
www.allitebooks.com

http://www.allitebooks.org

Learning Core
Audio

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learning Core
Audio

A Hands-On Guide to Audio

Programming for Mac and iOS

Chris Adamson

Kevin Avila

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and the publish-

er was aware of a trademark claim, the designations have been printed with initial capital

letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or omis-

sions. No liability is assumed for incidental or consequential damages in connection with or

arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-

chases or special sales, which may include electronic versions and/or custom covers and

content particular to your business, training goals, marketing focus, and branding interests.

For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Adamson, Chris, 1967-

Learning Core audio : a hands-on guide to audio programming for Mac and iOS / Chris

Adamson, Kevin Avila.

p. cm.

ISBN 978-0-321-63684-3 (pbk. : alk. paper) — ISBN 0-321-63684-8 (pbk. : alk. paper)

1. Computer sound processing—Computer programs. 2. Core audio. 3. Apple computer—

Programming. I. Avila, Kevin, 1980- II. Title.

TK7881.4.A244 2012

006.4'5—dc23

2012000862

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by

copyright, and permission must be obtained from the publisher prior to any prohibited repro-

duction, storage in a retrieval system, or transmission in any form or by any means, elec-

tronic, mechanical, photocopying, recording, or likewise. To obtain permission to use materi-

al from this work, please submit a written request to Pearson Education, Inc., Permissions

Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your

request to (201) 236-3290.

ISBN-13: 978-0-32-163684-3

ISBN-10: 0-32-163684-8

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,

Indiana.

Second printing, June 2012

Mark Taub

Editor-in-Chief

Senior Acquisitions
Editor

Trina MacDonald

Development
Editor

Chris Zahn

Kristy Hart

Managing Editor

Senior Project
Editor

Lori Lyons

Krista Hansing

Copy Editor

Editorial Services,

Inc.

Cheryl Lenser

Senior Indexer

Kathy Ruiz

Proofreader

Technical
Reviewers

Mark Dalrymple

Mark Granoff

Michael James

Chris Liscio

Robert Strogan

Alex Wiltschko

Publishing
Coordinator

Olivia Basegio

Multimedia
Developer

Dan Scherf

Chuti Prasertsith

Cover Designer

Compositor

Nonie Ratcliff

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors xiii

Foreword xv

Introduction 1

Audience for This Book 2

What You Need to Know 3

Looking Up Documentation 3

How This Book Is Organized 5

About the Sample Code 9

I: Understanding Core Audio

1 Overview of Core Audio 13

The Core Audio Frameworks 14

Core Audio Conventions 15

Your First Core Audio Application 16

Running the Example 19

Core Audio Properties 22

Summary 23

2 The Story of Sound 25

Making Waves 25

Digital Audio 27

DIY Samples 32

Buffers 40

Audio Formats 40

Summary 41

www.allitebooks.com

http://www.allitebooks.org

vi Contents

3 Audio Processing with Core Audio 43

Audio Data Formats 43

Example: Figuring Out Formats 46

Canonical Formats 51

Processing Audio with Audio Units 53

The Pull Model 55

Summary 55

II: Basic Audio

4 Recording 59

All About Audio Queues 59

Building a Recorder 60

A CheckError() Function 63

Creating and Using the Audio Queue 64

Utility Functions for the Audio Queue 71

The Recording Audio Queue Callback 75

Summary 78

5 Playback 81

Defining the Playback Application 81

Setting Up a File-Playing Audio Queue 83

Setting Up the Playback Buffers 85

Starting the Playback Queue 88

Playback Utility Functions 89

Handling the Magic Cookie 89

Calculating Buffer Size and Expected Packet Count 90

The Playback Audio Queue Callback 91

Features and Limits of Queue-Based Playback 94

Summary 95

6 Conversion 97

The afconvert Utility 97

Using Audio Converter Services 100

Setting Up Files for Conversion 102

Calling Audio Converter Services 105

Implementing the Converter Callback 109

www.allitebooks.com

http://www.allitebooks.org

viiContents

Converting with Extended Audio File Services 112

Reading and Converting with Extended

Audio Files 116

Summary 118

III: Advanced Audio

7 Audio Units: Generators, Effects, and Rendering 123

Where the Magic Happens 123

How Audio Units Work 124

Sizing Up the Audio Units 126

Your First Audio Units 129

Building the main() Function 131

Creating an Audio Unit Graph 133

Setting Up the File Player Audio Unit 137

Speech and Effects with Audio Units 141

Building Blocks of the Speech Synthesis Graph 142

Creating a Speech Synthesis AUGraph 144

Setting Up a Speech Synthesizer 146

Adding Effects 147

Adding Your Code to the Audio Rendering Process 150

The Audio Unit Render Cycle 150

A Custom Rendering Example 151

Creating and Connecting Audio Units 154

The Render Callback Function 155

Summary 160

8 Audio Units: Input and Mixing 161

Working with I/O Input 161

Connecting Input and Output Units 164

Creating an AUHAL Unit for Input 168

Writing the Input Callback 176

Building an AUGraph to Play Samples from a

CARingBuffer 178

Writing the Play-Through App’s Render Callback 181

Running the Play-Through Example 182

Mixing 183

Summary 189

www.allitebooks.com

http://www.allitebooks.org

viii Contents

9 Positional Sound 191

Sound in Space 191

The OpenAL API 193

Putting a Sound in Space 196

Setting Up the Example 197

Using OpenAL Objects 200

Animating the Source’s Position 205

Loading Samples for an OpenAL Buffer 206

Streaming Audio in OpenAL 210

Setting Up the OpenAL Streaming Example 210

Setting Up an ExtAudioFile for Streaming 215

Refilling the OpenAL Buffers 217

Summary 220

IV: Additional Topics

10 Core Audio on iOS 223

Is That Core Audio in Your Pocket? 223

Playing Nicely with Others: Audio Session Services 224

An Audio Session Example 227

Setting Up the App 227

Initializing the Audio Session and Audio Queue 231

The Tone Generator Method 234

Handling iOS Interruptions 236

Audio Units on iOS 238

Building an Audio Pass-Through App with

the iOS RemoteIO Unit 239

Setting Up the Pass-Through Example 241

Setting Up the RemoteIO Audio Unit for

Capture and Play-Out 244

The RemoteIO Render Callback 249

Other iOS Audio Tricks 253

Remote Control on iOS 253

iOS Hardware Hazards 254

Summary 254

www.allitebooks.com

http://www.allitebooks.org

ixContents

11 Core MIDI 257

MIDI Concepts 257

Core MIDI 258

Core MIDI Architecture 258

Core MIDI Terminology 258

Core MIDI Properties 260

MIDI Messages 260

Instrument Units 261

Building a Simple MIDI Synthesizer 262

Connecting to MIDI 265

Handling MIDI Notifications and Events 267

Playing Your AUGraph 269

Creating MIDI Events 269

Setting Up the MIDIWifiSource Example 269

Setting Up MIDI over Wi-Fi 271

Sending MIDI Messages 273

Setting Up Your Mac to Receive Wi-Fi MIDI Data 275

Summary: MIDI Mastery … but Mobility? 277

12 Coda 279

Still More Core Audio 279

Next Steps 280

Digital Signal Processing 280

Lion and iOS 5 281

AUSampler 281

Core Audio on iOS 5 285

The Core Audio Community 286

Summary: Sounds Good 287

Index 289

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

Acknowledgments

From Chris Adamson

This book wouldn’t exist without Kevin Avila and Mike Lee, who found a publisher

who not only wasn’t scared off by the thought of a difficult niche Mac and iOS title, but

actually relished the challenge of bringing this beast to market.They knew there was a

crowd out there that has been aching for years to get Core Audio presented in a practi-

cal form that lets normal programmers draw out its ferocious power. Behind the scenes,

Chuck Toporek championed this book, pulled me in when it got stuck, and saw it

through to the finish. More than anyone else, he’s the one to thank for finally getting a

Core Audio book published.

We wouldn’t have been able to get it all done without the generous support of the

Core Audio developer community, particularly the membership of the coreaudio-api

mailing list. Core Audio founder William Stewart and Apple’s Doug Wyatt have long

been generous with their time and attention to questions posted to the list and got us

unstuck on a number of occasions.

We’re also grateful to our many tech reviewers and readers of the “Rough Cuts” edi-

tion who reported errors and provided feedback as this book worked through its long

road to completion.

At home, thanks to my wife, Kelly, and our kids, Keagan and Quinn, for cutting me

enough slack to get this thing done and not completely freaking out when the example

code went wrong and horrible buzzes blasted forth from Dad’s office in the basement.

Obligatory end-of-book tune check:This time it was We Are The City, … And You

Will Know Us by the Trail of Dead, Daft Punk, Dr. Dog, Fun, and (fittingly) Hatsune

Miku.1

From Kevin Avila

I would like to acknowledge the Big Bang, gravity, and the eventual copulation between

my parents for making this possible.

Chuck Toporek (@chuckdude), Chris Adamson (@invalidname), Mike Lee (@bmf):

There truly are no words that express my gratitude for all the blood, sweat, and grammar

you’ve contributed, not only to this book, but to the entire developer community.

Thank you.

1 Find up-to-date listening stats at www.last.fm/user/invalidname.

www.last.fm/user/invalidname

Bill Stewart, Jeff Moore, Doug Wyatt, Michael Hopkins, Bob Aron, James McCartney,

Mehul Trivedi, Cynthia Maxwell,Torrey Walker, Nick Thompson, Matthew Mora, Brad

Ford, Murray Jason, and Edward Agabeg:Thanks for sharing with me your passion and

knowledge of audio.

Special thanks to David Avila, Daniel Kaufman,Andre LaBranche, Quentin Carnicelli,

Ed Wynne, and Steve Jobs.

What’s on my iPod:AC/DC, Rush, Beach Boys, Sublime, Primus, KRS-One, Beastie

Boys, Mac Dre,Vokab Kompany, and the insanely great George Carlin.

xii Acknowledgments

About the Authors

Chris Adamson is an independent writer, editor, and developer who lives in Grand

Rapids, Michigan. Now focusing on iOS and Mac development, he is the coauthor of

iOS SDK Development (Pragmatic Programmers, 2012). He is also the author of

QuickTime for Java:A Developer’s Notebook (O’Reilly Media, 2005) and coauthor of Swing

Hacks (O’Reilly Media, 2005). He was formerly the editor of java.net and ONJava.com.

He consults and publishes through his corporate identity, Subsequently and Furthermore,

Inc., with a focus on user-facing and digital media development for Mac and iOS. He

blogs on digital media software development at www.subfurther.com/blog. In a previous

career, he was a writer/associate producer at CNN Headline News, and over the years, he

has managed to own 11 1/2 Macs.

Kevin Avila (a.k.a. dogbert) is a smooth blend of carbon compounds, oxygen, hydrogen,

and nitrogen, with some impurities for added flavor.Additionally, he has more than 15 years’

experience developing for the Mac and, since its release, the iPhone. Kevin has been

involved in every corner of the audio market, from being an engineer at Apple to con-

figuring professional recording studios. He currently is a code mercenary for various

clients while he sits in his underwear at home, sipping coffee.

www.subfurther.com/blog

We’d Like to Hear from You
You can visit our website and register this book at:

www.informit.com/title/9780321636843

Be sure to visit the book’s website for convenient access to any updates, to download

the book’s sample code, or for errata that might be available for this book.

As the reader of this book, you are our most important critic and commentator.We

value your opinion and want to know what we’re doing right, what we could do better,

what areas you’d like to see us publish in, and any other words of wisdom you’re willing

to pass our way.

When you write, please be sure to include this book’s title and the name of the

author, as well as your name, phone, and/or e-mail address. I will carefully review your

comments and share them with the author and others who have worked on this book.

E-mail: trina.macdonald@pearson.com

Mail: Trina MacDonald

Senior Acquisitions Editor,Addison-Wesley

Pearson Education, Inc.

1249 8th Street

Berkeley, CA 94710 USA

For more information about our books or conferences, see our website at:

www.informit.com

www.informit.com/title/9780321636843
www.informit.com

Foreword

Reflect for a minute on your craft.Think of those in ages past who shared the same

experiences.Think of the painters who drove themselves mad trying to gather the forces

within to produce something of meaning.Think of the industrialists, who believed they

were standing at the dawn of a new age, one that they themselves were capable of

building.

Think of the ancient acolytes of magic, seeking to unlock the power in arcane

knowledge.Then think of that moment when, having learned street magic tricks such as

flow control and data structures, you finally gained access to the API libraries.Think of

that sorcerer’s apprentice staring glassy-eyed at the universe of possibilities in a room of

musty books.

It’s one of those key moments in any programmer’s career, cresting that foothill only

to see the mountain beyond. It is the daunting realization that programming is a lifelong

journey of learning. Many would-be magicians simply turn around and head back out

the door, leaving that world behind to pursue a more normal life of sane pursuits.

That you have found your way here suggests you are part of the other group, a select

few blessed with some genetic predisposition to solving hard problems.They are the

ones who cross that threshold and enter that world, losing themselves to learning new

spells and exploring new kinds of magic.

For what is programming but magic? Wielding secret words to command powerful

forces you just barely understand, calling forth the spirits of bygone spell casters to ease

your burdens, simplify your workflows, and grant you the ability to surprise and delight

the masses.

As you pore over each tome, practicing new forms of magic, you start combining

them with the things you learned before creating new spells, thus unlocking new possi-

bilities. Everything you learn leads to new tricks to learn, new roads forking into other

new roads, until one day you run into a dead end.

Many of the ancient texts refer to such dark arts as audio programming but do not

deal with them directly.As vital as Core Audio is, there seem to be no books on the sub-

ject, no scrolls of spells or sample code to practice.There are plenty of use cases for audio

programming, but as black magic, the only materials you can find to read about it are

terse and confusing.

Chris Adamson tracked down a practitioner of the audio arts named Kevin Avila, a

graying wizard well versed in C.Through a combination of bribery and honest inquiry,

he established himself as a protégé.The rabbit hole he entered goes on forever, and as his

xvi Foreword

ears led him through its many dark twists and turns, he learned a new language to

describe sound—and, with it, a new way of looking at the universe.

An eternity later, he himself a graying wizard, he thought back on that library to the

missing volumes and realized it was his destiny to shed light on the dark art of Core

Audio. It is the definition of mastery that we must teach what we have learned.This is

the truth that fuels the cycle of master and protégé.This is the engine that drives genera-

tions forward, each propelling the next further ahead as we move toward that grand inef-

fable vanishing point we call the future.

As with all rites of passage, it was a herculean task, requiring a whole new sets of skills

and a different type of discipline.We must tear apart our knowledge, and ourselves, to

find not just truth, but the beauty that underlies the truth and allows it to resonate across

the ages and to be understood.

All such that at some unknowable time in the future, where once there was a dead

end and a blank space between Core Animation and Core Data, some young acolyte

might find wisdom and guidance.They might combine this new knowledge with what

they already know so that, when they find their own dead end and their own dark arts,

they, too, will be ready.

That moment, dear reader, is now.That acolyte is you, and the grimoire that you hold

in your hand has all the wisdom and more than enough spells to take your magic to the

next level.This book is your key to wielding unspeakable power, the power of sound and

nature, the power of Core Audio.

Does all that seem a bit much for a book about audio programming? Rest assured

that, if anything, I have undersold it. Sound is an incredibly powerful force that affects

the human brain in ways we only barely understand. Consider the impact of music on

your life. Now consider that all of music is maybe 10% of the story of sound.

The power of audio programming goes so far beyond anything you can experience

with your ears. Swiping a credit card used to require an expensive machine. Now you

can do the same trick with a cheap plastic dongle plugged into the headphone jack of

your iPhone.You don’t have to make music to make magic with sound.

With this book, you dig into your first Core Audio code in Chapter 1,“Overview of

Core Audio,” even as you are learning what exactly Core Audio is and when you should

(and should not) attempt to use its power.

Core Audio, like all black arts, has roots in the inherent properties of nature. Chapter

2,“The Story of Sound,” takes to heart the story of sound, not as ineffable natural phe-

nomena, but as simple science.You’ll learn the language and techniques of converting

vibrating air molecules into the mathematical language of computers, and vice versa.

You’ll also learn the human language of audio and the real meanings of technical

terms you’ve heard, and perhaps even used, for years: sample rate, frame rate, buffer, and

compression.You’ll see these ideas carried through Chapter 3,“Audio Processing with

Core Audio,” as you peel back the wrapper on audio formats and learn about the canon-

ical formats Core Audio uses internally.

When you know the basics of Core Audio, you’ll want to apply your skills by learn-

ing the parlor tricks of recording and playback with Chapters 4,“Recording,” and 5,

“Playback,” using the high-level Audio Queue architecture.

Of course,“high-level” can be a misnomer, especially if you’re coming from an

object-oriented background such as Cocoa. Setting aside the comforting warmth of

Objective-C to take the reins of C can certainly be scary, but with a little understanding,

you’ll come to see how much like Cocoa a C framework can be, as familiar friends, like

key-value pairs, emerge in unfamiliar clothes.

When you understand Audio Queues, you’ll be a master of audio formats—almost.

First you must complete your quest by learning to convert between formats and come to

understand the relevance of canonical formats.

Then it’s time to say goodbye to high-level shores as you strap on your diving suit

and descend into the depths of Core Audio, the modular Audio Units that implement

the magic. Chapters 7,“Audio Units: Generators, Effects, and Rendering,” and 8,“Audio

Units: Input and Mixing,” will make or break you as an audio programmer, for here you

can craft end-to-end sonic solutions that are not possible “the easy way.”

Once time is your plaything, it’s time to tackle space. In Chapter 9,“Positional

Sound,” you enter another dimension as you learn to change sounds by positioning

audio in space using OpenAL, the 3D audio framework.

Core Audio has its roots in the Mac but has evolved with Apple’s fortunes. In Chapter

10,“Core Audio on iOS,” you focus on iOS and the challenges and changes brought by

the post-PC world of ultraportable hardware running ultra-efficient software.

Mobile hardware is not the only way to take audio beyond the computer. In Chapter

11,“Core MIDI,” you gain the means to connect the computer to musical instruments

and other hardware using Core Audio’s implementation of the industry-standard Musical

Instrument Digital Interface, Core MIDI.

With that, you’ll be at the end of your quest, but your journey will have just begun.

In Chapter 12,“Coda,” you look to the future, to the once inexplicable advanced con-

cepts you are now equipped to tackle, such as digital signal processing and sampling.

If you want to be a master of the arcane arts, you have a long road ahead of you.

There’s no sense sugarcoating it:This is going to be hard. But don’t worry—you’re in

good hands.Your authors have used plain language and plenty of sample code to banish

the demons and show you the way to the underlying logic that will make these concepts

yours.

Core Audio is the most powerful system for audio programming man has yet to cre-

ate, but its power has largely remained out of the hands of most app makers and locked

in the brains of audio nerds like Kevin. Chris has done what nobody else has managed

to do and may never manage to do again: Explain Core Audio in a way other people can

understand.

This book has been years in the making, and it took an incredible amount of work

and the best tech editor in the industry, the legendary Chuck Toporek, and his talented

colleagues at Pearson to finally bring it into existence.The people into whose waiting

xviiForeword

hands this enchanted volume has been given will be the people who deliver the coming

wave of incredible audio apps.

Imagine the possibilities of connecting to people in new ways with the magic of

sound.That incredible future is yours to invent. It is the dawning of the age of magic in

computing, and you are a magician. Mastering the Core Audio frameworks will change

the way you think about the world.

Mike Lee,Amsterdam

xviii Foreword

Introduction

Macs are great media computers, and the iPhone is the best iPod ever made—but

how did they get that way? How did some of the first iOS applications turn the iPhone

into a virtual instrument, yet developers on other mobile platforms remain happy

enough to just to reskin another simple MP3 player? Why is the Mac the choice of so

many digital media professionals, and what secret makes applications such as Bias Peak,

Logic, and Soundtrack Pro possible?

Core Audio, that’s what.

Core Audio is the low-level API that Apple provides for working with digital audio

on Mac OS X and iOS. It provides APIs for simultaneously processing many streams of

multichannel digital audio and interfaces to the audio hardware for capture (micro-

phones) and output (speakers and headphones). Core Audio lets you write applications

that work directly with the uncompressed audio data captured from a microphone, per-

form effects on it, mix it with other audio, and either play the result out to the speakers

or convert it into a compressed format that you can then write to the file system or send

over the network. If you’re not developing full applications, Core Audio lets you write

just the custom effect and wrap it in a plug-in called an audio unit, which lets users add

your effect to their Core Audio-based applications.

Apple debuted Core Audio in Mac OS X 10.0, where it eventually displaced the

SoundManager that was part of the Classic Mac OS. Because Core Audio is a C-based

API, it can be used with Cocoa applications written in Objective-C and Carbon appli-

cations written in C++.You can even skip these application frameworks and call into

Core Audio from a plain-C POSIX command-line executable (in fact, most of this

book’s examples are written this way). Since it is written in and called with C, Core

Audio is extremely high-performance, which is crucially important when you’re dealing

with processing hundreds of thousands of audio samples every second.

Core Audio is based on the idea of “streams” of audio, meaning a continuous series of

data that represents an audio signal. Because the sound changes over time, so does the

data.Throughout Core Audio, your primary means of interacting with the audio is by

working with these streams: getting them from files or input devices, mixing them, con-

verting them to different formats, sending them to output devices, and so on. In doing

this, your code makes calls to Core Audio or gets callbacks from Core Audio every time

a stream has more data to process.This is a different metaphor than you might have seen

in other media APIs. Simple media players such as the HTML5 <audio> tag or the iOS

AVAudioPlayer treat an audio source (such as a file or URL) as an opaque box of

www.allitebooks.com

http://www.allitebooks.org

audio: You can usually play, pause, and stop it, and maybe skip ahead or back to different

parts of the audio, but you can’t really inspect the contents of the box or do anything

with the data.What makes Core Audio cool is that it’s all about doing stuff with the data.

If only it were that easy.

Core Audio has a well-earned reputation as one of the hardest frameworks to deal

with on Mac OS X and iPhone.This is because choosing to operate at this level means

dealing with a lot of challenges: working with streams of samples in their native form,

working with Core Audio’s highly asynchronous programming models, and keeping

things running fast enough that you don’t starve Core Audio when it needs data to send

to the speakers or headphones. It didn’t help that, in iPhone OS 2.0, the first to support

third-party applications, Core Audio was the only media framework; developers who sim-

ply wanted to play a file had to go all the way down to the stream level to process sam-

ples by hand, in C. It’s great if you want or need to work with that level, but developers

who needed a simpler, higher-level abstraction did a lot of public complaining.

Core Audio is not arbitrarily cruel or obtuse. It’s complex because the nature of the

problem domain is. In our opinion, storing a web app purchase in a database is trivial

compared to modeling sound waves in a stream of samples, performing effects on them

through mathematical manipulations, and delivering the results to the hardware hundreds

or thousands of times a second—and doing it fast enough that the user perceives the

result as instantaneous. Doing something really hard, really fast is inherently challenging:

By the time you get to the end of this book, we think you’ll have an appreciation for

just how much Core Audio does for you.

And by that point, we think you’ll be ready to do some cool things of your own.

Audience for This Book
One book can’t be everything to everyone, so it’s best to set the terms right at the start:

This book is going to kick your butt. But like Nietzche said,“That which does not kill

you only makes you stronger.”When you’ve mastered this material, you’ll be ready to do

some serious butt-kicking of your own.

Who Should Read this Book

The primary audience for this book is experienced programmers who are familiar with

Mac or iOS but have not yet explored Core Audio. Familiarity with C is assumed, but

no prerequisite knowledge of digital audio is required; we cover that in Chapter 2.We

assume that, to be interested in an audio programming book at all, you’ve used enough

media applications to have a sense of what’s possible: audio capture, real-time effects,

MP3 playback, virtual instruments, web radio, voice over IP, and so on. If the thought of

this stuff doesn’t get your programmer parts all tingly, there’s probably a nice book on

Ruby on Rails two racks over.

2 Introduction

Who Shouldn’t Read This Book

As self-declared “world’s toughest programmer” Mike Lee once said,“Core Audio is

some serious black arts shit.”You’ll find yourself digging around low-level APIs, and if

you’re not comfortable with getting your hands dirty, this book might not be where you

should start (but keep it in mind as something to come back to when you’re skilled

enough).

You need to know Xcode, C, and Objective-C, and you need to be comfortable read-

ing and interpreting header files.You never know when you’ll need to dive deeper into

something, and having those skills under your belt will definitely make reading this book

a better experience for you.

What You Need to Know
This book assumes a working knowledge of C, including pointers, malloc(), and the

usual hazards of low-level memory management. If you don’t have experience with C or

any C-like language (C++, Java, and C#), stop right now and read a good book on C

before you attempt to tackle this book.

The book also assumes that you’re familiar and comfortable with Xcode and pro-

gramming in Objective-C.You won’t find any primers on how to create a project in

Xcode or how to debug; you can find plenty of entry-level books for newbies and con-

verts from other platforms and programming environments. If you’re messing around

with Core Audio and low-level C APIs, we can assume that you’ve already got that

grounding.

Because the book covers use of Core Audio on the Mac and iOS, we also assume that

you have an Apple developer account; if not, you should (they’re cheap these days!). Go

to developer.apple.com/mac or developer.apple.com/ios to sign up today—$198

gets you access to all the relevant updates for both Mac OS X and iOS, as well as Xcode,

Apple’s developer documentation, sample code, and even the session videos from

WWDC.

Looking Up Documentation
Every Core Audio developer is constantly flipping over to Core Audio’s online docu-

mentation to look up function names, parameter lists, and semantic information (such as

what you’re allowed to pass in a parameter or what to expect a function to do). It’s all

available on Apple’s website, but Apple’s online documentation has a habit of moving

around, which makes it hard for us to provide URLs that won’t break six months after

we publish.

Instead, we encourage you to get familiar with Xcode’s documentation browser, if

you aren’t already. In Xcode 4.2, you access it with the Help > Documentation and

API Reference menu item, which takes you to the Organizer window and opens the

Documentation tab.When you first visit this documentation, you’ll see a Quick Start

3Looking Up Documentation

screen that lists some introductory resources for using Xcode.The right pane of this

view has buttons for browsing, searching, and managing bookmarks in the documenta-

tion.Via Browse, you can select the top-level docsets to work with. Figure I.1 shows the

home page for the Mac OS X 10.7 Core Library.

4 Introduction

Figure I.1 Xcode documentation viewer showing home page of

Mac OS X 10.7 Core Library documentation

The column on the left side of the content pane arranges documentation by type,

topic, and then level of the Mac OS X or iOS architecture. If you scroll down to the

Media Layer level, you’ll find Core Audio, Core Audio Kit, and Audio Toolbox, which is

where Core Audio exposes most of its functionality to applications. Click on one of

these to see a list of reference guides, technical Q&A documents, and sample code. For

example, you could click on Audio Toolbox Framework Reference and then use the

Bookmarks toolbar button to find your way back here easily.

Actually, we rarely browse the documentation.The second toolbar button in the left

pane exposes a search interface, which is what we use most of the time.Type in a term

here to get a list of matching API references (methods, functions, types, structs, and so

on), as well as occurrences of the term in other documentation, such as sample code or

programming guides, all of which is readable within the documentation viewer.We

mentioned the term audio unit earlier in the Introduction; Figure I.2 shows what hap-

pens when we search for “AudioUnit” with the documentation viewer.As you can see,

the term shows up in function names, typedefs, #defines and more in the API section, as

well as programming guides, Q&A documents, and sample code in the full-text section.

5How This Book Is Organized

Figure I.2 Searching for “AudioUnit” in Xcode documentation viewer

You can also search for a term directly from your source; just option-double-click on

a term in your source to pop up a brief overview of its documentation (see Figure I.3);

full documentation is available if you click the book icon at the top of the pop-up win-

dow.There’s also a button with a .h document icon that takes you to the term’s defini-

tion. Both of these functions are available by Control-clicking (or right-clicking) the

term in the text: Look for the menu items Find Text in Documentation and Jump to

Definition.

Throughout the book, we count on the fact that you can look up information

through this interface. For example, when we introduce a new function, we trust you

can type its name into the search field and find its API documentation if you want the

official word on how it works.When a function uses custom types, these are typically

hyperlinked within the documentation so you can follow those links to find related doc-

umentation.

How This Book Is Organized
Before you start your journey, let’s talk about what’s at stake.The path will be treacher-

ous, and you must always remind yourself of the great bounty that awaits you at the end

of this book.

We start by giving a high-level overview of what Core Audio does.We briefly

describe and provide use cases for the input and output of audio data,“transcoding”

between formats, audio effects, playback and recording, and MIDI.

6 Introduction

Figure I.3 Looking up documentation from the Xcode source editor

Then we give an overview of the API itself.We describe its procedural, property-

driven nature and then give a quick tour of each of its architectural units, starting from

high-level API‚ Audio Queue, OpenAL, Extended Audio File; moving through the mid-

and low-level APIs (Audio Units,Audio File,Audio Converter); and finally heading into

related topics such as Core MIDI, OpenAL, and how Core Audio works on iOS.

Part I: Understanding Core Audio

This section lays the foundation on which the rest of the book is built.That it seems like

a lot of material to get through before writing any code is indicative of the subject.

Understanding the problem of digital audio and the solutions Core Audio offers is an

absolute must if subsequent sections and their sample code are to make any sense.

n Chapter 1: Overview of Core Audio

We start our journey with a nuts-and-bolts investigation of Core Audio as a Mac

or iOS framework: where the files are, how to integrate it into your projects, and

where to go for help.

We start with an overview of the API itself.We describe its procedural, property-

driven nature.Then we take a quick tour of each of its architectural units, starting

from high-level API (Audio Queue, OpenAL, Extended Audio File), moving

through the midlevel API (Audio Units,Audio File,Audio Converter), and work-

ing into the low-level API (IOKit/IOAudio, HAL, and, on iOS, Remote I/O).We

also work through a simple application to use Core Audio to fetch metadata from

a sound file, to give you a taste of writing Core Audio code.

n Chapter 2:The Story of Sound

The central problem of digital audio lies in representing the analog waveform of a

sound on a digital computer.We talk about how sampling converts the sounds you

hear into the 1s and 0s of a binary computer.We cover bit rates and the trade-offs

of quality, performance, and file size.To get a hands-on understanding of sampling,

you’ll write your own sound waves directly to a file, sample by sample, and see

(well, hear, actually) how different wave forms sound different to the human ear.

When you have the raw stream of bits, you need to quantize them into frames and

packets.We talk about the difference between constant and variable bit rates and

frame rates.

n Chapter 3: Audio Processing with Core Audio

When you understand the concepts of audio in English, it’s time to express them

in C.We talk about the implementation details here—how Core Audio represents

audio streams and provides functionality to work with those streams.We talk about

file formats and stream formats and highlight the difference between them.Then

we’ll write an example that inspects what kinds of audio format/file format com-

binations Core Audio supports.

Following our description of formats, we switch to Core Audio’s processing model

and look at how Core Audio encapsulates its functionality as Audio Units, how

these are combined in interesting ways, and why they use a pull model to move

audio data through the system.

Part II: Basic Audio

This section begins the hands-on use of the API and concepts from the previous chapter.

We start by discussing the flow of data between files and the audio systems, first by

recording and then by playing file-based audio data.Then we discuss transcoding API for

moving data between formats and explain the important behind-the-scenes function that

serves.

n Chapter 4: Recording

Why address recording before playback? Because it’s easier and it generates sample

files to play with later.This chapter introduces the high-level API for getting data

in and out of files and explores the Audio Queue API for making use of that data.

We’ll develop a complete example that captures audio from the default input

device and writes it to a file. In the process, we’ll deal with some of the tricky

parts of compressed formats, such as working with format-specific magic cookies

and figuring out how big buffers need to be to write data for arbitrary formats.

7How This Book Is Organized

n Chapter 5: Playback

From a programming perspective, recording and playback are two sides of the same

coin. Playback moves data from a file to a series of buffers; recording moves data

from a series of buffers into a file.

This chapter provides a full example of reading audio from a file and playing it to

the default output.Again, we look at techniques for dealing with variable-bit-rate

formats.We also take a look at some of the neat things you can do with an audio

queue’s properties and parameters and dig into the latency implications of working

with so many buffers.

n Chapter 6: Conversion

For people used to object-oriented programming, Core Audio’s high-level API

seems pretty low level.This chapter demonstrates the complexity behind the

scenes, diving into the nitty-gritty details of modern audio codecs and the com-

plexity necessary to convert them into canonical data.We work through an exam-

ple that directly uses Audio Converter Services to convert a compressed file to an

uncompressed version and then simplify this through the use of Extended Audio

File Services, which combine I/O and data conversion into a single step.

Part III: Advanced Audio

Now that you understand how to move audio data back and forth, it’s time to get fancy.

We start by adding effects to audio data, move into 3D positional audio, and then talk

about performance and low-level architecture.

n Chapter 7: Audio Units: Generators, Effects, and Rendering

Core Audio provides an elegant architecture for digital signal processing plug-ins,

called Audio Units. However, audio units are the lowest commonly used level of

the Core Audio API and introduce new challenges for the programmer.This chap-

ter introduces audio units to play sounds from files and the Mac OS X speech syn-

thesizer and to perform effects on the sound, all coordinated via the AUGraph

API.We also look at how to provide your own programmatically generated audio

data as input to audio units.

n Chapter 8: Audio Units: Input and Mixing

To help you further flex our muscles with the Audio Units API, we look at how

to use the IO unit to perform audio capture and jump through some rather tricky

threading hoops to get the captured data to run through an AUGraph of effects

and other sources.To combine it all, we make use of the powerful multichannel

mixer unit.

n Chapter 9: Positional Sound

Up to now, the discussion has focused on sound itself, but the human experience

of sound adds an entirely new dimension to the problem.This section discusses

OpenAL, the 3D positional sound API, which enables you to associate sounds with

8 Introduction

locations in a 3D space.We start with loops, but by the end of the chapter, you

will be able to play arbitrarily long streams of sound from 3D sources.

Part IV: Additional Topics

By this point, we’ve covered most of Core Audio, but not all of it.This section explores

some of the miscellany that doesn’t fit into the rest of book.We start with a chapter ded-

icated to iOS, then talk about handling MIDI data, and end with a chapter on extending

Core Audio.

n Chapter 10: Core Audio on iOS

Conceptually, there’s little difference between sound on an iPhone and sound on a

Macintosh, but the devil is in the details.This chapter addresses the differences,

with a particular concentration on the limitations and exceptions that come with

limited hardware resources.

We also discuss the Audio Session API, which is vital to making sure your applica-

tion behaves properly in the preemptive, multisource, multidestination iPhone

environment.

n Chapter 11: Core MIDI

Musicians love the MIDI standard, which is a lynchpin of connecting musical

instruments and processing digital music data. In this chapter, we look at how

Core MIDI processes music events between the Mac or iOS device and instru-

ments connected either physically or wirelessly.You’ll also see how MIDI data can

be delivered into an Audio Unit, enabling you to convert note and timing data

into sound.

n Chapter 12: Coda

In the final chapter, we look at what we’ve covered and what’s left to discover.We

also point out the newest and shiniest audio bits unveiled in Mac OS X 10.7

(Lion) and iOS 5.

This book doesn’t use every function Core Audio defines or conceptually cover every-

thing you can do with it, but it does dig deeply into the most used and most important

topics.After you make it through the book, you’ll have the hang of how Core Audio

does things, and we think you’ll be well equipped to explore any remaining functionality

you need for your applications.

About the Sample Code
The source code for the projects in this book is available on the Resources tab on the

book’s catalog page:

www.informit.com/title/9780321636843

The downloads contain a README file and folders with the projects for each

chapter.

9About the Sample Code

www.informit.com/title/9780321636843

This book contains a lot of sample code, and Core Audio can be pretty verbose to the

modern eye.To keep the code size manageable, most of the examples in this book are

written as OS X command-line executables, not full-fledged Cocoa (Mac OS X) GUI

applications.You’ll be able to run these directly in Xcode or from the command line (in

Terminal or xterm).The iOS examples in Chapter 10 and thereafter are genuine iOS

apps—the iPhone doesn’t have a command line, after all—but we don’t bother with a

GUI unless absolutely necessary.

Core Audio is mostly the same between Mac OS X and iOS, so iOS developers can

use the concepts from these examples in iPhone, iPod Touch, and iPad apps. In most

cases, the code works exactly the same; we’ve pointed out any differences between Mac

and iOS, either in the APIs themselves or in how they work on the different platforms.

For the parts of Core Audio that are unique to iOS, see Chapter 10.

Our baseline SDK for this book is Xcode 4.2, which includes the SDKs for Mac OS

X 10.7 (Lion) and iOS 5. For Core Audio development on a Mac, you don’t need any-

thing else:All the libraries, headers, and documentation are included with the Xcode

tools.1 Our sample code is written to support versions 10.6 and 10.7 on the Mac, and

iOS 4 and 5. Because of changes and deprecations over the years, some of the Mac

examples won’t run as is on version 10.5 (Leopard) or earlier, although, in many cases,

the difference is only a changed constant here or there (for example, the

kAudioFileReadPermission constant introduced in version 10.6 replaces the

fsRdPerm found in earlier versions of Mac OS X).

10 Introduction

1 Core Audio used to be a separate download, which has confused a few developers when they’ve

seen it listed separately on Apple’s Development Kits page. That download is needed only if

you’re developing on Tiger (Mac OS X 10.4.x).

I

Understanding
Core Audio

1 Overview of Core Audio

2 The Story of Sound

3 Audio Processing with Core Audio

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

1

Overview of Core Audio

Core Audio is the engine behind any sound played on a Mac or iPhone OS. Its proce-

dural API is exposed in C, which makes it directly available in Objective-C and C++,

and usable from any other language that can call C functions, such as Java with the Java

Native Interface, or Ruby via RubyInline. From an audio standpoint, Core Audio is high

level because it is highly agnostic. It abstracts away both the implementation details of

the hardware and the details of individual audio formats.

To an application developer, Core Audio is suspiciously low level. If you’re coding in

C, you’re doing something wrong, or so the saying goes.The problem is, very little sits

above Core Audio.Audio turns out to be a difficult problem, and all but the most trivial

use cases require more decision making than even the gnarliest Objective-C framework.

The good news is, the times you don’t need Core Audio are easy enough to spot, and

the tasks you can do without Core Audio are pretty simple (see sidebar “When Not to

Use Core Audio”).

When you use Core Audio, you’ll likely find it a far different experience from nearly

anything else you’ve used in your Cocoa programming career. Even if you’ve called into

other C-based Apple frameworks, such as Quartz or Core Foundation, you’ll likely be

surprised by Core Audio’s style and conventions.

This chapter looks at what’s in Core Audio and where to find it.Then it broadly sur-

veys some of its most distinctive conventions, which you’ll get a taste for by writing a

simple application to exercise Core Audio’s capability to work with audio metadata in

files.This will give you your first taste of properties, which enable you to do a lot of the

work throughout the book.

When Not to Use Core Audio

The primary scenario for not using Core Audio is when simply playing back from a file: On a

Mac, you can use AppKit’s NSSound, and on iOS, you can use the AVAudioPlayer from

the AV Foundation framework. iOS also provides the AVAudioRecorder for recording to a

file. The Mac has no equivalent Objective-C API for recording, although it does have

QuickTime and QTKit; you could treat your audio as QTMovie objects and pick up some

playback, recording, and mixing functionality. However, QuickTime’s video orientation and its

philosophy of being an editing API for multimedia documents makes it a poor fit for purely

audio tasks. The same can be said of AV Foundation’s AVPlayer and

AVCaptureSession classes, which debuted in iOS 4 and became the heir apparent to

QuickTime on Mac in 10.7 (Lion).

Beyond the simplest playback and recording cases—and, in particular, if you want to do

anything with the audio, such as mixing, changing formats, applying effects, or working

directly with the audio data—you’ll want to adopt Core Audio.

The Core Audio Frameworks
Core Audio is a collection of frameworks for working with digital audio. Broadly speak-

ing, you can split these frameworks into two groups: audio engines, which process

streams of audio, and helper APIs, which facilitate getting audio data into or out of these

engines or working with them in other ways.

Both the Mac and the iPhone have three audio engine APIs:

n Audio Units. Core Audio does most of its work in this low-level API. Each unit

receives a buffer of audio data from somewhere (the input hardware, another audio

unit, a callback to your code, and so on), performs some work on it (such as apply-

ing an effect), and passes it on to another unit.A unit can potentially have many

inputs and outputs, which makes it possible to mix multiple audio streams into one

output. Chapter 7,“Audio Units: Generators, Effects, and Rendering,” talks more

about Audio Units.

n Audio Queues. This is an abstraction atop audio units that make it easier to play

or record audio without having to worry about some of the threading challenges

that arise when working directly with the time-constrained I/O audio unit.With

an audio queue, you record by setting up a callback function to repeatedly receive

buffers of new data from the input device every time new data is available; you

play back by filling buffers with audio data and handing them to the audio queue.

You will do both of these in Chapter 4,“Recording.”

n OpenAL. This API is an industry standard for creating positional, 3D audio (in

other words, surround sound) and is designed to resemble the OpenGL graphics

standard.As a result, it’s ideally suited for game development. On the Mac and the

iPhone, its actual implementation sits atop audio units, but working exclusively

with the OpenAL API gets you surprisingly far. Chapter 9,“Positional Sound,”

covers this in more detail.

To get data into and out of these engines, Core Audio provides various helper APIs,

which are used throughout the book:

n Audio File Services. This framework abstracts away the details of various con-

tainer formats for audio files.As a result, you don’t have to write code that specifi-

cally addresses the idiosyncrasies of AIFFs,WAVs, MP3s, or any other format. It

enables your program to open an audio file, get or set the format of the audio data

it contains, and start reading or writing.

14 Chapter 1 Overview of Core Audio

n Audio File Stream Services. If your audio is coming from the network, this

framework can help you figure out the format of the audio in the network stream.

This enables you to provide it to one of the playback engines or process it in other

interesting ways.

n Audio Converter Services. Audio can exist in many formats. By the time it

reaches the audio engines, it needs to be in an uncompressed playable format

(LPCM, discussed in Chapter 2,“The Story of Sound”).Audio Converter Services

helps you convert between encoded formats such as AAC or MP3 and the

uncompressed raw samples that actually go through the audio units.

n Extended Audio File Services. A combination of Audio Converter Services

and Audio File Stream Services, the Extended Audio File APIs enables you to read

from or write to audio files and do a conversion at the same time. For example,

instead of reading AAC data from a file and then converting to uncompressed

PCM in memory, you can do both in one call by using Extended Audio File

Services.

n Core MIDI. Most of the Core Audio frameworks are involved with processing

sampled audio that you’ve received from other sources or captured from an input

device.With the Mac-only Core MIDI framework, you synthesize audio on the fly

by describing musical notes and how they are to be played out—for example,

whether they should sound like they’re coming from a grand piano or a ukulele.

You’ll try out MIDI in Chapter 11,“Core MIDI.”

A few Core Audio frameworks are platform specific:

n Audio Session Services. This iOS-only framework enables your app to coordi-

nate its use of audio resources with the rest of the system. For example, you use

this API to declare an audio “category,” which determines whether iPod audio can

continue to play while your app plays and whether the ring/silent switch should

silence your app.You’ll use this more in Chapter 10,“Core Audio on iOS.”

As you develop your application, you’ll combine these APIs in interesting ways. For

example, you could use Audio File Stream Services to get the audio data from a net

radio stream and then use OpenAL to put that audio in a specific location in a 3D envi-

ronment.

Core Audio Conventions
The Core Audio frameworks are exposed as C function calls.This makes them broadly

available to Cocoa, Cocoa Touch, and Carbon apps, but you have to be ready to deal

with all the usual issues of procedural C, such as pointers, manual memory management,

structs, and enums. Most modern developers have cut their teeth on object-oriented

languages such as Objective-C, C++, and Python, so it’s no longer a given that profes-

sional programmers are comfortable with procedural C.

15Core Audio Conventions

In C, you don’t have classes, object orientation, implementation hiding, or many of

the other important language traits that most developers have depended on for years. But

Core Audio, like Apple’s other C-based frameworks, does provide a measure of these

modern traits, even within the C idiom.

Apple’s model C framework is Core Foundation, which underlies Foundation, the

essential Objective-C framework that nearly all Mac and iPhone applications use.You’ll

recognize Foundation by classes such as NSString, NSURL, NSDate, and NSObject. In

many cases, the Objective-C classes assemble their functionality by calling Core

Foundation, which provides opaque types (pointers to data structures whose actual

members are hidden) and functions that work on these objects. For example, an

NSString is literally the same as a CFStringRef (you can freely cast between the two),

and its length method is equivalent to the function CFStringGetLength(), which

takes a CFStringRef as its object. By combining these opaque types with consistent

naming conventions for functions, Core Foundation provides a highly manageable C API

with a clarity similar to what you’re used to in Cocoa.

Core Audio is highly similar in its design. Many of its most important objects (such as

audio queues and audio files) are treated as opaque objects that you hand to predictably

named functions, such as AudioQueueStart() or AudioFileOpenURL(). It’s not

explicitly built atop Core Foundation—an AudioQueueRef is not technically a CF

opaque type; however, it does make use of CF’s most important objects, such as

CFStringRef and CFURLRef, which can be trivially cast to and from NSStrings and

NSURLs in your Cocoa code.

Your First Core Audio Application
Now let’s get a feel for Core Audio code by actually writing some.The audio engine

APIs have a lot of moving parts and are, therefore, more complex, so we’ll make trivial

use of one of the helper APIs. In this first example, we’ll get some metadata (information

about the audio) from an audio file.

Note

In this book, most of the examples are command-line utilities instead of full-blown AppKit

or UIKit applications. This helps keep the focus on the audio code, without bringing in GUI

considerations.

Launch Xcode, go to File > New Project, select the Mac OS X Application tem-

plates, and choose the Command Line Tool template; select the Foundation type in the

pop-up menu below the template icon.When prompted, call the project CAMetadata.

The resulting project has one user-editable source file, main.m, and produces an exe-

cutable called CAMetadata, which you can run from Xcode or in the Terminal.

Select the CAMetadata.m file.You’ll see that it has a single main() function that sets

up an NSAutoReleasePool, prints a “Hello,World!” log message, and drains the pool

16 Chapter 1 Overview of Core Audio

before terminating. Replace the comment and the printf so that main() looks like

Listing 1.1.We’ve added numbered comments to the ends of some of the statements as

callouts so that we can explain what this code does, line by line.

Listing 1.1 Your First Core Audio Application

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

if (argc < 2) {

printf ("Usage: CAMetadata /full/path/to/audiofile\n");

return -1;

} // 1

NSString *audioFilePath = [[NSString stringWithUTF8String:argv[1]]

stringByExpandingTildeInPath]; // 2

NSURL *audioURL = [NSURL fileURLWithPath:audioFilePath]; // 3

AudioFileID audioFile; // 4

OSStatus theErr = noErr; // 5

theErr = AudioFileOpenURL((CFURLRef)audioURL,

kAudioFileReadPermission,

0,

&audioFile); // 6

assert (theErr == noErr); // 7

UInt32 dictionarySize = 0; // 8

theErr = AudioFileGetPropertyInfo (audioFile,

kAudioFilePropertyInfoDictionary,

&dictionarySize,

0); // 9

assert (theErr == noErr); // 10

CFDictionaryRef dictionary; // 11

theErr = AudioFileGetProperty (audioFile,

kAudioFilePropertyInfoDictionary,

&dictionarySize,

&dictionary); // 12

assert (theErr == noErr); // 13

NSLog (@"dictionary: %@", dictionary); // 14

CFRelease (dictionary); // 15

theErr = AudioFileClose (audioFile); // 16

assert (theErr == noErr); // 17

[pool drain];

return 0;

}

17Your First Core Audio Application

Now let’s walk through the code from Listing 1.1:

1. As in any C program, the main() method accepts a count of arguments (argc)

and an array of plain C-string arguments.The first string is the executable name, so

you must look to see if there’s a second argument that provides the path to an

audio file. If there isn’t, you print a message and terminate.

2. If there’s a path, you need to convert it from a plain C string to the NSString/

CFStringRef representation that Apple’s various frameworks use. Specifying the

UTF-8 encoding for this conversion lets you pass in paths that use non-Western

characters, in case (like us) you listen to music from all over the world. By using

stringByExpandingTildeInPath, you accept the tilde character as a shortcut to

the user’s home directory, as in ~/Music/....

3. The Audio File APIs work with URL representations of file paths, so you must

convert the file path to an NSURL.

4. Core Audio uses the AudioFileID type to refer to audio file objects, so you

declare a reference as a local variable.

5. Most Core Audio functions signal success or failure through their return value,

which is of type OSStatus.Any status other than noErr (which is 0) signals an

error.You need to check this return value on every Core Audio call because an

error early on usually makes subsequent calls meaningless. For example, if you can’t

create the AudioFileID object, trying to get properties from the file that object

was supposed to represent will always fail. In this example, we’ve used an

assert() to terminate the program instantly if we ever get an error, in callouts 7,

10, 13, and 17. Of course, your application will probably want to handle errors

with somewhat less brutality.

6. Here’s the first Core Audio function call: AudioFileOpenURL. It takes four param-

eters, a CFURLRef, a file permissions flag, a file type hint, and a pointer to receive

the created AudioFileID object.You do a toll-free cast of the NSURL to a

CFURLRef to match the first parameter’s defined type. For the file permissions, you

pass a constant to indicate read permission.You don’t have a hint to provide, so

you pass 0 to make Core Audio figure it out for itself. Finally, you use the &

(“address of ”) operator to provide a pointer to receive the AudioFileID object

that gets created.

7. If AudioFileOpenURL returned an error, die.

18 Chapter 1 Overview of Core Audio

8. To get the file’s metadata, you will be asking for a metadata property,

kAudioFilePropertyInfoDictionary. But that call requires allocating memory

for the returned metadata in advance. So here, we declare a local variable to

receive the size we’ll need to allocate.

9. To get the needed size, call AudioFileGetPropertyInfo, passing in the

AudioFileID, the property you want information about, a pointer to receive the

result, and a pointer to a flag variable that indicates whether the property is write-

able (because we don’t care, we pass in 0).

10. If AudioFileGetPropertyInfo failed, terminate.

11. The call to get a property from an audio file populates different types, based on

the property itself. Some properties are numeric; some are strings.The documenta-

tion and the Core Audio header files describe these values.Asking for

kAudioFilePropertyInfoDictionary results in a dictionary, so we set up a

local variable instance of type CFDictionaryRef (which can be cast to an

NSDictionary if needed).

12. You’re finally ready to request the property. Call AudioFileGetProperty, passing

in the AudioFileID, the property constant, a pointer to the size you’re prepared

to accept (set up in callouts 8–10 with the AudioFileGetPropertyInfo call) and

a pointer to receive the value (set up on the previous line).

13. Again, check the return value and fail if it’s anything other than noErr.

14. Let’s see what you got.As in any Core Foundation or Cocoa object, you can use

"%@" in a format string to get a string representation of the dictionary.

15. Core Foundation doesn’t offer autorelease, so the CFDictionaryRef received in

callout 12 has a retain count of 1. CFRelease() releases your interest in the

object.

16. The AudioFileID also needs to be cleaned up but isn’t a Core Foundation

object, per se; therefore, it doesn’t get CFRelease()’d. Instead, it has its own end-

of-life function: AudioFileClose().

17. AudioFileClose() is another Core Audio call, so you should continue to check

return codes, though it’s arguably meaningless here because you’re two lines away

from terminating anyway.

So that’s about 30 lines of code, but functionally, it’s all about setting up three calls:

opening a file, allocating a buffer for the metadata, and getting the metadata.

Running the Example

That was probably more code than you’re used to writing for simple functionality, but

it’s done now. Let’s try it out. Click build; you get compile errors. Upon inspection, you

should see that all the Core Audio functions and constants aren’t being found.

19Your First Core Audio Application

This is because Core Audio isn’t included by default in Xcode’s command-line

executable project, which imports only the Foundation framework.Add a second

#import line:

#import <AudioToolbox/AudioToolbox.h>

Audio Toolbox is an “umbrella” header file that includes most of the Core Audio func-

tionality you’ll use in your apps, which means you’ll be importing it into pretty much all

the examples.You also need to add the framework to your project. Click the project icon

in Xcode’s file navigator, select the CAMetadata target, and click the Build Phases tab.

Expand the Link Binaries with Libraries section and click the + button to add a new

library to be linked at build time. In the sheet that slides out, select the

AudioToolbox.framework, as shown in Figure 1.1.

20 Chapter 1 Overview of Core Audio

Figure 1.1 Adding the AudioToolbox.framework to an Xcode project

Now you should be able to build the application without any errors.To run it, you

need to provide a path as a command-line argument.You can either open the Terminal

and navigate to the project’s build directory or supply an argument with Xcode. Let’s do

the latter:

n From the Scheme pop-up menu, select Edit Scheme.

n Select the Run CAMetadata item and click the Arguments tab.

n Press + to add an argument and supply the path to an audio file on your hard

drive.

n If your path has spaces in it, use quotation marks. For example, we’re using an

MP3 bought online, located at ~/Music/iTunes/iTunes Music/Amazon

MP3/Metric/Fantasies/05 - Gold Guns Girls.mp3. Click OK to dismiss the Scheme

Editor sheet.

n Bring up Xcode’s Console pane with Shift-„-C and click Run.

Assuming that your path is valid, your output will look something like this:

2010-02-18 09:43:17.623 CAMetadata[17104:a0f] dictionary: {

album = Fantasies;

"approximate duration in seconds" = "245.368";

artist = Metric;

comments = "Amazon.com Song ID: 210266948";

copyright = "2009 Metric Productions";

genre = "Alternative Rock";

title = "Gold Guns Girls";

"track number" = "5/10";

year = 2009;

}

Well, that’s pretty cool:You’ve got a nice dump of a lot of the same metadata that

you’d see in an application such as iTunes. Now let’s check it out with an AAC song

from the iTunes Store. Changing the command-line argument to something like

~/Music/iTunes/iTunes Music/Arcade Fire/Funeral/07 Wake Up.m4a gets you the following

on Snow Leopard:

2010-02-18 09:48:15.421 CAMetadata[17665:a0f] dictionary: {

"approximate duration in seconds" = "335.333";

}

Whoa! What happened to the metadata call?

Nothing, really: Nothing in the documentation promises what you can expect in the

info dictionary.As it turns out, Core Audio offers richer support for ID3 tags in .mp3

files than the iTunes tagging found in .m4a files.

No Need for Promises

Speaking from experience, you’ll want to prepare yourself for unpredictable results, such as

different levels of metadata support for MP3 and AAC files. Mastering Core Audio isn’t just

about understanding the APIs; it’s also about developing a sense of the implementation,

how the library actually works, and what it does well and where it comes up short.

Core Audio isn’t just about the syntax of your calls; it’s about the semantics, too. In some

cases, code that’s syntactically correct will fail in practice because it violates implicit con-

tracts, acts differently on different hardware, or even just it uses too much CPU time in a

time-constrained callback. The successful Core Audio programmer doesn’t march off in a

huff when things don’t work as expected or don’t work well enough the first time. Instead,

you must try to figure out what’s really going on and come up with a better approach.

21Your First Core Audio Application

www.allitebooks.com

http://www.allitebooks.org

Core Audio Properties
The Core Audio calls in this example were all about getting properties from the audio

file object.The routine of preparing for and executing property-setter and property-

getter calls is essential in Core Audio.

That’s because Core Audio is a property-driven API. Properties are key-value pairs, with

the keys being enumerated integers.The values can be of whatever type the API defines.

Each API in Core Audio communicates its capabilities and state via its list of properties.

For example, if you look up the AudioFileGetProperty() function in this example,

you’ll find a link to a list of Audio File Properties in the documentation.The list, which

you can also find by looking in Core Audio’s AudioFile.h header, looks like this:

kAudioFilePropertyFileFormat = 'ffmt',

kAudioFilePropertyDataFormat = 'dfmt',

kAudioFilePropertyIsOptimized = 'optm',

kAudioFilePropertyMagicCookieData = 'mgic',

kAudioFilePropertyAudioDataByteCount = 'bcnt',

...

These keys are 32-bit integer values that you can read in the documentation and

header file as four character codes.As you can see from this list, the four-character codes

take advantage of the fact that you can use single quotes to represent char literals in C

and spell out clever mnemonics.Assume that fmt is short for “format,” and you can fig-

ure out that ffmt is the code for “file format” and dfmt means “data format.” Codes

like these are used throughout Core Audio, as property keys and sometimes as error sta-

tuses. If you attempt to write to a file format Core Audio doesn’t understand, you’ll get

the response fmt?, which is kAudioFileUnsupportedDataFormatError.

Because Core Audio makes so much use of properties, you’ll see common patterns

throughout its API for setting and getting properties.You’ve already seen

AudioFileGetPropertyInfo() and AudioFileGetProperty(), so it probably won’t

surprise you later to encounter AudioQueueGetProperty(), AudioUnitGet

Property(), AudioConverterGetProperty(), and so on. Some APIs provide property

listeners that you can register to receive a callback when a property changes. Using call-

back functions to respond to asynchronous events is a common pattern in Core Audio.

The values that you get or set with these APIs depend on the property being set.You

retrieved the kAudioFilePropertyInfoDictionary property, which returned a

pointer to a CFDictionaryRef, but if you had asked for a kAudioFileProperty

EstimatedDuration, you’d need to be prepared to accept a pointer to an

NSTimeInterval (which is really just a double).This is tremendously powerful

because a small number of functions can support a potentially infinite set of properties.

However, setting up such calls does involve extra work because you typically have to use

the “get property info” call to allocate some memory to receive the property value or to

inspect whether the property is writable.

22 Chapter 1 Overview of Core Audio

Another point to notice with the property functions is the Core Audio naming con-

ventions for function parameters. Let’s look at the definition of

AudioFileGetProperty() from the docs (or the AudioFile.h header):

OSStatus AudioFileGetProperty (

AudioFileID inAudioFile,

AudioFilePropertyID inPropertyID,

UInt32 *ioDataSize,

void *outPropertyData

);

Notice the names of the parameters:The use of in, out, or io indicates whether a

parameter is used only for input to the function (as with the first two, which indicate the

file to use and the property you want), only for output from the function (as with the

fourth, outPropertyData, which fills a pointer with the property value), or for input

and output (as with the third, ioDataSize, which accepts the size of buffer you allo-

cated for outPropertyData and then writes back the number of bytes actually written

into that buffer).You’ll see this naming pattern throughout Core Audio, particularly any

time a parameter works with a pointer to populate a value.

Summary
This chapter provided an overview of the many different parts of Core Audio and gave

you a taste of programming by using Audio File Services to get the metadata properties

of audio files on the local drive.You saw how Core Audio uses properties as a crucial

idiom for working with its various APIs.You also saw how Core Audio uses four charac-

ter codes to specify property keys, and to signal errors.

Of course, you haven’t really dealt with audio itself yet.To do that, you first need to

understand how sound is represented and handled in a digital form.Then you’ll be ready

to dig into Core Audio’s APIs for working with audio data.

23Summary

This page intentionally left blank

2

The Story of Sound

In the previous chapter, you got your first taste of the Core Audio API: what it offers,

how to add it to a project, and how to call its functions. Now it’s time to take a step

back and look at the bigger picture: the problems that Core Audio addresses in the first

place.

This chapter introduces the basic science of sound, what it is and how it works.As it

turns out, the digital nature of computers makes them not well suited to processing con-

tinuous analog signals.This leads to the idea of sampling a signal, or chopping the

smooth sound waves into discrete values frequently enough that the human ear can’t

notice the difference.This chapter covers how these samples are represented and

arranged in digital form.

It’s one thing to talk about samples and another to actually handle them, so the exam-

ple project writes sound waves to a file, one sample at a time.

Finally, you’ll wrap up with some of the issues that always arise with digital audio:buffers

(and their inherent latency concerns) and the various kinds of digital audio formats.

Making Waves
If you shove someone on the sidewalk, that person just moves. But if you shove someone

in a crowded place, such as at a concert, he bounces off the person in front of him and

returns to his original position.This triggers a chain reaction as the force of your shove

travels through the crowd, eventually hitting your friend across the room.You’ve just

shoved your friend via a couple dozen annoyed proxies.

In scientific terms, a bunch of objects close enough to bounce off each other is called

a medium because of the way energy can travel through it.The movement of the person

you shoved—first forward, then back—is called a cycle.The time it takes to complete a

cycle is its period. If you pushed the person repeatedly, the pattern of people bouncing

off each other would be a compression wave.

This wave has two attributes.The strength with which you push is the wave’s ampli-

tude.The speed with which you push is the wave’s frequency.The more frequently you

push, the higher the frequency of the wave created as a result. If you varied the ampli-

tude and frequency of your pushing, your friend would feel those changes.You would no

longer be just making waves; you’d be transmitting data over a medium.

When you talk to someone, your vocal cords move back and forth, or vibrate, push-

ing the molecules in the air.Those molecules bounce off each other like people at a

concert until they hit your friend’s ear drums. Speakers and microphones are just

machines that do the same thing. Sound is nothing but energy shoving its way through a

medium.

To record a sound, all you have to do is describe the way the sound makes a mem-

brane vibrate.To play back the sound, you vibrate a membrane as described. One way

to describe sound is to graph the position of the membrane over time, as shown in

Figure 2.1.

26 Chapter 2 The Story of Sound

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-2.4

-1.6

-0.8

0.8

1.6

2.4

Figure 2.1 A sound wave as it relates to the position

of a vibrating membrane

The middle of the graph represents the resting state of the membrane.The top and bot-

tom of the graph represent the maximum displacement of the membrane.As time moves

from left to right, the position of the membrane moves up and down.The y-axis, then,

represents amplitude as a percentage of maximum, and the frequency with which the

values move between positive and negative represents the sound’s frequency.

One way to represent this wave is to carve a picture of it into some physical object.

The advantage of this technique, called analog recording, is that it produces a very accu-

rate reproduction.The disadvantage is that the recording is as nuanced and inexact as the

sound wave it describes.This inexactness comes into play when making copies. It’s also

incompatible with computers, which require that things be described in exact numerical

terms.

Digital Audio
For computers, you need to represent the wave numerically.You can approximate the

wave by plotting a series of (x,y) points along its path. If you provide enough points,

you’ll have a good-enough representation.The standard for this is pulse code modulation

(PCM), which works by recording y at regular intervals of time, meaning x is implicit. In

its most common form, linear pulse code modulation, you assign a value that represents a

proportion of the maximum value of y. For example, if a graph represents values

between 0 and 1, and a given point has a y value that’s half of the maximum, you assign

it the value 0.5.This process of assigning values at regular intervals is called sampling.

Each value is itself a sample.

CD-quality audio has a sample rate of 44.1 kHz, or 44,100 samples per second. One

way of looking at that is to realize that every second of CD-quality audio has 44,100

gaps of just under 23 microseconds. For these gaps, no data exists.Anything that hap-

pened to the sound wave during that time is lost. Figure 2.2 illustrates the effect of sam-

ple rate on the data’s capability to accurately approximate the curves of the sound wave.

All three images in Figure 2.2 represent the same wave as in Figure 2.1, but at decreasing

sample rates.As you can see, the representation of the wave gets less accurate as you use

fewer samples. In particular, the peak at t = 2.5 and the valleys at t = 2.1 and t = 4.4 are

completely lost in the rightmost image.

You could make better approximations by taking more samples, but it would be help-

ful to know if there’s some granularity that’s “good enough.”The key to finding a good

enough approximation is that you don’t hear individual samples, but instead you hear the

waves of sound pushing through the air.What you hear are frequencies, repeated patterns

of vibration, whether from a guitar chord or a larynx.You need to figure out how often

to sample in order to reproduce these frequencies.

You actually get this number from the Nyquist-Shannon Sampling Theorem, which says

that if you have a function with no frequencies greater than B Hz (cycles per second),

you can render it accurately by using points spaced 1/(2B) seconds apart. For audio pur-

poses, this means that to reproduce any frequency, you need to sample the signal at

double that frequency or more.

27Digital Audio

28 Chapter 2 The Story of Sound

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

1

2

3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

1

2

3

Figure 2.2(a, b) A sound wave approximated by several sample rates

Figure 2.2(c) A sound wave approximated by several sample rates

This explains the value of 44.1 kHz chosen for CD-quality audio. Half of that is

22.05 kHz, which is beyond the range of most human hearing.The ability to perceive

high frequencies deteriorates with age.Young people can hear up to about 20 kHz, but a

middle-age person might hear only up to around 14 or 15 kHz. So by sampling at 44.1

kHz, you might lose some information, but not enough to matter—what’s important is

the listener’s ability to perceive the vibration frequencies in the audio signal.

Each sample represents the amplitude of the wave, or the displacement of the mem-

brane, as a percentage of the maximum possible value.The advantage of using percent-

ages is hardware independence. Half is half, regardless of what you’re halving.

Unlike integers, in which larger numbers require more digits to express, fractions

need more digits to express smaller numbers.Writing 100 takes more digits than writing

10, but writing [1/100] takes more digits than writing [1/10].A sample’s bit depth is the

number of digits it has. If the difference between two sounds is smaller (as a percentage

of the maximum possible displacement) than the sample has digits to express, that differ-

ence is lost.

The bit depth (measured in bits per sample) multiplied by the sample rate (measured

in samples per second) results in the bit rate (measured in bits per second).That is the

number of bits required to describe 1 second of audio.A higher bit rate gives a higher-

quality recording but also means more bits for the hardware to store and process.

29Digital Audio

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

1

2

3

The fundamental problem of digital fidelity lies in making the best approximations,

given the limits of the hardware. Every different format is a different solution set of

compromises to solve this problem.This is true not only in digital audio, but generally.

Digital photography, for example, has the same sorts of problems, with the same alphabet

soup of formats, each offering its own solution.

In a digital image, the sample rate translates into the number of pixels, whereas the bit

depth translates into the number of colors per pixel. Each additional bit yields an

increase of a power of two.The difference between the two adjacent images in

Figure 2.3 is a single bit.

30 Chapter 2 The Story of Sound

Figure 2.3 Bit depth and sample rate in digital photography

One niggling implementation detail is that this metaphor works only with a grayscale

image. Computers can’t actually display color pixels the way humans see them. Each

color pixel consists of red, green, and blue lights. Each requires its own set of data, called

a channel. Most image formats combine one sample from each channel into a bundle

representing a single pixel.

Digital audio shares these issues.A monaural sound wave is like a grayscale image, but

many sound systems have multiple speakers. Just as a pixel requires channels for red, blue,

and green, stereo sound requires channels for left and right. Surround sound adds extra

channels.A typical 5.1 surround-sound signal has six channels: left and right channels for

the front and rear, a center channel, and a nondirectional channel for low-frequency

effects, known to aficionados simply as bass.

As with their graphical brethren, audio formats typically combine one sample per

channel into a bundle, called a frame.Whereas a pixel represents all color channels in one

area in space, a frame represents all audio channels at one moment in time. So for mono

sound, a frame has one sample; for stereo, it has two. If you put multiple channels of

sound in one stream, you call the channels interleaved.This is common for playback:

Because you want to read all the channels at the same time, it makes sense to arrange the

data to do this easily. However, when processing audio (such as when adding effects or

doing some other signal processing), you might want noninterleaved audio that so you

can focus on each channel in isolation.

Some audio formats combine multiple frames as packets.This concept is entirely a

creation of a given audio format and represents an indivisible unit within that format.

LPCM doesn’t use packets, but compressed audio formats do because they use mathe-

matical techniques with a group of samples to approximate their values.A given sample

can often be predicted to some degree by those around it, so compressed formats can use

groups of samples, arranged in frames, to produce a similar (if not identical) wave from

much less data than the uncompressed LPCM original.

We mentioned the bit rate earlier, the amount of data over a given period of time to

represent audio in some format. For PCM, the bit rate is constant: CD-quality audio has

a bit rate of 1,411,200 bits per second, or 1,411 kbps, because it has 2 channels × 16 bits

× 44,100 samples per second. PCM is said to have a constant bit rate because this data rate

never changes for a given combination of channel count, bit depth, and sample rate.

Compressed formats often use a variable bit rate, meaning that the amount of data needed

to compress any particular part of the data changes. Core Audio supports variable frame

rate formats:The amount of data for any given frame may vary, but the packets remain

the same size. Core Audio also supports variable packet rate, in which even the packet rate

may change. However, currently no variable packet rate formats are in widespread use.

One reason to care about this distinction is that constant bit rate (CBR) data some-

times employs simpler API calls than variable bit rate (VBR). For example, when you

read audio data from a file or stream,VBR data supplies you with a block of data and an

array of packet descriptions that help you figure out what samples go with what times.

For CBR, this is unnecessary; the amount of data for every frame is constant, so you can

find a given time’s samples by multiplying the frame size by the time.

31Digital Audio

www.allitebooks.com

http://www.allitebooks.org

DIY Samples
We’ve talked a lot about samples and audio waves. It might help to take a look at audio

samples by writing some yourself.

In Listing 2.1, we’ll again use Audio File Services, this time to create a file and write

raw samples to it. Create a command-line tool project and call it

CAToneFileGenerator.As before, the template provides you with one source file,

whose main() method sets up an autorelease pool and prints a “Hello, world!” message.

Add AudioToolbox.framework to the project and rewrite CAToneFileGenerator.m as follows:

Listing 2.1 Writing a Sound Wave to a File, Sample by Sample

#import <Foundation/Foundation.h>

#import <AudioToolbox/AudioToolbox.h>

#define SAMPLE_RATE 44100 // 1

#define DURATION 5.0 // 2

#define FILENAME_FORMAT @"%0.3f-square.aif" // 3

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

if (argc < 2) {

printf ("Usage: CAToneFileGenerator n\n(where n is tone in Hz)");

return -1;

}

double hz = atof(argv[1]); // 4

assert (hz > 0);

NSLog (@"generating %f hz tone", hz);

NSString *fileName = [NSString stringWithFormat:

FILENAME_FORMAT, hz]; // 5

NSString *filePath = [[[NSFileManager defaultManager] currentDirectoryPath]

stringByAppendingPathComponent: fileName];

NSURL *fileURL = [NSURL fileURLWithPath: filePath];

// Prepare the format

AudioStreamBasicDescription asbd; // 6

memset(&asbd, 0, sizeof(asbd)); // 7

asbd.mSampleRate = SAMPLE_RATE; // 8

asbd.mFormatID = kAudioFormatLinearPCM;

asbd.mFormatFlags = kAudioFormatFlagIsBigEndian |

kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked;

asbd.mBitsPerChannel = 16;

asbd.mChannelsPerFrame = 1;

asbd.mFramesPerPacket = 1;

32 Chapter 2 The Story of Sound

asbd.mBytesPerFrame = 2;

asbd.mBytesPerPacket = 2;

// Set up the file

AudioFileID audioFile;

OSStatus audioErr = noErr;

audioErr = AudioFileCreateWithURL((CFURLRef)fileURL, // 9

kAudioFileAIFFType,

&asbd,

kAudioFileFlags_EraseFile,

&audioFile);

assert (audioErr == noErr);

// Start writing samples

long maxSampleCount = SAMPLE_RATE * DURATION; // 10

long sampleCount = 0;

UInt32 bytesToWrite = 2;

double wavelengthInSamples = SAMPLE_RATE / hz; // 11

while (sampleCount < maxSampleCount) {

for (int i=0; i<wavelengthInSamples; i++) {

// Square wave

SInt16 sample;

if (i < wavelengthInSamples/2) { // 12

sample = CFSwapInt16HostToBig (SHRT_MAX); // 13

} else {

sample = CFSwapInt16HostToBig (SHRT_MIN);

}

audioErr = AudioFileWriteBytes(audioFile, // 14

false,

sampleCount*2,

&bytesToWrite,

&sample);

assert (audioErr == noErr);

sampleCount++; // 15

}

}

audioErr = AudioFileClose(audioFile); // 16

assert (audioErr == noErr);

NSLog (@"wrote %d samples", sampleCount);

[pool drain];

return 0;

}

33DIY Samples

There’s more to this code than the previous example, but it’s still only about 70 lines.

Let’s walk through the callouts of the key points.

1. #define a sample rate of 44,100 samples per second, or 44.1 kHz, the same as

with CD audio.

2. Next, #define how many seconds of audio you want to create.

3. Put the filename in a #define’d format string so you can change the name later.

The first example creates square waves, the simplest kind of wave form, so incor-

porate “square” in the filename.

4. As in the previous chapter’s example, you take a command-line argument here.

This time, it’s a floating point number for the tone frequency you want to gener-

ate. If you want to run this from Xcode (instead of the command line), go to the

Scheme editor, as before, and add an argument.You could use 261.626 for the note

that’s middle C on a piano, or 440 for the A above that (which is known as middle

A or concert A).

5. These two lines create the path to a file, using the FILENAME_FORMAT and the fre-

quency to create a name, such as 261.626-square.aif.They then make an NSURL

because the Audio File Services functions take URLs, not file paths.

6. To create an audio file, you must provide a description of the audio that the file

contains.You do this with what might be the most important and commonly used

data structure in Core Audio, AudioStreamBasicDescription.This struct

defines the most universal traits of a stream of audio: how many channels it has,

the format it’s in, the bit rate, and so on.

7. In some cases, Core Audio fills in some of the fields for an AudioStreamBasic-

Description that you don’t (or can’t) know when you’re writing the code.To do

this, the field must be initialized to 0.As a common practice, always blank out the

fields of an ASBD with memset() before you set any of them.

8. The next eight lines use individual fields of the AudioStreamBasicDescription

to describe the data you’re going to write to the file. Here, they describe a stream

that’s one-channel (mono) PCM, at a data rate of 44,100.You use 16-bit samples

(again, the same as a CD), so each frame will have 2 bytes (one channel × 2 bytes

of sample data). LPCM doesn’t use packets—they’re useful only for variable bit

rate formats—so the bytesPerFrame and bytesPerPacket are equal.The other

field to note is mFormatFlags, whose contents vary based on the format you’re

using. For PCM, you must indicate whether your samples are big-endian (the high

bits of a byte or word are numerically more significant than the lower ones) or

vice versa. Here you’ll write to an AIFF file, which can take only big-endian

PCM, so you need to set that in your ASBD.You also need to indicate the

numeric format of the samples (kAudioFormatFlagIsSignedInteger), and you

pass in a third flag to indicate that your sample values use all the bits available in

each byte (kAudioFormatFlagIsPacked). mFormatFlags is a bit field, so you

combine these behavior flags with the arithmetic OR operator (|).

34 Chapter 2 The Story of Sound

9. You can now ask Core Audio to create an AudioFileID, ready for writing at the

URL you’ve set up.The AudioFileCreateWithURL() function takes a URL

(notice that you again use toll-free bridging to cast from a Cocoa NSURL to a Core

Foundation CFURLRef), a constant to describe the AIFF file format, a pointer to

the AudioStreamBasicDescription describing the audio data, behavior flags (in

this case, indicating your desire to overwrite an existing file of the same name), and

a pointer to populate with the created AudioFileID.

10. You’re nearly ready to start writing samples. Before going into a loop to do so,

you calculate how many samples you’ll need for DURATION seconds of sound at

SAMPLE_RATE samples per second.Along with a counter variable, sampleCount,

you set up bytesToWrite as a local variable only because the call to write the

samples requires a pointer to this UInt32; you can’t just put the value into the

parameter directly.

11. You need to keep track of how many samples are in a wavelength so you can cal-

culate the values for samples that make up a wave.

12. For this first example, you’ll write one of the simplest waves, the square wave.The

samples for this are trivial: For the first half of the wavelength, you provide a maxi-

mum value, and for the rest of the wavelength, you use a minimum value. So only

two possible sample values ever are used: one high and one low. For the 16-bit

signed integers, you’ll use the C constants that represent the maximum and mini-

mum values, SHRT_MAX and SHRT_MIN.

13. You declared the audio format as big-endian signed integers in the

AudioStreamBasicDescription, so you have to be careful to keep the 2-byte

samples in that format. Modern Macs run on little-endian Intel CPUs, and the

iPhone’s ARM processor is also little-endian, so you need to swap bytes from the

CPU’s representation to big-endian.The Core Foundation function

CFSwapInt16HostToBig() does this for you.This call also works on a big-endian

CPU, such as the PowerPC on older Macs, because it would just realize that the

host’s format is big-endian and would not do anything.

14. Having calculated your sample, you write it to the file with AudioFileWrite-

Bytes().This call takes five parameters: the AudioFileID to write to, a caching

flag, the offset in the audio data that you’re writing to, the number of bytes you’re

writing, and a pointer to the bytes to be written.You get to use this function

because you have constant bit rate data; in more general cases, such as when writ-

ing compressed formats, you must use the more complex

AudioFileWritePackets().

15. Increment sampleCount so that you’re writing your new data further and further

into the file.

16. Finally, call AudioFileClose() to finish and close the file.

35DIY Samples

Build and run this program with Xcode 4.To find the file that was written, open the

Organizer, go to the Projects tab, select the CAToneFileGenerator project, and click

the round arrow next to the Derived Data path.This opens a Finder window with the

project metadata and products, in which you’ll find the path Build/Products/Debug.

Inside this folder, you should see the CAToneFileGenerator executable and a sound file

with a name representing the frequency you set as an argument to the executable, as in

880.000-square.aif.You can play it with QuickTime Player, with iTunes, or even in

the Finder by selecting it and pressing the spacebar—but before you do, turn the volume

down! Square waves are pretty hard on the ear.

That brings up an important point.The frequency with which waves repeat is what

you perceive as pitch: how “high” or “low” a sound is. But that’s not the whole story.

The shape of the waves gives the sound its character, its timbre.

Let’s consider three kinds of basic waveforms that you can easily create program-

matically:

n Square waves, as you’ve seen, just alternate between two values.

n Sawtooth waves have a linear increase from a minimum value to a maximum over

the length of the wave, and then reset to the minimum for the next wave.

n Sine waves are curves that conform to the properties of trigonometric functions.

They sound somewhat more natural because the sine function can represent sim-

ple harmonic motion, which resembles natural phenomena such as instrument

strings vibrating.

Figure 2.4 shows these three wave types.

36 Chapter 2 The Story of Sound

1

-1

0.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

Figure 2.4(a) Square, sawtooth, and sine waves

as mathematical functions

37DIY Samples

1

-1

0.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.5

1

-1

1 5

-0.5

0.5

0.5 1.5 2 2.5 3 3.5 4 4.5

Figure 2.4(b, c) Square, sawtooth, and sine waves

as mathematical functions

Changing the program to generate these different wave types is a simple matter. Let’s

start with the sawtooth wave. First, change the #define for the filename format so you

can distinguish among the various files:

#define FILENAME_FORMAT @"%0.3f-saw.aif"

Then rewrite the for loop as follows:

for (int i=0; i<wavelengthInSamples; i++) {

// saw wave

SInt16 sample = CFSwapInt16HostToBig (((i / wavelengthInSamples) *
SHRT_MAX *2) -

SHRT_MAX);

audioErr = AudioFileWriteBytes(audioFile,

false,

sampleCount*2,

&bytesToWrite,

&sample);

assert (audioErr == noErr);

sampleCount++;

}

The only difference is the calculation of the sample.This function divides i, the loop

counter, by the length of the wave and then uses some scaling so that the values increase

evenly from SHRT_MIN to SHRT_MAX.

After you build and run this version, you can compare the sound of square waves

versus sawtooth waves.You can hear that they’re both the same pitch, but the sound is

slightly different.

If you have an audio editor that zooms down to the raw sample level, you can use it

to inspect these files, too. Figure 2.5 shows Felt Tip Software’s Sound Studio 3 applica-

tion editing 880.000-saw.aif, an 880 Hz sawtooth wave generated by your program.

38 Chapter 2 The Story of Sound

Figure 2.5 Inspecting a sawtooth wave file created

by the CAToneFileGenerator example

Let’s tweak the code once more, this time to create a sine wave.This is the classic

reference signal; in television, the “bars and tone” used to calibrate equipment uses a

1,000 Hz tone that engineers can validate against an oscilloscope. First, change the file-

name format so you can keep track of your output files.

#define FILENAME_FORMAT @"%0.3f-sine.aif"

Then rewrite the for loop.You can even reuse the sawtooth wave’s for loop and just

change the line that calculates the sample:

SInt16 sample = CFSwapInt16HostToBig ((SInt16) SHRT_MAX *

sin (2 * M_PI *

(i / wavelengthInSamples)));

Yeah, welcome back to high school trigonometry.This converts the phase

(i / wavelengthInSamples) to radians for the sine function (by multiplying it by 2π),

multiplying the result by SHRT_MAX (because the sine function returns values between

–1.0 and 1.0), and casts the whole thing to a 16-bit value that you can then endian-swap

and write to the file.

Note

If you declared your AudioStreamBasicDescription as using floating-point samples,

you wouldn’t have to scale up like this. However, the iOS 4 version of Core Audio can only

do integer samples in PCM, not floating point, and we wanted to keep the code portable

to both platforms.

Try this—you’ll hear that it’s a much more pleasant tone than either the square or

sawtooth wave, even though you’ll also be able to clearly hear that, for a given frequency,

they’re all playing the same pitch.

You might also try to set the frequency increasingly higher and see if you can identify

when you get to a point that you can’t hear the tone anymore.You should be able to

hear tones around 10,000 Hz easily enough, but you probably won’t be able to hear

those at 20,000 Hz or higher. In fact, your ability to hear high frequencies deteriorates

with age, so if you can hear 15,000 Hz now, you might not be able to in ten years.

Consider one final point on this example.What happens when the frequency is

22,050 Hz? That’s exactly half of the sample rate. In any of the versions of the example,

the value of wavelengthInSamples will be 2.That means there are just two samples to

represent the wave; for the square wave, you get one sample of SHRT_MIN and one of

SHRT_MAX. But at least there’s a pattern, something that repeats.At higher frequencies,

you have less than two samples per wave—and, therefore, no repeating pattern.This is

another way you can think about Nyquist and its seemingly arbitrary concept of sam-

pling at double the highest frequency you want to reproduce.

39DIY Samples

Buffers
You might have noticed that writing all the samples to your file took a few seconds.

A 5-second run time for generating 5 seconds of audio is not very performant!

Reading or writing one sample at a time is highly inefficient. If you think back to the

AudioFileWriteBytes, you might remember that the last two parameters were the

number of bytes to write to the file and a pointer to the sample. Instead of writing one

sample at a time to the file, racking up the overhead of a function call more than

200,000 times for this simple example, you could have created a memory buffer to hold

a bunch of samples and then written those samples en masse to the file.

This isn’t just a problem with writing files. It’s also a problem when you generate

sound at runtime. In a nutshell, the different parts of the computer don’t operate at the

same speed.The time it takes for the audio hardware to produce or consume a packet of

audio data is much less than the time it takes to move the packets in and out of memory.

This slowdown is called the von Neumann bottleneck.

When the audio hardware runs out of things to do, it makes terrible noises and ruins

the magic.To prevent this from happening, you can use buffers to shuttle audio packets

back and forth.A lot of big buffers means that any hiccups in the slow parts of the com-

puter can be fixed before the fast parts of the computer notice: By the time one buffer

of audio data has been exhausted, another has (hopefully) arrived.

Aside from further increasing the complexity of the subject, buffering has the

unpleasant side effect of making it harder to get the hardware’s attention when you actu-

ally want it.Think of it as data-level bureaucracy—some of it’s necessary, but too much

of it makes everything take too long.

The technical term is latency, the delay between initiating an action and seeing the

result of that action. For example, the hardware latency of the iPhone and iPod Touch is

about 15 to 30 milliseconds, depending on model.When you push a buffer of samples

out from your code to one of the audio engines mentioned in the previous chapter, a

few milliseconds elapse before the first sample of that sound starts coming out of the

speaker or headphones.

Buffers and latency are a delicate balancing act: Big buffers makes for higher latency,

but if you push your luck in search of lower latency, you risk exhausting your buffers and

hearing silence (dropouts) or noise.

Audio Formats
In the example, you used an AudioStreamBasicDescription to describe the format

of the audio stream your code generated: 16-bit integer samples, one channel, sample

rate of 44,100, and so on. But this isn’t the whole story.You then put that audio into an

AIFF file.And as you might know from managing your own iTunes collection, many

different file formats exist:AIFF,WAV, MP3, M4A, and so on.

40 Chapter 2 The Story of Sound

Note

Describing audio and storing audio data to the file system are entirely different problems.

Data formats solve the first problem; file formats solve the latter.

Think of an audio file as a container that holds audio data. Some file formats are cus-

tomized for specific data formats, such as MP3; an .mp3 file can’t contain PCM or

Windows Media data—only MP3 data.As noted,AIFF files handle PCM audio data, but

only if it’s big-endian. Conversely, PCM in WAV files has to be little-endian. Other file

formats are more agnostic and deal with several data formats. For example, the MP4 file

format can contain data in a number of data formats, including AAC, PCM, and AC3.

The most content-agnostic file format Core Audio supports is its own Core Audio

Format, abbreviated as CAF and indicated by the file extension .caf.A CAF file con-

tains any audio format supported by Core Audio: MP3,AAC,Apple Lossless, you name

it.This makes CAF an excellent choice as a container format for audio that is internal to

your application, such as background music or sound effects.

CAF also employs a number of tricks to improve performance. For example, consider

MP3 audio: Because it has a variable bit rate, jumping ahead to any point in an .mp3 file

requires decompressing all the data from the current playback position until it reaches

the time you want to jump to.You have no other way to know what part of the file rep-

resents the target time.This requires significant I/O and CPU costs and often takes a

noticeable amount of time to execute. CAF sets up internal lookup tables that map times

to samples, so it can make the jump almost immediately.

Note

The internal structure of the various container formats is beyond the scope of this book.

Formats are frequently proprietary and wildly variable. Core Audio handles this implementa-

tion detail by completely abstracting them away.

In the example, you could replace the file format constant kAudioFileAIFFType with

kAudioFileM4AType or kAudioFileCAFType, change the filename to use a suitable

extension, and not have to change anything else in your code. Core Audio would take

responsibility for figuring out how to put your PCM data into the specified format, as long

as the audio format and file format are compatible.

Summary
You’ve come a long way in this chapter! You started in the real world, talking about how

natural sources generate sound, how sound moves through the air as waves of pressure,

and how your ears pick up that sound.Then you saw how to model this in a digital rep-

resentation with numeric representations of sound waves, which are more amenable to

being processed by computers, stored on digital media, and sent across networks.To con-

cretize these concepts, you wrote your own sound waves, sample by sample, to files on

41Summary

www.allitebooks.com

http://www.allitebooks.org

the hard drive, again using Core Audio’s Audio File Services.You briefly considered the

difference between audio stream formats and audio file formats. Finally, you saw how

Core Audio abstracts away the differences in the various file formats, meaning that you

read and write .aif, .caf, and .m4a files more or less the same way.

With this grounding in the concepts of digital audio, it’s time to really take on Core

Audio—how it represents and processes audio.

42 Chapter 2 The Story of Sound

3

Audio Processing
with Core Audio

The last chapter introduced some essential concepts of digital audio. So how does Core

Audio handle them? Chapter 1,“Overview of Core Audio,” gave you an overview of the

major areas of interest in Core Audio.This chapter digs down to a more detailed level to

see how Core Audio models and processes digital audio data.

We’ll start with the issue of representing sample data and formats in Core Audio’s var-

ious data structures, and then turn our attention to the APIs that can do interesting stuff

with those structures.

Audio Data Formats
Core Audio views audio data as streams of packets.The contents of a stream’s packets are

described by its AudioStreamBasicDescription, which we introduced briefly in the

last chapter.The ASBD is critically important to just about any Core Audio program, so

let’s take a deeper look at it.

As shown in Listing 3.1, this C structure contains metadata describing the packet’s

data layout: the sample rate, the number of bits in a channel, the number of channels in a

frame, and so on. It doesn’t contain the data; it simply describes the data.

Listing 3.1 The AudioStreamBasicDescription Structure

struct AudioStreamBasicDescription {

Float64 mSampleRate;

UInt32 mFormatID;

UInt32 mFormatFlags;

UInt32 mBytesPerPacket;

UInt32 mFramesPerPacket;

UInt32 mBytesPerFrame;

UInt32 mChannelsPerFrame;

Listing 3.1 Continued

UInt32 mBitsPerChannel;

UInt32 mReserved;

};

typedef struct AudioStreamBasicDescription AudioStreamBasicDescription;

Note

Moving audio data is called streaming, so a bunch of audio data in memory is called an

audio stream. Don’t confuse this with streaming audio over a network, which is a different

use of the same metaphor.

The important point about a stream’s ABSD is that its meaning is an implementation

detail of its format:You don’t want to compare the mFramesPerPacket value of an

ASBD representing AAC data against an ASBD for MP3 because the packets of those

formats are totally different.

When you’re reading data from some source, such as a file or a network stream, vari-

ous parts of Core Audio populate the ASBD’s values. For example,Audio File Services

fills in the ABSD for audio loaded from disk. In some cases, Core Audio even fills in

values when you’re writing data:When you want to write compressed data, you often

don’t know or can’t know the value of some of the fields, so you set them to 0 and let

Core Audio figure it out.

The names of the ASBD’s struct members begin with m.Want to know the sample

rate? Check mSampleRate. Let’s look at the members one by one:

n mSampleRate is defined to be the number of samples per channel per second of

uncompressed data.This makes it equal to the number of frames per second, which

means you can multiply it by mFramesPerPacket to determine packet length in

seconds.

n mFormatID is a four-character code that serves as the name of the format.Without

naming a format, the struct is meaningless, so this value must be defined.The

default types Core Audio supports are defined in CoreAudioTypes.h.There you’ll

see the four character codes for the default formats and constants you can use in

your code. For example, the kAudioFormatLinearPCM format constant used in

the last chapter is the four-character code lpcm.

n mFormatFlags is the format’s subtype, or preference panel.This field is a UInt32

bit field in which you set or check various 1-bit flags. Setting flags answers ques-

tions left open by formats that support noninterleaved data, multiple sample types,

or variable data structures. Unfortunately, the only way to know how to interpret

this value is to look up the documentation—search for “AudioStreamBasic-

Description Flags” to find the defined flags. Formats that do not have flags can set

this value to 0.

44 Chapter 3 Audio Processing with Core Audio

n mBytesPerPacket answers the first of several questions about the structure of this

format’s data: How much data are we talking about? Variable bit rate formats, by

definition, cannot answer this question.These formats set this value to 0 and use an

AudioStreamPacketDescription, described later.

n mFramesPerPacket subdivides the raw bytes of the packet into some number of

frames.This is an issue only for compressed formats; uncompressed formats always

set this to 1. Core Audio can also support formats with a variable frame rate.These

formats set this value to 0 and use AudioStreamPacketDescriptions, described

later.

n mBytesPerFrame establishes the size of a single frame—that is, the total number

of digits used to represent each moment in time.When a frame does not contain a

sample per channel, as with compression, this value is set to 0.

n mChannelsPerFrame subdivides the frame into channels, regardless of compres-

sion.This value cannot be 0 because an audio stream with no channels is, by

definition, empty.

n mBitsPerChannel is the sample’s bit depth.As with bytes per frame, it represents

the actual structure of the data. Compressed formats whose frames do not contain

a sample per channel set this value to 0.

n The mReserved member is for data alignment purposes, padding the structure to

an even multiple of 8. It must always be 0.

For compressed data, whose packet structure cannot be adequately derived from its

measurements, each packet must be accompanied by another structure, AudioStream-

PacketDescription (see Listing 3.2). Unlike AudioStreamBasicDescription, which

describes every packet, AudioStreamPacketDescription describes an individual

packet.Thus, when you get a buffer of compressed audio data, you work with an array of

AudioStreamPacketDescriptions, each describing one packet in the buffer.

Listing 3.2 The AudioStreamPacketDescription Structure

struct AudioStreamPacketDescription {

SInt64 mStartOffset;

UInt32 mVariableFramesInPacket;

UInt32 mDataByteSize;

};

typedef struct AudioStreamPacketDescription AudioStreamPacketDescription;

n mStartOffset represents the packet’s location, relative to other packets in the

buffer, in bytes.This is important because packets of different sizes cannot use an

implied x-axis value as in a linear PCM format. (In layman’s terms, you can’t find a

sample by doing Offset = Time × Sample rate × Frame size + Channel number.)

45Audio Data Formats

n mVariableFramesInPacket represents the number of frames in the packet, but

only if the packets use a variable frame rate. If the

AudioStreamBasicDescription has a value for mFramesPerPacket,

mVariableFramesInPacket should be 0, and vice versa.

n mDataByteSize contains the packet’s actual size, in bytes.

With these two structures, you’re largely ready to handle just about any audio format

thrown at you. For any data specific to a format that is not handled by the stream’s

AudioStreamBasicDescription or an individual packet’s AudioStreamPacket-

Description, several of the Core Audio helper APIs—notably,Audio File Services,

Audio File Stream Services,Audio Conversion Services, and Audio Queue Services—

support the idea of a magic cookie.The cookie (unrelated to the browser terminology of

the same name) is an opaque block of data whose contents are specific to the format

being encoded or decoded. In practice, this means that when you open a file or network

stream of compressed data, you check for a magic cookie property. If present, you read it

in as a block of untyped data and pass it along to Core Audio without worrying about

what might be inside it.

Example: Figuring Out Formats

As you’ve seen, the way Core Audio represents audio data isn’t as simple as saying “an

MP3” or “an Audible book.”There’s a big difference between a file format and the audio

data inside that file, or between the data that describes that audio data, which could

involve three separate descriptors: the AudioStreamBasicDescription needed for all

audio streams, the magic cookie of certain compressed formats, and the

AudioStreamPacketDescription needed for every packet of compressed format.

A lot of what we’ve said about the various formats might seem arbitrary, so you can

use code to tell you what can and can’t go into a given file.Audio File Services provides

an interesting function called AudioFileGetGlobalInfo that gives information not

about an individual file, but about Core Audio’s handling of audio files in general. Look

up this function in the documentation and follow the link to “Audio File Global Info

Properties”; you’ll see a number of interesting-looking properties to inspect. In this

example, you use a property called kAudioFileGlobalInfo_AvailableStream-

DescriptionsForFormat to get Core Audio to spill the beans about what can and

can’t go into your audio files.

Specifically, here’s what the documentation for kAudioFileGlobalInfo_

AvailableStreamDescriptionsForFormat promises to give you:

An array of audio stream basic description structures, which contain all the formats

for a particular file type and format ID.

The audio stream basic description structures have the following fields filled in:

mFormatID, mFormatFlags, and mBitsPerChannel for writing new files.When

accessing this property, provide a pointer, in the inSpecifier parameter, to an

audio file type and format ID structure.

46 Chapter 3 Audio Processing with Core Audio

So this property tells you how to set up an ASBD for writing to a file, for any supported

audio format and file type.That sounds useful—you can try it out next.

Create another Xcode command-line tool project, called CAStreamFormatTester.

As always, you need to add #import <AudioToolbox/AudioToolbox.h> in the .m file

and add the AudioToolbox.framework to the project.

As before, you can write this example just by editing the default main() function

and removing the “Hello,World!” log statement. Listing 3.3 shows the example code.

Listing 3.3 Inspecting Core Audio’s File Format Support

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

AudioFileTypeAndFormatID fileTypeAndFormat; // 1

fileTypeAndFormat.mFileType = kAudioFileAIFFType;

fileTypeAndFormat.mFormatID = kAudioFormatLinearPCM;

OSStatus audioErr = noErr; // 2

UInt32 infoSize = 0;

audioErr = AudioFileGetGlobalInfoSize // 3

(kAudioFileGlobalInfo_AvailableStreamDescriptionsForFormat,

sizeof (fileTypeAndFormat),

&fileTypeAndFormat,

&infoSize);

assert (audioErr == noErr);

AudioStreamBasicDescription *asbds = malloc (infoSize); // 4

audioErr = AudioFileGetGlobalInfo // 5

(kAudioFileGlobalInfo_AvailableStreamDescriptionsForFormat,

sizeof (fileTypeAndFormat),

&fileTypeAndFormat,

&infoSize,

asbds);

assert (audioErr == noErr);

int asbdCount = infoSize / sizeof (AudioStreamBasicDescription);

// 6

for (int i=0; i<asbdCount; i++) {

UInt32 format4cc = CFSwapInt32HostToBig(asbds[i].mFormatID);

// 7

NSLog (@"%d: mFormatId: %4.4s, mFormatFlags: %d, mBitsPerChannel: %d"

i, // 8

(char*)&format4cc,

asbds[i].mFormatFlags,

asbds[i].mBitsPerChannel);

}

47Audio Data Formats

Listing 3.3 Continued

free (asbds); // 9

[pool drain];

return 0;

}

Look over the commented callouts to better understand this example:

1. To use the property called kAudioFileGlobalInfo_AvailableStream-

DescriptionsForFormat, you have to pass Core Audio a structure called

AudioFileTypeAndFormatID (getting this property seems to be the only use for

the struct).This structure has two members, a file type and a data format, both of

which you can set with Core Audio constants found in the documentation or the

AudioFile.h and AudioFormat.h headers. For starters, let’s use an AIFF file with

PCM, as you created in the previous chapter.

2. As before, you prepare an OSStatus to receive result codes from your Core Audio

calls.You also prepare a UInt32 to hold the size of the info you’re interested in,

which you have to negotiate before actually retrieving the info.

3. Just as when you retrieved an audio file’s property in Listing 1.1, getting a global

info property requires you to query in advance for the size of the property and to

store the size in a pointer to a UInt32.The global info calls take a specifier, which

acts like an argument to the property call and depends on the property you’re ask-

ing for (the docs for the properties describe what kind of specifier, if any, they

expect). In the case of kAudioFileGlobalInfo_AvailableStream-

DescriptionsForFormat, you provide the AudioFileTypeAndFormatID.

4. The AudioFileGetGlobalInfoSize calls tells you how much data you’ll receive

when you actually get the global property, so you need to malloc some memory

to hold the property.

5. With everything set up, you call AudioFileGetGlobalInfo to get the

kAudioFileGlobalInfo_AvailableStreamDescriptionsForFormat, passing

in the AudioFileTypeAndFormatID and the size of the buffer you’ve set up,

along with a pointer to the buffer itself.

6. The docs tell you that the property call provides an array of AudioStream-

BasicDescriptions, so you can figure out the length of the array by dividing

the data size by the size of an ASBD.That enables you to set up a for loop to

investigate the ASBDs.

7. The docs stated that the three ASBD fields that get filled in are mFormatID,

mFormatFlags, and mBitsPerChannel. It’s handy to log the format ID, but to

make it legible, you have to convert it out of the four-character code numeric for-

mat and into a readable four-character string.You do this with an endian swap

48 Chapter 3 Audio Processing with Core Audio

because the UInt32 representation will reorder the bits from their original pseudo-

string representation.

8. To pretty print the mFormatId’s endian-swapped representation, you can use the

format string %4.4s to force NSLog (or printf) to treat the pointer as an array of

8-bit characters that is exactly four characters long.The mFormatFlags and

mBitsPerChannel members are a bit field and numeric value, so just print them

as ints for now.

9. Because you malloc()’d memory to hold the ASBD array, you need to be sure to

free() it when you’re done with it so you don’t leak.

So what’s the result of this? Bring up the console pane (Shift-„-C) and run the pro-

gram.You should see the following results:

0: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 8

1: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 16

2: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 24

3: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 32

This tells you that AIFFs can handle only a small amount of variety in PCM formats,

differing only in bit depth.The mFormatFlags are the same for every ASBD in the

array. But what do they mean? The flags are a bit field, so with a value of 14, you know

that the bits for 0x2, 0x4, and 0x8 are enabled (because 0x2 + 0x4 + 0x8 = 0xE, which

is 14 in decimal).At this point, you need to consult the documentation for the

AudioStreamBasicDescription flags or the CoreAudioTypes.h header file to figure

out what those bit flags represent. Because the bits 0x2, 0x4, and 0x8 are set, this PCM

format is equivalent to kAudioFormatFlagIsBigEndian |

kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked.

This confirms what we said in the last chapter about the AIFF format being limited

to accepting only big-endian PCM. Let’s test that hypothesis. Make the following change

to callout 1 in Listing 3.3:

fileTypeAndFormat.mFileType = kAudioFileWAVEType;

This time, you get much different results:

0: mFormatId: lpcm, mFormatFlags: 8, mBitsPerChannel: 8

1: mFormatId: lpcm, mFormatFlags: 12, mBitsPerChannel: 16

2: mFormatId: lpcm, mFormatFlags: 12, mBitsPerChannel: 24

3: mFormatId: lpcm, mFormatFlags: 12, mBitsPerChannel: 32

4: mFormatId: lpcm, mFormatFlags: 9, mBitsPerChannel: 32

5: mFormatId: lpcm, mFormatFlags: 9, mBitsPerChannel: 64

This shows that WAV files take a different style of PCM.The 0x2 bit of mFormatFlags

is never set, which means that kAudioFormatFlagIsBigEndian is always false; that, in

49Audio Data Formats

turn, means that WAV files always use little-endian PCM.Also, the last two results set the

0x1 bit, kAudioFormatFlagIsFloat, meaning that the format is not limited to just

integer samples.

The last chapter also mentioned that the Core Audio Format, CAF, is pretty much

content agnostic, so it’s instructive to see what happens when you query about putting

PCM data into that file format. Change the file type:

fileTypeAndFormat.mFileType = kAudioFileCAFType;

Then build and run again.This time, you get 11 file-and-data-format combinations:

0: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 8

1: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 16

2: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 24

3: mFormatId: lpcm, mFormatFlags: 14, mBitsPerChannel: 32

4: mFormatId: lpcm, mFormatFlags: 11, mBitsPerChannel: 32

5: mFormatId: lpcm, mFormatFlags: 11, mBitsPerChannel: 64

6: mFormatId: lpcm, mFormatFlags: 12, mBitsPerChannel: 16

7: mFormatId: lpcm, mFormatFlags: 12, mBitsPerChannel: 24

8: mFormatId: lpcm, mFormatFlags: 12, mBitsPerChannel: 32

9: mFormatId: lpcm, mFormatFlags: 9, mBitsPerChannel: 32

10: mFormatId: lpcm, mFormatFlags: 9, mBitsPerChannel: 64

This shows CAF taking a variety of formats, using both integer and floating-point

samples (signaled by bit 0x1 being set) and signed and unsigned integers. It supports all

but one of the formats provided by AIFF and WAV.

But enough about PCM—what about compressed audio? Leave the file format as

CAF, but change the mFormatID to one of the other values listed in “Audio Data

Format Identifiers” (in the Core Audio Data Types Reference). For example, we all love

our iTunes, so let’s look at the AAC format used on the iTunes Store:

fileTypeAndFormat.mFormatID = kAudioFormatMPEG4AAC;

Build and run this, and you get a single result:

0: mFormatId: aac , mFormatFlags: 0, mBitsPerChannel: 0

This doesn’t tell you a lot, but at least you know that AAC is a valid payload for a CAF

file. Don’t freak out about the 0 bits per channel.This doesn’t mean there’s no data; it

means that the format uses a variable bit rate, so you shouldn’t try to set the bits per

channel value.

AAC can be carried in a few different formats.You’re probably used to seeing it in

.m4a files, which is represented by the file format constant kAudioFileM4AType. On

the other hand,AAC isn’t a valid payload for an .mp3 file, which can carry only MP3

data (technically, MPEG-1 and MPEG-2 Layer 3, hence the name). So let’s try one last

AudioFileTypeAndFormatID pairing:

50 Chapter 3 Audio Processing with Core Audio

fileTypeAndFormat.mFileType = kAudioFileMP3Type;

fileTypeAndFormat.mFormatID = kAudioFormatMPEG4AAC;

When you run this, the program dies on the first assert(), right after the call to

AudioFileGetGlobalInfoSize(). Set a breakpoint right before that, and you’ll see

that the OSStatus audioErr has been set to 1718449215, as in Figure 3.1.

51Canonical Formats

Figure 3.1 fmt? status returned from AudioFileGetGlobalInfoSize

What the heck is that? It’s another four-character code.Add the following before the

assert() to tease it out:

if (audioErr != noErr) {

UInt32 err4cc = CFSwapInt32HostToBig(audioErr);

NSLog (@"audioErr = %4.4s", (char*)&err4cc);

}

Run it again, and you’ll find that the error is the four-character code, fmt?.This is

defined in AudioFile.h as the value of kAudioFileUnsupportedDataFormatError.

Of course, this is exactly what you should have expected:You can’t put AAC data in an

MP3 file; if you try to do so, Core Audio returns an error.

If you like, take a few minutes to try different pairings of file type and data formats,

using constants from both “Built-In Audio File Types” from the Audio File Services

Reference and “Audio Data Format Identifiers” in the Core Audio Data Types

Reference (both are accessible from Xcode’s documentation viewer).You’ll find that

arbitrary pairings generally don’t work, that some file formats take only a single audio

data format, and that CAF will let you get away with just about anything.

Hopefully, you’ll come away from this example with an understanding of just how

different file formats and data formats are, and how Core Audio works with both.This

example didn’t make use of AudioStreamPacketDescriptions or magic cookies;

you’ll see both of those in the next chapter.

Canonical Formats
With support for so many formats, what’s the best? That’s a silly question: So many

formats exist because each is designed for different uses.Among the compressed formats,

AAC is great for audio fidelity (particularly for music) at high compression rates, but for

www.allitebooks.com

http://www.allitebooks.org

maximum fidelity, you can use Apple Lossless, which reproduces its source audio per-

fectly. On the other end of the bandwidth scale, the iLBC (Internet Low-Bandwidth

Codec) is optimized for speech over potentially unreliable Internet connections, making

it well suited for VoIP or in-game chat purposes.And none of these is appropriate for

editing, where you’re better served by the low CPU overhead and losslessness of PCM,

provided you have enough RAM and disk space.

That said, every platform has a number format it’s most efficient at using for a given

task. In Core Audio, we call this format canonical, in that it forms the baseline from

which all other audio formats deviate.Any value not explicitly set by the

AudioStreamBasicDescription defaults to the value of the canonical format.

In Core Audio’s engines, all audio format conversions are one-way, in that they all

convert data to (or from) the canonical format. Converting between two other formats

requires converting from the input format into the canonical format and then converting

from the canonical format into the output format.

Each platform actually has two canonical formats, the AudioSampleType, which is

used for I/O situations, and the AudioUnitSampleType, introduced in Snow Leopard

and iOS, which is used in audio units and for digital signal processing.

On Mac OS X, the AudioSampleType is a 32-bit float.The AudioUnitSampleType

is also a 32-bit float, but the channels must be noninterleaved.You can find the

mFormatFlags definitions in the CoreAudioTypes.h header file in the

CoreAudio.framework:

kAudioFormatFlagsCanonical = kAudioFormatFlagIsFloat |

kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked,

kAudioFormatFlagsAudioUnitCanonical = kAudioFormatFlagIsFloat |

kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked |

kAudioFormatFlagIsNonInterleaved,

On iOS, the AudioSampleType is 16-bit integer.The AudioUnitSampleType is an

8.24-bit fixed-point number, with 8 bits to the left of the radix point1 and 24 bits to the

right. Here’s what that looks like in the CoreAudioTypes.h file in the iPhone SDK

frameworks:

kAudioFormatFlagsCanonical = kAudioFormatFlagIsSignedInteger |

kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked,

kAudioFormatFlagsAudioUnitCanonical = kAudioFormatFlagIsSignedInteger |

kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked |

kAudioFormatFlagIsNonInterleaved | (kAudioUnitSampleFractionBits <<

kLinearPCMFormatFlagsSampleFractionShift),

52 Chapter 3 Audio Processing with Core Audio

1 The term decimal point applies only in base 10. The generic term is radix point.

Core Audio uses audio converters to convert data between formats and codecs to

translate data in various compression schemes. Simpler frameworks, such as Audio Queue

Services, use these tools behind the scenes to convert whatever data a file contains into a

canonical format.When you’re supplying samples directly to the audio engines (Audio

Units and OpenAL) directly, it’s advantageous to use the canonical formats, if you can;

you’ll save yourself some data conversions and, therefore, have more CPU cycles to use

elsewhere.

Processing Audio with Audio Units
This entire chapter has considered Core Audio’s concepts of how audio data is repre-

sented. Now it turns to the idea of how that data is processed.

As discussed in Chapter 1,“Overview of Core Audio,” Core Audio does most of its

work at the Audio Units level; the Audio Queue and OpenAL engines are implemented

atop audio units.

Each audio unit processes a buffer of samples in some specific way: One captures

audio from a mic, the next one downstream performs an effect on those samples, and

maybe the next one mixes it with another source.This arrangement is analogous to the

patch architecture common in the sound industry.Audio units are connected by audio

streams the way audio equipment is patched together with cables.

Just as professional audio equipment has jacks that you plug cables into, audio units

have elements, which may have input scope or output scope to indicate that they either

accept or produce data, respectively.To connect two units, you set a property connecting

an input element of one unit to the output unit of another.

Mac OS X provides several types of audio units, which can be connected into a

workflow called an audio processing graph.As packets of audio data are streamed through

the graph, each audio unit does its work, in order.You’re most likely to encounter these

types of units:

n Effect units. Perform digital signal processing—that is, they change the audio data

in some way.They are analogous to hardware effects boxes and outboard signal

processors.

n Instrument units. Generate audio data representing musical notes, typically from

MIDI input, which can itself come from a musical instrument or a software syn-

thesizer.

n Generator units. Also generate audio data, but not from a MIDI source. Some

units simply generate a signal programmatically, whereas others load data from a

network stream or audio file.

n I/O units. Provide interfaces to input or output hardware, such as a microphone

or a speaker.These are typically implemented on the Hardware Abstraction Layer

(HAL), the “demilitarized zone” between Core Audio and I/O Kit and the drivers.

53Processing Audio with Audio Units

n Converter units. Reformat audio data back and forth between the canonical for-

mats and other formats.These can also merge and split streams, and alter timing

and pitch.

n Mixer units. Combine audio tracks.There are also splitter units that provide mul-

tiple outputs from a single input.

n Panner units. Use stereo mixing to create panning effects.

n Offline effect units. Perform operations on audio data that cannot be done in

real time.

Because it runs on mobile devices with less capable CPUs and embodies an acute

awareness of power management, iOS provides only a subset of these units. In fact, iOS 4

doesn’t include any instrument, generator, or panner units.

To understand how units and their connections work, consider a hypothetical applica-

tion that captures from an input device, such as a microphone, and mixes that audio with

some other source, such as playback from a file. For example, this could be a karaoke

application that lets the user sing along with favorite songs.

This arrangement consists of four units, as illustrated in Figure 3.2.You start with a

generator unit to play audio from a file or the network, along with an I/O unit to get

audio from the input hardware.You make connections from the output scope elements

of these units to the input scope elements of a mixer unit.Then you connect the output

scope element of the mixer unit to the input scope element of an I/O unit to get the

mixed audio out to the hardware, such as speakers or headphones. In reality, the process

is more involved, as you’ll see in Chapters 7,“Audio Units: Generators, Effects, and

Rendering,” and 8,“Audio Units: Input and Mixing,” but that’s the basic flow.

54 Chapter 3 Audio Processing with Core Audio

Generator

Unit

I/O

Unit

Mixer

Unit

I/O

Unit

From

Hardware

To

Hardware

Figure 3.2 Audio unit graph to mix captured and generated sound

On Mac OS X, you can write your own audio units and deploy them in your appli-

cation.You can also provide GUIs to adjust the settings of your custom units and make

them available to other applications.This isn’t possible on iOS, where applications are

“sandboxed” and you can’t provide functionality for other apps to call into. Chapter 7

talks more about audio units.

The Pull Model
But if you have a bunch of units, how do they work together? Do you just create a

bunch of units and push data into them? In Core Audio’s pull architecture, it works the

opposite way.

With a pull architecture, the framework tells the programmer,“Don’t call us—we’ll

call you.” If you have a chain of audio units, the last one (which is probably the I/O unit

that will send audio to the speakers or headphones) pulls from the units connected to its

input elements, saying, in effect,“Give me something to play.”These units call the units

upstream from them, and so on.You can get into this arrangement either by writing

your own units or by having a unit call into your code with a callback when it needs

data.

Callbacks are sometimes called procs within Core Audio. In the Audio File Services

API, a callback that receives data is a read proc, and a callback that produces data is called

a write proc. Other parts of Core Audio use different terminology: For example, when an

audio unit calls into your code for a buffer of samples, it’s called a render callback.They’re

different terms but the same idea.Although they’re conceptually easy, implementing call-

backs can be tricky.You’ll create your first callback in the next chapter, in which you

create an Audio Queue that calls you back when it has capture data for you to process.

Interestingly, callbacks often follow Core Audio’s property-oriented design pattern:

Instead of calling a “set audio unit callback” function to set up a callback, you set a call-

back property on the audio unit.

Core Audio’s extensive use of callbacks can be convenient. For example, many APIs

enable you to register functions as property listeners.When the property changes, the

watched API calls the registered function. On the iPhone, for example, a property repre-

sents the path that the audio follows to the current output device: the speakers, head-

phones, or telephone earpiece. If the user pulls out the headphones, this path property

changes and the application gets a callback, which gives the code an opportunity to take

action, such as pausing playback or recording.

Summary
This chapter built on the theoretical foundation of Chapter 2,“The Story of Sound,” to

help you understand how the ideas of digital audio are represented in Core Audio’s

essential data types. Of all the possible digital audio formats you might encounter,

you can represent them with AudioStreamBasicDescriptions,

AudioStreamPacketDescriptions, and magic cookies that tell Core Audio how to

make sense of each buffer of audio data.You also got a sense of just how far Core

Audio’s built-in format support goes by using the Audio File Services to inspect the

55Summary

supported audio file types and tell you what kind of data you could put into them.

Finally, you looked at the processing side by learning about audio units and their con-

nections and delving into how Core Audio pulls audio through the units.

With this material and Chapter 1’s discussion of the common idioms of Core Audio

programming—properties, four-character codes, and so on—you’re now ready to dig

into the specifics of the APIs that Core Audio provides. For many people, the most natu-

ral use of an audio framework is to play audio from and record audio to flat files.You

already used the Audio File Services for the examples in the first three chapters; in the

next chapter, you’ll combine it with Audio Queue Services to play and record audio.

56 Chapter 3 Audio Processing with Core Audio

II

Basic Audio

4 Recording

5 Playback

6 Conversion

This page intentionally left blank

4

Recording

The first three chapters explored the nature of digital audio and how it is represented

by Core Audio.The next step is processing—actually doing something with the audio. In

the next two chapters, we’ll start moving samples through Core Audio’s recording and

playback engines.

To do this, you’ll use Audio Queue Services, the highest-level playback and recording

API in Core Audio. By the end of the chapter, you may think we’re nuts to call a C-

based, callback-driven API “high level,” but audio queues provide some conveniences

that the lower-level APIs don’t:

n Unlike with OpenAL and Audio Units, you can use encoded formats such as AAC

and MP3 with audio queues.

n By default,Audio Queues call you back on their own thread, which isolates you

from some timing challenges with Audio Units.

In this chapter, you’ll use Audio Queue Services to record audio from your computer’s

default input device. (You’ll move on to playback in the next chapter.) In real life, playing

audio is a much more common scenario than recoding audio. But it’s arguably easier to

learn how to record audio first.The basic process of moving buffers of packets to and

from the audio hardware is the same. Recording makes it easier to get into topics such as

file formats and avoids the tricky business of format discovery. It also gives you a way to

create audio files to play in the next chapter.

All About Audio Queues
Audio Queue Services uses a fairly simple model to get an audio capture or play-out job

done without miring you in the complexities of the audio data, the underlying hard-

ware, or the codecs necessary to put them together.

An audio queue is a simple software interface to a piece of audio hardware.The busi-

ness end of the hardware is typically a transducer, such as a speaker or a microphone.

Because audio data travels in a constant stream, a queue is the perfect data structure to

represent it.

The software end of an audio queue is the nominative queue of buffers. Each buffer

is a block of memory that holds the actual data and bookkeeping information about the

buffer and its contents.

Figure 4.1 illustrates the Audio Queue architecture. Buffers move from the buffer

queue into the audio queue.The buffer is filled with data from the audio hardware and

then passed into your callback function.Your callback function sends the audio data

“elsewhere” and then puts the buffer at the back of the buffer queue.

60 Chapter 4 Recording

Your Application

Your Recorder

Buffer Queue

Buffer Buffer Buffer

Audio

Hardware
Elsewhere

Audio

Queue

Callback

Function

Your Application

Your Recorder

Buffer Queue

Buffer

Audio

Hardware
Elsewhere

Audio

Queue

Callback

Function

Buffer Buffer

Figure 4.1 The Audio Queue architecture

In Figure 4.1,“Elsewhere” could be functions or methods in your application, in

another application, or wherever. For the sake of this example, you’re wrapping the data

in an audio file and sending it to the filesystem. In your application, the filesystem need

not necessarily be involved:You might use the received buffers to perform some kind of

analysis (such as for a frequency analyzer or a karaoke game) or send them over the net-

work to a VoIP peer.

Building a Recorder
It’s important to see an audio queue for what it is in the grand scheme of things. It’s not

an API for playing and recording—it’s one level lower than that. It’s the interface that

players and recorders use. Using an audio queue is not like using a recorder—it’s like

building a recorder.

When you create an audio queue, you provide a callback function that will be called

to provide your application with buffers of audio captured from the input device (in the

recording case) or to demand that you fill a buffer (for playback).

To try it out, let’s do something simple but useful: record from your Mac’s default

input device and write the captured audio to a file.

When you first use a new API, one of the most sensible things to do is look through

the documentation to see what the various calls look like, puzzle out how they work

together, and try to understand the implicit design. If you type “AudioQueue” as a

search term in Xcode’s documentation browser, you’ll find about 50 functions and types

that contain the string “AudioQueue”. Looking through them, you might figure out that

there are functions to create audio queues, as with AudioQueueNewInput() and

AudioQueueNewOutput(); control functions, as with AudioQueueStart() and

AudioQueueStop(); parameter and property setters and getters; and so on.

Let’s focus on AudioQueueNewInput(). It takes the following:

n A format to record to

n A structure representing a callback function

n A pointer to “user data,” which is provided to the callback

n A Core Foundation run loop to use for the callbacks

n A Core Foundation run loop “mode” for callbacks

n “Flags” that must be set to 0

n A pointer to receive a newly created AudioQueueRef

With this, you can anticipate some of what a recording queue example app needs to

provide:

n A user data pointer that includes everything your callback function needs to do its

work, such as the file to write to.The C convention is to define a struct for this,

although in an Objective-C class, you could also use instance variables and pass

self as the user data pointer.

n The callback function to process incoming audio.The docs link to

AudioQueueInputCallback, which provides the function signature that this

function must use so that you can copy and paste that directly into your code.

n A main function that does the following:

n Sets up the audio format to use and the file to record into

n Creates an audio queue

n Starts the queue

n Stops the queue

n Does cleanup work, such as closing the file

n Convenience functions for tasks that can be modularized and reused in future

code.

61Building a Recorder

Create a new command-line tool project in Xcode,1 add the AudioToolbox frame-

work to the default target, and sketch out these sections with comments or #pragma

mark macros, as shown in Listing 4.1. Comments to this “skeleton” listing show you

where you’ll be inserting each code listing as you go.

Listing 4.1 Outline of an Audio Queue–Based Recorder Program

#include <AudioToolbox/AudioToolbox.h>

#pragma mark user data struct

// Insert Listing 4.3 here

#pragma mark utility functions

// Insert Listing 4.2 here

// Insert Listings 4.20 and 4.21 here

// Insert Listing 4.22 here

// Insert Listing 4.23 here

#pragma mark record callback function

// Replace with Listings 4.24-4.26

static void MyAQInputCallback(void *inUserData,

AudioQueueRef inQueue,

AudioQueueBufferRef inBuffer,

const AudioTimeStamp *inStartTime,

UInt32 inNumPackets,

const AudioStreamPacketDescription *inPacketDesc)

{

}

#pragma mark main function

int main(int argc, const char *argv[])

{

// Set up format

// Insert Listings 4.4-4.7 here

// Set up queue

// Insert Listings 4.8-4.9 here

// Set up file

// Insert Listings 4.10-4.11 here

62 Chapter 4 Recording

1 From here on out, you won’t need Foundation’s conveniences such as NSLog(), so in the down-

loadable sample code, this and all subsequent Mac command-line projects use the Core

Foundation template.

Listing 4.1 Continued

// Other setup as needed

// Insert Listings 4.12-4.13 here

// Start queue

// Insert Listings 4.14-4.15 here

// Stop queue

// Insert Listings 4.16-4.18 here

}

That’s not so scary right? Full listings of Core Audio applications can be daunting, but

often they have a lot of little tasks that are reasonably comprehensible in isolation.

A CheckError() Function
Let’s start with a convenience function to give you better information when you get a

bad OSStatus return value. In the first few chapters, you used an assert() to check

that the value was equal to noErr, but you didn’t do anything to inspect the value if it

wasn’t.The return codes do vary from call to call and error to error; even if you want

the app to quit, you’ll help yourself immensely by actually inspecting the value.

However, the return values you get from Core Audio are somewhat unpredictable.

Some are four-character codes that are easy enough to puzzle out from a log message,

but others are just constant integer values. It would be nice to have a logging function

that could tell the difference.

For the first convenience function (shown in Listing 4.2), you’ll write just that. Look

at the bytes of the error code. If all of them appear to be characters, treat them as a C

string; otherwise, log the code as an integer. Here’s the function, which you can place

after #pragma mark utility functions in Listing 4.1.

Listing 4.2 Logging OSStatus Error Codes

static void CheckError(OSStatus error, const char *operation)

{

if (error == noErr) return;

char errorString[20];

// See if it appears to be a 4-char-code

*(UInt32 *)(errorString + 1) = CFSwapInt32HostToBig(error);

if (isprint(errorString[1]) && isprint(errorString[2]) &&

isprint(errorString[3]) && isprint(errorString[4])) {

errorString[0] = errorString[5] = '\'';

errorString[6] = '\0';

} else

63A CheckError() Function

Listing 4.2 Continued

// No, format it as an integer

sprintf(errorString, "%d", (int)error);

fprintf(stderr, "Error: %s (%s)\n", operation, errorString);

exit(1);

}

This function uses the function isprint() from the standard C library (in

ctype.h) to test whether each of the 4 bytes of error consists of plausible characters. If

so, an errorString is created with those 4 bytes, using single quotes, and a null-termi-

nator; if not, errorString is created by converting the integer value to a C string. In

either case, the function uses the errorString and operation, a string parameter that

represents what you were doing when the error occurred, to log an error message to

standard out.After that, the application terminates with a nonzero (error) status.

To call this, you wrap your Core Audio calls with the CheckError() function and

an operation string that represents the purpose of the call.As a simple example, consider

the last Core Audio call from the CAToneFileGenerator example in Chapter 2,“The

Story of Sound” (see “// 16” in Listing 2.1). In that example, you wrote this:

audioErr = AudioFileClose(audioFile);

assert (audioErr == noErr);

With the convenience function, you can now write this:

CheckError (AudioFileClose(audioFile), "Couldn't close audio file");

And if that fails, you log an error like this before terminating:

Error: Couldn't close audio file ('wht?')

If you look through the Audio File Services Reference in the Xcode documentation or

the AudioFile.h header file, you’ll see that wht? is kAudioFileUnspecifiedError.

On the other hand, if the result isn’t a four-character code, the value in parentheses sim-

ply is an integer, such as (-50), where -50 is the generic paramErr from

MacErrors.h.

You’ll continue to use this handy function throughout the rest of the book.

Creating and Using the Audio Queue
Here you begin coding the application, leaving placeholders for convenience functions as

you discover you need them.

The main tasks for the main() function are to create an audio queue to capture

input from the default device, let it run until the user stops it, and then clean everything

64 Chapter 4 Recording

up. From looking at the API documentation, you know that you’ll be doing a lot of the

work in a callback function, not in the main() itself.This callback function can take

one pointer that provides whatever data you need in the callback, so let’s define that at

the top of the file, as seen in Listing 4.3.

Listing 4.3 User Info Struct for Recording Audio Queue Callbacks

#pragma mark user info struct

typedef struct MyRecorder {

AudioFileID recordFile;

SInt64 recordPacket;

Boolean running;

} MyRecorder;

We don’t expect you to know why you need these three fields in the struct right

away. But a common technique is that you know you need something for your callback—

you create a struct such as MyRecorder and then add to or remove from it as you create

the rest of your code. For this example, the callback needs to know the file to write to,

an index of the packet it’s writing to the output file, and a Boolean to keep track of

whether the queue is running.

Now that you’ve defined the MyRecorder struct, you can get to work on the

main() function that sets up, runs, and tears down the queue. Right off the bat, you

need to define a local MyRecorder variable, along with an

AudioStreamBasicDescription to represent the recording format, because you’ll

need one to set up the queue. Listing 4.4 sets these up.

Listing 4.4 Creating MyRecorder Struct and ASBD for Audio Queue

int main(int argc, const char *argv[])

{

MyRecorder recorder = {0};

AudioStreamBasicDescription recordFormat;

memset(&recordFormat, 0, sizeof(recordFormat));

This example shows off Audio Queue’s capability to work with encoded formats,

which means setting up the AudioStreamBasicDescription a little differently. First, in

Listing 4.5, you use the mFormatID and mChannelsPerFrame field to indicate that you

want to record as stereo AAC.

Listing 4.5 Setting Format of ASBD for Audio Queue

recordFormat.mFormatID = kAudioFormatMPEG4AAC;

recordFormat.mChannelsPerFrame = 2;

65Creating and Using the Audio Queue

You also need to define a sample rate.You could hard-code 44,100 Hz as you did in the

previous chapters. However, because different input devices have different default sample

rates, just imposing a value could force Core Audio to do a sample rate conversion you

don’t need. If your input device could only capture at 8,000 Hz, forcing the ASBD to

use 44,100 Hz would just cause Core Audio to do extra work in resampling the input

audio—and it still wouldn’t sound any better.

Remind yourself to write a convenience function that will figure out the right sam-

ple rate for the selected input device, as in Listing 4.6.

Listing 4.6 Function for Correct Sample Rate

MyGetDefaultInputDeviceSampleRate(&recordFormat.mSampleRate);

For encoded formats, this is really all you need to fill in for the ASBD.You can’t know

some of the ASBD fields, such as mBytesPerPacket, because they might depend on

details of the encoding format or might even be variable. For formats other than PCM,

fill in what you can and let Core Audio do the rest.

One way to do this is to use AudioFormatGetProperty() to fill in a partially com-

pleted ASBD. If you use the property kAudioFormatProperty_FormatInfo and pass in

an ASBD with at least its mFormatID set, Core Audio uses what it knows about that

codec to fill in whatever other fields it can.As with other property getters and setters,

you must provide the size of the pointer you’re passing in to the call, so this takes two

statements, as seen in Listing 4.7.

Listing 4.7 Filling in ASBD with AudioFormatGetProperty()

UInt32 propSize = sizeof(recordFormat);

CheckError(AudioFormatGetProperty(kAudioFormatProperty_FormatInfo,

0,

NULL,

&propSize,

&recordFormat),

"AudioFormatGetProperty failed");

Notice that this is the first use of the CheckError() convenience function. If Core

Audio doesn’t recognize the format—perhaps you used some bogus four-character code

or you asked for a Mac-only format on iOS—the application terminates with this

message:

Error: AudioFormatGetProperty failed ('fmt?')

Having set up the format, you are now ready to create the recording audio queue.

Create a local variable to hold a reference to the queue, and then create it with a single

call to AudioQueueNewInput(), like in Listing 4.8.

66 Chapter 4 Recording

Listing 4.8 Creating New Audio Queue for Input

AudioQueueRef queue = {0};

CheckError(AudioQueueNewInput(&recordFormat,

MyAQInputCallback,

&recorder,

NULL,

NULL,

0,

&queue),

"AudioQueueNewInput failed");

As mentioned earlier, this function takes a lot of parameters, although only a few of

them are typically of interest:You indicate the format to record into (recordFormat), a

callback function (the yet-to-be-written MyAQInputCallback), a pointer with user data

to provide to the callback (recorder, which is your MyRecorder struct), some NULL

defaults for run loop behavior, a flags value that is always 0, and, finally, a pointer to

receive the created AudioQueueRef.

A side effect of creating the queue is that it can provide you with a more complete

AudioStreamBasicDescription than the one you set it up with.This happens because

some of the fields can’t be filled in until Core Audio readies a codec for the queue.You

can retrieve this ASBD from the queue by getting the property

kAudioConverterCurrentOutputStreamDescription. Do this in Listing 4.9.

Listing 4.9 Retrieving Filled-Out ASBD from Audio Queue

UInt32 size = sizeof(recordFormat);

CheckError(AudioQueueGetProperty(queue,

kAudioConverterCurrentOutputStreamDescription,

&recordFormat,

&size),

"Couldn't get queue's format");

With this more detailed ASBD, you can now create the file into which you record the

captured audio.You already used AudioFileCreateWithURL() to do this in Chapter 2;

it takes a CFURLRef, a file type, an ASBD, some flags, and a pointer to receive the created

AudioFileID. One change is needed for the version in Listing 4.10: Because this exam-

ple hasn’t imported the Foundation framework (and doesn’t really need to), you’ll stick

with the Core Foundation conventions for creating URLs instead of using NSURL and

the toll-free bridge.

67Creating and Using the Audio Queue

Listing 4.10 Creating Audio File for Output

CFURLRef myFileURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

CFSTR("output.caf"),

kCFURLPOSIXPathStyle,

false);

CheckError(AudioFileCreateWithURL(myFileURL,

kAudioFileCAFType,

&recordFormat,

kAudioFileFlags_EraseFile,

&recorder.recordFile),

"AudioFileCreateWithURL failed");

CFRelease(myFileURL);

The queue also gives you a magic cookie. As covered in Chapter 3,“Audio Processing

with Core Audio,” a magic cookie is an opaque block of data that contains values that

are unique to a given codec and that the ASBD hasn’t already accounted for. Some com-

pressed formats use cookies; some don’t. Because your code might encounter new for-

mats that use cookies, it’s wise to always be able to handle them.AAC is one format that

uses magic cookies, so you need to get it from the audio queue and set it on the audio

file. But this is a distraction from setting up the audio queue, so Listing 4.11 can just be a

call to a convenience function that you’ll write later.

Listing 4.11 Calling a Convenience Method to Handle Magic Cookie

MyCopyEncoderCookieToFile(queue, recorder.recordFile);

With a queue and an audio file set up, you’re getting closer.The next item to think

about is the buffers that the queue works with. In the recording case, the queue fills

these buffers with captured audio and sends them to the callback function. However,

you’re still responsible for creating these buffers and providing them to the queue before

you start.And that begs an interesting question: How big are the buffers supposed to be?

With constant bit rate encoding, such as PCM, you could multiply the bit rate by a

buffer duration to figure out a good buffer size. For example, 44,100 samples/second × 2

channels × 2 bytes/channel × 1 second would mean you’d need 176,400 bytes to hold a

second of 16-bit stereo PCM at 44.1 KHz. For a compressed format such as AAC, how-

ever, you don’t know how effective the compression will be.Therefore, you don’t know

how big a buffer to allocate.

The audio queue can give you this information, but because it’s a big job, you can set

it aside with another convenience function that you’ll have to come back to.Assume that

MyComputeRecordBufferSize() will take an ASBD, an audio queue, and a buffer

duration in seconds and return an optimal size, and call this in Listing 4.12.

68 Chapter 4 Recording

Listing 4.12 Calling a Convenience Function to Compute Recording Buffer Size

int bufferByteSize = MyComputeRecordBufferSize(&recordFormat, queue, 0.5);

Assuming that works, let’s create some buffers and provide them to the queue, an

action called enqueuing.At the top of the file, define the number of buffers to use. In

Core Audio, including Apple’s examples, it’s common practice to use three buffers.The

idea is, one buffer is being filled, one buffer is being drained, and the other is sitting in

the queue as a spare, to account for lag.

#define kNumberRecordBuffers 3

You can use more—you’re welcome to recompile this program using a greater value

for kNumberRecordBuffers when you’re finished writing it—but using less than three

could get you in trouble.With two buffers, you’d risk dropouts by not having a spare

buffer while the other two are being used.With only one buffer, you’ll almost certainly

have dropouts because the one buffer the queue needs to record into will be unavailable

as your callback processes it.

Now back in main(),you can allocate and enqueue these buffers, as shown in Listing

4.13.

Listing 4.13 Allocating and Enqueuing Buffers

int bufferIndex;

for (bufferIndex = 0;

bufferIndex < kNumberRecordBuffers;

++bufferIndex)

{

AudioQueueBufferRef buffer;

CheckError(AudioQueueAllocateBuffer(queue,

bufferByteSize,

&buffer),

"AudioQueueAllocateBuffer failed");

CheckError(AudioQueueEnqueueBuffer(queue,

buffer,

0,

NULL),

"AudioQueueEnqueueBuffer failed");

}

Now that you have a queue with a set of buffers enqueued, you can start the queue,

which starts recording.You do this with a call to AudioQueueStart(), shown in Listing

4.14, which takes the queue to start and an optional start time (use NULL to start

immediately).

69Creating and Using the Audio Queue

Listing 4.14 Starting the Audio Queue

recorder.running = TRUE;

CheckError(AudioQueueStart(queue,

NULL),

"AudioQueueStart failed");

Because you’re writing a command-line application, your UI will simply be to stop

recording when the user presses a key on the keyboard, a behavior we implement in

Listing 4.15.

Listing 4.15 Blocking on stdin to Continue Recording

printf("Recording, press <return> to stop:\n");

getchar();

When the user is done recording, you need to stop the queue so it can finish its

work.You do this with AudioQueueStop(), in Listing 4.16.

Listing 4.16 Stopping the Audio Queue

printf("* recording done *\n");

recorder.running = FALSE;

CheckError(AudioQueueStop(queue,

TRUE),

"AudioQueueStop failed");

You have a little more cleanup to do before main() can exit. In some cases, the

magic cookie is updated during the recording process. Reset the cookie on the file

before closing it.To do this, you can use your yet-to-be-written convenience function

again, as shown in Listing 4.17.

Listing 4.17 Recalling the Magic Cookie Convenience Function

MyCopyEncoderCookieToFile(queue, recorder.recordFile);

Finally, you clean up by disposing of all resources allocated by the audio queue and

closing the audio file. Listing 4.18 shows these clean-up calls.

Listing 4.18 Cleaning Up the Audio Queue and Audio File

AudioQueueDispose(queue, TRUE);

AudioFileClose(recorder.recordFile);

return 0;

}

70 Chapter 4 Recording

Now you have the main() portion of your application, which sets up and uses an audio

queue. If you want to get it to compile, you have to stub out no-op versions of the con-

venience functions you’ve referenced (and you have to either put them before main()

or create forward references). Listing 4.19 shows the stub implementations.

Listing 4.19 Function Definitions for Convenience Routines

OSStatus MyGetDefaultInputDeviceSampleRate(Float64 *outSampleRate) {}

static int MyComputeRecordBufferSize(

const AudioStreamBasicDescription *format,

AudioQueueRef queue,

float seconds) {}

static void MyCopyEncoderCookieToFile(AudioQueueRef queue,

AudioFileID theFile) {}

Between these utility functions and the callback function MyAQInputCallback(),you

have four more pieces to write to get your recorder working. Let’s clean up the details of

the convenience functions first.

Utility Functions for the Audio Queue
The first bit of work you put off in main() was to get a sample rate from the input

hardware instead of just hard-coding a value that might not suit the current device.To

inspect the current input device, you can use Audio Hardware Services.2 As with so

much of Core Audio, you need to use a property getter.Actually, you’ll use two: First, in

Listing 4.20, you use AudioHardwareServiceGetPropertyData() to get the

kAudioHardwarePropertyDefaultInputDevice property.

Listing 4.20 Getting Current Audio Input Device Info from Audio Hardware Services

OSStatus MyGetDefaultInputDeviceSampleRate(Float64 *outSampleRate)

{

OSStatus error;

AudioDeviceID deviceID = 0;

AudioObjectPropertyAddress propertyAddress;

UInt32 propertySize;

propertyAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice;

propertyAddress.mScope = kAudioObjectPropertyScopeGlobal;

propertyAddress.mElement = 0;

propertySize = sizeof(AudioDeviceID);

error = AudioHardwareServiceGetPropertyData(kAudioObjectSystemObject,

71Utility Functions for the Audio Queue

2 Audio Hardware Services does not exist on iOS. To get the hardware sample rate on iPhone, we

use Audio Session Services, which is covered in Chapter 10.

Listing 4.20 Continued

&propertyAddress,

0,

NULL,

&propertySize,

&deviceID);

if (error) return error;

As you can see, getting a property requires you to specify the audio object to query

(the constant kAudioObjectSystemObject, in this case) and an AudioObject

PropertyAddress, which contains not just the property you want, but also a scope and

an element. For querying general properties of the hardware, as you’re doing here, you

can request global scope and the master element, which is 0.

Note

This section packs in a bunch of concepts about audio hardware properties, but they’re sel-

dom used—it’s okay to treat this as boilerplate and not worry about scopes and elements

for now. They’ll make more sense after you cover Audio Units in Chapter 7, “Audio Units:

Generators, Effects, and Rendering,” which use a similar metaphor.

Assuming that you got the deviceID from this call, you make another call in Listing

4.21 to AudioHardwareServiceGetPropertyData.This time, you pass in the

deviceID and request the kAudioDevicePropertyNominalSampleRate property.

Listing 4.21 Getting Input Device’s Sample Rate

propertyAddress.mSelector = kAudioDevicePropertyNominalSampleRate;

propertyAddress.mScope = kAudioObjectPropertyScopeGlobal;

propertyAddress.mElement = 0;

propertySize = sizeof(Float64);

error = AudioHardwareServiceGetPropertyData(deviceID,

&propertyAddress,

0,

NULL,

&propertySize,

outSampleRate);

return error;

}

The next utility function to write is the one that retrieves the magic cookie from an

audio queue and provides it to an audio file.You have to do this for encoded formats

such as AAC, in which the ASBD by itself is not sufficient to describe the audio stream.

This is a pretty straightforward task: Get the magic cookie property (if any) from the

queue and set it on the audio file. Listing 4.22 shows these steps.

72 Chapter 4 Recording

Listing 4.22 Copying Magic Cookie from Audio Queue to Audio File

static void MyCopyEncoderCookieToFile(AudioQueueRef queue, AudioFileID theFile)

{

OSStatus error;

UInt32 propertySize;

error = AudioQueueGetPropertySize(queue,

kAudioConverterCompressionMagicCookie,

&propertySize);

if (error == noErr && propertySize > 0)

{

Byte *magicCookie = (Byte *)malloc(propertySize);

CheckError(AudioQueueGetProperty(queue,

kAudioQueueProperty_MagicCookie,

magicCookie,

&propertySize),

"Couldn't get audio queue's magic cookie");

CheckError(AudioFileSetProperty(theFile,

kAudioFilePropertyMagicCookieData,

propertySize,

magicCookie),

"Couldn't set audio file's magic cookie");

free(magicCookie);

}

}

As you can see, you copy over the magic cookie by first using AudioQueueGet

PropertySize() to get the size of the kAudioConverterCompressionMagicCookie

property from the queue. If the size is 0, no cookie exists and you’re done. Otherwise,

you need to malloc() a byte buffer to hold the cookie, copy it to the buffer with

AudioQueueGetProperty(), and then set the property on the file with

AudioFileSetProperty(), sending the byte buffer as the property’s value.

Note

The property constants that represent the magic cookie in the Audio Queue Services and

Audio File Services APIs are different. They might be the same four-character-code, but to

be safe, make sure you’re using kAudioQueueProperty-style constants when getting

or setting queue properties, and use kAudioFileProperty-style constants with file

properties.

The last utility function is MyComputeRecordBufferSize(), which figures out how

big a buffer you need to hold a certain duration of audio in a given format. main() uses

73Utility Functions for the Audio Queue

this to allocate the buffers it enqueues on the audio queue.The logic is somewhat

involved, so Listing 4.23 gives you the code first and then the text explains how it

works.

Listing 4.23 Computing Recording Buffer Size for an ASBD

static int MyComputeRecordBufferSize(

const AudioStreamBasicDescription *format,

AudioQueueRef queue,

float seconds)

{

int packets, frames, bytes;

frames = (int)ceil(seconds * format->mSampleRate);

if (format->mBytesPerFrame > 0) // 1

bytes = frames * format->mBytesPerFrame;

else

{

UInt32 maxPacketSize;

if (format->mBytesPerPacket > 0) // 2

// Constant packet size

maxPacketSize = format->mBytesPerPacket;

else

{

// Get the largest single packet size possible

UInt32 propertySize = sizeof(maxPacketSize); // 3

CheckError(AudioQueueGetProperty(queue,

kAudioConverterPropertyMaximumOutputPacketSize,

&maxPacketSize,

&propertySize),

"Couldn't get queue's maximum output packet size");

}

if (format->mFramesPerPacket > 0)

packets = frames / format->mFramesPerPacket; // 4

else

// Worst-case scenario: 1 frame in a packet

packets = frames; // 5

// Sanity check

if (packets == 0)

packets = 1;

bytes = packets * maxPacketSize; // 6

}

return bytes;

}

74 Chapter 4 Recording

Let’s dig into the code a little more so you can better understand what’s happening.

Start with // 1 and follow along through the code:

1. You first need to know how many frames (one sample for every channel) are in

each buffer.You get this by multiplying the sample rate by the buffer duration. If

the ASBD already has an mBytesPerFrame value, as in the case for constant bit

rate formats such as PCM, you can trivially get the needed byte count by multi-

plying mBytesPerFrame by the frame count.

2. If that’s not the case, you need to work at the packet level.The easy case for this is

a constant packet size, indicated by a nonzero mBytesPerPacket.

3. In the hard case, you get the audio queue property

kAudioConverterPropertyMaximumOutputPacketSize, which gives you an

upper bound to work with. Either way, you have a maxPacketSize, which you’ll

need soon.

4. But how many packets are there? The ASBD might provide a mFramesPerPacket

value; in that case, you divide the frame count by mFramesPerPacket to get a

packet count (packets).

5. Otherwise, assume the worst case of one frame per packet.

6. Finally, with a frames-per-packet value (which you force to be nonzero, just to be

safe) and a maximum size per packet, you can multiply the two to get a maximum

buffer size.

Those are the convenience functions.You can probably see why you wanted to factor

them out of main(), to avoid distraction from the earlier discussion of setting up and

starting the audio queue.As a bonus, you can reuse these functions in your future

projects.

At this point, you can build and run the example project, although it won’t actually

do anything; it’s missing the callback from the audio queue. Let’s finish that next.

The Recording Audio Queue Callback

When you created the audio queue with AudioQueueNewInput(), you passed in a

function pointer to MyAQInputCallback, along with a user data pointer to recorder,

which is the MyRecorder struct that we created in main().The callback is called every

time the queue fills one of the buffers with freshly captured audio data; the callback

function must do something interesting with this data.As long as the callback function is

an empty stub, the program will run and the buffers will be delivered, but nothing inter-

esting will happen because you’re not doing anything with the buffers.You need to take

each buffer you receive from the queue and write it to the audio file.

Let’s begin in Listing 4.24 by casting the user data pointer back to a reference to a

MyRecorder struct.

75Utility Functions for the Audio Queue

Listing 4.24 Header for Audio Queue Callback and Casting of User Info Pointer

static void MyAQInputCallback(void *inUserData,

AudioQueueRef inQueue,

AudioQueueBufferRef inBuffer,

const AudioTimeStamp *inStartTime,

UInt32 inNumPackets,

const AudioStreamPacketDescription *inPacketDesc)

{

MyRecorder *recorder = (MyRecorder *)inUserData;

Now you’re ready to write the audio data to the file.The audio data is provided by

the callback parameter inBuffer (an AudioQueueBufferRef), with three other param-

eters providing a starting time stamp, a number of packets, and a pointer to packet

descriptions.The latter two parameters are relevant only for variable bit rate formats,

such as the AAC format you’re using. Fortunately, these parameters, along with the values

you set aside in the MyRecorder struct, provide everything you need to call

AudioFileWritePackets():

n A file, which you put in the MyRecorder struct

n A Boolean indicating whether you want to cache the data you’re writing (you

don’t want to, in this case)

n The size of the data buffer to write, which you get from the inBuffer parame-

ter’s mAudioDataByteSize

n Packet descriptions, provided by the callback’s inPacketDesc parameter

n An index to which packet in the file to write, which is a running count that you

keep track of in recorder’s recordPacket field

n The number of packets to write, provided by the callback’s inNumPackets

parameter

n A pointer to the audio data, which is the inBuffer mAudioData pointer

Listing 4.25 makes the call to AudioFileWritePackets() and then updates the

index of where to write packets in the file (so that it’s not repeatedly writing to index 0).

Listing 4.25 Writing Captured Packets to Audio File

if (inNumPackets > 0)

{

// Write packets to a file

CheckError(AudioFileWritePackets(recorder->recordFile,

FALSE,

inBuffer->mAudioDataByteSize,

inPacketDesc,

recorder->recordPacket,

&inNumPackets,

76 Chapter 4 Recording

Listing 4.25 Continued

inBuffer->mAudioData),

"AudioFileWritePackets failed");

// Increment the packet index

recorder->recordPacket += inNumPackets;

}

Now that you’ve used the buffer, you send it back to the queue (you re-enqueue it)

in Listing 4.26 so it can be filled with newly captured audio data.

Listing 4.26 Re-enqueuing a Used Buffer

if (recorder->running)

CheckError(AudioQueueEnqueueBuffer(inQueue,

inBuffer,

0,

NULL),

"AudioQueueEnqueueBuffer failed");

}

With this, you have completed your recording audio queue.To try it, launch System

Preferences and go to the Sound panel. Make sure you have a working audio input

device selected, such as an internal laptop microphone or an external USB microphone.

Back in Xcode, bring up the Console window from the Run menu (Shift-„-R). Now

build and run the application.You’ll see something like the following output:

Loading program into debugger‚…¶

Program loaded.

run

[Switching to process 2748]

Running‚…¶

Recording, press <return> to stop:

At this point, the application is recording from your default audio input device.3 Talk,

sing, snap your fingers—do whatever you like to make some sound.When you’ve had

enough, press the Return key.The program ends and displays the following message:

* recording done *

So where’s the sound? Recall that you set up CFURLRef to create the audio file

output.caf.This file path is relative to the executable, so in Xcode 4, you can find it

77Utility Functions for the Audio Queue

3 Use System Preferences to set your default input device and check the input levels, if you haven’t

already.

alongside your project’s derived data. Open the Organizer window, click the Projects tab

and click the Recorder project. In the right pane, notice the Derived Data path and

click the circled arrow next to it.This opens the project’s derived data in the Finder, as

shown in Figure 4.2. From here, you can dig down into Build/Products/Debug to find

the executable and the . output.caf file that contains your recording.You can play the

file by selecting it and pressing the spacebar to preview it in Finder, or drag it to

QuickTime Player or any other audio app that handles the CAF format.

78 Chapter 4 Recording

Figure 4.2 Location of output.caf captured audio file in the Finder

Summary
In this chapter, you used an audio queue to capture audio from the default input device

and write it to a file. Setting up the audio queue required you to work through a num-

ber of tasks, including figuring out a good size for the queue’s buffers, discovering the

input device’s sample rate, and retrieving the magic cookie for the format so that you

could provide it to the audio file. In more general terms, the essentials of working with

an audio queue are to enqueue some buffers, start the queue, and handle the buffers in

the callback

You can do a few more interesting tasks with an audio queue. One of the best is level

metering, which you can use to provide a user interface that shows the loudness or soft-

ness of the audio being captured. Using this feature involves working with two proper-

ties of the audio queue. First, you set the property kAudioQueueProperty_

EnableLevelMetering on the queue, passing in the value 1 as a UInt32 to enable

metering.Then you make repeated calls—perhaps five or ten per second—to get the

kAudioQueueProperty_CurrentLevelMeter or kAudioQueueProperty_

CurrentLevelMeterDB property from the queue.The value for these properties is an

array (one member per channel in the queue) of AudioQueueLevelMeterState

values, with the Float32 values provided either in a 0-for-silence/1-for-maximum

range, or as decibel values.You could then use these values to draw a custom view to

visualize the audio power levels.

In the next chapter, you’ll reverse this process and use an audio queue to play back

audio, such as the file you just recorded.You’ll use the same concept of providing buffers

to a queue, but this time, instead of your callback receiving buffers full of capture data,

you’ll get empty buffers that you’ll need to fill with audio from the file.You’ll still be

based in this queue metaphor, but you’ll be using it quite differently.

79Summary

This page intentionally left blank

5

Playback

In the previous chapter, you learned how to record audio with an Audio Queue, the

highest level of Core Audio’s engine APIs.An audio queue uses a queue of buffers to

process a stream of audio:Your application sets up the queue by providing it with these

buffers, and the queue sends a buffer to a callback function in your code when it’s time

for you to act on it.

All this applies to recording, but it also applies to playback, which is the other use of

an audio queue.The difference is one of responsibility: Instead of the recording queue

delivering you buffers of newly captured audio, a playback queue gives you empty

buffers that you are expected to fill with audio to be played out.

In this chapter, you’ll learn how to use playback audio queues by building an applica-

tion that reads audio from any Core Audio–supported file and plays it through a queue.

You’ll find some of the same challenges as in the last chapter, such as estimating buffer

sizes and managing magic cookies, along with some new concerns unique to playback,

such as having to take responsibility for the AudioStreamPacketDescriptions that describe

buffers of compressed audio data.

Defining the Playback Application
As with the recording example, you can prepare for writing a playback application by

sizing up the relevant APIs in the documentation.To create a playback audio queue, you

use the function AudioQueueNewOutput().This function takes almost the same list of

parameters as the input version used in the last chapter:

n An AudioStreamBasicDescription, describing the audio format being provided

to the queue

n An AudioQueueOutputCallback function pointer to a callback function you

will write

n A user data pointer to provide to the callback

n A Core Foundation run loop on which to call the callback

n A Core Foundation run loop mode for the callback

n An unused flags parameter that must always be 0

n A pointer to receive the created AudioQueueRef

The only difference between this and the recording case is the function pointer to

the callback.The AudioQueueOutputCallback declares a different signature that takes

only three parameters:

n The user data pointer

n The queue that is performing the callback

n An AudioQueueBufferRef to fill with data

Given this, you can again sketch the outline of your application. In Xcode, create

another Command Line Tool project, add AudioToolbox.framework to the target, and

outline the program as shown in Listing 5.1.

Listing 5.1 Outline of an Audio Queue–Based Playback Program

#include <AudioToolbox/AudioToolbox.h>

#pragma mark user data struct

// Insert Listing 5.2 here

#pragma mark utility functions

// Insert Listing 4.2 here

// Insert Listing 5.14 here

// Insert Listing 5.15 here

#pragma mark playback callback function

// Replace with Listings 5.16-5.19

static void MyAQOutputCallback(void *inUserData,

AudioQueueRef inAQ,

AudioQueueBufferRef inCompleteAQBuffer)

{

}

#pragma mark main function

int main(int argc, const char *argv[])

{

// Open an audio file

// Insert Listings 5.3-5.4 here

// Set up format

// Insert Listing 5.5 here

82 Chapter 5 Playback

Listing 5.1 Continued

// Set up queue

// Insert Listings 5.6-5.10 here

// Start queue

// Insert Listing 5.11-5.12 here

// Clean up queue when finished

// Insert Listing 5.13 here

}

With the exception of the callback function’s signature, this is identical to the previous

chapter’s example.The other big difference is that the comment “open audio file”

appears before you set up the audio format and queue.That’s because, instead of choos-

ing a format to record to, you need to discover the format of the file you want to play

and set up your queue accordingly.

Before you get started setting up your queue, copy over the CheckError() function

from the last chapter (see Listing 4.2) and paste it into the #pragma mark utility

functions section.Again, you will use this function to log any Core Audio errors

before terminating the program.

Setting Up a File-Playing Audio Queue
As is usually the case with Core Audio’s callback patterns, you get a single user data

pointer to pass back to your callback function.You usually want to define a custom

struct for this pointer so that you can pass multiple values into the callback.The callback

reads from an audio file and passes audio packets to the queue.As such, this struct needs

to keep track of the file to read from and where you are in the file. It also needs to keep

track of whether you should still be playing (that is, whether you’ve reached the end of

the file).Also, as we developed the example, we found that we also needed the struct to

have a reference to the array of packet descriptions read from the file and written to the

queue because this is set up in main() but used in the callback. Listing 5.2 gives the

user info struct.

Listing 5.2 User Info Struct for Playback Audio Queue Callbacks

#pragma mark user info struct

typedef struct MyPlayer {

AudioFileID playbackFile;

SInt64 packetPosition;

UInt32 numPacketsToRead;

AudioStreamPacketDescription *packetDescs;

Boolean isDone;

} MyPlayer;

83Setting Up a File-Playing Audio Queue

Now you can start writing the main() function, in Listing 5.3, starting with a vari-

able of this type that you can set up.

Listing 5.3 Declaration of main() Function and Allocation of a MyPlayer Structure

int main(int argc, const char *argv[])

{

MyPlayer player = {0};

Next, you need to find the audio file you’re working with. Use a #define at the top

of the file to create a string with the full path to an audio file on your hard drive. It can

be in any of the formats Core Audio understands, such as .mp3, .aac, .m4a, .wav, .aif,

and so on. However, Core Audio cannot read files in the iTunes “protected” format

(.m4p).

#define kPlaybackFileLocation CFSTR("/Users/username/Music/iTunes/iTunes
Music/Artist Name/Album Name/Song Name.m4a")

To hearken back to your work on the recording audio queue, you can use the

output.caf you recorded in Chapter 4,“Recording,” which will be in a long

“DerivedData” path something like this:

#define kPlaybackFileLocation CFSTR("/Users/username /Library/Developer/
Xcode/DerivedData/CH04_Recorderdvninfofohfiwcgyndnhzarhsipp/
Build/Products/Debug/output.caf")

Either way, back in main(), use AudioFileOpen() (which you saw in Chapter 1,

“Overview of Core Audio”) to get an AudioFileID and assign it to the

playbackFile in the player struct. Listing 5.4 shows this call.

Listing 5.4 Opening an Audio File for Input

CFURLRef myFileURL = CFURLCreateWithFileSystemPath(

kCFAllocatorDefault,

kPlaybackFileLocation,

kCFURLPOSIXPathStyle,

false);

CheckError(AudioFileOpenURL(myFileURL,

kAudioFileReadPermission,

0,

&player.playbackFile),

"AudioFileOpenURL failed");

CFRelease(myFileURL);

Now that you’ve opened the audio file, you can inspect its properties. In Listing 5.5,

you need to get the format of the file’s audio as an AudioStreamBasicDescription

so you can set up a playback queue with that format.

84 Chapter 5 Playback

Listing 5.5 Getting the ASBD from an Audio File

AudioStreamBasicDescription dataFormat;

UInt32 propSize = sizeof(dataFormat);

CheckError(AudioFileGetProperty(player.playbackFile, kAudioFilePropertyDataFormat,

&propSize, &dataFormat),

"Couldn't get file's data format");

Now that you have the dataFormat, you’re ready to create the audio queue for play-

back with the AudioQueueNewOutput() function, as shown in Listing 5.6.

Listing 5.6 Creating a New Audio Queue for Output

AudioQueueRef queue;

CheckError(AudioQueueNewOutput(&dataFormat,

MyAQOutputCallback,

&player,

NULL,

NULL,

0,

&queue),

"AudioQueueNewOutput failed");

Again, this is just like how you set up the recording queue, except that the callback

function (MyAQOutputCallback) has a much different signature.You’ll write the call-

back later; all that’s needed now is a no-op implementation, which you sketched out

earlier.

Setting Up the Playback Buffers

The next few steps all involve setting up the buffers that the queue uses.This is an

involved process because you have to account for the encoding characteristics of the

audio in the file you’re opening: whether it’s compressed or uncompressed, variable or

constant bit rate, and so on.

Part of the challenge here comes from working with packets, which wasn’t a concern

with LPCM and which you basically just passed from queue to file in the last chapter.To

refresh your memory, a packet is a collection of frames, which, in turn, are collections of samples.

Because the frame size is variable in a packet, you can’t just encounter a buffer of audio

data and know what to do with it, as you can with LPCM, in which every frame has a

fixed size.With encoded formats such as MP3 and AAC, you need an array of

AudioStreamPacketDescriptions to provide a map of the contents of the audio

buffer, to tell you where each packet begins and what’s in it.

To be able to allocate the buffers the queue will use, you need to inspect the file and

its audio encoding to figure out how big of a data buffer you’ll need and how many

packets you will be reading on each callback.This will be a distraction from setting up

85Setting Up a File-Playing Audio Queue

the audio queue, so put it aside as a utility function that you’ll write a little later.

Listing 5.7 calls this yet-to-be written convenience function.

Listing 5.7 Calling a Convenience Function to Calculate Playback Buffer Size and

Number of Packets to Read

UInt32 bufferByteSize;

CalculateBytesForTime(player.playbackFile,

dataFormat,

0.5,

&bufferByteSize,

&player.numPacketsToRead);

As you can see, this function takes the file to read, the ASBD, and a buffer duration in

seconds, and populates variables representing an appropriate buffer size and how many

packets of audio you will want to read from the file in each callback.You’ll see how this

function works later.

Now you can set up the packetDescs member of the MyPlayer struct, in Listing

5.8.This is the array of packet descriptions that map out the contents of each audio

buffer you read from the file.Whether you need it depends on whether the audio format

is variable bit rate (which uses packet descriptions) or constant (which doesn’t).

Listing 5.8 Allocating Memory for Packet Descriptions Array

bool isFormatVBR = (dataFormat.mBytesPerPacket == 0 ||
dataFormat.mFramesPerPacket == 0);

if (isFormatVBR)

player.packetDescs = (AudioStreamPacketDescription*)

malloc(sizeof(AudioStreamPacketDescription) *

player.numPacketsToRead);

else

player.packetDescs = NULL;

You’re almost ready to create and use the buffers, but first you have to set up the

magic cookie on the queue.As with recording, the audio format might have some magic

cookie data that you need to preserve. For playback, you read the magic cookie as a

property of the audio file and write it to the queue. But let’s put that off for a bit by just

having Listing 5.9 call a utility function that you’ll come back to write later.

Listing 5.9 Calling a Convenience Method to Handle Magic Cookie

MyCopyEncoderCookieToQueue(player.playbackFile, queue);

Now that the queue has been configured and you know how big your buffers need

to be, you can create and enqueue some buffers. Start with a #define at the top of the

86 Chapter 5 Playback

file of how many buffers you want to use; again, 3 is often an appropriate value—you

have one buffer being played, one filled, and one in the queue to account for lag:

#define kNumberPlaybackBuffers 3

Back in main(), you’re ready to allocate and enqueue the buffers.This process is dif-

ferent than in Chapter 4. For recording, you sent empty buffers to the queue and

received filled buffers in the callback. In the playback case, the situation is reversed:You

get empty buffers in the callback and need to fill them with audio to be played.That

leads to an important consideration here in main():You don’t only need to allocate the

buffers; you need to fill them with real data because the queue will start by playing

whatever you have primed it with. So how do you get real data into the first three

buffers? You can call the callback method with the newly created buffers, as seen in

Listing 5.10.

Listing 5.10 Allocating and Enqueuing Playback Buffers

AudioQueueBufferRef buffers[kNumberPlaybackBuffers];

player.isDone = false;

player.packetPosition = 0;

int i;

for (i = 0; i < kNumberPlaybackBuffers; ++i)

{

CheckError(AudioQueueAllocateBuffer(queue,

bufferByteSize,

&buffers[i]),

"AudioQueueAllocateBuffer failed");

MyAQOutputCallback(&player, queue, buffers[i]);

if (player.isDone)

break;

}

As in the recording example, you create new buffers with AudioQueueAllocate

Buffer(), passing in the queue, the buffer size, and a pointer to receive the created

buffer.Then you fill the buffer by manually calling your yet-to-be-written callback.You

might wonder why you’re not enqueuing the buffers in this loop.Your callback will have

to do because the queue will be sending it drained buffers to fill and enqueue.You can

count on that enqueuing behavior here, too.

The callback also must check to see whether it has exhausted all the audio in the file.

If so, it sets the isDone variable in the MyPlayer struct. If that happens when you’re

priming the queue, stop filling buffers—there’s no more data available for them. Of

course, that would happen for only a tiny file, less than 1.5 seconds (3 buffers × 0.5

seconds each).

87Setting Up a File-Playing Audio Queue

Starting the Playback Queue

At this point, the audio queue has three buffers of audio data ready to play.You can now

start the queue with AudioQueueStart(), as shown in Listing 5.11.As it starts playing,

the queue plays the contents of each buffer and calls the callback function

MyAQOutputCallback() to refill the buffer with new audio from the file.The main()

function doesn’t need to do anything here but wait for the end of the audio.

Listing 5.11 Starting the Playback Audio Queue

CheckError(AudioQueueStart(queue,

NULL),

"AudioQueueStart failed");

printf("Playing...\n");

do

{

CFRunLoopRunInMode(kCFRunLoopDefaultMode,

0.25,

false);

} while (!player.isDone);

When this loop exits, you’re done reading audio from the file. However, some buffers

in the queue might still have data to be played out.With three 0.5-second buffers, con-

tinuing playback for another 2 seconds ensures that everything in the queue gets played.

Listing 5.12 provides this wait.

Listing 5.12 Delaying to Ensure Queue Plays Out Buffered Audio

CFRunLoopRunInMode(kCFRunLoopDefaultMode, 2, false);

When you’re done, Listing 5.13 cleans up the queue as before, by stopping the queue

and cleaning up the queue and the audio file.

Listing 5.13 Cleaning Up the Audio Queue and Audio File

player.isDone = true;

CheckError(AudioQueueStop(queue,

TRUE),

"AudioQueueStop failed");

AudioQueueDispose(queue, TRUE);

AudioFileClose(player.playbackFile);

return 0;

}

88 Chapter 5 Playback

That finishes the main() function.As before, you created a queue, allocated and

enqueued some buffers, and started the queue.Again, you’ve set aside a few to-dos: han-

dling the magic cookie and calculating a buffer size, and writing the callback that reads

audio from the file and puts it in a buffer. Let’s move on to tackle these issues.

Playback Utility Functions
The main() function depends on three convenience functions.The first,

CheckError(), is the same as in Chapter 4, and you probably already copied it over.

Handling the Magic Cookie

As in the recording example, you need to attend to the magic cookie, an opaque block

of data that represents encoding-specific values that can’t be represented in the

AudioStreamBasicDescription.When you open the audio file, you can get the file’s

magic cookie (if any) as a property of the file. Listing 5.14 reads the cookie from the file,

and then sets it as a property of the playback queue so that the queue has everything it

needs to know about the audio you will be sending to it.

Listing 5.14 Copying Magic Cookie from Audio File to Audio Queue

static void MyCopyEncoderCookieToQueue(AudioFileID theFile,

AudioQueueRef queue) {

UInt32 propertySize;

OSStatus result = AudioFileGetPropertyInfo (theFile,

kAudioFilePropertyMagicCookieData,

&propertySize,

NULL);

if (result == noErr && propertySize > 0)

{

Byte* magicCookie = (UInt8*)malloc(sizeof(UInt8) * propertySize);

CheckError(AudioFileGetProperty (theFile,

kAudioFilePropertyMagicCookieData,

&propertySize,
magicCookie),

"Get cookie from file failed");

CheckError(AudioQueueSetProperty(queue,

kAudioQueueProperty_MagicCookie,

magicCookie,

propertySize),

"Set cookie on queue failed");

free(magicCookie);

}

}

89Playback Utility Functions

This is exactly the reverse of the cookie copier from the recording example in

Chapter 4.This time, you get the cookie property from the file and set it on the queue.

At this point, you’re probably getting comfortable with getting and setting properties in

the various Core Audio APIs, right?

Calculating Buffer Size and Expected Packet Count

The last utility function is one to help figure out a buffer size for your queue, which also

tells you how many packets you can expect to read into each buffer.As was the case

with recording, this is the hairiest part of the code, so Listing 5.15 presents the entire

function, followed by discussion of its key points.

Listing 5.15 Calculating Buffer Size and Maximum Number of Packets That Can Be

Read into the Buffer

void CalculateBytesForTime (AudioFileID inAudioFile,

AudioStreamBasicDescription inDesc,

Float64 inSeconds,

UInt32 *outBufferSize,

UInt32 *outNumPackets)

{

UInt32 maxPacketSize; // 1

UInt32 propSize = sizeof(maxPacketSize);

CheckError(AudioFileGetProperty(inAudioFile,

kAudioFilePropertyPacketSizeUpperBound,

&propSize,

&maxPacketSize),

"Couldn't get file's max packet size");

static const int maxBufferSize = 0x10000; // 2

static const int minBufferSize = 0x4000; // 2

if (inDesc.mFramesPerPacket) { // 3

Float64 numPacketsForTime = inDesc.mSampleRate /

inDesc.mFramesPerPacket * inSeconds;

*outBufferSize = numPacketsForTime * maxPacketSize;

} else { // 4

*outBufferSize = maxBufferSize > maxPacketSize ?

maxBufferSize : maxPacketSize;

}

if (*outBufferSize > maxBufferSize && // 5

*outBufferSize > maxPacketSize)

*outBufferSize = maxBufferSize;

90 Chapter 5 Playback

Listing 5.15 Continued

else {

if (*outBufferSize < minBufferSize)

*outBufferSize = minBufferSize;

}

*outNumPackets = *outBufferSize / maxPacketSize; // 6

}

Now let’s step through the code to see what’s going on. Start with the // 1 com-

ment and follow along with the numbered paragraphs that follow:

1. You first get the maximum packet size for the file’s encoding type, which is avail-

able from the audio file property kAudioFilePropertyPacketSizeUpperBound.

2. You set up two constants as fail-safe values: a maxBufferSize of 64 KB and a

minBufferSize of 16 KB.

3. If the ASBD tells how many frames are in a packet, calculating the buffer size is

simple:You can calculate how many packets elapse in the given number of seconds

and multiply that by the maximum packet size to get a sufficiently large buffer.

4. On the other hand, if you don’t have an mFramesPerPacket value, you need to

pick an arbitrarily “large enough” value, which is the greater of maxBufferSize

and maxPacketSize. In the absolute worst case, at least the buffer will be large

enough to hold one packet.

5. The second if-else applies a few boundary checks. If the calculated buffer size

(outBufferSize) is larger than both the maxBufferSize and the

maxPacketSize, you clamp it to the maxBufferSize.You also must check to see

that it’s not smaller than the minBufferSize.

6. Finally, with an outBufferSize calculated, you can divide it by the

maxPacketSize to figure out how many packets can be safely read from the file

on each callback.

This completes the utility functions.Assuming that you stubbed out the callback

function MyAQOutputCallback(), the program should now compile. Of course, it

won’t do anything interesting yet—the callback doesn’t yet provide the crucial step: read-

ing data from the file and sending it to the queue.

The Playback Audio Queue Callback
You’ve done a lot of setup work to make it easier for the callback function to do its

business.All you need to do here is read packets from the file and write them to the

queue. But that’s harder than it looks, thanks to having to allocate appropriately sized

data buffers and figure out how many packets you can safely read on each pass.

Nevertheless, you’re ready to go, so start by casting the user data object back to the

MyPlayer struct, as in Listing 5.16.

91The Playback Audio Queue Callback

Listing 5.16 Header for Audio Queue Callback and Casting of User Info Pointer

static void MyAQOutputCallback(void *inUserData,

AudioQueueRef inAQ,

AudioQueueBufferRef inCompleteAQBuffer)

{

MyPlayer *aqp = (MyPlayer*)inUserData;

if (aqp->isDone) return;

Note

If you set the isDone flag, you should return without doing any work. This keeps you

from trying to read past the end of the file. You actually set isDone later in the callback

function.

Next, use AudioFileReadPackets() to read from the file.This call, shown in

Listing 5.17, provides the following information:

n The file to read from

n A cache flag

n A pointer to receive the number of bytes actually read

n A pointer to a buffer to hold packet descriptions

n The index of the first packet you want to read

n A pointer to a maximum number of packets to read (which will be replaced by

the number of packets actually read when the function returns)

n A pointer to a buffer to receive the audio data

Listing 5.17 Reading Packets from Audio File

UInt32 numBytes;

UInt32 nPackets = aqp->numPacketsToRead;

CheckError(AudioFileReadPackets(aqp->playbackFile,

false,

&numBytes,

aqp->packetDescs,

aqp->packetPosition,

&nPackets,

inCompleteAQBuffer->mAudioData),

"AudioFileReadPackets failed");

You did some work in main(), which, in turn, depended on CalculateBytesFor

Time() to set up the packetDescs buffer, but its purpose bears repeating: In variable

bit rate codecs, this array of packet descriptions makes it possible to parse the audio data

92 Chapter 5 Playback

that you read into mAudioData.The queue wouldn’t be capable of finding and decoding

the packets without the data this array provides. On the other hand, for constant bit rate

codecs, the packet descriptions aren’t needed and the packetDescs pointer is null.

As a result of calling AudioFileReadPackets(), a block of audio data is read into

the buffer’s mAudioData and an array of packet descriptions (if needed) are read into the

MyPlayer struct’s packetDescs, whose length is copied into the pointer nPackets.

If you successfully read any audio data, you can now enqueue it for playback, via

Listing 5.18.

Listing 5.18 Enqueuing Packets for Playback

if (nPackets > 0)

{

inCompleteAQBuffer->mAudioDataByteSize = numBytes;

AudioQueueEnqueueBuffer(inAQ,

inCompleteAQBuffer,

(aqp->packetDescs ? nPackets : 0),

aqp->packetDescs);

aqp->packetPosition += nPackets;

}

Notice that the AudioFileReadPackets() call reads the audio data directly into

the AudioQueueBufferRef provided by the callback’s parameter.All you need to do to

perform AudioQueueEnqueueBuffer() is to provide the packet descriptions array, if

any, which you read into the MyPlayer struct.After you’ve queued the audio for play-

back, you advance the packetPosition so that the next AudioFileReadPackets()

gets the next set of packets from the file.

On the other hand, what if AudioFileReadPackets() didn’t get any packets?

Listing 5.19 takes that as a sign that you have reached the end of the file.

Listing 5.19 Stopping Audio Queue Upon Reaching End of File

else

{

CheckError(AudioQueueStop(inAQ,

false),

"AudioQueueStop failed");

aqp->isDone = true;

}

}

There’s a subtle difference in this use of AudioQueueStop() compared to its use in

the last chapter: the second variable is false for the player but was true for the

recorder.This parameter, inImmediate, determines whether the queue should stop pro-

cessing immediately. Stopping the queue immediately was fine for the recorder, but it’s

93The Playback Audio Queue Callback

not fine for playback.When you reach the end of the file, you might have up to a sec-

ond and a half of audio still in the queue being processed.You don’t want to cut that off,

so you must allow the queue to play through its remaining buffers. Recall that you put a

2-second delay in main() to put off disposing the queue, which is enough time for the

queue to fully play out.

Now that you’ve completed the callback function, you have a complete audio queue

player ready to go. Build and run to listen to Core Audio play your specified audio file.

Features and Limits of Queue-Based Playback
So what else can you do with a playback audio queue? Chapter 4 mentioned the

level-metering properties (kAudioQueueProperty_EnableLevelMetering,

kAudioQueueProperty_CurrentLevelMeter, and kAudioQueueProperty_

CurrentLevelMeterDB), which can provide a visible level meter of the power level of

the audio you’re playing (or perhaps some other sort of visualization).

Along with properties, audio queues support parameters. In Core Audio, the difference

between properties and parameters is that properties are generally used to set up a soft-

ware object (an audio file, audio queue, audio unit, and so on) and have values that can

be of any type. By contrast, parameters typically represent values of interest to the end

user and might change while the object is being used. Parameters are always floating-

point numbers.Audio queues support a single parameter—and only for playback—but

it’s a good one: kAudioQueueParam_Volume.This parameter can be set in the range

from 0.0 (total silence) to 1.0 (maximum volume, although still constrained by the

overall system volume). It’s fairly straightforward to add a volume control to your audio

player when you have a GUI:You can use an NSSlider (or a UISlider on iOS) with

a range of 0.0 to 1.0; when its value changes, your event-handling code just resets the

queue’s kAudioQueueParam_Volume to the new slider value.

The example in this chapter plays audio from a file, but you could use the queue for

different kinds of audio applications as well; it’s just a matter of changing where the sam-

ples you provide to the queue come from. For example, you could use the square-,

sawtooth-, or sine-wave generator code in Chapter 2,“The Story of Sound,” to fill the

sample buffer in the callback (you’d need to make other changes, of course, such as set-

ting the queue’s format to LPCM). Or, if you wanted to build a net radio client, you

would use a networking framework (Cocoa’s URL Loading System, Core Services’

CFNetwork, or even BSD sockets) to get a stream of data from a server and then use the

Audio File Stream Services API to generate packets from that stream, which you could

then send to the queue.

The Audio Queue does a lot for you that isn’t immediately obvious, such as quietly

handling decompression from encoded formats such as AAC to the PCM stream actually

needed at Core Audio’s lower levels. It also eliminates threading concerns that will

become apparent in later chapters: By default, your callbacks are performed on one of

the queue’s internal threads instead of on Core Audio’s real-time threads that prohibit

blocking calls. Put another way, it’s okay for a queue callback to perform a potentially

94 Chapter 5 Playback

lengthy call such as reading from a file, even though that’s not okay in an audio unit call-

back (see Chapters 7,“Audio Units: Generators, Effects, and Rendering,” and 8,“Audio

Units: Input and Mixing”).

But as Audio Queue giveth,Audio Queue also taketh away.Think about the fact that

the program uses three buffers of 0.5 seconds each.This means the program has a maxi-

mum latency of at least 1.5 seconds:When an audio sample is read from the drive, the

user won’t hear it until all the buffers already in the queue and all the samples in the

current buffer are played out.You can mitigate this by using smaller buffers (try changing

the buffer size in the example from 0.5 to a smaller value), but the penalty is more fre-

quent callbacks. Still, the nature of using a queue of buffers inherently introduces latency.

For many applications, that’s fine:The user doesn’t know when the samples came off the

hard drive or over the network. But if you’re creating an application in which sound is

created in direct response to user actions, as is the case with games and virtual instru-

ments, you might want to opt for the lower latencies offered by audio units (Chapters 7

and 8) or OpenAL (Chapter 9,“Positional Sound”).

Summary
So that’s playback with an audio queue. In some ways, it’s similar to recording with a

queue:You allocate some buffers, enqueue them, and receive them back in a callback

function when it’s time for your application to do something with them. But as you

worked through the example, you saw that the playback case is different in a lot of ways,

most significantly in the degree to which you’re responsible for managing the memory

needed for the array of packet descriptions that the audio file reads into.Another big dif-

ference is that you can stop the recording buffer immediately when you’re done with it,

but for playback, you must delay for a few seconds to let any audio currently in the

queue’s buffers play out.

As mentioned in the last section, an Audio Queue takes care of encoding and decod-

ing compressed formats. For example, in the last chapter, you indicated that you wanted

to record into AAC, and that’s what you got in your callbacks, which you then wrote to

the file. But it’s not as if the microphone picked up data already in AAC; the queue must

have done the compression for you. Similarly, in this chapter, you can read a file encoded

with any codec that Core Audio understands, hand the bytes to Audio Queue, and get

the audio played out.As with input from the mic, output to the speakers can only be

PCM, so clearly, you’re picking up a compressed-to-PCM decoding for free by using the

queue.

Now, what if you had some audio in an encoded format and you wanted to work

with its PCM representation in some way (say, to run the raw samples through some

kind of analysis), but you didn’t necessarily want to play it? Or what if you just wanted

to convert a file from one format to another? You wouldn’t want to have to create an

audio queue just to pick up the bonus of the decoding. Fortunately, you don’t have to.

Audio conversion has its own distinct API. In the next chapter, you’ll see how to use it

to do your own format conversions.

95Summary

This page intentionally left blank

6

Conversion

Chapter 2,“The Story of Sound,” discussed the difference between audio file formats

(.mp3, .aif, .caf, and so on) and stream formats (LPCM,AAC, and so on).The last

few chapters focused on the stream formats of the audio that you either recorded or

played back.Audio Queue was a big help here because it handled the conversion from

LPCM to and from encodings such as AAC.

But what happens when you’re interested only in that conversion? If you wanted to

compress some LPCM data to AAC, you wouldn’t want to have to play it through an

audio queue.You should rightly expect that there are APIs for doing these kinds of con-

versions directly.

Core Audio provides several approaches for converting between formats.This chapter

starts by looking at Core Audio’s command-line utility, afconvert, which provides a

convenient converter utility and gives an idea of the scope of Core Audio’s support for

many file formats and codecs. Next, you’ll look at Audio Converter Services, an API in

the Audio Toolbox framework that converts buffers of audio between encodings in

memory.The example converts an encoded file to an LPCM equivalent.To do this, you

read from a source file, convert, and write to the target file. Because you often use con-

version services in concert with file I/O, the chapter concludes by rewriting the example

with Extended Audio File Services, which combines file I/O and audio conversion into

a single step.

The afconvert Utility
Core Audio provides /usr/bin/afconvert, a command-line utility for converting

between file formats and audio encodings.You can get help on its basic use with the

--help flag:

$ afconvert --help

Usage:

afconvert [option...] input_file [output_file]

Options may appear before or after the direct arguments.

If output_file is not specified, a name is generated

programmatically and the file is written into the same

directory as input_file.

afconvert input_file [-o output_file [option...]]...

Output file options apply to the previous output_file.

Other options may appear anywhere.

General options:

[...]

The help text is quite long and doesn’t even describe all the various supported for-

mats.To see those, you need to use either the --help-formats or the -hf flags.When

you ask for the formats, you’ll see each file format described by its name, its recognized

filename extensions, and the possible data formats.The data formats are either four-

character codes or all-capital-letter strings that describe an LPCM format by its endianness,

value type, and sample size in bits (in a format described in afconvert’s help text). For

example, consider the WAVE format:

'WAVE' = WAVE (.wav)

data_formats: UI8 LEI16 LEI24 LEI32 LEF32 LEF64 'ulaw'

'alaw'

This file format can work with six LPCM formats (unsigned 8-bit samples and little-

endian ints and floats at various bit depths), along with the very old µ-law and α-law

encodings. Compare this to the MP3 file format, which can contain only MP3 data:

'MPG3' = MPEG Layer 3 (.mp3, .mpeg, .mpa)

data_formats: '.mp3'

On the other hand, the Core Audio Format (.caf) is a more or less universal con-

tainer, capable of holding any data format that Core Audio itself supports. Look at all the

formats it supports:

'caff' = Apple CAF (.caf)

data_formats: '.mp1' '.mp2' '.mp3' 'QDM2' 'QDMC' 'Qclp'

'Qclq' 'aac ' 'aach' 'aacl' 'alac' 'alaw'

'dvi8' 'ilbc' 'ima4' I8 BEI16 BEI24 BEI32

BEF32 BEF64 LEI16 LEI24 LEI32 LEF32 LEF64

'ms\x00\x02' 'ms\x00\x11' 'ms\x001' 'samr'

'ulaw'

If you want to try afconvert, go into Terminal and use the cd command to change

to a directory with a file you want to convert, such as an album directory in your iTunes

98 Chapter 6 Conversion

Music folder.1 Let’s assume you have a music file encoded with AAC or MP3 and you

want to decompress it to LPCM.To use afconvert, you need to provide a source file,

conversion settings, and an output file.To keep things simple, we’ll just convert the data

format to 16-bit little-endian ints.You specify the data format with the -d argument, so

the command will look like this:

$ afconvert "My Song Name.m4a" -d LEI16 output.caf

This command creates output.caf, which you can then play with QuickTime Player

or iTunes, or just preview by selecting it in the Finder and pressing the spacebar.With

QuickTime or iTunes, you should be able to do a Get Info („-I) to inspect the data

format and verify that you actually get 16-bit little-endian integer LPCM in your output

file, as in Figure 6.1. Notice also that the use of the CAF file format was inferred by the

filename extension of the target file; if you had specified output.aif, then afconvert

would have created an AIFF file instead.

99The afconvert Utility

1 You can speed up this process by typing cd<space> in Terminal and then using the Finder to

locate the folder you want to navigate to and drag it to the Terminal window. The full path to the

folder appears in your command line—for example, cd /Users/cadamson/Music/iTunes/

iTunes\ Music/Podcasts/MacBreak\ Weekly.

Figure 6.1 Inspecting the output.caf file created by afconvert

A number of other specifiers described by the --help output enable you to change

various properties, including these:

n The number of channels in your output file (when converting stereo to mono, for

example)

n The sample rate or overall bit rate

n The quality or other properties on encoders that support them

Because afconvert is a command-line utility, it is highly useful for converting multiple

files, often as part of a shell script, makefile, or other automated process.

Using Audio Converter Services
What if you want to include audio conversion in your own application? For that, you

need to make your own calls to Audio Converter Services. Following Core Audio

conventions, this C API groups its functions with a common prefix. If you type

“AudioConverter” into the Xcode documentation search field, you should see about ten

matching functions and a handful of structs and types.Among these, you may be able

to pick out some lifecycle functions for creating and destroying converters, including

AudioConverterNew(), AudioConverterReset(), and AudioConverterDispose().

You might also find property setters and getters and two functions that perform conver-

sions, including AudioConverterConvertBuffer() and AudioConverterFill

ComplexBuffer().A look at the former shows that it is appropriate only for PCM-to-

PCM conversions.To convert to or from compressed formats, you’ll want to understand

AudioConverterFillComplexBuffer().

Looking at the documentation for AudioConverterFillComplexBuffer(), you

need to provide six parameters:

n A previously created AudioConverterRef, which is the converter “object” itself

n A callback function that conforms to AudioConverterComplexInputDataProc

and provides the input data for the conversion

n A user data pointer

n The maximum size of the output buffer, as a packet count

n A pointer to an output buffer, where the converted data is received

n A pointer to an array of packet descriptions, if needed for the output buffer (if

converting to a variable bit rate format)

Some of this should seem familiar after the audio queue chapters, particularly the

array of packet descriptions that goes hand-in-hand with the buffer of audio data that

the converter produces.What’s surprising is the need for a callback: Instead of passing in

the data to convert, you pass in a callback function pointer, which is called repeatedly

to provide data to convert until the converted buffer is full.Take a look at the

AudioConverterComplexInputDataProc that defines the callback, and you’ll find that

it takes the following:

n A reference to the AudioConverterRef that is requesting data to convert

n The minimum number of packets the converter wants

n A pointer to a buffer to fill with input data

n A pointer to populate with an array of AudioStreamPacketDescriptions, if

needed by the format

n A user-data pointer

100 Chapter 6 Conversion

For the first example in this chapter, you’ll duplicate what we were able to do with

afconvert: convert an encoded file, such as an MP3 or AAC song from the iTunes

Library, in a .caf container file.You’ll need to use Audio File Services to read data from

one file, do a conversion on some of its packets in memory, and write the result to

another file.

Create a new command-line tool in Xcode, add the AudioToolbox framework, and

sketch out the program with #pragma marks and the known function headers, as shown

here in Listing 6.1.

Listing 6.1 Outline of an Audio Converter Program

#include <AudioToolbox/AudioToolbox.h>

#pragma mark user data struct

// Insert Listing 6.2 here

#pragma mark utility functions

// Insert Listing 4.2 here

// Insert Listings 6.7-6.15 here

#pragma mark converter callback function

OSStatus MyAudioConverterCallback(AudioConverterRef inAudioConverter,

UInt32 *ioDataPacketCount,

AudioBufferList *ioData,

AudioStreamPacketDescription **outDataPacketDescription,

void *inUserData)

{

}

#pragma mark main function

int main(int argc, const char *argv[])

{

// Open input file

// Insert Listing 6.3 here

// Get input format

// Insert Listing 6.4 here

// Set up output file

// Insert Listing 6.5 here

// Perform conversion

// Insert Listing 6.6 here

}

101Using Audio Converter Services

As with the examples in Chapters 4,“Recording,” and 5,“Playback,” trust us when

we present the user data struct. In your own programs, you’ll find yourself adding to and

removing from this struct as you figure out what data your callback functions need.

For the sake of simplicity, we’re skipping ahead and giving you the struct up front in

Listing 6.2.

Listing 6.2 User Info Struct for Audio Converter Program

typedef struct MyAudioConverterSettings

{

AudioStreamBasicDescription inputFormat;

AudioStreamBasicDescription outputFormat;

AudioFileID inputFile;

AudioFileID outputFile;

UInt64 inputFilePacketIndex;

UInt64 inputFilePacketCount;

UInt32 inputFilePacketMaxSize;

AudioStreamPacketDescription *inputFilePacketDescriptions;

void *sourceBuffer;

} MyAudioConverterSettings;

In this struct, you keep track of the data formats (as AudioStreamBasic

Descriptions) of the input and output streams and references to the input and output

files.You also have a counter of the current packet you’re reading, the total number of

packets in the input file, the maximum size of an input packet, and a pointer to an array

of AudioStreamPacketDescriptions, which you read from the input file every time

you read in more data (which goes into sourceBuffer).

Setting Up Files for Conversion
Let’s set up the file stuff in main(), in preparation for the calls to Audio Converter

Services. Because this doesn’t directly involve the converter APIs, covering it moves

pretty quickly.

First, copy over the CheckError() convenience function (Listing 4.2) that you’ve

been using for the last few chapters.Then, at the top of the file, #define the full path

to the file you want to convert.This is probably an MP3 or AAC in your iTunes Library,

or maybe it’s just an audio file on your desktop, if you want to keep the path simpler.

#define kInputFileLocation CFSTR("/Insert/Path/To/Audio/File.xxx")

The main() function in Listing 6.3 starts by allocating a

MyAudioConverterSettings and opening an AudioFileID for the input file, saving

the AudioFileID to the settings struct.

102 Chapter 6 Conversion

Listing 6.3 Creating a MyAudioConverterSettings Struct and Opening a Source Audio

File for Conversion

int main(int argc, const char *argv[])

{

MyAudioConverterSettings audioConverterSettings = {0};

CFURLRef inputFileURL =

CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

kInputFileLocation,

kCFURLPOSIXPathStyle,

false);

CheckError (AudioFileOpenURL(inputFileURL,

kAudioFileReadPermission,

0,

&audioConverterSettings.inputFile),

"AudioFileOpenURL failed");

CFRelease(inputFileURL);

With the input file opened, you want to get an AudioStreamBasicDescription

from it so that you know the format of the source audio.You’ve done this before; you

just call AudioFileGetProperty() to retrieve the kAudioFilePropertyData

Format, as in Listing 6.4.

Listing 6.4 Getting ASBD from an Input Audio File

UInt32 propSize = sizeof(audioConverterSettings.inputFormat);

CheckError (AudioFileGetProperty(audioConverterSettings.inputFile,

kAudioFilePropertyDataFormat,

&propSize,

&audioConverterSettings.inputFormat),

"Couldn't get file's data format");

You want two more properties: the total number of packets in the source file and the

size of the largest possible packet.The former lets you know how many reads to per-

form, and the latter enables you to allocate a suitably large buffer for

AudioFileReadPackets(). Listing 6.5 shows how to get these properties.

Listing 6.5 Getting Packet Count and Maximum Packet Size Properties from

Input Audio File

// get the total number of packets in the file

propSize = sizeof(audioConverterSettings.inputFilePacketCount);

CheckError (AudioFileGetProperty(audioConverterSettings.inputFile,

kAudioFilePropertyAudioDataPacketCount,

&propSize,

&audioConverterSettings.inputFilePacketCount),

"couldn't get file's packet count");

103Setting Up Files for Conversion

Listing 6.5 Continued

// get size of the largest possible packet

propSize = sizeof(audioConverterSettings.inputFilePacketMaxSize);

CheckError(AudioFileGetProperty(audioConverterSettings.inputFile,

kAudioFilePropertyMaximumPacketSize,

&propSize,

&audioConverterSettings.inputFilePacketMaxSize),

"couldn't get file's max packet size");

Now you’re ready to set up the output file. Create an ASBD to describe a common

LPCM format: 16-bit samples, two channels (stereo), big-endian packed samples—

nothing fancy.2 Pass this ASBD to AudioFileCreateWithURL() to create the file and

get an AudioFileID (see Listing 6.6).

Listing 6.6 Defining Output ASBD and Creating an Output Audio File

audioConverterSettings.outputFormat.mSampleRate = 44100.0;

audioConverterSettings.outputFormat.mFormatID = kAudioFormatLinearPCM;

audioConverterSettings.outputFormat.mFormatFlags =

kAudioFormatFlagIsBigEndian | kAudioFormatFlagIsSignedInteger |

kAudioFormatFlagIsPacked;

audioConverterSettings.outputFormat.mBytesPerPacket = 4;

audioConverterSettings.outputFormat.mFramesPerPacket = 1;

audioConverterSettings.outputFormat.mBytesPerFrame = 4;

audioConverterSettings.outputFormat.mChannelsPerFrame = 2;

audioConverterSettings.outputFormat.mBitsPerChannel = 16;

CFURLRef outputFileURL =

CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

CFSTR("output.aif"),

kCFURLPOSIXPathStyle,

false);

CheckError (AudioFileCreateWithURL(outputFileURL,

kAudioFileAIFFType,

&audioConverterSettings.outputFormat,

kAudioFileFlags_EraseFile,

&audioConverterSettings.outputFile),

"AudioFileCreateWithURL failed");

CFRelease(outputFileURL);

Now you have the input and output files set up and you have everything ready to

start reading, converting, and writing. Because this is a complex process, you’ll put it into

104 Chapter 6 Conversion

2 You filled out all the fields for a PCM format such as this one in Listing 2.1. Also, Listing 3.1

covers the contents of the ASBD.

its own function, Convert(), which you’ll write next. For now, Listing 6.7 finishes

main() by calling this Convert() and cleaning up the files when finished.

Listing 6.7 Calling a Convenience Convert() Function and Closing Files

fprintf(stdout, "Converting...\n");

Convert(&audioConverterSettings);

cleanup:

AudioFileClose(audioConverterSettings.inputFile);

AudioFileClose(audioConverterSettings.outputFile);

return 0;

}

Calling Audio Converter Services

You’re now ready to write the Convert() function, which goes in the utility functions

part of the program, before being called from main().This function is all about making

a repeated set of calls to AudioConverterFillComplexBuffer(), which fills a packet

buffer that can then be sent to AudioFileWritePackets().What’s strange about this

arrangement is that you don’t explicitly do any file reading in this function; that’s pro-

vided by a callback function that you have to write next.

First, create an audio converter via the AudioConverterNew() function, shown in

Listing 6.8, that takes as parameters ASBDs to describe the input and output formats and

a pointer to populate with a new AudioConverterRef.

Listing 6.8 Creating an Audio Converter

void Convert(MyAudioConverterSettings *mySettings)

{

// Create the audioConverter object

AudioConverterRef audioConverter;

CheckError (AudioConverterNew(&mySettings->inputFormat,

&mySettings->outputFormat,

&audioConverter),

"AudioConveterNew failed");

Next, you have some math to do:You have to figure out how big of a packet descrip-

tions array you need to allocate.You had a similar task in Chapter 5; again, you have to

juggle multiple contingencies here: whether the format is variable bit rate, whether the

buffer is big enough to hold at least one packet, and so on.You address the hard case—

determining the sizes for a variable bit rate—first, in Listing 6.9.

105Setting Up Files for Conversion

Listing 6.9 Determining the Size of a Packet Buffers Array and Packets-per-Buffer

Count for Variable Bit Rate Data

UInt32 packetsPerBuffer = 0;

UInt32 outputBufferSize = 32 * 1024; // 32 KB is a good starting point

UInt32 sizePerPacket = mySettings->inputFormat.mBytesPerPacket;

if (sizePerPacket == 0)

{

UInt32 size = sizeof(sizePerPacket);

CheckError(AudioConverterGetProperty(audioConverter,

kAudioConverterPropertyMaximumOutputPacketSize,

&size,

&sizePerPacket),

"Couldn't get kAudioConverterPropertyMaximumOutputPacketSize");

if (sizePerPacket > outputBufferSize)

outputBufferSize = sizePerPacket;

packetsPerBuffer = outputBufferSize / sizePerPacket;

mySettings->inputFilePacketDescriptions = (AudioStreamPacketDescription*)

malloc(sizeof(AudioStreamPacketDescription) * packetsPerBuffer);

}

The variable bit rate data is signaled by an ASBD with mBytesPerPacket == 0. In

this case, you get the maximum packet size from the converter.You then compare this to

the default buffer size (32 KB) and take the larger of the two, which ensures that you

can fit at least one packet in the buffer.You then need to attend to the packet descrip-

tions array; you can determine how many packets will fit in the buffer and allocate

enough space to hold this many AudioStreamPacketDescriptions.

For constant bit rate data, things are a lot easier.You don’t need to handle any

AudioStreamPacketDescriptions, and calculating the packetsPerBuffer count is

trivial. Listing 6.10 shows this “else” case.

Listing 6.10 Determining Packets per Buffer for Constant Bit Rate Data

else

{

packetsPerBuffer = outputBufferSize / sizePerPacket;

}

In either case, you know how big of a buffer you need to receive the converted audio

data, so you malloc() it next, in Listing 6.11.

Listing 6.11 Allocating Memory for Audio Conversion Buffer

UInt8 *outputBuffer = (UInt8 *)malloc(sizeof(UInt8) * outputBufferSize);

106 Chapter 6 Conversion

With buffers and a converter allocated, you’re ready to start a while loop to convert

and write data.You need one more local variable outside the loop, though: a counter to

remember where you are in the output file. Listing 6.12 sets this up.

Listing 6.12 Loop to Convert and Write Data

UInt32 outputFilePacketPosition = 0;

while(1)

{

AudioConverterFillComplexBuffer() fills an AudioBufferList struct with its

converted data, so you need to get one ready for the call (see Listing 6.13).

Listing 6.13 Preparing an AudioBufferList to Receive Converted Data

AudioBufferList convertedData;

convertedData.mNumberBuffers = 1;

convertedData.mBuffers[0].mNumberChannels =

mySettings->inputFormat.mChannelsPerFrame;

convertedData.mBuffers[0].mDataByteSize = outputBufferSize;

convertedData.mBuffers[0].mData = outputBuffer;

Now you’re ready to make the AudioConverterFillComplexBuffer() call, in

Listing 6.14.You use a pointer to pass in the number of packets you’re prepared to

receive; in return, you get the number of converted packets that are actually in the

buffer.

Listing 6.14 Calling AudioConverterFillComplexBuffer()

UInt32 ioOutputDataPackets = packetsPerBuffer;

OSStatus error = AudioConverterFillComplexBuffer(audioConverter,

MyAudioConverterCallback,

mySettings,

&ioOutputDataPackets,

&convertedData,

(mySettings->inputFilePacketDescriptions ?

mySettings->inputFilePacketDescriptions : nil));

if (error || !ioOutputDataPackets)

{

break; // This is the termination condition

}

As described in the overview, this call takes an AudioConverterRef, a function

pointer to the yet-to-be-written callback function, a “user data” pointer for the callback,

the packets count, a pointer to receive the converted data, and a pointer to receive an

107Setting Up Files for Conversion

array of packet descriptions (which is nil for constant bit rate formats because they

don’t need or use packet descriptions).

If the call fails or 0 packets are converted, you break out of the while loop.

However, if it succeeds, you can write the converted data to the output file, as in

Listing 6.15.

Listing 6.15 Writing Converted Data to an Audio File

// Write the converted data to the output file

CheckResult (AudioFileWritePackets(mySettings->outputFile,

FALSE,

ioOutputDataPackets,

NULL,

outputFilePacketPosition /

mySettings->outputFormat.mBytesPerPacket,

&ioOutputDataPackets,

convertedData.mBuffers[0].mData),

"Couldn't write packets to file");

outputFilePacketPosition += (ioOutputDataPackets *

mySettings->outputFormat.mBytesPerPacket);

In AudioFileWritePackets(), you provide the file to write to, a cache setting, the

size to write, an array of packet descriptions (NULL here because the PCM output file is

a constant bit rate and, therefore, doesn’t use packet descriptions), the index of the first

packet to write, the number of packets being written, and the buffer of audio data that

you received from the audio converter.

After the packets are written to the file, you update the output position by multiply-

ing the number of packets written by the number of bytes in each PCM packet.

And that’s it for the converter loop.

The while(1) will break when AudioConverterFillComplexBuffer() gets 0

packets.Then the loop exits.All you need to do at that point is dispose of the converter,

as in Listing 6.16.

Listing 6.16 Cleaning up the Audio Converter

}

AudioConverterDispose(audioConverter);

}

Aside from juggling a bunch of parameters between the two important functions and

another round of figuring out the right buffer size, interacting with the converter isn’t

too rough.All that’s left now is to implement the MyAudioConverterCallback that

supplies input packets to the converter.

108 Chapter 6 Conversion

Implementing the Converter Callback

In the Convert() function, you did some buffer-sizing math that didn’t appear to have

an immediate payoff: for variable bit rate input files, you allocated memory for a packet

descriptions array, but you passed NULL for the packet descriptions in AudioFileWrite

Packets().What’s up with that, you might wonder? You don’t need packet descriptions

for output because the output format is constant bit rate PCM.The packet descriptions

are used when you read from the input file in the converter’s callback function.

Begin the callback in Listing 6.17 by casting the user data object back to the

MyAudioConverterSettings struct.You also can take this opportunity to zero out the

audio buffer, in case a failure occurs and you don’t read into it successfully.

Listing 6.17 Converter Callback Function Header, User Info Cast, and Zeroing

of Audio Buffers

OSStatus MyAudioConverterCallback(AudioConverterRef inAudioConverter,

UInt32 *ioDataPacketCount,

AudioBufferList *ioData,

AudioStreamPacketDescription **outDataPacketDescription,

void *inUserData)

{

MyAudioConverterSettings *audioConverterSettings =

(MyAudioConverterSettings *)inUserData;

ioData->mBuffers[0].mData = NULL;

ioData->mBuffers[0].mDataByteSize = 0;

Note

It’s okay to assume that the AudioBufferList has only one buffer; it was created in the

while() loop of Convert().

Next, you’ll do some math in Listing 6.18 to figure out how many packets to read.

ioDataPacketCount initially is the packetsPerBuffer that you calculated in

Convert(), but as you reach the end of the input, fewer packets than this might be left.

Reset ioDataPacketCount to the number of packets left to read. If this is 0, let the

callback return without reading any data.This condition breaks the while() loop back

in Convert().

Listing 6.18 Determining How Many Packets Can Be Read from the Input File

// If there are not enough packets to satisfy request,

// then read what's left

if (audioConverterSettings->inputFilePacketIndex + *ioDataPacketCount >

audioConverterSettings->inputFilePacketCount)

109Setting Up Files for Conversion

Listing 6.18 Continued

*ioDataPacketCount = audioConverterSettings->inputFilePacketCount -

audioConverterSettings->inputFilePacketIndex;

if(*ioDataPacketCount == 0)

return noErr;

If you do have data to read, you need to prepare a buffer to receive the audio data.

You free() any old buffer that the settings struct points to (because any data in it has

already been consumed by this point) and allocate a new buffer large enough to hold the

number of packets you intend to read. Listing 6.19 shows this operation.

Listing 6.19 Allocating a Buffer to Fill and Convert

if (audioConverterSettings->sourceBuffer != NULL)

{

free(audioConverterSettings->sourceBuffer);

audioConverterSettings->sourceBuffer = NULL;

}

audioConverterSettings->sourceBuffer = (void *)calloc(1, *ioDataPacketCount *

audioConverterSettings->inputFilePacketMaxSize);

With the buffer allocated, you’re ready to read some packets from the source file into

it, as in Listing 6.20.

Listing 6.20 Reading Packets into the Conversion Buffer

UInt32 outByteCount = 0;

OSStatus result = AudioFileReadPackets(audioConverterSettings->inputFile,

true,

&outByteCount,

audioConverterSettings->inputFilePacketDescriptions,

audioConverterSettings->inputFilePacketIndex,

ioDataPacketCount,

audioConverterSettings->sourceBuffer);

#ifdef MAC_OS_X_VERSION_10_7

if (result == kAudioFileEndOfFileError && *ioDataPacketCount) result = noErr;

#else

if (result == eofErr && *ioDataPacketCount) result = noErr;

#endif

else if (result != noErr) return result;

The if-else here handles a case you haven’t seen yet. If the read takes you to the

end of the file, the return value of AudioFileReadPackets() is an end-of-file

constant—either kAudioFileEndOfFileError on Lion or eofErr on earlier versions

110 Chapter 6 Conversion

of OS X. Either way, although it’s not noErr, it’s also not an error that’s so bad you want

to cause an early termination. If you reach the end of file and get a nonzero packet

count, act like it wasn’t an error by resetting the result to noErr.

Finally, in Listing 6.21, you update the MyAudioConverterSettings struct with the

new position in the source file and the data you read from the source file (and its size),

both of which go into the AudioBufferList member. If you received an array of

packet descriptions, you also copy those over to the struct.The converter needs the

data, data size, and packet descriptions array (if any) to parse the audio data and perform

its conversion.

Listing 6.21 Updating the Source File Position and AudioBuffer Members

with the Results of Read

audioConverterSettings->inputFilePacketIndex += *ioDataPacketCount;

ioData->mBuffers[0].mData = audioConverterSettings->sourceBuffer;

ioData->mBuffers[0].mDataByteSize = outByteCount;

if (outDataPacketDescription)

*outDataPacketDescription =

audioConverterSettings->inputFilePacketDescriptions;

return result;

}

Whew! That was a lot of work, but now you’re done!

To review:

n In main(),you opened an input file, inspected its format and packet-sizing proper-

ties, and created an output file with a PCM format of your choice.

n You then wrote a Convert() function to repeatedly set up an AudioBufferList

to transfer packets and call AudioConverterFillComplexBuffer() to convert

the compressed input data to PCM.You then wrote this to the output file with

AudioFileWritePackets().

n The input to the converter comes from a callback function that you wrote, which

repeatedly read from the input file and provided audio data and packet descriptions

to a passed-in AudioBufferList.

Does it work? Build and run to find out.

Assuming that you’ve provided a valid path to an audio file that Core Audio can read,

the program takes a few seconds to perform the conversion and writes an uncompressed

AIFF file to output.aif.The file is relative to wherever the executable is on the filesys-

tem, which means you should find it in your project’s derived data folder. Figure 6.2

shows the path to output.aif, in this case.

With this PCM data in an AIFF container, many applications on your Mac are capa-

ble of playing this audio file, including QuickTime Player and iTunes.You can even drop

it into a Safari or Firefox window, or just select it and press spacebar in the Finder to lis-

ten to it.

111Setting Up Files for Conversion

Figure 6.2 Location of output.aif as written

by CH06_AudioConverter program

Converting with Extended Audio File Services
You might be discouraged by having to do so much work with buffer wrangling and

callbacks just to convert audio from one format to another.You might even be tempted

to just call /usr/bin/afconvert with an NSTask if you ever need to do a conversion

from within a Cocoa application.

Part of the problem comes from the fact that you’re operating at a fairly low level—

and with Core Audio’s very modular APIs, at that.The Audio Converter is meant to

work with any source, such as files, network audio, or even synthesized audio that’s cre-

ated entirely within your own code.As a result, the common interface for exchanging

data has to be data buffers, and that can mean a lot of buffer wrangling.

Still, the most common case for audio format conversion involves files on at least one

end, and Core Audio does have an API to make this easier.The Extended Audio File

Services combine the Audio File Services and Audio Converter Services into a simplified

API. Specifically, they combine file I/O and format conversion into a single action.You

read from a compressed file and get buffers of uncompressed PCM. Going in the other

direction, you send PCM to a write function, and compressed audio is written to the

filesystem.

Let’s start by making a copy of the example program so you can simplify it by using

an Extended Audio File. Create a new command-line tool and add

AudioToolbox.framework to the target, as always.

Listing 6.22 shows an outline of the revised program. Notice that there’s no stubbed-

out callback function.With Extended Audio Files, you don’t need one.

112 Chapter 6 Conversion

Listing 6.22 Outline of an Extended Audio File Converter Program

#include <AudioToolbox/AudioToolbox.h>

#pragma mark user data struct

// Insert Listing 6.23 here

#pragma mark utility functions

// Insert Listing 4.2 here

// Insert Listings 6.28-6.34 here

#pragma mark main function

int main(int argc, const char *argv[])

{

// Open input file

// Insert Listing 6.24 here

// Set up output file

// Insert Listings 6.25-6.26 here

// Perform conversion

// Insert Listing 6.27 here

}

As always, start by copying over the CheckError() function from Listing 4.2.

Now look at the state struct.You don’t need this for passing state to a callback func-

tion because you won’t be using any callback APIs; still, it is a convenient container

to pass data from main() to Convert(). So what do you need to pass? With

ExtAudioFile, the format you’re converting from becomes completely opaque.All the

fields in the struct that dealt with the input file’s data format, packet sizing, and so on

can thus all go away.All you need are the PCM ASBD and references to the two files, as

shown in Listing 6.23.

Listing 6.23 Struct for Passing ASBD and Audio File References

typedef struct MyAudioConverterSettings

{

AudioStreamBasicDescription outputFormat;

ExtAudioFileRef inputFile;

AudioFileID outputFile;

} MyAudioConverterSettings;

Notice that the input file is no longer an AudioFileID, but rather an

ExtAudioFileRef.The two are not interchangeable; any code you reuse from the first

example requires a different function call anytime you find a reference to inputFile.

113Converting with Extended Audio File Services

Let’s move on to main(), where you start by creating an extended audio file, in

Listing 6.24.

Listing 6.24 Opening an Extended Audio File for Input

int main(int argc, const char *argv[])

{

MyAudioConverterSettings audioConverterSettings = {0};

// Open the input with ExtAudioFile

CFURLRef inputFileURL =

CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

kInputFileLocation,

kCFURLPOSIXPathStyle,

false);

CheckError(ExtAudioFileOpenURL(inputFileURL,

&audioConverterSettings.inputFile),

"ExtAudioFileOpenURL failed");

Here the change is to create inputFile with ExtAudioFileOpenURL() instead of

AudioFileOpenURL().This is where using extended audio files starts to pay off.

Previously, we needed to inspect the input format and get the packet count and maxi-

mum packet size.With extended audio files, you have no visibility into the source data

format, so you don’t have to worry about any of that.

Let’s move on to defining the outputFormat and creating the output file, in Listing

6.25, which is exactly as before.

Listing 6.25 Setting the Output Audio Data Format and Creating an Audio File

audioConverterSettings.outputFormat.mSampleRate = 44100.0;

audioConverterSettings.outputFormat.mFormatID = kAudioFormatLinearPCM;

audioConverterSettings.outputFormat.mFormatFlags =

kAudioFormatFlagIsBigEndian | kAudioFormatFlagIsSignedInteger |

kAudioFormatFlagIsPacked;

audioConverterSettings.outputFormat.mBytesPerPacket = 4;

audioConverterSettings.outputFormat.mFramesPerPacket = 1;

audioConverterSettings.outputFormat.mBytesPerFrame = 4;

audioConverterSettings.outputFormat.mChannelsPerFrame = 2;

audioConverterSettings.outputFormat.mBitsPerChannel = 16;

CFURLRef outputFileURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

CFSTR("output.aif"),

kCFURLPOSIXPathStyle,

false);

CheckError (AudioFileCreateWithURL(outputFileURL,

kAudioFileAIFFType,

&audioConverterSettings.outputFormat,

114 Chapter 6 Conversion

Listing 6.25 Continued

kAudioFileFlags_EraseFile,

&audioConverterSettings.outputFile),

"AudioFileCreateWithURL failed");

CFRelease(outputFileURL);

The PCM outputFormat is the only format you care about here because you don’t

know the inputFormat.You do want the extended audio file to produce audio in this

same PCM format, though.To do that, set the property

kExtAudioFileProperty_ClientDataFormat on the extended audio file, as shown

in Listing 6.26. In a sense, this is how you say,“When you convert the data, this is the

format I’d like to receive.”

Note

One important restriction exists: The client data format must be PCM. In other words, you

can’t use a single ExtAudioFile to convert between two compressed formats.

Listing 6.26 Setting the Client Data Format Property on an Extended Audio File

CheckError(ExtAudioFileSetProperty(audioConverterSettings.inputFile,

kExtAudioFileProperty_ClientDataFormat,

sizeof (AudioStreamBasicDescription),

&audioConverterSettings.outputFormat),

"Couldn't set client data format on input ext file");

At this point, you’re done with main(), except to call the Convert() function as

before and to clean up the files. Listing 6.27 wraps up the main() function.

Listing 6.27 Calling the Conversion Function and Closing the Extended Audio File

fprintf(stdout, "Converting...\n");

Convert(&audioConverterSettings);

cleanup:

ExtAudioFileDispose(audioConverterSettings.inputFile);

AudioFileClose(audioConverterSettings.outputFile);

return 0;

}

Note

Notice that here you replaced the inputFile’s AudioFileClose() with a call to

ExtAudioFileDispose().

115Converting with Extended Audio File Services

Reading and Converting with Extended Audio Files

Now let’s move on to Convert(), which actually performs the conversion.

You still need to do a little math to figure out a suitable buffer size to receive data

from the input file (the extended audio file) and write to the output file (a plain old

audio file, as before). Fortunately, this is massively simplified by the fact that you are deal-

ing with only PCM in the code. Constant bit rate here means that you no longer have

to deal with packet descriptions. Plus, allocating the data buffer is much easier because

you don’t have to do any calculations with a maximum packet size; all packets are

exactly one frame each in PCM. Listing 6.28 shows the calculation.

Listing 6.28 Determining the Size of the Output Buffer and Packets-per-Buffer Count

void Convert(MyAudioConverterSettings *mySettings)

{

// 32 KB is a good starting point

UInt32 outputBufferSize = 32 * 1024;

UInt32 sizePerPacket = mySettings->outputFormat.mBytesPerPacket;

UInt32 packetsPerBuffer = outputBufferSize / sizePerPacket;

This is the same code as before, but you no longer need to check whether

sizePerPacket is 0; that would indicate a variable bit rate format. Instead, in Listing

6.29, you can easily allocate the data buffer and set up an output file index, as before.

Listing 6.29 Allocating a Buffer for Receiving Data from an Extended Audio File

UInt8 *outputBuffer = (UInt8 *)malloc(sizeof(UInt8) * outputBufferSize);

UInt32 outputFilePacketPosition = 0; // In bytes

You go into a while loop to read data from the extended audio file and write it to

the output file.You still work with an AudioBufferList to provide data to

AudioFileWritePackets(), but fortunately, an ExtAudioFileRead() populates that

same struct for you. So in Listing 6.30, let’s set one up at the top of the while.

Listing 6.30 Starting Read-Convert-Write Loop and Setting Up an AudioBuffer

while(1)

{

AudioBufferList convertedData;

convertedData.mNumberBuffers = 1;

convertedData.mBuffers[0].mNumberChannels =

mySettings->outputFormat.mChannelsPerFrame;

convertedData.mBuffers[0].mDataByteSize = outputBufferSize;

convertedData.mBuffers[0].mData = outputBuffer;

116 Chapter 6 Conversion

When you used the converter directly, you did the file reading in a callback.There’s

no need for that when using an extended audio file, so you need a local variable to tell

the extended audio file how many frames (equal to packets in this PCM case) you’re

willing to accept.The function updates this function, to report back how many frames

were read. Listing 6.31 performs the actual read from the file.

Listing 6.31 Reading and Converting with ExtAudioFileRead()

UInt32 frameCount = packetsPerBuffer;

CheckError(ExtAudioFileRead(mySettings->inputFile,

&frameCount,

&convertedData),

"Couldn't read from input file");

As you can see, ExtAudioFileRead() is a simple call: It takes just an

ExtAudioFileRef, a pointer to the number of frames to read, and a pointer to an

AudioBufferList to receive the read-and-converted data.

If you didn’t read any frames, you’re at the end of the file and can exit Convert(), as

shown in Listing 6.32.

Listing 6.32 Terminating If No Frames Are Read

if (frameCount == 0) {

printf ("Done reading from file\n");

return;

}

If you did read some frames, you write them to the output file as before, with

AudioFileWritePackets(). Listing 6.33 shows how to write the data.

Listing 6.33 Writing Converted Audio Data to an Output File

CheckError (AudioFileWritePackets(mySettings->outputFile,

FALSE,

frameCount,

NULL,

outputFilePacketPosition /

mySettings->outputFormat.mBytesPerPacket,

&frameCount,

convertedData.mBuffers[0].mData),

"Couldn't write packets to file");

You use frameCount here where we previously had to count packets.Again, this is

okay because you’re dealing with only PCM data in the program, and PCM packets

always contain only one frame.

117Converting with Extended Audio File Services

After you’ve performed the write, you update the output file’s write position and end

both the while loop and the Convert() function, as shown in Listing 6.34.

Listing 6.34 Advancing Output File Write Position

outputFilePacketPosition +=

(frameCount * mySettings->outputFormat.mBytesPerPacket);

}

}

Build and run this application.You should find that it functions exactly the same as the

earlier version.When the authors tested the same source file with each version of the

program, the generated output.aif files were identical, byte for byte.The big win, of

course, is that the extended audio file code is about 100 lines shorter. It’s also vastly eas-

ier to follow because the code works only with PCM, freeing you from the variable bit

rate complexities of working with packet description arrays.

Summary
If you’ve worked through both of these examples, you might wonder why you’d ever

want to deal with using Audio Converter Services directly.The answer is obvious:

Extended Audio File Services help you only when you’re dealing with files. For exam-

ple, if you find yourself dealing with some other media, such as sending data across a

network, an ExtAudioFile won’t help you.

Fortunately, some other Core Audio APIs also do conversion automatically—you

picked up encoded-to-PCM conversion for free when using Audio Queue Services in

the previous two chapters—so direct use of the conversion APIs is often optional. It’s

important to know how they work when you encounter those cases, but if you can get

Core Audio to do format conversion for you, go ahead and let it do the heavy lifting

for you.

At this point, you’ve made use of much of the Audio Toolbox: In the process of cov-

ering Audio Queue Services and Audio Converter Services, you’ve also been able to

work with Audio File Services and Extended Audio File Services. By combining these

APIs in different ways—perhaps by looking in the documentation for properties and

functions they offer that you haven’t exercised directly in the chapters—you can perform

a lot of interesting work on audio captured from the mic, played over speakers and head-

phones, or read from and written to files.

In the next few chapters, you’ve move further down in the Core Audio stack to the

low-level audio “engine”APIs,Audio Units, and OpenAL.These offer lower latency than

the audio queue but sometimes require more work on your part to handle issues such as

threading and format conversion. In many cases, you’ll build on what you’ve learned so

far as you go further into Core Audio. For example, because you usually have to use

118 Chapter 6 Conversion

PCM in Audio Units and OpenAL, you could push the audio from an MP3 file through

those engines by doing an ExtAudioFileRead() to convert to PCM in memory.And

by now, you’re probably getting comfortable with Core Audio’s conventions such as

property getting and setting and working with callbacks.You’ll see these traits even in

the low, low level that is Audio Units.

119Summary

This page intentionally left blank

III

Advanced Audio

7 Audio Units: Generators, Effects, and

Rendering

8 Audio Units: Input and Mixing

9 Positional Sound

This page intentionally left blank

7

Audio Units: Generators,
Effects, and Rendering

Chapter 1,“Overview of Core Audio,” roughly divvied up Core Audio’s frameworks

into two general groupings:“engine”APIs that process streams of audio through the sys-

tem, and “helper”APIs that work with audio in different ways, such as performing for-

mat conversions or doing file I/O. In Chapters 4,“Recording,” and 5,“Playback,” you

worked with the Audio Queue, a higher-level audio engine API, and in Chapter 9,

“Positional Sound,” you’ll look at OpenAL, which is also a high-level engine.Audio

Queues and OpenAL are both implemented atop Audio Units, the code that’s arguably

the heart of Core Audio.Audio Units are as close to the metal as most developers will

ever need to get, and they afford opportunities to work with raw audio that are simply

not practical at higher levels of abstraction.

These next two chapters dig deep into Audio Units by showing the many ways you

can work with audio at this level.You’ll be able to synthesize audio, perform effects on

audio streams, capture from the mic, mix multiple streams, and combine all these abili-

ties.You’ll also see how working at this level shares many commonalities with higher-

level Core Audio programming, but introduces some new responsibilities for handling

memory and latency that you will need to keep in mind as you unleash your newfound

powers.

Where the Magic Happens
Welcome to the lowest level of functionality Core Audio application developers need:

the Audio Units API.The only levels lower than this on Mac OS X are primarily of

interest to programmers creating audio device drivers. On iOS, it is not even possible to

go lower than Audio Units.

With Audio Units, we get very close to the metal, particularly if your original point

of reference before reading this book was passing a file URL to NSSound or

AVAudioPlayer and forgetting about it. Here at the audio unit level, you work with

callbacks that are called dozens or even hundreds of times a second, with raw samples

that can be inspected and manipulated on the fly, and with latencies that are so short

they might as well be instantaneous.

Here at the heart of Core Audio, you can do things that are not practical, or simply

not possible, with the higher-level abstractions. For example, if you wanted to mix two

sounds and play them simultaneously, there is no straightforward way to do so with

Audio Queues—you would have to use two queues, and even then, the API offers little

control over their mutual synchronization. If you wanted to perform an effect on sound

going through a queue, you would have to decompress to PCM first (because encoded

formats are generally not receptive to the kinds of mathematical trickery used in creating

audio effects), perform your effect, and then stuff the result into the queue—and even

then, it wouldn’t be easy to chain multiple effects together or share your work with

others.

With the power of Audio Units comes a lot of challenge. Most readers likely will find

these the hardest chapters of the book and find Audio Units the hardest API to put to

work successfully because the nature of Audio Units requires your code to take on so

much responsibility.That’s why we take our time here: We have prepared four example

projects to exercise a lot of different features of Audio Units.

How Audio Units Work
You got an overview of Audio Units in Chapter 3,“Audio Processing with Core Audio”

(in the section “Processing Audio with Audio Units”), as a means of explaining the

essential model of Core Audio’s audio processing model. Of course, that was four chap-

ters ago, so let’s refresh.

An audio unit is a software object that performs some sort of work on a stream of

audio. For example, some units create streams of audio, others perform effects (such as

echoes and reverbs), and a few special units interface with the audio hardware to capture

audio from input devices or play it out to devices such as headphones or speakers.To use

Audio Units, you create and set up the units you need, create connections between

them, and then tell them to start processing.

This arrangement is analogous to audio hardware in the real world. For example,

imagine that you have an electric guitar, a distortion box, and an amplifier. None of

these does much by itself. But you could connect the guitar (a sound generator) via a

cable to the input of the distortion box (which performs audio effects) and then connect

its output to the input of the amp (an output device). Flip on the power, strum a G

major, and suddenly it’s “Hello, Cleveland!”

Notice the purpose of each piece of hardware in this example.As with these analog

devices, audio units are grouped into types that describe their purpose. Core Audio pro-

vides the following types of audio units:

n Generator units: Create a stream of audio from some source, such as files, the

network, or memory.

n Instrument units: Similar to generator units, produce a stream of synthesized

audio from MIDI data.

124 Chapter 7 Audio Units: Generators, Effects, and Rendering

n Mixer units: Combine multiple streams into one or more streams.The mix can

be performed in two dimensions (for stereo panning) or in a simulated three-

dimensional sound field.

n Effect units: Perform some sort of digital signal processing on a stream, usually

producing an audible effect such as a reverb, a pitch change, noise filtering, and

so on.

n Converter units: Perform transformations that are generally not meant to deliver

user-audible effects.These include units to convert between different flavors of

PCM (to change sample rate or bit depth, for example), adjust playback speed, and

so on.

n Output units: Interface with audio input and/or output hardware, enabling you

to capture audio from input devices and play it out to output devices.The name is

somewhat of a misnomer because these are potentially input/output units.

The last of these, the output units, are critical because they make all the other units

do their work.As mentioned in Chapter 3, Core Audio works with a pull model:

Software objects that need audio samples pull data from other objects.You saw this

model at work with Audio Queues:When you start the queue, it starts pulling data from

your code by means of callbacks. In Audio Units, an output unit pulls either from

another unit or by making a callback into your code.

Consider the earlier analogy, with a guitar, distortion box, and amplifier represented as

a generator, effect, and output unit, respectively. In the Core Audio model, the amplifier

pulls audio from the effects box, which, in turn, pulls it from the guitar.The physical

analogy fails somewhat here—you can’t pull sound from the guitar strings—but what if

the guitar had a tiny buffer of the last few milliseconds of audio it produced? In that

case, the guitar could provide those samples to the effects box on demand, which would

apply its distortion effect and hand the changed samples to the amplifier, which would

start blasting them out.As the amp used up its samples, it would pull another buffer from

the effects box, which would pull from the guitar, and so on.

From here, you can see the possibilities. Imagine that you have not just a guitar, but a

whole band—but still only the one amp. In this case, you would need a mixer box with

one output going into the amp. Into its first input, you could put the original distortion

box and guitar chain; then you could put the singer’s mic into another input, the key-

board in another input, and so on.When the amp needed audio, it would pull from the

mixer box, which, in turn, would pull from all of its inputs and mix them together, pro-

viding the resulting mixed samples to the amp.

Now imagine that you introduce more units into this arrangement wherever it makes

sense, such as putting an effect unit after the singer’s microphone or putting mics on

multiple backup singers, using a second mixer unit to mix their streams into one and

delivering that stream to the final mix.The possibilities really are endless.

125How Audio Units Work

Sizing Up the Audio Units
Audio units are created by specifying their type, subtype, and manufacturer.You get these

by digging through the documentation or the AUComponent.h file.To whet your

appetite,Tables 7.1 through 7.7 list every system-provided audio unit on Mac OS X 10.6

(Snow Leopard).

Table 7.1 Audio Unit Subtypes for Generator Units (Type kAudioUnitType_

Generator)

Subtype Description

kAudioUnitSubType_ScheduledSoundPlayer Schedules audio to be played at a

specified time.

kAudioUnitSubType_AudioFilePlayer Plays audio from a file.

kAudioUnitSubType_NetReceive Receives network audio from a

corresponding

kAudioUnitSubType_NetSend

unit on another host or in another

application.

Table 7.2 Audio Unit Subtypes for Instrument Units (Type kAudioUnitType_

MusicDevice)

Subtype Description

kAudioUnitSubType_DLSSynth Multi-timbral music synthesizer that accepts

MIDI commands. Works with DLS or SoundFont

formats.

Table 7.3 Audio Unit Subtypes for Mixer Units (Type kAudioUnitType_Mixer)

Subtype Description

kAudioUnitSubType_MultiChannelMixer Mixes any number of single- or multi-

channel input buses to one output

bus.

kAudioUnitSubType_StereoMixer Mixes any number of mono or stereo

input buses to one stereo output.

kAudioUnitSubType_3DMixer Mixes any number of mono or stereo

input buses. Mono inputs can be

panned with 3D parameters. Output is

one bus of 2 to 8 channels.

kAudioUnitSubType_MatrixMixer Mixes any number of input and output

buses, with any number of channels

per bus. Supports highly configurable

mapping of inputs and outputs.

126 Chapter 7 Audio Units: Generators, Effects, and Rendering

Table 7.4 Audio Unit Subtypes for Panner Units (Type kAudioUnitType_Panner)

Subtype Description

kAudioUnitSubType_SphericalHeadPanner Uses “spherical head” model to

produce stereo output.

kAudioUnitSubType_VectorPanner Uses pan between adjacent

channels in 3D space to create

surround output.

kAudioUnitSubType_SoundFieldPanner Uses “sound field” model to

produce stereo output.

kAudioUnitSubType_HRTFPanner Uses head-related transfer func-

tion to produce stereo output.

Table 7.5 Audio Unit Subtypes for Effect Units (Type kAudioUnitType_Effect)

Subtype Description

kAudioUnitSubType_Delay Adds a digital delay effect.

kAudioUnitSubType_LowPassFilter Cuts off frequencies above a certain

value; lower frequencies pass through.

kAudioUnitSubType_HighPassFilter Cuts off frequencies below a certain

value; higher frequencies pass through.

kAudioUnitSubType_BandPassFilter Cuts off frequencies above and below

certain values; frequencies in between

pass through.

kAudioUnitSubType_HighShelfFilter Provides a “treble” control effect.

kAudioUnitSubType_LowShelfFilter Provides a “bass” control effect.

kAudioUnitSubType_ParametricEQ Equalizer effect that allows setting of

amplitude (gain), center frequency, and

bandwidth.

kAudioUnitSubType_GraphicEQ Effect that offers a 10- or 31-band

graphic equalizer effect.

kAudioUnitSubType_PeakLimiter Effect to reduce the amplitude of spe-

cific frequencies that spike over a cer-

tain level.

kAudioUnitSubType_DynamicsProcessor Adjusts dynamic range of audio, com-

pressing and expanding when source is

beyond certain thresholds.

kAudioUnitSubType_MultiBandCompressor Effect to compress four frequency

ranges (“bands”), with difference set-

tings for each.

kAudioUnitSubType_MatrixReverb Produces a highly-configurable reverb

(“echo”) effect.

127Sizing Up the Audio Units

Table 7.5 Continued

Subtype Description

kAudioUnitSubType_SampleDelay A digital delay like kAudioUnitSubType_

Delay, except that the delay is specified as a

sample count rather than a number of

seconds.

kAudioUnitSubType_Pitch Effect to alter the pitch of the source audio.

kAudioUnitSubType_AUFilter Adjusts gain for five bands of frequencies.

kAudioUnitSubType_NetSend Sends audio across network or between appli-

cations; corresponding generator unit subtype

is kAudioUnitSubType_NetReceive.

kAudioUnitSubType_Distortion Produces a distortion effect.

kAudioUnitSubType_RogerBeep Produces a beep, similar to someone releas-

ing the button of a walkie-talkie, when the

input level drops below a given threshold for a

specified amount of time.

Table 7.6 Audio Unit Subtypes for Converter Units (Type kAudioUnitType_

FormatConverter)

Subtype Description

kAudioUnitSubType_AUConverter Uses Audio Converter Services to per-

form LPCM conversions (sampler rate,

bit depth, etc.)

kAudioUnitSubType_Varispeed Changes playback speed. Pitch-shifts

audio as a result: faster playback raises

pitch, slower playback lowers it.

kAudioUnitSubType_TimePitch Similar to Varispeed, but allows for inde-

pendent control of playback speed and

pitch, allowing it to play faster without

changing pitch.

kAudioUnitSubType_DeferredRenderer Pulls input from a thread other than the

caller.

kAudioUnitSubType_Splitter Splits one input bus into two identical

output buses.

kAudioUnitSubType_Merger Merges two input buses into one output

bus.

128 Chapter 7 Audio Units: Generators, Effects, and Rendering

Table 7.7 Audio Unit Subtypes for Output Units (Type kAudioUnitType_Output)

Subtype Description

kAudioUnitSubType_GenericOutput Output unit not tied to audio hardware; can be

used to perform software rendering of audio

in connected units.

kAudioUnitSubType_SystemOutput Output to the device used for alerts and other

UI sounds

kAudioUnitSubType_DefaultOutput Output to the device selected in System

Preferences:Sound

kAudioUnitSubType_HALOutput Input from and output to any supported audio

device.

As you can see, there’s an extraordinary amount of audio processing power just in the

Apple-provided units.Also keep in mind that applications such as Logic and Garage

Band and third-party developers can provide additional own audio units to further

extend Core Audio’s capabilities.1

Some of the features provided by audio units are quite advanced and used for specific

audio needs. For now, we’ll take things slow and add complexity (and more units) as

we go.

Your First Audio Units
Let’s begin with a fairly basic exercise to get started with Audio Units.You’ll use one

generator unit and one output unit: one unit to create sound and another to deliver it to

the user.

For this example, we want an output unit and a generator unit. For output,Table 7.7

shows a DefaultOutputUnit that sends samples to the output device specified in the

“Sound” system preference.That’s just what we need.As for generators,Table 7.1 offers

AUAudioFilePlayer, described as “a unit that obtains and plays audio data from a file.”

Let’s use that one.

Figure 7.1 shows the units and their relationships graphically.

Drawing a graph of units in this way this leads to an important helper API:Audio

Processing Graph Services, often just called AUGraph.Although you can work with indi-

vidual audio units, you often need to coordinate the activities of a group of units and

their relationships.An AUGraph provides exactly these features.This makes it easy to

create connections between audio units—which are wrapped by AUNodes in the graph—

and start and stop the entire collection of units at one time.You’ll use AUGraphs

throughout this chapter, but keep in mind that its use is just a convenience:The calls to

the graph and its nodes always have equivalent operations that work on individual units.

129Your First Audio Units

1 Note that most of Apple’s “standard” units are not available on iOS. Chapter 10 looks at Audio

Units on iOS.

Figure 7.1 Audio Unit graph of a simple file player

To start building this example, create a Command Line Tool project in Xcode.You’ll

need to add AudioToolbox.framework, as always, as well as AudioUnit.framework,

which contains headers for the audio unit-related functions you’ll be using.

Start with a roadmap of the program you need to write.As has been the case in pre-

vious chapters, you’ll call some convenience routines from main() to set things up.At

this point, you don’t need any callback functions, so you don’t need to leave a section for

them. Still, it’ll be convenient later to put your essential variables (it’s so tempting to call

them instance variables) in a struct that you can pass to your helpers and later use this

struct as a user-info object when you need to start writing callbacks. Listing 7.1 shows

the skeleton of the program.

Listing 7.1 Outline of an Audio Unit-Based File Player Program

#include <AudioToolbox/AudioToolbox.h>

#pragma mark user-data struct

// Insert Listing 7.2 here

#pragma mark utility functions

// Insert Listing 4.2 here

// Insert Listings 7.7 - 7.13 here

// Insert Listings 7.14 - 7.17 here

#pragma mark main function

int main(int argc, const char *argv[])

{

// Open the input audio file

// Get the audio data format from the file

// Insert Listing 7.3 here

// Build a basic fileplayer->speakers graph

// Configure the file player

// Insert Listing 7.4 here

// Start playing

// Sleep until the file is finished

// Insert Listing 7.5 here

130 Chapter 7 Audio Units: Generators, Effects, and Rendering

AUAudio

FilePlayer

Default

Output

Unit
To

Hardware

Listing 7.1 Continued

// Cleanup

// Insert Listing 7.6 here

}

As is often the case, you start off by looking at the members you found needed to be

in the struct. Given that you’re reading from a file, you might have guessed that you’re

going to use the Audio File Services and, thus, might want to keep track of your input

file as an AudioFileID.You also want to figure out the audio format of that file’s con-

tents, which you track with an AudioStreamBasicDescription.When you have those,

you can think about your engine:You have two Audio Units managed by an AUGraph.

You don’t need to pass the output unit between functions, but you do need to pass

around the file player unit. Listing 7.2 shows the struct to use.

Listing 7.2 User Info Struct for Audio Unit File Player

typedef struct MyAUGraphPlayer

{

AudioStreamBasicDescription inputFormat;

AudioFileID inputFile;

AUGraph graph;

AudioUnit fileAU;

} MyAUGraphPlayer;

For this program to compile, you need to add AudioToolbox.framework and

AudioUnit.framework to your project.

Building the main() Function

Let’s go down to main(). First, you need to #define a file URL to open, which you

can put at the top of the source file (of course, your path will be different):

#define kInputFileLocation CFSTR("/Users/cadamson/Desktop/my-favorite-song.m4a")

Before you begin main(), be sure to copy over the CheckError() function from

Listing 4.2, as always.

The first thing to do in main() is to open an input file and get its data format as an

AudioStreamBasicDescription, as shown in Listing 7.3.You’ve done this a few times

now, with the Audio Queue player in Chapter 5 (see Listings 5.4 and 5.5) and with the

audio converter in Chapter 6,“Conversion” (see Listings 6.4 and 6.5): It’s just a one-line

call to AudioFileOpenURL(), followed by getting kAudioFilePropertyDataFormat

via AudioFileGetProperty().

131Your First Audio Units

Listing 7.3 Opening an Audio File and Getting Data Format from It

int main(int argc, const char *argv[])

{

CFURLRef inputFileURL = CFURLCreateWithFileSystemPath(

kCFAllocatorDefault,

kInputFileLocation,

kCFURLPOSIXPathStyle,

false);

MyAUGraphPlayer player = {0};

// Open the input audio file

CheckError(AudioFileOpenURL(inputFileURL,

kAudioFileReadPermission,

0,

&player.inputFile),

"AudioFileOpenURL failed");

CFRelease(inputFileURL);

// Get the audio data format from the file

UInt32 propSize = sizeof(player.inputFormat);

CheckError(AudioFileGetProperty(player.inputFile,

kAudioFilePropertyDataFormat,

&propSize,

&player.inputFormat),

"Couldn't get file's data format");

Next, set up the audio unit graph and the file-playing audio unit.These are big jobs,

so let’s set them aside for a minute and write them in convenience functions called

CreateMyAUGraph() and PrepareFileAU(), as shown in Listing 7.4.

Listing 7.4 Calling Convenience Functions to Set up AUGraph and Prepare a

File Player Unit

// Build a basic fileplayer->speakers graph

CreateMyAUGraph(&player);

// Configure the file player

Float64 fileDuration = PrepareFileAU(&player);

Notice that you need PrepareFileAU() to return the file’s duration; we need to

know how long to keep main() around before we let the application terminate.We can

calculate that in PrepareFileAU() because you have to do some related calculations

on the stream format anyway.

After you’ve created the AUGraph, it’s a simple matter to start it playing: Call

AUGraphStart(), as shown in Listing 7.5. Now you don’t need to interact with the

graph; just let the program sleep until you’ve played out all the audio.

132 Chapter 7 Audio Units: Generators, Effects, and Rendering

Listing 7.5 Starting an AUGraph

// Start playing

CheckError(AUGraphStart(player.graph),

"AUGraphStart failed");

// Sleep until the file is finished

usleep ((int)(fileDuration * 1000.0 * 1000.0));

With the file done, you can close down the AUGraph.This consists of three steps

(shown in Listing 7.6), which might make more sense after you’ve written the function

to set up the graph.When you create an AUGraph, you open the graph to create the

audio units, initialize it to allocate resources and prepare to stream, and then start it. So at

the end of the program, you perform corresponding shutdown steps in reverse order:

stop, uninitialize, and close.You also need to close the audio file.

Listing 7.6 Stopping and Cleaning Up an AUGraph

cleanup:

AUGraphStop (player.graph);

AUGraphUninitialize (player.graph);

AUGraphClose(player.graph);

AudioFileClose(player.inputFile);

return 0;

}

So that’s main(). It’s pretty insubstantial—you’ve just moved the creation of the

AUGraph and the file player audio unit to helper functions. Let’s deal with those now.

Creating an Audio Unit Graph

Setting up an audio unit graph consists of a series of steps whose order is important.

When you create an AUGraph off the top of your head and you get errors, it’s often

because you’ve skipped or misordered the steps, leaving your nodes and units either

uninitialized or not created at all.The proper order follows:

1. Create the AUGraph.

2. Create nodes.

3. Open the graph.

4. Optional: Get audio units from nodes if you need to access any of the units

directly.

5. Connect nodes.

6. Initialize the AUGraph.

7. Start the AUGraph.

133Your First Audio Units

You begin with the easy step, creating the AUGraph, as shown in Listing 7.7.

Listing 7.7 Creating an AUGraph

void CreateMyAUGraph(MyAUGraphPlayer *player)

{

// Create a new AUGraph

CheckError(NewAUGraph(&player->graph),

"NewAUGraph failed");

Next, you need to create the nodes of the graph.The process for this is a somewhat

unusual legacy of the old Component Manager, which dates back to the original

MacOS and QuickTime.The Component Manager supports the runtime discovery of

software components, which are similar to plug-ins, in that they provide some discrete,

classifiable functionality. Components have types and subtypes that indicate their use,

along with a manufacturer. It’s also possible for multiple components of a given

type/subtype/manufacturer combination to be present on an end user’s system, so the

Component Manager’s discovery process is built around matching a component descrip-

tion and iterating over the results until the caller finds a suitable component.

In this case, the component type and subtype for an audio unit are constants defined

in the AUComponent.h header file and described in the Audio Unit Component

Services documentation. Combining those with a constant to indicate Apple as the man-

ufacturer, you can create a component that matches the default output audio unit, as

shown in Listing 7.8.

Listing 7.8 Creating a Default Output AUGraph Node

// Generate description that matches output device (speakers)

AudioComponentDescription outputcd = {0};

outputcd.componentType = kAudioUnitType_Output;

outputcd.componentSubType = kAudioUnitSubType_DefaultOutput;

outputcd.componentManufacturer = kAudioUnitManufacturer_Apple;

// Adds a node with above description to the graph

AUNode outputNode;

CheckError(AUGraphAddNode(player->graph,

&outputcd,

&outputNode),

"AUGraphAddNode[kAudioUnitSubType_DefaultOutput] failed");

In this code, the appearance of the AudioComponentDescription type indicates that

you are using the Audio Component Manager semantics, which were introduced in Mac

OS X 10.6. For earlier versions of Mac OS X, you need to use the legacy Component

134 Chapter 7 Audio Units: Generators, Effects, and Rendering

Manager API—but beware that it is deprecated on Snow Leopard and absent on Lion.

iOS also uses the newer API and has never supported the older Component Manager.2

When you have the component description, you create a new graph node with

AUGraphAddNode().At this point, the node merely exists within the graph; it has no

connection to other nodes and no real functionality yet.You can go ahead and create

your other node, the file player, shown in Listing 7.9.

Listing 7.9 Creating a File Player AUGraph Node

// Generate description that matches a generator AU of type:

// audio file player

AudioComponentDescription fileplayercd = {0};

fileplayercd.componentType = kAudioUnitType_Generator;

fileplayercd.componentSubType = kAudioUnitSubType_AudioFilePlayer;

fileplayercd.componentManufacturer = kAudioUnitManufacturer_Apple;

// Adds a node with above description to the graph

AUNode fileNode;

CheckError(AUGraphAddNode(player->graph,

&fileplayercd,

&fileNode),

"AUGraphAddNode[kAudioUnitSubType_AudioFilePlayer] failed");

As you can see, the only difference in this code is the type and subtype used in the

component description.

These are the only nodes you need for your graph, so you can now open the graph

in Listing 7.10.

Listing 7.10 Opening an AUGraph

// Opening the graph opens all contained audio units but does

// not allocate any resources yet

CheckError(AUGraphOpen(player->graph),

"AUGraphOpen failed");

Opening the AUGraph opens the audio units contained within each of the nodes.

Doing this enables you to get and set properties on the units and to create connections

between the nodes, but you can’t allocate any resources yet.

A node is used only for managing relationships within the graph.All the cool stuff

mentioned earlier (processing streams, performing effects, and so on) happen within the

audio units themselves.The nodes act like a wrapper around them. If you need to work

135Your First Audio Units

2 The later section “Adding Your Code to the Audio Rendering Process” addresses other issues

involving the deprecation of the Component Manager.

directly with a unit, you can get the unit from its containing node via

AUGraphNodeInfo(), which takes a graph and a node as its first two parameters and

uses its third and fourth parameters to provide pointers to a component description and

the audio unit (you can NULL out either of these parameters if you don’t want them).

You’ll need to configure the file player unit later and tell it which file—and how much

of it—to play, so you should get a pointer to it now (shown in Listing 7.11).

Listing 7.11 Retrieving an AudioUnit from an AUNode

// Get the reference to the AudioUnit object for the

// file player graph node

CheckError(AUGraphNodeInfo(player->graph,

fileNode,

NULL,

&player->fileAU),

"AUGraphNodeInfo failed");

The fileAU is of type AudioUnit, which is typedef’ed as a ComponentInstance

on Mac OS X 10.5 (and, therefore, is compatible with the legacy Component Manager

APIs) and as an AudioComponentInstance on version 10.6 and up and on iOS.As

long as your code uses the AudioUnit type, the distinction is largely irrelevant and your

source will compile for the various SDKs.

The next step is an important one:You want to connect the file player node to the

output node.With an AUGraph, you use a one-line call to AUGraphConnectNode

Input(), as shown in Listing 7.12.

Listing 7.12 Connecting Nodes in an AUGraph

// Connect the output source of the file player AU to

// the input source of the output node

CheckError(AUGraphConnectNodeInput(player->graph,

fileNode,

0,

outputNode,

0),

"AUGraphConnectNodeInput");

This function takes five parameters: an AUGraph, a source node, a source output num-

ber, a destination node, and a destination output number.These numbers refer to the

buses, or elements, of the audio units inside the nodes.3 The idea is that every audio unit

has an arbitrary number of buses running into and out of it. In many cases, there is a

136 Chapter 7 Audio Units: Generators, Effects, and Rendering

3 The APIs generally use the term element, but many Core Audio developers, including ourselves,

find bus more descriptive and memorable. We call them buses throughout the rest of the book.

single bus that goes through the unit. But in the case of something like a mixer unit,

there could be many input buses (numbered 0 through n), and a single output bus.This

arrangement is shown in Figure 7.2.

137Your First Audio Units

AUStereo

Mixer

Arbitrary

2-channel

Unit

Bus 1

Bus 0

Bus 0

Figure 7.2 Mixing two buses down to one with a mixer unit

The input/output units have a special convention for buses: Bus 0 represents device

output, and bus 1 represents device input. In this case, you connect bus 0 (the only one)

of the file player unit to bus 0 of the output node to send the audio stream out to the

audio hardware.

With the graph created and connections made, you finish the graph setup by initializ-

ing the graph via AUGraphInitialize(), as shown in Listing 7.13.

Listing 7.13 Initializing an AUGraph

// Now initialize the graph (causes resources to be allocated)

CheckError(AUGraphInitialize(player->graph),

"AUGraphInitialize failed");

}

Unlike AUGraphOpen(), the initialize step is potentially expensive because it allows

units to allocate needed resources such as RAM or file handles.When a graph is initial-

ized, it is potentially ready to be started. In this case, though, you have to do a little more

work to set up the file player unit.

Setting Up the File Player Audio Unit

You’ve created a graph with a file player node connected to a default output node.The

only thing left to do is to customize the file player node so that it knows what to play.

You have an AudioFileID opened, but you’ve done nothing to associate the player unit

with this file. How do you do that?

This question will go unanswered if you comb through the documentation in

Xcode or on the Apple website. Sometimes documentation on constants (such as

kAudioUnitSubType_AudioFilePlayer) will give you what you need, but that’s not

the case here.The only documentation on using the file player unit is a 100-line com-

ment in the AudioUnitProperties.h header file.Yes, really. It starts on line 2445 in the

10.6 headers and on line 2487 of the 10.7 headers. Here’s an excerpt:

#pragma mark AUAudioFilePlayer

/*!

@enum Apple AUAudioFilePlayer Property IDs

@abstract The collection of property IDs for Apple

AUAudioFilePlayer

@discussion This audio unit lets you schedule regions

of audio files for future playback,

with sample-accurate timing.

The unit is a subclass of

AUScheduledSoundPlayer and inherits all of

its behavior. In particular, this unit

implements the

kAudioUnitProperty_ScheduleStartTimeStamp

and kAudioUnitProperty_CurrentPlayTime

properties. Instead of scheduling slices

(buffers) of audio to be played (via

kAudioUnitProperty_ScheduleAudioSlice),

however, you schedule regions of audio files

to be played. The unit reads and converts

audio file data into its own internal

buffers. It performs disk I/O on a

high-priority thread shared among all

instances of this unit within a process.

Upon completion of a disk read, the unit

internally schedules buffers for playback.

Reading through these docs, you can puzzle out how to initialize the file player unit:

n Provide a list of AudioFileIDs to play by setting the unit’s

kAudioUnitProperty_ScheduledFileIDs property.

n Define a region to play with the kAudioUnitProperty_ScheduledFileRegion

property.

n Prime the player by setting the kAudioUnitProperty_ScheduledFilePrime

property.

n Provide a start time with the kAudioUnitProperty_ScheduleStartTimeStamp

property.

The last of these is actually inherited from the related AUScheduledSoundPlayer

unit, so that’s even more stealth documentation in the header file to read. Having

fun yet?

Nevertheless, you have the information you need to initialize the file player unit in its

convenience method.The first step is easy: Just set the scheduled file IDs property to

your AudioFileID, as shown in Listing 7.14.

138 Chapter 7 Audio Units: Generators, Effects, and Rendering

Listing 7.14 Scheduling an AudioFileID with the AUFilePlayer

Float64 PrepareFileAU(MyAUGraphPlayer *player)

{

// Tell the file player unit to load the file we want to play

CheckError(AudioUnitSetProperty(player->fileAU,

kAudioUnitProperty_ScheduledFileIDs,

kAudioUnitScope_Global,

0,

&player->inputFile,

sizeof(player->inputFile)),

"AudioUnitSetProperty[kAudioUnitProperty_ScheduledFileIDs] failed");

Notice that AudioUnitSetProperty() has similar semantics to the property setters

in previous chapters, such as those for audio files and audio queues.The first two param-

eters are the unit you’re working with and the ID of the property to set, and the last two

are a void* to the property value and the size of the value. In between there are two

unique fields: scope and bus.The scope identifies what part of the audio unit the property

applies to: input (to the unit), output (from the unit), or global.The bus (technically

called an element, but almost always called a bus in practice) refers to a numbered stream

flowing into or out of the unit. In some cases, the scope and/or the bus might not mat-

ter. For the scheduled ID property, the scope is global and the bus is meaningless, so you

use kAudioUnitScope_Global and 0, respectively.

Next, you schedule a region of the file to play (see Listing 7.15).The stealth docu-

mentation states that this requires setting up a ScheduledAudioFileRegion structure

and setting that as a property on the audio unit.

Listing 7.15 Setting a ScheduledAudioFileRegion for the AUFilePlayer

UInt64 nPackets;

UInt32 propsize = sizeof(nPackets);

CheckError(AudioFileGetProperty(player->inputFile,

kAudioFilePropertyAudioDataPacketCount,

&propsize,

&nPackets),

"AudioFileGetProperty[kAudioFilePropertyAudioDataPacketCount] failed");

// Tell the file player AU to play the entire file

ScheduledAudioFileRegion rgn;

memset (&rgn.mTimeStamp, 0, sizeof(rgn.mTimeStamp));

rgn.mTimeStamp.mFlags = kAudioTimeStampSampleTimeValid;

rgn.mTimeStamp.mSampleTime = 0;

rgn.mCompletionProc = NULL;

rgn.mCompletionProcUserData = NULL;

rgn.mAudioFile = player->inputFile;

139Your First Audio Units

Listing 7.15 Continued

rgn.mLoopCount = 1;

rgn.mStartFrame = 0;

rgn.mFramesToPlay = nPackets * player->inputFormat.mFramesPerPacket;

CheckError(AudioUnitSetProperty(player->fileAU,

kAudioUnitProperty_ScheduledFileRegion,

kAudioUnitScope_Global,

0,

&rgn,

sizeof(rgn)),

"AudioUnitSetProperty[kAudioUnitProperty_ScheduledFileRegion] failed");

Start by getting the packet count, which enables you to calculate the

ScheduledAudioFileRegion’s mFramesToPlay member.The ScheduledFileRegion

contains an AudioTimeStamp structure, which you use to indicate that playback should

begin at time stamp 0.4 The ScheduledAudioFileRegion structure also enables you to

set up a callback function (along with the typical user info object) that will be called

when the file is fully read from disk and scheduled to play from RAM.You can null out

those fields, as our main() just usleep()s for a set duration instead of expecting a call-

back.The remaining fields set the AudioFileID to play, specify how many times to loop

through the file, set a starting frame, and establish a count of the number of frames to

play (which you calculate by multiplying the packet count by the frames-per-packet

count).With this structure fully initialized, you can set it as the

kAudioUnitProperty_ScheduledFileRegion property of the file player unit.

A separate property, kAudioUnitProperty_ScheduleStartTimeStamp, tells the

unit when to start playing after the unit (or the graph containing it) has started.A special

value of -1 is defined as meaning “start on the next render cycle,” which effectively

means “as soon as possible,” instead of matching time stamp values with the

ScheduledAudioFileRegion. For your needs here, Listing 7.16 suffices.

Listing 7.16 Setting the Scheduled Start Time for AUFilePlayer

// Tell the file player AU when to start playing (-1 sample time

// means next render cycle)

AudioTimeStamp startTime;

memset (&startTime, 0, sizeof(startTime));

startTime.mFlags = kAudioTimeStampSampleTimeValid;

startTime.mSampleTime = -1;

140 Chapter 7 Audio Units: Generators, Effects, and Rendering

4 The semantics of the starting timestamp are inherited from the AUScheduledSoundPlayer and

are too involved to get into here... the grisly details are in the AudioUnitProperties.h

comments.

Listing 7.16 Continued

CheckError(AudioUnitSetProperty(player->fileAU,

kAudioUnitProperty_ScheduleStartTimeStamp,

kAudioUnitScope_Global,

0,

&startTime,

sizeof(startTime)),

"AudioUnitSetProperty[kAudioUnitProperty_ScheduleStartTimeStamp]");

That completes the work of configuring the AUFilePlayer audio unit.All that’s left

is to calculate a playback time in seconds, which the main() function uses to determine

how long to usleep() to allow the file to play out in its entirety, as shown in

Listing 7.17.

Listing 7.17 Calculating File Playback Time in Seconds

// File duration

return (nPackets * player->inputFormat.mFramesPerPacket) /

player->inputFormat.mSampleRate;

}

At this point, you can build and run the program; it should play the file from your

hard drive and exit when playback is complete.

Now that you’ve had your first experience with audio units, you might be a little

skeptical.After all, you haven’t accomplished anything that you couldn’t already do with

a playback audio queue (as in Chapter 5), although the two approaches have different

complexities: Using the queue made you read from the file in callbacks, whereas the file

player unit is totally fire-and-forget but involves some drudgery in setting up the sched-

uled playback time. Still, it’s fair to ask,“Where’s the win? What’s so much better about

operating down at the audio unit level?”

In this example, there’s not much advantage over just using Audio Queues (or

NSSound or AVAudioPlayer), but you’re only getting started. In the next example,

you’ll start doing things that aren’t possible in the higher-level APIs.

Speech and Effects with Audio Units
A few more system-supplied audio units exist than the ones listed in the Apple Core

Audio Overview document and Tables 7.1 through 7.7. One that’s particularly interest-

ing is a speech synthesis audio unit that ships as part of the Speech Synthesis Manager.

Ordinarily, you use this framework by directly calling functions such as

SpeakCFString(), or even use the Cocoa NSSpeechSynthesizer class without wor-

rying about how the sound gets out to the speakers. But by getting the speech synthe-

sizer’s audio unit and putting into your own AUGraph, you gain the capability to

manipulate the sound at will.

141Speech and Effects with Audio Units

For this second example, create another command-line tool project in Xcode.You

need to add AudioToolbox.framework and AudioUnit.framework again, along with

ApplicationServices.framework, which provides the headers for the Speech

Synthesis Manager.

Building Blocks of the Speech Synthesis Graph

You’ll build this example in two stages.You’ll use an #ifdef to write the first version;

then you switch to the more elaborate second version. Listing 7.18 shows an outline of

what you’re going to write.

Listing 7.18 Outline of a Speech Synthesis Audio Unit Program

#include <AudioToolbox/AudioToolbox.h>

#include <ApplicationServices/ApplicationServices.h>

// #define PART_II

#pragma mark user-data struct

// Insert Listing 7.19 here

#pragma mark utility functions

// Insert Listing 4.2 here

void CreateMyAUGraph(MyAUGraphPlayer *player) {

// Insert Listing 7.21 here

#ifdef PART_II

// Insert Listings 7.24 - 7.26 here

#else

// Insert Listing 7.22 here

#endif

}

// Replace with listing 7.23

void PrepareSpeechAU(MyAUGraphPlayer *player)

{

}

#pragma mark main function

// Replace with listing 7.20

int main(int argc, const char *argv[])

{

// Build a basic speech->speakers graph

// Configure the speech synthesizer

// Start playing

// Sleep a while so the speech can play out

// Cleanup

}

142 Chapter 7 Audio Units: Generators, Effects, and Rendering

The #ifdef-#else-#endif is in the CreateMyAUGraph function, which you’ll use

to lay out the nodes differently in Parts 1 and 2 (I mean, PART_II) of the exercise.

As usual, you’ll use a custom struct to pass your essential pointers. In this example,

you want to keep track of your AUGraph and the speech synthesis audio unit. Listing

7.19 shows the fields you’ll need for the MyAUGraphPlayer struct.

Listing 7.19 User Info Struct for Speech Synthesis Audio Unit Program

typedef struct MyAUGraphPlayer

{

AUGraph graph;

AudioUnit speechAU;

} MyAUGraphPlayer;

Notice that, this time, you aren’t interested in an AudioStreamBasicDescription.

You could get it as a property of the speech synthesizer unit (specifically, the

kAudioUnitProperty_StreamFormat property of bus 0 of its output scope) if you

particularly wanted to inspect it, but you don’t need to in this case. Moreover, the system

audio units all default to a canonical LPCM format that’s compatible with one another,

meaning that you don’t set the stream format properties on your units unless you have a

specific need to do so.

You’re going to defer all the AUGraph and speech synthesizer setup to utility func-

tions, so the main() function is straightforward.You did most of these tasks in the previ-

ous example, so Listing 7.20 has nothing new.

Listing 7.20 main() Function for Speech Synthesis Audio Unit Program

int main(int argc, const char *argv[])

{

MyAUGraphPlayer player = {0};

// Build a basic speech->speakers graph

CreateMyAUGraph(&player);

// Configure the speech synthesizer

PrepareSpeechAU(&player);

// Start playing

CheckError(AUGraphStart(player.graph), "AUGraphStart failed");

// Sleep a while so the speech can play out

usleep ((int)(10 * 1000. * 1000.));

143Speech and Effects with Audio Units

Listing 7.20 Continued

cleanup:

AUGraphStop (player.graph);

AUGraphUninitialize (player.graph);

AUGraphClose(player.graph);

return 0;

}

Before starting into the graph, copy over the CheckError() function from

Listing 4.2.

Creating a Speech Synthesis AUGraph

Creating a graph requires the same steps as in the example for the file player: Create a

graph, describe and create nodes, open the graph, get units out of the nodes (if you need

to access the units directly), connect the nodes, and initialize the graph.The first few

steps, shown in Listing 7.21, are much like what you did before.

Listing 7.21 Setting Up AUGraph and AUNodes for Speech Synthesis

void CreateMyAUGraph(MyAUGraphPlayer *player)

{

// Create a new AUGraph

CheckError(NewAUGraph(&player->graph),

"NewAUGraph failed");

// Generates a description that matches our output

// device (speakers)

AudioComponentDescription outputcd = {0};

outputcd.componentType = kAudioUnitType_Output;

outputcd.componentSubType = kAudioUnitSubType_DefaultOutput;

outputcd.componentManufacturer = kAudioUnitManufacturer_Apple;

// Adds a node with above description to the graph

AUNode outputNode;

CheckError(AUGraphAddNode(player->graph,

&outputcd,

&outputNode),

"AUGraphAddNode[kAudioUnitSubType_DefaultOutput] failed");

// Generates a description that will match a generator AU

// of type: speech synthesizer

AudioComponentDescription speechcd = {0};

speechcd.componentType = kAudioUnitType_Generator;

speechcd.componentSubType = kAudioUnitSubType_SpeechSynthesis;

speechcd.componentManufacturer = kAudioUnitManufacturer_Apple;

144 Chapter 7 Audio Units: Generators, Effects, and Rendering

Listing 7.21 Continued

// Adds a node with above description to the graph

AUNode speechNode;

CheckError(AUGraphAddNode(player->graph,

&speechcd,

&speechNode),

"AUGraphAddNode[kAudioUnitSubType_SpeechSynthesis] failed");

// Opening the graph opens all contained audio units, but

// does not allocate any resources yet

CheckError(AUGraphOpen(player->graph),

"AUGraphOpen failed");

// Gets the reference to the AudioUnit object for the

// speech synthesis graph node

CheckError(AUGraphNodeInfo(player->graph,

speechNode,

NULL,

&player->speechAU),

"AUGraphNodeInfo failed");

This is almost identical to the previous example, except that the generator unit is of

subtype kAudioUnitSubType_SpeechSynthesis.

What’s left is to connect the units (see Listing 7.22).This is the part that you’ll change

later in this section, so this is where you use the #ifdef to switch the parts of the

example that get compiled.

Listing 7.22 Connecting Units in the Speech Synthesis Graph

#ifdef PART_II

#else

// Connect the output source of the speech synthesis AU

// to the input source of the output node

CheckError(AUGraphConnectNodeInput(player->graph,

speechNode,

0,

outputNode,

0),

"AUGraphConnectNodeInput");

// Now initialize the graph (causes resources to be allocated)

CheckError(AUGraphInitialize(player->graph),

"AUGraphInitialize failed");

#endif

}

145Speech and Effects with Audio Units

Again, this is exactly identical to the previous section:You connect bus 0 of the

speech node to bus 0 of the output node, which allows the generated audio to go out to

the hardware. Figure 7.3 shows this arrangement.

146 Chapter 7 Audio Units: Generators, Effects, and Rendering

AU

Speech

Synthesis

Default

Output

Unit
To

Hardware

Figure 7.3 Audio Unit graph of simple speech synthesizer

The graph is ready; now you just need your application to start talking.

Setting Up a Speech Synthesizer

The Speech Synthesis Manager defines a fairly comprehensive API for generating syn-

thetic speech from text, with control over variables such as the voice used and the speed

of the speech.You can create multiple speakers, each of which uses a single

SpeechChannel structure.This “channel” is the key to interacting with your speech syn-

thesis unit: Instead of creating a channel with NewSpeechChannel(),you retrieve the

channel that the unit has created for itself and send speech commands through that

channel. Listing 7.23 shows how to get the SpeechChannel.

Listing 7.23 Setting Up Speech Synthesis

void PrepareSpeechAU(MyAUGraphPlayer *player)

{

SpeechChannel chan;

UInt32 propsize = sizeof(SpeechChannel);

CheckError(AudioUnitGetProperty(player->speechAU,

kAudioUnitProperty_SpeechChannel,

kAudioUnitScope_Global,

0,

&chan,

&propsize),

"AudioUnitGetProperty[kAudioUnitProperty_SpeechChannel] failed");

SpeakCFString(chan, CFSTR("hello world"), NULL);

}

The essential functionality of this short function is to retrieve the

kAudioUnitProperty_SpeechChannel property from the speech synthesis audio unit.

When you have that, speech generated with SpeakCFString() or the other Speech

Synthesis Manager functions will go through the graph and out to the output unit.

At this point, you’re done. Build and run the program to hear the computer say

“Hello, world” out the default audio device. Of course, you can change the string in the

last line to your favorite catchphrase, a torrent of obscenities, or whatever.

Adding Effects

So far, using a speech synthesis audio unit hasn’t done anything for you that you

wouldn’t have gotten by doing your own NewSpeechChannel() and calling

SpeakCFString() without touching Core Audio. But all that’s about to change, because

you have an AUGraph—you have access to the raw PCM data generated by the synthe-

sizer.

Early in the chapter, you learned about the various kinds of audio units.An important

type of audio unit is the effect, which performs a transformation of some sort on audio

passing through the unit.

If you insert an effect in between the speech synthesizer unit and the default output

unit, it can work with the synthesized data to add an audible effect to the audio.The

Core Audio Overview appendix lists a number of system-supplied effect units. One that’s

fairly easy to use is AUMatrixReverb, which you’ll use here. Figure 7.4 shows what this

graph looks like.

147Speech and Effects with Audio Units

AUMatrix

Reverb

Default

Output

Unit

AU

Speech

Synthesis
To

Hardware

Figure 7.4 Audio Unit graph of speech synthesizer with reverb effect

The code you’ll write for this is what you #define’d as PART_II earlier, so this goes

between #ifdef PART_II and #else in the CreateMyAUGraph() function. First, you

create the reverb unit, as shown in Listing 7.24.

Listing 7.24 Creating an AUMatrixReverb AUGraph Node

#ifdef PART_II

// Generate a description that matches the reverb effect

AudioComponentDescription reverbcd = {0};

reverbcd.componentType = kAudioUnitType_Effect;

reverbcd.componentSubType = kAudioUnitSubType_MatrixReverb;

reverbcd.componentManufacturer = kAudioUnitManufacturer_Apple;

Listing 7.24 Continued

// Adds a node with the above description to the graph

AUNode reverbNode;

CheckError(AUGraphAddNode(player->graph,

&reverbcd,

&reverbNode),

"AUGraphAddNode[kAudioUnitSubType_MatrixReverb] failed");

Syntactically, this is like all the other units you’ve created:You set up an

AudioComponentDescription and pass it to AUGraphNode() to create a matching

AUNode in the AUGraph. Notice, however, that you’re now using kAudioUnitType_

Effect for the componentType and kAudioUnitSubType_MatrixReverb for the

componentSubType.

Now connect the nodes in a different order, as shown in Listing 7.25. In the earlier

example, you connected the AUSpeechSynthesis unit to the DefaultOutputUnit.To

run the synthesized audio through the effect, you connect AUSpeechSynthesis to the

AUMatrixReverb and then connect the AUMatrixReverb to the DefaultOutputUnit.

Listing 7.25 Connecting AUNodes to Send Synthesized Speech Through a Reverb Effect

// Connect the output source of the speech synthesizer AU to

// the input source of the reverb node

CheckError(AUGraphConnectNodeInput(player->graph,

speechNode,

0,

reverbNode,

0),

"AUGraphConnectNodeInput (speech to reverb) failed");

// Connect the output source of the reverb AU to the input

// source of the output node

CheckError(AUGraphConnectNodeInput(player->graph,

reverbNode,

0,

outputNode,

0),

"AUGraphConnectNodeInput (reverb to output) failed");

All these units generate and/or receive only a single stream, so they all use bus 0.

The reverb unit can take some properties to determine its behavior.Again, the only

documentation is in AudioUnitProperties.h, where a handful of Apple Audio

Unit–specific properties are defined.The kAudioUnitProperty_ReverbRoomType

property takes a number of values enumerated as constants, with a kReverbRoomType_

type of naming scheme. In Listing 7.26, you set your reverb for a big room full of echo.

148 Chapter 7 Audio Units: Generators, Effects, and Rendering

Listing 7.26 Configuring the AUMatrixReverb

// Get the reference to the AudioUnit object for the reverb

// graph node

AudioUnit reverbUnit;

CheckError(AUGraphNodeInfo(player->graph,

reverbNode,

NULL,

&reverbUnit),

"AUGraphNodeInfo failed");

// Now initialize the graph (this causes the resources to be

// allocated)

CheckError(AUGraphInitialize(player->graph),

"AUGraphInitialize failed");

// Set the reverb preset for room size

UInt32 roomType = kReverbRoomType_LargeHall;

CheckError(AudioUnitSetProperty(reverbUnit,

kAudioUnitProperty_ReverbRoomType,

kAudioUnitScope_Global,

0,

&roomType,

sizeof(UInt32)),

"AudioUnitSetProperty[kAudioUnitProperty_ReverbRoomType] failed");

Again, you need to retrieve the audio unit from the AUNode before you can set

properties on it.You do this with AUGraphNodeInfo().You also need to initialize

the AUGraph for setting the property to have any effect, meaning that

AudioUnitSetProperty() needs to come after AUGraphInitialize().

Uncomment the #define PART_II and then build and run this version of the

code.This time, your speech sounds like it’s echoing through a large hall.You can change

the value of the room type to see what the speech synthesizer sounds like in a

kReverbRoomType_MediumChamber or a kReverbRoomType_Cathedral.

Before moving on to the next project, there’s a very useful technique you can use

with complex AUGraphs, like the one in this example.The CAShow() function logs (to

standard output) a list of all the nodes in the graph, along with the connections between

them and the stream format used in each of those connections.To try it, just add a

CAShow(player->graph); call to the bottom of CreateMyAUGraph().When you run

the program again, you’ll see the graph logged out to Xcode’s debug area, like this:

AudioUnitGraph 0xAC3E000:

Member Nodes:

node 1: 'auou' 'def ' 'appl', instance 0x8ac3e04d O I

node 2: 'augn' 'ttsp' 'appl', instance 0x810000 O I

node 3: 'aufx' 'mrev' 'appl', instance 0x8ac3e04e O I

149Speech and Effects with Audio Units

Connections:

node 2 bus 0 => node 3 bus 0 [2 ch, 44100 Hz, 'lpcm'

(0x00000029) 32-bit little-endian float, deinterleaved]

node 3 bus 0 => node 1 bus 0 [2 ch, 44100 Hz, 'lpcm'

(0x00000029) 32-bit little-endian float, deinterleaved]

CurrentState:

mLastUpdateError=0, eventsToProcess=F, isRunning=F

The three nodes are easily identified by the four-character codes representing their

type and subtype, and the connections show the node/bus combination and LPCM for-

mats. CAShow() can really help debug bad connections or stream format mismatches

when a graph gets complex.

Adding Your Code to the Audio Rendering
Process
So far, everything we’ve done has involved arranging units, setting a few properties, and

letting them do their thing.This is tremendously powerful, particularly when you con-

sider how many system-supplied units there are to play with. Still, we’re not really pro-

gramming, so much as we are configuring. It would be straightforward to present an

AUGraph in a GUI (maybe looking something like Quartz Composer) and let the user

add, configure, and connect units.

What if we wanted to insert our own code into the graph? What if we wanted to

provide our own generator or effect? Fortunately, Core Audio lets you do that. In fact,

there are several options: you can either set up render callbacks into your own code, or you

can create your own units.The first option is much easier, whereas creating your own

units is mostly going to be of interest to developers who intend to sell them to end-

users, which in turn may require licensing and legal agreements with Apple. For this

book, let’s stick with the approach that involves more code and less lawyers.

The Audio Unit Render Cycle

So far, the effect and output units have needed input audio, which you’ve supplied by

connecting them to other units. But this isn’t the only way to use an audio unit. Let’s

take a deeper look at the audio unit render cycle.

To get any audio unit to perform its work (applying an effect, generating samples, and

so on), you can manually call the function AudioUnitRender().Among its variables,

you supply an AudioBufferList, which is a struct that just wraps a variable number of

AudioBuffers.The AudioBuffer is a struct with a channel count, a buffer size, and a

pointer to a buffer called mData. If mData is not NULL, the unit places its output into

this pointer. If mData is NULL, the unit can provide its own buffers.This design enables

you to use units in isolation if you need to:You can apply an effect unit to an arbitrary

150 Chapter 7 Audio Units: Generators, Effects, and Rendering

buffer of samples by putting the samples in an AudioBufferList’s mData and then

calling AudioUnitRender(), passing in an effect unit, all the other required parameters,

and the AudioBufferList.

You haven’t had to do this manually because the default output unit does it for you,

repeatedly calling the unit connected to its bus 0 input scope and sending the resulting

samples on to the audio hardware. But there’s an interesting application to consider here.

What if you wanted to save your reverb-powered speech synthesis from the last section

to a file instead of outputting it to the speakers? You could replace the default output

unit at the end of the graph with a generic output unit, identified by the subtype

kAudioUnitSubType_GenericOutput.This output unit is not connected to audio

hardware and doesn’t do anything by itself. Instead, it gives you access to the end result

of an AUGraph:You can just call AudioUnitRender() on the generic output unit and

supply your own buffer.When the function returns, the buffer would contain frames of

audio as processed by the graph.You could then write this buffer to a file with Audio

File Services or Extended Audio File Services. Because these renders aren’t tied to the

timing of a hardware output device, you could call AudioUnitRender() as fast as possi-

ble, thereby writing your file much faster than a real-time play-out would require.

AudioUnitRender() provides one end of the render cycle—pulling audio from a

unit—but what’s happening upstream? You can also get that under your control, if you

want. So far, you’ve connected your units with the function

AUGraphConnectNodeInput() because you’ve worked with AUGraphs.When you’re

working with individual units, you have two options.You can set the property

kAudioUnitProperty_MakeConnection on a unit, which takes as its value an

AudioUnitConnection struct that specifies the source unit, source output bus number,

and destination bus number. Setting this property is identical to calling

AUGraphConnectNodeInput() on two graph nodes:The destination unit pulls from the

source unit when it needs to.

The other way to supply samples to a unit is to set a different property:

kAudioUnitProperty_SetRenderCallback.This property tells a unit that, instead of

getting its input samples from another unit, it will do so by calling into a function that

you provide.This enables you to inject your own code into the audio render cycle. Let’s

play with that.

A Custom Rendering Example

In Chapter 2,“The Story of Sound,” you wrote a sine wave to a file by generating the

samples programmatically and writing them to a file with Audio File Services.You can

use pretty much the same math to generate a sine wave on the fly and then provide

those samples to a default output unit to play the sine wave to the speakers in real time.

Create another command-line tool project with the outline in Listing 7.27.

151Adding Your Code to the Audio Rendering Process

Listing 7.27 Outline of a Simple Sine Wave Player

#include <AudioToolbox/AudioToolbox.h>

#define sineFrequency 880.0

#pragma mark user-data struct

// Insert Listing 7.28 here

#pragma mark callback function

// Insert Listing 7.34 here

#pragma mark utility functions

// Insert Listing 4.2 here

// Replace with listings 7.30 - 7.32

void CreateAndConnectOutputUnit (MySineWavePlayer *player) {

}

// Replace with listing 7.29

int main(int argc, const char *argv[])

{

// Set up output unit and callback

// Start playing

// Clean up

}

One thing you’ll do differently in this example is use the Audio Unit directly instead

of through an AUGraph.The reason for this is simple:You have only one unit and no

connections, so you don’t need a graph. Figure 7.5 shows how simple the arrangement is

for this example.

152 Chapter 7 Audio Units: Generators, Effects, and Rendering

Default

Output

Unit
To

Hardware

Render

Callback

Function

Figure 7.5 Output unit connected to a render callback function

You start with a struct you can pass around. In previous examples, combining vari-

ables in a struct was more of a convenience, but now it’s a necessity:The point of this

exercise is to use a callback function to produce the audio, and you need a single user

info pointer to provide anything the callback function needs.As you’ll see in Listing

7.28, the render callback needs just two things: the default output audio unit and a

counter variable representing the current offset (or phase) in the sine wave.

Listing 7.28 User Info Struct for Audio Unit Sine Wave Player

typedef struct MySineWavePlayer

{

AudioUnit outputUnit;

double startingFrameCount;

} MySineWavePlayer;

The main() function for the sample is trivial; it defers the setup of the unit to a con-

venience function, then starts the output unit and lets it go for a few seconds. Listing

7.29 shows main() in its entirety.

Listing 7.29 main() Function for Audio Unit Sine Wave Player

int main(int argc, const char *argv[])

{

MySineWavePlayer player = {0};

// Set up unit and callback

CreateAndConnectOutputUnit(&player);

// Start playing

CheckError (AudioOutputUnitStart(player.outputUnit),

"Couldn't start output unit");

// Play for 5 seconds

sleep(5);

cleanup:

AudioOutputUnitStop(player.outputUnit);

AudioUnitUninitialize(player.outputUnit);

AudioComponentInstanceDispose() (player.outputUnit);

return 0;

}

Because you’re going to work directly with the audio unit, you start the output unit

directly via AudioOutputUnitStart() instead of starting an AUGraph.You might

notice that the cleanup functions are analogous to how you cleaned up a graph: Instead

of using AUGraphStop(), AUGraphUninitialize(), and AUGraphClose(),you per-

form equivalent actions directly on the unit with AudioOutputUnitStop(),

AudioUnitUnitialize(), and AudioComponentInstanceDispose().

This main() also calls the beloved CheckError() function, so be sure to copy over

Listing 4.2 as usual. Now let’s move on to the core of this example.

153Adding Your Code to the Audio Rendering Process

Creating and Connecting Audio Units

When you worked with AUGraph, you described the units you wanted to create and

then created graph nodes with AUGraphAddNode(). If you needed to work with the

actual audio unit wrapped by the node, you’d fetch it with AUGraphNodeInfo(). In this

example, creating a graph and a node would be extra work, so let’s just create the output

unit directly.You start your CreateAndConnectOutputUnit() in a familiar way, shown

in Listing 7.30, by providing an AudioComponentDescription that describes the

audio unit you want to create.This is identical to what you did in Listings 7.8 and 7.21.

Listing 7.30 Describing a Default Output Audio Unit

void CreateAndConnectOutputUnit (MySineWavePlayer *player) {

// Generates a description that matches the output

// device (speakers)

AudioComponentDescription outputcd = {0};

outputcd.componentType = kAudioUnitType_Output;

outputcd.componentSubType = kAudioUnitSubType_DefaultOutput;

outputcd.componentManufacturer = kAudioUnitManufacturer_Apple;

Getting the Audio Unit itself requires use of some more Audio Component Manager

functions.These calls are based on the legacy Component Manager API, which was orig-

inally designed to provide a means of discovering and using shared resources.You provide

a description of the component you want and then iterate over matches (of which there

could be zero, one, or many) until you find the component you want.You perform this

iteration with the AudioComponentFindNext() function, which uses the odd semantic

of having you pass in your last match (NULL on your first call), along with your compo-

nent description. Listing 7.31 shows how to use it to get a component for the default

output unit described.

Listing 7.31 Getting an Audio Unit with AudioComponentFindNext

AudioComponent comp = AudioComponentFindNext(NULL, &outputcd);

if (comp == NULL) {

printf ("can't get output unit");

exit (-1);

}

CheckError(AudioComponentInstanceNew(comp,

&player->outputUnit),

"Couldn't open component for outputUnit");

Assuming that AudioComponentFindNext() finds a matching component, you cre-

ate your AudioUnit by calling AudioComponentInstanceNew().

Now that you have the default output unit, you need to set it up—that is, you need

to add your render callback and initialize the unit.You probably won’t be surprised to

154 Chapter 7 Audio Units: Generators, Effects, and Rendering

hear that setting up the render callback is a matter of setting a property on the unit,

kAudioUnitProperty_SetRenderCallback.The value for this property is an

AURenderCallbackStruct whose fields are a function pointer to your callback func-

tion and a context object.Assuming that you’ll call your callback function

SineWaveRenderProc(), Listing 7.32 shows how to set up the callback.

Listing 7.32 Setting Render Callback on Audio Unit

// Register the render callback

AURenderCallbackStruct input;

input.inputProc = SineWaveRenderProc;

input.inputProcRefCon = &player;

CheckError(AudioUnitSetProperty(player->outputUnit,

kAudioUnitProperty_SetRenderCallback,

kAudioUnitScope_Input,

0,

&input,

sizeof(input)),

"AudioUnitSetProperty failed");

// Initialize the unit

CheckError (AudioUnitInitialize(player->outputUnit),

"Couldn't initialize output unit");

}

At this point, your output unit is ready to use.When you start it, it pulls new audio

by calling the SineWaveRenderProc() function and sends it on to the speakers.All you

need to do is provide that callback function to generate some samples.

The Render Callback Function

A render callback function is called every time a connected audio unit needs samples to

play. If you look up the AURenderCallbackStruct in the documentation, you’ll find

that it links to AURenderCallback, which provides the function signature that a render

callback function must use. AURenderCallback is shown in Listing 7.33.

Listing 7.33 AURenderCallback Definition

typedef OSStatus (*AURenderCallback) (

void *inRefCon,

AudioUnitRenderActionFlags *ioActionFlags,

const AudioTimeStamp *inTimeStamp,

UInt32 inBusNumber,

UInt32 inNumberFrames,

AudioBufferList *ioData

);

155Adding Your Code to the Audio Rendering Process

The callback function receives six parameters:

n inRefCon:Your context (aka, user info) pointer.

n ioActionFlags:A bit field describing the purpose of the call. It’s often blank (0),

and you can look up the possible values as the AudioUnitRenderActionFlag’s

enum in the documentation or AUComponent.h.

n inTimeStamp:An AudioTimeStamp structure that indicates the timing of this call

relative to other calls to your render callback.

n inBusNumber:Which bus (aka, element) of the Audio Unit is requesting audio

data.

n inNumberFrames:The number of frames to be rendered. Notice that this variable

is prefixed as “in” instead of “io.”That indicates that this isn’t a case when you can

render fewer frames and indicate that situation by passing back the number of

frames actually rendered.Your callback must provide exactly the requested number

of frames.

n ioData:An AudioBufferList struct to be filled with data.You write your sam-

ples into the mData members of the AudioBuffers contained in this struct.The

list has a count of how many AudioBuffers are present, and each AudioBuffer

has members for its channel count and byte size. Combined with

inNumberFrames, you can figure out how much data can be safely written to

these data buffers.

The function returns an OSStatus, which you can use to signal errors. One unwrit-

ten rule of the render callback is that you are expected to perform your work quickly.

Core Audio calls your callback on a real-time thread with a hard deadline; if you miss

this deadline, you get silence.5 This also means that you cannot perform any action on a

render callback that either is known to take a long time or can take an indeterminate

amount of time. Particularly bad ideas for render callback actions include these:

n File I/O

n Network I/O

n Large memory allocations or copies

n Heavy use of Objective-C messaging

n Format conversion (except between flavors of PCM)

n Blocking threads

156 Chapter 7 Audio Units: Generators, Effects, and Rendering

5 Author Chris puzzled for hours over a render callback that looked right but generated no sound.

The problem was that each call generated hundreds of NSLog() messages, and the expense of

the logging caused the callback to miss the deadline. As soon as he commented out the

NSLog(), the program started working.

You might rightly object that this precludes many of the things you’d want to do

with audio.The next chapter reveals one solution. For now, however, let’s keep things

simple and fast.

Core Audio Threading

Realizing the limits of Audio Unit render callbacks can give you a new appreciation for all

that the Audio Queue did in Chapters 4 and 5. Recall that the playback audio queue in

Chapter 5 read samples from a file in its callback; chances are, you used a compressed

file such as an .m4a or .mp3. To work with slow I/O and expensive format conversion, the

queue must be doing some fancy footwork to not starve the audio unit callback. But

where?

One way you can investigate this yourself is to set a breakpoint in the callback functions of

your examples, open the Debug Navigator („-5), and inspect the running threads. This

chapter’s Audio Unit example uses a small number of threads (five, in our Lion experience),

and your callback’s stack will show that you’re being called by the C++ method

HALB_IOThread::Entry, which calls into a BufferedAudioConverter, and calls you

with AudioConverterChain::CallInputProc. The fact that you’re on an I/O thread is

the important part: Your code is expected to keep up with the timed system-level activities.

Set a breakpoint in the callback of Chapter 5’s example and do a few continues (enough

so you hear some audio); you’ll see a very different story. There are more threads, and the

one that calls you is not an I/O thread, but rather a GenericRunLoopThread that calls

the C++ method ClientAudiQueue::CallOutputCallback. The other threads tell an

interesting story: Catch your program at the right time, and you may see a separate

AQConverterThread calling AudioConverterFillComplexBuffer to convert your com-

pressed samples to PCM while the HP_IOThread is performing some kind of timed wait.

You might gather that the Audio Queue performs indeterminate or long-lasting actions on

one thread and then provides a means for the real-time thread to pick up the decom-

pressed data with a quick memcpy().You’ll learn how to connect these dots in the next

section. For now, keep in mind that not having to worry about threads is what makes the

Audio Queue a handy convenience API.

All your render callback needs to do is produce samples representing a sine wave.You

did this in Chapter 2, but there’s a new catch. In the earlier example, you could just loop

through as many waveforms as you needed to satisfy your minimum duration, which

made the counting easy. In the callback case, you have to provide an exact number of

frames on each call, and this frame count almost certainly won’t match a wavelength.

Consider Figure 7.6, which shows a sine wave set against hypothetical buffers as a series

of dashed boxes: Each one ends at a different offset (or phase) in the sine wave. If you

restart the sine wave for each buffer, the discontinuity in the signal creates a “buzz” in

the sound wave.

As a result, you need to keep track of where you are in the wave with your context

object so that, if the last sample you render is only partway into a wavelength, you can

continue from that point on the next callback.With that in mind, Listing 7.34 contains

the code for the render callback function.

157Adding Your Code to the Audio Rendering Process

Figure 7.6 Render callback buffers do not align with wavelengths

Listing 7.34 Render Callback to Produce a Sine Wave

OSStatus SineWaveRenderProc(void *inRefCon,

AudioUnitRenderActionFlags *ioActionFlags,

const AudioTimeStamp *inTimeStamp,

UInt32 inBusNumber,

UInt32 inNumberFrames,

AudioBufferList * ioData)

{

MySineWavePlayer *player = (MySineWavePlayer*)inRefCon;

double j = player->startingFrameCount;

double cycleLength = 44100. / sineFrequency;

int frame = 0;

for (frame = 0; frame < inNumberFrames; ++frame)

{

Float32 *data = (Float32*)ioData->mBuffers[0].mData;

(data)[frame] = (Float32)sin (2 * M_PI * (j / cycleLength));

// copy to right channel too

data = (Float32*)ioData->mBuffers[1].mData;

(data)[frame] = (Float32)sin (2 * M_PI * (j / cycleLength));

j += 1.0;

if (j > cycleLength)

j -= cycleLength;

}

player->startingFrameCount = j;

return noErr;

}

This function casts the context pointer to a MySineWavePlayer and, from that, sets

up local variable j, which represents the offset (or phase) in the wave, measured as a

frame count. It then sets up a cycle length (or wavelength) by dividing the sample rate

(44,100) by a sineFrequency (in Listing 7.27, you #define’d this as 880.0, which is

158 Chapter 7 Audio Units: Generators, Effects, and Rendering

an A on the piano).With this, you have enough info to set up a loop and calculate

sine values. Each time you generate a new 32-bit sine value, you copy it to the buffer

provided by the ioBufferList, using the frame counter to figure out the offset in the

buffer to write to. Notice that, by default, you have two channels going into the output

unit, so you write a sample to the second channel as well. If you wanted only mono

sound, you would need to explicitly set an AudioStreamBasicDescription on the

output unit and specify that you would be sending only one channel.

At the bottom of the loop, the offset count is incremented and reset to 0 if you have

exceeded the frame count of a wavelength.When the loop exits, this offset is stored back

to your struct as startingFrameCount so that you know where to continue the wave

on your next callback.

Now you’re ready to go. Build and run the program.You should hear 5 seconds of a

sine wave from your default output device. It’s a nice, steady tone.You can also change

the frequency value and rebuild to get different tones, just as you would expect.

One other point you might want to investigate is how often you’re being called back,

and how many frames are being requested.This is a product of the sampling rate and the

size of the buffers:A faster rate or smaller buffers results in more frequent callbacks.As an

experiment (see Listing 7.35), you could add a log statement to the top of the callback

to see how many frames are being requested, along with the current time.

Listing 7.35 Logging the Requested Number of Frames and Render Callback Frequency

printf ("SineWaveRenderProc needs %ld frames at %f\n", inNumberFrames,
CFAbsoluteTimeGetCurrent());

The output—and there’s a lot of it—looks something like this:

SineWaveRenderProc needs 512 frames at 304518326.158135

SineWaveRenderProc needs 512 frames at 304518326.169738

SineWaveRenderProc needs 512 frames at 304518326.181346

SineWaveRenderProc needs 512 frames at 304518326.192959

The interval between those time stamps is a pretty consistent 0.0116 seconds, mean-

ing that you’re being called back every 11.6 milliseconds or so. Keep this in mind when

you write your render callbacks; the time intervals involved in render callbacks are sev-

eral orders of magnitude smaller than what’s required by operations such as opening an

Internet socket connection or spinning up a stopped hard drive. On the other hand,

enjoy the fact that this frequency is on the same order of magnitude as your screen’s

refresh rate.Virtually no perceivable latency is involved in working with audio units,

which means no delay between rendering samples and getting them to the user’s ears.

For some kinds of applications, that’s critically important; musicians couldn’t work with

tools or virtual instruments that have a noticeable lag between performing actions and

hearing sound, and gamers would hate having sounds out of sync with onscreen action.

159Adding Your Code to the Audio Rendering Process

Summary
This chapter gave you a taste of how audio units work and what you can do with them.

As you’ve seen, the default audio units provide a great deal of functionality without your

having to write a lot of signal-processing code: Just connect generator to effect, to out-

put and let ’er rip.When you do want to insert your code into the processing chain, ren-

der callbacks give you the opportunity to do so.

Audio Units are the heart of Core Audio, and you’re not done with them just yet. In

the next chapter, you’ll discover how to perform capture with input units, giving you a

brief glimpse of the floor of Core Audio and the hardware APIs that lie beneath. Having

played with generator, effect, and output units in this chapter, the next one gives you the

opportunity to work with mixer units and create far more elaborate AUGraphs.

160 Chapter 7 Audio Units: Generators, Effects, and Rendering

8

Audio Units: Input and Mixing

In the previous chapter, you took on Core Audio’s ultimate level of responsibility by

employing Audio Units in your program.Audio Units are ultimately responsible for all

of Core Audio’s distinctive audio-processing abilities: low-latency capture and play-out,

audio synthesis, effects, and so on. It is the most difficult form of Core Audio program-

ming, both conceptually and in terms of specifics: from managing unit scopes and buses

to handling the real-time demands of render callbacks, there are lots of new and frustrat-

ing ways for your code to fail.

By the end of this chapter, we hope you’ll find that the struggle is worth it. In this

chapter, you continue your study of audio units with powerful new capabilities. First, you’ll

use output units to capture audio from input devices such as microphones and audio-capa-

ble cameras.To do this, you’ll also get a glimpse of the APIs that provide a consistent Core

Audio interface to many different kinds of I/O technologies.You’ll also get to push your

luck with asynchronicity as you process input and output on different callback threads—

and still get the samples from one unit to the another.You’ll wrap up by employing mixer

units, which combine multiple streams of audio and enable you to mix your many audio

sources into something that can be played out a pair of speakers or headphones.

Note

If you thought the chapters leading up to this one were tough, you haven’t seen anything

yet. This chapter tests your will. For this one, we’ve had to bring in threading concerns,

hardware APIs, and even some C++. Super gross! It’s okay if you want to read it once for

the big picture, then again for the nitty-gritty details. And you might not be able to put

these techniques to use yourself until you’ve actually worked through our big example,

because little details and gotchas abound.

Working with I/O Input
So far, the source of the audio in the examples has been either generator units

(AUFilePlayer and AUSpeechSynthesis) or your own sine-wave-generating render

callback.Another important way to get sound into an Audio Unit or AUGraph is to per-

form capture from an input device.That’s what you’ll spend most of this chapter doing.

You might think that capture devices are considered generator units, but combing

through the list of system-supplied units reveals that they’re not there.Then you might

say “Okay, we have output units to go out to speakers or headphones or speakers, so

there must be input units, too.” But there aren’t. In an unfortunate bit of naming, sam-

ples from input devices are actually supplied by output units. For this reason, there’s an

informal tendency to refer to these as I/O units, even though their unit type is literally

kAudioUnitType_Output.

In this example, you start with a simple graph that captures from the user’s default

input device and is connected to the generic output unit as usual. Figure 8.1 shows this

arrangement.

162 Chapter 8 Audio Units: Input and Mixing

AUHAL

Default

Output

Unit
To

Hardware

From

Hardware

Figure 8.1 A Conceptual AUGraph for play-through of captured audio

Notice that the input audio unit is called AUHAL.That merits a bit of explanation.

The Hardware Abstraction Layer (HAL) is an abstraction over the underlying I/O details of

audio hardware devices.Your input and output devices might include various I/O tech-

nologies—a USB microphone, an old FireWire iSight camera with its integrated mic,

Line In and Line Out on a sound card—but at the HAL level, you can use a consistent

interface to discover devices and their capabilities, get and set properties, and receive or

deliver streams of PCM samples.The AUHAL is an Audio Unit that provides input to

and/or output from a HAL device.

For the first part of the example, you’ll set up an AUGraph that provides a simple

play-through from one unit to the other; when the output unit needs samples, the input

unit will provide them.This is actually harder than it sounds at first, but at least the out-

line of the steps is straightforward. Let’s set up a command-line tool project in Xcode

and add the AudioToolbox, CoreAudio, and AudioUnit frameworks to the target.

Listing 8.1 shows the skeleton of the program.

Listing 8.1 Outline of an AUGraph-Based Play-Through Program

#include <AudioToolbox/AudioToolbox.h>

// #define PART_II

#pragma mark user-data struct

// Replace with Listing 8.3

typedef struct MyAUGraphPlayer

Listing 8.1 Continued

{

#ifdef PART_II

// Insert Listing 8.23 here

#else

#endif

}

#pragma mark - render procs -

// Insert Listings 8.15 - 8.18 here

// Insert Listings 8.21 - 8.22 here

#pragma mark - utility functions -

// Insert Listing 4.2 here

// Replace with Listings 8.4 - 8.14

void CreateInputUnit (MyAUGraphPlayer *player) {

}

// Replace with Listings 8.19 - 8.20

void CreateMyAUGraph(MyAUGraphPlayer *player)

{

#ifdef PART_II

// Insert Listings 8.24 - 8.27 here

#else

#endif

}

// Insert Listing 8.29 here

// Replace with Listing 8.2

int main (int argc, const char * argv[]) {

// Create the input unit

// Build a graph with output unit

#ifdef PART_II

// Insert Listing 8.28 here

#else

#endif

// Start playing

// And wait

// Cleanup

}

163Working with I/O Input

As you can see, this is another example that you will build on later by adding some

PART_II features that you can #ifdef around for now.As always, you’ll be using the

CheckError() function on all your Core Audio calls, so copy Listing 4.2 into your

source.

Connecting Input and Output Units

The main() for the program is simple (see Listing 8.2). It calls convenience functions to

set up the input unit and the rest of the AUGraph, and then it starts the graph and block

until the user presses a key to quit.

Listing 8.2 main() Function for AUGraph Play-Through

int main (int argc, const char * argv[]) {

MyAUGraphPlayer player = {0};

// Create the input unit

CreateInputUnit(&player);

// Build a graph with output unit

CreateMyAUGraph(&player);

#ifdef PART_II

#endif

// Start playing

CheckError (AudioOutputUnitStart(player.inputUnit),

"AudioOutputUnitStart failed");

CheckError(AUGraphStart(player.graph),

"AUGraphStart failed");

// And wait

printf("Capturing, press <return> to stop:\n");

getchar();

cleanup:

AUGraphStop (player.graph);

AUGraphUninitialize (player.graph);

AUGraphClose(player.graph);

}

We’ve set up a separate function to create the input unit here instead of putting it in

CreateMyAUGraph().We’ve done this to make a point.Although we’d like to think that

the output unit pulls from the input unit, this really isn’t the case.They’re separate I/O

units, so the input and output units are started independently and run independently.

164 Chapter 8 Audio Units: Input and Mixing

This is a problem for AUGraphs as you currently understand them because you need

the output unit to pull from somewhere. It can’t pull directly from the input unit, which is

running on a separate timing cycle and might or might not be able to provide samples at

a given time.To make things worse, the input unit is going to be providing samples

when it’s good and ready to, regardless of the state of the output unit or the AUGraph. So

when it wants to provide samples to our program, what do we do with them?

Ring Buffers to the Rescue

You need some place for the input unit to leave its samples and for the output unit to

collect them from.An ideal tool for this is a ring buffer.This is a block of memory that

acts like an infinitely long read/write buffer.The input unit can write samples to it

whenever it needs to, and the output unit reads from the buffer as necessary. It’s called a

ring buffer because it wraps around in memory:When you try to read or write past the

last address in the buffer, the call wraps around to the beginning.

Many possible implementations exist, but for simple purposes, you can imagine a

buffer with two pointers into it: a read pointer and a write pointer. Consider Figure 8.2,

which shows the states of a ring buffer at several points.At step ①, the buffer is empty;

the write pointer points to the first address of the buffer, and the read pointer is invalid

because there is no data in the buffer to read yet.Write some data to the buffer, and sud-

denly you’re at step ➁:The read pointer now points to the beginning of the buffer, and

the write pointer points to the first free address in the buffer.Write again, and in step ③,

the write pointer is further into the buffer.At this point, you could safely read

(writePoint - readPoint) bytes from the buffer. Imagine that you read up through

the first write, which puts you in step ④, with the read pointer still trailing the write

pointer.You could read all the way up to the write pointer, but no further, obviously. For

a final step, you’ll write a third block of data to the buffer. In this diagram, the address of

the write pointer plus the length of the new data is beyond the end of the ring buffer.

So, as illustrated in step ⑤, the first part of the block is written to the end of the ring

buffer, and the rest of it is written back at the beginning. In terms of memory addresses,

it now seems like the write pointer is behind the read buffer, but this is illusory: Further

reads advance the read pointer until it reaches the end of the buffer, at which point it

wraps around, just as the write pointer did.

Obviously, for this to work, the reading and writing needs to be somewhat coordi-

nated. If you try to read when there’s no data available, you get nothing; if you keep

writing to the buffer and fill it up (if the write pointer catches up to the read pointer),

the reader loses data.A ring buffer is appropriate only when the data in the buffer will

be produced and consumed at pretty much the same rate. Picking an appropriate size

can be tricky, too. Bigger buffers make collisions less likely, but after a point, you can end

up wasting memory.

165Working with I/O Input

166 Chapter 8 Audio Units: Input and Mixing

Write

1

1

1 2

2

23 3

2

3

4

5

Write

Write

Write

Write

Read

Read

Read

Read

Read

Figure 8.2 States of a ring buffer after multiple writes and reads

Using a Ring Buffer with Audio Units

The ring buffer solves the timing problem.When the input unit has samples from the

capture device ready for you, an input callback function can copy them to the ring buffer.

And when the AUGraph (which, for now, is just the output unit) needs samples to play,

it reads from the ring buffer. Figure 8.3 shows this arrangement, displacing the units ver-

tically to try to drive home the point that this is no longer a synchronous pull through a

graph. Instead, the input and output units are exchanging samples asynchronously,

through the ring buffer.

The Core Audio SDK provides a ring buffer, but not where you might expect to find

it.The CARingBuffer is a C++ class, found in Core Audio’s Public Utility folder, at

/Developer/Extras/CoreAudio/PublicUtility.1 To use this in your project, drag

CARingBuffer.h and CARingBuffer.cpp to your project.We recommend adding a

separate group in your project for this utility code (we called our group CA public

utility), and unchecking the Copy Items into Destination Group’s Folder button; you’ll

want to compile the version in the PublicUtility folder instead of making a local

copy (and, thereby, unintentionally forking it).

167Working with I/O Input

Default

Output

Unit

To

Hardware

AUHALFrom

Hardware

Input

C
allback

CARing

Buffer

R
ender

C
allback

1 The CARingBuffer included with the Core Audio SDK on Mac OS X 10.5 and 10.6 is buggy and

can be fixed with an updated version of the class. See Apple Technical Q&A 1665, “CoreAudio

PublicUtility—Installing the CARingBuffer Update” for an explanation and a link to the cor-

rected code. Lion-based versions of Xcode provide the correct version of CARingBuffer, but

starting in Xcode 4.3, Xcode does not install the Core Audio PublicUtility folder at all.

Instead, Apple includes it in the “Audio Tools for Xcode” package, available via Xcode’s “More

Developer Tools…” menu item. The items in this package can be installed anywhere you like. In

the book’s downloadable code, we expect PublicUtility to be at the old location.

Figure 8.3 An AUGraph for play-through of captured audio

Note

Because you’re adding C++ code to the project, you need to change build settings to be

able to call into C++ code. The easiest way to do so in this project is to just change the

file extension of the main.c file to .cpp (the standard C++ extension) or .mm (the

Objective-C++ extension). If you don’t want to change the file extension, you can also bring

up the file’s inspector (Option-„-1) and, under the “Identity and Type” section, change the

file type to one of the C++-aware file types, such as C++ Source or Objective-C++ Source.

Now that you’ve added the CARingBuffer to your project, you can make use of it

in the user data struct that you’ll pass between your callback functions (see Listing 8.3).

Both the input and render callbacks need to know about the ring buffer so that the for-

mer can write to it when capture data is ready and the latter can read from it when it

needs to render data out to speakers or headphones.You also need some timing offsets so

that, even if callbacks from the devices have different time stamps, you can store and

fetch samples in the ring buffer reliably. Beyond this, you use the struct to refer to the

AUGraph and its input and output units, the ASBD used throughout the graph, and an

AudioBufferList that the input unit can read samples into before copying them to the

ring buffer.

Listing 8.3 User Data Struct for Audio Play-Through Program

typedef struct MyAUGraphPlayer

{

AudioStreamBasicDescription streamFormat;

AUGraph graph;

AudioUnit inputUnit;

AudioUnit outputUnit;

#ifdef PART_II

#endif

AudioBufferList *inputBuffer;

CARingBuffer *ringBuffer;

Float64 firstInputSampleTime;

Float64 firstOutputSampleTime;

Float64 inToOutSampleTimeOffset;

} MyAUGraphPlayer;

As you can see from Listing 8.3, you’ve got room for a PART_II surprise. (As if

“Part I” wasn’t complex enough!).

Creating an AUHAL Unit for Input

The first utility function you need to write is one to set up an I/O unit to handle input.

Unlike output, you can’t make use of the kAudioUnitSubType_DefaultOutput sub-

type because there’s no guarantee that the default output unit also provides input, and

there’s no “default input” unit as there is for default output. Instead, you create a differ-

ent kind of I/O unit, an AUHAL, and explicitly connect it to a specific audio device.

Let’s start by creating this unit in Listing 8.4.

168 Chapter 8 Audio Units: Input and Mixing

Listing 8.4 Creating an Audio Unit for Input

void CreateInputUnit (MyAUGraphPlayer *player) {

// Generates a description that matches audio HAL

AudioComponentDescription inputcd = {0};

inputcd.componentType = kAudioUnitType_Output;

inputcd.componentSubType = kAudioUnitSubType_HALOutput;

inputcd.componentManufacturer = kAudioUnitManufacturer_Apple;

AudioComponent comp = AudioComponentFindNext(NULL, &inputcd);

if (comp == NULL) {

printf ("Can't get output unit");

exit (-1);

}

CheckError(AudioComponentInstanceNew(comp,

&player->inputUnit),

"Couldn't open component for inputUnit");

As you can see from Listing 8.4, you are using the Audio Component Manager APIs,

as we did in Listings 7.31 and 7.32, to describe and find an AudioUnit.The other dif-

ference from the previous listing is the use of the subtype kAudioUnitSubType_

HALOutput instead of kAudioUnitSubType_DefaultOutput.And yes, asking for a

HAL output device to do audio input is still badly counterintuitive.

The next step (see Listing 8.5) is to explicitly enable input from the unit.You didn’t

have to do this for the default output unit, but you do need to do so when you work

with AUHAL objects.The property you set is kAudioOutputUnitProperty_

EnableIO, but there’s a twist: For audio input, set this property on bus 1, not the usual

bus 0.This is because of an important convention for I/O units: Bus 1 represents a stream

from input hardware, and bus 0 represents a stream to output hardware.You haven’t had to

worry much about buses before this because most of the units have had a single bus

(number 0) that you could connect to the default output unit to play out to the hard-

ware. For this input-only unit, you need to enable I/O on bus 1 and disable it on bus 0.

Listing 8.5 Enabling I/O on Input AUHAL

UInt32 disableFlag = 0;

UInt32 enableFlag = 1;

AudioUnitScope outputBus = 0;

AudioUnitScope inputBus = 1;

CheckError (AudioUnitSetProperty(player->inputUnit,

kAudioOutputUnitProperty_EnableIO,

kAudioUnitScope_Input,

inputBus,

&enableFlag,

169Working with I/O Input

Listing 8.5 Continued

sizeof(enableFlag)),

"Couldn't enable input on I/O unit");

CheckError (AudioUnitSetProperty(player->inputUnit,

kAudioOutputUnitProperty_EnableIO,

kAudioUnitScope_Output,

outputBus,

&disableFlag,

sizeof(enableFlag)),

"Couldn't disable output on I/O unit");

At this point, you are still dealing with the AUHAL in the abstract; you have not asso-

ciated this input unit with any specific audio device.You do that now with Listing 8.6.

This uses the AudioObjectGetPropertyData() call, which you used in Chapter 4,

“Recording” (see Listings 4.20 and 4.21), to figure out your input hardware sample rate.

In this case, all you need is the AudioDeviceID that identifies the input device cur-

rently set in System Preferences.

Listing 8.6 Getting the Default Audio Input Device

AudioDeviceID defaultDevice = kAudioObjectUnknown;

UInt32 propertySize = sizeof (defaultDevice);

AudioObjectPropertyAddress defaultDeviceProperty;

defaultDeviceProperty.mSelector = kAudioHardwarePropertyDefaultInputDevice;

defaultDeviceProperty.mScope = kAudioObjectPropertyScopeGlobal;

defaultDeviceProperty.mElement = kAudioObjectPropertyElementMaster;

CheckError (AudioObjectGetPropertyData(kAudioObjectSystemObject,

&defaultDeviceProperty,

0,

NULL,

&propertySize,

&defaultDevice),

"Couldn't get default input device");

Audio Hardware Devices

We’ve repeatedly talked about having multiple audio “devices,” and you might think that

this doesn’t really apply to you. After all, if you have a MacBook, you don’t have a bunch of

different devices, right? Wrong. Even a stock MacBook has two input devices: the built-in

internal microphone and a built-in line-in jack. There’s also a built-in output, which plays

over internal speakers unless headphones are plugged in. On a bigger scale, the Mac Pro

has built-in devices for analog line in and line out, digital in and out, and an internal

speaker. Check out the Sound system preference panel to see what your computer has to

work with.

170 Chapter 8 Audio Units: Input and Mixing

Now consider that any Mac can gain additional input and/or output devices via serial port

connections. A user might plug in a FireWire iSight (an input-only device) or a USB headset

(which does input and output). Other software devices also exist, such as the Soundflower

driver that provides system audio capture to applications like Audio Hijack Pro by providing

a virtual output device that copies off outgoing audio to other applications before sending

it on to hardware. Ultimately, you can’t make any assumptions about audio capabilities

based on Mac model. The safer way is to use the Audio Object API to either detect the

default input or output device or iterate over all the devices with the

kAudioHardwarePropertyDevices property.

One other consideration to keep in mind is that an individual device can be capable of

input, output, or both. USB headsets and certain other devices (such as the Griffin iMic)

are examples of the latter. An important technical difference arises, in that a single device

has one clock servicing its needs, whether input, output, or both. If you discovered and

used a device that does both input and output, you wouldn’t need to take the asynchro-

nous approach in this chapter because an output unit for this device could safely call

AudioUnitRender() on its corresponding input unit. This isn’t a safe assumption on

Mac OS X, but iOS devices always have a single input/output device, which makes

play-through applications much easier to write, as you’ll see in Chapter 10, “Core Audio

on iOS.”

When you have the AudioDeviceID, you set it as the AUHAL property

kAudioOutputUnitProperty_CurrentDevice, as shown in Listing 8.7.This associates

the input audio unit with a specific audio device.

Listing 8.7 Setting the Current Device Property of the AUHAL

CheckError(AudioUnitSetProperty(player->inputUnit,

kAudioOutputUnitProperty_CurrentDevice,

kAudioUnitScope_Global,

outputBus,

&defaultDevice,

sizeof(defaultDevice)),

"Couldn't set default device on I/O unit");

You will want to know the AudioStreamBasicDescription that the AUHAL pro-

duces because you might need to set it as the stream format for other units to use.To do

this, get the kAudioUnitProperty_StreamFormat property from the AUHAL, as

shown in Listing 8.8. Notice again that you work with bus 1, which represents capture

data flowing through an I/O unit.

Listing 8.8 Getting AudioStreamBasicDescription from Input AUHAL

propertySize = sizeof (AudioStreamBasicDescription);

CheckError(AudioUnitGetProperty(player->inputUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Output,

171Working with I/O Input

Listing 8.8 Continued

inputBus,

&player->streamFormat,

&propertySize),

"Couldn't get ASBD from input unit");

Look again at that call, because it’s a little confusing to see “output” and “input” in

adjacent parameters.You address the output scope of the audio unit, meaning the data

coming out of the unit. However, you use inputBus (which is 1) to indicate that you

want the stream that I/O units use for capture data.The difference is that the scope is

input to and output from the unit, whereas the bus represents input to and output from

the device (but only for I/O units).Table 8.1 summarizes the possible combinations of

scope and bus and gives their meaning.

Table 8.1 Scope/Bus Use in I/O Units

Scope Bus Semantics Property

Access

Input 1 Input from hardware to I/O unit Read-only

Output 1 Output from I/O unit to program or other units Read/write

Input 0 Input to I/O unit from program or other units Read/write

Output 0 Output from I/O unit to hardware Read-only

In fact, you need to make use of this distinction next.The input hardware might be

running at a different sample rate than the default provided by the AUHAL. For exam-

ple, although the default sample rate is 44,100 Hz, the built-in line input on a Mac Pro

might run at 88,200.You have different ways to deal with this, but one simple option is

to just use the input hardware rate throughout your program, as shown in Listing 8.9.

After all, that avoids resampling and loss of quality. So you’ll get the ASBD that’s going

into the AUHAL, copy its value over to the ASBD that the AUHAL is producing, and

reset that latter ASBD on the AUHAL’s output scope.

Listing 8.9 Adopting Hardware Input Sample Rate

AudioStreamBasicDescription deviceFormat;

CheckError(AudioUnitGetProperty(player->inputUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Input,

inputBus,

&deviceFormat,

&propertySize),

"Couldn't get ASBD from input unit");

player->streamFormat.mSampleRate = deviceFormat.mSampleRate;

172 Chapter 8 Audio Units: Input and Mixing

Listing 8.9 Continued

propertySize = sizeof (AudioStreamBasicDescription);

CheckError(AudioUnitSetProperty(player->inputUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Output,

inputBus,

&player->streamFormat,

propertySize),

"Couldn't set ASBD on input unit");

Another task to deal with is providing buffers to receive data from the input unit

(detailed in Listing 8.10).This is the AudioBufferList structure that you previously

received in render callbacks and would provide to AudioUnitRender() if you needed

to call it manually. Usually, the AudioBufferList has been provided because it’s been

set up by the output unit that then calls your units and renders callbacks. In the capture

case, you need to provide your own buffers to receive the captured data because the

ioData parameter received in the callback function will always be NULL for input call-

backs. Fortunately, a property called kAudioDevicePropertyBufferFrameSize tells

how many frames are in the AUHAL’s I/O buffers, and you can use that to allocate a

suitably large buffer to receive the capture data in the callback.

Listing 8.10 Calculating Capture Buffer Size for an I/O Unit

UInt32 bufferSizeFrames = 0;

propertySize = sizeof(UInt32);

CheckError (AudioUnitGetProperty(player->inputUnit,

kAudioDevicePropertyBufferFrameSize,

kAudioUnitScope_Global,

0,

&bufferSizeFrames,

&propertySize),

"Couldn't get buffer frame size from input unit");

UInt32 bufferSizeBytes = bufferSizeFrames * sizeof(Float32);

Notice that the frames are assumed to be Float32 samples, which is the data type

of the canonical format that audio units use by default.You can now use this

bufferSizeBytes in building up an AudioBufferList structure, shown in

Listing 8.11.

Listing 8.11 Creating an AudioBufferList to Receive Capture Data

// Allocate an AudioBufferList plus enough space for

// array of AudioBuffers

UInt32 propsize = offsetof(AudioBufferList, mBuffers[0]) + (sizeof(AudioBuffer) *
player->streamFormat.mChannelsPerFrame);

173Working with I/O Input

Listing 8.11 Continued

// malloc buffer lists

player->inputBuffer = (AudioBufferList *)malloc(propsize);

player->inputBuffer->mNumberBuffers = player->streamFormat.mChannelsPerFrame;

// Pre-malloc buffers for AudioBufferLists

for(UInt32 i =0; i< player->inputBuffer->mNumberBuffers ; i++) {

player->inputBuffer->mBuffers[i].mNumberChannels = 1;

player->inputBuffer->mBuffers[i].mDataByteSize = bufferSizeBytes;

player->inputBuffer->mBuffers[i].mData = malloc(bufferSizeBytes);

}

The first line in Listing 8.11 uses the little-seen offsetof() macro.You might have

to look at this carefully to figure out what’s going on.An AudioBufferList has a

fixed-length field (a UInt32) for the number of buffers, followed by an array of

AudioBuffers.The size AudioBufferList that you need is the size of everything up

to that array (which is what offsetof() provides) and then as many AudioBuffer

pointers as there are channels in the stream format.This means that you can malloc() a

structure of this exact size and assign the number of buffers.You then loop through the

AudioBuffers, initializing their members and malloc()ing the mData buffers that actu-

ally receive the sample.

Note

By convention, AUHAL deinterleaves multichannel audio. This means that you set up two

AudioBuffers of one channel each instead of setting up one AudioBuffer with

mNumberChannels==2. A common cause of paramErr (-50) problems in

AudioUnitRender() calls is having AudioBufferLists whose topology (or arrange-

ment of buffers) doesn’t match what the unit is prepared to produce. When dealing at the

unit level, you almost always want to do noninterleaved like this.

This buffer provides some memory to receive the data from the input unit. But what

do you do with it then? Remember that the original plan was to use a ring buffer to

store samples so that the output unit’s callback can pick them up. If you look through

the CARingBuffer.h header, you’ll see that it’s nicely tuned for working with the

data types you’re already using—the Store() and Fetch() functions take

AudioBufferLists, for example. For now, you just need to create the ring buffer,

which you do with the Allocate() function, supplying a channel count, bytes per

frame, and a buffer size, as shown in Listing 8.12.

Listing 8.12 Creating a CARingBuffer

// Alloc ring buffer that will hold data between the

// two audio devices

player->ringBuffer = new CARingBuffer();

174 Chapter 8 Audio Units: Input and Mixing

Listing 8.12 Continued

player->ringBuffer->Allocate(player->streamFormat.mChannelsPerFrame,

player->streamFormat.mBytesPerFrame,

bufferSizeFrames * 3);

Setting aside the weird C++ syntax that you haven’t had to use elsewhere in the

book, the other point to notice is that you’ve created a ring buffer three times the size of

the buffer you use for the callbacks.This is kind of a guess; no hard-and-fast rule governs

the right size of the ring buffer, except that it has to be large enough that the read and

write pointers never collide. In the example, we count on output callbacks occurring

more or less as frequently as input callbacks; this means that, every time you write a

bufferSizeFrames-sized chunk, you’ll soon be reading a chunk of that size. If this

weren’t the case and you found that you wrote to the buffer more frequently than you

read from it, you would want to make the buffer larger. It’s an art, not a science.

Now that you have created the input unit, associated it with a device, set up a buffer

to receive capture data, and set up a ring buffer to put it in, the last step (beginning with

Listing 8.13) is to provide this AUHAL with a callback function to use whenever capture

data is available.This is almost identical to the render callback of the last section, except

that when you receive data from an I/O unit, you’re setting up an input callback.

Listing 8.13 Setting up an Input Callback on an AUHAL

// Set render proc to supply samples from input unit

AURenderCallbackStruct callbackStruct;

callbackStruct.inputProc = InputRenderProc;

callbackStruct.inputProcRefCon = player;

CheckError(AudioUnitSetProperty(player->inputUnit,

kAudioOutputUnitProperty_SetInputCallback,

kAudioUnitScope_Global,

0,

&callbackStruct,

sizeof(callbackStruct)),

"Couldn't set input callback");

This uses the same AURenderCallbackStruct that you used for the render callback

earlier, providing the name of a callback function and a user data pointer. Here, though,

you use a different property: kAudioOutputUnitProperty_SetInputCallback.

The last thing CreateInputUnit() needs to do is initialize the unit (see Listing

8.14).You also initialize the timing offset counters, whose purpose is explained later

when you get to the input callback function.

175Working with I/O Input

Listing 8.14 Initializing Input AUHAL and Offset Time Counters

CheckError(AudioUnitInitialize(player->inputUnit),

"Couldn't initialize input unit");

player->firstInputSampleTime = -1;

player->inToOutSampleTimeOffset = -1;

printf ("Bottom of CreateInputUnit()\n");

}

Setting up an input unit takes about 100 lines of code. In the big picture, you do rely

on some techniques that you’ve seen before: describing and finding a unit, getting and

setting stream formats, and getting size properties so that you can allocate suitably large

data buffers.And you haven’t even written the callback function yet! Let’s do that now.

Note

By the way, if you ever want a refresher on this section’s topics, take a look at Apple

Technical Note 2091, “Device Input Using the HAL Output Audio Unit,” in your Xcode

documentation bundles or on developer.apple.com.

Writing the Input Callback

After the AUHAL has captured some data from the input device, it uses the input call-

back you registered to provide that data to your program. It does this by calling the

function InputRenderProc(), which you set up as part of the callback struct that you

set as the AUHAL’s kAudioOutputUnitProperty_SetInputCallback property. So

what do you do in that function? You collect the samples from the unit and send them

to your CARingBuffer so that the output unit can pick them up later.

The InputRenderProc() function in Listing 8.15 has the same signature as the ren-

der callback you saw in the previous chapter.As usual, you first must cast the user data

object back to your player struct.

Listing 8.15 Signature for an Input Callback Function

OSStatus InputRenderProc(void *inRefCon,

AudioUnitRenderActionFlags *ioActionFlags,

const AudioTimeStamp *inTimeStamp,

UInt32 inBusNumber,

UInt32 inNumberFrames,

AudioBufferList * ioData)

{

MyAUGraphPlayer *player = (MyAUGraphPlayer*) inRefCon;

176 Chapter 8 Audio Units: Input and Mixing

Now you get to work.When you created the struct, you set up some “offset” time

fields. Now you start using them in Listing 8.16.You have these because the input and

output units might be using totally different schemes for their time stamps. One might

be using real-world “wall clock” time, whereas the other might be counting seconds

since your application launched.This matters because the CARingBuffer keeps track of

the time stamps of the samples added to it. If they’re wildly different, you won’t get any

sound.You can deal with this by noticing the first time stamp provided by each unit and,

when you have both, calculating the difference (or offset) between them.

Listing 8.16 Logging Time Stamps from Input AUHAL and Calculating Time

Stamp Offset

// Have we ever logged input timing? (for offset calculation)

if (player->firstInputSampleTime < 0.0) {

player->firstInputSampleTime = inTimeStamp->mSampleTime;

if ((player->firstOutputSampleTime > 0.0) &&

(player->inToOutSampleTimeOffset < 0.0)) {

player->inToOutSampleTimeOffset =

player->firstInputSampleTime - player->firstOutputSampleTime;

}

}

This block of code calculates the offset only if firstOutputSampleTime has also

been set, which needs to happen in the output render callback.That means that you also

have to do this calculation in the output callback so that, regardless of whether the input

or output callback gets called first, you can calculate inToOutSampleTimeOffset as

soon as possible.

As mentioned earlier, the point of the input callback is to retrieve the samples from

the AUHAL and put them in the ring buffer so that the output unit can read them later.

You might think that the samples would be provided as the parameter

AudioBufferList *ioData, but this isn’t the case: For input samples, this parameter is

always NULL. Instead, the callback is just a signal that the captured samples are ready.You

still have to retrieve them yourself with AudioUnitRender(), as shown in Listing 8.17.

Listing 8.17 Retrieving Captured Samples from Input AUHAL

OSStatus inputProcErr = noErr;

inputProcErr = AudioUnitRender(player->inputUnit,

ioActionFlags,

inTimeStamp,

inBusNumber,

inNumberFrames,

player->inputBuffer);

177Working with I/O Input

If this succeeded, you can copy the samples over to the ring buffer.The

CARingBuffer’s Store() method is designed for just this purpose. In fact, its parameter

list—an AudioBufferList, a framesToWrite count, and a start time—aligns nicely

with the variables you currently have in scope.You sized and allocated an

AudioBufferList in the previous section for just this purpose, and the frame count

and start time are provided as parameters to the callback, shown in Listing 8.18.

Listing 8.18 Storing Captured Samples to a CARingBuffer

if (! inputProcErr) {

inputProcErr = player->ringBuffer->Store(player->inputBuffer,

inNumberFrames,

inTimeStamp->mSampleTime);

}

return inputProcErr;

}

That was a lot of explanation but not a lot of work.At this point, you have an input

unit that connects to the default input audio device and uses a callback to deliver sam-

ples to your application.Your callback puts those samples in a CARingBuffer so that

they can be picked up later and played out.Time to build that part.

Building an AUGraph to Play Samples from a CARingBuffer

You can get back to somewhat familiar footing in this part of the play-through applica-

tion:All examples in the previous chapter involved a default output unit that gets sam-

ples either from upstream audio units or from a render callback. In this case, you need to

do the latter:The samples you need are in the CARingBuffer, so you need to use a

render callback to fetch samples from the ring buffer. Let’s start writing

CreateMyAUGraph() with Listing 8.19.

Listing 8.19 Creating an AUGraph for Audio Play-Through

void CreateMyAUGraph(MyAUGraphPlayer *player)

{

// Create a new AUGraph

CheckError(NewAUGraph(&player->graph),

"NewAUGraph failed");

// Generate a description that matches default output

AudioComponentDescription outputcd = {0};

outputcd.componentType = kAudioUnitType_Output;

outputcd.componentSubType = kAudioUnitSubType_DefaultOutput;

outputcd.componentManufacturer = kAudioUnitManufacturer_Apple;

178 Chapter 8 Audio Units: Input and Mixing

Listing 8.19 Continued

AudioComponent comp = AudioComponentFindNext(NULL, &outputcd);

if (comp == NULL) {

printf ("Can't get output unit"); exit (-1);

}

// Adds a node with above description to the graph

AUNode outputNode;

CheckError(AUGraphAddNode(player->graph,

&outputcd,

&outputNode),

"AUGraphAddNode[kAudioUnitSubType_DefaultOutput] failed");

You’ve done everything here already (in Listings 7.8 and 7.21): creating an AUGraph,

describing the default output unit, and adding a node matching that description to the

graph.Again, this version uses the new Audio Component Manager API, so it compiles

for and runs on Mac OS X 10.6 and up; you would need equivalent Component

Manager calls to run on 10.5 or earlier.

Now let’s finish the graph.You’ll leave room in Listing 8.20 to make things more

complex later with an #ifdef.

Listing 8.20 Setting ASBD from Input AUHAL and Render Callback in the

Play-Through AUGraph

#ifdef PART_II

#else

// Opening the graph opens all contained audio units

// but does not allocate any resources yet

CheckError(AUGraphOpen(player->graph),

"AUGraphOpen failed");

// Get the reference to the AudioUnit object for the

// output graph node

CheckError(AUGraphNodeInfo(player->graph,

outputNode,

NULL,

&player->outputUnit),

"AUGraphNodeInfo failed");

// Set the stream format on the output unit's input scope

UInt32 propertySize = sizeof (AudioStreamBasicDescription);

CheckError(AudioUnitSetProperty(player->outputUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Input,

0,

&player->streamFormat,

propertySize),

"Couldn't set stream format on output unit");

179Working with I/O Input

Listing 8.20 Continued

AURenderCallbackStruct callbackStruct;

callbackStruct.inputProc = GraphRenderProc;

callbackStruct.inputProcRefCon = player;

CheckError(AudioUnitSetProperty(player->outputUnit,

kAudioUnitProperty_SetRenderCallback,

kAudioUnitScope_Global,

0,

&callbackStruct,

sizeof(callbackStruct)),

"Couldn't set render callback on output unit");

#endif

// Now initialize the graph (causes resources to be allocated)

CheckError(AUGraphInitialize(player->graph),

"AUGraphInitialize failed");

player->firstOutputSampleTime = -1;

}

You use AUGraphOpen() to create the audio units wrapped by the nodes—only one

so far—so that you can set properties on the output unit.What properties do you need

to set? You might remember that, in setting up the input unit, you took notice of its

sample rate, which might be different than the default value in your newly created out-

put unit.You set the kAudioUnitProperty_StreamFormat of the output unit to the

ASBD that you stored in player->streamFormat, to keep the two units in sync. If you

remember the discussion of scopes and buses as they relate to I/O units, you’ll under-

stand why you set this value on bus 0’s input scope: Bus 0 represents output to hardware,

and the input scope represents what’s going into the audio unit. So setting this property

is how you tell the output unit,“This is the format you’ll be receiving.”

The other tasks in this listing are ones you’ve done before.You describe an output

render callback as calling a yet-to-be-written GraphRenderProc() function and set this

on the output unit with the kAudioUnitProperty_SetRenderCallback property; as

a result, your GraphRenderProc() will be called whenever the output unit needs sam-

ples to play out.With that set up, you can initialize the graph and set a flag value for

firstOutputSampleTime, to ensure that your callback gets a chance to set it the first

time it’s called.

180 Chapter 8 Audio Units: Input and Mixing

Writing the Play-Through App’s Render Callback

The task for the render callback is simple:When the output unit needs some samples to

play, you retrieve a suitably large set from the CARingBuffer, where the input callback

has been writing them.

The first task to do in Listing 8.21 is to perform the same offset calculation that you

did in Listing 8.16.As a reminder, the reason for this is that the timestamps used by the

input and output units might be different. Because the input callback is storing samples

into the ring buffer with the time stamps it gets from the input unit, the output unit

might need to adjust the time stamps it requests from the ring buffer.

Listing 8.21 Adjusting Time Stamp Offsets in Render Callback

OSStatus GraphRenderProc(void *inRefCon,

AudioUnitRenderActionFlags *ioActionFlags,

const AudioTimeStamp *inTimeStamp,

UInt32 inBusNumber,

UInt32 inNumberFrames,

AudioBufferList * ioData)

{

MyAUGraphPlayer *player = (MyAUGraphPlayer*) inRefCon;

// Have we ever logged output timing? (for offset calculation)

if (player->firstOutputSampleTime < 0.0) {

player->firstOutputSampleTime = inTimeStamp->mSampleTime;

if ((player->firstInputSampleTime > 0.0) &&

(player->inToOutSampleTimeOffset < 0.0)) {

player->inToOutSampleTimeOffset =

player->firstInputSampleTime - player->firstOutputSampleTime;

}

}

As before, this offset calculation needs to run only once, the first time in either call-

back that both firstInputSampleTime and firstOutputSampleTime have values

other than the -1 flag value you initialized them with.

Aside from the possible offset calculation, the real work of this callback is to fetch

samples from the ring buffer.This is a one-line call to the CARingBuffer’s Fetch()

method, as shown in Listing 8.22.

Note

The three-argument version of Fetch() is the one provided by the corrected version of

CARingBuffer, as explained in an earlier footnote. If you get a compile error and find

that your version of Fetch() takes a bool as a fourth argument, then you’re using the

old, buggy CARingBuffer and you need to get the new version from Apple Technical Q&A

1665, on Apple’s developer site.

181Working with I/O Input

Listing 8.22 Fetching Samples from CARingBuffer

// Copy samples out of ring buffer

OSStatus outputProcErr = noErr;

outputProcErr = player->ringBuffer->Fetch(ioData,

inNumberFrames,

inTimeStamp->mSampleTime +

player->inToOutSampleTimeOffset);

}

Notice that this is where you use your calculated inToOutSampleTimeOffset,

adjusting the time stamp you ask the buffer for.

You might be wondering what happens if the first output callback happens before the

first input callback, in which case there would be nothing in the ring buffer to fetch.The

CARingBuffer class falls back to filling the ioData buffer with zeros (silence in PCM)

whenever not enough data is available.

Running the Play-Through Example

Wow, you did a lot in this example, all for the sake of getting audio from the default

input device and playing it out to the default output. Let’s review what you’ve written:

n You created an AUHAL audio unit to handle the input.You discovered the audio

device that’s currently set as the default input device, and you connected that to

your AUHAL.

n You created a CARingBuffer to hold samples received from the input unit and

wrote an input callback to store samples to this buffer.

n You built an AUGraph with a single node, the default output unit, and you gave it

a render callback that reads from the ring buffer.

n You started the input unit and the graph, which causes both of them to connect to

the audio hardware and start calling your callbacks.

At this point, you’ve accounted for everything and you can build the application.Take

a look at your selected input and output devices in the Sound pane of the System

Preferences application; these are the devices that the application will use.When you’ve

got input on that device, such as an A/V device playing into a line-in connection or

your own voice speaking into a microphone, run the application and listen for the result

on the default output device (probably your speakers or headphones). Because you’re not

processing or resampling or doing anything else with the sound, it should sound pretty

good.When you’re done playing, you can click Stop in Xcode or press any key in the

Console window to exit the application.

You did a lot of work to provide some pretty simple functionality in this example.

You’d be right to think that this is a grueling amount of work for something as simple as

play-through. If all you want is play-through, you could do this application with two

audio queues (one each for input and output), and it would be a lot simpler. But by

182 Chapter 8 Audio Units: Input and Mixing

taking on all this responsibility, you give yourself the ability to do cool stuff. In the last

section, you’ll build on this to get a taste of what’s possible down here in the dark depths

of audio units.2

Mixing
In the current play-through application, your code actually sees the captured audio data

twice: once in InputRenderProc() and again in GraphRenderProc(). If you wanted

to perform some sort of DSP on the samples, you could do so in those functions (with

the earlier proviso that you have to complete your work fast enough to not block the

real-time callback thread).

Another option is to run those samples through some audio units. For example, you

could put the AUMatrixReverb effect that you applied to the speech synthesizer earlier

at the front of the graph, to echo the captured audio.You do this by connecting the out-

put unit to the effect unit and then setting the render callback on the effect unit.When

the graph runs, the render callback gets the captured audio from the ring buffer and sup-

plies it to the reverb unit, which performs its reverb effect and sends the modified sam-

ples on to the output unit for play-out to the audio hardware.With an AUGraph at your

disposal, it would be straightforward to apply any number of effects, from practical to

silly, to the captured audio before its play-out through the output unit.

So far, the graphs have been straight-line affairs:All the audio takes the same path

through a sequence of nodes until it gets to the output unit. But that’s not the whole

story of AUGraphs: One of the most powerful things you can do with them to have mul-

tiple paths for your audio.You do this with an important type of audio unit: mixer units.

In the abstract, these units combine multiple input streams of audio in some way and

produce one or more streams of audio. Often mixer units take multiple input buses and

produce a single bus of output, or two for noninterleaved stereo. Mac OS X supplies

three standard mixers:

n AUMixer: Mixes an arbitrary number of mono or stereo inputs and produces a sin-

gle stereo output.

n AUMatrixMixer: Mixes an arbitrary number of inputs and produces an arbitrary

number of outputs.

n AUMixer3D: Mixes an arbitrary number of sources and makes them sound as if

they are positioned in a 3D sound field, relative to the listener.This unit is the

basis of Core Audio’s implementation of OpenAL, which you’ll study in the next

chapter.

183Mixing

2 We tried to keep our example as simple as possible: Even with the next section’s bells and whis-

tles, it’s about 500 lines of code. For a more thorough example of these techniques, take a look

at Apple’s CAPlayThrough example (in your documentation bundle or on the Apple website),

which is more than twice as long.

Note

The AUSplitter, a subtype of converter units, does the opposite of mixing: It takes a

single input stream and splits it into multiple, identical streams.

With mixer units, you can get to some of the real payoff of AUGraphs: the capability

to have many streams of audio from many sources, performing effects on individual

streams and mixing them together before sending them out to the audio hardware.

In this example, you’ll add one other audio source and mix it with the captured

audio. It would be pretty natural to use the file player unit and mix with the audio play-

through code to create a karaoke-style sing-along application. But because setting up the

file player was kind of a hassle, we leave that as an exercise for ambitious readers. Of the

earlier examples, the easiest to set up was the speech synthesizer, so let’s use that.To your

existing play-through code, add another stream that comes from the speech synthesis

unit and mix them together before they go into the output unit. Remember to #import

and link the Application Services framework, which provides the speech synthesizer.

First, add the speech synthesis audio unit to the MyAUGraphPlayer struct at the top

of the file where the struct is defined (see Listing 8.23).

Listing 8.23 Adding a Speech Synthesis Audio Unit to the MyAUGraphPlayer Struct

#ifdef PART_II

AudioUnit speechUnit;

#endif

The bulk of the new work will be in BuildMyAUGraph(). Currently, this function

creates an AUNode for the default output unit, gets the unit out of the node, and con-

nects the render callback to it. In a more elaborate unit, you need a few more nodes and

some connections.The new graph will have three nodes: the default output, a speech

synthesis node, and a mixer node to mix the synthesized audio with the captured audio

and send the mixed audio to the output unit.

Think about the AUGraph and its pull model.You’ll still have the output node at the

end, which you set up at the beginning of CreateMyAUGraph().That doesn’t need to

change. Currently, it has a render callback that collects samples from the ring buffer.

Connect the output node to a mixer node, which, in turn, has two inputs: the render

callback that pulls from the ring buffer and a node connection to a new speech synthe-

sizer node.

Start your new code, shown in Listing 8.24, inside the empty #ifdef that you set up

earlier, in Listing 8.20.

Listing 8.24 Creating a Stereo Mixer Unit in an AUGraph

#ifdef PART_II

// Add a mixer to the graph

AudioComponentDescription mixercd = {0};

184 Chapter 8 Audio Units: Input and Mixing

Listing 8.24 Continued

mixercd.componentType = kAudioUnitType_Mixer;

mixercd.componentSubType = kAudioUnitSubType_StereoMixer;

mixercd.componentManufacturer = kAudioUnitManufacturer_Apple;

AUNode mixerNode;

CheckError(AUGraphAddNode(player->graph,

&mixercd,

&mixerNode),

"AUGraphAddNode[kAudioUnitSubType_StereoMixer] failed");

// Add the speech synthesizer to the graph

AudioComponentDescription speechcd = {0};

speechcd.componentType = kAudioUnitType_Generator;

speechcd.componentSubType = kAudioUnitSubType_SpeechSynthesis;

speechcd.componentManufacturer = kAudioUnitManufacturer_Apple;

AUNode speechNode;

CheckError(AUGraphAddNode(player->graph,

&speechcd,

&speechNode),

"AUGraphAddNode[kAudioUnitSubType_AudioFilePlayer] failed");

This should be a common sight. Describe an audio unit with an AudioComponent

Description and then use AUGraphAddNode() to create an audio unit that matches

the description, wrapped in an AUNode and associated with the AUGraph. Do this twice,

first for the mixer and then again for the speech synthesizer.

Next, you get the AudioUnits wrapped by the AUNodes in Listing 8.25; you probably

want to set properties on them, such as the stream format.

Listing 8.25 Getting Default Output, Speech Synthesis, and Mixer Audio Units from

Enclosing AUNodes

// Opening the graph opens all contained audio

// units but does not allocate any resources yet

CheckError(AUGraphOpen(player->graph),

"AUGraphOpen failed");

// Get the reference to the AudioUnit objects for the

// various nodes

CheckError(AUGraphNodeInfo(player->graph,

outputNode,

NULL,

&player->outputUnit),

"AUGraphNodeInfo failed");

CheckError(AUGraphNodeInfo(player->graph,

speechNode,

NULL,

185Mixing

Listing 8.25 Continued

&player->speechUnit),

"AUGraphNodeInfo failed");

AudioUnit mixerUnit;

CheckError(AUGraphNodeInfo(player->graph,

mixerNode,

NULL,

&mixerUnit),

"AUGraphNodeInfo failed");

Recall from when you set up the input unit that you reset the output unit’s

streamFormat to use the sample rate of the input hardware.You need to do the same

thing inside your graph in Listing 8.26, setting it for the streams going into the output

unit and into the mixer unit.

Listing 8.26 Setting streamFormat of Output Unit and Mixer Unit

// Set ASBDs here

UInt32 propertySize = sizeof (AudioStreamBasicDescription);

CheckError(AudioUnitSetProperty(player->outputUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Input,

0,

&player->streamFormat,

propertySize),

"Couldn't set stream format on output unit");

CheckError(AudioUnitSetProperty(mixerUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Input,

0,

&player->streamFormat,

propertySize),

"Couldn't set stream format on mixer unit bus 0");

CheckError(AudioUnitSetProperty(mixerUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Input,

1,

&player->streamFormat,

propertySize),

"Couldn't set stream format on mixer unit bus 1");

Notice that you’ve set this property twice on the mixer unit.The difference between

the two calls to AudioUnitSetProperty() is that you need to set the stream format on

two input buses: bus 0 and bus 1.This gives you a clue to how the mixer works.You

186 Chapter 8 Audio Units: Input and Mixing

provide any number of inputs as buses 0 to n, and the result is a single mixed stream: bus

0 of the mixer’s output scope.

Setting up those connections is the last thing you need to do. Make the following

connections in Listing 8.27:

n Mixer output scope/bus 0 connects to the output unit’s input scope/bus 0.This

sends the mixed audio to the output unit for play-out to the audio hardware (as

indicated by your using bus 0 with an I/O unit).

n Mixer input scope/bus 0 is a render callback (not a connection between nodes) to

the GraphOutputProc() function that collects samples from the CARingBuffer,

left for you by the input unit and its callback.

n Mixer input scope/bus 1 connects to the speech synthesis unit’s output scope/bus

0, so the synthesized speech flows into the mixer as another input.

Listing 8.27 Connecting Speech Synthesis, Stereo Mixer, and Default Output Units

// Connections

// Mixer output scope / bus 0 to outputUnit input scope / bus 0

// Mixer input scope / bus 0 to render callback

// (from ringbuffer, which in turn is from inputUnit)

// Mixer input scope / bus 1 to speech unit output scope / bus 0

CheckError(AUGraphConnectNodeInput(player->graph,

mixerNode,

0,

outputNode,

0),

"Couldn't connect mixer output(0) to outputNode (0)");

CheckError(AUGraphConnectNodeInput(player->graph,

speechNode,

0,

mixerNode,

1),

"Couldn't connect speech synth unit output (0) to mixer input (1)");

AURenderCallbackStruct callbackStruct;

callbackStruct.inputProc = GraphRenderProc;

callbackStruct.inputProcRefCon = player;

CheckError(AudioUnitSetProperty(mixerUnit,

kAudioUnitProperty_SetRenderCallback,

kAudioUnitScope_Global,

0,

&callbackStruct,

sizeof(callbackStruct)),

"Couldn't set render callback on mixer unit");

#else

187Mixing

Figure 8.4 shows the connections created by this PART_II version of the program.At

this point, it’s a complicated graph, fed in part by the asynchronous interaction with the

ring buffer.

188 Chapter 8 Audio Units: Input and Mixing

AUHALFrom

Hardware

Input

C
allback

AUStereo

Mixer

Default

Output

Unit

To

Hardware

CARing

Buffer

AU

Speech

Synthesis

R
ender

C
allback

Figure 8.4 Audio flow of play-through example,

mixed with speech synthesis

What’s left now is to configure the speech synthesis unit and get it started when you

start the input unit and the graph.There’s an #ifdef left in main() to let us do just

that with Listing 8.28.

Listing 8.28 Starting the Speech Synthesis Unit

#ifdef PART_II

// Configure the speech synthesizer

PrepareSpeechAU(&player);

#endif

Of course, you need to provide that PrepareSpeechAU() function, which simply

sets the kAudioUnitProperty_SpeechChannel property as before and uses

SpeakCFString() to speak a short phrase. Feel free to replace the string in Listing 8.29

with one of your own choosing; just make it last long enough that you can hear what it

sounds like when it’s mixed with your voice (or whatever your input source is).

Listing 8.29 Setting the Speech Unit’s Speech Channel and Speaking a String

#ifdef PART_II

void PrepareSpeechAU(MyAUGraphPlayer *player)

{

SpeechChannel chan;

UInt32 propsize = sizeof(SpeechChannel);

CheckError(AudioUnitGetProperty(player->speechUnit,

kAudioUnitProperty_SpeechChannel,

kAudioUnitScope_Global,

0,

&chan,

&propsize),

"AudioFileGetProperty[kAudioUnitProperty_SpeechChannel] failed");

SpeakCFString(chan,

CFSTR("Please purchase as many copies of our\

Core Audio book as you possibly can"),

NULL);

}

#endif

At this point, you can uncomment the #define PART_II and build and run the

advanced version of the example program.The input device (likely a microphone) will

start capturing at the same time the speech synthesizer begins speaking, and the mix of

the two will play out to the speakers or headphones.

You might wonder whether you can adjust the respective volumes of the captured

audio and the speech synthesis.As was the case with audio queues, audio units have

parameters; they differ from properties, in that they’re appropriate to expose to the user

and can be reset on the fly. Some mixer units have a volume property that you can set

on each of their input buses via AudioUnitSetParameter, to adjust their respective

levels.This works for the AUMatrixMixer, but not for the simple AUStereoMixer in

this example. If you want to see what parameters (if any) are exposed by system-supplied

units, look up “Audio Unit Parameters References” in Xcode’s documentation, or take a

look through AudioUnitParameters.h.

Summary
The previous chapter used the analogy of a rock band’s setup as an analogy to how

Audio Units work.You imagined that you might have a guitar connected to an effects

box, a synthesizer, a drum kit with a couple strategically placed mics, and more mics for

the band’s vocalists, along with mics for some backup singers.

189Summary

Hopefully at this point, you can imagine this arrangement as a big AUGraph:The gui-

tar goes into an input unit and is then run through one or more effect units, the synthe-

sizer could be its own software instrument, the mics are all connected to input units, and

all these units connect to a mixer, which then goes to an output unit to be played out to

the speakers. Or maybe the backup singers’ mics go into their own mix earlier, and that

unit then connects as an input to the final mix.You can connect and configure it all in

many ways.That kind of flexibility and power is what Core Audio was built for. In fact,

its use in professional recording applications such as Logic Pro, Soundtrack, and Garage

Band explicitly reflects this design and how well Core Audio is suited for it.

Now that you’ve had a deep immersion in this most challenging part of Core Audio,

you might want a break! Who’s up for some gaming? In the next chapter, you’ll get into

OpenAL, the audio API for 3D spatialized sound that was built for great game audio.

190 Chapter 8 Audio Units: Input and Mixing

9

Positional Sound

A nd now for something completely different ….”

We’re not kidding.The OpenAL library, which is included with both Mac OS X and

iOS, is a completely different audio framework than Core Audio’s pull-based world of

audio units. It’s different in part because it comes from a third party. It also solves com-

pletely different problems—namely, placing audio in a 3D sound field. Its primary pur-

pose is to deliver audio for games, but you can use it as a general-purpose audio engine

because of its interesting traits that you can bring to your own applications.

In this chapter, you dive into the design and architecture of OpenAL and look at how

it represents positional sound as a C API.After you’re introduced to its core concepts,

you’ll build two sample applications to get a feel for coding with OpenAL. First, you’ll

build a simple application to load a sound into memory and fly it around the listener. In

the second example, you’ll rework this program to work with files of any length, using

OpenAL’s streaming APIs.You’ll also look at how to integrate Core Audio and OpenAL

in the same program.

Sound in Space
OpenAL was originally developed by a company called Loki Software to help port

Windows games to Linux. However, the company went bust and the open-source com-

munity tended to the project for a time until it was substantially taken over by sound

card maker Creative Technologies, Ltd., a company that develops OpenAL with contri-

bution from Apple and others.The specification, developer’s guide, and other documen-

tation are hosted on Creative’s website:Visit http://openal.org/, and you’ll be redirected

(currently to http://connect.creativelabs.com/openal/default.aspx).

Because of its heritage as a technology for games, OpenAL has traits that are specifi-

cally useful for game development that sometimes differ from Core Audio’s focus on

audio professionals. In many ways, its API is deliberately similar to OpenGL, the popular

3D graphics library.The appeal is obvious: It’s hugely advantageous to be able to think of

your audio environment in the same terms as your visual one. Being game oriented,

OpenAL also affords extremely low latency—you wouldn’t want your action game’s

sounds to lag behind the onscreen action.

“

http://openal.org/
http://connect.creativelabs.com/openal/default.aspx

Note

When we talk about sound in a 3D space, you might wonder whether this is the same as

“surround sound,” which you’d get from Dolby Digital or DTS when you play a DVD or Blu-

Ray disc. It isn’t, really. First, in OpenAL, we’re concerned with the modeling of a 3D sound-

space, leaving it to the library and hardware to actually produce that sound. And when it

comes to that step, there isn’t a widely used standard for real-time 3D audio as there is

for stereo PCM. Dolby Digital and DTS are compressed formats, which is easy enough to

create in an A/V codec when you’re mastering a disc but much less practical to do on-the-

fly. So although OpenAL models sound in three dimensions, it ultimately renders it in one

dimension: a left-to-right stereo mix. That said, if Macs ever do get sound cards that let

you plug in more than two speakers, and if Apple supports them in their OpenAL drivers,

your code wouldn’t need any updates to support more dimensions.

OpenAL works with a 3D Cartesian coordinate space, which just means that posi-

tions within this space are indicated by x, y, and z coordinates.The axes of this space fol-

low a “right hand rule,” which you can imagine by holding up your right hand, making

an “L” shape with your thumb and index finger, and bending your middle finger toward

you, as shown in Figure 9.1. If you imagine that the approximate middle of your hand is

the origin of this coordinate system, the direction your fingers point indicate which

direction is positive for each axis, where your thumb is the x-axis, your index finger is

the y-axis, and your middle finger is the z-axis. So, x values increase as they go right, y

values increase as they go up, and z values increase as they go toward you.

192 Chapter 9 Positional Sound

Figure 9.1 “Right hand rule” for visualizing 3D coordinate space

A source is an object in this space that produces sound.There can be, and usually are,

many sources, and they can all produce either the same sound or different sounds.You

attach buffers to sources.A buffer is just what it says: a memory buffer of audio data.A

given buffer can be attached to one or many sources. In a game with a lot of objects that

sound more or less the same (such as a racing game, in which each car’s engine produces

the same sound), you would just attach the same buffer to many sources.And in cases

where each source has a distinct sound, you use different buffers for different sources.

The third object in OpenAL is the listener, which represents the single listener in this

space. OpenAL takes the sound data in the buffers; figures out how the listener would

hear that sound, given the relative position and orientation of the listener and all the

sources; and plays that resulting mix out to the audio hardware.

The OpenAL API
OpenAL represents sources, listeners, and buffers primarily through a property-style

interface.After a listener, buffer, or source has been created, you work with it mainly by

setting or getting its properties. In fact, the bulk of the OpenAL API consists of function

calls that get or set various argument lists: alSourcei() sets a source property with one

integer value, alGetBuffer3f() gets a property from a buffer as three floats, and so on.

Getter functions all have Get in their name; functions without Get are setters.1

Depending on the property you are working with, you either set or get a single int or

float, set or get three discrete values (often for coordinates), or set or get a “vector,”

which is a C array usually containing three or six values, depending on the property.2

When you get the hang of it, the naming is pretty predictable: getters for sources are

alGetSourcei(), alGetSource3i(), alGetSourcef(), and so on; these functions then

get one int, pointers to three ints, and a float, respectively. Meanwhile, setters for the lis-

tener include alListeneri(), alListener3i(), alListenerf(), and so on.

But what can you set? Tables 9.1, 9.2, and 9.3 provide a quick summary of the prop-

erties (and their types) that can be set on buffers, listeners, and sources, respectively. Don’t

worry if you don’t understand them all; some of them are esoteric, most have sensible

defaults, and you generally need to set or get only a handful of properties specific to

your current needs.The OpenAL spec reveals the math behind the advanced sound-

modeling features.

193The OpenAL API

1 This is the exact opposite of the Objective-C convention, in which you explicitly use the word “set”

for setters but omit “get” in getters.

2 Any OpenAL property that consists of a single value can be accessed with a one-member vector

as well.

Table 9.1 Property Constants for OpenAL Buffer Functions

Property Constant Description

AL_DATA The original location in memory that the buffer’s data was copied

from. This is useless if the caller has subsequently free()’d that

memory, but in some cases (like using the optional “static buffer-

ing” API), it’s viable.

AL_FREQUENCY Sample rate of the audio data (in Hz), as an int.

AL_BITS Bit depth of the buffer (such as 8 or 16), as an int.

AL_CHANNELS Number of channels in each sample, as an int. Must be 1 to get

positional sound (stereo sounds play with their existing left–right

mix).

AL_SIZE Size of the buffer in bytes, as an int.

Table 9.2 Property Constants for OpenAL Listener Functions

Property Constant Description

AL_GAIN Master gain (“volume”), after all sources are mixed (a float).

AL_POSITION Listener’s position in space as three coordinates (x, y, z), either

ints or floats.

AL_ORIENTATION Direction the listener is facing, as a vector of six ints or floats (one

vector expressing the direction of “forward” for the listener, and a

second for “up”).

AL_VELOCITY Listener’s velocity, as an int or float vector. This doesn’t actually

change the AL_POSITION; it just applies a Doppler effect, increas-

ing the pitch if the source is moving toward the listener and

decreasing it if moving away.

Table 9.3 Property Constants for OpenAL Source Functions

Property Constant Description

AL_POSITION Position of the source in space, as (x, y, z) floats.

AL_VELOCITY Source’s velocity, as an int or float vector. This doesn’t actually

change the AL_POSITION; it just applies a Doppler effect,

increasing the pitch if the source is moving toward the listener

and decreasing it if moving away.

AL_DIRECTION A vector (of three ints or floats, or a vector of ints or floats)

describing which direction the source is pointing.

AL_SOURCE_RELATIVE Flag to indicate whether source positions are relative to the lis-

tener or absolute. The default for this int value is AL_FALSE.

AL_PITCH A pitch multiplier, enabling you to change the pitch of a sound.

Must be a positive float.

AL_GAIN Gain (volume boost or attenuation) for the source (float).

194 Chapter 9 Positional Sound

Table 9.3 Continued

Property Constant Description

AL_MAX_DISTANCE Distance (int or float) at which the source becomes com-

pletely inaudible (used only with the Inverse Clamped

Distance model).

AL_ROLLOFF_FACTOR How quickly sound “rolls off” from the source (float or int).

AL_REFERENCE_DISTANCE Distance (float or int) that source volume would normally fall

by half (barring modifications from AL_REFERENCE_

DISTANCE or AL_MAX_DISTANCE).

AL_MIN_GAIN Minimum gain for this source (float).

AL_MAX_GAIN Maximum gain for this source (float).

AL_CONE_OUTER_ANGLE Outer angle of the sound cone, which affects how sound

propagates out from the source, as int or float degrees.

Default is 360.

AL_CONE_INNER_ANGLE Inner angle of the sound cone, as int or float degrees.

Default is 360.

AL_CONE_OUTER_GAIN The gain factor for listeners outside the cone produced by

the source, as a float. Inside the cone, the gain is AL_GAIN,

and a linear interpolation is used for points in between.

AL_SOURCE_TYPE An enumerated int to indicate the source type (either

AL_UNDETERMINED, AL_STATIC, or AL_STREAMING), as

determined by which functions you used to attach buffers.

AL_LOOPING An int flag to either loop the current buffers (AL_TRUE) or not

(AL_FALSE).

AL_BUFFER An int representing the attached buffer.

AL_SOURCE_STATE An enumerated int indicating the current state: AL_INITIAL,

AL_PLAYING, AL_PAUSED, or AL_STOPPED.

AL_BUFFERS_QUEUED For streaming, how many buffers are queued up on this

source (read-only int).

AL_BUFFERS_PROCESSED For streaming, how many queued buffers have been used up

(read-only int).

AL_SEC_OFFSET Playback in the current buffer in seconds, as int or float.

AL_SAMPLE_OFFSET Playback in the current buffer in sample count, as int or float.

AL_BYTE_OFFSET Playback in the current buffer in byte count, as int or float.

Beyond the property accessors, the remaining functions perform specific tasks.There

are a few functions to identify your computer’s available audio devices.With one of

these, you can create an OpenAL context that will be the output device for all subse-

quent OpenAL calls. Functions exist to create and destroy buffers, sources, and listeners;

to attach buffers to sources; and to start and stop playing sound from sources. Beyond the

buffer, source, and listener functions, OpenAL’s remaining functions deal with getting or

195The OpenAL API

setting global state, such as the speed of sound or the model by which sounds fade with

distance, as well as some functions to check the error state of previous OpenAL calls.

All the OpenAL functions are documented in the OpenAL Programmer’s Guide (avail-

able at the openal.org website), or you can just look in the al.h and alc.h header files.

You’ll generally #include or #import in both of these header files; alc.h defines

functions and constants for working with the OpenAL context and devices, and al.h

has the definitions related to sources, listeners, and containers, as well as typedefs, such

as ALfloat and ALuint for floating-point and unsigned integer values, respectively.3

The website also has an “OpenAL 1.1 Specification” that defines the semantics of the

API, such as how sounds are interpolated and attenuated, given the various source and

listener properties you set.

Beware Geeks Bearing OpenAL Gifts

Searching the Web for OpenAL sample code often leaves you disappointed on the Mac—

and especially on iOS. A collection of utility functions, alut.h, are not part of the OpenAL

spec, were effectively deprecated by 2005, and are therefore not included with Apple’s

implementations of OpenAL (for more information, see Apple’s “Technical Q&A QA1504:

The Header File ‘alut.h’ Is Missing from the OpenAL Framework”).

The big problem is that a lot of the sample code you find on the Web assumes that these

utilities are available. Even the OpenAL Programmer’s Guide4 makes use of a

loadWAVFile() function that is defined in alut.h and, therefore, doesn’t exist on Mac

or iOS. Later in this chapter, you’ll see how you can use Core Audio, specifically

ExtAudioFile, as a much more capable replacement for loadWAVFile().

Putting a Sound in Space
To exercise OpenAL, you’ll develop a simple application to put a sound in space and

move it around.You’ll use all three dimensions, even though your speakers or head-

phones are one-dimensional, meaning the sound will ultimately be rendered as a left-

to-right stereo mix.

How do you move a source in the OpenAL space? You repeatedly set its AL_

POSITION. For the first example, we load a sound into a buffer, attach it to a source and

set AL_LOOPING (so the buffer plays over and over), and then “orbit” the sound around

the listener’s default position of (0,0,0). Leaving the listener at the origin makes the

196 Chapter 9 Positional Sound

3 OpenAL also defines a capture API, but this is not implemented on Mac OS X or iOS. To perform

capture, use the Audio Queue (Chapter 4), the AUHAL unit (Chapter 8), or the RemoteIO unit

(Chapter 10).

4 Available from Creative Labs’ website, at http://connect.creativelabs.com/openal/

Documentation/OpenAL_Programmers_Guide.pdf.

http://connect.creativelabs.com/openal/Documentation/OpenAL_Programmers_Guide.pdf
http://connect.creativelabs.com/openal/Documentation/OpenAL_Programmers_Guide.pdf

math easier:You can create an orbit with simple trigonometry, using the following for-

mulas to set the source’s location:

x = 3 cos (θ);

y = 1-
2

sin (θ);

z = sin (θ);

This creates a three-dimensional ellipse shown in Figure 9.2. (You can also easily

graph this formula with /Applications/Utilities/Grapher.app, which we used to

create the figure.) Notice that the biggest movement is along the x-axis (because you

multiply the cosine by 3), so we expect to hear wide left-to-right swipes.

197Putting a Sound in Space

Figure 9.2 Orbit of example 3D sound source

Setting Up the Example

To begin the example, create an Xcode command-line project. Because you’re using

OpenAL, you need to add the OpenAL.framework to the application target.You will

also be using ExtAudioFile to read the audio loop from disk, so also add

AudioToolbox.framework, as usual.

Let’s start with an overview of the program, shown in Listing 9.1.As in our Core

Audio examples, this program has a struct to pass state information, some utility func-

tions, and a main().

Listing 9.1 Outline of an OpenAL Program to Orbit a Looping Source Around

the Listener

#import <AudioToolbox/AudioToolbox.h>

#import <OpenAL/al.h>

#import <OpenAL/alc.h>

#pragma mark user-data struct

// Insert Listing 9.3 here

#pragma mark - utility functions -

// Insert Listing 4.2 here

// Insert Listing 9.2 here

void updateSourceLocation (MyLoopPlayer player)

// Insert Listing 9.17 here

OSStatus loadLoopIntoBuffer(MyLoopPlayer* player)

// Insert Listings 9.18 - 9.21 here

#pragma mark main

int main (int argc, const char * argv[]) {

// Convert to an OpenAL-friendly format and read into memory

// Insert Listings 9.4 - 9.5 here

// Set up OpenAL buffer

// Insert Listings 9.6 - 9.8 here

// Set up OpenAL source

// Insert Listings 9.9 - 9.11 here

// Connect buffer to source

// Insert Listing 9.12 here

// Set up listener

// Insert Listing 9.13 here

198 Chapter 9 Positional Sound

Listing 9.1 Continued

// Start playing

// Insert Listing 9.14 here

// Loop and wait

// Insert Listing 9.15 here

// Clean up

// Insert Listing 9.16 here

}

You should copy over the OSStatus error checker (see Listing 4.2) that you’ve been

using for the last few chapters, but that brings up an interesting question: How does

OpenAL handle errors? As a third-party library, it has its own conventions, different from

Apple’s. Instead of returning an OSStatus from every function call, OpenAL has a single

error value that gets set on nearly every OpenAL call.You retrieve (and clear) this error

value with the alGetError() function, which returns one of a small number of

AL_ constants: AL_INVALID_NAME, AL_INVALID_NUMBER, AL_INVALID_ENUM,

AL_INVALIDNAME_OPERATION, AL_OUT_OF_MEMORY, or AL_NO_ERROR.

Listing 9.2 shows a CheckALError() function in the spirit of the original

CheckError() function. It checks the error with alGetError() and returns immedi-

ately if it is AL_NO_ERROR. Otherwise, it logs an appropriate error message (incorporating

a string the caller provides) and exits the program abnormally.

Listing 9.2 Convenience Function to Check and Report the OpenAL Error

static void CheckALError (const char *operation) {

ALenum alErr = alGetError();

if (alErr == AL_NO_ERROR) return;

char *errFormat = NULL;

switch (alErr) {

case AL_INVALID_NAME:

errFormat = "OpenAL Error: %s (AL_INVALID_NAME)";

break;

case AL_INVALID_VALUE:

errFormat = "OpenAL Error: %s (AL_INVALID_VALUE)";

break;

case AL_INVALID_ENUM:

errFormat = "OpenAL Error: %s (AL_INVALID_ENUM)";

break;

case AL_INVALID_OPERATION:

errFormat = "OpenAL Error: %s (AL_INVALID_OPERATION)";

break;

case AL_OUT_OF_MEMORY:

errFormat = "OpenAL Error: %s (AL_OUT_OF_MEMORY)";

break;

199Putting a Sound in Space

Listing 9.2 Continued

}

fprintf (stderr, errFormat, operation);

exit(1);

}

The key difference between this function and the Core Audio CheckError() func-

tion is that the OpenAL version doesn’t take an error code as a parameter because the

most recent error is tracked as a sort of state variable within OpenAL and isn’t explicitly

returned to the caller like the OSStatus that nearly every Core Audio call returns.

As with other examples in this book, you use a struct to pass state information among

the program’s various functions.You’ll need the AL source here so you can repeatedly set

its position. It’s also convenient to pass around the AudioStreamBasicDescription

that you’ll read from the file, as well as the memory buffer that you read samples into.

Listing 9.3 shows the MyLoopPlayer struct.

Listing 9.3 MyLoopPlayer Struct for State Variables

typedef struct MyLoopPlayer {

AudioStreamBasicDescription dataFormat;

UInt16 *sampleBuffer;

UInt32 bufferSizeBytes;

ALuint sources[1];

} MyLoopPlayer;

Using OpenAL Objects

Now that setup is done, let’s figure out the responsibilities of the program’s main()

function.You want the program to do the following:

n Initialize OpenAL and create a buffer, a source, and a listener

n Read some audio into the buffer and attach it to the source

n Start playing the source

n Go into a loop and change the position of the source so that it sounds like it is

orbiting the listener

To start, in Listing 9.4, create an instance of MyLoopPlayer and call a yet-to-be-

written loadLoopIntoBuffer() helper function to fill sampleBuffer with the audio

for the looping sound.

200 Chapter 9 Positional Sound

Listing 9.4 Initial Main Setup for OpenAL Looping Program

int main (int argc, const char * argv[]) {

MyLoopPlayer player;

// Convert to an OpenAL-friendly format and read into memory

CheckError(loadLoopIntoBuffer(&player),

"Couldn't load loop into buffer") ;

The first task for using OpenAL is to initialize the library and create a context. It’s

possible to discover multiple audio devices and choose from them, although it’s simplest

to just work with the default device, which you get by calling alcOpenDevice(NULL).

After you have opened the device, you create an OpenAL context from it by passing it

to alcCreateContext(). If this succeeds, you can make your new context the current

context, meaning that this device will play all subsequent OpenAL calls.These tasks are

shown in Listing 9.5.

Listing 9.5 Opening a Default OpenAL Device and Creating a Context

ALCdevice* alDevice = alcOpenDevice(NULL);

CheckALError ("Couldn't open AL device");

ALCcontext* alContext = alcCreateContext(alDevice, 0);

CheckALError ("Couldn't open AL context");

alcMakeContextCurrent (alContext);

CheckALError ("Couldn't make AL context current");

Notice that every one of the OpenAL calls is followed by a call CheckALError(),

which you wrote in Listing 9.2 to check the AL error with alGetError() and termi-

nate if it has any value other than AL_NO_ERROR.Assuming that setting up the context

worked, you can move on to your buffer, source, and listener. Start with the buffer,

shown in Listing 9.6, created with alGenBuffers().

Listing 9.6 Creating OpenAL Buffers

ALuint buffers[1];

alGenBuffers(1,

buffers);

CheckALError ("Couldn't generate buffers");

Notice that even though you have only one buffer, you used an array simply because

alGenBuffers() takes the number of buffers to create an array of ALuints to put them

in.You could have used an *ALuint instead of the array, of course.

Next, you want to turn to the audio data that your loadLoopIntoBuffer() func-

tion will load into player.sampleBuffer and copy it to the OpenAL buffer.You do

this in Listing 9.7 with a call to alBufferData(), which takes the pointer to the buffers

array, a format constant, the buffer, the buffer size, and the sample rate.

201Putting a Sound in Space

Listing 9.7 Attaching a Buffer of Audio Samples to an OpenAL Buffer

alBufferData(*buffers,

AL_FORMAT_MONO16,

player.sampleBuffer,

player.bufferSizeBytes,

player.dataFormat.mSampleRate);

CheckALError ("Couldn't buffer data");

Notice the format constant AL_FORMAT_MONO16. OpenAL is far more picky than

Core Audio about the PCM formats it supports; it gets by with just a few constants and

a sample rate argument instead of the many options provided by the

AudioStreamBasicDescription.The supported constants are AL_FORMAT_MONO8,

AL_FORMAT_MONO16, AL_FORMAT_STEREO8, and AL_FORMAT_STEREO16.As mentioned

earlier, only mono sound is rendered positionally by OpenAL; stereo sounds are played as

is.Accordingly, you’ll likely use only the two bit depths of mono:

n For 8-bit data, OpenAL uses unsigned integers in the 0–255 range, where 128

(the middle of the range) is silence.

n With 16-bit data, OpenAL uses signed integers from –32,768 to 32,767, where

0 is silence.

The 16-bit value is easy to provide with Core Audio and an ASBD, and it sounds bet-

ter than 8-bit anyway; that’s what you need to be sure to put into sampleBuffer after

you write loadLoopIntoBuffer(), as in Listing 9.8. OpenAL copies the data from

your buffer to its own, so it’s okay to free the sampleBuffer.You’ll be malloc()’ing

this sampleBuffer later, when you write loadLoopIntoBuffer().

Listing 9.8 Freeing a Sample Buffer After Its Contents Have Been Copied to OpenAL

free(player.sampleBuffer);

With the OpenAL buffer accounted for, let’s move on to the source.You generate the

source with a call to alGenSources() (shown in Listing 9.9), whose syntax is identical

to the alGenBuffers() call in Listing 9.6, taking a count argument and an array of

ALuints to identify the created sources.

Listing 9.9 Creating an OpenAL Source

alGenSources(1,

player.sources);

CheckALError ("Couldn't generate sources");

As with the buffer, it’s easy to use a single-member array for the source, but you

could also use an *ALuint instead.After you’ve created the source, you call the setter

methods alSourcei() and alSourcef() to set the source’s integer and floating-point

202 Chapter 9 Positional Sound

properties, respectively. For this example, you’ll set the AL_LOOPING value to AL_TRUE

to indicate that you want it to continue to loop its buffer over and over, and you set

AL_GAIN to the maximum value AL_MAX_GAIN, as shown in Listing 9.10.

Listing 9.10 Setting AL_LOOPING and AL_GAIN Properties on an OpenAL Source

alSourcei(player.sources[0],

AL_LOOPING,

AL_TRUE);

CheckALError ("Couldn't set source looping property");

alSourcef(player.sources[0],

AL_GAIN,

AL_MAX_GAIN);

CheckALError("Couldn't set source gain");

You also need to set the source’s initial AL_POSITION. However, you’re going to be

repeatedly doing this in the loop that orbits the source, so you can just insert an initial

call to an updateSourceLocation() function, as shown in Listing 9.11, which you’ll

write later.

Listing 9.11 Setting Initial Source Position

updateSourceLocation(player);

CheckALError ("Couldn't set initial source position");

Now that you have initialized your buffer and source, you can attach the buffer to the

source, thereby providing the source with the audio you want it to play.This is another

property of the source, AL_BUFFER, which you set with the usual alSourcei(), like in

Listing 9.12.

Listing 9.12 Attaching an OpenAL Buffer to a Source

alSourcei(player.sources[0],

AL_BUFFER,

buffers[0]);

CheckALError ("Couldn't connect buffer to source");

The buffer and source are done.You can now set up the listener.You don’t need to

generate an array of listeners, as you had to do with buffers and sources, because there is

always only one listener.The only thing to worry about is whether you want to set any

of the various listener properties. Listing 9.13 ensures that the listener is situated at the

origin of the coordinate system, (0,0,0) because that makes your math easier.

203Putting a Sound in Space

Listing 9.13 Setting the Initial Position of the OpenAL Listener

// Set up listener

alListener3f (AL_POSITION,

0.0,

0.0,

0.0);

CheckALError("Couldn't set listener position");

Notice that this property takes three values—x, y, and z—so it’s set with the

alListener3f() function, which takes three ALfloats.You could also have used

alListenerfv, which would take a vector (an ALfloat*) as a three-member array.

With this, your setup work is done.You can start playing the source, which causes the

audio to start looping from the source’s current position in space.You play a source with

alSourcePlay(), as shown in Listing 9.14.

Listing 9.14 Playing an OpenAL Source

alSourcePlay(player.sources[0]);

CheckALError ("Couldn't play");

If you had multiple members in player.sources, you could use alSourcePlayv(),

which takes a vector (an array) as its argument and starts all the sources in the vector

simultaneously.

Although you don’t need them in this program, OpenAL provides a number of func-

tions that might be useful after you play a source. alSourcePause() temporarily pauses

a source but enables you to resume with a subsequent alSourcePlay().

alSourceStop() is a full stop, and alSourceRewind() returns playback to the begin-

ning of the buffer.All these functions have equivalents that take vector arguments, indi-

cated by function names that end with a v.

With the source playing its loop, the only task left for the program is to orbit the

source around the listener for a while. In Listing 9.15, you enter a do-while loop and

repeatedly call your yet-to-be-written updateSourceLocation() function, check the

AL error, and then sleep for a tenth of a second with CFRunLoopInMode().

Listing 9.15 Looping to Animate the Source Position

// And wait

printf("Playing...\n");

time_t startTime = time(NULL);

do

{

// Get next theta

updateSourceLocation(player);

CheckALError ("Couldn't set looping source position");

204 Chapter 9 Positional Sound

Listing 9.15 Continued

CFRunLoopRunInMode(kCFRunLoopDefaultMode,

0.1,

false);

} while (difftime(time(NULL), startTime) < RUN_TIME);

}

You fall out of the loop when you have played for RUN_TIME seconds, so you’ll need

to define that value (this code uses 20 seconds) somewhere earlier in your source file:

#define RUN_TIME 20.0

When you break out of the do-while loop, you should clean up all the OpenAL

resources you created.You explicitly created an AL device, context, source, and buffer, so

you need to free up all of those now. Listing 9.16 shows how to do this.

Listing 9.16 Cleaning Up OpenAL Resources

// cleanup:

alSourceStop(player.sources[0]);

alDeleteSources(1,

player.sources);

alDeleteBuffers(1,

buffers);

alcDestroyContext(alContext);

alcCloseDevice(alDevice);

printf ("Bottom of main\n");

}

Aside from stopping the source, your cleanup tasks are all destroy/delete/close-style

functions that have a one-to-one correspondence to open/create/gen-style functions

called earlier. So you use alDeleteSources() and alDeleteBuffers() to clean up

buffers and sources (the listener is implicit and is neither generated nor deleted),

alcDestroyContext() to unload the OpenAL context, and alcCloseDevice() to

finish using the audio device.

Animating the Source’s Position

Your code makes multiple calls to an updateSourceLocation() function in Listing

9.11 to set its initial location and in Listing 9.15 to repeatedly update its location.This

function needs to update the AL_POSITION of the source for some arbitrary time so

that, over time, the source’s position is animated as an orbit around the listener.

205Putting a Sound in Space

Earlier, we proposed formulas for x, y, and z to create the orbit, illustrated in Figure

9.1. Here are those formulas again:

x = 3 cos (θ);

y = 1-
2

sin (θ);

z = sin (θ);

In this function, you need to adapt a given wall clock time to a repeating series of

theta values in the range of 0 to 2π, which is what C’s sin() and cos() functions take.

To keep it simple, just multiply the time by a speed constant, divide by 2π, and take the

remainder. So at the top of the program, define an ORBIT_SPEED constant:

#define ORBIT_SPEED 1

If you define the ORBIT_SPEED as 1, each orbit will take 2π (6.28) seconds. Now

let’s calculate an angle, theta, and do some trigonometry in Listing 9.17.

Listing 9.17 Function to Update the AL_POSITION of a Source as an “Orbit”

void updateSourceLocation (MyLoopPlayer player) {

double theta = fmod (CFAbsoluteTimeGetCurrent() * ORBIT_SPEED, M_PI * 2);

ALfloat x = 3 * cos (theta);

ALfloat y = 0.5 * sin (theta);

ALfloat z = 1.0 * sin (theta);

alSource3f(player.sources[0],

AL_POSITION,

x,

y,

z);

}

This function simply performs its trig functions to calculate the ALfloats x, y, and z,

and sets the source’s AL_POSITION with alSource3f. If it were convenient, you could

replace x, y, and z with an ALfloat array and then set the AL_POSITION with

alSourcev() instead of alSource3f(); the only difference is whether it’s more con-

venient to provide an array of floats or three distinct values.

Loading Samples for an OpenAL Buffer

The only remaining bit of work to do is to load the samples that the source will play.

You’ve already seen two constraints on how you’re going to do this:

n In Listing 9.7, the alBufferData() call used the format constant AL_FORMAT_

MONO16, so you need to be sure to produce that format: one channel of 16-bit

signed integers.

n Because the Mac OS X and iOS implementations of OpenAL do not contain the

utilities defined in alut.h, you cannot count on the AL function

loadWAVFile() to get the samples for you.

206 Chapter 9 Positional Sound

So how do you get a pointer to some data that you can load into the AL buffer

object? Hopefully, you remember the file I/O you did in earlier chapters. In particular,

ExtAudioFile (covered in Chapter 6,“Conversion”) is your friend here: It reads from

a file and converts to or from a PCM format of your choice. Because you need PCM,

you can use an ExtAudioFile to read any Core Audio–supported format.This means

that you could read from the AAC and MP3 songs in your iTunes Library and feed

those to OpenAL. But before you get your hopes up, consider that all this PCM data is

going to be loaded into memory, so maybe you should use a smaller file. For example,

chances are good that iLife came preinstalled on your Mac. If so, you have a big collec-

tion of perfectly good music and sound effect loops sitting on your hard drive. Let’s

#define a path to one of them:

#define LOOP_PATH CFSTR ("/Library/Audio/Apple Loops/Apple/iLife Sound
Effects/Transportation/Bicycle Coasting.caf")

The alBufferData() function takes a simple void* to the data that you want to

provide to the AL buffer. So the purpose of the loadLoopIntoBuffer() function is to

malloc() and fill such a pointer.

Working backward from that, you know that ExtAudioFileRead() works with

AudioBufferLists, so how do you bridge the worlds? Actually, it’s easier than it looks:

Each AudioBufferList has an array of AudioBuffers, and each AudioBuffer has

three fields.The last of these fields, mData, is a plain old pointer to some audio data.

You’ll create one AudioBufferList with one AudioBuffer and then fill this

AudioBuffer’s mData.

You’ve got enough of a plan to start the loadLoopIntoBuffer() function. First, you

create the ExtAudioFileRef to read from, as shown in Listing 9.18.

Listing 9.18 Creating an ExtAudioFile for Reading into OpenAL

OSStatus loadLoopIntoBuffer(MyLoopPlayer* player) {

CFURLRef loopFileURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

LOOP_PATH,

kCFURLPOSIXPathStyle,

false);

ExtAudioFileRef extAudioFile;

CheckError (ExtAudioFileOpenURL(loopFileURL,

&extAudioFile),

"Couldn't open ExtAudioFile for reading");

To fill the mData, ExtAudioFile needs you to provide the client format that you

want to convert to. Recalling your ExtAudioFile adventures in Chapter 6, you per-

form conversion by setting the client data format you want to receive as a property on

the ExtAudioFile, as shown in Listing 9.19.This format is an

AudioStreamBasicDescription, and you already know from the OpenAL docs what

the format needs to be: one-channel, signed 16-bit integers.

207Putting a Sound in Space

Listing 9.19 Describing the AL_FORMAT_MONO16 Format as an

AudioStreamBasicDescription and Using It with an ExtAudioFile

memset(&player->dataFormat, 0, sizeof(player->dataFormat));

player->dataFormat.mFormatID = kAudioFormatLinearPCM;

player->dataFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger |
kAudioFormatFlagIsPacked;

player->dataFormat.mSampleRate = 44100.0;

player->dataFormat.mChannelsPerFrame = 1;

player->dataFormat.mFramesPerPacket = 1;

player->dataFormat.mBitsPerChannel = 16;

player->dataFormat.mBytesPerFrame = 2;

player->dataFormat.mBytesPerPacket = 2;

// Tell extAudioFile about our format

CheckError(ExtAudioFileSetProperty(extAudioFile,

kExtAudioFileProperty_ClientDataFormat,

sizeof (AudioStreamBasicDescription),

&player->dataFormat),

"Couldn't set client format on ExtAudioFile");

This gives you an ExtAudioFile that’s ready to convert, but there’s nowhere to put

the data yet.You need to allocate a sufficiently large buffer to hold the data after it’s been

converted to PCM.You do this by asking the ExtAudioFile for the file length in

frames; then you allocate an AudioBufferList and an mData buffer big enough to

hold this many samples (16 bits each and only one sample per frame because it’s mono).

Listing 9.20 shows these steps.

Listing 9.20 Allocating a Read Buffer for the ExtAudioFile-to-OpenAL Transfer

SInt64 fileLengthFrames;

UInt32 propSize = sizeof (fileLengthFrames);

ExtAudioFileGetProperty(extAudioFile,

kExtAudioFileProperty_FileLengthFrames,

&propSize,

&fileLengthFrames);

player->bufferSizeBytes =

fileLengthFrames * player->dataFormat.mBytesPerFrame;

AudioBufferList *buffers;

UInt32 ablSize = offsetof(AudioBufferList,

mBuffers[0]) + (sizeof(AudioBuffer) * 1);

buffers = malloc (ablSize);

player->sampleBuffer = malloc(sizeof(UInt16) * player->bufferSizeBytes);

208 Chapter 9 Positional Sound

Listing 9.20 Continued

buffers->mNumberBuffers = 1;

buffers->mBuffers[0].mNumberChannels = 1;

buffers->mBuffers[0].mDataByteSize = player->bufferSizeBytes;

buffers->mBuffers[0].mData = player->sampleBuffer;

With your one-member AudioBufferList set up, you are finally ready to read the

file into memory (see Listing 9.21).You might get the entire buffer filled with one call

to ExtAudioFileRead(), but be careful to check how many bytes were actually read

and loop the reading until you know the buffer is full.

Listing 9.21 Reading Data with an ExtAudioFile for Use in an OpenAL Buffer

// Loop reading into the ABL until buffer is full

UInt32 totalFramesRead = 0;

do {

UInt32 framesRead = fileLengthFrames - totalFramesRead;

// While doing successive reads

buffers->mBuffers[0].mData = player->sampleBuffer +

(totalFramesRead * (sizeof(UInt16)));

CheckError(ExtAudioFileRead(extAudioFile,

&framesRead,

buffers),

"ExtAudioFileRead failed");

totalFramesRead += framesRead;

printf ("read %d frames\n", framesRead);

} while (totalFramesRead < fileLengthFrames);

free(buffers);

return noErr;

}

Notice that you free() the AudioBufferList that you malloc()’d at the top of

the function.The samples are in player->sampleBuffer, and the ABL is no longer

needed, so you should now free the memory.You free the actual sample buffer after pro-

viding it to OpenAL, which you already wrote as part of main() in Listing 9.8.

Assuming that this works, your call to this function (back in Listing 9.4) fills

player.sampleBuffer (which is the same pointer as buffers->mBuffers[0].

mData) with the converted PCM data.

This loader function is a bit of a distraction from the chapter’s focus on OpenAL, but

hopefully it comforts you to know that Core Audio and OpenAL can and should play

nicely together.And now that it’s written, you can build and run the program.Assuming

that all goes well, you will hear your loop go back and forth between your speakers or

headphones on about a 6.2-second cycle.

209Putting a Sound in Space

That gives you a first taste of OpenAL.Time to recall what you’ve covered:

n You converted an audio file to a memory buffer of PCM samples.

n You created an OpenAL source and a buffer, loaded the sample data into the

buffer, and set properties on the source, buffer, and listener.

n You started the source and updated its AL_POSITION to provide the illusion of a

sound orbiting around the listener.

Now that you’ve covered these basics of OpenAL, you’re going to change how you

deliver samples to the source, to open up a lot of new possibilities.

Streaming Audio in OpenAL
Short sounds are fine for one-off sound effects or loops from sources that more or less

indefinitely make the same sound. But that doesn’t account for the variety of sounds you

might need to produce in OpenAL.What do you do for a sound that constantly

changes, such as a synthesized sound, a song playing from a file, or a voice chat being

received over a network connection? And what do you do if you don’t want to have to

load the entire sound into memory and keep it there? OpenAL sounds have to be PCM,

so they consume a lot of space, even though they’re only mono.

Well, you have a way to deal with this. Instead of supplying one block of data to a

buffer and forgetting about it, you can stream audio to a source.The arrangement is a lot

like the Audio Queues you worked with in Chapters 4,“Recording,” and 5,“Playback”:

You put data into OpenAL buffers and queue them up on a source.The source con-

sumes the buffers, and when a buffer is used up, you retrieve it and fill it with more data.

OpenAL’s streaming API isn’t that different from what you’re already used. Pretty

much everything involving your source, listener, and buffer remains the same.The differ-

ence is that, instead of setting a source’s AL_BUFFER property once and forgetting about

it, you call alSourceQueueBuffers() to queue up one or more buffers on the source.

The source plays these buffers in the order they were queued.

That description should sound a lot like “priming” the queue, as you did before with

Audio Toolbox.The difference is in the refill cycle. OpenAL streaming is push driven

rather than pull driven. In OpenAL, you don’t register for callbacks with empty buffers

to refill, as with Apple’s API. Instead, you have to poll the source for consumed buffers,

retrieve them yourself, and requeue them on the source.You might complain that the

timing of queue retrieval is not optimized; either you poll too frequently and waste

cycles, or you poll not frequently enough and get dropouts. Still, you are free to push in

at any time whatever size data buffer suits you instead of having to fill an exact number

of samples for a callback.

Setting Up the OpenAL Streaming Example

Let’s walk through this with another example.You’ll do the same thing as in the first

example (orbit a sound around the listener), except that this time you’ll play a source file

210 Chapter 9 Positional Sound

in its entirety and stream it to the source instead of just loading the whole thing into

RAM.

The overall structure of the program is also similar to the previous case, except that

when you loop to update the source’s position, you’ll also want to check whether you

have exhausted buffers to refill. Listing 9.22 shows our outline of the streaming program.

Listing 9.22 Outline of an OpenAL Program to Orbit a Streaming Source Around

the Listener

#import <AudioToolbox/AudioToolbox.h>

#import <OpenAL/al.h>

#import <OpenAL/alc.h>

#pragma mark user-data struct

typedef struct MyStreamPlayer

// Insert Listing 9.23 here

#pragma mark - utility functions -

// Insert Listing 4.2 here

// Insert Listing 9.2 here

void updateSourceLocation (MyStreamPlayer player)

// Insert Listing 9.17 here

OSStatus setUpExtAudioFile (MyStreamPlayer* player)

// Insert Listing 9.30 here

void fillALBuffer (MyStreamPlayer* player, ALuint alBuffer)

// Insert Listings 9.31 - 9.33 here

void refillALBuffers (MyStreamPlayer* player)

// Insert Listings 9.34 - 9.35 here

#pragma mark main

int main (int argc, const char * argv[]) {

// Prepare the ExtAudioFile for reading

// Set up OpenAL buffers

// Insert Listings 9.24 - 9.25 here

// Set up streaming source

// Insert Listing 9.26 here

// Queue up the buffers on the source

// Insert Listing 9.27 here

211Streaming Audio in OpenAL

Listing 9.22 Continued

// Set up listener

// Start playing

// Insert Listing 9.28 here

// Loop and wait

// Insert Listing 9.29 here

// Clean up

// Insert Listing 9.29 here

}

You can reuse several previous functions as is.You need the Core Audio

CheckError() function from Listing 4.2 and the CheckALError() function that you

wrote earlier in Listing 9.2.

The struct you use to pass variables between the various functions needs a few more

things in this program. Because you’ll be keeping the ExtAudioFile open all the time

to progressively read deeper and deeper into the file, you need to hold on to the

ExtAudioFileRef, the file length in frames, the total frames read so far, and the size of

the memory buffer you can read into, as Listing 9.23 shows.

Listing 9.23 Structure for Passing Program State Around Streaming OpenAL Example

#define BUFFER_COUNT 3

typedef struct MyStreamPlayer {

AudioStreamBasicDescription dataFormat;

UInt32 bufferSizeBytes;

SInt64 fileLengthFrames;

SInt64 totalFramesRead;

ALuint sources[1];

ExtAudioFileRef extAudioFile;

} MyStreamPlayer;

The main() remains responsible for creating the OpenAL context. It should also call

a function to set up the ExtAudioFile for later reading (as shown in Listing 9.24),

which you previously did in loadLoopIntoBuffer().You’ll write this

setUpExtAudioFile() function later.

Listing 9.24 Setting up ExtAudioFile and Creating an OpenAL Context for Streaming

int main (int argc, const char * argv[]) {

MyStreamPlayer player;

CheckError(setUpExtAudioFile(&player),

"Couldn't open ExtAudioFile") ;

ALCdevice* alDevice = alcOpenDevice(NULL);

212 Chapter 9 Positional Sound

Listing 9.24 Continued

CheckALError ("Couldn't open AL device"); // default device

ALCcontext* alContext = alcCreateContext(alDevice, 0);

CheckALError ("Couldn't open AL context");

alcMakeContextCurrent (alContext);

CheckALError ("Couldn't make AL context current");

Next, you need to generate and prime the buffers (see Listing 9.25), as you did with

the audio queue in Chapter 5.As with that chapter, it’s handy to have a convenience

function that fills a buffer with the next bunch of data from the file; this function can be

called to prime the stream and can be repeatedly called later to continue the streaming

by refilling the buffer.You’ll write this fillALBuffer() function later.

Listing 9.25 Creating and Filling OpenAL Buffers for Streaming

ALuint buffers[BUFFER_COUNT];

alGenBuffers(BUFFER_COUNT,

buffers);

CheckALError ("Couldn't generate buffers");

for (int i=0; i<BUFFER_COUNT; i++) {

fillALBuffer(&player, buffers[i]);

}

With the buffers prepared, set up the OpenAL source exactly as before, with the

exception of the AL_LOOPING property, which, of course, is incompatible with stream-

ing, as Listing 9.26 shows.

Listing 9.26 Creating an OpenAL Source for Streaming

alGenSources(1,

player.sources);

CheckALError ("Couldn't generate sources");

alSourcef(player.sources[0],

AL_GAIN,

AL_MAX_GAIN);

CheckALError("Couldn't set source gain");

updateSourceLocation(player);

CheckALError ("Couldn't set initial source position");

In the first example program, in Listing 9.12, you connected the buffer to the source

by setting an AL_BUFFER property on the source. For streaming, you provide an array of

buffers to the stream with the alSourceQueueBuffers() function. Listing 9.27 shows

this call.

213Streaming Audio in OpenAL

Listing 9.27 Queuing Buffers on an OpenAL Source for Streaming

alSourceQueueBuffers(player.sources[0],

BUFFER_COUNT,

buffers);

CheckALError("Couldn't queue buffers on source");

With the buffers queued up on the source, you just need to set up the source and

start playing. Listing 9.28 works just like in the looping example (see Listings 9.13

and 9.14).

Listing 9.28 Creating a Listener and Starting a Stream-Orbiting Source

// Set up listener

alListener3f (AL_POSITION,

0.0,

0.0,

0.0);

CheckALError("Couldn't set listener position");

// Start playing

alSourcePlayv (1,

player.sources);

CheckALError ("Couldn't play");

At the bottom of main(),you loop for RUN_TIME seconds (remember to #define this

elsewhere). However, this time, you call both the updateSourceLocation() function

and a yet-to-be-written refillALBuffers() function that polls the source for exhausted

buffers and refills them with your fillALBuffer(). Listing 9.29 shows all these steps.

Listing 9.29 Infinite Loop to Update the OpenAL Source Position and Refill Exhausted

Buffers, and Post-Loop AL Cleanup

// And wait

printf("Playing...\n");

time_t startTime = time(NULL);

do

{

// Get next theta

updateSourceLocation(player);

CheckALError ("Couldn't set looping source position");

// Refill buffers if needed

refillALBuffers (&player);

CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0.1, false);

} while (difftime(time(NULL), startTime) < RUN_TIME);

214 Chapter 9 Positional Sound

Listing 9.29 Continued

// Cleanup:

alSourceStop(player.sources[0]);

alDeleteSources(1,

player.sources);

alDeleteBuffers(BUFFER_COUNT,

buffers);

alcDestroyContext(alContext);

alcCloseDevice(alDevice);

printf ("Bottom of main\n");

}

The updateSourceLocation() function that you call in this loop is exactly the

same as what you wrote in Listing 9.17, so copy that over now.

Notice that the post-loop cleanup code—which disposes of the source, buffers,

context, and device—is nearly identical to Listing 9.16 from the previous example,

except that you now have BUFFER_COUNT buffers to delete. Still, only one call to

alDeleteBuffers() is needed to free up all the buffers in the array.

The program has now accounted for the source, buffers, and listener, so next you

need to fill out the three convenience functions that will read data from the

ExtAudioFile and refresh the AL buffers as needed.

Setting Up an ExtAudioFile for Streaming

The setUpExtAudioFile() function that you call at the top of main() to create an

ExtAudioFile() is actually a little simpler than the first example’s

loadLoopIntoBuffer().It only needs to create the ExtAudioFile and get a few

properties from it, including the information you need to create memory buffers for

reading from the file and the length of the file in frames. Be sure to #define a

BUFFER_DURATION_SECONDS value, which you’ll multiply by the sample rate and bytes

per frame to figure out how large each read buffer needs to be.

So that you don’t spend too much breath on Audio Toolbox stuff, Listing 9.30 pres-

ents the entire function. Refer back to the first example, or Chapter 6, if the setup or use

of the ExtAudioFile throws you.You can #define STREAM_PATH to be any file

playable by Core Audio; the online sample code uses a long jingle track from the iLife

collection:

#define STREAM_PATH CFSTR ("/Library/Audio/Apple Loops/Apple/iLife Sound
Effects/Jingles/Kickflip Long.caf")

But we’re not above a funny musical reference every now and then, either; for exam-

ple, see the top of Listing 9.30.

215Streaming Audio in OpenAL

Listing 9.30 Setting up an ExtAudioFile for Reading into a Stream

#define STREAM_PATH CFSTR ("/Users/cadamson/Music/iTunes/iTunes Music/Yes/Fragile
(Remastered)/Long Distance Runaround.m4a")

OSStatus setUpExtAudioFile (MyStreamPlayer* player) {

CFURLRef streamFileURL = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,

STREAM_PATH,

kCFURLPOSIXPathStyle,

false);

// Describe the client format - AL needs mono

memset(&player->dataFormat, 0, sizeof(player->dataFormat));

player->dataFormat.mFormatID = kAudioFormatLinearPCM;

player->dataFormat.mFormatFlags =

kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked;

player->dataFormat.mSampleRate = 44100.0;

player->dataFormat.mChannelsPerFrame = 1;

player->dataFormat.mFramesPerPacket = 1;

player->dataFormat.mBitsPerChannel = 16;

player->dataFormat.mBytesPerFrame = 2;

player->dataFormat.mBytesPerPacket = 2;

CheckError (ExtAudioFileOpenURL(streamFileURL,

&player->extAudioFile),

"Couldn't open ExtAudioFile for reading");

// Tell extAudioFile about our format

CheckError(ExtAudioFileSetProperty(player->extAudioFile,

kExtAudioFileProperty_ClientDataFormat,

sizeof (AudioStreamBasicDescription),

&player->dataFormat),

"Couldn't set client format on ExtAudioFile");

// Figure out how big file is

UInt32 propSize = sizeof (player->fileLengthFrames);

ExtAudioFileGetProperty(player->extAudioFile,

kExtAudioFileProperty_FileLengthFrames,

&propSize,

&player->fileLengthFrames);

printf ("fileLengthFrames = %lld frames\n", player->fileLengthFrames);

player->bufferSizeBytes = BUFFER_DURATION_SECONDS *

player->dataFormat.mSampleRate *

player->dataFormat.mBytesPerFrame;

216 Chapter 9 Positional Sound

Listing 9.30 Continued

printf ("bufferSizeBytes = %d\n", player->bufferSizeBytes);

printf ("Bottom of setUpExtAudioFile\n");

return noErr;

}

Refilling the OpenAL Buffers

The real work of the ExtAudioFile needs to happen in two functions, shown in

Listing 9.31. fillALBuffer() fills an OpenAL buffer with the next bunch of converted

PCM samples from the file.The first half of this function needs to allocate an

AudioBufferList and a void* sample buffer, just as you did with your one-time read

in the first example.

Listing 9.31 Setting up an AudioBufferList and Its Single AudioBuffer for Reading

from ExtAudioFile

void fillALBuffer (MyStreamPlayer* player, ALuint alBuffer) {

AudioBufferList *bufferList;

UInt32 ablSize = offsetof(AudioBufferList, mBuffers[0]) +

(sizeof(AudioBuffer) * 1); // 1 channel

bufferList = malloc (ablSize);

// Allocate sample buffer

UInt16 *sampleBuffer = malloc(sizeof(UInt16) * player->bufferSizeBytes);

bufferList->mNumberBuffers = 1;

bufferList->mBuffers[0].mNumberChannels = 1;

bufferList->mBuffers[0].mDataByteSize = player->bufferSizeBytes;

bufferList->mBuffers[0].mData = sampleBuffer;

printf ("allocated %d byte buffer for ABL\n",

player->bufferSizeBytes);

Then, as before, you read bytes with ExtAudioFileRead() until you’ve filled the

buffer, advancing your totalFramesRead count as you go (see Listing 9.32).

Listing 9.32 Reading from ExtAudioFile

UInt32 framesReadIntoBuffer = 0;

do {

UInt32 framesRead = player->fileLengthFrames - framesReadIntoBuffer;

bufferList->mBuffers[0].mData = sampleBuffer +

(framesReadIntoBuffer * (sizeof(UInt16)));

CheckError(ExtAudioFileRead(player->extAudioFile,

&framesRead,

217Streaming Audio in OpenAL

Listing 9.32 Continued

bufferList),

"ExtAudioFileRead failed");

framesReadIntoBuffer += framesRead;

player->totalFramesRead += framesRead;

printf ("read %d frames\n", framesRead);

} while (framesReadIntoBuffer < (player->bufferSizeBytes / sizeof(UInt16)));

When this while loop exits, the sampleBuffer is filled with converted PCM sam-

ples.5 Now you need to get those samples into an OpenAL buffer; for this, use Listing

9.33.This works just like it did in the looping case: Call alBufferData() to copy from

the memory buffer into the AL buffer.

Listing 9.33 Copying Samples from Memory Buffer to OpenAL Buffer

// Copy from sampleBuffer to AL buffer

alBufferData(alBuffer,

AL_FORMAT_MONO16,

sampleBuffer,

player->bufferSizeBytes,

player->dataFormat.mSampleRate);

free (bufferList);

free (sampleBuffer);

}

Notice in Listing 9.33 that you free() the AudioBufferList and the

sampleBuffer, which you created at the top of the function. alBufferData() copies

the data into OpenAL’s own space, so you can (and should) free the memory you

malloc()’d now.6

This function is all you need to prime the buffers when the program starts up.The

remaining task is to check the source periodically and see if any buffers are exhausted

and need to be refilled. In main(),you looped over a refillALBuffers() function to

do this, so let’s write that in Listing 9.34. First you ask the source how many exhausted

buffers it has, which is the read-only property AL_BUFFERS_PROCESSED.

218 Chapter 9 Positional Sound

5 For simplicity, you haven’t handled the case of reaching the end of the file, which would require

noticing whether ExtAudioFileRead() set framesRead to 0 and, if so, reopening the file

with ExtAudioFileOpenURL(). You’d think that you could return to frame 0 via

ExtAudioFileSeek() when you hit the EOF, but that doesn’t work; reaching EOF effectively

closes the file for further reading.

6 As an aside, if you object to all this repeated malloc()’ing and free()’ing, you might be inter-

ested in the oalStaticBufferExtension.h header, which defines a “static buffer” API in

which your code maintains ownership of the data buffers, passing just a pointer to OpenAL

instead of repeatedly copying samples. For streaming OpenAL, it can be a desirable optimization.

Listing 9.34 Checking an OpenAL Source for Exhausted Streaming Buffers

void refillALBuffers (MyStreamPlayer* player) {

ALint processed;

alGetSourcei (player->sources[0],

AL_BUFFERS_PROCESSED,

&processed);

CheckALError ("couldn't get al_buffers_processed");

If any buffers have been fully drained, you get them back from the source with the

alSourceUnqueueBuffers() function, which takes a source, a maximum number of

buffers to return, and an ALuint array to receive those buffers. Because you wrote your

fillALBuffer() function to work on only one buffer at a time (that makes the code

easier to follow), you’ll loop and repeatedly dequeue and refill a single buffer in

Listing 9.35.

Listing 9.35 Unqueueing and Refilling OpenAL Buffers

while (processed > 0) {

ALuint freeBuffer;

alSourceUnqueueBuffers(player->sources[0],

1,

&freeBuffer);

CheckALError("Couldn't unqueue buffer");

printf ("Refilling buffer %d\n", freeBuffer);

fillALBuffer(player, freeBuffer);

alSourceQueueBuffers(player->sources[0],

1,

&freeBuffer);

CheckALError ("Couldn't queue refilled buffer");

printf ("Re-queued buffer %d\n", freeBuffer);

processed--;

}

}

In this loop, any time you unqueue and refill a buffer, you immediately requeue it on

the source with alSourceQueueBuffers(), the same function you called in Listing

9.27 to prime the source with buffers.

That’s all you need to do. Build and run this program, and you should hear your

source stream orbiting around you—well, oscillating between speakers, anyway—for as

long as you choose to let it play.

219Streaming Audio in OpenAL

Summary
The streaming example used a flat file as its source, but you can use any technique to

provide data to the buffers, such as synthesized sounds, in which you write samples on

the fly, or network sources, in which you get data over the network. In the latter case,

imagine a virtual world where the radios play streaming web radio but have distinct

positions in space so that you hear them differently as your onscreen avatar moves

around them.

OpenAL also has the distinction of being very low latency. It has to be, after all, to be

of any use for gaming. In fact, OpenAL is implemented atop a 3D mixer audio unit,

meaning that you’re picking up the low latency of audio units with a programming

model that’s a little easier to work with; you don’t have to deal with threading, callback

timeouts, or ring buffers as you did in Chapters 7,“Audio Units: Generators, Effects, and

Rendering,” and 8,“Audio Units: Input and Mixing.” It wouldn’t be completely unrea-

sonable to use OpenAL for general-purpose streaming audio in your application; it’s

both performant and easy to port to and from other platforms.

220 Chapter 9 Positional Sound

IV

Additional Topics

10 Core Audio on iOS

11 Core MIDI

12 Coda

This page intentionally left blank

10

Core Audio on iOS

Although it started on Mac OS X, Core Audio is at least as important—and maybe

more so—on iOS, where its low latency and extreme efficiency are a phenomenally

good fit for the limited environment that exists on mobile devices such as the iPhone,

iPod touch, and iPad. It was the first media API available when Apple opened the

iPhone’s SDK, and for a lot of apps, it’s still the right choice.

This chapter looks at how you can immediately put to use on iOS everything you’ve

already learned.Then it moves to the traits that are specific to iOS, including its simplified

hardware abstraction, its strengths and limits, and how you collaborate with other apps to

share the device’s audio system.

Is That Core Audio in Your Pocket?
If you think of yourself primarily as an iOS developer, you might feel as if you’ve been

toughing it out for the first nine chapters of this book, enduring all this “Mac stuff ” as

you worked through command-line based examples.The iPhone doesn’t even have a

command-line, fercryinoutloud!

We’d like to thank you for your patience.You’ve finally arrived at the iOS chapter.

We’d also like to congratulate you. If you worked through the first nine chapters, you

now know most of Core Audio on iOS already.

Core Audio on iOS is really similar to its original form on OS X—really, really simi-

lar. Consider the following APIs:

n Audio File Services

n Audio Conversion

n Extended Audio File Services

n Audio Queue Services

n Audio Units

n Audio Unit Graphs

n OpenAL

All these APIs exist more or less unchanged on iOS.Where differences exist, they’re

generally in the small details, not in the functions themselves or the big picture of how

to use them.The differences generally come from what can reasonably be expected from

small devices and what’s appropriate for the more tightly controlled environment of

third-party app development for iOS.

This chapter looks at the diffs, to focus on what’s unique to Core Audio on iOS.

Fundamentally, two underlying differences make things different on iOS:

n Applications run in a managed environment. On Mac OS X, applications

(or other processes, such as daemons) have substantial access to system resources

and operate with a high degree of independence. On iOS, third-party applications

run in a rigidly defined and controlled context.Apps can only be apps—they

cannot be daemons, agents, drivers, command-line executables, and so on—and

running as a UIApplication imposes rules on apps in terms of how they share

system resources, including access to the audio system.This also means there is no

sharing of resources between applications, which has profound implications for

Audio Units:You can’t make a third-party plug-in that other apps can see, so there

isn’t a aftermarket for Audio Units as there is on OS X.

n The audio hardware is simpler. Your Mac could potentially have many audio

devices, such as audio cards and I/O devices, all of which have different timing and

performance characteristics.An iOS has exactly one audio device.This greatly sim-

plifies some of the APIs and eliminates others: It’s easier to get an I/O audio unit

when you don’t have to specify a device.As a result, the Audio Hardware Services

functions (which Chapter 4,“Recording,” touched on) are completely absent.

The differences in iOS manifest themselves primarily in two ways:

n A new set of functions,Audio Session Services, manages your app’s use of audio

system resources and provides access to information about the audio hardware.

n Audio Units are more limited in what they can do. Part because of the simplicity

of the hardware and the need to conserve resources, iOS provides a much smaller

collection of Audio Units, and the nature of “sandboxed” applications doesn’t allow

for third-party AU development. On the other hand, having only a single audio

device means that doing audio input and output with audio units and AUGraphs is

actually a lot easier.

This chapter looks at these traits separately.You’ll develop two sample apps to exercise

both the Audio Session API and Audio Units as they exist on iOS.

Playing Nicely with Others:
Audio Session Services
Let’s start by looking at the Audio Session Services.This set of APIs in the Audio

Toolbox provides just a handful of services that relate to an audio session, which

224 Chapter 10 Core Audio on iOS

represents the app’s access to and use of the device’s audio system.The functions enable

you to do the following:

n Initialize the audio session

n Set whether the session is active (producing and/or receiving audio)

n Get and set property values

That’s pretty much it, but as with the other Core Audio APIs, the getting and setting

of properties provides a great deal of functionality.These are some of the most important

properties:

n kAudioSessionProperty_AudioInputAvailable

Specifies whether the device is capable of audio capture. Many iOS devices come

with built-in microphones (including all iPhones and iPads), but on early iPod

touch models, audio input is available only if you attach a headset with a micro-

phone or some other external device.

n kAudioSessionProperty_CurrentHardwareSampleRate

kAudioSessionProperty_CurrentHardwareInputNumberChannels

kAudioSessionProperty_CurrentHardwareOutputNumberChannels

kAudioSessionProperty_CurrentHardwareOutputVolume

kAudioSessionProperty_CurrentHardwareInputLatency

kAudioSessionProperty_CurrentHardwareOutputLatency

kAudioSessionProperty_CurrentHardwareIOBufferDuration

Read-only properties that report various details about the audio hardware.1

n kAudioSessionProperty_PreferredHardwareSampleRate

kAudioSessionProperty_PreferredHardwareIOBufferDuration

Settable properties for adjusting audio hardware properties.

n kAudioSessionProperty_AudioRoute

The current output (and possibly input) route as a read-only CFString

("Headphone", "Speaker", "HeadsetInOut")

n kAudioSessionProperty_OverrideAudioRoute

A write-only property that enables you to change the audio route to either

kAudioSessionOverrideAudioRoute_Speaker or

kAudioSessionOverrideAudioRoute_None (which means using the normal

audio route for the current hardware).

225Playing Nicely with Others: Audio Session Services

1 In Chapter 4, the hardware sampling rate property came from the Audio Object API, and we noted

that iOS had an alternative approach for that. These properties are that alternative.

n kAudioSessionProperty_AudioCategory

Defines how the app interacts with the rest of the audio system on the device.

The audio category has a set of semantic values that describe how you want your app

to behave in terms of sharing access to the rest of the audio system: whether it mixes

with other audio (such as from the Music app) or it wants to own the output, whether it

wants to capture audio, whether it should honor the iPhone’s ring/silent switch, and so

on.The possible values are defined semantically, meaning in terms of your intent instead

of as a set of specific behaviors. For iOS 4.0, the following values are provided:2

n kAudioSessionCategory_AmbientSound

Background audio that is not necessarily critical to the application’s activity. It

mixes with the Music app and can be silenced with ring/silent switch. It does not

allow capture and cannot play when the app is in the background.

n kAudioSessionCategory_SoloAmbientSound

Background audio that does not mix with audio from other apps. It honors the

ring/silent switch and does not allow capture or playing in the background.This is

the default category if you neglect to set one.

n kAudioSessionCategory_MediaPlayback

Foreground audio (that is, audio is the point of the application) that cannot be

turned off by the ring/silent switch. It allows your app to keep playing when in

the background. It does not mix with other apps’ audio, although you can override

this by setting the property kAudioSessionProperty_OverrideCategoryMix

WithOthers. It does not allow recording.

n kAudioSessionCategory_RecordAudio

Allows audio capture for apps that perform only capture and do not produce or

play audio (which makes mixing and ring/silent considerations moot). It can con-

tinue recording when the app is in the background, although this turns the status

bar red and shows the name of the application, to warn the user that he or she is

being recorded.

n kAudioSessionCategory_PlayAndRecord

Apps that both capture and produce audio, possibly simultaneously. It does not

honor the ring/silent switch and typically does not mix with other apps (although

you can override this with a property, as noted earlier). It can record and play in

the background, as with the previous two categories.

226 Chapter 10 Core Audio on iOS

2 We have omitted deprecated values.

n kAudioSessionCategory_AudioProcessing

Used for apps that process audio (say, through an AUGraph) without actually

recording or playing. It can continue processing in the background.

An Audio Session Example
A lot of what makes iOS Core Audio programming unique is how you coordinate with

the rest of the system.A simple example exercises these traits. In fact, it’s so simple that it

just generates a sine wave, drawing on the Audio Queue player from Chapter 5,

“Playback,” and the sine generator from Chapter 7,“Audio Units: Generators, Effects,

and Rendering.” But what’s different is that the app changes tone it when is sent to the

background.This means you do several things that are unique to iOS:

n You need to negotiate with Audio Session Services for access to the audio

hardware.

n You need to adjust your app’s settings to inform iOS that you need to keep run-

ning in the background.

n You need to react to delegate messages that tell you the app has been fore-

grounded or backgrounded.

n You need to react to interruptions that take the audio system away from you, such

as incoming calls.

Setting Up the App

There’s no such thing as a command-line executable on iOS.To do the next best thing

and keep the example as simple as possible, you’ll use what Xcode 4.2 calls an “Empty

Application,” which contains just an UIApplicationDelegate and a UIWindow.3 In the

sample code, this is called CH10_iOSBackgroundingTone, which means that Xcode cre-

ated the Objective-C class CH10_iOSBackgroundingToneAppDelegate for you, with

a header (.h) and implementation file (.m).

You have a full-blown object, so you use that instead of a struct to pass state around:

You can pass the app delegate object as the userInfo pointer to anything that’s going to

drive callbacks; in the callback, you cast the pointer back to the app delegate and get its

members as properties. Edit the header file (.h) as shown in Listing 10.1.

227An Audio Session Example

3 We assume that you have a passing knowledge of iOS programming to even read this chapter. If

you need to get up to speed, we recommend iOS Programming: The Big Nerd Ranch Guide, Second

Edition, from the good folks at, well, The Big Nerd Ranch (www.bignerdranch.com).

www.bignerdranch.com

Listing 10.1 Header File for iOS Tone-Player App

#import <UIKit/UIKit.h>

#import <AudioToolbox/AudioToolbox.h>

@interface CH10_iOSBackgroundingToneAppDelegate : NSObject <UIApplicationDelegate>

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, assign) AudioQueueRef audioQueue;

@property (nonatomic, assign) AudioStreamBasicDescription streamFormat;

@property (nonatomic, assign) UInt32 bufferSize;

@property (nonatomic, assign) double currentFrequency;

@property (nonatomic, assign) double startingFrameCount;

-(OSStatus) fillBuffer: (AudioQueueBufferRef) buffer;

@end

You’ll use an Audio Queue to play your samples.As you saw in Chapter 5, this means

you need a function or method to fill an AudioQueueBufferRef, both at startup when

you “prime” the queue and when the queue consumes a buffer and needs more data.

This is the fillBuffer method.That method needs to know the audioQueue to fill.

As we developed it for this example, we found that we needed state variables you’ve seen

in earlier sine-wave examples: the stream format, how big the buffers are, the desired fre-

quency to generate, and where we are in the current wave.

Now let’s start on the app delegate implementation file.The Xcode template already

defines several methods for managing application state:You will be adding to the imple-

mentations of applicationDidFinishLaunching:withOptions:,

applicationDidEnterBackground, and applicationWillEnterForeground:.

You’ll also be adding some C functions of your own and an implementation of the

fillBuffer: method declared in the header. Listing 10.2 offers a roadmap of the file,

adding to what Xcode originally provided.

Listing 10.2 Outline of Implementation File for iOS Tone-Player App

#import "CH10_iOSBackgroundingToneAppDelegate.h"

#pragma mark - #defines

// Insert Listing 10.4 here

@implementation CH10_iOSBackgroundingToneAppDelegate

#pragma mark - @synthesizes

228 Chapter 10 Core Audio on iOS

Listing 10.2 Continued

@synthesize window=_window;

// Insert Listing 10.3 here

#pragma mark helpers

// Insert Listing 4.2 here

#pragma mark callbacks

// Insert Listings 10.11, 10.12, and 10.13 here

#pragma mark app lifecycle

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

// Set up the audio session

// Insert Listings 10.5 and 10.6 here

// Set the stream format

// Insert Listing 10.7 here

// Set up the audio queue

// Insert Listings 10.8 and 10.9 here

// Start the audio queue

// Replace to the bottom of the method with Listing 10.10

// Override point for customization after the application launches.

[self.window makeKeyAndVisible];

return YES;

}

- (void)applicationWillResignActive:(UIApplication *)application

{}

- (void)applicationDidEnterBackground:(UIApplication *)application

{

// Insert Listing 10.14 here

}

- (void)applicationWillEnterForeground:(UIApplication *)application

{

// Insert Listing 10.15 here

}

229An Audio Session Example

Listing 10.2 Continued

- (void)applicationDidBecomeActive:(UIApplication *)application

{}

- (void)applicationWillTerminate:(UIApplication *)application

{}

- (void)dealloc

{

[_window release];

[super dealloc];

}

@end

You can fill in a few of the blanks right away. First, you know that you have to

@synthesize (or provide setters and getters) for all your properties, so let’s do that in

Listing 10.3.

Listing 10.3 Synthesizing Properties for iOS Tone Generator

@synthesize streamFormat=_streamFormat;

@synthesize bufferSize;

@synthesize currentFrequency;

@synthesize startingFrameCount;

@synthesize audioQueue;

You can back all the properties with specific instance variables, if you want.The rea-

son for spelling out a specific instance variable for the streamFormat property will

become clear after Listing 10.7.

Some #defines appear at the top of the file.Thinking back to the audio queues in

Chapters 4 and 5, remember that you need to specify how many buffers you’re using,

and having a constant for the duration of each buffer is also handy for the math.You also

want to #define the frequencies you want to play in foreground and background

modes. Listing 10.4 shows the #defines.

Listing 10.4 Defining Frequencies and Audio Queue Constants for the iOS Tone

Generator

#define FOREGROUND_FREQUENCY 880.0

#define BACKGROUND_FREQUENCY 523.25

#define BUFFER_COUNT 3

#define BUFFER_DURATION 0.5

230 Chapter 10 Core Audio on iOS

You’ll use the handy CheckError() function that has served you well since Chapter

4.The same Mac OS X code in Listing 4.2 works exactly as is on iOS, so paste it in.

Initializing the Audio Session and Audio Queue

When the app comes up, the application:didFinishLaunchingWithOptions:

method is called, so for the purposes of this example, that’s where you’ll get to work. Of

course, you can put your Core Audio code elsewhere—in view controllers or custom

classes, for example—but you should do your Audio Session setup early and, certainly,

before any other audio calls you will be making.And because the app delegate is your

app’s point of contact with the rest of the system, it’s a pretty good place for Audio

Session management code. Let’s begin in Listing 10.5 by setting up the app’s audio ses-

sion with AudioSessionInitialize().

Listing 10.5 Establishing an Audio Session with AudioSessionInitialize()

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

CheckError(AudioSessionInitialize(NULL,

kCFRunLoopDefaultMode,

MyInterruptionListener,

self),

"Couldn't initialize the audio session");

AudioSessionInitialize takes four parameters, all of which have to do with a call

to an interruption handler function that will be called when the system needs to alert

you to changes in your access to system audio:

n The first two parameters are the run loop and run loop mode on which you want

to receive the interruption callback: NULL for the first parameter specifies the main

run loop and is the most typical choice.

n The third parameter is a function pointer to an interruption listener function that

you will write later.

n The fourth parameter is the user info object (called client data here) that provides

a single pointer for the callback function to use.

Note

In previous examples, you’ve always passed around a struct, but because the app delegate

is a full-blown Objective-C object, which itself is just a pointer, you can use self.

Next, you need to declare the audio category, as described earlier. Because you want

the audio to keep playing in the background, and because it doesn’t need to record, the

231An Audio Session Example

sensible choice is kAudioSessionCategory_MediaPlayback.This has the side effect of

ignoring the ring/silent switch and shutting down another apps’ audio. Listing 10.6

shows how to set the audio category.

Listing 10.6 Setting the Audio Category for an iOS Application

UInt32 category = kAudioSessionCategory_MediaPlayback;

CheckError(AudioSessionSetProperty(kAudioSessionProperty_AudioCategory,

sizeof(category),

&category),

"Couldn't set category on audio session");

You’re going to set up an audio queue, which means you need to pick a stream for-

mat (as an AudioStreamBasicDescription) to provide to the queue.When you cre-

ated a playback queue in Chapter 5, you got the format from the file you were reading.

Because this example generates its own samples, you can define your own format, as we

did in Chapter 8,“ Audio Units: Input and Mixing,” when you wrote a sine wave to an

I/O audio unit. Listing 10.7 sets up the stream format.

Listing 10.7 Creating AudioStreamBasicDescription for a Programmatically Generated

Sine Wave

self.currentFrequency = FOREGROUND_FREQUENCY;

_streamFormat.mSampleRate = 44100.0;

_streamFormat.mFormatID = kAudioFormatLinearPCM;

_streamFormat.mFormatFlags = kAudioFormatFlagsCanonical;

_streamFormat.mChannelsPerFrame = 1;

_streamFormat.mFramesPerPacket = 1;

_streamFormat.mBitsPerChannel = 16;

_streamFormat.mBytesPerFrame = 2;

_streamFormat.mBytesPerPacket = 2;

You’re accessing the streamFormat property by its instance variable because the com-

piler won’t let you do an assignment of the form self.streamFormat.mSampleRate.

What’s more important in this example is the mFormatFlags. Chapter 3,“Audio

Processing with Core Audio,” described how the canonical formats are those that the

system is best suited to use and that Core Audio automatically converts to for its own

internal use. On Mac OS X, kAudioFormatFlagsCanonical and kAudioFormat

FlagsAudioUnitCanonical both use floating point samples, but floating point is a sig-

nificant expense on the low-power chips of early ARM devices. So on iOS,

kAudioFormatFlagsCanonical uses signed integer samples, and kAudioFormatFlags

AudioUnitCanonical uses 8.24 fixed point.This means that the high 8 bits are the

value to the left of the decimal, and the other 24 bits are the fractional part.Without

convenience functions to perform the needed math on the fixed-point samples, we

prefer the simple integer math of kAudioFormatFlagsCanonical whenever we can

use it.

232 Chapter 10 Core Audio on iOS

With the stream format defined, you can call AudioQueueNewOutput() to create the

audio queue that will play your tone, as in Listing 10.8.

Listing 10.8 Creating an Audio Queue on iOS

// Create the audio queue

CheckError(AudioQueueNewOutput(&_streamFormat,

MyAQOutputCallback,

self,

NULL,

kCFRunLoopCommonModes,

0,

&audioQueue),

"Couldn't create the output AudioQueue");

Note

Sorry if we’re hammering the point repeatedly, but this is the exact same function used to

create an Audio Queue for OS X in Chapter 5. It takes the stream format, a buffer-refiller

function and user-info pointer, a callback run loop and run loop mode, an unused flags

argument, and a pointer to receive the created AudioQueueRef.

If you remember the playback audio queue from five chapters back, maybe you

remember what you have to do after creating the queue:You have to prime the queue

with some buffers, filled with the first samples to be played.You do this in Listing 10.9.

Listing 10.9 Priming an Audio Queue on iOS

// Create and enqueue buffers

AudioQueueBufferRef buffers [BUFFER_COUNT];

bufferSize = BUFFER_DURATION * self.streamFormat.mSampleRate *
self.streamFormat.mBytesPerFrame;

NSLog (@"bufferSize is %ld", bufferSize);

for (int i=0; i<BUFFER_COUNT; i++) {

CheckError (AudioQueueAllocateBuffer(audioQueue,

bufferSize,

&buffers[i]),

"Couldn't allocate the Audio Queue buffer");

CheckError([self fillBuffer:buffers[i]],

"Couldn't fill buffer (priming)");

CheckError(AudioQueueEnqueueBuffer(audioQueue,

buffers[i],

0,

NULL),

"Couldn't enqueue buffer (priming)");

}

233An Audio Session Example

Start with a little math to figure out how big the buffers should be. Because you’re using

constant bit rate PCM, this is easier than the Chapter 5 example that had to deal with

VBR and packet descriptions. Here, you just know that each buffer is buffer duration

× sample rate × bytes per frame.

After that, you loop through BUFFER_COUNT times to create buffers with

AudioQueueAllocateBuffer(), fill them with the fillBuffer: method that you

declared in the header (and need to write later), and put them in the queue with

AudioQueueEnqueueBuffer().

All that’s left for main()—oops, we mean

application:didFinishLaunchingWithOptions:—is to start the audio queue.

Listing 10.10 shows that one-line call.

Listing 10.10 Starting an Audio Queue on iOS

CheckError(AudioQueueStart(audioQueue,

NULL),

"Couldn't start the AudioQueue");

// Override point for customization after application launch.

[self.window makeKeyAndVisible];

return YES;

}

Earlier examples sometimes had to put in a call such as CFRunLoopRunInMode() to

keep the main run loop going and thus prevent the command-line program from termi-

nating.That’s not necessary on iOS, where the UIApplication structure keeps the app

around. iOS apps aren’t even allowed to terminate. So aside from letting application:

didFinishLaunchingWithOptions: do its default job of calling [self.window

makeKeyAndVisible] and returning YES, you are finished setting up the tone-

generating audio queue.You’re not done with the example—you have some callbacks

and other stuff to write—but outside of the Audio Session material, this should seem

very similar to the kinds of Core Audio calls you’ve been working with all along.

The Tone Generator Method

Let’s keep with the tried-and-true for a moment and deal with the fillBuffer:

method that you called when you seeded the queue and that you’ll need again in your

callbacks from the queue.You wrote a sine wave generator back in Chapter 7 to feed an

Audio Unit render callback, so all that’s different in Listing 10.11 is that you’re filling an

AudioQueueBufferRef instead of an AudioBufferList.

Listing 10.11 Method to Refill Buffers with Sine Wave Samples

-(OSStatus) fillBuffer: (AudioQueueBufferRef) buffer {

double j = self.startingFrameCount;

double cycleLength = 44100. / self.currentFrequency;

int frame = 0;

234 Chapter 10 Core Audio on iOS

Listing 10.11 Continued

double frameCount = bufferSize / self.streamFormat.mBytesPerFrame;

for (frame = 0; frame < frameCount; ++frame)

{

SInt16 *data = (SInt16*)buffer->mAudioData;

(data)[frame] = (SInt16) (sin (2 * M_PI * (j / cycleLength)) *

0x8000);

j += 1.0;

if (j > cycleLength)

j -= cycleLength;

}

self.startingFrameCount = j;

buffer->mAudioDataByteSize = bufferSize;

return noErr;

}

As in Chapter 7, you need to keep track of where you are in the wave each time you

leave and re-enter the method; starting every buffer from theta=0 would create a dis-

continuity in the wave and, therefore, cause a repeating click or pop. Start with a little

math to figure out where to begin the cycle, along with figuring the wavelength in

frames. But aside from that, you’re doing fundamentally the same thing: looping over

theta values, calculating a sine, and multiplying that value (which will be between -1.0

and 1.0) by the maximum 16-bit signed integer value of 0x8000.The result is a signed

16-bit integer sample, exactly as promised by streamFormat.

The fillBuffer: method is called to prime the queue, but you also need to call it

when the audio queue needs a buffer refilled. AudioQueueNewOutput() provided a

function pointer to a MyAQOutputCallback function that could do this, so let’s write

that now (see Listing 10.12).

Listing 10.12 Callback Function to Refill an AudioQueueBufferRef on iOS

static void MyAQOutputCallback(void *inUserData,

AudioQueueRef inAQ,

AudioQueueBufferRef inCompleteAQBuffer)

{

CH10_iOSBackgroundingToneAppDelegate *appDelegate =

(CH10_iOSBackgroundingToneAppDelegate*)inUserData;

CheckError([appDelegate fillBuffer: inCompleteAQBuffer],

"can't refill buffer");

CheckError(AudioQueueEnqueueBuffer(inAQ,

inCompleteAQBuffer,

0,

NULL),

"Couldn't enqueue the buffer (refill)");

}

235An Audio Session Example

Because you used the app delegate itself as the user-info object, this callback ends up

being trivial:You cast inUserData to a local variable called appDelegate and call its

fillBuffer method, which you just wrote back in Listing 10.10.With the buffer filled,

you give it back to the queue with AudioQueueEnqueueBuffer().

So far, this app could run as is back on Mac OS X, as long as you started with a

Cocoa application template, skipped the iOS-specific Audio Session stuff, and dealt with

the difference in sample formats (for instance, you declared an AudioStreamBasic

Description that used signed ints, or you rewrote fillBuffer to use floats).The

higher-level APIs such as Audio Queue really are the same on both platforms.

Now let’s get into some iOS nitty-gritty.

Handling iOS Interruptions

When we created the audio session, we provided a function pointer to MyInterruption

Listener().This function is typedef’d as AudioSessionInterruptionListener; it

takes a user-info pointer and a UInt32 inInterruptionState and returns void.The

interruption state indicates whether an interruption is beginning or ending.The idea is

that an event such as an incoming phone call might cause your app to lose access to the

audio system, so it plays the ring tone and doesn’t worry about what your app wants.

However, it doesn’t kill the app outright, because the user might choose to decline the

call. In this case, the interruption ends and you get a second callback.

The start of an interruption automatically stops playback engines such as OpenAL or

your Audio Queue, so you don’t have to do anything special in that case. More elaborate

audio apps might have some teardown or state maintenance to perform, however. If and

when the interruption ends, you need to restart the audio queue. Listing 10.13 shows

simple handling of these cases.

Listing 10.13 Handling Audio Interruptions

void MyInterruptionListener (void *inUserData,

UInt32 inInterruptionState) {

printf ("Interrupted! inInterruptionState=%ld\n", inInterruptionState);

CH10_iOSBackgroundingToneAppDelegate *appDelegate =

(CH10_iOSBackgroundingToneAppDelegate*)inUserData;

switch (inInterruptionState) {

case kAudioSessionBeginInterruption:

break;

case kAudioSessionEndInterruption:

CheckError(AudioQueueStart(appDelegate.audioQueue, 0),

"Couldn't restart the audio queue");

break;

default:

break;

};

}

236 Chapter 10 Core Audio on iOS

An incoming call isn’t the only event that causes an interruption: Notifications, alarms,

and other asynchronous events are delivered to the app as interruptions.

We also said the app was going to change the tone frequency when it goes between

background and foreground.You need to do a few things to make that work. First, you

have to use a special flag introduced in iOS 4.0 to tell the system that the app needs to

keep running in the background and state why. In the app’s Info.plist file, create a

new key with the provided name “Required background modes” (if you look at the

.plist file with an XML editor, this key is really called UIBackgroundModes).This key

takes an array as its value: add one item, with the canned value “App plays audio”

(which is a synonym for the value "audio"). Setting this in the Info.plist allows the

app to keep the tone going when you send it to the background with the Home

button.4

When the app moves between foreground and background, the app delegate gets

notified via its usual callback methods: applicationWillEnterForeground: and

applicationDidEnterBackground:.When you background, all you need to do is

change the frequency value, as in Listing 10.14.

Listing 10.14 Handling Backgrounding on iOS

- (void)applicationDidEnterBackground:(UIApplication *)application

{

self.currentFrequency = BACKGROUND_FREQUENCY;

}

Because the audio queue keeps going in the background, the next call to fillBuffer

picks up this new value. Of course, with three buffers of 0.5 seconds each, there will be

an audible lag in doing so.

The foregrounding case is similar but involves a little more work, as Listing 10.15

shows.

Listing 10.15 Handling Foregrounding on iOS

- (void)applicationWillEnterForeground:(UIApplication *)application

{

CheckError(AudioSessionSetActive(true),

"Couldn't re-set audio session active");

CheckError(AudioQueueStart(self.audioQueue, 0),

"Couldn't restart audio queue");

self.currentFrequency = FOREGROUND_FREQUENCY;

}

237An Audio Session Example

4 The Xcode 4.1 iOS Simulator doesn’t keep the audio going in the background; it works only on

the device.

If the user leaves the app to take a call, the interruption results in a stopped audio queue;

its access to the audio session is cut off.To get the tone going again when you come to

the foreground, you need to reassert yourself to the audio session. Instead of initializing

the audio session again, it’s enough to just say “I’m active” via the AudioSessionSet

Active() call.Then you can use AudioQueueStart() to get the queue going again

and reset the frequency. Calling AudioSessionSetActive() and AudioQueueStart()

if you weren’t stopped by an interruption is harmless, so you can call these anytime you

enter the foreground, even if the user has just been switching apps and never actually

interrupted you.

With these methods written, the example is ready to go. Run it on your device with

Xcode, and try backgrounding and foregrounding the app to hear the tone change. If

you’re on an iPhone, you can try the interruption by calling yourself from another

phone.Another way to get an interruption is to run another app whose audio session

category wants exclusive access to audio output—games are often a good example

of this.

Audio Units on iOS
Aside from working with Audio Sessions, the other big change on iOS is how Audio

Units work. Not that the API is any different—it’s exactly the same as you studied in

Chapters 7 and 8—but what you can do with audio units is significantly different.

First, the bad news: iOS has far fewer system-provided audio units. Several of the

major types of units, such as generators, are completely absent; others have only a few

units available. For example, whereas Mac OS X offered a large set of effects units

(including the reverb unit that you played in Chapter 7), iOS 4 has only one.5

Here’s a list of the seven—yes, just seven—audio units you get on iOS 4:

n I/O

n Remote I/O: The iOS equivalent of AUHAL, providing capture and play-

out; with only one audio device, however, it doesn’t need the HAL abstrac-

tion.You’ll be using this later in the chapter.

n Voice Processing I/O: Similar to Remote I/O, with the addition of echo-

cancellation filters that make it ideal for voice-over-IP applications.

n Generic I/O: Just as on OS X, this is an output unit that’s not connected

to hardware.You can put it at the end of an AUGraph and pull samples

through the graph with AudioUnitRender().

n Effects

n iPodEQ: Performs the same audio equalization as the built-in Music or

iPod app, enabling the user to choose from a set of canned equalizer settings,

such as Bass Booster and Spoken Word.

238 Chapter 10 Core Audio on iOS

5 The situation is significantly better in iOS 5, as you’ll see in the final chapter.

n Mixers

n Multichannel Mixer: A mixer that takes an arbitrary number of input

buses and mixes them down to a stereo output.

n 3D Mixer: A mixer that can render sounds based on their properties in a

3D space. It’s used by the OpenAL implementation but can be used in your

own AUGraphs (although this is rare).

n Converter

n Format converter: Same as on OS X; converts between different flavors of

PCM.

So that’s the bad news.The worse news is that it’s not even possible to extend the

collection of audio units.Whereas OS X has an entire industry of third-party audio

units, this kind of plug-in isn’t possible with the “sandbox” model of iOS applications.

Note

In fact, iPhone OS 3 added the capability to build your own audio units to be used only in

your own app, based on the CFPlugin API. However, we have it on good authority that this

capability never actually worked, and it was removed in iOS 4.

Now that you’ve lowered your expectations, here’s some good news:Working with

the I/O units is vastly easier in iOS.Think back to Chapter 8, where you grabbed input

from the microphone and ran it through an AUGraph.You had to use separate AUHAL

units for the input and the output because they were potentially different devices serv-

iced by different I/O threads.That meant you had to use a ring buffer to transfer samples

between the two units. On iOS, this never happens:There’s only one audio device, pro-

viding both input and output, as shown in Figure 10.1.With this arrangement, the awful

threading headaches go away:You use a single RemoteIO unit for input or output, and if

you’re doing both, you use the one unit for both.

239Audio Units on iOS

RemoteIO

Unit
To

Hardware

From

Hardware Bus 1 Bus 0

Figure 10.1 Input to and output from RemoteIO Audio Unit on iOS

Building an Audio Pass-Through App with the iOS RemoteIO Unit

Here you exercise iOS audio units by building another pass-through app, which shows

off both the good and the bad of audio units on iOS.And just to show that you can still

have some fun at the unit level, you’ll perform our own audio effect on the captured

audio, even though you don’t have effect units to rely on.

So how do you perform an effect? Let’s step back a minute and think about how a

pass-through app works with just one I/O unit doing both input and output.As you

learned in Chapter 8, you collect captured samples from bus 1 of an I/O unit’s output

scope and provide samples to be played to bus 0 of an I/O unit’s input scope. If the same

unit will provide both input and output, the trick is connect bus 1’s output to bus 2’s

input, as in Figure 10.2.

240 Chapter 10 Core Audio on iOS

RemoteIO

Unit

Bus 0

To

Hardware

From

Hardware Bus 1

Bus 0

Bus 1

Figure 10.2 Connecting RemoteIO Audio Unit

capture to its own play-out

You do this in a few straightforward ways:

n Set the kAudioUnitProperty_MakeConnection property on bus 0/input scope,

providing an AudioUnitConnection struct that refers to the unit’s bus 1/output

scope.

n Create an AUGraph with a node for the RemoteIO unit as its only member.Then

call AUGraphConnectNodeInput() to connect bus 1/output scope to bus 0/input

scope.

n Create a render callback function and set it as the

kAudioUnitProperty_SetRenderCallback property on bus 0/input scope. In

the callback function, call AudioUnitRender() on bus 1 of the RemoteIO unit

to manually pull the most recent set of captured samples.This works only because

input and output are coming from the same hardware and are thus wrapped by the

same I/O unit.

You’ll use the third option here, even though it means writing more code, because it

offers a nice opportunity to mess with the samples as they pass through the callback

function. Figure 10.3 shows this arrangement.

Figure 10.3 Connecting RemoteIO Audio Unit capture

to its own play-out with render callback

Setting Up the Pass-Through Example

Once again, you need to create an Empty Application in Xcode 4; in the sample code,

it’s called CH10_iOSPlayThrough.This gives you an app delegate class that has just a

UIWindow.You’ll add some properties and a struct to that. Rewrite the app delegate

header file, as shown in Listing 10.16.

Listing 10.16 Header File for iOS Audio Unit Pass-Through App

#import <UIKit/UIKit.h>

#import <AudioToolbox/AudioToolbox.h>

typedef struct {

AudioUnit rioUnit;

AudioStreamBasicDescription asbd;

float sineFrequency;

float sinePhase;

} EffectState;

@interface CH10_iOSPlayThroughAppDelegate : UIResponder <UIApplicationDelegate>

@property (nonatomic, retain) UIWindow *window;

@property (assign) EffectState effectState;

@end

This defines a struct that you will use to pass state to the render callback function.You

might ask, wouldn’t it be easier to just pass the app delegate object, as you did with the

interruption handler in the previous example? And you’d be right to say that it’s easier to

work with objects than pointers. However, Objective-C messaging is more expensive

241Audio Units on iOS

RemoteIO

Unit

Render

Callback

Function

Bus 0

To

Hardware

From

Hardware Bus 1

Bus 0

Bus 1

than C function calls and struct member access.Worse, the expense is unpredictable.That

was okay for the interruption handler, which is called only in exceptional circumstances

and only once per event. But render callbacks are called many times each second, and as

Chapter 7 stated, you need to keep the work you do in a render callback fast and pre-

dictable, which Obj-C messaging is not. If you can possibly work with simple pointers

instead of Objective-C objects, you should.

The struct has the Remote I/O audio unit itself (so you know where to pull cap-

tured samples from), the stream format as an AudioStreamBasicDescription (so you

know how to do your DSP math on samples in the callback), and two sine-related floats

that we’re saving as a surprise for later.As far as properties go, you simply need one for

this EffectState struct and the window that the Xcode template provides.

In the implementation file, Xcode has already set up the usual app delegate lifecycle

methods.You will be building out applicationDidFinishLaunching:withOptions:,

as well as adding callback and helper functions of our own. Listing 10.17 shows the out-

line of the .m file.

Listing 10.17 Outline of App Delegate Implementation File for iOS Play-Through

#import "CH10_iOSPlayThroughAppDelegate.h"

@implementation CH10_iOSPlayThroughAppDelegate

#pragma mark - @synthesizes

// Insert Listing 10.18 here

#pragma mark helpers

// Insert Listing 4.2 here

// Insert Listings 10.28 - 10.30 here

#pragma mark callbacks

// Insert Listing 10.27 here

#pragma mark app lifecycle

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

// Set up audio session

// Insert Listing 10.19 here

// Is audio input available?

// Insert Listing 10.20 here

// Get hardware sample rate

// Insert Listing 10.21 here

242 Chapter 10 Core Audio on iOS

Listing 10.17 Continued

// Get Rio unit from audio component manager

// Insert Listing 10.22 here

// Configure Rio unit

// Insert Listings 10.23 - 10.24 here

// Set callback method

// Insert Listing 10.25 here

// Start Rio unit

// Replace to bottom of method with Listing 10.26

// Override point for customization after application launch.

[self.window makeKeyAndVisible];

return YES;

}

- (void)applicationWillResignActive:(UIApplication *)application

{}

- (void)applicationDidEnterBackground:(UIApplication *)application

{}

- (void)applicationWillEnterForeground:(UIApplication *)application

{}

- (void)applicationDidBecomeActive:(UIApplication *)application

{}

- (void)applicationWillTerminate:(UIApplication *)application

{}

@end

You can start filling out this implementation with the easy stuff. Copy over your

CheckError() function from Listing 4.2 and then fill in the obvious synthesize state-

ments, as in Listing 10.18.

Listing 10.18 Synthesizing Properties for iOS Play-Through Example

@synthesize window = _window;

@synthesize effectState = _effectState;

243Audio Units on iOS

Setting Up the RemoteIO Audio Unit for Capture and Play-Out

Now let’s write an applicationDidFinishLaunching:withOptions: method that

sets up the audio unit at startup, setting aside for now any of the callback methods you

need.As with the previous example, you begin by initializing the audio session, in

Listing 10.19.

Listing 10.19 Setting Up Audio Session for iOS Play-Through

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

// Set up the audio session

CheckError(AudioSessionInitialize(NULL,

kCFRunLoopDefaultMode,

MyInterruptionListener,

self),

"Couldn't initialize the audio session");

UInt32 category = kAudioSessionCategory_PlayAndRecord;

CheckError(AudioSessionSetProperty(kAudioSessionProperty_AudioCategory,

sizeof(category),

&category),

"Couldn't set the category on the audio session");

Notice that, this time, you set kAudioSessionCategory_PlayAndRecord as the

category for the audio session.This is crucial because you don’t get access to capture

hardware unless you specifically ask for it with a suitable category.

You’re not done with the audio session.You also need to check to see whether audio

input is available.All iPhones and iPads have microphones, but early iPod touches did

not, and if Apple ever releases an SDK for the Apple TV, that will probably be another

no-mic device.You can query the audio session for the property

kAudioSessionProperty_AudioInputAvailable.The value of the property is

nonzero if input is available. If it’s not, the app shows a failure alert and bails. Listing

10.20 shows this logic.

Listing 10.20 Checking for Audio Input Availability on iOS

UInt32 ui32PropertySize = sizeof (UInt32);

UInt32 inputAvailable;

CheckError(AudioSessionGetProperty(kAudioSessionProperty_AudioInputAvailable,

&ui32PropertySize,

&inputAvailable),

"Couldn't get current audio input available prop");

if (! inputAvailable) {

UIAlertView *noInputAlert =

244 Chapter 10 Core Audio on iOS

Listing 10.20 Continued

[[UIAlertView alloc] initWithTitle:@"No audio input"

message:@"No audio input device is currently attached"

delegate:nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[noInputAlert show];

[noInputAlert release];

return YES;

}

Granted, your own apps should be more robust than just giving up if there’s no input

hardware at startup. One way to do this is to use AudioSessionAddProperty

Listener() to provide a function that can be called when the kAudioSession

Property_AudioInputAvailable property changes (when a microphone is attached

or removed).That function could re-enable the recording-specific parts of your UI, start

recording automatically, and so on.

Another interesting property to inspect is the hardware sampling rate. Later in this

example, you’ll be setting up an AudioStreamBasicDescription to declare the format

you want to work with. Instead of assuming that an arbitrary value (say, 44100.0) is suit-

able, you can scale up or down to whatever the hardware is using and maybe save Core

Audio the expense of resampling to a rate you’ve declared. Listing 10.21 shows how to

get the sampling rate property.

Listing 10.21 Getting the Hardware Sampling Rate on an iOS Device

Float64 hardwareSampleRate;

UInt32 propSize = sizeof (hardwareSampleRate);

CheckError(AudioSessionGetProperty(

kAudioSessionProperty_CurrentHardwareSampleRate,

&propSize,

&hardwareSampleRate),

"Couldn't get hardwareSampleRate");

NSLog (@"hardwareSampleRate = %f", hardwareSampleRate);

As with pretty much every other property-based API in Core Audio, you need to

look in the docs to get the property value’s type and be prepared to receive that as a

pointer. In the case of kAudioSessionProperty_CurrentHardwareSampleRate, it’s a

Float64, which makes sense because that’s also the type the mSampleRate uses in

AudioStreamBasicDescription.

Now you need an instance of the I/O unit. iOS uses the Audio Component Manager

API, described in Chapter 7, and has never included the legacy Component Manager;

you need to worry about only the modern versions of these calls. Listing 10.22 shows

how we get the Remote IO unit.

245Audio Units on iOS

Listing 10.22 Getting RemoteIO AudioUnit from Audio Component Manager

// Describe the unit

AudioComponentDescription audioCompDesc;

audioCompDesc.componentType = kAudioUnitType_Output;

audioCompDesc.componentSubType = kAudioUnitSubType_RemoteIO;

audioCompDesc.componentManufacturer = kAudioUnitManufacturer_Apple;

audioCompDesc.componentFlags = 0;

audioCompDesc.componentFlagsMask = 0;

// Get the RIO unit from the audio component manager

AudioComponent rioComponent = AudioComponentFindNext(NULL,

&audioCompDesc);

CheckError(AudioComponentInstanceNew(rioComponent,

&_effectState.rioUnit),

"Couldn't get RIO unit instance");

As when specifying and finding Audio Units on OS X, you use a struct to describe what

you’re looking for, in terms of component type, subtype, and manufacturer.Then you

iterate over matches with AudioComponentFindNext().The description itself is a lot

like the earlier AudioComponentDescriptions, except that instead of using

kAudioUnitSubType_DefaultOutput or kAudioUnitSubType_HALOutput, iOS uses

the subtype kAudioUnitSubType_RemoteIO.This matches only one component on

iOS, so you don’t have to bother iterating over AudioComponentFindNext(). Instead,

you grab the first AudioComponent returned by this call.You can then use that with

AudioComponentInstanceNew() to populate an AudioUnit pointer.

When you have this audio unit, you need to enable IO on the scope/bus combina-

tions that you will use, as you did in Chapter 8’s pass-through example: by setting the

kAudioOutputUnitProperty_EnableIO property to 1 (see Listing 10.23).

Listing 10.23 Enabling IO on RemoteIO Audio Unit

// Set up the RIO unit for playback

UInt32 oneFlag = 1;

AudioUnitElement bus0 = 0;

CheckError(AudioUnitSetProperty (_effectState.rioUnit,

kAudioOutputUnitProperty_EnableIO,

kAudioUnitScope_Output,

bus0,

&oneFlag,

sizeof(oneFlag)),

"Couldn't enable RIO output");

// Enable RIO input

AudioUnitElement bus1 = 1;

CheckError(AudioUnitSetProperty(_effectState.rioUnit,

kAudioOutputUnitProperty_EnableIO,

246 Chapter 10 Core Audio on iOS

Listing 10.23 Continued

kAudioUnitScope_Input,

bus1,

&oneFlag,

sizeof(oneFlag)),

"Couldn't enable RIO input");

With IO enabled, you should also set the format you want to receive from capture

(bus 1/output scope) and provide to play-out (bus 0/input scope). If you weren’t going

to mess with the samples in the render callback, you could skip this step; however, you

do want to do that here, so you might as well make sure that the sample format is some-

thing that you can easily work with. For example, if it defaulted to 8.24 fixed point, it

would be a lot harder to do interesting math. Listing 10.24 sets up a 16-bit, stereo, signed

integer PCM format that will be easier to work with.

Listing 10.24 Setting Stream Format on RemoteIO Audio Unit

// Setup an ASBD in the iPhone canonical format

AudioStreamBasicDescription myASBD;

memset (&myASBD, 0, sizeof (myASBD));

myASBD.mSampleRate = hardwareSampleRate;

myASBD.mFormatID = kAudioFormatLinearPCM;

myASBD.mFormatFlags = kAudioFormatFlagsCanonical;

myASBD.mBytesPerPacket = 4;

myASBD.mFramesPerPacket = 1;

myASBD.mBytesPerFrame = 4;

myASBD.mChannelsPerFrame = 2;

myASBD.mBitsPerChannel = 16;

// Set format for output (bus 0) on the RIO’s input scope

CheckError(AudioUnitSetProperty (_effectState.rioUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Input,

bus0,

&myASBD,

sizeof (myASBD)),

"Couldn't set the ASBD for RIO on input scope/bus 0");

// Set ASBD for mic input (bus 1) on RIO’s output scope

CheckError(AudioUnitSetProperty (_effectState.rioUnit,

kAudioUnitProperty_StreamFormat,

kAudioUnitScope_Output,

bus1,

&myASBD,

sizeof (myASBD)),

"Couldn't set the ASBD for RIO on output scope/bus 1");

247Audio Units on iOS

As you fill in the AudioStreamBasicDescription, you use the hardwareSampleRate

that you looked up in Listing 10.21. Beyond that, you specify kAudioFormatFlags

Canonical (which means you’ll be working with signed integer samples) and two

channels, in case the user has a stereo mic connected.

Next, you set up your render callback. Recall from Chapters 7 and 8 that this func-

tion is called every time the RemoteIO unit needs to pull a buffer full of samples.As

you set the callback in Listing 10.25, you provide a single user data pointer to this func-

tion, and that’s what the EffectState struct is for.

Listing 10.25 Setting Up Render Callback for RemoteIO Audio Unit

_effectState.asbd = myASBD;

_effectState.sineFrequency = 30;

_effectState.sinePhase = 0;

// Set the callback method

AURenderCallbackStruct callbackStruct;

callbackStruct.inputProc = InputModulatingRenderCallback;

callbackStruct.inputProcRefCon = &_effectState;

CheckError(AudioUnitSetProperty(_effectState.rioUnit,

kAudioUnitProperty_SetRenderCallback,

kAudioUnitScope_Global,

bus0,

&callbackStruct,

sizeof (callbackStruct)),

"Couldn't set RIO's render callback on bus 0");

The callback function, which you’ll write later, needs the

AudioStreamBasicDescription to make sense of the samples, as well as these

sineFrequency and sinePhase variables that we’re still keeping secret.We’ll unveil

their purpose when we cover the InputModulatingRenderCallback() function.

That’s all the setup needed. Listing 10.26 starts the RemoteIO unit and lets

applicationDidFinishLaunching:withOptions: finish its usual setup.

Listing 10.26 Starting the RemoteIO Unit

// Initialize and start the RIO unit

CheckError(AudioUnitInitialize(_effectState.rioUnit),

"Couldn't initialize the RIO unit");

CheckError (AudioOutputUnitStart (_effectState.rioUnit),

"Couldn't start the RIO unit");

printf("RIO started!\n");

// Override point for customization after application launch.

[self.window makeKeyAndVisible];

return YES;

}

248 Chapter 10 Core Audio on iOS

When the application startup reaches the bottom of this method, the RemoteIO unit

starts making callbacks to a function called InputModulatingRenderCallback(),

which you still need to write. It continues to do this until you leave the application

(because you don’t have the audio-in-background mode to the Info.plist) or until it’s

interrupted.

When you initialized the audio session, you provided an interruption callback func-

tion, so let’s add that now (see Listing 10.27).

Listing 10.27 Handling RemoteIO Unit Interruptions on iOS

static void MyInterruptionListener (void *inUserData,

UInt32 inInterruptionState) {

printf ("Interrupted! inInterruptionState=%ld\n",

inInterruptionState);

CH10_iOSPlayThroughAppDelegate *appDelegate =

(CH10_iOSPlayThroughAppDelegate*)inUserData;

switch (inInterruptionState) {

case kAudioSessionBeginInterruption:

break;

case kAudioSessionEndInterruption:

CheckError(AudioSessionSetActive(true),

"Couldn't set audio session active");

CheckError(AudioUnitInitialize(appDelegate.effectState.rioUnit),

"Couldn't initialize RIO unit");

CheckError (AudioOutputUnitStart (appDelegate.effectState.rioUnit),

"Couldn't start RIO unit");

break;

default:

break;

};

}

As in the previous example, the case you care about is the end of an interruption,

which happens, for example, when the user declines an incoming phone call.When this

happens, try to reset the audio session active and restart the RemoteIO unit.

Still, all the real work of the app happens in the render callback. It’s the one thing left

to do, so let’s do it...

The RemoteIO Render Callback

The render callback gets called whenever RemoteIO needs samples to play.This is similar

to Chapter 8’s example, where the player AUHAL called you for samples, which you

fetched from a CARingBuffer that was being filled by an input AUHAL.That sort of

complexity isn’t needed on iOS, where the input and output devices are both represented

249Audio Units on iOS

by a single audio unit.When RemoteIO needs to play samples, you can just pull from

RemoteIO’s own bus 1 capture buffers.

Of course, the only reason you’re using a render callback is to perform some process-

ing on the samples. So just what are you going to do with them? For kicks, you’ll imple-

ment a simple and very popular audio filter called a ring modulator.This effect consists

of multiplying two signals: a source signal and a modulator signal. Mathematically, this

means that for a given time, t:

R(t) = C(t) × M(t)

Here, C is the source signal, M is the modulator function, and R is the resulting signal.

It might sound obscure, but this is an effect that you’ve probably heard before; it was

one of the first really interesting effects that could be created with analog signal process-

ing. In fact, the name ring modulator comes from the ring of diodes originally used to

produce the effect on analog equipment. One of its most common uses is in creating

“robotic” voices; the BBC Radiophonic Workshop famously used it in the early 1960s to

create the voices of the Daleks on TV’s Doctor Who.6

You can create a ring modulator by calculating your own sine wave, as you have done

in several examples, but instead of playing a sine wave, you will multiply the captured

samples by the current sine value.The best robotic voices come from a sine wave in the

range of 20–30 Hz, so that’s why you set _effectState.sineFrequency = 30 back

in Listing 10.25.

The first thing to do in the render callback, as shown in Listing 10.28, is to cast the

user data pointer back to an EffectState pointer so that you can get to the fields

you’ll need.

Listing 10.28 Initial Setup of Render Callback from RemoteIO

static OSStatus InputModulatingRenderCallback (

void * inRefCon,

AudioUnitRenderActionFlags * ioActionFlags,

const AudioTimeStamp * inTimeStamp,

UInt32 inBusNumber,

UInt32 inNumberFrames,

AudioBufferList * ioData) {

EffectState *effectState = (EffectState*) inRefCon;

Next, in Listing 10.29, you pull captured samples from the RemoteIO unit’s bus 1 out-

put and put them into the ioData parameter that the RemoteIO unit passed in and

expects you to fill.

250 Chapter 10 Core Audio on iOS

6 Owen Spratley’s “Dalek Vocal FX Creation: A Short Primer” (http://homepage.powerup.com.au/

~spratleo/Tech/Dalek_Voice_Primer.html) covers how the BBC used ring modulators to voice the

Daleks and how the effect has been tweaked over the years.

http://homepage.powerup.com.au/~spratleo/Tech/Dalek_Voice_Primer.html
http://homepage.powerup.com.au/~spratleo/Tech/Dalek_Voice_Primer.html

Listing 10.29 Copying Captured Samples to Play-Out Buffer in RemoteIO Render

Callback

// Just copy samples

UInt32 bus1 = 1;

CheckError(AudioUnitRender(effectState->rioUnit,

ioActionFlags,

inTimeStamp,

bus1,

inNumberFrames,

ioData),

"Couldn't render from RemoteIO unit");

If you were interested in only audio pass-through, you would be done: Captured sam-

ples would be in the ioData buffer, ready to play out.That’s a lot easier than working

with the CARingBuffer on OS X, right? But of course, the idea in this example is to

perform an effect by processing the samples. Listing 10.30 shows the loop that does this.

Listing 10.30 Performing Ring Modulation Effect on a Buffer of Samples

// Walk the samples

AudioSampleType sample = 0;

UInt32 bytesPerChannel = effectState->asbd.mBytesPerFrame /

effectState->asbd.mChannelsPerFrame;

for (int bufCount=0; bufCount<ioData->mNumberBuffers; bufCount++) {

AudioBuffer buf = ioData->mBuffers[bufCount];

int currentFrame = 0;

while (currentFrame < inNumberFrames) {

// Copy sample to buffer, across all channels

for (int currentChannel=0;

currentChannel<buf.mNumberChannels;

currentChannel++) {

memcpy(&sample,

buf.mData +

(currentFrame * effectState->asbd.mBytesPerFrame) +

(currentChannel * bytesPerChannel),

sizeof(AudioSampleType));

float theta = effectState->sinePhase * M_PI * 2;

sample = (sin(theta) * sample);

memcpy(buf.mData +

(currentFrame * effectState->asbd.mBytesPerFrame) +

(currentChannel * bytesPerChannel),

&sample,

sizeof(AudioSampleType));

251Audio Units on iOS

Listing 10.30 Continued

effectState->sinePhase += 1.0 /

(effectState->asbd.mSampleRate /

effectState->sineFrequency);

if (effectState->sinePhase > 1.0) {

effectState->sinePhase -= 1.0;

}

}

currentFrame++;

}

}

return noErr;

}

This is a triply nested loop, so here’s what’s going on:

1. Loop over all the buffers in the AudioBufferList (which you’ve already filled

with the capture data) and get each as an AudioBuffer.

2. For each buffer, loop over the number of frames that the callback asks for.

3. For each frame, loop over the number of channels, which you set as 2 in the

AudioStreamBasicDescription.

4. You memcpy out one sample (of type AudioSampleType) by calculating its

address.

5. Multiply the sample by the value of the sine function, which varies from -1.0

to 1.0.

6. You memcpy the modified sample back to its original address.

7. Update the sinePhase, which is simply a value that increases from 0.0 to 1.0

and gets reset if it ever exceeds 1.0.Then you multiply this phase by 2π to get the

theta for the sine function in the earlier step.

So outside of a little trigonometry, this is mostly about looking up samples in a buffer

and playing with them. (Well, that and sounding like a Dalek.) This function is the last

thing you need to do, so you can start up the app on the Simulator or on a device (be

sure you have a mic set up) and start speaking into it.You should hear your own voice

with a nice robotic effect added to it.

The ring modulator is a simple function, but the steps here are the key to doing any

kind of digital signal processing on iOS: Run the audio through a render callback and

operate directly on the samples there. If you wanted to use some other arbitrary DSP

function on your audio, such as an “auto tune” type of effect, you would use pretty

much these same steps:The difference would be only in the specifics of the sample

processing.

252 Chapter 10 Core Audio on iOS

Other iOS Audio Tricks
Knowing your way around Audio Session and the specific behavior of the RemoteIO

unit represents most of what is unique to the iOS platform. However, you need to be

aware of a few other interesting features—and a few hazards.

Remote Control on iOS

iOS devices have optional hardware accessories that are meant to control audio playback

applications. Examples include the default headset, which you can click to produce play,

pause, next track, and previous track events. Bluetooth and dock keyboards also have

play/pause, next, and previous buttons. Even without these accessories, you can generate

these events by double-clicking the home button and swiping right on the dock, which

exposes soft play/pause, next, and previous buttons, as well as the icon of the active

audio app.

All these inputs create UIEvents of type UIEventTypeRemoteControl, with a

variety of subtypes that include UIEventSubtypeRemoteControlPlay,

UIEventSubtypeRemoteControlNextTrack, and so on.

To opt in to handling these events, you need some member of your responder

chain—view, view controller, or even a custom subclass of UIApplication—to be able

to become the first responder by overriding canBecomeFirstResponder to return YES.

Before actually becoming the first responder, your event-handling class needs to call

-[UIApplication beginReceivingRemoteControlEvents] to start receiving

these events.The events are received in the callback method -[UIResponder

remoteControlReceivedWithEvent:], which passes in a UIEvent that you can

then inspect and respond to. For example, if you had an Audio Queue–based player

app, you might respond to UIEventSubtypeRemoteControlPause by calling

AudioQueuePause().

Most of these devices also have the capability to control volume, via volume up and

down buttons or a slider in the dock controls.The master gain volume of the device is

not delivered to your app as an event, nor are you able to change it programmatically.

The Media Player framework does provide an MPVolumeView that you can add to a

UIKit GUI and that is bound to the system volume:Adjusting its slider raises or lowers

the system volume, and changing the volume via remote controls is reflected in the

slider. If one or more Apple TV or other AirPlay device is in range of the device, this

view also shows a route button that enables the user to send audio (and video) to a

selected device.

Bluetooth creates another complication. Ordinarily, Bluetooth headsets are not used

for audio input. However, if you’ve set your Audio Session category to allow recording,

you can use a paired Bluetooth headset by calling AudioSessionSetProperty() to set

the kAudioSessionProperty_OverrideCategoryEnableBluetoothInput property

with a value of 1.

253Other iOS Audio Tricks

iOS Hardware Hazards

A few low-level hazards might catch you by surprise, depending on how demanding

your app is.

Compressed formats can use hardware-accelerated encoding and decoding, which

saves CPU and battery life, but whether you get it depends on a number of factors.

Chief among these is that only one instance of a given codec can be decoded in hard-

ware at a given time. If the Music application is playing an AAC file from your iTunes

collection, and your app starts playing an AAC file with an Audio Queue, your app will

perform its decoding in software instead.You can inspect the availability of hardware

decoding using AudioFormatGetProperty(); the Apple document “Technical Q&A

QA1663: Determining the Availability of the AAC Hardware Encoder at Runtime,” has

details on how to get the needed properties and interpret the results.7

Not every codec on iOS is supported in hardware.AAC,Apple Lossless (ALAC), and

MP3 are the only formats decoded by both hardware and software. Formats such as

PCM, IMA4, µ-law, and α-law are uncompressed and don’t benefit from hardware

decoding. iLBC (Internet Low Bitrate Codec), a useful codec for VoIP apps, is also

software-only. On the other hand, High-Efficiency AAC (HE-AAC) does not have a

software decoder in iOS 4 and, therefore, can be decoded only in hardware; this means

that an iOS device can play only one HE-AAC stream at a time.

Audio apps that use an AUGraph and keep running in the background have a differ-

ent hardware hazard to worry about.When the screen locks, the size of the data being

rendered changes from 1,024 samples (22 milliseconds at 44.1 KHz) to 4,096 samples

(88 milliseconds).This is a power-saving optimization because the system doesn’t need to

run at a screen-based refresh rate when the screen is off.An output-only AUGraph can

glitch, in this case, because units are not typically prepared to produce this much audio.

The fix, as explained in Apple Q&A 1606, is to set the

kAudioUnitProperty_MaximumFramesPerSlice property to 4,096 on every node in

your graph.Again, this affects only apps that use output-only AUGraphs and expect to

keep running after the screen locks.

Summary
This chapter covered a lot of material—but really, you brought a lot of it with you.The

use of Audio Queues and Audio Units here is not much different from the material on

Mac OS X in earlier chapters, and most of the code in these examples just reuses and

combines earlier examples.The syntax of these APIs is identical to what you covered

before:What’s different is the semantics because the ideas of application “backgrounding”

and the single I/O device are unique to iOS. Even where this chapter dealt with new

254 Chapter 10 Core Audio on iOS

7 Apple Technical Q&A QA1663: http://developer.apple.com/library/ios/#qa/qa1663/_index.html.

http://developer.apple.com/library/ios/#qa/qa1663/_index.html

APIs, such as the Audio Session, they’re clearly in the style and spirit of the OS X APIs

that preceded them.

Some other issues are specific to iOS Core Audio programming, to say nothing of

other media frameworks on iOS (such as Media Player and AVFoundation), and are eas-

ier for new programmers and more appropriate to some tasks than Core Audio. Check

out Apple’s Multimedia Programming Guide for a comparison of these frameworks and

their appropriate uses.8 You’ll also find a few points of overlap in their respective docs.

For example, Core Media, which underlies AVFoundation, offers functions to convert

between its CMSampleBuffer type and Core Audio’s AudioBufferList.

The next chapter switches gears from sound processing to event processing and looks

at how MIDI represents musical events and how you can tie this into the audio systems

of Mac OS X and iOS with Core MIDI.

255Summary

8 Apple’s Multimedia Programming Guide: http://developer.apple.com/library/ios/documentation/

AudioVideo/Conceptual/MultimediaPG/.

http://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/
http://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/

This page intentionally left blank

11

Core MIDI

Music is one of the primary reasons to even have audio frameworks on Mac and iOS.

Many APIs will be of great use to musicians.Audio Units and AUGraphs enable you to

mix audio and add effects,Audio Conversion lets you export your sound to formats end

users can enjoy on their devices, and Open AL can even put you in a virtual concert

environment.

That said, one thing musicians really want from an audio platform is the capability to

connect their instruments to the system so that their keyboards, drum kits, and other

devices can play into or even be played by the computer. For decades, the way to do this

has been through MIDI, a widely adopted standard for adapting musical performance as

digital events. MIDI doesn’t record or play sounds; it signals events that represent the

music itself.And it’s really good at what it does.

OS X and iOS both implement Core MIDI, which enables your software to interact

with MIDI devices.This chapter looks as how Core MIDI works and how it ties into

the rest of Core Audio to create a complete software platform for music apps.

MIDI Concepts
MIDI (pronounced “mid-e”) is an acronym for Musical Instrument Digital Interface. It

is an industry-standard digital communications protocol that enables musical instruments

(synthesizers, drum machines, control surfaces, and so on), computers, and software to

exchange information and control signals.

It’s important to understand that MIDI isn’t music and does not contain any actual

sounds. It’s nothing more than a set of events, or instructions, that tell a device how to

perform an action. For example, a Note On message indicates that a note from an

instrument has been played. Likewise, the corresponding Note Off message indicates that

the note is done playing.

To start, you need to be familiar with the common terms of MIDI. Here are the

main ones:

n Synthesizers and controllers: These are the two basic types of devices that

generate MIDI data.The primary difference between them is that synthesizers

generate both MIDI data and audible sound, whereas controllers generate only

MIDI data.An electronic piano keyboard is a good example of a synthesizer.An

example of a controller might be a foot pedal or control surface, a device that does

not emit any sound.

n Sequencer: A sequencer performs playback (and recording) of MIDI events.

Sequencers can be software (GarageBand) or dedicated hardware devices.

n Events: A MIDI event, sometimes referred to as a message, is a variable-length

collection of bytes that compose a MIDI command. Each event correlates to a

specific musical action and can have additional attributes.Typical MIDI events are

Note On, Note Off, Pitch Bend, and Aftertouch.

n Channel: MIDI contains a total of 16 discrete channels that events can travel

through. For example, channel 2 could carry information about a piano keyboard

to receive on channel 2 in the sequencer, and channel 5 could carry information

about a different instrument. Playing more than 16 simultaneous instruments

requires the use of banks (multiple MIDI interfaces).

Core MIDI
The Core MIDI framework provides a single set of MIDI system services. It offers high-

performance access to MIDI hardware devices from your application and provides

abstractions for interacting with MIDI devices on a MIDI network.

Core MIDI utilizes a central MIDI server that handles all the MIDI communications

and allows for all MIDI devices and endpoints to be shared system wide simultaneously

among all applications. However, you do not automatically start receiving and transmit-

ting by default; your application must first opt in to the services you want from the

MIDI server.

Core MIDI Architecture

At the kernel level of the Core MIDI implementation is IOKit, where all the actual I/O

happens over the transport in use (USB, FireWire, Serial, and so on).Above the kernel in

user space is the Core MIDI server subprocess that loads any MIDI drivers and processes

MIDI requests.At the topmost level is the Core MIDI framework that your application

links against.This arrangement is shown in Figure 11.1. MIDI services for your applica-

tions are communicated with the Core MIDI Server via Mach IPC.

Core MIDI Terminology

In Core MIDI, a device is represented by three basic objects: MIDIDeviceRef,

MIDIEntityRef, and MIDIEndpointRef.All are typedef’d to a parent,

MIDIObjectRef.These objects are layered together in a hierarchy so that devices contain

entities, and entities contain endpoints. Figure 11.2 illustrates this hierarchy.

258 Chapter 11 Core MIDI

Figure 11.1 Core MIDI architecture

The bottom-level object is a MIDIEndpointRef, which is a simple MIDI source or

destination, meaning a single 16-channel MIDI stream.The actual MIDI events are

transmitted/received over an endpoint.

The next-higher-level object is the MIDIEntityRef. It is simply groups related and

logical endpoints together. For example, if your program wants to communicate bidirec-

tionally with a device, you know which endpoints represent a pair, as a way of associat-

ing the sources and destinations.

Finally, at the top is a MIDIDeviceRef.This object represents a physical device.

259Core MIDI

App#1 App#2 App#3

IOKit Kernel

MIDI Server

CoreMIDI CoreMIDI CoreMIDI

MIDI Driver MIDI Driver MIDI Driver

MIDIDevice

MIDIEntity (Port1)

MIDIEndpoint

(Port1 In)

MIDIEndpoint

(Port1 Out)

MIDIEntity (Port2)

MIDIEndpoint

(Port2 In)

MIDIEndpoint

(Port2 Out)

MIDIEntity (Thru)

MIDIEndpoint

(Thru Out)

Figure 11.2 MIDI device hierarchy overview

Figure 11.3 MIDI device from Audio MIDI setup

The MIDI device is represented by the icon shown in Figure 1.3.The little “nubs”

underneath the icon represent entities, which are a grouping of source and destination

endpoints. In this example, the device has two entities, each with a source and destina-

tion endpoint, and a third entity with a single destination endpoint.

Core MIDI Properties

Similar to Core Audio and Audio Units, all Core MIDI devices, entities, and endpoints

have properties.Typically, the Core MIDI server and driver layer create properties; how-

ever, the Core MIDI property system is also extensible.Applications can add their own

custom properties to objects.

The Core MIDI property system also offers the feature of inheritance. Properties are

inherited following the abstraction rule of devices, entity, endpoint. For example, a dis-

crete endpoint would not necessarily contain a property with the manufacturer name.

The manufacturer name would typically be a property assigned to the device. In that

example, Core MIDI would still enable you to query the endpoint for the manufacturer

name; if it was not found, it would ask its parent entity and finally would return the

property found in the device.

You might expect to find these common properties assigned to Core MIDI objects:

n Devices, entities, and endpoints, with user-definable names

n Device’s manufacturer and model name assigned by the driver

n Device’s MIDI system-exclusive ID

n Device’s maximum transmit speed

The properties come in various types: CFStringRef, CFDataRef, or CFNumbers.The

documentation for the various property name constants indicates the type you get back.

In contrast to other property getters in Core Audio that set a void*, Core MIDI’s prop-

erties have type-specific getter and setter functions: MIDIObjectGetString

Property(), MIDIObjectSetDataProperty(), and so on.A MIDIObjectGet

Properties() call returns a CFArrayRef of all the object’s properties.

MIDI Messages

MIDI messages are tiny.When delivered to your application, a MIDIPacket consists of a

time stamp and a small byte array.Typically, MIDI messages are just 3 bytes, commonly

referred to as status, data1, and data2.

260 Chapter 11 Core MIDI

The status byte indicates the command, and data1 and data2 deliver data specific to

the semantics of the command.The simplest and most common events, the channel

voice messages, use the high nybble of the status to indicate a command and use the low

nybble to specify which of the 16 MIDI channels is affected by the event.Assuming n to

represent the channel (0–F), these are some of the most common messages:

n 0x8n - NOTE OFF: Stops playing a note

n 0x9n - NOTE ON: Starts playing a note

n 0xBn - POLYPHONIC AFTERTOUCH:Applies additional pressure to a note previ-

ously pressed

n 0xCn - PROGRAM CHANGE: Changes the patch number

n 0xDn - CHANNEL AFTERTOUCH: Indicates which of several previously pressed keys

has the greatest pressure

n 0xEn - PITCH WHEEL CHANGE:Applies variable pitch change

The data1 and data2 for these events depends on the particular status message. For

the NOTE ON and NOTE OFF messages, the bottom 7 bits of data1 are the specific note

(where decimal 60 is middle C), and the bottom 7 bits of data2 are a velocity that indi-

cates how quickly the key was struck or released (the high bit of both data1 and data2

is always 1 for these messages).

Many more messages exist, including more elaborate commands that can be sent with

multiple messages.You can look them up at www.midi.org/techspecs/midimessages.php

and through other formal and informal references.

Instrument Units
It’s great to get and send events via MIDI, but the initial purpose of the standard was to

communicate musical data. So when do you get to the music part? Core MIDI handles

only the signaling; to make sound, you need to look elsewhere.

You might recall that Chapter 7,“Audio Units: Generators, Effects, and Rendering,”

covered instrument units, a kind of audio unit that could produce sound (similar to gen-

erator units such as the AUFilePlayer).The key to instrument units is that they respond

to MIDI commands, so you can take incoming MIDI events and use instrument units to

create sounds in response to those commands.This is another place where the advantages

of audio units come into play.Audio Units are low latency, and it’s crucial in musical

performance to generate sound more or less immediately in response to an event that

represents a musician’s press of a digital piano key or hit on a drum head.

The glue that connects MIDI to instrument units is the Music Device API, which

consists of just four functions in the MusicDevice.h header file (and, as of Xcode 4.2, is

not part of the OS X or iOS documentation bundle).The MusicDeviceMIDIEvent()

function takes an instrument unit and the 3 bytes of a MIDI message, and makes the

instrument act on the command: If its status is NOTE ON, the unit starts playing the note

specified by data1 with the velocity in data2; if it’s NOTE OFF, it stops.

261Instrument Units

www.midi.org/techspecs/midimessages.php

Building a Simple MIDI Synthesizer
Let’s put this to work with a straightforward example.You’ll create an AUGraph with an

instrument and I/O unit, connect to any attached MIDI devices, and use Music Device

to deliver the MIDI events to the instrument unit.

Create a new command-line Core Foundation project (ours is called

CH11_MIDIToAUGraph) and link in the Audio Toolbox and Core MIDI frameworks.

Listing 11.1 shows the skeleton for the main.c program.

Listing 11.1 Outline of Core MIDI–Based Synthesizer Program

#include <CoreFoundation/CoreFoundation.h>

#import <CoreMIDI/CoreMIDI.h>

#import <AudioToolbox/AudioToolbox.h>

#pragma mark - state struct

// Insert Listing 11.2 here

#pragma mark utility functions

// Insert Listing 4.2 here

#pragma mark - callbacks

// Insert 11.8 – 11.12 here

#pragma mark - augraph

// Insert Listing 11.4 here

#pragma mark - midi

// Insert Listings 11.5 - 11.7 here

#pragma mark - main

int main (int argc, const char * argv[])

// Insert Listing 11.3

Start by copying over the CheckError() function from Listing 4.2. Next, you need a

state struct to pass around your various functions.You need to hang on to your

AUGraph, and the instrument unit within it, so that the MIDI event callbacks can send

their commands to the instrument unit at the front of the graph. Listing 11.2 shows this

MyMIDIPlayer struct.

Listing 11.2 State Struct for Core MIDI Synthesizer Program

typedef struct MyMIDIPlayer {

AUGraph graph;

AudioUnit instrumentUnit;

} MyMIDIPlayer;

262 Chapter 11 Core MIDI

The main() function defers all its functionality to convenience functions that set up

the AUGraph and connect to the MIDI devices.After these are set up, all it needs to do

is start the graph and keep the program from terminating. Listing 11.3 shows the com-

plete main() function.

Listing 11.3 main() Function for Core MIDI Synthesizer Program

int main (int argc, const char * argv[]) {

MyMIDIPlayer player;

setupAUGraph(&player);

setupMIDI(&player);

CheckError (AUGraphStart(player.graph),

"Couldn't start graph");

CFRunLoopRun();

// Run until aborted with Control-C

return 0;

}

So much for the easy parts. Now let’s do some real work.You set up the AUGraph

first, so let’s write that function first. Listing 11.4 shows setupAUGraph() in its entirety.

Listing 11.4 Setting Up an AUGraph with a MIDI-Controllable Instrument Unit

void setupAUGraph(MyMIDIPlayer *player) {

CheckError(NewAUGraph(&player->graph),

"Couldn't open AU Graph");

// Generate description that will match our output

// device (speakers)

AudioComponentDescription outputcd = {0};

outputcd.componentType = kAudioUnitType_Output;

outputcd.componentSubType = kAudioUnitSubType_DefaultOutput;

outputcd.componentManufacturer = kAudioUnitManufacturer_Apple;

// Adds a node with above description to the graph

AUNode outputNode;

CheckError(AUGraphAddNode(player->graph,

&outputcd,

&outputNode),

"AUGraphAddNode[kAudioUnitSubType_DefaultOutput] failed");

263Building a Simple MIDI Synthesizer

Listing 11.4 Continued

AudioComponentDescription instrumentcd = {0};

instrumentcd.componentManufacturer = kAudioUnitManufacturer_Apple;

instrumentcd.componentType = kAudioUnitType_MusicDevice;

instrumentcd.componentSubType = kAudioUnitSubType_DLSSynth;

AUNode instrumentNode;

CheckError(AUGraphAddNode(player->graph,

&instrumentcd,

&instrumentNode),

"AUGraphAddNode[kAudioUnitSubType_DLSSynth] failed");

// Opening the graph opens all contained audio units but

// does not allocate any resources yet

CheckError(AUGraphOpen(player->graph),

"AUGraphOpen failed");

// Get the reference to the AudioUnit object for the

// instrument graph node

CheckError(AUGraphNodeInfo(player->graph,

instrumentNode,

NULL,

&player->instrumentUnit),

"AUGraphNodeInfo failed");

// Connect the output source of the speech synthesis

// AU to the input source of the output node

CheckError(AUGraphConnectNodeInput(player->graph,

instrumentNode,

0,

outputNode,

0),

"AUGraphConnectNodeInput failed");

// Now initialize the graph (causes resources to be allocated)

CheckError(AUGraphInitialize(player->graph),

"AUGraphInitialize failed");

}

This is a fairly long listing, but it’s all things you did repeatedly in Chapters 7 and 8.

You create an AUGraph and set up the default output unit to connect to the audio

output hardware.Then you use type kAudioUnitType_MusicDevice and subtype

kAudioUnitSubType_DLSSynth to create a synthesizer instrument unit.You need to get

the actual instrument unit from the AUNode so that you can send it your MIDI events.

Aside from that, everything else here is the usual care and feeding of an AUGraph: Open

it, connect nodes, and initialize.

264 Chapter 11 Core MIDI

Connecting to MIDI

Now let’s get to figuring out what MIDI devices are available and make some connec-

tions. First, you start in Listing 11.5 by creating a MIDIClientRef, which is a “session”

object that represents your application’s participation in MIDI.

Listing 11.5 Creating a MIDIClientRef

void setupMIDI(MyMIDIPlayer *player) {

MIDIClientRef client;

CheckError (MIDIClientCreate(CFSTR("Core MIDI to System Sounds Demo"),

MyMIDINotifyProc,

player,

&client),

"Couldn't create MIDI client");

The MIDIClientRef takes a string to identify the client, a callback function, and a

context/user info pointer to send to the callback, as well as an I/O pointer in which it

returns the created MIDIClientRef.The callback, of type MIDINotifyProc, gets called

when devices are added or removed, or when a device needs to signal a property change.

You’ll write a trivial MyMIDINotifyProc() later.

Now that you have a client, you can create an input port to receive incoming MIDI

messages, as in Listing 11.6.

Listing 11.6 Creating a MIDIPortRef

MIDIPortRef inPort;

CheckError (MIDIInputPortCreate(client,

CFSTR("Input port"),

MyMIDIReadProc,

player,

&inPort),

"Couldn't create MIDI input port");

The MIDIInputPortCreate() function takes the client object, a name string, a call-

back function pointer and its context object, and a pointer in which it returns the cre-

ated MIDIPortRef.The input port receives incoming MIDI messages in the callback

function, specified by the MIDIReadProc type.This is where you’ll be writing your

message-handling code.

You have an input port, but you haven’t yet connected anything to it.To do that, you

need to iterate over the available MIDI sources and get their endpoints.You do this in

Listing 11.7.

265Building a Simple MIDI Synthesizer

Listing 11.7 Connecting a MIDI Port to Available Sources

unsigned long sourceCount = MIDIGetNumberOfSources();

printf ("%ld sources\n", sourceCount);

for (int i = 0; i < sourceCount; ++i) {

MIDIEndpointRef src = MIDIGetSource(i);

CFStringRef endpointName = NULL;

CheckError(MIDIObjectGetStringProperty(src,

kMIDIPropertyName,

&endpointName),

"Couldn't get endpoint name");

char endpointNameC[255];

CFStringGetCString(endpointName,

endpointNameC,

255,

kCFStringEncodingUTF8);

printf(" source %d: %s\n", i, endpointNameC);

CheckError (MIDIPortConnectSource(inPort,

src,

NULL),

"Couldn't connect MIDI port");

}

You need to start with MIDIGetNumberOfSources() because MIDIGetSource()

takes an index as its parameter. By getting the number of available sources, you can iter-

ate over all of them and get MIDIEndpointRefs for each one.This example connects to

every discovered source, meaning that if you plug in two MIDI devices, you will be

playing notes when either sends an event.You could be more deliberate by inspecting

each source and deciding, or letting the user decide whether to connect to a given

source.The properties of each source might help you decide. In this example, you get

just one property, the kMIDIPropertyName, and log it with printf().Several dozen

property constants are defined, so you might want to see whether a given device is from

a certain manufacturer (kMIDIPropertyManufacturer), what kind of device it is

(kMIDIPropertyIsDrumMachine, kMIDIPropertyIsSampler, and so on), what fea-

tures it supports (kMIDIPropertyReceivesNotes, kMIDIPropertyTransmitsClock,

and so on), or other criteria.

You connect to the source with MIDIPortConnectSource(), which takes your

input MIDIPortRef, a source MIDIEndpointRef, and a second context object to send

to the input port’s callback that you declared in Listing 11.6.This enables you to set an

object to associate a callback with a specific source that is sending the event.You don’t

need it if you’re blindly accepting notes from all devices, so NULL is set here.

That’s all you need to connect an input port in your code to all the MIDI sources

discovered when the program comes up.The remaining task is to implement the two

callback procs declared in this setup function.

266 Chapter 11 Core MIDI

Handling MIDI Notifications and Events
You’ve declared two callback functions: MyMIDINotifyProc(), to handle notifications

about the MIDI environment as a whole, and MyMIDIReadProc(), to process events.

Implementing those is your last step.

To keep things simple, you’re going to log any messages you get in

MyMIDINotifyProc(), as shown in Listing 11.8.

Listing 11.8 Simple Implementation of MIDINotifyProc Callback

void MyMIDINotifyProc (const MIDINotification *message, void *refCon) {

printf("MIDI Notify, messageId=%d,", message->messageID);

}

Aside from refCon, which is the context object you set up in MIDIClientCreate,

the callback provides a MIDINotification, which contains details about the change to

the MIDI environment.The MIDINotification type contains a message Id and a mes-

sage size; depending on the message Id, the notification might have additional data. For

example, if the message Id is kMIDIMsgObjectAdded, the notification includes a

MIDIObjectAddRemoveNotification, a structure that describes the added object.

Clearly, a robust music app would want to handle messages about MIDI devices being

added and either automatically add them as sources or give the user a chance to do so.

For this example, the most interesting action happens in MyMIDIReadProc(), the

callback declared in MIDIInputPortCreate(). Listing 11.9 shows the beginning of this

callback function.

Listing 11.9 Getting a Context Object in MIDIReadProc

static void MyMIDIReadProc(const MIDIPacketList *pktlist,

void *refCon,

void *connRefCon) {

MyMIDIPlayer *player = (MyMIDIPlayer*) refCon;

You start this function by retrieving the MyMIDIPlayer object that you declared as

the context object in MIDIInputPortCreate(). It’s the first of two context objects in

this function.The connRefCon is the object declared in MIDIPortConnectSource(),

which could be used to identify a specific source but that is set to NULL.

The other parameter provided to the callback is a MIDIPacketList, which has a

numPackets and looks like an array of MIDIPackets. However, because the packets can

be variable length, you can’t get the packets with C’s array accessor.You can get the first

one from index 0, but after that, you need to use the macro MIDINextPacket(), passing

in the current packet from the list.

Each MIDI packet has a time stamp, a length, and a byte array.Typically, the length is

2 or 3 and the array consists of the status, data1, and data2 bytes. So in Listing

11.10, you start iterating over the packets.

267Handling MIDI Notifications and Events

Listing 11.10 Iterating over a MIDIPacketList

MIDIPacket *packet = (MIDIPacket *)pktlist->packet;

for (int i=0; i < pktlist->numPackets; i++) {

Byte midiStatus = packet->data[0];

Byte midiCommand = midiStatus >> 4;

The first member of data, which you assign to the variable midiStatus, is the status

byte of the MIDI message.The high nybble of midiStatus is the command, and for the

events that you care about here, the low nybble is the channel (0–15).

For simple play-through, the only commands to care about here are NOTE ON (0x9)

and NOTE OFF (0x8), so we shift the status 4 bits right to get the command in its own

byte and then see if it’s one of these two commands. Listing 11.11 shows these steps.

Listing 11.11 Parsing NOTE OFF and NOTE ON Events

if ((midiCommand == 0x08) ||

(midiCommand == 0x09)) {

Byte note = packet->data[1] & 0x7F;

Byte velocity = packet->data[2] & 0x7F;

The meanings of data1 and data2 depend on the command. For NOTE ON and

NOTE OFF, the bottom 7 bits of data1 are the note to play, where the scale is calibrated

to make decimal 60 (0x3c) a middle C. Each whole number up is a half-step, meaning

that 61 is C#, 62 is D, and so on. Meanwhile, the bottom 7 bits of data2 are the veloc-

ity, the speed at which a key was struck or released (1–127).

These three values are all you need to send to your instrument unit to play the corre-

sponding note in your AUGraph. MusicDeviceMIDIEvent() takes the receiving

instrument unit; the status, data1, and data2 bytes; and an offset used for certain tim-

ing scenarios that don’t concern you. Listing 11.12 shows these steps and brings us to

the end of the MyMIDIReadProc() callback function.

Listing 11.12 Sending a MIDI Event to an Instrument Unit

CheckError(MusicDeviceMIDIEvent (player->instrumentUnit,

midiStatus,

note,

velocity,

0),

"Couldn't send MIDI event");

}

packet = MIDIPacketNext(packet);

}

}

268 Chapter 11 Core MIDI

This call causes the NOTE ON or NOTE OFF event (and its channel, represented by the

bottom 4 bits of midiStatus) to be processed by the instrument unit, which means that

a note either starts or stops playing. Having processed this packet, you move on to the

next one with MIDIPacketNext(), possibly falling out of the for loop if you have

processed all the packets.

Playing Your AUGraph

At this point, the example is done.All you need to do now is hook up instruments and

play them.That assumes you have suitable instruments. By far the most popular way to

connect MIDI devices to Macs is with MIDI-to-USB adapters.They’re commonly

found in electronics and music stores, with prices ranging from less than US$10 to over

US$100, depending on features, number of ports, and so on.

And if you don’t have and don’t want a MIDI keyboard … well, we may have an

alternative for you in the next section.

For now, let’s take stock of what you’ve learned.You used Core MIDI to discover the

various MIDI devices connected to your Mac, opened an input port and connected to

their sources, and processed incoming MIDI messages from those sources.When the

MIDI messages were NOTE ON or NOTE OFF, you used MusicDeviceMIDIEvent to send

the event to an instrument unit in an AUGraph, which immediately plays the note or

notes on a synthesized piano. Keep in mind that because the last step of this process takes

you back to the Audio Units you’re already familiar with, you could perform down-

stream effects on the synthesized sound via effect units or combine multiple synthesizers

and other units (such as an I/O unit for captured audio from a mic) in a mixer unit, and

thereby get a whole band going.The musical possibilities are compelling.

Creating MIDI Events
Aside from being a MIDI destination, Core MIDI enables you to be a MIDI source. For

the second example, you’ll use Core MIDI on iOS to turn your iPhone, iPod Touch, or

iPad into an instrument that can act as a Wi-Fi-connected MIDI device.

Core MIDI defines several Objective-C objects (not C types, as you’ve seen thus far)

from which you can get MIDIClientRefs, MIDIEndpointRefs and MIDIPortRefs,

and the other kinds of objects used for strictly local MIDI message handling. By using

these classes in an iOS app, you can create a virtual MIDI instrument that can play your

previous example code over Wi-Fi.

Setting Up the MIDIWifiSource Example

To get started, create an iPhone single-view application project in Xcode (we called ours

CH11_MIDIWifiSource) and link in the CoreMIDI.framework. Because this is a UI

app and not a command-line program, you need to build a user interface.All this

involves is telling the code what MIDI note to send in a message.A simple way to do

that is to use UIButtons and to use the tag attribute (in the Attribute Inspector,

269Creating MIDI Events

Command+Option+4) of each button to hold the note value you want to play. In

CH11_MIDIWifiSourceViewController.xib, shown in Figure 11.4, you have set up

buttons with all the notes in one octave of the keyboard.The C button has tag 60, C#

has 61, and so on, up to tag 71 for B.

270 Chapter 11 Core MIDI

Figure 11.4 Setting up buttons for an iOS-based virtual device

The view controller class needs to handle the button taps, sending NOTE ON when a

touch begins and NOTE OFF when it ends. So stub out the view controller, as shown in

Listing 11.13.

Listing 11.13 IBActions Defined in CH11_MIDIWifiSourceViewController.h

#import <UIKit/UIKit.h>

@interface CH11_MIDIWifiSourceViewController : UIViewController

-(IBAction) handleKeyDown:(id)sender;

-(IBAction) handleKeyUp:(id)sender;

@end

In the NIB file, switch to the connections inspector (Option-„-6). Connect every

button’s Touch Down event to File’s Owner’s handleKeyDown:, and connect Touch Up

Inside to handleKeyUp:. Figure 11.4 shows these connections as they’ve been set for

the C button.You might find it easier to select the File’s Owner, look at the Received

Actions connections, and repeatedly make connections from this list to the separate but-

tons, selecting the appropriate event (Touch Down or Touch Up Inside) in the gray

heads-up list each time it appears at the end of your connection.

In the view controller’s implementation file, the Xcode template stubs out a few

VC-related methods for you—but, of course, it knows nothing about MIDI.You use a

class extension to define the helper methods you’re going to write, along with properties

(rather than simple instance variables) for the MIDI objects you’ll need.These are in

Listing 11.14 and must precede the @implementation statement.

Listing 11.14 Class Extension for CH11_MIDIWifiSourceViewController Helper

Methods and Properties

@interface CH11_MIDIWifiSourceViewController()

- (void) connectToHost;

- (void) sendStatus:(Byte)status data1:(Byte)data1 data2:(Byte)data2;

- (void) sendNoteOnEvent:(Byte) note velocity:(Byte)velocity;

- (void) sendNoteOffEvent:(Byte)key velocity:(Byte)velocity;

@property (assign) MIDINetworkSession *midiSession;

@property (assign) MIDIEndpointRef destinationEndpoint;

@property (assign) MIDIPortRef outputPort;

@end

Don’t forget to @synthesize midiSession, destinationEndpoint, and

outputPort.Also, copy over the CheckError() function from Listing 4.2 and put it

before any of the instance methods (which might need to call it).

Setting Up MIDI over Wi-Fi

Let’s start by setting up your connection to the Wi-Fi host, which is the computer that

will be running one or more MIDI-compatible apps.You stubbed this out in the class

extension as the connectToHost method.You’ll need it as soon as the view comes up,

so override the viewDidLoad: method to call it, as shown in Listing 11.15.

Listing 11.15 Calling connectToHost When iPhone View Loads

- (void)viewDidLoad

{

[super viewDidLoad];

[self connectToHost];

}

The host you’re connecting to is represented as the Objective-C class

MIDINetworkHost.This object can be created either with an address and a port or with

a resolved Bonjour NSNetService.The Bonjour approach is more robust, but this

271Creating MIDI Events

example uses the address/port approach here to keep your focus on MIDI. Put a

#define for your Mac at the top of the file, as in Listing 11.16. Of course, the contents

of the string should be your Mac’s IP address.

Listing 11.16 #define for MIDI Host Address

#define DESTINATION_ADDRESS @"192.168.2.108"

Now you can begin your connectToHost method, by creating the host object with

-[MIDINetworkHost hostWithName:address:port:], as shown in Listing 11.17.

Listing 11.17 Creating a MIDINetworkHost

-(void) connectToHost {

MIDINetworkHost *host = [MIDINetworkHost hostWithName:@"MyMIDIWifi"

address:DESTINATION_ADDRESS

port:5004];

if(!host)

return;

The name parameter is only for the app’s local use; it doesn’t have to match any par-

ticular value on the other end.

With a host object created, you use the MIDINetworkConnection class to actually

connect to it, as shown in Listing 11.18.

Listing 11.18 Creating a MIDINetworkConnection

MIDINetworkConnection *connection =
[MIDINetworkConnection connectionWithHost:host];

if(!connection)

return;

When you’ve made the connection, you can get a MIDINetworkSession, a

MIDI entity with one source endpoint and one destination endpoint.These are

MIDIEndpointRefs, the same C type you worked with earlier, and are available via the

sourceEndpoint and destinationEndpoint instance methods.To know where the

destinationEndpoint actually is on the network, you need to add the connection you

created in Listing 11.18 to the session.You also need to enable the session before you try

to send or receive any data with it. Listing 11.19 shows these session setup steps.

Listing 11.19 Setting Up MIDINetworkSession to Send MIDI Data

self.midiSession = [MIDINetworkSession defaultSession];

if (self.midiSession) {

NSLog (@"Got MIDI session");

[self.midiSession addConnection:connection];

self.midiSession.enabled = YES;

self.destinationEndpoint = [self.midiSession destinationEndpoint];

272 Chapter 11 Core MIDI

With the MIDIEndpointRef, you can make MIDI calls to set up a port. However,

this time you’re creating an output port, so you can send MIDI messages rather than

receive them.Again, create a MIDIClientRef. From this, create the output port with

MIDIOutputPortCreate(). Listing 11.20 shows these final steps of the

connectToHost method.

Listing 11.20 Setting Up a MIDI Output Port

MIDIClientRef client = NULL;

MIDIPortRef outport = NULL;

CheckError (MIDIClientCreate(CFSTR("MyMIDIWifi Client"),

NULL,

NULL,

&client),

"Couldn't create MIDI client");

CheckError (MIDIOutputPortCreate(client,

CFSTR("MyMIDIWifi Output port"),

&outport),

"Couldn't create output port");

self.outputPort = outport;

NSLog (@"Got output port");

}

}

Sending MIDI Messages

Assuming that connectToHost succeeded, the outputPort property has a

MIDIPortRef that’s ready for you to send it MIDI data.You send data with

MIDISend(), which takes an output port, the destination endpoint, and a

MIDIPacketList. For MIDI messages that take 2 data bytes, such as the NOTE ON and

NOTE OFF messages, you can write a generic sendStatus:data1:data2: method like

the one shown in Listing 11.21.

Listing 11.21 Method to Create and Send a MIDIPacketList

-(void) sendStatus:(Byte)status data1:(Byte)data1 data2:(Byte)data2 {

MIDIPacketList packetList;

packetList.numPackets = 1;

packetList.packet[0].length = 3;

packetList.packet[0].data[0] = status;

packetList.packet[0].data[1] = data1;

packetList.packet[0].data[2] = data2;

packetList.packet[0].timeStamp = 0;

273Creating MIDI Events

Listing 11.21 Continued

CheckError (MIDISend(self.outputPort,

self.destinationEndpoint,

&packetList),

"Couldn't send MIDI packet list");

}

This method simply creates a MIDIPacketList, sets its length to 3 (1 status and 2

data bytes), and then fills in the data array with the parameter values. It then sends the

packet list over the output port to the destination endpoint, by way of the MIDISend()

function.

With your send method ready, you can call it with the specific NOTE ON (status 0x9n,

where n is a channel, which will be 0 for this app) and NOTE OFF (status 0x8n) mes-

sages. For these messages, the high bits of data1 and data2 are always 0, so you need to

mask those off. Listing 11.22 shows your implementations of sendNoteOnEvent:key:

velocity: and sendNoteOffEvent:key:velocity:.

Listing 11.22 Sending NOTE ON and NOTE OFF Events

-(void) sendNoteOnEvent:(Byte)key velocity:(Byte)velocity {

[self sendStatus:0x90 data1:key & 0x7F data2:velocity & 0x7F];

}

-(void) sendNoteOffEvent:(Byte)key velocity:(Byte)velocity {

[self sendStatus:0x80 data1:key & 0x7F data2:velocity & 0x7F];

}

With the note event methods ready, you can finally add the tap-handling methods,

which get the tag (and, therefore, the MIDI note to play) from the button that was

tapped, and send it to these methods. Listing 11.23 shows this final step.

Listing 11.23 Handling User Taps on Keys

-(IBAction) handleKeyDown:(id)sender {

NSInteger note = [sender tag];

[self sendNoteOnEvent:(Byte) note velocity:127];

}

-(IBAction) handleKeyUp:(id)sender {

NSInteger note = [sender tag];

[self sendNoteOffEvent:(Byte) note velocity:127];

}

274 Chapter 11 Core MIDI

This is all it takes to send MIDI events via Wi-Fi.Actually, this illustrates what it takes

to send MIDI events over a wired connection as well: Listing 11.20’s steps for creating a

MIDIClientRef and output port would be the same for a wired connection, as would

sending the data with MIDISend().

Setting Up Your Mac to Receive Wi-Fi MIDI Data

Now that you’ve set up an iOS app to generate network MIDI events, you need some-

thing to receive the events and do something with them, such as play notes.You config-

ure this with the Audio MIDI Setup application located in Applications/Utilities.This

utility configures MIDI connections to and from your computer, both hard-wired and

wireless.

The main window (shown in Figure 11.5) shows your existing connections. By

default, these include an IAC Driver for (interapplication communication) and Network;

if you have any hard-wired MIDI devices plugged in, they’re shown here as well.

Because you’re sending data wirelessly from the iPhone or iPad, you need to set up the

Network connection, so double-click that icon.

275Creating MIDI Events

Figure 11.5 Audio MIDI Setup main window

The Network window shows a list of Sessions and a directory of available devices on

the left. By default, the details of Session 1 are shown in the right pane.You can see the

session name, the Bonjour name that clients can connect to, a list of participants, a

Latency graph, and the IP address and port that clients should connect to.This is your

last chance to get the IP address and port right. In Xcode, check the DESTINATION_

ADDRESS you defined and make sure you’re using the same host and port shown in

Audio MIDI Setup. If it’s wrong, rebuild and reinstall to your device.

When the app is ready, run it on your device.You should see it appear in the MIDI

Network Setup window (see Figure 11.6, where the iPhone “Squall” automatically

appears in the directory and as one of Session 1’s participants). If it doesn’t work, force-

quit CH11_MIDIWifiSource and make sure you start it after you’ve started Audio MIDI

Setup.When you see your device in the MIDI Network Setup window, you’re con-

nected; you can tap on the squares on the device to send MIDI events over the network.

As you do, vertical red lines appear in the Latency graph to indicate the lag between cre-

ating the MIDI event on the device and its arrival on the Mac.

276 Chapter 11 Core MIDI

Figure 11.6 Audio MIDI Setup network window

Are you hearing any sound? If not, it might be because you’re not running a MIDI

app. Reopen CH11_MIDIToAUGraph from the beginning of the chapter and run it.You

should now be able to tap notes on your iPhone, iPod Touch, or iPad and hear them

over your speakers or headphones.You’ll also see the same logging messages in the

CH11_MIDIToAUGraph log, but this time the events are coming not from a wired MIDI

device, but over the air from a wireless device. Granted, it’s not perfect:There can be a

lot of latency, especially if you pause briefly and thereby let the connection drop. But

you’ll probably still find it pretty cool.After all, between these two apps, what starts as a

touch gesture on iOS goes out over Wi-Fi as a MIDI event, gets processed by a Mac

program, is rendered as synthesized PCM audio inside an AUGraph, and comes out your

speakers as audible sound.

That’s a lot of technology behind your hand-held rendition of “Chopsticks,” isn’t it?

Summary: MIDI Mastery … but Mobility?
Obviously, you can do a lot more with MIDI:A look at the list of MIDI messages shows

a lot of different events you can work with and support for different kinds of musical

messages.With instrument units and the Music Device API bridging the world of MIDI

and Core Audio, you can bring support for all these devices—including virtual MIDI

devices that you create yourself on Mac or iOS—into Core Audio and literally mix it

with the other audio frameworks on the platform.

One dangling issue we haven’t addressed is processing MIDI event input into iOS

devices.This was enabled in iOS 4.2, which brought Core MIDI to Apple’s mobile

devices.You can use the same techniques as in the first half of this chapter to handle

events from MIDI devices connected to an iOS device. However, there are a few

catches.The first is that an iPad obviously doesn’t have a MIDI port or even a USB port.

One answer to this objection is that third parties can develop MIDI-compliant devices

that connect via the dock port.

The other option is to use the iPad Camera Connection Kit, which offers a USB

port.Apple generally warns that this is neither intended nor supported as a generic USB

connection, but it is known to work with many MIDI-to-USB adapters;Apple even dis-

cussed and demonstrated this in a WWDC 2011 session.The trick is that the iOS

devices deliver a tiny amount of power over the dock connector, not enough to power

many adapters.Another problem is that some adapters need drivers to work, and iOS

doesn’t support third-party drivers. However, the USB spec defines standards for MIDI

devices, so a “class-compliant” or “driverless” device that doesn’t draw much power (or is

itself plugged in) can work on an iOS device.The “iOS MIDI” site has a page at

http://iosmidi.com/devices/ that lists devices known to work (and others known not to

work) with the iPad. It also offers a MIDI Monitor app that uses Core MIDI to log

incoming MIDI events from a connected device.

The other problem with handling MIDI events in iOS is what to do with them after

they arrive. iOS 4 doesn’t provide the DLS Synthesizer or any other instrument units for

the platform, so a straight port of CH11_MIDIToAUGraph from OS X to iOS doesn’t

work.You could handle the incoming events by synthesizing your own sound in a render

callback or playing files via APIs Audio Queue or OpenAL. In the final chapter, as part

of a look to the future, you’ll see what iOS 5 offers to make MIDI on the mobile device

more practical.

277Summary: MIDI Mastery … but Mobility?

http://iosmidi.com/devices/

This page intentionally left blank

12

Coda

You’ve reached the end of the book, but hopefully your journey with Core Audio is

just beginning.You have lots more to learn, lots more to play with, and lots more to do

with Core Audio than will fit in this book—or any other book. Furthermore, the field

of digital audio is much larger than any programming framework.The more you learn

about how to work with audio, the more value you’ll get out of Core Audio.

This chapter discusses what else might interest you in the OS X and iOS audio APIs

and where you might want to go from here.

Still More Core Audio
All authors have to make hard decisions about what to include and what to leave out in

a book.Although we’ve done much more than just scratch the surface of Core Audio,

skimming the documentation reveals that there’s much more to work with: more

system-provided audio units, dozens of OpenAL properties, and more.

Within Core Audio, this book leaves out one major API:Audio File Stream Services.

This set of functions, defined in AudioFileStream.h, enables you to create apps such as

Web radio clients for the stream formats that OS X and iOS support.They enable you

to send in buffers of raw data—which you’ve presumably read from the network,

although it also works for reading files—and receive callbacks with packets of audio

parsed from the stream.You can then decompress these packets can with the Audio

Converter functions, send them to an Audio Queue, and so on.The catch is that you’re

limited to both the codecs and the stream formats that Core Audio supports, so although

this helps you parse MP3 from an HTTP stream (Shoutcast-style web radio), it doesn’t

necessarily handle a lot of other stream formats. Still, because it follows the conventions

of the other Core Audio APIs—heavy on the properties and callbacks—this shouldn’t be

difficult if you’ve made it all the way to this point.

Another topic that this book doesn’t cover is the capability to create your own audio

units. In Chapters 7,“Audio Units: Generators, Effects, and Rendering,” and 8,“Audio

Units: Input and Mixing,” you saw how to add your own processing by way of render

callbacks, which you could encapsulate inside a reusable audio unit.You can also create a

Cocoa-based UI for your unit so that users can configure them directly.This is mostly of

interest if you’re in the business of selling your audio unit as a third-party add-on, where

it can be called from AUGraph-based applications such as GarageBand, Logic, and Final

Cut Pro.The process of rolling your own audio unit involves a little programming and a

lot of testing and packaging. If you’re one of the few people who needs to do this (and

isn’t doing so already), you can find a full walkthrough in Apple’s Audio Unit Programming

Guide.

Third-party audio units are available only on Mac OS X.They don’t make sense on

iOS, where third parties can’t deliver code to be shared between applications.Actually,

Phone OS 3 added an API for encapsulating audio units for your own app’s use,

AUPlugIn.h, which supposedly enabled you to register a new audio unit and then cre-

ate and add it to AUGraphs such as the system units. However, we have it on high

authority that this never actually worked, and AUPlugIn.h was removed in iOS 4.0.

Next Steps
Now that you know all these APIs, what are you going to do with them? In many ways,

the greatest power of Core Audio lies not in the APIs themselves, but in what you bring

to the table in terms of working with the audio as it passes through the system.This

book has talked a lot about “doing stuff ” with samples in render callbacks or before pass-

ing buffers to OpenAL, but what does that really involve?

Digital Signal Processing

A whole science is involved in working with audio signals in a computer, or digital sig-

nal processing. Let’s return to the science of sound and the waves of pressure moving

through the air. In analog systems, you commonly use the amplitude of an electrical sig-

nal to represent sound. In digital, you sample this signal thousands of times a second, to

get a numeric representation of the signal that’s practical to store on disk, transmit over

networks, and process in a CPU.

You can process that signal with various mathematical techniques. For example, the

famous Fourier Transform enables you to convert a time-based function—that’s all the

audio signal really is, a function of amplitude at a given time—to a frequency-based

function.This capability to find frequencies in time-based signals facilitates all kinds of

useful applications, from effects that speed up playback without changing pitch, to fre-

quency detectors that can determine what note is being sung or played.You’ve probably

used both of these:The former is the double-speed playback available in the iOS Music

app to get you through spoken podcasts and audiobooks faster, and the latter is used by

apps that identify songs and by music-performance games such as Karaoke Revolution and

Rock Band.

The topic of digital signal processing merits its own book. In fact, Pearson (who pub-

lishes this book) has a number of titles on the topic, including Digital Signal Processing, 4th

Edition, by John G. Proakis and Dimitris K Manolakis; Discrete-Time Signal Processing, by

280 Chapter 12 Coda

Alan V. Oppenheim and Ronald W. Schafer; and Notes on Digital Signal Processing: Practical

Recipes for Design,Analysis and Implementation, by C. Britton Rorabaugh.

You can also find some great free resources on the Web for learning about DSP.“The

DSP Dimension” has a series of tutorials at www.dspdimension.com that cover topics

such as the Fourier transform and time-stretching/pitch-shifting effects.The Music-DSP

Source Code Archive, at www.musicdsp.org, offers a grab bag of DSP analysis, effect, fil-

ter, and synthesis recipes in a number of languages (some C and C++, others MAT-

LAB).A handful of iTunes U-courses offer a college-level introduction to DSP. If you

can handle the math, Stanford’s “The Fourier Transform and Its Applications” offers a

deep dive into the theory behind this most useful technique.

Speaking of the Fourier transform, you should be aware of one more Apple frame-

work.The Accelerate framework in OS X and iOS provides highly optimized and some-

times hardware-accelerated mathematical functions.The vDSP portion of Accelerate is

particularly applicable to digital signal processing code, providing functions for vector

and matrix arithmetic as well as the fast Fourier transform (FFT).

Lion and iOS 5
Mac OS X 10.7 (Lion) and iOS 5 are new as this book is being released, and both add

APIs to Core Audio and the related media frameworks.

Among Lion’s highlights, you now can inspect and use hardware encoding and

decoding via the AudioFormat.h property kAudioFormatProperty_HardwareCodec

Capabilities and a set of “prefer” and “use only” properties in AudioQueue.h.

Among other changes,AudioFile introduces a new property for album art. Some new

audio units also are available, some brought to the Mac from iOS, including

AUVoiceProcessingIO (for echo cancellation in voice-over-IP apps) and AUiPodEQ

(an equalizer that uses presets such as Bass Booster and Spoken Word).

AUSampler

Probably the most interesting of the new audio units in Lion is the AUSampler,

kAudioUnitSubType_Sampler, an instrument unit that enables you to pitch-shift an

arbitrary waveform sample to turn it into a musical instrument. It works like any other

instrument unit, as with the kAudioUnitSubType_DLSSynth in Chapter 11,“Core

MIDI,” and can be controlled via MusicDeviceMIDIEvent().The difference is that, by

providing your own waveforms, you can make any kind of real-world instrument, or

even sample a voice and pitch-shift it into a sort of virtual singing.

For the final example project, copy the MIDIToAUGraph example from Chapter 11

into a new command-line project. Because this feature is new for Lion, you should make

Mac OS X 10.7 the Base SDK in the project settings. Link in the Audio Toolbox,Audio

Unit, and Core MIDI frameworks as before.

The first change is trivial. In setupAUGraph(), replace the line that sets up the

instrument audio unit, as shown in Listing 12.1.

281Lion and iOS 5

www.musicdsp.org
www.dspdimension.com

Listing 12.1 Declaring Subtype for AUSampler Unit

instrumentcd.componentSubType = kAudioUnitSubType_Sampler;

That sets up an appropriate audio unit, but of course, you have some work to do to

configure the unit.

You can set up the AUSampler in three ways, all of which are detailed in Apple

Technical Note TN2283,“AUSampler—Loading Instruments.”This chapter uses the first

method, using the AUSampler preset file.This approach enables you to map sampled

sounds to the notes they represent and bundle all that metadata into an .aupreset file.

To do this, you need the AULab1 application, located in /Developer/Applications/

Audio.This application provides a GUI for building and configuring AUGraphs and saving

the results.When you launch it, you’re asked what kind of graph you want to set up. From

the list Factory Configurations, choose Stereo Out, meaning you care about only output

and don’t need capture. Click Create Document.This brings up a window with a long

strip labeled Output 1, representing the output unit.

Here you want to add MIDI input to this document, so use the menu item Add

Audio Unit Instrument. In the sheet that slides in, set the input source to Any MIDI

Controller and set the instrument to AUSampler.This adds a second strip called

Instrument and brings up a new window with a musical keyboard (if the window

doesn’t appear, click the tiny keyboard button under Instrument).

This keyboard is playable with your mouse or MIDI device, but by default, it plays

only sine waves.To bring in a sampled sound, click the Show Editor button at bottom

right.This shows the user interface in Figure 12.1.

The left side of the editor shows the list Layers and Zones.The idea here is that a sam-

pled sound can be mapped to one zone of keys and that you can use a different sample for

different zones.This is helpful because the AUSampler’s pitch shifting can sound cheesy the

farther you get from its original pitch. By default, the only sound is called Sine 440 built-in.

To add your own sound, first record a sound and save it uncompressed anywhere on

your filesystem—we used Chris singing the words “Core Audio” while listening to C on

a piano and saved it as chris-coreaudio-c2.caf. On the right side of the editor, click

the Choose File button and locate the file.After it loads, look at the Key Range (which

defines the zone of notes this sample will be used for, defaulting to the entire range of

C-1 to G9) and the Root next to it.Assign a MIDI note number here, such as C2 for

middle C. Play the piano keys to see what the pitch-shift sounds like.

When you’re satisfied with the sample and the root note you’ve assigned it to, go to the

third pull-down menu at the top of the window (currently untitled) and select Save Preset

As to give the preset a name; leave the Type button set to Local. Show Presets, in the same

menu, then slides out a drawer of all the user-created presets.This drawer also has a Show in

Finder button. Click it to see that the preset has been saved to your home directory, as

~/Library/Audio/Presets/Apple/AUSampler/your-preset-name.aupreset.

282 Chapter 12 Coda

1 As of Xcode 4.3, AULab is not provided by default, and is instead in the optional “Audio Tools for

Xcode” download package.

Figure 12.1 Configuring AUSampler preset with AULab

This .aupreset file contains the path to the original sound you recorded, plus the

metadata of which note it represents.That’s all you need to configure the AUSampler

unit in your application. Back in Xcode, scroll to the bottom of the setupAUGraph()

function.This is where you load the preset file after the AUGraph has been set up and

initialized.

Setting up the AUSampler unit requires setting a single

kAudioUnitProperty_ClassInfo property with the contents of the .aupreset file.

Unfortunately, that requires three sizable steps: loading the contents of the file into a

CFDataRef, turning it into a CFPropertyListRef, and setting that as the property

value. Listing 12.2 starts by getting a CFURLRef to the .aupreset file.

Listing 12.2 Getting CFURLRef for .aupreset File

CFURLRef presetURL = CFURLCreateFromFileSystemRepresentation(

kCFAllocatorDefault,

"/Users/cadamson/Library/Audio/Presets/Apple\

/AUSampler/ch12-aupreset.aupreset",

77,

false);

283Lion and iOS 5

The second argument should be a full path as a C string; of course, your path will

differ from what the listing shows.The third argument is the length of the second, and

the fourth is a flag to indicate that the path is not a directory.

With presetURL created, you can now load the contents of the .aupreset file into

a CFDataRef, as in Listing 12.3.

Listing 12.3 Loading .aupreset File into a CFDataRef

CFDataRef presetData = NULL;

SInt32 errorCode = noErr;

Boolean gotPresetData =

CFURLCreateDataAndPropertiesFromResource(kCFAllocatorSystemDefault,

presetURL,

&presetData,

NULL,

NULL,

&errorCode);

CheckError(errorCode, "couldn't load .aupreset data");

CheckError(!gotPresetData, "couldn't load .aupreset data");

The CFURLCreateDataAndPropertiesFromResource() function creates a

CFDataRef and/or a CFDictionaryRef from the contents of a URL. Because you

want only the data, you can NULL out the dictionary-related parameters.

You’re really after a CFPropertyListRef object, which you can now create from the

data you just loaded. Listing 12.4 shows how to do this.

Listing 12.4 Converting AU Preset CFDataRef into CFPropertyListRef

CFPropertyListFormat presetPlistFormat = {0};

CFErrorRef presetPlistError = NULL;

CFPropertyListRef presetPlist =

CFPropertyListCreateWithData(kCFAllocatorSystemDefault,

presetData,

kCFPropertyListImmutable,

&presetPlistFormat,

&presetPlistError);

if (presetPlistError) {

printf ("Couldn't create plist object for .aupreset");

return;

}

Now that you have an object of the correct type, you can set it as the value of the

kAudioUnitProperty_ClassInfo property on the AUSampler unit in Listing 12.5.

284 Chapter 12 Coda

Listing 12.5 Setting ClassInfo Property on AUSampler Unit

if (presetPlist) {

CheckError(AudioUnitSetProperty(player->instrumentUnit,

kAudioUnitProperty_ClassInfo,

kAudioUnitScope_Global,

0,

&presetPlist,

sizeof(presetPlist)),

"Couldn't set aupreset plist as sampler's class info");

}

Setting this property delivers all the metadata from the .aupreset file to the

AUSampler unit.The unit can now load the .caf file with the audio. It knows from the

metadata what note it represents and, therefore, what it needs to do to pitch-shift to play

notes other than the root.

Run the application and start playing. If you play your declared root note, it should

sound more or less like your original sample (subject to some attenuation, depending on

how hard you strike the key and, thus, what the MIDI velocity is). Playing progressively

higher or lower keys pitch-shifts the sample up or down accordingly.

It’s just one new unit, but the potential of the AUSampler is significant:With carefully

recorded samples and thoughtful adjustment of the .aupreset zones, you can offer deep

support for realistic-sounding virtual instruments.

Core Audio on iOS 5

iOS 5 represents a major advance in the usefulness of Audio Units on iOS. It includes

effects units to the mobile platform that previously had only the single AUiPodEQ

effect. iOS 5 adds distortion, high- and low-pass filters, high- and low-shelf filters, and

a parametric EQ that enables you to perform EQ in specific frequency bands instead

of offering just the canned values of the AUiPodEQ.The effect units tend to default to

floating-point stream formats (another first on iOS); you often need to adjust the rest

of your AUGraphs to use the formats the effect units need or to add AUConverter units

inline to convert integer PCM to float.

iOS 5 also adds the AUFilePlayer, which you used in Chapter 7,“Audio Units:

Generators, Effects, and Rendering,” to greatly simplify the process of getting file-based

audio into an AUGraph.

As in Lion, iOS 5 adds AUSampler, which is the first instrument unit available on the

iOS platform.This means that MIDI apps can play notes via the AUSampler. For this,

the Music Device API also comes to iOS in version 5, so you can play the MIDI events

into the AUSampler with MusicDeviceMIDIEvent().

In the AUSampler section, you might have wondered about the use of hard-coded

paths. Of course, you could have stored the .ausampler file in the application bundle

and read it from there, but the preset file itself refers to another file on the development

285Lion and iOS 5

filesystem; that reference breaks when running in iOS (as it does on Mac OS X, barring

some installation-time wizardry to put the audio files in their expected locations).

The way around this is to edit the .aupreset file manually—it’s just a property list,

so you can edit it in Xcode or your favorite text editor.The key named file-reference

has a dictionary as its value that itself has as its values the absolute paths to the .caf files.

The AUSampler has a set of rules it uses to search for audio files along known paths. It

splits out any paths under Sounds, Sampler Files, or Apple Loops and then searches

for those subpaths in the application bundle and other special directories, such as the

Documents directory.TN2283 has all the details, but the practical upshot is that if you

include a folder (not a group) named Sounds in your Xcode project, you can put your

sounds there and have the AUSampler find them, possibly with a little hand-editing of

the .aupreset to put Sounds at the front of the path.The book’s downloadable code

has an iOS version of the AUSampler app from earlier in this chapter, so you can check

that out to see how we bundled the preset and the .caf it references.

The Core Audio Community
When you’re working with all this and get lost, where do you go? Online, of course.The

immensely helpful and cooperative Core Audio community is generous with its time

and knowledge.

If you Google for Core Audio topics, you’ll likely find a trivial number of hits, often

back to the official Apple documentation you already have.You can find some amount of

help on Stack Overflow (www.stackoverflow.com) under the core-audio tag, although

many developers (particularly newcomers to iOS) don’t even know the names and

responsibilities of the various media APIs and, thus, don’t tag their questions correctly.

Still, a lot of common questions about Core Audio have been answered on Stack

Overflow (and if you see the user invalidname, that’s the same person writing this

chapter).

There’s a higher signal-to-noise ratio, if you will, on the Apple Developer Forums, at

http://devforums.apple.com.There you’ll find Core Audio forums on both the Mac OS

X and iOS sections. Note that you need to be a member of Apple’s developer programs

to log into these.

If you’re on IRC, check out the small channel of Core Audio developers hanging out

at the #coreaudio channel on irc.freenode.net, port 6667.

The longest-lived and most useful Core Audio community online is the coraudio-api

mailing list, hosted at http://lists.apple.com. For years, this has been the online hangout

for the most experienced Core Audio developers, the ones whose products depend on

CA.Apple’s Core Audio engineers have also been extremely generous with their time on

the coreaudio-api list and have answered many questions related to the coding and writ-

ing of this book.You’ll pick up a lot about Core Audio, including what it can do and

where it gets tricky, just by subscribing to this list and reading the daily posts.

286 Chapter 12 Coda

www.stackoverflow.com
http://devforums.apple.com
http://lists.apple.com

Summary: Sounds Good
The Mac OS X and iOS platforms make the deepest commitment to media of any

operating systems in history. Seriously, go look at the competition.Windows at least takes

media seriously with its oft-rearchitected frameworks (DirectShow, Media Foundation,

and so on). Linux’s dueling frameworks (OSS and ALSA) are no match for Core Audio’s

breadth and depth, and Android has no low-level media libraries.Android’s media sup-

port consists of the android.media classes, which, according to their own documentation,

“are used to play and, in some cases, record media files.” No effects, no real-time process-

ing, no MIDI, no OpenAL. Feel free to be underwhelmed.

If you’ve read this whole book, you probably came in knowing that Apple platforms

take media seriously and do it right.With Core Audio, they’ve put together a low-level

framework that enables application developers to handle sound in real time or offline; to

capture, playback, and synthesize; to add effects, filters, splitters, and mixers; to support

low-latency audio for games and musical performance; and to deliver world-class quality

audio for media professionals.

Now these tools are yours to use as you see fit.

Rock on.

287Summary: Sounds Good

This page intentionally left blank

Index

Numbers

3D Cartesian coordinate space, 192

3D Mixer Audio Unit, 239

A

AAC formats, file formats and, 50-51

accounts, obtaining Apple developer

accounts, 3

adopting hardware input sample rate, 172

afconvert utility, 97-99

AIFF file format, PCM formats and, 49

alBufferData() function, 201, 206-207, 218

alcCloseDevice() function, 205

alcCreateContext() function, 201

alcDestroyContext() function, 205

alcOpenDevice() function, 201

alDeleteBuffers() function, 205

alDeleteSource() function, 205

alGenBuffers() function, 201

alGenSources() function, 202

alGetBuffer3f(function, 193

alGetError() function, 199, 201

alListener3f() function, 204

alSourcef() function, 202

alSourcei() function, 193, 202

alSourcePause() function, 204

alSourcePlay() function, 204

alSourcePlayv() function, 204

alSourceQueueBuffers() function, 210,

213, 219

alSourceStop() function, 204

alSourceUnqueueBuffers() function, 219

alSourcev() function, 206

alut.h, 196

amplitude

defined, 25

in samples, 29

analog recording, defined, 27

Apple developer accounts, obtaining, 3

Apple Developer Forums, 286

apps, pass-through app (iOS), 241-243

building, 239-240

capture and play-out, 244-249

header file, 241

render callback, 249-252

architecture of Core MIDI, 258

ASBD. See AudioStreamBasicDescription

structure

audio. See also digital audio

playing back, 81-83

buffer setup, 85-87

calculating buffer size and packet
count, 90-91

callback function, 91-94

copying magic cookie, 89-90

creating audio queues, 83-85

features and limits of queues, 94-95

starting playback queue, 88-89

utility functions, 89-91

recording, 60-63

callback function, 75-78

CheckError() function, 63-64

creating audio queues, 64-71

utility functions, 71-75

Audio Component Manager, getting

RemoteIO Audio Unit from, 245-246

Audio Converter Services API, 15, 100-102

calling, 105-108

file setup, 102-105

implementing callback function,
109-112

audio data formats, 43-46

audio engine APIs, 14

Audio File Services API, 14

Audio File Stream Services API, 15

audio files

copying magic cookie from, 89-90

finding for playback, 84

metadata, retrieving, 16-21

opening, 131

reading packets from, 91-94

writing data to, 75-78

audio formats, 40-41

canonical formats, 51, 53

conversion between, 97

afconvert utility, 97-99

Audio Converter Services, 100, 102

calling Audio Converter Services,
105-108

Extended Audio File Services,
112-118

file setup, 102-105

implementing callback function,
109-112

relationship between data and file
formats, 46-51

audio hardware devices, 170

Audio Hardware Services, 71

audio processing graph, 53

Audio Processing Graph Services, 129

290 alSourceQueueBuffers() function

Audio Queue Services, 59-60

audio queues

creating on iOS, 233-234

defined, 59

playback sample application, 81-83

buffer setup, 85-87

calculating buffer size and packet
count, 90-91

callback function, 91-94

copying magic cookie, 89-90

creating audio queues, 83-85

features and limits, 94-95

starting playback queue, 88-89

utility functions, 89-91

priming on iOS, 233

recorder sample application, 60-63

callback function, 75-78

CheckError() function, 63-64

creating audio queues, 64-71

utility functions, 71-75

starting on iOS, 234

threading, 157

Audio Queues API, 14

Audio Session Services API, 15, 224

app setup, 227-230

audio queue initialization, 233-234

audio session initialization, 231-232

buffer refills, 234-236

iOS interruptions, handling, 236-238

properties, 225-227

Audio Stream File Services, 279

audio streams, 1, 44

Audio Toolbox, importing, 20

audio unit graphs. See AUGraph

Audio Unit Programming Guide (Apple), 280

audio units, 1

3D Mixer, 239

AUHAL

definition of, 162

input AUHAL unit, 168-176

creating, 279

defined, 124

explained, 53-55

file player program, 129-141

creating AUGraph, 133-137

main() function, 131-133

setting up file player audio unit,
137-141

Format Converter, 239

Generic, 238

hardware analogy, 124

on iOS, 238-239

iPodEQ, 238

mixer units, 183-189

Multichannel Mixer, 239

pull model, 55

Remote I/O, 238

capture and play-out, 244-249

pass-through app example, 239-243

render callback, 249-252

rendering process, 150

audio unit render cycle, 150-151

creating and connecting audio
units, 154-155

render callback function, 155-159

sine wave player example, 151-153

ring buffers with, 166-168

speech synthesis program, 141-150

adding audio effects, 147-150

creating speech synthesis AUGraph,
144-146

Speech Synthesis Manager,
146-147

291audio units

system-provided subtypes, 126-129

third-party audio units, 280

types of, 53-54, 124-125

uses for, 123-124

Voice Processing, 238

Audio Units API, 14. See also audio units

AudioBuffer struct, 150

AudioBufferList struct, 150, 156, 173

AudioComponentFindNext() function,

154, 246

AudioComponentInstanceNew() function,

154, 246

AudioConverterComplexInputDataProc

class, 100

AudioConverterConvertBuffer() function, 100

AudioConverterDispose() function, 100

AudioConverterFillComplexBuffer() function,

100, 105, 107-108

AudioConverterNew() function, 100, 105

AudioConverterRef class, 100

AudioConverterReset() function, 100

AudioFileClose() function, 19, 35

AudioFileCreateWithURL() function, 35,

67, 104

AudioFileGetGlobalInfo function, 46, 48

AudioFileGetGlobalInfoSize function, 48

AudioFileGetProperty() function, 19, 22-23,

103, 131

AudioFileGetPropertyInfo function, 19

AudioFileID, scheduling with

AUFilePlayer, 139

AudioFileOpen() function, 84

AudioFileOpenURL() function, 18, 131

AudioFileReadPackets() function,

92-93, 110

AudioFileSetProperty() function, 73

AudioFileStream.h file, 279

AudioFileTypeAndFormatID structure, 48

AudioFileWritePackets() function, 35, 76,

105, 108-109, 116

AudioFormatGetProperty() function, 66, 254

AudioHardwareServiceGetPropertyData()

function, 71

AudioObjectPropertyAddress class, 72

AudioOutputUnitStart() function, 153

AudioOutputUnitStop() function, 153

AudioQueueAllocateBuffer() function,

87, 234

AudioQueueEnqueueBuffer() function,

93, 234

AudioQueueGetProperty() function, 73

AudioQueueGetPropertySize() function, 73

AudioQueueNewInput() function, 61, 66

AudioQueueNewOutput() function, 81,

85, 233

AudioQueueOutputCallback class, 82

AudioQueuePause() function, 253

AudioQueueStart() function, 69

AudioQueueStop() function, 70, 93

AudioSampleType class, 52

AudioSessionAddPropertyListener()

function, 245

AudioSessionInitialize() function, 231-232

AudioSessionSetProperty() function, 253

AudioStreamBasicDescription structure, 34,

43-45

for audio queues, 65-68

creating on iOS, 232

getting from input AUHAL, 171

from input audio file, 103

retrieving from audio file, 84

AudioStreamPacketDescription structure,

45-46

AudioTimeStamp structure, 140, 156

292 audio units

AudioUnitRender() function, 150-151, 173

AudioUnitSampleType class, 52

AudioUnitSetProperty() function, 139,

149, 186

AudioUnitUnitialize() function, 153

AUFilePlayer

scheduled start time, 140-141

scheduling AudioFileID with, 139

setting ScheduledFileRegion with,
139-140

AUGraph, 129, 254

creating, 133-137

creating speech synthesis AUGraph,
144-146

initializing, 137

opening, 135

starting, 133

stopping, 133

AUGraph-based play-through program

input AUHAL unit, 168

adopting hardware input sample
rate, 172

calculating capture buffer size for
I/O unit, 173

creating, 168

creating AudioBufferList, 173

creating CARingBuffer, 174

enabling I/O on, 169

getting
AudioStreamBasicDescription
from, 171

getting default audio input
device, 170

initializing, 175-176

setting current device property, 171

setting up input callback, 175

input callback, writing, 176-177

main() function, 164

play-through AUGraph, creating,
178, 180

render callback, writing, 181

ring buffers

with Audio Units, 166-168

explained, 165

running, 182

skeleton, 162, 164

stereo mixer unit in, 184-189

user data struct, 168

AUGraphAddNode() function, 135, 154, 185

AUGraphConnectNodeInput() function, 151

AUGraphInitialize() function, 137

AUGraphNodeInfo() function, 136, 149

AUGraphOpen() function, 180

AUGraphStart() function, 132

AUHAL

definition of, 162

input AUHAL unit, 168-175

AUMatrixMixer, 183

AUMatrixReverb, 147-149

AUMixer, 183

AUMixer3D, 183

AUPlugIn.h, 280

.aupreset file

CFURLRef for, 283

loading into CFDataRef, 284

AURenderCallback, 155

AUSampler, 281-285

AUSpeechSynthesis, 148

AUSplitter, 184

AVAudioPlayer class, 13

AVAudioRecorder class, 13

AVCaptureSession class, 14

AVPlayer class, 14

293AVPlayer class

B

backgrounding, handling on iOS, 237

big-endian

converting from little-endian, 35

defined, 34

bit depth, defined, 29

bit rate

constant versus variable, 31

defined, 29

browsing documentation, 3-4

buffers

for audio queues, 68-69

calculating size, 90-91

explained, 40

figuring size of, 73-75

OpenAL buffers

attaching audio sample buffers to,
201-202

creating, 201

creating for streaming, 213

definition of, 193

freeing, 202

queueing for streaming, 213

refilling, 217-219

for playback audio queues, 85-87

re-enqueuing, 77

refilling, 234-236

ring buffers

with Audio Units, 166-168

explained, 165

BuildMyAUGraph() function, 184

bus field (file player audio unit), 139

buses, 136

C

C API in Core Foundation, 16

CAF (Core Audio Format), 41, 50

CalculateBytesForTime() function, 92

callback functions

in audio queues, 65

defined, 55

implementing in Audio Converter
Services API, 109-112

input callback, 175-178

playing back audio, 91-94

recording audio, 75-78

render callback, 155-159

with RemoteIO Audio Unit,
249-252

writing, 181-182

calling Audio Converter Services, 105-108

canonical audio formats, 51-53

capture with RemoteIO Audio Unit, 244-249

checking for audio input availability,
244-245

enabling I/O, 246-247

getting hardware sampling rate,
245-246

handling interruptions, 249

setting render callback, 248

setting stream format, 247

setting up audio session, 244

capture buffer size, calculating for

I/O unit, 173-174

CARingBuffer, 166

building play-through AUGraph for,
178-180

creating, 174

fetching samples from, 181-182

storing captured samples to, 178

294 backgrounding, handling on iOS

CAShow() function, 149

CBR (constant bit rate), 31

CD-quality audio, sampling rate, 27, 29

CFDataRef, 284

CFPropertyListRef, 284

CFRelease() function, 19

CFStringRef class, converting paths to, 18

CFSwapInt16HostToBig() function, 35

CFURLRef for .aupreset file, 283

channels, defined, 31

CheckALError() function, 199, 201

CheckError() function, 200, 231

cleaning up OpenAl resources, 205

CloseComponent() function, 153

codecs, support for, 254

Component Manager, 134

compression wave, defined, 25

connecting

audio units, 154-155

MIDI ports, 265-266

nodes, 136, 148

connectToHost method, 272

constant bit rate (CBR), 31

conventions in Core Audio, 15-16

converter units, 54, 125, 128

converting

little-endian to big-endian, 35

paths to NSString/CFStringRef, 18

sawtooth waves to sine waves, 38-39

square waves to sawtooth waves, 37-38

converting between formats, 51-53, 97

afconvert utility, 97-99

Audio Converter Services, 100-102

calling, 105-108

file setup, 102-105

implementing callback function,
109-112

Extended Audio File Services,
112-118

cookies. See magic cookies

coraudio-api mailing list, 286

Core Audio

capabilities of, 1-2

complexity of, 2

conventions, 15-16

example application, retrieving audio
file metadata, 16-21

frameworks, 14-15

importing, 20

properties, explained, 22-23

when not to use, 13

Core Audio community, 286

Core Audio Format (CAF), 41, 50

Core Foundation, 16

Core MIDI API, 15, 258

architecture, 258

device hierarchy, 258-259

instrument units, 261

MIDI messages, 260-261

MIDI synthesizer application, 262

event handling, 267-269

main() function, 263

MIDIClientRef, 265

MIDIPortRef, 265

notification handling, 267-269

playing, 269

port connection, 265-266

setupAUGraph() function,
263-264

skeleton, 262

state struct, 262

295Core MIDI API

MIDIWifiSource application

sending MIDI messages, 273-275

setting up, 269-271

setting up Mac to receive Wi-Fi
MIDI data, 275-277

setting up MIDI over Wi-Fi,
271-273

on mobile devices, 277

properties, 260

terminology, 258-260

#coreaudio channel, 286

CreateAndConnectOutputUnit()

function, 154

CreateInputUnit() function, 175-176

CreateMyAUGraph() function, 178

Creative Technologies, Ltd., 191

cycle, defined, 25

D

data formats

for audio, 40-41

AudioStreamBasicDescription
structure, 43-45

AudioStreamPacketDescription
structure, 45-46

canonical formats, 51, 53

file formats versus, 41, 46-51

default audio input device, returning,

169-170

DefaultOutputUnit, 148

developer accounts, obtaining, 3

digital audio, explained, 27-31

digital photography, sampling in, 30

digital signal processing (DSP), 53, 280-281

Digital Signal Processing, 4th Edition

(Proakis and Manolakis), 280

Digital Signal Processing: Practical Recipes

for Design, Analysis and Implementation

(Rorabaugh), 281

Discrete-Time Signal Processing (Oppenheim

and Schafer), 280

documentation

for file player audio unit, 137

finding, 3-6

downloading sample code, 9

DSP (digital signal processing), 53, 280-281

E

effect units, 53, 125-128

effects, adding to speech synthesis program,

147-150

enabling I/O on input AUHAL, 169

encoded formats in audio queue, 65-66

enqueuing, 69, 93

error handling, 18

CheckError() function, 63-64

in OpenAL looping program, 199-200

events, handling MIDI events, 267-269

ExtAudioFile class, 113

creating, 207

setting up for streaming, 215-217

ExtAudioFileDispose() function, 115

ExtAudioFileOpenURL() function, 114

ExtAudioFileRead() function, 116-117, 207,

209, 217

ExtAudioFileRef class, 113

Extended Audio File Services API, 15,

112-118

F

Fetch() function, 181-182

file conversion. See converting between

formats

296 Core MIDI API

file formats

for audio, 40-41

data formats versus, 41, 46-51

file permissions, 18

file player program (audio units), 129-141

creating AUGraph, 133-137

main() function, 131-133

setting up file player audio unit,
137-141

files

AudioFileStream.h, 279

AUPlugIn.h, 280

.aupreset file

CFURLRef for, 283

loading into CFDataRef, 284

writing raw samples to, 32-39

fillALBuffer() function, 217, 219

fillBuffer: method, 234-235

finding

audio files for playback, 84

documentation, 3-6

foregrounding, handling on iOS, 237

format conversion. See converting between

formats

Format Converter Audio Unit, 239

formats. See audio formats; data formats;

file formats

frame rate, variable, 31

frames, defined, 31

frameworks of Core Audio, 14-15

freeing buffers in OpenAL, 202

frequency

defined, 25

range of human hearing, 39

function parameters, naming

conventions, 23

functions

input callback functions, 166, 176-177

OpenAL functions

getter/setter functions, 193

property constants for, 193-195

render callback functions, writing,
181-182

G–H

generator units, 53, 124

in file player program, 129

subtypes of, 126

Generic Audio Unit, 238

GraphRenderProc() function, 180

graphs. See AUGraph

HAL (Hardware Abstraction Layer), 53, 162

handling

iOS interruptions, 236-238

MIDI events, 267-269

MIDI notifications, 267-269

hardware

audio hardware devices, 170

Audio Hardware Services, 71

audio units compared to, 124

Hardware Abstraction Layer (HAL), 53, 162

hardware hazards on iOS, 254

header files for iOS Tone-Player app,

227-228

human hearing, frequency range of, 39

I

I/O (input/output), 161

AUGraph-based play-through
program

input AUHAL unit, 168-175

input callback, writing, 176-177

297I/O (input/output)

main() function, 164

play-through AUGraph, creating,
178-180

render callback, writing, 181-182

ring buffers, 165-168

running, 182

skeleton, 162, 164

stereo mixer unit in, 184-189

user data struct, 167-168

AUHAL, definition of, 162

I/O units, 53, 137

IBActions in MIDIWifiSource application, 270

importing Core Audio, 20

initializing

audio queues for iOS apps, 233-234

audio sessions for iOS apps, 231-232

AUGraph, 137

file player audio unit, 138

input AUHAL, 175-176

input AUHAL unit, 168

adopting hardware input sample
rate, 172

calculating capture buffer size for I/O
unit, 173

creating, 168

AudioBufferList, 173

CARingBuffer, 174

enabling I/O on, 169

getting AudioStreamBasicDescription
from, 171

getting default audio input device, 170

initializing, 175-176

setting current device property, 171

setting up input callback, 175

input callback functions, 166, 176-177

input devices

information from, 71

sample rate, 72

input scope, 53

input/output. See I/O

InputModulatingRenderCallback()

function, 249

InputRenderProc() function, 176

instrument units, 53, 124, 126, 261

interleaved audio, defined, 31

interruptions, handling iOS interruptions,

236-238

iOS

Audio Session Services API, 15

Core MIDI on, 277

iOS, Core Audio on, 223

3D Mixer Unit, 239

Audio Session Services, 224

app setup, 227-230

audio queue initialization, 233-234

audio session initialization, 231-232

buffer refills, 234-236

iOS interruptions, handling,
236-238

properties, 225-227

Audio Units, 238-239

compared to Core Audio on
Mac OS X, 223-224

Format Converter Unit, 239

Generic Unit, 238

hardware hazards, 254

iOS 5, 285-286

iOS Tone-Player app, 227

audio queue initialization, 233-234

audio session initialization, 231-232

buffer refills, 234-236

298 I/O (input/output)

header files, 227-228

implementation file, 228-230

iOS interruptions, handling,
236-238

property synthesis, 230

iPodEQ Unit, 238

Multichannel Mixer Unit, 239

remote control, 253

Remote I/O Unit, 238

capture and play-out, 244-249

pass-through app example, 239-243

render callback, 249-252

Voice Processing Unit, 238

iPodEQ Audio Unit, 238

iterating over MIDIPacketList, 268

J–K–L

key-value pairs, 22

latency

of audio queues, 95

defined, 40

Lee, Mike, xv-xviii

libraries, OpenAL. See OpenAL

linear pulse code modulation, 27

Lion (Mac OS X 10.7)

AUSampler, 281-285

hardware encoding and decoding, 281

listeners, OpenAL

creating, 214

definition of, 193

setting listener position, 203-204

little-endian, converting to big-endian, 35

loading .aupreset file into CFDataRef, 284

loadLoopIntoBuffer() function, 201-202

loadWAVFile() function, 196

Loki Software, 191

looping program (OpenAL), 196-197

animating source position, 205-206

attaching audio sample buffers to
OpenAL buffers, 201-202

attaching buffer to source, 203

cleaning up OpenAL resources, 205

creating OpenAL buffers, 201

creating OpenAL source, 202

error handling, 199-200

freeing buffers, 202

initial main setup, 200

loading samples for OpenAL buffer,
206-210

looping to animate source position,
204-205

MyLoopPlayer struct, 200

opening default OpenAL device, 201

playing sources, 204

setting listener position, 203-204

setting source position, 203

setting source properties, 203

skeleton, 198-199

M

Mac OS X 10.7 (Lion)

AUSampler, 281-285

hardware encoding and decoding, 281

magic cookies, 46

in audio queues, 68-72

copying from audio file to audio
queue, 89-90

for playback audio queues, 86

mailing lists, coreaudio-api, 286

main() function, 18

audio unit sine wave player, 153

audio units file player program,
131-133

299main() function

AUGraph play-through program, 164

for Core MIDI synthesizer
program, 263

MyStreamPlayer program, 212-213

speech synthesis audio unit program,
143-144

mBitsPerChannel struct member, 45

mBytesPerFrame struct member, 45

mBytesPerPacket struct member, 45

mChannelsPerFrame struct member, 45

mDataByteSize struct member, 46

medium, defined, 25

messages, MIDI, 260-261

sending, 273-275

metadata in audio files, retrieving, 16-21

mFormatFlags struct member, 44

mFormatID struct member, 44

mFramesPerPacket struct member, 45

MIDI (Musical Instrument Digital Interface)

Core MIDI, 258

architecture, 258

device hierarchy, 258-259

instrument units, 261

MIDI messages, 260-261

properties, 260

terminology, 258-260

explained, 257-258

messages, sending, 273-275

MIDI synthesizer application, 262

event handling, 267-269

main() function, 263

MIDIClientRef, 265

MIDIPortRef, 265

notification handling, 267-269

playing, 269

port connection, 265-266

setupAUGraph() function,
263-264

skeleton, 262

state struct, 262

MIDIWifiSource application

sending MIDI messages, 273-275

setting up, 269-271

setting up Mac to receive Wi-Fi
MIDI data, 275-277

setting up MIDI over Wi-Fi,
271-273

on mobile devices, 277

MIDIClientRef, creating, 265

MIDIGetNumberOfSources() function, 266

MIDIGetSource() function, 266

MIDIInputPortCreate() function, 265, 267

MIDINetworkConnection class, 272

MIDINetworkHost, creating, 272

MIDINetworkSession, 272

MIDINotifyProc, 267

MIDIPacketList

creating, 273-274

iterating over, 268

sending, 273-274

MIDIPacketNext() function, 269

MIDIPortConnectSource() function, 266-267

MIDIPortRef, creating, 265

MIDIReadProc, 267

MIDISend() function, 273-275

MIDIWifiSource application

sending MIDI messages, 273-275

setting up, 269-271

setting up Mac to receive Wi-Fi MIDI
data, 275-277

setting up MIDI over Wi-Fi, 271-273

mixer units, 54, 125-126, 183-189

300 main() function

monaural sound waves, 31

mReserved struct member, 45

mSampleRate struct member, 44

mStartOffset struct member, 45

Multichannel Mixer Audio Unit, 239

Multimedia Programming Guide (Apple), 255

Musical Instrument Digital Interface.

See MIDI

MusicDeviceMIDIEvent() function, 268, 281

mVariableFramesInPacket struct

member, 46

MyAQOutputCallback function, 235-236

MyAUGraphPlayer struct, speech

synthesis, 184

MyInterruptionListener() function, 236

MyLoopPlayer program, 196-197

animating source position, 205-206

attaching audio sample buffers to
OpenAL buffers, 201-202

attaching buffer to source, 203

cleaning up OpenAL resources, 205

creating OpenAL buffers, 201

creating OpenAL source, 202

error handling, 199-200

freeing buffers, 202

initial main setup, 200

loading samples for OpenAL buffer,
206-210

looping to animate source position,
204-205

MyLoopPlayer struct, 200

opening default OpenAL device, 201

playing sources, 204

setting listener position, 203-204

setting source position, 203

setting source properties, 203

skeleton, 198-199

MyLoopPlayer struct, 200

MyMIDINotifyProc() function, 267

MyMIDIReadProc() function, 267

MyStreamPlayer program (OpenAL)

creating buffers for streaming, 213

creating listener, 214

creating sources for streaming, 213

infinite loop to update source position
and refill buffers, 214-215

main() function, 212-213

MyStreamPlayer struct, 212

queueing buffers, 213

refilling OpenAL buffers, 217-219

setting up ExtAudioFile, 215, 217

skeleton, 211-212

MyStreamPlayer struct, 212

N

naming conventions for function

parameters, 23

nodes

connecting, 136, 148

purpose of, 135

NOTE OFF events

parsing, 268

sending, 274

NOTE ON events

parsing, 268

sending, 274

notifications, handling MIDI notifications,

267-269

NSSound class, 13

NSString class, converting paths to, 18

NSURL class, converting paths to, 18

Nyquist-Shannon Sampling Theorem, 27

301Nyquist-Shannon Sampling Theorem

O

objects, releasing, 19

offline effect units, 54

online documentation, finding, 3-6

opaque types, 16

OpenAL API, 14

3D Cartesian coordinate space, 192

advantages of, 191-193

audio streaming, 210

creating buffers for streaming, 213

creating listener, 214

creating sources for streaming, 213

infinite loop to update source
position and refill buffers,
214-215

main() function, 212-213

MyStreamPlayer struct, 212

program skeleton, 211-212

queueing buffers, 213

refilling OpenAL buffers, 217-219

setting up ExtAudioFile, 215, 217

buffers

attaching audio sample buffers to,
201-202

creating, 201

creating for streaming, 213

definition of, 193

freeing, 202

queueing for streaming, 213

refilling, 217-219

functions, 196

getter/setter functions, 193

property constants for, 193-195

listeners

creating, 214

definition of, 193

setting listener position, 203-204

looping program, 196-197

animating source position, 205-206

attaching audio sample buffers to
OpenAL buffers, 201-202

attaching buffer to source, 203

cleaning up OpenAL
resources, 205

creating OpenAL buffers, 201

creating OpenAL source, 202

error handling, 199-200

freeing buffers, 202

initial main setup, 200

loading samples for OpenAL
buffer, 206-210

looping to animate source position,
204-205

MyLoopPlayer struct, 200

opening default OpenAL
device, 201

playing sources, 204

setting listener position, 203

setting source position, 203

setting source properties, 203

skeleton, 198-199

origin and development, 191

property constants, 194-195

resources, cleaning up, 205

sources

attaching buffers to, 203

creating, 202

creating for streaming, 213

definition of, 193

looping to animate source position,
204-205

playing, 204

setting properties on, 203

setting source position, 203

302 objects, releasing

opening

audio files, 131

AUGraph, 135

OSStatus class, error handling, 18

output scope, 53

output units, 125

in file player program, 129

subtypes of, 129

P

packets

in audio source file, 103-104

AudioStreamBasicDescription
structure, 43-45

AudioStreamPacketDescription
structure, 45-46

calculating count, 90-91

defined, 31, 85

reading from audio file, 91-94

variable packet rate, 31

panner units, 54, 127

parameters

naming conventions, 23

properties versus, 94

parsing NOTE ON and NOTE OFF events, 268

pass-through app (iOS), 241-243

building, 239-240

capture and play-out, 244-249

checking for audio input
availability, 244-245

enabling I/O, 246-247

getting hardware sampling rate,
245-246

handling interruptions, 249

setting stream format, 247

setting up audio session, 244

setting up render callback, 248

header file, 241

render callback, 249-252

paths, converting to

NSString/CFStringRef, 18

PCM (pulse code modulation), 27

PCM formats

AIFF file format and, 49

Core Audio Format (CAF) and, 50

WAV file format and, 49

period, defined, 25

permissions, 18

photography, sampling in, 30

playback, audio, 81-83

buffer setup, 85-87

calculating buffer size and packet
count, 90-91

callback function, 91-94

copying magic cookie, 89-90

creating audio queues, 83-85

features and limits of queues, 94-95

starting playback queue, 88-89

utility functions, 89-91

play-out with RemoteIO Audio Unit, 244-249

checking for audio input availability,
244-245

enabling I/O, 246-247

getting hardware sampling rate,
245-246

handling interruptions, 249

setting render callback, 248

setting stream format, 247

setting up audio session, 244

play-through AUGraph. See AUGraph-based

play-through program

playing

MIDI synthesizer application, 269

OpenAL sources, 204

sound, 26

303playing

ports, MIDI

connecting, 265-266

setting up, 273

positional sound. See OpenAL API

PrepareSpeechAU() function, 188-189

priming audio queues on iOS apps, 233

procs, defined, 55. See also callback

functions

properties

of Core MIDI, 260

explained, 22-23

for iOS Audio Session Services,
225-227

parameters versus, 94

synthesizing for iOS apps, 230

property constants (OpenAL), 194-195

pull model for audio units, 55, 125

pulse code modulation (PCM), 27

Q–R

QTMovie class, 13

queueing OpenAL buffers, 213

queues. See audio queues

radix point, defined, 52

read procs, defined, 55

reading packets from audio file, 91-94

recording audio, 26-27, 60-63

callback function, 75-78

CheckError() function, 63-64

creating audio queues, 64-71

utility functions, 71-75

refillALBuffers() function, 214, 218

refilling OpenAL buffers, 217-219

releasing objects, 19

remote control on iOS, 253

Remote I/O Audio Unit, 238

capture and play-out, 244-249

checking for audio input
availability, 244-245

enabling I/O, 246-247

getting hardware sampling rate,
245-246

handling interruptions, 249

setting stream format, 247

setting up audio session, 244

setting up render callback, 248

pass-through app example, 239-243

render callback, 249-252

render callback functions, 155-159

defined, 55

with RemoteIO Audio Unit, 249-252

writing, 181-182

rendering process, 150

audio unit render cycle, 150-151

creating and connecting audio units,
154-155

render callback function, 155-159

sine wave player example, 151-153

requirements for sample code, 10

retrieving audio file metadata, 16-21

ring buffers

with Audio Units, 166-168

explained, 165

ring modulator, creating, 249-252

running AUGraph-based play-through

program, 182

S

sample code

downloading, 9

requirements for, 10

304 ports, MIDI

sample rates

defining in audio queues, 66

of input devices, getting, 72

sampling

buffers, explained, 40

CD-quality audio sampling rate,
27, 29

in digital photography, 30

explained, 27, 29-31

writing raw samples, 32-39

sawtooth waves, 36

converting square waves to, 37-38

converting to sine waves, 38-39

ScheduledAudioFileRegion structure,

139-140

ScheduledFileRegion structure, 139-140

scope field (file player audio unit), 139

searching documentation, 4-6

sending

MIDI messages, 273-275

NOTE ON and NOTE OFF
events, 274

setupAUGraph() function, 263-264

setUpExtAudioFile() function, 215, 217

signals, digital signal processing (DSP),

280-281

sine wave player example (audio rendering),

151-153

sine waves, 36

converting sawtooth waves to, 38-39

sound. See also audio

playing, 26

recording, 26-27

sound waves

digital audio, 27, 29-31

physics of, 25-27

shapes of, 36

writing to files, 32-39

sources (OpenAL)

attaching buffers to, 203

creating, 202

creating for streaming, 213

definition of, 193

looping to animate source position,
204-205

playing, 204

setting properties on, 203

setting source position, 203

SpeakCFString() function, 147, 188

Speech Synthesis Manager, setting up,

146-147

speech synthesis program (audio units),

141-150

adding audio effects, 147-150

creating speech synthesis AUGraph,
144-146

Speech Synthesis Manager, 146-147

SpeechChannel structure, 146

speed of render callback function, 156

square waves, 35-36

converting to sawtooth waves, 37-38

Stack Overflow, 286

starting

audio queues, 70, 234

AUGraph, 133

playback queue, 88-89

state struct for Core MIDI synthesizer

program, 262

stereo mixer unit, 184-189

stereo sound channels, 31

stopping

audio queues, 70, 93

AUGraph, 133

stream format, setting on RemoteIO Audio

Unit, 247

305stream format, setting on RemoteIO Audio Unit

streamFormat, setting for mixer units,

186-187

streaming in OpenAL, 210

creating

buffers for streaming, 213

listener, 214

sources for streaming, 213

infinite loop to update source position
and refill buffers, 214-215

main() function, 212-213

MyStreamPlayer struct, 212

program skeleton, 211-212

queueing buffers, 213

refilling OpenAL buffers, 217-219

setting up ExtAudioFile, 215, 217

streaming audio, 44. See also audio queues

streams, 1, 44

surround sound, 31, 192. See also

OpenAL API

synthesizer application (MIDI), 262

event handling, 267-269

main() function, 263

MIDIClientRef, 265

MIDIPortRef, 265

notification handling, 267-269

playing, 269

port connection, 265-266

setupAUGraph() function, 263-264

skeleton, 262

state struct, 262

synthesizing speech. See speech synthesis

program (audio units)

T

third-party audio units, 280

threading

in audio queues, 94

explained, 157

timbre, 36

timestamp offsets, adjusting in render

callbacks, 181-182

Tone-Player app (iOS), 227

audio queue initialization, 233-234

audio session initialization, 231-232

buffer refills, 234-236

header files, 227-228

implementation file, 228-230

iOS interruptions, handling, 236-238

property synthesis, 230

U–Z

updateSourceLocation() function, 203-204,

214-215

user data struct for AUGraph play-through

program, 167-168

UTF-8 encoding for path conversion, 18

utility functions, 71

variable bit rate (VBR), 31

variable frame rate, 31

variable packet rate, 31

Voice Processing Audio Unit, 238

WAV file format, PCM formats and, 49

waves (sound)

digital audio, 27-31

physics of, 25-27

shapes of, 36

writing to files, 32-39

306 streamFormat, setting for mixer units

write procs, defined, 55

writing

to audio file, 75-78

to audio queue, 91-94

input callback functions, 176-177

raw samples, 32-39

render callback functions, 181-182

Xcode documentation browser, 3-6

307Xcode documentation browser

This page intentionally left blank

Advanced Mac OS X
Programming: The Big
Nerd Ranch Guide

Mark Dalrymple

ISBN-13: 978-0-321-70625-6

For more information and to
read sample material, please
visit informit.com/learnmac.

Titles are also available at
safari.informit.com.

Cocoa Programming
for Mac OS X,
Fourth Edition

Aaron Hillegass and

Adam Preble

ISBN-13: 978-0-321-77408-8

iOS Programming: The
Big Nerd Ranch Guide,
Third Edition

Joe Conway and

Aaron Hillegass

ISBN-13: 978-0-321-82152-2

Learning Cocos2D

Rod Strougo and

Ray Wenderlich

ISBN-13: 978-0-321-73562-1

Essential Resources for
Mac and iOS Developers

Core Data for iOS

Tim Isted and

Tom Harrington

ISBN-13: 978-0-321-67042-7

Xcode 4 Unleashed

Frederic Anderson

ISBN-13: 978-0-672-33327-9

Learning iOS Game
Programming

Michael Daley

ISBN-13: 978-0-321-69942-8

ESSENTIAL REFERENCES FOR

PROGRAMMING PROFESSIONALS

Developer’s Library

Developer’s Library books are available at most retail and online

bookstores. For more information or to order direct, visit our

online bookstore at informit.com/store.

Online editions of all Developer’s Library titles are available by

subscription from Safari Books Online at safari.informit.com.

informit.com/devlibrary

Developer’s
Library

Programming in

Objective-C,

Fourth Edition

Stephen G. Kochan

ISBN-13: 978-0-321-81190-5

The iOS 5 Developer's

Cookbook, Third Edition

Erica Sadun

ISBN-13: 978-0-321-75426-4

Test-Driven iOS

Development

Graham Lee

ISBN-13: 978-0-321-774187

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13

Objective-C Phrasebook, David Chisnall 978-0-321-81375-6

Second Edition

Android™ Wireless Application Lauren Darcey / Shane Conder 978-0-321-74301-5

Development, Second Edition

Cocoa®Programming David Chisnall 978-0-321-63963-9

Developer’s Handbook

Cocoa Design Patterns Erik M. Buck / Donald A. Yacktman 978-0-321-53502-3

Applications for the iPhone

	Contents
	About the Authors
	Foreword
	Introduction
	Audience for This Book
	What You Need to Know
	Looking Up Documentation
	How This Book Is Organized
	About the Sample Code

	I: Understanding Core Audio
	1 Overview of Core Audio
	Core Audio Conventions
	The Core Audio Frameworks
	Your First Core Audio Application
	Core Audio Properties
	Summary

	2 The Story of Sound
	Making Waves
	Digital Audio
	DIY Samples
	Buffers
	Audio Formats
	Summary

	3 Audio Processing with Core Audio
	Audio Data Formats
	Canonical Formats
	Processing Audio with Audio Units
	The Pull Model
	Summary

	II: Basic Audio
	4 Recording
	All About Audio Queues
	Building a Recorder
	A CheckError() Function
	Creating and Using the Audio Queue
	Utility Functions for the Audio Queue
	Summary

	5 Playback
	Defining the Playback Application
	Setting Up a File-Playing Audio Queue
	Playback Utility Functions
	The Playback Audio Queue Callback
	Features and Limits of Queue-Based Playback
	Summary

	6 Conversion
	The afconvert Utility
	Using Audio Converter Services
	Setting Up Files for Conversion
	Converting with Extended Audio File Services
	Summary

	III: Advanced Audio
	7 Audio Units: Generators, Effects, and Rendering
	Where the Magic Happens
	How Audio Units Work
	Sizing Up the Audio Units
	Your First Audio Units
	Speech and Effects with Audio Units
	Adding Your Code to the Audio Rendering Process
	Summary

	8 Audio Units: Input and Mixing
	Working with I/O Input
	Mixing
	Summary

	9 Positional Sound
	Sound in Space
	The OpenAL API
	Putting a Sound in Space
	Streaming Audio in OpenAL
	Summary

	IV: Additional Topics
	10 Core Audio on iOS
	Is That Core Audio in Your Pocket?
	Playing Nicely with Others: Audio Session Services
	An Audio Session Example
	Audio Units on iOS
	Other iOS Audio Tricks
	Summary

	11 Core MIDI
	MIDI Concepts
	Core MIDI
	Instrument Units
	Building a Simple MIDI Synthesizer
	Handling MIDI Notifications and Events
	Creating MIDI Events
	Summary: MIDI Mastery … but Mobility?

	12 Coda
	Still More Core Audio
	Next Steps
	Lion and iOS 5
	The Core Audio Community
	Summary: Sounds Good

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U-Z

