the List can contain; this value is increased
automatically if count exceeds capacity; you might set this value to reduce the number of
reallocations, and you may call Trim() to reduce this value to the actual Count

Count Property to get the number of elements currently in the list

Item Property that .NET requires for the List class as an indexer; you’ll never see this in C#; you
can use the standard [] syntax instead

308 | Chapter 14: Generics and Collections

When you create a List, you do not define how many objects it will contain. You
add to the List using the Add() method, and the List takes care of its own internal
bookkeeping, as illustrated in Example 14-4.

Add() Public method to add an object to the List

AddRange() Public method that adds the elements of an ICollection to the end of the List

BinarySearch() Overloaded public method that uses a binary search to locate a specific element in a sorted
List

Clear() Removes all elements from the List

Contains() Determines whether an element is in the List

CopyTo() Overloaded public method that copies aList to a one-dimensional array; commonly used to
convert a List to an array for methods that accept only arrays, not collections

Exists() Determines whether the List contains elements that meet the specified criteria

Find() Returns the first List element that meets specified criteria

FindAll() Returns all List elements that meet specified criteria

GetEnumerator() Overloaded public method that returns an enumerator to iterate through a List

GetRange() Copies a range of elements to a new List

IndexOf() Overloaded public method that returns the index of the first occurrence of a value

Insert() Inserts an element into a List

InsertRange() Inserts the elements of a collection into the List

LastIndexOf() Overloaded public method that returns the index of the last occurrence of a List element
that meets specified criteria

Remove() Removes the first occurrence of a specific object

RemoveAt() Removes the element at the specified index

RemoveRange() Removes a range of elements

Reverse() Reverses the order of elements in the List

Sort() Sorts the List

ToArray() Copies the elements of the List to a new array; commonly used to convert a List to an
array for methods that accept only arrays, not collections

TrimExcess() Sets the capacity to the actual number of elements in the List

Example 14-4. A List offers all the functionality of an array, but without the need to know howmany
elements it will hold when it’s created

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_4_ _ _ _List
{

Table 14-2. List properties and methods (continued)

Method or property Purpose

Framework Generic Collections | 309

 // a simple class to store in the List
 public class Employee
 {
 private int empID;

 public Employee(int empID) //constructor
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 }

 public class Tester
 {
 static void Main()
 {

 List<Employee> empList = new List<Employee>();
 List<int> intList = new List<int>();

 // populate the Lists
 for (int i = 0; i < 5; i++)
 {
 intList.Add(i * 5);
 empList.Add(new Employee(i + 100));
 }

 // print the contents of the int List
 for (int i = 0; i < intList.Count; i++)
 {
 Console.Write("{0} ", intList[i].ToString());
 }

 Console.WriteLine("\n");

 // print the contents of the Employee List
 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("{0} ", empList[i].ToString());
 }

 Console.WriteLine("\n");
 Console.WriteLine("empList.Capacity: {0}", empList.Capacity);
 }
 }
}

Example 14-4. A List offers all the functionality of an array, but without the need to know howmany
elements it will hold when it’s created (continued)

310 | Chapter 14: Generics and Collections

The output looks like this:

0 5 10 15 20
100 101 102 103 104
empList.Capacity: 8

The List class has a property, Capacity, which is the number of elements the List is
capable of storing; however, this capacity is automatically increased each time you
reach the limit.

The Add() method takes care of a lot of things behind the scenes here—it increases
the capacity of the List (if necessary), inserts the new item at the end of the list, and
provides it with an appropriate index. You can’t do that with an array.

Sorting objects with the generic list

The List implements the Sort() method. You can sort any List that contains objects
that implement IComparable. All the built-in types do implement this interface, so
you can sort a List<integer> or a List<string>.

On the other hand, if you want to sort a List<Employee>, you must change the
Employee class to implement IComparable:

public class Employee : IComparable<Employee>

As part of the IComparable interface contract, the Employee object must provide a
CompareTo() method:

public int CompareTo(Employee rhs)
{
 return this.empID.CompareTo(rhs.empID);
}

The CompareTo() method takes an Employee as a parameter. You know this is correct
because the interface is generic, which means that the List was specified with the
Employee class when you created it, so you can assume type safety. The Employee

object must compare itself to the second Employee object that was passed in (called
rhs) and return -1 if it is smaller than the second Employee, 1 if it is greater, and 0 if
the two Employee objects are equal to each other.

It is up to the designer of the Employee class to determine what smaller than, greater
than, and equal to mean for an employee. In this example, you’ll compare the
Employee objects based on the value of their empId members. The empId member is an
int, and since int is a built-in type, it already has its own default CompareTo()

method, which will do an integer comparison of the two values. So, the CompareTo()

method for Employee just calls the CompareTo() method of EmpID, which returns an
int property. You let the int CompareTo() do the work of the comparison, and then
return the result.

To see whether the sort is working, you’ll add integers and Employee instances to
their respective lists with random values. (See the sidebar about the Random class.)

Framework Generic Collections | 311

Example 14-5 creates an integer list and an Employee list, populates them both with
random numbers, and prints their values. It then sorts both lists and prints the new
values.

The Random Class
To create random values you instantiate an object of class Random. That’s pretty simple
to do:

Random r = new Random();

To cause your Random instance to generate random values, you call its Next() method.
One version of the Next() method allows you to specify the largest random number
you want. For example, to generate a random number between 0 and 99, you pass in
the value 100, like this:

Random r = new Random();
r.Next(100);

Random number generators do not, technically, create true random numbers; they cre-
ate what computer scientists call pseudorandom numbers. They’re not completely ran-
dom because a mathematical process is used to create them, but they’re more than
random enough for this example.

Example 14-5. The List class includes methods that make sorting easy

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_5_ _ _ _Sorting_a_List
{
 // a simple class to store in the list
 public class Employee : IComparable<Employee>
 {
 private int empID;

 public Employee(int empID)
 {
 this.empID = empID;
 }

 public override string ToString()
 {
 return empID.ToString();
 }

 public bool Equals(Employee other)
 {

312 | Chapter 14: Generics and Collections

 if (this.empID == other.empID)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 // Comparer delegates back to Employee
 // Employee uses the integer's default
 // CompareTo method

 public int CompareTo(Employee rhs)
 {
 return this.empID.CompareTo(rhs.empID);
 }

 }
 public class Tester
 {
 static void Main()
 {

 List<Employee> empList = new List<Employee>();
 List<Int32> intList = new List<Int32>();

 // generate random numbers for both the
 // integers and the employee IDs
 Random r = new Random();

 // populate the list
 for (int i = 0; i < 5; i++)
 {
 // add a random employee id
 empList.Add(new Employee(r.Next(10) + 100));

 // add a random integer
 intList.Add(r.Next(10));
 }

 // display all the contents of the int list
 Console.WriteLine("List<int> before sorting:");
 for (int i = 0; i < intList.Count; i++)
 {
 Console.Write("{0} ", intList[i].ToString());
 }
 Console.WriteLine("\n");

 // display all the contents of the Employee list

Example 14-5. The List class includes methods that make sorting easy (continued)

Framework Generic Collections | 313

The output looks something like this:

List<int> before sorting:
6 9 8 3 6
List<Employee> before sorting:
108 103 107 102 109
List<int>after sorting:
3 6 6 8 9
List<Employee>after sorting:
102 103 107 108 109

The output shows that the lists of integers and Employees were generated with random
numbers—which means the numbers will be different each time you run the program.
When sorted, the display shows that the values have been ordered properly.

 Console.WriteLine("List<Employee> before sorting:");
 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("{0} ", empList[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the int list
 Console.WriteLine("List<int>after sorting:");
 intList.Sort();
 for (int i = 0; i < intList.Count; i++)
 {
 Console.Write("{0} ", intList[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the Employee list
 Console.WriteLine("List<Employee>after sorting:");

 //Employee.EmployeeComparer c = Employee.GetComparer();
 //empList.Sort(c);

 empList.Sort();

 // display all the contents of the Employee list
 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("{0} ", empList[i].ToString());
 }
 Console.WriteLine("\n");

 }
 }
}

Example 14-5. The List class includes methods that make sorting easy (continued)

314 | Chapter 14: Generics and Collections

Controlling sorting by implementing IComparer<T>

When you call Sort() on the List in Example 14-5, the default implementation of
IComparer is called behind the scenes, which uses an algorithm called “Quick Sort” to
call the IComparable implementation of CompareTo() on each element in the List.

You are free, however, to create your own implementation of IComparer, which you
might want to do if you need control over how the sort ordering is defined. In the
next example, you will add a second field to Employee: yearsOfSvc. You want to be
able to sort the Employee objects in the List either by ID or by years of service, and
you want to make that decision at runtime.

To accomplish this, you will create a custom implementation of IComparer, which you
will pass to the Sort()method of List. You’ll implement a new class, EmployeeComparer,
which will implement IComparer and will know how to sort Employees.

To simplify the programmer’s ability to choose how a given set of Employees are
sorted, you’ll add a property, WhichComparison, of type Employee.EmployeeComparer.

ComparisonType (an enumeration):

public
Employee.EmployeeComparer.ComparisonType WhichComparison
{
 get { return whichComparison; }
 set { whichComparison = value; }
}

The point to this is that when you create an EmployeeComparer, you can pass it
WhichComparison, which will be of type ComparisonType. ComparisonType is an enumer-
ation with one of two values, empID or yearsOfSvc (indicating that you want to sort by
employee ID or years of service, respectively):

public enum ComparisonType
{
 EmpID,
 YearsOfService
};

It may seem convoluted, but later on, if you decide to add another property to the
Employee class—lastName, for example—and you want to sort by the new lastName

property, you can very easily add LastName to the enumeration (note the capitaliza-
tion), making the comparison much easier.

Before invoking Sort(), you will create an instance of EmployeeComparer and set its
ComparisonType property:

Employee.EmployeeComparer c = Employee.GetComparer();
c.WhichComparison=Employee.EmployeeComparer.ComparisonType.EmpID;
empList.Sort(c);

Framework Generic Collections | 315

The EmployeeComparer class must provide a Compare() method. When you invoke
Sort(), the List will call that Compare() method on the EmployeeComparer, which in
turn will delegate the comparison to the Employee.CompareTo() method, passing in its
WhichComparison property:

public int Compare(Employee lhs, Employee rhs)
{
 return lhs.CompareTo(rhs, WhichComparison);
}

Your Employee object must implement a custom version of CompareTo(). This custom
method needs to accept the Employee object to compare to (which we’ve been calling
rhs), and a member of the ComparisonType enum you defined earlier. Depending on
the value of ComparisonType, you’ll need code to compare the value of either empID or
yearsOfSvc. Both empID and yearsOfSvc are ints, so once again you can just delegate
to the CompareTo() method of int in both cases. If you added a LastName member to
the enum, you’d need to add another case statement that would call the string class’s
CompareTo() method:

public int CompareTo
 (
 Employee rhs,
 Employee.EmployeeComparer.ComparisonType whichComparison
)
{
 switch (whichComparison)
 {
 case Employee.EmployeeComparer.ComparisonType.EmpID:
 return this.empID.CompareTo(rhs.empID);
 case Employee.EmployeeComparer.ComparisonType.Yrs:
 return this.yearsOfSvc.CompareTo(rhs.yearsOfSvc);
 }
 return 0;
}

The complete source for this example is shown in Example 14-6. We’ve removed the
integer list to simplify the example, and we’ve enhanced the output of the
employee’s ToString() method so that you can see the effects of the sort.

Example 14-6. You can sort a List by differing properties of your class, if you implement your own
IComparer

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_6_ _ _ _Custom_IComparer
{
 public class Employee : IComparable<Employee>
 {
 private int empID;

316 | Chapter 14: Generics and Collections

 private int yearsOfSvc = 1;

 public Employee(int empID)
 {
 this.empID = empID;
 }

 public Employee(int empID, int yearsOfSvc)
 {
 this.empID = empID;
 this.yearsOfSvc = yearsOfSvc;
 }

 public override string ToString()
 {
 return "ID: " + empID.ToString() + ". Years of Svc: "
 + yearsOfSvc.ToString();
 }

 public bool Equals(Employee other)
 {
 if (this.empID == other.empID)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 // static method to get a Comparer object
 public static EmployeeComparer GetComparer()
 {
 return new Employee.EmployeeComparer();
 }

 // Comparer delegates back to Employee
 // Employee uses the integer's default
 // CompareTo method
 public int CompareTo(Employee rhs)
 {
 return this.empID.CompareTo(rhs.empID);
 }

 // Special implementation to be called by custom comparer
 public int CompareTo(Employee rhs,
 Employee.EmployeeComparer.ComparisonType which)
 {
 switch (which)
 {

Example 14-6. You can sort a List by differing properties of your class, if you implement your own
IComparer (continued)

Framework Generic Collections | 317

 case Employee.EmployeeComparer.ComparisonType.EmpID:
 return this.empID.CompareTo(rhs.empID);
 case Employee.EmployeeComparer.ComparisonType.
 YearsOfService:
 return this.yearsOfSvc.CompareTo(rhs.yearsOfSvc);
 }
 return 0;
 }

 // nested class which implements IComparer
 public class EmployeeComparer : IComparer<Employee>
 {
 // private state variable
 private Employee.EmployeeComparer.ComparisonType
 whichComparison;
 // enumeration of comparison types
 public enum ComparisonType
 {
 EmpID,
 YearsOfService
 };

 public bool Equals(Employee lhs, Employee rhs)
 {
 return this.Compare(lhs, rhs) == 0;
 }

 // Tell the Employee objects to compare themselves
 public int Compare(Employee lhs, Employee rhs)
 {
 return lhs.CompareTo(rhs, WhichComparison);
 }

 public Employee.EmployeeComparer.ComparisonType
 WhichComparison
 {
 get { return whichComparison; }
 set { whichComparison = value; }
 }
 }
 }

 public class Tester
 {
 static void Main()
 {
 List<Employee> empList = new List<Employee>();

 // generate random numbers for
 // both the integers and the

Example 14-6. You can sort a List by differing properties of your class, if you implement your own
IComparer (continued)

318 | Chapter 14: Generics and Collections

The output looks like this for one run of the program:

ID: 103. Years of Svc: 11
ID: 108. Years of Svc: 15
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 5
ID: 102. Years of Svc: 0

 // employee IDs
 Random r = new Random();

 // populate the list
 for (int i = 0; i < 5; i++)
 {
 // add a random employee ID
 empList.Add(new Employee(r.Next(10) + 100,
 r.Next(20)));
 }

 // display all the contents of the Employee list
 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("\n{0} ", empList[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the employee list
 Employee.EmployeeComparer c = Employee.GetComparer();
 c.WhichComparison =
 Employee.EmployeeComparer.ComparisonType.EmpID;
 empList.Sort(c);

 // display all the contents of the Employee list
 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("\n{0} ", empList[i].ToString());
 }
 Console.WriteLine("\n");

 c.WhichComparison =
 Employee.EmployeeComparer.ComparisonType.YearsOfService;
 empList.Sort(c);

 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("\n{0} ", empList[i].ToString());
 }
 Console.WriteLine("\n");
 }
 }
}

Example 14-6. You can sort a List by differing properties of your class, if you implement your own
IComparer (continued)

Framework Generic Collections | 319

ID: 102. Years of Svc: 0
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15
ID: 108. Years of Svc: 5

ID: 102. Years of Svc: 0
ID: 108. Years of Svc: 5
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15

The first block of output shows the Employee objects as they are added to the List.
The employee ID values and the years of service are in random order. The second
block shows the results of sorting by the employee ID, and the third block shows the
results of sorting by years of service.

As you can see, the List is a lot like an array, but more programmable and versatile.
There are plenty of situations where a simple array is all you need, and they’re easi-
est to learn, so you shouldn’t abandon them altogether. But when you need to go
beyond the basics, a List can be useful. The other collection classes are more spe-
cific in their uses, as you’ll see.

Generic Queues
A queue is what you’ll hear referred to as a first-in, first-out (FIFO) collection. This is
just a fancy way of saying that you add items to the queue one at a time, and you
remove items one at a time, such that items are removed in the same order in which
you added them. The classic analogy is to a line (or queue, if you are British) at a
ticket window. The first person in line ought to be the first person to come off the
line to buy a ticket.

A queue is a good collection to use when you are managing a limited resource. For
example, you might want your clients to send messages to a resource that can han-
dle only one message at a time. You would then create a message queue so that you
can say to your clients: “Your message is important to us. Messages are handled in
the order in which they are received.”

The Queue class has a number of member methods and properties, the most impor-
tant of which are shown in Table 14-3.

Table 14-3. Queue methods and properties

Method or property Purpose

Count Public property that returns the number of elements in the Queue

Clear() Removes all objects from the Queue

Contains() Determines whether an element is in the Queue

CopyTo() Copies the Queue elements to an existing one-dimensional array

320 | Chapter 14: Generics and Collections

Add elements to your queue with the Enqueue() method and take them off the queue
with Dequeue(), or by using an enumerator, as shown in Example 14-7.

Dequeue() Removes and returns the object at the beginning of the Queue

Enqueue() Adds an object to the end of the Queue

GetEnumerator() Returns an enumerator for the Queue

Peek() Returns a reference to the object at the beginning of the Queue without removing it

ToArray() Copies the elements to a new array

Example 14-7. A queue always returns items in the same order in which they were added

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_7_ _ _ _Queues
{
 public class Tester
 {

 static void Main()
 {
 Queue<Int32> intQueue = new Queue<Int32>();

 // populate the Queue.
 for (int i = 0; i < 5; i++)
 {
 intQueue.Enqueue(i * 5);
 }

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);

 // Remove an element from the Queue.
 Console.WriteLine("\n(Dequeue)\t{0}", intQueue.Dequeue());

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);

 // Remove another element from the Queue.
 Console.WriteLine("\n(Dequeue)\t{0}", intQueue.Dequeue());

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);

Table 14-3. Queue methods and properties (continued)

Method or property Purpose

Framework Generic Collections | 321

The output looks like this:

intQueue values: 0 5 10 15 20

(Dequeue) 0
intQueue values: 5 10 15 20

(Dequeue) 5
intQueue values: 10 15 20

(Peek) 10
intQueue values: 10 15 20

We’ve dispensed with the Employee class to save room, but of course you can
enqueue user-defined objects as well. The output shows that queuing an object adds
it to the Queue, and Dequeue() returns the object as well as removes it from the Queue.
The Queue class also provides a Peek() method that allows you to see, but not
remove, the next element.

Take a closer look at the PrintValues() method:

public static void PrintValues(IEnumerable<Int32> myCollection)
{
 IEnumerator<Int32> myEnumerator = myCollection.GetEnumerator();
 while (myEnumerator.MoveNext())
 {
 Console.Write("{0} ", myEnumerator.Current);
 }

 // View the first element in the
 // Queue but do not remove.
 Console.WriteLine("\n(Peek) \t{0}", intQueue.Peek());

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);
 }

 public static void PrintValues(IEnumerable<Int32> myCollection)
 {
 IEnumerator<Int32> myEnumerator = myCollection.GetEnumerator();
 while (myEnumerator.MoveNext())
 {
 Console.Write("{0} ", myEnumerator.Current);
 }
 Console.WriteLine();
 }

 }
}

Example 14-7. A queue always returns items in the same order in which they were added (continued)

322 | Chapter 14: Generics and Collections

Because the Queue class is enumerable, you can pass it to the PrintValues() method,
which takes an IEnumerable interface. The conversion is implicit. In the PrintValues

method, you call GetEnumerator, which is the single method required by all
IEnumerable classes, as we mentioned earlier in the chapter. GetEnumerator() returns
an IEnumerator, which you then use to enumerate all the objects in the collection.
MoveNext() is a method of IEnumerator, so no matter what collection type you’re
using, you can always call MoveNext() to retrieve the next value. Current is the prop-
erty of IEnumerator that represents the current value, so you can output the current
value in the queue by outputting myEnumerator.Current. When there are no more val-
ues in the collection, MoveNext() returns false, which ends the while loop.

Note that we’re using a while loop here to demonstrate how IEnumerator works; in
practice, you’d probably use a foreach loop instead.

Generic Stacks
The Stack is the natural partner of the Queue. A stack is a last-in, first-out (LIFO) col-
lection, so the items are removed in the opposite of the order in which they were
added. Think of a stack as a stack of dishes at a buffet table, or a stack of coins on
your desk. You add a dish on top, and that’s the first dish you take off the stack.
You’ve already seen a form of stack in Chapter 9, when we described the call stack.
Each time you call a method, it’s added to the top of the call stack. When a method
returns, it’s removed from the top of the stack.

The principal methods for adding to and removing from a stack are Push() and Pop();
these method names are nonintuitive, but they’re traditional with stacks. Push() adds
an item to the stack, and Pop() removes it. Stack also offers a Peek() method, very
much like Queue. The significant methods and properties for Stack are shown in
Table 14-4.

Table 14-4. Stack methods and properties

Method or property Purpose

Count Public property that gets the number of elements in the Stack

Clear() Removes all objects from the Stack

Contains() Determines whether an element is in the Stack

CopyTo() Copies the Stack elements to an existing one-dimensional array

GetEnumerator() Returns an enumerator for the Stack

Peek() Returns the object at the top of the Stack without removing it

Pop() Removes and returns the object at the top of the Stack

Push() Inserts an object at the top of the Stack

ToArray() Copies the elements to a new array

Framework Generic Collections | 323

The List, Queue, and Stack types contain multiple versions of the CopyTo() and
ToArray() methods for copying their elements to an array. In the case of a Stack, the
CopyTo() method will copy its elements to an existing one-dimensional array, over-
writing the contents of the array, beginning at the index you specify. The ToArray()

method returns a new array with the contents of the Stack’s elements.

Example 14-8 illustrates several of the Stack methods.

Example 14-8. Stacks are similar to Queues, but items are removed in the reverse of the order in
which they were added

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_14_8_ _ _ _Stacks
{
 public class Tester
 {
 static void Main()
 {
 Stack<Int32> intStack = new Stack<Int32>();

 // populate the Stack

 for (int i = 0; i < 8; i++)
 {
 intStack.Push(i * 5);
 }

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Remove an element from the Stack.
 Console.WriteLine("\n(Pop)\t{0}", intStack.Pop());

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Remove another element from the Stack.
 Console.WriteLine("\n(Pop)\t{0}", intStack.Pop());

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // View the first element in the
 // Stack but do not remove.
 Console.WriteLine("\n(Peek) \t{0}", intStack.Peek());

324 | Chapter 14: Generics and Collections

The output looks like this:

intStack values: 35 30 25 20 15 10 5 0

(Pop) 35
intStack values: 30 25 20 15 10 5 0

(Pop) 30
intStack values: 25 20 15 10 5 0

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Declare an array object which will
 // hold 12 integers
 int[] targetArray = new int[12];

 for (int i = 0; i < targetArray.Length; i++)
 {
 targetArray[i] = i * 100 + 100;
 }

 // Display the values of the target Array instance.
 Console.WriteLine("\nTarget array: ");
 PrintValues(targetArray);

 // Copy the entire source Stack to the
 // target Array instance, starting at index 6.
 intStack.CopyTo(targetArray, 6);

 // Display the values of the target Array instance.
 Console.WriteLine("\nTarget array after copy: ");
 PrintValues(targetArray);
 }

 public static void PrintValues(IEnumerable<Int32> myCollection)
 {
 IEnumerator<Int32> enumerator = myCollection.GetEnumerator();
 while (enumerator.MoveNext())
 {
 Console.Write("{0} ", enumerator.Current);
 }
 Console.WriteLine();
 }
 }
}

Example 14-8. Stacks are similar to Queues, but items are removed in the reverse of the order in
which they were added (continued)

Framework Generic Collections | 325

(Peek) 25
intStack values: 25 20 15 10 5 0

Target array:
100 200 300 400 500 600 700 800 900 1000 1100 1200

Target array after copy:
100 200 300 400 500 600 25 20 15 10 5 0

The output reflects that the items pushed onto the Stack were popped in reverse
order.

We can see the effect of CopyTo() by examining the target array before and after call-
ing CopyTo(). The array elements are overwritten beginning with the index specified
(6).

Dictionaries
A dictionary is a collection that associates a key with a value. That is, it uses a non-
numeric index. A language dictionary, such as Webster’s, associates a word (the key)
with its definition (the value).

To see the value of dictionaries, start by imagining that you want to keep a list of the
state capitals. One approach might be to put them in an array:

string[] stateCapitals = new string[50];

The stateCapitals array will hold 50 state capitals. Each capital is accessed by an
index into the array. For example, to access the capital for Arkansas, you need to
know that Arkansas is the fourth state in alphabetical order:

string capitalOfArkansas = stateCapitals[3];

It is inconvenient, however, to access state capitals using array notation. After all, if
you need the capital for Massachusetts, there is no easy way to determine that Mas-
sachusetts is the 21st state alphabetically.

It would be far more convenient to store the capital with the state name. A dictio-
nary allows you to store a value (in this case, the capital) with a key (in this case, the
name of the state).

A .NET Framework dictionary can associate any kind of key (string, integer, or
object) with any kind of value (string, integer, or object). Typically, the key is fairly
short and the value fairly complex, though in this case, we’ll use short strings for
both.

The most important attributes of a good dictionary are that it is easy to add values
and it is quick to retrieve values. Table 14-5 lists some of the more important meth-
ods and properties of Dictionary.

326 | Chapter 14: Generics and Collections

The key in a Dictionary can be a primitive type, or it can be an instance of a user-
defined type (an object).

Objects used as keys for a Dictionary must implement the method GetHashCode() as
well as Equals. This is how the Dictionary works behind the scenes—there is actu-
ally a numeric index assigned to the value, but that index is associated with the key,
so you never need to know what it is. GetHashCode() is so fundamental that it’s actu-
ally implemented in Object, the root base class. In most cases, you don’t need to
worry about writing the GetHashCode() method; you can simply use the inherited
implementation from Object.

Dictionaries implement the IDictionary<TKey,TValue> interface (where TKey is the
key type and TValue is the value type). IDictionary provides a public property, Item.
The Item property retrieves a value with the specified key.

The Item property is implemented with the index operator ([]). Thus, you access items
in any Dictionary object using the same syntax as you would with an array. If you had
a dictionary called addresses, which holds the addresses of various businesses, with the
company name as the key, you’d access the address for O’Reilly like this:

addresses["O'Reilly"]

Note the quotation marks around "O'Reilly"—you need them because you’re using
a string as your indexer.

Example 14-9 demonstrates adding items to a Dictionary and then retrieving them
with the indexer (which implicitly uses the Dictionary’s Item property).

Table 14-5. Dictionary methods and properties

Method or property Purpose

Count Public property that gets the number of elements in the Dictionary

Item The indexer for the Dictionary

Keys Public property that gets a collection containing the keys in the Dictionary

Values Public property that gets a collection containing the values in the Dictionary

Add() Adds an entry with a specified Key and Value

Clear() Removes all objects from the Dictionary

ContainsKey() Determines whether the Dictionary has a specified key

ContainsValue() Determines whether the Dictionary has a specified value

GetEnumerator() Returns an enumerator for the Dictionary

Remove() Removes the entry with the specified Key

Example 14-9. The Dictionary collection uses nonnumeric indexers

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Framework Generic Collections | 327

namespace Example_14_9_ _ _ _Dictionaries
{
 public class Tester
 {
 static void Main()
 {
 // Create and initialize a new Dictionary.
 Dictionary<string, string> dict =
 new Dictionary<string, string>();

 dict.Add("Alabama", "Montgomery");
 dict.Add("Alaska", "Juneau");
 dict.Add("Arizona", "Phoenix");
 dict.Add("Arkansas", "Little Rock");
 dict.Add("California", "Sacramento");
 dict.Add("Colorado", "Denver");
 dict.Add("Connecticut", "Hartford");
 dict.Add("Delaware", "Dover");
 dict.Add("Florida", "Tallahassee");
 dict.Add("Georgia", "Atlanta");
 dict.Add("Hawaii", "Honolulu");
 dict.Add("Idaho", "Boise");
 dict.Add("Illinois", "Springfield");
 dict.Add("Indiana", "Indianapolis");
 dict.Add("Iowa", "Des Moines");
 dict.Add("Kansas", "Topeka");
 dict.Add("Kentucky", "Frankfort");
 dict.Add("Louisiana", "Baton Rouge");
 dict.Add("Maine", "Augusta");
 dict.Add("Maryland", "Annapolis");
 dict.Add("Massachusetts", "Boston");
 dict.Add("Michigan", "Lansing");
 dict.Add("Minnesota", "St. Paul");
 dict.Add("Mississippi", "Jackson");
 dict.Add("Missouri", "Jefferson City");
 dict.Add("Montana", "Helena");
 dict.Add("Nebraska", "Lincoln");
 dict.Add("Nevada", "Carson City");
 dict.Add("New Hampshire", "Concord");
 dict.Add("New Jersey", "Trenton");
 dict.Add("New Mexico", "Santa Fe");
 dict.Add("New York", "Albany");
 dict.Add("North Carolina", "Raleigh");
 dict.Add("North Dakota", "Bismarck");
 dict.Add("Ohio", "Columbus");
 dict.Add("Oklahoma", "Oklahoma City");
 dict.Add("Oregon", "Salem");
 dict.Add("Pennsylvania", "Harrisburg");
 dict.Add("Rhode Island", "Providence");
 dict.Add("South Carolina", "Columbia");
 dict.Add("South Dakota", "Pierre");
 dict.Add("Tennessee", "Nashville");
 dict.Add("Texas", "Austin");

Example 14-9. The Dictionary collection uses nonnumeric indexers (continued)

328 | Chapter 14: Generics and Collections

The output looks like this:

The capital of Massachusetts is Boston

Example 14-9 begins by instantiating a new Dictionary object with the type of the
key and of the value declared to be a string.

We then added 50 key/value pairs. In this example, the state name is the key and the
capital is the value (though in a typical dictionary, the value is almost always larger
than the key).

You must not change the value of the key object once you use it in a
dictionary.

Summary
• The .NET Framework provides a number of type-safe generic collections,

including the List<T>, Stack<T>, Queue<T>, and Dictionary<Tkey><Tvalue>.

• Generics allow the collection designer to create a single collection without regard
for the type of object it will hold, but to allow the collection user to define, at
compile time, which type the object will hold. This enlists the compiler in find-
ing bugs; if you add an object of the wrong type to a collection, it will be found
at compile time, not at runtime.

• You are free to create your own generic collection types as well.

• The .NET Framework provides a number of interfaces that collections must
implement if they wish to act like the built-in collections (such as being iterated
by a foreach loop).

• An indexer allows you to access or assign objects to and from a collection just as
you do with an array (for example, myCollection[5] = "hello").

 dict.Add("Utah", "Salt Lake City");
 dict.Add("Vermont", "Montpelier");
 dict.Add("Virginia", "Richmond");
 dict.Add("Washington", "Olympia");
 dict.Add("West Virginia", "Charleston");
 dict.Add("Wisconsin", "Madison");
 dict.Add("Wyoming", "Cheyenne");

 // access a state

 Console.WriteLine("The capital of Massachusetts is {0}",
 dict["Massachusetts"]);

 }
 }
}

Example 14-9. The Dictionary collection uses nonnumeric indexers (continued)

Test Your Knowledge: Quiz | 329

• Indexers need not be restricted to integers. It is common to create indexers that
take a string to assign or retrieve a value.

• All framework collections implement the Sort() method. If you want to be able
to sort a collection of objects of a user-defined type, however, the defining class
must implement the IComparable interface.

• The generic list collection, List<T>, works like an array whose size is increased
dynamically as you add elements.

• The Queue<T> class is a first-in, first-out collection.

• The Stack<T> class is a last-in, first-out collection.

• A Dictionary<k,v> is a collection that associates a key with a value. Typically,
the key is short and the value is large.

You saw a handful of strings used in various places in this chapter, and you may
wonder why we haven’t discussed strings directly yet. That’s because although
strings can be used almost like any other primitive data type in their most basic form,
the string class has a number of methods to it, so we deferred discussing them for a
while. That’s about to change, though; Chapter 15 is all about strings, and how to
make them do what you want.

Test Your Knowledge: Quiz

Question 14-1. What is the convention for naming an indexer?

Question 14-2. What types can be used in an indexer to index a collection?

Question 14-3. What are the preconditions for calling Sort() on a collection?

Question 14-4. What is the purpose of generics?

Question 14-5. What is the purpose of the IEnumerable<T> interface?

Question 14-6. What do you use the yield keyword for?

Question 14-7. What is the principal difference between a List<T> and an array?

Question 14-8. What is the Capacity property of the List used for?

Question 14-9. What is the difference between a Stack and a Queue?

Question 14-10. In a Dictionary, what is the meaning of the key and the value?

330 | Chapter 14: Generics and Collections

Test Your Knowledge: Exercises

Exercise 14-1. Create an abstract Animal class that has private members weight and
name, and abstract methods Speak(), Move(), and ToString(). Derive from Animal a
Cat class and a Dog class that override the methods appropriately. Create an Animal

array, populate it with Dogs and Cats, and then call each member’s overridden virtual
methods.

Exercise 14-2. Replace the array in Exercise 14-1 with a List. Sort the animals by size.
You can simplify by just calling ToString() before and after the sort. Remember that
you’ll need to implement IComparable.

Exercise 14-3. Replace the list from Exercise 14-2 with both a Stack and a Queue.
Remove the sort function. Output the contents of each collection and see the differ-
ence in the order in which the animals are returned.

Exercise 14-4. Rewrite Exercise 14-2 to allow Animals to be sorted either by weight or
alphabetically by name.

331

CHAPTER 15

Strings

There was a time when people thought of computers as manipulating numeric val-
ues exclusively. Among the first uses of computers was to calculate missile trajecto-
ries during World War II, and for a very long time programming was taught in the
math department of major universities.

Today, most programs are concerned more with manipulating and displaying strings
of characters in addition to strings of numbers. Typically, these strings are used for
word processing, document manipulation, and the creation of web pages.

C# provides built-in support for a fully functional string type. More importantly,
C# treats strings as objects that encapsulate all the manipulation, sorting, and
searching methods normally applied to strings of characters.

The .NET Framework provides a String class (uppercase S). The C#
language offers an alias to the String class as the string class (lower-
case s). These class names are interchangeable, and you are free to use
either upper- or lowercase.

Complex string manipulation and pattern matching is aided by the use of regular
expressions. Regular expressions are a powerful technology for describing and
manipulating text. Underlying regular expressions is a technique called pattern
matching, which involves comparing one string to another, or comparing a series of
wildcards that represent a type of string to a literal string. A regular expression is
applied to a string—that is, to a set of characters. Often, that string is an entire text
document. We’ll explain regular expressions in more detail later in this chapter.

In this chapter, you will learn to work with the C# string type and the .NET Frame-
work System.String class that it aliases. You will see how to extract substrings,
manipulate and concatenate strings, and build new strings with the StringBuilder

class. In addition, you will find a short introduction to the Regex class used to match
strings based on regular expressions.

332 | Chapter 15: Strings

Creating Strings
C# treats strings as though they were built-in types (much as it does with arrays).
C# strings are flexible, powerful, and easy to use.

In .NET, each string object is an immutable sequence of Unicode characters. In other
words, methods that appear to change the string actually return a modified copy; the
original string remains intact.

The declaration of the System.String class is (in part):

public sealed class String :
 IComparable, ICloneable, IConvertible, IEnumerable

This declaration reveals that the class is sealed, meaning that it is not possible to
derive from the String class. The class also implements four system interfaces—
IComparable, ICloneable, IConvertible, and IEnumerable—which dictate functionality
that System.String shares with other classes in the .NET Framework: the ability to be
sorted, copied, converted to other types, and enumerated in foreach loops,
respectively.

String Literals
The most common way to create a string is to assign a quoted string of characters,
known as a string literal, to a user-defined variable of type string. The following code
declares a string called newString that contains the phrase “This book teaches C#”:

string newString = "This book teaches C#";

To be precise, newString is a string object that is initialized with the string literal
"This book teaches C#". If you pass newString to the WriteLine method of the Console

object, the string “This book teaches C#” will be displayed.

Escape Characters
Quoted strings can include escape characters (often referred to as “escape
sequences”). Escape characters are a way to signal that the letters or characters that
follow have a special meaning (for example, the two characters \n do not mean print
a slash and then an n, but rather print a newline). You indicate escape characters by
preceding a letter or punctuation mark with a backslash (\). The two most common
escape characters are \n, which is used to create a newline, and \t, which is used to
insert a tab into a string. If you need to include a quotation mark (") within a string,
you indicate that the quote mark is part of the string (rather than ending the string)
by escaping it:

Console.Writeline("This \"string\" has quotes around it");

This will produce the output: This "string" has quotes around it.

Creating Strings | 333

If you want to display the backslash character itself, you must escape it with (you
guessed it) another backslash. Thus, if you were writing the string c:\myDirectory,
you’d write:

 "c:\\myDirectory"

Verbatim Strings
Strings can also be created using verbatim string literals, which start with the “at” (@)
symbol. This tells the String constructor that the string should be used as is (verba-
tim), even if it spans multiple lines or includes escape characters. In a verbatim string
literal, backslashes and the characters that follow them are simply considered addi-
tional characters of the string. Thus, the following two definitions are equivalent:

string s1 = "My \'favorite\' book is in the directory \\books";
string s2 = @"My 'favorite' book is in the directory \books";

In s1, a nonverbatim string literal is used, and so the quote and backslash characters
must be escaped (preceded by a backslash character). The verbatim string s2 does not
require the escape characters.

The following example illustrates two ways to specify multiline verbatim strings. The
first definition uses a nonverbatim string with a newline escape character (\n) to
signal the line break. The second definition uses a verbatim string literal:

string s3 = "Line One\nLine Two";
string s4 = @"Line One
Line Two";

If you want to use quotation marks in a verbatim string literal, you use two quota-
tion marks, like this:

string s5 = @"This string has ""quotation marks"" in it.";

Again, these declarations are interchangeable. Which one you use is a matter of
convenience and personal style.

The ToString() Method
Another common way to create a string is to call the ToString() method on an
object and assign the result to a string variable. All the built-in types override this
method to simplify the task of converting a value (often a numeric value) to a string
representation of that value. In the following example, the ToString() method of an
integer type is called to store its value in a string:

int myInteger = 5;
string integerString = myInteger.ToString();

The call to myInteger.ToString() returns a string object that is then assigned to the
string variable, integerString.

334 | Chapter 15: Strings

Manipulating Strings
The String class provides a host of methods for comparing, searching, and manipu-
lating strings, the most important of which are shown in Table 15-1.

Comparing Strings
The Compare() method of String is overloaded. The first version takes two strings
and returns a negative number if the first string is alphabetically before the second, a
positive number if the first string is alphabetically after the second, and zero if they
are equal. The second version works just like the first but is case-insensitive.
Example 15-1 illustrates the use of Compare().

Table 15-1. String class properties and methods

Method or property Explanation

Chars Property that returns the string indexer

Compare() Overloaded public static method that compares two strings

Copy() Public static method that creates a new string by copying another

Equals() Overloaded public static and instance methods that determine whether two strings have the
same value

Format() Overloaded public static method that formats a string using a format specification

Length Property that returns the number of characters in the instance

PadLeft() Right-aligns the characters in the string, padding to the left with spaces or a specified character

PadRight() Left-aligns the characters in the string, padding to the right with spaces or a specified character

Remove() Deletes the specified number of characters

Split() Divides a string, returning the substrings delimited by the specified characters

StartsWith() Indicates whether the string starts with the specified characters

Substring() Retrieves a substring

ToCharArray() Copies the characters from the string to a character array

ToLower() Returns a copy of the string in lowercase

ToUpper() Returns a copy of the string in uppercase

Trim() Removes all occurrences of a set of specified characters from the beginning and end of the string

TrimEnd() Behaves like Trim(), but only at the end of the string

TrimStart() Behaves like Trim(), but only at the start of the string

Example 15-1. The Compare() method for the String class has two versions, one case-sensitive and
the other not

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Manipulating Strings | 335

The output looks like this:

Compare s1: abcd, s2: ABCD, result: -1
Compare insensitive. result: 0

Example 15-1 begins by declaring two strings, s1 and s2, and initializing them with
string literals:

string s1 = "abcd";
string s2 = "ABCD";

Compare() is used with many types. A negative return value indicates that the first
parameter is less than the second; a positive result indicates that the first parameter is
greater than the second; and a zero indicates that they are equal. In Unicode (as in
ASCII), a lowercase letter has a smaller value than an uppercase letter; with strings
that are identical except for case, lowercase comes first alphabetically. Thus, the out-
put properly indicates that s1 (abcd) is “less than” s2 (ABCD):

compare s1: abcd, s2: ABCD, result: -1

namespace Example_15_1_ _ _ _Comparing_Strings
{
 class Tester
 {
 public void Run()
 {
 // create some strings to work with
 string s1 = "abcd";
 string s2 = "ABCD";
 int result; // hold the results of comparisons

 // compare two strings, case-sensitive
 result = string.Compare(s1, s2);
 Console.WriteLine("Compare s1: {0}, s2: {1},
 result: {2}\n", s1, s2, result);

 // overloaded compare, takes Boolean "ignore case"
 //(true = ignore case)
 result = string.Compare(s1, s2, true);
 Console.WriteLine("Compare insensitive.
 result: {0}\n", result);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 15-1. The Compare() method for the String class has two versions, one case-sensitive and
the other not (continued)

336 | Chapter 15: Strings

The second comparison uses an overloaded version of Compare(), which takes a third
Boolean parameter, the value of which determines whether case should be ignored in
the comparison. If the value of this “ignore case” parameter is true, the comparison
is made without regard to case. This time the result is 0, indicating that the two
strings are identical:

Compare insensitive. result: 0

Concatenating Strings
There are a couple of ways to concatenate strings in C#. You can use the Concat()

method, which is a static public method of the String class:

string s3 = string.Concat(s1,s2);

Or you can simply use the overloaded concatenation (+) operator:

string s4 = s1 + s2;

Example 15-2 demonstrates both of these methods.

Example 15-2. Concatenating strings is amazingly easy—just use the overloaded
+ operator

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_15_2_ _ _ _Concatenating_Strings
{
 class Tester
 {
 public void Run()
 {
 string s1 = "abcd";
 string s2 = "ABCD";

 // concatenation method
 string s3 = string.Concat(s1, s2);
 Console.WriteLine("s3 concatenated from
 s1 and s2: {0}", s3);

 // use the overloaded operator
 string s4 = s1 + s2;
 Console.WriteLine("s4 concatenated from
 s1 + s2: {0}", s4);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }

Manipulating Strings | 337

The output looks like this:

s3 concatenated from s1 and s2: abcdABCD
s4 concatenated from s1 + s2: abcdABCD

In Example 15-2, the new string s3 is created by calling the static Concat() method
and passing in s1 and s2, and the string s4 is created by using the overloaded concat-
enation operator (+) that concatenates two strings and returns a string as a result.

Copying Strings
There are two ways to copy strings; 99.9% of the time you will just write:

oneString = theOtherString;

and not worry about what is going on in memory.

There is a second, somewhat awkward way to copy strings:

myString = String.Copy(yourString);

and this actually does something subtly different. The difference is somewhat
advanced, but here it is in a nutshell.

When you use the assignment operator (=) you create a second reference to the same
object in memory, but when you use Copy you create a new string that is initialized
with the value of the first string, and then create a reference to that new string.

“Huh?” we hear you cry. Example 15-3 will make it clear.

 }
}

Example 15-3. You’ll usually copy strings with the assignment operator, but the String.Copy()
method has a subtle difference

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_15_3_ _ _ _Copying_Strings
{
 class Tester
 {
 public void Run()
 {
 string s1 = "abcd";

 Console.WriteLine("string s1: {0}", s1);
 Console.WriteLine("string s2 = s1; ");

Example 15-2. Concatenating strings is amazingly easy—just use the overloaded
+ operator (continued)

338 | Chapter 15: Strings

The output looks like this:

string s1: abcd
string s2 = s1;
s1: abcd s2: abcd
s1 == s2? True
ReferenceEquals(s1,s2): True

string s2 = string.Copy(s1);
s1: abcd s3: abcd
s1 == s3? True
ReferenceEquals(s1,s3): False

s1 = "Hello";
s1: Hello s2: abcd
s1 == s2? False
ReferenceEquals(s1,s2): False

In Example 15-3, you start by initializing one string:

string s1 = "abcd";

 string s2 = s1;
 Console.WriteLine("s1: {0} s2: {1}", s1, s2);
 Console.WriteLine("s1 == s2? {0}", s1 == s2);
 Console.WriteLine("ReferenceEquals(s1,s2): {0}",
 ReferenceEquals(s1, s2));
 Console.WriteLine(" \nstring s2 = string.Copy(s1); ");

 string s3 = string.Copy(s1);
 Console.WriteLine("s1: {0} s3: {1}", s1, s3);
 Console.WriteLine("s1 == s3? {0}", s1 == s3);
 Console.WriteLine("ReferenceEquals(s1,s3): {0}",
 ReferenceEquals(s1, s3));
 Console.WriteLine(" \ns2 = \"Hello\"; ");

 s1 = "Hello";
 Console.WriteLine("s1: {0} s2: {1}", s1, s2);
 Console.WriteLine("s1 == s2? {0}", s1 == s2);
 Console.WriteLine("ReferenceEquals(s1,s2): {0}",
 ReferenceEquals(s1, s2));
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 15-3. You’ll usually copy strings with the assignment operator, but the String.Copy()
method has a subtle difference (continued)

Manipulating Strings | 339

You then assign the value of s1 to s2 using the assignment operator:

s2 = s1;

You print their values, as shown in the first section of results, and find that not only
do the two string references have the same value, as indicated by using the equality
operator (==), but also that ReferenceEquals returns true as well. ReferenceEquals is a
static method that returns true when the two objects passed in are the same
instance. Therefore, the two references refer to the same object.

On the other hand, if you create s3 and assign its value using String.Copy(s1),
although the two values are equal (as shown by using the equality operator) they
refer to different objects in memory (as shown by the fact that ReferenceEquals

returns false).

Now, returning to s1 and s2, which refer to the same object, if you change either
one, for example, when you write:

s1 = "Hello";

s3 goes on referring to the original string, but s1 now refers to a brand-new string.

If you later write:

S3 = "Goodbye";

(not shown in the example), the original string referred to by s1 will no longer have
any references to it, and it will be mercifully and painlessly destroyed by the garbage
collector.

Testing for Equality
The .NET String class provides three ways to test for the equality of two strings.
First, you can use the overloaded Equals() method and ask one string (say, s6)
directly whether another string (s5) is of equal value:

Console.WriteLine("\nDoes s6.Equals(s5)?: {0}", s6.Equals(s5));

You can also pass both strings to String’s static method, Equals():

Console.WriteLine("Does Equals(s6,s5)?: {0}" string.Equals(s6,s5));

Or you can use the String class’s overloaded equality operator (==):

Console.WriteLine("Does s6==s5?: {0}", s6 == s5);

In each of these cases, the returned result is a Boolean value (true for equal and false
for unequal). Example 15-4 demonstrates these techniques.

Example 15-4. You can test strings for equality using the Equals() method, or the overloaded ==
operator

using System;
using System.Collections.Generic;
using System.Linq;

340 | Chapter 15: Strings

The output looks like this:

s5 copied from s2: ABCD
s6 = s5: ABCD
 Does s6.Equals(s5)?: True
Does Equals(s6,s5)?: True
Does s6==s5?: True

The equality operator is the most natural of the three methods to use when you have
two string objects.

using System.Text;

namespace Example_15_4_ _ _ _String_Equality
{
 class Tester
 {
 public void Run()
 {
 string s1 = "abcd";
 string s2 = "ABCD";

 // the string copy method
 string s5 = string.Copy(s2);
 Console.WriteLine("s5 copied from s2: {0}", s5);
 string s6 = s5;
 Console.WriteLine("s6 = s5: {0}", s6);

 // member method
 Console.WriteLine("\nDoes s6.Equals(s5)?: {0}",
 s6.Equals(s5));

 // static method
 Console.WriteLine("Does Equals(s6,s5)?: {0}",
 string.Equals(s6, s5));

 // overloaded operator
 Console.WriteLine("Does s6==s5?: {0}", s6 == s5);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 15-4. You can test strings for equality using the Equals() method, or the overloaded ==
operator (continued)

Manipulating Strings | 341

Other Useful String Methods
The String class includes a number of useful methods and properties for finding spe-
cific characters or substrings within a string, as well as for manipulating the contents
of the string. Example 15-5 demonstrates a few methods, such as locating substrings,
finding the index of a substring, and inserting text from one string into another. Fol-
lowing the output is a complete analysis.

Example 15-5. The String class has several useful methods, including Length, EndsWith(), and
Index

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_15_5_ _ _ _String_Methods
{
 class Tester
 {
 public void Run()
 {
 string s1 = "abcd";
 string s2 = "ABCD";
 string s3 = @"Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting";

 // the string copy method
 string s5 = string.Copy(s2);
 Console.WriteLine("s5 copied from s2: {0}", s5);

 // Two useful properties: the index and the length
 Console.WriteLine("\nString s3 is {0} characters long. ", s3.Length);
 Console.WriteLine("The 5th character is {0}\n", s3[4]);

 // test whether a string ends with a set of characters
 Console.WriteLine("s3:{0}\nEnds with Training?: {1}\n", s3,
 s3.EndsWith("Training"));
 Console.WriteLine("Ends with Consulting?: {0}",
 s3.EndsWith("Consulting"));

 // return the index of the substring
 Console.WriteLine("\nThe first occurrence of Training ");
 Console.WriteLine("in s3 is {0}\n", s3.IndexOf("Training"));

 // insert the word "excellent" before "training"
 string s10 = s3.Insert(71, "excellent ");
 Console.WriteLine("s10: {0}\n", s10);

342 | Chapter 15: Strings

The output looks like this:

s5 copied from s2: ABCD

String s3 is 94 characters long.
The 5th character is r

s3:Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting
Ends with Training?: False

Ends with Consulting?: True

The first occurrence of Training
in s3 is 71

s10: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

s11: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

The Length property returns the length of the entire string, and the index operator
([]) is used to access a particular character within a string. Just like arrays, the index
numbering in a string starts at zero.

Console.WriteLine(
 "\nString s3 is {0} characters long. ",
 s5.Length);
 Console.WriteLine(
 "The 5th character is {0}\n", s3[4]);

Here’s the output:

String s3 is 4 characters long.
The 5th character is r

 // you can combine the two as follows:
 string s11 = s3.Insert(s3.IndexOf("Training"), "excellent ");
 Console.WriteLine("s11: {0}\n", s11);
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 15-5. The String class has several useful methods, including Length, EndsWith(), and Index
(continued)

Manipulating Strings | 343

The EndsWith() method asks a string whether a substring is found at the end of the
string. Thus, you might first ask whether s3 ends with the word Training (which it
does not), and then whether it ends with the word Consulting (which it does):

Console.WriteLine("s3:{0}\nEnds with Training?: {1}\n",
 s3,
 s3.EndsWith("Training"));
Console.WriteLine(
 "Ends with Consulting?: {0}",
 s3.EndsWith("Consulting"));

The output reflects that the first test fails and the second succeeds:

Ends with Training?: False
Ends with Consulting?: True

The IndexOf() method locates a substring within a string, and the Insert() method
inserts a new substring into a copy of the original string. The following code locates
the first occurrence of Training in s3:

Console.WriteLine("\nThe first occurrence of Training ");
Console.WriteLine ("in s3 is {0}\n",
 s3.IndexOf("Training"));

The output indicates that the offset is 71:

The first occurrence of Training
in s3 is 71

Then use that value to insert the word excellent, followed by a space, into that string.

Actually, the insertion is into a copy of the string returned by the Insert() method
and assigned to s10:

string s10 = s3.Insert(71,"excellent ");
Console.WriteLine("s10: {0}\n",s10);

Here’s the output:

s10: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

Finally, you can combine these operations to make a more efficient insertion statement:

string s11 = s3.Insert(s3.IndexOf("Training"),"excellent ");
Console.WriteLine("s11: {0}\n",s11);

with the identical result:

s11: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

344 | Chapter 15: Strings

Finding Substrings
The String class has methods for finding and extracting substrings. For example, the
IndexOf() method returns the index of the first occurrence of a string (or of any char-
acter in an array of characters) within a target string. For example, given the defini-
tion of the string s1 as:

string s1 = "One Two Three Four";

you can find the first instance of the characters hre by writing:

int index = s1.IndexOf("hre");

This code sets the int variable index to 9, which is the offset of the letters hre in the
string s1.

Similarly, the LastIndexOf() method returns the index of the last occurrence of a
string or substring.

Though the following code:

s1.IndexOf("o");

returns the value 6 (the first occurrence of the lowercase letter o is at the end of the
word Two), the method call:

s1.LastIndexOf("o");

returns the value 15 (the last occurrence of o is in the word Four).

The Substring() method returns a contiguous series of characters. You can ask it for
all the characters starting at a particular offset and ending either with the end of the
string or with an offset that you (optionally) provide. Example 15-6 illustrates the
Substring() method.

Example 15-6. You use the Substring() method to pull substrings out of a string by index

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_15_6_ _ _ _Finding_Substrings
{
 class Tester
 {
 public void Run()
 {
 // create some strings to work with
 string s1 = "One Two Three Four";

 int index;

 // get the index of the last space
 index = s1.LastIndexOf(" ");

Manipulating Strings | 345

 // get the last word.
 string s2 = s1.Substring(index + 1);

 // set s1 to the substring starting at 0
 // and ending at index (the start of the last word)
 // thus s1 has "one two three"
 s1 = s1.Substring(0, index);

 // find the last space in s1 (after two)
 index = s1.LastIndexOf(" ");

 // set s3 to the substring starting at
 // index, the space after "two" plus one more
 // thus s3 = "three"
 string s3 = s1.Substring(index + 1);
 // reset s1 to the substring starting at 0
 // and ending at index, thus the string "one two"
 s1 = s1.Substring(0, index);

 // reset index to the space between
 // "one" and "two"
 index = s1.LastIndexOf(" ");

 // set s4 to the substring starting one
 // space after index, thus the substring "two"
 string s4 = s1.Substring(index + 1);

 // reset s1 to the substring starting at 0
 // and ending at index, thus "one"
 s1 = s1.Substring(0, index);

 // set index to the last space, but there is
 // none so index now = -1
 index = s1.LastIndexOf(" ");

 // set s5 to the substring at one past
 // the last space. there was no last space
 // so this sets s5 to the substring starting
 // at zero
 string s5 = s1.Substring(index + 1);

 Console.WriteLine("s2: {0}\ns3: {1}", s2, s3);
 Console.WriteLine("s4: {0}\ns5: {1}\n", s4, s5);
 Console.WriteLine("s1: {0}\n", s1);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 15-6. You use the Substring() method to pull substrings out of a string by index (continued)

346 | Chapter 15: Strings

The output looks like this:

s2: Four
s3: Three
s4: Two
s5: One

s1: One

Example 15-6 is not the most elegant solution possible to the problem of extracting
words from a string, but it is a good first approximation, and it illustrates a useful
technique. The example begins by creating a string, s1:

string s1 = "One Two Three Four";

The local variable index is assigned the value of the last literal space in the string
(which comes before the word Four):

index=s1.LastIndexOf(" ");

The substring that begins one position later is assigned to the new string, s2:

string s2 = s1.Substring(index+1);

This extracts the characters from index+1 to the end of the line (the string “Four”)
and assigns the value “Four” to s2.

The next step is to remove the word Four from s1; assign to s1 the substring of s1
that begins at 0 and ends at the index:

s1 = s1.Substring(0,index);

After this line executes, the variable s1 will point to a new string object
that will contain the appropriate substring of the string that s1 used to
point to. That original string will eventually be destroyed by the gar-
bage collector because no variable now references it.

You reassign index to the last (remaining) space, which points you to the beginning
of the word Three. You then extract the word Three into string s3. Continue like this
until you’ve populated s4 and s5. Finally, display the results:

s2: Four
s3: Three
s4: Two
s5: One
s1: One

Splitting Strings
A more effective solution to the problem illustrated in Example 15-6 would be to use
the String class’s Split() method, which parses a string into substrings. To use
Split(), pass in an array of delimiters (characters that indicate where to divide the
words). The method returns an array of substrings (which Example 15-7 illustrates).
The complete analysis follows the code.

Manipulating Strings | 347

The output looks like this:

1: One
2: Two
3: Three
4: Liberty
5: Associates

Example 15-7. The Split() method returns an array of substrings, based on delimiters that you
define

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_15_7_ _ _ _Splitting_Strings
{
 class Tester
 {
 public void Run()
 {
 // create some strings to work with
 string s1 = "One,Two,Three Liberty Associates, Inc.";
 // constants for the space and comma characters
 const char Space = ' ';
 const char Comma = ',';

 // array of delimiters to split the sentence with
 char[] delimiters = new char[]
 {
 Space,
 Comma
 };

 int ctr = 1;

 // split the string and then iterate over the
 // resulting array of strings

 String[] resultArray = s1.Split(delimiters);

 foreach (String subString in resultArray)
 {
 Console.WriteLine(ctr++ + ":" + subString);
 }
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

348 | Chapter 15: Strings

6:
7: Inc.

Example 15-7 starts by creating a string to parse:

string s1 = "One,Two,Three Liberty Associates, Inc.";

The delimiters are set to the space and comma characters. Then call Split() on the
string, passing in the delimiters:

String[] resultArray = s1.Split(delimiters);

Split() returns an array of the substrings that you can then iterate over using the
foreach loop, as explained in Chapter 10:

foreach (String subString in resultArray)

You can, of course, combine the call to split with the iteration, as in
the following:

foreach (string subString in s1.Split(delimiters))

C# programmers are fond of combining statements like this. The
advantage of splitting the statement into two, however, and of using
an interim variable like resultArray is that you can examine the con-
tents of resultArray in the debugger.

Start the foreach loop by initializing output to an empty string, and then create each
line of the output in three steps. Start with the incremented value ctr. Then use the
+= operator to add the colon, then the substring returned by Split():

Console.WriteLine(ctr++ + ":" + subString);

With each concatenation, a new copy of the string is made, and all three steps are
repeated for each substring found by Split().

This repeated copying of the string is terribly inefficient. The problem is that the
string type is not designed for this kind of operation. What you want is to create a
new string by appending a formatted string each time through the loop. The class
you need is StringBuilder.

The StringBuilder Class
You can use the System.Text.StringBuilder class for creating and modifying strings.
Table 15-2 summarizes the important members of StringBuilder.

Table 15-2. StringBuilder members

Method or property Explanation

Append() Overloaded public method that appends a typed object to the end of the current
StringBuilder

AppendFormat() Overloaded public method that replaces format specifiers with the formatted value of an
object

Manipulating Strings | 349

Unlike String, StringBuilder is mutable; when you modify an instance of the
StringBuilder class, you modify the actual string, not a copy.

Example 15-8 replaces the String object in Example 15-7 with a StringBuilder object.

EnsureCapacity() Ensures that the current StringBuilder has a capacity at least as large as the specified
value

Capacity Property that retrieves or assigns the number of characters the StringBuilder is capable
of holding

Insert() Overloaded public method that inserts an object at the specified position

Length Property that retrieves or assigns the length of the StringBuilder

MaxCapacity Property that retrieves the maximum capacity of the StringBuilder

Remove() Removes the specified range of characters

Replace() Overloaded public method that replaces all instances of the specified characters with new
characters

Example 15-8. Unlike the String class, the StringBuilder class can be modified instead of copied,
which is more efficient

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_15_8_ _ _ _StringBuilder
{
 class Tester
 {
 public void Run()
 {
 // create some strings to work with
 string s1 = "One,Two,Three Liberty Associates, Inc.";

 // constants for the space and comma characters
 const char Space = ' ';
 const char Comma = ',';

 // array of delimiters to split the sentence with
 char[] delimiters = new char[]
 {
 Space,
 Comma
 };

 // use a StringBuilder class to build the
 // output string

Table 15-2. StringBuilder members (continued)

Method or property Explanation

350 | Chapter 15: Strings

Only the last part of the program is modified. Rather than using the concatenation
operator to modify the string, use the AppendFormat() method of StringBuilder to
append new formatted strings as you create them. This is much easier and far more
efficient. The output is identical:

1: One
2: Two
3: Three
4: Liberty
5: Associates
6:
7: Inc.

Because you passed in delimiters of both comma and space, the space after the
comma between Associates and Inc. is returned as a word, numbered 6 in the preced-
ing code. That is not what you want. To eliminate this, you need to tell Split() to
match a comma (as between One, Two, and Three), a space (as between Liberty and
Associates), or a comma followed by a space. It is that last bit that is tricky and
requires that you use a regular expression.

Regular Expressions
As noted earlier, regular expressions provide a very powerful way to describe and
manipulate text through pattern matching.

The result of applying a regular expression to a string is either to return a substring
or to return a new string representing a modification of some part of the original

 StringBuilder output = new StringBuilder();
 int ctr = 1;

 // split the string and then iterate over the
 // resulting array of strings
 foreach (string subString in s1.Split(delimiters))
 {
 // AppendFormat appends a formatted string
 output.AppendFormat("{0}: {1}\n", ctr++, subString);
 }
 Console.WriteLine(output);

 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 15-8. Unlike the String class, the StringBuilder class can be modified instead of copied,
which is more efficient (continued)

The Regex Class | 351

string. (Remember that string objects are immutable and so cannot be changed by
the regular expression.)

By applying a properly constructed regular expression to the following string:

One,Two,Three Liberty Associates, Inc.

you can return any or all of its substrings (such as “Liberty” or “One”) or modified
versions of its substrings (such as “LIBeRtY” or “OnE”). What the regular expres-
sion does is determined by the syntax of the regular expression itself.

A regular expression consists of two types of characters: literals and metacharacters.
A literal is a character you want to match in the target string. A metacharacter is a
special symbol that acts as a command to the regular expression parser. The parser is
the engine responsible for understanding the regular expression. For example, if you
create a regular expression:

^(From|To|Subject|Date):

this will match any of the following substrings: From, To, Subject, or Date, as long as
the substring starts a new line (^) and ends with a colon (:).

The caret (^) indicates to the regular expression parser that the string you’re search-
ing for must begin a new line. The substrings From and To are literals, and the meta-
characters left and right parentheses ((,)) and vertical bar (|) are all used to group
sets of literals and indicate that any of the choices should match. Thus, you would
read the following line as “match any string that begins a new line, followed by any
of the four literal strings From, To, Subject, or Date, and followed by a colon”:

^(From|To|Subject|Date):

A full explanation of regular expressions is beyond the scope of this
book, but we will explain all the regular expressions that we use in the
examples. For a complete understanding of regular expressions, we
recommend Mastering Regular Expressions, Third Edition, by Jeffrey
E. F. Friedl (O’Reilly).

The Regex Class
The .NET Framework provides an object-oriented approach to regular expression
pattern matching and replacement.

The Framework Class Library (FCL) namespace System.Text.RegularExpressions is
the home to all the .NET Framework objects associated with regular expressions.
The central class for regular expression support is Regex, which provides methods
and properties for working with regular expressions, the most important of which
are shown in Table 15-3.

352 | Chapter 15: Strings

Example 15-9 rewrites Example 15-8 to use regular expressions and thus to solve the
problem of searching for more than one type of delimiter.

Table 15-3. Regex members

Method or property Explanation

Regex constructor Overloaded; creates an instance of Regex

Options Property that returns the options passed in to the constructor

IsMatch Method that indicates whether a match is found in the input string

Match Searches an input string and returns a match for a regular expression

Matches Searches an input string and returns all successful matches for a regular expression

Replace Replaces all occurrences of a pattern with a replacement string

Split Splits an input string into an array of substrings based on a regular expression

Example 15-9. Regular expressions are indispensable for matching patterns in text

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;

namespace Example_15_9_ _ _ _Regular_Expressions
{
 class Tester
 {
 public void Run()
 {
 string s1 =
 "One,Two,Three Liberty Associates, Inc.";
 Regex theRegex = new Regex(" |, |,");
 StringBuilder sBuilder = new StringBuilder();
 int id = 1;

 foreach (string subString in theRegex.Split(s1))
 {
 sBuilder.AppendFormat("{0}: {1}\n", id++, subString);
 }
 Console.WriteLine("{0}", sBuilder);
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Summary | 353

The output looks like this:

1: One
2: Two
3: Three
4: Liberty
5: Associates
6: Inc.

Example 15-9 begins by creating a string, s1, identical to the string used in
Example 15-8:

string s1 = "One,Two,Three Liberty Associates, Inc.";

and a regular expression that is used to search the string:

Regex theRegex = new Regex(" |,|, ");

One of the overloaded constructors for Regex takes a regular expression string as its
parameter.

This can be a bit confusing. In the context of a C# program, which is
the regular expression—the text passed in to the constructor or the
Regex object itself? It is true that the text string passed to the construc-
tor is a regular expression in the traditional sense of the term. From a
C# (that is, object-oriented) point of view, however, the argument to
the constructor is just a string of characters; it is the object called
theRegex that is the regular expression object.

The rest of the program proceeds like Example 15-8, except that rather than calling
the Split() method of String on string s1, the Split() method of Regex is called.
theRegex.Split() acts in much the same way as String.Split(), returning an array
of strings as a result of matching the regular expression pattern within theRegex.
Because it matches a regular expression, rather than using a set of delimiters, you
have much greater control over how the string is split.

Summary
• C# strings can be sorted, searched, and otherwise manipulated.

• The String class is sealed, meaning it cannot be derived from. It implements the
IComparable, ICloneable, IConvertible, and IEnumerable interfaces, indicating that
you can compare two strings (to sort them), clone a string (to create a duplicate),
convert a string to another type (for example, converting the string “15” to the
integer 15), and enumerate over a string using a foreach statement, respectively.

• A string literal is a quoted string of characters assigned to a variable of type
string. This is the most common use of strings.

• Escape characters allow you to add special characters to strings that you would
otherwise not be able to represent.

354 | Chapter 15: Strings

• A verbatim string literal starts with an @ symbol and indicates that the string
should be used exactly as is. Verbatim strings do not require escape characters.

• You can concatenate strings with the Concat() method or the + operator.

• You can copy strings with the Copy() method or the = operator.

• You can test for equality of two strings with the Equals() method or the ==

operator.

• The String class also includes methods for finding and extracting substrings,
such as IndexOf(), LastIndexOf(), and Substring().

• You can use the Split() method with an array of delimiters to divide a string
into substrings.

• Strings are immutable. Every time you appear to modify a string, a copy is made
with the modification and the original string is released to the garbage collector.

• The StringBuilder class allows you to assemble the contents of a string with
greater efficiency and then to call its ToString() method to generate the string
you need once it is fully assembled.

• Regular expressions provide pattern-matching abilities that enable you to search
and manipulate text.

Although you’ve seen and used strings throughout this book, this chapter should
give you an indication of just how powerful and flexible the String class is. How-
ever, now that you have the ability to let users enter strings instead of just integers or
single characters, you open yourself up to the possibility that your users could pro-
vide some input that you can’t handle. The more you interact with users, the greater
the odds that they’ll do something you didn’t expect, and that could break your
code. Fortunately, that doesn’t have to be a disaster. C# provides an Exception class
that allows you to anticipate certain types of errors, and take the appropriate action
when they occur.

Test Your Knowledge: Quiz

Question 15-1. What is the difference between string and String (lower- and
uppercase)?

Question 15-2. Some of the interfaces implemented by the string are IComparable,
ICloneable, IConvertible, and IEnumerable. What do these guarantee to you as a cli-
ent of the String class?

Question 15-3. What is a string literal?

Test Your Knowledge: Exercises | 355

Question 15-4. What is the purpose of escape characters? Give two examples.

Question 15-5. What are verbatim strings?

Question 15-6. What does it mean that strings are immutable?

Question 15-7. What are the two ways to concatenate strings?

Question 15-8. What does Split() do?

Question 15-9. Why would you use the StringBuilder class instead of a string, and
how do you create a string with one?

Question 15-10. What are regular expressions?

Test Your Knowledge: Exercises

Exercise 15-1. Create the following six strings:

• String 1: “Hello ”

• String 2: “World”

• String 3 (a verbatim string): “Come visit us at http://www.LibertyAssociates.com”

• String 4: a concatenation of strings 1 and 2

• String 5: “world”

• String 6: a copy of string 3

Once you have the strings created, do the following:

1. Output the length of each string.

2. Output the third character in each string.

3. Output whether the character H appears in each string.

4. Output which strings are the same as string 2.

5. Output which strings are the same as string 2, ignoring case.

Exercise 15-2. Take the following famous string:

To be, or not to be: That is the question: Whether ’tis nobler in the mind to suffer the
slings and arrows of outrageous fortune, or to take arms against a sea of troubles, and
by opposing end them?

Reverse the order of the words in the string, and output the reversed string to the
console.

356 | Chapter 15: Strings

Exercise 15-3. Take the following famous string:

We choose to go to the moon. We choose to go to the moon in this decade and do the
other things, not because they are easy, but because they are hard, because that goal
will serve to organize and measure the best of our energies and skills, because that
challenge is one that we are willing to accept, one we are unwilling to postpone, and
one which we intend to win, and the others, too.

Write a program to determine and output to the screen the number of times the
word the occurs in the string.

Exercise 15-4. Take the following string:

We hold these truths to be self-evident, that all men are created equal, that they are
endowed by their Creator with certain unalienable Rights, that among these are Life,
Liberty and the pursuit of Happiness.

and use a regular expression to split the string into words. Then create a new string
that lists each word, one to a line, each prefaced with a line number.

357

CHAPTER 16

Throwing and Catching Exceptions

Things go wrong. Programmers always need to plan for the inevitable problems that
arise while their program is running: networks go down, disks fail, computers
exhaust their memory, and so forth.

In C#, you address these problems with exceptions. An exception is an object that
contains information about an unusual program occurrence. When an exceptional
circumstance arises, an exception is “thrown.” (You’ll also hear that an exception is
raised.) You might throw an exception in your own methods (for example, if you
realize that an invalid parameter has been provided), or an exception might be
thrown in a class provided by the Framework Class Library, or FCL (for example, if
you try to write to a read-only file). Many exceptions are thrown by the .NET run-
time when the program can no longer continue due to an operating system problem
(such as a security violation).

Your job as programmer is to try potentially dangerous code—that is, to mark out
code that might throw an exception. If an exception is thrown, you catch the excep-
tion by writing appropriate code in your “catch block.” Both try and catch are key-
words in C#. Catching an exception is sometimes referred to as handling the
exception, and the catch block is often called an exception handler.

Ideally, you can provide some code in the catch block so that when the exception is
caught, the program can fix the problem and continue. Even if your program can’t
continue, by catching the exception you have an opportunity to print a meaningful
error message and terminate gracefully—that is, your program ends and tells the user
what happened and why, instead of simply crashing.

This chapter describes how to write your programs to catch and handle exceptions.
This chapter also shows you how to use the properties of the Exception class to pro-
vide information to the user about what went wrong, and it shows you how to cre-
ate and use your own custom exception types.

358 | Chapter 16: Throwing and Catching Exceptions

Bugs, Errors, and Exceptions
It is important to distinguish exceptions from bugs and errors. A bug is a program-
mer mistake that should be fixed before the code is made available to users. An
exception is usually not the result of a programmer mistake (though such mistakes
can also raise exceptions). Rather, exceptions are raised as a result of problems that
you can predict, but can’t prevent, because they depend on factors outside your pro-
gram. A network connection dropping suddenly, or running out of disk space, are
both examples of exceptions that you can handle.

An error is caused by user action. For example, the user might enter a number where
a letter is expected. Once again, an error might cause an exception, but you can pre-
vent that by implementing code to validate user input. Whenever possible, you
should anticipate user errors and write code to prevent them, instead of relying on
exceptions.

Even if you remove all bugs and anticipate all user errors, you will still run into pre-
dictable but unpreventable problems, such as running out of memory or attempting
to open a file that no longer exists. These are exceptions. You cannot prevent excep-
tions, but you can handle them so that they do not bring down your program.

Throwing Exceptions
As you’ll see shortly, exceptions are objects provided by the .NET Framework. All
exceptions are of type System.Exception or of types derived from System.Exception.

C# includes a number of predefined exception types that you can use in your own
programs. (These are actually defined in the Base Class Library’s System namespace,
and are therefore available to all .NET languages, not just C#.) These exception
types include ArgumentNullException, InvalidCastException, and OverflowException,
as well as many others. Most of them have obvious purposes, based on their name.
For example, ArgumentNullException is thrown when an argument to a method is
null when that is not an expected (or acceptable) value.

Most of the time, the predefined exceptions will be all you need for your program,
but you can define custom exceptions if you need them. Microsoft suggests that all
the exceptions you use in your program derive from System.Exception.

Searching for an Exception Handler
When your program encounters an exceptional circumstance, such as running out of
memory, it throws an exception, as we mentioned. Exceptions must be handled
before the program can continue. As we discussed, the exception handler is a catch

block located somewhere in your code. It can be located in the current method, or it
can be somewhere else higher up the call stack (which we defined in Chapter 9).

The throw Statement | 359

Where the exception handler is located dictates what the program does after the
exception is handled.

If the currently running method does not handle the exception, the current function
terminates. Control returns to the calling function, which then gets a chance to han-
dle the exception. If that calling function does not have an exception handler, the
function that called that one gets a chance. This process is called unwinding the stack.
If none of the calling functions handles the exception, including Main(), program
control passes to the Common Language Runtime (CLR), which abruptly terminates
your program—this is generally considered bad.

In other words, if method A calls method B, and method B calls method C, these
method calls are all placed on the stack. When a programmer talks about “unwind-
ing the stack,” she means that you back up from C to B to A, as illustrated in
Figure 16-1.

The point to remember here is that if you must unwind the stack from C to B to A to
handle the exception, when you are done, program control is in method A. You
don’t automatically return to C, and any code in C that wasn’t executed may never
be reached now. That’s why it’s a good idea to place your exception handlers as
close as you can to the point where an exception is likely to be thrown, keeping in
mind that you want to handle the exception at a point where you can take useful cor-
rective action.

The throw Statement
Most of the time, the system generates exceptions for you. However, you can also
generate your own exceptions, and that’s useful for the purposes of demonstration in
this chapter, so we’ll show you how to do that first. To signal an abnormal condi-
tion in a C# program, you throw an exception by using the throw keyword. The fol-
lowing line of code creates a new instance of System.Exception and then throws it:

throw new System.Exception();

Figure 16-1. You’ve seen the call stack in action in previous chapters. When an exception is thrown
in method C, the program will unwind the stack until it finds an exception handler.

Method A

Statement 1;
Statement 2;
B();
Statement 3;
return;

Method B

Statement 1;
Statement 2;
C();
Statement 3;
return;

Method C

Statement 1;
Statement 2;
return;

360 | Chapter 16: Throwing and Catching Exceptions

Remember that exceptions are objects in C#, not simply messages, so the throw

statement here actually creates a new Exception object, which is why it looks like it’s
calling a constructor. Example 16-1 illustrates what happens if you throw an excep-
tion and there is no exception handler to catch and handle the exception. In this
example, you’ll throw an exception even though nothing has actually gone wrong,
just to illustrate how an exception can bring your program to a halt.

Example 16-1. The unhandled exception in this example will crash your program, which is what
you’re trying to avoid

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_1_ _ _ _Unhandled_Exception
{
 class Tester
 {
 public void Run()
 {
 Console.WriteLine("Entering Run...");
 Method1();
 Console.WriteLine("Exiting Run...");
 }

 public void Method1()
 {
 Console.WriteLine("Entering Method1...");
 Method2();
 Console.WriteLine("Exiting Method1...");
 }

 public void Method2()
 {
 Console.WriteLine("Entering Method2...");
 throw new System.Exception();
 // this next line can never execute
 Console.WriteLine("Exiting Method2...");
 }
 static void Main()
 {
 Console.WriteLine("Entering Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exiting Main...");
 }
 }
}

The try and catch Statements | 361

The output looks like this:

Entering Main...
Entering Run...
Entering Method1...
Entering Method2...

Unhandled Exception: System.Exception: Exception of type
'System.Exception' was thrown.
 at Example_16_1_ _ _ _Unhandled_Exception.Tester.Method2()
 in C:\Documents\Visual Studio 2008\Projects\Chapter 16\
 Example 16-1 -- Unhandled Exception\Example 16-1 -- Unhandled
 Exception\Program.cs:line 27
 at Example_16_1_ _ _ _Unhandled_Exception.Tester.Main()
 in C:Documents\Visual Studio 2008\Projects\Chapter 16\Example 16-1
 -- Unhandled Exception\Example 16-1 -- Unhandled Exception\
 Program.cs:line 35

If you’re trying this example in Windows Vista, you won’t see this output immedi-
ately. Instead, you’ll see a dialog box telling you that the program has stopped work-
ing and that Windows is searching for a solution to the problem. It won’t find one,
so go ahead and click Cancel, and you’ll see the error message.

When you run this code, you’ll also receive a warning that the follow-
ing line is unreachable:

Console.WriteLine("Exiting Method2...");

That’s because the compiler can tell that there’s no way this line will
ever be reached. In this example, you can ignore the warning, but as
noted earlier, you should usually try to write warning-free code.

This simple example writes to the console as it enters and exits each method. Main()
calls Run(), which in turn calls Method1(). After printing out the “Entering Method1”
message, Method1() immediately calls Method2(). Method2() prints out the first mes-
sage and throws an object of type System.Exception.

Execution immediately stops, and the CLR looks to see whether there is a handler in
Method2(). There is not, and so the runtime unwinds the stack (never printing the
“exiting” statement) to Method1(). Again, there is no handler, and the runtime
unwinds the stack back to Main(). With no exception handler there, the default han-
dler is called, which prints the error message and terminates the program. Obvi-
ously, this isn’t what you want your users to see.

The try and catch Statements
As you saw, the exception in your previous example stopped your program dead.
That’s usually not the desired behavior. What you need is a way to tell the compiler,
“If any exceptions are thrown in this section of code, take this action.” That way,

362 | Chapter 16: Throwing and Catching Exceptions

your program can continue on from the error or at least end gracefully. This process
is called handling the exception. To handle exceptions, take the following steps:

1. Execute any code that you suspect might throw an exception (such as code that
opens a file or allocates memory) within a try block.

2. Catch any exceptions that are thrown in a catch block.

A try block is created using the keyword try and is enclosed in braces. You don’t
need any extra code to create the try block; it just indicates the area of code where
you want to watch for exceptions. A catch block holds the code where you take
action based on the type of exception thrown. It is created using the keyword catch

and is also enclosed in braces. In the abstract, the try/catch block looks like this:

try
{
 // Potentially hazardous code goes here.
}
catch
{
 // Exception handler code goes here.
}

Example 16-2 illustrates these constructs. Note that Example 16-2 is identical to
Example 16-1 except that now the program includes a try/catch block.

Example 16-2. The try and catch blocks in this example let you avoid the crash of the previous
example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_2_ _ _ _try_and_catch_blocks
{
 class Tester
 {
 public void Run()
 {
 Console.WriteLine("Entering Run...");
 Method1();
 Console.WriteLine("Exiting Run...");
 }

 public void Method1()
 {
 Console.WriteLine("Entering Method1...");
 Method2();
 Console.WriteLine("Exiting Method1...");
 }

 public void Method2()

The try and catch Statements | 363

The output looks like this:

Entering Main...
Entering Run...
Entering Method1...
Entering Method2...
Entering try block...
Exception caught and handled!
Exiting Method2...
Exiting Method1...
Exiting Run...
Exiting Main...

Following the try block is the catch block. In a real catch statement, you would try
to include code to fix the problem—if you can fix it without interrupting the user, so
much the better. For example, if the exception is raised because a database connec-
tion is down, you might retry the connection, assuming it’s safe to do so. You might
also interact with the user to solve the problem, such as offering the user the oppor-
tunity to close other applications and free up memory. In Example 16-2, the catch

block simply reports that the exception has been caught and handled.

Notice that all the exit statements are now written. With the exception handled, exe-
cution resumes immediately after the catch block.

 {
 Console.WriteLine("Entering Method2...");
 try
 {
 Console.WriteLine("Entering try block...");
 throw new System.Exception();
 // this next line can never execute
 Console.WriteLine("Exiting try block...");
 }
 catch
 {
 Console.WriteLine("Exception caught and handled!");
 }
 Console.WriteLine("Exiting Method2...");

 }
 static void Main()
 {
 Console.WriteLine("Entering Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exiting Main...");
 }
 }
}

Example 16-2. The try and catch blocks in this example let you avoid the crash of the previous
example (continued)

364 | Chapter 16: Throwing and Catching Exceptions

How the Call Stack Works
Examine the output of Example 16-2 carefully. You see the code enter Main(),
Method1(), Method2(), and the try block. You never see it exit the try block, though
it does exit Method2(), Method1(), and Main(). What happened?

When the exception is thrown, execution halts immediately and is handed to the
catch block. It never returns to the original code path. It never gets to the line that
prints the exit statement for the try block. The catch block handles the error, and
then execution falls through to the code following the catch block.

If there is no exception handler at all, as we discussed, the stack is unwound, return-
ing to the calling method in search of an exception handler. This unwinding contin-
ues until the Main() method is reached, and if no exception handler is found, the
default (ugly) exception handler is invoked and the program terminates.

In this example, because there is a catch block, the stack does not need to unwind.
The exception is handled, and the program can continue execution. Unwinding the
stack becomes a bit clearer if you move the try/catch blocks up to Method1(), as
Example 16-3 shows.

Example 16-3. The catch block has now moved fromMethod2 to Method1, so the program needs to
unwind the stack by one level before finding the handler

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_3_ _ _ _Unwinding_the_Stack
{
 class Tester
 {
 public void Run()
 {
 Console.WriteLine("Entering Run...");
 Method1();
 Console.WriteLine("Exiting Run...");
 }

 public void Method1()
 {
 Console.WriteLine("Entering Method1...");
 try
 {
 Console.WriteLine("Entering try block...");
 Method2();
 Console.WriteLine("Exiting try block...");
 }
 catch
 {

How the Call Stack Works | 365

Now the output looks like this:

Entering Main...
Entering Run...
Entering Method1...
Entering try block...
Entering Method2...
Exception caught and handled!
Exiting Method1...
Exiting Run...
Exiting Main...

This time the exception is not handled in Method2(); it is handled in Method1().
When Method2() is called, it uses Console.WriteLine() to display its first milestone:

Entering Method2...

Then Method2() throws an exception and execution halts. The runtime looks for a
handler in Method2(), but there isn’t one. Then the stack begins to unwind, and the
runtime looks for a handler in the calling function: Method1(). There is a catch block
in Method1(), so its code is executed. Execution then resumes immediately following
the catch statement, printing the exit statement for Method1() and then for Main().

Notice that even though the exception is handled, you are now in Method1, and there
is no automatic way to return to where you were in Method2.

If you’re not entirely sure why the Exiting try block statement and the Exiting

Method2 statement are not printed, try putting the code into a debugger and then
stepping through it.

 Console.WriteLine("Exception caught and handled!");
 }
 Console.WriteLine("Exiting Method1...");

 }

 public void Method2()
 {
 Console.WriteLine("Entering Method2...");
 throw new System.Exception();
 Console.WriteLine("Exiting Method2...");
 }
 static void Main()
 {
 Console.WriteLine("Entering Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exiting Main...");
 }
 }
}

Example 16-3. The catch block has now moved fromMethod2 to Method1, so the program needs to
unwind the stack by one level before finding the handler (continued)

366 | Chapter 16: Throwing and Catching Exceptions

Creating Dedicated catch Statements
So far, you’ve been working with generic catch statements only. You can create dedi-
cated catch statements that handle only some exceptions and not others, based on
the type of exception thrown. Example 16-4 illustrates how to specify which excep-
tion you’d like to handle. This example performs some simple division. As you’d
expect, dividing by zero is illegal, and C# has a specific exception just for that. For
the purposes of demonstration, we’ll say that the dividend in the operation also can-
not be zero. Mathematically, that’s perfectly legal, but we’ll assume that a result of
zero would cause problems elsewhere in the program. Obviously, C# doesn’t have
an exception type for that, so we’ll use a more general exception for that case.

Example 16-4. Each of these three dedicated catch statements is intended for a different type of
exception

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_4_ _ _ _Dedicated_catch_Statements
{
 class Tester
 {

 public void Run()
 {
 try
 {
 double a = 5;
 double b = 7;
 Console.WriteLine("Dividing {0} by {1}...", a, b);
 Console.WriteLine("{0} / {1} = {2}", a, b,
 DoDivide(a, b));
 }

 // most specific exception type first
 catch (DivideByZeroException)
 {
 Console.WriteLine("DivideByZeroException caught!");
 }

 catch (ArithmeticException)
 {
 Console.WriteLine("ArithmeticException caught!");
 }

 // generic exception type last
 catch
 {
 Console.WriteLine("Unknown exception caught");

Creating Dedicated catch Statements | 367

In Example 16-4, the DoDivide() method does not let you divide zero by another
number, nor does it let you divide a number by zero. If you try to divide by zero, it
throws an instance of DivideByZeroException. As we mentioned, we’ll also assume
you don’t want to allow division of zero by any number; in that case, you will throw
an ArithmeticException.

When the exception is thrown, the runtime examines each exception handler in the
order in which it appears in the code and matches the first one it can. If you were to
run this program with a=5 and b=7, the output would be:

5 / 7 = 0.7142857142857143

As you’d expect, no exception is thrown. However, when you change the value of a
to 0, the output is:

ArithmeticException caught!

The exception is thrown, and the runtime examines the first exception:
DivideByZeroException. Because this does not match, it goes on to the next handler,
ArithmeticException, which does match.

In a final pass through, suppose you change a to 7 and b to 0. This throws the
DivideByZeroException.

 }
 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 if (a == 0)
 {
 throw new ArithmeticException();
 }
 return a / b;
 }

 static void Main()
 {
 Console.WriteLine("Enter Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exit Main...");
 }
 }
}

Example 16-4. Each of these three dedicated catch statements is intended for a different type of
exception (continued)

368 | Chapter 16: Throwing and Catching Exceptions

You have to be particularly careful with the order of the catch statements in this case
because the DivideByZeroException is derived from ArithmeticException. If you reverse
the catch statements, the DivideByZeroException matches the ArithmeticException han-
dler and the exception never gets to the DivideByZeroException handler. In fact, if their
order is reversed, it is impossible for any exception to reach the DivideByZeroException

handler. Then the compiler recognizes that the DivideByZeroException handler cannot
be reached and reports a compile error!

Typically, a method catches every exception it can anticipate for the code it is run-
ning. However, it is possible to distribute your try/catch statements, catching some
specific exceptions in one function and more generic exceptions in higher calling
functions. Your design goals should dictate exactly where you put each try and catch

statement.

Assume you have a method A that calls another method B, which in turn calls
method C, which calls method D, which then calls method E. Method E is deep in
your code, and methods B and A are higher up. If you anticipate that method E
might throw an exception, you should create a try/catch block deep in your code to
catch that exception as close as possible to the place where the problem arises—but
only if there’s sensible action to take at the level of method E. Many programmers
will put an exception handler at the top of their program (or at the top of each mod-
ule) to handle unanticipated exceptions that would otherwise “slip by” and trigger the
built-in exception handler. This at least allows your program to fail gracefully (and for
some programs, to log an error, or notify someone by email). It often turns out that
these “last chance” exception handlers in early versions of the application lead to the
addition of one or two more specific exception handlers in future versions.

The finally Statement
In some instances, throwing an exception and unwinding the stack can create a
problem. For example, if you opened a file, connected to a database, or otherwise
committed a resource, you might need an opportunity to close the file or database
connection. As you saw in the previous examples, when an exception is thrown, it
can leave behind code in the method that never gets executed. If that orphaned code
is where you closed the file, your program could end without cleaning up after itself.

If there is some action you must take regardless of whether an exception is thrown,
such as closing a file, you have two strategies to choose from. One approach is to
enclose the dangerous action in a try block and then to perform the necessary action
(close the file) in both the catch and try blocks. However, this is an ugly duplication
of code, and it’s error-prone. C# provides a better alternative in the finally block.

You create a finally block with the keyword finally, and you enclose the block in
braces. The code in the finally block is guaranteed to be executed regardless of
whether an exception is thrown. The TestFunc() method in Example 16-5 simulates

The finally Statement | 369

opening a file as its first action. The method then undertakes some mathematical
operations, and then the file is closed.

A finally block can be created with or without catch blocks, but a
finally block requires a try block to execute. It is an error to exit a
finally block with break, continue, return, or goto.

It is possible that sometime between opening and closing the file, an exception will
be thrown. If this happens, the file could remain open. No matter what happens, at
the end of this method, the file should be closed, so the file close function call is
moved to a finally block, where it is executed regardless of whether an exception is
thrown. Example 16-5 uses a finally block.

Example 16-5. If you have code that must run at the end of a method, no matter what exceptions are
thrown, using a finally block will guarantee that the code will run

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_5_ _ _ _finally_Block
{
 class Tester
 {
 public void Run()
 {
 try
 {
 Console.WriteLine("Open file here.");
 double a = 5;
 double b = 0;
 Console.WriteLine("{0} / {1} = {2}", a, b,
 DoDivide(a, b));
 Console.WriteLine("This line may or may not print");
 }

 // most derived exception type first
 catch (DivideByZeroException)
 {
 Console.WriteLine("DivideByZeroException caught!");
 }
 catch
 {
 Console.WriteLine("Unknown exception caught");
 }
 finally
 {
 Console.WriteLine("Close file here.");
 }
 }

370 | Chapter 16: Throwing and Catching Exceptions

The output looks like this:

Enter Main...
Open file here.
DivideByZeroException caught!
Close file here.
Exit Main...

In Example 16-5, we’ve removed one of the catch blocks from Example 16-4 to save
space, and added a finally block. Whether or not an exception is thrown, the
finally block is executed; thus, in both examples, the following message is output:

Close file here.

Of course, in a real application, you would actually open the file in the try block,
and you’d actually close the file in the finally block. We’re leaving out the details of
file manipulation to keep the example simple.

Exception Class Methods and Properties
So far you’ve been using the exception as a sentinel—that is, the presence of the
exception signals the errors—but you haven’t touched or examined the Exception

object itself. The System.Exception class provides a number of useful methods and
properties.

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 if (a == 0)
 {
 throw new ArithmeticException();
 }
 return a / b;
 }

 static void Main()
 {
 Console.WriteLine("Enter Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exit Main...");
 }
 }
}

Example 16-5. If you have code that must run at the end of a method, no matter what exceptions are
thrown, using a finally block will guarantee that the code will run (continued)

Exception Class Methods and Properties | 371

The Message property provides information about the exception, such as why it was
thrown. The Message property is read-only; the code throwing the exception can pass
in the message as an argument to the exception constructor, but the Message prop-
erty cannot be modified by any method once set in the constructor.

The HelpLink property provides a link to a help file associated with the exception.
This property is read/write. In Example 16-6, the Exception.HelpLink property is set
and retrieved to provide information to the user about the DivideByZeroException. It
is generally a good idea to provide a help file link for any exceptions you create so
that the user can learn how to correct the exceptional circumstance.

The read-only StackTrace property is set by the CLR. This property is used to pro-
vide a stack trace for the error statement. A stack trace is used to display the call
stack: the series of method calls that lead to the method in which the exception was
thrown.

Keep in mind that although a stack trace is useful to a developer track-
ing down an error it’s probably not useful to an end user. When you’re
using a stack trace, consider who’s going to see it.

Example 16-6. The Exception class has properties to provide a message, a link to a help file, or a
stack trace

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_6_ _ _ _Exception_Class_Properties
{
 class Tester
 {
 public void Run()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 12;
 double b = 0;
 Console.WriteLine("{0} / {1} = {2}", a, b,
 DoDivide(a, b));
 Console.WriteLine("This line may or may not print");
 }

 // most derived exception type first
 catch (DivideByZeroException e)
 {
 Console.WriteLine("\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine("\nHelpLink: {0}", e.HelpLink);
 Console.WriteLine("\nHere's a stack trace: {0}\n",

372 | Chapter 16: Throwing and Catching Exceptions

The output looks like this:

Enter Main...
Open file here

DivideByZeroException! Msg: Attempted to divide by zero.

HelpLink: http://www.libertyassociates.com

Here's a stack trace: at Example_16_6_ _ _ _Exception_Class_
 Properties.Tester.DoDivide(Double a, Double b) in C:\AppData\
 Local\Temporary Projects\Example 16-6 -- Exception Class

 e.StackTrace);
 }
 catch
 {
 Console.WriteLine("Unknown exception caught");
 }
 finally
 {
 Console.WriteLine("Close file here.");
 }

 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 DivideByZeroException e = new DivideByZeroException();
 e.HelpLink = "http://www.libertyassociates.com";
 throw e;
 }
 if (a == 0)
 {
 throw new ArithmeticException();
 }
 return a / b;
 }

 static void Main()
 {
 Console.WriteLine("Enter Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exit Main...");
 }
 }
}

Example 16-6. The Exception class has properties to provide a message, a link to a help file, or a
stack trace (continued)

Exception Class Methods and Properties | 373

 Properties\Program.cs:line 46
 at Example_16_6_ _ _ _Exception_Class_Properties.Tester.Run()
 in C:AppData\Local\Temporary Projects\Example 16-6 --
 Exception Class Properties\Program.cs:line 17

Close file here.
Exit Main...

In the output of Example 16-6, the stack trace lists the methods in the reverse order
in which they were called; by reviewing this order, you can infer that the exception
was thrown in DoDivide(), which was called by Run(). When methods are deeply
nested, the stack trace can help you understand the order of method calls and thus
track down the point at which the exception occurred, and how you got there, if
your method is called from several different points in the application.

In this example, rather than simply throwing a DivideByZeroException, you create a
new instance of the exception object:

DivideByZeroException e = new DivideByZeroException();

This works just like instantiating any other object; you used the new keyword and
called the constructor. You can then use the instance, e, to set the properties of the
object as you would any other object with public properties. You do not pass in a
custom message, and so the default message is printed:

DivideByZeroException! Msg: Attempted to divide by zero.

The designer of each Exception class has the option to provide a
default message for that exception type. All the standard exceptions
provide a default message, and it is a good idea to add a default mes-
sage to your custom exceptions as well (see “Custom Exceptions” later
in this chapter).

If you want, you can modify this line of code to pass in a custom message:

new DivideByZeroException(
 "You tried to divide by zero which is not meaningful");

In this case, the output message reflects the custom message:

DivideByZeroException! Msg:
You tried to divide by zero which is not meaningful

Before throwing the exception, set the HelpLink property:

e.HelpLink = "http://www.libertyassociates.com";

When this exception is caught, Console.WriteLine prints both the Message and the
HelpLink:

catch (DivideByZeroException e)
{
 Console.WriteLine("\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine("\nHelpLink: {0}", e.HelpLink);

374 | Chapter 16: Throwing and Catching Exceptions

The Message and HelpLink properties allow you to provide useful information to the
user. The exception handler also prints the StackTrace by getting the StackTrace

property of the Exception object:

Console.WriteLine("\nHere's a stack trace: {0}\n",
 e.StackTrace);

The output of this call reflects a full StackTrace leading to the moment the exception
was thrown. In this case, only two methods were executed before the exception,
DoDivide() and Run():

Here's a stack trace: at Example_16_6_ _ _ _Exception_Class_
 Properties.Tester.DoDivide(Double a, Double b) in Program.cs:line 46
 at Example_16_6_ _ _ _Exception_Class_Properties.Tester.Run()
 in:line 17

Note that we’ve shortened the pathnames, so your printout might look a little different.

Custom Exceptions
The intrinsic exception types C# provides, coupled with the custom messages shown
in the previous example, will often be all you need to provide extensive information
to a catch block when an exception is thrown.

Sometimes, however, you will want to provide more extensive information or need
special capabilities in your exception. It is a trivial matter to create your own custom
exception class. Even though you’ll rarely need to do it, Example 16-7 illustrates the
creation of a custom exception.

Example 16-7. Although C# provides a range of exceptions that you’ll use most of the time, you can
define a custom exception if you need it

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_16_7_ _ _ _Custom_Exception
{
 // custom exception class
 public class MyCustomException : System.Exception
 {
 public MyCustomException(string message) :
 base(message) // pass the message up to the base class
 {
 }
 }

 class Tester
 {

Custom Exceptions | 375

 public void Run()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 0;
 double b = 5;
 Console.WriteLine("{0} / {1} = {2}", a, b,
 DoDivide(a, b));
 Console.WriteLine("This line may or may not print");
 }

 // most derived exception type first
 catch (System.DivideByZeroException e)
 {
 Console.WriteLine("\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine("\nHelpLink: {0}\n", e.HelpLink);
 }
 // catch custom exception
 catch (MyCustomException e)
 {
 Console.WriteLine("\nMyCustomException! Msg: {0}",
 e.Message);
 Console.WriteLine("\nHelpLink: {0}\n", e.HelpLink);
 }
 catch // catch any uncaught exceptions
 {
 Console.WriteLine("Unknown exception caught");
 }
 finally
 {
 Console.WriteLine("Close file here.");
 }
 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 DivideByZeroException e = new DivideByZeroException();
 e.HelpLink = "http://www.libertyassociates.com";
 throw e;
 }
 if (a == 0)
 {
 // create a custom exception instance
 MyCustomException e = new MyCustomException("Can't
 have zero dividend");

Example 16-7. Although C# provides a range of exceptions that you’ll use most of the time, you can
define a custom exception if you need it (continued)

376 | Chapter 16: Throwing and Catching Exceptions

The output looks like this:

Enter Main...
Open file here

MyCustomException! Msg: Can't have zero dividend

HelpLink: http://www.libertyassociates.com/NoZeroDividend.htm

Close file here.
Exit Main...

MyCustomException is derived from System.Exception and consists of nothing more
than a constructor that takes a string message that it passes to its base class. There’s
no code inside the constructor at all.

The advantage of creating this custom exception class is that it better reflects the par-
ticular design of the Tester class. That is, you’ve decided that, for whatever reason,
it’s not legal to have a zero dividend in this class.

Using the ArithmeticException rather than a custom exception would work as well,
but it might confuse other programmers because a zero dividend wouldn’t normally
be considered an arithmetic error. Using a custom exception indicates that the
exception was raised because of a violation of rules that are particular to your class.

You are free, of course, to add methods and properties to your custom exception
classes as needed.

 e.HelpLink =
 "http://www.libertyassociates.com/NoZeroDividend.htm";
 throw e;
 }
 return a / b;
 }

 static void Main()
 {
 Console.WriteLine("Enter Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exit Main...");
 }
 }
}

Example 16-7. Although C# provides a range of exceptions that you’ll use most of the time, you can
define a custom exception if you need it (continued)

Summary | 377

Summary
• Throwing (or raising) an exception halts execution of your program at that

point, and execution proceeds in the most immediately available catch block
(exception handler).

• A bug is a programming mistake that should be fixed before the program is
released. An exception, however, is the result of a predictable but unpreventable
problem that arises during runtime (for example, running out of disk space).

• When a program encounters a problem that it cannot solve or work around, it
may throw an exception to halt execution and allow the exception handler to fix
or work around the problem.

• All exceptions used in C# derive from System.Exception, and all exceptions in
your program should derive from System.Exception.

• You can throw an exception yourself using the throw keyword.

• It is good programming practice to enclose code that has a high risk of throwing
an exception within a try block and to provide an exception handler (a catch

block) and perhaps a finally block.

• The catch block follows the try block and contains the code used to handle the
exception.

• If an exception was not raised within a try block, or there is no catch block, the
stack is unwound until a catch block is found. If no catch block is ever found,
the built-in exception handler is invoked, which terminates your program with
an error message.

• You can create dedicated catch statements to catch specific types of exceptions
taking advantage of the inheritance hierarchy of exceptions.

• Any action that must be taken whether or not an exception is raised (such as
closing a file) should be enclosed in a finally block.

• An exception object can contain information about the circumstances that cause
the exception to be raised. Typically, exception objects contain at least a text
message explaining the exception, in the Message property.

• You can define your own exception class, derived from System.Exception, if you
need to provide more specific information about your exception.

With this chapter, you’ve taken a step toward the real world of development—
you’ve discarded the idea that the world is populated by perfect users who never
enter bad data, and perfect systems that never drop your connection when you need
it. Although no code is ever bulletproof, yours is no longer made of tinfoil. Now that
you can let your programs out of their isolated corner of your system, it’s time to let

378 | Chapter 16: Throwing and Catching Exceptions

them interact with other things going on in your environment, things called events.
In the next chapter, you’ll see how to let your code play well with others.

Test Your Knowledge: Quiz

Question 16-1. What is an exception, in C# terms?

Question 16-2. What’s the difference between a bug and an exception?

Question 16-3. What’s the syntax for generating an exception?

Question 16-4. What’s the syntax for handling an exception?

Question 16-5. What does the framework do if no exception handler is found in the
method that throws an event?

Question 16-6. When an exception handler is used, where does the program execu-
tion resume, after the handler code is run?

Question 16-7. What is the syntax for throwing a new ArgumentNull exception?

Question 16-8. How do you write code to handle various exceptions differently?

Question 16-9. What is the finally statement?

Question 16-10. Why would you want to create a custom exception?

Test Your Knowledge: Exercises

Exercise 16-1. Create a simple array of three integers. Ask the user which array ele-
ment she wants to see. Output the integer that the user asked for (remember that the
user probably won’t ask for a zero-based index). Provide a way for the user to indi-
cate whether she wants another integer, or to end the program. Provide a handler
that deals with invalid input.

Exercise 16-2. Modify the example in Exercise 16-1 to handle two specific errors: the
IndexOutOfRangeException, which is used when the user enters a number that’s not
valid for the array, and the FormatException, which is used when the entered value
doesn’t match the expected format—in this case, if the user enters something that
isn’t a number. Leave the existing handler as a default.

Test Your Knowledge: Exercises | 379

Exercise 16-3. Create a Cat class with one int property: Age. Write a program that cre-
ates a List of Cat objects in a try block. Create multiple catch statements to handle
an ArgumentOutOfRangeException and an unknown exception, and a finally block to
simulate deallocating the Cat objects. Write test code to throw an exception that you
will catch and handle.

Exercise 16-4. Modify the test code you wrote in Exercise 16-3 so that it does not
throw an error. Create a custom error type CustomCatError that derives from System.

ApplicationException, and create a handler for it. Add a method to CatManager that
checks the cat’s age and throws a new error of type CustomCatError if the age is less
than or equal to 0, with an appropriate message. Write some test code to test your
new exception.

380

CHAPTER 17

Delegates and Events

When a head of state dies, the president of the United States sometimes does not have
time to attend the funeral personally. Instead, he dispatches a delegate. Often this dele-
gate is the vice president, but sometimes the VP is unavailable and the president must
send someone else, such as the secretary of state or even the first lady. He does not
want to “hardwire” his delegated authority to a single person; he might delegate this
responsibility to anyone who is able to execute the correct international protocol.

The president defines in advance what responsibility will be delegated (attend the
funeral), what items will be passed (condolences, kind words), and what value he
hopes to get back (good will). He then assigns a particular person to that delegated
responsibility at “runtime” as the course of his presidency progresses.

In programming, you are often faced with situations where you need to execute a par-
ticular action, but you don’t know in advance which method, or even which object,
you’ll want to call upon to execute it. For example, you might want to tell an object to
play a media file during runtime, but you might not know what object will be playing
the file, or whether it’s a video, a sound file, an animation, or something else. Rather
than hardcoding a particular media player object, you would create a delegate, and
then resolve that delegate to a particular method when the program executes.

In the early, dark, and primitive days of computing, a program would begin execu-
tion and then proceed through its steps until it completed. If the user was involved,
the interaction was strictly controlled and limited to filling in fields. That’s the model
you’ve followed in all the console applications in this book so far, but it’s not how
you’re used to interacting with applications these days.

Today’s graphical user interface (GUI) programming model uses a different
approach, known as event-driven programming. A modern program presents the user
interface and waits for the user to take an action. The user might take many differ-
ent actions, such as choosing among menu selections, pushing buttons, updating
text fields, clicking icons, and so forth. Each action causes an event to be raised.

Delegates | 381

Other events can be raised without direct user action, such as events that corre-
spond to timer ticks of the internal clock, email being received, file-copy operations
completing, and so forth.

An event is the encapsulation of the idea that “something happened” to which the
program must respond. Events and delegates are tightly coupled concepts because
flexible event handling requires that the response to the event be dispatched to the
appropriate event handler. An event handler is typically implemented in C# via a
delegate. Visual Studio does a lot of work for you in creating event handlers, but you
should know how they work first, and then we’ll show you Windows application
programming in the next chapter.

Delegates
A delegate is a reference type, like the other reference types you’ve seen in this book,
but instead of referring to an object, a delegate refers to a method. This is called encap-
sulating the method. When you create the delegate, you specify a method signature
and return type; you can encapsulate any matching method with that delegate.

You create a delegate with the delegate keyword, followed by a return type and the
signature of the methods that can be delegated to it, as in the following:

public delegate int FindResult(object obj1, object obj2);

This declaration defines a delegate named FindResult, which will encapsulate any
method that takes two objects as parameters and that returns an int.

Once the delegate is defined, you can encapsulate a member method with that dele-
gate by creating an instance of the delegate, passing in a method that matches the
return type and signature. Notice that the delegate has no method body; that’s
because you’re not defining the method here. You’re simply saying that this delegate
can encapsulate any method with the appropriate signature; you don’t care what it
does or how it does it, as long as it has the right parameters and returns the correct
type.

As an alternative, you can use anonymous methods or lambda expressions, as
described later in this chapter. In either case, you can use the delegate to invoke that
encapsulated method.

Delegates decouple the class that declares the delegate from the class that uses the dele-
gate. That’s part of the principle of encapsulation that we talked about back in
Chapter 6. The class that declares the delegate FindResult doesn’t need to know how
the result is found, or what class uses the delegate; all it needs to do is get an int back.

For example, suppose you have a class called MediaStorage that you use to store and
manage various media files—audio files, video files, animation files; the type of file

382 | Chapter 17: Delegates and Events

doesn’t matter to the class. Suppose further that you want this class to be able to
play the files to make sure they can be played successfully, and report on whether
they played properly or not (as a way of testing whether the file is valid). The
MediaStorage class doesn’t need to know how to play the files; it just needs to receive
a code indicating whether the file played successfully or not.

You could fulfill this requirement with interfaces, although it may not be worth it to
you to define an entirely new interface and create an instance of it when you could
use a delegate instead. In this case, we’ll be testing only two types of media files, so
we’ll use delegates. If there were a wider range of media file types, you might want to
define an appropriate interface.

The delegate declaration in MediaStorage is rather simple:

public delegate int PlayMedia();

This delegate takes no parameters, but expects an int as a return value, to indicate
whether the file played successfully. A value of 0 indicates success; anything else
indicates failure. Note again that the method has no body.

The only other method in MediaStorage is ReportResult(), which outputs to the con-
sole the result from the media test:

public void ReportResult(PlayMedia playerDelegate)
{
 if (playerDelegate() == 0)
 {
 Console.WriteLine("Media played successfully.");
 }
 else
 {
 Console.WriteLine("Media did not play successfully.");
 }
}

This looks like a normal method, except for the parameter it takes: playerDelegate,
which is not an int, as you might expect, but rather a delegate, of type PlayMedia,
which you declared earlier. It’s not easy to think of a method in the same terms that
you might normally think of an object, but that’s how delegates work.

In the body of the method, you can’t declare playerDelegate directly as an integer,
because playerDelegate is a reference to a method. Instead, you evaluate the method
that the delegate points to, and compare the result. That’s why you’re testing
playerDelegate() == 0. From there, you just output an appropriate message.

Take a look now at one of the media player classes:

public class AudioPlayer
{
 private int audioPlayerStatus;

 public int PlayAudioFile()

Delegates | 383

 {
 Console.WriteLine("Simulating playing an audio file here.");
 audioPlayerStatus = 0;
 return audioPlayerStatus;
 }
}

This class has one private internal member, and a simple public method that simu-
lates playing an audio file and returning a status code in the form of an int. This
method, PlayAudioFile(), has the signature the delegate requires, so this method can
be used with the delegate. (Of course, a real media player would have many more
methods than just this one, but we’re keeping things simple for testing purposes.)

The other media player class is VideoPlayer, with a similar PlayVideoFile() method.

Within the body of the program, you first need to instantiate the MediaStorage class,
and then one of each of the players:

MediaStorage myMediaStorage = new MediaStorage();

AudioPlayer myAudioPlayer = new AudioPlayer();
VideoPlayer myVideoPlayer = new VideoPlayer();

That’s easy enough. The next thing you need to do is instantiate the delegates. The
delegates are of the type MediaStorage.PlayMedia (note that you’re using the
MediaStorage class here, not the object of that class you created a minute ago). You
still use the keyword new to instantiate the delegate, but you pass the method
PlayAudioFile as a parameter to the delegate when it’s created. The result is that
audioPlayerDelegate is a delegate of type PlayMedia, which you can now work with
as a reference to that method:

// instantiate the delegates
MediaStorage.PlayMedia audioPlayerDelegate = new
 MediaStorage.PlayMedia(myAudioPlayer.PlayAudioFile);
MediaStorage.PlayMedia videoPlayerDelegate = new
 MediaStorage.PlayMedia(myVideoPlayer.PlayVideoFile);

Now that you have the two delegate instances, you use the delegates with the
ReportResult() method to see whether the media files were valid. Notice here that
what you’re passing to the ReportResult() method is a reference to a method in a
different class altogether:

myMediaStorage.ReportResult(audioPlayerDelegate);
myMediaStorage.ReportResult(videoPlayerDelegate);

The outcome of this is the first line causes ReportResult() to call the PlayAudioFile(

) method, but the second line causes it to call the PlayVideoFile() method. At com-
pile time, ReportResult() doesn’t know which method it is going to call—it finds
out only when it is invoked at runtime. All it needs to know is that any method it will
be asked to call will match the signature defined by the PlayMedia delegate.

The full program is shown in Example 17-1, followed by the outcome.

384 | Chapter 17: Delegates and Events

Example 17-1. Working with delegates seems complicated at first, but you just need to remember
that you’re passing a reference to a method

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_17_1_ _ _ _Using_Delegates
{
 public class MediaStorage
 {
 public delegate int PlayMedia();

 public void ReportResult(PlayMedia playerDelegate)
 {
 if (playerDelegate() == 0)
 {
 Console.WriteLine("Media played successfully.");
 }
 else
 {
 Console.WriteLine("Media did not play successfully.");
 }
 }

 }

 public class AudioPlayer
 {
 private int audioPlayerStatus;

 public int PlayAudioFile()
 {
 Console.WriteLine("Simulating playing an audio file here.");
 audioPlayerStatus = 0;
 return audioPlayerStatus;
 }
 }

 public class VideoPlayer
 {
 private int videoPlayerStatus;

 public int PlayVideoFile()
 {
 Console.WriteLine("Simulating a failed video file here.");
 videoPlayerStatus = -1;
 return videoPlayerStatus;
 }
 }

Events | 385

Just for variety, the video player class returns an error code. Of course, you’d proba-
bly want your MediaStorage class to take more action than simply reporting that the
file didn’t play, but we won’t go into that here. This is what the output looks like:

Simulating playing an audio file here.
Media played successfully.
Simulating a failed video file here.
Media did not play successfully.

Events
GUIs, such as Microsoft Windows and web browsers, require that programs respond
to events. An event might be a button click, a menu selection, the completion of a file
transfer, and so forth. In short, something happens and you must respond to it. You
cannot predict the order in which events will arise. The system is quiescent until the
event, and then springs into action to handle it.

 public class Tester
 {
 public void Run()
 {
 MediaStorage myMediaStorage = new MediaStorage();

 // instantiate the two media players
 AudioPlayer myAudioPlayer = new AudioPlayer();
 VideoPlayer myVideoPlayer = new VideoPlayer();

 // instantiate the delegates
 MediaStorage.PlayMedia audioPlayerDelegate = new
 MediaStorage.PlayMedia(myAudioPlayer.PlayAudioFile);
 MediaStorage.PlayMedia videoPlayerDelegate = new
 MediaStorage.PlayMedia(myVideoPlayer.PlayVideoFile);

 // call the delegates
 myMediaStorage.ReportResult(audioPlayerDelegate);
 myMediaStorage.ReportResult(videoPlayerDelegate);

 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 17-1. Working with delegates seems complicated at first, but you just need to remember
that you’re passing a reference to a method (continued)

386 | Chapter 17: Delegates and Events

In a GUI environment, any number of controls can raise an event. For example,
when you click a button, it might raise the Click event. When you add to a drop-
down list, it might raise a ListChanged event.

Other classes will be interested in responding to these events. How they respond is
not of interest to the class raising the event. The button says, “I was clicked,” and the
responding classes react appropriately.

Publishing and Subscribing
In C#, any object can publish a set of events to which other classes can subscribe.
When the publishing class raises an event, all the subscribed classes are notified. With
this mechanism, your object can say, “Here are things I can notify you about,” and
other classes might sign up, saying, “Yes, let me know when that happens.” For
example, a button might notify any number of interested observers when it is clicked.
The button is called the publisher because the button publishes the Click event and
the other classes are the subscribers because they subscribe to the Click event. Note
that the publishing class does not know or care who (if anyone) subscribes; it just
raises the event. Who responds to that event, and how they respond, is not the con-
cern of the publishing class.

This design implements the Publish/Subscribe (Observer) Pattern
described in the seminal work Design Patterns by Erich Gamma et al.
(Addison-Wesley).

As a second example, a Clock might notify interested classes whenever the time
changes by one second. The Clock class could itself be responsible for the user inter-
face representation of the time, rather than raising an event, so why bother with the
indirection of using delegates? The advantage of the publish/subscribe idiom is that
the Clock class doesn’t need to know how its information will be used; this way, the
monitoring of the time is decoupled from the representation of that information, just
as in the previous example the request to play the media was decoupled from the
details of the player itself. In addition, any number of classes can be notified when an
event is raised. The subscribing classes do not need to know how the Clock works,
and the Clock does not need to know what they are going to do in response to the
event. The subscribing classes don’t need to know about each other, either.

The publisher and the subscribers are decoupled by the delegate. This is highly desir-
able; it makes for more flexible and robust code. The Clock can change how it detects
time without breaking any of the subscribing classes. The subscribing classes can
change how they respond to time changes without breaking the Clock. Publishers
and subscribers operate independently of one another, and that makes for code that
is easier to maintain.

Events | 387

Events and Delegates
Events in C# are implemented with delegates. The publishing class defines a dele-
gate. The subscribing class does two things: first, it creates a method that matches
the signature of the delegate, and then it creates an instance of that delegate type
encapsulating that method. When the event is raised, the subscribing class’s meth-
ods are invoked through the delegate.

A method that handles an event is called an event handler. You can declare your
event handlers as you would any other delegate.

By convention, event handlers in the .NET Framework always return void and take
two parameters. The first parameter is the “source” of the event (that is, the publish-
ing object). The second parameter is an object derived from EventArgs. Your event
handlers will need to follow this design pattern.

EventArgs is the base class for all event data. Other than its constructor, the
EventArgs class inherits all its methods from Object, though it does add a public
static field named Empty, which represents an event with no state (to allow for the
efficient use of events with no state). In other words, the EventArgs class is an empty
bucket that you can use to supply any information you want about the event, or no
information at all. What the subscribing class does with that information is the sub-
scriber’s business; it doesn’t matter to the publisher. In this way, the subscribing
class can easily match the required delegate signature, by simply taking a parameter
of type EventArgs. The subscriber might use all, some, or none of the information
passed in EventArgs; it doesn’t matter.

Suppose you want to create a Clock class that uses delegates to notify potential sub-
scribers whenever the local time changes its value by one second. Call this delegate
SecondChangeHandler.

The declaration for the SecondChangeHandler delegate is:

public delegate void SecondChangeHandler(
 object clock, TimeInfoEventArgs timeInformation);

This delegate will encapsulate any method that returns void and that takes two
parameters. The first parameter is an object that represents the Clock (the object rais-
ing the event), and the second parameter is an object of type TimeInfoEventArgs,
derived from EventArgs, that will contain useful information for anyone interested in
this event. TimeInfoEventArgs is defined as follows:

public class TimeInfoEventArgs : EventArgs
{
 public int hour;
 public int minute;
 public int second;

 public TimeInfoEventArgs(int hour, int minute, int second)
 {

388 | Chapter 17: Delegates and Events

 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
}

The TimeInfoEventArgs object will have information about the current hour, minute,
and second. It defines a constructor and three public integer variables.

In addition to its delegate, the Clock class has three member variables—hour, minute,
and second—as well as a single method, Run():

public void Run()
{
 for (; ;)
 {
 // sleep 100 milliseconds
 Thread.Sleep(100);

 // get the current time
 System.DateTime dt = System.DateTime.Now;
 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour, dt.Minute, dt.Second);

 // if anyone has subscribed, notify them
 if (SecondChanged != null)
 {
 SecondChanged(this, timeInformation);
 }
 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;
 }
}

Run() creates an infinite for loop that periodically checks the system time. If the time
has changed from the Clock object’s current time, it notifies all of its subscribers and
then updates its own state.

The first step is to sleep for 10 milliseconds:

Thread.Sleep(100);

This line uses a method you haven’t seen yet, a static method of the Thread class
from the System.Threading namespace. The Thread class is an advanced topic we

Events | 389

won’t cover in this book, but in this case, Thread.Sleep() simply serves the function
of making your program check the clock every 100 milliseconds. Without the call to
Sleep(), your program would check the system clock so often that your processor
couldn’t do anything else. You also need to add using System.Threading; to your
using statements for Sleep() to work.

After sleeping for 100 milliseconds, the method checks the current time:

System.DateTime dt = System.DateTime.Now;

About every 10 times it checks, the second will have incremented. The method
notices that change and notifies its subscribers. To do so, it first creates a new
TimeInfoEventArgs object:

if (dt.Second != second)
{
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour, dt.Minute, dt.Second);

It then notifies the subscribers by firing the SecondChanged event. SecondChanged is the
instance of the delegate type SecondChangeHandler that was declared earlier in the
class:

// if anyone has subscribed, notify them
if (SecondChanged != null)
{
 SecondChanged(this, timeInformation);
}

If an event has no subscribers registered, it will evaluate to null. The preceding test
checks that the value is not null, ensuring that there are subscribers before calling
SecondChanged.

Like all events, SecondChanged takes two arguments: the source of the event and the
object derived from EventArgs. In the snippet, you see that the clock’s this reference
is passed because the clock is the source of the event. The second parameter is the
TimeInfoEventArgs object, timeInformation, created in the preceding snippet.

Raising the event will invoke whatever methods have been registered with the Clock

class through the delegate. We’ll examine this in a moment.

Once the event is raised, you update the state of the Clock class:

this.second = dt.Second;
this.minute = dt.Minute;
this.hour = dt.Hour;

All that is left is to create classes that can subscribe to this event. You’ll create two.
First will be the DisplayClock class. The job of DisplayClock is not to keep track of
time, but rather to display the current time to the console.

390 | Chapter 17: Delegates and Events

The example simplifies this class down to two methods. The first is a helper method
named Subscribe() that is used to subscribe to the clock’s SecondChanged delegate.
The second method is the event handler TimeHasChanged():

 public class DisplayClock
 {
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 public void TimeHasChanged(object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
 }
 }

When the first method, Subscribe(), is invoked, it creates a new SecondChangeHandler

delegate, passing in its event handler method, TimeHasChanged(). It then registers that
delegate with the SecondChanged event of Clock. The += operator is the mechanism by
which classes can register their event handlers with the event. As you’ll see, using the
+= operator allows multiple classes to register handlers for a single event. Delegates
with multiple subscribers are calledmulticast delegates.

You will create a second class that will also respond to this event, LogCurrentTime.
This class would normally log the event to a file, but for our demonstration pur-
poses, it will log to the standard console:

public class LogCurrentTime
{
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 public void WriteLogEntry(object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
 }
}

Although in this example these two classes are very similar, in a production program
any number of disparate classes might subscribe to an event.

All that remains is to create a Clock class, create the DisplayClock class, and tell it to
subscribe to the event. You then will create a LogCurrentTime class and tell it to sub-
scribe as well. Finally, you’ll tell the Clock to run. All of this is shown in
Example 17-2 (you’ll need to press Ctrl-C to terminate this application).

Events | 391

Example 17-2. You can implement events with delegates by setting up a publishing class with a
delegate and subscribing classes that handle the event

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace Example_17_2_ _ _ _Delegates_and_Events
{
 // a class to hold the information about the event
 // in this case it will hold only information
 // available in the clock class, but could hold
 // additional state information
 public class TimeInfoEventArgs : EventArgs
 {
 public int hour;
 public int minute;
 public int second;

 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
 }

 // The publisher: the class that other classes
 // will observe. This class publishes one delegate:
 // SecondChangeHandler.
 public class Clock
 {
 private int hour;
 private int minute;
 private int second;

 // the delegate the subscribers must implement
 public delegate void SecondChangeHandler(object clock,
 TimeInfoEventArgs timeInformation);

 // an instance of the delegate
 public SecondChangeHandler SecondChanged;

 // set the clock running
 // it will raise an event for each new second
 public void Run()
 {
 for (; ;)
 {
 // sleep 100 milliseconds
 Thread.Sleep(100);

392 | Chapter 17: Delegates and Events

 // get the current time
 System.DateTime dt = System.DateTime.Now;
 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour, dt.Minute, dt.Second);

 // if anyone has subscribed, notify them
 if (SecondChanged != null)
 {
 SecondChanged(this, timeInformation);
 }
 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;
 }
 }
 }

 // A subscriber: DisplayClock subscribes to the
 // clock's events. The job of DisplayClock is
 // to display the current time
 public class DisplayClock
 {
 // given a clock, subscribe to
 // its SecondChangeHandler event
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 // the method that implements the
 // delegated functionality
 public void TimeHasChanged(object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
 }
 }
 // a second subscriber whose job is to write to a file
 public class LogCurrentTime
 {
 public void Subscribe(Clock theClock)

Example 17-2. You can implement events with delegates by setting up a publishing class with a
delegate and subscribing classes that handle the event (continued)

Events | 393

The output will look something like this, depending on what time it is when you run
the program:

Current Time: 14:53:56
Logging to file: 14:53:56

 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 // this method should write to a file
 // we write to the console to see the effect
 // this object keeps no state
 public void WriteLogEntry(object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
 }
 }

 public class Tester
 {
 public void Run()
 {
 // create a new clock
 Clock theClock = new Clock();

 // create the display and tell it to
 // subscribe to the clock just created
 DisplayClock dc = new DisplayClock();
 dc.Subscribe(theClock);

 // create a Log object and tell it
 // to subscribe to the clock
 LogCurrentTime lct = new LogCurrentTime();
 lct.Subscribe(theClock);

 // Get the clock started
 theClock.Run();
 }
 }

 public class Program
 {
 public static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 17-2. You can implement events with delegates by setting up a publishing class with a
delegate and subscribing classes that handle the event (continued)

394 | Chapter 17: Delegates and Events

Current Time: 14:53:57
Logging to file: 14:53:57
Current Time: 14:53:58
Logging to file: 14:53:58
Current Time: 14:53:59
Logging to file: 14:53:59
Current Time: 14:54:0
Logging to file: 14:54:0

The net effect of this code is to create two classes, DisplayClock and LogCurrentTime,
both of which subscribe to a third class’s event (Clock.SecondChanged).

SecondChanged is a multicast delegate field, initially referring to nothing. In time, it
refers to a single delegate, and then later to multiple delegates. When the observer
classes wish to be notified, they create an instance of the delegate and then add these
delegates to SecondChanged. For example, in DisplayClock.Subscribe(), you see this
line of code:

theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);

It turns out that the LogCurrentTime class also wants to be notified. In its Subscribe()
method is very similar code:

public void Subscribe(Clock theClock)
{
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);
}

Solving Delegate Problems with Events
There is a potential problem with Example 17-2, however. What if the
LogCurrentTime class was not so considerate, and it used the assignment operator (=)
rather than the subscribe operator (+=), as in the following?

public void Subscribe(Clock theClock)
{
 theClock.SecondChanged =
 new Clock.SecondChangeHandler(WriteLogEntry);
}

If you make that one tiny change to the example, you’ll find that the WriteLogEntry()

method is called, but the TimeHasChanged() method is not called. The assignment
operator replaced the delegate held in the SecondChanged multicast delegate. This is
not good.

A second problem is that other methods can call SecondChangeHandler directly. For
example, you might add the following code to the Run() method of your Tester

class:

Console.WriteLine("Calling the method directly!");
System.DateTime dt = System.DateTime.Now.AddHours(2);

Events | 395

TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour,dt.Minute,dt.Second);
theClock.SecondChanged(theClock, timeInformation);

Here, Main() has created its own TimeInfoEventArgs object and invoked
SecondChanged directly. This runs fine, even though it is not what the designer of the
Clock class intended. Here is the output:

Calling the method directly!
Current Time: 18:36:27
Logging to file: 18:36:27
Current Time: 16:36:27
Logging to file: 16:36:27

The problem is that the designer of the Clock class intended the methods encapsu-
lated by the delegate to be invoked only when the event is fired. Here, Main() has
gone around through the back door and invoked those methods itself. What is more,
it has passed in bogus data (passing in a time construct set to two hours into the
future!).

How can you, as the designer of the Clock class, ensure that no one calls the dele-
gated method directly? You can make the delegate private, but then it won’t be possi-
ble for clients to register with your delegate at all. What’s needed is a way to say,
“This delegate is designed for event handling: you may subscribe and unsubscribe,
but you may not invoke it directly.”

The event Keyword
The solution to this dilemma is to use the event keyword. The event keyword indi-
cates to the compiler that the delegate can be invoked only by the defining class, and
that other classes can subscribe to and unsubscribe from the delegate using only the
appropriate += and -= operators, respectively.

To fix your program, change your definition of SecondChanged from:

public SecondChangeHandler SecondChanged;

to the following:

public event SecondChangeHandler SecondChanged;

Adding the event keyword fixes both problems. Classes can no longer attempt to
subscribe to the event using the assignment operator (=), as they could previously,
nor can they invoke the event directly, as was done in the preceding example. Either
of these attempts will now generate a compile error:

The event 'Example_17_3_ _Delegates_and_events.Clock.SecondChanged'
can only appear on the left-hand side of += or -= (except when used
from within the type 'Example_17_3_ _Delegates_and_events.Clock')

There are two ways of looking at SecondChanged now that you’ve modified it. In one
sense, it is simply a delegate instance to which you’ve restricted access using the

396 | Chapter 17: Delegates and Events

keyword event. In another, more important sense, SecondChanged is an event, imple-
mented by a delegate of type SecondChangeHandler. These two statements mean the
same thing, but the latter is a more object-oriented way of looking at it, and better
reflects the intent of this keyword: to create an event that your object can raise, and
to which other objects can respond.

The complete source, modified to use the event rather than the unrestricted dele-
gate, is shown in Example 17-3.

Example 17-3. Using the event keyword turns your delegate into an event, and restricts other classes’
ability to interact with it to subscribing or unsubscribing

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace Example_17_3_ _ _ _Delegates_and_Events
{
 // a class to hold the information about the event
 // in this case it will hold only information
 // available in the clock class, but could hold
 // additional state information
 public class TimeInfoEventArgs : EventArgs
 {
 public int hour;
 public int minute;
 public int second;

 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
 }

 // The publisher: the class that other classes
 // will observe. This class publishes one delegate:
 // SecondChanged.
 public class Clock
 {
 private int hour;
 private int minute;
 private int second;

 // the delegate the subscribers must implement
 public delegate void SecondChangeHandler(object clock,
 TimeInfoEventArgs timeInformation);

Events | 397

 // an instance of the delegate with event keyword added
 public event SecondChangeHandler SecondChanged;
 // set the clock running
 // it will raise an event for each new second
 public void Run()
 {
 for (; ;)
 {
 // sleep 10 milliseconds
 Thread.Sleep(100);

 // get the current time
 System.DateTime dt = System.DateTime.Now;
 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(dt.Hour, dt.Minute, dt.Second);

 // if anyone has subscribed, notify them
 if (SecondChanged != null)
 {
 SecondChanged(this, timeInformation);
 }
 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;
 }
 }
 }

 // A subscriber: DisplayClock subscribes to the
 // clock's events. The job of DisplayClock is
 // to display the current time
 public class DisplayClock
 {
 // given a clock, subscribe to
 // its SecondChangeHandler event
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 // the method that implements the

Example 17-3. Using the event keyword turns your delegate into an event, and restricts other classes’
ability to interact with it to subscribing or unsubscribing (continued)

398 | Chapter 17: Delegates and Events

 // delegated functionality
 public void TimeHasChanged(object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
 }
 }
 // a second subscriber whose job is to write to a file
 public class LogCurrentTime
 {
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 // this method should write to a file
 // we write to the console to see the effect
 // this object keeps no state
 public void WriteLogEntry(object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
 }
 }

 public class Tester
 {
 public void Run()
 {
 // create a new clock
 Clock theClock = new Clock();

 // create the display and tell it to
 // subscribe to the clock just created
 DisplayClock dc = new DisplayClock();
 dc.Subscribe(theClock);

 // create a Log object and tell it
 // to subscribe to the clock
 LogCurrentTime lct = new LogCurrentTime();
 lct.Subscribe(theClock);

 // Get the clock started
 theClock.Run();
 }
 }

Example 17-3. Using the event keyword turns your delegate into an event, and restricts other classes’
ability to interact with it to subscribing or unsubscribing (continued)

Using Anonymous Methods | 399

Using Anonymous Methods
In the previous example, you subscribed to the event by invoking a new instance of
the delegate, passing in the name of a method that implements the event:

theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);

You can also assign this delegate by writing the shortened version:

theClock.SecondChanged += TimeHasChanged;

Later in the code, you must define TimeHasChanged as a method that matches the sig-
nature of the SecondChangeHandler delegate:

public void TimeHasChanged(object theClock, TimeInfoEventArgs ti)
{
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
}

Anonymous methods allow you to pass a code block rather than the name of the
method. This can make for code that is more efficient and easier to maintain, and the
anonymous method has access to the variables in the scope in which they are
defined.

clock.SecondChanged += delegate(object theClock, TimeInfoEventArgs ti)
{
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(), ti.minute.ToString(), ti.second.ToString());
};

Notice that rather than registering an instance of a delegate, you use the keyword
delegate, followed by the parameters that would be passed to your method, fol-
lowed by the body of your method encased in braces and terminated by a semicolon.

This method has no name; hence, it is anonymous. You cannot invoke the method
except through the delegate; but that is exactly what you want.

 public class Program
 {
 public static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example 17-3. Using the event keyword turns your delegate into an event, and restricts other classes’
ability to interact with it to subscribing or unsubscribing (continued)

400 | Chapter 17: Delegates and Events

Lambda Expressions
C# 3.0 extends the concept of anonymous methods and introduces lambda expres-
sions, which are more powerful and flexible than anonymous methods.

Lambda expressions get their name from lambda calculus, which is a
complicated topic, but in a nutshell, it’s a mathematical notation for
describing functions. That’s pretty much what’s going on here;
lambda expressions describe methods without naming them.

You define a lambda expression using this syntax:

(input parameters) => {expression or statement block};

The lambda operator => is newly introduced in C# 3.0 and is read as “goes to”. The
left operand is a list of zero or more input parameters, and the right operand is the
body of the lambda expression. Notice that => is an operator, which means that the
preceding line of code is an expression. Just as x + x is an expression that returns a
value—if x is 2, the expression returns the int value 4—a lambda expression is an
expression that returns a method. It’s not a method by itself. It’s tricky to think of
expressions as returning a method instead of a value, but at the beginning of this
chapter, you wouldn’t have thought of passing a method as a parameter, either.

You can thus rewrite the delegate definition as follows:

theClock.OnSecondChange +=
 (aClock, ti) =>
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(),
 ti.minute.ToString(),
 ti.second.ToString());
 };

You read this as “theClock’s OnSecondChange delegate adds an anonymous delegate
defined by this lambda expression.” The two parameters, aClock and ti, go to the
WriteLine expression that writes out the hour and minute and second from ti.

The two input parameters, aClock and ti, are of type Clock and TimeInfoEventArgs,
respectively. You don’t need to specify their types, because the C# compiler infers
their type from the OnSecondChange delegate definition. If the compiler is unable to
infer the type of your operands, you may specify them explicitly, like this:

(Clock aClock, TimeInfoEventArgs ti) => {...};

You might also want to specify the types of the input parameters to make the code
more readable.

If your method doesn’t have any input parameters, you write a pair of empty paren-
theses, like this:

() => {Console.WriteLine("No parameters here."}};

Summary | 401

If you have only one input parameter, you can skip the parentheses:

n => {n * n};

Finally, if your method has only one statement, you can skip the braces as well:

n => n * n

So, what’s the difference between lambda expressions and anonymous methods?
Anonymous methods were introduced in C# 2.0 specifically to deal with situations
where you didn’t want to define a method for a delegate; that’s why anonymous
methods use the delegate keyword, and can be used only in the context of delegates.
Lambda expressions were introduced in C# 3.0 to take that idea further. Specifi-
cally, lambda expressions were introduced to work with LINQ, the Language Inte-
grated Query, which has to do with handling data. You’ll see more about LINQ in
Chapter 21. For now, you can use lambda expressions anywhere you’d want to use
an anonymous method.

Summary
• Modern GUIs rely on events generated by the user or by the system to know

what action to take.

• A delegate is a reference to a method of a particular signature and return type.

• Delegates allow polymorphism by encapsulating a method that matches the del-
egate signature. The method encapsulated by the delegate is decided at runtime.

• An object can publish a series of events to which other classes can subscribe. The
publishing class defines a delegate and an event based on that delegate. The sub-
scribing class creates a method that matches the signature of the delegate, and
registers that method with an instance of the delegate.

• In .NET, all event handlers return void, and take two parameters. The first
parameter is of type object and is the object that raises the event; the second
argument is an object of type EventArgs or of a type derived from EventArgs,
which may contain useful information about the event.

• Event handlers subscribe to delegates using the += operator and unsubscribe
using the -= operator.

• The keyword event ensures that event handlers can only subscribe or unsub-
scribe to the event. Handlers can’t call the delegate event directly, nor can they
access its internal members.

• Instead of passing a method name to a delegate, you can pass a block of code,
using the keyword delegate. This creates an anonymous method.

• A lambda expression is an expression using the operator => that returns an
unnamed method. Lambda expressions are similar to anonymous methods, but
aren’t restricted to being used as delegates.

402 | Chapter 17: Delegates and Events

This chapter introduced a lot of new ideas, and possibly made you think differently
about how methods work. A lot of what delegates do can also be done with inter-
faces, but as you’ve seen, delegates really come into their own as event handlers.
Throughout this chapter, we’ve emphasized that one of the main functions of event
handlers is to work with a GUI interface, like Windows, but we haven’t shown you
how to do that yet. In the next chapter, you’re finally going to break out of the con-
sole window and see how to make some Windows applications. This is the one
you’ve been waiting for.

Test Your Knowledge: Quiz

Question 17-1. What is the purpose of a delegate?

Question 17-2. Are delegates value types or reference types?

Question 17-3. Suppose a Phone class has defined an OnPhoneRings delegate. How
would you instantiate a delegate called myDelegate to refer to the myMethod method?

Question 17-4. Define the OnPhoneRings delegate from the preceding question as an
event to signal that the phone has rung.

Question 17-5. Give an example of how you might call the delegated method from the
previous question through the delegate.

Question 17-6. What does the event keyword do?

Question 17-7. How do you pass information into the method that is called through
the event?

Question 17-8. What properties or methods does System.EventArgs have?

Question 17-9. How can you create delegated methods anonymously?

Question 17-10. What is returned by a lambda expression?

Test Your Knowledge: Exercises | 403

Test Your Knowledge: Exercises

Exercise 17-1. Write a countdown alarm program that uses delegates to notify anyone
who is interested that the designated amount of time has passed. You’ll need a class to
simulate the countdown clock that accepts a message and a number of seconds to wait
(supplied by the user). After waiting the appropriate amount of time, the countdown
clock should call the delegate and pass the message to any registered observers. (When
you’re calculating the time to wait, remember that Thread.Sleep() takes an argument
in milliseconds, and requires a using System.Threading statement.) Create an observer
class as well that echoes the received message to the console.

Exercise 17-2. Change the program you wrote in Exercise 17-1 to ensure that the
event can be published to multiple handlers safely.

Exercise 17-3. Rewrite the observer class in Exercise 17-2 to use an anonymous
method.

Exercise 17-4. Rewrite the observer class in Exercise 17-3 to use a lambda expression
instead of an anonymous method.

404

CHAPTER 18

Creating Windows Applications

All of the previous chapters have used console applications to demonstrate the C#
language. This allowed us to focus on the language itself, without being distracted by
more complicated issues such as windows, mice, and controls.

That being said, for many people the only reason to learn C# is to create Windows
applications or web applications, or both. On the following pages, you will learn
how to create Windows applications using the tools provided by Visual Studio.
Chapter 19 will show you how to create visually rich applications using the Win-
dows Presentation Foundation (WPF), which was introduced in .NET 3.0.

Windows application programming is a complicated topic that can occupy an entire
book in itself—in fact, Programming .NET Windows Applications, by Jesse Liberty
and Dan Hurwitz (O’Reilly), is one of those books. Windows programming is one of
the most advanced topics we’ll cover in this book. Therefore, this will be something
of a whirlwind tour. This chapter is also something of a culminating project, how-
ever, as you’re going to see a number of techniques that you’ve learned in recent
chapters, such as event handlers, generics, collections, and of course, the more basic
elements of the language that we’ve been using throughout the book.

In this chapter, you’ll be creating the most complex application you’ve written so far.
It’s a Windows application that will allow you to copy files from one location on your
computer to another. It works, and once you’re done, you can use it for yourself.

Creating a Simple Windows Form
The first difference you’ll notice between the applications in this chapter and the
ones you’ve written up to this point is that Windows applications have a visual com-
ponent, called a form. The interface you see is the form, and the buttons, text boxes,
and other widgets that make up the form are called controls. You build simply by
dragging and dropping controls onto a work area. Some code goes into creating the
appearance and default behavior of the controls, but all of that is created for you by
Visual Studio, and you never have to see it.

Creating a Simple Windows Form | 405

And that’s the second thing you’ll notice: up until now, just about every bit of code
that you worked with was written exclusively by you. You saw back in Chapter 2,
though, that Visual Studio is capable of inserting prefabricated code snippets to save
you time. This is a larger extension of the same idea. In fact, you won’t see Main()

anymore, because Windows takes care of that part. Your functional code will be con-
tained in event handlers, and the objects you create will be called from those event
handlers.

In effect, moving from the command line to Windows programming entails an
entirely different metaphor of programming—a visual metaphor, hence the name of
Visual Studio.

Using the Visual Studio Designer
Although you can build a Windows application using any text editor, there’s really
no point. As you’ve already seen, Visual Studio increases your productivity, and inte-
grates an editor, compiler, test environment, and debugger into a single work envi-
ronment. Few serious .NET developers build commercial applications outside Visual
Studio.

We’ll get to the full-blown example for this chapter very shortly, but first you’ll start
off with a simple Windows application. Open Visual Studio and choose File ➝ New
Project, or select the Create: Project link on the Start page. In the New Project win-
dow, select Windows Forms Application (instead of the console application you’ve
been using up until now). Create a new C# Windows application and name it Learn-
ing CSharp Windows Forms, as shown in Figure 18-1. You may name the project
anything you like, and the name can include spaces, as shown, but no special charac-
ters other than the hyphen and underscore, which is why we’ve spelled out the #
symbol.

We created the project in this chapter using Visual C# 2008 Express.
If you’re using the full version of Visual Studio 2008, your screens will
look different. Everything will still work, but Visual Studio has more
options, so you may need to look around a bit to find the ones we use
here.

Visual Studio responds by creating a Windows Forms application and, best of all,
putting you into a design environment. This is the visual environment we were talk-
ing about earlier, and this is where you’ll create your application.

The Design window displays a blank Windows form (Form1). Select View ➝ Toolbox
or press the keyboard shortcut Ctrl-W, then X to display the Toolbox, because you’ll
need it in a minute. Then select View ➝ Properties Window (or press Ctrl-W, P) to
bring up the Properties window as well. You may need to drag the Properties win-
dow to its traditional place on the lower right, docking it there as we showed you in
Chapter 2.

406 | Chapter 18: Creating Windows Applications

Visual Studio allows a great deal of personalization. If you’re using a
fresh installation of Visual Studio or Visual C#, you should find that
all the default settings and keyboard shortcuts work as we’re describ-
ing them here. If your copy of Visual Studio has been customized,
though, you may encounter different settings.

Before proceeding, take a look around your environment, as shown in Figure 18-2.
The Toolbox, on the left side of the screen, is filled with controls that you can add to
your Windows Forms application, simply by dragging and dropping them onto the
form. In the upper-right corner, you should see the Solution Explorer, a window that
displays all the files in your projects (if not, click View ➝ Solution Explorer). From
this point on, your applications will consist of multiple files. Already you can see the
familiar Program.cs in the Solution Explorer, but you’re looking at Form1.cs right
now. The Solution Explorer helps you switch from one file to another. In the lower-
right corner is the Properties window. Each of your controls is actually a class, and
like any class, there are a number of internal members, called properties. Instead of
reading the code in an editor window, as you’re used to, you can view and set the
properties straight from the Properties window.

Time to check that part out. Click on a label in the Toolbox, and then drag it onto
the form. You’ll see some guide lines that indicate where on the form the label will
go, but it doesn’t really matter where you put it for this example. Also notice that the
label gives itself a name, label1. The purpose of this name is to distinguish this label

Figure 18-1. You create a Windows Application project from the same dialog where you’ve been
creating console applications.

Creating a Simple Windows Form | 407

from any other labels you add to the page, although you’re free to change it to a
more meaningful name. In fact, meaningful names are good practice, and we’ll use
them in the file-copier example later in the chapter, but label1 will do for this exam-
ple. Click on the label, and its properties will appear in the Properties window, as
shown in Figure 18-3.

You’ll notice that there are a lot of properties, most having to do with format and
appearance. That makes sense; this is a label, after all. To add text to label1, you
edit its Text property. Scroll up or down until you can see the Text property for
label1. Then click in the space next to the word Text, and type in “Hello World”. As
soon as you finish typing and click somewhere else, the text of label1 on the form
changes to “Hello World”.

Now change the font for the lettering in the HelloWorld label. Scroll up or down until
you find the Font property, then click the + sign next to the property to expand it.
Then click on the ellipsis next to the Font property to open the Font editor, as shown
in Figure 18-4. Play around with the formatting as much as you like, then click OK
to accept your changes, or else Cancel.

A label is nice and visual, but it doesn’t do much by itself. From the Toolbox, drag a
button control onto the form, somewhere near your label. Click on the button to
access its properties in the Properties window, and change its Text property to Can-
cel. You can always tell which control’s properties you’re looking at by checking the
drop-down box at the top of the Properties window.

Figure 18-2. The design environment has a lot of helpful tools that you’ll be using as you create
your form.

Solution
Explorer

Properties
window

Toolbox

Your Windows form

408 | Chapter 18: Creating Windows Applications

Now run the application by clicking the Start Debugging button, or by pressing F5.
Notice that with most console applications, you had to press Ctrl-F5 so that the con-
sole window wouldn’t vanish on you; that’s not the case here. That’s your new Win-
dows application, running in a window by itself, separate from Visual Studio, as
shown in Figure 18-5. You can see that it even has its own button on the Windows
taskbar. You did all of that without writing any code at all; Visual Studio took care of
all of it. You can drag the window around by its title bar, maximize or minimize it, or
even close it...but don’t do that just yet.

Now click the Cancel button. Oops, nothing happens. The button highlights like a
regular Windows button, and its appearance changes when you click it, but that’s it.
That’s because when you click the button, the button raises the Click event, but that
event doesn’t have a handler yet, so nothing happens. Click on the X to close your
application and return to the Design view.

Click on the Cancel button so that its properties are shown in the Properties win-
dow. Notice at the top of the window a series of buttons, as shown in Figure 18-6.
The first two simply reorder the properties in the window, either by category or
alphabetically. The third button displays the properties for the control, which is the
default. The lightning bolt button, however, displays the possible events for the con-
trol. As you hover the cursor over each button, a tool tip tells you what it is for.

Figure 18-3. You can edit the properties for a control visually, by using the Properties window.

Use the
Properties

window

To set the
properties of
controls on
the form. . .

Creating a Simple Windows Form | 409

Figure 18-4. The Properties window provides access to lots of visual properties of your controls,
such as editing the font.

Figure 18-5. Your first Windows application is running. It may not look like much, but all the
window features you’d expect are present automatically.

410 | Chapter 18: Creating Windows Applications

Click on the lightning bolt to change the Properties window to show all the events
for the button. To have the Cancel button do something, you’ll need to create a han-
dler for the Click event. You can type a name for your handler into the space next to
Click in the Properties window, but it’s easier to just double-click in the space and
Visual Studio will create an event handler name for you. In either case, Visual Studio
then places you in the editor for the event handler so that you can add the logic.
Take a look at the tabs at the top of the code window. You’ll see that the page you’re
currently looking at is Form1.cs, and there’s also a tab for Form1.cs [Design]. The
Design view that you’ve seen so far is where you do the visual design of your form.
The code page, which you’re looking at now, is where you keep the event handler
code for your form. Notice, though, that this isn’t the complete code for your pro-
gram; the line public partial class Form1 : Form indicates that this is a partial class,
which means pretty much what it sounds like—Visual Studio is showing you only
part of the class definition for Form1, and is taking care of the rest of the code out of
your sight.

You also won’t find Main() here, which makes sense, because this is only the class
file for Form1. If you look in the Solution Explorer in the upper-right corner of Visual

Figure 18-6. Clicking the Events button switches the contents of the Properties window to display
the events for a control.

Events buttonProperties button

Sort by
category

Sort
alphabetically

Creating a Real-World Application | 411

Studio, you’ll see all the files in this project, including Program.cs. If you double-
click that file to open it, you’ll see that it’s very brief. In fact, all it does is a bit of
setup, and then it calls Application.Run(new Form1());, which runs the form.

Click the tab to get back to Form1.cs, if you’re not already there. When you double-
clicked in the Properties window for the button on Form1, Visual Studio added the
method for the event handler, but it’s empty at the moment. Visual Studio created
the name for the method by concatenating the control name (button1) with the event
(Click), separated by an underscore. When you add the event from Design mode,
Visual Studio places the cursor inside the method body, so if it’s not there, click
there now. Add a line to the event so that it looks like this:

private void button1_Click(object sender, EventArgs e)
{
 Application.Exit();
}

This logic just says to exit the application when the button is clicked. Notice that as
you try to enter the method call Application.Exit(), IntelliSense tries to help you.

Every control has a default event—the event most commonly handled
by that control. In the case of the Button control, the default event is
Click. You can save time by double-clicking on the control (in the
Design view) if you want Visual Studio to create and name an event
handler for you. That is, rather than the steps mentioned previously
(click on the button, click on the lightning bolt button, double-click
on the space next to Click), you could have just double-clicked on the
button; the effect would be the same because you are implementing
the default event.

Now run your program again (by clicking the Start Debugging icon or by pressing
F5). Your form shows up in its own window, the same as before. Now click the Can-
cel button. This time, the event handler you just wrote is called, and the application
closes. Well done—you’ve written a simple Windows application with a functioning
event handler. Now it’s time to move on to a more challenging application.

Creating a Real-World Application
Now you have a general idea of how Windows applications work, and it’s time to get
more ambitious and employ what you’ve learned in the previous 17 chapters. You’ll
build a utility named FileCopier that copies all the files from a group of directories
selected by the user to a single target directory or device, such as a floppy, or a
backup hard drive on the company network. Although you won’t implement every
possible feature for this application, this example will provide a good introduction to
what it is like to build meaningful Windows applications.

412 | Chapter 18: Creating Windows Applications

The example you’re about to create is much more complex than any-
thing you’ve done in this book so far. However, if you walk through
the code slowly, you’ll find that you’ve already learned everything you
need in the previous chapters. The goal of creating Windows applica-
tions is to mix drag-and-drop design with rather straightforward C#
blocks to handle the logic.

For the purposes of this example and to keep the code simple, you’ll focus on the
user interface and the steps needed to wire up its various controls. The final applica-
tion UI is shown in Figure 18-7.

The user interface for FileCopier consists of the following controls:

• Labels (Source Files, Target Files, and Status).

• Buttons (Clear, Copy, Delete, and Cancel).

• An “Overwrite if exists” checkbox.

• A text box displaying the path of the selected target directory.

• TreeView controls (source and target directories). You may not be familiar with
the term TreeView, but you’ve almost certainly seen them before. Windows uses
them to indicate hierarchical structures, such as the arrangement of files and
directories in Windows Explorer.

All of these controls are available in the General section of the Toolbox, and you can
simply drag them onto the form, as you’ll see in a minute.

The goal is to allow the user to check files (or entire directories) in the left TreeView
(the source). If the user clicks the Copy button, the files checked on the left side will
be copied to the target directory specified on the right-side TreeView control. If the
user clicks Delete the checked files will be deleted.

Creating the Basic UI Form
The first task is to create a new project, by selecting File ➝ New Project. In the New
Project dialog box, select Windows Forms Application, and name the project “File-
Copier”.

The IDE puts you into the designer, with Form1 showing, as before. This is where
you’ll create the UI for your application. This form will need to be a bit bigger than
the last one, so expand the form a bit by dragging one of the little boxes in the cor-
ners of the form until it’s somewhat larger (the exact size doesn’t really matter; you
can always adjust it later). With the form itself selected, you can see the form proper-
ties in the Properties window. Change the (Name) property to FrmFileCopier and the
Text property to File Copier.

Drag-and-drop a couple of Label controls onto the top of the form—these will go
above the two TreeView controls. Set the Name property of the left Label to lblSource,

Creating a Real-World Application | 413

and the Name property of the Label on the right to lblTarget. Set the Text properties
of the two labels to “Source Files” and “Target files”, respectively. Adjust the font
settings a bit so that the labels are easier to read—10pt bold should work fine.

You’ll notice that when we name the controls in this example, we’re giv-
ing each control a prefix that indicates what kind of control it is—txt for
TextBox controls, lbl for Label controls, and so on. This practice is called
Hungarian notation. Microsoft’s official naming guidelines prohibit
using Hungarian notation for public identifiers. The controls on a form,
though, are private, so the issue is a bit muddier. We think that naming
a control lblSource, rather than just Source, makes it easier to identify
later when you’re editing the code. Therefore, we’ll use Hungarian nota-
tion for the control names in this example.

Next, add a TextBox control immediately under the “Target Files” label, and set its
Name property to txtTargetDir. You’ll use this TextBox to display the full path of the
directory where the user wants to copy the files. The Source side of the application
doesn’t need such a Textbox, because the file location will be obvious from the
TreeView, and because there may be multiple source directories.

Figure 18-7. The FileCopier user interface has a range of different controls, but they all use a
similar event handler mechanism.

414 | Chapter 18: Creating Windows Applications

Next, add the two TreeView controls that take up most of the space on the form.
Select a TreeView and drag its corners to make it a bit larger, as shown in Figure 18-8.
Notice that Visual Studio helps you line up the controls on the form neatly with each
other. Name the TreeView on the left tvwSource, and the one on the right
tvwTargetDir.

There’s another property you need to set on the TreeView controls. On the source
TreeView, you want to display checkboxes next to the directories and files that will
show in the window so that the user can select multiple directories. To accomplish
that, set the CheckBoxes property on tvwSource to True—just click in the box next to
CheckBoxes, and you’ll see a drop-down list from which you can select True or False.
In the destination TreeView control, you want users to be able to select only a single
destination directory, which means you don’t want the checkboxes. The default for
the CheckBoxes property is False, so you shouldn’t need to make any changes to
tvwTargetDir, but select it anyway and make sure it’s set properly. That takes care of
the TreeView controls.

On the left side of the form, underneath tvwSource, add a button. Name it btnClear,
and set its Text property to “Clear”. You’ll use this button to clear the left TreeView.
Underneath that button, add another Label control. Name it lblStatus, and set its
Text property to “Status”. You’ll use this label to report any status messages to the
user. Don’t worry about its font properties.

On the right side of the form, underneath and aligned with the left edge of
tvwTargetDir, add a Checkbox control. Name it chkOverwrite, and set its Text prop-
erty to “Overwrite if exists”. If the user tries to copy a file to a target directory that
already has a file with the same name, you want to give the user the option of over-
writing the target file, or leaving it alone. This checkbox is where the user will make
that choice.

Finally, add three buttons in a column, underneath and aligned with the right edge
of tvwTargetDir. Name these buttons btnCopy, btnDelete, and btnCancel, in that
order, and set their Text properties to Copy, Delete, and Cancel, respectively. These
buttons will do pretty much what they say they will.

That’s it for the design of the form. Your form should look something like
Figure 18-8 right now, although your dimensions may be slightly different. You can
run your application now, if you want, to see what the form looks like on its own,
although the controls won’t do anything yet, of course.

So much for the easy part. Visual Studio generates code to set up the form and initial-
izes all the controls, but it doesn’t fill the TreeView controls, or provide event handlers
for any of the buttons. That you must do by hand, starting with the TreeView controls
in the next section. It’s some complicated code, but we’ll walk you through it.

Creating a Real-World Application | 415

Populating the TreeView Controls
The two TreeView controls work nearly identically, except that the left control,
tvwSource, lists the directories and files, and the right control, tvwTargetDir, lists only
directories. The CheckBoxes property on tvwSource is set to true, and on
tvwTargetDir, it is set to false. Also, although tvwSource will allow the user to select
multiple files, which is the default for TreeView controls, you will enforce single selec-
tion for tvwTargetDir.

Although there are differences, most of the code for these two controls is held in com-
mon. Instead of writing out all the code twice, you’ll use a technique called factoring—
putting the common code in one convenient place for objects to access. In this case,
you’ll factor the common code for both TreeView controls into a shared method,
FillDirectoryTree. When you call this method, you’ll pass in the TreeView control (so
the method knows which TreeView to fill) with a Boolean (also called a flag) indicating
whether to get the files that are currently present (you’ll see how this works in a bit).
You’ll call this method from the constructor for the Form itself, once for each of the two
controls. Click on the Form1.cs tab at the top of the main window in Visual Studio to
switch to the code for the form. If that tab isn’t there, click the View Code button at
the top of the Solution Explorer to open Form1.cs. Locate the constructor for the form
(public FrmFileCopier()), and add these two method calls:

Figure 18-8. The FileCopier form is more complex than HelloWorld, but each of these controls has
a purpose, as you’ll see.

tvwTargetDir

btnCopy

btnClear

lblSource lblTarget txtTargetDir

btnDelete

btnCancel

chkOverwritelblStatus

tvwSource

416 | Chapter 18: Creating Windows Applications

FillDirectoryTree(tvwSource, true);
FillDirectoryTree(tvwTargetDir, false);

The FillDirectoryTree implementation names the TreeView parameter tvw. This will
represent the source TreeView and the destination TreeView in turn. You’ll need some
classes from System.IO, so add a using System.IO statement at the top of Form1.cs.

Next, add the method declaration to Form1.cs:

private void FillDirectoryTree(TreeView tvw, bool isSource)
{
}

Right now, the code for Form1.cs should look like this:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

namespace FileCopier
{
 public partial class FrmFileCopier : Form
 {
 public FrmFileCopier()
 {
 InitializeComponent();
 FillDirectoryTree(tvwSource, true);
 FillDirectoryTree(tvwTargetDir, false);
 }
 private void FillDirectoryTree(TreeView tvw, bool isSource)
 {
 }
 }
}

You haven’t done anything with the TreeView controls, but you’ve set things up so
that you’ll have a place to put your code.

TreeNode objects

You’re now going to fill in the code for the FillDirectoryTree() method you just
created. The TreeView control has a property, Nodes, which gets a TreeNodeCollection

object. (We discussed collections in Chapter 14.) The TreeNodeCollection is a collec-
tion of TreeNode objects, each of which represents a node in the tree. The first thing
you need to do is empty that collection, so add this code to the method:

tvw.Nodes.Clear();

Creating a Real-World Application | 417

The TreeView, the TreeNodeCollection, and the TreeNode class are all
defined by the Framework Class Library (FCL). In fact, nearly all the
classes used in this example are defined by the framework (as opposed
to being defined by you) and can be fully explored in the help files.

There is, unfortunately, no accepted convention to distinguish
between individually user-defined classes (such as FrmFileCopier) and
framework-defined classes (such as Environment). On the other hand,
if you come across a class that you haven’t defined explicitly, it is a
safe bet that it is part of the framework, and you can confirm that with
the help files documentation.

Next you need to fill the TreeView’s Nodes collection, but first you need to know
about a programming concept called recursion. In a nutshell, recursion occurs when
a method calls itself, or when method A calls method B, which calls method A,
repeating until some condition is met. In this case, you want to get a list of all the
directories on your drive. You’d start at the root—say, C:—and read in all the direc-
tories. Then you take the first directory, which might be C:\Applications, and you get
all the subdirectories there. If there are subdirectories in C:\Applications—say, C:\
Applications\Adobe—you make that your new root and start over again. This pro-
cess continues until you reach a directory that has no subdirectories, only files
(which are called leaves in node terminology). Then the recursion backs up one level
and gets the next directory in line, and starts the process again, until there are no
more directories left to check. It’s complicated to explain, but it’s quite simple, even
elegant, in code. Because you don’t know how many levels deep your file structure
goes, you tell the method to keep calling itself until it runs out of directories. You’ll
see how this works in a minute.

So, you’ll fill the Nodes collection by recursing through the directories of all the
drives. First, you need to get all the logical drives on the local system. To do so, call a
static method of the Environment object, GetLogicalDrives(). The Environment class
provides information about and access to the current platform environment—that’s
your machine, and the operating system running on it; almost certainly Windows in
this case. You can use the Environment object to get the machine name, OS version,
system directory, and so forth from the computer on which you are running your
program. Add the following line to your method:

string[] strDrives = Environment.GetLogicalDrives();

GetLogicalDrives() returns an array of strings, each of which represents the root
directory of one of the logical drives. You will iterate over that collection, adding
nodes to the TreeView control as you go. Start the loop like this:

foreach (string rootDirectoryName in strDrives)
{

You process each drive within the foreach loop.

418 | Chapter 18: Creating Windows Applications

The very first thing you need to determine is whether the drive is available (that is, it
is not a floppy drive without a floppy in it). Our hack for that is to get the list of top-
level directories from the drive by calling GetDirectories() on a DirectoryInfo

object created for the root directory:

DirectoryInfo dir = new DirectoryInfo(rootDirectoryName);
dir.GetDirectories();

The DirectoryInfo class has instance methods for creating, moving, and enumerat-
ing through directories, their files, and their subdirectories.

The GetDirectories() method returns a list of directories, but you don’t actually
need this list for anything. The only reason you’re calling it here is because it will
generate an exception if the drive is not ready (if there’s no disk in the drive, or if a
network drive is unavailable).

Wrap the call in a try block, and leave the catch block empty. The effect is that if an
exception is thrown, the drive is skipped. You could catch more specific exceptions,
but for the moment, you’ll just catch any exception. At this point, your foreach loop
looks like this:

foreach (string rootDirectoryName in strDrives)
{
 try
 {
 DirectoryInfo dir = new DirectoryInfo(rootDirectoryName);
 dir.GetDirectories(); // forces an exception if the drive isn't ready
 }
 catch
 {
 }
}

Once you know that the drive is ready, you’ll need to create a TreeNode to hold the
root directory of the drive, and then add that node to the Nodes collection of the
TreeView control (which is named tvw in this method). Add the following code inside
the try block, after the check of GetDirectories():

TreeNode ndRoot = new TreeNode(rootDirectoryName);
tvw.Nodes.Add(ndRoot);

The TreeView control displays a + sign next to directories that have subdirectories
within them, as you’ve seen in Windows Explorer. To get the + signs right in the
TreeView, you must find at least two levels of directories. You don’t want to recurse
through all the subdirectories on your machine, however, because that would be too
slow. For now, you’ll get the first two levels, and later you’ll see how to get addi-
tional subdirectories only when the user asks for them.

The job of the GetSubDirectoryNodes() method is to recurse two levels deep, passing
in the root node, the name of the root directory, a flag indicating whether you want
files, and the current level (you always start at level 1):

Creating a Real-World Application | 419

if (isSource)
{
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, true, 1);
}
else
{
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, false, 1);
}

This if/else looks a bit confusing, we admit. You may be wondering why you would
want the files, and why you need to pass in ndRoot.Text if you’re already passing in
ndRoot. You will see why these steps are needed when you recurse back into
GetSubDirectoryNodes.

After the empty catch block, add the following line:

Application.DoEvents();

This instructs your application to release its hold on the processor long enough to
update the user interface. This keeps the user informed and happy, and avoids the
problem of looking like your program has hung while performing a long procedure.

You are now finished with FillDirectoryTree(), but you still need to write the
method GetSubDirectoryNodes(). Save your project now, but don’t bother trying to
run it; you’ll just get an error.

Recursing through the subdirectories

Next, you need to create the method that gets the subdirectory nodes. Create a new
method called GetSubDirectoryNodes() immediately following the method you just
finished. The parameters passed to GetSubDirectoryNodes() include the node where
the method was called, the full pathname of that node, the Boolean for retrieving the
filenames, and the level, all of which you saw in FillDirectoryTree(). Notice that
the node passed in is named parentNode. The current level of nodes will be consid-
ered children to the node passed in. This is how you map the directory structure to
the hierarchy of the tree view.

GetSubDirectoryNodes() begins by once again calling GetDirectories(), this time
stashing away the resulting array of DirectoryInfo objects in an array called dirSubs.
Add this code to Form1.cs:

private void GetSubDirectoryNodes(
 TreeNode parentNode, string fullName, bool getFileNames, int level)
{
 DirectoryInfo dir = new DirectoryInfo(fullName);
 DirectoryInfo[] dirSubs = dir.GetDirectories();

Now you’ve got your arrays, so you’re going to iterate over each one, and add each
subdirectory as a subnode. You want to skip any subdirectories that are marked
Hidden, though, because those are probably system directories, and you don’t want
to mess with those. So, open the foreach loop and add the following if:

420 | Chapter 18: Creating Windows Applications

foreach (DirectoryInfo dirSub in dirSubs)
{
 if ((dirSub.Attributes & FileAttributes.Hidden) != 0)
 {
 continue;
 }

FileAttributes is an enum; other possible values include Archive, Compressed,
Directory, Encrypted, Normal, ReadOnly, and a few others, but they are rarely used.
The property dirSub.Attributes is what’s called a bit pattern—a series of zeros and
ones; in this case, it’s a bit pattern of the current attributes of the directory.
FileAttributes.Hidden is another bit pattern. You can combine these two patterns
with the & operator, which is called a bitwise AND (notice that’s not the same as the
logical AND operator, &&). You don’t need to know exactly how it works, but for a
nonhidden directory, the result of the bitwise AND will be zero. If the result isn’t
zero, the directory is hidden, and you want to skip it with the continue statement.

Although you can use the bitwise AND in this example without know-
ing anything more about it you may want to look up the details in
another source, such as MSDN.

If you reach the next line of your foreach loop, you can be sure you’re looking at a
nonhidden directory, so you want to create a new TreeNode object for it. Add the fol-
lowing code to create a TreeNode with the subdirectory name, and add it to the Nodes

collection of the node passed in to the method (parentNode):

TreeNode subNode = new TreeNode(dirSub.Name);
parentNode.Nodes.Add(subNode);

Remember that 1 you passed into GetDirectorySubNodes()? You passed a 1 because
you want your recursion to go only two levels deep, and the 1 indicates that you’re at
the top level of recursion. You need to check that value against a limit so that you’ll
know when to stop recursing. You could just hardcode the 2, but it’s best to define it
as a constant. By convention, member constants and variables are declared at the top
of the class declaration, so add the following highlighted line just inside the class
definition:

partial class FrmFileCopier : Form
{
 private const int MaxLevel = 2;

Later on, if you’re on an especially powerful machine, or if you’re willing to wait
while the recursion happens, you can increase the value of that constant. There’s no
need to do that, though, because you’ll see a little later that you’ll retrieve subdirec-
tories only when the user selects them, which saves processor power.

Now move back to the foreach loop within GetSubDirectoryNodes. The next bit of
code is where the recursion takes place. If the current level is less than the constant
you just defined, you want to have the GetSubDirectoryNodes() method call itself,

Creating a Real-World Application | 421

but with different parameters. You pass in the node you just added to the TreeView,
along with its full path, the Boolean for the filenames, and the level, increased by 1.
Add this code to GetSubDirectoryNodes():

if (level < MaxLevel)
{
 GetSubDirectoryNodes(subNode, dirSub.FullName, getFileNames, level+1);
}

The call to the TreeNode constructor uses the Name property of the DirectoryInfo

object, and the call to GetSubDirectoryNodes() uses the FullName property. If your
directory is C:\Windows\Media\Sounds, the FullName property returns the full path
and the Name property returns just Sounds. You pass in just the name to the node con-
structor, because you want just the directory name displayed in the tree view. You
pass in the full name with the path to the GetSubDirectoryNodes() method so that
the method can locate all the subdirectories on the disk. This answers the question
asked earlier as to why you need to pass in the root node’s name the first time you
call this method. What is passed in isn’t the name of the node; it is the full path to
the directory represented by the node!

Go ahead and run the program now. You should see that the TreeView controls pop-
ulate themselves properly with the drives on your machine. You can expand those
directories to two levels deep by clicking the + signs. Nothing else works yet, but this
is a good start. If the application doesn’t run properly, check the error messages to
see where you might be going wrong. Use the debugging techniques from Chapter 9
if you need to.

Getting the files in the directory

Once you’ve recursed through the subdirectories, it is time to get the files for the
directory if the getFileNames flag is true. To do so, call the GetFiles() method on
the DirectoryInfo object. An array of FileInfo objects is returned. Be sure to add a
closing bracket to the foreach loop, and then add this code below it:

if (getFileNames)
{
 // Get any files for this node.
 FileInfo[] files = dir.GetFiles();

The FileInfo class provides instance methods for manipulating files.

You can now iterate over this collection, accessing the Name property of the FileInfo

object and passing that name to the constructor of a TreeNode, which you then add to
the parent node’s Nodes collection (thus creating a child node). This whole process is
similar to what you did with the directories, but there is no recursion this time
because files don’t have subdirectories. Put the following code inside the if state-
ment you just created, and remember to close the if afterward:

foreach (FileInfo file in files)
{

422 | Chapter 18: Creating Windows Applications

 TreeNode fileNode = new TreeNode(file.Name);
 parentNode.Nodes.Add(fileNode);
}

That’s all it takes to fill the two tree views. Run the application now, and you’ll see
that the TreeView controls are populated with subdirectories and files.

If you’re confused about how this recursion works, try stepping through the code in
the Visual Studio debugger. Pay particular attention to the recursion, watching as the
TreeView builds its nodes.

Handling the TreeView Events
You have the TreeView controls loaded now, but there are still a lot of events to han-
dle in this example. First, the user might click Cancel, Copy, Clear, or Delete. Sec-
ond, the user might fire events in either TreeView. We’ll consider the TreeView events
first, as they are the more interesting, and potentially the more challenging.

Clicking the source TreeView

There are two TreeView objects, each with its own event handler. Consider the source
TreeView object first. The user checks the files and directories she wants to copy
from. Each time the user clicks the checkbox indicating a file or directory, a number
of events are raised, most of which you can safely ignore. The event you must han-
dle, though, is called AfterCheck.

That means you’ll need to implement a custom event handler method, named
tvwSource_AfterCheck(). The implementation of AfterCheck() delegates the work to
a recursive method named SetCheck() that you’ll also write. The SetCheck() method
will recursively set the checkmark for all the contained folders.

To add the AfterCheck() event, select the tvwSource control, click the Events icon in
the Properties window, and then double-click AfterCheck. This will add the event
and place you in the code editor. All you’re doing here is adding a method call to the
event handler, so add the highlighted code here:

private void tvwSource_AfterCheck (object sender, TreeViewEventArgs e)
{
 SetCheck(e.Node,e.Node.Checked);
}

If this event was raised, that means the user checked (or cleared) a checkbox some-
where in the TreeView, and what you need to do is find out which node just got
checked, and check (or clear) the checkboxes of all of that node’s subdirectories and
files. The event handler passes in the sender object and an object of type
TreeViewEventArgs. You can get the node that raised the event from this
TreeViewEventArgs object (e). The Node itself has a property called Checked, which
indicates whether the checkbox for that node is checked or cleared. You then call

Creating a Real-World Application | 423

SetCheck(), passing in the node that raised the event, and of the Boolean indicating
whether the node has been checked.

Each node has a Nodes property, which gets a TreeNodeCollection containing all the
subnodes. SetCheck() recurses through the current node’s Nodes collection, setting
each subnode’s checkmark to match that of the node that was checked.

For each TreeNode in the Nodes collection, you first want to set its Checked property to
whatever was passed in as a parameter. Then you want to check to see whether the
current node is a leaf (has no subdirectories). A node is a leaf if its own Nodes collec-
tion has a count of 0. If it is a leaf, you do nothing. If it is not a leaf, you call
SetCheck() again, recursively, passing in the current node and the Checked property.
To do all of this, add the following method to your code after the event handler:

private void SetCheck(TreeNode node, bool check)
{
 foreach (TreeNode n in node.Nodes)
 {
 n.Checked = check; // check the node
 if (n.Nodes.Count != 0)
 {
 SetCheck(n, check);
 }
 }
}

This propagates the checkmark (or clears the checkmark) down through the entire
structure. Run your application again now and check it out. When you check a
directory, all its files and child directories should be checked automatically. If it’s not
working, put a breakpoint in SetCheck(), and step through the method.

Expanding a directory

Each time you click a + sign next to a directory in the source TreeView (or in the tar-
get), you want to expand that directory. The TreeView control does that automati-
cally, but as you’ve seen, it gets subdirectories only two levels deep, to save on
processing. What you want, though, is to check for subdirectories only in the sub-
directory the user selects, and only when he selects it. To do that, you’ll need an
event handler for the TreeView control’s BeforeExpand event—as you might expect,
this code runs after the user has clicked the + sign, but before the TreeView expands
that directory. Because the event handlers will be identical for both the source and
the target tree views, you’ll create a shared event handler (assigning the same event
handler to both). Go back to the Design view, select the tvwSource control, double-
click the BeforeExpand event, and add this code:

private void tvwSource_BeforeExpand(object sender, TreeViewCancelEventArgs e)
{
 tvwExpand(sender, e.Node);

}

424 | Chapter 18: Creating Windows Applications

The EventArgs object for the BeforeExpand event is TreeViewCancelEventArgs, which
isn’t very intuitive, but that doesn’t really matter, because all you need from it is the
node that the user clicked, which TreeViewCancelEventArgs does have. Pass the
sender (you’ll see why in a minute) and the Node to the tvwExpand() method.

Now you need to add the tvwExpand() method. Add this code immediately after the
event handler:

private void tvwExpand(object sender, TreeNode currentNode)
{
 TreeView tvw = (TreeView)sender;
 bool getFiles = (tvw == tvwSource);
 string fullName = currentNode.FullPath;
 currentNode.Nodes.Clear();
 GetSubDirectoryNodes(currentNode, fullName, getFiles, 1);
}

You have the current node, passed in from the event arguments; you get its full path-
name (which you will need as a parameter to GetSubDirectoryNodes), and then you
must clear its collection of subnodes, because you are going to refill that collection
by calling in to GetSubDirectoryNodes:

currentNode.Nodes.Clear();

Why do you clear the subnodes and then refill them? Take a look at the call to
GetSubDirectoryNodes():

GetSubDirectoryNodes(currentNode, fullName, getFiles, 1);

When you make the call this time, the level parameter is 1, so when the user clicks a
node, this code will get two levels of subnodes for the node the user clicked, and only
that node. That saves processor power, because you’re digging deep into the direc-
tory structure only at the node the user selected. If the user continues to click the +
for deeper directories, the code will continue to retrieve subdirectories, but only
when they’re needed.

There’s an extra bit of code here, though. If this event came from the source
TreeView, you want to display the files in the current node. If the event came from the
destination TreeView, though, you don’t want to display the files (because a file isn’t
a valid destination for a file-copy process). GetSubDirectoryNodes() knows how to
account for that, with the getFiles Boolean parameter. Therefore, you cast the
sender object to a TreeView called tvw, and check to see whether tvw is the source
TreeView. If it is, you set getFiles to true; otherwise, it’s set to false:

TreeView tvw = (TreeView)sender;
bool getFiles = (tvw == tvwSource);

Then you can pass getFiles to GetSubDirectoryNodes(), and expect it to retrieve the
files or not, whichever is appropriate.

Now go back to the Design view, select the target TreeView, create its BeforeExpand

event, and add the call to twvExpand():

Creating a Real-World Application | 425

private void tvwTargetDir_BeforeExpand(object sender, TreeViewCancelEventArgs e)
{
 tvwExpand(sender, e.Node);
}

Clicking the target TreeView

The second event handler for the target TreeView (in addition to BeforeExpand) is
somewhat trickier. The event itself is AfterSelect. (Remember that the target
TreeView doesn’t have checkboxes, so you need to handle AfterSelect, not
AfterCheck.) The user can select only one directory at a time, and you want to take
that one directory chosen and put its full path into the text box above the target
TreeView. Click the Design View tab, select tvwTargetDir, and double-click next to its
AfterSelect property to create the event hander. Add the following code to the event
handler:

private void tvwTargetDir_AfterSelect(object sender, TreeViewEventArgs e)
{
 string theFullPath = e.Node.FullPath;

 if (theFullPath.EndsWith("\\"))
 {
 theFullPath = theFullPath.Substring(0, theFullPath.Length - 1);
 }

 txtTargetDir.Text = theFullPath;
}

This is pretty simple code, but you need to adjust the string a bit. You can get the full
pathname from the selected node easily:

string theFullPath = e.Node.FullPath;

However, if the selected node is a directory, the pathname will end with a backslash,
and you don’t want to display that in the text box. Therefore, if the string ends in a
backslash, you need to remove it (subtract 1 from the Length property):

if (theFullPath.EndsWith("\\"))
{
 theFullPath = theFullPath.Substring(0, theFullPath.Length - 1);
}

Notice that you need to use EndsWith("\\") for your test, not simply EndsWith("\").
That’s because the \ is the escape character, so if you want to check for it, you need
to escape it. (See Chapter 15 if you need a refresher on strings.)

Once you have the string the way you want it, you simply assign it to the Text prop-
erty of the TextBox control:

txtTargetDir.Text = theFullPath;

That takes care of the events associated with the TreeView controls. Run the applica-
tion now to make sure the two TreeView controls and the TextBox behave as you’d

426 | Chapter 18: Creating Windows Applications

expect them to. This is all good stuff, but your file-copy application still doesn’t copy
any files yet. That’s because you haven’t created the event handlers for the buttons.

Handling the Button Events
The four buttons on the page (Clear, Copy, Delete, and Cancel) are the controls that
will do the actual work of the application. In fact, only the Copy button is particu-
larly challenging, but we’ll take each one in turn.

Handling the Clear button event

The purpose of the Clear button is to clear any checked boxes in the source TreeView.
Given the SetCheck() method that you developed earlier, handling the Clear but-
ton’s Click event is trivial. In the Design tab, double-click on the Clear button to cre-
ate its default event handler (Click). Then add this bit of code to the handler:

private void btnClear_Click(object sender, System.EventArgs e)
{
 foreach (TreeNode node in tvwSource.Nodes)
 {
 SetCheck(node, false);
 }
}

All you’re doing here is calling the SetCheck() method on the root nodes and telling
them to recursively uncheck all their contained nodes.

Implementing the Copy button event

Now that you can check the files and pick the target directory, you’re ready to han-
dle the Copy click event. The very first thing you need to do is to get a list of which
files were selected. What you want is an array of FileInfo objects, but you have no
idea how many objects will be in the list. This is a perfect job for a generic List. Dou-
ble-click the Copy button to create the event handler. Then add the following code
to call a method called GetFileList(), which will take responsibility for filling the
list:

private void btnCopy_Click(object sender, System.EventArgs e)
{
 List<FileInfo> fileList = GetFileList();

Let’s pick that method apart before returning to the event handler. Create the new
method below the btnCopy_Click handler.

Start by instantiating a new List object to hold the strings representing the names of
all the files selected:

private List<FileInfo> GetFileList()
{
 List<string> fileNames = new List<string>();

Creating a Real-World Application | 427

To get the selected filenames, you can iterate through the source TreeView control:

foreach (TreeNode theNode in tvwSource.Nodes)
{
 GetCheckedFiles(theNode, fileNames);
}

To see how this works, you’ll create the GetCheckedFiles() method before you go
any further with GetFileList(). Create this method now below GetFileList(). This
method is pretty simple: it examines the node it was handed. If that node has no chil-
dren (node.Nodes.Count == 0), it is a leaf. If that leaf is checked, you get the full path
and add it to the ArrayList passed in as a parameter. Add the following code to your
new method:

private void GetCheckedFiles(TreeNode node,List<string> fileNames)
{
 // if this is a leaf...
 if (node.Nodes.Count == 0)
 {
 // if the node was checked...
 if (node.Checked)
 {
 // add the full path to the arrayList

fileNames.Add(node.FullPath);

 }
 }

If the node is not a leaf, you recurse down the tree, finding the child nodes. Add the
following code to complete the method:

 else
 {
 foreach (TreeNode n in node.Nodes)
 {
 GetCheckedFiles(n,fileNames);
 }
 }
}

This returns the List filled with all the filenames. Back in GetFileList(), you’ll use
this List of filenames to create a second List, this time to hold the actual FileInfo
objects—this will give you the actual files to copy, not just their names. You start by
creating the new List<FileInfo>. Add this code to GetFileList():

List<FileInfo> fileList = new List<FileInfo>();

You’re using type-safe List objects here so that the compiler will flag any objects
added to the collection that aren’t of type FileInfo.

You can now iterate through the filenames in fileNames, picking out each name and
instantiating a FileInfo object with it. You can detect whether a given name is a file
or a directory by calling the Exists property, which will return false if the File

object you created is actually a directory. If it is a File, you can add it to the fileList

that you just created. Add the following code to GetFileList():

428 | Chapter 18: Creating Windows Applications

foreach (string fileName in fileNames)
{
 FileInfo file = new FileInfo(fileName);
 if (file.Exists)
 {
 fileList.Add(file);
 }
}

It would be a good idea to work your way through the list of selected files in order
from largest to smallest so that you can pack the target disk as tightly as possible.
You must therefore sort the List. You can call the Sort() method of the List, but
how will it know how to sort FileInfo objects?

To solve this, you must pass in an IComparer<T> interface. You learned about using
interfaces back in Chapter 13, and generics in Chapter 14. You’ll create a class called
FileComparer that will implement this generic interface for FileInfo objects. Add the
following code as a nested class inside the FrmFileCopier class, but outside any exist-
ing methods:

public class FileComparer : IComparer<FileInfo>
{

This class has only one method, Compare(), which takes two FileInfo objects as
arguments. Add the following method to the class:

public int Compare(FileInfo file1, FileInfo file2)
{

The normal approach is to return 1 if the first object (file1) is larger than the sec-
ond (file2), to return –1 if the opposite is true, and to return 0 if they are equal. In
this case, however, you want the list sorted from big to small, so you should reverse
the return values.

Because this is the only use of the Compare method, it is reasonable to
put this special knowledge (that the sort is from big to small) right into
the Compare method itself. The alternative is to sort small to big, and
have the calling method reverse the results.

The Length property of the FileInfo class makes it easy to compare the size of the
two files. Add the following code to the Compare() method:

public int Compare(FileInfo file1, FileInfo file2)
{
 if (file1.Length > file2.Length)
 {
 return -1;
 }
 if (file1.Length < file2.Length)
 {
 return 1;
 }

Creating a Real-World Application | 429

 return 0;
}

Now you can use the IComparer interface. Return to GetFileList(), and add the fol-
lowing code to instantiate the IComparer reference and pass it to the Sort() method
of fileList:

IComparer<FileInfo> comparer = (IComparer<FileInfo>) new FileComparer();
fileList.Sort(comparer);

With that done, you can return fileList to the calling method by adding this line:

return fileList;

The calling method was btnCopy_Click. Remember, you went off to GetFileList() in
the first line of the event handler:

protected void btnCopy_Click (object sender, System.EventArgs e)
{
 List<FileInfo> fileList = GetFileList();

At this point, you’ve returned with a sorted list of File objects, each representing a
file selected in the source TreeView.

You can now iterate through the list, copying the files and updating the UI. Add the
following foreach loop to btnCopy_Click to accomplish that:

foreach (FileInfo file in fileList)
{
 try
 {
 lblStatus.Text = "Copying " + txtTargetDir.Text +
 "\\" + file.Name + "...";
 Application.DoEvents();
 // copy the file to its destination location
 file.CopyTo(txtTargetDir.Text + "\\" +
 file.Name, chkOverwrite.Checked);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}
lblStatus.Text = "Done.";

The first thing this loop does is write the progress to the lblStatus label. You output
a message, “Copying”, followed by whatever is currently showing in txtTargetDir,
which must be the target directory the user selected. Then you add a backslash and
the filename being copied. Next, the loop calls Application.DoEvents() to give the UI
an opportunity to redraw; if you didn’t, your status message would never show up.

Then the loop calls CopyTo() on the file, passing in the target directory (again,
obtained from the txtTargetDir), and a Boolean flag indicating whether the file
should be overwritten if it already exists. CopyTo() is a method of the FileInfo class
that takes a FileInfo object and a Boolean.

430 | Chapter 18: Creating Windows Applications

The copy is wrapped in a try block because you can anticipate any number of things
going wrong when copying files—the file might be in use, the target directory might
become unavailable, the target disk could be full, or many other things. In a commercial-
grade application, you’d create custom exceptions to handle all of these possibilities. For
now, though, if any exception is thrown, you’ll pop up a dialog box showing the error.

That’s it; you’ve implemented file copying! Not so hard, was it? The CopyTo()

method does most of the work. You’re not done yet, though; there are still two more
buttons to handle.

Handling the Delete button event

The code to handle the Delete event is simple, but it will give us an opportunity to
show you how message boxes work. Double-click the Delete button to create the
handler. The very first thing you do is ask the user whether she is sure she wants to
delete the files. Copy this code to the btnDelete_Click handler:

private void btnDelete_Click(object sender, System.EventArgs e)
{
 // ask them if they are sure
 System.Windows.Forms.DialogResult result =
 MessageBox.Show(
 "Are you quite sure?", // msg
 "Delete Files", // caption
 MessageBoxButtons.OKCancel, // buttons
 MessageBoxIcon.Exclamation, // icons
 MessageBoxDefaultButton.Button2); // default button

You can use the MessageBox class’s static Show() method, passing in five parameters:
first, the message you want to display, as a string; second, the title for the message
box as a string, which will be “Delete Files” in this case. The rest of the parameters
are flags, as follows: MessageBox.OKCancel indicates that you want the message box to
have two buttons: OK and Cancel. You don’t need to write any code for these but-
tons; they work automatically. The MessageBox.IconExclamation flag specifies the
icon that you want to appear in the message box: an exclamation mark in this case.
Finally, the MessageBox.DefaultButton.Button2 flag sets which of the buttons you
asked for should be the default choice. In this case, you’re choosing the second but-
ton (Cancel).

Notice that you’re not just displaying the dialog box here; you’re capturing the user’s
choice in a variable called result. When the user chooses OK or Cancel, the result is
passed back as a System.Windows.Forms.DialogResult enumerated value. You can test
this value to see whether the user selected OK; add this line to the event handler:

if (result == System.Windows.Forms.DialogResult.OK)
{

Source Code | 431

If the condition is true, you can get the list of filenames with the GetFileList()

method you created before. Then you iterate through the list, deleting each file as
you go. The FileInfo class also has a Delete() method that you can use here. Add
this code to your handler:

List<FileInfo> fileNames = GetFileList();
foreach (FileInfo file in fileNames)
{
 try
 {
 // update the label to show progress
 lblStatus.Text = "Deleting " +
 txtTargetDir.Text + "\\" +
 file.Name + "...";
 Application.DoEvents();
 file.Delete();
 }
 catch (Exception ex)
 {
 // you may want to do more than
 // just show the message
 MessageBox.Show(ex.Message);
 }
}
lblStatus.Text = "Done.";
Application.DoEvents();

This code is very similar to the copy code, except that the method that is called on
the file is Delete(). Everything is enclosed in a try block, for the same reason as
before, and the status label is updated accordingly.

Handling the Cancel button event

The final button to handle is the Cancel button, which is quite trivial. Double-click
the Cancel button to create its Click event handler, and add the following code:

protected void btnCancel_Click (object sender, System.EventArgs e)
{
 Application.Exit();
}

Source Code
There you go—one complete, functional Windows application. Go ahead and test it
out, but be careful what files you delete, because you won’t get them back. You may
also run into permission issues, if you’re trying to access sensitive files or directories.
Example 18-1 provides the full commented source code for this example.

432 | Chapter 18: Creating Windows Applications

ASP.NET
One of the goals of Microsoft’s .NET initiative is to make it just as easy to create web
applications as it is to create Windows applications. ASP.NET fulfills that goal for the
Web. With ASP.NET, you can create applications using controls that are very similar
to the ones you saw in this chapter, in a visual design environment that’s nearly iden-
tical to the form designer you used here. The difference between creating a Windows
application and a web page is that in ASP.NET, you can either place the controls visu-
ally, or view the HTML source for the page and add controls as though you were writ-
ing HTML. You store the code for the web page in a separate file, just as you did in this
chapter, but in ASP.NET, that code can be written in either C# or Visual Basic; it
makes no difference to the web page.

If you’re using the full version of Visual Studio 2008, you can already create ASP.NET
web pages; you just need to select ASP.NET Web Page in the New Project dialog box.
However, we’ve written this book for the most part using C# Express, which doesn’t
support ASP.NET, so we won’t go any further into the topic here.

If you want to learn ASP.NET, you should find it quite easy. Your C# skills will be very
useful, and you’ll already be accustomed to the IDE from this book. Microsoft offers a
free IDE called Visual Web Developer, which is the ASP.NET equivalent to C#
Express. You may also want to pick up a copy of Learning ASP.NET 3.5, by Jesse
Liberty et al. (O’Reilly), which applies the “learning” style of this book to the topic of
ASP.NET.

Example 18-1. FileCopier source code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

namespace FileCopier
{
 public partial class FrmFileCopier : Form
 {
 private const int MaxLevel = 2;

 public FrmFileCopier()
 {
 InitializeComponent();
 FillDirectoryTree(tvwSource, true);
 FillDirectoryTree(tvwTargetDir, false);
 }

Source Code | 433

 // the nested FileComparer class implements
 // IComparer, and allows you to compare two
 // FileInfo objects by file size. Note that
 // you're comparing large to small, so the
 // expected results are reversed.
 public class FileComparer : IComparer<FileInfo>
 {
 public int Compare(FileInfo file1, FileInfo file2)
 {
 if (file1.Length > file2.Length)
 {
 return -1;
 }
 if (file1.Length < file2.Length)
 {
 return 1;
 }
 return 0;
 }
 }

 // method for both TreeView controls that fills the TreeViews
 // with the contents of the local drives.
 private void FillDirectoryTree(TreeView tvw, bool isSource)
 {
 // clear the tree first
 tvw.Nodes.Clear();

 // find the root drives for root nodes
 string[] strDrives = Environment.GetLogicalDrives();

 // Iterate through the drives, adding them to the tree
 foreach (string rootDirectoryName in strDrives)
 {
 try
 {
 // If a drive is not ready, it will be skipped
 DirectoryInfo dir = new DirectoryInfo(rootDirectoryName);
 dir.GetDirectories();
 // forces an exception if the drive isn't ready

 // create a new TreeNode object
 TreeNode ndRoot = new TreeNode(rootDirectoryName);

 // add the TreeNode to the TreeView's collection
 // for each root directory
 tvw.Nodes.Add(ndRoot);

 // Add subdirectory nodes.
 // If the Treeview is the source,
 // then also get the filenames.

Example 18-1. FileCopier source code (continued)

434 | Chapter 18: Creating Windows Applications

 if (isSource)
 {
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, true, 1);
 }
 else
 {
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, false, 1);
 }
 }
 // The catch block does nothing in this example, but you
 // could add custom exception code here.
 catch
 {
 }
 Application.DoEvents();
 }
 }

 // Gets all the subdirectories below the directory node
 // that was passed in, and adds them to the directory tree.
 // The parameters passed in are the parent node
 // for this subdirectory,
 // the full pathname of this subdirectory,
 // and a Boolean to indicate
 // whether or not to get the files in the subdirectory.
 private void GetSubDirectoryNodes(TreeNode parentNode, string fullName,
 bool getFileNames, int level)
 {
 DirectoryInfo dir = new DirectoryInfo(fullName);
 DirectoryInfo[] dirSubs = dir.GetDirectories();

 // add a child node for each subdirectory
 foreach (DirectoryInfo dirSub in dirSubs)
 {
 // Skip hidden folders
 if ((dirSub.Attributes & FileAttributes.Hidden) != 0)
 {
 continue;
 }

 // Create a new node and add it to the tree
 TreeNode subNode = new TreeNode(dirSub.Name);
 parentNode.Nodes.Add(subNode);

 // If this is the first level of recursion,
 // call the method again recursively.
 if (level < MaxLevel)
 {
 GetSubDirectoryNodes(subNode, dirSub.FullName,
 getFileNames, level + 1);
 }
 }

Example 18-1. FileCopier source code (continued)

Source Code | 435

 if (getFileNames)
 {
 // Get any files for this node.
 FileInfo[] files = dir.GetFiles();

 // Create a node for each file, if any
 foreach (FileInfo file in files)
 {
 TreeNode fileNode = new TreeNode(file.Name);
 parentNode.Nodes.Add(fileNode);
 }
 }
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void tvwSource_AfterCheck(object sender, TreeViewEventArgs e)
 {
 SetCheck(e.Node, e.Node.Checked);
 }

 // Recursively checks all subdirectories
 // when the parent directory is checked
 private void SetCheck(TreeNode node, bool check)
 {
 foreach (TreeNode n in node.Nodes)
 {
 n.Checked = check; // check the node
 if (n.Nodes.Count != 0)
 {
 SetCheck(n, check);
 }
 }
 }

 private void tvwSource_BeforeExpand(object sender,
 TreeViewCancelEventArgs e)
 {
 tvwExpand(sender, e.Node);
 }
 private void tvwTargetDir_BeforeExpand(object sender,
 TreeViewCancelEventArgs e)
 {
 tvwExpand(sender, e.Node);
 }

 // recursively gets the subdirectories
 // when a directory is expanded

Example 18-1. FileCopier source code (continued)

436 | Chapter 18: Creating Windows Applications

 private void tvwExpand(object sender, TreeNode currentNode)
 {
 TreeView tvw = (TreeView)sender;
 bool getFiles = (tvw == tvwSource);
 string fullName = currentNode.FullPath;
 currentNode.Nodes.Clear();
 GetSubDirectoryNodes(currentNode, fullName, getFiles, 1);
 }

 private void tvwTargetDir_AfterSelect(object sender,
 TreeViewEventArgs e)
 {
 // get the full path for the selected directory
 string theFullPath = e.Node.FullPath;

 // if it is not a leaf, it will end with a backslash
 // remove the backslash
 if (theFullPath.EndsWith("\\"))
 {
 theFullPath = theFullPath.Substring(0,
 theFullPath.Length - 1);
 }
 // insert the path in the text box
 txtTargetDir.Text = theFullPath;

 }

 private void btnClear_Click(object sender, EventArgs e)
 {
 // clears all the checked directories
 // in the source TreeView
 foreach (TreeNode node in tvwSource.Nodes)
 {
 SetCheck(node, false);
 }
 }

 private void btnCopy_Click(object sender, EventArgs e)
 {
 // get the sorted list of files
 List<FileInfo> fileList = GetFileList();

 // copy the files
 foreach (FileInfo file in fileList)
 {
 try
 {
 lblStatus.Text = "Copying " + txtTargetDir.Text +
 "\\" + file.Name + "...";
 Application.DoEvents();
 // copy the file to its destination location

Example 18-1. FileCopier source code (continued)

Source Code | 437

 file.CopyTo(txtTargetDir.Text + "\\" + file.Name,
 chkOverwrite.Checked);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 lblStatus.Text = "Done.";

 }

 private List<FileInfo> GetFileList()
 {
 // create an unsorted array list of the full filenames
 List<string> fileNames = new List<string>();
 foreach (TreeNode theNode in tvwSource.Nodes)
 {
 GetCheckedFiles(theNode, fileNames);
 }

 // Create a list to hold the FileInfo objects
 List<FileInfo> fileList = new List<FileInfo>();

 // for each of the filenames in the unsorted list
 // if the name corresponds to a file (and not a directory),
 // add it to the file list
 foreach (string fileName in fileNames)
 {
 // create a file with the name
 FileInfo file = new FileInfo(fileName);
 // see if the file exists on the disk
 // this fails if it is a directory
 if (file.Exists)
 {
 fileList.Add(file);
 }
 }

 // Create an instance of the IComparer interface
 IComparer<FileInfo> comparer =
 (IComparer<FileInfo>)new FileComparer();

 // pass the comparer to the sort method so that the list
 // is sorted by the compare method of comparer.
 fileList.Sort(comparer);
 return fileList;
 }

 private void GetCheckedFiles(TreeNode node, List<string> fileNames)
 {
 // if this is a leaf...

Example 18-1. FileCopier source code (continued)

438 | Chapter 18: Creating Windows Applications

 if (node.Nodes.Count == 0)
 {
 // if the node was checked...
 if (node.Checked)
 {
 // add the full path to the arrayList
 fileNames.Add(node.FullPath);
 }
 }
 else
 {
 foreach (TreeNode n in node.Nodes)
 {
 GetCheckedFiles(n, fileNames);
 }
 }
 }

 private void btnDelete_Click(object sender, EventArgs e)
 {
 // ask them if they are sure
 System.Windows.Forms.DialogResult result = MessageBox.Show(
 "Are you quite sure?", // msg
 "Delete Files", // caption
 MessageBoxButtons.OKCancel, // buttons
 MessageBoxIcon.Exclamation, // icons
 MessageBoxDefaultButton.Button2); // default button
 if (result == System.Windows.Forms.DialogResult.OK)
 {
 List<FileInfo> fileNames = GetFileList();
 foreach (FileInfo file in fileNames)
 {
 try
 {
 // update the label to show progress
 lblStatus.Text = "Deleting " + txtTargetDir.Text +
 "\\" + file.Name + "...";
 Application.DoEvents();
 file.Delete();
 }
 catch (Exception ex)
 {
 // you may want to do more than
 // just show the message
 MessageBox.Show(ex.Message);
 }
 }
 lblStatus.Text = "Done.";
 Application.DoEvents();

 }
 }

Example 18-1. FileCopier source code (continued)

Summary | 439

Summary
• C# and Visual Studio are designed to create Windows applications with visual

design tools that enable you to drag-and-drop controls onto a form.

• The application window itself is called a form, and the items that you drag onto
the form are known as controls.

• Windows applications use an event-driven design, meaning that the application
responds to events raised by the user or the system, and most of your code will
reside in event handlers.

• Windows automatically provides the code to initialize the form and the con-
trols; you don’t need to write any of it.

• The Properties window allows you to change the properties of a control without
having to edit the code by hand.

• The Events window (available from a button in the Properties window) helps
you to create event handlers for all the possible events for your control. Simply
double-click the event, and Visual Studio will create a skeleton event handler
and then take you to the appropriate point in the code, so you can enter your
logic.

• You can double-click a control itself to have Visual Studio create the default
event handler for that control.

• Visual Studio divides the Design view of the form from the code page, where the
code for the event handlers is kept.

• The partial keyword in the class definition indicates that Visual Studio is hid-
ing the initialization code for the form and the controls. The partial class file is
where you keep your event handler code.

• Windows has a number of built-in classes and methods that you can use to con-
trol aspects of the form, including the Application class and the Form class.

• Factoring is a technique where you place common code, used by several differ-
ent methods or handlers, in a single dedicated method for easier access.

Now you’ve taken C# beyond the console window and into the realm of creating
Windows applications. As you’ve seen, it’s not that hard, and Visual Studio takes
care of a lot of the Windows fundamentals for you, leaving you free to concentrate

 private void btnCancel_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }
 }
}

Example 18-1. FileCopier source code (continued)

440 | Chapter 18: Creating Windows Applications

on your code. There’s a lot more to learn about Windows programming than we can
cover in this chapter, and we hope that if you’re interested, you’ll seek out other
sources to learn more, and of course, experiment on your own.

The Windows Forms system has been around for a while, though. The newest ver-
sion of the Windows programming framework is the Windows Presentation Founda-
tion (WPF), which ships with Windows Vista and is also available for Windows XP
SP2 and Windows Server 2003. Although you can be sure that Windows Forms will
be available for a long while yet, the next chapter will bring you up-to-date with the
latest in Windows presentation.

Test Your Knowledge: Quiz

Question 18-1. What is the name for the buttons, text boxes, and other items on a
Windows form?

Question 18-2. How do you add a Button control to a Windows form in Visual Studio?

Question 18-3. How do you set the properties of a control?

Question 18-4. What does it mean that Windows is an event-driven environment?

Question 18-5. What sort of code do you need to make a button respond to being
clicked?

Question 18-6. Name two ways to create an event handler in Visual Studio.

Question 18-7. Where does Visual Studio keep the event handlers you create for your
form’s controls?

Question 18-8. What is the meaning of the partial class keyword?

Question 18-9. What method would you call to close the application?

Question 18-10. What is recursion?

Test Your Knowledge: Exercises | 441

Test Your Knowledge: Exercises

Exercise 18-1. Create a Windows application that displays the word “Hello” in a
label, and has a button that changes the display to “Goodbye”.

Exercise 18-2. Modify the first exercise by dragging a timer (found in the Compo-
nents section of the Toolbox) onto the form and having the timer change the mes-
sage from “Hello” to “Goodbye” and back once per second. Change the button to
turn this behavior on and off. Use the Microsoft Help files to figure out how to use
the timer to accomplish this exercise.

Exercise 18-3. Create a Windows application that calculates sales tax for a given
amount. The user can enter an amount in a text box, and then can enter a sales tax
between 0 and 25%, in increments of 0.25%. When the user clicks the Submit but-
ton, the tax is calculated, and both the tax and the total are output in a label. The
application should look something like Figure 18-9 when it runs.

The amount is entered in a Textbox control, but for the tax, you want to restrict the
values the user can enter, so you should use a numericUpDown control—use the Help
files or IntelliSense to examine the properties for that control and figure out how to
use them to your advantage. There’s a Clear button that clears the “Amount”
TextBox when clicked.

To output a double with two decimal places, use ToString("F"). The F applies the
two-decimal-place formatting. You may also want to implement some exception
handling to ensure that the user enters a number in the TextBox.

Figure 18-9. This is your goal for Exercise 18-3.

442

CHAPTER 19

Windows Presentation Foundation

The Windows Forms techniques you learning in Chapter 18 are great, and they rep-
resent a major improvement in user experience over the console applications you’ve
used for most of this book. Time and familiarity have a way of changing expecta-
tions, though, and Windows Forms have been around for a very long time in pro-
gramming years. As rival operating environments grow and mature, and people
become accustomed to sophisticated interface design on the Web, users’ expecta-
tions for interfaces have changed. Although Windows Forms are powerful, they
don’t leave a whole lot of flexibility for designers to show off, and those designers
who do try need to be programmers as well if they want to get the most out of Win-
dows Forms. Microsoft has responded to those concerns with the Windows Presen-
tation Foundation (WPF).

The purpose of WPF is to provide a solution that’s similar to the Windows Forms
techniques you just learned, but provides greater flexibility of design. In Windows
Forms, you used the visual designer to create the layout of the form, but you kept the
code in a separate part of the file. WPF keeps the idea of separating the presentation
(the look of the form) from the implementation (the event handler code), but it gives
you direct control over the presentation. Instead of allowing access to only the
Design view of your form in a visual interface, WPF represents the design in a form
of XML, specifically created for WPF. This form of XML is called the XAML (pro-
nounced “ZAM-el”), which stands for eXtensible Application Markup Language.

If you’re familiar with ASP.NET, this XAML idea will sound familiar to
you. WPF borrows the ASP.NET idea of having a markup file and a
code-behind file, except the markup is in XAML instead of HTML.
Using XAML gives the markup greater flexibility over HTML, but you
lose the familiarity that many web developers have with HTML. If you’re
not familiar with ASP.NET, don’t worry about it. You don’t need to
know ASP.NET to understand WPF; just know that the idea is similar.

Using XAML to define the presentation of your application opens up all sorts of
design possibilities that Windows Forms just aren’t capable of. You may have

Your First WPF Application | 443

already seen some of the possibilities in the Aero interface that Windows Vista uses,
with its animated menus and transitions, and semitransparent “Glass” appearance.
The WPF elements, though, go beyond the standard Windows controls.

Even more significant than what you can do with WPF is how you can do it. XAML
is robust enough that you can define some event handlers (called triggers) entirely
within the XAML, without writing formal handlers for them at all. In this chapter,
you’ll start out very simply with a Hello World application to get the hang of using
XAML. We’ll also show you how to use animations and some of the other elements,
and finish up with a more elaborate application that displays data interactively.

To complete the examples and exercises in this chapter, you’ll need to
have WPF on your machine. WPF is already installed on Windows
Vista, and it’s available for Windows XP Service Pack 2 by download-
ing the .NET Framework 3.5.

Your First WPF Application
The best way to learn WPF is to start off with a traditional Hello World application.
From within C# Express or Visual Studio, create a new project. When the New
Project dialog box appears, select WPF Application as the project type, and name the
project “Hello WPF”.

Visual Studio will create the project and open a WPF editing window for you, as you
can see in Figure 19-1.

Notice the split window in the middle of the IDE. It shows a visual representation of
your form on the top, called the Design view, and the XAML markup on the bottom.

Before you do anything else, take a look at the code that’s automatically created for
you in the XAML window. It looks something like this:

<Window x:Class="Hello_WPF.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid>

 </Grid>
</Window>

The first thing you see is the opening tag for the Window element itself. That element
contains a reference to the Class for the application, created by default. The x refers
to the default namespace for this application. (You can change the namespace if you
like, but x is the default.) The xmlns properties define the namespace for the applica-
tion, by referring to the XML schema for WPF, as defined by Microsoft. In short, this
is where you’ll find the specification of the elements that you can use in this file. You
don’t really need to worry much about this for the moment, although later, you’ll see
how to add your own elements to the namespace.

444 | Chapter 19: Windows Presentation Foundation

XML Crash Course
XAML is a form of XML (eXtensible Markup Language), which is similar in appear-
ance to HTML, the markup language used to create web pages. The difference is that
HTML tags define not only the type of content (paragraph, image, text box, and so on),
but also the appearance, or presentation, of that content (bold, italic, blinking, and so
on). XML takes the presentation elements out of the language, and also extends its use-
fulness beyond just defining web pages. XML documents can define any sort of data,
as long as the document adheres to the defined schema for that document—the set of
valid elements.

Although you certainly can define web pages or text documents with XML, you can
also define other relationships, like this:

<schedule>
 <shifts>
 <shift name="morning" startTime="8:00" endTime="4:00">
 <managers>
 <manager>Johnson</manager>
 <manager>Singh</manager>
 </managers>
 </shift>
 <shift name="evening" startTime="4:00" endTime="12:00">
 <managers>
 <manager>Bradley</manager>
 </managers>
 </shift>
 </shifts>
</schedule>

In this example, you can see several XML syntax rules at work:

• All element names are enclosed in angle brackets: <>.

• Each opening tag has a corresponding closing tag; closing tags start with a for-
ward slash: /.

• Hierarchical order must be maintained; elements can’t overlap. In other words,
you can’t close the <schedule> element before you close the <shifts> element.

• Element attributes can be defined within the opening tag, such as the name
attribute on the <shift> element.

Some elements are self-closing; they don’t have content, but they can have attributes:

<book title="Dubliners" author="Joyce" />

There’s a lot more to XML than that, but you don’t need to know the details to under-
stand the XAML in this chapter. If you’d like to learn more, you can pick up XML in a
Nutshell by Elliotte Rusty Harold and W. Scott Means (O’Reilly).

Your First WPF Application | 445

Next, you’ll find three attributes for the Window itself: Title, Height, and Width. All
three of these attributes are pretty self-explanatory, and they’re reflected in the
Design view as shown in Figure 19-1. Go ahead and change the Width property from
300 to 100 and you’ll see the window immediately shrink in the Design view.
Change it back when you’re done. You can also click on the window in the Design
view, and all those properties will be available for you to change in the Properties
window, just as you did with Windows Forms.

The final thing to notice in this XAML is the Grid element. The Grid is a subelement
of the Window element, used for laying out the controls. For now, you’ll just put the
controls inside the Grid; we’ll worry about positioning later.

Next, find the Label control in the Common section of the Toolbox. Drag the Label

onto the window, anywhere you like. Notice that the guide lines don’t appear when
you’re placing the control, like they did in Windows Forms. Instead, they appear
after you’ve placed the Label. Once you’ve dropped the Label, the guide lines appear,
and you can drag the Label around to an aesthetically pleasing spot.

As with the Window element, you can change the properties of the Label element in
the Properties window, but it is easier to change them in the XAML window.

Figure 19-1. When you create a WPF project, the IDE opens with the XAML window in two views:
the Design view on top, and the XAML markup below.

446 | Chapter 19: Windows Presentation Foundation

When you added the Label, a line appeared in the XAML that looks something
like this, depending on where you placed the Label:

<Label Height="28" Margin="77,28,81,0" Name="label1" VerticalAlignment="Top">Label</
Label>

You can see the Name attribute in the middle of the line there. You won’t find it in the
Properties window, though. Edit the XAML window, and change the Name to
lblHello. The other elements are for positioning; leave them the way they are for
right now.

Now drag a Button control from the Toolbox onto the window, underneath the
Label. In the XAML, change the Name to btnHello. Instead of having a Text property,
as buttons did in Windows Forms, there’s a Content property for the Button. You
won’t see the Content property directly in the XAML window; that’s because the
content of the button is between the <Button> and </Button> tags, where it currently
says “Button”. Change that text to “Say Hello”, either in the XAML window or in
the Properties window. Your IDE should look something like Figure 19-2 at this
point.

Figure 19-2. When you place controls onto the Window element in the Design view, the
appropriate XAML is automatically added to the XAML window. Changes you make to the XAML
are also reflected in the Design view.

WPF Differences from Windows Forms | 447

So far, so good. Double-click btnHello, and you’ll be taken to the code file, just as
you were in Windows Forms, except this is called the code-behind file. The event
handler is created for you, just like before. Add the following highlighted code to
change the text of the label when the button is clicked:

private void btnHello_Click(object sender, RoutedEventArgs e)
{
 lblHello.Content = "Hello WPF!";
}

Notice here that instead of setting the value of lblHello.Text, as you would have
done in Windows Forms, you’re changing the Content property of lblHello. That’s
all you need to do. Now run the application, and click the button. The content of the
Label changes, just as you’d expect, as shown in Figure 19-3.

WPF Differences from Windows Forms
What you did in Hello WPF isn’t much different from what you could have done in
Windows Forms. There are a few differences, however, even in this simple applica-
tion, which aren’t readily apparent. For example, run the program again, and try
stretching out the borders of the window, as shown in Figure 19-4.

Notice how the “Say Hello” button stretches as you stretch the window. That
wouldn’t happen in Windows Forms without some extra tweaking on your part (you
can load one of the examples from Chapter 18 if you want to check that). In fact, the
label stretches too, but you can’t see that because the Label control has no border,
and it’s the same color as the background.

Figure 19-3. In this simple application, WPF behaves much like Windows Forms.

448 | Chapter 19: Windows Presentation Foundation

If the button doesn’t stretch for you, you probably have the button
placed too far to one side of the window, so the margin is set to zero.
Go back to the Design view and move the button until you see the
arrows connecting the left and right sides of the button to the sides of
the window.

Close the application and go back to the Window1.xaml window to see how that
happened. Expand the XAML part of the window so that you can see it better. You’ll
find that it looks something like Example 19-1, although the actual values will proba-
bly be different in your case.

We talked about the Window and Grid elements earlier. Within the Grid, you can see
two elements: the Button and the Label that you added. The label has a handful of
properties: the Name property that you changed earlier; a Height property that defines
the height of the window, in units; a VerticalAlignment property that indicates which
side of the window the control is aligned with; and finally, the Margin property.

Figure 19-4. When you stretch the window in WPF, the controls stretch with it.

Example 19-1. The XAML for your Hello WPF application is simple, but there’s a lot going on here

<Window x:Class="Example_19_1_ _ _ _Hello_WPF.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid>
 <Label Height="28" Margin="77,28,81,0" Name="lblHello"
 VerticalAlignment="Top">Label</Label>
 <Button Height="23" Margin="77,66,126,0" Name="btnHello"
 VerticalAlignment="Top" Click="btnHello_Click">
 Say Hello</Button>
 </Grid>
</Window>

WPF Differences from Windows Forms | 449

The Margin property requires a bit of explanation; its value is set with four integers,
separated by commas. Those integers indicate the distance between the control and
each of the four sides, in a strict order: left, top, right, and bottom. If any of the val-
ues are zero, as is the case with the bottom values in this example, the distance
doesn’t matter. If you use a single integer, all four sides use that value as the margin.
You can also use two integers, in which case the first integer sets the left and right
margins and the second sets the top and bottom margins.

In our example, the button is always 77 units from the left side of the window, and
126 units from the right. It’s 66 units from the top, but the bottom doesn’t matter.
So, if you resize the window horizontally, the button stretches to keep the distances
constant (unless you make the window too small). If you resize the bottom edge,
though, the button doesn’t move.

Units in WPF are always 1/96 of an inch. The standard Windows reso-
lution is 96 pixels to an inch, so at normal resolution, one unit is one
pixel. These units are absolute, though, so if you’re using a different
resolution, 96 pixels might be more or less than an inch, but 96 units
is always 1 inch.

Now you’re going to alter the properties of the controls in the XAML window, just
to see what it can do. First, select the Grid element. You can do this either by click-
ing in the window, anywhere that’s not one of the controls, or by simply clicking on
the <Grid> element in the XAML window. Either way, you’ll see the properties of the
Grid element in the Properties window. In the Brushes section, click the Background

property and set it to whatever you like (we chose IndianRed for this example). You
can also simply type in the XAML window: type a space after the word Grid, and
IntelliSense will provide a list of all the available properties and methods. Once you
select Background, IntelliSense will provide a list of all the available background col-
ors. You could do this with a Windows form as well, but your color choices would
be somewhat more limited.

Now that you’ve changed the background color of the Grid, your Label control may
be a bit harder to read. Click on the Label and scroll to the Brushes section in the
Properties window. Set the Background property to whatever you like (we used Slate-
Gray), and set the Foreground to White. Now scroll up to the Appearance section,
and set the Opacity property to 0.5. This is a property that’s not available in Win-
dows Forms. Click the Button control and set its Opacity to 0.5 as well. Run your
application now, and you’ll see that the two controls have a translucent property to
them, which is something similar to the Aero interface in Windows Vista.
Example 19-2 shows the XAML for this application, simple as it is.

450 | Chapter 19: Windows Presentation Foundation

Using Resources
You’ve seen how you can affect the properties of a single control, but in an applica-
tion with more than one control, you wouldn’t want to have to set each control’s
properties individually. That’s where resources come in. You define a resource for an
entire WPF application, where it can be used by any appropriate control.

To see how this works, you’ll add another Label and Button to your Hello WPF
example. Drag a Label control to somewhere near the upper-left corner of the win-
dow. Drag a Button control next to the Say Hello button. You can see in the Design
window that the new controls have the Windows standard appearance, not the cus-
tom appearance that you gave the two older controls. In some cases, that’s fine, but
most of the time, you’ll want all the controls in your application to have a consistent
appearance.

For the Label, change its name to lblTop, and set its Content property to “WPF Test”.
You won’t do anything programmatically with this label; it’s just for demonstration
purposes. You might as well give the button something to do, though. Change its
Name to btnCancel, and its Content property to “Cancel”. Double-click the button to
create its event handler, and add the following code:

this.Close();

In a WPF application, you use the Close() method to end the application, rather
than Application.Exit(), as you would in Windows Forms.

To get the controls of each type to have the same appearance, you’ll define a Style

element as a resource. Resources are generally scoped to particular elements. You
could create a resource for each individual control, but it’s easier to do it at the scope
of the Window element.

Example 19-2. You can easily edit the properties of controls in the XAML file to create effects that
aren’t possible in Windows Forms

<Window x:Class="Example_19_2_ _ _ _Properties_in_WPF.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid Background="IndianRed">
 <Label Height="28" Margin="77,28,81,0" Name="lblHello"
 VerticalAlignment="Top" Opacity="0.5"
 Background="SlateGray" Foreground="White">
 Label</Label>
 <Button Height="23" Margin="77,66,126,0" Name="btnHello"
 VerticalAlignment="Top" Click="btnHello_Click"
 Opacity="0.5">Say Hello</Button>
 </Grid>
</Window>

Using Resources | 451

In the XAML window, after the opening Window tag, enter the following code:

<Window.Resources>
 <Style x:Key="btnStyle" TargetType="Button">
 <Setter Property="Opacity" Value="0.5" />
 </Style>
 <Style x:Key="lblStyle" TargetType="Label">
 <Setter Property="Opacity" Value="0.5" />
 <Setter Property="Background" Value="SlateGray" />
 <Setter Property="Foreground" Value="White" />
 </Style>
</Window.Resources>

You start off with the Window.Resources element; that’s clear enough. The next line
defines the Style element. As we mentioned before, the x is used to indicate the
namespace for this application. Here, you’re defining a Key as part of the namespace so
that other elements can refer to it elsewhere in the form. We’ve given the Key a value of
btnStyle, to make it obvious what it’s referring to, but just as you saw with dictionar-
ies back in Chapter 14, a Key can be anything you like, as long as you can find it later.
The TargetType property restricts the style to being applied to Button controls only; it’s
not strictly necessary, but if you defined a style specifically for Button controls, without
using the TargetType property, and later tried to apply that style to a TextBox, you
could cause an error, depending on the specific styles you defined.

Once you’ve opened the Style element, you can define some Setter elements. These,
as the name implies, set properties of the target. In this case, the only change you’re
making to the Button control is to set the Opacity property to 0.5, so you provide the
Property, and then the Value.

You then close the Style element for the Button, and open one for the Label control,
cleverly named lblStyle. This style has a few more properties than btnStyle does,
but they’re all pretty simple.

The next step is to apply those styles to the individual controls. You do that within
the element for each control, with the Style attribute:

<Label Style="{StaticResource lblStyle}" Height="28"
 Margin="77,83,81,0" Name="lblHello" VerticalAlignment="Top">
 Label</Label>

In this case, you define the Style property with a static resource, which means that
the control element will look for the style definition with the appropriate name else-
where in the XAML file, within the scope that it can access. You defined lblStyle as
a resource for the entire Window, so the Label can find and use that resource. Note
that the curly braces are required.

Now apply the lblStyle to the other Label, and the btnStyle to the two Button con-
trols. You should find that the styles are applied immediately in the Design window,
and of course they stay if you run the application. The entire XAML file for this
example is shown in Example 19-3.

452 | Chapter 19: Windows Presentation Foundation

Animations
This control and resource stuff is great, but it’s not exactly exciting, we know. We
promised you animations, and animations you shall have. The best way to make ani-
mations in WPF is with a tool called Expression Blend (available at http://www.
microsoft.com/expression), but in this case, we’ll show you how to do it the hard way
so that you’ll know what’s going on in the XAML. In this example, you’re going to
start with a simple square, and perform some of the more basic animations on it. The
square is in fact an instance of the built-in Rectangle control, which is part of the
WPF schema. However, you can apply these animations to many other controls.

The first thing to do is define the Rectangle control. Create a new WPF project to
start with. You could drag a Rectangle control out of the toolbar onto the window,
but in this case, it’s easier to just define the rectangle in the XAML. Add the follow-
ing element inside the <Grid> element:

Example 19-3. When you define a resource for the Window element, that resource is available to all
the elements in the window

<Window x:Class="Example_19_3_ _ _ _Classes_and_Styles.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Window.Resources>
 <Style x:Key="btnStyle" TargetType="Button">
 <Setter Property="Opacity" Value="0.5" />
 </Style>
 <Style x:Key="lblStyle" TargetType="Label">
 <Setter Property="Opacity" Value="0.5" />
 <Setter Property="Background" Value="SlateGray" />
 <Setter Property="Foreground" Value="White" />
 </Style>
 </Window.Resources>
 <Grid Background="IndianRed">
 <Label Style="{StaticResource lblStyle}" Height="28"
 Margin="77,83,81,0" Name="lblHello"
 VerticalAlignment="Top">Label</Label>
 <Button Style="{StaticResource btnStyle}" Height="23"
 Margin="77,0,126,105" Name="btnHello"
 VerticalAlignment="Bottom" Click="btnHello_Click">
 Say Hello</Button>
 <Label Style="{StaticResource lblStyle}" Height="28"
 HorizontalAlignment="Left" Margin="15,18,0,0"
 Name="lblTop" VerticalAlignment="Top" Width="120">
 WPF Test</Label>
 <Button Style="{StaticResource btnStyle}" Height="23"
 HorizontalAlignment="Right" Margin="0,0,26,105"
 Name="btnCancel" VerticalAlignment="Bottom"
 Width="75" Click="btnCancel_Click">Cancel</Button>
 </Grid>
</Window>

Animations | 453

<Rectangle Name="myRectangle" Width="100" Height="100">
</Rectangle>

Now you should see a square in the Design window, 100 units on a side. You didn’t
define the Margin property, so the square will be centered in the window, which is
fine. The first thing you’re going to do is animate the color of the square, and to do
that, you’ll need the square to have some color first. If you click on the Rectangle ele-
ment, you’ll see it has a Fill property, which is the interior color of the square (as
opposed to the outside border, which we’ll leave blank). You could simply set the
Fill property to a color, but you can’t manipulate the Fill property directly from an
event, which is what you’ll want to do later. That means you have to define a Brush,
which is a property of Fill that you use for applying color, and other drawing prop-
erties. Inside the Rectangle element, add this new subelement:

<Rectangle.Fill>
 <SolidColorBrush x:Name="rectangleBrush" Color="Blue" />
</Rectangle.Fill>

What you’ve done here is define a Brush, specifically a SolidColorBrush—there are
more complicated Brush types, used for gradients and other fancy drawing tools, but
we’ll stick with a solid color here. Notice specifically that you’ve used the x element
to give this brush a name that can be referred to elsewhere in the code—that’s criti-
cal to the animation, as you’ll see in a moment.

Triggers and Storyboards
So far, you haven’t animated anything. To start the animation, you’ll need a trigger.
Triggers are attached to WPF elements, and they’re similar to event handlers in that
they react to events within the application, but they don’t necessarily require you to
write any code. This trigger will be attached to the Rectangle element, so below your
new <Rectangle.Fill> element, add another element, <Rectangle.Triggers>:

<Rectangle.Fill>
 <SolidColorBrush x:Name="rectangleBrush" Color="Blue" />
</Rectangle.Fill>
<Rectangle.Triggers>

</Rectangle.Triggers>

Notice that IntelliSense provides the closing tag for you. This subelement will hold
any triggers you define for Rectangle, and you’ll add one in a moment.

Much like event handlers, triggers need events to react to. WPF defines two different
kinds of events, routed events and attached events. Routed events are events raised
normally by a single control; attached events are more complicated, so we won’t
worry about them here. You’re going to use a routed event for this trigger, the Loaded

event on the Rectangle element. As the name implies, this event is fired when the
Rectangle element is loaded, which happens as soon as the application starts. Add
that trigger element now, and then we’ll define the animation to go inside it:

454 | Chapter 19: Windows Presentation Foundation

<Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">

 </EventTrigger>
</Rectangle.Triggers>

Animations live inside special elements called storyboards, so that’s what you need to
define next. The trigger element can’t contain just a storyboard by itself; it has to
contain a storyboard action. Therefore, you first need to add a <BeginStoryboard>

element inside the EventTrigger element. Inside the BeginStoryboard element, you
define the Storyboard:

 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>

You can also define a storyboard elsewhere in your code, as a resource. You’ll see
how that works in the next example, but we won’t do that here.

After all these nested elements, it’s finally time to get to the animation. WPF defines
several different kinds of animations, depending on what you’re animating. You can
think of an animation as changing a property of an element over time. For example,
if you define an animation to make a rectangle increase in width, you’re changing its
Width property, which is defined as a double data type, so you’d use the
DoubleAnimation for the animation type. In this case, you’re going to change the color
of the square, so you’ll use the ColorAnimation type. Add the following code inside
the Storyboard element:

<EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName="rectangleBrush"
 Storyboard.TargetProperty="Color"
 From="Blue" To="Red" Duration="0:0:10"
 AutoReverse="True" RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
</EventTrigger>

This all breaks down pretty easily. First, you open the <ColorAnimation> tag. Then
you define the TargetName of the storyboard; that’s the rectangleBrush you defined
earlier, and now you know why you gave it a name, so you could refer to it down
here. You also have a TargetProperty to indicate what property of the target Brush
you’re going to change, which in this case is Color. So far, so good.

Animations | 455

The next few elements define how the animation works. The From property indicates
the starting value of the animation; in this case, the starting color. The To property
indicates the value where you want to end up; in this case, Red. The Duration indi-
cates how long it takes for the value to change from the starting value to the final
value. The duration is measured in hours, minutes, and seconds, so 0:0:10 means the
color change will take 10 seconds to happen. The last line just adds a bit of class to
the animation: the AutoReverse property indicates that the animation will turn the
square blue, then back to red, automatically. The RepeatBehavior is used to limit
how many times the animation will repeat; the value of Forever means that it’ll
repeat until the user closes the application.

Run your application now. You’ll see your square, centered in the window, slowly
changing from blue through purple to red, and back again, every 10 seconds. Feel
free to stop the application and play with the values to get different effects.

If you wanted to shift colors between more than two values—say,
down the spectrum from red to yellow to green to blue—you’d use a
different type of animation called ColorAnimationUsingKeyFrames.
That’s a little complex for this example, though.

The result looks like Figure 19-5, and the full XAML is shown in Example 19-4.

Figure 19-5. You can’t tell this on the page, but this square is slowly changing color.

Example 19-4. You can create animation effects entirely in XAML, without having to write any C#
code

<Window x:Class="Example_19_4_ _ _ _Animations.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

456 | Chapter 19: Windows Presentation Foundation

It’s important to note here that you haven’t written a single line of C# code for this
example. This entire animation happened declaratively, in the XAML file. WPF con-
tains the code to automate all of this for you.

Animations As Resources
We mentioned earlier that you can define an animation as a resource; in this next
example, we’ll show you how. You’ll rotate the square in the window, and you’ll see
how it can respond to user events.

Rotating elements in WPF is pretty easy. You’ll need to add a RenderTransform prop-
erty to the Rectangle, just like you added the Fill element to hold the Brush. Add the
following element after the Rectangle.Fill element from earlier:

<Rectangle.RenderTransform>
 <RotateTransform x:Name="rectangleRotate" Angle="0.0" />
</Rectangle.RenderTransform>

You’ve defined a RenderTransform element, with two properties. As with the Brush,
you’ve given the RotateTransform a name, so you can refer to it from elsewhere in
your code. You’ve also given it a starting angle, in this case, 0.

 Title="Window1" Height="300" Width="300">
 <Grid>
 <Rectangle Name="myRectangle" Width="100" Height="100">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="rectangleBrush"
 Color="Blue" />
 </Rectangle.Fill>
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=
 "rectangleBrush"
 Storyboard.TargetProperty="Color"
 From="Blue" To="Red"
 Duration="0:0:10"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 </Grid>
</Window>

Example 19-4. You can create animation effects entirely in XAML, without having to write any C#
code (continued)

Animations | 457

If you’re going to rotate an element, you need to define the point on which the rota-
tion will center; the hinge, if you want to imagine it that way. The default for a
Rectangle is the upper-left corner, but we’d rather use the center point of the square
instead. So, go back up to the definition of the Rectangle element, and add the fol-
lowing property:

 <Rectangle Name="myRectangle" Width="100" Height="100"
RenderTransformOrigin="0.5,0.5">

The RenderTransformOrigin property is a nice shortcut for defining rotation points.
Instead of requiring you to count pixels from the edge of the element, or the win-
dow, you can provide two coordinates between 0 and 1 that define the point in rela-
tion to the edges of the element. In this case, 0.5,0.5 indicates halfway through each
dimension, or the exact center of the square.

Now that you have the necessary properties set on the rectangle, you can define the
animation in a storyboard. This time, you’ll define the storyboard as a resource for
the window itself so that other elements in the window can use this rotate anima-
tion. Go up to the Window definition, and define a subelement, <Window.Resources>,
before the <Grid> element, like this:

<Window x:Class="Example_19_5_ _ _ _More_animation.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Window.Resources>

 </Window.Resources>
 <Grid>

Within the Resources element, you’ll define the storyboard. You don’t need the
<BeginStoryboard> element this time, because you’re not defining an action, you’re
just defining the storyboard itself. Add the following code for the storyboard:

<Window.Resources>
 <Storyboard x:Key="Rotate">
 <DoubleAnimation
 Storyboard.TargetName="rectangleRotate"
 Storyboard.TargetProperty="Angle"
 From="0.0" To="360.0" Duration="0:0:10"
 RepeatBehavior="Forever"/>
 </Storyboard>
</Window.Resources>

Notice first that you’re providing the storyboard itself with a name that can be refer-
enced elsewhere in the code; that’s necessary because this is a resource for the entire
window.

As before, the storyboard contains an animation. This time, you’re changing the
angle of the Rectangle, which is expressed as a double, so you’re using a
DoubleAnimation. You provide the TargetName and TargetProperty, just as you did in

458 | Chapter 19: Windows Presentation Foundation

the previous example, but this time you’re targeting the RotateTransform property
instead of the Brush. The From and To elements go from zero to 360, or a full rota-
tion, and the Duration indicates that it’ll take 10 seconds to accomplish. The
RepeatBehavior property indicates that the square will keep rotating until something
stops it.

Now you’ve defined the animation, but it’s not associated with any triggers. Instead
of having the animation start when the Rectangle loads, you’ll have it start when the
user moves the mouse over the square. To do that, you’ll need a new EventTrigger

element, associated with a different event. Add the following code inside the
<Rectangle.Triggers> element, but after the closing tag of the trigger that’s already
there:

<EventTrigger RoutedEvent="Rectangle.MouseEnter">
 <BeginStoryboard Storyboard="{StaticResource Rotate}"
 x:Name="BeginRotateStoryboard"/>
</EventTrigger>

The RoutedEvent that you’re using this time is called MouseEnter, and it’s raised by
the Rectangle itself. Within the trigger is the BeginStoryboard element that you saw
in the previous example, but instead of defining the storyboard here, you have a ref-
erence to the resource you defined earlier for the Window. You’ve also given the
BeginStoryboard a name, so you can refer to that later; you’ll see why in a minute.

For now, run the application, move the mouse over the square, and you’ll see that
the square rotates as it continues to change colors, as you’d see in Figure 19-6 if this
book weren’t black-and-white and static. You can experiment with the values in the
storyboard, and with the angle and rotation origin defined in the Rectangle as well.

Figure 19-6. You still can’t see it, but now the square is rotating in addition to changing color.

Animations | 459

Let’s take this animation one step further, and have the animation pause when the
user moves the mouse off the square. To do that, you simply need to add another
EventTrigger, after the one you just added, to handle a different event:

<EventTrigger RoutedEvent="Rectangle.MouseLeave">
 <PauseStoryboard BeginStoryboardName="BeginRotateStoryboard" />
</EventTrigger>

Here, you’re handling the MouseLeave event, which is raised when the cursor exits the
element. Instead of the BeginStoryboard, you’re using a PauseStoryboard action here,
which halts the execution of the BeginStoryboard in the previous trigger—that’s why
you gave it a name, so you could refer to it here.

Run your application again, and you’ll see that the animation stops when the mouse
leaves the square. If you bring the mouse back inside the square the animation starts
again, but the angle starts over from zero. Fixing that would be somewhat more com-
plicated, and beyond the scope of this chapter. Once again, notice that you still
haven’t written any C# code to accomplish these animations, even with the event
triggers. The full XAML file for this example is shown in Example 19-5.

Example 19-5. This time you’re creating the animation as a resource at the window level, but you
still don’t need to write any C# code

<Window x:Class="Example_19_5_ _ _ _More_animation.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Window.Resources>
 <Storyboard x:Key="Rotate">
 <DoubleAnimation
 Storyboard.TargetName="rectangleRotate"
 Storyboard.TargetProperty="Angle"
 From="0.0" To="360.0" Duration="0:0:10"
 RepeatBehavior="Forever"/>
 </Storyboard>
 </Window.Resources>
 <Grid>
 <Rectangle Name="myRectangle" Width="100" Height="100"
 RenderTransformOrigin="0.5,0.5">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="rectangleBrush"
 Color="Blue" />
 </Rectangle.Fill>
 <Rectangle.RenderTransform>
 <RotateTransform x:Name="rectangleRotate"
 Angle="0.0" />
 </Rectangle.RenderTransform>
 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation

460 | Chapter 19: Windows Presentation Foundation

C# and WPF
So far, just about everything you’ve done with WPF has been declarative; that is, all
the functionality has taken place in the XAML file. WPF is specifically designed that
way, to be useful to designers as well as to developers. The only C# you’ve had to
write so far has been some very rudimentary event handlers. In this section you’re
going to create an example that more closely resembles a production application,
and that’s going to involve a supporting class, and some event handlers.

In this example, you’re going to grab the images of the first 20 presidents of the
United States from the White House’s website, and present them in a custom WPF
control, a modified ListBox control. The control will not be wide enough to show all
20 images, so you’ll provide a horizontal scroll bar, and as the user moves the mouse
over an image, you’ll provide feedback by enlarging that image (from 75 to 85) and
increasing its opacity from 75% to 100%. As the user moves the mouse off the
image, you’ll return the image to its smaller, dimmer starting point.

This application will use some declarative animation, as you’ve already seen,
although slightly subtler than the rotating square. In addition, when the user clicks
on an image, you’ll handle the click and display the name of the president using a
C# event handler, and then you’ll reach into the control and place the president’s
name into the title bar of the control.

 Storyboard.TargetName=
 "rectangleBrush"
 Storyboard.TargetProperty="Color"
 From="Blue" To="Red"
 Duration="0:0:10"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="Rectangle.MouseEnter">
 <BeginStoryboard
 Storyboard="{StaticResource Rotate}"
 x:Name="BeginRotateStoryboard"/>
 </EventTrigger>
 <EventTrigger RoutedEvent="Rectangle.MouseLeave">
 <PauseStoryboard
 BeginStoryboardName="BeginRotateStoryboard" />
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 </Grid>
</Window>

Example 19-5. This time you’re creating the animation as a resource at the window level, but you
still don’t need to write any C# code (continued)

C# and WPF | 461

Figure 19-7 shows the result of scrolling to the 16th president and clicking on the
image. Note that the name of the president is displayed in the title bar and that the
image of President Lincoln is both larger and brighter than the surrounding images.

Grids and Stack Panels
Create a new WPF application called Presidential Browser. Up until now, you’ve
placed all your elements in the default Grid control that WPF provides. This time,
though, you want two items in the grid—the text block that says “United States Pres-
idents” and the sideways ListBox of photographs, so you can make use of WPF’s lay-
out elements.

In addition to the grid element, WPF provides a layout object called a stack panel. A
stack panel lets you stack a set of objects one on top of (or next to) another set of
objects. That turns out to be very useful for laying out your page. If you want a stack
that is horizontal and vertical (essentially a table), that’s what the grid element is for.
A grid has columns and rows, both counting from zero.

You’ll create a simple grid of two rows and one column, and inside each row you’ll
place a stack panel. The top stack panel will hold the text, and the bottom stack
panel will hold the ListBox that will, in turn, hold the photos. We’ll break this down
for you and take it one step at a time.

To begin, set the width of the Window element to 330 and the height to 230. Next,
give the grid some dimensions, by adding properties to the grid element. A width of
300 and a height of 190 should do it. Add the properties like this:

<Grid Width="300" Height="190" >

Figure 19-7. The Presidential Browser application makes use of some slightly subtler animations,
but most of it still takes place in the XAML.

462 | Chapter 19: Windows Presentation Foundation

Next, you’ll need to define the rows in the grid element. That’s easy enough to do
with the RowDefinition element, but you’ll need to put that within a <Grid.

RowDefinitions> element, like this:

<Grid Width="300" Height="190">
 <Grid.RowDefinitions>
 <RowDefinition Height="20" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

You know that you want the first row to be a fixed 20 units high, so that number’s
hardcoded. The second row, though, should be whatever space is left in the grid.
You could do the math yourself (and come up with 170), but the * element lets WPF
do it for you.

The next things you need to add to the Grid are the two StackPanel elements. These
are relatively easy: you just add the StackPanel elements inside the <Grid> tags. Inside
each StackPanel, you’ll add a TextBlock element, which does what it sounds like—it
holds text. The TextBlock is a flexible control for displaying text, but here we’re just
using it to align the text in the panel. Add the following code to the XAML:

<StackPanel Grid.Row="0">
 <TextBlock FontSize="14">United States Presidents
 </TextBlock>
</StackPanel>
<StackPanel Grid.Row="1">
 <TextBlock Text="Bottom Stack Panel" VerticalAlignment="Center"/>
</StackPanel>

The first thing you need to notice here is that the rows in the grid are numbered from
zero, the same as with arrays. The TextBlock element has a property for FontSize; it
also has font weight and font family and the other features you might expect in a text
element.

Your XAML code should now look like Example 19-6.

Example 19-6. This is the starting XAML for the Presidential Browser application, with the layout
elements in place

<Window x:Class="Presidential_Browser.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid Width="300" Height="190">
 <Grid.RowDefinitions>
 <RowDefinition Height="20" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0">
 <TextBlock Text="Top Stack Panel" VerticalAlignment="Center"/>
 </StackPanel>
 <StackPanel Grid.Row="1">
 <TextBlock Text="Bottom Stack Panel" VerticalAlignment="Center"/>

C# and WPF | 463

Defining ListBox styles

Your next goal is to get the pictures into a ListBox and to turn the ListBox sideways
so that the pictures scroll along, as shown previously in Figure 19-7.

To accomplish that, we need to do two things: we need to work with the style of the
ListBox, and we need to work with its data. We’ll take these one at a time to make it
clear.

You’ve created a Brush as a resource before; now you’ll make one for the entire
Window element, in a Window.Resources section. This brush will be a
LinearGradientBrush, which is a bit fancier than the Fill brush you used before. The
gradient brush uses a nice shading effect that changes gradually through the colors
identified in the GradientStop elements. The exact details aren’t important, but you
should note that we’re giving this resource a name, as all resources have, so we can
use it on the ListBox later. Create a Window.Resources section at the top of your
XAML file, and add this code:

<Window.Resources>
 <LinearGradientBrush x:Key="ListBoxGradient"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#90000000" Offset="0" />
 <GradientStop Color="#40000000" Offset="0.005" />
 <GradientStop Color="#10000000" Offset="0.04" />
 <GradientStop Color="#20000000" Offset="0.945" />
 <GradientStop Color="#60FFFFFF" Offset="1" />
 </LinearGradientBrush>
</Window.Resources>

Briefly, all linear gradients are considered as occurring on a line ranging from 0 to 1.
You can set the start points and endpoints (traditionally, the start point 0,0 is the
upper-left corner and the endpoint 1,1 is the lower-right corner, making the linear
gradient run on an angle). We’ve set the linear gradient to end at 0,1, making the
gradient run from top to bottom, giving a horizontal gradient, moving through five
colors, unevenly spaced.

The next resource you need to define is a Style object. We haven’t specifically
applied a style as a resource yet, but Style objects work like any other resource: they
manage the properties of their targets, in this case, their style properties.

A difference in this case is that instead of defining a TargetName for the resource,
you’ll define a TargetType. That means that the style will be applied to all objects of a
specific type (in this case, ListBox). Within the Style, you define a Template, which
means that the style definition can be applied to objects, or modified by them.

 </StackPanel>
 </Grid>
</Window>

Example 19-6. This is the starting XAML for the Presidential Browser application, with the layout
elements in place (continued)

464 | Chapter 19: Windows Presentation Foundation

Within that, there’s a set of properties defined for the Border element, most of which
are pretty self-explanatory. Notice that for a background, the Border element uses the
ListBoxGradient brush that you defined a moment ago.

Within the Border element is a ScrollViewer element. This element is what gives the
ListBox a horizontal scroll bar, but not a vertical one. Within the ScrollViewer is
another StackPanel element—this is where you’ll keep the images of the presidents.
The IsItemsHost property indicates that this StackPanel will hold other objects
(you’ll see how this works in a bit), and the Orientation and HorizontalAlignment

properties simply orient the StackPanel inside the ScrollViewer.

Add the following Style within the Window.Resources element, right after the
LinearGradiantBrush:

<Style x:Key="SpecialListStyle" TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >
 <Border BorderBrush="Gray"
 BorderThickness="1"
 CornerRadius="6"
 Background="{DynamicResource ListBoxGradient}" >
 <ScrollViewer
 VerticalScrollBarVisibility="Disabled"
 HorizontalScrollBarVisibility="Visible">
 <StackPanel IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Left" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Triggers and animations

The style for the ListBox that you just created contains a StackPanel that contains
items. The next thing you’ll do is define the style for these items. The items, you’ll
recall, are the images of the presidents that you’re displaying. We mentioned that
these images will change appearance when the user moves the mouse over them. You
saw earlier in the chapter how to interact with the user’s mouse movements—you’ll
need to define some triggers. The Triggers will reside in the Style, rather than being
attached to a specific instance of a control.

This style begins by setting its target type, as the last style did (ListBoxItems), and
three properties: MaxHeight, MinHeight, and Opacity. The MaxHeight and MinHeight

properties have the same value, which means that the size of the items is fixed, but
you’ll be able to change that dynamically, as you’ll see shortly. The Opacity of a con-
trol is defined as a value between 0 and 1:

C# and WPF | 465

<Style x:Key="SpecialListItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight" Value="75" />
 <Setter Property="MinHeight" Value="75" />
 <Setter Property="Opacity" Value=".75" />

The style then sets a couple of triggers. As with the triggers you saw earlier in the
chapter, these triggers associate an EventTrigger with a RoutedEvent. Specifically, the
first trigger uses the MouseEnter event that you saw in an earlier example:

<EventTrigger RoutedEvent="Mouse.MouseEnter">

In this case, the event will be kicked off when the mouse enters the object that is
associated with this EventTrigger (that object will be the ListBox item), as opposed
to targeting a specific control as you did earlier in the chapter. Within that
EventTrigger you defined an EventTrigger.Actions element. In this case, the action is
BeginStoryBoard, and there is a single, unnamed Storyboard:

<EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight" To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
</EventTrigger>

The action is inside the storyboard, where you’ll find two animations. These are
DoubleAnimation elements, because you’re changing two properties with double val-
ues. These two animations are defined to have a duration of 2/10 of a second. The
TargetProperty refers to the property of the object to be animated (that is, the
ListBox item)—in the first case, the height of the ListBox item, which will be ani-
mated to a height of 85 (from a starting point of 75). The second animation will
change the opacity from its starting point of .75 to 1 (making it appear to brighten).
The other trigger is for the MouseLeave event, and just reverses the effects.

Here’s the XAML for the entire style; add this to the Windows.Resources section:

<Style x:Key="SpecialListItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight" Value="75" />
 <Setter Property="MinHeight" Value="75" />
 <Setter Property="Opacity" Value=".75" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"

466 | Chapter 19: Windows Presentation Foundation

 Storyboard.TargetProperty="MaxHeight"
 To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity"
 To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>

 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
</Style>

Adding Data
We’re now going to cheat somewhat, and rather than getting our data from a web
service or from a database, we’re going to put it right into our resources. The data
will consist of a generic list of ImageURL objects. You haven’t heard of these types of
objects before, because you’re going to create the class right now. Right-click on the
project file in the Solution Explorer and choose Add ➝ Class. When the Add New
Item dialog box appears, the Class item will be selected automatically. Leave it
selected, and give the class file a name of PhotoCatalog.cs. Visual Studio will auto-
matically open a new class file for you. Add the code in Example 19-7, and be sure to
add the using System.Windows.Media.Imaging statement, because you’ll need it, and
also be sure to add the public modifier to the class name.

Example 19-7. The ImageURL class defines a new class that you’ll be able to use in the XAML
application namespace

using System;
using System.Collections.Generic;
using System.Windows.Media.Imaging;

namespace PhotoCatalog
{
 public class ImageURL
 {
 public string Path { get; private set; }
 public Uri ImageURI { get; set; }

C# and WPF | 467

You’ve actually created two classes here. The first class, ImageURL, is designed to act
as a wrapper—that is, it’ll hold the properties for an image that you retrieve given the
path to an image, or a URI from which we can create an image. Note that you over-
ride ToString() to return the Path property, even though we haven’t explicitly cre-
ated the backing variable.

The second class is at the very bottom: Images derives from a generic list of ImageURL
objects. The implementation is empty—all you’re really doing with this class is pro-
viding an alias for List<ImageURL>.

Instantiating objects declaratively

Now that you’ve declared these classes, you can create instances of them in the
Resources section of the XAML file—you’re not limited to the types defined by the
XAML namespace. However, before you can use your new type, you must first
include the class in your XAML file by creating a namespace for this project. At the
top of the XAML file, you’ll find the other namespace declarations for this project;
they all start with xmlns:. Add your own xmlns statement, and call the new
namespace local, like this:

xmlns:local="clr-namespace:Presidential_Browser"

As soon as you type local=, IntelliSense will help you out with the rest of the
namespace. You’ll probably notice an error message in the Design window at that
point, and you’ll need to reload the designer. Go ahead and do that, and everything
will be fine.

 public BitmapFrame Image { get; private set; }
 public string Name { get; set; }

 public ImageURL() { }

 public ImageURL(string path, string name)
 {
 Path = path;
 ImageURI = new Uri(Path);
 Image = BitmapFrame.Create(ImageURI);
 Name = name;
 }
 public override string ToString()
 {
 return Path;
 }
 }

 public class Images : List<ImageURL> { }

}

Example 19-7. The ImageURL class defines a new class that you’ll be able to use in the XAML
application namespace (continued)

468 | Chapter 19: Windows Presentation Foundation

Now that you have the local namespace, you can create an instance of the Images

class in the Window.Resources section, like this:

<local:Images x:Key="Presidents"></local:Images>

This is the XAML equivalent of writing:

List<ImageURL> Presidents = new List<ImageURL>();

You then add to that list by creating instances of ImageURL between the opening and
closing tags of the Images declaration:

<local:ImageURL ImageURI="http://www.whitehouse.gov/history/presidents/images/
gw1.gif" Name="George Washington" />

Again, this is the XAML equivalent of writing:

ImageURL newImage = new ImageURL(
 "http://www.whitehouse.gov/history/presidents/images/gw1.gif,"
 "George Washington");
Presidents.Add(newImage);

You’ll need to do that 20 times, once for each of the first 20 presidents. The URL is
somewhat long, so you might want to cut and paste it, or you can download the code
listing for this chapter from http://www.oreilly.com and cut and paste that part. Now
you have a static data resource you can refer to in the rest of your XAML file; and
that completes the Resources section.

Using the Data in the XAML
Now that you’ve defined the resource, the next step is to provide a way for the Grid

element to access the data in that resource. To do that, provide a DataContext for the
Grid:

<Grid Width="300" Height="190"
 DataContext="{StaticResource Presidents}">

Every Framework object has a DataContext object, usually null. If you don’t instruct
the object otherwise, it will look up the object hierarchy from where it is defined
until it finds an object that does have a DataContext defined, and then it will use that
DataContext as its data source. You can use virtually anything as a DataContext—a
database, an XML file, or, as in this case, a static resource.

Defining the ListBox
Now that you’ve got all the resources in place, you’re finally ready to define the
ListBox and the template for its contents in the second StackPanel. The first thing
you need to do is set some of the properties for the ListBox element:

<StackPanel Grid.Row="1" Grid.ColumnSpan="3" >
 <ListBox Style="{StaticResource SpecialListStyle}"

C# and WPF | 469

 Name="PresPhotoListBox" Margin="0,0,0,20"
 SelectionChanged="PresPhotoListBox_SelectionChanged"
 ItemsSource="{Binding }"
 IsSynchronizedWithCurrentItem="True" SelectedIndex="0"
 ItemContainerStyle="{StaticResource SpecialListItem}" >

The first line shown here places the stack panel into the grid at row offset 1 (the sec-
ond row). The ListBox itself has its style set to a StaticResource (the SpecialListStyle

resource you defined earlier in the Resources section). The ListBox is named:

Name="PresPhotoListBox"

And an event handler is defined for anytime an image is clicked:

SelectionChanged="PresPhotoListBox_SelectionChanged"

The source for each item is set to Binding, indicating that you’re binding to the
source in the parent element (which you just defined in the Grid element’s
DataContext property). Finally, the ItemContainerStyle is set, again, to the style
defined earlier in the Resources section.

Each item in the ListBox will be drawn from the (unknown) number of items in the
data (which in this case happens to be statically placed in the Resources, but could well
be dynamically drawn from a web service). To do this, we’ll need a template for how to
draw each item. Add the following code as a subelement of the ListBox element:

<ListBox.ItemTemplate>
 <DataTemplate>
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center" Padding="4"
 Margin="2" Background="White">
 <Image Source="{Binding Path=ImageURI}" />
 </Border>
 </DataTemplate>
</ListBox.ItemTemplate>

Within the ListBox.ItemTemplate, you place a DataTemplate; this is necessary if you
want to show anything more than simple text derived from the data retrieved. In this
case, you place a Border object within the DataTemplate, and within the Border object
you place the Image object. It is the Image object you really care about (though the
Border object helps with placement). The Image requires a source; here, you add
Binding (indicating that you are binding to the current source), and you state that
you’ll be using the ImageURI property to set the Path. Because the source you’re bind-
ing to is a list of ImageURL objects, and each ImageURL has four public properties (Path,
ImageURI, Image, and Name), this is the critical piece of data required to tell the
DataTemplate how to get the information necessary to create the image in the
ListBox.

470 | Chapter 19: Windows Presentation Foundation

Event Handling
Except for defining the ImageURL class, everything you’ve done so far in this example
has been done declaratively, in the XAML file. Now it’s finally time to write some
C# in this example. You may have noticed that you did create an event handler for
when the user changes the selected item in the ListBox:

SelectionChanged="PresPhotoListBox_SelectionChanged"

This is typically done by clicking on an image (though you can accomplish this with
the arrow keys as well). This event will fire the event handler in the code-behind file,
which is, finally, C#.

The event handler is, as you would expect, in the code-behind file,Window1.xaml.cs.
Switch to that file now, and add the following event handler:

private void PresPhotoListBox_SelectionChanged(
 object sender, SelectionChangedEventArgs e)
{
 ListBox lb = sender as ListBox;
 if (lb != null)
 {

 if (lb.SelectedItem != null)
 {

 string chosenName =
 (lb.SelectedItem as ImageURL).Name.ToString();
 Title = chosenName;

 }
 }
 else
 {
 throw new ArgumentException(
 "Expected ListBox to call selection changed in
 PresPhotoListBox_SelectionChanged");
 }
}

Like all event handlers in .NET, this handler receives two parameters: the sender (in
this case, the ListBox) and an object derived from EventArgs.

In the code shown, you cast the sender to the ListBox type (and consider it an excep-
tion if the sender is not a ListBox, as that is the only type of object that should be
sending to this event handler).

You then check to make sure that the selectedItem is not null (during startup it is
possible that it can be null). Assuming it is not null, you cast the selectedItem to an
ImageURL, extract the Name property, and assign it to a temporary variable, chosenName,
which we then in turn assign to the title of the window.

C# and WPF | 471

The interim variable is useful only for debugging; there is no other reason not to
write:

Title = (lb.SelectedItem as ImageURL).Name.ToString();

You can also get at both the currently selected president’s ImageURL and
the previously selected ImageURL through the SelectionChangedEventArgs
parameter.

The Complete XAML File
If you’re not sitting in front of your computer right now, Example 19-8 has the com-
plete XAML listing. Please replace the ellipses (...) in the URLs in this listing with:

http://www.whitehouse.gov/history/presidents/images

We omitted this long URL from the listing to save space.

Example 19-8. Here is the complete XAML listing for the Presidential Browser
application

<Window x:Class="Presidential_Browser.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Presidential_Browser"
 Title="Window1" Height="300" Width="300">
 <Window.Resources>
 <LinearGradientBrush x:Key="ListBoxGradient"
 StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#90000000" Offset="0" />
 <GradientStop Color="#40000000" Offset="0.005" />
 <GradientStop Color="#10000000" Offset="0.04" />
 <GradientStop Color="#20000000" Offset="0.945" />
 <GradientStop Color="#60FFFFFF" Offset="1" />
 </LinearGradientBrush>
 <Style x:Key="SpecialListStyle" TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >
 <Border BorderBrush="Gray"
 BorderThickness="1"
 CornerRadius="6"
 Background=
 "{DynamicResource ListBoxGradient}" >
 <ScrollViewer
 VerticalScrollBarVisibility="Disabled"
 HorizontalScrollBarVisibility="Visible">
 <StackPanel IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Left" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>

472 | Chapter 19: Windows Presentation Foundation

 </Setter.Value>
 </Setter>
 </Style>
 <Style x:Key="SpecialListItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight" Value="75" />
 <Setter Property="MinHeight" Value="75" />
 <Setter Property="Opacity" Value=".75" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight"
 To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity"
 To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>

 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
 </Style>
 <local:Images x:Key="Presidents">
 <local:ImageURL ImageURI=".../gw1.gif" Name="George Washington" />
 <local:ImageURL ImageURI=".../ja2.gif" Name="John Adams" />
 <local:ImageURL ImageURI=".../tj3.gif" Name="Thomas Jefferson" />
 <local:ImageURL ImageURI=".../jm4.gif" Name="James Madison" />
 <local:ImageURL ImageURI=".../jm5.gif" Name="James Monroe" />
 <local:ImageURL ImageURI=".../ja6.gif" Name="John Quincy Adams" />
 <local:ImageURL ImageURI=".../aj7.gif" Name="Andrew Jackson" />
 <local:ImageURL ImageURI=".../mb8.gif" Name="Martin Van Buren" />
 <local:ImageURL ImageURI=".../wh9.gif" Name="William H. Harrison" />
 <local:ImageURL ImageURI=".../jt10_1.gif" Name="John Tyler" />
 <local:ImageURL ImageURI=".../jp11.gif" Name="James K. Polk" />
 <local:ImageURL ImageURI=".../zt12.gif" Name="Zachary Taylor" />

Example 19-8. Here is the complete XAML listing for the Presidential Browser
application (continued)

C# and WPF | 473

Run the application now, and you should see that it looks like Figure 19-7 (shown
previously). The individual images animate when you mouse over them, and click-
ing one changes the title bar of the window to show the president’s name.

 <local:ImageURL ImageURI=".../mf13.gif" Name="Millard Fillmore" />
 <local:ImageURL ImageURI=".../fp14.gif" Name="Franklin Pierce" />
 <local:ImageURL ImageURI=".../jb15.gif" Name="James Buchanan" />
 <local:ImageURL ImageURI=".../al16.gif" Name="Abraham Lincoln" />
 <local:ImageURL ImageURI=".../aj17.gif" Name="Andrew Johnson" />
 <local:ImageURL ImageURI=".../ug18.gif" Name="Ulysses S. Grant" />
 <local:ImageURL ImageURI=".../rh19.gif" Name="Rutherford B. Hayes" />
 <local:ImageURL ImageURI=".../jg20.gif" Name="James Garfield" />
 </local:Images>

 </Window.Resources>
 <Grid Width="300" Height="190"
 DataContext="{StaticResource Presidents}">
 <Grid.RowDefinitions>
 <RowDefinition Height="20" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0">
 <TextBlock FontSize="14" Grid.Row="0" >
 United States Presidents</TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="1" Grid.ColumnSpan="3" >
 <ListBox Style="{StaticResource SpecialListStyle}"
 Name="PresPhotoListBox" Margin="0,0,0,20"
 SelectionChanged="PresPhotoListBox_SelectionChanged"
 ItemsSource="{Binding }"
 IsSynchronizedWithCurrentItem="True"
 SelectedIndex="0"
 ItemContainerStyle=
 "{StaticResource SpecialListItem}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Padding="4" Margin="2" Background="White">
 <Image Source="{Binding Path=ImageURI}" />
 </Border>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </StackPanel>
 </Grid>
</Window>

Example 19-8. Here is the complete XAML listing for the Presidential Browser
application (continued)

474 | Chapter 19: Windows Presentation Foundation

Summary
• Windows Presentation Foundation (WPF) is a system intended to combine the

functionality of Windows Forms with greater flexibility in interface design.

• In WPF, the presentation of the application is kept in a separate file, written in
XAML, which is a dialect of XML.

• When you start a new WPF project, Visual Studio opens both the Design win-
dow and the XAML window. Changes made in one window are immediately
reflected in the other.

• The XAML file uses a Window element as its root element.

Silverlight
As you’ve seen withWPF, the flexibility of defining the design of your interface in XML
lets you include features that you wouldn’t have thought possible before. In fact, you
can make Windows applications that don’t look like Windows applications at all, but
more like web applications. The idea of separating the design of the application from
the underlying functionality opens up interesting possibilities.

In Windows and WPF applications, both the interface and the functional code reside
on your local machine; the separation is entirely in the design stage. On the Web,
though, the application usually resides on a remote server, with the client using only a
browser. ASP.NET with AJAX brings the two a bit closer together, where some of the
controls are created in code that runs in the browser, reducing the number of times the
browser needs to get data from the server, which makes for a faster, smoother user
experience.

Silverlight narrows the gap even more, by bringing the WPF tools to run in browsers
over theWeb. Silverlight requires a browser plug-in that the remote user has to accept.
That plug-in contains a carefully chosen subset of the Common Language Runtime
(CLR), allowing Silverlight applications to use managed code languages like VB.NET
or C# and to implement applications built on a subset of XAML.

The net result is that Silverlight applications aremuch faster, are richer, and have capa-
bilities that are simply not possible with AJAX, but they are limited to running on IE,
Firefox, and Safari on Windows, the Mac, and Linux, for now. Silverlight is in version
2.0 at the time of this writing, and a lot of development remains to be done, but the
possibilities are very exciting.

Learning Silverlight is not hard, and what you’ve learned about XAML in this chapter
gives you a significant head start, but there is quite a bit to it. A full discussion would
require a book in itself. See Programming Silverlight by Jesse Liberty and Tim Heuer
(O’Reilly) to learn more.

Summary | 475

• Each WPF application uses a distinct namespace, defined by the Microsoft
XAML schema, and you can add your own objects to that namespace.

• XAML contains several elements for positioning other elements within the appli-
cation, including the Grid and Stackpanel elements.

• You can set the properties of XAML elements in the Properties window, or by
editing the XAML directly.

• Event handlers for WPF elements are kept in a code file, written in C# or
another .NET language.

• Resources allow you to define properties for use by any appropriate element in
the application.

• Resources require you to define a key in the current namespace so that you can
refer to them later in the application.

• A Style element, which can be defined on an element or as a resource, can con-
tain a number of Setter elements that define specific properties of the target
element.

• Routed events in WPF can be associated with triggers, which can change the
properties of elements in response to events. Triggers can be defined on individ-
ual elements, or as resources.

• Animation elements are contained within Storyboard elements. There are differ-
ent animation elements depending on the type of the value that the animation is
changing.

• A trigger can contain a storyboard action, which can contain a storyboard ele-
ment, but a trigger cannot contain a storyboard by itself.

• Many triggers can be declared completely declaratively, without needing to write
any C# code.

• The DataContext property allows an element to access a data source.

Your skills have come a long way from where they were at the beginning of the book,
through the various pieces of the C# language, and now into Windows applications
in a couple of different ways. There’s still one major piece of the development puzzle
that we’ve left untouched, though: handling data. You saw in the Presidential
Browser application in this chapter that you had to handcode the URLs for 20
images into the Resources section of your application; that’s a real pain. It would
have been much easier if you could have read the information directly from a reposi-
tory of some kind. Fortunately, many such repositories are available, from simple
XML files to full-fledged SQL databases, and C# can access many of them. We’ll
spend the final two chapters of this book looking at how to access data from C#,
first with ADO.NET and then with the newer Language Integrated Query (LINQ)
methods.

476 | Chapter 19: Windows Presentation Foundation

Test Your Knowledge: Quiz

Question 19-1. What is XAML?

Question 19-2. What are two ways to edit the properties of a XAML element?

Question 19-3. What does the x: refer to in element definitions?

Question 19-4. What’s the syntax for the Margin property?

Question 19-5. If you had an application with 32 buttons, what’s the easiest way to
ensure that all the buttons are colored blue?

Question 19-6. What property should you use to ensure that your style will be applied
to controls of only a certain type?

Question 19-7. What element allows you to handle certain WPF events within the
XAML file?

Question 19-8. What kind of control contains an animation?

Question 19-9. What is the purpose of the BeginStoryboard element?

Question 19-10. What property do you use to enable an element to access a data
source?

Test Your Knowledge: Exercises

Exercise 19-1. We’ll start things off simply. Create a WPF application with several
Button and TextBox controls. Set the TextBox controls to have white text on a blue
background, and the Button controls to have green text on a gray background.

Exercise 19-2. Now you’ll create your own animation. Create a WPF application with
a single Button control (it doesn’t have to do anything). Add an animation that
increases the size of the button from the standard size to 300 units wide by 200 units
high, and then reverses itself.

Exercise 19-3. Create a rectangle, 100 by 200. Add three buttons to the application:
one to rotate the rectangle clockwise, the second to rotate it counterclockwise, and
the third to stop the rotation.

477

CHAPTER 20

ADO.NET and Relational Databases

Most of the applications that you’ve written so far in this book have been short-lived
things. They do their thing and end, and any information they need is either hard-
coded or supplied by the user. That’s to be expected when you’re learning a lan-
guage, but in the real world, many applications deal with large quantities of data,
derived from somewhere else. That data could be in a database, or a text document,
or an XML file, or one of tons of other storage methods. Dealing with data is another
complex topic that can fill whole books on its own, but we’re going to give you a
taste of it in this chapter and the next, starting with the traditional ADO.NET, and
then introducing you to the brand-new Language Integrated Query (LINQ).

ADO.NET was designed to provide a disconnected data architecture, though it does
have a connected alternative. In a disconnected architecture, data is retrieved from a
database and cached (stored) on your local machine. You manipulate the data on
your local computer and connect to the database only when you wish to alter records
or acquire new data.

There are significant advantages to disconnecting your data architecture from your
database. The biggest advantage is that your application, whether running on the Web
or on a local machine, will create a reduced burden on the database server, which may
help your application to scale well; that is, it doesn’t impose a substantially greater bur-
den as the number of users increases. Database connections are resource-intensive, and
it is difficult to have thousands (or hundreds of thousands) of simultaneous continu-
ous connections. A disconnected architecture is resource-frugal, though there are times
that all you want to do is connect to the database, suck out a stream of data, and dis-
connect; and ADO.NET has a Reader class that allows for that as well.

ADO.NET typically connects to the database to retrieve data, and connects again to
update data when you’ve made changes. Most applications spend most of their time
simply reading through data and displaying it; ADO.NET provides a disconnected
subset of the data for your use while reading and displaying, but it is up to you as the
developer to keep in mind that the data in the database may change while you are
disconnected, and to plan accordingly.

478 | Chapter 20: ADO.NET and Relational Databases

Relational Databases and SQL
Although one can certainly write an entire book on relational databases, and another
on SQL, the essentials of these technologies aren’t hard to understand, and you’ll
understand the chapter better if we spend a little time on the basics. A database is a
repository of data. A relational database organizes your data into tables. In this chap-
ter, we’ll use the Northwind database, which is available as a free download from
Microsoft. It was originally intended for a much older version of SQL Server, but it
works well for our examples in this chapter without requiring too much installation
work on your part.

Installing the Northwind Database
The Northwind database is a database file that’s intended for testing and practice
purposes. To use the database, you’ll need to make sure that you have SQL Server
Express edition. If you’re using Visual Studio, it was installed by default. If you’re
using C# Express, installing SQL Server was optional, and if you followed the
instructions in Chapter 1, you already have it installed. If not, head back to
Chapter 1 and check out the installation instructions there.

If you’re using Windows Vista, you’re going to need to do a bit of extra work (if not,
you can skip the next few paragraphs). Vista requires that only an administrator can
install and access databases, but your default user isn’t automatically added to the
SQL Server Administrators group. Fortunately, there’s an easy fix for this problem:

1. Go to C:\Program Files\Microsoft SQL Server\90\Shared (assuming you installed
SQL Server to its default location).

2. Run the SqlProv.exe application.

3. You’ll see the usual Windows Vista confirmation window. Click Confirm.

4. This starts the User Provisioning Tool, shown in Figure 20-1. In the “User to
provision” box, make sure the computer name and the username of the user you
want to grant permissions to are entered; they should be there automatically.
The “Available permissions” box looks like it should have a long list, but there’s
really only one permission available, and it should be selected already.

5. Click the >> button to grant permission to that user, and then click OK to close
the tool.

Next, download the Northwind database from this location:

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-
46A0-8DA2-EEBC53A68034

You’ll download an .msi file, which you can then run to install the databases on your
hard drive. By default, they install to c:\SQL Server 2000 Sample Databases.

Relational Databases and SQL | 479

If you’re using Windows Vista Home Edition, use Windows Explorer
to navigate to the folder where the files are installed. Right-click any-
where in the folder and select Properties. The Properties window will
likely show you that this folder is read-only. Clear that checkbox, and
when you’re asked, apply the setting to files and subfolders as well. If
you don’t do this, you won’t be able to access the database.

Next, open a command-line window: on Windows XP and older versions, select
Start ➝ Run, and type “cmd” in the Run dialog box. On Vista, simply click Start,
then type “cmd” and press Enter. A command window will open. Change to the
directory where the databases are stored:

cd c:\SQL Server 2000 Sample Databases

Then enter this command (all on one line):

sqlcmd -E -S.\sqlexpress -i instnwnd.sql

If you’ve done it correctly, you should see the following messages:

Changed database context to 'master'.
Changed database context to 'northwind'.

If you see that, you’ve succeeded. If not, go back and check the permissions in the
folder, or try typing the sqlcmd command again.

Figure 20-1. The User Provisioning Tool allows you to grant SQL Server administrative
permissions to a Vista user account, which will save you a lot of headaches.

480 | Chapter 20: ADO.NET and Relational Databases

Once you have Northwind installed, you should check to make sure that you can
make a data connection to it from your applications.

1. Start Visual Studio and create a new project; it doesn’t matter what kind.

2. There’s a special window in the IDE that shows your database connections, but it
goes by two different names. In C# Express, it’s called Database Explorer; in
Visual Studio, it’s Server Explorer. If the window isn’t open already, select View ➝

Other Windows ➝ Database Explorer (or Server Explorer in Visual Studio) to
open it.

3. The Database Explorer will probably contain a single item, Data Connections.
To add a connection to the Northwind database, right-click Data Connections
and select Add Connection.

4. The Choose Data Source box opens, looking like Figure 20-2. Select Microsoft
SQL Server Database File, and click Continue.

5. The Add Connection dialog box opens next, shown in Figure 20-3. Click the
Browse button and navigate to the Northwind.mdf file. If you installed North-
wind to the default directory, the file should be in C:\SQL Server 2000 Sample
Databases.

6. After you’ve selected the .mdf file, it should be listed in the “Database file name
(new or existing)” field. If it isn’t, you may need to reinstall Northwind. Click
the Test Connection button to make sure everything worked (this may take
awhile to respond, so be patient).

7. Click OK. The Northwind.mdf database now appears in the Database Explorer,
and you’re ready to go.

Figure 20-2. You’ll be using a SQL Server database, so select Microsoft SQL Server Database File.

Relational Databases and SQL | 481

Tables, Records, and Columns
The Northwind database describes a fictional company buying and selling food
products. The data for Northwind is divided into 13 tables, or broad sets of data,
including Customers, Employees, Orders, Order Details, Products, and so forth.

Every table in a relational database is organized into rows, where each row repre-
sents a single record—say, the data for a single product order. The rows are orga-
nized into columns, which represent categories of data. All the rows in a table have
the same column structure. For example, the Orders table has these columns:
OrderID, CustomerID, EmployeeID, OrderDate, and so on.

For any given order, you need to know the customer’s name, address, contact name,
and so forth. You could store that information with each order, but that would be
very inefficient. Instead, you use a second table called Customers, in which each row
represents a single customer. In the Customers table is a column for the CustomerID.
Each customer has a unique ID, and that field is marked as the primary key for that
table. A primary key is the column or combination of columns that uniquely identi-
fies a record in a given table.

Figure 20-3. Use the Add Connection dialog box to select the Northwind database and test the
connection.

482 | Chapter 20: ADO.NET and Relational Databases

The Orders table uses the CustomerID as a foreign key. A foreign key is a column (or com-
bination of columns) that is a primary (or otherwise unique) key from a different table.
The Orders table uses the CustomerID (the primary key used in the Customers table) to
identify which customer has placed the order. To determine the address for the order,
you can use the CustomerID to look up the customer record in the Customers table.

This use of foreign keys is particularly helpful in representing one-to-many or many-
to-one relationships among tables. By separating information into tables that are
linked by foreign keys, you avoid having to repeat information in records. A single
customer, for example, can have multiple orders, but it is inefficient to place the
same customer information (name, phone number, credit limit, and so on) in every
order record. The process of removing redundant information from your records and
shifting it to separate tables is called normalization.

Normalization
Normalization not only makes your use of the database more efficient, but it also
reduces the likelihood of data corruption. If you kept the customer’s name in both
the Customers table and the Orders table, you would run the risk that a change in one
table might not be reflected in the other. Thus, if you changed the customer’s
address in the Customers table, that change might not be reflected in every row in the
Orders table (and a lot of work would be necessary to make sure that it was
reflected). By keeping only the CustomerID in Orders, you are free to change the
address in Customers, and the change is automatically reflected for each order.

Just as C# programmers want the compiler to catch bugs at compile time rather than
at runtime, database programmers want the database to help them avoid data cor-
ruption. The compiler helps avoid bugs in C# by enforcing the rules of the language
(for example, you can’t use a variable you haven’t defined yet). SQL Server and other
modern relational databases avoid bugs by enforcing constraints that you define. For
example, the Customers database marks the CustomerID as a primary key. This creates
a primary key constraint in the database, which ensures that each CustomerID is unique.
If you were to enter a customer named Liberty Associates, Inc., with the CustomerID of
LIBE, and then tried to add Liberty Mutual Funds with a CustomerID of LIBE, the data-
base would reject the second record because of the primary key constraint.

Declarative Referential Integrity
Relational databases use declarative referential integrity (DRI) to establish con-
straints on the relationships among the various tables. For example, you might
declare a constraint on the Orders table that dictates that no order can have a
CustomerID unless that CustomerID represents a valid record in Customers. This helps
avoid two types of mistakes. First, you can’t enter a record with an invalid
CustomerID. Second, you can’t delete a customer record if that CustomerID is used in
any order. The integrity of your data and its relationships is thus protected.

Relational Databases and SQL | 483

SQL
The most popular language for querying and manipulating databases is Structured
Query Language (SQL), usually pronounced “sequel.” SQL is a declarative lan-
guage, as opposed to a procedural language, and it can take awhile to get used to
working with a declarative language when you are used to languages such as C#.

The heart of SQL is the query. A query is a statement that returns a set of records
from the database. The queries in Transact-SQL (the version used by SQL Server) are
very similar to the queries used in LINQ (as you’ll see in the next chapter), though
the actual syntax is slightly different.

For example, you might like to see all the CompanyNames and CustomerIDs of every
record in the Customers table in which the customer’s address is in London. To do
so, you’d write this query:

Select CustomerID, CompanyName from Customers where city = 'London'

This returns the following six records as output:

CustomerID CompanyName
---------- --
AROUT Around the Horn
BSBEV B's Beverages
CONSH Consolidated Holdings
EASTC Eastern Connection
NORTS North/South
SEVES Seven Seas Imports

You can also sort the results based on a field:

Select CustomerID, CompanyName from Customers where city = 'London'
order by CompanyName

SQL is capable of much more powerful queries. For example, suppose the North-
wind manager would like to know what products were purchased in July 1996 by the
customer “Vins et alcools Chevalier.” This turns out to be somewhat complicated.
The Order Details table knows the ProductID for all the products in any given order.
The Orders table knows which CustomerIDs are associated with an order. The
Customers table knows the CustomerID for a customer, and the Products table knows
the product name for the ProductID. How do you tie all this together? Here’s the
query:

select o.OrderID, productName
from [Order Details] od
join orders o on o.OrderID = od.OrderID
join products p on p.ProductID = od.ProductID
join customers c on o.CustomerID = c.CustomerID
where c.CompanyName = 'Vins et alcools Chevalier'
and orderDate >= '7/1/1996' and orderDate < '8/1/1996'

484 | Chapter 20: ADO.NET and Relational Databases

This asks the database to get the OrderID and the product name from the relevant
tables. This line:

from [Order Details] od

creates an alias od for the Order Details table. The rest of the statement says that the
database should look at od, and then join that with the Orders table (aliased to o) for
every record in which the OrderID in the Order Details table (od.OrderID) is the same
as the OrderID in the Orders table (o.OrderID).

When you join two tables, you can say, “Get every matching record that exists in
either table” (this is called an outer join), or, as we’ve done here, “Get only those
matching records that exist in both tables” (called an inner join). That is, an inner
join states to get only the records in Orders that match the records in Order Details

by having the same value in the OrderID field (on o.Orderid = od.Orderid).

SQL joins are inner joins by default. Writing join statements is the
same as writing inner join statements.

The SQL statement then goes on to ask the database to create an inner join with
Products (aliased to p), getting every row in which the ProductID in the Products table
is the same as the ProductID in the Order Details table.

Then, create an inner join with customers for those rows where the CustomerID is the
same in both the Orders table and the Customers table.

Finally, tell the database to constrain the results to only those rows in which the
CompanyName is the one you want, and the dates are in July:

where c.CompanyName = 'Vins et alcools Chevalier'
and orderDate >= '7/1/1996' and orderDate <= '7/31/1996'

The collection of constraints finds only three records that match:

OrderID ProductName
----------- --
10248 Queso Cabrales
10248 Singaporean Hokkien Fried Mee
10248 Mozzarella di Giovanni

This output shows that there was only one order (10248) in which the customer had
the right ID and in which the date of the order was July 1996. That order produced
three records in the Order Details table, and using the product IDs in these three
records, you got the product names from the Products table.

You can use SQL not only for searching for and retrieving data, but also for creating,
updating, and deleting tables, and generally for managing and manipulating both the
content and the structure of the database.

The ADO.NET Object Model | 485

The ADO.NET Object Model
The ADO.NET object model is rich, but at its heart it is a fairly straightforward set of
classes. The most important of these is the DataSet. The DataSet represents a subset
of the entire database, cached on your machine without a continuous connection to
the database.

Periodically, you’ll reconnect the DataSet to its parent database, update the database
with changes you’ve made to the DataSet, and update the DataSet with changes in
the database made by other users or processes. That’s how ADO.NET maintains its
disconnected nature that we mentioned at the start of the chapter.

This is highly efficient, but to be effective, the DataSet must be a robust subset of the
database, capturing not just a few rows from a single table, but also a set of tables
with all the metadata necessary to represent the relationships and constraints of the
original database. This is, not surprisingly, what ADO.NET provides.

The DataSet is composed of DataTable objects as well as DataRelation objects. These
are accessed as properties of the DataSet object. The Tables property returns a
DataTableCollection, which in turn contains all the DataTable objects.

DataTables and DataColumns
You can create a DataTable programmatically or as a result of a query against the
database. The DataTable has a number of public properties, including the Columns

collection, which returns the DataColumnCollection object, which in turn consists of
DataColumn objects. Each DataColumn object represents a column in a table.

DataRelations
In addition to the Tables collection, the DataSet has a Relations property, which
returns a DataRelationCollection consisting of DataRelation objects. Each
DataRelation represents a relationship between two tables through DataColumn

objects. For example, in the Northwind database, the Customers table is in a relation-
ship with the Orders table through the CustomerID column.

The nature of this relationship is one-to-many, or parent-to-child. For any given
order, there will be exactly one customer, but any given customer might be repre-
sented in any number of orders.

Rows
The Rows collection of the DataTable returns a set of rows for that table. You use this
collection to examine the results of queries against the database, iterating through
the rows to examine each record in turn, typically with a foreach loop. You’ll see this
in the example in this chapter.

486 | Chapter 20: ADO.NET and Relational Databases

DataAdapter
The DataSet is an abstraction of a relational database. ADO.NET uses a DataAdapter

as a bridge between the DataSet and the data source, which is the underlying data-
base. DataAdapter provides the Fill() method to retrieve data from the database and
populate the DataSet.

Instead of tying the DataSet object too closely to your database architecture, ADO.NET
uses a DataAdapter object to mediate between the DataSet object and the database. This
decouples the DataSet from the database and allows a single DataSet to represent more
than one database or other data source.

DbCommand and DbConnection
The DbConnection object represents a connection to a data source. This connection
can be shared among different command objects. The DbCommand object allows you to
send a command (typically, a SQL statement or a stored procedure) to the database.
Often, these objects are implicitly created when you create a DataAdapter, but you
can explicitly access these objects; for example, you can declare a connection string
as follows:

string connectionString = "server=.\\sqlexpress;" +
"Trusted_Connection=yes; database=Northwind";

You can then use this connection string to create a connection object or to create a
DataAdapter object.

DataReader
An alternative to creating a DataSet (and a DataAdapter) is to create a DataReader. The
DataReader provides connected, forward-only, read-only access to a collection of
tables by executing either a SQL statement or stored procedures. DataReaders are
lightweight objects that are ideally suited for filling controls with data and then
breaking the connection to the backend database.

Getting Started with ADO.NET
Enough theory! Let’s write some code and see how this works. Working with
ADO.NET can be complex, but for many queries, the model is surprisingly sim-
ple. In this example, you’ll create a console application and list out bits of informa-
tion from the Customers table in the Northwind database.

Create a new console application (we’ll go back to console applications to keep
things simple here). When the application opens, add the following two using state-
ments to the top:

using System.Data;
using System.Data.SqlClient;

Getting Started with ADO.NET | 487

The first thing you’re going to need in the program itself is a way to identify the loca-
tion of the SQL Server instance to your program. This is commonly called the
connection string. It’s a simple enough string format, and once you’ve defined it, you
can use the same string anytime you want to access Northwind. If you’re using SQL
Server Express, as installed with C# Express in Chapter 1, the access path is simple:
.\sqlexpress. However, because you’re defining a string, you need to escape the
slash character, as we discussed in Chapter 15 (or you could also use a literal string).
Create the connection string like this (all on one line):

string connectionString = "server=.\\sqlexpress;
 Trusted_Connection=yes;database=Northwind";

The next thing you need is a string to hold the SQL command itself. SQL Server
can’t understand C# directly, so you can’t treat the entries in the database as though
they were C# objects. (It’d be nice if you could, though, and that’s why LINQ was
created, as you’ll see in the next chapter.) So, you need to create a string object to
hold the SQL statement that will retrieve the data you want. This is called the com-
mand string. In this case, you want to retrieve (Select) the company name and the
contact name columns from the Customers table. To do that, you’ll use this simple
SQL statement in the commandString variable (again, on one line):

string commandString = "Select CompanyName,
 ContactName from Customers";

Now that you have the connection string and the command string, you need to con-
tact the database, and for that, you need a DataAdapter object, as we mentioned ear-
lier. There are several kinds of DataAdapter objects, each for a different kind of
database. In this case, you’re using a SQL Server database, so you need a
SqlDataAdapter object. The constructor takes two parameters, not surprisingly, the
command string and the connection string. So, now create the DataAdapter (inside
Main()), like this:

SqlDataAdapter myDataAdapter =
 new SqlDataAdapter(commandString, connectionString);

You have the DataAdapter in hand now, but you need a DataSet object before you can
do anything with the data. So, create a new DataSet object:

DataSet myDataSet = new DataSet();

Then you call the Fill() method of the myDataAdapter, passing in your new DataSet.
This fills the DataSet with the data that you obtain from the SQL select statement:

myDataAdapter.Fill(myDataSet);

That’s it. You now have a DataSet, and you can query, manipulate, and otherwise
manage the data. To display the data you retrieved, you’ll need a DataTable object.
The DataSet object has a collection of tables, but your select statement retrieved
only a single table, so you need to access only the first one, like this:

DataTable myDataTable = myDataSet.Tables[0];

488 | Chapter 20: ADO.NET and Relational Databases

Each DataTable contains a set of DataRow objects, as we mentioned, and each of those
rows contains keys for each data field in the row. The two column names in the table
you retrieved are CompanyName and ContactName, so you can access their values and
output each company and contact name using a foreach loop, like this:

foreach (DataRow dataRow in myDataTable.Rows)
{
 Console.WriteLine("CompanyName: {0}. Contact: {1}",
 dataRow["CompanyName"], dataRow["ContactName"]);
}

Example 20-1 contains the complete source code for this example.

Example 20-1. This very simple example just retrieves information from a table

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace Example_20_1_ _ _ _ADO.NET
{
 class Program
 {
 static void Main(string[] args)
 {
 // create the data connection
 string connectionString = "server=.\\sqlexpress;
 Trusted_Connection=yes;database=Northwind";

 // create the string to hold the SQL command
 // to get records from the Customers table
 string commandString = "Select CompanyName,
 ContactName from Customers";

 // create the data adapter with the
 // connection string and command
 SqlDataAdapter myDataAdapter =
 new SqlDataAdapter(commandString, connectionString);

 // Create and fill the DataSet object
 DataSet myDataSet = new DataSet();
 myDataAdapter.Fill(myDataSet);

 // Retrieve the Customers table
 DataTable myDataTable = myDataSet.Tables[0];

 // iterate over the rows collection and output the fields
 foreach (DataRow dataRow in myDataTable.Rows)

Summary | 489

The output is quite lengthy (it’s a long table), but the first part of it looks like this:

CompanyName: Alfreds Futterkiste. Contact: Maria Anders
CompanyName: Ana Trujillo Emparedados y helados. Contact: Ana Trujillo
CompanyName: Antonio Moreno Taquería. Contact: Antonio Moreno
CompanyName: Around the Horn. Contact: Thomas Hardy
CompanyName: Berglunds snabbköp. Contact: Christina Berglund
CompanyName: Blauer See Delikatessen. Contact: Hanna Moos
CompanyName: Blondesddsl père et fils. Contact: Frédérique Citeaux
CompanyName: Bólido Comidas preparadas. Contact: Martín Sommer
CompanyName: Bon app'. Contact: Laurence Lebihan
CompanyName: Bottom-Dollar Markets. Contact: Elizabeth Lincoln
CompanyName: B's Beverages. Contact: Victoria Ashworth
CompanyName: Cactus Comidas para llevar. Contact: Patricio Simpson
CompanyName: Centro comercial Moctezuma. Contact: Francisco Chang
CompanyName: Chop-suey Chinese. Contact: Yang Wang
CompanyName: Comércio Mineiro. Contact: Pedro Afonso

Summary
• ADO.NET provides classes that allow you to retrieve and manipulate data from

databases for use in your code.

• ADO.NET was designed to use a disconnected data architecture, meaning that
information is retrieved and stored locally, to diminish use of resource-intensive
database connections.

• A database is a structured repository of information, and a relational database is
a database that organizes the data into tables.

• The tables in relational databases are further divided into rows, where each row
represents a single record, and columns, which represent categories of data.

• The primary key in a table is a column containing values that are unique for each
record in that table.

• A foreign key is a column that serves as the primary key for a different table, and
helps to create one-to-many relationships among data in separate tables.

• Normalization is the process of removing redundant information from records into
separate tables, which reduces complexity and speeds up the retrieval process.

 {
 Console.WriteLine("CompanyName: {0}. Contact: {1}",
 dataRow["CompanyName"], dataRow["ContactName"]);
 }

 }
 }
}

Example 20-1. This very simple example just retrieves information from a table (continued)

490 | Chapter 20: ADO.NET and Relational Databases

• Constraints set limitations on data to avoid data conflicts and errors.

• SQL is a language commonly used to access and manipulate databases. The fun-
damental operation in SQL is the query.

• Defining filters with a query allows you to retrieve specific subsets of information.

• Using a join in a query allows you to retrieve data based on membership in more
than one table.

• In C#, the DataSet object represents a subset of data retrieved from the database.

• The DataSet object contains a collection called Tables, which in turn contains
DataTable objects.

• The DataTable object contains a collection called Columns, which contains
DataColumn objects, and a collection called Rows, which contains DataRow objects.

• The Rows collection allows you to examine the results of your query, usually by
iterating over the collection with a loop.

• The DataAdapter is a class that forms a bridge between the database and the
DataSet class, using a connection string and a query string. The DataAdapter can
then be used to populate the DataSet object using the Fill() method.

As we said at the beginning of this chapter, data access is a complex topic, and this
chapter just scratches the surface of it. There’s plenty more to explore, beyond the
simple SQL commands we showed you here. The remarkable thing about the SQL
you learned in this chapter is that it opens up a different way of thinking about data
access—using a query to extract and filter just the data you want. Once you get the
hang of thinking in queries, it’s pretty simple. It’s a methodology that could be
applied outside the database, to other kinds of data objects. In fact, it has been—it’s
called LINQ, it’s new to C# 3.0, and it’s the subject of the final chapter.

Test Your Knowledge: Quiz

Question 20-1. What makes a relational database different from any other kind of
database?

Question 20-2. What’s a primary key?

Question 20-3. What’s a foreign key?

Question 20-4. Imagine a fictitious database for a bookseller. What query would you
use to retrieve the contents of the Title column in the Books table?

Test Your Knowledge: Exercises | 491

Question 20-5. In the same fictitious database, what query would you use to retrieve
the contents of the Author column where the value in the Publisher column is
“OReilly”?

Question 20-6. Why would you want to use a join?

Question 20-7. What .NET class represents a set of data retrieved from the database?

Question 20-8. What’s the most common way to view the rows in a DataTable object?

Question 20-9. What’s the purpose of the DataAdapter class?

Question 20-10. What method of the DataAdapter class do you use to provide the
DataSet with the retrieved data?

Test Your Knowledge: Exercises

Exercise 20-1. Let’s start with a simple exercise. The Northwind database contains a
table named Orders. Write a program to retrieve the order date and shipped date of
all the records in the Orders table.

Exercise 20-2. We’ll try something slightly more complicated now. Write a program
to display the name and ID of products with fewer than 10 units in stock.

Exercise 20-3. Now for an exercise that involves multiple tables. Write a program to
display the first and last names of the employees in region 1.

492

CHAPTER 21

LINQ

As you saw in Chapter 20, SQL is a powerful tool for retrieving and filtering informa-
tion from a database. Once you become accustomed to the syntax, with its selects
and froms and joins, it’s somewhat intuitive as well. However, SQL commands don’t
integrate well with C#, as you saw. You need the bridge of DataAdapter and DataSet

objects to connect the database query with your application. The Language Inte-
grated Query (LINQ) is the solution to that problem. LINQ is a new feature of .NET
that C# 3.0 takes advantage of, which makes it easier to work with data, as you’ll see
in the second part of the chapter.

Another useful feature of LINQ is that you can address a number of different data
sources using similar syntax. In this chapter we’ll show you how to use LINQ with
SQL, but you don’t need to use LINQ with a traditional database—it can retrieve
data from XML files and other data sources equally well.

Perhaps the most interesting feature of LINQ is that you can query more than just
data stored in other files. You can use LINQ to query collections that are held in-
memory, that is, collection classes within your own code. So, for example, if you
have a collection of Book objects, you can use LINQ to query for all the books by a
single author, or published after a certain date. You could certainly write C# code to
accomplish that, but the query syntax is arguably more natural and certainly briefer.
Because this use of LINQ is easy to understand and is potentially useful, we’ll start
with that, and then move on to using it with a SQL database.

Querying In-Memory Data
As you’ve seen elsewhere in this book, C# allows you to create classes that are com-
plex, with many different properties, which sometimes are objects of other classes as
well. You’ve also seen how to create collections of objects that you can manipulate in
different ways. Sometimes that complexity works against you, though. Suppose you
have a class that represents shipping orders for a warehouse. You could keep a ton of

Querying In-Memory Data | 493

data in such an object, which would make it very versatile, but what if you just
wanted to extract a list of the zip codes where your customers live, for demographic
purposes? You could write some code to go through the entire collection of objects
and pull out just the zip codes. It wouldn’t be terribly difficult, but it might be time-
consuming. If that information were in a database, you could issue a simple SQL
query, like you learned about in Chapter 20, but collections can’t be queried like a
database...until now. Using LINQ, you can issue a SQL-like query against a collec-
tion in your code to get another collection containing just the data you want. An
example will help make this clear.

Before you can start, you’ll need a collection to work with, so we’ll define a quick
and simple Book class, like so:

public class Book
{
 public string Title { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 public int PublicationYear { get; set; }
}

This is a very basic class, with three string fields and one int field.

Next, we’ll define a generic List<Book>, and fill it with a handful of Book objects. This
is a relatively short list, and it wouldn’t be that hard to sort through by hand, if you
needed to. That’s because we’re keeping the List short for demonstration purposes;
in other cases, it might be a list of hundreds of items read in from a file or someplace
else:

List<Book> bookList = new List<Book>
{
 new Book { Title = "Learning C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "Programming C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "C# 3.0 Cookbook",
 Author = "Jay Hilyard",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "C# 3.0 in a Nutshell",
 Author = "Ben Albahari",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "Head First C#",
 Author = "Andrew Stellman",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },

494 | Chapter 21: LINQ

 new Book { Title = "Programming C#, fourth edition",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2005 }
};

Now you need to issue a query. Suppose you want to find all the books in the list
that were authored by Jesse Liberty. You’d use a query like this:

IEnumerable<Book> resultsAuthor =
 from testBook in bookList
 where testBook.Author == "Jesse Liberty"
 select testBook;

Let’s take this apart. The query returns an enumerable collection of Book objects, or
to put it another way, it’ll return an instance of IEnumerable<Book>. A LINQ data
source must implement IEnumerable, and the result of the query must as well.

The rest of the query resembles a SQL query. You use a range variable, in this case,
testBook, in the same way you would the iteration variable in a foreach loop.
Because your query is operating on bookList, which was previously defined as a
List<Book>, the compiler automatically defines testBook as a Book type.

As with the SQL query you saw in the previous chapter, the from clause defines the
range variable, and the in clause identifies the source. The where clause is used to fil-
ter the data. In this case, you’re testing a condition with a Boolean expression, as you
would with any C# object.

The select clause returns the results of the query, as an enumerable collection. This
is called projection in database terminology. In this example, we returned the entire
Book object, but you can return just some of the fields instead, like this:

select testBook.Title;

Now that you have a collection of Book objects, you can use a foreach loop to pro-
cess them; in this case, outputting them to the console:

foreach (Book testBook in resultsAuthor)
{
 Console.WriteLine("{0}, by {1}", testBook.Title, testBook.Author);
}

You can use any legal Boolean expression in your where clause; for example, you
could return all the books published before 2008, like this:

IEnumerable<Book> resultsDate =
 from testBook in bookList
 where testBook.PublicationYear < 2008
 select testBook;

This simple example, with both queries, is shown in Example 21-1.

Querying In-Memory Data | 495

Example 21-1. You can use LINQ to query the contents of collections; this collection is very simple,
but for large collections, this technique is powerful

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_21_1_ _ _ _Querying_Collections
{
 // simple book class
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 public int PublicationYear { get; set; }
 }

 class Program
 {
 static void Main(string[] args)
 {
 List<Book> bookList = new List<Book>
 {
 new Book { Title = "Learning C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "Programming C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "C# 3.0 Cookbook",
 Author = "Jay Hilyard",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "C# 3.0 in a Nutshell",
 Author = "Ben Albahari",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "Head First C#",
 Author = "Andrew Stellman",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "Programming C#, fourth edition",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2005 }
 };

 // find books by Jesse Liberty

496 | Chapter 21: LINQ

The output looks like this:

Books by Jesse Liberty:
Learning C# 3.0, by Jesse Liberty
Programming C# 3.0, by Jesse Liberty
Programming C#, fourth edition, by Jesse Liberty

Books published before 2008:
C# 3.0 Cookbook, by Jay Hilyard, 2007
C# 3.0 in a Nutshell, by Ben Albahari, 2007
Head First C#, by Andrew Stellman, 2007
Programming C#, fourth edition, by Jesse Liberty, 2005

You might expect that the data would be retrieved from the data
source when you create the IEnumerable<T> instance to hold the
results. In fact, the data isn’t retrieved until you try to do something
with the data in the IEnumerable<T>. In this case, that’s when you out-
put the contents in the foreach statement. This behavior is helpful
because databases with many connections may be changing all the
time; LINQ doesn’t retrieve the data until the last possible moment,
right before you’re going to use it.

 IEnumerable<Book> resultsAuthor =
 from testBook in bookList
 where testBook.Author == "Jesse Liberty"
 select testBook;

 Console.WriteLine("Books by Jesse Liberty:");
 foreach (Book testBook in resultsAuthor)
 {
 Console.WriteLine("{0}, by {1}", testBook.Title,
 testBook.Author);
 }

 // find books published before 2008
 IEnumerable<Book> resultsDate =
 from testBook in bookList
 where testBook.PublicationYear < 2008
 select testBook;

 Console.WriteLine("\nBooks published before 2008:");
 foreach (Book testBook in resultsDate)
 {
 Console.WriteLine("{0}, by {1}, {2}", testBook.Title,
 testBook.Author, testBook.PublicationYear);
 }

 }
 }
}

Example 21-1. You can use LINQ to query the contents of collections; this collection is very simple,
but for large collections, this technique is powerful (continued)

Anonymous Types and Implicitly Typed Variables | 497

Anonymous Types and Implicitly Typed Variables
In Example 21-1, when you retrieve the information from the collection, you retrieve
the entire Book object, but you output only the title and author. That’s somewhat
wasteful, because you’re retrieving more information than you actually need. Since
you need just the title and author, it would be preferable to be able to say something
like this:

IEnumerable<Book> resultsAuthor =
 from testBook in bookList
 where testBook.Author == "Jesse Liberty"
 select testBook.Title, testBook.Author;

That construction will cause an error, though, because your query can return only
one type of object. You could define a new class—say, bookTitleAuthor—to hold just
the two bits of information you need, but that would also be wasteful, because the
class would get used in only one spot in your program, right here when you retrieve
and then output the data. Instead, you can just define a new class on the fly, like this:

IEnumerable<Book> resultsAuthor =
 from testBook in bookList
 where testBook.Author == "Jesse Liberty"
 select new { testBook.Title, testBook.Author };

Notice that this class doesn’t have a name; it doesn’t really need one, because you’re
using it only in this one spot. Therefore, this feature is called an anonymous type.
Based on the select statement, the compiler determines the number and types of the
properties for the class (two strings, in this case), and creates the class accordingly.

This code won’t work yet, though. You’re assigning the results of the query (now a
collection of anonymous objects) to a collection of type <Book>. Obviously, that’s a
type mismatch, and you’ll need to change the type. But what do you change it to, if
you don’t know the name of the anonymous type? That’s where implicitly typed vari-
ables come in. As we mentioned way back in Chapter 3, C# has the ability to infer
the type of a variable based on the value you’re assigning to it. Even though you
don’t know the name of the anonymous type, the compiler has assigned it as an
identifier, and can recognize that type when it’s used. Therefore, your new query
looks like this:

var resultsAuthor =
 from testBook in bookList
 where testBook.Author == "Jesse Liberty"
 select new { testBook.Title, testBook.Author };

Now resultsAuthor is a collection of anonymous objects, and the compiler is per-
fectly fine with that. All you need to know is that resultsAuthor is a collection that
implements IEnumerable, and you can go ahead and use it to output the results:

Console.WriteLine("Books by Jesse Liberty:");
foreach (var testBook in resultsAuthor)

498 | Chapter 21: LINQ

{
 Console.WriteLine("{0}, by {1}", testBook.Title, testBook.Author);
}

We’ve replaced the Book type in the foreach loop with var, but the compiler still
knows what type testBook is, because it’s a member of the collection resultsAuthor,
and the compiler knows what type that is, even if you don’t.

These changes are shown in Example 21-2, although we’ve omitted the Book class
definition and the creation of the List for space, because those haven’t changed.

Example 21-2. With anonymous types and implicitly typed variables, you can use the results of a
query even when they’re a complex type

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_21_2_ _ _ _Anonymous_Types
{
 // simple book class
 public class Book
 {
 ...
 }

 class Program
 {
 static void Main(string[] args)
 {
 List<Book> bookList = new List<Book>
 {
 ...
 };

 // find books by Jesse Liberty
 var resultsAuthor =
 from testBook in bookList
 where testBook.Author == "Jesse Liberty"
 select new { testBook.Title, testBook.Author };

 Console.WriteLine("Books by Jesse Liberty:");
 foreach (var testBook in resultsAuthor)
 {
 Console.WriteLine("{0}, by {1}", testBook.Title,
 testBook.Author);
 }
 }
 }
}

Lambda Expressions | 499

Lambda Expressions
Back in Chapter 17 we mentioned that lambda expressions were created for use with
LINQ, to create expressions that return a method instead of a single return value.
The same query we’ve been using all along could be written like this with lambda
expressions:

var resultsAuthor =
 bookList.Where(bookEval => bookEval.Author == "Jesse Liberty");

As we mentioned in the previous section, the keyword var lets the compiler infer that
resultsAuthor is an IEnumerable collection. You can interpret this whole statement as
“fill the IEnumerable collection resultsAuthor from the collection bookList with each
member such that the Author property is equal to the string ‘Jesse Liberty’.”

The variable bookEval isn’t declared anywhere; it can be any valid name. The Bool-
ean expression on the righthand side is projected onto the variable, which is passed
to the Where method to use to evaluate the collection. This method syntax takes some
getting used to, and it can be easier to use LINQ’s query syntax, but you should
know how to use the alternative. This example is shown in Example 21-3.

Example 21-3. The LINQ method syntax uses lambda expressions to evaluate the data retrieved
from the data source

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_21_3_ _ _ _Lambda_Expressions
{
 // simple book class
 public class Book
 {
 ...
 }

 class Program
 {
 static void Main(string[] args)
 {
 List<Book> bookList = new List<Book>
 {
 ...
 };

 // find books by Jesse Liberty
 var resultsAuthor =
 bookList.Where(bookEval =>
 bookEval.Author == "Jesse Liberty");

500 | Chapter 21: LINQ

Ordering and Joining
As you saw in Chapter 20, you can also order the results of your queries, and join
data from two different tables in your query. You have this same ability in your
LINQ queries. For example, to retrieve the Book objects in your collection, ordered
by author name (author’s first name, since the author’s full name is a single string),
you’d use this query:

var resultList =
 from myBook in bookList
 orderby myBook.Author
 select myBook;

That output will look like this:

Books by author:
Head First C#, by Andrew Stellman
C# 3.0 in a Nutshell, by Ben Albahari
C# 3.0 Cookbook, by Jay Hilyard
Learning C# 3.0, by Jesse Liberty
Programming C# 3.0, by Jesse Liberty
Programming C#, fourth edition, by Jesse Liberty

The full code for this example is shown in Example 21-4.

 Console.WriteLine("Books by Jesse Liberty:");
 foreach (var testBook in resultsAuthor)
 {
 Console.WriteLine("{0}, by {1}",
 testBook.Title, testBook.Author);
 }

 }
 }
}

Example 21-4. Ordering the results of a query is simple; just use the OrderBy keyword

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_21_4_ _ _ _Ordering_Results
{
 // simple book class
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }

Example 21-3. The LINQ method syntax uses lambda expressions to evaluate the data retrieved
from the data source (continued)

Ordering and Joining | 501

 public string Publisher { get; set; }
 public int PublicationYear { get; set; }
 }

 class Program
 {
 static void Main(string[] args)
 {
 List<Book> bookList = new List<Book>
 {
 new Book { Title = "Learning C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "Programming C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "C# 3.0 Cookbook",
 Author = "Jay Hilyard",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "C# 3.0 in a Nutshell",
 Author = "Ben Albahari",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "Head First C#",
 Author = "Andrew Stellman",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "Programming C#, fourth edition",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2005 }
 };

 var resultList =
 from myBook in bookList
 orderby myBook.Author
 select myBook;

 Console.WriteLine("Books by author:");
 foreach (var testBook in resultList)
 {
 Console.WriteLine("{0}, by {1}", testBook.Title,
 testBook.Author);
 }
 }
 }
}

Example 21-4. Ordering the results of a query is simple; just use the OrderBy keyword (continued)

502 | Chapter 21: LINQ

When you join two tables in SQL, as you did in Chapter 20, you retrieve fields from
two or more tables based on their common columns (their foreign keys). To do the
same for in-memory collections, you need to join two separate collections. For exam-
ple, here’s a class that represents a book purchase order:

public class PurchaseOrder
{
 public int OrderNumber { get; set; }
 public string Title { get; set; }
 public int Quantity { get; set; }
}

You can imagine another collection using a List of these PurchaseOrder objects.
Here’s a partial list:

List<PurchaseOrder> orderList = new List<PurchaseOrder>
{
 new PurchaseOrder { OrderNumber = 23483,
 Title = "C# 3.0 Cookbook",
 Quantity = 57 },

If you wanted to return the title, author, and quantity for a particular book or books,
you’d need to join the information from the two collections. The Title property is
the common field here. It’s the primary key in the bookList collection, and a foreign
key in the orderList collection. The query you’d use looks like this:

var resultList =
 from myBook in bookList
 join myOrder in orderList on myBook.Title equals myOrder.Title
 where myOrder.Quantity >= 50
 select new {myBook.Title, myBook.Author, myOrder.Quantity};

The from and select clauses aren’t any different from what you’ve seen so far; you’re
defining an anonymous type here to hold the date you want. The join clause is a bit
different, though. You’re joining the bookList collection with the orderList collec-
tion to create a new data set to search on. The first part of the join just looks like a
from; you’re specifying the second collection to use:

join myOrder in orderList

You have to specify some way to correlate the information in the two collections,
though—how can you tell which orders go with which book records? They have the
Title property in common. If the Title property of the book is the same as the Title

property of the order, that’s a match. The on part of the join clause indicates that
you’re defining the condition:

join myOrder in orderList on myBook.Title equals myOrder.Title

Note that you have to use the keyword equals to define the join condition, rather
than the == operator.

The where clause specifies that you want the records of orders with more than 50
copies sold. A full example using this query is shown in Example 21-5.

Ordering and Joining | 503

Example 21-5. The Join keyword allows you to combine the data from two different collections into
a single result set

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_21_5_ _ _ _Joining_results
{
 using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

 // simple book class
 public class Book
 {
 public string Title { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 public int PublicationYear { get; set; }
 }

 public class PurchaseOrder
 {
 public int OrderNumber { get; set; }
 public string Title { get; set; }
 public int Quantity { get; set; }
 }

 class Program
 {
 static void Main(string[] args)
 {
 List<Book> bookList = new List<Book>
 {
 new Book { Title = "Learning C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "Programming C# 3.0",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2008 },
 new Book { Title = "C# 3.0 Cookbook",
 Author = "Jay Hilyard",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "C# 3.0 in a Nutshell",
 Author = "Ben Albahari",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },

504 | Chapter 21: LINQ

 new Book { Title = "Head First C#",
 Author = "Andrew Stellman",
 Publisher = "O'Reilly",
 PublicationYear = 2007 },
 new Book { Title = "Programming C#, fourth edition",
 Author = "Jesse Liberty",
 Publisher = "O'Reilly",
 PublicationYear = 2005 }
 };

 List<PurchaseOrder> orderList = new List<PurchaseOrder>
 {
 new PurchaseOrder { OrderNumber = 23483,
 Title = "C# 3.0 Cookbook",
 Quantity = 57 },
 new PurchaseOrder { OrderNumber = 57284,
 Title = "Head First C#",
 Quantity = 42 },
 new PurchaseOrder { OrderNumber = 56389,
 Title = "Programming C# 3.0",
 Quantity = 12 },
 new PurchaseOrder { OrderNumber = 95639,
 Title = "C# 3.0 Cookbook",
 Quantity = 122 },
 new PurchaseOrder { OrderNumber = 57493,
 Title = "C# 3.0 in a Nutshell",
 Quantity = 43 },
 new PurchaseOrder { OrderNumber = 73558,
 Title = "Programming C# 3.0",
 Quantity = 99 },
 new PurchaseOrder { OrderNumber = 45385,
 Title = "C# 3.0 Cookbook",
 Quantity = 35 },
 };

 var resultList =
 from myBook in bookList
 join myOrder in orderList on myBook.Title equals myOrder.Title
 where myOrder.Quantity >= 50
 select new {myBook.Title, myBook.Author, myOrder.Quantity};

 Console.WriteLine("Book orders with quantities
 greater than 50:");
 foreach (var testBook in resultList)
 {
 Console.WriteLine("Title: {0}\tAuthor: {1}
 \tQuantity: {2}", testBook.Title,
 testBook.Author, testBook.Quantity);
 }
 }
 }
}

Example 21-5. The Join keyword allows you to combine the data from two different collections into
a single result set (continued)

Using LINQ with SQL | 505

The results of the query look like this:

Book orders with quantities greater than 50:
Title: Programming C# 3.0 Author: Jesse Liberty Quantity: 99
Title: C# 3.0 Cookbook Author: Jay Hilyard Quantity: 57
Title: C# 3.0 Cookbook Author: Jay Hilyard Quantity: 122

Using LINQ with SQL
Although using SQL-like syntax with your in-memory collections is the more inter-
esting and unusual use of LINQ, it’s natural to use the SQL-like syntax with SQL
databases. With LINQ, instead of using the DataAdapter and DataSet classes you
learned about in Chapter 20, you can treat the tables in a SQL database as classes,
and work with the data directly, as though the tables were objects created in your
code.

Create a new console application to see how this works. To use the LINQ data fea-
tures, you’ll need to add a reference to the System.Data.Linq namespace, which is
something you haven’t done before, but it’s simple. Right-click on the References
folder of your project in the Solution Explorer. You’ll see the Add Reference dialog
shown in Figure 21-1.

Figure 21-1. You’ll need to add a reference to the System.Data.Linq namespace before you can use
LINQ with a SQL database.

506 | Chapter 21: LINQ

Now that you have the reference, you need to add some using statements to take
advantage of them in your program:

using System.Data;
using System.Data.Linq;
using System.Data.Linq.Mapping;

As we mentioned earlier, when you’re using LINQ and SQL, you can treat the data-
base tables as classes, and the columns as members. It just requires a bit of extra
work on your part. You’ll retrieve some simple information from Northwind’s
Employees table in this example.

If you did the examples in Chapter 20, you should already have the
Northwind database installed and attached on your machine. If not,
turn back to Chapter 20 for detailed instructions.

Create the following class in your application:

[Table(Name = "Employees")]
public class Employee
{
 [Column]
 public int EmployeeID { get; set; }
 [Column]
 public string FirstName { get; set; }
 [Column]
 public string LastName { get; set; }
}

You’ve probably noticed the extra code in square brackets that’s unfamiliar to you.
These are called attributes, and they’re used in a lot of different places in C# to pro-
vide extra modifiers to your classes. In this case, you’re using the Table attribute to
indicate that this class is drawn from a table, specifically the Employees table in the
associated database. Each of the public properties in the class has a Column attribute
to indicate that the property is associated with a column in the table.

As you probably remember from Chapter 20, you always need a data context before
you can work with a database. With LINQ, creating the data context is much easier.
Add the following line to Main():

DataContext db = new DataContext("Data Source = .\\SQLExpress;" +
 "Initial Catalog=Northwind;Integrated Security=True");

Notice that the DataContext object’s constructor takes a string as its parameter—the
same connection string that you used to connect to the database in Chapter 20.

The DataContext object has an important method, GetTable(), which is how you
retrieve the data table from the database and assign it to a generic Table collection. The
collection holds the type of objects that you defined earlier in the application. So, add
this Table<Employee> declaration to your application (after the DataContext line):

Table<Employee> employees = db.GetTable<Employee>();

Using LINQ with SQL | 507

That’s all you need to retrieve the data. Now, though, you’ll need a query. For this
example, you’ll simply retrieve all the employee rows in the table. That’s where the
LINQ syntax you saw earlier in this chapter comes in. You don’t need to create a
query string; just use the LINQ syntax directly:

var dbQuery = from emp in employees select emp;

Although dbQuery is declared using the var keyword, it returns an IEnumerable collec-
tion, which means that you can iterate over it with a foreach loop, just like you
would any other collection. Add this code to output some of the data:

foreach (var employee in dbQuery)
{
 Console.WriteLine("{0}\t{1} {2}", employee.EmployeeID,
 employee.FirstName, employee.LastName);
}

Simple, right? No more worrying about DataSet or DataRow objects. Example 21-6
shows the complete code for this example.

Example 21-6. You can access a SQL database with LINQ by simply treating the tables and columns
in the database as though they were objects in your code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.Linq;
using System.Data.Linq.Mapping;

namespace Example_21_6_ _ _ _LINQ_and_SQL
{
 [Table(Name = "Employees")]
 public class Employee
 {
 [Column] public int EmployeeID { get; set; }
 [Column] public string FirstName { get; set; }
 [Column] public string LastName { get; set; }
 }

 class Program
 {
 static void Main()
 {
 DataContext db = new DataContext("Data Source = .\\SQLExpress;
 Initial Catalog=Northwind;Integrated Security=True");

 Table<Employee> employees = db.GetTable<Employee>();
 var dbQuery = from emp in employees select emp;

 foreach (var employee in dbQuery)
 {

508 | Chapter 21: LINQ

The results look like this:

1 Nancy Davolio
2 Andrew Fuller
3 Janet Leverling
4 Margaret Peacock
5 Steven Buchanan
6 Michael Suyama
7 Robert King
8 Laura Callahan
9 Anne Dodsworth

LINQ can also be used to access data sources that aren’t traditional
database structures, such as XML files. Although we’re not covering
LINQ to XML specifically in this book, you can use the same LINQ
syntax with XML that you’ve used elsewhere in this chapter.

Using the Object Relational Designer
As you can see, using LINQ to SQL is a lot easier than the ADO.NET syntax you
used in Chapter 20. That’s still not the easiest way of going about it, though. This is
Visual Studio, isn’t it? So, why not put a little visual in your database access? That’s
where the Object Relational Designer comes in. As with many visual components,
it’s easier to show this than to explain it.

Create a new console application to start. Check the Database Explorer to make sure
you still have access to the Northwind database. (If not, see Chapter 20 for instruc-
tions on how to connect to Northwind.) Switch back to the Solution Explorer, right-
click the project name, and select Add ➝ New Item. When the Add New Item dialog
box opens, select LINQ to SQL Classes. The dialog will suggest a default name of
DataClasses1.dbml; that’s fine for this exercise. Click Add.

Two things happen right away, which you can see in Figure 21-2. First, the IDE
changes to show the Object Relational Designer (O/R Designer), which is empty at
the moment. The second thing is that several files are added to your project:
DataClasses1.dbml, and two associated files named DataClasses1.dbml.layout and
DataClasses1.designer.cs. The .dbml part, as you may have guessed, indicates that
this is a Database Markup Language file, which is really just in XML.

 Console.WriteLine("{0}\t{1} {2}", employee.EmployeeID,
 employee.FirstName, employee.LastName);
 }
 }
 }
}

Example 21-6. You can access a SQL database with LINQ by simply treating the tables and columns
in the database as though they were objects in your code (continued)

Using the Object Relational Designer | 509

To see how this works, you’ll have to add some tables to the O/R Designer. Switch to
the Database Explorer, expand Northwind, and expand the Tables folder. Now drag
the Orders table directly onto the O/R Designer. If you get a message asking whether
you want to copy the data to this project, click Yes. It may take a minute, but you’ll see
the Orders table represented visually, with icons for each of the columns in the table,
and a key icon indicating the primary key for this table. Now drag on the Order

Details and Products tables as well. These tables are also represented visually, and the
connections between them are shown as well. You can drag them around to see them
better if you like, but your IDE should look something like Figure 21-3 now.

Notice in Figure 21-3 that the arrows from both the Order and Product tables point
toward the Order Details table. That’s because the primary key from each of those
two tables is used as a foreign key in Order Details.

Switch back to the Solution Explorer and take a look at what’s happened here. Dou-
ble-click DataClasses1.dbml.layout. You’ll be told the file is already open, and you’ll
be asked whether you want to close it. Click Yes. When the file opens, you’ll see a lot
of XML. This is the markup representation of what you just created visually. For the
most part, you’ll never need to look at this file, but we wanted you to see what the
O/R Designer does for you.

Figure 21-2. When you add the LINQ to SQL classes, the Object Relational Designer opens
automatically.

510 | Chapter 21: LINQ

Next open the DataClasses1.designer.cs file. This is a huge file, all automatically gen-
erated from the contents of the tables, and if you scroll through it, you’ll find proper-
ties for every column so that you can retrieve and set them. You shouldn’t ever need
to edit this file either.

So, what does all this autogenerated code do for you? Perhaps not quite as much as
you think, but it will save you from some of the larger headaches of dealing with
databases. Switch to the Program.cs file now, and add the code shown in
Example 21-7.

Figure 21-3. The Object Relational Designer gives you a visual representation of your data, and the
connections between the tables.

Example 21-7. When you use the Object Relational Designer, a lot of the database code is generated
for you, letting you focus on your classes

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_21_7_ _ _ _Object_Relational_Designer
{
 class Program
 {

Using the Object Relational Designer | 511

The output looks like this:

Found product #1, Chai

Product Orders between 10250 and 10255
ID: 10250 Qty: 10 Product: Jack's New England Clam Chowder
ID: 10250 Qty: 35 Product: Manjimup Dried Apples
ID: 10250 Qty: 15 Product: Louisiana Fiery Hot Pepper Sauce
ID: 10251 Qty: 6 Product: Gustaf's Knäckebröd
ID: 10251 Qty: 15 Product: Ravioli Angelo
ID: 10251 Qty: 20 Product: Louisiana Fiery Hot Pepper Sauce
ID: 10252 Qty: 40 Product: Sir Rodney's Marmalade
ID: 10252 Qty: 25 Product: Geitost
ID: 10252 Qty: 40 Product: Camembert Pierrot
ID: 10253 Qty: 20 Product: Gorgonzola Telino
ID: 10253 Qty: 42 Product: Chartreuse verte
ID: 10253 Qty: 40 Product: Maxilaku
ID: 10254 Qty: 15 Product: Guaraná Fantástica
ID: 10254 Qty: 21 Product: Pâté chinois
ID: 10254 Qty: 21 Product: Longlife Tofu
ID: 10255 Qty: 20 Product: Chang
ID: 10255 Qty: 35 Product: Pavlova
ID: 10255 Qty: 25 Product: Inlagd Sill
ID: 10255 Qty: 30 Product: Raclette Courdavault

 static void Main()
 {
 DataClasses1DataContext myContext =
 new DataClasses1DataContext();

 // find a single product record
 Product foundProduct = myContext.Products.Single(
 p => p.ProductID == 1);
 Console.WriteLine("Found product #{0}, {1}",
 foundProduct.ProductID, foundProduct.ProductName);

 // return a list of order records
 var orderList =
 from order in myContext.Order_Details
 where order.OrderID >= 10250 && order.OrderID <= 10255
 select order;

 Console.WriteLine("\nProduct Orders between 10250 and 10255");
 foreach (Order_Detail order in orderList)
 {
 Console.WriteLine("ID: {0}\tQty: {1}\tProduct: {2}",
 order.OrderID, order.Quantity,
 order.Product.ProductName);
 }
 }
 }
}

Example 21-7. When you use the Object Relational Designer, a lot of the database code is generated
for you, letting you focus on your classes (continued)

512 | Chapter 21: LINQ

There are several differences to notice between this code and Example 21-6.

First, you didn’t need to add any using statements; those are taken care of for you, in
the other classes. Next, DataClasses1DataContext is a pregenerated class that knows
how to access Northwind already. All you had to do was call the default constructor—
no more messing around with connection strings. That by itself is worth the trouble.

Also notice that you didn’t define any classes here. You don’t need to define a Table

class, or classes to represent the fields in the database. All of that already exists in the
DataClasses1.designer.cs file. That means you can treat the columns in the database
as regular types:

Product foundProduct = myContext.Products.Single(
 p => p.ProductID == 1);

You didn’t define Product anywhere; the O/R Designer did it for you, but you can
use a Product object just like any other object. These classes even have their own
methods defined for them, such as the Single() method, which is used to retrieve a
single record. You can retrieve a collection using the same LINQ syntax you’re now
used to:

var orderList =
 from order in myContext.Order_Details
 where order.OrderID >= 10250 && order.OrderID <= 10255
 select order;

orderList is an IEnumerable collection of anonymous types, based on the return value
of the select statement.

Finally, notice one interesting thing in the WriteLine() statement:

Console.WriteLine("ID: {0}\tQty: {1}\tProduct: {2}",
 order.OrderID, order.Quantity,
 order.Product.ProductName);

You’ve retrieved the OrderID and Quantity values from the Order Details table,
treating Order_Details as though it were an ordinary object. ProductName isn’t in
the Order Details table, though. The Order Details table is related to the Product

table by the foreign key (ProductID). That means you can access the Product class,
and its ProductID field, from Order_Details. And that’s exactly how this works:
order.Product.ProductName gets you the field you want.

The name of the table is “Order Details” with a space, but C# class
names can’t include spaces, so the Object Relational Designer changes
it to an underscore for you. You may also have noticed that when the
O/R Designer displays the class name graphically, it’s singular. Intel-
liSense always provides the correct class name for you.

Now you’ve reached a point where interacting with the database is nearly invisible.
The LINQ syntax made the querying easier, and the Object Relational Designer
makes accessing the database easier yet.

Summary | 513

Summary
• Language Integrated Query (LINQ) is a new technology that allows you to query

data sources from within your code, without needing to rely on specific data
translation classes.

• LINQ uses the same syntax with traditional databases, but also other data
sources such as XML files, and even with collections in your application.

• LINQ allows you to issue queries against collections in your code, returning a
subset that’s easier to work with.

• A LINQ data source collection must implement IEnumerable, and the collection
the query returns must as well.

• The range variable is used to define the parameters of the query. It can be any
valid C# name, and C# will automatically infer its type based on the returned
values.

• Once you have the enumerable collection of returned results, you can manipu-
late them as you would any generic collection.

• You can use anonymous types and the var keyword in your queries to have the
compiler infer the types in the query, whether simple or complex.

• You can use lambda expressions in your queries to define a method for evaluat-
ing the stored data, and then project the results onto a variable.

• The join clause can unite the data from two different collections, but it has a
special syntax, requiring the name of the collection to join with, the field you’re
joining on in each collection, and the fields that should be in the return set.

• LINQ to SQL classes allows you to use the LINQ syntax to query a SQL database.

• You need to include a reference to the System.Data.Linq namespace to use LINQ
to SQL.

• LINQ to SQL allows you to use attributes on classes so that they behave like
tables, and on properties so that they behave like columns.

• LINQ to SQL also features a DataContext class that can take a connection string
in the constructor.

• The Object Relational Designer adds a visual component to LINQ to SQL
classes. You can drag-and-drop database tables directly onto the design surface,
and the O/R Designer will supply appropriate backing code for the classes that
represent the data.

• You can use the automatically created classes as though they were ordinary
classes in your code, simplifying database access.

LINQ is a remarkable new technology that has the potential to partially bridge the
gap that’s existed between software development and database administration.

514 | Chapter 21: LINQ

Beyond that, you’ve seen how useful the LINQ syntax can be even without a data-
base in play. With that said, however, LINQ is a very new technology, and it’s still
evolving. It remains to be seen how well developers and database professionals will
embrace it, or whether something else will come along. In that sense, unlike most of
the rest of the book, this chapter represents something you’re not likely to see right
away as you practice with C#, but we anticipate that LINQ will grow in popularity,
and may become as much a part of the language as any of the other features you’ve
seen so far.

That brings you to the end of the book, but not the end of learning C#. As we prom-
ised at the beginning, you started with the very fundamentals of the language and
moved into intermediate topics like interfaces and delegates, and we presented a
broad introduction to some more advanced topics in the last few chapters. As you’ve
guessed, there’s a lot more to the language that we haven’t covered in this book, but
now you have a foundation to build upon. There are many excellent books out there
for going more deeply into C#, one of which is this book’s companion volume,
Programming C# 3.0, by Jesse Liberty and Donald Xie (O’Reilly), where you’ll find
additional detail and deeper discussion of the topics in this book. The best thing you
can do to continue learning C#, however, is to practice writing code. The exercises
you’ve done throughout this book are just a beginning; you can rewrite and extend
them as much as you like. If you’re not sure about some syntax, or a language fea-
ture, try it out! If you’re wrong, most of the time the compiler will throw an excep-
tion, which can teach you as much as getting it right the first time.

Test Your Knowledge: Quiz

Question 21-1. What sorts of data sources can you query with LINQ?

Question 21-2. What is the return type of a LINQ query?

Question 21-3. Which LINQ keyword returns the result of a query?

Question 21-4. If you’re trying to return a complex type from a LINQ query, what
language feature do you need to use?

Question 21-5. What data type is needed for the range variable in a LINQ query?

Question 21-6. What does a lambda expression return, when used in a LINQ query?

Question 21-7. What reference do you need to add to your project to use LINQ to
SQL?

Test Your Knowledge: Exercises | 515

Question 21-8. What attribute do you use to define a class as representing a SQL
table?

Question 21-9. How do you add table classes to your application using the Object
Relational Designer?

Question 21-10. What parameters do you need to pass to the constructor of the data
context class when you’re using the Object Relational Designer?

Test Your Knowledge: Exercises

Exercise 21-1. For the first exercise in this chapter, we’re going to bring back the good
old Box class from earlier in the book. It’s a quick and easy class, with Length, Width,
and Height properties, and a quick method to display a box. Here’s the code for the
class:

public class Box
{
 public int Length { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }

 public void DisplayBox()
 {
 Console.WriteLine("{0}x{1}x{2}", Length, Width, Height);
 }
}

Create a List of Box objects, at least five, with dimensions of whatever you like, and
then use a LINQ query to extract all those boxes with a Length and Width greater
than 3.

Exercise 21-2. Use LINQ to SQL, but not the Object Relational Designer, to retrieve
all the orders from the Order Details table where the quantity ordered is greater than
100. (You’ll have to use a short type for the quantity, or else you’ll get an error.)

Exercise 21-3. Using the Object Relational Designer, find out which employees (first
and last names) have serviced orders placed by the customer named Ernst Handel.

517

APPENDIX

Answers to Quizzes and Exercises

Chapter 1: C# and .NET Programming

Quiz Solutions

Solution to Question 1-1. The Common Language Runtime (CLR) is the component of
the .NET Framework that allows you to compile and execute applications written in
either C# or Visual Basic .NET.

Solution to Question 1-2. The .NET Framework specifies how .NET constructs intrin-
sic types, classes, interfaces, and so forth.

Solution to Question 1-3. Calling C# a “safe” language refers to “type safety”—the
ability of the compiler to ensure that the objects you create are of the expected type.

Solution to Question 1-4. Keywords are reserved for use by the language and cannot be
used to identify objects or methods you create.

Solution to Question 1-5. The job of the compiler is to turn your source code into
Microsoft Intermediate Language (MSIL).

Solution to Question 1-6. The Microsoft Intermediate Language is the native language
for .NET and is compiled into an executable application by the Just In Time (JIT)
compiler.

Solution to Question 1-7. The Just In Time compiler turns your MSIL code into an
application in memory.

518 | Appendix: Answers to Quizzes and Exercises

Solution to Question 1-8. Namespaces are used to ensure that identifiers are unique
across libraries of classes. In other words, they ensure that a name that you use in
your code doesn’t conflict with a name used by Microsoft, or anybody else.

Solution to Question 1-9. A string is a class with many abilities and uses, but in its sim-
plest form, a string is text enclosed in double quotation marks.

Solution to Question 1-10. The four kinds of applications you can build with Visual
Studio 2008 are Console, Windows, Web, and Web Services applications.

Exercise Solution

Solution to Exercise 1-1. Write an application that emits the words “What a great
book!” to the console window.

Hint: open Visual Studio, create a console application, and, if you get stuck, con-
sider copying or modifying the code shown in the chapter. Remember, these exer-
cises are for your own edification, no one is grading them, and making mistakes is an
opportunity to explore and learn more—this is true in just about everything except
nuclear physics.

So, Don’t Panic!

To accomplish this exercise, you simply need to follow the same steps that you did
to create Hello World in the chapter. Create a new console application from the Start
Page, and give it whatever name you like, although “Exercise 1-1” is a reasonable
name. When Visual Studio creates a code skeleton for you, click inside the Main()

method and insert the following line:

Console.WriteLine("What a great book!");

Notice that we didn’t use the System namespace in this line, because the using state-
ment takes care of that. The exact code you use may vary somewhat, depending on
what you chose to name your namespace and your class, and how you phrased your
string, but one solution appears in Example A-1.

Example A-1. One solution to Exercise 1-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_1_1
{
 class Program
 {
 static void Main(string[] args)
 {

Chapter 2: Visual Studio 2008 and C# Express 2008 | 519

Chapter 2: Visual Studio 2008 and C# Express 2008

Quiz Solutions

Solution to Question 2-1. A project results in the production of an executable or a
library. Most solutions consist of a single project, but many consist of two or more
projects.

Solution to Question 2-2. To move windows in the IDE, click and drag on the title bar;
use the indicators for placement.

Solution to Question 2-3. The pushpin button toggles between locking the window in
place and hiding it as a tab.

Solution to Question 2-4. F5 runs the program with debugging; Ctrl-F5 runs without
debugging. For console applications that do not require any input, Ctrl-F5 is more
useful, so you can see the output.

Solution to Question 2-5. The Clipboard Ring allows you to store more than one item
on the clipboard.

Solution to Question 2-6. Press Ctrl-Shift-V to cycle through all the selections in the
Clipboard Ring.

Solution to Question 2-7. Find Symbol allows you to search for symbols (namespaces,
classes, and interfaces) and their members (properties, methods, events, and variables).

Solution to Question 2-8. A bookmark is a tool for returning to a specific place in your
code.

Solution to Question 2-9. IntelliSense is an editing tool that supplies suggestions for com-
pleting keywords, based on what you’ve typed. It’s a useful tool for saving keystrokes.

Solution to Question 2-10. A code snippet is a complete outline of a commonly used
programming structure with replaceable items to speed development.

 Console.WriteLine("What a great book!");
 }
 }
}

Example A-1. One solution to Exercise 1-1 (continued)

520 | Appendix: Answers to Quizzes and Exercises

Exercise Solutions

Solution to Exercise 2-1. Insert a bookmark before the Console.Writeline() statement
in Hello World. Navigate away from it and then use the Bookmarks menu item to
return to it.

Placing a bookmark in code is simple. Simply click on the line containing the
WriteLine() statement, and then select Edit ➝ Bookmarks ➝ Toggle Bookmark to set
the bookmark. You’ll see a light blue square in the left margin, next to the line. Your
Visual Studio window should look something like Figure A-1. Navigate away from
that line by clicking anywhere else in the program. Now select Edit ➝ Bookmarks ➝

Next Bookmark (or Previous Bookmark; either will work, because there’s only one
bookmark in the file), and your cursor will be returned to the line with the
WriteLine(). That’s not terribly useful in a program as short as this one, but if your
program is 50 pages long, you’ll be glad for bookmarks.

You may want to select Edit ➝ Bookmarks ➝ Clear Bookmarks when you’re done, to
remove the bookmark.

Solution to Exercise 2-2. Undock the Solution Explorer window from the right side of
the IDE and move it to the left. Leave it there if you like or move it back.

This task is relatively easy. Simply click on the title bar of the Solution Explorer and
drag it away from the right side to undock it, drag it to the arrow pointing left, and
release it. Your Visual Studio window should look something like Figure A-2.

Figure A-1. Exercise 2-1.

Chapter 3: C# Language Fundamentals | 521

Simply reverse the process to move the window back to the right, unless you prefer
the Solution Explorer on the left, of course.

Solution to Exercise 2-3. Insert a code snippet for a for loop from the Edit ➝ IntelliSense
menu into your Hello World program. (It won’t do anything for now; you’ll learn
about for loops in Chapter 5.)

First, click after the semicolon at the end of the WriteLine() statement and press
Enter once to clear some space. Now select Edit ➝ IntelliSense ➝ Insert Snippet.
You’ll see a small drop-down asking you to choose between NetFX30 and Visual
C#. Select Visual C# and the drop-down will change to a list of possible snippets.
Click for, and the for loop will be inserted for you. Your Visual Studio window
should look something like Figure A-3.

Chapter 3: C# Language Fundamentals

Quiz Solutions

Solution to Question 3-1. A statement is a complete C# instruction, and must end in a
semicolon (;).

Solution to Question 3-2. A variable of type bool can have one of two values: true or
false.

Figure A-2. Exercise 2-2.

522 | Appendix: Answers to Quizzes and Exercises

Solution to Question 3-3. C# contains both intrinsic types and user-defined types.
Intrinsic types are built-in, and don’t do much other than hold values. User-defined
types are much more flexible, and have abilities determined by code you write, as
you’ll see later in the book.

Solution to Question 3-4. A float requires four bytes of memory and a double takes
eight bytes, and thus a double can represent much larger values with greater preci-
sion. The compiler assumes that any number with a decimal component is a double

by default. If you want to specify a float, you need to add the suffix f to the value.

Solution to Question 3-5. A variable is a placeholder for a value. A variable must have
an identifier (or a name) and a type.

Solution to Question 3-6. In C, if you wish to use a variable of any type (such as pass-
ing it as a parameter to a method) you must first assign it a value. You can initialize a
variable without assigning it a value, but you can’t use it in any way until it is
assigned.

Solution to Question 3-7. The first two statements are fine. The first is just a simple
assignment with no conversion. The second line is an implicit conversion—the int is
implicitly converted to a long without any trouble. The third statement is a problem,

Figure A-3. Exercise 2-3.

Chapter 3: C# Language Fundamentals | 523

though—you can’t convert a long to an int, and the compiler will say so. To fix this,
you need to cast the long to an int, like this:

int newInt = (int) myLong;

Solution to Question 3-8. In a nutshell, you should use a constant for any information
that you know won’t change; everything else should be a variable. Specifically:

Your age in years
This should be a variable, because it changes. Unless you’re in kindergarten, age
is normally stated as a whole number, and it’s unlikely to be much more than
100, so a short is appropriate here. But in practice, you’d probably use an int, to
avoid unnecessary confusion.

The speed of light in meters per second
The speed of light never changes (or so says Einstein, anyway, and we believe
him), so you should use a constant. Its speed is about 3 × 108 meters per second,
so a float would do nicely here. However, the compiler defaults to a double,
which is also fine.

The number of widgets in your warehouse
This number can change (or so you hope), so a constant isn’t appropriate.
Depending on the size of a widget, an int is probably your best choice here.
Because the number can’t possibly be negative, you could also use a uint, which
would give you some breathing room if you happen to have more than 2 billion
widgets, but that’s a bit picky.

The amount of money in your bank account
Again, you would hope that this value can change, so you wouldn’t want to use
a constant. A float or double would certainly work here, but the best choice is
decimal, which .NET provides specifically for monetary transactions where a
high degree of precision is required.

The text of the U.S. Declaration of Independence
Because you’re using text, a string is the best choice here. And because you’re
talking about a document that cannot change, a constant would be appropriate.
If you wanted to parse or manipulate the text in any way, you’d have to create a
new string, but that’s a topic for later.

Solution to Question 3-9. You would refer to the constant that represents the wave-
length of green light like this:

WavelengthsOfLight.Green

Its value is 5300.

Solution to Question 3-10. A string literal consists of characters enclosed in double quotes.

524 | Appendix: Answers to Quizzes and Exercises

Exercise Solutions

Solution to Exercise 3-1. We’ll start easy for this project. Write a short program that
creates five variables, one of each of the following types: int, float, double, char, and
string. Name the variables whatever you like. Initialize the variables with the follow-
ing values:

• int: 42

• float: 98.6

• double: 12345.6789

• char: Z

• string: The quick brown fox jumped over the lazy dogs.

Then output the values to the console.

This exercise isn’t too much different from the examples in the chapter, particularly
Example 3-3. The only difference is that here, you’re using a variety of different data
types instead of just int, and that the different types have slightly different syntax.
Remember to append an f after the value for the float, to put the value for the char

in single quotes, and to put the string in double quotes, and you’ll be fine. If you
should happen to get any of those wrong, don’t worry; the compiler will provide an
error message to let you know where you went wrong.

One solution is shown in Example A-2.

Example A-2. One solution to Exercise 3-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_3_1
{
 class Exercise
 {
 static void Main()
 {
 int myInt = 42;
 float myFloat = 98.6f;
 double myDouble = 12345.6789;
 char myChar = 'Z';
 string myString = "The quick brown fox jumped over the
 lazy dogs.";
 Console.WriteLine("myInt: {0}, myFloat: {1}, myDouble: {2},
 myChar: {3}, myString: {4}", myInt, myFloat,
 myDouble, myChar, myString);
 }
 }
}

Chapter 3: C# Language Fundamentals | 525

The output should look like this (although where the line breaks on your screen
depends on the size of your console window):

myInt: 42, myFloat: 98.6, myDouble: 12345.6789, myChar: Z, myString:
The quick brown fox jumped over the lazy dogs.

Solution to Exercise 3-2. As you gain more experience with programming, you’ll fre-
quently find yourself adapting some code that you wrote before, instead of writing a
new program from scratch—and there’s no time like the present to start. Modify the
program in Exercise 3-1 so that after you’ve output the values of the variables the
first time, you change them to the following:

• int: 25

• float: 100.3

• double: 98765.4321

• char: M

• string: A quick movement of the enemy will jeopardize six gun boats

Then output the values to the console a second time.

This exercise is only marginally more difficult than the last. The only trick here is to
remember that when you change the value of an existing variable, you don’t need to
declare the type again. If you do, you’ll get an error. So, the reassignment of the int

shouldn’t look like this:

int myInt = 42;

If you do that, the compiler will think you’re trying to create a new variable with the
same name as one that already exists, and you’ll get an error. Instead, you just write
this:

myInt = 42;

And there you go. Example A-3 shows what the code should look like.

Example A-3. One solution to Exercise 3-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_3_2
{
 class Exercise
 {
 static void Main()
 {
 int myInt = 42;
 float myFloat = 98.6f;
 double myDouble = 12345.6789;

526 | Appendix: Answers to Quizzes and Exercises

The output should look like this (again, the line breaks on your screen depend on the
size of your console window):

myInt: 42, myFloat: 98.6, myDouble: 12345.6789, myChar: Z, myString:
The quick brown fox jumped over the lazy dogs.
myInt: 25, myFloat: 100.3, myDouble: 98765.4321, myChar: M, myString:
A quick movement of the enemy will jeopardize six gun boats.

By the way, you can thank Brian’s ninth-grade typing teacher for that second string;
it’s another sentence that uses every letter in the alphabet.

Solution to Exercise 3-3. Write a new program to declare a constant double. Call the
constant Pi, set its value to 3.14159, and output its value to the screen. Then change
the value of Pi to 3.1 and output its value again. What happens when you try to
compile this program?

This program is even simpler than the previous one. All you have to do is remember
to use the keyword const when you declare the constant. Example A-4 shows the
code.

 char myChar = 'Z';
 string myString = "The quick brown fox jumped over the
 lazy dogs.";
 Console.WriteLine("myInt: {0}, myFloat: {1}, myDouble: {2},
 myChar: {3}, myString: {4}", myInt, myFloat,
 myDouble, myChar, myString);

 myInt = 25;
 myFloat = 100.3f;
 myDouble = 98765.4321;
 myChar = 'M';
 myString = "A quick movement of the enemy will jeopardize
 six gun boats.";
 Console.WriteLine("myInt: {0}, myFloat: {1}, myDouble: {2},
 myChar: {3}, myString: {4}", myInt, myFloat,
 myDouble, myChar, myString);
 }
 }
}

Example A-4. One solution to Exercise 3-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_3_3
{
 class Exercise
 {

Example A-3. One solution to Exercise 3-2 (continued)

Chapter 3: C# Language Fundamentals | 527

This program won’t compile, as you probably found out, because you’re trying to
assign a value to a constant. Instead, you receive a compiler error that reads, “The
left-hand side of an assignment must be a variable, property or indexer.”

You can “fix” the program by commenting out the reassignment line, but that just
gives you two identical lines of output. If you really want to change the value of Pi,
you’ll either have to edit your code by hand, or not use a constant. So, when you use
a constant in your code, you need to be certain that you’ll never want to change it at
runtime.

Solution to Exercise 3-4. Write a new program and create a constant enumeration with
constants for each month of the year. Give each month the value equal to its numeric
place in the calendar, so January is 1, February is 2, and so on. Then output the
value for June, with an appropriate message.

For this exercise, you declare an enumeration just as you saw in Example 3-5. This
time, though, you fill in the months of the year appropriately. When you write your
Writeline() statement in Main(), be sure to use the proper notation to refer to the
constant you want (Months.June in this case), and remember to cast Months.June to
an int.

Example A-5 shows what the code should look like.

 static void Main()
 {
 const double Pi = 3.14159;
 Console.WriteLine("The value of pi is: {0}", Pi);
 Pi = 3.1;
 Console.WriteLine("The value of pi is: {0}", Pi);
 }
 }
}

Example A-5. One solution to Exercise 3-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_3_4
{
 class Exercise
 {
 // declare the enumeration
 enum Months : int
 {
 January = 1,
 February = 2,

Example A-4. One solution to Exercise 3-3 (continued)

528 | Appendix: Answers to Quizzes and Exercises

And the output should look something like this, depending on what message you
inserted:

June is month number 6.

Chapter 4: Operators

Quiz Solutions

Solution to Question 4-1. The = operator is the assignment operator, used to assign a
value to a variable. The == operator is the equality operator, which tests the equality
of two values and returns a Boolean. Confusing the two is a very common mistake,
and a common source of errors.

Solution to Question 4-2. To assign the same value to multiple variables, simply chain
the assignments, like this:

int a = b = c = d = 36;

Solution to Question 4-3. When you divide two doubles, the solution has a fractional
portion, expressed as a decimal, as you would expect. When you divide two ints, the
compiler discards any fractional remainder.

Solution to Question 4-4. The purpose of the % operator is to return the remainder from
an integer division. It’s very useful in controlling loops, as you’ll see later.

 March = 3,
 April = 4,
 May = 5,
 June = 6,
 July = 7,
 August = 8,
 September = 9,
 October = 10,
 November = 11,
 December = 12
 }

 static void Main(string[] args)
 {
 Console.WriteLine("June is month number {0}.",
 (int) Months.June);
 }
 }
}

Example A-5. One solution to Exercise 3-4 (continued)

Chapter 4: Operators | 529

Solution to Question 4-5. The output of the operations is:

• 32

• 6

• 4 (Be careful of the order of operations here; the division (8 / 4) takes place
before the addition and the subtraction)

Be sure to take note of the parentheses and the order of operator precedence, as dis-
cussed in Table 4-3.

Solution to Question 4-6. Because the self-assignment operators are used here, the
value of myInt changes with each step, forming a new input for the next step.

myInt += 5;
myInt = 30
myInt -= 15;
myInt = 15
myInt *= 4;
myInt = 60
myInt /= 3;
myInt = 20

Solution to Question 4-7. The prefix operator increments (or decrements) the original
value, and then assigns the new value to the result. The postfix operator assigns the
original value to the result, and then increments (or decrements) the original value.

Solution to Question 4-8. The expressions evaluate to:

1. True

2. True

3. False

4. 5 (This expression evaluates to 5, not to true; remember that assignment returns
the value assigned)

Solution to Question 4-9. The expressions evaluate to:

1. True. x > y is true, and y < x is also true, so the entire expression is true.

2. False. x > y is true, so !(x > y) is false.

3. True. x < y is false, so !(x < y) is true. !(x < y) is true, and (x > y) is also true, so
the entire expression together is true. Note that the ! is evaluated before the &&.

4. True. This one is tricky, because of the nested parentheses, but if you take it one
step at a time, you can work it out. (x > y) is true, and !(x < y) is also true, so ((x

> y) || !(x < y)) all evaluates to true. The other side of the &&, (x > y), is also
true, so you end up with true && true, which evaluates to true. As you can see,
you need to be very careful how you nest your parentheses.

530 | Appendix: Answers to Quizzes and Exercises

5. False. The parentheses in this expression could drive you mad, but you don’t
actually need to bother with them. Take a look at the second half of the expres-
sion, on the right side of the &&. You’ll see (x == y). You know that (x == y) is
false. Because anything && false evaluates to false, you don’t need to bother with
that nest of parentheses on the left. No matter what the left side evaluates to, the
whole expression will be false. This is called short-circuit evaluation.

Solution to Question 4-10. The correct order of operations is:

++
%
!=
&&
?:

Exercise Solutions

Solution to Exercise 4-1. Write a program that assigns the value 25 to variable x, and 5
to variable y. Output the sum, difference, product, quotient, and modulus of x and y.

As always, there are a variety of ways to accomplish this task. However you do it,
though, you must start by assigning two variables, x and y. From there, you could
use temporary variables to hold each of the values you calculate, and output them all
in a WriteLine() statement. Or you could just do the math in the WriteLine(), as
shown in Example A-6.

Example A-6. One solution to Exercise 4-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_4_1
{
 class Program
 {
 static void Main()
 {
 int x = 25;
 int y = 5;
 Console.WriteLine("sum: {0}, difference: {1}, product: {2},
 quotient: {3}, modulus: {4}.", x + y, x - y,
 x * y, x / y, x % y);
 }
 }
}

Chapter 4: Operators | 531

The output looks like this:

sum: 30, difference: 20, product: 125, quotient: 5, modulus: 0.

Solution to Exercise 4-2. What will be the output of the following method? Why?

static void Main()
{
 int varA = 5;
 int varB = ++varA;
 int varC = varB++;
 Console.WriteLine("A: {0}, B: {1}, C: {2}", varA, varB, varC);
}

Of course, you could simply type in this code and see what the output is, but that
won’t tell you why the output is what it is. Let’s start with the output:

A: 6, B: 7, C: 6

Now let’s take this apart one line at a time. The first line is simple enough:

int varA = 5;

You’ve set varA to 5. No problem:

int varB = ++varA;

The trick now is that actually two things are going on in this line. First, varA is incre-
mented, from 5 to 6. Because you’re using the prefix operator, the increment hap-
pens before the assignment. Second, varB is set to the new value of varA, which is 6.
So, at the moment, both varA and varB are 6:

int varC = varB++;

Again, two things are happening here. This time, because you’re using the postfix
operator, the assignment happens first—varC is set equal to the current value of varB,
which is 6. Then varB is incremented to 7, but the value of varC has already been
assigned, so it doesn’t change. Therefore, when you get to the output, varA is 6, varB
is 7, and varC is 6.

The lesson here is that if you want to set varB to be one more than varA, just use this:

varB = varA + 1;

instead of trying to save keystrokes with the increment operators. No matter how
many keystrokes it saves, code is useful only if you can understand what it does.

Solution to Exercise 4-3. Imagine an amusement park ride that holds two passengers.
Because of safety restrictions, the combined weight of the two passengers must be
more than 100 pounds, but no more than 300 pounds. Now imagine a family of four
who want to ride this ride. Abby weighs 135 pounds, Bob weighs 175 pounds, their
son Charlie weighs 55 pounds, and their daughter Dawn weighs 45 pounds.

532 | Appendix: Answers to Quizzes and Exercises

Write a program that calculates whether the weight of the two combined passengers
falls within the accepted range. Use constants for the maximum and minimum
weights, and for the weight of each family member. The output should look some-
thing like this, for Abby and Dawn:

Abby and Dawn can ride? True

Calculate three separate cases: whether the two parents can ride together, just Bob
and Charlie, and just the kids.

As always, there are several ways to solve this problem. No matter what you choose,
though, you need to determine whether the combined weight of the two passengers
is between the maximum and minimum weights. The obvious choice for this is to
use a logical and, like this:

bool canRide = ((weight1 + weight2) > minWeight) &&
((weight1 + weight2) <= maxWeight);

The bool canRide will be true only if the combined weight is both greater than the
minimum weight and less than the maximum weight.

If you had access to user input and looping statements, you could make this applica-
tion much fancier, but you’ll learn about those in the next chapter. Example A-7
shows one solution that fits the requirements.

Example A-7. One solution to Exercise 4-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_4_3
{
 class Program
 {
 static void Main(string[] args)
 {
 const int weightAbby = 135;
 const int weightBob = 175;
 const int weightCharlie = 55;
 const int weightDawn = 45;
 const int minWeight = 100;
 const int maxWeight = 300;

 bool canRide;
 int weight1, weight2;

 // Abby + Bob
 weight1 = weightAbby;
 weight2 = weightBob;
 canRide = ((weight1 + weight2) > minWeight) &&
 ((weight1 + weight2) <= maxWeight);

Chapter 4: Operators | 533

Solution to Exercise 4-4. Now it’s time for a little high school math. Take a sphere of
radius 5. Calculate and output the surface area, and the volume of the sphere. Then
use the ternary operator to indicate which of the two is greater. Make Pi a constant
float, and use a value of 3.14159 for precision. You should probably also make the
radius a constant.

This application isn’t too difficult, but it does require that you remember some math
formulas (or know where to look them up online). The formula for the surface area
of a sphere is 4πr2, and the formula for the volume is 4/3πr3. C# doesn’t have a built-
in operator for raising to a power, so you can simply multiply the radius by itself two
or three times, as needed.

To calculate the radius, you’d need something like this:

float surfaceArea = 4f * Pi * (radius * radius);

To calculate the surface area, you’d need something like this:

float volume = (4f / 3f) * Pi * (radius * radius * radius);

Note that you need to use the f suffix on the float values. It’s not strictly necessary
on the 4 in the surface area calculation, but it’s crucial in the volume calculation.
Remember that (4/3) is 1.33333 in floating-point division, but it’s just 1 in integer
division.

The ternary operator isn’t difficult; just compare the two values and assign the larger
one to a variable, which you can then output. (We do know that the surface area is
in square units, and the volume is in cubic units, so you can’t really compare the two
numbers, but we’ll overlook that for the purpose of this exercise.)

One solution is shown in Example A-8.

 Console.WriteLine("Abby and Bob can ride? {0}", canRide);

 // Bob + Charlie
 weight1 = weightBob;
 weight2 = weightCharlie;
 canRide = ((weight1 + weight2) > minWeight) &&
 ((weight1 + weight2) <= maxWeight);
 Console.WriteLine("Bob and Charlie can ride? {0}", canRide);

 // Charlie + Dawn
 weight1 = weightCharlie;
 weight2 = weightDawn;
 canRide = ((weight1 + weight2) > minWeight) &&
 ((weight1 + weight2) <= maxWeight);
 Console.WriteLine("Charlie and Dawn can ride? {0}", canRide);

 }
 }
}

Example A-7. One solution to Exercise 4-3 (continued)

534 | Appendix: Answers to Quizzes and Exercises

Chapter 5: Branching

Quiz Solutions

Solution to Question 5-1. The if, if...else, and switch statements are used for condi-
tional branching.

Solution to Question 5-2. False. In C#, an if statement’s condition must evaluate to a
Boolean expression.

Solution to Question 5-3. The braces make maintenance easier. If you add a second
statement later, you are less likely to create a logic error because it is obvious what
“block” of statements the if refers to.

Solution to Question 5-4. Either a numeric value or a string can be placed in a switch

statement.

Solution to Question 5-5. False. If the statement has no body, you can fall through. For
example:

case morning:
case afternoon:

Example A-8. One solution to Exercise 4-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_4_4
{
 class Program
 {
 static void Main()
 {
 const float Pi = 3.14159f;
 const float radius = 5f;
 float surfaceArea = 4f * Pi * (radius * radius);
 Console.WriteLine("Surface area is: {0}", surfaceArea);
 float volume = (4f / 3f) * Pi * (radius * radius * radius);
 Console.WriteLine("Volume is: {0}", volume);
 float greater = surfaceArea > volume ? surfaceArea : volume;
 Console.WriteLine("The greater of these is: {0}", greater);

 }
 }
}

Chapter 5: Branching | 535

 someAction();
 break;

Solution to Question 5-6. Two uses of goto are:

• To go to a label in your code

• To go to a different case statement in a switch statement

Solution to Question 5-7. do...while evaluates its condition at the end of the loop
rather than at the beginning, and thus is guaranteed to run at least once.

Solution to Question 5-8. The header of a for loop includes the initializer, in which you
create and initialize the counter variable; the expression, in which you test the value
of the counter variable; and the iterator, in which you update the value of the
counter variable. All three parts are optional.

Solution to Question 5-9. In a loop, the continue keyword causes the remainder of the
body of the loop to be skipped and the next iteration of the loop to begin immediately.

Solution to Question 5-10. Two ways of creating an infinite loop are:

for (;;)
while(true)

Exercise Solutions

Solution to Exercise 5-1. Create a program that counts from 1 to 10 three times, using
the while, do...while, and for statements, and outputs the results to the screen.

There’s nothing tricky about this exercise; you’re simply using each of the three loop
types to count to 10. Remember to initialize your counter at 1 for each loop, and to set
the condition to be counter <= 10, rather than counter < 10, or you’ll find your loop
stopping at 9. If you want to be fancy, you can output on one line, using Write(), and
include an if statement to add a comma after each number except the last, as we’ve
done here. Example A-9 shows the code.

Example A-9. One solution to Exercise 5-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_5_1
{
 class Program
 {

536 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 5-2. Create a program that accepts an integer from the user as
input, then evaluates whether that input is zero, odd or even, a multiple of 10, or too
large (more than 100) by using multiple levels of if statements.

The solution to this exercise is going to be a rat’s nest of if statements, no matter
what you do. However, the order in which you make the tests is critical. First, you
need to test whether the number is too large (more than 100), because if it is, you
stop right there. Inside that if, you check whether it’s odd or even, because if it’s
odd, you stop there too. Inside the second if, you check whether it’s zero. Inside
that, you check whether it’s a multiple of 10. That’s how you get four levels of if,
and some very nasty code. Example A-10 shows one way to do it.

 static void Main()
 {
 Console.WriteLine("while");
 int counter = 1;
 while (counter <= 10)
 {
 Console.Write(counter);
 if (counter < 10)
 {
 Console.Write(", ");
 }
 counter++;
 }
 Console.WriteLine("\ndo..while");
 counter = 1;
 do
 {
 Console.Write(counter);
 if (counter < 10)
 {
 Console.Write(", ");
 }
 counter++;
 } while (counter <= 10);
 Console.WriteLine("\nfor");
 for (int ctr = 1; ctr <= 10; ctr++)
 {
 Console.Write(ctr);
 if (ctr < 10)
 {
 Console.Write(", ");
 }
 }
 Console.WriteLine("\nDone");
 }
 }
}

Example A-9. One solution to Exercise 5-1 (continued)

Chapter 5: Branching | 537

Example A-10. One solution to Exercise 5-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_5_2
{
 class Program
 {
 static void Main()
 {
 while (true)
 {
 Console.Write("Enter a number please: ");
 string theEntry = Console.ReadLine();
 int theNumber = Convert.ToInt32(theEntry);

 // Logic: if the number is greater than 100, say it is too big
 // if it is even but not a multiple of 10 say it is even
 // if it is a multiple of 10, say so
 // if it is not even, say it is odd
 if (theNumber <= 100)
 {
 if (theNumber % 2 == 0)
 {
 if (theNumber == 0)
 {
 Console.WriteLine("Zero is not even or odd or a
 multiple of 10");
 }
 else
 {
 if (theNumber % 10 == 0)
 {
 Console.WriteLine("You have picked a multiple
 of 10");
 }
 else
 {
 Console.WriteLine("Your number is even");
 } // end else not a multiple of 10
 } // end else not zero
 } // end if even
 else
 {
 Console.WriteLine("What an odd number to enter");
 }
 } // end if not too big
 else
 {
 Console.WriteLine("Your number is too big for me.");
 }

538 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 5-3. Rewrite the program from Exercise 5-2 to do the same work
with a switch statement.

The switch statement makes a nice alternative to programs that have lots of nested if

statements. To rewrite the program using a switch, you first have to define an enum

that outlines the various possibilities. Then you’ll need a series of (nonnested) if

statements to determine which of the enum options applies. Once you’ve done that,
you can use a switch to output the appropriate statement, and even include a default

that accounts for unexpected input. One solution is shown in Example A-11.

 } // end while
 }
 }
}

Example A-11. One solution to Exercise 5-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_5_3
{
 class Program
 {
 enum numericCondition
 {
 even,
 multiple,
 odd,
 tooBig,
 unknown,
 zero
 }
 static void Main()
 {
 while (true)
 {
 Console.Write("Enter a number, please: ");
 string theEntry = Console.ReadLine();
 int theNumber = Convert.ToInt32(theEntry);

 numericCondition condition = numericCondition.unknown; // initialize
 condition = (theNumber % 2 == 0) ?
 numericCondition.even : numericCondition.odd;
 if (theNumber % 10 == 0) condition = numericCondition.multiple;
 if (theNumber == 0) condition = numericCondition.zero;
 if (theNumber > 100) condition = numericCondition.tooBig;

Example A-10. One solution to Exercise 5-2 (continued)

Chapter 5: Branching | 539

You could make the case that this solution is more complicated than Example A-10.
After all, you still have a bunch of if statements to set the value of the enum, even if
they’re not nested. And the solution here is obviously longer than Example A-10.
However, we believe that the switch statement used here is easier to read and main-
tain, which may take a bit longer to write now, but will save you time in the future.

Solution to Exercise 5-4. Create a program that initializes a variable i at 0 and counts
up, and initializes a second variable j at 25 and counts down. Use a for loop to
increment i and decrement j simultaneously. When i is greater than j, end the loop
and print out the message “Crossed over!”

This exercise is tricky. It’s possible to use two counter variables in the header of a for

loop, although it’s not commonly done. In this case, you need to declare i and j

before starting the loop. Then, in the header, you initialize i to 0 and j to 25. You
want the loop to end when i has become less than j, so your condition is simple: i <

j. You want i to count up and j to count down, so for your iterator, you use i++ and
j--. As soon as i becomes less than j, the loop ends, so you output the final message
outside the loop. Example A-12 shows one possible solution.

 // switch on the condition and display the correct message
 switch (condition)
 {
 case numericCondition.even:
 Console.WriteLine("Your number is even");
 break;
 case numericCondition.multiple:
 Console.WriteLine("You have picked a multiple of 10");
 break;
 case numericCondition.odd:
 Console.WriteLine("What an odd number to enter");
 break;
 case numericCondition.tooBig:
 Console.WriteLine("Your number is too big for me.");
 break;
 case numericCondition.zero:
 Console.WriteLine("zero is not even or odd
 or a multiple of 10");
 break;
 default:
 Console.WriteLine("I'm sorry, I didn't understand that.");
 break;
 }
 }
 }
 }
}

Example A-11. One solution to Exercise 5-3 (continued)

540 | Appendix: Answers to Quizzes and Exercises

The output looks like this:

i: 0; j: 25
i: 1; j: 24
i: 2; j: 23
i: 3; j: 22
i: 4; j: 21
i: 5; j: 20
i: 6; j: 19
i: 7; j: 18
i: 8; j: 17
i: 9; j: 16
i: 10; j: 15
i: 11; j: 14
i: 12; j: 13
Crossed over! i: 13; j: 12

Chapter 6: Object-Oriented Programming

Quiz Solutions

Solution to Question 6-1. New (user-defined) types are most often created in C# with
the keyword class.

Solution to Question 6-2. A class defines a new type; an object is an instance of that
type.

Solution to Question 6-3. Making your member fields private allows you to change how
you store that data (as a member variable, or in a database) without breaking your
client’s code.

Example A-12. One solution to Exercise 5-4

namespace Exercise_5_4
{
 class Program
 {
 static void Main()
 {
 int i;
 int j;
 for (i = 0, j = 25; i < j; ++i, --j)
 {
 Console.WriteLine("i: {0}; j: {1}", i, j);
 }
 Console.WriteLine("Crossed over! i: {0}; j: {1}", i, j);
 }
 }
}

Chapter 6: Object-Oriented Programming | 541

Solution to Question 6-4. Encapsulation is the principle of keeping each class discrete
and self-contained, so you can change the implementation of one class without
affecting any other class.

Solution to Question 6-5. Specialization allows a new class to “inherit” many of the
characteristics of an existing class, and to be used polymorphically with that class.
Specialization is implemented in C# through inheritance.

Solution to Question 6-6. Polymorphism is the ability to treat derived classes as though
they were all instances of their base class, yet have each derived class specialize its
own implementation of the base class’s methods.

Solution to Question 6-7. The is-a relationship is established through inheritance. The
has-a relationship is implemented through aggregation (making one type a member
variable of another type).

Solution to Question 6-8. Access modifiers indicate which class’s methods have access
to a given field, property, or method of a class. Public members are available to
methods of any class; private members are available only to methods of instances of
the same class.

Solution to Question 6-9. State is the current conditions and values of an object, and is
implemented with properties and member variables. Capabilities are what the object
can do, exposed through public methods. Responsibilities are the promises a well-
designed class makes to the clients of that class.

Solution to Question 6-10. A use-case scenario is a tool for the analysis of a problem. In
a use-case scenario, you walk through the details of how your product will be used
by one user to accomplish one task, noting which classes interact and what their
responsibilities are.

Exercise Solutions

Solution to Exercise 6-1. A visual representation of a class, its member fields and meth-
ods, and its place in the hierarchy is called a class diagram. There are several
accepted methods for drawing a class diagram, but we won’t hold you to any of
those right now. For this example, simply draw a class diagram for a class named
vehicle, listing some properties and methods that you think that class should have.
Then add to your diagram the derived classes car, boat, and plane, and list their
properties and methods (remember that all derived classes inherit the properties and
methods of their parent class).

542 | Appendix: Answers to Quizzes and Exercises

The rule of thumb when you’re designing a parent class is to keep it as simple as it
needs to be—include those properties and methods you need, but nothing extrane-
ous. Leave the specialization to the derived classes; that’s what they’re there for.
There are lots of ways to define these classes, but Figure A-4 shows one example.

We’re using a common drawing convention that shows each class as a box with
three sections. The top section shows the class name, the middle section shows its
member fields, and the bottom section shows its member methods. The arrow lead-
ing from the lower three boxes to the upper one indicates that the lower three classes
are all inherited from the upper one.

We’ve decided that all vehicles have a number of passengers, and a type of fuel (even
if it’s human-powered pedaling). Those are the member fields, and you’ll notice
we’ve assigned a type to each of them. We’ve also decided that all vehicles can move
and stop; those are the methods.

We’ve gone on to derive three child classes, Car, Plane, and Boat. Each class inherits
the properties and methods of the parent, so Car has a number of passengers, for
example. However, cars have to specify the number of doors, and whether they’re
stick-shift or automatic. Cars can also honk, and haul a trailer, which neither of the
other two classes can do. Both Plane and Boat have their own specialized properties
and methods, which are probably different from the ones you thought of.

Solution to Exercise 6-2. You’ve defined a class as a diagram; now try defining one in
code. Define a class Book, in which a book has a title, author, and ISBN, and the
book can be read or shelved. You don’t need to fill in the code for any methods you
include; simply include a comment in the body, like we did for the Dog class earlier in
the chapter.

Figure A-4. One solution to Exercise 6-1.

Vehicle

– int numPassengers
– string fuelType

+ Move()
+ Stop()

Plane

– int numEngines
– string jetOrProp

+ Bank()
+ GainAltitude()

Boat

– float keelDepth
– string sailsOrMotor

+ DropAnchor()
+ PumpBilge()

Car

– int numDoors
– bool stickShift

+ Honk()
+ HaulTrailer()

Chapter 7: Classes and Objects | 543

This definition is relatively simple. We’ve given you the requirements for the class;
you just need to decide which ones are methods and which are properties.
Example A-13 shows what we had in mind.

This isn’t real code, and it won’t compile without Main(). In Chapter 7, you’ll see
how to create a class definition.

Chapter 7: Classes and Objects

Quiz Solutions

Solution to Question 7-1. A class defines a new type; an object is a single instance of
that type.

Solution to Question 7-2. The keyword private indicates that access is limited to meth-
ods of the defining class.

Solution to Question 7-3. The keyword public indicates that access is available to
methods in any class.

Solution to Question 7-4. When you create an instance of an object, the class’s con-
structor is called.

Solution to Question 7-5. A default constructor is a constructor that takes no parame-
ters. If you do not create any constructor at all for your class, a default constructor is
implicitly created.

Example A-13. Our solution to Exercise 6-2

class Book
{
 private String title;
 private String author;
 private String ISBN;

 public void Read() // member method
 {
 // code here to read book
 }
 public void Shelve() // member method
 {
 // code here to shelve book
 }
}

544 | Appendix: Answers to Quizzes and Exercises

Solution to Question 7-6. None. A constructor is not defined to return a type, and is
not marked void.

Solution to Question 7-7. You can initialize the value of a member variable either in the
constructor, using assignment, or when the member variable is created:

private int myVariable = 88;

Technically, only the latter is truly initialization; assigning it in the constructor is not
as efficient.

Solution to Question 7-8. this refers to the object itself—the current instance of the
class.

Solution to Question 7-9. A static method has no this reference. It does not belong to
an instance; it belongs to the class and can call only other static methods.

You access a static method through the name of the class:

Dog myDog = new Dog();
myDog.InstanceMethod();
Dog.StaticMethod();

Of course, from within any method (including static methods), you can instantiate a
class, and then call methods on that instance.

You can even instantiate an instance of your own class, and then call any nonstatic
method of that object, as we did with (static) Main() calling (nonstatic) Test().

Solution to Question 7-10. Instances of classes are reference types and are created on
the heap. Intrinsic types (such as integers) and structs are value types and are cre-
ated on the stack.

Exercise Solutions

Solution to Exercise 7-1. Write a program with a Math class that has four methods: Add,
Subtract, Multiply, and Divide, each of which takes two parameters. Call each
method from Main() and provide an appropriate output statement to demonstrate
that each method works. You don’t need to have the user provide input; just pro-
vide the two integers to the methods within Main().

This is a reasonably simple exercise; all you need to do is remember how to define a
new class, and then write the various methods for it. The code for the methods is
simple enough; you just have to make sure to choose parameters that you can under-
stand. left and right make good parameter names for mathematical methods like
these.

Chapter 7: Classes and Objects | 545

Then you have to write a brief Main() that declares an instance of the Math class, and
then calls each method in turn, providing the appropriate parameters. You store the
returned values in variables, and then output them to the console. We chose to use
the numbers 3 and 5 for the operands, but you can use whatever you like.
Example A-14 shows our solution to this exercise.

Solution to Exercise 7-2. Modify the program from Exercise 7-1 so that you do not have
to create an instance of Math to call the four methods. Call the four methods again
from Main() to demonstrate that they work.

Example A-14. Our solution to Exercise 7-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_7_1
{
 class Math
 {
 public int Add(int left, int right)
 {
 return left + right;
 }
 public int Subtract(int left, int right)
 {
 return left - right;
 }
 public int Multiply(int left, int right)
 {
 return left * right;
 }
 public float Divide(float left, float right)
 {
 return left / right;
 }
 } // end class Math
 class Program
 {
 static void Main()
 {
 Math m = new Math();
 int sum = m.Add(3,5);
 int difference = m.Subtract(3,5);
 int product = m.Multiply(3,5);
 float quotient = m.Divide(3.0f, 5.0f);
 Console.WriteLine("sum: {0}, difference: {1}, product: {2},
 quotient: {3}", sum, difference, product, quotient);
 }
 }
}

546 | Appendix: Answers to Quizzes and Exercises

The difference here is that you don’t want to create an instance of the Math class to
do the work, which makes logical sense, since “math” isn’t a real-world object that
you would normally model an instance of. That means you’ll need to use static

methods to avoid creating an instance. The class stays mostly the same, except that
you add the static keyword to each method name.

Now, in Main(), instead of declaring an instance of Math, you can simply call the meth-
ods directly on the class, and do not create an instance first. In fact, the .NET Frame-
work has a static Math class with methods for things like logarithms and trigonometric
functions that you use in exactly this way. Example A-15 shows one solution.

Example A-15. One solution to Exercise 7-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_7_2
{
 class Math
 {
 static public int Add(int left, int right)
 {
 return left + right;
 }
 static public int Subtract(int left, int right)
 {
 return left - right;
 }
 static public int Multiply(int left, int right)
 {
 return left * right;
 }
 static public float Divide(float left, float right)
 {
 return left / right;
 }
 } // end class Math
 class Program
 {
 static void Main(string[] args)
 {
 int sum = Math.Add(3, 5);
 int difference = Math.Subtract(3,5);
 int product = Math.Multiply(3,5);
 float quotient = Math.Divide(3.0f, 5.0f);
 Console.WriteLine("sum: {0}, difference: {1}, product: {2},
 quotient: {3}", sum, difference, product, quotient);
 }
 }
}

Chapter 7: Classes and Objects | 547

Solution to Exercise 7-3. Create a class Book that you could use to keep track of book
objects. Each Book object should have a title, author, publisher, and ISBN (which
should be a string, rather than a numeric type, so that the ISBN can start with a 0 or
include an X). The class should have a DisplayBook() method to output that infor-
mation to the console. In Main(), create three Book objects with this data:

Because all three books have the same publisher, you should initialize that field in
your class.

The Book class is simple enough to create. The only difference in this exercise is that
you have to initialize the publisher member to the string “O’Reilly” when you declare
it, and then adjust your constructor accordingly. One solution is shown in
Example A-16.

Programming C# 3.0 Jesse Liberty and Donald Xie O’Reilly 9780596527433

C# 3.0 In a Nutshell Joseph Albahari and Ben Albahari O’Reilly 9780596527570

C# 3.0 Cookbook Jay Hilyard and Stephen Teilhet O’Reilly 9780596516109

Example A-16. One solution to Exercise 7-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_7_3
{
 class Book
 {
 private string title;
 private string author;
 private string publisher = "O'Reilly";
 private string isbn;

 public void OutputBook()
 {
 Console.WriteLine("Title: {0}, Author: {1}, Publisher: {2},
 ISBN: {3}", title, author, publisher, isbn);
 }

 //constructor
 public Book(string myTitle, string myAuthor, string myIsbn)
 {
 title = myTitle;
 author = myAuthor;
 isbn = myIsbn;
 }
 }

 class Program

548 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 7-4. You might think it isn’t possible to draw geometric shapes
using the console output, and you’d be mostly right. We can simulate drawing
shapes, though, by imagining a graph and displaying, say, the coordinates of the four
corners of a square. Start with a class called Point. This is a simple enough class; it
should have members for an x coordinate and a y coordinate, a constructor, and a
method for displaying the coordinates in the form (x,y). For now, make the x and y

members public, to keep things simple.

Now create a class Square. Internally, the class should keep track of all four points of
the square, but in the constructor, you should accept just a single Point and a length
(make it an integer, to keep it simple). You should also have a method to output the
coordinates of all four points. In Main(), create the initial Point, then create a Square

and output its corners.

The difference in this exercise is that you’ll be using objects of one class (Point) as
internal members of another class (Square). That’s not tricky, but the first time you
do it, it may be unexpected. The Point class is simple enough to create; you just need
two internal members; call them whatever you like. We suggested that you make the
members public because the Square class will need to access them as well. There’s a
better way to access the members of another class; you’ll learn that in Chapter 8.

 public class Point
 {
 public int xCoord;
 public int yCoord;

 {
 static void Main()
 {
 Book firstBook = new Book("Programming C# 3.0",
 "Jesse Liberty and Donald Xie", "9780596527433");
 Book secondBook = new Book("C# 3.0 In a Nutshell",
 "Joseph Albahari and Ben Albahari", "9780596527570");
 Book thirdBook = new Book("C# 3.0 Cookbook",
 "Jay Hilyard and Stephen Teilhet", "9780596516109");

 Console.WriteLine("First book:");
 firstBook.OutputBook();
 Console.WriteLine("Second book:");
 secondBook.OutputBook();
 Console.WriteLine("Third book:");
 thirdBook.OutputBook();
 }
 }
}

Example A-16. One solution to Exercise 7-3 (continued)

Chapter 7: Classes and Objects | 549

 public void DisplayPoint()
 {
 Console.WriteLine("({0}, {1})", xCoord, yCoord);
 }

 //constructor
 public Point(int x, int y)
 {
 xCoord = x;
 yCoord = y;
 }
 }

Now that you have the Point class, you need four of them to make up the Square

class. We specified that the constructor for the Square should take just one Point and
a length. Therefore, the class needs to work out the other points and assign them to
the internal members. We’ve done that in the constructor. You can access the x and
y coordinates of the point you passed in to the constructor, add the length as appro-
priate, and generate the other three points:

 public class Square
 {
 private Point topLeft;
 private Point topRight;
 private Point bottomRight;
 private Point bottomLeft;
 private int sideLength;

 public void displaySquare()
 {
 Console.WriteLine("The four corners are:");
 topLeft.DisplayPoint();
 topRight.DisplayPoint();
 bottomLeft.DisplayPoint();
 bottomRight.DisplayPoint();
 }

 //constructor
 public Square(Point myPoint, int myLength)
 {
 sideLength = myLength;
 topLeft = myPoint;
 topRight = new Point(topLeft.xCoord + sideLength, topLeft.yCoord);
 bottomLeft = new Point(topLeft.xCoord, topLeft.yCoord + sideLength);
 bottomRight = new Point(topLeft.xCoord + sideLength, topLeft.yCoord +
 sideLength);
 }
 }

As always, there are many possible solutions, but one of them is shown in full in
Example A-17.

550 | Appendix: Answers to Quizzes and Exercises

Example A-17. One solution to Exercise 7-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_7_4
{
 public class Point
 {
 public int xCoord;
 public int yCoord;

 public void DisplayPoint()
 {
 Console.WriteLine("({0}, {1})", xCoord, yCoord);
 }

 //constructor
 public Point(int x, int y)
 {
 xCoord = x;
 yCoord = y;
 }
 }

 public class Square
 {
 private Point topLeft;
 private Point topRight;
 private Point bottomRight;
 private Point bottomLeft;
 private int sideLength;

 public void displaySquare()
 {
 Console.WriteLine("The four corners are:");
 topLeft.DisplayPoint();
 topRight.DisplayPoint();
 bottomLeft.DisplayPoint();
 bottomRight.DisplayPoint();
 }

 //constructor
 public Square(Point myPoint, int myLength)
 {
 sideLength = myLength;
 topLeft = myPoint;
 topRight = new Point(topLeft.xCoord + sideLength, topLeft.yCoord);
 bottomLeft = new Point(topLeft.xCoord, topLeft.yCoord + sideLength);
 bottomRight = new Point(topLeft.xCoord + sideLength,
 topLeft.yCoord + sideLength);
 }

Chapter 8: Inside Methods | 551

Chapter 8: Inside Methods

Quiz Solutions

Solution to Question 8-1. Method overloading allows the author of the class to create a
method with varying input parameters, rather than having to have many methods
with different names that serve similar purposes.

Solution to Question 8-2. Overloaded methods must differ in the number of parame-
ters, the parameter types, or both. Simply differing in return type is not an overload.

Solution to Question 8-3. The signature of a method is its name and the types on its
parameter list.

Solution to Question 8-4. Properties are public accessors to your encapsulated data.
Properties appear to the class creator as methods, but to the class’s clients as fields.

Solution to Question 8-5. Properties enforce encapsulation through data hiding. They
isolate the internal members of the class from the client. If you change how the inter-
nal values are generated, the property will seem to be unchanged, to outside callers.

Solution to Question 8-6. To create a read-only property, do not implement the set

part of the property. No special notation is required.

Solution to Question 8-7. Automatic properties provide a shorter way for you to create
a property, if all you need to do is set or retrieve a value.

Solution to Question 8-8. You retrieve multiple return values from a method by pass-
ing in parameters by reference and getting the results back in those parameters.

 }
 class Program
 {
 static void Main(string[] args)
 {
 Point startPoint = new Point(3, 3);
 int length = 5;
 Square mySquare = new Square(startPoint, length);
 mySquare.displaySquare();
 }
 }
}

Example A-17. One solution to Exercise 7-4 (continued)

552 | Appendix: Answers to Quizzes and Exercises

Solution to Question 8-9. If you want to pass a value object (variable) by reference, you
use the keyword ref in the call to the method and in the declaration of the method.

Solution to Question 8-10. If you want to pass a value object by reference, but do not
want to initialize it before making the method call, you must use the keyword out in
the call to the method and in the declaration of the method.

Exercise Solutions

Solution to Exercise 8-1. Write a program with an overloaded method for tripling the
value of the argument. You don’t need to create a separate class for this; just use
static methods right in Tester. One version of the method should triple an int value,
and the other version should triple a float value. Call both methods to demonstrate
that they work.

You don’t need to do much to accomplish this exercise. Simply create two static

methods named Tripler(), or whatever you choose to call them. Because they’re
overloaded methods, they must have the same name, but one should take an int and
the other a float. The implementation of the methods themselves is simple; just
remember to multiply the parameter by 3.0f for the float, rather than just 3.
Example A-18 shows one solution.

Example A-18. One solution to Exercise 8-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_8_1
{
 class Tester
 {
 public void Run()
 {
 int x = 5;
 float y = 5.2f;
 Console.WriteLine("Triple {0} = {1}", x, Tripler(x));
 Console.WriteLine("Triple {0} = {1}", y, Tripler(y));
 }
 static int Tripler(int theVal)
 {
 return theVal * 3;
 }
 static float Tripler(float theVal)
 {
 return theVal * 3.0f;
 }
 static void Main()

Chapter 8: Inside Methods | 553

Solution to Exercise 8-2. Create a Dog class, where the Dog objects have both a weight

and a color, hidden from the client. Create a Dog object, then retrieve its color and
display it to the user. Ask the user for a weight, and use that input to set the Dog’s
weight.

This exercise also isn’t particularly difficult, but properties are supposed to make
things easy. The key to this exercise is to create the weight and color members as pri-
vate member fields, and then provide two properties with get and set accessors.
Technically, the exercise asked you to create only a getter for color and a setter for
weight, but it doesn’t hurt to have both. One solution is shown in Example A-19.

 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-19. One solution to Exercise 8-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_8_2
{
 public class Dog
 {
 private int weight;
 private string color;

 public int Weight
 {
 get
 {
 return weight;
 }
 set
 {
 weight = value;
 }
 }

 public string Color
 {
 get
 {
 return color;
 }
 set

Example A-18. One solution to Exercise 8-1 (continued)

554 | Appendix: Answers to Quizzes and Exercises

If you really want to be fancy, you could use automatic properties instead of spelling
out the properties the long way:

public int Weight { get; set; }
public string Color { get; set; }

However, you’d have to be sure to remove the private members shown in
Example A-19, and change the references to weight and color in DisplayDog() and to
Weight and Color in the constructor.

 {
 color = value;
 }
 }

 public void DisplayDog()
 {
 Console.WriteLine("The dog weighs {0} pounds and is {1}.",
 weight, color);
 }

 public Dog(int myWeight, string myColor)
 {
 weight = myWeight;
 color = myColor;
 }
 }

 class Tester
 {
 public void Run()
 {
 Dog fluffy = new Dog(25, "brown");
 fluffy.DisplayDog();
 Console.WriteLine("The dog is still {0}.", fluffy.Color);
 Console.Write("What is the dog's new weight? ");
 int newWeight = Convert.ToInt32(Console.ReadLine());
 fluffy.Weight = newWeight;
 fluffy.DisplayDog();

 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-19. One solution to Exercise 8-2 (continued)

Chapter 8: Inside Methods | 555

Solution to Exercise 8-3. Write a program with just one method that takes an int value,
supplied by the user, and returns both double and triple that value. You don’t need a
separate class; just put the method in Tester. In Run(), output the results to the con-
sole to make sure it worked.

Since the exercise is asking you to return two values from a single method, that
means you’ll have to use reference parameters. The method itself is simple. Just
remember to create and initialize some variables in Run() to hold the values you’ll
return. Example A-20 shows how it’s done.

Solution to Exercise 8-4. Modify the program from Exercise 8-3 so that you don’t need
to initialize the variables that will hold the doubled and tripled values before calling
the method.

Example A-20. One solution to Exercise 8-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_8_3
{
 class Tester
 {
 public void Run()
 {
 Console.Write("Input an integer: ");
 int x = Convert.ToInt32(Console.ReadLine());
 int doubleX = 0;
 int tripleX = 0;
 DoublerAndTripler(x, ref doubleX, ref tripleX);
 Console.WriteLine("Double {0} = {1}; triple {2} = {3}",
 x, doubleX, x, tripleX);
 }
 static void DoublerAndTripler(int theVal, ref int doubleValue,
 ref int tripleValue)
 {
 doubleValue = theVal * 2;
 tripleValue = theVal * 3;
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

556 | Appendix: Answers to Quizzes and Exercises

This time, you’ll use out parameters instead of ref parameters. In this case, all you
have to do is not initialize doubleX and tripleX when they’re created, and change ref

to out in the method call. One solution is shown in Example A-21.

Chapter 9: Basic Debugging

Quiz Solutions

Solution to Question 9-1. The simplest way to set a breakpoint is to go to the line
where you want execution to stop, and click in the left margin. A red dot will appear
on the line.

Solution to Question 9-2. When the execution stops, the breakpoint will have a yellow
arrow pointing to the highlighted line of code.

Example A-21. One solution to Exercise 8-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_8_4
{
 class Tester
 {
 public void Run()
 {
 Console.Write("Input an integer: ");
 int x = Convert.ToInt32(Console.ReadLine());
 int doubleX; // uninitialized
 int tripleX; // uninitialized
 DoublerAndTripler(x, out doubleX, out tripleX);
 Console.WriteLine("Double {0} = {1}; triple {2} = {3}",
 x, doubleX, x, tripleX);
 }
 static void DoublerAndTripler(int theVal, out int doubleValue,
 out int tripleValue)
 {
 doubleValue = theVal * 2;
 tripleValue = theVal * 3;
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Chapter 9: Basic Debugging | 557

Solution to Question 9-3. Pressing F10 steps over a method; pressing F11 steps into the
method.

Solution to Question 9-4. Right-clicking on the line where the breakpoint is set opens a
context menu that allows you to disable the breakpoint, or to set conditions on the
breakpoint (in Visual Studio only).

Solution to Question 9-5. The Locals window shows all the variables that are in scope
at the breakpoint. The Autos window shows variables used in the current and previ-
ous statement.

Solution to Question 9-6. In the Locals window (and the Autos window as well),
objects that have internal state appear with a + sign next to them. Clicking the plus
sign expands the object so that you can view its internal state.

Solution to Question 9-7. The easiest way to set a watch on a variable is by either right-
clicking on the variable and choosing “Add to Watch window,” or by clicking and
dragging the variable directly onto the Watch window.

Solution to Question 9-8. To open a QuickWatch window, you right-click on the vari-
able and choose QuickWatch, or select Debug ➝ QuickWatch (in Visual Studio
only).

Solution to Question 9-9. The call stack shows which method called the current
method, and which method called that method, and so forth. This allows you to
determine the exact path your code followed to bring you to the current method.

Solution to Question 9-10. In the Call Stack window, simply click on a method call and
you’ll be taken to that point in your code.

Exercise Solutions

Solution to Exercise 9-1. You’ll use the following program for this exercise. Either type
it into Visual Studio, or copy it from this book’s website. Note that this is spaghetti
code—you’d never write method calls like this, but that’s why this is the debugging
chapter:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_9_1
{
 class Tester

558 | Appendix: Answers to Quizzes and Exercises

 {
 public void Run()
 {
 int myInt = 42;
 float myFloat = 9.685f;
 Console.WriteLine("Before starting: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 // pass the variables by reference
 Multiply(ref myInt, ref myFloat);
 Console.WriteLine("After finishing: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 }
 private static void Multiply (ref int theInt,
 ref float theFloat)
 {
 theInt = theInt * 2;
 theFloat = theFloat *2;
 Divide(ref theInt, ref theFloat);
 }
 private static void Divide (ref int theInt,
 ref float theFloat)
 {
 theInt = theInt / 3;
 theFloat = theFloat / 3;
 Add(ref theInt, ref theFloat);
 }
 public static void Add(ref int theInt,
 ref float theFloat)
 {
 theInt = theInt + theInt;
 theFloat = theFloat + theFloat;
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

1. Place a breakpoint in Run() on the following line, and then run the program:

Console.WriteLine("Before starting: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);

What are the values of myInt and myFloat at the breakpoint?

2. Step into the Multiply() method, up to the call to Divide(). What are the val-
ues of theInt and theFloat at this point?

3. Stop debugging, run the program again, and when it reaches the breakpoint in
Run(), set a watch on myInt. Step through the methods. When does the value of
myInt change?

Chapter 9: Basic Debugging | 559

4. Set another breakpoint in Add() at this line:

theInt = theInt + theInt;

Run the program. How many calls are in the call stack when the program
reaches this breakpoint?

The solutions to these tasks are as follows:

1. As shown in the Locals window, myInt is 42 and myFloat is 9.685, because both
have just been set.

2. theInt is 84 and theFloat is 19.37.

3. The value of myInt doesn’t change until control returns to Run(), after the
Multiply() method has finished.

4. There are five calls in the call stack at this point: Main(), Run(), Multiply(),
Divide(), and Add().

Solution to Exercise 9-2. The program in this exercise is similar to the first, but it has a
logic error. Type this program into Visual Studio, or download it from this book’s
website:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_9_2
{
 class Tester
 {
 public void Run()
 {
 int myInt = 42;
 float myFloat = 9.685f;
 Console.WriteLine("Before starting: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 // pass the variables by reference
 Multiply(ref myInt, ref myFloat);
 Console.WriteLine("After finishing: \n value of myInt:
 {0} \n value of myFloat: {1}", myInt, myFloat);
 }
 private static void Multiply (ref int theInt,
 ref float theFloat)
 {
 theInt = theInt * 2;
 theFloat = theFloat *2;
 Divide(ref theInt, ref theFloat);
 }
 private static void Divide (ref int theInt,
 ref float theFloat)

560 | Appendix: Answers to Quizzes and Exercises

 {
 theInt = theInt * 3;
 theFloat = theFloat * 3;
 Add(ref theInt, ref theFloat);
 }
 public static void Add(ref int theInt,
 ref float theFloat)
 {
 theInt = theInt - theInt;
 theFloat = theFloat - theFloat;
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

If you run this program, you will not get the same results as you did in the previous
example. Use the debugging tools you just learned about to find the error. Correct
the error, and then run the program again to see whether the results are correct.

You could find this error by setting a breakpoint on the call to Run(), and stepping
through the code from there, watching the values of theInt and theFloat. You could
also find it by setting breakpoints on each of the method calls and examining the val-
ues of theInt and theFloat each time.

The first errors you’ll probably find are these in Divide():

theInt = theInt * 3;
theFloat = theFloat * 3;

theInt and theFloat are multiplied by 3, not divided. However, if you fix these errors
and run the program, the result is still 0 for both variables. That’s because there are
two more errors in Add():

theInt = theInt - theInt;
theFloat = theFloat - theFloat;

As you can see, the programmer isn’t a very good typist—the variables are sub-
tracted instead of added. If you fix these errors, the program will run as expected.

Solution to Exercise 9-3. Type the following program into Visual Studio, or download
it from the book’s website:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_9_3
{

Chapter 10: Arrays | 561

 class Program
 {
 public static int Factorial(int myInt)
 {
 int result = 1;
 for (int i = 1; i < myInt; i++)
 {
 result = result * i;
 }
 return result;
 }

 static void Main()
 {
 int input = 5;
 Console.WriteLine("{0} factorial is {1}",
 input, Factorial(input));
 }
 }
}

This program is supposed to take the factorial of the value of input, except it’s not
working properly. (The factorial of n is the product of all the positive integers less
than or equal to n. So, the factorial of 5 is 5 × 4 × 3 × 2 × 1=120.) Find the error and
resolve it.

When you run the program, you’ll see that instead of calculating the factorial of 5 as
120, this program calculates it as 24. If you set a breakpoint on the line where
Factorial() is called and step through the method, you’ll see that in the loop, i

never reaches the value of 5, so the loop ends and the result is wrong. There are a few
ways to fix this, but the easiest is to change the condition in the for loop from i <

myInt to i <= myInt.

Chapter 10: Arrays

Quiz Solutions

Solution to Question 10-1. Arrays always begin with index (or offset) zero, so the sev-
enth member of an array has index 6.

Solution to Question 10-2. No. Every array declares the type of objects it will hold. You
can undermine this type safety by creating an array of Objects (which will hold any-
thing, because everything derives from Object), but that is not advised.

Solution to Question 10-3. When you instantiate an array, you specify the number of
elements in square brackets.

562 | Appendix: Answers to Quizzes and Exercises

Solution to Question 10-4. Arrays are reference types and are created on the heap.

Solution to Question 10-5. The highest index in any array is always represented by
Length - 1.

Solution to Question 10-6. You can explicitly call new or just imply the size of the array.
For example, if you have three Employee objects named moe, larry, and curly:

Employee[] myEmpArray = new Employee[3] = { moe, larry, curly };

or:

Employee[] myEmpArray = { moe, larry, curly };

Solution to Question 10-7. There are a number of ways to iterate through the items in
an array, but one of the most common is to use a for loop, using the loop’s control
variable as the indexer in the array. An even simpler method is to use the foreach

statement.

Solution to Question 10-8. The params keyword allows you to pass in an indefinite
number of parameters, all of the same type, which will be treated as an array. You
can, if you wish, also pass in an array.

Solution to Question 10-9. A rectangular array is a multidimensional array where each
row has the same length. A jagged array is an array of arrays; the rows can be of
unequal length.

Solution to Question 10-10. To arrange a random array of float values from greatest to
least, you first call the Sort() method, and then the Reverse() method.

Exercise Solutions

Solution to Exercise 10-1. Declare a Dog class with two private members: weight (an
int) and name (a string). Be sure to add properties to access the members. Then cre-
ate an array that holds three Dog objects (Milo, 26 pounds; Frisky, 10 pounds; and
Laika, 50 pounds). Output each dog’s name and weight.

The purpose of this exercise is simply to get you comfortable with using objects in
arrays. The Dog class is quite simple to create, with its private members and getters
and setters for each. All you have to do then is instantiate three Dog objects, instanti-
ate the array, and assign the objects to the array (which you can do using the quick
element initialization method, instead of using a loop). You’ll need a loop, either for
or foreach, to output the values. Example A-22 shows one possible solution.

Chapter 10: Arrays | 563

Example A-22. One solution to Exercise 10-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_10_1
{
 public class Dog
 {
 public Dog(int theWeight, string theName)
 {
 this.weight = theWeight;
 this.name = theName;
 }
 public int Weight
 {
 get
 {
 return weight;
 }
 set
 {
 weight = value;
 }
 }
 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }
 private int weight;
 private string name;
 }
 public class Tester
 {
 public void Run()
 {
 Dog milo = new Dog(26, "Milo");
 Dog frisky = new Dog(10, "Frisky");
 Dog laika = new Dog(50, "Laika");
 Dog[] dogArray = { milo, frisky, laika };
 // output array values
 foreach (Dog d in dogArray)
 {
 Console.WriteLine("Dog {0} weighs {1} pounds.",
 d.Name, d.Weight);

564 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 10-2. Create an array of 10 integers. Populate the array by having
the user enter integers at the console (use Console.Readline). Don’t worry about
error checking for this exercise. Output the integers sorted from greatest to least.

Creating an array to hold 10 integers should be easy for you at this point. You’ll need
to use a for loop to get the values of the 10 integers from the user. Once you have the
array loaded, you have to call Sort() and then Reverse() on the array to sort the
integers from greatest to least. Example A-23 shows one way of doing it.

 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-23. One solution to Exercise 10-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_10_2
{
 public class Tester
 {
 public void Run()
 {
 int[] intArray = new int[10];
 Console.WriteLine("You'll be asked to enter 10 integers");
 // enter data into the array
 for (int i = 0; i < intArray.Length; i++)
 {
 Console.Write("Enter an integer: ");
 string theEntry = Console.ReadLine();
 intArray[i] = Convert.ToInt32(theEntry);
 }
 // sort and reverse the array
 Array.Sort(intArray);
 Array.Reverse(intArray);
 Console.WriteLine("\nValues:");
 foreach (int j in intArray)
 {
 Console.WriteLine("{0}", j);
 }
 }
 static void Main()

Example A-22. One solution to Exercise 10-1 (continued)

Chapter 10: Arrays | 565

Solution to Exercise 10-3. Extend Exercise 10-1 by creating a two-dimensional array
that represents a collection of strings that indicate the awards each dog has won at
dog shows. Each dog may have a different number of awards won. Output the con-
tents of the array to check its validity.

You’re obviously going to need a two-dimensional array for this exercise. Since we
told you that each dog may have won a different number of awards, you can tell it’s
going to be a jagged two-dimensional array. The Dog class hasn’t changed any from
the previous exercise, so there’s nothing to do there. You’ll have to create the new
jagged array and populate it by hand. To output the contents of the array, you’ll
need a pair of nested for loops. Example A-24 shows a possible solution.

 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-24. One solution to Exercise 10-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_10_3
{
 public class Dog
 {
 public Dog(int theWeight, string theName)
 {
 this.weight = theWeight;
 this.name = theName;
 }
 public int Weight
 {
 get
 {
 return weight;
 }
 set
 {
 weight = value;
 }
 }
 public string Name
 {
 get
 {
 return name;

Example A-23. One solution to Exercise 10-2 (continued)

566 | Appendix: Answers to Quizzes and Exercises

 }
 set
 {
 name = value;
 }
 }
 private int weight;
 private string name;
 }
 public class Tester
 {
 public void Run()
 {
 const int rows = 3;
 // declare and populate the dogs array
 Dog milo = new Dog(26, "Milo");
 Dog frisky = new Dog(10, "Frisky");
 Dog laika = new Dog(50, "Laika");
 Dog[] dogArray = { milo, frisky, laika };

 // declare the dogAwards array as 3 rows high
 string[][] dogAwardsArray = new string[rows][];

 // declare the rows
 dogAwardsArray[0] = new string[3];
 dogAwardsArray[1] = new string[1];
 dogAwardsArray[2] = new string[2];

 // Populate the rows
 dogAwardsArray[0][0] = "Best in Show";
 dogAwardsArray[0][1] = "Best of Breed";
 dogAwardsArray[0][2] = "Judge's Cup";
 dogAwardsArray[1][0] = "Best Toy Tog";
 dogAwardsArray[2][0] = "Best Working Dog";
 dogAwardsArray[2][1] = "Best Large Dog";

 // Output the contents
 for (int i = 0; i < dogAwardsArray.Length; i++)
 {
 Console.WriteLine("{0}'s awards: ", dogArray[i].Name);
 for (int j = 0; j < dogAwardsArray[i].Length; j++)
 {
 Console.WriteLine("\t{0}", dogAwardsArray[i][j]);
 }
 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-24. One solution to Exercise 10-3 (continued)

Chapter 10: Arrays | 567

Solution to Exercise 10-4. Create a two-dimensional array that represents a chessboard
(an 8-by-8 array). Each element in the array should contain the string “black” or the
string “white,” depending on where it is on the board. Create a method that initial-
izes the array with the strings. Then create a method that asks the reader to enter two
integers for the coordinates of a square, and returns whether that square is black or
white.

The interesting part of this exercise isn’t in returning the answer to the reader, it’s in
setting up the board as a two-dimensional array. It’s pretty easy to imagine a chess-
board as a two-dimensional array, where each element is either the string “white” or
the string “black.” You also know that there will be only eight rows and eight col-
umns (so you might as well make those constants). Let’s take one row at a time. If
it’s an even-numbered row (if the row index % 2 is equal to zero), it starts with a black
square. So, you assign every even-numbered square in that row the value of "black".
Every square that isn’t assigned "black" is assigned "white". The next row has to
start with a white square, so you’ll need an if/else to assign the opposite values to
the next row. In the end, you’ll end up with an if/else inside a for loop, inside an
if/else, inside a for loop, as shown in Example A-25.

Once you have the entire two-dimensional array created, it’s easy to take the user input
and simply output the value of the string at those coordinates. Remember, though, that
the user is entering a coordinate between 1 and 8, but the dimensions of the array
range from 0 to 7, so when the user asks for the coordinates at (row, column), you’ll
need to actually retrieve the value at chessboard[(row - 1), (column - 1)].

Example A-25. One solution to Exercise 10-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_10_4
{
 public class Tester
 {
 public void Run()
 {
 const int rows = 8;
 const int columns = 8;

 // create an 8x8 array
 string[,] chessboardArray = new string[rows, columns];

 // populate the chessboard array
 for (int i = 0; i < rows; i++)
 {
 // if row starts with a black square
 if ((i % 2) == 0)

568 | Appendix: Answers to Quizzes and Exercises

 {
 for (int j = 0; j < columns; j++)
 {
 if ((j % 2) == 0)
 {
 chessboardArray[i, j] = "black";
 }
 else
 {
 chessboardArray[i, j] = "white";
 }
 }
 }
 // else row starts with a white square
 else
 {
 for (int j = 0; j < columns; j++)
 {
 if ((j % 2) == 0)
 {
 chessboardArray[i, j] = "white";
 }
 else
 {
 chessboardArray[i, j] = "black";
 }
 }
 }
 }

 // ask the user for coordinates to test
 Console.Write("Enter the row to test (1 through 8): ");
 string rowEntry = Console.ReadLine();
 int testRow = Convert.ToInt32(rowEntry);
 Console.Write("Enter the column to test (1 through 8): ");
 string colEntry = Console.ReadLine();
 int testCol = Convert.ToInt32(colEntry);

 // output the value at those coordinates
 Console.WriteLine("The square at {0}, {1} is {2}.", testRow,
 testCol, chessboardArray[(testRow - 1), (testCol - 1)]);
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-25. One solution to Exercise 10-4 (continued)

Chapter 11: Inheritance and Polymorphism | 569

Chapter 11: Inheritance and Polymorphism

Quiz Solutions

Solution to Question 11-1. This relationship between specialization and generalization
is reciprocal: if you have three types with similar functionality, you can factor that
similarity out of the three types into a generalized type. At the same time, the three
types are now specialized forms of the more generalized type.

Inheritance is also implicitly hierarchical: you can imagine a tree with the most gen-
eralized type at the top and each level of specialization descending from levels above.
A generalized type may have many specializations, but each specialized type may
have only one generalization.

Solution to Question 11-2. In C#, the principle of specialization is implemented
through inheritance.

Solution to Question 11-3. The syntax for inheritance is:

class <identifier> : <base class>

Solution to Question 11-4. To implement polymorphism, you create a virtual method
in the base class, and then override it in the derived class.

Solution to Question 11-5. The more usual meaning of new is to allocate memory on the
heap. The special meaning in inheritance is that you are not overriding a base
method; you are creating a new method that intentionally hides and replaces the
base class method.

Solution to Question 11-6. To call a base class constructor from a derived class, after
the parameter list but before the opening brace put a colon followed by the keyword
base and two parentheses. Pass the parameters for the base class constructor within
the parentheses.

Solution to Question 11-7. An abstract method has no implementation in the base
class, but must be overridden and implemented in any derived class that does not
itself want to be abstract. Any class with an abstract method (even if inherited) is
itself abstract and may not be instantiated.

Solution to Question 11-8. A sealed class is one that the compiler will not let you derive
from. Classes are marked sealed when the designer of the class does not want any-
one to create a derived version.

570 | Appendix: Answers to Quizzes and Exercises

Solution to Question 11-9. The base class of Int32, and all types in C#, is Object.

Solution to Question 11-10. If you don’t specifically define a base class for your user-
defined class, the default base class is Object.

Exercise Solutions

Solution to Exercise 11-1. Create a base class, Telephone, and derive a class
ElectronicPhone from it. In Telephone, create a protected string member phonetype

and a public method Ring() which outputs a text message such as this: “Ringing the
<phonetype>.” In ElectronicPhone, the constructor should set the phonetype to “Dig-
ital.” In the Run() method, call Ring() on the ElectronicPhone to test the inheritance.

This exercise isn’t too tricky; you simply need to define the base class (Telephone) with
a constructor, a single member variable (phonetype), and a single method (Ring()).
Then derive the new class ElectronicPhone using the appropriate syntax, and create a
constructor that sets phonetype accordingly. You don’t need to override the Ring()

method, because there’s no functionality to add to the base class method.
Example A-26 shows one solution.

Example A-26. One solution to Exercise 11-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_11_1
{
 public class Telephone
 {
 protected string phonetype;
 public void Ring()
 {
 Console.WriteLine("Ringing the {0} phone...", phonetype);
 }
 }
 public class ElectronicPhone : Telephone
 {
 public ElectronicPhone()
 {
 this.phonetype = "Digital"; // access protected member
 }
 }

 public class Tester
 {

 public void Run()

Chapter 11: Inheritance and Polymorphism | 571

Solution to Exercise 11-2. Extend Exercise 11-1 to illustrate a polymorphic method.
Have the derived class override the Ring() method to display a different message.

The only trick here is that you have to make sure to mark the Ring() method in the
base class as virtual, and be sure to use the override keyword on the Ring() method
in the derived class. Example A-27 shows how to do that.

 {
 ElectronicPhone phone = new ElectronicPhone();
 phone.Ring(); // accessing the base method
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-27. One solution to Exercise 11-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_11_2
{
 public class Telephone
 {
 protected string phonetype;
 public virtual void Ring() // now virtual
 {
 Console.WriteLine("Ringing the {0} phone. Ring Ring.", phonetype);
 }
 }
 public class ElectronicPhone : Telephone
 {
 public ElectronicPhone()
 {
 this.phonetype = "Digital"; // access protected member
 }
 public override void Ring() // override
 {
 Console.WriteLine("Ringing the {0} phone. Beep Beep.", phonetype);
 }
 }
 public class Tester
 {
 public void Run()
 {

Example A-26. One solution to Exercise 11-1 (continued)

572 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 11-3. Change the Telephone class to abstract, and make Ring() an
abstract method. Derive two new classes from Telephone: DigitalPhone and Talking-

Phone. Each derived class should set the phonetype, and override the Ring() method.

This time around, the Telephone has become abstract (there may be some social com-
mentary there, but this is just a programming book, so we’ll leave it alone). Be sure
to mark both the Ring() method and the class itself as abstract. Now the derived
classes are obligated to override the Ring() method appropriately. Example A-28
shows the code.

 // assign derived instance to base reference
 Telephone phone = new ElectronicPhone();
 phone.Ring(); // accessing the polymorphic method
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-28. One solution to Exercise 11-3. Exercise 11-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_11_3
{
 public abstract class Telephone
 {
 protected string phonetype;
 public abstract void Ring(); // now abstract
 }
 public class DigitalPhone : Telephone
 {
 public DigitalPhone()
 {
 this.phonetype = "Digital"; // access protected member
 }
 public override void Ring() // implement
 {
 Console.WriteLine("Ringing the {0} phone. Beep Beep.", phonetype);
 }
 }
 public class TalkingPhone : Telephone
 {

Example A-27. One solution to Exercise 11-2 (continued)

Chapter 11: Inheritance and Polymorphism | 573

Solution to Exercise 11-4. Phones these days do a lot more than ring, as you know. Add
a method to DigitalPhone called VoiceMail() that outputs the message “You have a
message. Press Play to retrieve.” Now add a new class, DigitalCellPhone, that derives
from DigitalPhone and implements a version of VoiceMail() that outputs the mes-
sage “You have a message. Call to retrieve.”

For this exercise, you’ll need to derive DigitalCellPhone from DigitalPhone, which is
a perfectly normal thing to do. As you’ll see, you can even treat DigitalCellPhone

polymorphically as a Telephone. For the VoiceMail() method, you’ll need to add that
method to DigitalPhone, and declare it virtual so that DigitalCellPhone can override
it. You’ll also need a DigitalCellPhone class that inherits from DigitalPhone. Note
that DigitalCellPhone doesn’t need its own Ring() method; it can just use the inher-
ited method from DigitalPhone.

When you test the classes down in Run(), you’ll find that if you declare
DigitalCellPhone as a Telephone, you can use its Ring() method, but not VoiceMail().
That’s because Telephone doesn’t have a VoiceMail() method. To use VoiceMail()

polymorphically, you’ll need to declare your DigitalCellPhone as a type DigitalPhone.
One way to do it is shown in Example A-29.

 public TalkingPhone()
 {
 this.phonetype = "Talking"; // access protected member
 }
 public override void Ring() // implement
 {
 Console.WriteLine("Ringing the {0} phone. You have a call.",
 phonetype);
 }
 }
 public class Tester
 {
 public void Run()
 {
 // assign derived instance to base reference
 Telephone phone1 = new DigitalPhone();
 Telephone phone2 = new TalkingPhone();
 phone1.Ring(); // accessing the polymorphic method
 phone2.Ring(); // accessing the polymorphic method
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-28. One solution to Exercise 11-3. Exercise 11-3 (continued)

574 | Appendix: Answers to Quizzes and Exercises

Example A-29. One solution to Exercise 11-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_11_4
{
 public abstract class Telephone
 {
 protected string phonetype;
 public abstract void Ring(); // now abstract
 } // end abstract class Telephone

 public class DigitalPhone : Telephone
 {
 public DigitalPhone()
 {
 this.phonetype = "Digital"; // access protected member
 }
 public override void Ring() // implement abstract method
 {
 Console.WriteLine("Ringing the {0} phone. Beep Beep.", phonetype);
 }
 public virtual void VoiceMail()
 {
 Console.WriteLine("You have a message. Press Play to retrieve.");
 }
 } //end class DigitalPhone

 public class TalkingPhone : Telephone
 {
 public TalkingPhone()
 {
 this.phonetype = "Talking"; // access protected member
 }
 public override void Ring() // implement abstract method
 {
 Console.WriteLine("Ringing the {0} phone. You have a call.",
 phonetype);
 }
 } //end class TalkingPhone

 public class DigitalCellPhone : DigitalPhone
 {
 public DigitalCellPhone()
 {
 this.phonetype = "Digital Cell"; // access protected member
 }

 // no need to implement Ring(); it uses its parent class ring.

Chapter 12: Operator Overloading | 575

Chapter 12: Operator Overloading

Quiz Solutions

Solution to Question 12-1. Operator overloading is the process of writing methods for
your class that allow clients of your class to interact with your class using standard
operators (such as + and ==).

Solution to Question 12-2. Operators are implemented as static methods.

Solution to Question 12-3. To overload an operator, you use the keyword operator

along with the operator you’re overloading. For example, to overload the addition
operator, you would use the keyword operator+.

 public override void VoiceMail()
 {
 Console.WriteLine("You have a message. Call to retrieve.");
 }
 } // end class DigitalCellPhone

 public class Tester
 {
 public void Run()
 {
 // assign derived instance to base reference
 Telephone phone1 = new DigitalPhone();
 Telephone phone2 = new TalkingPhone();
 Telephone phone3 = new DigitalCellPhone();
 phone1.Ring(); // accessing the polymorphic method
 phone2.Ring(); // accessing the polymorphic method
 phone3.Ring(); // accessing the polymorphic method

 DigitalPhone phone4 = new DigitalPhone();
 DigitalPhone phone5 = new DigitalCellPhone();
 phone4.VoiceMail();
 phone5.VoiceMail();
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-29. One solution to Exercise 11-4 (continued)

576 | Appendix: Answers to Quizzes and Exercises

Solution to Question 12-4. The compiler interprets the statement as a call to the
method:

public static Fraction operator+(f2, f1)

Solution to Question 12-5. This answer is subjective, but it seems likely that choices A
and D are the most reasonable. Choices B and C are not completely unreasonable,
but aren’t intuitive, and would be difficult for later developers to maintain.

Solution to Question 12-6. The < and > operators are paired, as are the <= and >= opera-
tors. If you overload one of the operators in a pair, you must overload the other.

Solution to Question 12-7. If you overload the == operator, you must also overload the
!= operator, and the Equals() method.

Solution to Question 12-8. The Equals() method is used to ensure that your class is
compatible with other .NET languages that do not allow operator overloading, but
do allow method overloading.

Solution to Question 12-9. To overload the conversion operators, you use either the
keyword implicit or the keyword explicit, along with the keyword operator, and
the name of the type you’re converting to.

Solution to Question 12-10. Use implicit conversion when you know the conversion
will succeed without the risk of losing information. Use explicit conversion if infor-
mation might be lost.

Exercise Solutions

Solution to Exercise 12-1. Create a class Invoice, which has a string property vendor

and a double property amount, as well as a method to output the two properties of
the invoice. Overload the addition operator so that if the vendor properties match,
the amount properties of the two invoices are added together in a new invoice. If the
vendor properties do not match, the new invoice is blank. Include some test code to
test the addition operator.

This exercise is fairly straightforward. The Invoice class is simple enough to create;
you just need to write the two private members, a constructor, and an output
method. Then you need to create an overloaded addition operator for your class. The
operator should first make sure the vendor fields match, and if they do, should create
a new Invoice (using the constructor) with the greater amount. Example A-30 shows
one solution.

Chapter 12: Operator Overloading | 577

Example A-30. One solution to Exercise 12-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_12_1
{
 public class Invoice
 {
 private string vendor;
 private double amount;
 // constructor

 public Invoice(string vendor, double amount)
 {
 this.vendor = vendor;
 this.amount = amount;
 }
 // Overloaded operator + takes two invoices.
 // If the vendors are the same, the two amounts are added.
 // If not, the operation fails, and a blank invoice is returned.
 public static Invoice operator+ (Invoice lhs, Invoice rhs)
 {
 if (lhs.vendor == rhs.vendor)
 {
 return new Invoice(lhs.vendor, lhs.amount + rhs.amount);
 }
 Console.WriteLine("Vendors don't match; operation failed.");
 return new Invoice("", 0);
 }
 public void PrintInvoice()
 {
 Console.WriteLine("Invoice from {0} for ${1}.", vendor, amount);
 }
 }

 public class Tester
 {
 public void Run()
 {
 Invoice firstInvoice = new Invoice("TinyCorp", 345);
 Invoice secondInvoice = new Invoice("SuperMegaCo", 56389.53);
 Invoice thirdInvoice = new Invoice("SuperMegaCo", 399.65);
 Console.WriteLine("Adding first and second invoices.");
 Invoice addedInvoice = firstInvoice + secondInvoice;
 addedInvoice.PrintInvoice();
 Console.WriteLine("Adding second and third invoices.");
 Invoice otherAddedInvoice = secondInvoice + thirdInvoice;
 otherAddedInvoice.PrintInvoice();
 }
 static void Main()
 {

578 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 12-2. Modify the Invoice class so that two invoices are considered
equal if the vendor and amount properties match. Test your methods.

Starting with the previous code is easy enough. The first change you need to make is
to override the == operator, exactly as we showed you in the chapter. Once you’ve
done that, you also need to override the != operator and the Equals() method. Add
some test cases in Run() to make sure this works. Example A-31 has our solution.

 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-31. Our solution to Exercise 12-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_12_2
{
 using System;

 public class Invoice
 {
 private string vendor;
 private double amount;

 // constructor
 public Invoice(string vendor, double amount)
 {
 this.vendor = vendor;
 this.amount = amount;
 }

 // Overloaded operator + takes two invoices.
 // If the vendors are the same, the two amounts are added.
 // If not, the operation fails, and a blank invoice is returned.
 public static Invoice operator +(Invoice lhs, Invoice rhs)
 {
 if (lhs.vendor == rhs.vendor)
 {
 return new Invoice(lhs.vendor, lhs.amount + rhs.amount);
 }
 Console.WriteLine("Vendors don't match; operation failed.");
 return new Invoice("", 0);
 }

 // overloaded equality operator

Example A-30. One solution to Exercise 12-1 (continued)

Chapter 12: Operator Overloading | 579

 public static bool operator ==(Invoice lhs, Invoice rhs)
 {
 if (lhs.vendor == rhs.vendor && lhs.amount == rhs.amount)
 {
 return true;
 }
 return false;
 }

 // overloaded inequality operator, delegates to ==
 public static bool operator !=(Invoice lhs, Invoice rhs)
 {
 return !(lhs == rhs);
 }

 // method for determining equality; tests for same type,
 // then delegates to ==
 public override bool Equals(object o)
 {
 if (!(o is Invoice))
 {
 return false;
 }
 return this == (Invoice)o;
 }

 public void PrintInvoice()
 {
 Console.WriteLine("Invoice from {0} for ${1}.", this.vendor,
 this.amount);
 }
 }

 public class Tester
 {
 public void Run()
 {
 Invoice firstInvoice = new Invoice("TinyCorp", 399.65);
 Invoice secondInvoice = new Invoice("SuperMegaCo", 56389.53);
 Invoice thirdInvoice = new Invoice("SuperMegaCo", 399.65);
 Invoice testInvoice = new Invoice("SuperMegaCo", 399.65);
 if (testInvoice == firstInvoice)
 {
 Console.WriteLine("First invoice matches.");
 }
 else if (testInvoice == secondInvoice)
 {
 Console.WriteLine("Second invoice matches.");
 }
 else if (testInvoice == thirdInvoice)
 {
 Console.WriteLine("Third invoice matches.");

Example A-31. Our solution to Exercise 12-2 (continued)

580 | Appendix: Answers to Quizzes and Exercises

Try changing the values of testInvoice to make sure all the cases work.

Solution to Exercise 12-3. Modify the Invoice class once more so that you can deter-
mine whether one invoice is greater than or less than another. Test your methods.

In this exercise, you’ll need to overload a couple of methods that you haven’t seen in
the chapter: the greater-than and less-than operators. Fortunately, overloading those
methods isn’t much more difficult than overloading the equality operator. However,
you need to be sure you override both operators. Remember that you can’t simply
define the less-than operator as the opposite of the greater-than operator, the way
you can with == and !=, because if the operands are equal, both less-than and greater-
than should return false. Example A-32 shows a possible solution.

 }
 else
 {
 Console.WriteLine("No matching invoices.");
 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-32. One solution to Exercise 12-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_12_3
{
 public class Invoice
 {
 private string vendor;
 private double amount;

 // constructor
 public Invoice(string vendor, double amount)
 {
 this.vendor = vendor;
 this.amount = amount;
 }

 // Overloaded operator + takes two invoices.
 // If the vendors are the same, the two amounts are added.

Example A-31. Our solution to Exercise 12-2 (continued)

Chapter 12: Operator Overloading | 581

 // If not, the operation fails, and a blank invoice is returned.
 public static Invoice operator +(Invoice lhs, Invoice rhs)
 {
 if (lhs.vendor == rhs.vendor)
 {
 return new Invoice(lhs.vendor, lhs.amount + rhs.amount);
 }
 Console.WriteLine("Vendors don't match; operation failed.");
 return new Invoice("", 0);
 }

 // overloaded equality operator
 public static bool operator ==(Invoice lhs, Invoice rhs)
 {
 if (lhs.vendor == rhs.vendor && lhs.amount == rhs.amount)
 {
 return true;
 }
 return false;
 }

 // overloaded inequality operator, delegates to ==
 public static bool operator !=(Invoice lhs, Invoice rhs)
 {
 return !(lhs == rhs);
 }

 // method for determining equality; tests for same type,
 // then delegates to ==
 public override bool Equals(object o)
 {
 if (!(o is Invoice))
 {
 return false;
 }
 return this == (Invoice)o;
 }

 public static bool operator< (Invoice lhs, Invoice rhs)
 {
 if (lhs.amount < rhs.amount)
 {
 return true;
 }
 return false;
 }

 public static bool operator> (Invoice lhs, Invoice rhs)
 {
 if (lhs.amount > rhs.amount)
 {
 return true;

Example A-32. One solution to Exercise 12-3 (continued)

582 | Appendix: Answers to Quizzes and Exercises

 }
 return false;
 }

 public void PrintInvoice()
 {
 Console.WriteLine("Invoice from {0} for ${1}.", this.vendor,
 this.amount);
 }
 }

 public class Tester
 {

 public Invoice WhichIsGreater(Invoice invoice1, Invoice invoice2)
 {
 if (invoice1 > invoice2)
 {
 return invoice1;
 }
 else
 {
 return invoice2;
 }
 }

 public void Run()
 {
 Invoice firstInvoice = new Invoice("TinyCorp", 399.65);
 Invoice secondInvoice = new Invoice("SuperMegaCo", 56389.53);
 Invoice thirdInvoice = new Invoice("SuperMegaCo", 399.65);
 Invoice tempInvoice;

 if (!(firstInvoice == secondInvoice))
 {
 Console.WriteLine("Greater Invoice:");
 tempInvoice = WhichIsGreater(firstInvoice, secondInvoice);
 tempInvoice.PrintInvoice();
 }
 else
 {
 Console.WriteLine("firstInvoice and secondInvoice are equal");
 }

 if (!(secondInvoice == thirdInvoice))
 {
 Console.WriteLine("Greater Invoice:");
 tempInvoice = WhichIsGreater(secondInvoice, thirdInvoice);
 tempInvoice.PrintInvoice();
 }
 else

Example A-32. One solution to Exercise 12-3 (continued)

Chapter 12: Operator Overloading | 583

We didn’t implement the <= or >= methods in this example, but you should go ahead
and try it on your own.

Solution to Exercise 12-4. Create a class Foot and a class Meter. Each should have a sin-
gle parameter that stores the length of the object, and a simple method to output that
length. Create a casting operator for each class: one that converts a Foot object to a
Meter object, and one that converts a Meter object to a Foot object. Test these opera-
tors to make sure they work.

First, it should be said that the Foot and Meter classes don’t make a lot of sense in the
real world. It would most likely be better to create a class Measurement, or something
similar, that could output the length in either feet or meters. Still, you’ve got two
classes, so you should be able to convert between them. Since you’re using two user-
defined classes here, you won’t be able to write an implicit conversion. Therefore,
Foot needs an explicit conversion to Meter, and Meter needs an explicit conversion to
Foot. For example, here’s the declaration for the Foot class’s conversion to Meter:

public static explicit operator Meter(Foot theFoot)

Note that this operator is public, static, and explicit. The body of the operator
method isn’t really challenging, but remember that it should return an object of class
Meter. The Meter class operator is similar. Example A-33 shows one way to do it.

 {
 Console.WriteLine("secondInvoice and thirdInvoice are equal");
 }

 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-33. One solution to Exercise 12-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_12_4
{
 public class Foot
 {
 private double length;

 public static explicit operator Meter(Foot theFoot)

Example A-32. One solution to Exercise 12-3 (continued)

584 | Appendix: Answers to Quizzes and Exercises

 {
 return new Meter(theFoot.length * 0.3048);
 }

 public void OutputFoot()
 {
 Console.Write("{0} feet", length);
 }

 // constructor
 public Foot(double length)
 {
 this.length = length;
 }
 }

 public class Meter
 {
 private double length;

 public static explicit operator Foot (Meter theMeter)
 {
 return new Foot(theMeter.length * 3.28);
 }

 public void OutputMeter()
 {
 Console.Write("{0} meters", length);
 }

 // constructor
 public Meter(double length)
 {
 this.length = length;
 }
 }

 class Tester
 {
 public void Run()
 {
 Foot myFoot = new Foot(5);
 Meter myMeter = new Meter(3);

 Console.Write("Length of myFoot = ");
 myFoot.OutputFoot();
 Console.Write(", ");
 ((Meter)myFoot).OutputMeter();
 Console.WriteLine();

 Console.Write("Length of myMeter = ");
 myMeter.OutputMeter();

Example A-33. One solution to Exercise 12-4 (continued)

Chapter 13: Interfaces | 585

Chapter 13: Interfaces

Quiz Solutions

Solution to Question 13-1. The interface defines the methods, properties, and so forth
that the implementing class must provide. The implementing class provides these
members and, optionally, additional members.

Solution to Question 13-2. Every class has exactly one base class (either explicit, or the
object class by default), but may implement zero, one, or more interfaces. An
abstract base class serves as the base to a derived class that must implement all of its
abstract methods; otherwise, that derived class is also abstract.

Solution to Question 13-3. You can’t create an instance of an interface. To access the
interface methods, you must create an instance of a class that implements the interface.

Solution to Question 13-4. You’d use the following syntax to create a class that inherits
from a parent and implements two interfaces:

class MyClass : MyBase, ISuppose, IDo {...}

Note that the base class must come first after the colon.

Solution to Question 13-5. The is and as operators are used to test whether a class
implements an interface.

Solution to Question 13-6. is returns a Boolean, which is false if the interface is not
implemented. as attempts to make the cast, unlike is, and returns null if the cast
fails. Using the as operator can be more efficient.

 Console.Write(", ");
 ((Foot)myMeter).OutputFoot();
 Console.WriteLine();

 }

 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-33. One solution to Exercise 12-4 (continued)

586 | Appendix: Answers to Quizzes and Exercises

Solution to Question 13-7. Extending an interface is very much like deriving a class.
The new interface inherits all the members of the parent interface, and can also
include additional methods.

Solution to Question 13-8. The syntax for extending an interface is:

ExtendedInterface : OriginalInterface

For example, you would read:

ILoggedCompressible : ICompressible

as “ILoggedCompressible extends ICompressible.”

Solution to Question 13-9. The class implementing a method of the interface can mark
that method virtual, and the implementation of the method can then be overridden
in derived classes.

Solution to Question 13-10. Explicit interface implementation identifies the member of
the interface by naming the interface itself (e.g., IStorable.Write()). This is done to
differentiate implementation methods when there might otherwise be an ambiguity,
such as when implementing multiple interfaces that have methods with the same
signature.

Exercise Solutions

Solution to Exercise 13-1. Define an interface IConvertible that indicates that the class
can convert a string to C# or VB. The interface should have two methods:
ConvertToCSharp and ConvertToVB. Each method should take a string and return a
string.

In this exercise, you’re not actually creating code that will run; you’re just defining
the interface. As you learned, the methods of the interface don’t have any implemen-
tation, they just have signatures. Example A-34 shows this simple interface.

Example A-34. One solution to Exercise 13-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_13_1
{
 interface IConvertible
 {
 string ConvertToCSharp(string stringToConvert);
 string ConvertToVB(string stringToConvert);
 }
}

Chapter 13: Interfaces | 587

Solution to Exercise 13-2. Implement that interface and test it by creating a class
ProgramHelper that implements IConvertible. You don’t have to write methods to
convert the string; just use simple string messages to simulate the conversion. Test
your new class with a string of fake code to make sure it works.

In this exercise, you’ll actually implement the interface that you derived earlier,
although your code doesn’t need to do anything more than say that it’s converting
the string. The string we used in Run() is just dummy text representing a string of VB
code. In Run(), we pass the string to the ConvertToVB() method, and then pass it
back to the ConvertToCSharp() method. Example A-35 shows the way we did it.

Example A-35. Our solution to Exercise 13-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_13_2
{
 interface IConvertible
 {
 string ConvertToCSharp(string stringToConvert);
 string ConvertToVB(string stringToConvert);
 }
 public class ProgramHelper : IConvertible
 {
 public ProgramHelper() // constructor
 {
 Console.WriteLine("Creating ProgramHelper");
 }
 public string ConvertToCSharp(string stringToConvert)
 {
 Console.WriteLine("Converting the string you passed
 in to CSharp syntax");
 return "This is a C# String.";
 }
 public string ConvertToVB(string stringToConvert)
 {
 Console.WriteLine("Converting the string you passed
 in to VB syntax");
 return "This is a VB String.";
 }
 }

 class Tester
 {
 public void Run()
 {
 // Create a ProgramHelper object
 ProgramHelper theProgramHelper = new ProgramHelper();

588 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 13-3. Extend the IConvertible interface by creating a new inter-
face, ICodeChecker. The new interface should implement one new method,
CodeCheckSyntax, which takes two strings: the string to check and the language to
use. The method should return a bool. Revise the ProgramHelper class from
Question 13-2. to use the new interface.

The first thing you need to do in this exercise is to add the ICodeChecker interface
with its bool, making sure to use the proper syntax to extend IConvertible. Change
ProgramHelper to implement ICodeChecker, which also means that it implements
IConvertible. We’ve added some code in Run() to convert the string, then check the
syntax, convert it back again, and check the syntax again. Example A-36 shows how
we did it.

 // convert a line of CSharp to vb
 string vbString = theProgramHelper.ConvertToVB("This is
 a VB String to convert.");
 Console.WriteLine(vbString);

 // convert the converted line back to CSharp
 string cSharpString = theProgramHelper.ConvertToCSharp(vbString);
 Console.WriteLine(cSharpString);
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-36. One solution to Exercise 13-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_13_3
{
 interface IConvertible
 {
 string ConvertToCSharp(string stringToConvert);
 string ConvertToVB(string stringToConvert);
 }

 interface ICodeChecker : IConvertible
 {
 bool CheckCodeSyntax(string stringToCheck, string whichLang);
 }

Example A-35. Our solution to Exercise 13-2 (continued)

Chapter 13: Interfaces | 589

 public class ProgramHelper : ICodeChecker
 {
 public ProgramHelper() // constructor
 {
 Console.WriteLine("Creating ProgramHelper");
 }

 public string ConvertToCSharp(string stringToConvert)
 {
 Console.WriteLine("Converting the string you passed in
 to CSharp syntax");
 return "This is a C# String.";
 }

 public string ConvertToVB(string stringToConvert)
 {
 Console.WriteLine("Converting the string you passed in
 to VB syntax");
 return "This is a VB String.";
 }

 public bool CheckCodeSyntax(string stringToCheck,
 string whichLang)
 {
 switch (whichLang)
 {
 case "CSharp":
 Console.WriteLine("Checking the string for
 C# Syntax: {0}", stringToCheck);
 return true;
 case "VB":
 Console.WriteLine("Checking the string for
 VB Syntax: {0}", stringToCheck);
 return true;
 default:
 return false;
 }
 }
 } // end class ProgramHelper

 class Tester
 {
 public void Run()
 {
 // Create a ProgramHelper object
 ProgramHelper theProgramHelper = new ProgramHelper();

 // convert a line of CSharp to VB
 string cSharpString = theProgramHelper.ConvertToCSharp(
 "This is a VB string to convert.");
 Console.WriteLine(cSharpString);

Example A-36. One solution to Exercise 13-3 (continued)

590 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 13-4. Demonstrate the use of is and as. Create a new class,
ProgramConverter, which implements IConvertible. ProgramConverter should imple-
ment the ConvertToCSharp() and ConvertToVB() methods. Revise ProgramHelper so
that it derives from ProgramConverter and implements ICodeChecker. Test your class
by creating an array of ProgramConverter objects, some of which are
ProgramConverters and some of which are ProgramHelpers. Then call the conversion
methods and the code check methods on each item in the array to test which ones
implement ICodeChecker and which ones do not.

For this exercise, you need to first define the new class ProgramConverter, and give it
the ConvertToCSharp() and ConvertToVB() methods. Then derive ProgramHelper from
ProgramConverter, You can remove the ConvertToCSharp() and ConvertToVB() meth-
ods from ProgramHelper, because they’ll be inherited from ProgramConverter. In Run(),
you’ll need to create the array of ProgramConverter objects, either manually, or ran-
domly as we did in the chapter. Then use the is or as operator to test each element of
the array to see which interfaces they implement. Example A-37 shows how we did it.

 Console.WriteLine("Checking the string for syntax... Result {0}",
 theProgramHelper.CheckCodeSyntax(
 cSharpString, "CSharp"));

 // convert the converted line back to VB
 string vbString = theProgramHelper.ConvertToVB(cSharpString);
 Console.WriteLine(vbString);
 Console.WriteLine("Checking the string for syntax... Result {0}",
 theProgramHelper.CheckCodeSyntax(
 vbString, "VB"));
 }

 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-37. Our solution to Exercise 13-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_13_4
{
 interface IConvertible

Example A-36. One solution to Exercise 13-3 (continued)

Chapter 13: Interfaces | 591

 {
 string ConvertToCSharp(string stringToConvert);
 string ConvertToVB(string stringToConvert);
 }

 interface ICodeChecker : IConvertible
 {
 bool CheckCodeSyntax(string stringToCheck, string whichLang);
 }

 public class ProgramConverter : IConvertible
 {
 public ProgramConverter() // constructor
 {
 Console.WriteLine("Creating ProgramConverter");
 }

 public string ConvertToCSharp(string stringToConvert)
 {
 Console.WriteLine("Converting the string you passed in
 to CSharp syntax");
 return "This is a C# string.";
 }

 public string ConvertToVB(string stringToConvert)
 {
 Console.WriteLine("Converting the string you passed in
 to VB syntax");
 return "This is a VB string.";
 }
 }

 public class ProgramHelper : ProgramConverter, ICodeChecker
 {
 public ProgramHelper() // constructor
 {
 Console.WriteLine("Creating ProgramHelper");
 }

 public bool CheckCodeSyntax(string stringToCheck, string whichLang)
 {
 switch (whichLang)
 {
 case "CSharp":
 Console.WriteLine("Checking the string {0}
 for C# Syntax", stringToCheck);
 return true;
 case "VB":
 Console.WriteLine("Checking the string {0}
 for VB Syntax", stringToCheck);
 return true;
 default:

Example A-37. Our solution to Exercise 13-4 (continued)

592 | Appendix: Answers to Quizzes and Exercises

 return false;
 }
 }
 }

 class Tester
 {
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 public void Run()
 {
 ProgramConverter[] converters = new ProgramConverter[4];
 converters[0] = new ProgramConverter();
 converters[1] = new ProgramHelper();
 converters[2] = new ProgramHelper();
 converters[3] = new ProgramConverter();
 foreach (ProgramConverter pc in converters)
 {
 string vbString = pc.ConvertToCSharp("This is a VB
 string to convert.");
 Console.WriteLine(vbString);
 ProgramHelper ph = pc as ProgramHelper;
 if (ph != null)
 {
 ph.CheckCodeSyntax(vbString, "VB");
 }
 else
 {
 Console.WriteLine("No vb syntax check -
 not a Program helper");
 }
 string cSharpString = pc.ConvertToCSharp(vbString);
 Console.WriteLine(cSharpString);
 if (ph != null)
 {
 ph.CheckCodeSyntax(vbString, "CSharp");
 }
 else
 {
 Console.WriteLine("No csharp syntax check -
 not a Program helper");
 }
 }
 }
 }
}

Example A-37. Our solution to Exercise 13-4 (continued)

Chapter 14: Generics and Collections | 593

Chapter 14: Generics and Collections

Quiz Solutions

Solution to Question 14-1. Indexers are unnamed. You use the this keyword to create
an indexer:

public string this[int index]

Solution to Question 14-2. Any type can be used, although it’s most common to use
integers.

Solution to Question 14-3. The elements of the collection that you want to sort must
implement IComparable.

Solution to Question 14-4. Generics allow you to create type-safe collections without
specifying the type the collection will hold when you create the collection.

Solution to Question 14-5. The IEnumerable<T> interface allows your collection to sup-
port a foreach loop.

Solution to Question 14-6. The purpose of the yield keyword is to return a value to the
IEnumerator object, within the GetEnumerator() method.

Solution to Question 14-7. The size of an array is fixed when you create it. A List<T>

expands dynamically when you add more elements.

Solution to Question 14-8. The Capacity property of a List indicates the number of ele-
ments that the List has room for. The Capacity is increased automatically when
more elements are added.

Solution to Question 14-9. A Stack is a “last-in, first-out” collection, and a Queue is a
“first-in, first-out” collection. In a Queue, elements are removed in the same order
they were inserted. In a Stack, elements are removed in the opposite order.

Solution to Question 14-10. The key in a Dictionary takes the place of an indexer, and
allows you to retrieve the associated value. The key can be any type, but it’s usually
short. The value is usually a much larger or more complex object associated with the
key.

594 | Appendix: Answers to Quizzes and Exercises

Exercise Solutions

Solution to Exercise 14-1. Create an abstract Animal class that has private members
weight and name, and abstract methods Speak(), Move(), and ToString(). Derive
from Animal a Cat class and a Dog class that override the methods appropriately. Cre-
ate an Animal array, populate it with Dogs and Cats, and then call each member’s
overridden virtual methods.

The purpose of this exercise is to set up the rest of the exercises in this chapter, and
to remind you of how to use arrays and indexers polymorphically. The Animal, Dog,
and Cat classes are simple enough to create, although you should remember to make
the appropriate methods of Animal abstract. You then need to override those abstract
methods in Dog and Cat. In Run(), you need to allocate enough space for the array of
animals, to use a loop (a foreach works well), and to call the overridden virtual
methods on each element as an Animal. In our case, we also added a method that
only Cat objects have (Purr()). Within the foreach loop, we cast each Animal to Cat,
and if the cast succeeds, call the Purr() method. Example A-38 shows how we did it.

Example A-38. One solution to Exercise 14-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_14_1
{
 abstract public class Animal
 {
 protected int weight;
 protected string name;
 public Animal(int weight, string name)
 {
 this.weight = weight;
 this.name = name;
 }
 abstract public void Speak();
 abstract public void Move();
 abstract public override string ToString()
 }

 public class Dog : Animal
 {
 public string Breed { get; set; }
 public Dog(int weight, string name, string breed)
 : base(weight, name)
 {
 this.Breed = breed;
 }
 public override void Speak()

Chapter 14: Generics and Collections | 595

 {
 Console.WriteLine("Woof");
 }
 public override void Move()
 {
 Console.WriteLine("Run, run, run, drool.");
 }
 public override string ToString()
 {
 return "My name is " + this.name + ", I weigh " +
 this.weight + ", and I am a " + this.Breed + "\n";
 }
 }

 public class Cat : Animal
 {
 public Cat(int weight, string name) : base(weight, name)
 {
 }
 public override void Speak()
 {
 Console.WriteLine("Meow");
 }
 public override void Move()
 {
 Console.WriteLine("Run, tumble, nap.");
 }
 public override string ToString()
 {
 return "My name is " + this.name + ", I weigh " +
 this.weight + ", and I know how to purr!\n";
 }
 public void Purr()
 {
 Console.WriteLine("Purrrrrrrrrrrrrrrrrrrrrrrrrr\n");
 }
 }

 public class Tester
 {
 public void Run()
 {
 Animal[] myAnimals = new Animal[5];
 myAnimals[0] = new Dog(72, "Milo", "Golden");
 myAnimals[1] = new Cat(12, "Shakespeare");
 myAnimals[2] = new Cat(10, "Allegra");
 myAnimals[3] = new Dog(50, "Dingo", "mixed breed");
 myAnimals[4] = new Dog(20, "Brandy", "Beagle");
 foreach (Animal a in myAnimals)
 {
 a.Speak();
 a.Move();

Example A-38. One solution to Exercise 14-1 (continued)

596 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 14-2. Replace the array in Exercise 14-1 with a List. Sort the ani-
mals by size. You can simplify by just calling ToString() before and after the sort.
Remember that you’ll need to implement IComparable.

The first thing you need to do here is replace the array in Run() with a List, specifi-
cally a List<Animal>. You don’t need to worry about the size of the List; you can just
call Add() to add each element to the List. Output the values of the list (using a
foreach) once, then call Sort() on the List, and output the values again.

For the Sort() to work, you’ll need to make sure Animal implements IComparable. To
sort on the animal’s weight, you’ll need a CompareTo() method that delegates respon-
sibility for the comparison to the int version of CompareTo(), using Animal.weight.
Example A-39 shows one way.

 Console.WriteLine(a);
 Cat c = a as Cat; // cast to cat
 if (c != null) // if it is a cat
 {
 c.Purr(); // only cats purr
 }
 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-39. One solution to Exercise 14-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_14_2
{
 abstract public class Animal : IComparable
 {
 protected int weight;
 protected string name;
 public Animal(int weight, string name)
 {
 this.weight = weight;
 this.name = name;
 }
 abstract public void Speak();
 abstract public void Move();
 abstract public override string ToString();

Example A-38. One solution to Exercise 14-1 (continued)

Chapter 14: Generics and Collections | 597

 public int CompareTo(Object rhs)
 {
 Animal otherAnimal = rhs as Animal;
 if (otherAnimal != null)
 {
 return this.weight.CompareTo(otherAnimal.weight);
 }
 else
 {
 throw new ApplicationException("Expected to compare animals");
 }
 }
 }

 public class Dog : Animal
 {
 public string Breed { get; set; }

 public Dog(int weight, string name, string breed)
 : base(weight, name)
 {
 this.Breed = breed;
 }
 public override void Speak()
 {
 Console.WriteLine("Woof");
 }
 public override void Move()
 {
 Console.WriteLine("Run, run, run, drool.");
 }
 public override string ToString()
 {
 return "My name is " + this.name + ", I weigh " +
 this.weight + ", and I am a " + this.Breed;
 }
 }

 public class Cat : Animal
 {
 public Cat(int weight, string name) : base(weight, name)
 {
 }

 public override void Speak()
 {
 Console.WriteLine("Meow");
 }
 public override void Move()
 {
 Console.WriteLine("Run, tumble, nap.");

Example A-39. One solution to Exercise 14-2 (continued)

598 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 14-3. Replace the list from Exercise 14-2 with both a Stack and a
Queue. Remove the sort function. Output the contents of each collection and see the
difference in the order in which the animals are returned.

There’s not a whole lot of challenge to this particular exercise. The goal is to give you
some experience using both a stack and a queue. The definitions of the classes don’t
change in this exercise; the only difference is in Run(). As you would expect, if you
add the Animal objects to the stack and the queue in the same order, when you out-
put the contents the stack is reversed; the queue isn’t. One solution is shown in
Example A-40.

 }
 public override string ToString()
 {
 return "My name is " + this.name + ", I weigh "
 + this.weight + ", and I know how to purr!";
 }
 public void Purr()
 {
 Console.WriteLine("Purrrrrrrrrrrrrrrrrrrrrrrrrr\n");
 }
 }

 public class Tester
 {
 public void Run()
 {
 List<Animal> myAnimals = new List<Animal>();
 myAnimals.Add(new Dog(72, "Milo", "Golden"));
 myAnimals.Add(new Cat(12, "Shakespeare"));
 myAnimals.Add(new Cat(10, "Allegra"));
 myAnimals.Add(new Dog(50, "Dingo", "mixed breed"));
 myAnimals.Add(new Dog(20, "Brandy", "Beagle"));
 foreach (Animal a in myAnimals)
 {
 Console.WriteLine(a);
 }
 Console.WriteLine("\nAfter sorting by size...");
 myAnimals.Sort();
 foreach (Animal a in myAnimals)
 {
 Console.WriteLine(a);
 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-39. One solution to Exercise 14-2 (continued)

Chapter 14: Generics and Collections | 599

Example A-40. One solution to Exercise 14-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_14_3
{
 abstract public class Animal : IComparable
 {
 protected int weight;
 protected string name;
 public Animal(int weight, string name)
 {
 this.weight = weight;
 this.name = name;
 }
 abstract public void Speak();
 abstract public void Move();
 abstract public override string ToString();

 public int CompareTo(Object rhs)
 {
 Animal otherAnimal = rhs as Animal;
 if (otherAnimal != null)
 {
 return this.weight.CompareTo(otherAnimal.weight);
 }
 else
 {
 throw new ApplicationException("Expected to compare animals");
 }
 }
 }

 public class Dog : Animal
 {
 public string Breed { get; set; }

 public Dog(int weight, string name, string breed)
 : base(weight, name)
 {
 this.Breed = breed;
 }
 public override void Speak()
 {
 Console.WriteLine("Woof");
 }
 public override void Move()
 {
 Console.WriteLine("Run, run, run, drool.");
 }
 public override string ToString()

600 | Appendix: Answers to Quizzes and Exercises

 {
 return "My name is " + this.name + ", I weigh "
 + this.weight + ", and I am a " + this.Breed;
 }
 }

 public class Cat : Animal
 {
 public Cat(int weight, string name)
 : base(weight, name)
 {
 }

 public override void Speak()
 {
 Console.WriteLine("Meow");
 }
 public override void Move()
 {
 Console.WriteLine("Run, tumble, nap.");
 }
 public override string ToString()
 {
 return "My name is " + this.name + ", I weigh "
 + this.weight + ", and I know how to purr!";
 }
 public void Purr()
 {
 Console.WriteLine("Purrrrrrrrrrrrrrrrrrrrrrrrrr\n");
 }
 }

 public class Tester
 {
 public void Run()
 {
 Console.WriteLine("Adding in the order: Milo,
 Shakespeare, Allegra, Dingo, Brandy");
 Stack<Animal> myStackOfAnimals = new Stack<Animal>();
 myStackOfAnimals.Push(new Dog(72, "Milo", "Golden"));
 myStackOfAnimals.Push(new Cat(12, "Shakespeare"));
 myStackOfAnimals.Push(new Cat(10, "Allegra"));
 myStackOfAnimals.Push(new Dog(50, "Dingo", "mixed breed"));
 myStackOfAnimals.Push(new Dog(20, "Brandy", "Beagle"));

 Queue<Animal> myQueueOfAnimals = new Queue<Animal>();
 myQueueOfAnimals.Enqueue(new Dog(72, "Milo", "Golden"));
 myQueueOfAnimals.Enqueue(new Cat(12, "Shakespeare"));
 myQueueOfAnimals.Enqueue(new Cat(10, "Allegra"));
 myQueueOfAnimals.Enqueue(new Dog(50, "Dingo", "mixed breed"));
 myQueueOfAnimals.Enqueue(new Dog(20, "Brandy", "Beagle"));

Example A-40. One solution to Exercise 14-3 (continued)

Chapter 14: Generics and Collections | 601

Solution to Exercise 14-4. Rewrite Exercise 14-2 to allow Animals to be sorted either by
weight or alphabetically by name.

This exercise is similar to Example 14-6 in the chapter. You’ve already implemented
IComparable for Animal, but now you need to add an overloaded CompareTo() method
that can compare based on either weight or name. For that, you’ll need to create an
AnimalComparer class with a ComparisonType enumeration. Then you’ll need to add a
case statement to the overloaded CompareTo() method to delegate to either the
CompareTo() for int, or the one for string. Example A-41 shows our solution. Note
that we removed many of the extra methods of Animal, Cat, and Dog for this example,
because they’re not needed to sort the animals.

 Console.WriteLine("The stack...");
 foreach (Animal a in myStackOfAnimals)
 {
 Console.WriteLine(a);
 }

 Console.WriteLine("The queue...");
 foreach (Animal a in myQueueOfAnimals)
 {
 Console.WriteLine(a);
 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-41. One solution to Exercise 14-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_14_4
{
 abstract public class Animal : IComparable<Animal>
 {
 protected int weight;
 protected string name;
 public Animal(int weight, string name)
 {
 this.weight = weight;
 this.name = name;
 }

Example A-40. One solution to Exercise 14-3 (continued)

602 | Appendix: Answers to Quizzes and Exercises

 // ** new **
 public static AnimalComparer GetComparer()
 {
 return new Animal.AnimalComparer();
 }
 public int CompareTo(Animal rhs)
 {
 return this.weight.CompareTo(rhs.weight);
 }
 // ** new **
 public int CompareTo(Animal rhs,
 Animal.AnimalComparer.ComparisonType whichComparison)
 {
 switch (whichComparison)
 {
 case AnimalComparer.ComparisonType.Name:
 return this.name.CompareTo(rhs.name);
 case AnimalComparer.ComparisonType.Size:
 return this.weight.CompareTo(rhs.weight);
 }
 return -1; // all paths must return a value
 }

 // nested class ** new **
 public class AnimalComparer : IComparer<Animal>
 {
 // how do you want to compare?
 public enum ComparisonType
 {
 Size,
 Name
 };
 private Animal.AnimalComparer.ComparisonType whichComparison;
 public Animal.AnimalComparer.ComparisonType WhichComparison
 {
 get { return whichComparison; }
 set { whichComparison = value; }
 }

 // compare two Animals using the previously set
 // whichComparison value
 public int Compare(Animal lhs, Animal rhs)
 {
 return lhs.CompareTo(rhs, whichComparison);
 }
 } // end nested class
 } // end class Animal

 public class Dog : Animal
 {
 public Dog(int weight, string name, string breed) :

Example A-41. One solution to Exercise 14-4 (continued)

Chapter 14: Generics and Collections | 603

 base(weight, name)
 { }
 public override string ToString()
 {
 return "My name is " + this.name + ", and I weigh " + this.weight;
 }
 }

 public class Cat : Animal
 {
 public Cat(int weight, string name) :
 base(weight, name)
 { }
 public override string ToString()
 {
 return "My name is " + this.name + ", and I weigh " + this.weight;
 }
 }

 public class Tester
 {
 public void Run()
 {
 List<Animal> myAnimals = new List<Animal>();
 myAnimals.Add(new Dog(70, "Milo", "Golden"));
 myAnimals.Add(new Cat(10, "Shakespeare"));
 myAnimals.Add(new Cat(15, "Allegra"));
 myAnimals.Add(new Dog(50, "Dingo", "mixed breed"));
 myAnimals.Add(new Dog(20, "Brandy", "Beagle"));
 Console.WriteLine("Before sorting...");
 foreach (Animal a in myAnimals)
 {
 Console.WriteLine(a);
 }
 Console.WriteLine("\nAfter sorting by default (weight)...");
 myAnimals.Sort();
 foreach (Animal a in myAnimals)
 {
 Console.WriteLine(a);
 }
 Console.WriteLine("\nAfter sorting by name...");
 Animal.AnimalComparer animalComparer = Animal.GetComparer();
 animalComparer.WhichComparison =
 Animal.AnimalComparer.ComparisonType.Name;
 myAnimals.Sort(animalComparer);
 foreach (Animal a in myAnimals)
 {
 Console.WriteLine(a);
 }
 Console.WriteLine("\nAfter sorting explicitly by size...");
 animalComparer.WhichComparison =
 Animal.AnimalComparer.ComparisonType.Size;

Example A-41. One solution to Exercise 14-4 (continued)

604 | Appendix: Answers to Quizzes and Exercises

Chapter 15: Strings

Quiz Solutions

Solution to Question 15-1. string (lowercase) is the C# keyword that maps to the .NET
Framework String class. They may be used interchangeably.

Solution to Question 15-2. IComparable guarantees that strings can be sorted.
ICloneable guarantees that you can call the Clone method on a string object and get
back a new duplicate string. IConvertible allows strings to be converted to other
types (such as integers). And IEnumerable guarantees that strings can be iterated over
in foreach loops.

Solution to Question 15-3. A string literal is a quoted string, provided by the program-
mer, such as “Hello”.

Solution to Question 15-4. An escape character embedded in a string indicates that the
character or punctuation that follows is to be treated as an instruction rather than as
part of the string. \n indicates a new line. \" indicates that the quote symbol is part of
the string, not terminating it.

Solution to Question 15-5. Verbatim strings are taken “as is” and thus do not require
escape characters. Where \\ would indicate a single backslash in a normal string, in a
verbatim string it indicates two backslashes. Verbatim strings must include an @ char-
acter before the first double quote.

Solution to Question 15-6. The fact that strings are immutable means they cannot be
changed. When you appear to change a string, what actually happens is that a new
string is created and the old string is destroyed by the garbage collector if it is no
longer referenced.

 myAnimals.Sort(animalComparer);
 foreach (Animal a in myAnimals)
 {
 Console.WriteLine(a);
 }
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-41. One solution to Exercise 14-4 (continued)

Chapter 15: Strings | 605

Solution to Question 15-7. You can call the Concat method of the String class to join
two strings, but it is more common to use the overloaded + operator.

Solution to Question 15-8. Given an array of delimiters, Split() returns the substrings
of the original string, as broken up by the specified delimiters.

Solution to Question 15-9. StringBuilder objects are mutable. When the StringBuilder

has the complete set of characters you want, you call ToString() to get back a string
object, which is then immutable.

Solution to Question 15-10. Regular expressions constitute a language for identifying
and manipulating strings using both literals and metacharacters.

Exercise Solutions

Solution to Exercise 15-1. Create the following six strings:

• String 1: “Hello ”

• String 2: “World”

• String 3 (a verbatim string): “Come visit us at http://www.LibertyAssociates.com”

• String 4: a concatenation of strings 1 and 2

• String 5: “world”

• String 6: a copy of string 3

Once you have the strings created, do the following:

1. Output the length of each string.

2. Output the third character in each string.

3. Output whether the character H appears in each string.

4. Output which strings are the same as string 2.

5. Output which strings are the same as string 2, ignoring case.

Creating the strings is relatively easy: you need to remember to keep the space in
String 1 and to use a verbatim string (with an @ symbol) for String 3. You can concat-
enate Strings 1 and 2 using Concat() or the + operator, and you can use Copy() to
create String 6.

For the other parts of the exercise, you can just put all the code directly in Test().
You could put all the strings into an array, and iterate over the array for each test,
but with only six elements it’s fine to test them each individually.

For part 1, you just need to output the Length of each string:

Console.WriteLine("s1: {0} [{1}]", s1.Length, s1);

606 | Appendix: Answers to Quizzes and Exercises

Part 2 is also simple. To get the third character in each string, use the index opera-
tor, but remember that indexes start at zero, so the third character is at index [2]:

Console.WriteLine("s1: {0} [{1}]", s1[2], s1);

For part 3, to determine whether there’s a specific character in the string, you can use
IndexOf() to test for that character. If the character isn’t in the string, IndexOf()

returns –1. Therefore, if the returned index is greater than or equal to zero, the char-
acter is in the string. To be completely accurate about it, you can use ToUpper() or
ToLower() on each string first so that you’re testing for both uppercase and lower-
case instances of the character. We’re using the ternary operator here (from
Chapter 4) to return “yes” or “nope”:

Console.WriteLine("s1: {0} [{1}]",
 s1.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s1);

In part 4, you need to test whether a string is the same as String 2. That’s what the
String.Compare() method is for. Again, we’re using the ternary operator for the output:

Console.WriteLine("s1: {0} [{1}]",
 String.Compare(s1, s2) == 0 ? "Same!" : "Different", s1);

Part 5 is very similar to part 4, but this time, you use the overloaded version of
Compare() and set the third parameter to “true” so that Compare() will ignore case:

Console.WriteLine("s1: {0} [{1}]",
 String.Compare(s1, s2, true) == 0 ? "Same!" : "Different", s1);

Example A-42 shows our code for conducting all the tests in one program.

Example A-42. Our solution to Exercise 15-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_15_1
{
 class Tester
 {
 public void Run()
 {
 // creating the six strings
 string s1 = "Hello ";
 string s2 = "World";
 string s3 = @"Come visit us at http://www.LibertyAssociates.com";
 string s4 = s1 + s2;
 string s5 = "world";
 string s6 = string.Copy(s3);

 // returning the length of each string
 Console.WriteLine("Here's how long our strings are...");
 Console.WriteLine("s1: {0} [{1}]", s1.Length, s1);

Chapter 15: Strings | 607

 Console.WriteLine("s2: {0} [{1}]", s2.Length, s2);
 Console.WriteLine("s3: {0} [{1}]", s3.Length, s3);
 Console.WriteLine("s4: {0} [{1}]", s4.Length, s4);
 Console.WriteLine("s5: {0} [{1}]", s5.Length, s5);
 Console.WriteLine("s6: {0} [{1}]", s6.Length, s6);

 // returning the third character in each string
 Console.WriteLine("\nHere's the third character
 in each string...");
 Console.WriteLine("s1: {0} [{1}]", s1[2], s1);
 Console.WriteLine("s2: {0} [{1}]", s2[2], s2);
 Console.WriteLine("s3: {0} [{1}]", s3[2], s3);
 Console.WriteLine("s4: {0} [{1}]", s4[2], s4);
 Console.WriteLine("s5: {0} [{1}]", s5[2], s5);
 Console.WriteLine("s6: {0} [{1}]", s6[2], s6);

 // testing for the character H in each string
 Console.WriteLine("\nIs there an h in the string?");
 Console.WriteLine("s1: {0} [{1}]",
 s1.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s1);
 Console.WriteLine("s2: {0} [{1}]",
 s2.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s2);
 Console.WriteLine("s3: {0} [{1}]",
 s3.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s3);
 Console.WriteLine("s4: {0} [{1}]",
 s4.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s4);
 Console.WriteLine("s5: {0} [{1}]",
 s5.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s5);
 Console.WriteLine("s6: {0} [{1}]",
 s6.ToUpper().IndexOf('H') >= 0 ? "yes" : "nope", s6);

 // testing for strings the same as String 2
 Console.WriteLine("\nWhich strings are the same as s2 [{0}]?", s2);
 Console.WriteLine("s1: {0} [{1}]",
 String.Compare(s1, s2) == 0 ? "Same!" : "Different", s1);
 Console.WriteLine("s2: {0} [{1}]",
 String.Compare(s2, s2) == 0 ? "Same!" : "Different", s2);
 Console.WriteLine("s3: {0} [{1}]",
 String.Compare(s3, s2) == 0 ? "Same!" : "Different", s3);
 Console.WriteLine("s4: {0} [{1}]",
 String.Compare(s4, s2) == 0 ? "Same!" : "Different", s4);
 Console.WriteLine("s5: {0} [{1}]",
 String.Compare(s5, s2) == 0 ? "Same!" : "Different", s5);
 Console.WriteLine("s6: {0} [{1}]",
 String.Compare(s6, s2) == 0 ? "Same!" : "Different", s6);

 // testing for strings the same as String 2, ignoring case
 Console.WriteLine("\nWhich strings are the same as s2 [{0}]
 ignoring case?", s2);
 Console.WriteLine("s1: {0} [{1}]",
 String.Compare(s1, s2, true) == 0 ? "Same!" : "Different", s1);

Example A-42. Our solution to Exercise 15-1 (continued)

608 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 15-2. Take the following famous string:

To be, or not to be: That is the question: Whether ’tis nobler in the mind to suffer the
slings and arrows of outrageous fortune, or to take arms against a sea of troubles, and
by opposing end them?

Reverse the order of the words in the string, and output the reversed string to the
console.

The trick to reversing the order of words in a string is that you have to break the
string apart into its component words, and then put the words back together into a
new string. Taking a string apart is easy; that’s what Split() is for. In this case, the
string contains spaces, commas, and colons, so you can use all three of those as
delimiters.

Split() returns an array, and conveniently, the array class has the Reverse() static
method, so you can quite easily get the words into reverse order. Once you have your
reversed array, you just need a StringBuilder with a foreach loop to create the new,
reversed string. Example A-43 shows one way to do it.

 Console.WriteLine("s2: {0} [{1}]",
 String.Compare(s2, s2, true) == 0 ? "Same!" : "Different", s2);
 Console.WriteLine("s3: {0} [{1}]",
 String.Compare(s3, s2, true) == 0 ? "Same!" : "Different", s3);
 Console.WriteLine("s4: {0} [{1}]",
 String.Compare(s4, s2, true) == 0 ? "Same!" : "Different", s4);
 Console.WriteLine("s5: {0} [{1}]",
 String.Compare(s5, s2, true) == 0 ? "Same!" : "Different", s5);
 Console.WriteLine("s6: {0} [{1}]",
 String.Compare(s6, s2, true) == 0 ? "Same!" : "Different", s6);
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-43. One solution to Exercise 15-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_15_2
{
 class Tester
 {
 public void Run()

Example A-42. Our solution to Exercise 15-1 (continued)

Chapter 15: Strings | 609

Solution to Exercise 15-3. Take the following famous string:

We choose to go to the moon. We choose to go to the moon in this decade and do the
other things, not because they are easy, but because they are hard, because that goal
will serve to organize and measure the best of our energies and skills, because that
challenge is one that we are willing to accept, one we are unwilling to postpone, and
one which we intend to win, and the others, too.

Write a program to determine and output to the screen the number of times the
word the occurs in this string.

There are a number of ways to address this exercise. One valid way is to use the
IndexOf() method to determine the index of the first instance of the string “the”.
That works fine, but IndexOf()finds only the first instance of the string. To find the
next instance, you’ll need to use Substring() to cut off the beginning of the string
you’re searching, from the first character up to the first character after the word the.

That’s not actually too hard, because IndexOf() returns the index of the letter t in
the, so IndexOf("the ") + 4 gives you the index of the first word after the. It’s +4

instead of +3 because the search string includes a space—that way, you’ll find only
instances of the word the, as opposed to the word these or thesaurus. Every time you

 {
 string myString = "To be, or not to be: That is the " +
 "question: Whether 'tis nobler in " +
 "the mind to suffer the slings and " +
 "arrows of outrageous fortune, or to " +
 "take arms against a sea of troubles, " +
 "and by opposing end them?";

 char[] delimiters = {',', ':', ' '};

 String[] theStringArray = myString.Split(delimiters);
 Array.Reverse(theStringArray);

 StringBuilder sBuilder = new StringBuilder();
 foreach (String subString in theStringArray)
 {
 sBuilder.AppendFormat("{0} ",subString);
 }

 Console.WriteLine(sBuilder);

 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-43. One solution to Exercise 15-2 (continued)

610 | Appendix: Answers to Quizzes and Exercises

find an instance of the, you take a substring and increment a counter. If you do it all
in a while loop, you can chop down the string until there’s no instances of the
remaining—when IndexOf("the ") returns –1. Example A-44 shows how we did it.

Example A-44. One solution to Exercise 15-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_15_3
{
 class Tester
 {
 public void Run()
 {
 int theCount = 0;
 string theString = "We choose to go to the moon. " +
 "We choose to go to the moon in " +
 "this decade and do the other " +
 "things, not because they are easy, " +
 "but because they are hard, " +
 "because that goal will serve to " +
 "organize and measure the best of " +
 "our energies and skills, because " +
 "that challenge is one that we are " +
 "willing to accept, one we are " +
 "unwilling to postpone, and one which " +
 "we intend to win, and the others, too. ";

 while (theString.IndexOf("the ") != -1)
 {
 theString = theString.Substring(theString.IndexOf("the ")
 + 4);
 theCount++;
 }
 Console.WriteLine("The word \"the\" occurs {0} times
 in the string.", theCount);
 }
 }
 class Program
 {
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Chapter 15: Strings | 611

Another way to solve this exercise would be to split the string into an array of sub-
strings, and then compare each element in the array to the string “the”. That way is
equally valid, but it creates a lot of strings in the array.

Solution to Exercise 15-4. Take the following string:

We hold these truths to be self-evident, that all men are created equal, that they are
endowed by their Creator with certain unalienable Rights, that among these are Life,
Liberty and the pursuit of Happiness.

and use a regular expression to split the string into words. Then create a new string
that lists each word, one to a line, each prefaced with a line number.

There are a number of ways to accomplish splitting up a string into words. As you
saw in the chapter, splitting a string with a Regex is more efficient than using the
string’s Split() method. To do that, you’ll need to define a Regex with delimiters
that match a comma, a space, or a comma followed by a space (you need that third
one so that the Regex doesn’t separate commas from spaces). You then need to use
the Split() method of the Regex class, as we showed you in Example 15-9, to split
the string into its component words. Then you use a foreach loop, with a
StringBuilder object to create the new string. Each time through the loop, you incre-
ment your counter to create the line number, and append a substring and a newline
(\n) to the StringBuilder. Example A-45 shows one way to do it.

Be sure to add the using System.Text.RegularExpressions statement to the top of
your program, or the Regex won’t work.

Example A-45. One solution to Exercise 15-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;

namespace Exercise_15_4
{
 class Tester
 {
 public void Run()
 {
 string importantString = "We hold these truths to be self-evident, " +
 "that all men are created equal, that " +
 "they are endowed by their Creator with " +
 "certain unalienable Rights, that among " +
 "these are Life, Liberty and the pursuit " +
 "of Happiness.";

 Regex theRegex = new Regex(" |, |,");
 StringBuilder sBuilder = new StringBuilder();
 int id = 1;

612 | Appendix: Answers to Quizzes and Exercises

Chapter 16: Throwing and Catching Exceptions

Quiz Solutions

Solution to Question 16-1. An exception is an object (derived from System.Exception)
that contains information about a problematic event. The framework supports
throwing exceptions to stop processing and catching events to handle the problem
and resume processing.

Solution to Question 16-2. The difference between a bug and an exception is that a bug
is an error in programming, one that should be caught either by the compiler or in
testing before you turn the program over to users. An exception is code that accounts
for a situation that can’t be avoided during coding, but can be predicted, such as a
lost database connection.

Solution to Question 16-3. To generate an exception, you use the throw keyword,
although the system will generate some exceptions on its own.

Solution to Question 16-4. To handle an exception, you wrap the code you think might
generate the exception in a try block. The code to handle the exception goes in an
associated catch block.

Solution to Question 16-5. If no exception handler is found in the method that throws
an event, the stack is unwound until a handler is found, or else the exception is han-
dled by the CLR, which terminates the program.

Solution to Question 16-6. After the handler’s code is run, the program execution
resumes with the code immediately following the handler (that is, after the catch

block). Depending on where the handler is located in your code, and where the

 foreach (string subString in theRegex.Split(importantString))
 {
 sBuilder.AppendFormat("{0}: {1}\n", id++, subString);
 }
 Console.WriteLine("{0}", sBuilder);
 }
 static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-45. One solution to Exercise 15-4 (continued)

Chapter 16: Throwing and Catching Exceptions | 613

exception is thrown, you may be unable to return to the method where the excep-
tion was generated.

Solution to Question 16-7. The syntax for throwing a new ArgumentNull exception is:

throw new Sytem.ArgumentNullException();

Solution to Question 16-8. You can write multiple exception handlers to handle differ-
ent types of exceptions; the first handler that catches the thrown exception will pre-
vent further handling. Beware of inheritance complications in the ordering of your
handlers.

Solution to Question 16-9. If you have code that must run whether or not an exception
is thrown (to close a file, for example), place that code in the finally block. You
must have a try before the finally, but a catch is optional.

Solution to Question 16-10. You often won’t need a custom exception class; C# pro-
vides many exception types for your needs. However, you may want to create a cus-
tom exception to define a situation that’s unique to the design of your program, and
would not be an error outside it.

Exercise Solutions

Solution to Exercise 16-1. Create a simple array of three integers. Ask the user which
array element she wants to see. Output the integer that the user asked for (remem-
ber that the user probably won’t ask for a zero-based index). Provide a way for the
user to indicate whether she wants another integer, or to end the program. Provide a
handler that deals with invalid input.

This is a simple exercise, but the point is to create the error handler. Setting up the
array is easy, as is asking the user for input. If you’re keeping the user’s requested
index in a variable called theEntry, for example, remember to return
theIntArray[theEntry - 1] to account for the fact that the user probably won’t be
thinking in terms of zero-based indexes.

To allow the user to keep asking for integers until she gets bored, wrap the whole
thing in a while loop with a simple Boolean for a control variable. Initialize the Bool-
ean to true before you start the loop. Then, inside the loop, ask the user whether she
wants to try again, and use another ReadLine() to get the response. If the response is
"Y" (or "y" for safety), you leave the Boolean set to true and go around the loop
again. If it’s anything else, change the Boolean to false and terminate the program.

None of that is the interesting part, though. Enclose the input line and the output for
the selected index in a try block. Immediately after the try block, insert a generic
catch block to output a message that the error is invalid. This catch block will handle

614 | Appendix: Answers to Quizzes and Exercises

whatever exception is raised, regardless of what kind of exception it is. The user can
enter a number that’s out of range, a string, or anything else. Then execution contin-
ues with the test for the loop, allowing the user to try again if she gave bad input.
Example A-46 shows one solution.

Example A-46. One solution to Exercise 16-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_16_1
{
 class Tester
 {
 public void Run()
 {
 bool tryAgain = true;
 while (tryAgain)
 {
 int[] theIntArray = new int[] { 15, 27, 34 };
 Console.Write("Which array member would you like? ");

 try
 {
 int theEntry = Convert.ToInt32(Console.ReadLine());
 Console.WriteLine("The entry you asked for is {0}",
 theIntArray[theEntry - 1]);
 }

 catch
 {
 Console.WriteLine("That isn't a valid entry.");
 }

 Console.Write("Try again (y/n)? ");
 string theReply = Console.ReadLine();
 tryAgain = (theReply == "y" || theReply == "Y");
 }
 }

 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Chapter 16: Throwing and Catching Exceptions | 615

Solution to Exercise 16-2. Modify the example in Exercise 16-1 to handle two specific
errors: the IndexOutOfRangeException, which is used when the user enters a number
that’s not valid for the array, and the FormatException, which is used when the
entered value doesn’t match the expected format—in this case, if the user enters
something that isn’t a number. Leave the existing handler as a default.

You already have most of the program to start with. In this case you simply need to
add two exception handlers with appropriate code. It doesn’t matter whether you
catch the IndexOutOfRangeException or the FormatException first, but you must make
sure that both handlers appear before the generic catch block, or the generic block
will catch all the exceptions. Example A-47 shows one way to do it.

Example A-47. One solution to Exercise 16-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_16_2
{
 class Tester
 {
 public void Run()
 {
 bool tryAgain = true;
 while (tryAgain)
 {
 int[] theIntArray = new int[] { 15, 27, 34 };
 Console.Write("Which array member would you like? ");

 try
 {
 int theEntry = Convert.ToInt32(Console.ReadLine());
 Console.WriteLine("The entry you asked for is {0}",
 theIntArray[theEntry - 1]);
 }

 catch (IndexOutOfRangeException)
 {
 Console.WriteLine("Please enter a number from 1 to
 {0}.", theIntArray.Length);
 }

 catch (FormatException)
 {
 Console.WriteLine("Please enter a number.");
 }

616 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 16-3. Create a Cat class with one int property: Age. Write a pro-
gram that creates a List of Cat objects in a try block. Create multiple catch state-
ments to handle an ArgumentOutOfRangeException and an unknown exception, and a
finally block to simulate deallocating the Cat objects. Write test code to throw an
exception that you will catch and handle.

Refer back to Chapter 14 if you don’t remember how to create a generic List<T>, in
this case a List<Cat>. This exercise isn’t too different from the last one, in that you’re
still trying to allocate an invalid index inside the try block, and creating a catch

block to handle two different types of exceptions. The difference in this case is the
inclusion of a finally block, to take care of cleaning up the mystery resource you
allocated. Example A-48 shows how we did it.

 catch
 {
 Console.WriteLine("That isn't a valid entry.");
 }

 Console.Write("Try again (y/n)? ");
 string theReply = Console.ReadLine();
 tryAgain = (theReply == "y" || theReply == "Y");
 }
 }

 static void Main(string[] args)
 {
 Tester t = new Tester();
 t.Run();
 }
 }
}

Example A-48. Our solution to Exercise 16-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_16_3
{
 class Cat
 {
 public int Age { get; set; }
 public Cat(int age)
 {
 this.Age = age;
 }
 }
 class Tester

Example A-47. One solution to Exercise 16-2 (continued)

Chapter 16: Throwing and Catching Exceptions | 617

The output from this example would look like this:

Enter Main...
Allocate resource that must be deallocated here
Managing a cat who is 7 years old
We're sorry; your cat does not exist.
Deallocation of resource here.
Exit Main...

Your output may vary, depending on how you wrote your test code.

 {
 private void CatManager(Cat kitty)
 {
 Console.WriteLine("Managing a cat who is " + kitty.Age +
 " years old");
 }
 public void Run()
 {
 try
 {
 Console.WriteLine("Allocate resource that must
 be deallocated here");
 List<Cat> cats = new List<Cat>();
 cats.Add(new Cat(5));
 cats.Add(new Cat(7));
 CatManager(cats[1]); // pass in the second cat
 CatManager(cats[2]); // pass in the nonexistent third cat
 }

 catch (System.ArgumentOutOfRangeException)
 {
 Console.WriteLine("We're sorry; your cat does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown exception caught" + e.Message);
 }
 finally
 {
 Console.WriteLine("Deallocation of resource here.");
 }
 }
 static void Main()
 {
 Console.WriteLine("Enter Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exit Main...");
 }
 }
}

Example A-48. Our solution to Exercise 16-3 (continued)

618 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 16-4. Modify the test code you wrote in Exercise 16-3 so that it
does not throw an error. Create a custom error type CustomCatError that derives from
System.ApplicationException, and create a handler for it. Add a method to
CatManager that checks the cat’s age and throws a new error of type CustomCatError if
the age is less than or equal to 0, with an appropriate message. Write some test code
to test your new exception.

This exercise is similar to Exercise 16-3, but this time you’ll need to create a custom
error class. Fortunately, the custom error class is empty and simply passes the excep-
tion message to its base class, so that’s not too hard. Because the system can’t throw
your custom exception automatically, you’ll need to add a TestCat() method to test
the cat’s age and, if appropriate, throw a new CustomCatError object with an appro-
priate message. Our solution is in Example A-49.

Example A-49. Our solution to Exercise 16-4

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_16_4
{
 class Cat
 {
 public int Age { get; set;}
 public Cat(int age)
 {
 this.Age = age;
 }
 }

 // custom exception class
 public class CustomCatException : System.ApplicationException
 {
 public CustomCatException(string message) : base(message)
 // pass the message up to the base class
 {
 }
 }

 class Tester
 {
 private void CheckCat(Cat testCat)
 {
 if (testCat.Age <= 0)
 {
 // create a custom exception instance
 CustomCatException e = new CustomCatException("Your cat
 is too young.");

Chapter 16: Throwing and Catching Exceptions | 619

 e.HelpLink = "http://www.libertyassociates.com";
 throw e;
 }
 }
 private void CatManager(Cat kitty)
 {
 CheckCat(kitty);
 Console.WriteLine("Managing a cat who is " + kitty.Age + " years old");
 }
 public void Run()
 {
 try
 {
 Console.WriteLine("Allocate resource that must
 be deallocated here");
 List<Cat> cats = new List<Cat>();
 cats.Add(new Cat(7));
 cats.Add(new Cat(-2));
 CatManager(cats[0]); // pass in the first cat
 CatManager(cats[1]); // pass in the second cat
 }
 // catch custom exception
 catch (CustomCatException e)
 {
 Console.WriteLine("\nCustomCatException! Msg: {0}", e.Message);
 Console.WriteLine("\nHelpLink: {0}\n", e.HelpLink);
 }
 catch (System.ArgumentOutOfRangeException)
 {
 Console.WriteLine("We're sorry; your cat does not exist.");
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown exception caught" + e.Message);
 }
 finally
 {
 Console.WriteLine("Deallocation of resource here.");
 }
 }
 static void Main()
 {
 Console.WriteLine("Enter Main...");
 Tester t = new Tester();
 t.Run();
 Console.WriteLine("Exit Main...");
 }
 }
}

Example A-49. Our solution to Exercise 16-4 (continued)

620 | Appendix: Answers to Quizzes and Exercises

Chapter 17: Delegates and Events

Quiz Solutions

Solution to Question 17-1. The purpose of a delegate is to decouple the method(s) called
from the calling code. It allows the designer of an object to define the delegate, and the
user of the object to define which method will be called when the delegate is invoked.

Solution to Question 17-2. Delegates are reference types, but instead of referring to an
object, they refer to a method.

Solution to Question 17-3. You instantiate a previously defined delegate named
OnPhoneRings like this:

OnPhoneRings myDelegate = new OnPhoneRings(myMethod);

Solution to Question 17-4. The following is the standard way to define a delegate for an
event handler:

public delegate void PhoneRangHandler
(object sender, EventArgs e);

You then use the event keyword to restrict the delegate such that it can be invoked
only by the defining class:

public event PhoneRangHandler PhoneHasRung;

Solution to Question 17-5. Here is how to call a delegated method:

PhoneHasRung(this, new EventArgs());

Solution to Question 17-6. The event keyword limits the use of the delegate in the fol-
lowing ways:

• You can only add a method using +=.

• You can only remove a method using -=.

• The delegate can be invoked only by the class that defines it.

Solution to Question 17-7. To pass information to the method called through the event,
define the delegate to take as its second parameter an object of a type derived from
EventArgs. Pass the information through properties of that object.

Solution to Question 17-8. System.EventArgs has no methods or properties other than
those it inherits from Object, and a public, static field named Empty. The point of
System.EventArgs is that it allows you to derive a class that contains whatever proper-
ties you need to pass to the event handlers.

Chapter 17: Delegates and Events | 621

Solution to Question 17-9. Rather than creating a method that matches the delegate’s
signature and then assigning the name of that method to the delegate, anonymous
methods allow you to directly assign an unnamed delegate method by providing the
implementation in line with the assignment.

Solution to Question 17-10. A lambda expression doesn’t return a type, but rather a ref-
erence to a method. Lambda expressions are similar to anonymous methods, but
they have applications outside of event handlers.

Exercise Solutions

Solution to Exercise 17-1. Write a countdown alarm program that uses delegates to
notify anyone who is interested that the designated amount of time has passed.
You’ll need a class to simulate the countdown clock that accepts a message and a
number of seconds to wait (supplied by the user). After waiting the appropriate
amount of time, the countdown clock should fire off an event and pass the message
to any registered observers. (When you’re calculating the time to wait, remember
that Thread.Sleep() takes an argument in milliseconds, and requires a using System.

Threading statement.) Create an observer class as well that echoes the received mes-
sage to the console.

The CountDownClock example isn’t that much different from the Clock example you
saw in the chapter, although it behaves a bit differently. In Tester.Run(), you ask the
user for a string message, and a number of seconds to wait, which you then pass to
the instance of CountDownClock. To wait the appropriate number of seconds, you sim-
ply use Thread.Sleep(seconds * 1000) so that you’re waiting for seconds instead of
milliseconds. Once the appropriate amount of time has passed, you check to see
whether the event has any subscribers, and then call the delegate. You’ll need to create
a class that derives from EventArgs to hold the message, and pass that to the delegate.

The observer class is relatively simple. It needs to create an event handler that ech-
oes the message to the console, and register that event handler with the delegate. We
haven’t used the event keyword in this exercise, so this handler is still “dangerous.”

When you’re testing this program, be sure to use a relatively small
amount of time to wait, or you could be staring at an inactive console
for some time.

There are, as always, many ways to solve this exercise. One way is shown in
Example A-50.

622 | Appendix: Answers to Quizzes and Exercises

Example A-50. One solution to Exercise 17-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace Exercise_17_1
{
 // a class to hold the message to display
 public class CountDownClockEventArgs : EventArgs
 {
 public string message;
 public CountDownClockEventArgs(string message)
 {
 this.message = message;
 }
 }
 // The publisher; the class to which other
 // classes will subscribe. Provides the delegate TimeExpired
 // that fires when the requested amount of time has passed
 public class CountDownClock
 {
 private int seconds;
 private string message;

 // tell me the message to display, and how many seconds to wait

 public CountDownClock(string message, int seconds)
 {
 this.message = message;
 this.seconds = seconds;
 }

 // the delegate
 public delegate void TimesUpEventHandler
 (
 object countDownClock,
 CountDownClockEventArgs alarmInformation
);

 // an instance of the delegate
 public TimesUpEventHandler TimeExpired;
 // Wait until time has elapsed, then check to see
 // if anyone is listening, and send the message
 public void Run()
 {
 // sleep until time has elapsed
 Thread.Sleep(seconds * 1000);
 if (TimeExpired != null)
 {
 // Create the CountDownClockEventArgs to hold the message

Chapter 17: Delegates and Events | 623

 CountDownClockEventArgs e =
 new CountDownClockEventArgs(this.message);
 // fire the event
 TimeExpired(this, e);
 }
 }
 }

 // an observer
 public class CountDownTimerDisplay
 {
 CountDownClock.TimesUpEventHandler myHandler;
 public CountDownTimerDisplay(CountDownClock cdc)
 {
 myHandler = new CountDownClock.TimesUpEventHandler(TimeExpired);
 // register the event handler and start the timer
 cdc.TimeExpired += myHandler;
 }
 // Alert the user that the time has expired
 public void TimeExpired(object theClock, CountDownClockEventArgs e)
 {
 Console.WriteLine("You requested to receive this message: {0}",
 e.message);
 }
 }
 // an observer.
 public class Tester
 {
 public void Run()
 {
 Console.Write("Enter your alert message: ");
 string message = Console.ReadLine();

 // Ask for how many seconds to wait
 Console.Write("How many seconds to wait? ");
 int seconds = Convert.ToInt32(Console.ReadLine());

 // Create the clock class
 CountDownClock cdc = new CountDownClock(message, seconds);

 // Create the observer class
 CountDownTimerDisplay display = new CountDownTimerDisplay(cdc);
 cdc.Run();
 }
 }
 public class Program
 {
 public static void Main()
 {
 Tester t = new Tester();
 t.Run();
 }

Example A-50. One solution to Exercise 17-1 (continued)

624 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 17-2. Change the program you wrote in Exercise 17-1 to ensure
that the event can be published to multiple handlers safely.

The event keyword guarantees that the event the CountDownClock is publishing can
only be subscribed to or unsubscribed from. This change is easy, so we won’t show
the whole code here. The relevant portion is shown in Example A-51.

Solution to Exercise 17-3. Rewrite the observer class in Exercise 17-2 to use an anony-
mous method.

You may have noticed that the event handler method in Exercises 17-1 and 17-2 is
pretty simple; all it does is output the message to the console. This is a perfect candi-
date for an anonymous method. To make the method anonymous, you need to
delete the code that instantiates the handler, and instead move the call to Console.

WriteLine to the line that registers the handler. The only changes here are to the
observer class, so that’s all that Example A-52 shows.

 }
}

Example A-51. The solution to Exercise 17-2

// the delegate
public delegate void TimesUpEventHandler
(
 object countDownClock,
 CountDownClockEventArgs alarmInformation
);

// an instance of the delegate
public event TimesUpEventHandler TimeExpired;

Example A-52. The solution to Exercise 17-3

public class CountDownTimerDisplay
{
 public CountDownTimerDisplay(CountDownClock cdc)
 {
 // register the event handler and start the timer
 cdc.TimeExpired += delegate(object theClock, CountDownClockEventArgs e)
 {
 Console.WriteLine("You requested to receive this message: {0}",
 e.message);
 };
 }
}

Example A-50. One solution to Exercise 17-1 (continued)

Chapter 18: Creating Windows Applications | 625

Solution to Exercise 17-4. Rewrite the observer class in Exercise 17-3 to use a lambda
expression instead of an anonymous method.

Again, the only change you have to make is to the event registration code in the
observer class. You need to remove the keyword delegate and insert the lambda
operator =>. You don’t actually need the braces, since the method is only one state-
ment, but it doesn’t hurt to leave them in, either. Example A-53 shows the solution.

Chapter 18: Creating Windows Applications

Quiz Solutions

Solution to Question 18-1. The various widgets on a Windows form are all known as
controls.

Solution to Question 18-2. To add a Button control to a Windows form in Visual Stu-
dio, simply drag the Button from the Toolbox onto the form wherever you want it.
Visual Studio takes care of the code to initialize the control.

Solution to Question 18-3. To set the properties of a control, click on the control on the
form. This causes the control’s properties to appear in the Properties window. From
the Properties window, you can set a number of available properties for each control.

Solution to Question 18-4. Windows is an event-driven environment in that the code
initializes forms that wait to respond to user or system actions—events—rather than
running procedurally from start to finish.

Solution to Question 18-5. To make a button respond to being clicked, you need to cre-
ate an event handler to handle the Click event for the button.

Example A-53. The solution to Exercise 17-4

public class CountDownTimerDisplay
{
 public CountDownTimerDisplay(CountDownClock cdc)
 {
 // register the event handler and start the timer
 cdc.TimeExpired += (object theClock, CountDownClockEventArgs e) =>
 {
 Console.WriteLine("You requested to receive this message: {0}",
 e.message);
 };
 }
}

626 | Appendix: Answers to Quizzes and Exercises

Solution to Question 18-6. The two ways to create an event handler in Visual Studio are
as follows:

• Go to the Properties window, click on the lightning bolt button to open the
events, and then fill in a name or double-click next to the event to let Visual Stu-
dio create the name.

• Double-click on the control to create the default handler with a name provided
by Visual Studio.

Solution to Question 18-7. When you create an event handler for a control on your
form, Visual Studio automatically takes you to the code page of your form.

Solution to Question 18-8. The partial keyword indicates that the code page you see in
Visual Studio is not the complete class for the form. Visual Studio hides the initializa-
tion code for the controls, so you don’t need to worry about it.

Solution to Question 18-9. Call the Application.Exit() method to close the application.

Solution to Question 18-10. Recursion is a method that is calling itself (such as calling
MethodA() from within the body of MethodA()).

Exercise Solutions

Solution to Exercise 18-1. Create a Windows application that displays the word
“Hello” in a label, and has a button that changes the display to “Goodbye”.

This exercise is similar to the Hello World exercise from earlier in the chapter.
You’ve seen how to add a Label control and a Button control, and how to change
their Text and font properties accordingly, so setting up that much is simple.

What you need now is an event handler to change the text of the label when the but-
ton is clicked. You’ve seen how to set the Text property elsewhere in this chapter, so
that’s not too hard. Here is the event handler for the button:

private void button1_Click(object sender, EventArgs e)
{
 label1.Text = "Goodbye";
}

Of course, once the text of the label has changed, you can’t change it back. You
could add an if statement that changes the text from “Hello” to “Goodbye”, or vice
versa, every time the button is clicked. You can see the full source code solution to
Exercise 18-1 on the website for this book, although there isn’t much to it.
Figure A-5 is a picture of the form.

Chapter 18: Creating Windows Applications | 627

Solution to Exercise 18-2. Modify the first exercise by dragging a timer (found in the
Components section of the Toolbox) onto the form and having the timer change the
message from “Hello” to “Goodbye” and back once per second. Change the button
to turn this behavior on and off. Use the Microsoft Help files to figure out how to use
the timer to accomplish this exercise.

Here are the steps you need to follow:

1. Create a new project named Exercise 18-2.

2. Set the form to the size of the form in Exercise 18-1 (213, 119).

3. Optionally copy the two controls (label and button) from the first exercise (or
drag on new ones).

4. Set the form’s text to “Hello Goodbye”. Set the Text of the button to “Start”.

5. Drag a Timer control from the Components section of the Toolbox onto the
form. It won’t show up on the form itself; it will appear in a special section at the
bottom of the window called the tray, as shown in Figure A-6.

6. Set the timer’s Interval property to 1,000 and its Enabled property to false. This
ensures that the timer won’t start until the button is clicked at least once.

7. Double-click on the timer to create the timer1_Tick event handler, which will fire
every 1,000 milliseconds (every 1 second).

8. Add a Boolean property (which we’ve called isHello) to the class, outside the
methods, and initialize it to true.

9. Add the following code to the timer1_Tick handler. This code will alternate the
text in the label by checking (and changing) the Boolean value isHello:

private void timer1_Tick(object sender, EventArgs e)
{
 isHello = !isHello;
 if (isHello)
 {
 label1.Text = "Hello";
 }
 else

Figure A-5. Exercise 18-1: The form.

628 | Appendix: Answers to Quizzes and Exercises

 {
 label1.Text = "Goodbye";
 }
}

10. Change the button1_Click event handler, adding the following code. This code
will test whether the timer is running (if so, its IsEnabled property is true) to
start the timer and set the button’s text to “Stop”, or to stop the timer and set
the button’s text to “Start”:

private void button1_Click(object sender, EventArgs e)
{
 if (!timer1.Enabled)
 {
 timer1.Start();
 this.button1.Text = "Stop";
 }
 else
 {
 timer1.Stop();
 this.button1.Text = "Start";
 }
}

The source code for this example is presented in Example A-54.

Figure A-6. Adding the timer.

Chapter 18: Creating Windows Applications | 629

Solution to Exercise 18-3. Create a Windows application that calculates sales tax for a
given amount. The user can enter an amount in a text box, and then can enter a sales
tax between 0 and 25%, in increments of 0.25%. When the user clicks the Submit

Example A-54. Using a timer to switch the message every second

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Exercise_18_2
{
 public partial class frmHelloGoodbye : Form
 {
 bool isHello = true;
 public frmHelloGoodbye()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 if (!timer1.Enabled)
 {
 timer1.Start();
 this.button1.Text = "Stop";
 }
 else
 {
 timer1.Stop();
 this.button1.Text = "Start";
 }
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 isHello = !isHello;
 if (isHello)
 {
 label1.Text = "Hello";
 }
 else
 {
 label1.Text = "Goodbye";
 }
 }
 }
}

630 | Appendix: Answers to Quizzes and Exercises

button, the tax is calculated, and both the tax and the total are output in a label. The
application should look something like Figure A-7 when it runs.

The amount is entered in a Textbox control, but for the tax, you want to restrict the
values the user can enter, so you should use a numericUpDown control—use the Help
files or IntelliSense to examine the properties for that control and figure out how to
use them to your advantage. There’s a Clear button that clears the “Amount”
TextBox when clicked.

To output a double with two decimal places, use ToString("F"). The F applies the
two-decimal-place formatting. You may also want to implement some exception
handling to ensure that the user enters a number in the TextBox.

The C# code in this exercise is mostly trivial, but the point is to extract the values
from the controls, use them, and then output them to the user. As always, the exact
names and layout of the controls are up to you, but we’ll show you how we did it.
Start by setting up your form. Set the Text property of the form itself to “Tax Calcu-
lator”. Then add two label controls (lblAmount and lblTax); these don’t do anything
except provide label text for the controls, so set their Text properties as you see in the
figure. Then add a TextBox control (txtAmount). Set the TextAlign property to Right,
to make it a bit neater. You can’t really restrict what a user enters in a TextBox, so
you’ll need some exception handling later.

The control in this exercise that you’re probably not familiar with is the
numericUpDown control. Although the amount can be any numeric value, the tax is
strictly defined—between 0 and 25, in increments of 0.25. The numericUpDown con-
trol has properties that allow those restrictions. Call your control nudTax, set its
Maximum property to 25, leave the Minimum property at 0 (the default), and set the
Increment property to 0.25. That takes care of the numeric requirements. Set the
TextAlign property to Right, so it’ll line up with the TextBox.

Figure A-7. Your goal for Exercise 18-3.

Chapter 18: Creating Windows Applications | 631

Now you’ll need two buttons: btnSubmit, and btnClear. Set the Text properties for
each of these as you see in the figure. We’ll come back to the event handlers in a
minute.

The last control you need is a Label to show the output. Place it below the buttons,
call it lblResult, and delete its Text property for the moment.

Now you need event handlers for the two buttons. The handler for btnClear is sim-
ple. You just want to clear the TextBox, so simply call txtAmount.Clear().

The handler for btnSubmit is where you’ll do the work. The only tricky bit here is
that the text entered in txtAmount is a string, so you’ll need to convert it to a double if
you want to work with it. Fortunately, Convert.ToDouble() works just fine there. The
numericUpDown control doesn’t have a Text property—because it can hold only
numeric values, it has a Value property instead. The first thing to do is calculate the
amount of the tax:

double tax = Convert.ToDouble(txtAmount.Text) *
 (Convert.ToDouble(nudTax.Value) * 0.01);

Then add the tax to the amount:

double total = Convert.ToDouble(txtAmount.Text) + tax;

The tax and total variables are doubles, so you’ll need to convert them back to
strings before you can add them to the result string. That’s where the ToString("F")

method comes in:

string resultString = "Tax on $"
 + txtAmount.Text
 + " at "
 + nudTax.Value
 + "% is $"
 + tax.ToString("F")
 + ".\nThe total is $"
 + total.ToString("F")
 + ".";

Now just assign the result string to the Text property of lblResult:

lblResult.Text = resultString;

This application will work fine, assuming the user enters only a numeric value in the
TextBox. Users can’t always be trusted that way, though, so you should wrap the
code you’ve written so far in a try block, and add a catch block for a
FormatException, which is the kind of exception that will be raised if the user enters
letters in the TextBox. There are lots of different ways to deal with the exception; we
chose to pop up a MessageBox that explains the problem, and then we clear the
TextBox as well:

catch (FormatException)
{
 DialogResult error = MessageBox.Show(

632 | Appendix: Answers to Quizzes and Exercises

 "Please enter a number",
 "Format Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 txtAmount.Clear();
}

The code for the Form1.cs file is shown in Example A-55.

Example A-55. One solution to Exercise 18-3

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Exercise_18_3
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void btnSubmit_Click(object sender, EventArgs e)
 {
 try
 {
 double tax = Convert.ToDouble(txtAmount.Text) *
 (Convert.ToDouble(nudTax.Value) * 0.01);
 double total = Convert.ToDouble(txtAmount.Text)
 + tax;
 string resultString = "Tax on $"
 + txtAmount.Text
 + " at "
 + nudTax.Value
 + "% is $"
 + tax.ToString("F")
 + ".\nThe total is $"
 + total.ToString("F")
 + ".";

 lblResult.Text = resultString;
 }
 catch (FormatException)
 {
 DialogResult error = MessageBox.Show(
 "Please enter a number",
 "Format Error",

Chapter 19: Windows Presentation Foundation | 633

Chapter 19: Windows Presentation Foundation

Quiz Solutions

Solution to Question 19-1. XAML is a subset of XML intended for use with WPF. It has
a schema created by Microsoft with elements for Windows applications.

Solution to Question 19-2. You can edit the properties of a XAML element in the Prop-
erties window, or directly in the XAML window. Either way, any changes you make
will immediately be reflected in the Design window.

Solution to Question 19-3. The x: refers to the current namespace for the application.
You need to use it to define properties that will be used elsewhere in the application.

Solution to Question 19-4. The Margin property takes four comma-separated values,
representing the distance, in units, from the left, top, right, and bottom of the win-
dow. A zero for any of the values indicates that the distance is not fixed.

Solution to Question 19-5. When you have a number of controls of the same type, you
could style each control individually, but it would be easier to define a Style ele-
ment as a resource.

Solution to Question 19-6. The TargetType property, applied to a Style, restricts the
style to a certain type of control.

Solution to Question 19-7. The Trigger element is used for handling events within the
XAML file.

Solution to Question 19-8. Animations are contained in Storyboard controls.

 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 txtAmount.Clear();
 }
 }

 private void btnClear_Click(object sender, EventArgs e)
 {
 txtAmount.Clear();
 }

 }
}

Example A-55. One solution to Exercise 18-3 (continued)

634 | Appendix: Answers to Quizzes and Exercises

Solution to Question 19-9. A Trigger element can contain a storyboard action, but not
a Storyboard element directly. The BeginStoryboard element provides that action,
and can contain a storyboard.

Solution to Question 19-10. The DataContext property allows an element to access a
data source.

Exercise Solutions

Solution to Exercise 19-1. We’ll start things off simply. Create a WPF application with
several Button and TextBox controls. Set the TextBox controls to have white text on a
blue background, and the Button controls to have green text on a gray background.

This exercise isn’t particularly challenging, but it does enable you to practice the use
of styles. You first create a new WPF project. Then drag several Button and TextBox

controls onto the form; it doesn’t matter where. You could certainly copy the same
Style attributes to each control, but that’s a pain. Instead, you should define a style
resource for each control in the Windows.Resources section. Remember to give each
style an x:Key property so that you can reference it later from within the controls,
and remember to have each control reference the style as a StaticResource.
Example A-56 shows the full XAML file for this exercise.

Example A-56. One solution to Exercise 19-1

<Window x:Class="Exercise_19_1.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Window.Resources>
 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Background" Value="Blue" />
 </Style>
 <Style x:Key="textboxStyle" TargetType="TextBox">
 <Setter Property="Foreground" Value="Green" />
 <Setter Property="Background" Value="Gray" />
 </Style>
 </Window.Resources>
 <Grid>
 <TextBox Style="{StaticResource textboxStyle}" Height="23" Margin="19,56,139,0"
Name="textBox1" VerticalAlignment="Top">TextBox1</TextBox>
 <Button Style="{StaticResource buttonStyle}" Height="23"
HorizontalAlignment="Right" Margin="0,38,51,0" Name="button1" VerticalAlignment="Top"
Width="75">Buttton1</Button>
 <Button Style="{StaticResource buttonStyle}" HorizontalAlignment="Left"
Margin="34,115,0,124" Name="button2" Width="75">Button2</Button>
 <TextBox Style="{StaticResource textboxStyle}" HorizontalAlignment="Right"
Margin="0,109,3,130" Name="textBox2" Width="120">TextBox2</TextBox>

Chapter 19: Windows Presentation Foundation | 635

Solution to Exercise 19-2. Now you’ll create your own animation. Create a WPF appli-
cation with a single Button control (it doesn’t have to do anything). Add an anima-
tion that increases the size of the button from the standard size to 300 units wide by
200 units high, and then reverses itself.

All you’re doing in this exercise is creating a simple animation. Start by placing a
standard Button control on the form; it doesn’t matter where. Within the Button ele-
ment, place a Triggers element. Remember that triggers require an action, so within
the Triggers section, place a BeginStoryboard element. Inside that, place a Storyboard

element, and inside the storyboard, a DoubleAnimation—the Height and Width proper-
ties are of type double. From there, it’s easy to define an animation that targets the
Button control and changes the Height.

You’ll need to define a second DoubleAnimation element to change the Width prop-
erty of the Button, but this animation is easy; it’s nearly identical to the first. You can
place both in the same storyboard.

The standard size of a default Button control is 23 high × 75 wide, which you could
find out from the Properties window for the Button, but you don’t actually need to
know that. If you omit the From attribute in the animation, WPF will use the existing
values as the default.

The full XAML for this exercise is shown in Example A-57.

 <Button Style="{StaticResource buttonStyle}" Height="23"
HorizontalAlignment="Right" Margin="0,0,37,56" Name="button3" VerticalAlignment="Bottom"
Width="75">Button3</Button>

<TextBox Style="{StaticResource textboxStyle}" Height="23" Margin="19,0,139,55.48"
Name="textBox3" VerticalAlignment="Bottom">TextBox3</TextBox>
 </Grid>
</Window>

Example A-57. The XAML for Exercise 19-2

<Window x:Class="Exercise_19_2.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid>
 <Button Height="23" Margin="55,44,0,0" Name="button1"
 VerticalAlignment="Top" HorizontalAlignment="Left"
 Width="75" Content="Button">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="button1"
 Storyboard.TargetProperty="Height"
 To="200" Duration="0:0:5"

Example A-56. One solution to Exercise 19-1 (continued)

636 | Appendix: Answers to Quizzes and Exercises

Solution to Exercise 19-3. Create a rectangle, 100 × 200. Add three buttons to the appli-
cation: one to rotate the rectangle clockwise, the second to rotate it counterclock-
wise, and the third to stop the rotation.

The point to this exercise is to connect two separate triggers to the same property,
specifically, the RotateTransform property of the rectangle. This isn’t actually too dif-
ficult; you simply have two triggers with the same target. The Stop button also needs
to stop both storyboards, but that’s not difficult either.

The XAML for this exercise is shown in Example A-58.

 AutoReverse="True"
 RepeatBehavior="Forever" />
 <DoubleAnimation
 Storyboard.TargetName="button1"
 Storyboard.TargetProperty="Width"
 To="300" Duration="0:0:5"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>

 </Button>
 </Grid>
</Window>

Example A-58. One solution to Exercise 19-3

<Window x:Class="Exercise_19_3.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="311" Width="295">
 <Window.Triggers>
 <EventTrigger RoutedEvent="ButtonBase.Click"
 SourceName="btnClockwise">
 <BeginStoryboard Name="rotateClockwise">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="rectRotate"
 Storyboard.TargetProperty="Angle"
 From="0.0" To="360.0" Duration="0:0:10"
 RepeatBehavior="Forever"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="ButtonBase.Click"
 SourceName="btnCounterclockwise">
 <BeginStoryboard Name="rotateCounterclockwise">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="rectRotate"

Example A-57. The XAML for Exercise 19-2 (continued)

Chapter 20: ADO.NET and Relational Databases | 637

Chapter 20: ADO.NET and Relational Databases

Quiz Solutions

Solution to Question 20-1. In a relational database, the data is organized into tables,
and the queries are defined by the relationships among the tables.

Solution to Question 20-2. A primary key is a column that contains values that are unique
to the table in which it resides, which allows you to uniquely identify each row.

Solution to Question 20-3. A foreign key is a column in a table that is also the primary
key in a different table. This allows you to identify the relationship among the tables.

Solution to Question 20-4. To retrieve the contents of the Title column in the Books

table the appropriate query would be:

Select Title from Books

 Storyboard.TargetProperty="Angle"
 From="360.0" To="0.0" Duration="0:0:10"
 RepeatBehavior="Forever"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="ButtonBase.Click" SourceName="btnStop">
 <PauseStoryboard BeginStoryboardName="rotateClockwise" />
 <PauseStoryboard BeginStoryboardName="rotateCounterclockwise" />
 </EventTrigger>
 </Window.Triggers>

 <Grid>
 <Rectangle Margin="110,21,113,0" Name="myRectangle" Stroke="Black"
 Height="100" VerticalAlignment="Top"
 RenderTransformOrigin="0.5,0.5" Fill="Cyan">
 <Rectangle.RenderTransform>
 <RotateTransform x:Name="rectRotate" Angle="0.0" />
 </Rectangle.RenderTransform>
 </Rectangle>
 <Button Height="23" HorizontalAlignment="Left" Margin="20,0,0,106"
 Name="btnClockwise" VerticalAlignment="Bottom"
 Width="75">Clockwise</Button>
 <Button Height="23" HorizontalAlignment="Right" Margin="0,0,26,106"
 Name="btnCounterclockwise" VerticalAlignment="Bottom"
 Width="109">Counterclockwise</Button>
 <Button Height="23" Margin="100,0,103,58" Name="btnStop"
 VerticalAlignment="Bottom">Stop</Button>
 </Grid>
</Window>

Example A-58. One solution to Exercise 19-3 (continued)

638 | Appendix: Answers to Quizzes and Exercises

Solution to Question 20-5. To retrieve the contents of the Author column where the
value in the Publisher column is “OReilly”, the appropriate query would be:

Select Author from Books where Publisher = 'OReilly'

Solution to Question 20-6. You would want to use a join when you want to filter the
information retrieved from one table based on the contents of a different table.

Solution to Question 20-7. The DataSet object represents a subset of retrieved data, and
can be used to view or manipulate the data.

Solution to Question 20-8. One good way to view the rows in a DataTable object is to
iterate over the Rows collection with a foreach loop.

Solution to Question 20-9. The DataAdapter class provides the bridge between your
application and the database. The DataAdapter can take a connection string and a
query string, and can then be used to provide that data to a DataSet object.

Solution to Question 20-10. Use the DataAdapter.Fill() method to transfer the data to
a DataSet for manipulation.

Exercise Solutions

Solution to Exercise 20-1. Let’s start with a simple exercise. The Northwind database
contains a table named Orders. Write a program to retrieve the order date and
shipped date of all the records in the Orders table.

This exercise is, as we said, rather simple. The code from Example 20-1 serves nicely
as a template. However, Example 20-1 uses the Customers table, and we specified the
Orders table. You can expand the Tables folder in the Database Explorer to see the
various tables available in Northwind, and then expand the Orders table to see the
various columns, which include OrderDate and ShippedDate. From there, it’s just a
matter of rewriting the command string, like this:

string commandString = "Select OrderDate, ShippedDate from Orders";

Example A-59 has the full code for this exercise.

Example A-59. One solution to Exercise 20-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

Chapter 20: ADO.NET and Relational Databases | 639

Solution to Exercise 20-2. We’ll try something slightly more complicated now. Write a
program to display the name and ID of products with fewer than 10 units in stock.

This is another rather simple exercise, again focusing on the command string. This
time, you need to include a where clause in your string. From the Products table, you
want to retrieve the ProductID and ProductName columns, if the UnitsInStock column is
less than 10. Note that you don’t actually retrieve the UnitsInStock column; you only
use it to determine which records to retrieve. The command string looks like this:

string commandString = "Select ProductID, ProductName
 from Products where UnitsInStock < 10";

The full listing for this exercise is shown in Example A-60.

namespace Exercise_20_1
{
 class Program
 {
 static void Main(string[] args)
 {
 // create the data connection
 string connectionString = "server=.\\sqlexpress; " +
 "Trusted_Connection=yes;database=Northwind";

 // create the string to hold the SQL command
 // to get records from the Customers table
 string commandString =
 "Select OrderDate, ShippedDate from Orders";

 // create the data adapter with the
 // connection string and command
 SqlDataAdapter myDataAdapter =
 new SqlDataAdapter(commandString, connectionString);

 // Create and fill the DataSet object
 DataSet myDataSet = new DataSet();
 myDataAdapter.Fill(myDataSet);

 // Retrieve the Orders table
 DataTable myDataTable = myDataSet.Tables[0];

 // iterate over the rows collection and output the fields
 foreach (DataRow dataRow in myDataTable.Rows)
 {
 Console.WriteLine("Order Date: {0}. Shipped Date: {1}",
 dataRow["OrderDate"], dataRow["ShippedDate"]);
 }

 }
 }
}

Example A-59. One solution to Exercise 20-1 (continued)

640 | Appendix: Answers to Quizzes and Exercises

Example A-60. One solution to Exercise 20-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace Exercise_20_2
{
 class Program
 {
 static void Main(string[] args)
 {
 // create the data connection
 string connectionString = "server=.\\sqlexpress; " +
 "Trusted_Connection=yes;database=Northwind";

 // create the string to hold the SQL command
 // to get records from the Customers table
 string commandString = "Select ProductID, " +
 "ProductName from Products " +
 "where UnitsInStock < 10";

 // create the data adapter with the
 // connection string and command
 SqlDataAdapter myDataAdapter =
 new SqlDataAdapter(commandString, connectionString);

 // Create and fill the DataSet object
 DataSet myDataSet = new DataSet();
 myDataAdapter.Fill(myDataSet);

 // Retrieve the Orders table
 DataTable myDataTable = myDataSet.Tables[0];

 // iterate over the rows collection
 // and output the fields
 Console.WriteLine(
 "Products with less than 10 units in stock:");
 foreach (DataRow dataRow in myDataTable.Rows)
 {
 Console.WriteLine("ProductID: {0} \tProduct Name: {1}",
 dataRow["ProductID"], dataRow["ProductName"]);
 }

 }
 }
}

Chapter 20: ADO.NET and Relational Databases | 641

The output looks like this, if you want to check your results:

Products with less than 10 units in stock:
ProductID: 5 Product Name: Chef Anton's Gumbo Mix
ProductID: 8 Product Name: Northwoods Cranberry Sauce
ProductID: 17 Product Name: Alice Mutton
ProductID: 21 Product Name: Sir Rodney's Scones
ProductID: 29 Product Name: Thüringer Rostbratwurst
ProductID: 31 Product Name: Gorgonzola Telino
ProductID: 32 Product Name: Mascarpone Fabioli
ProductID: 45 Product Name: Rogede sild
ProductID: 53 Product Name: Perth Pasties
ProductID: 66 Product Name: Louisiana Hot Spiced Okra
ProductID: 68 Product Name: Scottish Longbreads
ProductID: 74 Product Name: Longlife Tofu

(Somebody needs to order more of Chef Anton’s Gumbo Mix.) If you want to check
your results against what’s in the database itself, right-click on the Products table in
Database Explorer and select Show Table Data.

Solution to Exercise 20-3. Now for an exercise that involves multiple tables. Write a
program to display the first and last names of the employees in region 1.

This exercise involves the join keyword, and requires you to look around in the
tables a bit. If you open the Region table, you’ll find the RegionID column, which is
the value you want to compare. But the Region table doesn’t mention EmployeeIDs.
The Employees table has a column EmployeeID, which is a good start, and a column
Region, but the values there don’t match up with any columns in the Region table.
Instead, you need to look at the EmployeeTerritories table. You can join Employees

to EmployeeTerritories on the EmployeeID column. The only other column in the
EmployeeTerritories table is the TerritoryID column, which is the foreign key for the
Territories table. In the Territories table, you’ll find the TerritoryID column,
and—aha!—the RegionID column. So, you can craft a query like this:

string commandString = "select e.FirstName, e.LastName "+
 "from Employees e "+
 "join EmployeeTerritories et on e.EmployeeID =
 et.EmployeeID "+
 "join Territories t on et.TerritoryID =
 t.TerritoryID "+
 "join Region r on t.RegionID = r.RegionID "+
 "where r.RegionID = 1";

The where clause checks for the employees in region 1, and the three join clauses
chain back up to the Employees table, where you select the first and last name fields.
The full code for this exercise is found in Example A-61.

642 | Appendix: Answers to Quizzes and Exercises

Example A-61. The solution to Exercise 20-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace Exercise_20_3
{
 class Program
 {
 static void Main(string[] args)
 {
 // create the data connection
 string connectionString = "server=.\\sqlexpress; " +
 "Trusted_Connection=yes;database=Northwind";

 // create the string to hold the SQL command
 // to get records from the Customers table
 string commandString = "select e.FirstName, e.LastName " +
 "from Employees e "+
 "join EmployeeTerritories et on " +
 "e.EmployeeID = et.EmployeeID " +
 "join Territories t on et.TerritoryID = " +
 "t.TerritoryID "+
 "join Region r on t.RegionID = " +
 "r.RegionID " +
 "where r.RegionID = 1";

 // create the data adapter with the
 // connection string and command
 SqlDataAdapter myDataAdapter =
 new SqlDataAdapter(commandString, connectionString);

 // Create and fill the DataSet object
 DataSet myDataSet = new DataSet();
 myDataAdapter.Fill(myDataSet);

 // Retrieve the Orders table
 DataTable myDataTable = myDataSet.Tables[0];

 // iterate over the rows collection
 // and output the fields
 Console.WriteLine("Employees in Region 1:");
 foreach (DataRow dataRow in myDataTable.Rows)
 {
 Console.WriteLine("{0} {1}",
 dataRow["FirstName"], dataRow["LastName"]);
 }

 }

Chapter 21: LINQ | 643

Chapter 21: LINQ

Quiz Solutions

Solution to Question 21-1. LINQ allows you to query several different types of data
sources, including SQL Server databases, XML files, and in-memory collections.

Solution to Question 21-2. A LINQ query returns a collection that implements
IEnumerable. The type of the objects in the collection is irrelevant.

Solution to Question 21-3. The select keyword returns the result of a LINQ query.

Solution to Question 21-4. You don’t need to use any special syntax to return a com-
plex type from a LINQ query. The compiler can infer the type, even if it’s unnamed.

Solution to Question 21-5. The range variable in a LINQ query doesn’t have to be any
type; it just has to be a valid C# name. The compiler will infer its type.

Solution to Question 21-6. The lambda expression in a LINQ query returns a method
used to evaluate the data set. That data is projected onto the range variable.

Solution to Question 21-7. When you use LINQ to SQL, you need to add a reference to
the System.Data.Linq namespace, not the System.Linq namespace that’s added by
default and supports all the basic LINQ functions.

Solution to Question 21-8. Use the [Table] attribute, with the Name of the table to define
a class as representing a SQL table.

Solution to Question 21-9. To add table classes in the Object Relational Designer, you
must establish a connection to the database, and then simply drag the tables onto the
design surface. The classes will be generated for you automatically.

Solution to Question 21-10. The constructor of the data context class using the Object
Relational Designer doesn’t require any parameters; it’s generated automatically.

 }
}

Example A-61. The solution to Exercise 20-3 (continued)

644 | Appendix: Answers to Quizzes and Exercises

Exercise Solutions

Solution to Exercise 21-1. For the first exercise in this chapter, we’re going to bring
back the good old Box class from earlier in the book. It’s a quick and easy class, with
Length, Width, and Height properties, and a quick method to display a box. Here’s
the code for the class:

public class Box
{
 public int Length { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }

 public void DisplayBox()
 {
 Console.WriteLine("{0}x{1}x{2}",
 Length, Width, Height);
 }
}

Create a List of Box objects, at least five, with dimensions and colors of whatever you
like, and then use a LINQ query to extract all those boxes with a Length and Width

greater than 3.

The challenge here isn’t in creating the List; that’s simple enough. Once you have
that created, you need to issue the correct query. Here’s one that works:

IEnumerable<Box> resultList =
 from myBox in boxList
 where myBox.Length > 3 && myBox.Width > 3
 select myBox;

You know you’re dealing with a collection of Box objects, so you don’t need to use an
anonymous type here. Example A-62 shows the solution to this exercise.

Example A-62. The solution to Exercise 21-1

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_21_1
{
 public class Box
 {
 public int Length { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }

 public void DisplayBox()
 {

Chapter 21: LINQ | 645

Solution to Exercise 21-2. Use LINQ to SQL, but not the Object Relational Designer, to
retrieve all the orders from the Order Details table where the quantity ordered is
greater than 100. (You’ll have to use a short type for the quantity, or else you’ll get
an error.)

You’re using LINQ to SQL here, but without the O/R Designer, there are some extra
steps you’ll need to take. First, be sure to add a reference to the System.Data.Linq

namespace, and add the appropriate using statements.

 Console.WriteLine("{0}x{1}x{2}", Length, Width, Height);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 List<Box> boxList = new List<Box>
 {
 new Box { Length = 4,
 Width = 6,
 Height = 2 },
 new Box { Length = 3,
 Width = 1,
 Height = 4 },
 new Box { Length = 5,
 Width = 12,
 Height = 3 },
 new Box { Length = 4,
 Width = 7,
 Height = 5 },
 new Box { Length = 3,
 Width = 7,
 Height = 1 }
 };

 IEnumerable<Box> resultList =
 from myBox in boxList
 where myBox.Length > 3 && myBox.Width > 3
 select myBox;

 Console.WriteLine("Boxes greater than 3 units in
 length or width:");
 foreach (Box b in resultList)
 {
 b.DisplayBox();
 }
 }
 }
}

Example A-62. The solution to Exercise 21-1 (continued)

646 | Appendix: Answers to Quizzes and Exercises

Then you’ll need to define the OrderDetails class, and give it the correct attributes:

[Table(Name = "Order Details")]
public class OrderDetails
{
 [Column] public int OrderID { get; set; }
 [Column] public int ProductID { get; set; }
 [Column] public short Quantity { get; set; }
}

Define the data context (on one line):

DataContext db = new DataContext("Data Source = .\\SQLExpress;
Initial Catalog=Northwind;Integrated Security=True");

And get the table data:

Table<OrderDetails> orderDetails = db.GetTable<OrderDetails>();

Finally, you need to create the query, which isn’t too difficult:

var dbQuery = from od in orderDetails
 where od.Quantity > 100
 select od;

Example A-63 shows the full code for this exercise.

Example A-63. The full code for Exercise 21-2

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.Linq;
using System.Data.Linq.Mapping;

namespace Exercise_21_2
{
 [Table(Name = "Order Details")]
 public class OrderDetails
 {
 [Column] public int OrderID { get; set; }
 [Column] public int ProductID { get; set; }
 [Column] public short Quantity { get; set; }
 }

 class Program
 {
 static void Main()
 {
 DataContext db = new DataContext("Data Source = .\\SQLExpress;
 Initial Catalog=Northwind;Integrated Security=True");

 Table<OrderDetails> orderDetails = db.GetTable<OrderDetails>();
 var dbQuery = from od in orderDetails
 where od.Quantity > 100
 select od;

Chapter 21: LINQ | 647

Solution to Exercise 21-3. Using the Object Relational Designer, find out which
employees (first and last names) have serviced orders placed by the customer named
Ernst Handel.

The first thing you need to do in this exercise is right-click the project, select Add ➝

New Item, and add the LINQ to SQL classes. In the O/R Designer, the Customer name
is in the Customers table, the Employee name is in the Employees table, and they’re
joined by the Orders table, so add all three of those tables to the designer.

The first thing you need to is to add the default constructor for the data context in
Main():

DataClasses1DataContext myContext = new DataClasses1DataContext();

Now it’s just a matter of crafting the right query. You want to work with the Orders

table, so start there. Remember that from the Orders table (call it o), you can access
the fields of the related tables, so o.Customer.CompanyName will let you check for all
orders placed by Ernst Handel. From there, o.Employee.FirstName and o.Employee.

LastName give you the names you want. The query looks like this:

var orderList =
 from o in db.Orders
 where o.Customer.CompanyName == "Ernst Handel"
 select new { o.Employee.FirstName, o.Employee.LastName };

You need to use an anonymous type for the collection because you’re returning two
strings. The full code for this example is shown in Example A-64.

 Console.WriteLine("Products ordered in quantities of more than 100:");
 foreach (OrderDetails od in dbQuery)
 {
 Console.WriteLine("Order #{0}\tQty: {1}\tProduct:{2}",
 od.OrderID, od.Quantity, od.ProductID);
 }
 }
 }
}

Example A-64. The full code for Exercise 21-3

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exercise_21_3
{
 class Program
 {
 static void Main()
 {

Example A-63. The full code for Exercise 21-2 (continued)

648 | Appendix: Answers to Quizzes and Exercises

 DataClasses1DataContext db = new DataClasses1DataContext();

 var orderList =
 from o in db.Orders
 where o.Customer.CompanyName == "Ernst Handel"
 select new { o.Employee.FirstName, o.Employee.LastName };

 Console.WriteLine("Employees who've contacted Ernst Handel:");
 foreach(var order in orderList)
 {
 Console.WriteLine("{0} {1}", order.FirstName, order.LastName);
 }
 }
 }
}

Example A-64. The full code for Exercise 21-3 (continued)

649

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
+ (addition operator), 70
+= (addition self-assignment operator), 73
&& (and operator), 77
<...> (angle brackets), enclosing XML

elements, 444
= (assignment operator), 53, 68, 69, 80, 337
@ (at symbol), preceding verbatim string

literals, 333
\ (backslash), preceding escaped

characters, 52, 332
& (bitwise AND operator), 420
{...} (braces), 12

enclosing class body, 135
enclosing initial array values, 204
enclosing single-statement if blocks, 90
enclosing substitution parameters, 52
styles of, 93

: (colon)
preceding base class, 222, 263
preceding base constructor, 225
preceding interface, 263

+ (concatenation operator), 336
? : (conditional operator), 78
–– (decrement by 1 operator), 73–75
/ (division operator), 70
/= (division self-assignment operator), 73
. (dot operator), 12
"..." (double quotes), enclosing strings, 63,

332

== (equals operator), 76, 339
> (greater than operator), 76
>= (greater than or equal operator), 76
++ (increment by 1 operator), 73–75
=> (lambda operator), 400
< (less than operator), 76
<= (less than or equal operator), 76
% (modulus operator), 71, 110
%= (modulus self-assignment operator), 73
* (multiplication operator), 70
*= (multiplication self-assignment

operator), 73
\n (newline), 52
!= (not equals operator), 76
! (not operator), 77
|| (or operator), 77
(...) (parentheses), enclosing type for explicit

conversion, 57
; (semicolon), ending statements with, 46
’...’ (single quotes), enclosing chars, 49
/ (slash), preceding closing XML tags, 444
/*...*/ (slash asterisk), enclosing

comments, 13
// (slash, double), preceding comments, 13
[...] (square brackets)

enclosing attributes, 506
index operator, 198, 199
indexer property, 294

– (subtraction operator), 70
–= (subtraction self-assignment operator), 73
\t (tab), 52

650 | Index

A
abstract base classes, compared to

interfaces, 261
abstract classes, 234–237
abstract keyword, 235
abstract methods, 234
access modifiers, 125, 138, 226
accessors, 170–173, 297
Add() method

dictionaries, 326
lists, 308

addition operator (+), 70
addition self-assignment operator (+=), 73
AddRange() method, lists, 308
ADO.NET, 477

object model for, 485–486
using, 486–489

Advanced, Edit menu, 33
AfterCheck event, TreeView, 422
AfterSelect event, TreeView, 425
aggregation of classes, 126
Albahari, Ben (C# 3.0 in a Nutshell), 5
Albahari, Joseph (C# 3.0 in a Nutshell), 5
ampersand (&), bitwise AND operator, 420
ampersand, double (&&), and operator, 77
and operator (&&), 77
angle brackets (<...>), enclosing XML

elements, 444
angle brackets, single (see left angle bracket;

right angle bracket)
animations, 452–460

as resources, 456–460
storyboards for, 454, 457
triggers for, 453–456, 458–460, 464–466

anonymous methods, 399
anonymous types, 146, 497
Append() method, StringBuilder, 348
AppendFormat() method,

StringBuilder, 348, 350
applications

ASP.NET applications, 17, 432
console applications, 6, 16, 29
types of, 16
web applications, 432
Windows Forms applications, 17,

404–411, 447–449
WPF applications, 442–447
(see also projects)

arguments (see parameters)

arithmetic operators, 70, 244–248
Array class, System, 213
arrays, 197

assembled in methods from variable
number of parameters, 204

copying, 213
declaring, 198, 206
elements of

accessing, 199
clearing, 213
default values for, 199

initializing when creating, 204, 209
instantiating new instance of, 214
iterating over, 200–203

two-dimensional arrays, 207–210
with foreach loop, 203

jagged, 210–213
Length property of, 200, 214
methods of, 204, 213
multidimensional, 205–213
of objects, 231
one-dimensional, 197
passing to methods, 204
rectangular, 206–210
reversing, 214
searching, 213, 214
sorting, 214–216
zero-based, 200

as operator, 271–276
ASP.NET applications, 17, 432
assemblies, 24

(see also dynamic link libraries;
executable programs)

assignment, 52–56
definite, 54
to indexers, 298

assignment operator (=), 53, 68, 69, 80, 337
association among classes, 125
asterisk (*), multiplication operator, 70
asterisk, equals sign (*=), multiplication

self-assignment operator, 73
at symbol (@), preceding verbatim string

literals, 333
attached events, WPF, 453
attributes of classes, 134, 506
automatic properties, 173
Autos window, 184–188

Index | 651

B
Background property

Grid element, 449
Label element, 449

backslash (\), preceding escaped
characters, 52, 332

base classes, 222
abstract, compared to interfaces, 261
constructor called by derived classes, 225
hiding methods of, 223, 225
virtual methods in, 227–230

base keyword, 225
BeforeExpand event, TreeView, 423
BinarySearch() method

arrays, 213
lists, 308

bitwise AND operator (&), 420
Book class example, 493–496, 497, 499,

500–505
bookmarks in code, 34
books and publications

The C Programming Language
(Kernighan; Ritchie), 93

C# 3.0 in a Nutshell (Albahari;
Albahari), 5

Design Patterns (Gamma et al.), 386
An Investigation into the Laws of

Thought, on Which Are Founded
the Mathematical Theories of Logic
and Probabilities (Boole), 50

Learning ASP.NET 3.5 (Liberty; Hurwitz;
MacDonald), 17, 432

Mastering Regular Expressions, Third
Edition (Friedl), 351

Programming .NET Windows
Applications (Liberty;
Hurwitz), 404

Programming C# 3.0 (Liberty; Xie), xvii,
1

Refactoring: Improving the Design of
Existing Code (Fowler et al.), 41

XML in a Nutshell (Harold; Means), 444
bool type (C#), 47, 49
Boole, George (Boolean values named

after), 50
Boolean type (.NET), 47
Box class example, 137, 166, 169
braces ({...}), 12

enclosing class body, 135
enclosing initial array values, 204
enclosing single-statement if blocks, 90

enclosing substitution parameters, 52
styles of, 93

brackets (see square brackets)
branching, 47, 85

conditional (see conditional branching)
unconditional (see unconditional

branching)
break statement, 98, 111
breakpoints, 181–184
Breakpoints window, 183
Brush elements, XAML, 453, 463
bugs, 180, 358

(see also debugging)
Build menu, 29, 41
Button control, 412

adding to form, 414
events for, handling, 426–431

Button control, WPF, 446, 448
byte type (C#), 47, 48
Byte type (.NET), 47

C
The C Programming Language (Kernighan;

Ritchie), 93
C# 3.0 in a Nutshell (Albahari; Albahari), 5
C# Express Edition, 2, 16–17, 20

installing, 2
windows in, 26–28

C# language, 1, 5
benefits of, xv
combining with WPF, 460–473
platform for, 3
version of, used in this book, 2

call stack, 156, 364–365
displaying, 371–374
unwinding, 359, 364

Call Stack window, 189
Camel notation, 60
capabilities of object, 122
Capacity property

lists, 307, 310
StringBuilder, 349

case of text, changing, 33
case statement (see switch statement)
casting, 56

operators, 254
to an interface, 270, 271

catch blocks (exception handlers), 357,
361–363

dedicated, 366–368
location of, affecting results of, 358

652 | Index

catch keyword, 357
chaining assignments, 69
char type (C#), 47, 49
Char type (.NET), 47
Chars property, strings, 334
Checkbox control, 412, 414
child classes, 222
Choose Toolbox Items, Tools menu, 43
chords, 29
class body, 135
Class View window, 37
classes, 12, 123, 133

abstract, 234–237, 261
access to, controlling (see access

modifiers)
as servers, 126
attributes of, 134, 506
base (see base classes)
child, 222
as clients, 126
commonalities between, factoring

out, 220, 415
compared to objects, 136
concrete, 237
defining, 124, 134–139
derived, 222, 225
instantiating, constructors for, 142–144,

225
members of (see fields; methods;

properties)
naming conventions for, 60, 135
parent, 222
partial, 410
private implementation of, 127
public interface of, 127
relationships between, 125
root, 222, 237
sealed, 237
searching for, 31
testing, 40
unnamed (anonymous types), 146, 497

Clear() method
arrays, 213
dictionaries, 326
lists, 308
queues, 319
stacks, 322

client
classes as, 126
objects as, 134

Clipboard Ring, Edit menu, 30
Clock class example, 387–394, 396–399
Close() method

invoking Dispose(), 155
WPF, 450

CLR (Common Language Runtime), 4, 17,
359, 474

code (see source code)
code completion, 35
Code Definition window, 37
code examples (see examples)
code snippets, 36, 42
Code Snippets Manager, Tools menu, 42
collections

dictionaries, 325–328
generic collections, 292

foreach loop used with, 303, 306
interfaces for, 302–307
lists (List<T> class), 307–319
queues, 319–322
stacks, 322–325

indexers for, 294
accessors for, 297
assignment to, 298
creating, 293–298
on types other than integers, 298–302

interfaces for, 293, 303
queries against, 492–496
(see also arrays)

colon (:)
preceding base class, 222, 263
preceding base constructor, 225
preceding interface, 263

ColorAnimation element, XAML, 454
columns, database, 481
Command window, 40
comments, 13, 33
Common Language Runtime (see CLR)
Compare() method, strings, 334–336
CompareTo() method, IComparable, 310,

314
comparison operators (see relational

operators)
compile time, 50
compiler errors, 50
compiling, 10–11
Complete Word command, IntelliSense, 35
composed-of relationship between

classes, 126
Concat() method, strings, 336

Index | 653

concatenation operator (+), 336
concrete classes, 237
conditional branching, 85, 88

if statement, 88–94
if statement, nested, 95–98
if...else statement, 94, 96
switch statement, 98–100, 102

conditional opeartors, 80
conditional operator (? :), 78
conditions on breakpoints, 183
Connect To Database, Tools menu, 42
Connect to Device, Tools menu, 42
Connect to Server, Tools menu, 42
connection string, 486, 487
console applications, 6, 16, 29
Console class, 15
const keyword, 58
constants, 58–63
constructors, 142–144, 225

(see also methods)
Contains() method

lists, 308
queues, 319
stacks, 322

ContainsKey() method, dictionaries, 326
ContainsValue() method, dictionaries, 326
Content property, Button element, 446
continue statement, 112–114
controls, 404

adding to form, 406
events for, 408–411
naming conventions for, 413
properties of, 406

conversion operators, 253–257
conversions

Convert class for, 104
explicit, 57, 253
implicit, 56, 253
operators for, 253–257

Convert class, 104
Copy() method

arrays, 213
strings, 334, 337

copy-and-paste, 30
CopyTo() method

lists, 308
queues, 319
stacks, 322, 323

Count property
dictionaries, 326
lists, 307

queues, 319
stacks, 322

counter variable, in for loops, 110
.cs file extension, 7, 22
.csproj file extension, 24
C-style comments, 13
curly braces (see braces)
custom exception class, 374–376

D
data architecture, disconnected, 477
data hiding, 168
Data menu, 41
data sources, file extension for, 24
data type conversions (see conversions)
data types (see types)
DataAdapter class, ADO.NET, 486, 487
database, 478

accessing with LINQ, 505–508
accessing with Object Relational

Designer, 508–512
accessing with SQL, 483–484
columns, 481
connecting to, 42, 484, 486, 487
DRI (declarative referential integrity), 482
joins

in LINQ queries, 502–505
in SQL queries, 484

normalization, 482
Northwind database, installing, 478–480
records (rows), 481
relational, 478
tables, 481

DataColumn class, ADO.NET, 485
DataContext class, LINQ, 506
DataContext object, XAML, 468
DataReader class, 486
DataRelation class, ADO.NET, 485
DataRow class, ADO.NET, 488
DataSet class, ADO.NET, 485, 487
DataTable class, ADO.NET, 485, 487
DataTemplate element, XAML, 469
DbCommand class, ADO.NET, 486
DbConnection class, ADO.NET, 486
Debug menu, 28, 41

New Breakpoint, Break at Function, 183
Start Debugging, 181
Stop Debugging, 191
Windows, Breakpoints, 183

debugger, 180

654 | Index

debugging
breakpoints, setting, 181–184
call stack, examining, 189
examining values, 184–188
stepping into code, 182
stopping, 190
watching specific values, 188–189

decimal type (C#), 47
Decimal type (.NET), 47
declarative referential integrity (DRI), 482
decoupling, 169
decrement by 1 operator (––), 73–75
decrement operators, 72–75, 80
dedicated catch blocks, 366–368
default constructors, 142
default keyword, in switch statement, 99
definite assignment, 54, 177
delegate keyword, 381
delegates, 380, 381–385

events implemented with, 387–394
multicast delegates, 390
restricting to event handling, 394–399

Dequeue() method, queues, 320
derived classes, 222, 225
Design Patterns (Gamma et al.), 386
design time, 50
#develop compiler, 16
development teams, size of, 130
Device Emulator Manager, Tools menu, 42
devices, connecting to, 42
dictionaries, 325–328
DirectoryInfo class, 418
disconnected data architecture, 477
Dispose() method, 154
division operator (/), 70
division self-assignment operator (/=), 73
.dll file extension, 23
do...while loops, 108
dockable windows, in C# Express, 27
Document class example, 263, 267,

271–276, 277, 280–285, 286
dot operator (.), 12
double quotes ("..."), enclosing strings, 63,

332
double type (C#), 47, 49
Double type (.NET), 47
DoubleAnimation element, XAML, 457, 465
DRI (declarative referential integrity), 482
dynamic link libraries, 23

E
Edit menu, 30–36
editor in C# Express, 26–28
else if idiom, 96
else statement, 94, 96
emulators, connecting to, 42
encapsulating methods (see delegates)
encapsulation, 126, 133
EndsWith() method, strings, 343
Enqueue() method, queues, 320
EnsureCapacity() method,

StringBuilder, 349
enum keyword, 61
enumerations, 60–63
equals operator (==), 76, 339
equals sign (=), assignment operator, 53, 68,

69, 80, 337
equals sign, double (==), equals

operator, 76, 339
equals sign, right angle bracket (=>), lambda

operator, 400
Equals() method

Object, 238, 249
strings, 334, 339

Error List window, 37
errors

compared to exceptions, 358
compiler, 50
user causing, 358

escape characters, 52, 332
event handlers, 387
event keyword, 395–399
EventArgs class, 387
event-driven programming, 380
events (C#), 381, 385

for controls, 408–411
handling, 387
implementing with delegates, 387–394
inside WPF application, 470
publishing, 386
restricting delegates to event

handling, 394–399
searching for, 31
subscribing to, 386

events (WPF)
handling (see triggers)
types of, 453

Events window, Visual Studio, 408–410
EventTrigger element, XAML, 454, 458, 465

Index | 655

examples
Book class, 493–496, 497, 499, 500–505
Box class, 137, 166, 169
Clock class, 387–394, 396–399
complexity of, 128
Document class, 263, 267, 271–276, 277,

280–285, 286
FileCopier application, 411–414

Button events, handling, 426–431
source code for, 431–439
TreeView controls,

populating, 415–422
TreeView events, handling, 422–426

Fraction class, 243–248, 254–257
Hello World, 6–9, 11–16
Hello WPF, 443–447
ListBox control, 294–298, 299–302,

303–307
MediaStorage class, 381–385
Northwind database, 486, 506–508,

509–512
presidents’ images, 460–473
source code for, xx
using, permission for, xxi

exception class, custom, 374–376
Exception class, System, 358, 370–374
exception handlers (see catch blocks)
exceptions, 357

compared to bugs and errors, 358
custom, 374–376
finally blocks, 368–370
handling (see catch blocks)
help file link for, providing, 371
message about, providing, 371
stack trace for, 371–374
throwing (raising), 357, 358, 359–361
types of, 358

exclamation point (!), not operator, 77
exclamation point, equals sign (!=), not

equals operator, 76
.exe file extension, 10, 23
executable programs, 23
Exists() method, lists, 308
explicit conversions, 57, 253
explicit keyword, 254, 256
Expression Blend tool, 452
expressions, 68
expressions, regular (see regular expressions)
eXtensible Application Markup Language

(XAML), 442
(see also WPF (Windows Presentation

Foundation))

eXtensible Markup Language (XML), 444
External Tools, Tools menu, 43

F
F10 key, in debugger, 182
F11 key, in debugger, 182
factoring out commonalities, 220, 415
fall-through cases, in switch statement, 101
FCL (Framework Class Library), 5
fields (member variables), 134

access to (see access modifiers)
compared to properties, 168
default values for, 142
initializers for, 144
initializing, 144
location of, 138
static, 151–153
with same name as parameters, 148
(see also properties)

FIFO (first-in, first-out) collection (see
queues)

file extensions
for data sources, 24
for dynamic link libraries, 23
for executable programs, 23
for MSIL, 10
for programs, 7
for project metadata, 24
for solutions, 23
for source files, 22

File menu, 29
FileCopier application example, 411–414

Button events, handling, 426–431
source code for, 431–439
TreeView controls, populating, 415–422
TreeView events, handling, 422–426

files, inserting into source code, 32
Fill property, Rectangle element, 453
Finalize() method, Object, 238
finalizing objects, 154–155, 238
finally blocks, 368–370
Find and Replace options, Edit menu, 30
Find in Files, Edit menu, 31
Find Symbol, Edit menu, 31
Find() method, lists, 308
FindAll() method, lists, 308
first-in, first-out (FIFO) collection (see

queues)
float type (C#), 47, 49
folder for projects (see location of projects)

656 | Index

for loops, 109–117
condition expression not specified in, 116
counter variable in, 110
counter variable not initialized in, 114
exiting, 111
iteration outside of header, 115
modulus operator controlling, 110
skipping to next iteration of, 112–114

foreach loops, 203, 303, 306
foreign key, 482
forever loops, 116
Format menu, 42
Format() method, strings, 334
formatting screen output, 52
forms, 404–411
forward slash (see slash)
Fowler, Martin (Refactoring: Improving the

Design of Existing Code), 41
Fraction class example, 243–248, 254–257
Framework Class Library (FCL), 5
Friedl, Jeffrey E. F. (Mastering Regular

Expressions, Third Edition), 30,
351

functions, member (see methods)

G
Gamma, Erich (Design Patterns), 386
garbage collection, 154
generalization, 220
generic collections, 292

foreach loop used with, 303, 306
interfaces for, 302–307
lists (List<T> class), 307–319
queues, 319–322
stacks, 322–325

get accessors, 171, 297
GetEnumerator() method

dictionaries, 326
lists, 308
queues, 320
stacks, 322

GetHashCode() method, Object, 238, 326
GetRange() method, lists, 308
GetType() method, Object, 238
Go To, Edit menu, 32
"goes to" operator (=>), 400
goto statement, 101, 105
greater than operator (>), 76
greater than or equal operator (>=), 76

Grid element, XAML, 445, 448
accessing resources from, 468
properties for, 449
with stack panels, 461–466

H
Harold, Elliotte Rusty (XML in a

Nutshell), 444
has-a relationship between classes, 126
hash function, 238
heap, 138, 156–159, 199
Height property, Label element, 448
Hejlsberg, Anders (developer of C#), 5
Hello World example, 6–9, 11–16
Hello WPF example, 443–447
Helm, Richard (Design Patterns), 386
Help menu, 44
HelpLink property, Exception class, 371
hiding base class methods, 223, 225
hit counts on breakpoints, 183
Hungarian notation, 413
Hurwitz, Dan

Learning ASP.NET 3.5, 17, 432
Programming .NET Windows

Applications, 404
Programming ASP.NET, 43

I
ICollection interface, 293
ICollection<T> interface, 303
IComparable interface, 310
IComparable<T> interface, 303
IComparer<T> interface, 303, 314–319
IDE (integrated development

environment), 16–17
identifier of class, 135
identifiers, 53
IDictionary<K,V> interface, 303
IDictionary<TKey,TValue> interface, 326
IDisposable interface, 154
IEnumerable interface, 293
IEnumerable<T> interface, 303–307
IEnumerator<T> interface, 303
if statement, 88–94

nested, 95–98
short-circuit evaluation of, 92–94
single-statement if blocks in, 90–92

if...else statement, 94, 96
IL (Microsoft Intermediate Language), 10

Index | 657

IList<T> interface, 303
Images class, 467
ImageURL class, 466
implementer of interface, 260, 261
implements relationship, 261
implicit conversions, 56, 253
implicit keyword, 254
implicitly typed variables, 55, 497
Import and Export Settings command, 43
increment by 1 operator (++), 73–75
increment operators, 72–75, 80
incremental search, 33
indentation, changing, 33
index operator ([...]), 198, 199
indexers for collections, 294

accessors for, 297
assignment to, 298
creating, 293–298
on types other than integers, 298–302

IndexOf() method
arrays, 214
lists, 308
strings, 343, 344

inheritance, 127, 222–226
initialization, 53, 55
initializers

field, 144
object, 146

inner joins, 484
input from console (see ReadLine() method)
Insert File As Text, Edit menu, 32
Insert Snippet command, IntelliSense, 35, 36
Insert() method

lists, 308
StringBuilder, 349

InsertRange() method, lists, 308
instance members, 148
instantiating objects, 135
int type (C#), 47, 48
Int16 type (.NET), 47
Int32 type (.NET), 47
Int64 type (.NET), 47
integrated development environment

(IDE), 16–17
IntelliSense, 35
interfaces, 260–262

casting to, 270, 271
for collections, 293, 303
combining, 279
compared to abstract base classes, 261
defining, 265

determining whether an object
implements, 271–276

explicit implementation of, 285–288
extending, 276–279
for generic collections, 302–307
implementer of, 260, 261
implementing, 262–266
implementing multiple, 267–269,

285–288
methods of, overriding, 280–285
naming conventions for, 261, 262
polymorphism used by, 262
searching for, 31

internal access modifier, 139
intrinsic types, 47
An Investigation into the Laws of Thought,

on Which Are Founded the
Mathematical Theories of Logic and
Probabilities (Boole), 50

is operator, 271–276
is-a relationship, 127, 219

(see also specialization)
IsMatch() method, Regex, 352
Item property

dictionaries, 326
lists, 307

iteration (see loops)

J
jagged arrays, 210–213
JIT (Just In Time) compiler, 10
Johnson, Ralph (Design Patterns), 386
joins

in LINQ queries, 502–505
in SQL queries, 484

jump statements (see unconditional
branching)

Just In Time (JIT) compiler, 10

K
K&R style for braces, 93
Kernighan, Brian W. (The C Programming

Language), 93
keyboard shortcuts, 29
keys, 29
Keys property, dictionaries, 326
keywords, 5

658 | Index

L
Label control, 412
Label element, XAML, 445, 448
lambda expressions, 400, 499
lambda operator (=>), 400
Language Integrated Query (see LINQ)
last-in, first-out (LIFO) collection (see stacks)
LastIndexOf() method

arrays, 214
lists, 308
strings, 344

Learning ASP.NET 3.5 (Liberty et al.), 17,
432

left angle bracket (<), less than operator, 76
left angle bracket, equals sign (<=), less than

or equal operator, 76
Length property

arrays, 200, 214
StringBuilder, 349
strings, 334, 342

less than operator (<), 76
less than or equal operator (<=), 76
Liberty, Jesse

Learning ASP.NET 3.5, 17, 432
Programming .NET Windows

Applications, 404
Programming ASP.NET, 43
Programming C# 3.0, xvii, 1

LIFO (last-in, first-out) collection (see stacks)
lightbulb joke, 134
line number, moving to, 32
LINQ (Language Integrated Query), 492

accessing databases using, 505–508
queries using (see queries (LINQ))

Linq namespace, System.Data, 505
List Members command, IntelliSense, 35
ListBox control example, 294–298, 299–302,

303–307
ListBox element, XAML

defining, 468
style of, 463–464

lists (List<T> class), 307–310
methods of, 308
properties of, 307
sorting, 310–319

literal constants, 58
Loaded event, Rectangle element, 453
local variables, 141, 155
Locals window, 184–188
location of projects, 9

logical operators, 77–78
precedence of, 80
short-circuit evaluation of, 92–94

long type (C#), 47, 48
loops, 85, 104

arrays using, 200–203, 207–210
do...while loops, 108
for loops, 109–117
foreach loops, 203, 303, 306
forever loops, 116
goto statement for, 105
while loops, 106

M
MacDonald, Brian (Learning ASP.NET

3.5), 17, 432
Macro Explorer window, 40
Main() method, 13, 136
Margin property, Label element, 448
Mastering Regular Expressions, Third

Edition (Friedl), 30, 351
Match() method, Regex, 352
Matches() method, Regex, 352
mathematical operators, 69–72, 80
MaxCapacity property, StringBuilder, 349
.mdb file extension, 24
MDI (Multiple Document Interface), 26
Means, W. Scott (XML in a Nutshell), 444
MediaStorage class example, 381–385
members, 148–153

(see also fields; methods; properties)
memory allocation, 155–159
menus, 29

(see also specific menus)
Message property, Exception class, 371
metaphors, objects as, 122
methods, 13, 124, 134

abstract, 234
access to (see access modifiers)
accessors, 170–173, 297
anonymous, 399
calling, 86, 138
constructors, 142–144, 225
encapsulating (see delegates)
hiding base class methods, 223, 225
in interfaces

defining, 265
overriding, 280–285

lambda expressions returning, 400
naming conventions for, 60

Index | 659

overloading, 165–168
parameters of (see parameters)
parameters passed to, 15
return type of, 141, 168
returning multiple values, 173–177
searching for, 31
signature of, 166, 168
static, 14, 148–151
stubbing out, 138
unconditional branching using, 86
virtual, 227–230, 232, 280–285
void (no return value), 14

Microsoft Developer Network, 307
Microsoft Intermediate Language (MSIL), 10
Microsoft SQL Server 2005 Express Edition

(see SQL Server 2005 Express
Edition)

minus sign (–), subtraction operator, 70
minus sign, double (––), decrement by 1

operator, 73–75
minus sign, equal sign (–=), subtraction

self-assignment operator, 73
models, for object-oriented

programming, 123
modulus operator (%), 71, 110
modulus self-assignment operator (%=), 73
Mono project, 16
MouseEnter event, Rectangle element, 458
MouseLeave event, Rectangle element, 459
MSDN Library, 2, 5
MSIL (Microsoft Intermediate Language), 10
multicast delegates, 390
multidimensional arrays, 205–213
Multiple Document Interface (MDI), 26
multiplication operator (*), 70
multiplication self-assignment operator

(*=), 73

N
Name attribute

Button element, 446
Label element, 446

namespaces, 12, 31
naming conventions, 60

Camel notation, 60
for classes, 60, 135
for controls, 413
Hungarian notation, 413
for interfaces, 261, 262
for methods, 60
for objects, 60, 135

Pascal notation, 60
for properties, 171

nested if statements, 95–98
.NET Framework, 2, 4
.NET platform, 1, 4
New Breakpoint dialog, 183
new keyword

instantiating objects, 135, 146, 150
replacing base class method, 223, 233

New Project dialog, 25
newline (\n), 52
Nodes property, TreeView, 423
nonnumeric types, 49
normalization, 482
Northwind database

example using, 486, 506–508, 509–512
installing, 478–480

not equals operator (!=), 76
not operator (!), 77
NullReferenceException, System, 302
numeric types, 48

O
Object class, 237–239
object initializers, 146
object model for ADO.NET, 485–486
Object Relational Designer, 508–512
Object Test Bench window, 40
object-oriented programming, 121, 126–129

analysis for, 129
design for, 129
encapsulation, 126, 133
models for, 123
polymorphism, 128, 219, 227–233, 262
specialization, 127, 219–222

objects, 121, 123, 133
arrays of, 231
capabilities of, 122
compared to classes, 136
current instance of, this keyword for, 147
equivalence of, determining, 238
finalizing, 154–155, 238
instantiating, 135, 146
as metaphors, 122
naming conventions for, 60, 135
responsibilities of, 122
state of, 121

one-dimensional arrays, 197
Opacity property

Button element, 449
Label element, 449

660 | Index

operator keyword, 244–248, 254
operators, 68

arithmetic, 70, 244–248
assignment, 53, 68, 69, 337
casting, 254
conditional, 78
conversion, 253–257
decrement, 72–75
increment, 72–75
logical, 77–78, 92–94
mathematical, 69–72
overloading (see overloading operators)
precedence of, 79–81
relational (comparison), 75, 248–253
self-assignment, 72

Options command, 43
Options property, Regex, 352
O/R Designer (see Object Relational

Designer)
or operator (||), 77
out parameters, 177
outer joins, 484
outlining code, 34
output to console (see WriteLine() method ,

Console)
Output window, 37
overloading methods, 165–168
overloading operators

arithmetic operators, 244–248
conversion operators, 253–257
relational (comparison)

operators, 248–253
usefulness of, guidelines for, 248

override keyword, 227, 230, 232
overriding virtual methods, 227, 230, 232

P
PadLeft() method, strings, 334
PadRight() method, strings, 334
Parameter Info command, IntelliSense, 35
parameters, 15, 139–141

declaring, 139
out parameters, 177
passing, 140

by reference, 175–176
variable number of, 204

substitution parameters, 51
with same name as fields, 148

params keyword, 204
parent classes, 222

parentheses ((...)), enclosing type for explicit
conversion, 57

partial classes, 410
partial implementation, 261
Pascal notation, 60
pattern matching, 331, 350
Peek() method

queues, 320
stacks, 322

percent sign (%), modulus operator, 71, 110
percent sign, equals sign (%=), modulus

self-assignment operator, 73
plus sign (+)

addition operator, 70
concatenation operator, 336

plus sign, double (++), increment by 1
operator, 73–75

plus sign, equals sign (+=), addition
self-assignment operator, 73

polymorphism, 128, 219, 227–233, 262
Pop() method, stacks, 322
postfix increment/decrement

operator, 73–75
precedence of operators, 79–81
prefix increment/decrement operator, 73–75
presidents’ images example, 460–473

data for, 466–468
event handling in, 470
grids in, 461–466
source code for, 471–473
stack panels in, 461–466, 468

primary key, 481
private access modifier, 125, 139, 226
private implementation of class, 127
problem domain, 121
Program class, 13
programmers, team size of, 130
Programming .NET Windows Applications

(Liberty; Hurwitz), 404
Programming ASP.NET (Liberty;

Hurwitz), 43
Programming C# 3.0 (Liberty; Xie), xvii, 1
programs (see applications; executable

programs; source code)
Project menu, 41
projects, 22–25

location of, 9, 25
metadata for, 24
naming, 26
templates for, 25
types of, 24, 25
(see also applications)

Index | 661

properties, 134, 168–173
automatic, 173
compared to fields, 168
of controls, 406
creating, 170
naming conventions for, 171
read-only, 173
searching for, 31
write-only, 173
(see also fields)

Properties window, Visual Studio, 27, 38,
405, 406–407

Properties window, WPF, 449
Property Manager window, 40
property pages, 39
protected access modifier, 139, 226
protected internal access modifier, 139
public access modifier, 125, 139, 226
public interface of class, 127
Publish/Subscribe (Observer) Pattern, 386
Push() method, stacks, 322

Q
queries (LINQ)

joins in, 502–505
of in-memory collections, 492–496
ordering in, 500–505
with anonymous types, 497
with lambda expressions, 499

queries (SQL), 483
question mark, colon (? :), conditional

operator, 78
queues, 319–322
Quick Find, Edit menu, 30
Quick Info command, IntelliSense, 35
Quick Replace, Edit menu, 30
QuickWatch window, 188
quotes, double ("..."), enclosing strings, 63
quotes, single ('...'), enclosing chars, 49

R
raising (throwing) exceptions, 357, 358,

359–361
Random class, 311
random values, generating, 311
ReadLine() method, 103
read-only properties, 173
records (rows), database, 481
Rectangle element, XAML, 452

rotating, 456–460
triggers for, 453–456

rectangular arrays, 206–210
recursion, 417
red dot in source code window, 181
ref keyword, 175
Refactor menu, 41
Refactoring: Improving the Design of

Existing Code (Fowler et al.), 41
reference types, 156–159, 199
ReferenceEquals() method, 339
Regex class, 351–353
regions, interface implementation in, 266
regular expressions, 30, 331, 350–353
RegularExpressions namespace,

System.Text, 351
relational (comparison) operators, 75, 80,

248–253
relational database, 478

(see also database)
relationships between classes, 125
remainder, modulus operator for, 71
remote server, connecting to, 42
Remove() method

dictionaries, 326
lists, 308
StringBuilder, 349
strings, 334

RemoveAt() method, lists, 308
RemoveRange() method, lists, 308
RenderTransform element, XAML, 456
RepeatBehavior property, Animation

element, 455, 458
Replace options, Edit menu, 30
Replace() method

Regex, 352
StringBuilder, 349

Resource View window, 40
resources, informational (see books and

publications; website resources)
resources, project

list of, 40
scarce, 154
unmanaged, 154

resources, WPF, 450
accessing data in, 468
animations as, 456–460
instantiating objects in, 467

responsibilities of object, 122
return type of method, 141, 168
return value of method, multiple, 173–177
Reverse() method

arrays, 214
lists, 308

662 | Index

right angle bracket (>), greater than
operator, 76

right angle bracket, equals sign (>=), greater
than or equal operator, 76

Ritchie, Dennis M. (The C Programming
Language), 93

root class, 222, 237
(see also Object class)

root of virtual dispatch, 233
RotateTransform element, XAML, 456, 458
routed events, WPF, 453
RowDefinition element, XAML, 462
Rows collection, DataTable class, 485
Run() method, 150
runtime, 50

S
sbyte type (C#), 47, 48
SByte type (.NET), 47
scarce resources, 154
scope of variables, 141, 156
screen output (see WriteLine() method,

Console)
sealed classes, 237
sealed keyword, 237
searching

arrays, 213, 214
Find and Replace options, Edit menu, 30
incremental search, 33
for symbols, 31

self-assignment operators, 72, 80
semantics, 46
semicolon (;), ending statements with, 46
server

classes as, 126
connecting to, 42

set accessors, 172, 297
Setter elements, XAML, 451
short type (C#), 47, 48
short-circuit evaluation, 92–94
signature of method, 166, 168
signed numeric types, 48
single quotes ('...'), enclosing chars, 49
Single type (.NET), 47
single-statement if blocks, 90–92
skeleton of program, 7
slash (/)

division operator, 70
preceding closing XML tags, 444

slash asterisk (/*...*/), enclosing
comments, 13

slash, double (//), preceding comments, 13

slash, equals sign (/=), division
self-assignment operator, 73

.sln file extension, 23
snippets, code, 36, 42
Solution Explorer, Visual Studio, 27, 406
solutions, 23

created automatically for projects, 25
file extension for, 23
metadata for, 23

Sort() method
arrays, 214
lists, 308, 310

sorting arrays, 214–216
sorting lists, 310–319
.sou file extension, 23
source code, 6, 22

bookmarking, 34
code completion for, 35
file extension for, 22
for examples, xx
inserting files into, 32
maintaining, 91
outlining, 34
red dot displayed in, 181
snippets of, 36, 42
spaghetti code, 105
stepping into, 182
yellow arrow and highlighting in, 182

spaghetti code, 105
specialization, 127, 219–222
Split() method

Regex, 352
strings, 334, 346–348

SQL (Structured Query Language), 483–484
SQL Server 2005 Express Edition, 2
square brackets ([...])

enclosing attributes, 506
index operator, 198, 199
indexer property, 294

stack (call stack), 156, 364–365
displaying, 371–374
unwinding, 359, 364

StackPanel element, XAML, 461–466
stacks (collections), 322–325
StackTrace property, Exception

class, 371–374
Start Page, 6, 22, 40
StartsWith() method, strings, 334
state of object, 121

(see also properties)
statements, 9, 46
static fields, 151–153

Index | 663

static keyword, 14, 148, 244
static members, 148–153
static methods, 14, 148–151
status messages, in Output window, 37
stepping into code, 182
Storyboard element, XAML, 457, 465
storyboards, 454, 457
string class (C#), 331
String class (.NET), 331, 332
string literals, 63, 332, 333
StringBuilder class, 348–350
strings, 63

appending to, 348, 350
case of, changing, 334
comparing, 334–336, 339
concatenating, 336
copying, 334, 337
creating, 332–333
escape characters in, 332
formatting, 334
indexers on, 298–302
inserting characters in, 349
methods for, 334
padding, 334
properties for, 334
removing characters from, 349
replacing characters in, 349, 352
representing objects as, 238
splitting, 334, 346–348, 352
substrings of, finding, 334, 343, 344, 352
switch statement on, 102
trimming, 334

strongly typed language, 47
structs, 160
Structured Query Language (see

SQL), 483–484
stubbing out methods, 138
Style element, XAML, 450, 463, 464
substitution parameters, 51
Substring() method, strings, 334, 344
subtraction operator (–), 70
subtraction self-assignment operator (–=), 73
SuppressFinalize() method, 154
Surround With command, IntelliSense, 35,

36
switch statement, 98–100

fall-through cases in, 101
on strings, 102

symbolic constants, 58
symbols, searching for, 31
syntax, 9, 46
syntax errors, 10

System.Array class, 213
System.Console class, 15
System.Data.Linq namespace, 505
System.Exception class, 358, 370–374
System.NullReferenceException, 302
System.String class, 331
System.Text.RegularExpressions

namespace, 351
System.Text.StringBuilder class, 348
System.Threading namespace, 388

T
<T>, type parameter, 293, 302
tab (\t), 52
tables, database, 481
Task List window, 40
templates, 25
testing classes, 40
TextBlock element, XAML, 462
TextBox control, 412, 413
this keyword, 147, 294
Thread class, 388
Threading namespace, System, 388
throw statement, 359–361
throwing exceptions, 357, 358, 359–361
ToArray() method

lists, 308
queues, 320
stacks, 322

ToCharArray() method, strings, 334
ToLower() method, strings, 334
Toolbox, 40
Tools menu, 42
ToString() method, Object, 238, 333
ToUpper() method, strings, 334
TreeNode class, 417
TreeNodeCollection class, 417
TreeView class, 417
TreeView control, 412

adding to form, 414
events for, handling, 422–426
populating, 415–422

triggers, 443, 453–456, 458–460, 464–466
Trim() method, strings, 334
TrimEnd() method, strings, 334
TrimExcess() method, lists, 308
TrimStart() method, strings, 334
troubleshooting (see bugs; debugging)
try blocks, 361–363
try keyword, 357
type conversions (see conversions)

664 | Index

type parameter, 293, 302
type safety, 5, 293
types, 47

anonymous, 146, 497
determining for object, 238
errors caused by improper use of, 50
of generics, 293, 302
implicitly typed variables, 55
intrinsic, 47
nonnumeric, 49
numeric, 48
reference types, 156–159, 199
value types, 156, 161, 175–176

U
uint type (C#), 47, 48
UInt16 type (.NET), 47
UInt32 type (.NET), 47
UInt64 type (.NET), 47
ulong type (C#), 47, 48
UML (Unified Modeling Language), 220
unconditional branching, 85, 86–88

break statement, 98, 111
continue statement, 112–114
goto statement, 101, 105
method calls as, 86

Unified Modeling Language (UML), 220
unmanaged resources, 154
unsigned numeric types, 48
use-case scenarios, 129
ushort type (C#), 47, 48
using keyword, to indicate namespaces, 155
using statement, 12, 155

V
value keyword, 172
value types

passing by reference, 175–176
storage of, 156
structs as, 161

Values property, dictionaries, 326
var keyword, 55, 147
variables, 48

assigning values to, 52–56
defining, 53
definite assignment of, 54
implicitly typed, 55, 497
initializing, 53, 55
local, 155
naming conventions for, 60
parameters acting as, 140

scope of, 141
searching for, 31
(see also fields)

verbatim string literals, 333
versioning, 232
vertical bar, double (||), or operator, 77
VerticalAlignment property, Label, 448
View menu, 36–40
virtual keyword, 227, 280
virtual methods, 227–230, 232, 280–285
Visual C# 2008 Express Edition (see C#

Express Edition)
Visual Studio, 16–17, 20

design environment, 405–411
Events window, 408–410
Properties window, 405, 406–407
Solution Explorer, 406
Toolbox, 406
version of, used in this book, 2

Visual Web Developer, 432
Vlissides, John (Design Patterns), 386
void keyword, 14

W
warnings, compiler, 50
Watch window, 188
web applications, 432
web browser, opening, 40
Web services, 17
website resources

#develop compiler, 16
examples, source code for, xx
Expression Blend tool, 452
for this book, xxi
Microsoft Developer Network, 307
Mono project, 16
MSDN Library, 5
Northwind database, 478

while loops, 106
whitespace, 33, 63

editing, 33
newline (\n) escape character, 52
tab (\t) escape character, 52

wildcards, in Find and Replace options, 30
Wiltamuth, Scott (developer of C#), 5
Window element, XAML, 443
Window menu, 43
Windows Forms applications, 17, 404–411,

447–449
Windows Presentation Foundation (see

WPF)

Index | 665

word wrap, toggling, 33
WPF (Windows Presentation

Foundation), 442–447
animations in, 452–460

as resources, 456–460
storyboards for, 454, 457
triggers for, 453–456, 458–460,

464–466
combining with C#, 460–473
compared to Windows Forms, 447–449
event handling in, 470
installing, 443
resources in, 450

accessing data in, 468
animations as, 456–460
instantiating objects in, 467

stack panels, 461–466
units of measurement in, 449

Write() method, Console, 239
WriteLine() method, Console, 15, 51, 239
write-only properties, 173

X
XAML (eXtensible Application Markup

Language), 442
(see also WPF (Windows Presentation

Foundation))
Xie, Donald (Programming C# 3.0), xvii, 1
XML (eXtensible Markup Language), 444,

508
XML in a Nutshell (Harold; Means), 444
xmlns properties, Window element, 443

Y
yellow arrow and highlighting in code, 182

About the Authors

Jesse Liberty, Silverlight geek, is a developer community program manager for
Microsoft’s Silverlight.net. His areas of interest include control development, Live
Mesh, Linq and data-services, cross-platform programming, hyper-video, and most of
all, building strong communication between Microsoft and the developer community.

Liberty is a monthly guest on the Sparkling Client podcast, his blog is a required
resource for Silverlight programmers, and he is the author of two dozen books,
including O’Reilly’s Programming .NET 3.5, Learning ASP.NET with AJAX, and
Programming Silverlight. His 20 years of programming experience include stints as a
distinguished software engineer at AT&T, software architect/lead programmer for
PBS, and vice president of Information Technology at Citibank. Jesse can be reached
at http://silverlight.net/blogs/JesseLiberty.

Brian MacDonald is a technical editor specializing in Microsoft .NET programming
topics. He has edited Programming C#, Programming ASP.NET 3.5, and Program-
ming WCF (all from O’Reilly). He is also the coauthor of O’Reilly’s Learning C#
2005, Learning ASP.NET 2.0 with AJAX, and Learning ASP.NET 3.5. He lives with
his wife and son in southeastern Pennsylvania.

Colophon

The animal on the cover of Learning C# 3.0 is a butterflyfish, which is a tropical
marine fish from the family Chaetodontidae. Butterflyfish live mainly among the reefs
of the Atlantic, Pacific, and Indian oceans. Occasionally mistaken for angelfish (the
angelfish is larger), butterflyfish can be recognized by their contrasting color patterns
of black, orange, blue, red, or yellow. Their vibrant colors also make them a popular
aquarium attraction.

Although the fish are striking in appearance, many species of butterflyfish do have
the ability to fool their predators. In addition to swimming nimbly through coral
reefs, the four-eyed butterflyfish is so named because of a large dark spot surrounded
by a white ring on each side of the back of its body; predators often mistake these
prominent dark spots for the butterflyfish’s eyes, which are smaller and partly
obscured by a dark, vertical stripe.

While some butterflyfish never mate, others in the species will find a partner and
remain monogamous for the rest of their lives. Once partnered, the two butterflyfish
will find an area of coral reef that is suitable for them and will defend their home
from others of its kind by changing the colors on their bodies, an act that is inter-
preted by intruders as an aggressive maneuver.

For food, the butterfly fish will peck at coral and rock formations and eat polyps,
worms, and various small invertebrates. The fish’s particular eating habits may ulti-
mately drive it to extinction, some scientists say, as coral reefs are deteriorating
because of overexploitation by humans, pollution, and climate change.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	About This Book
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Support: A Note from Jesse Liberty
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments
	Jesse Liberty
	Brian MacDonald

	C# and .NET Programming
	Installing C# Express
	C# 3.0 and .NET 3.5
	The .NET Platform
	The .NET Framework
	The C# Language
	Your First Program: Hello World
	The Compiler
	Examining Your First Program
	The Integrated Development Environment
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercise

	Visual Studio 2008 and C# Express 2008
	Before You Read Further
	The Start Page
	Projects and Solutions
	Project Types
	Templates

	Inside the Integrated Development Environment
	Building and Running Applications
	Menus
	The File Menu
	The Edit Menu
	The Clipboard Ring
	Find and Replace
	Go To
	Insert File As Text
	Advanced
	Incremental search
	Bookmarks
	Outlining
	IntelliSense

	The View Menu
	Class View
	Code Definition
	Error List
	Output
	Properties
	Task List
	Toolbox
	Other Windows

	The Refactor Menu
	The Project Menu
	The Build Menu
	The Debug Menu
	The Data Menu
	The Format Menu
	The Tools Menu
	Connect to Device
	Device Emulator Manager
	Connect to Database
	Connect to Server
	Code Snippets Manager
	Choose Toolbox Items
	External Tools
	Import and Export Settings
	Options

	The Window Menu
	The Help Menu

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	C# Language Fundamentals
	Statements
	Types
	Numeric Types
	Nonnumeric Types: char and bool
	Types and Compiler Errors

	WriteLine(��) and Output
	Variables and Assignment
	Definite Assignment
	Implicitly Typed Variables

	Casting
	Constants
	Literal Constants
	Symbolic Constants
	Enumerations

	Strings
	Whitespace
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Operators
	Expressions
	The Assignment Operator (=)
	Mathematical Operators
	Simple Arithmetic Operators (+, –, *, /)
	The Modulus Operator (%)

	Increment and Decrement Operators
	The Calculate and Reassign Operators
	Increment or Decrement by 1
	The Prefix and Postfix Operators

	Relational Operators
	Logical Operators and Conditionals
	The Conditional Operator
	Operator Precedence
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Branching
	Unconditional Branching Statements
	Conditional Branching Statements
	if Statements
	Single-Statement if Blocks
	Short-Circuit Evaluation
	if�.�.�.�else Statements
	Nested if Statements
	switch Statements
	Fall-Through and Jump-to Cases
	Switch on string Statements

	ReadLine(��) and Input
	Iteration (Looping) Statements
	Creating Loops with goto
	The while Loop
	The do�.�.�.�while Loop
	The for Loop
	Controlling a for loop with the modulus operator
	Breaking out of a for loop
	The continue statement
	Optional for loop header elements

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Object-Oriented Programming
	Creating Models
	Classes and Objects
	Defining a Class
	Class Relationships
	The Three Pillars of Object-Oriented Programming
	Encapsulation
	Specialization
	Polymorphism

	Object-Oriented Analysis and Design
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Classes and Objects
	Defining Classes
	Instantiating Objects
	Creating a Box Class
	Access Modifiers

	Method Arguments
	Return Types
	Constructors
	Initializers
	Object Initializers
	Anonymous Types
	The this Keyword
	Static and Instance Members
	Invoking Static Methods
	Using Static Fields

	Finalizing Objects
	Memory Allocation: The Stack Versus the Heap
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Inside Methods
	Overloading Methods
	Encapsulating Data with Properties
	The get Accessor
	The set Accessor
	Automatic Properties

	Returning Multiple Values
	Passing Value Types by Reference
	out Parameters and Definite Assignment

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Basic Debugging
	Setting a Breakpoint
	Using the Debug Menu to Set Your Breakpoint
	Setting Conditions and Hit Counts

	Examining Values: The Autos and Locals Windows
	Setting Your Watch
	The Call Stack
	Stopping Debugging
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Arrays
	Using Arrays
	Declaring Arrays
	Understanding Default Values
	Accessing Array Elements
	Arrays and Loops

	The foreach Statement
	Initializing Array Elements
	The params Keyword
	Multidimensional Arrays
	Rectangular Arrays
	Jagged Arrays

	Array Methods
	Sorting Arrays
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Inheritance and Polymorphism
	Specialization and Generalization
	Inheritance
	Implementing Inheritance
	Calling the Base Class Constructor
	Hiding the Base Class Method
	Controlling Access

	Polymorphism
	Creating Polymorphic Types
	Overriding Virtual Methods
	Using Objects Polymorphically
	Versioning with new and override

	Abstract Classes
	Sealed Classes
	The Root of All Classes: Object
	Summary
	Test Your Knowlege: Quiz
	Test Your Knowledge: Exercises

	Operator Overloading
	Designing the Fraction Class
	Using the operator Keyword
	Creating Useful Operators
	The Equals Operator
	Conversion Operators
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Interfaces
	What Interfaces Are
	Implementing an Interface
	Defining the Interface
	Implementing the Interface on the Client

	Implementing More Than One Interface
	Casting to an Interface
	The is and as Operators
	Extending Interfaces
	Combining Interfaces
	Overriding Interface Methods
	Explicit Interface Implementation
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Generics and Collections
	Generics
	Collection Interfaces
	Creating Your Own Collections
	Creating Indexers
	Indexers and Assignment
	Indexing on Other Values
	Generic Collection Interfaces
	The IEnumerable<T> Interface

	Framework Generic Collections
	Generic Lists: List<T>
	Sorting objects with the generic list
	Controlling sorting by implementing IComparer<T>

	Generic Queues
	Generic Stacks
	Dictionaries

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Strings
	Creating Strings
	String Literals
	Escape Characters
	Verbatim Strings
	The ToString(��) Method

	Manipulating Strings
	Comparing Strings
	Concatenating Strings
	Copying Strings
	Testing for Equality
	Other Useful String Methods
	Finding Substrings
	Splitting Strings
	The StringBuilder Class

	Regular Expressions
	The Regex Class
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Throwing and Catching Exceptions
	Bugs, Errors, and Exceptions
	Throwing Exceptions
	Searching for an Exception Handler
	The throw Statement
	The try and catch Statements
	How the Call Stack Works
	Creating Dedicated catch Statements
	The finally Statement
	Exception Class Methods and Properties
	Custom Exceptions
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Delegates and Events
	Delegates
	Events
	Publishing and Subscribing
	Events and Delegates
	Solving Delegate Problems with Events
	The event Keyword

	Using Anonymous Methods
	Lambda Expressions
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Creating Windows Applications
	Creating a Simple Windows Form
	Using the Visual Studio Designer

	Creating a Real-World Application
	Creating the Basic UI Form
	Populating the TreeView Controls
	TreeNode objects
	Recursing through the subdirectories
	Getting the files in the directory

	Handling the TreeView Events
	Clicking the source TreeView
	Expanding a directory
	Clicking the target TreeView

	Handling the Button Events
	Handling the Clear button event
	Implementing the Copy button event
	Handling the Delete button event
	Handling the Cancel button event

	Source Code
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Windows Presentation Foundation
	Your First WPF Application
	WPF Differences from Windows Forms
	Using Resources
	Animations
	Triggers and Storyboards
	Animations As Resources

	C# and WPF
	Grids and Stack Panels
	Defining ListBox styles
	Triggers and animations

	Adding Data
	Instantiating objects declaratively

	Using the Data in the XAML
	Defining the ListBox
	Event Handling
	The Complete XAML File

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	ADO.NET and Relational Databases
	Relational Databases and SQL
	Installing the Northwind Database
	Tables, Records, and Columns
	Normalization
	Declarative Referential Integrity
	SQL

	The ADO.NET Object Model
	DataTables and DataColumns
	DataRelations
	Rows
	DataAdapter
	DbCommand and DbConnection
	DataReader

	Getting Started with ADO.NET
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	LINQ
	Querying In-Memory Data
	Anonymous Types and Implicitly Typed Variables
	Lambda Expressions
	Ordering and Joining
	Using LINQ with SQL
	Using the Object Relational Designer
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Answers to Quizzes and Exercises
	Chap�ter�1: C# and .NET Programming
	Quiz Solutions
	Exercise Solution

	Chap�ter�2: Visual Studio 2008 and C# Express 2008
	Quiz Solutions
	Exercise Solutions

	Chap�ter�3: C# Language Fundamentals
	Quiz Solutions
	Exercise Solutions

	Chap�ter�4: Operators
	Quiz Solutions
	Exercise Solutions

	Chap�ter�5: Branching
	Quiz Solutions
	Exercise Solutions

	Chap�ter�6: Object-Oriented Programming
	Quiz Solutions
	Exercise Solutions

	Chap�ter�7: Classes and Objects
	Quiz Solutions
	Exercise Solutions

	Chap�ter�8: Inside Methods
	Quiz Solutions
	Exercise Solutions

	Chap�ter�9: Basic Debugging
	Quiz Solutions
	Exercise Solutions

	Chap�ter�10: Arrays
	Quiz Solutions
	Exercise Solutions

	Chap�ter�11: Inheritance and Polymorphism
	Quiz Solutions
	Exercise Solutions

	Chap�ter�12: Operator Overloading
	Quiz Solutions
	Exercise Solutions

	Chap�ter�13: Interfaces
	Quiz Solutions
	Exercise Solutions

	Chap�ter�14: Generics and Collections
	Quiz Solutions
	Exercise Solutions

	Chap�ter�15: Strings
	Quiz Solutions
	Exercise Solutions

	Chap�ter�16: Throwing and Catching Exceptions
	Quiz Solutions
	Exercise Solutions

	Chap�ter�17: Delegates and Events
	Quiz Solutions
	Exercise Solutions

	Chap�ter�18: Creating Windows Applications
	Quiz Solutions
	Exercise Solutions

	Chap�ter�19: Windows Presentation Foundation
	Quiz Solutions
	Exercise Solutions

	Chap�ter�20: ADO.NET and Relational Databases
	Quiz Solutions
	Exercise Solutions

	Chap�ter�21: LINQ
	Quiz Solutions
	Exercise Solutions

	Index

