
www.allitebooks.com

http://www.allitebooks.org

Learning Cypher

Write powerful and efficient queries for Neo4j with
Cypher, its official query language

Onofrio Panzarino

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Cypher

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1070514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-775-8

www.packtpub.com

Cover Image by Jaroslaw Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Onofrio Panzarino

Reviewers
Riccardo Mancinelli

Rohit Mukherjee

Timmy Storms

Craig Taverner

Commissioning Editor
Antony Lowe

Acquisition Editor
Owen Roberts

Content Development Editor
Priyanka S

Technical Editors
Taabish Khan

Nikhil Potdukhe

Akash Rajiv Sharma

Copy Editors
Mradula Hegde

Gladson Monteiro

Project Coordinator
Harshal Ved

Proofreader
Ameesha Green

Indexer
Mariammal Chettiyar

Graphics
Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Onofrio Panzarino is a programmer with 15 years experience working with
various languages (mostly with Java), platforms, and technologies. Before obtaining
his Master of Science degree in Electronics Engineering, he worked as a digital
signal processor programmer. Around the same time, he started working as a C++
developer for embedded systems and PCs. Currently, he is working with Android,
ASP.NET or C#, and JavaScript for Wolters Kluwer Italia. During these years, he
gained a lot of experience with graph databases, particularly with Neo4j.

Onofrio resides in Ancona, Italy. His Twitter handle is (@onof80). He is a speaker in
the local Java user group and also a technical writer, mostly for Scala and NoSQL.
In his spare time, he loves playing the piano with his family and programming with
functional languages.

First and foremost, I would like to thank my wife, Claudia, and my
son, Federico, who patiently supported me at all times.

Special thanks to the team at Packt Publishing. It has been a great
experience to work with all of you. The work of all the reviewers was
invaluable as well.

I would also like to thank all my friends who read my drafts and
gave me useful suggestions.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Riccardo Mancinelli has acquired a degree in Electronics Engineering. He has
more than nine years of experience in IT, specializing in frontend and backend
software development. He currently works as an IT architect consultant and a senior
Java developer.

He loves any tool and programming language that will help him achieve his goal
easily and quickly. Besides programming, his favorite hobby is reading.

Rohit Mukherjee is a student of computer engineering at the National University
of Singapore (NUS). He is passionate about software engineering and new
technologies. He is currently based in Zurich, Switzerland, on a student exchange
program at ETH, Zurich.

Rohit has worked for Ernst and Young in Kolkata, Bank of America Merrill Lynch in
Singapore, and Klinify in Singapore.

He was a technical reviewer for Google Apps Script for Beginners, Serge Gabet,
Packt Publishing.

I would like to thank my parents for their support.

www.allitebooks.com

http://www.allitebooks.org

Timmy Storms started working as a Java consultant after he completed his
Bachelor's degree in Information Technology. He acquired SCJP, SCWCD, and
SCBCD certifications to boost his overall Java knowledge. Over the years, he has
worked in several industries, such as banking, and health care as well as for the
government, where he gained a broad overview of the Java landscape. In the initial
years of his career, he worked mostly as a frontend developer, but later on shifted his
focus to backend technology.

He discovered the wonderful world of graph databases, and especially Neo4j, in late
2012. After he developed a social platform, he quickly saw the benefits of Neo4j and
its query language Cypher. Being an early adopter of modules such as Spring Data
Neo4j and cypher-dsl, he has made some contributions to the source code as well. He
tries to help out as much as he can on topics pertaining to Neo4j and Cypher tags on
www.stackoverflow.com. Learning Cypher is the first book that he has reviewed, and
he doesn't expect it to be his last one.

Craig Taverner is an open source software developer, technology enthusiast, and
entrepreneur working on many projects, especially those that involve Ruby, GIS,
and Neo4j. He is the CTO and co-founder of AmanziTel AB, where he helps
build really cool telecom statistics platforms.

Having a background in pure science, Craig has spent the last two decades working
mostly in the mobile telecom field, where he has applied his analytical skills to help
large international operators solve their complex data analysis problems. During
this time, he has also contributed to several open source projects, most notably Neo4j
Spatial, as well as presented at many conferences, such as FOSS4G 2010 and 2011 and
GraphConnect 2012 and 2013. In addition, he has reviewed several technical books,
including Domain Specific Languages, Martin Fowler, Addison-Wesley Professional;
Linked Data, David Wood and Marsha Zaidman, Manning Publications; and Neo4j in
Action, Jonas Partner, Aleksa Vukotic, and Nicki Watt, Manning Publications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Querying Neo4j Effectively with Pattern Matching	 7

Setting up a new Neo4j database	 7
Neo4j running modes	 8

Neo4j Server	 8
An embedded database	 10

HR management tool – an example	 13
Creating nodes and relationships using the Java API	 14
A querying database	 18

Invoking Cypher from Java	 18
Finding nodes by relationships	 21
Filtering properties	 22
Filtering relationships	 23
Dealing with missing parts	 26
Working with paths	 28
Node IDs as starting points	 29

Query parameters	 29
Passing parameters with Java	 29

Summary	 30
Chapter 2: Filter, Aggregate, and Combine Results	 31

Filtering	 31
The book store – an example	 31
Text search	 33

Working with regular expressions	 33
Escaping the text	 36

Value comparisons	 37
The IN predicate	 37
Boolean operators	 38

Working with collections	 38
Paging results – LIMIT and SKIP	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Sorting	 43
A descending sort	 43
Dealing with null values using the COALESCE function	 44

Aggregating results	 46
Counting matching rows or non-null values	 46
Summation	 47
Average	 48
Maximum and minimum	 49
Standard deviation	 49
Collecting values in an array	 50
Grouping keys	 50
Conditional expressions	 51
Separating query parts using WITH	 52

The UNION statement	 54
Summary	 55

Chapter 3: Manipulating the Database	 57
Using Neo4j Browser	 57
Creating nodes and relationships	 60

Labels and properties	 60
Multiple labels	 61
Properties	 62
Creating multiple patterns	 63

Creating relationships	 63
Creating full paths	 64
Creating relationships between existing nodes using read-and-write queries	 65

Modifying existing data	 65
Creating unique patterns	 66

Complex patterns	 69
Setting properties and labels	 70

Cloning a node	 71
Adding labels to nodes	 72

Merging matched patterns	 72
Idempotent queries	 74

Deleting data	 74
Removing labels	 74
Removing properties	 75
Deleting nodes and relations	 75
Clearing the whole database	 76

Loops	 77
Working with collections	 77

Summary	 78

Table of Contents

[iii]

Chapter 4: Improving Performance	 79
Performance issues	 79
Best practices and recommendations	 81

Using parameterized queries	 82
Parameterized queries with the REST API	 83

Reusing ExecutionEngine	 84
Finding the optimum transaction size	 85
Avoiding unnecessary clauses	 90
Specifying the direction of relationships and variable length paths	 91

Profiling queries	 92
Profiling using the Java API	 93
Inside the execution plan description	 94
Profiling with Neo4j Shell	 94
Profiling with the REST API	 95

Indexes and constraints	 97
SCAN hints	 98
Index hints	 99
Constraints	 100

Summary	 101
Chapter 5: Migrating from SQL	 103

Our example	 104
Migrating the schema	 106

Labels	 108
Indexes and constraints	 110
Relationships	 112

Migrating the data	 112
Entities	 112
Relationships	 114

Migrating queries	 116
CRUD	 116
Searching queries	 117
Grouping queries	 118

Summary	 120
Appendix: Operators and Functions	 123

Operators	 123
Comparison operators	 123

Ordering operators	 124
Equality operators	 125
NULL equality operators	 126

Table of Contents

[iv]

Mathematical operators	 126
The concatenation operator	 126
The IN operator	 127
Regular expressions	 127

Functions	 127
COALESCE	 128
TIMESTAMP	 128
ID	 128
Working with nodes	 129

NODES	 129
LABELS	 129

Working with paths and relationships	 129
TYPE	 130
ENDNODE and STARTNODE	 130
SHORTESTPATH and ALLSHORTESTPATHS	 130
RELATIONSHIPS	 131

Working with collections	 131
HEAD, TAIL, and LAST	 131
LENGTH	 132
EXTRACT	 132
FILTER	 133
REDUCE	 133
RANGE	 134

Working with strings	 134
SUBSTRING, LEFT, and RIGHT	 135
STR	 135
REPLACE	 136
Trimming functions	 136
LOWER and UPPER	 136

Aggregation functions	 137
COUNT	 137
SUM	 137
AVG	 137
PERCENTILEDISC and PERCENTILECONT	 138
STDEV and STDEVP	 138
MIN and MAX	 138

Mathematical functions	 139
Index	 141

Preface
Among the NoSQL databases, Neo4j is generating a lot of interest due to the
following set of features: performance and scalability, robustness, its very natural
and expressive graph model, and ACID transactions with rollbacks.

Neo4j is a graph database. Its model is simple and based on nodes and relationships.
The model is described as follows:

•	 Each node can have a number of relationships with other nodes
•	 Each relationship goes from one node either to another node or the same

node; therefore, it has a direction and involves either only two nodes or
only one

•	 Both nodes and relationships can have properties, and each property has a
name and a value

Before Neo4j introduced Cypher as a preferred query, utilizing Neo4j in a real-world
project was difficult compared to a traditional relational database. In particular,
querying the database was a nightmare, and executing a complex query required the
user to write an object, thereby performing a graph traversal. Roughly speaking, a
traversal is an operation that specifies how to traverse a graph and what to do with
the nodes and relationships found during the visit. Though it is very powerful, it
works in a very procedural way (through callbacks), so its readability is poor and
any change to the query means modifying the code and building it.

Cypher, instead, provides a declarative syntax, which is readable and powerful, and
a rich set of graph patterns that can be recognized in the graph. Thus, with Cypher,
you can write (and read) queries much more easily and be productive from the
beginning. This book will guide you through learning this language from the ground
up, and each topic will be explained with a real-world example.

Preface

[2]

What this book covers
Chapter 1, Querying Neo4j Effectively with Pattern Matching, describes the basic clauses
and patterns to perform read-only queries with Cypher.

Chapter 2, Filter, Aggregate, and Combine Results, describes clauses and tips that can be
used with patterns to elaborate results that come from pattern matching.

Chapter 3, Manipulating the Database, covers the write clauses, which are needed to
modify a graph.

Chapter 4, Improving Performance, talks about tools and practices to improve
performances of queries.

Chapter 5, Migrating from SQL, explains how to migrate a database to Neo4j from
the ground up through an example.

Appendix, Operators and Functions, describes Cypher operators and functions in detail.

What you need for this book
First and foremost, you need Neo4j. The community edition is free and open source.
It can be downloaded from http://www.neo4j.org/download.

In the initial chapters, the examples are created using embedded Neo4j. To run the
Java code, you need any Java IDE and Maven.

If you read this book on a tablet with an Internet connection, another way to run
the Cypher code is using the Neo4j Console (http://console.neo4j.org/); it
allows you to run Cypher queries directly in your browser and lets you to see the
results immediately.

Who this book is for
If you are a developer who wants to learn Cypher to interact with Neo4j and find out
the capabilities of this language, this book is for you.

The first chapter assumes that you are a little familiar with the Java syntax; anyway,
you don't require Java to understand Cypher examples that can be launched in the
Neo4j console.

The last chapter on migration from SQL assumes you know SQL and the
relational model.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can assign starting points to variables in the query using the START keyword."

A block of code is set as follows:

START a=node(2), b=node(3)
RETURN allShortestPaths((a)-[*]-(b)) AS path

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

MATCH (n:Employee {surname: {inputSurname}})
RETURN n

Any command-line input or output is written as follows:

bin\Neo4jInstaller.bat install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In the
next page of the wizard, name the project, set a valid project location, and then
click on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Querying Neo4j Effectively
with Pattern Matching

Querying a graph database using the Java API can be very tedious; you would need
to visit the whole graph and skip nodes that don't match what you are searching for.
Any changes to the query will result in rethinking the code, changing it, and building
it all over again. Why? The reason is that we are using an imperative language to
do pattern matching, and traditional imperative languages don't work well in this
task. Cypher is the declarative query language used to query a Neo4j database.
Declarative means that it focuses on the aspects of the result rather than on methods
or ways to get the result so that it is human-readable and expressive.

In this chapter, we will cover the following topics:

•	 Setting up a Neo4j database
•	 Querying the database in a simpler way than using the Java API

Setting up a new Neo4j database
If you already have experience in creating a Neo4j database, you can skip this and
jump to the next section.

Neo4j is a graph database, which means that it does not use tables and rows to
represent data logically; instead, it uses nodes and relationships. Both nodes and
relationships can have a number of properties. While relationships must have
one direction and one type, nodes can have a number of labels. For example, the
following diagram shows three nodes and their relationships, where every node
has a label (language or graph database), while relationships have a type
(QUERY_LANGUAGE_OF and WRITTEN_IN).

www.allitebooks.com

http://www.allitebooks.org

Querying Neo4j Effectively with Pattern Matching

[8]

The properties used in the graph shown in the following diagram are name, type,
and from. Note that every relation must have exactly one type and one direction,
whereas labels for nodes are optional and can be multiple.

Language

name: “Cypher”

type: “declarative”

GraphDatabase

name: “Neo4j”

Language

name: “Java”

QUERY_LANGUAGE_OF

WRITTEN_IN

from: 2010

Neo4j running modes
Neo4j can be run in two modes:

•	 An embedded database in a Java application
•	 A standalone server via REST

In any case, this choice does not affect the way you query and work with the
database. It's an architectural choice driven by the nature of the application (whether
a standalone server or a client server), performance, monitoring, and safety of data.

Neo4j Server
Neo4j Server is the best choice for interoperability, safety, and monitoring. In fact,
the REST interface allows all modern platforms and programming languages
to interoperate with it. Also, being a standalone application, it is safer than the
embedded configuration (a potential crash in the client wouldn't affect the server),
and it is easier to monitor. If we choose to use this mode, our application will act
as a client of the Neo4j server.

To start Neo4j Server on Windows, download the package from the official website
(http://www.neo4j.org/download/windows), install it, and launch it from the
command line using the following command:

C:\Neo4jHome\bin\Neo4j.bat

Chapter 1

[9]

You can also use the frontend, which is bundled with the Neo4j package, as shown in
the following screenshot:

To start the server on Linux, you can either install the package using the Debian
package management system, or you can download the appropriate package from
the official website (http://www.neo4j.org/download) and unpack it with the
following command:

tar -cf <package>

After this, you can go to the new directory and run the following command:

./bin/neo4j console

Anyway, when we deploy the application, we will install the server as a
Windows service or as a daemon on Linux. This can be done easily using
the Neo4j installer tool.

On the Windows command launch interface, use the following command:

bin\Neo4jInstaller.bat install

When installing it from the Linux console, use the following command:

neo4j-installer install

To connect to Neo4j Server, you have to use the REST API so that you can use any
REST library of any programming language to access the database. Though any
programming language that can send HTTP requests can be used, you can also use
online libraries written in many languages and platforms that wrap REST calls, for
example, Python, .NET, PHP, Ruby, Node.js, and others.

Querying Neo4j Effectively with Pattern Matching

[10]

An embedded database
An embedded Neo4j database is the best choice for performance. It runs in the same
process of the client application that hosts it and stores data in the given path. Thus,
an embedded database must be created programmatically. We choose an embedded
database for the following reasons:

•	 When we use Java as the programming language for our project
•	 When our application is standalone

For testing purposes, all Java code examples provided with this book are made using
an embedded database.

Preparing the development environment
The fastest way to prepare the IDE for Neo4j is using Maven. Maven is a dependency
management as well as an automated building tool. In the following procedure, we
will use NetBeans 7.4, but it works in a very similar way with the other IDEs (for
Eclipse, you will need the m2eclipse plugin). The procedure is described as follows:

1.	 Create a new Maven project as shown in the following screenshot:

2.	 In the next page of the wizard, name the project, set a valid project location,
and then click on Finish.

Chapter 1

[11]

3.	 After NetBeans has created the project, expand Project Files in the project
tree and open the pom.xml file. In the <dependencies> tag, insert the
following XML code:
<dependencies>
 <dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j</artifactId>
 <version>2.0.1</version>
 </dependency>
</dependencies>

<repositories>
 <repository>
 <id>neo4j</id>
<url>http://m2.neo4j.org/content/repositories/releases/</ur
l>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
</repositories>

This code informs Maven about the dependency we are using on our project, that is,
Neo4j. The version we have used here is 2.0.1. Of course, you can specify the latest
available version.

If you are going to use Java 7, and the following section is not present in the file, then
you'll need to add the following code to instruct Maven to compile Java 7:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Once saved, the Maven file resolves the dependency, downloads the JAR files needed,
and updates the Java build path. Now, the project is ready to use Neo4j and Cypher.

Querying Neo4j Effectively with Pattern Matching

[12]

Creating an embedded database
Creating an embedded database is straightforward. First of all, to create a database,
we need a GraphDatabaseFactory class, which can be done with the following code:

GraphDatabaseFactory graphDbFactory = new GraphDatabaseFactory();

Then, we can invoke the newEmbeddedDatabase method with the following code:

GraphDatabaseService graphDb = graphDbFactory
 .newEmbeddedDatabase("data/dbName");

Now, with the GraphDatabaseService class, we can fully interact with the database,
create nodes, create relationships, and set properties and indexes.

Configuration
Neo4j allows you to pass a set of configuration options for performance tuning,
caching, logging, file system usage, and other low-level behaviors. The following
code sets the size of the memory allocated for mapping the node store to 20 MB:

import org.neo4j.graphdb.factory.GraphDatabaseSettings;
// ...
GraphDatabaseService db = graphDbFactory
 .newEmbeddedDatabaseBuilder(DB_PATH)
 .setConfig(GraphDatabaseSettings
 .nodestore_mapped_memory_size, "20M")
 .newGraphDatabase();

You will find all the available configuration settings in the GraphDatabaseSettings
class (they are all static final members).

Note that the same result can be achieved using the properties file. Clearly,
reading the configuration settings from a properties file comes in handy when the
application is deployed because any modification to the configuration won't require
a new build. To replace the preceding code, create a file and name it, for example,
neo4j.properties. Open it with a text editor and write the following code in it:

neostore.nodestore.db.mapped_memory=20M

Then, create the database service with the following code:

GraphDatabaseService db = graphDbFactory
 .newEmbeddedDatabaseBuilder(DB_PATH)
 .loadPropertiesFromFile("neo4j.properties")
 .newGraphDatabase();

Chapter 1

[13]

HR management tool – an example
For the first example in this book, I chose an enterprise application, such as human
resource (HR) management, because I think Neo4j is a great persistence tool for
enterprise applications. In fact, they are famous for having very complex schemas
with a lot of relationships and entities and requirements that often change during
the life of the software; therefore, the queries are also complicated and prone to
change frequently.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In our human resources tool, we have two kinds of nodes: employees and cost
centers. So, we can define the two labels with the following code:

public enum HrLabels implements Label {
 Employee,
 CostCenter
}

Labels are usually defined using an enumeration, but Neo4j just requires those labels
that implement the Label interface.

Labels are a very useful feature introduced in Neo4j 2.0 that allow us
to label a node and make it easier to find them later. A node can have
one or more labels, so you can express complex domain concepts.
Labels can be indexed to improve the performance of a search as well.

We have three types of relationships:

•	 Employees that belong to cost centers
•	 Employees that report to other employees
•	 Employees that can be managers of a cost center

So, we have to define the relationships. This is usually done using the enum function,
as shown in the following code snippet:

public enum EmployeeRelationship implements RelationshipType {
 REPORTS_TO,
 BELONGS_TO,

Querying Neo4j Effectively with Pattern Matching

[14]

 MANAGER_OF;

 public static final String FROM = "from";
}

The FROM constant represents the name of a property. We will use it to store the start
date of the validity of the relationship. Clearly, a real-world HR application would
have a lot of relationships and properties; here we have just a subset.

Creating nodes and relationships using the
Java API
The next step is to fill in the database. First of all, to work with Neo4j using the Java
API, we always need a transaction created from the GraphDatabaseService class.
While building with Java 7, you can use the following syntax:

import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.GraphDatabaseService;

// ...
try (Transaction tx = graphDb.beginTx()) {

 // work with the graph...
 tx.success();
}

The first line in the preceding code creates a transaction named tx. The call to
success marks the transaction successful; every change will be committed once the
transaction is closed. If an exception is thrown from inside the try statement, the
transaction automatically ends with a rollback. When you use Java 6, the code is a
little longer because you have to close the transaction explicitly within a finally
clause, as shown in the following code:

Transaction tx = graphDb.beginTx();
try {
 // work with the graph...
 tx.success();
} finally {
 tx.close();
}

Now, in our application, cost centers are identified only by their code, while
employees can have the following properties:

•	 Name
•	 Surname
•	 Middle name

Chapter 1

[15]

Our relationships (REPORTS_TO, BELONGS_TO, and MANAGER_OF) can have a property
(From) that specifies the dates of validity. The following code creates some examples
of nodes and the relationships between them, and then sets the property values of
nodes and some relationships:

import java.util.GregorianCalendar;
import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

public class DatabaseSetup {

/**
* Properties of a cost center
*/
public static class CostCenter {
 public static final String CODE = "code";
}

/**
* Properties of an employee
*/
public static class Employee {
 public static final String NAME = "name";
 public static final String MIDDLE_NAME = "middleName";
 public static final String SURNAME = "surname";
}

Public static void setup(GraphDatabaseService graphDb) {

 try (Transaction tx = graphDb.beginTx()) {
 // set up of center costs
 Node cc1 = graphDb.createNode(HrLabels.CostCenter);
 cc1.setProperty(CostCenter.CODE, "CC1");

 Node cc2 = graphDb.createNode(HrLabels.CostCenter);
 cc2.setProperty(CostCenter. CODE, "CC2");

 Node davies = graphDb.createNode(HrLabels.Employee);
 davies.setProperty(Employee.NAME, "Nathan");
 davies.setProperty(Employee.SURNAME, "Davies");

 Node taylor = graphDb.createNode(HrLabels.Employee);
 taylor.setProperty(Employee.NAME, "Rose");
 taylor.setProperty(Employee.SURNAME, "Taylor");

Querying Neo4j Effectively with Pattern Matching

[16]

 Node underwood = graphDb.createNode(HrLabels.Employee);
 underwood.setProperty(Employee.NAME, "Heather");
 underwood.setProperty(Employee.MIDDLE_NAME, "Mary");
 underwood.setProperty(Employee.SURNAME, "Underwood");

 Node smith = graphDb.createNode(HrLabels.Employee);
 smith.setProperty(Employee.NAME, "John");
 smith.setProperty(Employee.SURNAME, "Smith");

 // There is a vacant post in the company
 Node vacantPost = graphDb.createNode();

 // davies belongs to CC1
 davies.createRelationshipTo(cc1, EmployeeRelationship.
BELONGS_TO)
 .setProperty(EmployeeRelationship.FROM,
 new GregorianCalendar(2011, 1, 10).
getTimeInMillis());

 // .. and reports to Taylor
 davies.createRelationshipTo(taylor, EmployeeRelationship.
REPORTS_TO);

 // Taylor is the manager of CC1
 taylor.createRelationshipTo(cc1, EmployeeRelationship.
MANAGER_OF)
 .setProperty(EmployeeRelationship.FROM,
 new GregorianCalendar(2010, 2,
8).getTimeInMillis());

 // Smith belongs to CC2 from 2008
 smith.createRelationshipTo(cc2, EmployeeRelationship.
BELONGS_TO)
 .setProperty(EmployeeRelationship.FROM,
 new GregorianCalendar(2008, 9, 20).
getTimeInMillis());

 // Smith reports to underwood
 smith.createRelationshipTo(underwood,
EmployeeRelationship.REPORTS_TO);

 // Underwood belongs to CC2
 underwood.createRelationshipTo(cc2, EmployeeRelationship.
BELONGS_TO);

 // Underwood will report to an employee not yet hired
 underwood.createRelationshipTo(vacantPost,
EmployeeRelationship.REPORTS_TO);

Chapter 1

[17]

 // But the vacant post will belong to CC2
 vacantPost.createRelationshipTo(cc2, EmployeeRelationship.
BELONGS_TO);

 tx.success();
 }
 }
}

In the preceding code, we used the following functions of the GraphDatabaseService
class:

•	 createNode: This creates a node and then returns it as result. The node will
be created with a long, unique ID.

Unlike relational databases, node IDs in Neo4j are not guaranteed
to remain fixed forever. In fact, IDs are recomputed upon node
deletion, so don't trust IDs, especially for long operations.

•	 createRelationshipTo: This creates a relationship between two nodes and
returns that relationship in a relationship instance. This one too will have a
long, unique ID.

•	 setProperty: This sets the value of a property of a node or a relationship.

We put the time in milliseconds in the property because Neo4j supports only the
following types or an array of one of the following types:

•	 boolean

•	 byte

•	 short

•	 int

•	 long

•	 float

•	 double

•	 String

To store complex types of arrays, we can code them using the primitive types, as
seen in the preceding list, but more often than not, the best approach is to create
nodes. For example, if we have to store a property such as the entire address of a
person, we can convert the address in JSON and store it as a string.

www.allitebooks.com

http://www.allitebooks.org

Querying Neo4j Effectively with Pattern Matching

[18]

This way of storing data in a JSON format is common in document-oriented DBs, such
as MongoDB, but since Neo4j isn't a document database, it won't build indexes on the
properties of the document. So, for example, it would be difficult or very slow to query
people by filtering on any field of the address, such as the ZIP code or the country. In
other words, you should use this approach only for raw data that won't be filtered or
processed with Cypher; in other cases, creating nodes is a better approach.

A querying database
A typical report of our application is a list of all the employees. In our database,
an employee is a node labeled Employee, so we have to find all nodes that match
with the label Employee pattern. In Cypher, this can be expressed with the
following query:

MATCH (e:Employee)
RETURN e

The MATCH clause introduces the pattern we are looking for. The e:Employee
expression matches all e nodes that have the label Employee; this expression is
within round brackets because e is a node. So, we have the first rule of matching
expressions—node expressions must be within round brackets.

With the RETURN clause, we can specify what we want; for example, we can write a
query to return the whole node with all its properties. In this clause, we can use any
variable used in the MATCH clause. In the preceding query, we have specified that we
want the whole node (with all its properties). If we are interested only in the name
and the surname of the employees, we can make changes only in the RETURN clause:

MATCH (e:Employee)
RETURN e.name,e.surname

If any node does not have either of the properties, a null value is returned. This
is a general rule for properties from version 2 of Cypher; missing properties are
evaluated as null values.

The next question is how to invoke Cypher from Java.

Invoking Cypher from Java
To execute Cypher queries on a Neo4j database, you need an instance of
ExecutionEngine; this class is responsible for parsing and running Cypher
queries, returning results in a ExecutionResult instance:

import org.neo4j.cypher.javacompat.ExecutionEngine;
import org.neo4j.cypher.javacompat.ExecutionResult;

Chapter 1

[19]

// ...
ExecutionEngine engine =
 new ExecutionEngine(graphDb);
ExecutionResult result =
 engine.execute("MATCH (e:Employee) RETURN e");

Note that we use the org.neo4j.cypher.javacompat package and not the
org.neo4j.cypher package even though they are almost the same. The reason is
that Cypher is written in Scala, and Cypher authors provide us with the former
package for better Java compatibility.

Now with the results, we can do one of the following options:

•	 Dumping to a string value
•	 Converting to a single column iterator
•	 Iterating over the full row

Dumping to a string is useful for testing purposes:

String dumped = result.dumpToString();

If we print the dumped string to the standard output stream, we will get the
following result:

Here, we have a single column (e) that contains the nodes. Each node is dumped
with all its properties. The numbers between the square brackets are the node IDs,
which are the long and unique values assigned by Neo4j on the creation of the node.

Querying Neo4j Effectively with Pattern Matching

[20]

When the result is a single column, or we need only one column of our result, we can
get an iterator over one column with the following code:

import org.neo4j.graphdb.ResourceIterator;
// ...
ResourceIterator<Node> nodes = result.columnAs("e");

Then, we can iterate that column in the usual way, as shown in the following code:

while(nodes.hasNext()) {
 Node node = nodes.next();
 // do something with node
}

However, Neo4j provides a syntax-sugar utility to shorten the code that is to
be iterated:

import org.neo4j.helpers.collection.IteratorUtil;
// ...
for (Node node : IteratorUtil.asIterable(nodes)) {
 // do something with node
}

If we need to iterate over a multiple-column result, we will write this code in the
following way:

ResourceIterator<Map<String, Object>> rows = result.iterator();
for(Map<String,Object> row : IteratorUtil.asIterable(rows)) {
 Node n = (Node) row.get("e");
 try(Transaction t = n.getGraphDatabase().beginTx()) {
 // do something with node
 }
}

The iterator function returns an iterator of maps, where keys are the names of the
columns. Note that when we have to work with nodes, even if they are returned by a
Cypher query, we have to work in transaction. In fact, Neo4j requires that every time
we work with the database, either reading or writing to the database, we must be in
a transaction. The only exception is when we launch a Cypher query. If we launch
the query within an existing transaction, Cypher will work as any other operation.
No change will be persisted on the database until we commit the transaction, but if
we run the query outside any transaction, Cypher will open a transaction for us and
will commit changes at the end of the query.

Chapter 1

[21]

Finding nodes by relationships
If you have ever used the Neo4j Java API, you might wonder why we should write
the following code:

ExecutionEngine engine =
 new ExecutionEngine(graphDb, StringLogger.SYSTEM);
ExecutionResult result =
 engine.execute("MATCH (e:Employee) RETURN e");
ResourceIterator<Node> nodes = result.columnAs("e");

You can get the same result with the Java API with a single line of code:

import org.neo4j.tooling.GlobalGraphOperations;
// ...
ResourceIterable<Node> empl = GlobalGraphOperations.at(graphDb)
 .getAllNodesWithLabel(HrLabels.Employee);

However, pattern matching is much more powerful. By making slight changes to
the query, we can get very important and different results; for example, we can find
nodes that have relationships with other nodes. The query is as follows:

MATCH (n:Employee) --> (cc:CostCenter)
RETURN cc,n

The preceding query returns all employees that have a relation with any cost center:

Again, as you can see, both n and cc are within round brackets. Here, the RETURN
clause specifies both n and cc, which are the two columns returned. The result would
be the same if we specified an asterisk instead of n and cc in the RETURN clause:

MATCH (n:Employee) --> (cc:CostCenter)
RETURN *

Querying Neo4j Effectively with Pattern Matching

[22]

In fact, similar to SQL, the asterisk implies all the variables referenced in the patterns,
but unlike SQL, not all properties of the entities are involved, just those of the
referenced ones. In the previous query, relationships were not returned because
we didn't put a variable in square brackets.

Filtering properties
By making another slight change to the query, we can get all the employees that
have a relation with a specific cost center, for example CC1. We have to filter the
code property as shown in the following code:

MATCH (n:Employee) --> (:CostCenter { code: 'CC1' })
RETURN n

If we compare this query with the previous one, we can note three differences, which
are listed as follows:

•	 The query returns only the employee node n because we don't care about the
center cost here.

•	 Here, we omitted the cc variable. This is possible because we don't need
to give a name to the cost center that matches the expression.

•	 In the second query, we added curly brackets in the cost center node
to specify the property we are looking for. So, this is another rule of
pattern-matching expressions: properties are expressed within curly brackets.

The --> symbol specifies the direction of the relation; in this case, outgoing from n.
In the case of MATCH expressions, we can also use the <-- symbol for inverse direction.
The following expression is exactly equivalent to the previous expression:

MATCH (:CostCenter { code: 'CC1' }) <-- (n:Employee)
RETURN n

The preceding expression will give the same result:

+---+
| n |
+---+
| Node[2]{name:"Nathan",surname:"Davies"} |
| Node[3]{name:"Rose",surname:"Taylor"} |
+---+

If we don't have a preferred direction, we will use the -- symbol:

MATCH (n:Employee) -- (:CostCenter { code: 'CC1' })
RETURN n

Chapter 1

[23]

In our example, the latter query will return the same result as the previous one
because in our model, relationships go from employees to cost centers.

Filtering relationships
If we wish to know the existing relationships between the employees and cost
centers, we will have to introduce another variable:

MATCH (n:Employee) -[r]- (:CostCenter { code: 'CC1' })
RETURN n.surname,n.name,r

The variable r matches any relationship that exists between the employees and cost
center CC1 and is returned in a new column:

+---+
| n.surname | n.name | r |
+---+
| "Davies" | "Nathan" | :BELONGS_TO[0]{from:1297292400000} |
| "Taylor" | "Rose" | :MANAGER_OF[2]{from:1268002800000} |
+---+

So, here we have the last rule: relationship expressions must be specified in
square brackets.

To filter the employees who belong to a specific cost centre, we have to specify the
relationship type:

MATCH (n) -[:BELONGS_TO]-> (:CostCenter { code: 'CC1' })
RETURN n

This query matches any node n, which has a relation of the BELONGS_TO type with
any node cc that has the value CC1 as a property code:

+---+
| n |
+---+
| Node[2]{name:"Nathan",surname:"Davies"} |
+---+

We can specify multiple relationships using the | operator. The following query will
search for all employees who belong to or are managers of the cost center CC1:

MATCH (n) -[r:BELONGS_TO|MANAGER_OF]-> (:CostCenter{code: 'CC1'})
RETURN n.name,n.surname,r

Querying Neo4j Effectively with Pattern Matching

[24]

This time we returned only the name and surname, while the relationship is returned
in the second column:

+---+
| n.name | n.surname | r |
+---+
| "Nathan" | "Davies" | :BELONGS_TO[0]{from:1297292400000} |
| "Rose" | "Taylor" | :MANAGER_OF[2]{from:1268002800000} |
+---+

By making a slight change to the query in the preceding code, we can return the
manager as well as the employees of the cost center as the result. This can be
implemented as shown in the following query:

MATCH (n) -[:BELONGS_TO]-> (cc:CostCenter) <-[:MANAGER_OF]- (m)
RETURN n.surname,m.surname,cc.code

In this query, we can see the expressivity of Cypher—a very intuitive syntax to
translate the "node n belonging to the cost center having a manager m" pattern.
The result is the following code:

+---------------------------------+
| n.surname | m.surname | cc.code |
+---------------------------------+
| "Davies" | "Taylor" | "CC1" |
+---------------------------------+

Of course, we can chain an increasing number of relationship expressions to describe
very complex patterns:

MATCH (n) -[:BELONGS_TO]->
 (cc:CostCenter) <-[:MANAGER_OF]- (m) <-[:REPORTS_TO]- (k)
RETURN n.surname,m.surname,cc.code, k.surname

Another query that is very useful in real-world applications is finding nodes
reachable from one node with a certain number of steps and a certain depth. The
ability to execute this kind of query, and search the neighborhood, is one of the
strong points of graph databases:

MATCH (:Employee {surname: 'Smith'}) -[*2]- (neighborhood)
RETURN neighborhood

Chapter 1

[25]

This query returns the nodes that you can reach, starting from the Davies node, by
visiting exactly two relationships of the graph. The result contains duplicated nodes
because we have several paths to reach each of them:

+---+
| neighborhood |
+---+
| Node[4]{name:"Heather",surname:"Underwood",middleName:"Mary"} |
| Node[6]{} |
| Node[1]{code:"CC2"} |
| Node[6]{} |
+---+
4 rows

To get different values, we can use the DISTINCT keyword:

MATCH (:Employee {surname: 'Smith'}) -[*2]-
(neighborhood)
RETURN DISTINCT neighborhood

This time, we haven't specified any relationship type in the square brackets, so it
matches any type. The expression *2 means exactly two steps. With a little change,
we can also ask for the relationships we visited:

MATCH (:Employee {surname: 'Davies'}) -[r*2]- (neighborhood)
RETURN neighborhood, r

Of course, by changing the number in the expression, we can get the query to
navigate any number of relationships. However, we could also want all the nodes
that are reachable from a number of relationships in a range of step numbers, for
example, from two to three:

MATCH (:Employee {surname: 'Smith'}) -[r*2..3]- (neighborhood)
RETURN neighborhood,r

This is very useful in real-world applications such as social networks because it can
be used to build lists, for example, a list of people you may know.

If we also want the starting node in the result, we can modify the range to start
from 0:

MATCH (:Employee{surname: 'Smith'}) -[r*0..2]- (neighborhood)
RETURN neighborhood,r

Querying Neo4j Effectively with Pattern Matching

[26]

Dealing with missing parts
In our applications, we often need to get some information related to something that
could be missing. For example, if we want to get a list of all employees who have
a specific number of employees reporting to them, then we must deal with those
employees too who have no employees reporting to them. In fact, we can write:

MATCH (e:Employee) <-[:REPORTS_TO]- (m:Employee)
RETURN e.surname,m.surname

From this, the following result is obtained:

+-------------------------+
| e.surname | m.surname |
+-------------------------+
| "Taylor" | "Davies" |
| "Underwood" | "Smith" |
+-------------------------+

However, this is not what we are looking for. In fact, we want all the employees,
with all the employees that report to them as an option. This type of relation is
similar to the OUTER JOIN clause of SQL and can be done in Cypher using OPTIONAL
MATCH. This keyword allows us to use any pattern expression that can be used in the
MATCH clause, but it describes only a pattern that could match. If the pattern does not
match, the OPTIONAL MATCH clause sets any variable to null variable:

MATCH (e:Employee)
OPTIONAL MATCH (e) <-[:REPORTS_TO]- (m:Employee)
RETURN e.surname,m.surname, c.code

In this query, we slightly changed the previous one; we just inserted OPTIONAL
MATCH (e). The effect is that the first part (e:Employee) must match, but the
pattern following OPTIONAL MATCH may or may not match. So, this query returns
any employee e, and if e has a relationship of the REPORTS_TO type with any other
employee, this query is returned in m; otherwise, m will be a null value. The result is
as follows:

 +-------------------------+
| e.surname | m.surname |
+-------------------------+
"Davies"	<null>
"Taylor"	"Davies"
"Underwood"	"Smith"
"Smith"	<null>
+-------------------------+

Chapter 1

[27]

Unlike object-oriented languages where referencing any property of a
null object will result in a null-reference exception, in Cypher referencing,
which is a property of the null node, we get a null value again.

Now, let's say that we also want to know whether the employee is the manager of
any center cost, and if so, which one. Also, we want to know the cost center of any
employee. For this, we can write the following code:

MATCH (e:Employee)
OPTIONAL MATCH (c:CostCenter) <–[:MANAGER_OF]- (e) <-[:REPORTS_TO]-
(m:Employee)
RETURN e.surname,m.surname

The preceding code returns the following result:

+----------------------------------+
| e.surname | m.surname | c.code |
+----------------------------------+
"Davies"	<null>	<null>
"Taylor"	"Davies"	"CC1"
"Underwood"	<null>	<null>
"Smith"	<null>	<null>
+----------------------------------+

What happened? Does it look like Smith does not report to Underwood anymore?
This weird result is due to the fact that the whole pattern in OPTIONAL MATCH
must match. We can't have partially matched patterns. Since we can add as many
OPTIONAL MATCH expressions as we want to, we have to write the following code
to get the result we are looking for:

MATCH (e:Employee)
OPTIONAL MATCH (e) <-[:REPORTS_TO]- (m:Employee)
OPTIONAL MATCH (e) -[:MANAGER_OF]-> (c:CostCenter)
RETURN e.surname, m.surname, c.code

In fact, the result is the following code:
+----------------------------------+
| e.surname | m.surname | c.code |
+----------------------------------+
"Davies"	<null>	<null>
"Taylor"	"Davies"	"CC1"
"Underwood"	"Smith"	<null>
"Smith"	<null>	<null>
+----------------------------------+

www.allitebooks.com

http://www.allitebooks.org

Querying Neo4j Effectively with Pattern Matching

[28]

This query works because we have two OPTIONAL MATCH clauses that can
independently generate a successful match.

Working with paths
As we have seen earlier, graph databases are useful to find paths between two nodes:

MATCH path = (a{surname:'Davies'}) -[*]- (b{surname:'Taylor'})
RETURN path

This query uses a construct which we have not used so far—the path assignment,
path =. The assignment of variables can be done only with paths. Note that the
query in the preceding code returns all the possible paths from two nodes. Here,
the result is two paths in our database:

[Node[2]{name:"Nathan",surname:"Davies"},:BELONGS_TO[0]
{from:1297292400000},Node[0]{code:"CC1"},:MANAGER_OF[2]
{from:1268002800000},Node[3]{name:"Rose",surname:"Taylor"}] |
 [Node[2]{name:"Nathan",surname:"Davies"},:REPORTS_TO[1]{},Node[3]
{name:"Rose",surname:"Taylor"}]

However, what if we need the shortest path between them? The shortest path is the
path with the least number of nodes visited. Clearly, we could iterate over all the
paths and take the shortest, but Cypher provides a function that does the work
for us:

MATCH (a{surname:'Davies'}), (b{surname:'Taylor'})
RETURN allShortestPaths((a)-[*]-(b)) as path

Let's see what is new in this query:

•	 MATCH: In this clause, we have two node expressions (in round brackets)
separated by a comma. These expressions, a and b, match any node
independently, just like a Cartesian product.

•	 RETURN: In this clause, we have to call the allShortestPath function that
takes an expression as a parameter. The expression is a variable length
relation (this is the asterisk between the square brackets). Here, we don't
care about relationship types and the direction, but we can filter properties,
relation types involved, and so on, if necessary.

•	 RETURN: In this clause, we have an alias. An alias must be defined using the
keyword AS. It just specifies the name of the column returned.

Chapter 1

[29]

Node IDs as starting points
When we execute a query like the previous code, Cypher must find the nodes and
relationships that match the pattern. However, to do so, it must start to search from a
set of nodes or relationships. We can let Cypher find the starting points of a query on
its own, but we can also specify them because we want to search a pattern that starts
from a specific node, or a specific relation resulting in an important improvement in
the performances of the query.

We can assign starting points to variables in the query using the START keyword.
The previous query, for example, could be rewritten in the following way:

START a=node(2), b=node(3)
RETURN allShortestPaths((a)-[*]-(b)) AS path

If we execute this query, and compare the time elapsed in executing this query
and the previous one, we can easily prove that the latter is dramatically faster.
The drawback is that we need to know the ID of the node.

Query parameters
In real-world applications, you often need to execute a query multiple times,
changing a value in the query every time. For example, you need to find an employee
by the surname, but the surname is typed by the application user from the keyboard.
Cypher allows us to use parameters, just like in SQL. The names of the parameters
must be between curly brackets:

MATCH (n:Employee {surname: {inputSurname} })
RETURN n

In this query, we have a parameter (inputSurname), whose value must be provided
while executing the query.

Passing parameters with Java
The Cypher Java API wants us to pass all the parameters in the map. The following
code is a class example that has a public method to find all employees by their
surname:

import java.util.Map;
import java.util.HashMap;
import org.neo4j.cypher.javacompat.ExecutionEngine;
import org.neo4j.cypher.javacompat.ExecutionResult;
import org.neo4j.graphdb.Node;
import org.neo4j.helpers.collection.IteratorUtil;

Querying Neo4j Effectively with Pattern Matching

[30]

public class EmployeeRepository {

 public Iterator<Node> bySurname(String surname) {
 Map<String, Object> params = new HashMap<>();
 params.put("inputSurname", surname);
 ExecutionResult result = engine
 .execute("MATCH (n:Employee {surname: {inputSurname}})" +
 "RETURN n",
 params);
 Iterator<Node> nodes = result.columnAs("n");
 return nodes;
 }
}

The bySurname method takes the surname of the employees as a parameter to search,
and it creates a new HashMap and puts the parameter in the map. Finally, the map is
passed to the execute method of ExecutionEngine, and the result is treated in
the usual way.

Since parameters are referenced by name, you can reference the same
variable several times in the query.

Summary
In this chapter, you first created a Neo4j database using the Java API. It details how
Neo4j works with nodes and relationships.

Then, you queried that database to learn Cypher pattern matching. You learned
about the MATCH keyword. You also learned that node expressions must go between
round brackets, while relationships must be expressed in square brackets, and
property expressions must be written between curly brackets.

You also learned how to use the RETURN clause to select which matched values we
want the query to return. We wrote the Java code needed to use the result, even using
query parameters. The OPTIONAL MATCH keyword allows us to match parts of the
graph that could be missing. You also learned how to find paths from one node to
another, and the shortest path between them, using the allShortestPaths function.

In the next chapter, you will learn how to filter and aggregate data and how to page
through a query result.

Filter, Aggregate, and
Combine Results

In the previous chapter, we learned the basics of Cypher querying, including pattern
matching. To use Cypher in real-world applications, you'll need a set of features,
which we are going to cover in this chapter. These features include searching by text
in the database, data aggregation for statistical analysis, pagination for performance
improvements, or even simple filtering on an array of properties.

Filtering
Pattern matching is useful to describe the data we are looking for and how nodes
and relations are organized in the graph database. However, we often need to filter
data in more detail.

The book store – an example
In this chapter, we'll learn how to filter results using a real-world example: the
book store. Just as we saw in the previous chapter, we have to define labels and
relationships. A minimal set of labels are as follows:

•	 Book: This label includes all the books
•	 Person: This label includes authors, translators, reviewers, and so on
•	 Publisher: This label includes the publishers of books in the database
•	 User: This label includes the users of the website

Filter, Aggregate, and Combine Results

[32]

A set of basic relationships are as follows:

•	 PublishedBy: This relationship is used to specify that a book was published
by a publisher

•	 Votes: This relationship describes the relation between a user and a book, for
example, how a book was rated by a user

Every book has the following properties:

•	 Title: This is the title of the book in string format
•	 Tags: This is an array of string tags useful for searching through the database

based on topic, arguments, geographic regions, languages, and so on

Now, suppose we have already filled the database with a lot of books, and we are
developing the website of the book store. In such applications, providing an effective
search is very important because we can't make the user scroll through all the results
on their own.

In the example code files that you can download from the Packt Publishing website
at http://www.packtpub.com/support, you'll find an example database that
contains 150 books. I used this database to perform the queries in this chapter.
The graph of this example database can be seen in the following screenshot:

Chapter 2

[33]

Text search
In the previous chapter, we saw that we can search a node or a relationship with a
given value of a property. Of course, this is very useful when you know that a certain
node with a given value of a property exists; this is the case when a user is looking
for a book and knows its title exactly. Consider the following query:

MATCH (b:Book { title: 'In Search of Lost Time' })
RETURN b

The same query can be written using the WHERE keyword, as shown in the
following query:

MATCH (b:Book)
WHERE b.title = 'In Search of Lost Time'
RETURN b

In fact, for both queries, the result is as follows:

+--+
| b |
+--+
| Node[143]{title:"In Search of Lost Time",tags:["novel"]} |
+--+

WHERE is the keyword that introduces a filter predicate; in this case, a filter based on
the equality comparison of a property (Book.title) and a value (the text to search).

Note that the preceding two queries, although being quite different, have exactly
the same effect and the same performance results because they are interpreted in the
same way by the engine. This means that choosing either syntax is just a matter of
taste. The latter is more similar to SQL. In fact, the creators of Cypher were inspired
by SQL when they introduced the WHERE clause.

Working with regular expressions
Maybe in a real-world application, this kind of search would be performed in an
advanced search section of a website. In fact, the common search by title function
would look for titles that contain the text typed by the user. With Cypher, this
can be done with regular expressions.

Regular expressions are widely used patterns that match expressions for strings. The
following query will match all titles that contain the word Lost:

MATCH (b:Book)
WHERE b.title =~ '.*Lost.*'
RETURN b

Filter, Aggregate, and Combine Results

[34]

Here, the special character . matches any character, while * matches any occurrence
of the previous pattern, and once combined, .* matches any occurrence of any
character. So, the regular expression .*Lost.* matches all strings that contain any
character at the beginning (.*), then the word Lost and finally, any other character
(.*). The result of this query is as follows:

+--+
| b |
+--+
| Node[143]{title:"In Search of Lost Time",tags:["novel"]} |
| Node[221]{title:"Love's Labour's Lost",tags:["comedy","drama"]}|
+--+

With regular expressions, of course, we can do much more. Just to remind us how
regular expressions work, the following is a table of the most widely used patterns:

Pattern Meaning Example Matched Strings
[] This stands for any character

included in the bracket or in
the range specified

Te[sx]t
[A-C]lt

Text Test
Alt Blt Clt

* This implies any occurrence
of the preceding pattern,
including no occurrence

Te[xs]*t Text Test Texxt Tet

. This implies any character,
including none

Te.t Text Test

? This implies one or no
occurrence of the preceding
pattern

Te[xs]?t Text Test Tet

| This stands for alternative
matching

Te(xt|ll) Text Tell

\ This pattern escapes the
following reserved character

Te\.t Te.t

The regular expression standard used here is identical to the one used by Java in
the official Java documentation at http://docs.oracle.com/javase/6/docs/
api/java/util/regex/Pattern.html. There, you can find the full summary of the
constructs supported.

Chapter 2

[35]

The following is a list of some of the most widely used regular expression patterns:

Regular expression Matches
([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6}) E-mail
(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})
([\/\w \.-]*)*\/?

An HTTP URL without
a query string

<([a-z]+)([^<]+)*(?:>(.*)<\/\1>|\s+\/>) HTML tags
\d{5} A ZIP code
\+?[\d\s]{3,} A phone number

So, if we are looking for all titles that start with a given text (for example, Henry), we
can write the following query:

MATCH (b:Book)
WHERE b.title =~ 'Henry.*'
RETURN b

The following query returns all the books that have tale, tales, or their respective
title cases:

MATCH (b:Book)
WHERE b.title =~ '.*[Tt]ale(s)?.*'
RETURN b

The result is shown in the following output code:

+--+
| b |
+--+
| Node[3]{title:"Fairy tales"} |
| Node[31]{title:"The Canterbury Tales"} |
| Node[129]{title:"The Tale of Genji"} |
| Node[141]{title:"Tales"} |
| Node[245]{title:"The Winter's Tale",tags:["comedy","drama"]} |
+--+

By design, regular expressions are case sensitive. If you want to match a string
independently by a letter's case, you can use the (?i) specifier. Place it at the
beginning of the string to perform case-insensitive matching. The following query
gives the same result as the previous one with respect to our database:

MATCH (b:Book)
WHERE b.title =~ '(?i).*tale(s)?.*'
RETURN b

Filter, Aggregate, and Combine Results

[36]

You can find a lot of free resources online on regular expressions.
Apart from the official Oracle documentation, you can find a lot of
reading material on the following websites:

•	 http://www.rexegg.com/: This is a tutorial with links
and examples

•	 http://www.regexplanet.com/advanced/java/
index.html: This is a tester that uses the java.util.
regex.Pattern implementation

•	 https://www.addedbytes.com/cheat-sheets/
regular-expressions-cheat-sheet/: This is a
comprehensive cheat sheet

Escaping the text
In real-world applications, sometimes we have to use regular expression patterns
dynamically; for example, we will use the following code snippet while working
in Java:

String query = "(?i).*" + textToFind;
Map<String, Object> params = new HashMap<>();
params.put("query", query);
ExecutionResult result = engine
 .execute("MATCH (b:Book) WHERE b.title =~ {query} RETURN b",
 params);

This code puts the textToFind string in a regular expression pattern, which is then
passed to the query as a parameter.

The problem with this code is that if textToFind comes from the user input (as it's
quite likely), a user could type in a valid regular expression pattern and still get an
unexpected result. For example, the word 10$ would match only the titles that end
with 10 and not all the titles that contain the word 10$.

In Java, escaping the text is easy, as shown in the following code snippet:

import java.util.regex.Pattern;
String query = "(?i).*" + Pattern.quote(textToFind);

Of course, every programming language or environment has its own functions to
escape regular expressions. You should refer to their respective documentation.

Chapter 2

[37]

Value comparisons
We often need to search items by comparing their values. For example, if we want all
books published in 2012 and later, this can be done as follows:

MATCH (b:Book) -[r:PublishedBy]-> (:Publisher)
WHERE r.year >= 2012
RETURN b.title, r.year

This query matches all book nodes that have a relation with a publisher, filtering the
books by comparing their year of publication, which must be greater than or equal to
2012. The result is shown in the following output code:

+---+
| book.title | r.year |
+---+
"Akka Essentials"	2012
"Getting Started with Memcached"	2013
"Java EE 7 Developer Handbook"	2013
+---+

The >= is a comparison operator. The other comparison operators are as follows:

•	 <>: This is the different than operator
•	 <: This is the lesser than operator
•	 <=: This is the lesser than or equal to operator
•	 >: This is the greater than operator

You can find the complete list of supported operators and functions,
each explained with an example, in the Appendix.

The IN predicate
The IN predicate allows us to specify more values for an expression. For example,
consider the following query:

MATCH (b:Book) -[r:PublishedBy]-> (:Publisher)
WHERE r.year IN [2012, 2013]
RETURN b.title, r.year

This query matches all books published in 2012 or in 2013. It's a short alternative for
the Boolean operator OR, which can be used as shown in the following query:

r.year = 2012 OR r.year = 2013

www.allitebooks.com

http://www.allitebooks.org

Filter, Aggregate, and Combine Results

[38]

Boolean operators
The WHERE clause supports four Boolean operators. They are as follows:

•	 OR: This is the logical inclusive disjunction operator.
•	 AND: This is the logical conjunction operator; it returns TRUE only if both

predicates are TRUE.
•	 XOR: This is the logical exclusive disjunction operator; it returns TRUE if only

one of the predicates is TRUE. Use this if you don't want the results to satisfy
both the predicates.

•	 NOT: This operator returns TRUE only if the following predicate is FALSE.

Working with collections
In Chapter 1, Querying Neo4j Effectively with Pattern Matching, we saw that Neo4j
supports array parameters. So, how can we filter nodes and relationships by
array values?

Collection predicates are functions with a predicate argument that return a Boolean
value. Suppose you want to get all books that have a particular tag from a given
dataset. With collection predicates, we can filter books based on collections.

For example, if we have tagged every book with an array of strings, the query
will be as follows:

MATCH (b:Book)
WHERE ANY (tag IN b.tags WHERE tag IN ['nosql','neo4j'])
RETURN b.title,b.tags

The preceding query returns all books tagged with NoSQL, Neo4j, or both. The
following result is obtained:

+--+
| b.title | b.tags |
+--+
"Getting Started with NoSQL"	["nosql"]
"Learning Cypher"	["nosql","neo4j"]
"Instant MongoDB"	["nosql","mongodb"]
"Ruby and MongoDB Web Development"	["nosql","mongodb","ruby"]
+--+

Chapter 2

[39]

How does this query work? The keyword ANY, just as every predicate, introduces a
rule with the following syntax:

item_identifier IN collection WHERE rule

In the case of ANY, at least one item in the collections must follow the rule. So, for
every book, if there is any tag in the collection that satisfies the rule, it will be taken;
otherwise, it will be discarded.

There are four collection predicates. They are as follows:

•	 ANY: This predicate returns TRUE if at least one item in the collection adheres
to the expression

•	 ALL: This predicate returns TRUE if all items in the collection adhere to
the rule

•	 NONE: This predicate returns TRUE if no item in the collection follows the rule
•	 SINGLE: This predicate returns TRUE if exactly one item follows the rule

For example, if we want books tagged only as Neo4j or NoSQL and nothing else, we
have to change the previous query as follows:

MATCH (b:Book)
WHERE ALL(tag IN b.tags WHERE tag IN ['nosql','neo4j'])
RETURN b.title, b.tags

Note that we have just replaced the ANY keyword with the ALL keyword, and we get
the following result:

+--+
| b.title | b.tags |
+--+
| "Getting Started with NoSQL" | ["nosql"] |
| "Learning Cypher" | ["nosql","neo4j"] |
+--+

If we want all books tagged as NoSQL but not as Neo4j, we can use the NONE predicate
as follows:

MATCH (b:Book)
WHERE ANY (tag IN b.tags WHERE tag = 'nosql')
 AND NONE (tag in b.tags WHERE tag = 'neo4j')
RETURN b.title,b.tags

Filter, Aggregate, and Combine Results

[40]

In fact, the result does not contain any book that is tagged Neo4j, as shown in the
following output code:

+--+
| b.title | b.tags |
+--+
"Getting Started with NoSQL"	["nosql"]
"Instant MongoDB"	["nosql","mongodb"]
"Ruby and MongoDB Web Development"	["nosql","mongodb","ruby"]
+--+

The SINGLE predicate is useful for performing the exclusive-OR operation among
collection values. For example, if we want all books tagged either Ruby or MongoDB
(we don't want too specific books), we will use the following code:

MATCH (b:Book)
WHERE SINGLE (tag IN b.tags WHERE tag IN ('ruby', ' mongodb ')
)
RETURN b

The preceding query works because if we have a book tagged both Ruby and
MongoDB, the SINGLE statement won't match because the specified predicate
will return two tags. The result is shown in the following output code:

+---+
| b.title | b.tags |
+---+
| "Instant MongoDB" | ["nosql","mongodb"] |
+---+

Paging results – LIMIT and SKIP
Even if you have never developed a web application, you would know why paging
results is so important, for the following reasons:

•	 Loading a lot of data in a single HTTP request is very slow
•	 Showing a lot of data in a single page is very expensive in terms of bandwidth

Paging is necessary to avoid a lot of data from being loaded all together in a single
query. For example, if the user searches for the string drama in the book database, the
full result would likely be huge, that is, hundreds of books. Here, we can split the
result in pages of twenty books; we can show twenty books in each page and have
two buttons, next and previous, to switch the page forward or backward.

Chapter 2

[41]

We get the first page with the following query:

MATCH (b:Book)
WHERE b.title =~ '(?i).*drama.*'
RETURN b
LIMIT 20

This will return the first twenty nodes with the Book label that have the title that
matches the regular expression (?i).*drama.*. The (?i) part of the expression
means that the regular expression is case insensitive, while the .* part of the
expression matches any character type in the string. So, the regular expression
matches every string that contains the word drama, independent of the character case.

Now, when the user clicks on the "next" button, we have to get the second chunk
of data, skipping the first part. We must use the SKIP keyword as shown in the
following query:

MATCH (b:Book)
WHERE b.title =~ '(?i).*drama.*'
RETURN b
SKIP 20
LIMIT 20

To get the third chunk of data, we have to skip past the first 40 items and so on for
further pages; to show the page i, we must skip 20*i items. To avoid having to change
the query every time, we can take advantage of the Cypher parameters, as shown in
the following query:

MATCH (b:Book)
WHERE b.title =~ {query}
RETURN b
SKIP {skip}
LIMIT {limit}

The preceding query uses three parameters: query, skip, and limit. The first is the
regular expression to find in the title, and the others are the number of items to skip
and to return.

Using the REST API, a call using the paginated query will have the following payload:

{
 "query" : "MATCH (b:Book) WHERE b.title =~ {query} RETURN b SKIP
 {skip} LIMIT {limit}",
 "params" : {
 "query" : "(?i).*drama.*",

Filter, Aggregate, and Combine Results

[42]

 "skip" : 20,
 "limit": 20
 }
}

Whereas in a Java-embedded database, the query can be used in a method as shown
in the following code snippet:

import java.util.*;
import java.util.regex.Pattern;
import org.neo4j.cypher.javacompat.*;
import org.neo4j.graphdb.Node;
import org.neo4j.helpers.collection.IteratorUtil;

// ... more code

public List<Node> find(String text, int limit, int skip) {
 final String query = "(?i).*" + Pattern.quote(text) + ".*";

 Map<String, Object> params = new HashMap<>();
 params.put("query", query);
 params.put("limit", limit);
 params.put("skip", skip);

 final ExecutionResult result = engine
 .execute("MATCH (b:Book) WHERE b.title =~ {query} RETURN b
 SKIP {skip} LIMIT {limit}", params);
 List<BNode> ret = new LinkedList<>();

 Iterator<Node> iterator = result.columnAs("b");
 for(Node b : IteratorUtil.asIterable(iterator)) {
 ret.add(b);
 }
 return ret;
}

This is the basic method to perform text searches in the database in order to show
items in the graphical user interface. It takes three parameters: the text to find, the
maximum number of items to return, and the number of items to skip. Then, it puts
them in a map used as the parameter list in the following query:

MATCH (b:Book) WHERE b.title =~ {query} RETURN b SKIP {skip} LIMIT
{limit}

Chapter 2

[43]

Finally, the result is put in a list and returned. Maybe you are wondering if you can
sort the results before paging the data. This is possible and important because you
can use this feature, for example, to return the top ten most-voted books. This is the
topic of the next section.

Sorting
If you have experience with SQL, then sorting with Cypher is exactly the same as
sorting with SQL. We can use the ORDER BY clause to specify the columns to be
used for sorting, as shown in the following query:

MATCH (b:Book)
WHERE ANY (tag IN b.tags WHERE tag IN ['drama'])
RETURN b.title
ORDER BY b.title
LIMIT 5

The preceding query looks for books tagged drama in the database, then sorts them
by title, and returns the first five book entries found. We can note the following:

•	 The ORDER BY clause follows the RETURN clause
•	 This clause is above the LIMIT or SKIP clause so that we can sort the data

before limiting our page

The result set is as follows:

+-----------------------------+
| b.title |
+-----------------------------+
| "A Lover's Complaint" |
| "A Midsummer Night's Dream" |
| "All's Well That Ends Well" |
| "Anthony and Cleopatra" |
| "As You Like It" |
+-----------------------------+

A descending sort
To sort inversely, just postpone the DESC clause to the ORDER BY clause, as shown as
shown in the following query:

MATCH (b:Book)
WHERE ANY (tag IN b.tags WHERE tag IN ['drama'])

Filter, Aggregate, and Combine Results

[44]

RETURN b.title
ORDER BY b.title DESC
LIMIT 5

It gives the following result:

+------------------------+
| b.title |
+------------------------+
| "Venus and Adonis" |
| "Twelfth Night" |
| "Troilus and Cressida" |
| "Titus Andronicus" |
| "Timon of Athens" |
+------------------------+

The result rows are different because the LIMIT clause is evaluated
after the ORDER BY clause, so Cypher is limiting the result set to
five items, which are already sorted. This is important in real-world
applications because it allows us to both page data in a small result
set and sort it however we want.

Dealing with null values using the COALESCE
function
How are null values evaluated by the ORDER BY clause? They are always considered
the largest values; so, they are the last values in case of an ascending sort, while they
are the first values in case of a descending sort. This is useful while we are looking
for data that is sorted in an ascending manner, and indeed that's likely to be the most
common situation. But with a descending sort, we can get unexpected results.

The following query returns books from our database, putting the most recently
published books at the top:

MATCH (b:Book)
OPTIONAL MATCH (b) -[p:PublishedBy]-> (c)
RETURN b.title, p.year
ORDER BY p.year DESC
LIMIT 5

Chapter 2

[45]

We are using an OPTIONAL MATCH clause because we want to get all the books in the
database, but as the database does not contain the publication year for some books,
we get them at the first position:

+------------------------------+
| b.title | p.year |
+------------------------------+
"Fairy tales"	<null>
"The Divine Comedy"	<null>
"Epic of Gilgamesh"	<null>
"Book of Job"	<null>
"The Art of Prolog"	<null>
+------------------------------+

So, how to get the null values to stay at the bottom of the list and the most recent
book at the top?

For this, COALESCE is the function we need. It takes a variable number of arguments
and returns the first non-null value. A null value is returned only if all arguments
are null.

Using the COALESCE function, we can write the preceding query in the ORDER BY
clause as follows:

MATCH (b:Book)
OPTIONAL MATCH (b) -[p:PublishedBy]-> (c)
RETURN b.title, p.year
ORDER BY COALESCE(p.year, -5000) DESC
LIMIT 5

Here, we have instructed Cypher to sort the dataset by a value, that is, the year of
publication. If it is a null value, it is considered as -5000. Now, we have the result
we were expecting, as shown in the following output code:

+---+
| b.title | p.year |
+---+
"Getting Started with Memcached"	2013
"Java EE 7 Developer Handbook"	2013
"Akka Essentials"	2012
"Learning Ext JS 3.2"	2010
"The Art of Prolog"	<null>
+---+

Filter, Aggregate, and Combine Results

[46]

Aggregating results
In our application, we have users who rate books with a score from one to five.
Now, we are going to query the database to get some aggregated information
about book scores.

Counting matching rows or non-null values
Suppose that we want to know the number of users who have voted for a book. For
this, we need to count the number of the vote relations between the users and that
book, as shown in the following code snippet:

START b=node({id})
MATCH (b) <-[r:Vote]- (u:User)
RETURN COUNT(*) as votes

The only difference with the query patterns we already know is that here, we have
used the COUNT function in the RETURN clause. With Cypher, the RETURN clause drives
the aggregation of entities. In this case, as we have nothing else in the RETURN clause
but the COUNT function, all the matching results are counted and the result is a single
value. The result is as shown in the following output code:

+-------+
| votes |
+-------+
| 7 |
+-------+
1 row

The arguments inside the COUNT function can be the following:

•	 The * keyword is a placeholder that instructs the counter to count all
matching rows

•	 A variable that makes the counter skip null values, missing properties, or
missing matches

In the previous query, specifying the COUNT(r.score) score property will give the
same result because in our database, we haven't got any null votes. However, we can
have a book without any scores. Now, we are going to investigate two queries that
differ only in the usage of the COUNT function. The first query is as follows:

MATCH (b:Book {title: "The Art of Prolog"})
OPTIONAL MATCH (b) <-[r:Votes]- (:User)
RETURN b, COUNT(r.score) as votes

Chapter 2

[47]

The preceding query counts only the rows that have a non-null vote score. The
following result is obtained:

+---+
| b | votes |
+---+
| Node[1037]{title:"The Art of Prolog",tags:["prolog"]} | 0 |
+---+

We have no votes here because no user has voted for this book. Now, look at the
following query where I have changed COUNT(r.score) to COUNT(*):

MATCH (b:Book {title: "The Art of Prolog"})
OPTIONAL MATCH (b) <-[r:Votes]- (:User)
RETURN b, COUNT(*) as votes

This query gives one vote in the result, as shown in the following output code:

+---+
| b | votes |
+---+
| Node[1037]{title:"The Art of Prolog",tags:["prolog"]} | 1 |
+---+

In fact, we are using the COUNT(*) function to count all the rows that match the
expression in the first row of the query. We have just one matching row because the
presence of the votes relationship is optional. So, we have this matching row counted
as one vote, which of course is wrong.

Be careful while using the COUNT(*) function versus the
COUNT(variable) function, in conjunction with the OPTIONAL
MATCH clause; you could get unexpected results!

Summation
If you are interested in the total score received by a book too, you can use the SUM
function, as shown in the following query:

START b=node(5)
MATCH (b:Book) <-[r:Votes]- (:User)
RETURN COUNT(r.score) as votes, SUM(r.score) as total

www.allitebooks.com

http://www.allitebooks.org

Filter, Aggregate, and Combine Results

[48]

The argument of the SUM function is the variable to summarize. The result of this
query is as follows:

+---------------+
| votes | total |
+---------------+
| 5 | 14 |
+---------------+

Here, the null values will be ignored.

Average
The average score is the sum of all the scores given by the users on a book divided by
the sum of the number of votes. The AVG function computes this for us, as shown in
the following query:

START b=node(5)
MATCH (b:Book) <-[r:Votes]- (:User)
RETURN AVG(r.score) as avgScore

The argument of this function is the variable whose average we want to compute.
Here too, the null values will be ignored.

The AVG function treats null values differently from zero. A zero
is summed in the average and counted, while null values are just
ignored. null values don't influence the average. For example, the
average of 10 and a null value will be 10, while the average of 10
and 0 will be 5.

The result of the previous query is as follows:

+----------+
| avgScore |
+----------+
| 3.8 |
+----------+

Note that although our score data consisted of integer values, the AVG function
returns a floating point value (double).

Chapter 2

[49]

Maximum and minimum
Cypher provides the functions MAX and MIN to compute the largest and the
smallest value in the property specified as argument, respectively. Consider
the following query:

START b=node(5)
MATCH (b:Book) <-[r:Votes]- (:User)
RETURN MAX(r.score), MIN(r.score)

This query returns the largest and the smallest score vote given to the book. The
result is as shown in the following output code:

+-----------------------------+
| MAX(r.score) | MIN(r.score) |
+-----------------------------+
| 5 | 3 |
+-----------------------------+

Again, null values are ignored.

Standard deviation
The standard deviation measures the variation from average for a set of values. In
our case, it will predict how many voters agree about the average score. Consider
the following query:

START b=node(5)
MATCH (b:Book) <-[r:Votes]- (:User)
RETURN AVG(r.score) as avgScore, STDEV(r.score) as stdDevScore

The preceding query returns the standard deviation with the average. The result is
as follows:

+-------------------------------+
| avgScore | stdDevScore |
+-------------------------------+
| 3.8 | 0.8366600265340756 |
+-------------------------------+

The result tells us that the average is 3.8 and that users agree with the votes.

Cypher also provides other statistical aggregation functions. You can find
explanations on them in the Appendix.

Filter, Aggregate, and Combine Results

[50]

Collecting values in an array
If statistical functions provided by Cypher are not enough for your needs, you
can collect all the values in an array so that you can easily process them with your
preferred algorithm. For example, the following query returns all the score votes
received for two books:

START b=node(5,6)
MATCH (b:Book) <-[r:Votes]- (:User)
RETURN b.title, COLLECT(r.score)

As you can see, we used the START keyword to instruct Cypher to start from two
nodes, those with the ID 5 or ID 6, and for each of them, we got the collected values
of scores. The result is shown in the following output code:

+--+
| b.title | COLLECT(r.score) |
+--+
| "Epic of Gilgamesh" | [5,4,3,4,1] |
| "The Divine Comedy" | [4,3,5,3,4] |
+--+

Grouping keys
To better explain how the RETURN function works with aggregation, let's try to
remove the b.title column. The query would then be as follows:

START b=node(5,6)
MATCH (b:Book) <-[r:Votes]- (:User)
RETURN COLLECT(r.score)

The result is strongly different from the result of the preceding query, as shown in
the following output code:

+-----------------------+
| COLLECT(r.score) |
+-----------------------+
| [3,3,5,2,1,4,3,1,1,3] |
+-----------------------+

In fact, the purpose of the b.title column in the previous query was to set a grouping
key of the rows. By removing it, we instruct Cypher to collect everything together.
This is quite different from SQL, where you have to explicitly specify grouping keys
and return values. Cypher is more concise and I find it more intuitive than SQL.

Chapter 2

[51]

Conditional expressions
Consider this scenario: we want to write a query that computes the average scores
of books in the following two categories:

•	 Recent books: This category contains all books published in the year 2010
or later

•	 Other books: This category contains all other books published before 2010
or without a date of publication

We already know how to compute the average of a value in a group based on a
property value, but here we have an arbitrary grouping based on a condition. We can
use the CASE WHEN expression to express this condition. The query will be as follows:

MATCH (b:Book)<-[r:Votes]-(:User)
OPTIONAL MATCH (b) -[p:PublishedBy]-> (c)
RETURN
 CASE WHEN p.year >= 2010 THEN 'Recent'
 ELSE 'Old' END as category,
 AVG(r.score)

In this query, we introduced a CASE WHEN expression in the RETURN clause. The
expression evaluates to the Recent string if the year of publication is 2010 or later,
and Old if otherwise. In the RETURN clause, we have the book category that results
from the CASE WHEN expression and AVG(r.score); therefore, Cypher will group the
score average by the book category. In fact, the result is as follows:

+-------------------------------+
| category | AVG(r.score) |
+-------------------------------+
| "Recent" | 4.4333333333333333 |
| "Old" | 4.9767123287671234 |
+-------------------------------+

There are two types of CASE WHEN expressions. The type we have just learned is the
generic one. It is used when we have a set of alternative conditions to verify. If we just
have a set of possible values, then we can use the simple form. Here is an example:

MATCH (b:Book)<-[r:Votes]-(:User)
OPTIONAL MATCH (b) -[p:PublishedBy]-> (c)
RETURN
 CASE p.year % 2
 WHEN 0 THEN 'Even'
 WHEN 1 THEN 'Odd'
 ELSE 'Unknown' END as parity,
 AVG(r.score)

Filter, Aggregate, and Combine Results

[52]

This query computes the score average grouped by the parity publication year. Here,
the CASE WHEN statement is slightly different; we have an expression right after the
CASE keyword. This expression is evaluated and compared to the values in the WHEN
clauses. If one of them matches, the corresponding value expressed in the THEN
clause is picked; otherwise, the ELSE value is returned. The result is as follows:

+-----------------------------+
| parity | AVG(r.score) |
+-----------------------------+
"Odd"	4.0
"Even"	3.4
<null>	4.4413793103448276
+-----------------------------+

You may wonder why do we have a null value instead of Unknown in the result.
The reason is that if p.year is a null value, the expression in the case cannot be
evaluated. To make null values fall in our condition, we will again resort to the
COALESCE function. The query is as follows:

MATCH (b:Book)<-[r:Votes]-(:User)
OPTIONAL MATCH (b) -[p:PublishedBy]-> (c)
RETURN
 CASE COALESCE(p.year % 2, -1)
 WHEN 0 THEN 'Even'
 WHEN 1 THEN 'Odd'
 ELSE 'Unknown' END as parity,
 AVG(r.score)

Separating query parts using WITH
Suppose you want the books sorted by average score, with highest score at the top;
for this, we can write the following query:

MATCH (b:Book) <-[r:Votes]- (:User)
RETURN b, AVG(r.score) as avgScore
ORDER BY avgScore DESC

This query returns all books that have votes with their average score. However,
that could be a huge number of books, almost the entire database. Suppose you are
looking only for books with a score greater than or equal to 4. Where would you
place the WHERE clause? Of course, you can't put it before the RETURN clause because
the average score is computed there. We have to split the query in two: a part to
compute the averages and a part for filtering and sorting.

Chapter 2

[53]

The WITH keyword exists for this reason. The query is as follows:

MATCH (b:Book) <-[r:Votes]- (:User)
WITH b, AVG(r.score) as avgScore
WHERE avgScore >=4
RETURN b, avgScore
ORDER BY avgScore DESC

The result is as follows:

+---+
| b | avgScore |
+---+
| Node[171]{title:"Anna Karenina"} | 4.4 |
| Node[141]{title:"Tales"} | 4.0 |
+---+

This example shows us how to re-use an existing query to perform further
processing. We can perform the following tasks:

•	 Give an alias to computed values in the RETURN function
•	 Replace the RETURN keyword with the WITH keyword
•	 Append the new part to the previous using the variable declared in the

WITH function

Splitting queries is useful to filter data, which is otherwise difficult. This is done
by combining the WHERE function with the MATCH or OPTIONAL MATCH functions.
For example, if we want the year of publication of the book with the best score,
the following query can be used:

MATCH (b:Book) <-[r:Votes]- (:User)
WITH b, AVG(r.score) as avgScore
ORDER BY avgScore DESC
LIMIT 1
OPTIONAL MATCH (b) –[p:PublishedBy]-> ()
RETURN b.title, p.year

This query is understandable. In the first four lines, we are looking for the book
with the best score. In the remaining part of the query, we get the year
of publication.

Filter, Aggregate, and Combine Results

[54]

The UNION statement
Suppose we want to know how many books and how many authors are stored in
our database. We can perform two queries to get these values, but with the UNION
statement, we can merge these data together. Just put the UNION keyword between
two or more queries, as shown in the following query:

MATCH (b:Book)
RETURN 'Books' as type, COUNT(b) as cnt
UNION ALL
MATCH (a:Person)
RETURN 'Authors' as type, COUNT(a) as cnt

The result is as follows:

+-----------------+
| type | cnt |
+-----------------+
| "Books" | 150 |
| "Authors" | 142 |
+-----------------+

The only condition we must be careful of with the UNION statement is that the
result set must have the same number of columns and the columns must have
the same names.

You're perhaps wondering why we used the UNION ALL statement and not the UNION
statement in the previous example. There is a subtle difference between them—the
UNION statement removes duplicated rows after merging results, so it is slower.

If you don't care about duplicated rows, or you already know that
your result set has no duplicates, use the UNION ALL statement
because it faster than the UNION statement.

Chapter 2

[55]

Summary
In this chapter, you learned some advanced techniques to query a Neo4j database.
First of all, we used the WHERE statement to filter data. Text values can be filtered
using regular expressions, which are very flexible and powerful tools to work with
strings. Numbers can be filtered using mathematical operators and functions. Logical
expressions can be built using Boolean operators (OR, AND, XOR, and NOT). Collections
can be filtered using collection predicates.

Paging data is an important feature for a database, especially when it can be very
large. You learned how to page data using the LIMIT and SKIP keywords. An
important part of this chapter is about aggregating. You learned how to use the
RETURN clause to aggregate data with the most common aggregation functions,
especially COUNT, SUM, AVG, MAX, and MIN. Finally, we took a look at two useful
features of this language: the WITH and UNION keywords. The WITH keyword is used
to split queries in order to make them easier to write. The UNION keyword is used
to merge two or more result sets.

In the next chapter, you will learn how to create a database using Cypher
writing clauses.

Manipulating the Database
In the previous chapters, you learned how to query and work with data stored
in a database. Yet, you don't know how to modify the database because, as you
are going to see, the processes of creating, updating, and deleting data are topics
strictly related to all the notions we have learned so far. In this chapter, we will
learn the following:

•	 How to use Neo4j Browser to prototype and test your queries quickly
•	 The syntax and usage of the CREATE clause
•	 How to merge data with an existing database
•	 How to delete data from a database

Using Neo4j Browser
Neo4j Browser is a very useful tool that is distributed with Neo4j. It's a web-based
shell client, which we can use to interact in real time with a Neo4j Server database
without configuring or programming anything other than Cypher. Here, no Java
code is needed. The purpose of Neo4j Browser is to provide an easy interface for
prototyping databases and testing queries. It can be accessed by following these steps:

1.	 Start Neo4j Community. You can download the latest version from the Neo4j
download page at http://www.neo4j.org/download.

2.	 Choose a database location path and click on the Start button.

www.allitebooks.com

http://www.allitebooks.org

Manipulating the Database

[58]

3.	 Wait a few seconds while the database is created.

4.	 Click on the link that appears in the Status panel (for example,
http://localhost:7474/) to open Neo4j Browser.

Now you should see your preferred browser open the web page as shown in the
following screenshot:

Chapter 3

[59]

At the top of the page, there is the shell prompt. Here, you can write the Cypher
queries you want to be executed in real time against the database. The results will be
shown as output in the panel below. For example, let's take a look at the content of
the database by writing the following query:

MATCH (n) RETURN n

The panel below shifts and shows the query result. On the right-hand side of the
result panel, we have two buttons: one that shows the graph visualization and one
that shows the grid visualization:

As we saw in the first chapter, Neo4j Server supports a REST API. So, if you're going
to use a Neo4j database server, you'll use a REST API to interact with it. If you're
going to interact with the database server using a programming language that is
supported by a driver of your choice, note that this driver (whether PHP, C#, Python,
or any other) will wrap REST calls to the Neo4j REST API. Although the REST API
is not strictly necessary if you aren't a driver developer, it can be really useful to
know that Neo4j Browser can also be used to test REST API calls when something
goes wrong with the driver. A REST API is a layer that runs on a database server that
actually performs queries/modifications on databases. Java, C#, and other drivers just
abstract calls to this API, allowing programmers to write their applications without
worrying about the stack and the protocol used to communicate with the database.

For example, you can send the previous query to Neo4j with REST by typing the
following code in the prompt:

:POST /db/data/cypher { "query": "MATCH (n) RETURN n" }

Neo4j Browser returns the following result:

{
 "columns": [
 "n"
],
 "data": []
}

Manipulating the Database

[60]

The database is empty so we get zero rows. It's time to fill the database with new
nodes and relationships.

Creating nodes and relationships
In this section, we will learn how to create nodes and relationships in our database.
Let's start with the simplest example, that is, creating our first node. In the prompt,
just type the following:

CREATE ()

This command creates a node without properties or labels. It's equivalent to the
following Java code:

Node n = graphDb.createNode();

The result panel now shows the result as Created 1 node, returned 0 rows in 825 ms.

The preceding command returned zero rows because we had no RETURN clause. It
just created an anonymous node in the database. This node is not very useful as it
is, as it can be referenced only by an ID. However, the command lets us introduce
the CREATE clause. The CREATE clause takes one argument: the pattern that expresses
the nodes and relationships to be created. All the patterns we learned in Chapter 1,
Querying Neo4j Effectively with Pattern Matching, are supported here. Any variable
used in the expression is bounded to the newly created object so that it can be used
further in the query. For example, consider the following query:

CREATE (n)
RETURN n

By adding the RETURN clause, we get a result that consists of one row: the node
that was created earlier. Well, let's have a look at the CREATE clause in action with
common tasks.

Labels and properties
In this chapter, we'll model a social network. A user registered in the social network
is a node. Let's create a new one using the following query:

CREATE (u:User)
RETURN u

Chapter 3

[61]

If you switch to the tabular view, Neo4j Browser's reply will be Added 1 label,
created 1 node, returned 1 row in 155 ms. This reply can be described as follows:

•	 The added label is User, which is added to the new node.
•	 The created node is bounded to the variable u.
•	 The variable u is returned to us. The graphical visualizer in the result panel

shows us a chart, as shown in the following screenshot:

The number inside the node is the node ID assigned by Neo4j. You will most likely
get another value when you run the previous query in your database.

Multiple labels
You can add as many labels as you need to a node by chaining them in a single
definition. The following query creates another user with two labels, User
and Inactive:

CREATE (u:User:Inactive)
RETURN u

The result is a new node.

Manipulating the Database

[62]

Properties
The nodes we have created so far have no properties. The CREATE clause supports
the creation of properties along with their nodes in a unique query. To do so, just
apply the patterns we introduced in Chapter 1, Querying Neo4j Effectively with Pattern
Matching, as shown in the following query:

CREATE (u:User {name: "John", surname: "Doe"})
RETURN u

If you copy and paste the preceding query in the prompt, you will see the result
panel showing a single node. When you click on the node, a window appears,
showing the properties of the node.

If you look at the preceding screenshot, you will see that the node in the middle
shows its name as the property value instead of its ID. The property value shown in
the node can be set using the style tab, which can be opened by clicking on the node
itself. This setting is just for visualization; it doesn't affect your database.

Chapter 3

[63]

Creating multiple patterns
By separating patterns with a comma, you get them to be treated separately resulting
into the creation of multiple patterns. The following query creates three users in a
single call:

CREATE (a:User {name: "Jane", surname: "Roe"}),
 (b:User {name: "Carlos", surname: "Garcia"}),
 (c:User {name: "Mei", surname: "Weng"})

No result is returned, since the RETURN clause is missing. If we add RETURN a,b,c
to the query, we will get three nodes in a single row, one per column. To get them
in a single column, add RETURN [a,b,c] at the end of the query. Note that you
won't see any effect in the graph visualization panel of Neo4j Browser, but the return
values are shown in a tabular view; clearly, they are crucial if you query the database
programmatically.

Creating relationships
If you want to create relationships along with nodes, it is easy; just use the
relationship pattern, as shown in the following query:

CREATE (:User {name: "Jack", surname: "Smith"})
 -[:Sibling]->
 (:User {name: "Mary", surname: "Smith"})

Neo4j Browser shows a log of all the operations that are executed. The result shown
is Added 2 labels, created 2 nodes, set 4 properties, created 1 relationship, returned
0 rows in 472 ms.

The previous example gives us the opportunity to discuss about the direction of a
relationship. In Neo4j, every relationship is directed, so you must specify a direction
once it is created. However, as the paths between nodes can be traversed in both
directions, the application has the responsibility to either ignore or consider the
direction of the querying path. In fact, as mentioned in Chapter 1, Querying Neo4j
Effectively with Pattern Matching, you can query a relation and ignore the direction.
The following query is an example of this:

MATCH (a) -[r:Sibling]-(b)
RETURN a,r,b

Note that ignoring the direction of queries has performance implications on large
datasets, especially if used in conjunction with variable length paths. We will see
this in detail in the next chapter.

Manipulating the Database

[64]

Creating full paths
Using a path pattern, you can create a full path in Neo4j. The following query
illustrates how this is done:

CREATE p = (jr:User {name: "Jack", surname: "Roe"})
 -[:Sibling]->
 (:User {name: "Mary", surname: "Roe"})
 -[:Friend]->
 (:User {name: "Jane", surname: "Jones"})
 -[:Coworker {company: "Acme Inc."}]
 ->(jr)
RETURN p

The preceding query creates three nodes and then three relationships among them:
Sibling, Friend, and Coworker. The latter has the company name as its property,
and the end node is the first node of the path (the user Jack Roe). Look at the way
we have referenced a node that was specified previously by putting a variable in
the node's definition (jr:User {name: "Jack", surname: "Roe"}) and using the
variable jr afterwards.

As the query returns the path, Neo4j Browser shows a graph of the whole path, as
shown in the following screenshot:

Chapter 3

[65]

Creating relationships between existing nodes
using read-and-write queries
You can use the CREATE clause in conjunction with the MATCH statement to add
relationships between existing nodes. For example, the following query creates
a relationship between two nodes:

MATCH (a:User {name: "Jack", surname: "Roe"}),
 (b:User {name: "Jack", surname: "Smith"})
CREATE (a) -[r:Knows]-> (b)
RETURN a,r,b

The MATCH statement matches the user nodes Jack Roe and Jack Smith with
the variables a and b; then, the CREATE clause creates a relation of the type Knows
between them. Finally, both the user nodes and their new relationship are returned
as output.

Generally, this kind of read-and-write query has the following two parts:

•	 The first is the reading part. Here, we can use any reading function (START,
MATCH, OPTIONAL MATCH, and WITH).

•	 The second part is writing, where we can use the CREATE command or other
writing clauses that we are going to learn in the next section.

Modifying existing data
The last query in the previous section creates a relationship between two nodes. If
we run that query twice, we will have two relations between those nodes. In most
cases, this redundancy is unnecessary and useless for us. Suppose our social network
was online and had a button called "Add Friend". In this scenario, if two users, say A
and B, click on this button at the same time to add each other as friends, the relation
would be doubled in the database. This is a waste of storage. In this context, we need
to check the database and create the relation only if it does not exist. This is why an
OPTIONAL MATCH clause is required to prevent double storage. This is illustrated in
the following query:

MATCH (a:User {name: "Jack", surname: "Roe"}),
 (b:User {name: "Jack", surname: "Smith"})
OPTIONAL MATCH (a) -[r:Knows]- (b)
WITH a,r,b
WHERE r IS NULL
CREATE (a) -[rn:Knows]-> (b)
RETURN a,rn,b

Manipulating the Database

[66]

This query, first of all, finds the users Jack Roe and Jack Smith in the database
(the MATCH clause), then checks whether they are connected through a relation of
the type Knows (the OPTIONAL MATCH clause). If not, (r IS NULL means that the
relation cannot be found) the CREATE command that follows will create a relationship
between the nodes. The WITH clause is necessary to apply the WHERE clause to the
whole query. If the WITH clause is not used, the WHERE clause is applied only to the
OPTIONAL MATCH clause.

If you run the preceding query after the query mentioned in the Creating relationships
between existing nodes using read-and-write queries section, you'll get no rows. This is
because the relationship is already created in the database. Clearly, this query isn't
easy to read or write and it's error-prone. For these reasons, Cypher provides us with
two keywords to deal with existing data.

Creating unique patterns
The complexity of the preceding query is due to the fact that we have to check
the nonexistence of a relationship before creating it. This is because we want that
relationship to be unique. Fortunately, Cypher provides us with a command that
wraps such a check and ensures that the pattern specified is unique in the database.

For example, we can rewrite the preceding query using the CREATE UNIQUE
command, as shown in the following query:

MATCH (a:User {name: "Jack", surname: "Roe"}),
 (b:User {name: "Jack", surname: "Smith"})
CREATE UNIQUE (a) -[rn:Knows]-> (b)
RETURN a,rn,b

Using the CREATE UNIQUE command in the preceding query saved us from writing
the entire OPTIONAL MATCH and WHERE clauses. My preferred motto is that the more
code you write, the more bugs you hide; here, the latter is the preferred choice.

However there are two important differences between the the preceding query and
the one in the previous section. They are as follows:

•	 If the CREATE UNIQUE command finds the relationship multiple times in the
database, it will throw an error. For example, if two instances of the Knows
relationship exist between the users Jack Roe and Jack Smith, then the
query with the CREATE UNIQUE command will fail with an error, while the
query with the OPTIONAL MATCH command will succeed (it will not create the
relationship). Anyway, both the CREATE UNIQUE and the OPTIONAL MATCH
commands won't make any modifications to the database. This difference is
not a disadvantage of the CREATE UNIQUE command, rather an advantage.
An error thrown by the query means that the database is corrupted as it has
multiple instances of a relationship (or any pattern) that should be unique.

Chapter 3

[67]

In the next chapter, we will learn how to enforce certain
assertions using constraints.

•	 The query with the OPTIONAL MATCH command returns a row only if it
creates a new relationship. However, the query with the CREATE UNIQUE
command will return a result if it finds a relationship or creates a new one.
This can be a useful feature in some contexts; we can know the state
of certain paths in the database after the CREATE UNIQUE command is
executed without performing another read-only query.

Yet, the CREATE UNIQUE command can be even more useful. Suppose we don't know
if a user named Jack Smith has been created; if not we have to create and link it to
the user Jack Roe. Consider the following read-and-write query:

MATCH (a:User {name: "Jack", surname: "Roe"})
CREATE UNIQUE (a) -[rn:Knows]->
 (b:User {name: "Jack", surname: "Smith"})
RETURN a,rn,b

First of all, it looks for the user Jack Roe in the database, binding it to the variable
a. If it cannot be found, the query will finish the execution and return zero rows.
Otherwise, it executes the CREATE UNIQUE command, and there are four possible
scenarios, which are listed as follows:

1.	 The full path already exists and it is unique; we have the user node Jack Roe
with exactly one relationship with the user node Jack Smith. In this case, the
existing nodes are bound to the variables a, rn, and b. Then, these variables
are returned as result.

2.	 Neither the Jack Smith node nor the relationship exists in the database.
In this case, the CREATE UNIQUE command creates the full path. The new
relation is bound to the variable rn, while the new node is bound to the
variable b.

Manipulating the Database

[68]

3.	 When there are multiple paths, the path (a)-[:Knows]-(b) exists multiple
times. For example, the Knows relationship exists multiple times between the
nodes. If this happens, a Neo.ClientError.Statement.ConstraintViolation
error is thrown because the CREATE UNIQUE command can't deal with
multiple patterns.

4.	 Both Jack Roe and Jack Smith exist in the database as nodes, but there
is no Knows relationship between them. As the matching follows the all-or-
none rule, the Cypher engine creates a new Jack Smith node and a new
relationship bound to the variable rn. This is due to the fact that the purpose
of the CREATE UNIQUE command is to ensure that a whole pattern is unique
in the graph and if the node already exists but not the relationship, we do not
have the whole pattern in the graph.

The last scenario could be a problem because we would have duplicated a user in the
database. We can resolve this issue using the MERGE clause, which is discussed later
in the chapter.

Chapter 3

[69]

To summarize, the following diagram shows how the CREATE UNIQUE clause works:

<Path> found in

database?

CREATE UNIQUE

<path>

The full path is created in the

database, even in the case of

a partial match

Variables are bound

to the path found
Multiple times?

ConstraintViolation

error

yes

no

no

yes

Complex patterns
Just as the MATCH and the CREATE clauses, you can join simple patterns to describe a
complex one. Consider the following query:

MATCH (a:User {name: "Jack", surname: "Roe"})
CREATE UNIQUE (a) -[kn:Knows]->
 (b:User {name: "Jack", surname: "Smith"}),
 (a) -[cw:Colleague]-> (b)

This query creates two relationships between two users. Only the relationships not
found in the database are created. If you launch this query after the query from the
previous section, you'll get a the message Created 1 relationship, returned 0 rows
in 307 ms.

Manipulating the Database

[70]

In fact, the relationship Knows and the user Jack Smith were already in the database,
while the Colleague relationship was missing. If all of them exist, this query makes
no modifications to the graph. The second time you launch this query, you'll get the
result Returned 0 rows in 229 ms, which means that neither relationships nor nodes
were created.

Note that the CREATE UNIQUE command looks for a path that exactly matches the
pattern. So, for example, the following query won't match either the existing user
node or the existing relationship. Instead, it will create a new relationship and a
new node.

MATCH (a:User {name: "Jack", surname: "Roe"})
CREATE UNIQUE (a) -[rn:Knows {friend: true}]->
 (b:User {name: "Jack",surname: "Smith", age:34})

In fact, we haven't set the age property to the user Jack Smith in our database.
However, this could return weird results in some cases (as the preceding example).
How to update the user node without creating a new user if a new property is found
in the pattern? Again, this issue can be solved using the MERGE clause.

Setting properties and labels
First of all, we need to know how to set the property of an existing node. The SET
clause is just the ticket. Let's start with an example. Consider the following query:

MATCH (a:User {name: "Jack", surname: "Roe"})
SET a.age = 34
RETURN a

This query takes the user node Jack Roe and sets the age property for it; then,
it returns the updated node. Neo4j Browser shows the result as Set 1 property,
returned 1 row in 478 ms.

Note that the SET clause here works on the nodes found using the MATCH clause. This
means that we can set a property on a huge list of nodes if we don't write the MATCH
clause carefully. The following query sets the city property on all the nodes with
the surname property Roe:

MATCH (a:User {surname: "Roe"})
SET a.place = "London"
RETURN a

In our database, this query updates three nodes: Jane, Jack, and Mary Roe. Neo4j
Browser shows the result as Set 3 properties, returned 3 rows in 85 ms.

Chapter 3

[71]

Again, you can change several assignment expressions to make more property
changes at the same time. For example, to set the country as well, the query will
be as follows:

MATCH (a:User {surname: "Roe"})
SET a.place="London", a.country="UK"
RETURN a

The syntax to set a property to a relationship is the same, as shown in the
following query:

MATCH (:User{surname: "Roe"})-[r:Knows]-()
SET r.friend = true

This query finds all the Knows relationships of users with the surname property Roe
and sets the property friend to true for all of them.

Cloning a node
The SET clause can also be used to copy all the properties of a node to another. For
example, to copy the node x to the node y, use the following query:

SET y = x

Note that all of the destination node's properties will be removed before the
node is copied.

Copying a node is useful when a node needs cloning. For example, in our social
network, there could be a function to create an alias identity; the user could start
cloning his/her own identity and then modify the new one. This command can be
coded as shown in the following query:

MATCH (a:User {name: "Jack", surname: "Roe"})
CREATE (b:Alias)-[:AliasOf]->(a)
WITH a,b
SET b = a
RETURN a,b

This query, once it finds the user node to clone, creates a new node with labels Alias
and User and have a relationship with the source node of the type AliasOf. Then, it
copies all the properties from the source node to it and finally returns the node. The
command SET b = a doesn't affect the labels of the node b or its relationships; it just
copies the properties.

Manipulating the Database

[72]

Adding labels to nodes
The SET clause can also be used to add one or more labels to a node, as shown in the
following query:

MERGE (b:User {name: "Jack", surname: "Smith"})
SET b:Inactive

The only difference is that we need to use the label separator instead of the property
assignment. To chain more labels, just append them with the separator, as shown in
the following query:

MERGE (b:User {name: "Jack", surname: "Smith"})
SET b:Inactive:NewUser:MustConfirmEmail

Merging matched patterns
The MERGE clause is a new feature of Cypher, introduced by Neo4j 2.0. The features
of the MERGE clause are similar to those of the CREATE UNIQUE command. It checks
whether a pattern exists in the graph. If not, it creates the whole pattern; otherwise,
it matches it. The main difference is that the pattern doesn't have to be unique. The
other differences are as follows:

•	 The MERGE clause supports the single node pattern
•	 The MERGE clause allows users to specify what to do when the pattern is

matched and what to do when the pattern is being created

In an earlier section, we saw two issues with the CREATE UNIQUE command. They
are as follows:

1.	 How to create a new node if the pattern does not match, but match the
existing node if the node exists?

2.	 How to set the variables when merging nodes and relationships?

To answer the first question, let's recall the second query from the Creating unique
patterns section:

MATCH (a:User {name: "Jack", surname: "Roe"})
CREATE UNIQUE (a) -[rn:Knows]->
 (b:User {name: "Jack", surname: "Smith"})

Chapter 3

[73]

Now, if the intent of this query is to match an existing Jack Smith user node before
creating a relationship to it, it will fail. This is because if the relationship does not
exist, a new Jack Smith node will be created again. We can take advantage of the
single node pattern supported by the MERGE clause and write the following query:

MATCH (a:User {name: "Jack", surname: "Roe"})
MERGE (b:User {name: "Jack", surname: "Smith"})
WITH a,b
MERGE (a) -[rn:Knows]-> (b)
RETURN a,rn,b

To accomplish our goal, we had to split the query in two parts using the WITH clause.
The first step is to find the Jack Roe user node in the graph with the MATCH clause.
Then, the first MERGE clause ensures that a node with exactly two properties—the
name Jack and surname Smith—exists in the database. In the latter part of the query,
the focus is on the relationship Knows between the two nodes involved; the second
MERGE clause ensures that the relationship exists after the execution. What happens if
the Jack Smith user exists twice in the database and the nodes are already related?
The MERGE clause wouldn't fail; it would succeed, returning two rows.

In the next chapter, we will learn how to create constraints in the database
to ensure that it won't ever create nodes with the same property value.

Now, about the second problem of how to set properties during merging operations,
the MERGE clause supports two interesting features. They are as follows:

•	 ON MATCH SET: This clause is used to set one or more properties or labels on
the matched nodes

•	 ON CREATE SET: This clause is used to set one or more properties or labels on
the new nodes

For example, suppose that we want to set the Jack Smith user node's place
property to London only if we are creating it, then the following query can be used:

MERGE (b:User {name: "Jack", surname: "Smith"})
ON CREATE SET b.place = "London"

If at the same time, we want to set his age property to 34 only if the user already
exists, then the following query can be used:

MERGE (b:User {name: "Jack", surname: "Smith"})
ON CREATE SET b.place = "London"
ON MATCH SET b.age = 34

Manipulating the Database

[74]

Clearly, when we want to set a property in both cases, you can just append a SET
clause to a MERGE clause, as shown in the following query:

MERGE (b:User {name: "Jack", surname: "Smith"})
SET b.age = 34

Once you learn how to use the MERGE clause and the CREATE UNIQUE
command, you may wonder when to use either of these. As a general
rule, when in doubt, you should use the CREATE UNIQUE command
when the pattern is conceived as a whole path that must be unique in
the graph.

Idempotent queries
In certain applications, such as websites with several client types, parallel
applications, and so on, some commands happen to be sent multiple times from
external layers to the backend. This is due to a number of reasons, for example,
user interfaces are not up to date, users can send a command multiple times,
synchronization issues, and so on. In these cases, you could get the command to be
executed multiple times; clearly you don't want the second or the nth execution to
have an effect on the database. Commands that are executed once but have no effect
when executed multiple times again on the same graph later are idempotent. Both
MERGE and SET clauses allow you to write idempotent commands that nowadays
are very useful in these growing contexts.

Deleting data
Cypher provides two clauses to delete data. They are as follows:

•	 REMOVE: This clause is used to remove labels and properties from nodes
or relationships

•	 DELETE: This clause is used to delete nodes and relationships from
the database

Removing labels
To remove a label from a node, you must use the REMOVE clause. The syntax is similar
to the one for the SET clause, as shown in the following query:

MERGE (b:User {name: "Jack", surname: "Smith"})
REMOVE b:Inactive:MustConfirmEmail

Chapter 3

[75]

This query removes the labels Inactive and MustConfirmEmail from the node that
was matched. Note that we have chained the labels using the colon separator. If the
node already doesn't have one or all of the labels specified, this query will not fail; it
will only remove the labels it can remove.

Removing properties
The REMOVE clause is the opposite of the SET clause. It can be used to remove a
property from a node, as shown in the following query:

MERGE (b:User {name: "Jack", surname: "Smith"})
REMOVE b.age

Anyway, as Neo4j does not store NULL properties, the same result can be achieved by
setting the property to NULL, as shown in the following query:

MERGE (b:User {name: "Jack", surname: "Smith"})
SET b.age = NULL

The preceding query can be used effectively when working with parameters. In fact,
you can write the query as following:

MERGE (b:User {name: {name}, surname: {surname}})
SET b.age = {age}

This query can be used to both set the age property of a user and remove the
age parameter from the node. Again, all operations with the REMOVE and SET
clauses are idempotent, so you don't need to worry if the properties exist before
you remove them.

Deleting nodes and relations
If you want to delete a node, use the DELETE clause, as shown in the following query:

MATCH (c:User {name: "Mei", surname: "Weng"})
DELETE c

This query looks for a node with the given name and surname using the MATCH
clause and then tries to delete it.

Three important points about the preceding query are as follows:

•	 It is idempotent. If no node is found, the query won't fail; it just won't delete
anything.

•	 Properties are deleted with the node. You do not need to remove all the
properties before deleting the node.

Manipulating the Database

[76]

•	 On the other hand, if the node to delete has at least one relationship with
another node, the query will fail and raise an exception, which can be seen
in the following screenshot:

Therefore, before deleting a node, you must be sure that it is not involved in any
relationship. If it is, then how to delete a relationship? The syntax is the same; you
just have to use the right variable, as shown in the following query:

MATCH (:User {name: "Mei", surname: "Weng"}) -[r]- ()
DELETE r

This query deletes any relationship that involves the user that was matched. So, to
delete a node along with all its relationships, should we perform two queries? Not
at all, we just need the following query:

MATCH (c:User {name: "Jack", surname: "Smith"})
OPTIONAL MATCH (c)-[r]- ()
DELETE r, c

This query deletes the node and any of its relationships. It, first of all, finds the node,
then it matches it with any existing relationship. The OPTIONAL MATCH clause is needed
because if we use a simple MATCH clause, the query won't delete a node with zero
relations. Finally, the DELETE clause causes the relations and the node to be deleted.

Clearing the whole database
Generalizing the preceding query, we can clear the whole database, deleting all the
nodes and relationships, just by changing the first MATCH clause to take all user nodes
as argument, as shown in the following query:

MATCH (a)
OPTIONAL MATCH (a)-[r]-()
DELETE a, r

Chapter 3

[77]

We can also do this by using the START clause on all the nodes. We get the same
result. The query is as follows:

START a = node(*)
OPTIONAL MATCH (a)-[r]-()
DELETE a, r

Use it carefully because it will delete all of the data from the graph.

Loops
Due to the nature of the Cypher queries, usually, you won't need something like a
loop used in other programming languages. In fact, as you have probably already
realized, the general structure of a Cypher query is formed by three phases and
each one of these is optional. The phases are as follows:

•	 Read: This is the phase where you read data from the graph using the START,
MATCH, or OPTIONAL MATCH clauses.

•	 Write: This is the phase where you modify the graph using CREATE, MERGE,
SET, and all the other clauses we learned in this chapter.

•	 Return: This is the phase where you choose what to return to the caller by
using the RETURN clause. This part can be replaced by a WITH clause and then
the query can start again from the read phase.

The read phase is important because the write phase will be executed for every item
found in the read phase. For example, consider the following query:

MATCH (a:User {surname: "Roe"})
SET a.place = "London"
RETURN a

In this query, the SET command will be executed once for each node found with the
MATCH clause. Consequently, you usually won't need an explicit for-loop statement.

Working with collections
The unique case when you need to iterate is when you work with collections. In
the previous chapter, we saw that Cypher can use different kinds of collections:
collections of nodes, relationships, and properties. Sometimes, you may need to
iterate on a collection and perform some write operation consequently. There is a
clause for this purpose, and it is the FOREACH clause. Its syntax is akin to the syntax
of collection clauses we learned in the previous chapters. The syntax is as follows:

FOREACH (variable IN collection | command)

Manipulating the Database

[78]

Let's see it in action with an example. Suppose that in our social network, you want a
function that traverses the shortest path from one user to another and creates a new
relationship of the type MaybeKnows between each node visited and the first user.
Does it sound difficult to achieve this with a single query? No, it can be done with just
two clauses: a MATCH clause and a FOREACH clause, as shown in the following query:

MATCH p=shortestPath(
 (a:User {name: "Mary", surname: "Smith"})-[*]-
 (b:User {name: "Jane", surname: "Jones"}))
FOREACH (n IN tail(nodes(p)) |
 CREATE UNIQUE (n)-[:MaybeKnows]->(a))

In the first step, this query computes the shortest path between the two nodes, using
the pattern we learned in Chapter 1, Querying Neo4j Effectively with Pattern Matching.
Then, there is an iteration over all the nodes, except for the first node; for each node, a
unique relation is created between the first node of the path (Mary Smith) and itself.
Now, let's take a look at the content of the FOREACH clause, that is, tail(nodes(p)).
The function nodes extracts all the nodes of the path, while the tail function returns
all the items except for the first of a collection. In this case, we use the tail function
because we don't want Cypher to create a relation between the user node Mary
Smith and itself. In fact, Neo4j allows you to create self-loops. Self-loops are relations
between a node and itself. Note that using self-loops is perfectly right in some
contexts but not in this case. So, we have avoided it by using the tail function.

Summary
In this chapter, you learned how to use Neo4j Browser. Thanks to this very useful
testing and prototyping tool provided by Neo4j, you have learned a lot of new
clauses needed to modify the graph, such as CREATE, CREATE UNIQUE, SET, MERGE,
REMOVE, and DELETE.

Finally, you learned how to use the FOREACH clause to traverse a collection to
perform write operations.

In the next chapter, we will examine in depth how to improve the performance
of our Cypher queries, and how to enforce important assertions about our graph
according to the peculiarities of the domain model.

Improving Performance
Using Neo4j has several advantages, including a very natural model that allows
you to easily express complex schemas with a lot of relations as well as Atomicity,
Consistency, Isolation, and Durability (ACID) transactions. It gives a great
performance compared to relational databases.

Performance is a key feature in some scenarios and drives developers and architects
to choose Neo4j. In this chapter, you will learn about:

•	 Several performance issues that you face while using Cypher and some
possible solutions

•	 How to profile a Cypher query to estimate its computational cost and its cost
in terms of number of times I/O is accessed

•	 How to use the schema to preserve the integrity of the database and take
advantage of it to improve performance

Performance issues
We will focus on two common types of performance issues we face with Cypher.
They are as follows:

•	 A long and complex query is executed too slow. The query can be a
complex read-write query or a read-only query with aggregation, complex
computations, and sorting.

•	 A small query is repeated many times, for example, in a loop cycle. The
query itself does not underperform, but repeating it many times causes the
whole operation to take a long time to finish.

Improving Performance

[80]

Now, suppose that we have a huge database with a lot of nodes; for example, a
database for a social network. In fact, if we are experiencing performance problems
with small databases, we probably need to check the hardware, or the operating
system, or the configuration of Neo4j because it's unusual to experience a very slow
query with small datasets. In this chapter, we will see some configuration options of
Neo4j that are useful when tuning the performance of the database.

To simulate performance issues, the example used in this chapter must have a lot
of data. To fill our example database, we can create a number of nodes, with Neo4j
Embedded, by writing some lines of the Java code in a loop. This is described in the
following query:

for (int i = 0; i < 1000; i++) {
 try (Transaction tx = graphDb.beginTx()) {
 Node node = graphDb.createNode();
 node.setProperty("email", "user" + i + "@learningcypher.com");
 node.setProperty("userId", i);
 node.addLabel(DynamicLabel.label("User"));

 if(i % 100 == 0)
 node.addLabel(DynamicLabel.label("Inactive"));

 tx.success();
 }
}

Each cycle, which is repeated 1000 times, creates a node, sets two properties (email
and userId), and sets a label (User) to the node. The DynamicLabel.label("User")
call allows us to specify a label without having to declare a statically-typed label
implementation. Finally, after every 100 nodes, one node is set the Inactive label.
Each step is executed in a transaction; this is a requirement as we are accessing the
database. The problem here is that we have a lot of tiny transactions; every time
we commit a transaction, Neo4j will access the disk to persist the data, leading to
a performance overhead.

Alternatively, using any script language, you can generate a long Cypher query that
joins a number of nodes to create then copy and paste the query in Neo4j Browser's
prompt. This is described in the following query:

CREATE (:User {email: 'user0@learningcypher.com', userId: 0 }),
 (:User {email: 'user1@learningcypher.com', userId: 1 }),
 (:User {email: 'user2@learningcypher.com', userId: 2 }),
 (:User {email: 'user3@learningcypher.com', userId: 3 }),

Chapter 4

[81]

The preceding query will create the same data in a single transaction. Neo4j will
save the data in the memory and will persist everything simultaneously at the end.
The problem here is that the Cypher engine must parse and process a huge string to
translate it into a real operation that will be performed on the database. In the next
sections, we will see the performance issues we have found in these two approaches
in detail and how to get rid of them.

In the code bundle, which can be downloaded for free from the Packt Publishing
website (http://www.packtpub.com/support), you will find the whole script
generated there as well as the Java project with the Neo4j embedded example code.
We'll see these in the rest of the chapter so that you can set up the database that is
used as an example in this chapter.

From Neo4j 2.1 onwards, bulk creations can be performed by reading
from a comma-separated values (CSV) file with the following new clause:

LOAD CSV FROM "file.csv"
CREATE (:User{email: csvLine[0], userId: csvLine[1] })

Best practices and recommendations
You surely know the following famous quote from Donald Knuth, which is
attributed to Tony Hoare:

"We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our opportunities in
that critical 3%."

The sense of the quote is that you should avoid writing obfuscated, unreadable, and
error-prone code in order to gain an insignificant performance advantage, because
the most important performance gain will be achieved only in 3 percent of your
code. However, you should take precautions to not lose the opportunity to improve
performance in that critical percentage.

In this section, we will talk about those precautions; we will see some general rules
to avoid well-known performance issues with Cypher. If you follow all of them, you
will reduce the probability of facing poor performances in your applications without
affecting the readability of your Cypher queries.

Improving Performance

[82]

Using parameterized queries
As you remember, in Chapter 1, Querying Neo4j Effectively with Pattern Matching,
we introduced the usage of query parameters with Java. There we saw how query
parameters can be useful to write readable and maintainable code. Yet, query
parameters are a great ally to boost the performance of queries that are executed
many times.

Consider, for example, the following simple query:

MATCH (n:User {email: 'user300@learningcypher.com'})
RETURN n

When you launch this query, the engine takes the query as a string literal. Now, it
must parse the query, build an execution plan, and run it. An execution plan is a list
of steps necessary to execute a query. In fact, as Cypher is a declarative language,
when you write a query, you focus on results than on the operations needed to
get them. However, this means that the Cypher engine must process the code and
prepare a plan to achieve the result you want. Now, launch the same query with
another e-mail ID, for example:

MATCH (n:User {email: 'user400@learningcypher.com'})
RETURN n

Then, the engine assumes that since the query is different, the plan could be
different. So, the engine computes a new plan. However, this one will be the same
as the previous query with only one difference: the e-mail ID of the user to be
searched for.

Writing queries with parameters allows the engine to reuse the execution plan of a
query because the engine can cache it. Instead, if you rewrite a new query multiple
times, changing only some of the parameters each time, this period of time wasted
becomes very important. If you are working with Neo4j embedded, you can use the
parameters in a manner identical to the one explained in Chapter 1, Querying Neo4j
Effectively with Pattern Matching. This is described in the following query:

import org.neo4j.cypher.javacompat.*;
import java.util.*;

ExecutionEngine engine = ...
Map<String,Object> params = new HashMap<>();
params.put("emailQuery", email);
ExecutionResult result = engine
 .execute("MATCH(n:User {email: {emailQuery}}) RETURN n",
 params);

Chapter 4

[83]

You can estimate the performance gain of this code by launching it a number of
times. In Java, one easy way to get the elapsed time is using the System.nanoTime()
function. If you compare the time needed to run the previous query 2000 times with
the time needed to run the same query without using parameters, you will have a
result similar to the following on a common desktop machine:

MATCH(n:User {email: '" + email + "'}) RETURN n
duration: 11458.105746 ms
MATCH(n:User {email: {emailQuery}}) RETURN n
duration: 2014.814202 ms

The parameterized version is more than five times faster than the query with no
parameters. It is more scalable as well. In fact, after running these queries 4000 times,
you'll get a result that looks like the following:

MATCH(n:User {email: '" + email + "'}) RETURN n
duration: 20610.989327 ms
MATCH(n:User {email: {emailQuery}}) RETURN n
duration: 2450.090195 ms

Clearly, with the non-parameterized query, the time elapsed has almost doubled,
while with the parameterized query, the time elapsed has raised only by 20 percent.

Parameterized queries with the REST API
Parameterized queries are also supported by the REST API, and, by using them, you
will get a performance gain. In fact, the server will cache the execution plans of your
queries and won't need to parse each of them, just as we saw in the previous section
with queries in Neo4j embedded.

To use parameters with the REST API, just mention the values along with the query
in the params member of the JSON code posted to the server, as described in the
following query:

{
 "query" : "MATCH (n {userId: {id}}) RETURN n.email",
 "params" : {
 "id" : 300
 }
}

The preceding query searches the e-mail ID of a user in the database. The user ID
(300) is passed in a parameter.

Improving Performance

[84]

As usual, you can test it using any REST client or in Neo4j Browser, prepending the
following command to the JSON code you want to send:

:POST /db/data/cypher

The result can be seen in the following screenshot:

Reusing ExecutionEngine
When you work with Neo4j Embedded, as execution plans of parameterized queries
are cached by ExecutionEngine, it's crucial that you don't create a new engine
for each query you launch. Rather, create one engine and use it as many times
as possible.

You should avoid writing functions in the following manner:

public void dontWriteFunctionsLikeThis(String email) {
 ExecutionEngine engine = new
 ExecutionEngine(graphDatabaseService);

 Map<String,Object> map = new HashMap<>();
 map.put("email", email);
 ExecutionResult result = engine
 .execute("MATCH(n:User {email: {email} }) RETURN n", map);
 // working with result
}

Chapter 4

[85]

Instead, pass the engine in the constructor of the class and use it. This is described in
the following query:

public class ReuseTheEngine {
 private final GraphDatabaseService graphDatabaseService;
 private final ExecutionEngine engine;

 public ReuseTheEngine(
 GraphDatabaseService graphDatabaseService,
 ExecutionEngine engine) {
 this.graphDatabaseService = graphDatabaseService;
 this.engine = engine;
 }

 public ResourceIterator<Node> find(String email) {
 Map<String,Object> map = new HashMap<>();
 map.put("email", email);
 ExecutionResult result = engine
 .execute("MATCH(n:User {email: {email} }) RETURN n", map);
 }
}

The class in the preceding code keeps the engine for the entire lifetime of the objects.
It reuses the same engine every time the find method is invoked, ensuring that the
engine caches execution plans.

Note that ExecutionEngine is thread safe, so you can create only one instance and
share it among all the threads of your multithreaded applications as a singleton
(otherwise, if you are using an inversion of control container, you can safely register
the instance as a singleton in the container).

Finding the optimum transaction size
When you start a transaction and execute several operations within it, Neo4j does not
persist the changes in the database but keeps them in memory. Neo4j will persist the
changes only once you commit the transaction. This means that the more operations
you put in a single transaction, the more memory Neo4j must allocate to keep them.
This results, first of all, in a progressive decay in performance, but it can even cause
the server to go out of memory.

Improving Performance

[86]

If you experience a performance decay while executing a long transaction, you can
monitor the heap usage to figure out whether the problem resides in the heap usage
or not. One useful, visual, and free tool that you can use is Java VisualVM. It is
provided with any Java Development Kit (JDK).

If you only have console access to the server that is hosting Neo4j, you can
use jvmtop (https://code.google.com/p/jvmtop/), an open source
console application to monitor all Java Virtual Machines (JVM) that are
running on the machine.

To start the tool, launch the following code from the command-line interface:

jvisualvm

Once the tool starts, a list of applications running on the JVM can be seen on the
left-hand side of the window. When you select an application, you will see
a set of statistical data on the right-hand side.

Chapter 4

[87]

In the preceding screenshot, let's consider only the Memory usage, deselecting CPU,
Classes, and Threads. Did you note the peak marked with a vertical dotted line? You
will get that when you launch a big transaction by creating 4000 nodes and setting
8000 properties and 4000 labels. The heap usage has jumped from about 30 MB to
about 180 MB, but it's still an acceptable load in that machine. Yet, when analyzing
the statistics, you get to know that the heap usage is too much for your machine and
is affecting the performance of your application, you have the following two options:

•	 You can increase the heap size reserved for JVM. In Neo4j Server, under
Windows, you can edit the neo4j-community.vmoptions file and, for
example, add the following line of code to set the heap size to 4 GB:
-Xmx4G

In Linux or Neo4j Server for Windows, you can edit the neo4j-wrapper.
conf file in the Neo4j configuration folder. You will have to add the
following line of code:
wrapper.java.initmemory=4096

It is noteworthy that increasing the Java heap size is an operation that should
be performed with caution—you should be aware of the services that are
running on the machine and of the hardware limitation. Increasing the JVM
heap size, in fact, will affect the other running services, depriving them of
the heap memory needed to run. In addition, while the heap size becomes
increasingly larger, the garbage collector will take greater amounts of time
to clean the heap. So, despite having infinite RAM at your disposal, there is
an empiric limit to the heap size that will give you an effective performance
gain. If you exceed this limit, you will have a decay in performance instead.

Improving Performance

[88]

•	 You can split the transaction into smaller ones. Whether to split it or not and
how to split it depends on the business logic of your application. Anyway,
it is noteworthy that if you split the transaction described previously into 40
smaller transactions, you'll get the graph shown in the following screenshot
in the same machine. This time, the heap reserved is less than half of the one
used before, although you have done the same operations. You have just split
it into more transactions.

Above all this, as changes are persisted into the disk only when the transaction is
committed, writing too many smaller transactions will cause as many I/O writes,
causing performance deterioration due to the disk being accessed too many times.
This effect can be alleviated by having many disks installed on the machine and
configuring RAID 0 or RAID 5, but generally speaking, merging a lot of tiny
transactions is a more scalable solution.

Chapter 4

[89]

Note that the REST API provides two ways to merge many operations in only one
transaction. The following are the two ways:

•	 The first one is by opening a transaction across multiple HTTP requests.
1.	 To open a transaction, you have to post a payload to the /db/data/

transaction endpoint. An example payload could be the following:
{
 "statements": [{
 "statement": "CREATE(n:User{email: {email}}) ",
 "parameters": { "props" : {
 "email": "user1@learningcypher.com"
 }
 }
 }]
}

2.	 The server will return the JSON code answer with a property
named commit that contains the endpoint to invoke to commit the
transaction. The result will be as follows:
{
 "commit" : "http://localhost:7474/db/data/transaction/32/
 commit",
 "results" : [{
 ...

3.	 By sending a statement payload, like the previous one, to the
http://localhost:7474/db/data/transaction/32 endpoint,
you'll perform queries in that transaction.

4.	 By sending a statement to the commit endpoint, you'll get the server
to commit all changes made in that transaction.

•	 The second one is by using batch operations. Batch operations allow you to
merge multiple REST API calls in only one call, which is executed atomically.
You have to invoke the db/data/batch endpoint with a payload built with
multiple REST API calls serialized in the JSON code. Every call must have an
ID. This is described in the following code snippet:
[{
 "method" : "PUT",
 "to" : "/cypher",
 "body" : {
 "query" : "CREATE(n:User{email: {email}})"
 },
 "id" : 0
},
...

Improving Performance

[90]

Avoiding unnecessary clauses
Both DISTINCT and ORDER BY clauses can be very slow on large datasets because
they scan the whole dataset and execute comparisons to sort or to distinguish unique
values. You should avoid using them when it is not necessary. The ORDER BY clause
in Cypher is optimized for performance so that only the final dataset (which is
typically a lot smaller) is handled by the Cypher engine and ordered. The DISTINCT
clause, on the other hand, can also be used in the middle of a query; so, it can act on
large datasets. To clarify, let's see an example.

Suppose that the users of our social network can join groups, namely communities
for users interested in certain topics. A group is a node with the Group label and has
a name string property. This is shown in the following screenshot:

Graph visualization: some users (50) that joined the Music group

Now consider the following query:

MATCH (user:User) -[:JOINED]- (group:Group)
WITH DISTINCT user, group
RETURN group.name, COUNT(user)

Chapter 4

[91]

This is a report about the size of each group according to the number of users who
joined the group. It first looks for users related to any group, then takes the distinct
user-group pairs, and finally counts the users per group name. For several reasons,
this query can easily become very slow in a huge dataset. It is not scalable. Note
the DISTINCT keyword in the middle of the code; maybe the person who wrote this
query thought that it was necessary to consider only one user-group pair and not
duplicated relationships. However, if in our application, a user can join a group
only once, then the DISTINCT keyword is useless and is much expensive in terms of
performance. This is because it forces the engine to run through the entire dataset
and takes only distinct values. Therefore, it's important that you structure your
queries so that the engine works with as little data as possible.

Specifying the direction of relationships and
variable length paths
Another important point when making the graph is to ensure that data does not
require expansive query operations, and then take advantage of the structure to
avoid those expansive query operations. In fact, let's continue working on the same
dataset and consider the following query:

MATCH (user:User) -[:JOINED*]- (group:Group)
WITH user, COUNT(group) as countG
RETURN avg(countG)

This is a report of the average number of groups joined per user. The query considers
all users connected to any group through a variable length path of the JOINED
type, then counts the number of groups per user, and finally returns the average
of this number.

There are two improvements that can be done to this query to improve the
performance, and they both are in the first row. The first issue is that the direction
of the JOINED relationship is not specified. This means that the Cypher engine
must traverse the graph to search both users that joined any group and groups that
joined any user. However, clearly the latter does not make any sense and, in fact, the
Cypher engine won't find any such groups. This is because in our application, users
can join groups but never vice versa. So, we can improve the query by specifying
the direction of the relationship, for example, MATCH (user:User) -[:JOINED*]->
(group:Group).

Improving Performance

[92]

The second issue is the variable length path (*) in the relationship pattern. The
variable length path mentioned here is useless in our application if the JOINED
relationship can involve only users and groups, and its direction can be only from
a user to a group. In fact, if you look at the preceding screenshot, you will see that
every path between a user and a group with a relationship of the JOINED type will
only have length of one. Therefore, we can safely remove the variable length path.
This is described in the following query:

MATCH (user:User) -[:JOINED]-> (group:Group)
WITH user, COUNT(group) as countG
RETURN avg(countG)

This is a huge improvement because the variable length path searches can be really
slow operations in huge datasets. This is because the Cypher engine must match the
path with a complex pattern. By running each query 2000 times and comparing the
time elapsed, you'll get a result as shown in the following output code (of course, the
exact time duration depends on the speed and the state of your machine):

Group count average - naive
duration: 90109.287146 ms
Group count average - optimized
duration: 63804.844214 ms

The latter query is almost 30 percent faster. This doesn't mean that you shouldn't
use variable length relationship patterns at all. However, while working with huge
datasets, you must use them with caution to avoid performance issues.

Generally speaking, when you face a performance issue, what you can do is use your
knowledge about the domain of your application and reduce the work for Cypher.
This is one reason why profiling your queries is so important, and it is the topic of
the next section.

Profiling queries
When we have users who complain of poor performance, the first step is profiling
our application. Nowadays, every programming language can be profiled to look for
the cause of poor performance. It's an important step because it lets us focus only on
the correct cause of the performance decay that the users are experiencing. The risk,
in fact, is to go on a wild goose chase, trying to optimize functions and queries that
don't affect the whole performance of the application in a relevant way. Above all,
we do not have an objective measure of the improvements that we get.

Chapter 4

[93]

Therefore, suppose that we use a profiler, that is specific to our programming
language (either Java, PHP, Ruby, or anything else), and we found that the code
executing the following query is very slow:

MATCH(n:User {email:'user300@learningcypher.com'})
RETURN n

We need a way to profile this query to understand the operation made by the Cypher
engine and its performance cost so that we can act to reduce the whole cost.

Profiling using the Java API
If we were working with Neo4j Embedded, we would have a code that looks like
the following:

import org.neo4j.cypher.javacompat.ExecutionEngine;
import org.neo4j.cypher.javacompat.ExecutionResult;
// ... more code
String query = "MATCH(n:User {email: {emailQuery}}) RETURN n";
Map<String,Object> params = new HashMap<>();
params.put("emailQuery", "user300@learningcypher.com");
ExecutionResult result = engine.execute(query, params);

Neo4j provides a way to evaluate the performance of a query. The ExecutionEngine
class has the profile method, which returns an ExecutionResult object with
profiling statistics. Invoke it in the same way you call the execute object. This is
described in the following code snippet:

ExecutionResult result = engine.profile(query, params);

The only difference is that we can now invoke the executionPlanDescription
method of the ExecutionResult object. This method is always present in the
ExecutionResult class but can be invoked only once the query is profiled, not when
the query is merely executed; calling this method after an execute call will cause an
exception to be thrown. Now, consider the following query:

result.dumpToString();
PlanDescription planDescription =
 result.executionPlanDescription();

We called the dumpToString function before accessing the execution plan because
it is available only after the result is enumerated. From Chapter 1, Querying Neo4j
Effectively with Pattern Matching, you will remember that the ExecutionResult
instance can be enumerated in three ways: via either the dumpToString or columnAs
functions or an iterator function. Whichever you use is fine, you just need to
enumerate the result before requesting the execution plan.

Improving Performance

[94]

Inside the execution plan description
The execution plan informs us about the operations made by the execution engine
to perform our query. We can dump the string representation of the plan. This is
described in the following code snippet:

System.out.println(res.executionPlanDescription().toString());

For the MATCH(n:User {email: {emailQuery}}) RETURN n query, we get the
following result:

Filter(pred="Property(n,email(0)) == {emailQuery}", _rows=1,
_db_hits=1000)
NodeByLabel(identifier="n", _db_hits=0, _rows=1000, label="User",
identifiers=["n"], producer="NodeByLabel")

What can we gather from this result? We have the following two steps:

•	 NodeByLabel: This step means that the Cypher engine selected all nodes
using a label; the label of course is User and the identifier to match is n. This
operation processed 1000 rows (all the users we have in our database). A
very important information is the number of database hits. This represents
the number of the potential disk accesses to perform this step; the greater
the number, the worse is the performance of the query.

•	 Filter: This step represents the filtering operation on the set that was
returned by the previous operation. This has 1000 database hits.

So, the problem in this query resides in the way we are filtering our dataset.

Profiling with Neo4j Shell
Neo4j Shell is a great tool to monitor and interact with a running Neo4j Server. It
can be used for profiling by performing the following steps:

1.	 In Windows, to start the shell, you have to launch the Neo4jShell.bat file
in the bin folder of the Installation folder, while in Linux, you have to
launch the neo4-shell bash script.

Neo4j Shell is not provided with the Windows installer of
the Neo4j Community. To get it, you have to download
the .zip binary from http://www.neo4j.org/
download/other_versions.

2.	 Once it is started and ready, Neo4j Shell shows a command prompt. It
supports many commands. You can get a list of them by typing help.

Chapter 4

[95]

3.	 Using the profile command, you can instruct Neo4j Shell to perform a
Cypher query, dump the result to the screen, and show the execution plan
of the query. The syntax is simple: profile <query>;. For example, typing
in the following command will give the result shown in the following
screenshot. Note that you have to put the semicolon after the Cypher query
to mark the end of the command:
profile MATCH(n{email:"user30@learningcypher.com"}) RETURN
n;

Profiling with the REST API
To obtain the execution plan and statistics, the POST request that is made to the
server must be changed. We need to enable the profile option by setting it to true
in the request. Our new POST request is /db/data/cypher?profile=true.

You can try it in any REST client or in Neo4j Browser. In the prompt, type in the
following code:

:POST /db/data/cypher?profile=true {
 "query": "MATCH(n:User {email: {emailQuery}}) RETURN n.userId",
 "params": {
 "emailQuery": "user300@learningcypher.com"
 }
}

The only difference between the preceding query and the query in the Profiling
using the Java API section is that in the preceding query, only the userId property
is returned. The intention is to reduce the length of the output and reduce the
bandwidth occupied by the response. The following JSON code is the result:

{
 "columns": ["n.userId"],
 "data": [[300]],
 "plan": {
 "name": "ColumnFilter",
 "args": {

Improving Performance

[96]

 "symKeys": ["n", "n.userId"],
 "returnItemNames": ["n.userId"],
 "_rows": 1,
 "_db_hits": 0
 },
 "rows": 1,
 "dbHits": 0,
 "children": [{
 "name": "Extract",
 "args": {
 "symKeys": ["n"],
 "exprKeys": ["n.userId"],
 "_rows": 1,
 "_db_hits": 1
 },
 "rows": 1,
 "dbHits": 1,
 "children": [{
 "name": "Filter",
 "args": {
 "pred": "Property(n,email(0)) == {emailQuery}",
 "_rows": 1,
 "_db_hits": 1000
 },
 "rows": 1,
 "dbHits": 1000,
 "children": [{
 "name": "NodeByLabel",
 "args": {
 "identifier": "n",
 "_db_hits": 0,
 "_rows": 1000,
 "label": "User",
 "identifiers": ["n"],
 "producer": "NodeByLabel"
 },
 "rows": 1000,
 "dbHits": 0,
 "children": []
 }]
 }]
 }]
 }
}

The first property (columns) contains the column names of the data returned as
result. The second property (data) contains the result of the query, while the third
property (plan) stores the execution plan.

Chapter 4

[97]

You may have noticed that here we have the same steps as in the Java API and two
more steps: Extract and ColumnFilter. They are related to the fact that we are
returning only one property, not the whole node. Anyway, they are not important
now because they generate a minimal number of database hits. The following
screenshot shows how we can invoke the REST API:

Invoking the REST API with Advanced REST client, a Chrome plugin

Indexes and constraints
Clearly, getting all nodes and filtering them is not the best way to find a node.
Every worthy database, just like Neo4j, allows you to create indexes in order
to find data quickly.

From Version 2.0, in Neo4j, there is a new and recommended type of index, that
is, a label index. These are the only indexes supported by Cypher. Therefore, let's
create an index for users based on the email property. We only need to execute the
following query:

CREATE INDEX ON :User(email)

Improving Performance

[98]

As this operation of creating an index is asynchronous, we must wait for the indexes
to be built and go online. A timeout of one minute for 1000 items should be enough
on any modern machine. This is described in the following query:

try (Transaction tx = graphDb.beginTx()) {
 Schema schema = graphDb.schema();
 schema.awaitIndexesOnline(1, TimeUnit.MINUTES);
}

Waiting for an index to go online can be done only with either the Java
API or Neo4j Shell at the moment. This means that if you are using
the REST API, you have to wait a reasonable interval of time while
the server builds the index. Clearly, if you create the index before
inserting any data, the index creation will be immediate and data will
be indexed automatically.

Once the index is online, we can run the profiler again and dump the plan. This time,
we get only one row, as shown in the following output code:

SchemaIndex(identifier="n", _db_hits=0, _rows=1, label="User",
query="{emailQuery}", identifiers=["n"], property="email",
producer="SchemaIndex")

Now, we have only one operation: SchemaIndex. It has no database hits and only
one row is processed instead of 1000 database hits. This is a big improvement!

Deleting an index from the database can be done with the DROP INDEX
command. The syntax is similar to the CREATE INDEX command, as
illustrated in the following query:

DROP INDEX ON :User(email)

SCAN hints
Now, let's see another example that allows us to introduce a new keyword. Suppose
that we have a certain number of inactive users in our social network; let's say 10. We
express inactive users with the Inactive label. The query to get all the inactive users
could be the following:

MATCH (n:User:Inactive)
RETURN n

Chapter 4

[99]

The execution plan of this query is shown in the following code:

Filter(pred="hasLabel(n:Inactive(2))", _rows=10, _db_hits=0)
NodeByLabel(identifier="n", _db_hits=0, _rows=1000, label="User",
identifiers=["n"], producer="NodeByLabel")

This means that the query is executed in two steps. They are as follows:

•	 In the first step, NodeByLabel, all nodes labeled User are read, which in this
case is 1000 rows

•	 The inactive users are then filtered from the set of nodes

Note that if we invert the labels, we would read only 10 rows. The USING SCAN
keyword allows you to specify the label to be scanned first. This is described in
the following query:

MATCH (n:User:Inactive)
USING SCAN u:Inactive
RETURN n

The execution plan now becomes the following:

Filter(pred="(hasLabel(n:User(1)) AND hasLabel(n:Inactive(2)))",
_rows=10, _db_hits=0)
NodeByLabel(identifier="n", _db_hits=0, _rows=10,
label="Inactive", identifiers=["n"], producer="NodeByLabel")

As expected, now we are reading only 10 rows instead of 1000 rows.

Index hints
When you write a query, Cypher will use indexes, if possible, in order to maximize
the performance of the query. Therefore, usually you won't need to specify whether
or not and to use an index and which one to use. Anyway, you can specify the
indexes to be used to make sure that the index is used in the query. Look at the
following example query:

MATCH(n:User)
USING INDEX n:User(email)
WHERE n.email = {emailQuery}
RETURN n.userId

Improving Performance

[100]

This query makes sure that the index on the email property is used for searching.
If the index is not present or cannot be used in the query as is, an error will be
returned. Note that the USING INDEX clause must be specified before the WHERE
clause that is used to filter users.

To sum up, you can put the USING INDEX instruction in the query when you want a
certain index to be used.

Constraints
Another interesting feature of Neo4j from Version 2.0 is the ability to create
a uniqueness constraint on a specific property in a certain label. Consider the
following query:

CREATE CONSTRAINT ON (user:User)
ASSERT user.userId IS UNIQUE

The preceding code ensures that there won't be two co-existing nodes that have the
label User and the same user ID. If you try to create a User node with the same user
ID of an existing node in the database, the database will generate an error, as shown
in the following screenshot:

Chapter 4

[101]

Of course, this feature is useful to guarantee the integrity of your data if your
application identifies users by their user ID. You might wonder why we are talking
about constraints in this chapter. The reason is because when you create a constraint,
Neo4j automatically creates an index on the constrained property. In fact, try to
create the index after you create the constraint with the following query:

CREATE INDEX ON :User(userId)

Now, you will get an error that informs you that the index already exists. The
following result is shown:

Already constrained CONSTRAINT ON (user:User) ASSERT user.userId
IS UNIQUE.

Clearly, you can delete the old index and create a new constraint instead.

All in all, if you have a property that must be unique in a labeled set of nodes, create
a uniqueness constraint. Besides having your data integrity guaranteed by the
database, you will gain a significant performance advantage due to the index that
is created along with the constraint.

Summary
In this chapter, the focus was on Cypher performance. In the first section, we learned
some best practices and several tips to avoid common performance pitfalls. Then, we
learned how to read the execution plan of a Cypher query. Finally, we introduced
a new feature of Neo4j 2.0: the schema. Although it is still work in progress, it can
be very useful in our applications, both to preserve the integrity of our data and to
assure good levels of performance.

At this point, you should know how to analyze an expensive query and how to
profile it to recognize the reason of the performance decay. You should be able
to change the query in order to improve its performance.

In the next chapter, we will learn, through a real-world application, how to migrate
a relational database and its related SQL queries to Neo4j and Cypher.

Migrating from SQL
For several reasons, relational databases are probably the most used storage
solutions by programmers and architects. There are a lot of stable tools for designing,
monitoring, and querying. Both the relational model and the SQL language that are
well-known among the programmers and are a part of most programming languages,
such as Java, Ruby, Scala, C# and so on, have stable drivers that allow you to connect
to common SQL databases. In the past, migrating from SQL could be a nightmare;
your tools would stop working, and your application (or the persistence layer at
least) would need to be completely rewritten. The whole reporting system could stop
working as well. Nowadays, thanks to Cypher and to projects such as neo4j-jdbc,
(http://www.neo4j.org/develop/tools/jdbc), the process is much simpler.

Migrating from a commercial SQL database such as SQL Server or Oracle to a graph
database could happen due to several reasons:

•	 The database can't scale up any more (at least with reasonable costs),
because it is bombed with write requests, and your RDBMS is blocked by
transactions, locks, triggers, and indexes

•	 Your model changes quickly in the life cycle of the application, and you
can't fit your logical model in the relational model without refactoring the
database schema at every change request you submit

•	 You spend a lot of time deploying and updating the database schema,
and you're looking for more flexibility but with the guarantee provided
by ACID transactions

http://www.neo4j.org/develop/tools/jdbc

Migrating from SQL

[104]

Irrespective of the reasons to migrate from SQL to Cypher, in this chapter, we will
learn through real-world examples how to migrate a database from a SQL database
to Neo4j in three steps, which are as follows:

•	 Migrating the schema from SQL to Neo4j
•	 Migrating the data from tables to Neo4j
•	 Migrating queries to let your application continue working, without making

too many changes to your code

In this chapter, for the sake of generality, it is assumed that the interaction with the
SQL database is made directly without any ORM or an abstracting layer. In Java,
this means JDBC.

Anyway, it is noteworthy that for JPA, there is a driver-enabling Neo4j for Java
EE (http://github.com/alexsmirnov/neo4j-connector), while for Ruby, the
project Neo4j.rb (https://github.com/andreasronge/neo4j) acts as compliant
ActiveModel wrapper for Neo4j.

If you are using an ORM supported by Neo4j, you won't need to
migrate CRUD operations, but you will still need to migrate the
schema, data, and complex queries. In fact, ORMs and Active
Records just reduce the frequency with which you use the
underlying query languages and, foremost, save you the effort
of mapping the database every time from the data model to the
object model; however, you must still know your data model.

Our example
In this chapter, as an example, we will migrate a minimal bibliography store.
A bibliographic store contains a huge set of publications that can be referenced.

Our example is composed of the following entities:

•	 Reference: This can be a book, journal or conference article
•	 Publisher: This can be a company, university, organization, or conference

from where the article is published.
•	 Author: This represents the author of a publication

Chapter 5

[105]

The following figure shows the E-R diagram of the database:

An in-depth explanation of the E-R diagram would be far beyond the
purpose of this book; here we can just say that the purpose of the E-R
diagram is to describe a model based on entities and relationships. It
shows the following features:

•	 Entities: These are the objects that have an independent existence
and can be identified uniquely. They are represented in a box.

•	 Attributes: These are the values whose existence depends on an
entity; an attribute does not make sense alone and must be related
to an entity. They are represented in a circle linked to an entity.
An attribute has a multiple cardinality if it can have multiple
values. In this case, the attribute is represented in a double circle,
like the Tags attribute in the previous diagram..

•	 Relations: This is the relation between entities. They are
represented in a diamond.

Migrating from SQL

[106]

This application is similar to a book store. The difference is that it can contain much
more data such as articles, websites, blog posts and so on. However, the most
important difference is that you can have huge number of relationships:

•	 A reference can be published by a publisher
•	 An author may have worked on many references
•	 A reference can be cited in many other references

It's important to understand the domain we are migrating because we will change
the persistence model extensively; however, the domain model will remain the
invariant part and will continue to be the basis of the new data layer. In the next
step, we will migrate the schema of this database to Neo4j.

Migrating the schema
The database schema in a relational database defines tables, attributes (columns),
primary and foreign keys, as well as indexes. To create these schema elements in
relational databases, you will need a Data Description Language (DDL).

In the code provided at the Packt Publishing website (http://www.
packtpub.com/), you will find the complete code to create and query
the database.
The queries shown in this chapter are slightly different from the ones
provided with the code. In fact, the complete code uses the Apache
Derby (a famous embedded SQL database) and, just as most relational
databases, has its own dialect. For generality, the SQL code shown in
the chapter, is SQL ANSI, which is the standard SQL.
Moreover, the SQL queries in this chapter are written in lowercase to
better differentiate them from the Cypher queries. As you know, both
SQL and Cypher are case insensitive.

For example, the following CREATE TABLE SQL query creates a table of the reference
entries in the database:

create table ReferenceEntries(
 ID int not null primary key,
 TITLE varchar(200) not null,
 ABSTRACTTEXT varchar(1000) not null,
 PUBLISHEDBY varchar(200)
 references PUBLISHERS(NAME)
 on delete set null
 on update restrict,
 PublishedYear int)

Chapter 5

[107]

The table has a primary key (ID), a non-nullable property (title), and the column
that contains the abstract. This table also references the publisher and the data of
this relation (the year). This relation is present here and not in a new table because
it's a one-to-one relation.

As you know, representing an E-R diagram in SQL is not straightforward. For
example, to represent the reference entity, we need another table, one that stores
the tags of a reference entry because SQL does not allow multivalue attributes:

create table EntryTags(
 ReferenceId int references ReferenceEntries(ID),
 Tag VARCHAR(50))

Note that this table does not need a primary key (though it could have one) because
it does not store entities.

The following diagram shows all tables used in our application to represent the
aforementioned E-R diagram:

ReferenceEntries

Title
AbstractText
PublishedBy
PublishedYear

PK ID

l1

FK1
Authors

Name
Surname
Organization

PK ID

ReferenceAuthors

ReferenceCitations

Publishers

ReferenceId
AuthorId
SortIndex

ReferenceId
CitationId

Name

FK1
FK2

FK1
FK2

PK

EntryTags

Tag
ReferenceIdFK1

Migrating from SQL

[108]

What do we need to migrate this schema? Even though Neo4j essentially is
considered schema-less, it is still better to consider designing the graph model
in advance by making the following important choices:

•	 Determining the type of labels and the number of labels to use in our
graph database

•	 Determining the properties that need unique assertions
•	 Determining the properties that need indexing
•	 Determining the relationships to consider between the nodes

I think that the best approach is to start from the E-R diagram of the database. If you
do not have an E-R diagram for your database, you could easily write one; however,
for this, you should know the domain of the application. In the next sections, we will
answer the questions that just arose.

Labels
Since entities are objects that are not defined by their attributes but have an identity
of their own, you must be able to identify them in the graph. For each entity in the
E-R diagram, create a label.

Therefore, in our example database to migrate, we have the following labels:

•	 Author
•	 Reference
•	 Publisher

Note that the entities in a E-R model don't match one-to-one with tables because
many relations (and surely many-to-many relations) are mapped in tables. So, it's
better to create the Neo4j model from a more real model (like the E-R model) rather
than from the table-based model, This prevents the risk of introducing complexity
and limitations of RDBMS in the Neo4j graph.

Just like when you translate from an E-R model into SQL, you can merge two entities
that have a one-to-one relationship in a single label. Of course, this choice depends
on the domain of your application and the usage of your database.

Chapter 5

[109]

To clarify, consider a diagram with two entities, Person and Personal Account, each
with their attributes and sharing a one-to-one relationship between them. This means
that creating or deleting a person will always result in creating or deleting a bank
account and vice versa:

Personal
Account

ID balance name surname

interest

accountOf(1,1) Person(1,1)

The E-R diagram of a one-to-one relationship

In this case, you could decide to put everything inside the Person label:

Migrating from SQL

[110]

On the other hand, you could put two labels in the database (Person and Personal
bank account) and a relationship between them. In this case, you can decide later
whether most of Person nodes will also have the PersonalAccount label because
even Neo4j allows self-loops:

Of course this approach, though being very flexible, would affect all your queries
and their performance because you will always need to visit a relationship to get
the account information of a person. In fact, you can't say that the data in these labels
are in the same node of a priori. The best approach depends on the usage of the
database—if your application reads the PersonalAccount data every time it accesses
the Person data, then they should be merged.

Indexes and constraints
Now, let's go to the second and third question about indexes and constraints. We
can ignore attributes now because Neo4j is schema-less. But, we can define the
uniqueness constraints. In the previous chapter, we had seen how these constraints
are useful to preserve database integrity, and improve performances of queries. For
example, for the reference label:

CREATE CONSTRAINT ON (r:Reference)
ASSERT r.id IS UNIQUE

The same constraint can be created for authors:

CREATE CONSTRAINT ON (r:Author)
ASSERT r.id IS UNIQUE

Chapter 5

[111]

Considering, our model publishers don't have an ID but are referenced by name,
we can create a constraint on the name:

CREATE CONSTRAINT ON (r:Publisher)
ASSERT r.name IS UNIQUE

Then, we can create an index on the properties most used for searching. We mustn't
create indexes for properties that have a constraint already defined, because a
constraint implies an index automatically as we learnt in the previous chapter.
But, for example, the title property will be surely used for searching:

CREATE INDEX ON :Reference(title)

Also, tags are likely to be used for searching:

CREATE INDEX ON :Reference(tags)

While, authors could be searched by surname:

CREATE INDEX ON :Author(surname)

Publishers nowadays don't need any index, because the name is already indexed by
the constraint we defined in the preceding code.

Note that by using SQL databases, you have to create one more
table to express multi-valued attributes such as the tags of the
reference. By using Neo4j, this is not necessary because you can
have array properties on nodes and relationships. Anyway, you
can still create a separate tag node for each tag and link it to the
reference through a relation if you should find that such a model
performs better in your situation. Yet, this choice would neither
be driven by data model nor by database limitations, but only by
performance or applicative considerations.

To summarize, the answer to the second and third questions are:

•	 Create a uniqueness constraint on properties that are the primary keys of
the SQL model

•	 Create an index on properties that are used for searching, and probably
have an index on the SQL database

Migrating from SQL

[112]

Relationships
The last question is which relationships to use. Since relationships in Neo4j are
complex structures with properties and types, you don't have to create anything like
relation tables as we did in SQL to describe many-to-many relations or relations with
attributes. The consequence is that relationships between entities of the E-R model
can be expressed directly as Neo4j relationships in the graph.

In our application, we have these relationships:

•	 AuthoredBy
•	 Cites
•	 PublishedBy

In my opinion, the resulting Neo4j database has a far more natural look than its
SQL ancestor, especially if we compare them to the E-R diagram. The reason is that
this domain fits the graph model more naturally than the table model. In this case,
querying and data manipulation also looks easier, it will be clearer in the next sections
of this chapter. The old motto "use the right tool for the job" is still valid. In fact, SQL is
still a very good choice for data that doesn't have too many multiple entity relations.

Migrating the data
To migrate the data, you have to convert SQL data to graph data. This is a
long-lasting activity of the process and probably awkward as well. Because you
have to migrate data from SQL, you must read data using ad hoc SQL queries
and write data using Cypher queries.

Note that another strategy would be importing data from a CSV file, with the LOAD
CSV FROM statement, which is available from Cypher 2.1 at http://docs.neo4j.org/
chunked/milestone/import-importing-data-from-a-single-csv-file.html.

Entities
Because we have to create a node with its attributes, we have to read data using a
SQL statement that returns all the data we need to create a node. Of course, you can
migrate an entity in more steps, but we would usually prefer to perform only one
CREATE query for performance reasons because otherwise we would have to migrate
a huge database.

http://docs.neo4j.org/chunked/milestone/import-importing-data-from-a-single-csv-file.html
http://docs.neo4j.org/chunked/milestone/import-importing-data-from-a-single-csv-file.html

Chapter 5

[113]

1.	 For example, let's start by migrating the Authors entity. This entity is easy
to deal with; in fact, all attributes are only in one table:
 select ID, NAME, SURNAME
 from AUTHORS

This SQL query returns all the Authors entities in the database. Now, we have
to iterate on each returned row to create a new node per row:
CREATE (:Author { id: {id},
 name: {name},
 surname: {surname} })

Clearly, this is the perfect situation to use parameters. In fact, we will run a
lot of similar queries and take advantage of the cached execution plans as
this will give a boost to the migration, as we learned in the previous chapter.

2.	 We can deal with the Publisher entity in the same way. Let's start reading
from the table:
select NAME
 from Publishers

Then, we can create a node for each returned row using the same parameters:

CREATE (:Publisher { name: {name} })

3.	 Assuming that we have chosen to store tags in an array property, the first
problem is when we have to create the Reference entities. In the SQL
database, in fact, the entity is split into two tables, so the migration must
be done in two steps: creating the Reference nodes and then setting the tag
property on the node.

For the first step, we need to load the references from the database:
select ID, TITLE, ABSTRACTTEXT
 from REFERENCEENTRIES

Then we need to create the nodes:
CREATE (:Reference { id: {id},
 title: {title},
 abstractText: {abstractText} })

Migrating from SQL

[114]

For the second step, we need to query the SQL database again. For each
reference found in the first step, we must query the database to get the
tags of that reference:
select TAG
 from EntryTags
 where ReferenceId = ?

The ID of the reference is passed as the SQL parameter. Once we have got the
tags of a reference, we have to update the node, setting the tags property,
which is shown in the following code:
MATCH (r:Reference{id: {id}})
 SET r.tags = {tags}

Of course, you could also build a single command to create the node and set
its tags at one time instead of performing two Cypher queries:
 CREATE (:Reference{ id: {id},
 title: {title},
 abstractText: {abstractText},
 tags: {tags} })

Relationships
Well, now we have migrated all the entities, it's time to migrate relationships.
The following are the steps:

1.	 The easiest relation to migrate is the one between cited references. We must
look into the ReferenceCitations table:
select CitationId
 from ReferenceCitations
 where ReferenceId = ?

By iterating the result set, we have to create a relationship for every row:
MATCH (r:Reference{id: {idRef}}),
 (c:Reference{id: {idCit}})
CREATE (r)-[:Cites]->(c)

This query will find the involved nodes and will create the relationship
between them.

2.	 Migrating the relation between the Reference entity and the Publisher
entity is easy as well. We can read for each reference the publisher
information as follows:
select ID, PublishedYear, PublishedBy
from ReferenceEntries

Chapter 5

[115]

Then, we can store this information as a relationship in the right node:
 MATCH (r:Reference{id: {id}})
 MERGE (p:Publisher{name: {pubId}})
CREATE (r)-[:PublishedBy {year: {publishedYear}}]->(p)

The preceding query only works if a Reference node is found with the
given ID. If so, it finds the publisher with the given name or creates a name,
if the Reference node is not found. Finally, it creates a relationship between
them. An important thing you can note is that unlike SQL databases, Neo4j
cannot do anything to guarantee that you will have only one publisher
per reference. This is a responsibility that now rests at the application
level. What you can do is delete all publishers related to a reference before
creating any relationship with the following code:
MATCH (:Reference{id: {id}}) -[r:PublishedBy]->()
DELETE r

You can put this query and the previous one in a transaction to ensure that
you do not leave the database in a strange state (a reference without any
publisher). This can also be achieved in a single query:
MATCH (a:Reference { id: {id} })
OPTIONAL MATCH (a)-[r:PublishedBy]->()
WITH a, r
MERGE (p:Publisher { name: {pubId} })
CREATE (a)-[:PublishedBy { year: {publishedYear} }]->(p)
DELETE r

The preceding query will find the reference with the given ID and,
optionally, the existing PublishedBy relation. Then, it will create the new
relation and finally it will delete the old relation, if it exists.

3.	 The approach to migrate the relation between the Reference and Authors
entity is similar. First of all, we must read Authors for each Reference entity:

select ID, NAME, SURNAME
 from AUTHORS
 join ReferenceAuthors
 on ReferenceAuthors.AuthorId = Authors.Id
 where ReferenceId = ?
 order by SortOrder

Migrating from SQL

[116]

Now, we can create the relationships:
MATCH (r:Reference{id: {id}})
MERGE (a:Author {id: {authorId},
 name: {name},
 surname: {surname} })
CREATE (r)-[:AuthoredBy{sortIndex: {sortIndex}}]->(a)

This query is similar to the query used to link a publisher to a reference; it
creates the Authors entity if it is not present in the database. Note that the
sortIndex value is set in the relationship, and it is deduced since we ordered
the SQL query by the SortOrder value.

Migrating queries
Since Neo4j supports ACID transactions, you won't need to change the infrastructure
of your application to simulate a transaction (this will be required if we are migrating
from SQL to a non-transactional database), but you will still need to rewrite
your queries.

CRUD
First and foremost, we must migrate the Create, Read, Update, and Delete (CRUD
) queries. We already did this step in the previous section, but we overlooked a
point—how do we migrate auto-incremented IDs (identities) from SQL to Neo4j? You
could use the node ID generated and autoincremented by Neo4j. Yet, as we noticed
in Chapter 1, Querying Neo4j Effectively with Pattern Matching, Neo4j could recompute
the node IDs, and you should not trust them. If you really need an auto-incremented
reliable ID, you will have to simulate the creation of an auto-incremented ID. Suppose
we want to create an Author entity, and we want the application to set the next
available ID. For this, we can write the following code:

CREATE (a:Author { name: {name},
 surname: {surname} })
SET a.id = ID(a)
RETURN a.id

The preceding query is formed in two steps: in the first step, it creates the Author
entity with the name and surname, then in the second, it sets the id property to the
Neo4j internal ID. The internal ID is so fixed once for all in the id property, and you
can use it externally from Neo4j in your application code.

Note that the uniqueness of the id property is also guaranteed by the constraint we
already created in the previous section.

Chapter 5

[117]

To summarize from the previous section, you will gather that:

•	 SQL insert queries become CREATE or MATCH ... SET queries in Cypher while
working with multivalue attributes

•	 SQL update queries become MATCH ... SET queries in Cypher

We miss the delete SQL clause. For example, let's delete one Author entity from
the database:

delete from Authors
where ID = ?

Of course, this will generate a constraint violation error if the Author entity is linked
to a reference, and the relation is assured by a foreign key constraint, as usually is
the case. The effect is the same if we delete the Author entity with Cypher, and the
Author entity is related to a Reference node:

MATCH (a:Author { id: {id}})
DELETE a

In fact, in Neo4j, all nodes have an implicit constraint—a node can't be deleted if it is
related to any other node.

You have to perform two queries in SQL to delete the Author entity with its
relationships, while with Cypher, one query with OPTIONAL MATCH is enough:

MATCH (a:Author { id: {id}})
OPTIONAL MATCH (a)-[r]-()
DELETE a, r

We already saw this type of query in Chapter 3, Manipulating the Database.

Searching queries
To be suitable for a useful application, besides CRUD operations, the database
should support the following queries:

•	 The list of references found by titles
•	 The list of all reference entries with a given tag

Consider the first item, that is, the query to find a reference entry, when its title is
given. In SQL, this will be:

select * from REFERENCEENTRIES
where title like '%Neo4j%'

Migrating from SQL

[118]

It looks for references that have a title with the word Neo4j in it.

The LIKE clause of SQL can be easily translated in Cypher using regular expressions:
MATCH (a:Reference)
WHERE a.title =~ '.*Neo4j.*'
RETURN a

If the SQL database is not case sensitive (for example, SQL server), the WHERE clause
must be changed to WHERE a.title =~ '(?i).*Neo4j.*'. For more details about
regular expressions supported by Cypher, please refer to Chapter 2, Filter, Aggregate,
and Combine Results.

A regular expressions search is still not supported by indexes. Although
this limitation will be removed in a next release, at the moment, every
time you perform a text search based on a regular expression, Cypher
will run through the whole dataset to collect items that fulfill the filter
even though the property is indexed.

Now, let's take a look at the following example that has the list of references
with a certain tag. In SQL, the query would need to make a join and look into
the EntryTags tables:

select ReferenceEntries.*
 from EntryTags
 join ReferenceEntries
 on ReferenceEntries.ID = EntryTags.ReferenceId
 where Tag = 'Neo4j'

The query is shorter and more readable in Cypher:

MATCH (r:Reference)
WHERE ANY (tag IN r.tags WHERE tag = 'Neo4j')
RETURN r

This query will search the tag Neo4j in the array property tags of references. The
Cypher query is simpler because in SQL, we had to introduce a table to store a
multivalue attribute and this is not needed in Neo4j.

Grouping queries
A minimal set of analysis queries needed for our application is as follows:

•	 The list of most-cited references that have a certain tag
•	 The list of most-cited authors, each with a number of citations

Chapter 5

[119]

The first query is complex in SQL. It is given as follows:

select Id, CNT
 from (
select ReferenceEntries.Id,
 Count(ReferenceCitations.ReferenceId) as CNT
 from EntryTags
 join ReferenceEntries
 on ReferenceEntries.ID = EntryTags.ReferenceId
 join ReferenceCitations
 on ReferenceCitations.CitationId = ReferenceEntries.Id
 where Tag = 'Neo4j'
 group by ReferenceEntries.Id
) refQ
 order by refQ.CNT desc

The preceding SQL query needs to be split into two parts. It needs an inner part
to select the references and count the number of citations it has in other references.
Note that this part needs two joins: to tags and to citations. Then, the outer
query will sort the references in a descending order to show the most cited at the
top of the list. This split is required only because an orderby-clause together with
the groupby-clause is not supported by all RDBMS.

The simpler the model, the simpler the queries. In fact, the same query in Cypher
is far shorter and easier to read. It is given as follows:

MATCH (r:Reference) <-[cit:Cites]- (:Reference)
WHERE ANY (tag IN r.tags WHERE tag = 'Neo4j')
RETURN r, COUNT(cit) as cnt
ORDER BY cnt DESC

This query matches the Reference-Citations relationship, filtering nodes by tag,
and returns the starting nodes and the count of their citations in other documents.
Finally, the dataset is sorted by this number.

The last query to migrate is the list of the most-cited authors entity, each with its
number of cited articles. This is the SQL query, where the differences with the
previous one are highlighted:

select AuthorId, CNT
 from (
select ReferenceAuthors.AuthorId,
 Count(ReferenceCitations.ReferenceId) as CNT
 from EntryTags
 join ReferenceEntries

Migrating from SQL

[120]

 on ReferenceEntries.ID = EntryTags.ReferenceId
 join ReferenceCitations
 on ReferenceCitations.CitationId = ReferenceEntries.Id
 join ReferenceAuthors
 on ReferenceAuthors.ReferenceId = ReferenceEntries.Id
group by ReferenceAuthors.AuthorId
) refQ
 order by refQ.CNT desc

The most-cited authors entity has one more join to the relation table of authors,
but the grouping clause is different. The Cypher query is also similar to the
previous one, which is as follows:

MATCH (a:Author)<-[aut:AuthoredBy]-(r:Reference)<-[cit:Cites]-
(:Reference),
RETURN a, COUNT(cit) as cnt
ORDER BY cnt DESC

The main difference (highlighted in the code) is that we added one more MATCH
expression to get the Authors entity of each reference.

From this example, we can generalize that in the SQL query for each JOIN with an
entity, the Cypher query will have a MATCH expression.

Summary
In this final chapter, we learned a practical approach to migrate a database from
SQL to Neo4j.

We started migrating the database schema. We saw that the migration will be
straightforward if we think more in terms of entities and relations (E-R)than in
terms of tables and columns. In other words, if we come back to the relational
model, the entities will become nodes, while the relations will become graph
relationships. The attributes will become properties.

Then, we migrated the data. We started migrating entities with their attributes,
and then we migrated the relations. During this task, we learned how to migrate
CRUD queries from SQL to Cypher.

Finally, we migrated some complex queries used in a real-world application.
We learned how to migrate searching queries (in place of LIKE we have regular
expressions in Cypher) and grouping queries.

Chapter 5

[121]

This was the last chapter. Now, you should be able to use Cypher with any
real-world application you want to develop, from design to implementation
to tuning performances.

When you need a short and quick reference to all the Cypher clauses and patterns you
learned in this book, I suggest you read the Neo4j Cypher refcard at (http://docs.
neo4j.org/refcard/2.0/). In additions to this, the Appendix contains a detailed list
of all the operators and almost all functions supported by Cypher.

Operators and Functions
This appendix is a brief introduction to the operators and functions supported
by Cypher 2.0.1. For each operator or function, we will see a brief description,
an example, and some usage notes.

The queries are performed on an example database of books that have labels and
relationships described in Chapter 2, Filter, Aggregate, and Combine Results. Sometimes,
I used the HR management tool database (from Chapter 1, Querying Neo4j Effectively
with Pattern Matching) when it would be more appropriate.

To try out the code, you can set up the database with the scripts, which you can
download from the Packt Publishing website (http://www.packtpub.com/support).

Operators
The operators are grouped by category. Most of them return a null value if any
operand has a null value. Anyway, there are some exceptions. So, for each operator,
the behavior in case of a null value operand is specified.

Comparison operators
Comparison operators are binary operators that return a Boolean or a null value as
results. They are mostly used in the WHERE clause (see Chapter 2, Filter, Aggregate, and
Combine Results, for details) to filter data according to a condition, although they can
be used in the RETURN clause as well.

In Cypher, comparison operators can be grouped in two classes: ordering operators
and equality operators.

Operators and Functions

[124]

Ordering operators
Ordering operators are used to compare values (usually property values or literals).
They are as follows:

Operator Description
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

Let's see an example using one of these operators. This query looks for all books
published in 2012 or later. If a PublishedBy relationship doesn't have the year
property set, it will be discarded. The query is as follows:

MATCH (a:Book)-[r:PublishedBy]-(b:Publisher)
WHERE r.year >= 2012
RETURN a,r,b

Note the following outcomes:

•	 Only numbers and string values are supported.
•	 Comparing any value to a null value will result in a null value. For

example, all of the following expressions will give a null value:
°° 1 < NULL

°° NULL < "String"

°° NULL < NULL

•	 Comparing nodes or relationships is an illegal operation. It will result in a
syntax error.

•	 Comparing numbers of different types (a double value with an integer value
or a long value with an integer value) is supported; however, numbers will
be converted before being compared.

•	 Comparing arrays is not supported.
•	 Comparing numbers to string values will generate a runtime error. If you

don't know whether a property is a number in the dataset and if a string
comparison is enough, you can resort to the STR function (this is covered
later in this appendix).

Appendix

[125]

Equality operators
Equality operators are used to test the equality of two values. They return a Boolean
value or a null value. They are as follows:

•	 = returns true if the two values are equal
•	 <> returns true if the two values are not equal

The following query returns the books that have the specified title:

MATCH (a:Book)
WHERE a.title = "Learning Cypher"
RETURN a

Note the following:

•	 Comparing any value to a null value will result in a null value. To test null
values, use the NULL equality operators mentioned in the next section. For
example, all of the following expressions will give a null value as the result:

°° 230.0 = NULL

°° NULL = "String"

°° NULL = NULL

•	 Comparing values of properties of different types is supported and will
always return false, except for the numbers that will be converted before
the comparison.

Because of this important difference with ordering operators,
changing from an equality operator to a sorting operator
and vice versa should be done carefully in order to avoid
unexpected results.

•	 String comparison is case sensitive.
•	 Nodes, relationships, and paths can be compared for equality as well, as

explained in the following list:
°° Two nodes are equal only if they are the same node
°° Two relationships are equal only if they are the same relationship
°° Two paths are equal only if they contain both the same nodes and the

same relationships

•	 Comparing either a node, a relationship, or a path to a property value
(number or string) will generate a syntax error.

Operators and Functions

[126]

NULL equality operators
The operators IS NULL and IS NOT NULL are used to check whether a value is a null
value. These operators always return a Boolean value. They are mostly used to check
whether or not a property is set in a node or in a relationship. The following query
returns all books that have a title property:

MATCH (b:Book)
WHERE b.title IS NOT NULL
RETURN b

All values can be tested; not only node properties and relationship properties but
also nodes, relationships, and paths.

Mathematical operators
Mathematical operators work with number values. They are binary operators except
the unary minus (-). The binary operators are +, -, *, /, %, and ^. Consider the
following query:

MATCH (a)-[r:PublishedBy]-(b)
WHERE r.year % 2 = 1
RETURN -2^ 1.0 * COUNT(DISTINCT a) / COUNT(DISTINCT b)

This query performs an example mathematical operation on the number of distinct
books per publisher.

Note the following:

•	 Every operator will return a null value if any operand is a NULL value. Refer
to the COALESCE function, described in a later section, to deal with the default
values in case of a null value.

•	 Every operator will throw an exception if any operand is not a number,
except for the + operator. This also holds true for strings and collections,
but with a different meaning (see the next section).

The concatenation operator
Both strings and collections have the + operator. It is used to concatenate items to
strings and collections. Consider the following query:

RETURN "Hello" + " Cypher " + 2

Appendix

[127]

This simple query just concatenates some strings. The number 2 is converted to
string just before being concatenated. Now consider the following query:

MATCH (aa:Book)
RETURN aa.tags + ["book","found"]

This query, for each book in the database, returns a collection computed by
concatenating the book's tags with a fixed collection of tags.

Note the following:

•	 This operator returns a null value if any operand is a null value.
•	 When concatenating strings, the + operator will try to convert the operand to

string, except when an operand is a collection. In this case, the result will be
in a new collection with the string concatenated.

The IN operator
The IN predicate is used to check whether a given value is in a collection of items.
It returns either a Boolean value or a null value if any operand has a null value.
Consider the following query:

MATCH (aa:Book)
WHERE 'drama' IN (aa.tags)
RETURN aa.title

This query returns all books that have the word drama in their tags.

Regular expressions
To check whether a string value matches a regular expression, use the =~ operator.
This operator is explained in detail in Chapter 2, Filter, Aggregate, and Combine Results.
As a reminder, following is an example query that looks for books that contain the
word tale:

MATCH (aa:Book)
WHERE aa.title =~ "(?i).*tale.*"
RETURN aa

Functions
Functions are grouped by usage. Except for the COALESCE function, all of these
functions return a null value if any argument has a null value.

Operators and Functions

[128]

COALESCE
The COALESCE function takes any number of parameters (at least one) and returns
the first non-null value. It returns a null value only in case all the parameters have
null values.

Usually, this function is used every time you have to deal with null values and want
a fallback value in case of a null value. Consider the following query:

MATCH (aa:Book)
WHERE 'novel' IN COALESCE(aa.tags, ['novel'])
RETURN aa.title

This query returns all books that have novel in their tags, but will return all the books
that do not have no tags set as well. In fact, if a book doesn't have the tags property,
the COALESCE function will return the collection ['novel']. Therefore, the IN
predicate will always succeed.

TIMESTAMP
The TIMESTAMP function takes no arguments and returns the number of milliseconds
passed from the midnight of January 1, 1970. This function is used when you create
or update a node to mark the change in the date. It is especially useful to create
versions. Consider the following query:

CREATE (a:Book {title: "Learning Cypher", version: TIMESTAMP() })

This query creates a book in the database setting the version number as a timestamp.
Another query could check whether the version of the book has not changed before
updating, and fail if a new version of the book is in the database (an optimistic lock).

ID
The ID function returns the identification number, managed by Neo4j, of a node or
a relationship. Consider the following query:

MATCH (a)
RETURN a
ORDER BY ID(a)
LIMIT 1

The preceding query returns the node with the minimum ID value. In fact, it sorts
the dataset by the ID, then limits the results to one row.

Appendix

[129]

Working with nodes
The following functions are specific to nodes. They are commonly used when you
work with paths or collections of nodes and you want to inspect nodes and labels.

NODES
The NODES function returns a collection of all the nodes in a path. It is used when
you want all the nodes found traversing a path between two nodes. Consider the
following query:

MATCH p = (:Employee {surname: "Davies"})-[:REPORTS_TO*]-
 (:Employee {surname: "Taylor"})
RETURN NODES(p)

The preceding query first matches all the paths between two employees, visiting all
the relations of the REPORTS_TO type and then returns all the nodes visited. In other
words, it returns all the employees found in a hierarchy between two employees.

Note that, being a collection, the return value can be further inspected with the
collection functions, which is explained later.

LABELS
To get all the labels assigned to a node, use the LABELS function. It returns a
collection of strings. Consider the following query:

MATCH (e {surname: "Davies"})
RETURN LABELS(e)

This query returns all the labels assigned to the nodes that have the surname
property set to Davies. This function is useful when your database has nodes
that have multiple labels.

Working with paths and relationships
When you work with paths or with variable length relationships, you may need to
inspect the relationships contained. The following functions are used for this purpose:

•	 TYPE

•	 ENDNODE and STARTNODE
•	 SHORTESTPATH and ALLSHORTESTPATHS
•	 RELATIONSHIPS

Operators and Functions

[130]

TYPE
The string returned by this function is the type of the relationship passed. Consider
the following query:

MATCH ()-[r]-()
RETURN TYPE(r), COUNT(*)

This query computes the number of relationships grouped by their type.

ENDNODE and STARTNODE
The following functions inspect the nodes at the endpoints of a relationship:

•	 STARTNODE: This function returns the start node of the relationship passed as
an argument

•	 ENDNODE: This function returns the end node of the relationship passed as
an argument

These functions are useful when you haven't specified the direction of the
relationship in the MATCH clause of a query, but you want all the related nodes and
wish to know the direction of the relationship.

For example, in the HR management tool, the following query can be used:

MATCH (e:Employee {surname: "Davies"})-[r:REPORTS_TO]-(a:Employee)
RETURN a, ENDNODE(r)

This query looks for all the neighborhood nodes of the node with the surname
property Davies (depth of one) along the relationship of REPORTS_TO. It returns the
neighborhood and the employee who is at the end node of the relationship. In other
words, it says who the boss is.

SHORTESTPATH and ALLSHORTESTPATHS
The SHORTESTPATH and ALLSHORTESTPATHS functions search the shortest path
among a set of paths. The difference is that while the SHORTESTPATH function returns
at most one only path, the ALLSHORTESTPATHS function returns all the paths with the
smallest depth in a collection of paths. Consider the following query:

MATCH p=SHORTESTPATH((a{surname:'Davies'})--(b{surname:'Doe'}))
RETURN p

Appendix

[131]

The preceding query returns the shortest path between two employee nodes (Davies
and Doe). Now, consider the following query:

MATCH p=SHORTESTPATH((a {surname:'Davies'})--(b))
RETURN p
ORDER BY LENGTH(p) DESC
LIMIT 1

Instead, the preceding query returns the path to the farthest node from a given
employee node (Davies). In fact, once stated that the distance from a node is the
shortest path from it, this query first computes all distances from all nodes, then
selects the longest distance.

RELATIONSHIPS
The RELATIONSHIPS function returns the collection of the relationships contained in
a path. It is the equivalent of the NODES function. Consider the following query:

MATCH p = (a{surname:'Davies'})-[*..4]-(b{surname:'Taylor'})
RETURN RELATIONSHIPS(p)

This example takes all the paths with maximum depth of four between two nodes,
then for each path, it returns the relationships visited.

Working with collections
The following functions are used to manipulate or inspect a collection:

•	 HEAD

•	 TAIL

•	 LAST

HEAD, TAIL, and LAST
The HEAD, TAIL, and LAST functions are used to work with collections as if they were
lists. The HEAD function returns the first item of the collection, the TAIL function returns
the rest of the list, while the LAST function returns the last item of the collection. Note
that when you add the head of a collection to its tail (HEAD(c) + TAIL(c)), you get the
full collection again.

Operators and Functions

[132]

If the collection is empty, the HEAD and the LAST functions will return a null
value, while the TAIL function will return an empty collection. Consider the
following query:

MATCH (a:Book)
RETURN HEAD(a.tags)
LIMIT 30

This query returns the first tag of the first 30 books found in the database.

LENGTH
The LENGTH function returns the size of a collection of any type or of a string.
Consider the following query:

MATCH (a:Book)
WHERE LENGTH(a.tags) >= 2
RETURN a

This example query returns all the books that have at least two tags. Note that the
books without the tags property will be ignored because LENGTH(NULL) is a null
value. Now, consider the following query:

MATCH (a:Book)
WHERE LENGTH(a.title) < 7
RETURN a

This example, instead, shows the function in action with a string. It returns all the
books with a title shorter than seven characters in length.

EXTRACT
The EXTRACT function is equivalent to the map function in the MapReduce paradigm.
A similar function is included in most programming languages nowadays; for
example, the map function in Scala, Java 8, JavaScript, and Ruby, the Select function
in C#, and the list comprehensions in Python (although the map function is provided
as well). It takes two parameters: a collection and an expression, which can be
evaluated on each item of the collection. It returns a new collection, which has the
values returned by the expression applied on every item of the collection. The syntax
is similar to the syntax of the collection predicates (refer to Chapter 2, Filter, Aggregate,
and Combine Results). Consider the following query:

RETURN EXTRACT(i IN [1,2,3] | i*2)

Appendix

[133]

The result of this query is the collection [2,4,6] because it applies the expression
i*2 on every item i of the collection [1,2,3]. Now, consider the following query:

MATCH (a:Book)
RETURN EXTRACT(tag in a.tags | "Tag: " + tag)
LIMIT 30

For every book in the first 30 books found in the database, this query returns a list of
strings with the prefix Tag:.

This function is mostly used with collections of nodes or relationships. Consider the
following query:

MATCH p=(e:Employee {surname: "Davies"})-[r:REPORTS_TO*]
 -(a:Employee)
RETURN EXTRACT(node IN NODES(p) | LABELS(node))

The preceding query, for each node found in a path, extracts the labels of that node.

FILTER
The FILTER function returns a collection created by adding values that satisfy a
certain condition from a source collection. It is similar to the WHERE clause, but it
works on collections. Consider the following query:

RETURN FILTER (x IN [1,2,3,4] WHERE x%2 = 0)

This simple query returns the even values from a list of integers. Yet, this query is
mostly used while working with paths too. Now, consider the following query:

MATCH p=(e)-[r]->(a)
RETURN FILTER (node IN NODES(p) WHERE node:Book)

This query, for each path that matches the pattern, returns the list of nodes found in
the path, but filters only the nodes with the label Book.

REDUCE
The REDUCE function has the same purpose as the Reduce function of the well-known
MapReduce paradigm. Nowadays, almost all languages have this function, even if
sometimes with different names; the reduce function in Java 8 (the Stream API) and
JavaScript, the collect function in Ruby and Python, the Aggregate function in C#,
and the foldLeft function in Scala. It is used to aggregate the items of a collection,
scanning every item and accumulating them according to a given expression. For
example, the following query returns the sum of all items of a collection:

RETURN REDUCE (total = 0, i in [1,2,3] | total + i)

Operators and Functions

[134]

The variable total is the accumulator initialized to 0. Then for each item in the
collection, this variable is increased by the value of the item. Of course, you can
apply the same pattern to strings. Consider the following query:

RETURN REDUCE (text = "", i in ["Hello ","world","!"] | text + i)

This query concatenates the strings in the collections and returns Hello world!.
Let's see a more realistic usage. Consider the following query:

MATCH p=(e:Book)-[r*]-(a)
WITH REDUCE (text = "",
 node IN NODES(p) |
 text + COALESCE(node.title, " * ") + "-") as TEXT
RETURN LEFT(text, LENGTH(text)-1)

This query, for each path found, returns a collection with the titles of the books
found separated by a hyphen. In case a title is not found, thanks to the COALESCE
function, an asterisk is returned instead of a null value. The last line of the query is
needed to remove the last dash from the string.

RANGE
The RANGE function is very simple; it returns a collection of integers contained in
a numerical range, which is computed with the help of a given step. Consider the
following query:

RETURN RANGE (1, 10, 2)

The preceding query returns [1,3,5,7,9]. The third parameter in the function
is the step parameter, and is optional. By default, it is 1. Now, consider the
following query:

RETURN RANGE (1, 5)

The preceding query returns [1,2,3,4,5] as the ranges are inclusive. Note that if
you try to pass the step parameter as 0, the query will fail with an error.

Working with strings
Cypher provides a set of functions to work with strings. They are the typical string
functions provided by most SQL databases. They are as follows:

•	 SUBSTRING, LEFT, and RIGHT
•	 STR

•	 REPLACE

Appendix

[135]

•	 Trimming functions
•	 LOWER and UPPER

SUBSTRING, LEFT, and RIGHT
The SUBSTRING, LEFT, and RIGHT functions are used when you want the substring
of a given string. The following are their uses:

•	 SUBSTRING(source, index, length): This is a general function. It returns
a string obtained by taking the characters of a given source string, from a
given index, for a given length. If the length is not specified, it returns the
string until the end.

•	 LEFT(source, length): This function returns a string of a given length,
taking the first characters of the source string.

•	 RIGHT(source, length): This function returns a string of a given length,
taking the last characters of the source string.

All of these functions will cause an exception if any index is negative, but won't
cause any exception if the index is greater than the length of the string. In this case,
they will just return an empty string.

The following query cuts the book where the titles are longer than four characters
in length and append an ellipsis symbol at the end:

MATCH (a:Book)
RETURN LEFT(a.title, 4) + "..."

STR
The STR function converts its unique argument to a string. It works on numbers,
nodes, relationships, and paths. Consider the following query:

MATCH p=(a:Book{title:"Ficciones"})-[*]-()
RETURN STR(p)

This query returns the string representation of the path found with the MATCH clause.
The result obtained is follows:

[Node[1027]{title:"Ficciones"},:AuthorOf[277]{},Node[1026]{name:"Jorge
Luis Borges"}]

Conversion to integer values or to float values is not yet
supported in Version 2.0.1, but two new functions (toInt and
toFloat) were released along with the Version 2.0.2 to allow
this conversion.

Operators and Functions

[136]

REPLACE
The REPLACE function returns a string obtained by replacing all occurrences of a given
string inside another string with a specified string. Consider the following query:

RETURN REPLACE("Cypher 1.9", "1.9", "2.0")

The preceding query will replace the occurrences of 1.9 in Cypher 1.9 with 2.0,
returning Cypher 2.0. The REPLACE function can be used to remove all occurrences
of a string as well. Consider the following query:

MATCH (a:Book)
RETURN REPLACE(a.title, "The ", "")

This query will return all the book titles after removing the The string.

Trimming functions
Cypher provides three trimming functions. They are as follows:

•	 LTRIM: This function is used to remove whitespace characters from a given
string from the left

•	 RTRIM: This function is used to trim a given string from the right
•	 TRIM: This function is used to trim a given string from both the left and

the right

These three functions accept one string parameter and return the trimmed value.
Consider the following query:

MATCH (a:Book)
RETURN TRIM(a.title)

The rows returned by this query are the book titles in the database without
whitespaces at the beginning or at the end of the string.

LOWER and UPPER
The LOWER function returns the lowercase version of a given string, while the UPPER
function returns the uppercase version. They are often used to make a case-insensitive
string comparison without using regular expressions. Consider the following query:

MATCH (a:Book)
WHERE UPPER(a.title) = UPPER("Learning Cypher")
RETURN a

The preceding query returns the book node that has the title Learning Cypher
without caring for the case of the test string.

Appendix

[137]

Aggregation functions
We learned how to aggregate datasets and explored some aggregation functions in
detail in Chapter 2, Filter, Aggregate, and Combine Results. Here, we summarize the
aggregation functions and their usage. You can also find an extensive guide on the
usage of groups and functions in this chapter.

COUNT
The COUNT function is invoked with an argument, which can be an identifier or the *
symbol. If this symbol is specified, the function will count all the rows in the dataset;
otherwise, it will count the number of non-null values of the identifier. Consider the
following query:

MATCH (aa: Person)
RETURN COUNT(a.surname)

This query returns the number of nodes with the label Person that have the property
surname set. The COUNT function can be invoked with the DISTINCT clause to let it
count only distinct values, as shown in the following query:

MATCH (a: Person)
RETURN COUNT(DISTINCT aa.surname)

SUM
To sum the numerical values in a dataset, you can use the SUM function. Consider the
following query:

MATCH (b:Book) <-[r:Votes]- (:User)
RETURN b, SUM(r.score)

This query returns the sum of the scores of the votes received by each book. The
null values are ignored.

AVG
The AVG function computes the average of a group of number values in the dataset.
Consider the following query:

MATCH (b:Book) <-[r:Votes]- (:User)
RETURN b, AVG(r.score)

The rows returned by this query contain the average score of the votes received by a
book. The null values are ignored in the computation of the average.

Operators and Functions

[138]

PERCENTILEDISC and PERCENTILECONT
The PERCENTILEDISC and PERCENTILECONT functions compute the percentile
of a value in a dataset. The difference between them is in the formula used. The
PERCENTILEDISC function uses a discrete model for interpolation, while the
PERCENTILECONT function uses a continuous model. A percentile measures the
value below which a given percentage of items fall. Consider the following query:

MATCH (b:Book) <-[r:Votes]- (:User)
RETURN b, PERCENTILEDISC(r.score, 0.3)

This query returns, for each book, the thirtieth percentile of the score of votes for
each book. It is a measure of the score below which 30 percent of the votes fall.

Note that there is no standard definition of percentile, but three possible definitions
are available. An introduction to percentile definitions can be found at http://
onlinestatbook.com/2/introduction/percentiles.html.

STDEV and STDEVP
Standard deviation gives an estimate of the dispersion from the average. You
should use the STDEVP function when you are computing the standard deviation
for the whole population; otherwise, the STDEV function must be used. Consider
the following query:

MATCH (b:Book) <-[r:Votes]- (:User)
RETURN STDEVP(r.score)

The return value of this query is the standard deviation of the score of the votes of
all users.

A simple explanation of standard deviation can be found at http://www.mathplanet.
com/education/algebra-2/quadratic-functions-and-inequalities/standard-
deviation-and-normal-distribution.

MIN and MAX
The MIN and MAX functions return the minimum and the maximum of a value in the
dataset. Consider the following query:

MATCH (b:Book) <-[r:Votes]- (:User)
RETURN b, MIN(r.score), MAX(r.score)

The query returns all books voted by users, each with their minimum and maximum
score received.

Appendix

[139]

Mathematical functions
Cypher provides a number of mathematical functions. Explaining all of them in
detail is beyond the scope of this book. The following is a list of the most commonly
used functions:

Function Return value
SIGN(x) •	 -1 if the given value is negative

•	 0 if the given value is zero
•	 1 if the given value is positive

ABS(x) The absolute value of x
EXP(x) The natural exponential function of x
LOG(x) The natural logarithm of x
LOG10(x) The common logarithm (base 10) of x
E() The value of e (Euler's number), the base of natural logarithm
PI() The value of pi
ROUND(x) The value of x rounded to the nearest integer
RAND() A random double value between zero and one
SQRT(x) The square root of x
SIN(x) The sine of x
COS(x) The cosine of x
TAN(x) The tangent of x

Index
A
ACID 79
aggregation

with AVG function 48
with conditional expressions 51, 52
with COUNT function 46, 47
with MAX function 49
with MIN function 49
with RETURN clause 46
with RETURN function 50
with standard deviation 49
with START keyword 50
with SUM function 47

aggregation functions
about 137
AVG function 137
COUNT function 137
MAX function 138
MIN function 138
PERCENTILECONT function 138
PERCENTILEDISC function 138
STDEV function 138
STDEVP function 138
SUM function 137

ALLSHORTESTPATHS function 130
Apache Derby 106
AVG function

about 137
used, for average 48

B
best practices/recommendations

direction of relationships, specifying 91, 92
ExecutionEngine, reusing 84, 85

optimum transaction size, searching 85-89
parameterized queries, using 82, 83
parameterized queries, with REST

API 83, 84
unnecessary clauses, avoiding 90, 91
variable length paths, specifying 91, 92

bibliography store example
about 104-106
Author entities 104
E-R diagram 105
Publisher entities 104
Reference entities 104

book store example
labels 31
properties 32
relationships 32

Boolean operators
AND 38
NOT 38
OR 38
used, for filtering numeric value 38
XOR 38

C
CASE WHEN expression

used, for expressing conditions 51, 52
COALESCE function

about 128
ID function 128
TIMESTAMP function 128
used, for sorting null values 44, 45

collection predicates
ALL 39
ANY 39
NONE 39

[142]

SINGLE 39
used, for filtering collections 39

collections
EXTRACT function 132
FILTER function 133
filtering 38
filtering, collection predicates used 39, 40
HEAD function 131
LAST function 131
LENGTH function 132
RANGE function 134
REDUCE function 133, 134
TAIL function 131
working with 77, 78

comma-separated values (CSV) 81
comparison operators

about 123
equality operators 125
NULL equality operators 126
ordering operators 124
used, for filtering numeric value 37

concatenation operator 126
conditional expressions

with CASE WHEN expression 51, 52
configuration, embedded Neo4j database 12
constraints

about 100
creating 100, 101
defining 110, 111

COUNT function
about 137
arguments 46
used, for counting matching rows/non-null

values 46, 47
CREATE clause

used, for creating nodes 60
CREATE UNIQUE command

differentiating, with OPTIONAL MATCH
command 66

used, for creating unique patterns 66-68
Cypher

about 7
best practices/recommendations 81
functions 127
operators 123
performance issues 79-81

D
data

deleting, with DELETE clause 74
deleting, with REMOVE clause 74
entities, migrating 112, 113
migrating 112
relationships, migrating 114, 115

database
clearing, with DELETE clause 76

Data Description Language (DDL) 106
DELETE clause

used, for clearing whole database 76
used, for deleting nodes 75, 76
used, for deleting relationship 75, 76

DESC clause
used, for descending sort 43

direction of relationships
specifying 91, 92

DISTINCT clause
avoiding 90, 91

E
embedded Neo4j database

about 10
configuring 12
creating 12
development environment,

preparing 10, 11
ENDNODE function 130
entities

migrating 112, 113
equality operators 125
E-R diagram

of bibliography store example 105
E-R diagram, features

attributes 105
entities 105
relations 105

ExecutionEngine
reusing 84, 85

existing data
complex patterns, creating 69, 70
labels, setting 70, 71
matched patterns, merging 72-74

[143]

modifying, with OPTIONAL MATCH
clause 65

properties, setting 70, 71
unique patterns, creating 66-68

EXTRACT function 132

F
FILTER function 133
filtering

about 31
book store example 31, 32
collections 38-40
numeric value, comparison operator

used 37
text value, WHERE clause used 33

FOREACH clause
used, with collections 77, 78

functions
aggregation functions 137
COALESCE function 128
mathematical functions 139
used, for working with collections 131
used, for working with nodes 129
used, for working with

paths/relationships 129
used, for working with strings 134

H
HEAD function 131
human resource management tool

(HR management tool)
about 13, 14
Cypher, invoking from Java 18-20
database, querying 18
filtering, on properties 22
filtering, on relationships 23-25
missing information, dealing with 26, 27
node IDs, assigning as starting points 29
nodes, creating with Java API 14-17
nodes, finding by relationships 21
paths, working with 28
query parameters, passing with Java

API 29, 30
query parameters, providing 29
relationships, creating with Java API 14-17

I
idempotent queries

creating 74
ID function 128
index

about 97
creating 98
creating, with INDEX clause 99, 100
creating, with SCAN keyword 98, 99
defining 110, 111
deleting 98

INDEX clause
used, for creating index 99, 100

IN operator 127
IN predicate

used, for filtering numeric value 37

J
Java API

used, for creating nodes of HR management
tool 14-17

used, for creating relationships of HR
management tool 14-17

used, for profiling queries 93
Java Development Kit (JDK) 86
Java Virtual Machines (JVM) 86
jvmtop

URL 86

L
label index 97
labels

adding, to nodes 60, 61
adding, to node with SET clause 72
creating 108-110
setting, for existing data 70, 71

LABELS function 129
LAST function 132
LEFT(source, length) function 135
LENGTH function 132
LIMIT keyword

used, for paging 40-42
loops

about 77
collections, working with 77, 78

[144]

LOWER function 136
LTRIM function 136

M
m2eclipse 10
mathematical functions 139
mathematical operators 126
Maven 10
MAX function

about 138
using 49

MERGE clause
and SET clause, used for creating

idempotent queries 74
used, for merging matched patterns 72-74

MIN function
about 138
using 49

multiple labels
adding, to nodes 61

multiple patterns
creating, for nodes 63

N
Neo4j

about 7
executing 8
URL, for downloading 57

Neo4j Browser
about 57
using 57-59

Neo4j database
creating 7
embedded database 10
Neo4j, executing 8
Neo4j Server 8, 9

neo4j-jdbc
URL 103

Neo4j Server
about 8, 9
URL, for downloading 8

Neo4j Shell
URL, for downloading 94
used, for profiling queries 94, 95

NetBeans 7.4 10

nodes
about 7
creating, with CREATE clause 60
labels, adding 60, 61
LABELS function 129
multiple labels, adding 61
multiple patterns, creating 63
NODES function 129
properties, adding 60, 61
properties, creating 62
relationships, creating between 65

NODES function 129
NULL equality operators 126
null values

sorting, COALESCE function used 44, 45
numeric value

filtering, Boolean operators used 38
filtering, comparison operator used 37
filtering, IN predicate used 37

O
operators

about 123
comparison operators 123
concatenation operator 126
IN operator 127
mathematical operators 126
regular expressions 127

optimum transaction size
searching 85-89

OPTIONAL MATCH clause
differentiating, with CREATE UNIQUE

command 66
used, for modifying existing data 65
using 45

ORDER BY clause
avoiding 90, 91
used, for sorting 43

ordering operators 124

P
paging

with LIMIT keyword 40-42
with SKIP keyword 40-42

[145]

parameterized queries
using 82, 83
with REST API 83, 84

paths/relationships
ALLSHORTESTPATHS function 130
ENDNODE function 130
RELATIONSHIPS function 131
SHORTESTPATH function 130
STARTNODE function 130
TYPE function 130

percentile
reference link 138

PERCENTILECONT function 138
PERCENTILEDISC function 138
performance issues, Cypher 79-81
phases, Cypher query

Read 77
Return 77
Write 77

properties
adding, to nodes 60-62
setting, for existing data 70, 71
setting, with SET clause to nodes 71

Q
queries

CRUD queries, migrating 116, 117
grouping 118-120
migrating 116
profiling 92, 93
profiling, inside execution plan

description 94
profiling, Java API used 93
profiling, Neo4j Shell used 94, 95
profiling, REST API used 95, 96
searching 117, 118
separating, WITH keyword used 52, 53

R
RANGE function 134
Read phase 77
REDUCE function 133, 134
regular expressions

about 127
patterns, using 34-36

reference links 36
used, for filtering text value 33-36

relationships
about 7
creating 60-63
creating, between existing nodes 65
defining 112
full path, creating 64
migrating 114, 115

RELATIONSHIPS function 131
REMOVE clause

used, for removing labels 74
used, for removing properties 75

REPLACE function 136
REST API 59

parameterized queries, used with 83, 84
used, for profiling queries 95, 96

RETURN function
used, for grouping keys 50

Return phase 77
RIGHT(source, length) function 135
RTRIM function 136

S
SCAN keyword

used, for creating index 98, 99
schema

about 106
constraints 110, 111
index 110, 111
labels 108, 110
migrating 106-108
relationships 112

SET clause
used, for adding labels to nodes 72
used, for setting properties to nodes 71
using 70, 71

SHORTESTPATH function 130
SKIP keyword

used, for paging 40-42
sorting

descending sort, with DESC clause 44
null values, COALESCE function

used 44, 45
ORDER BY clause used 43

[146]

SQL database
bibliography store example 104-106
migrating, to Cypher 103, 104

standard deviation
using 49

START keyword
used, for collecting values in array 50

STARTNODE function 130
STDEV function 138
STDEVP function 138
STR function 135
strings

LEFT function 135
LOWER function 136
REPLACE function 136
RIGHT function 135
STR function 135
SUBSTRING function 135
trimming functions 136
UPPER function 136

SUBSTRING(source, index, length)
function 135

SUM function
about 137
used, for summation 47

T
TAIL function 132
text value

escaping 36
filtering, regular expressions used 33-36
filtering, WHERE clause used 33

TIMESTAMP function 128
TRIM function 136
trimming functions

LTRIM function 136
RTRIM function 136
TRIM function 136

TYPE function 130

U
UNION ALL statement

about 54
versus UNION statement 54

UNION statement
using 54
versus UNION ALL statement 54

UPPER function 136

V
variable length paths

specifying 91, 92

W
WHERE clause

used, for filtering text value 33
WITH keyword

used, for separating query 52, 53
Write phase 77

Thank you for buying

Learning Cypher

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Network Graph Analysis and
Visualization with Gephi
ISBN: 978-1-78328-013-1 Paperback: 116 pages

Visualize and analyze your data swiftly using
dynamic network graphs built with Gephi

1.	 Use your own data to create network graphs
displaying complex relationships between
several types of data elements.

2.	 Learn about nodes and edges, and customize
your graphs using size, color, and weight
attributes.

3.	 Filter your graphs to focus on the key
information you need to see and publish your
network graphs to the Web.

Storm Real-time Processing
Cookbook
ISBN: 978-1-78216-442-5 Paperback: 254 pages

Efficiently process unbounded streams of data in
real time

1.	 Learn the key concepts of processing data in
real time with Storm.

2.	 Concepts ranging from Log stream processing
to mastering data management with Storm.

3.	 Written in a Cookbook style, with plenty of
practical recipes with well-explained code
examples and relevant screenshots and
diagrams.

Please check www.PacktPub.com for information on our titles

OpenSceneGraph 3 Cookbook
ISBN: 978-1-84951-688-4 Paperback: 426 pages

Exactly 100 recipes to show advanced 3D
programming techniques with the OpenSceneGraph
API

1.	 Introduce the latest OpenSceneGraph features
to create stunning graphics, as well as
integration with other famous libraries.

2.	 Produce high-quality programs with short and
familiar code.

3.	 Enriched with a lot of code and the necessary
screenshots.

Microsoft SQL Server 2012 with
Hadoop
ISBN: 978-1-78217-798-2 Paperback: 96 pages

Integrate data between Apache Hadoop and SQL
Server 2012 and provide business intelligence on the
heterogeneous data

1.	 Integrate data from unstructured (Hadoop) and
structured (SQL Server 2012) sources.

2.	 Configure and install connectors for a
bi-directional transfer of data.

3.	 Full of illustrations, diagrams, and tips with
clear, step-by-step instructions and practical
examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Querying Neo4j Effectively with Pattern Matching
	Setting up a new Neo4j database
	Neo4j running modes
	Neo4j Server
	An embedded database

	HR management tool – an example
	Creating nodes and relationships using the Java API
	A querying database
	Invoking Cypher from Java
	Finding nodes by relationships
	Filtering properties
	Filtering relationships
	Dealing with missing parts
	Working with paths
	Node IDs as starting points

	Query parameters
	Passing parameters with Java

	Summary

	Chapter 2: Filter, Aggregate, and Combine Results
	Filtering
	The book store – an example
	Text search
	Working with regular expressions
	Escaping the text

	Value comparisons
	The IN predicate
	Boolean operators

	Working with collections
	Paging results – LIMIT and SKIP

	Sorting
	A descending sort
	Dealing with null values using the COALESCE function

	Aggregating results
	Counting matching rows or non-null values
	Summation
	Average
	Maximum and minimum
	Standard deviation
	Collecting values in an array
	Grouping keys
	Conditional expressions
	Separating query parts using WITH

	The UNION statement
	Summary

	Chapter 3: Manipulating the Database
	Using Neo4j Browser
	Creating nodes and relationships
	Labels and properties
	Multiple labels
	Properties
	Creating multiple patterns

	Creating relationships
	Creating full paths
	Creating relationships between existing nodes using read-and-write queries

	Modifying existing data
	Creating unique patterns
	Complex patterns

	Setting properties and labels
	Cloning a node
	Adding labels to nodes

	Merging matched patterns
	Idempotent queries

	Deleting data
	Removing labels
	Removing properties
	Deleting nodes and relations
	Clearing the whole database

	Loops
	Working with collections

	Summary

	Chapter 4: Improving Performance
	Performance issues
	Best practices and recommendations
	Using parameterized queries
	Parameterized queries with the REST API

	Reusing ExecutionEngine
	Finding the optimum transaction size
	Avoiding unnecessary clauses
	Specifying the direction of relationships and variable length paths

	Profiling queries
	Profiling using the Java API
	Inside the execution plan description
	Profiling with Neo4j Shell
	Profiling with the REST API

	Indexes and constraints
	SCAN hints
	Index hints
	Constraints

	Summary

	Chapter 5: Migrating from SQL
	Our example
	Migrating the schema
	Labels
	Indexes and constraints
	Relationships

	Migrating the data
	Entities
	Relationships

	Migrating queries
	CRUD
	Searching queries
	Grouping queries

	Summary

	Appendix: Operators and Functions
	Operators
	Comparison operators
	Ordering operators
	Equality operators
	NULL equality operators

	Mathematical operators
	The concatenation operator
	The IN operator
	Regular expressions

	Functions
	COALESCE
	TIMESTAMP
	ID
	Working with nodes
	NODES
	LABELS

	Working with paths and relationships
	TYPE
	ENDNODE and STARTNODE
	SHORTESTPATH and ALLSHORTESTPATHS
	RELATIONSHIPS

	Working with collections
	HEAD, TAIL, and LAST
	LENGTH
	EXTRACT
	FILTER
	REDUCE
	RANGE

	Working with strings
	SUBSTRING, LEFT, and RIGHT
	STR
	REPLACE
	Trimming functions
	LOWER and UPPER

	Aggregation functions
	COUNT
	SUM
	AVG
	PERCENTILEDISC and PERCENTILECONT
	STDEV and STDEVP
	MIN and MAX

	Mathematical functions

	Index

