
www.allitebooks.com

http://www.allitebooks.org

Learning Cython Programming

Expand your existing legacy applications in C
using Python

Philip Herron

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Cython Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-079-7

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Philip Herron

Reviewers
Namit Kewat

Goran Milovanovic

Acquisition Editor
Antony Lowe

Commissioning Editor
Mohammed Fahad

Technical Editor
Hardik B. Soni

Copy Editors
Sayanee Mukherjee

Aditya Nair

Kirti Pai

Adithi Shetty

Project Coordinator
Romal Karani

Proofreader
Paul Hindle

Indexers
Mehreen Deshmukh

Rekha Nair

Graphics
Sheetal Atule

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

Philip Herron is an avid software engineer who focuses his passion towards
compilers and virtual machine implementations. When he was first accepted to
Google Summer of Code 2010, he used inspiration from Paul Biggar's PhD on
optimization of dynamic languages to develop a proof of concept GCC frontend
to compile Python. This project sparked his deep interest of how Python works.

After completing a consecutive year on the same project in 2011, Philip decided
to apply for Cython under the Python foundation to gain a deeper appreciation
of the standard Python implementation. Through this, he started leveraging the
advantages of Python to control the logic in systems or even to add more high-level
interfaces such as embedding Twisted web servers for REST calls to a system-level
piece of software without writing any C code.

Currently Philip is employed by NYSE Euronext in Belfast Northern Ireland,
working on multiprocessing systems. But he spends his evenings hacking on GCCPy,
Cython, and GCC. In the past, he has worked with WANdisco as an Apache Hadoop
developer and as an intern with SAP Research on cloud computing.

To achieve this book, I would like to thank many people. Firstly,
my girlfriend Kirsty Johnston for putting up with my late nights
and giving me the confidence I needed; you're the best! My mum
and dad, Trevor and Ann Herron, who have always supported
me my whole life; thanks for helping me so much.

I feel that Ian Lance Taylor from my GCC Google Summer of Code
experience deserves a special mention; if it wasn't for you, I wouldn't
be writing anything like this right now; you have shown me how to
write software. Robert Bradshaw for mentoring my Cython GCC-PXD
project even though I had a lot going on at the time; you helped me
get it done and passed; you taught me how to manage time.

Special thanks Nicholas Marriott for helping me with the Tmux
code base! I would also like to thank Gordon Hamilton, Trevor
Lorimer, Trevor Thompson, and Dr Colin Turner for the support
you've all given me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Namit Kewat is a financial analyst and XBRL expert. At his job, he has worked on
almost all the major SEC filers' XBRL creation (for example, BAC, GS, FB, and WSH).
He is using Python extensively for extracting and generating reports from financial
information present in XBRL financial reports. He has made a few quality checking
apps in Python that are extensively used by his company for quality checks, which
reduces the quality-check time from hours to seconds.

Goran Milovanovic is a Python programmer from the Blender Game Engine
community. His interests include real-time simulation, nanotechnology, and
education. If he is well known, it would be for his video tutorials, which can
be found by Googling for "Goran's Python tutorial series".

I would like to thank my mother and father for their continuing
support and encouragement.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Cython Won't Bite 7

What this book is 7
What this book isn't 8
Installing Cython 8

The emacs mode 8
Getting the code examples 9

Hello World 9
Module on your own 10

Calling into your C code 10
Type conversion 12

Summary 13
Chapter 2: Understanding Cython 15

Cython cdef 15
Linking models 16
The public keyword 17
Logging into Python 18

Python ConfigParser 20
Cython cdef syntax and usage reference 21

Structs 22
Enums 24

Typedef and function pointers 25
Scalable asynchronous servers 26
C sockets with libevent 26

What is libevent? 26
Messaging engine 28
Cython callbacks 28
Cython PXD 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Python messaging engine 29
Integration with build systems 31

Python distutils 31
GNU/Autotools 32

Summary 33
Chapter 3: Extending Applications 35

Cython pure Python code 35
Python bindings 36
Python garbage collector 37
Extending Tmux 38

Tmux build system 40
Embedding Python 42
Cythonizing struct cmd_entry 43
Implementing a Tmux command 46
Hooking everything together 47
Compiling pure Python code 49
Summary 50

Chapter 4: Debugging Cython 51
Using GDB on your code 51

Running cygdb 52
General Cython caveats 54

Type checking 55
No * operator 55
Python exceptions in C 56
For loops on C types 57
Bool type 58
No C const 59
Multiple Cython files 59
Initializing struct 59

Calling into pure Python modules 60
Keeping call stacks small and pure 60

Summary 60
Chapter 5: Advanced Cython 61

C++ constructs 61
Namespaces 61
Classes 62
C++ new keyword and allocation 63
Exceptions 64
Bool type 66
Overloading 66

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Templates 67
Static class member attribute 68

Caveat on C++ usage 68
Calling in C and C++ functions 68
Namespaces 69
Python distutils 69

Python threading and GIL 69
Atomic instructions 70
Read/write lock 70
Cython keywords 71
Messaging server revisited 71

More inspiration 74
Messaging server working with SQL 75
Python IRC notifier 75
Unit testing the native code 75
Preventing subclassing 77
Cython typing via annotations 77

Parsing large amounts of data 78
Summary 81

Chapter 6: Further Reading 83
Keyword cpdef 83
OpenMP support 84
Object initialization 84
Compile time 84
Python 3 85

Using PyPy 85
AutoPXD 86
Pyrex versus Cython 86
SWIG versus Cython 86
Cython and NumPy 87
Numba versus Cython 88
Parakeet and Numba 89
GCCPy Python frontend to GCC 89
Links and further reading 90

Summary 90
Index 91

www.allitebooks.com

http://www.allitebooks.org

Preface
Cython is a tool that makes writing C extensions to Python as easy as writing Python
itself. This is the slogan to which Cython conforms. For those who don't know what
I am talking about, writing C extensions to Python from scratch is a fairly difficult
process; unless you really understand the Python-C API fully with respect to GIL
and garbage collection as well as managing your own reference counting, it's a very
difficult process.

I tend to consider Cython to be along these lines: what Jython is to Java and Python,
Cython is to C/C++ and Python. It allows us to extend and develop bindings to
applications in a really intuitive manner so that we are able to reuse code from levels
of the software stack. The Cython compiler compiles the Cython language or even
pure Python to a native C Python module, which can be loaded like any Python
module via the normal import. It not only generates all the wrapper and boilerplate
code, but also commands the Python garbage collector to add all the necessary
reference counting code.

What's interesting with the Cython language is that it has native support for
understanding C types and is able to juggle them from both languages. It's simply
an extension of Python that has additional keywords and some more constructs
and which allows you to call into C or Python.

What this book covers
Chapter 1, Cython Won't Bite, will give you an introduction to what Cython
is and how it works. It covers setting up your environment and running the
"Hello World" application.

Chapter 2, Understanding Cython, will start to get serious with Cython and will
discuss how to describe C declarations with respect to Cython along with calling
conventions and type conversion.

Preface

[2]

Chapter 3, Extending Applications, will walk you through comparing the execution
of pure Python code with the Cython version of the same code. We also look at
extending Tmux, a pure C project, with Cython.

Chapter 4, Debugging Cython, will cover how to use GDB to debug your code and
the relative GDB commands. There is also an extensive section on caveats and things
to be aware of as well as conventions.

Chapter 5, Advanced Cython, will cover the usage of C++ with Cython, which is just
as easy as using C with Cython. We will also work through all the syntax necessary
to wrap C++. We will then look into the caveats and more on optimizations,
comparing a Python XML parser with a Cython XML parser on large XML files.

Chapter 6, Further Reading, wraps up the book with a final look at some caveats
and conventions. Then, we compare Cython against other similar tools like Numba
and SWIG, and we will discuss how its used in NumPy and how we can use PyPy
and Python 3.

What you need for this book
For this book, I used my MacBook and an Ubuntu virtual machine (GDB is too old
on Mac OS X for debugging). You will require the following on Mac OS X:

• Xcode
• Cython
• GCC/Clang
• Make
• Python
• Python config
• Python distutils

On Ubuntu, you can install most components via the following:

$ sudo apt-get install build-essential gdb cython

Of course, I will go over this in the introduction, but as long as you have a C
compiler and Python and have Python headers installed, you will have everything
you need for Cython.

Preface

[3]

Who this book is for
This book is intended for C developers who like using Python and Python users
wanting to implement native C/C++ extensions to Python. As a reader, you
can expect to be shown how you can develop applications with Cython, with
an emphasis on extending existing systems with help on how you can approach it.

Extending legacy systems can be difficult, but the rewards can be great. Consider very
low-level system daemons that we could abstract and extend them and interact with
the data from Python in a nice high-level way while leaving all performance-sensitive
code alone! This model of development can prove to be efficient and of great return to
development time; this can be particularly expensive when it comes to C applications.

It also allows for much more rapid development of the state or logic in a system.
There is no need to worry about long data conversion algorithms in C for doing
small things and then needing to change it all again.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"But note that you cannot use del on this instance else you will get an error."

A block of code is set as follows:

#ifndef __MY_HEADER_H__
#define __MY_HEADER_H__

namespace mynamespace {
 void myFunc (void);

 class myClass {
 public:
 int x;
 void printMe (void);
 };
}

#endif //__MY_HEADER_H__

Preface

[4]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

#ifndef __MY_HEADER_H__
#define __MY_HEADER_H__

namespace mynamespace {
 void myFunc (void);

 class myClass {
 public:
 int x;
 void printMe (void);
 };
}

#endif //__MY_HEADER_H__

Any command-line input or output is written as follows:

philips-macbook:primes redbrain$ cython pyprimes.py –embed

philips-macbook:primes redbrain$ gcc -g -O2 pyprimes.c -o pyprimes
`python-config --includes –libs`

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Cython Won't Bite
Cython makes writing C extensions for Python as easy as Python itself. Its main
use within the community is the Mathematics software package, SAGE, which
is used to perform fast and scalable calculations. Most notably, it provides a safe
and maintainable way of building native modules for Python via autogeneration
of the required code.

Personally, I have used Cython to take control of legacy applications where the
system has been implemented in C/C++ and in which adding functionality can
become painful; we can then use it to generate bindings so that the native application
and the Python one can work together! With this, you are able to perform high-level
logic within Python but leverage the power of your native system.

What this book is
Python has become a great exception in software engineering in the last few years;
it can be used in any way you can think of to create or extend software systems
with low cost in regards to development time. We can also use it to extend software
ranging from system-level distributed systems to high-level web applications.

This book will demonstrate how to gain more from Python. In case you're not
aware, Python can be extended via native C/C++ code using extension modules
over PyObject or by using C types. Doing this manually is generally not a good
idea, as you really need to know how Python works internally. For example, you
need to know about garbage collection so your Python objects don't get collected.
But this is where Cython comes in; it will generate all of the C Python API wrapper
code necessary and correctly.

Cython Won't Bite

[8]

What this book isn't
It's good to be clear that in this book, I will assume you have experience and
knowledge of C and Python, but more importantly, you should be comfortable with
the C compilation and linking process to create shared libraries and executables. This
is important to get the most out of Cython because the examples seen on the Internet
generally deal with very small single Cython file projects, and those aren't that helpful
for most of us. I hope that after reading this book you will be comfortable with Cython.
The online documentation will provide all the references you will need.

Installing Cython
Now let's get Cython installed. Think of Cython as a tool like Bison, flex, or GCC;
it takes an input source and generates another that you compile and link:

• Fedora – Fedora comes with the yum package manager. So, you can simply
run yum install Cython.

• Ubuntu/Debian – As with Fedora, Ubuntu has a package available via
aptitude: apt-get install Cython.

• Mac – Install Xcode and the command-line tools. Then, run the following:
 $ curl -O http://www.cython.org/release/Cython-0.18.tar.gz

 $ tar zxvf Cython-0.18.tar.gz

 $ cd Cython-0.18
 $ sudo python setup.py install

• Windows – Although there are a plethora of options available, following
this wiki is the safest option to stay up to date: http://wiki.cython.org/
InstallingOnWindows.

The emacs mode
There is an emacs mode for Cython available, as the Python emacs mode doesn't
work correctly. So, you can add the Tools/cython-mode.el mode to your
~/.emacs.d directory and then add require to your ~/.emacs file.

(add-to-list 'load-path "~/.emacs.d/")
(require 'cython-mode)

Chapter 1

[9]

Getting the code examples
Throughout this book, I intend to show real examples that are easy to digest to help
you get a feel of the different things you can achieve with Cython. To access and
download the code used in these examples, visit GitHub at the following link:

$ git clone git://github.com/redbrain/cython-book.git

Hello World
Hopefully by now you've got Cython down and compiled and installed it.
Let's check this by running the following command:

$ cython --version

Let's do a sanity test and run the typical "Hello World" program:

redbrain@gamma:~/workspace/cython-book/chapter1/helloworld$ make

We have now created the Cython helloworld.so module! You can see it within
Python (make sure you are in the same directory as the helloworld.so module):

redbrain@gamma:~/workspace/cython-book/chapter1/helloworld$ python

Python 2.7.3 (default, Aug 1 2012, 05:16:07)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import helloworld

Hello World from cython!

We import helloworld since this module is now a valid Python module that can
be loaded. And, on importing, we declared the Cython code to simply print our
message. Not very exciting, but that's how the "Hello World" module is.

Let's look at what we did; Cython files have the extensions .pyx and .pxd. For now,
all we will care about are the .pyx files. Later in this book, I will introduce the use
of .pxd and what you can use this for. For purposes of clarity, it's good to
understand the basic pipeline of what's going on to generate this helloworld.so
module for Python. Cython works in the same way as any other code generator.

www.allitebooks.com

http://www.allitebooks.org

Cython Won't Bite

[10]

The flow depicted in the following figure illustrates how Cython works:

helloworld.pyx helloworld.c

cython

helloworld.o

gcc/as

Python.h

linker

helloworld.so

libpython2.7.so

I wrote a basic Makefile so you can simply run make to compile these examples.
It uses the setup.py style to let Python handle compiling and setting up these
modules. Here's the code to do this manually:

$ cython helloworld.pyx
$ gcc -g -O2 -fpic `python-config --cflags` -c helloworld.c -o
helloworld.o
$ gcc -shared -o helloworld.so helloworld.o `python-config --libs`

I feel this is a very important skill to learn with C development because you will
start thinking of your code in terms of how you can share it more easily.

Module on your own
Now that you've seen the "Hello World" module, let's see how you can write your
own module to do something! Then, you can link it against some of your own code.
Later, we'll introduce the idea of wrapping your code.

Calling into your C code
Cython is a superset of Python. Although the syntax and keywords will work in
the same way, we should be careful when talking about Python and Cython for
clarity. To see Cython in action, let's build a hello-world-style module but perform
something basic, just to be sure we are on the same page.

Open a file called mycode.c and insert the following code in to it:

#include <stdio.h>

int myfunc (int a, int b)
{
 printf ("look we are within your c code!!\n");
 return a + b;
}

Chapter 1

[11]

This is the C code we will call—just a simple function to add two integers you've
probably seen before. Now let's get Python to call it. Open a file called mycode.h,
wherein we will declare our prototypes for Cython as follows:

#ifndef __MYCODE_H__
#define __MYCODE_H__
extern int myfunc (int, int);
#endif //__MYCODE_H__

We need this so that Cython can see the prototype for the function we want to
call. In practice, you will already have your headers in your own project with your
prototypes and declarations.

Open a file called mycodecpy.pyx and insert the following code in to it:

cdef extern from "mycode.h":
 cdef int myfunc (int, int)

def callCfunc ():
 print myfunc (1,2)

Within this Cython code, we initially have to declare what C code we care about.
cdef is a keyword signifying that this is from the C code that will be linked in.
Now that we have declared the header with the prototype to squash any undeclared
function warnings from our compiler, we can make a wrapper function. At this
point, we will specify how Python will call this native code, since calling directly into
C code is dangerous. Therefore, Cython handles all type-conversion problems for us.
A basic wrapper function, callCfunc, is all we need—it calls the myfunc function
and passes the integers 1 and 2; then it simply prints the result.

To compile this, use the following:

$ cython mycodecpy.pyx

$ gcc -g -O2 -fpic -c mycode.c -o mycode.o

$ gcc -g -O2 -fpic -c mycodecpy.c -o mycodecpy `python-config --cflags`

$ gcc -shared -o mycodecpy.so mycode.o mycodecpy.o `python-config --libs`

Cython Won't Bite

[12]

We have to remember to link in the code that has the C function; in this case,
mycode.c. If you're not familiar with what I mean here, you may need to revisit
some C tutorials on compilation, as every C file is compiled to an object file and then
we link all object files into a binary. Therefore, you need to be sure you link in all
necessary object files.

redbrain@gamma:~/workspace/cython-book/chapter1/ownmodule$ python
Python 2.7.3 (default, Aug 1 2012, 05:16:07)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from mycodepy import callCfunc
>>> callCfunc ()
look we are within your c code!!
3

So, we have now compiled and called our native code from Python code. I hope this
gives you an idea of what you can do with it. With this, you can have a native module
linking against some native libraries, making bindings to such libraries very simple.

Type conversion
You might have noticed that we called a Cython function directly with no
arguments, which in turn called our C (the cdef prototype) function with two
integer arguments. What if we wanted the Cython code to handle arguments?
We could execute the following:

 def callCfunc2 (int x, int y):
 print myfunc (x, y)

We have now added the int arguments to the Python wrapper function we defined.
This will require Python code to be type-safe and to convert PyObjects to C types for
us automatically. When you create an integer Python object, the type is not integer,
it's PyObject. If you want to use this in C, you need to get the data via the Python C
API, but Cython will do this for us automatically. For example, if you pass illegal
arguments, you will get the following:

>>> import mycodepy
>>> mycodepy.callCfunc2 (1, 'string')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "mycodepy.pyx", line 7, in mycodepy.callCfunc2 (mycodepy.c:733)
 def callCfunc2 (int x, int y):
TypeError: an integer is required
>>>

Chapter 1

[13]

Even if you simply add more type safety to your Python code via the use of C
types from Cython, you will find that you gain a bit of speed and some nice code.
This is because the Cython compiler can optimize much more aggressively
to avoid using Python calls.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Summary
Right, so I know this isn't the most exciting thing you've ever done, but if you could
just take a step back and consider this: pure Python code calling into C code directly!
Think what you could do with it—it's pretty exciting! In the next chapter, I will
show you more on cdef and the keywords around it and how to share your Cython
functions so that they are callable from C code. With this, anything can call anything!
Not only that, we can look at how we compile our normal Python code and tell it to
use some C types to try and get some more efficiency by looking into more syntax
and more ways to use Cython.

Understanding Cython
If you were to create an API for Python, you should write it using Cython to create
a more type-safe Python API. Or, you could take the C types from Cython to
implement the same algorithms in your Python code, and they will be faster because
you're specifying the types and you avoid a lot of the type conversion required.

Consider you are implementing a fresh project in C. There are a few issues
we always come across in starting fresh; for example, choosing the logging or
configuration system we will use or implement.

With Cython, we can reuse the Python logging system as well as the ConfigParser
standard libraries from Python in our C code to get a head start. If this doesn't prove
to be the correct solution, we can chop and change easily. We can even extend and
get Python to handle all getopt usage. Since the Python API is very powerful, we
might as well make Python do as much as it can to get us off the ground. Another
question is do we want Python be our "driver" (main entry function) or do we want
to handle this from our C code?

Cython cdef
In the next two examples, I will demonstrate how we can reuse the Python logging
and Python ConfigParser modules directly from C code. But there are a few
formalities to get over first, namely the Python initialization API and the link load
model for fully embedded Python applications for using the shared library method
used in Chapter 1, Cython Won't Bite.

It's very simple to embed Python within a C/C++ application; you will require
the following boilerplate:

#include <Python.h>

int main (int argc, char ** argv)

Understanding Cython

[16]

{
 Py_SetProgramName (argv [0]);
 Py_Initialize ();
/* Do all your stuff in side here...*/
 Py_Finalize ();
 return 0;
}

Make sure you always put the Python.h header at the very
beginning of each C file, because Python contains a lot of
headers defined for system headers to turn things on and off
to make things behave correctly on your system.

Later, I will introduce some important concepts about the GIL that you should know
and the relevant Python API code you will need to use from time to time. But for
now, these few calls will be enough for you to get off the ground.

Linking models
Linking models are extremely important when considering how we can extend
or embed things in native applications. There are two main linking models for
Cython: fully embedded Python and code, which looks like the following figure:

Cythonfile.pyx Cythonfile.o

auxcode.o Native Exe

libpython27.so

main.o

Chapter 2

[17]

This demonstrates a fully embedded Python application where the Python runtime
is linked into the final binary. This means we already have the Python runtime,
whereas before we had to run the Python interpreter to call into our Cython module.
There is also a Python shared object module as shown in the following figure (which
is what we did in the previous chapter):

Cythonfile.pyx Cythonfile.o

auxcode.o

Cythonfile.so

import Cythonfile

main.py

We have now fully modularized Python. This would be a more Pythonic approach
to Cython, and if your code base is mostly Python, this is the approach you should
take if you simply want to have a native module to call into some native code, as this
lends your code to be more dynamic and reusable.

The public keyword
Moving on from linking models, we should next look at the public keyword,
which allows Cython to generate a C/C++ header file that we can include with
the prototypes to call directly into Python code from C.

The main caveat if you're going to call Python public declarations directly
from C is if your link model is fully embedded and linked against libpython.
so; you need to use the boilerplate code as shown in the previous section. And
before calling anything with the function, you need to initialize the Python
module example if you have a cythonfile.pyx file and compile it with public
declarations such as the following:

cdef public void cythonFunction ():
 print "inside cython function!!!"

You will not only get a cythonfile.c file but also cythonfile.h; this declares
a function called extern void initcythonfile (void). So, before calling
anything to do with the Cython code, use the following:

/* Boiler plate init Python */
 Py_SetProgramName (argv [0]);
 Py_Initialize ();
 /* Init our config module into Python memory */

Understanding Cython

[18]

 initpublicTest ();
 cythonFunction ();

 /* cleanup python before exit ... */
 Py_Finalize ();

Calling initcythonfile can be considered as the following in Python:

import cythonfile

Just like the previous examples, this only affects you if you're generating a fully
embedded Python binary.

Logging into Python
A good example of Cython's abilities in my opinion is reusing the Python logging
module directly from C. So, for example, we want a few macros we can rely on,
such as info (…) that can handle VA_ARGS and feels as if we are calling a simple
printf method.

I think that after this example, you should start to see how things might work when
mixing C and Python now that the cdef and public keywords start to bring things
to life:

import logging

cdef public void initLogging (char * logfile):
 logging.basicConfig (filename = logfile,
 level = logging.DEBUG,
 format = '%(levelname)s %(asctime)s:
 %(message)s',
 datefmt = '%m/%d/%Y %I:%M:%S')

cdef public void pyinfo (char * message):
 logging.info (message)

cdef public void pydebug (char * message):
 logging.debug (message)

cdef public void pyerror (char * message):
 logging.error (message)

Chapter 2

[19]

This could serve as a simple wrapper for calling directly into the Python logger,
but we can make this even more awesome in our C code with C99 __VA_ARGS__
and an attribute that is similar to GCC printf. This will make it look and work
just like any function that is similar to printf. We can define some headers to
wrap our calls to this in C as follows:

#ifndef __MAIN_H__
#define __MAIN_H__

#include <Python.h>

#include <stdio.h>
#include <stdarg.h>

#define printflike \
 __attribute__ ((format (printf, 3, 4)))

extern void printflike cinfo (const char *, unsigned, const char *,
...);
extern void printflike cdebug (const char *, unsigned, const char *,
...);
extern void printflike cerror (const char *, unsigned, const char *,
...);

#define info(...) \
 cinfo (__FILE__, __LINE__, __VA_ARGS__)

#define error(...) \
 cerror (__FILE__, __LINE__, __VA_ARGS__)

#define debug(...) \
 cdebug (__FILE__, __LINE__, __VA_ARGS__)

#include "logger.h" // remember to import our cython public's

#endif //__MAIN_H__

Now we have these macros calling cinfo and the rest, and we can see the file
and line number where we call these logging functions:

void cdebug (const char * file, unsigned line,
 const char * fmt, ...)
{
 char buffer [256];
 va_list args;

www.allitebooks.com

http://www.allitebooks.org

Understanding Cython

[20]

 va_start (args, fmt);
 vsprintf (buffer, fmt, args);
 va_end (args);

 char buf [512];
 snprintf (buf, sizeof (buf), "%s-%i -> %s",
 file, line, buffer);
 pydebug (buf);
}

On calling debug ("debug message"), we see the following output:

Philips-MacBook:cpy-logging redbrain$./example log

Philips-MacBook:cpy-logging redbrain$ cat log

INFO 05/06/2013 12:28:24: main.c-62 -> info message

DEBUG 05/06/2013 12:28:24: main.c-63 -> debug message

ERROR 05/06/2013 12:28:24: main.c-64 -> error message

Also, you should note that we import and do everything we would do in Python
as we would in here, so don't be afraid to make lists or classes and use these to help
out. Remember if you had a Cython module with public declarations calling into
the logging module, this integrates your applications as if it were one.

More importantly, you only need all of this boilerplate when you fully embed
Python, not when you compile your module to a shared library.

Python ConfigParser
Another useful case is to make Python's ConfigParser accessible in some way
from C; ideally, all we really want is to have a function to which we pass the path
to a config file to receive a STATUS OK/FAIL message and a filled buffer of the
configuration that we need:

from ConfigParser import SafeConfigParser, NoSectionError
cdef extern from "main.h":
 struct config:
 char * path
 int number
cdef config myconfig

Here, we've Cythoned our struct and declared an instance on the stack for
easier management:

cdef public config * parseConfig (char * cfg):
 # initialize the global stack variable for our config...

Chapter 2

[21]

 myconfig.path = NULL
 myconfig.number = 0
 # buffers for assigning python types into C types
 cdef char * path = NULL
 cdef number = 0
 parser = SafeConfigParser ()
 try:
 parser.readfp (open (cfg))
 pynumber = int (parser.get ("example", "number"))
 pypath = parser.get ("example", "path")
 except NoSectionError:
 print "No section named example"
 return NULL
 except IOError:
 print "no such file ", cfg
 return NULL
 finally:
 myconfig.number = pynumber
 myconfig.path = pypath
 return &myconfig

This is a fairly trivial piece of Cython code that will return NULL on error as well
as the pointer to the struct containing the configuration:

Philips-MacBook:cpy-configparser redbrain$./example sample.cfg

cfg->path = some/path/to/something

cfg-number = 15

As you can see, we easily parsed a config file without using any C code. I always
found figuring out how I was going to parse config files in C to be a nightmare.
I usually ended up writing my own mini domain-specific language using Flex
and Bison as a parser as well as my own middle-end, which is just too involved.

Cython cdef syntax and usage reference
So far, we have explored how to set up Cython and how to run "Hello World"
modules. Not only that, we have also seen how we can call our own C code
from Python. Let's take a look at how we can interface Python into different C
declarations such as structs, enums, and typedefs. We will use this to build up
a cool project at the end of the chapter.

Although not that interesting or fun, this small section should serve as a reference
for you later on when you're building your next awesome project.

Understanding Cython

[22]

Structs
Let's begin by creating a C struct. Open mycode.h:

#ifndef __MYCODE_H__
#define __MYCODE_H__

struct mystruct {
 char * string;
 int integer;
 char ** string_array;
};

extern void printStruct (struct mystruct *);

#endif //__MYCODE_H__

Now we can use Cython to interface and initialize structs and even allocate/free
memory. There are a few pointers to make a note of when doing this, so let's create
the code. First we need to create the Cython declaration:

cdef extern from "mycode.h":
 struct mystruct:
 char * string
 int integer
 char ** string_array
 void printStruct (mystruct *)

def testStruct ():
 cdef mystruct s
 cdef char *array [2]
 s.string = "Hello World"
 s.integer = 2
 array [0] = "foo"
 array [1] = "bar"
 s.string_array = array
 printStruct (&s)

Let's look at this line by line. First off, we see the cdef keyword; this tells Cython
that this is an external C declaration and that the original C declarations can
be included from mycode.h; the generated code from Cython can include this
to squash all warnings about undeclared symbols. Anything that is within this
cdef suite, Cython will treat as a cdef. The struct looks very similar to normal
C structs—just be careful with your indentation. Also be sure, even in the cdef
functions, that if you want explicit C types, you need to declare this with the cdef
type identifier to make sure they will be of the correct type and not just PyObjects.

Chapter 2

[23]

The final caveat with structs is when defining a cdef declaration for a
function. If a parameter is a struct, you never declare it as:

 void myfunc (struct mystruct * x)

Instead, we simply use the following:

 void myfunc (mystruct * x)

Cython will figure it out.

There are a few subtleties with the testStruct function. We declare our struct
and array on the stack with cdef as well, as this allows us to declare variables.
In Cython, we have the reference operator &; this works just as in C, so we have
the struct on the stack and we can pass a pointer via the reference operator just like
in C. But we don't have a → operator in Cython, so when trying to access the struct
(even if it is on a pointer), we simply use the . operator. Cython understands this
at compile time. We also have an extension in Cython to specify fixed length arrays
as shown and assignment should look very familiar. A simple makefile for this
system would be as follows:

all:
 cython -2 -o mycodepy.c mycodepy.pyx
 gcc -g -O2 -fpic -c mycodepy.c -o mycodepy.o `python-config
--cflags`
 gcc -g -O2 -fpic -c mycode.c -o mycode.o
 gcc -g -O2 -shared -o mycodepy.so mycode.o mycodepy.o

clean:
 rm -f *.o *.so *~ mycodepy.c

And a simple printStruct function would be as follows:

#include <stdio.h>
#include "mycode.h"

void printStruct (struct mystruct * s)
{
 printf (".string = %s\n", s->string);
 printf (".integer = %i\n", s->integer);
 printf (".string_array = \n");

 int i;
 for (i = 0; i < s->integer; ++i)
 printf ("\t[%i] = %s\n", i, s->string_array [i]);
}

Understanding Cython

[24]

A simple run of this in the downloaded code is as follows:

redbrain@blue-sun:~/workspace/cython-book/chapter2/c-decl-reference$ make

cython -2 -o mycodepy.c mycodepy.pyx

gcc -g -O2 -fpic -c mycodepy.c -o mycodepy.o `python-config --cflags`

gcc -g -O2 -fpic -c mycode.c -o mycode.o

gcc -g -O2 -shared -o mycodepy.so mycode.o mycodepy.o

redbrain@blue-sun:~/workspace/cython-book/chapter2/c-decl-reference$
python

Python 2.7.3 (default, Sep 26 2012, 21:51:14)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from mycodepy import testStruct

>>> testStruct ()

.string = Hello World

.integer = 2

.string_array =

 [0] = foo

 [1] = bar

This simply demonstrates that Cython can work properly with C structs—it
initialized the C struct and assigned it data correctly, as you would expect if it
was from C.

Enums
Interfacing with C enums is simple. If you have the following enum in C:

enum cardsuit {
 CLUBS,
 DIAMONDS,
 HEARTS,
 SPADES
};

This can be expressed as the following Cython declaration:

cdef enum cardsuit:
 CLUBS, DIAMONDS, HEARTS, SPADES

Then, use the following as the cdef declaration within our code:

cdef cardsuite card = CLUBS

Chapter 2

[25]

Typedef and function pointers
Typedefs are just how you would expect them to be. It's simpler to understand with
examples; consider the following C code:

struct foobar {
 int x;
 char * y;
};
typedef struct foobar foobar_t;

In Cython, this can be described by the following:

cdef struct foobar:
 int x
 char * y
ctypedef foobar foobar_t
You can also typedef pointers too

ctypedef int * int_ptr

We can also typedef function pointers as follows:

typedef void (*cfptr) (int)

In Cython, this will be as follows:

ctypedef void (*cfptr)(int)

then we use the function pointer:
cdef cfptr myfunctionptr = &myfunc

Overall, this should be the reference you use whenever you are using Cython
to understand how your C types map to Cython and to see how you can use them.

Understanding Cython

[26]

Scalable asynchronous servers
Using all the concepts learned in this chapter, I want to show you how we can use
Cython to build something awesome—a complete messaging server that uses C to
do all the low-level I/O and libevent to keep everything asynchronous. This means
we will be using callbacks to handle the events that we will manage in the Python
messaging engine. We can then define a simple protocol for a messaging system and
roster. This design can be easily extended to a lot of things. To see if we are on the
same page, refer to the following figure:

Message Server

Native C Sockets over libevent

Python Messaging Engine

Cython

Client 1 Client 2 Client 3 Client N

C sockets with libevent
For those of you who are unfamiliar with libevent, I will now give a brief overview
and show the main parts of the code you should look at in chapter2/async-
server/server1/server.c.

What is libevent?
libevent allows us to create a socket in C, which we can use to pass the file descriptor
to libevent and give it several events to care about; for example, if a client is
connecting to this socket, we can tell libevent to listen for it and it call our callback.
Other events such as errors (clients going offline) or reads (clients pushing up data) can
also be handled in the same manner. We use libevent because it's much more scalable
and well defined, and it is a far better choice than writing our own polling event loop.

Chapter 2

[27]

Once we create a socket, we must make it non-blocking for libevent. This useful
snippet of C code may or may not be familiar to you, but it's a useful one to have
in your tool-belt:

int setnonblock (int fd)
{
 int flags;
 flags = fcntl (fd, F_GETFL);
 if (flags < 0)
 return flags;
 flags |= O_NONBLOCK;
 if (fcntl (fd, F_SETFL, flags) < 0)
 return -1;
 return 0;
}

Once you create a socket, you pass the resulting file descriptor to this function
and then create an on-connect event for libevent:

struct event ev_accept;
event_assign (&ev_accept, evbase,
 sockfd,
 EV_READ|EV_PERSIST,
 &callback_client_connect,
 NULL);
 event_add (&ev_accept, NULL);

Now we have an event that will call the callback_client_connect function.
Test this server with the following:

redbrain@blue-sun:~/workspace/cython-book/chapter2/async-server/server1$
make

gcc -g -O2 -Wall -c server.c -o server.o

gcc -g -O2 -o server server.o -levent

redbrain@blue-sun:~/workspace/cython-book/chapter2/async-server/server1$
./server

In another shell or multiple shells, run telnet to act as a simple client for now:

$ telnet localhost 9080

You can now type away and see all your data and events. At the moment, this is just
a dumb event-driven messaging system, but imagine how you would begin adding
a messaging engine to pass messages between clients and set how you would up
a protocol in C. It would take some time to map out and, in general, it would be
an unpleasant experience. We can use Cython to take control of the server and create
our logic in Python using callbacks.

Understanding Cython

[28]

Messaging engine
With these callbacks, we can start making use of Python very easily to make this
project awesome.

Cython callbacks
If you look at cython-book/chapter2/async-server/server2, you can see the
callbacks in action:

./messagingServer -c config/server.cfg -l server.log

You can also spawn multiple telnet sessions again to see some things being printed
out. There is a lot going on here, so I will break it down first. If you look inside this
directory, you will see pyserver.pyx and pyserver.pxd. Here, we will introduce
the pseudo Cython header files: (*.pxd).

Cython PXD
The use of PXD files is very similar to that of header files in C/C++. We can simply
use our cdef declarations like extern functions or struct definitions and then use
the following within a *.pyx file:

cimport pyserver

Now you can just code your method prototypes like you would in C and the
cimport of the PXD file will get all the definitions.

Caveat

Cython's input filenames cannot handle dashes, -, in their
filenames. It's best to try and use camelcase, since you can't
use cimport my-import in Python.

Now that you have seen how *.pxd files work, we will remove the main method from
server.c so we can use Python to control the whole system. If you look at pyserver.
pyx, you will see the pyinit_server function; it takes a port number. We can then
from Python pass the configuration of the server from pure Python with import
pyserver when we build the shared library. We also call server.c to set callbacks,
which are the cdef Cython functions, and we pass their addresses to the server:

static callback conncb, discb, readcb;

void setConnect_PyCallback (callback c)

Chapter 2

[29]

{
 conncb = c;
}
void setDisconnect_PyCallback (callback c)
{
 discb = c;
}
void setRead_PyCallback (callback c)
{
 readcb = c;
}

Now, in each of the events that exist, we can call these callbacks simply with readcb
(NULL. NULL) and we will be in Python land. You can look at the Cython functions
in depth in the pyserver.pyx file; however, know that they just print out some data:

cdef void pyconnect_callback (client *c, char * args):
 print c.cid, "is online..."

cdef void pydisconnect_callback (client *c, char * args):
 print c.cid, "went offline..."

cdef void pyread_callback (client *c, char * args):
 print c.cid, "said: ", args

These are your basic callbacks into Cython code from the native event-driven system.
You can see the basic main method from the messageServer.py file. It is executable
and initializes everything required for our purposes. I know this may seem a fairly
niche example, but I truly believe it demonstrates how cool C/Python can be. It
simply imports pyserver and calls pyinit_server with a port. With this, you can
use Python to control the configuration of system-level C components very easily,
which can be fiddly to do well in pure C. We let Python do it.

Python messaging engine
Now that you've seen how we can have callbacks from this system into Cython,
we can start to add some logic to the system so that if you spawn multiple localhost
connections, they will run concurrently. It would be good to have some Roster
logic, say to just make the client address its identifier, such that there can be only one
client per address. We could implement this via a simple dictionary where key is
address and value is true or false for online or offline. We can query if it is online;
return a yes if it is or no to kill the connection. Currently, messagingEngine.py
implements a basic roster class to perform this function.

www.allitebooks.com

http://www.allitebooks.org

Understanding Cython

[30]

This roster class will initialize a dictionary of client objects against their name, and
handleEvent will, if it's a rosterEvent, handle clients going online and offline via
the Cython callbacks. The other case is if the client is already online. We return true
if we want to tell the server to disconnect that client by closing the socket connection,
else we return false.

A simple way to initialize the roster class is through pyserver.pyx:
from messagingEngine import Roster
roster = None

def pyinit_server (port):
 global roster
 roster = Roster ()
….

Now, in each of the callbacks, we can simply call roster.handleEvent (…). On
running this, we can see that the same address connections are now closed, as shown
in the following screenshot (only one instance is allowed to personify clients logging
in to a system):

I think this gives you an idea of how easy it could be to have Python handle message
passing. You can easily extend your read callbacks to fully read the buffer and use
Google protocol buffers (https://developers.google.com/protocol-buffers/
docs/pythontutorial) to implement a full protocol for your system, but that's
a whole project of its own.

Chapter 2

[31]

Integration with build systems
This topic is basically dependent on the linking model you choose if you are to choose
the shared-library approach. I would recommend using Python distutils. And if you
are going for embedded Python, you should choose the autotools approach.

Python distutils
I just want to note how you can integrate Cython into your setup.py file; it's
very simple:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
 scripts = ['messagingServer.py'],
 packages = ['messagingEngine'],
 cmdclass = { 'build_ext' : build_ext },
 ext_modules = [Extension ("pyserver", ["pyserver.pyx",
 "server.c"])]
)

Just append your module sources and Cython picks up the *.pyx and *.c files.
You can use setup.py as you normally would:

$ python setup.py build

$ python setup.py install

Note that to install correctly, you must package and modularize your project
so that messagingEngine is now its own module:

$ mkdir messagingEngine

$ cd messagingEngine

$ mv ../messagingEngine.py .

$ touch __init__.py

$ $EDITOR __init__.py

 __all__ = ['messagingEngine']

Understanding Cython

[32]

GNU/Autotools
The snippet you need to know for this would simply be as follows:

found_python=no
AC_ARG_ENABLE(
 python,
 AC_HELP_STRING(--enable-python, create python support),
 found_python=yes
)
AM_CONDITIONAL(IS_PYTHON, test "x%found_python" = xyes)

PYLIBS=""
PYINCS=""
if test "x$found_python" = xyes; then
 AC_CHECK_PROG(CYTHON_CHECK,cython,yes)
 if test x"$CYTHON_CHECK" != x"yes" ; then
 AC_MSG_ERROR([Please install cython])
 fi
 AC_CHECK_PROG(PYTHON_CONF_CHECK,python-config,yes)
 PYLIBS=`python-config --libs`
 PYINCS=`python-config --includes`
 if test "x$PYLIBS" == x; then
 AC_MSG_ERROR("python-dev not found")
 fi
fi
AC_SUBST(PYLIBS)
AC_SUBST(PYINCS)

This adds the –enable-python switch to your configure script. You now have the
Cython command found and the PYLIBS and PYINCS variables for the compilation
flags you need to compile. Now you need a snippet to understand how to compile
*.pyx in your sources in automake:

bin_PROGRAMS = myprog
ACLOCAL_AMFLAGS = -I etc

CFLAGS += -I$(PYINCS)

LIBTOOL_DEPS = @LIBTOOL_DEPS@
libtool: $(LIBTOOL_DEPS)
 $(SHELL) ./config.status libtool

Chapter 2

[33]

SUFFIXES = .pyx
.pyx.c:
 @echo " CPY " $<
 @cython -2 -o $@ $<

myprog_SOURCES = \
 src/bla.pyx \
...
myprog_LDADD = \
 $(PYLIBS)

When you're comfortable with understanding where your code is and the linking
models, you can choose the build systems. At that point, embedding Python becomes
very easy—almost like second nature.

Summary
This whole chapter dealt with trying to make you more comfortable with Cython and
aimed to show you that it is just like writing Python code. If you start using public
and cdef regularly, you will see that you can mix C and Python code as if it was all the
same language! Better yet, in each language, you get access to everything that language
has. So, if you have Twisted installed in Python, you can access Twisted when you're
in Python land; and if you're in C land, you can use fcntl or ioctl!

Extending Applications
As mentioned in previous chapters, I want to show how you can extend existing
systems with Cython. So let's get right to doing that. We have several different
approaches and techniques to use. Cython was originally designed to make
computation faster with Python as part of the SAGE project. Therefore, you can
actually plainly convert some of your Python code to use C types on big computations
for an increase in speed. We can also, as we have seen, mix C and Python code
to leverage extensive high-level Python APIs with the low-level system from C.

Cython pure Python code
Let's view a mathematical application that is actually taken from the Cython
documentation. I wrote this equivalent in pure Python so we can compare the speed.
If you open chapter3/primes, you will see two programs – the Cython primes.pyx
example and my pure Python port. They both look almost the same:

def primes(kmax):
 n = 0
 k = 0
 i = 0
 if kmax > 1000:
 kmax = 1000
 p = [0] * kmax
 result = []
 k = 0
 n = 2
 while k < kmax:
 i = 0
 while i < k and n % p[i] != 0:
 i = i + 1
 if i == k:

Extending Applications

[36]

 p[k] = n
 k = k + 1
 result.append(n)
 n = n + 1
 return result
primes (10000)

This really is a direct Python port of that Cython code. Both call primes (10000),
but the evaluation time is very different for them in terms of performance:

Philips-MacBook:primes redbrain$ make

cython --embed primes.pyx

gcc -g -O2 -c primes.c -o primes.o `python-config --includes`

gcc -g -O2 -o primes primes.o `python-config –libs`

Philips-MacBook:primes redbrain$ make test

time python pyprimes.py

 0.18 real 0.17 user 0.01 sys

time ./primes

 0.04 real 0.03 user 0.01 sys

You can see that the pure Python version was almost five times slower in doing the
exact same job. Moreover, nearly every line of code is the same. Cython can do this
because we have explicitly expressed the C types, hence there is no type conversion or
folding for Python to do. I just want to draw attention to the kind of speedups you can
get with just simple code without calling into other native libraries.

Python bindings
Creating bindings to different native libraries is basically what we've been doing since
the start, but it's good to iterate on how easy this can be for already-installed libraries.

When making bindings to projects, you must spend time analyzing the headers that
you include in normal C applications. Once you do this, you're 80 percent of the way
there. If you want, you can directly copy and implement the headers as a .pxd file
and then just write Cython wrappers.

Although this approach is very formal and correct, it isn't really that helpful since
you might as well just use C—and it doesn't even vaguely feel Pythonic. I would
recommend writing wrapper functions that call the functions you care about
yourself, making the library much easier to use.

Chapter 3

[37]

Python garbage collector
Extending bindings to be aware of memory management can be pretty
awesome—you can make the Python garbage collector handle all memory
management for you! If you have a structure in C, you can use the hooks from
Python to make it feel just like any Python type. Consider the following C structure:

typedef struct data {
 int val;
} data_t;

We can then write the Cython declaration of the C struct into cdata.pxd as follows:

cdef extern from "data.h":
 struct data:
 int val
 ctypedef data data_t

We have several Cython-specific hooks. The one we care about is __cinit__. It is
called in a cdef class just before __init__. You cannot assume any self-initialization
since __init__ has not been called. But it allows us to do some memory allocation
to allocate the C structure. Now consider the Python class implementation using the
__cinit__ hook for the initialization of your type:

cimport cdata
from libc.stdlib cimport malloc, free

cdef class Data:
 cdef cdata.data_t * _c_data # the pointer to the c struct

has the same function sig to __init__ both will be called

 def __cinit__ (self, val):
 self._c_data = <data_t *> malloc (sizeof (data_t))
 if not self._c_data: raise MemoryError ()
 self._c_data.val = val

You might have noticed that we were able to call into libc, whose .pxd files are
provided by Cython, and we used the <> syntax to cast the returned type void *
from malloc to our correct C type.

Extending Applications

[38]

Now you can simply use this as if it were a normal Python class and it will
automatically be allocated memory at initialization pre __init__. What's more,
we can now get Python to reuse the garbage collector on this type for us. So, consider
the __dealloc__ hook as follows:

def __dealloc__ (self):
 if self._c_data is not NULL:
 free (self._c_data)
 self._c_data = NULL

Now, when the normal Python reference counter garbage collector figures out
we aren't using data anymore, it will automatically free the structure and the
Python object. Also, if we want a nice print on the type, we can use the normal
Python __str__ hook:

 cdef int getVal (self):
 if self._c_data: return self._c_data.val
 else: return -1

 def __str__ (self):
 if self._c_data is not NULL:
 return "%s" % self.getVal ()
 else:
 return "Object not initialized!"

Now, if you're using Python, you don't need to care about any memory management
hooks you need to call; just let the Python garbage collector handle everything!

Extending Tmux
Tmux is a terminal multiplexer inspired by GNU Screen (http://tmux.
sourceforge.net/), but it supports much simpler and better configuration. More
importantly, the implementation is much cleaner and easier to maintain, and it also
uses libevent and very well-written C code.

I want to show you how you can extend Tmux with new built-in commands by
writing Python code instead of C. Overall, there are several parts to this project,
as follows:

• Hack the autotools build system to compile in Cython
• Create PXD declarations to the relevant declarations, such as

struct cmd_entry

• Embed Python into Tmux
• Add the Python command to the global Tmux cmd_table

Chapter 3

[39]

Let's take a quick look at the Tmux source, and in particular any of the cmd-*.c files
that contain command declarations and implementations. Consider, for example,
that cmd-kill-window.c is the command entry. This tells Tmux the name of the
command, its alias, and how it may or may not accept arguments; finally, it accepts
a function pointer to the actual command code:

const struct cmd_entry cmd_kill_window_entry = {
 "kill-window", "killw",
 "at:", 0, 0,
 "[-a] " CMD_TARGET_WINDOW_USAGE,
 0,
 NULL,
 NULL,
 cmd_kill_window_exec
};

So, if we are able to implement and initialize our own struct containing this
information, we can run our cdef code. Next, we need to look at how Tmux
picks up this command definition and how it gets executed.

If we look at tmux.h, we find the prototypes for everything we need to manipulate:

extern const struct cmd_entry *cmd_table[];
extern const struct cmd_entry cmd_attach_session_entry;
extern const struct cmd_entry cmd_bind_key_entry;
….

So, we need to add a prototype here for our cmd_entry definition. Next, we need
to look at cmd.c; this is where the command table is initialized so that it can
be looked up later on for executing commands:

const struct cmd_entry *cmd_table[] = {
 &cmd_attach_session_entry,
 &cmd_bind_key_entry,
…

Now that the command table is initialized, where does the code get executed? If we
look at the cmd_entry definition in the tmux.h header, we can see the following:

/* Command definition. */
struct cmd_entry {
 const char *name;
 const char *alias;

 const char *args_template;
 int args_lower;

www.allitebooks.com

http://www.allitebooks.org

Extending Applications

[40]

 int args_upper;

 const char *usage;

#define CMD_STARTSERVER 0x1
#define CMD_CANTNEST 0x2
#define CMD_SENDENVIRON 0x4
#define CMD_READONLY 0x8
 int flags;

 void (*key_binding)(struct cmd *, int);
 int (*check)(struct args *);
 enum cmd_retval (*execc)(struct cmd *, struct cmd_q *);
};

The execc hook is the function pointer we really care about, so if you grep the
sources, you should find the following:

Philips-MacBook:tmux-project redbrain$ ack-5.12 execc

tmux-1.8/cmd-queue.c

229: retval = cmdq->cmd->entry->execc(cmdq->cmd, cmdq);

You might notice that in the official Tmux Git, this hook is simply named exec.
I renamed this to execc because exec is a reserved word in Python—we need to
avoid things like that. To begin with, let's get some code compiled; firstly, we need
to get the build system to play ball.

Tmux build system
Tmux uses autotools; we can reuse the snippets from Chapter 2, Understanding
Cython, to add in Python support. We can add the –enable-python switch into
configure.ac as follows:

want python support for pytmux scripting
found_python=no
AC_ARG_ENABLE(
 python,
 AC_HELP_STRING(--enable-python, create python support),
 found_python=yes
)
AM_CONDITIONAL(IS_PYTHON, test "x$found_python" = xyes)

PYLIBS=""
PYINCS=""

Chapter 3

[41]

if test "x$found_python" = xyes; then
 AC_CHECK_PROG(CYTHON_CHECK,cython,yes)
 if test x"$CYTHON_CHECK" != x"yes" ; then
 AC_MSG_ERROR([Please install cython])
 fi
 AC_CHECK_PROG(PYTHON_CONF_CHECK,python-config,yes)
 PYLIBS=`python-config --libs`
 PYINCS=`python-config --includes`
 if test "x$PYLIBS" == x; then
 AC_MSG_ERROR("python-dev not found")
 fi
 AC_DEFINE(HAVE_PYTHON)
fi
AC_SUBST(PYLIBS)
AC_SUBST(PYINCS)

This gives us the ./configure –enable-python option; next, we need to look at
the Makefile.am file. Let's call our Cython file cmdpython.pyx; note that Cython
doesn't like awkward characters like - in the filename, as explained in Chapter 2,
Understanding Cython. If we are to make Python support a conditional option at
build time, we should add the following to Makefile.am:

if IS_PYTHON
PYTHON_SOURCES = cmdpython.pyx
else
PYTHON_SOURCES =
endif

List of sources.
dist_tmux_SOURCES = \
 $(PYTHON_SOURCES) \
...

We make sure it is needed and compiled first. Remember that if we create public
declarations, Cython generates a header for us; we will simply add our public
header to tmux.h to keep headers very simple. Then, to make sure Cython files get
picked up by automake and compiled properly according to the correct dependency
management at build time, we need to add in the following:

SUFFIXES = .pyx
.pyx.c:
 @echo " CPY " $<
 @cython -2 -o $@ $<

Extending Applications

[42]

This adds in the suffix rule to make sure the *.pyx files are Cythoned and then told
to compile the resulting .c file just as any normal C file. This snippet plays well if you
happen to use AM_SILENT_RULES([yes]) in your autotools project, which formats the
echo message correctly. Lastly, we need to make sure we add the necessary CFLAGS
and LIBS options to the compiler from AC_SUBST in the configure script.

CFLAGS += $(PYINCS)
tmux_LDADD = \
 $(PYLIBS)

Now you should have everything ready in the build system, but we have to
regenerate the autotools stuff now because of the changes made. Simply run ./
autogen.sh.

Embedding Python
Now that we have files being compiled, we need to initialize Python and our
module. Tmux is a forked server that clients connect to, so try not to think of it as
a single-threaded system. It's a client and a server, so all commands are executed
on the server. Now let's find where the event loop is started in the server and
initialize and finalize the server here so that it's done correctly. Looking at int
server_start(int lockfd, char *lockfile), we can add in the following:

#ifdef HAVE_PYTHON
 Py_InitializeEx (0);
#endif
 server_loop();
#ifdef HAVE_PYTHON
 Py_Finalize ();
#endif

Python is now embedded into the Tmux server. Notice that instead of simply
Py_Initialize, I used Py_InitializeEx (0). This replicates the same behavior
but doesn't start up normal Python signal handlers. Tmux has its own signal
handlers, so I don't want to override them. It's probably a good idea when extending
established applications such as this to use Py_InitializeEx (0) since they
generally implement their own signal handling. Using this stops Python trying
to handle signals which would conflict.

Chapter 3

[43]

Cythonizing struct cmd_entry
Next, let's consider creating a cythonfile.pxd file for the necessary cdef
declarations of Tmux that we need to be aware of. We need to look at the struct
cmd_entry declaration and work backwards from this:

struct cmd_entry {
 const char *name;
 const char *alias;

 const char *args_template;
 int args_lower;
 int args_upper;

 const char *usage;
 int flags;

 void (*key_binding)(struct cmd *, int);
 int (*check)(struct args *);
 enum cmd_retval (*execc)(struct cmd *, struct cmd_q *);
};

As you can see, cmd_entry depends on several other types, so we need to work
backwards a little bit. If you're going to be lazy and live dangerously, you can get
away with it sometimes if you don't care about accessing the data correctly by
casting any pointers such as void *. But if you're a seasoned C programmer, you
know this is fairly dangerous and should be avoided. You can see this type depends
on struct cmd *, struct cmd_q * and struct args *. We would ideally want
to access these at some point, so it's a good idea to work backwards and implement
them one at a time since the rest is just native C types, which Cython understands.

Implementing the enum should be by far the simplest:

/* Command return values. */
enum cmd_retval {
 CMD_RETURN_ERROR = -1,
 CMD_RETURN_NORMAL = 0,
 CMD_RETURN_WAIT,
 CMD_RETURN_STOP
};

Then, turn it into the following:

cdef enum cmd_retval:
 CMD_RETURN_ERROR = -1
 CMD_RETURN_NORMAL = 0
 CMD_RETURN_WAIT = 1
 CMD_RETURN_STOP = 2

Extending Applications

[44]

Now that we have the return value for the exec hook, we need to look at struct
cmd next and implement it:

struct cmd {
 const struct cmd_entry *entry;
 struct args *args;

 char *file;
 u_int line;

 TAILQ_ENTRY(cmd) qentry;
};

Take a look at TAILQ_ENTRY. This is simply a preprocessor macro that is a BSD libc
extension to turn any type into its own linked list. We can ignore this:

 cdef struct cmd:
 cmd_entry * entry
 args * aargs
 char * file
 int line

Note that this struct depends on the struct cmd_entry and struct args
definitions, which we haven't implemented yet. Don't worry about this yet; just
put them in for now. Next, let's implement struct args since it's simple:

/* Parsed arguments. */
struct args {
 bitstr_t *flags;
 char *values[SCHAR_MAX];

 int argc;
 char **argv;
};

Note that it uses bitstr_t and a variable-length array list. I choose to ignore
bitstr_t because I think it's a system-dependent header that is fairly tricky to
implement. Let's simply cast these as char * and char ** to get things working:

 cdef struct args:
 char * flags
 char **values
 int argc
 char **argv

Chapter 3

[45]

Now that the args structure is Cythonized, let's implement struct cmd_q, which is
a little more tricky:

/* Command queue. */
struct cmd_q {
 int references;
 int dead;

 struct client *client;
 int client_exit;

 struct cmd_q_items queue;
 struct cmd_q_item *item;
 struct cmd *cmd;

 time_t time;
 u_int number;

 void (*emptyfn)(struct cmd_q *);
 void *data;

 struct msg_command_data *msgdata;

 TAILQ_ENTRY(cmd_q) waitentry;
};

There are quite a few more structs that this depends on, but we will not see them
here. Let's try and cast these for now; for example, struct client *. We can cast
this as void * and then cast struct cmd_q_items simply as int even though
it isn't correct. As long as we are not going to try and access these fields, we will
be okay. But remember that if we were to use Cython sizeof, we could run into
memory corruption with different sizes allocated by C and by Cython. We can work
down the other types such as struct cmd_q_item * and cast them as void * again.
Finally, we come to time_t where we can re-use libc.stdlib cimport time from
Cython. This is a really good exercise for implementing Cython declarations for C
applications; it really exercises your code analysis. When going through really long
structures, remember that we can get things going by just casting them as void; be
careful about the struct alignment and typing if you care about the data types in your
Cython API.

 cdef struct cmd_q:
 int references
 int dead
 void * client
 int client_exit
 int queue

Extending Applications

[46]

 void * item
 cmd * cmd
 int time
 int number
 void (*emptyfn)(cmd_q *)
 void * msgdata

That was a fairly deep dive into a lot of project-specific internals, but I hope you get
the idea—we really didn't do anything terribly scary. We even cheated and casted
things that we really don't care about. With all these auxiliary types implemented,
we can finally implement the type we care about; namely, struct cmd_entry:

cdef struct cmd_entry:
 char * name
 char * alias
 char * args_template
 int args_lower
 int args_upper
 char * usage
 int flags
 void (*keybinding)(cmd *, int)
 int (*check)(args *)
 cmd_retval (*execc)(cmd *, cmd_q *)

With this cmdpython.pxd file, we can now implement our Tmux command!

Implementing a Tmux command
One caveat with Cython is that we cannot statically initialize structs like we can in C,
so we need to make a hook so that we can initialize cmd_entry on Python startup:

cimport cmdpython

cdef public cmd_entry cmd_entry_python

With this, we now have a public declaration of cmd_entry_python which we will
initialize in a startup hook as follows:

cdef public void tmux_init_cython () with gil:
 cmd_entry_python.name = "python"
 cmd_entry_python.alias = "py"
 cmd_entry_python.args_template = ""
 cmd_entry_python.args_lower = 0
 cmd_entry_python.args_upper = 0

Chapter 3

[47]

 cmd_entry_python.usage = "python usage..."
 cmd_entry_python.flags = 0
 #cmd_entry_python.key_binding = NULL
 #cmd_entry_python.check = NULL
 cmd_entry_python.execc = python_exec

Remember that because we declared this in the top level, we know it's on the heap
and we don't need to declare any memory to the structure, which is very handy for
us. You've seen struct access before; the function suite should look familiar. But let
me draw attention to a few things here:

• We declared public to make sure we can call it.
• The execution hook is simply a cdef Cython function.
• Finally, you might notice the gil. I will explain what this is used

for in Chapter 5, Advanced Cython.

Now let's see a simple execution hook:

cdef cmd_retval python_exec (cmd * cmd, cmd_q * cmdq) with gil:
 cdef char * message = "Inside your python command inside tmux!!!"
 log_debug (message)
 return CMD_RETURN_NORMAL;

There is not much left to do to hook this into Tmux now. It simply needs to be added
to cmd_table and the startup hook needs to be added to the server initialization.

Note that I added something in the log_debug function to
the PXD; if you look into Tmux, this is a VA_ARGS function.
Cython doesn't understand these yet, but we can hack it just
to get it going by simply casting it as a function that takes a
string. As long as we don't try and use it like any printf, we
should be fine.

Hooking everything together
We now have to fiddle with Tmux just a tiny bit more, but it's fairly painless,
and once we are done we are free to be creative. Fundamentally, we should call
the cmd_entry initialization hook in server.c just before we forget about it:

#ifdef HAVE_PYTHON
 Py_InitializeEx (0);
 tmux_init_cython ();
#endif

Extending Applications

[48]

 server_loop();

#ifdef HAVE_PYTHON
 Py_Finalize ();
#endif

Now that this is done, we need to make sure we add the cmd_entry_python extern
declaration to tmux.h:

extern const struct cmd_entry cmd_wait_for_entry;
#ifdef HAVE_PYTHON
include "cmdpython.h"
#endif

Finally, add this to cmd_table:

const struct cmd_entry *cmd_table[] = {
 &cmd_attach_session_entry,
 &cmd_bind_key_entry,
 &cmd_break_pane_entry,
…
 &cmd_wait_for_entry,
 &cmd_entry_python,
 NULL
};

Now that this is done, I think we're good to go; let's test out this baby. Compile
Tmux with the following:

$./configure –enable-python

$ make

$./tmux -vvv

$ tmux: C-b :python

$ tmux: exit

We can look into tmux-server-*.log to see our debug message:

complete key ^M 0xd

cmdq 0xbb38f0: python (client 8)

Inside your python command inside tmux!!!

keys are 1 (e)

I hope you can now see how easily you can extend this to do something of your own
choosing, such as using Python libraries to call directly into your music player, and
it would all be integrated with Tmux.

Chapter 3

[49]

Compiling pure Python code
Another use for Cython is to compile Python code; for example, if we go back to the
primes example, we can do the following:

philips-macbook:primes redbrain$ cython pyprimes.py –embed

philips-macbook:primes redbrain$ gcc -g -O2 pyprimes.c -o pyprimes
`python-config --includes –libs`

Then, we can compare the three different versions of the same program: the fully
Cythoned version, the pure Python version, and the Cython-compiled pure Python
version:

philips-macbook:primes redbrain$ time ./primes

real 0m0.050s

user 0m0.035s

sys 0m0.013s

The fully Cython version runs the fastest!

philips-macbook:primes redbrain$ time ./pyprimes

real 0m0.139s

user 0m0.122s

sys 0m0.013s

The compiled pure Python version runs considerably faster than the pure Python
version:

philips-macbook:primes redbrain$ time python pyprimes.py

real 0m0.184s

user 0m0.165s

sys 0m0.016s

Finally, the pure Python version runs the slowest. But I think it just draws attention
to how well Cython can give you some dynamic language optimizations. However,
in the real world, if you had several files and needed to compile them correctly, it
would not work perfectly. So, if you have a flat import of foo1.py and foo2.py,
you can Cython-compile both and choose the main one by specifying the –emebed
option and then compiling and linking them together. But if you have a module
import, you should compile it as a .so library and install it via Python distutils
so that the .so Python module can be picked up correctly outside of the working
directory of the shared library.

www.allitebooks.com

http://www.allitebooks.org

Extending Applications

[50]

Summary
This chapter was a deep dive into using Cython in a real-world application that
many people use, and you really had to worry about very little C. Consider if this
.pxd file was added to Tmux; anyone could then write Tmux commands in Python
very easily! If you then look at the memory-management hooks, why not wrap all
C types into Python classes and reuse the Python garbage collector for memory
management. There are so many possibilities—just think outside the box.

Debugging Cython
One side effect of using Cython is that it can be fairly tricky to debug your extended
applications using tools like GNU Project Debugger (GDB), but that's not to say
you cannot do it. You have several choices on what you can do. First and foremost,
I must stress on the point that a good practice is to make sure your interfaces
between the C and Python code are kept as simple as possible so that what's going
on is much clearer. As for me, though I've been developing with C for a long time
in large projects, I still am not that much of a user of GDB.

Using GDB on your code
Debugging tools aren't my biggest priority; my GDB sessions are mostly for thread
analysis and backtraces. These days, I don't generally make full use of GDB unless
there's something really specific in a new project that I've joined where I need to step
through the code to understand it a little more in depth. Since Cython is purely C
code, you can use GDB over your compiled code if you compile with -g to get the
debug information from the GNU Collection Compiler (GCC). However, this isn't
really that helpful unless you're a Python internals developer. Cython distributions
come with cygdb, a Cython wrapper for GDB.

If you are on Mac OS X, you will require a GDB version greater than or
equal to 0.7, since this was when Python support was added to GDB. By
default, you will now have:
GNU gdb 6.3.50-20050815 (Apple version gdb-1824) (Wed Feb
6 22:51:23 UTC 2013)

I found getting the latest GDB on my MacBook to be painful and full of errors
because Xcode wants to control it all. So, I use VirtualBox to have a virtual machine
of Ubuntu 12.04 with a bridged networking. I then use Git to synchronize my code
and the latest GDB from Ubuntu to do any debugging, having an ssh connection
open in another shell and using a GNU Screen or Tmux as a multiplexer.

Debugging Cython

[52]

Running cygdb
Cygdb is mostly a wrapper over GDB (it invokes GDB); it is used before you can
debug any native code unlike dynamic language runtimes, such as Python and Java,
where you need to generate the debug information. Note that this also generates the
cycode.c output and the –gdb flag will generate the necessary debug information
as follows:

redbrain@ubuntu-laptop:~/cython-book/chapter4/gdb1$ cython --gdb cycode.
pyx

Before you start debugging on Ubuntu, you need to install the Python debug
information package and GDB, as it is not installed with build-essential. To
install these, run:
redbrain@ubuntu-laptop:~$ sudo apt-get install gdb build-essential cython
python-dbg

Now that you have GDB and the debug information generated, you can start the
Cython debugger with:
redbrain@ubuntu-laptop:~/cython-book/chapter4/gdb1$ cygdb . --args
python-dbg main.py

Once you're familiar with GDB, you can simply use all of the normal gdb commands.
However, the whole point of cygdb is that we can use the Cython commands, which
we will see in use here with an explanation:
(gdb) cy break

__init__ cycode.foobar.__init__ cycode.foobar.print_me
cycode.func func print_me

If you tab autocomplete cy break, you will see the list of symbols to which you
can set a Cython break point. Next, we need to get the program running and then
continue to our break points as follows:

(gdb) cy break func

Function "__pyx_pw_6cycode_1func" not defined.

Breakpoint 1 (__pyx_pw_6cycode_1func) pending.

Now that we have the break point set, we need to run the program:

(gdb) cy run

1 def func (int x):

Now that we have hit the declaration of the func function, we can continue and
do some introspection as follows:
(gdb) cy globals

Python globals:

Chapter 4

[53]

 __builtins__ = <module at remote 0x7ffff7fabb08>

 __doc__ = None

 __file__ = '/home/redbrain/cython-book/chapter4/gdb1/cycode.so'

 __name__ = 'cycode'

 __package__ = None

 __test__ = {}

 foobar = <classobj at remote 0x7ffff7ee50b8>

 func = <built-in function func>

C globals:

The globals command will show any of the global identifiers in the scope of the
current frame, so we can see the func function and the classobj foobar. We can
inspect further by listing the code and step code:

(gdb) cy list

 1 def func (int x):

 2 print x

 3 return x + 1

 4

We can also step the code:

(gdb) cy step

1

4 cycode.func (1)

(gdb) cy list

 1 #!/usr/bin/python

 2 import cycode

 3

 4 cycode.func (1)

> 5 object = cycode.foobar ()

 6 object.print_me ()

(gdb) cy step

3 return x + 1

(gdb) cy list

 1 def func (int x):

 2 print x

Debugging Cython

[54]

> 3 return x + 1

 4

 5 class foobar:

 6 x = 0

 7 def __init__ (self):

You can get fairly neat listings even from classes:

(gdb) cy list

 3 return x + 1

 4

 5 class foobar:

 6 x = 0

 7 def __init__ (self):

> 8 self.x = 1

 9

 10 def print_me (self):

 11 print self.x

We can even see the backtrace of the current Python state:

(gdb) cy bt

#9 0x000000000047b6a0 in <module>() at main.py:6

 6 object.print_me ()

#13 0x00007ffff6a05ea0 in print_me() at /home/redbrain/cython-book/
chapter4/gdb1/cycode.pyx:8

 8 self.x = 1

The help can be found by running the following command:

(gdb) help cy

I think you have got the idea! It's worth playing around and checking the help and
trying these for yourself to get the feel of debugging with cygdb. To get a good feel,
you really need to practice with GDB and get comfortable with it.

General Cython caveats
There are several caveats worth noting when it comes to Cython while mixing C
and the Python code. As for me, I tend to keep the interfaces between the C and
Python projects as simple as possible so that it's clear when and where something
wrong is going on.

Chapter 4

[55]

Type checking
You may have noticed that in previous code examples, we were able to cast the void
* pointer from malloc to our extension types using malloc. Cython supports some
more advanced type checking, for example:

char * buf = <char *> malloc (sizeof (...))

In basic type casting, Cython supports <type?> for type checking for example:

char * buf = <char *?> malloc (...)

This will do some type checking and will throw an error if the type being cast
is not a subclass of char *. So, in this case, it will pass; however, if you were
to do the following:

cdef class A:
 pass
cdef class B (A):
 pass

def myfunc ():
 cdef A class1 = A ()
 cdef B class2 = B ()
 cdef B x = <B?> class1

This will return an error (at runtime):

Traceback (most recent call last):
 File "main.py", line 2, in <module>
 myfunc ()
 File "cycode.pyx", line 12, in cycode.myfunc (cycode.c:714)
 cdef B x = <B?> class1
TypeError: Cannot convert cycode.A to cycode.B

So, this could add some more type safety to your Cython APIs.

No * operator
In Cython, we don't have any pointer dereference operator; for example, if you
are passing a C array, you can use pointer arithmetic like the following to print it:

 int * ptr = array;
 int i;
 for (i = 0; i < len; ++i)
 printf ("%i\n", *ptr++);

Debugging Cython

[56]

In Cython, we have to be a little more verbose or explicit:
 cdef int i
 cdef int * ptr = array
 for i in range (len):
 print ptr [0]
 ptr = ptr + 1

There is nothing really fancy here; you simply have to use x[0] if you want
to dereference int *x.

Python exceptions in C
Another topic to look at is what happens if your Cython code propagates an
exception to your C code. In the next chapter, we will cover how C++ native
exceptions interact with Python, but we do not have this in C. Consider the
following code:

cdef public void myfunc ():
 raise Exception ("Raising an exception!")

This simply raises an exception back to C and gives the following:

10-4-5-52:exceptions redbrain$./test

Exception Exception: Exception('Raising an exception!',) in 'cycode.
myfunc' ignored

Away doing something else now...

As you can see, a warning was printed and no exception handling occurred, so the
program continues on to something else. This is because the plain cdef functions
that do not return Python objects have no way for exceptions to be handled, and
thus a simple warning message is printed. If we want to control the behavior for
C programs, we need to declare the exception on the Cython function prototype.

There are three forms for doing this. Firstly, we can do:

cdef int myfunc () except -1:
 cdef int retval = -1
 ….
 return retval

This makes the function throw an exception on the function returning -1 at any point.
This also causes the exception to be propagated to the caller; so, in Cython, we can
do the following:

cdef public void run ():
 try:

Chapter 4

[57]

 myfunc ()
 somethingElse ()
 except Exception:
 print "Something wrong"

You can also use the "maybe" exception (as I would like to think of it), which looks like:

cdef int myfunc () except ? -1:
 cdef int retval = -1
 ….
 return retval

This means that it may or may not be an error, and Cython generates a call to
PyErr_Occurred to perform verification from the C API. Lastly, we can use
the wildcard:

cdef int myfunc () except *:

This then makes it always call PyErr_Occurred, which you can check via
PyErr_PrintEx or others at http://docs.python.org/2/c-api/exceptions.html.

Please note that the function pointer declarations can also handle this in their
prototype. Just make sure that the return type matches the exception type, which
must be an enum, float, pointer-type, or constant expression; if not, you will get
a confusing compilation error.

For loops on C types
Cython has more support for C style for loops and can also perform further
optimizations on the range function depending on how the iterator is declared.
Generally in Python, you simply do the following:

for i in iterable_type: …

This is fine on PyObjects since they understand iterators, but C types do not have
any of this abstraction and you need to do pointer arithmetic on your array types to
access indexes. So, for example, first we can do the following with the range function:

cdef void myfunc (int length, int * array)
 cdef int i
 for i in range (length):
 print array [i]

Debugging Cython

[58]

When the range function is used on C types, such as the following example that
uses cdef int i, it is optimized for real C array access. There are several other forms
we can use. We could translate the loop into the following:

cdef int i
for i in array [:length]: print i

This looks a lot more like a normal Python for loop performing the iteration
assigning i, the index data. There is also one last form that Cython introduces
using the for .. from syntax. This looks like a real for loop from C, and we
could now write:

def myfunc (int length, int * array):
 cdef int i
 for i from 0 <= i < length;
 print array [i]

We can also introduce the step size:

for i from 0 <= i < length by 2:
 print array [i]

These extra for loop constructs are particularly useful when working a lot with
C types because they do not understand extra Python constructs.

Bool type
When you try and use bool in Cython, you will get:

cycode.pyx:2:9: 'bool' is not a type identifier

So, you need to use:

from libcpp cimport bool

Then, when you compile, you might get the following:

cycode.c: In function '__pyx_pf_6cycode_run':

cycode.c:642: error: 'bool' undeclared (first use in this function)

cycode.c:642: error: (Each undeclared identifier is reported only once

cycode.c:642: error: for each function it appears in.)

cycode.c:642: error: expected ';' before '__pyx_v_mybool'

cycode.c:657: error: '__pyx_v_mybool' undeclared (first use in this
function)

You need to make sure you're compiling with a C++ compiler as bool is a native type.

Chapter 4

[59]

No C const
You may have noticed that I've not used const anywhere when it comes to Cython
code. Cython doesn't understand the const keyword from Cython 0.18-pre, but
we can work around this with the following:

cdef extern from *:
 ctypedef char* const_char_ptr "const char*"

Now we can use the const keyword like this:

cdef public void foo_c(const_char_ptr s):
 ...

If you're using Cython greater than or equal to 0.18, you can use const just
as you would from C.

Multiple Cython files
Cython does not handle multiple .pyx files. So, Cython has another keyword
and convention: .pxi. This is an extra include file that works just like C includes.
All the other Cython files get pulled into one file that makes one huge Cython
compilation. For this, you need to do the following:

include "myothercythonfile.pxi"

Initializing struct
When declaring struct, you cannot do normal C initialization such as:

struct myStruct {
 int x;
 char * y;
}
struct myStruct x = { 2, "bla" };

You need to do:

cdef myStruct x:
x.x = 2
x.y = "bla"

So, you manually specify the fields more verbosely.

www.allitebooks.com

http://www.allitebooks.org

Debugging Cython

[60]

Calling into pure Python modules
You can always call into pure Python code (non-Cythoned), but you should always
beware and use Python disutils to make sure the module is installed correctly
outside of the development environment.

Keeping call stacks small and pure
When passing data between Python and C, try to keep your wrapper functions
as small as possible.

Summary
Overall, debugging in my opinion is a fairly per-person preference based on how
you tend to manage your workflow. So long as you keep your interfaces between
C and Python, your code is very simple to follow and debug. In the next chapter,
we will concentrate on how you can get more advanced usage from Cython and how
we can use C++ and C++ exceptions with Python exceptions, templates, and classes.

Advanced Cython
So far with Cython we have only been using C for all our examples and our code.
But with Cython we can also target C++ and work with most of its constructs. With
better support in each of the new releases, you can tell that this is getting some major
development attention since most people use python::boost to embed Python in C++
code, which has a plethora of dependencies. So, if you're an avid user of C++, I would
recommend checking up Cython release notes regularly to see more support features.
Since updating to new versions of tools such as Cython and Bison doesn't really affect
your code, it just makes your project more efficient and better with each release.

C++ constructs
I will go over a simple example of each of the main C++ constructs to help you
translate and use them to get an idea of how native this really feels in Cython!

Namespaces
We can handle namespaces by using the Cython namespace keyword. So, for example,
the namespace defined in a C++ header could be translated into the following:

#ifndef __MY_HEADER_H__
#define __MY_HEADER_H__

namespace mynamespace {
….
}

#endif //__MY_HEADER_H__

You will wrap this with the cdef extern declaration:

cdef extern from "header.h" namespace "mynamespace":
 …

Advanced Cython

[62]

And you can now address it in Cython as you normally would do for a module:

import cythonfile
cythonfile.mynamespace.attribute

It really feels like a python module simply by using a namespace.

Classes
I would take a guess that most of your C++ code revolves around using classes.
Being an object-oriented language, Cython also handles this in a really simple
manner. But remember that Cython will care about the public attributes only, since
these are the only attributes a callee can access due to the encapsulation of private
and protected methods.

#ifndef __MY_HEADER_H__
#define __MY_HEADER_H__

namespace mynamespace {
 void myFunc (void);

 class myClass {
 public:
 int x;
 void printMe (void);
 };
}

#endif //__MY_HEADER_H__

You then just need to care about your class' public attributes, which would become:

cdef extern from "myheader.h" namespace "mynamespace":
 void myFunc ()
 cppclass myClass:
 int x
 void printMe ()

We only care about the public members of C++ classes because we can only access
the public attributes in the caller sense. Now you can work with these just
as if they were cdef structs. Just use the . operator as before and you can access
all the necessary attributes.

Chapter 5

[63]

C++ new keyword and allocation
Cython understands the new keyword from C++; so, consider you have a C++ class:

 class Car {
 int doors;
 int wheels;
 public:
 Car ();
 ~Car ();
 void printCar (void);
 void setWheels (int x) { wheels = x; };
 void setDoors (int x) { doors = x; };
 };

And it is defined in Cython as:

cdef extern from "cppcode.h" namespace "mynamespace":
 cppclass Car:
 Car ()
 void printCar ()
 void setWheels (int)
 void setDoors (int)

Note that we do not declare the ~Car destructor since you never call this directly.
It's not really a public member, hence why we never call it directly. We then
instantiate the raw C++ class in Cython code using new:

cdef Car * c = new Car ()

You can then go and use del to delete the object at any time:

del c

You will see that the destructor is called as you would expect:

10-4-5-52:cppalloc redbrain$./test

Car constructor

Car has 3 doors and 4 wheels

Car destructor

We can also declare a stack-allocated object, but it must only have a default
constructor such as:

cdef Car c

There is no way of passing arguments with this syntax in Cython. But note you
cannot use del on this instance else you will get the following error:

cpycode.pyx:13:6: Deletion of non-heap C++ object

Advanced Cython

[64]

Exceptions
In my opinion, with C++ exception handling, you can get a sense of how integrated
Cython can feel within C++ code; Python just figures it out really well! If any
exception is thrown such as memory allocations, Python will handle these and
translate them into more useful errors, and you still get the normal little ex.what ()
message to your stdout stream if you desire. Python will also understand if these
are caught or not and whether they are handled as required. This table gives you an
idea of what Python exceptions will map to normal C++ ones:

C++ Python
bad_alloc MemoryError

bad_cast TypeError

domain_error ValueError

invalid_argument ValueError

ios_base::failure IOError

out_of_range IndexError

overflow_error OverflowError

range_error ArithmeticError

underflow_error ArithmeticError

All other exceptions RuntimeError

Take, for instance, this C++ code that will simply throw an exception when the
myFunc function is called. Firstly, we define an exception with:

namespace mynamespace {
 class mycppexcept: public std::exception {
 virtual const char * what () const throw () {
 return "C++ exception happened";
 }
 };

 void myFunc (void) throw (mycppexcept);
}

Now we write the function to throw the exception:

void mynamespace::myFunc (void) throw (mynamespace::mycppexcept) {
 mynamespace::mycppexcept ex;
 cout << "About to throw an exception!" << endl;
 throw ex;
}

Chapter 5

[65]

We can call this in Cython with simply:

cdef extern from "myheader.h" namespace "mynamespace":
 void myFunc () except +RuntimeError

And when we run the function, we get the following output:

>>> import cpycode

About to throw an exception!

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "cpycode.pyx", line 3, in init cpycode (cpycode.cpp:763)

 myFunc ()

RuntimeError: C++ exception happened

>>> ^D

Also, if you want, you can catch the C++ exception in your Python code using:

try:
...
except RuntimeError:
...

Notice we told Cython to cast any exceptions to RuntimeError. This is important
to make sure you understand where and which interfaces can throw exceptions, since
unhandled exceptions look really ugly and cause pain. And Cython cannot really
assume much, since compilers won't throw errors on unhandled exceptions in C++; so,
you will get the following as we didn't declare any exception handling on the function:

Philips-MacBook:cppexceptions redbrain$ python

Python 2.7.2 (default, Oct 11 2012, 20:14:37)

[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on
darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import cpycode

About to throw an exception!

Segmentation fault: 11

Advanced Cython

[66]

Bool type
As seen in the previous chapter, to use the native bool type from C++, you need
to firstly import:

from libcpp cimport bool

Then, you can use bool as a normal cdef. If you want to use the pure PyObject bool
type, you need to import:

from cpython cimport bool

You can then assign them with the normal true or false values.

Overloading
Overloading is very simple. Since Python supports this natively by default, just list
more functions like:

cdef foobar (int)
cdef foobar (int, int)
…

Cython understands that we are in C++ mode and can handle all the type conversion
as normal. It's interesting that it can also handle an operator overload easily since
it is just another hook! For example, let's take the Car class again and perform some
operator overriding such as:

namespace mynamespace {
 class Car {
 int doors;
 int wheels;
 public:
 Car ();
 ~Car ();
 Car * operator+(Car *);
 void printCar (void);
 void setWheels (int x) { wheels = x; };
 void setDoors (int x) { doors = x; };
 };
};

Remember to add these operator-overloading class members to your Cythonized
class; otherwise, your Cython will throw the following error:

Invalid operand types for '+' (Car *; Car *)

Chapter 5

[67]

The Cython declaration of the operator overload looks as you might expect:

cdef extern from "cppcode.h" namespace "mynamespace":
 cppclass Car:
 Car ()
 Car * operator+ (Car *)
 void printCar ()
 void setWheels (int)
 void setDoors (int)

Now you can do the following:

cdef Car * ccc = c[0] + cc
ccc.printCar ()

This will then give us the following output on the command line:

10-4-5-52:cppoverloading redbrain$./test

Car constructor

Car constructor

Car has 3 doors and 4 wheels

Car has 6 doors and 8 wheels

inside operator +

Car constructor

Car has 9 doors and 12 wheels

Then, everything is handled as you would expect if you try to add classes of the
same type. You can really feel the inspiration of Python when you see these hooks
in action and the ideas of being more dynamic at work.

Templates
Templates are supported, though not 100 percent, and are the simplest way to debug
compilation errors; I wrote a LinkedList template class in chapter5/cpptemplates
which you can try. But in essence, you can simply follow on how you implement
a class in Cython where you declare it with the cppclass name [T] syntax:

cppclass LinkedList[T]:
 LinkedList ()
 void append (T)
 int getLength ()
...

Now you can access the template type with declaration T.

Advanced Cython

[68]

Static class member attribute
Sometimes in classes, it's useful to have a static attribute such as:

namespace mynamespace {
 class myClass {
 public:
 static void myStaticMethod (void);
 };
}

In Cython, there is no support for this via a static keyword, but what you can do
is tie this function to a namespace so that it would become:

cdef extern from "header.h" namespace "mynamespace::myClass":
 void myStaticMethod ()

Now you simply call that method.

Caveat on C++ usage
There are several more caveats on C++ usage to keep in the back of your mind when
using it.

Calling in C and C++ functions
When you write a code to call in a C++ function from C, you need to wrap
the prototypes in the following:

extern "C" { … }

This allows you to call C++ prototypes because C won't understand a C++ class.
With Cython, if you are telling your C output to call in C++ functions, you need
to be careful about which compiler you are using or you need to write a new header
to implement the minimal wrapper functions required to make the C++ calls.

Chapter 5

[69]

Namespaces
Cython seems to generally require a namespace to keep things nested, which you
are probably doing in your C++ code already. Making PXD on non-namespaced
code seems to make new declarations, meaning that you will get linking errors
due to multiple symbols. C++ support looks really good from these templates,
and more metaprogramming idioms can be difficult to express in Cython. When
polymorphism comes into play, it can be difficult to track down compilation errors.
I would stress keeping your interfaces as simple as possible to perform debugging
and being more dynamic!

Remember when using Cython to generate the C++ you need
to specify –cplus so it will default the cythonfile.cpp
output. Pay attention to the extensions; I prefer to use .cc for
my C++ code, so just be careful with your build system.

Python distutils
As usual, we can also use Python distutils, but you will need to specify the language
so that the auxiliary C++ code required will be compiled by the correct compiler:

from distutils.core import setup
from Cython.Build import cythonize

setup (ext_modules = cythonize(
 "mycython.pyx",
 sources = ["mysource.cc"],
 language = "c++",
))

Now you can compile your C++ code to your Python module.

Python threading and GIL
GIL stands for Global Interpreter Lock. What this means is when you link your
program against libpython.so and use it, you really have the entire Python
interpreter in your code. The reason this exists is to make concurrent applications
really easy. In Python, you can have two threads reading/writing to the same
location (variable) Python automatically handles all of this for you; unlike say in
Java, where you need to specify that everything is under the GIL in Python. There
are two things to consider when talking about the GIL and what it does: instruction
atomicity and read/write lock.

Advanced Cython

[70]

Atomic instructions
Remember that Cython generates the C code necessary to make it look just like any
Python module that you can import. So what's happening under the hood is that
it will generate all the code to acquire lock on the GIL so that it can manipulate
Python objects at runtime. Let's consider two types of execution. Firstly, you have
the C stack where it executes atomically as you would expect; it doesn't care about
synchronization between threads—that's left up to the programmer. The other is
Python where it's doing all of this synchronization for us. When you embed Python
into your application manually using Py_Initilize, this is under the C execution.
When it comes to calling something such as import sys and sys.uname in Cython
code that is called from C, the Python GIL schedules and blocks multiple threads
from calling this at the same time to be safe. This makes writing multithreaded
Python code extremely safe. So, any errors from writing to the same location at
the same time can happen and be handled correctly instead of having to use mutexes
on critical sections in C. Anything that runs Python calls, such as folding types,
iterators, and type conversions, has to go under the GIL and is schedule-based
against different threads to preserve consistency.

But in the end, it runs direct C code, so this means your C executes just as you would
expect any C program to. It's only when called directly that Python code has the
potential to be blocked by the GIL or worsen the objects being dereferenced. This
is by far the most common problem with people writing their own C module from
scratch, as you really do need good knowledge of garbage collection and object lifetime
within your application. Because Cython compiles to C/C++, this is where a lot of its
optimizations come from because you're not reliant on the GIL for all code execution.

Read/write lock
Read/write lock is great because no matter what, it is pretty rare for you in Python
to really need to care about semaphores or mutexes on data. The worst that can
happen is you get into an inconsistent state, but you won't crash like you might in
C. Any read/write operation to the global dictionary is handled the way you would
expect in Python by blocking threads when needed.

Chapter 5

[71]

Cython keywords
Okay, so how does this affect you and, more importantly, your code? It is important
to know what way your code should and/or will execute in a concurrent manner.
Without an understanding of this, you will be debugging for hours and not know
what's going on. There are times when the GIL gets in the way and can cause issues
by blocking execution of your C code from Python or vice versa. In Python, this
is fairly confusing until you spend time on IRC with some developers to help you,
but Cython lets us control the GIL with the gil and nogil keywords:

Cython Python
With gil PyGILState_Ensure ()

With nogil PyGILState_Release (state)

It's fairly abstract to keep talking about Python in this way. Although not 100 percent
correct in all the details, it should give you a gentle introduction to what I am talking
about. I find it's easier to think of multithreading in Python in terms of blocking and
nonblocking execution, since Python does so well at writing concurrently to Python
objects. In the next example, we will examine the steps needed to embed a Twisted
web server into the messaging server we implemented.

Messaging server revisited
The messaging server is an example of something that would be highly concurrent;
let's say we want to embed a web server into this to show the list of clients that
are connected to the server. We could easily reuse Python Twisted. If you look
at Twisted, you can see how easily you can have a fullblown web container in about
eight lines of code.

Let's do it! We know from the messaging server that the callbacks all call into the
roster, so we can iterate over the roster dictionary to get online clients and simply
return some HTML to display this in your browser.

One thing with embedding web servers is that they start a lot of threads, meaning
they really need to be started via the main thread. If we were to start our libevent
engine via a Python thread, we could move on and start the web server just like
the example. So, if you look at pyserver.pyx, we could do:

class RunCServer (threading.Thread):
 def __init__ (self, port):
 self.port = port
 threading.Thread.__init__ (self)

Advanced Cython

[72]

 def run (self):
 cdef int cport = self.port
 with nogil:
 init_server (cport)

Then, as you would expect, we can start the thread by running this::

start libvent server
 cs = RunCServer (port)
 cs.start ()

Notice that I specified with nogil. We are calling into our C engine here, and it will
not care about Python. Otherwise this will block, and our web server won't start until
after it exits from the event loop. But really, our C code doesn't need the GIL since
we are only using pure C types and data there. Once the libevent socket server
is running asynchronously, we can then move on to starting our web server.

 # start webserver
 webserver.WebServer (webport, roster)
 cs.join ()

We let the web server start here and block as the Twisted web server tutorial shows
us, and it reads from global to display data. The server now blocks until the kill
signal is given, and it will return and join (wait) once the event loop cleans up and
exists correctly:

def WebServer (port, roster):
 global DATA
 DATA = roster
 site = server.Site (Simple())
 reactor.listenTCP (port, site)
 reactor.run ()

Now we are listening on the specified port in server.cfg:

[pyserver]
port = 8080
webport = 8081

Chapter 5

[73]

We can see the web page as shown in the following screenshot:

No clients are connected, but when they are, you can see them go online and
offline with a refresh. Now this looks incredibly simple! This is shown in the
following screenshot:

Advanced Cython

[74]

There is one fairly huge caveat to remember when using gil. In our callbacks, we
need to acquire the GIL on each callback before we call any Python code or we will
segfault and get really confused. So if you look into each of the libevent callbacks,
when calling the Cython functions, you have the following:

 PyGILState_STATE gilstate_save = PyGILState_Ensure();
 readcb (client, (char *)data);
 PyGILState_Release(gilstate_save);

Notice this is also called on the other two callbacks, firstly on the discb callback:

 PyGILState_STATE gilstate_save = PyGILState_Ensure();
 discb (client, NULL);
 PyGILState_Release(gilstate_save);

And finally on the connect callback, we must be a little more safe and call it this way:

 PyGILState_STATE gilstate_save = PyGILState_Ensure();
 if (!conncb (NULL, inet_ntoa (client_addr.sin_addr)))
 {
…
 }
 else
 close (client_fd);
 PyGILState_Release(gilstate_save);

We have to do this since we executed this with nogil from Cython. We need to
acquire gil before we go back into Python land. You really need to look at something
like this with your creativity cap on and imagine what you could do with this. For
example, you could use this as ways to capture data and use the Twisted web server
to implement an embedded restful server. Maybe even use Python JSON to wrap data
into nice objects. But, moreover, it demonstrates how you really can extend a fairly
complicated piece of C software with something nice and of a high-level nature using
Python libraries. This keeps everything very simple and maintainable instead of trying
to do everything from scratch.

More inspiration
Extending C/C++ systems with Python is an attractive idea, but deciding on which
way to extend it can be difficult. Here are two ideas which I have used with success.

Chapter 5

[75]

Messaging server working with SQL
Another example could be serializing data to a database using Python libraries such
as SQLite3. But, we could extend our messaging server examples to provide outputs
to SQL databases such as SQLite:

import sqlite3
sqlconn = None

Then, in the initialization, we could:
def pyinit_server (port):
 global roster, sqlconn
 sqlconn = sqlite3.connect ('sqlite.db')

Finally, in the callbacks:

cdef int pyconnect_callback (client *c, char * args):
 global sqlconn
 sqlconn.execute ("SQL....")

Now we can successfully output the data into an SQLite database with very little work.

Python IRC notifier
We could write our own messaging server and export it to IRC via the Python IRC
module (https://pypi.python.org/pypi/irc/).

Then, you can add in code to each of the hooks to push it to a specified IRC server
and channel. If you have a bot connected, you could pass it to a queue of messages
to send if you thread it off correctly.

Unit testing the native code
Another use of Cython is unit testing the core functionality of shared C libraries.
If you maintain a .pxd file (this is all you need really), you could write your own
wrapper classes and do scalability testing of data structures with the expressiveness
of Python. For example, we could write unit tests for something like std::map
and std::vector such as:

from libcpp.vector cimport vector

PASSED = False

cdef vector[int] vect
cdef int i
for i in range(10):
 vect.push_back(i)

Advanced Cython

[76]

for i in range(10):
 print vect[i]

PASSED = True

And then write a test for map as follows:

from libcpp.map cimport map

PASSED = False

cdef map[int,int] mymap
cdef int i
for i in range (10):
 mymap[i] = (i + 1)

for i in range (10):
 print mymap[i]

PASSED = True

Then, if we compile them into separate modules, we could simply write a test executor:

#!/usr/bin/env python
print "Cython C++ Unit test executor"

print "[TEST] std::map"
import testmap
assert testmap.PASSED
print "[PASS]"

print "[TEST] std::vec"
import testvec
assert testvec.PASSED
print "[PASS]"

print "Done..."

This is really trivial code, but it demonstrates the idea. If you put error handling with
plenty of asserts and cause a fatal error, you could have some really nice unit testing
against your C/C++ code. We could go further and implement this using Python's
native unit testing framework.

Chapter 5

[77]

Preventing subclassing
If you create an extension type in Cython, something you do not want ever
to be subclassed is a cpp class wrapped in a Python class. To prevent this,
you can do the following:

cimport cython

@cython.final
cdef class A: pass

cdef class B (A): pass

This annotation will give an error when someone tries to subclass:

pycode.pyx:7:5: Base class 'A' of type 'B' is final

Note that these annotations only work on the cdef or cpdef functions and not
on normal Python def functions.

Cython typing via annotations
Some people may find using the explicit cdef and C type syntax awkward.
In Cython functions, you can augment the usage of C types. You can use this
annotation as follows:

@cython.locals(x = cython.int, y = cython.int)
def function ():
 …

Argument types are also handled via
the @cython.locals annotation.

This will then generate the necessary code instead of explicitly using cdef and C
types in your code. There are several more annotations you can use so you don't
have to use the Cython syntax:

@cython.cfunc
@cython.returns(cython.int)
@cython.locals(x = cython.int, y = cython.int)
def function ():
 …
 return x + y

Advanced Cython

[78]

The cfunc annotation tells Cython that this is a cdef function and the returns
annotation tells Cython the return type for cdef. Remember that if you want to add
normal Python functions as part of a .pxd file to cimport, this will fail. You need
to use cpdef to achieve this as explained in Chapter 6, Further Reading.

Parsing large amounts of data
I want to try and prove how powerful and natively compiled C types are to
programmers by showing the difference in parsing large amounts of XML. We can
take the geographic data from the government as the test data for this experiment
(http://www.epa.gov/enviro/geo_data.html):

Let us look at the size of this XML data:

10-4-5-52:bigData redbrain$ ls -liah

total 480184

7849156 drwxr-xr-x 5 redbrain staff 170B 25 Jul 16:42 ./

5803438 drwxr-xr-x 11 redbrain staff 374B 25 Jul 16:41 ../

7849208 -rw-r--r--@ 1 redbrain staff 222M 9 Mar 04:27
EPAXMLDownload.xml

7849030 -rw-r--r--@ 1 redbrain staff 12M 25 Jul 16:38
EPAXMLDownload.zip

7849174 -rw-r--r-- 1 redbrain staff 57B 25 Jul 16:42 README

It's huge! Before we write programs, we need to understand a little bit about the
structure of this data to see what we want to do with it. It contains facility sites'
locations with addresses. This seems to be the bulk of the data in here, so let's try
and parse it all out with a pure Python XML parser using:

from xml.etree import ElementTree as etree

The code uses etree to parse the XML file via:

 xmlroot = etree.parse (__xmlFile)

Then, we look up the header and facilities via:

headers = xmlroot.findall ('Header')
facs = xmlroot.findall ('FacilitySite')

Finally, we output them to a file:

 try:
 fd = open (__output, "wb")
 for i in facs:
 location = ""
 for y in i:

Chapter 5

[79]

 if isinstance (y.text, basestring):
 location += y.tag + ": " + y.text + '\n'
 fd.write (location)
 # There is some dodgy unicode character
 # python doesn't like just ignore it
 except UnicodeEncodeError: pass
 except:
 print "Unexpected error:", sys.exc_info()[0]
 raise
 finally:
 if fd: fd.close ()

We then time the execution as follows:

10-4-5-52:bigData redbrain$ time python pyparse.py

USEPA Geospatial DataEnvironmental Protection AgencyUSEPA Geospatial
DataThis XML file was produced by US EPA and contains data specifying the
locations of EPA regulated facilities or cleanups that are being provided
by EPA for use by commercial mapping services and others with an interest
in using this information. Updates to this file are produced on a regular
basis by EPA and those updates as well as documentation describing the
contents of the file can be found at URL:http://www.epa.gov/enviro

MAR-08-2013

[INFO] Number of Facilties 118421

[INFO] Dumping facilities to xmlout.dat

real 2m21.936s

user 1m58.260s

sys 0m9.5800s

This is quite long but let's compare it using a different XML implementation, Python
lxml. It's a different library implemented using Cython but implements the same
library as the previous pure Python XML parser.

10-4-5-52:bigData redbrain$ sudo pip install lxml

We can simply drop the replacement import in to:

from lxml import etree

Advanced Cython

[80]

The code stays the same, but the execution time is dramatically reduced
(compile the Cython version by running make and the cpyparse binary
is created from the same code with just a different import).

10-4-5-52:bigData redbrain$ time ./cpyparse

USEPA Geospatial DataEnvironmental Protection AgencyUSEPA Geospatial
DataThis XML file was produced by US EPA and contains data specifying the
locations of EPA regulated facilities or cleanups that are being provided
by EPA for use by commercial mapping services and others with an interest
in using this information. Updates to this file are produced on a regular
basis by EPA and those updates as well as documentation describing the
contents of the file can be found at URL:http://www.epa.gov/enviro

MAR-08-2013

[INFO] Number of Facilties 118421

[INFO] Dumping facilities to xmlout.dat

real 0m7.874s

user 0m5.307s

sys 0m1.839s

You can really see the power of using native code when you make just a little effort.
And to be finally assured that the code is the same, let's MD5 sum xmlout.dat that
we created:

10-4-5-52:bigData redbrain$ md5 xmlout.dat xmlout.dat.cython

MD5 (xmlout.dat.python) = c2103a2252042f143489216b9c238283

MD5 (xmlout.dat.cython) = c2103a2252042f143489216b9c238283

So, you can see that the outputs are exactly the same just so we know that no funny
business is going on. It's scary how much faster this can make your XML parsing
and if we calculate the speed increase rate, it is approximately 17.75 times faster;
but don't take my word for it, try running it yourself. My MacBook has a solid state
disk and has a 4 GB RAM with a 2 GHz Core 2 Duo.

Chapter 5

[81]

Summary
I think this chapter covers quite a lot of the Python internals that you should care
about. If you have ever tackled writing a native Python module for a multithreaded
system, you have undoubtedly come across a lot of issues; when you get comfortable,
Cython really does make it so much simpler. If you use the gil keywords, we can
handle this in a more native way. The other major problem people have is the garbage
collector and making sure your reference counting is correct. And really, unless you
are a Python developer writing a module from scratch in C, this becomes a major task
that needs a lot of expertise and time dedicated to maintenance. With Cython, if you
know C and Python, you are sorted.

Chapter 6, Further Reading, is the final chapter, and I want to round out the book
with some final caveats and usages with Cython. I will talk about how you can
use Cython with Python 3 and PyPy. I We will also visit and look at Python projects
such as AutoPxd for Cython. Finally, I want to discuss some similar projects such
as Numba and SWIG versus Cython.

Further Reading
So far in this book, we have looked into both the basic and advanced topics of using
Cython. But it does not stop here; there are further topics that you can explore.
Consider other implementations of Python such as PyPy or making it work with
Python 3. Other topics we will discuss in this chapter are OpenMP support and type
casting and object initialization in Cython.

Keyword cpdef
Currently, we have seen two different function declarations in Cython, def and
cdef, to define functions. There is one more declaration: cpdef. def is a Python-only
function, so it is only callable from Python or Cython code blocks; calling from C
does not work. cdef is the opposite; this means that it's callable from C and not from
Python. For example, if we create a function such as:

cpdef public test (int x):
 …
 return 1

This will generate the following function prototype:
__PYX_EXTERN_C DL_IMPORT(PyObject) *test(int, int __pyx_skip_
dispatch);

The public keyword will make sure we generate the needed header so that we can
call it from C. Calling from pure Python, we can work with this as if it was just any
Python function. But the problem arises in C, where the return type is PyObject *,
so you need to understand what you are actually returning and consult the Python
API documentation to access the necessary data. I prefer keeping bindings between
the languages simpler, as this is OK for void functions and will be easier. But if you
want to return data, it can be frustrating. For example, from the above code snippet,
if we know that we are returning an int type, we could use the following:

long returnValue = PyInt_AsLong (test (1, 0))

Further Reading

[84]

Notice the extra argument __pyx_skip_dispatch. As this is an implementation-
specific argument, set this to 0 and your call should work the way you expect, taking
the first parameter as the argument specified. The reason we use long is that any
integer in Python is represented as long. You will need to refer to http://docs.
python.org/2/c-api/ for any other datatypes to get the data out of PyObject.

OpenMP support
OpenMP is a standard API in shared-memory parallel computing for languages;
it's used in several open source projects such as Image Magick (http://www.
imagemagick.org/) to try and speed up processing on large image manipulations.
Cython has some support for this compiler extension. But you must be aware that
you need to use compilers such as GCC or MSVC, which support OpenMP; Clang/
LLVM has no OpenMP support yet. This isn't really a place to explain when and
why to use OpenMP since it is really a vast subject, but you should check out the
following link:

http://docs.cython.org/src/userguide/parallelism.html

Object initialization
You may remember from our garbage collection example earlier in the book that
when defining a class in Cython, we have two initialization hooks for a class:

• __cinit__: Used for cdef initialization
• __init__: Used for normal Python initialization

Both of these have uses and sometimes you use both. The __cinit__ hook is used
before the Python __init__ hook and is only called once! By convention, this is used
to allocate memory for C structs wrapped as Python classes. But the __init__ hook
works just like any normal Python __init__ hook and you can call this as much as
you want to.

Compile time
At compile time, just like in C/C++, we have the C-preprocessor to make some
decisions on what gets compiled, mostly from conditionals, defines, and a mixture
of both. In Cython, we can replicate some of this behavior using IF, ELIF, ELSE, and
DEF. This is demonstrated as an example in the following code line:

DEF myConstant = "hello cython"

Chapter 6

[85]

We also have access to os.uname as predefined constants from the Cython compiler:

• UNAME_SYSNAME

• UNAME_NODENAME

• UNAME_RELEASE

• UNAME_VERSION

• UNAME_MACHINE

We can also run conditional expressions against these, such as:

IF UNAME_SYSNAME == "Windows":
 include "windows.pyx"
ELSE:
 include "unix.pyx"

You also have ELIF to use in conditional expressions. If you compare something like
this against some of your headers in C programs, you will see how you can replicate
basic C-preprocessor behavior in Cython. This gives you a quick idea of how you
could replicate C-preprocessor usage in your headers.

Python 3
Porting to Python 3 can be painful, but reading around the subject shows us that
people have had success porting their code to 3.x by simply compiling their module
with Cython instead of actually porting their code! With Cython, you can specify
the output to conform with the Python 3 API via:

10-4-5-52:~ redbrain$ cython -3 …

This will make sure you are outputting Python 3 stuff instead of the default
argument of -2, which generates for the 2.x standard.

Using PyPy
PyPy has become a popular alternative to the standard Python implementation.
More importantly, it is now being used by many companies (small and large)
in their production environments to boost performance and scalability. How does
PyPy differ from normal CPython? While the latter is a traditional interpreter,
the former is a full-fledged virtual machine. It maintains a just-in-time compiler
backend for runtime optimization on most relevant architectures.

Getting Cythonized modules to run on PyPy is dependent on their cpyext emulation
layer. This isn't quite complete and has many inconsistencies. But if you are brave
and up to trying it out, it's going to get better and better with each release.

Further Reading

[86]

AutoPXD
When it comes to writing Cython modules, most of your work will comprise
of getting your PXD declarations correct so that you can manipulate native code
correctly. This would be a great addition to the Cython compiler, as you would be
able to parse C/C++ headers and generate a PXD file. Part of my Google Summer
of Code project was to use the Python plugin system as part of GCC to reuse GCC
for parsing; the plugin could intercept the declarations and prototypes. The project
isn't readily available at the moment as it suffered some problems, one being that
the behavior of the plugin was dependent on the GCC version, and at that time,
GCC 4.7 and 4.8 were undergoing a lot of internal changes as there was a transition
of the language used, that is, from C to C++.

I intend to fully resurrect the project, polish it, and submit it back, as the GCC
plugin system is starting to behave itself in different versions more sanely. There has
been some effort in creating tools that are able to parse or compile headers to PXD
declarations; you can check them out at http://wiki.cython.org/AutoPxd.

I will give you an idea of what's available and their statuses. But the main issue
is developing, and more importantly, maintaining a fully compliant C and C++
parser. Also, utilizing a preprocessor is a main issue, which is why using GCC to
do all that for us is so attractive.

Pyrex versus Cython
Cython is a derivative of Pyrex, though Pyrex has a much lower development pace
compared to Cython; Pyrex also shows features similar to Cython. However, Pyrex
is more primitive; Cython provides us with much more powerful typing and checks
as well as optimizations and confidence with exception handling. It also provides
more features such as cpdef. In the end, if you want to write native Python modules,
you shouldn't really consider Pyrex anymore as it's mostly a dead project if you look
at it, especially with Cython being its successor.

SWIG versus Cython
Overall, if you consider SWIG (http://swig.org/) as a way to write a native
Python module, you could be fooled to think that Cython and SWIG are similar.
SWIG is a very simple tool but is mainly used for writing wrappers for language
bindings. For example, if you have some C code as follows:

int myFunction (int, const char *){ … }

Chapter 6

[87]

You would write the SWIG interface file as:

/* example.i */
%module example
%{
 extern int myFunction (int, const char *);
...
%}

Compile this with the following:

$ swig -python example.i

You can compile and link the module as you would do for a Cython output since this
generates the necessary C code. This is fine if you want a basic module to simply call
into C from Python. But Cython provides users with so much more. With SWIG, you
will need to generally write wrappers for everything, even small interface functions
going between each language.

Cython is much more developed and optimized, and it truly understands how
to work with C types, memory management, and how to handle exceptions. With
SWIG, you cannot manipulate data, you simply call into functions on the C side from
Python. In Cython, we can call C from Python and vice versa. The type conversion is
just so powerful; but not only this, we can also wrap C types into real Python classes
to make C data feel Pythonic, which is very important when wanting to feel native
to the language.

For example, remember the XML example from Chapter 5, Advanced Cython, where
we were able to drop in the import replacement. This is possible because of Cython's
type conversion, and the API is very Pythonic. Not only can we wrap C types into
Pythonic objects, we also let Cython generate the boilerplate necessary for Python to
do this without wrapping things into a class. What's more is that Cython produces
very optimized code for the user.

Cython and NumPy
NumPy is a scientific library designed to provide functionality similar to or on par
with MATLAB, which is a paid proprietary mathematics package. NumPy has a lot
of popularity with Cython users since you can eek out more performance from your
highly computational code by using C types. In Cython, you can import this library
as follows:

import numpy as np
cimport numpy as np

np.import_array()

Further Reading

[88]

And you can access full Python APIs such as:

np.PyArray_ITER_NOTDONE

So, you can integrate with iterators at a very native area of the API. This allows
NumPy users to get a lot of speed when working with native types via something
like the following:

cdef double * val = (<double*>np.PyArray_MultiIter_DATA(it, 0))[0]

We can cast the data from the array to double and it's a cdef type in Cython to work
with now. For more information and NumPy tutorials, visit the following link:

http://wiki.cython.org/tutorials/numpy

Numba versus Cython
Numba is another way of getting your Python code to become almost native to your
host system by outputting the code to be run on LLVM seamlessly. Numba makes
use of decorators such as:

@autojit
def myFunction (): ...

Numba also integrates with NumPy. On the whole, it sounds great. Unlike Cython,
you only apply decorators to pure Python code and it does everything for you, but
you may find that the optimizations will be fewer and not as powerful.

Numba does not integrate with C/C++ to the extent that Cython does. If you want
to integrate, you need to use Foreign Function Interfaces (FFI) to wrap calls. You also
need to define structs and work with C types in Python code in a very abstract sense
to the point at which you don't really have much control as compared with Cython.

Numba is mostly comprised of decorators, such as @locals, from Cython. But in
the end, all this creates just-in-time-compiled functions with a proper native function
signature. Since you can specify the typing of function calls, this should provide
more native speed when calling and returning data from functions. I would argue
that the optimizations you will get as compared to Cython will be minimal as you
might need a lot of abstractions to talk to native code, although calling in a lot
of functions might be a faster technique.

Chapter 6

[89]

Just for reference, LLVM is a low-level virtual machine; it's a compiler development
infrastructure where projects can use it as a JIT compiler. The infrastructure can be
extended to run things such as pure Java bytecode and even Python via Numba. It
can be used for almost any purpose with a nice API for development. As apposed
to GCC (an ahead-of-time compiler infrastructure), which implements a lot of static
analysis ahead of time before code is run, LLVM allows code to change at runtime.

For more information on Numba and LLVM, you can refer
to the following links:

• http://numba.pydata.org/

• http://llvm.org/

Parakeet and Numba
Parakeet is another project that works alongside Numba, adding extremely specific
optimizations to Python code that use lots of nested loops and parallelism. As with
OpenMP, where it's really cool, Numba too requires using annotations on your code to
do all this for the programmer. The downside is that you won't just magically optimize
any Python code, the optimization that Parakeet does is on very specific sets of code.

GCCPy Python frontend to GCC
This is my pet project, which is a full-fledged ahead-of-time Python compiler that
takes pure Python code on domain-specific sets and compiles it to an assembler,
just like you would with C code. The project shows signs of working on basic sets
of Python, in the last few months of 2013, as everything has been implemented from
scratch (parser and runtime). What's interesting with this approach to Python is that
your code is fully native; instead of the .pyc files, you have full-fledged .so shared
objects on your Python modules. Therefore, deployment is simpler on embedded
platforms; there is no need for virtual machines and hence there is lower memory
usage. Consider virtual machines or interpreters that must handle so much more
than compiling code to bytecode; if you compile ahead of time at runtime, you don't
care about how the execution occurs because the runtime trusts the compiler to
generate proper code.

Another benefit is that there have been a lot of speed ups to gain from by being fully
native. This is still not ready for any real use. It has been inspired by PHC, which
was a PHP-to-native compiler, but had some problems mostly due to doing even
more from scratch by not re-using a compiler backend like GCC or LLVM. GCC also
performs all of its optimizations on your Python code and backend optimizations
such as instruction scheduling with -mtune core options with GCC.

Further Reading

[90]

For more information on this refer the following links:
• http://gcc.gnu.org/wiki/PythonFrontEnd
• https://github.com/redbrain/gccpy

Links and further reading
Some useful links for referencing are:

• http://wiki.cython.org/FAQ

• http://wiki.cython.org/

• http://cython.org/

• http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

• http://swig.org/

• http://www.numpy.org/

• http://wiki.cython.org/tutorials/numpy

• http://en.wikipedia.org/wiki/NumPy

• http://llvm.org/

• http://numba.pydata.org/

• http://numba.pydata.org/numba-doc/0.9/interface_c.html

• http://gcc.gnu.org/

Summary
If you've read this far, you should now be familiar with Cython to such an extent
that you can embed it with C bindings and even make some of your pure Python
code more efficient. I've shown you how to apply Cython against an actual open
source project, and even how to extend native software with a Twisted web server!
As I kept saying through out the book, it makes C feel as though there are endless
possibilities to control logic or that you can extend the system with the plethora
of Python modules available. Thanks for reading.

Index
Symbols
~Car destructor 63
__cinit__ hook 37, 84
@cython.locals annotation 77
__dealloc__ hook 38
-emebed option 49
-enable-python switch 32, 40
__init__ hook 37, 84
__str__ hook 38

A
annotations

used, for Cython typing 77, 78
args structure 45
atomic instructions 70
AutoPXD

about 86
URL 86

B
bool type 58, 66
BSD libc extension 44
build systems

integrating with 31-33
build systems, integrating

GNU/Autotools 32, 33
Python distutils 31

C
callback_client_connect function 27
Car class 66
Caveat 28
C++ bool type 66

C++ classes 62
C const 59
C++ constructs

about 61
allocation 63
bool type 66
classes 62
exceptions 64, 65
namespaces 61, 62
new keyword 63
overloading 66, 67
static class member attribute 68
templates 67

cdef class 37
cdef Cython functions 28
cdef function 22, 56, 77, 78
cdef keyword 22
cdef struct 62
C++ exceptions

about 64
handling 64, 65

CFLAGS option 42
cfunc annotation 78
C functions

calling in 68
C++ functions

calling in 68
classes 62
classobj foobar 53
cmd_entry definition 39
cmd_entry initialization hook 47
cmd_entry_python extern declaration 48
cmd-kill-window.c command 39
cmd_table command 38
C++ namespaces

about 61, 62

[92]

using 69
compile time 84, 85
ConfigParser standard libraries 15
configure -enable-python option 41
cpdef feature 86
cpdef function 77
cpdef keyword 83, 84
cpp class 77
cppclass name [T] syntax 67
cpyext emulation layer 85
C Python exceptions

about 56, 57
URL 57

C sockets
creating, libevent used 26, 27

C sockets, creating
Cython callbacks 28
Cython PXD 28, 29
messaging engine 28
Python messaging engine 29, 30

C types
for loops 57

C++ usage
caveats 68

C++ usage, caveats
C functions, calling in 68
C++ functions, calling in 68
namespaces 69
Python distutils 69

cygdb
about 51
running 52-54

Cython
about 7
callbacks 28
compile time 84, 85
installing 8
pure Python code 35, 36
pure Python code, example 35
PXD 28, 29
typing, via annotations 77, 78
unit testing 75, 76
used, for Python code compiling 49
versus Numba 88
versus Pyrex 86
versus SWIG 86, 87

Cython callbacks 28

Cython caveats
* operator 55
about 54
bool type 58
C const 59
C Python exceptions 56, 57
C types for loops 57
multiple Cython files 59
struct, initializing 59
type checking 55

Cython cdef
about 15, 16
linking models 16, 17
public keyword 17, 18
Python, logging into 18-20
syntax 21
usage reference 21, 22, 24

Cython cdef syntax
enums 24
structs 22-24

Cython installation
about 8
code examples 9
emacs mode 8

Cython keywords
about 71
gil keyword 71
nogil keyword 71

Cython PXD 28, 29
Cython support

OpenMP 84

D
data

parsing 78-80

E
emacs mode 8
execc hook 40
exec hook 44
extern void initcythonfile (void) function 17

F
Fedora 8
Foreign Function Interfaces (FFI) 88

[93]

for loops
on C types 57, 58

func function 52, 53
function pointers 25

G
garbage collector, Python 37, 38
GDB

about 51
cygdb, running 52-54
using on code 51

gdb commands 52
getopt usage 15
GIL

about 16 , 69
atomic instructions 70
Cython keywords 71
messaging server 71-74
Read/write lock 70

Global Interpreter Lock. See GIL
globals command 53
GNU/Autotools 32, 33
GNU Project Debugger. See GDB

H
handleEvent event 30
Hello World 9, 10

I
Image Magick

URL 84
info () macro 18

L
libevent

about 26
used, for creating C sockets 26-30

libevent callbacks 74
libevent socket server 72
LIBS option 42
LinkedList template class 67
linking models

about 16
fully embedded Python 16

fully embedded Python, figure 16
Python shared object module 17
Python shared object module, figure 17

LLVM
URL 89

log_debug function 47

M
Mac 8
main() method 29
messaging engine 28
messaging server

using 71
web server, embedding 71-74

multiple Cython files 59
myFunc function 64

N
namespace keyword 61, 62
new keyword

about 63
allocation 63

Numba
URL 89

NumPy
about 87, 88
tutorials, URL 88

O
object

initializing 84
OpenMP support 84
overloading 66, 67
own module

calling, into C code 10-13
writing 10, 11

P
printf() method 18
printStruct function 23
public attributes 62
public keyword

about 17, 83
using 17, 18

[94]

PYINCS variable 32
pyinit_server function 28
PYLIBS variable 32
PyObject 7
PyPy

about 85
using 85

Pyrex
versus Cython 86

Python
about 7
bindings 36
embedding 42
garbage collector 37, 38
logging into 18-20
messaging engine 29, 30
URL 84

Python 3
AutoPXD 86
Cython 87, 88
NumPy 87, 88
porting to 85
PyPy, using 85
Pyrex versus Cython 86
SWIG versus Cython 86, 87

Python code
compiling 49

Python ConfigParser
about 20
working 20, 21

Python distutils
about 31
using 69

Python.h header 16
Python IRC notifier

about 75
URL 75

Python messaging engine
about 29
working 30

Python modules
calling into 60
size, adjusting 60

Python threading
about 69
atomic instructions 70
Cython keywords 71

messaging server 71-74
Read/write lock 70

R
range function 57
Read/write lock 70
reference links 90
returns annotation 78
roster class 29
rosterEvent event 30
roster.handleEvent () method 30
RuntimeError exception 65

S
scalable asynchronous server

about 26
diagram 26

static class member attribute 68
static keyword 68
struct

initializing 59
struct args definition 44
struct cmd_entry

cythonizing 43-46
struct cmd_entry definition 44
subclassing

preventing 77
SWIG

URL 86
versus Cython 86, 87

T
templates 67
testStruct function 23
Tmux

build system 40, 41
cmd_table command 38
extending 38-40
URL 38

Tmux build system
about 40
working 41

Tmux command
implementing 46, 47

type checking

[95]

V
VA_ARGS function 47
void * pointer 55

about 55
example 55

Typedefs 25

U
Ubuntu/Debian 8

Thank you for buying
Learning Cython Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks

3. Manage your code with distributed version
control

ASP.NET Site Performance
Secrets
ISBN: 978-1-84969-068-3 Paperback: 456 pages

Simple and proven techniques to quickly speed up
your ASP.NET website

1. Speed up your ASP.NET website by identifying
performance bottlenecks that hold back your
site's performance and fixing them

2. Tips and tricks for writing faster code and
pinpointing those areas in the code that matter
most, thus saving time and energy

3. Drastically reduce page load times

Please check www.PacktPub.com for information on our titles

Python 3 Object Oriented
Programming
ISBN: 978-1-84951-126-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming
in Python using this step-by-step tutorial

2. Design public interfaces using abstraction,
encapsulation, and information hiding

3. Turn your designs into working software
by studying the Python syntax

4. Raise, handle, define, and manipulate
exceptions using special error objects

Python Geospatial Development
ISBN: 978-1-84951-154-4 Paperback: 508 pages

Build a complete and sophisticated mapping
application from scratch using Python tools
for GIS development

1. Build applications for GIS development using
Python

2. Analyze and visualize Geospatial data

3. Comprehensive coverage of key GIS concepts

4. Recommended best practices for storing spatial
data in a database

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Cython Won't Bite
	What this book is
	What this book isn't
	Installing Cython
	The emacs mode
	Getting the code examples

	Hello World
	Module on your own
	Calling into your C code
	Type conversion

	Summary

	Chapter 2: Understanding Cython
	Cython cdef
	Linking models
	The public keyword
	Logging into Python

	Python ConfigParser
	Cython cdef syntax and usage reference
	Structs
	Enums

	Typedef and function pointers
	Scalable asynchronous servers
	C sockets with libevent
	What is libevent?
	Messaging engine
	Cython callbacks
	Cython PXD
	Python messaging engine

	Integration with build systems
	Python distutils
	GNU/Autotools

	Summary

	Chapter 3: Extending Applications
	Cython pure Python code
	Python bindings
	Python garbage collector
	Extending Tmux
	Tmux build system

	Embedding Python
	Cythonizing struct cmd_entry
	Implementing a Tmux command
	Hooking everything together
	Compiling pure Python code
	Summary

	Chapter 4: Debugging Cython
	Using GDB on your code
	Running cygdb

	General Cython caveats
	Type checking
	No * operator
	Python exceptions in C
	For loops on C types
	Bool type
	No C const
	Multiple Cython files
	Initializing struct

	Calling into pure Python modules
	Keeping call stacks small and pure

	Summary

	Chapter 5: Advanced Cython
	C++ constructs
	Namespaces
	Classes
	C++ new keyword and allocation
	Exceptions
	Bool type
	Overloading
	Templates
	Static class member attribute

	Caveat on C++ usage
	Calling in C and C++ functions
	Namespaces
	Python distutils

	Python threading and GIL
	Atomic instructions
	Read/write lock
	Cython keywords
	Messaging server revisited

	More inspiration
	Messaging server working with SQL
	Python IRC notifier
	Unit testing the native code
	Preventing subclassing
	Cython typing via annotations

	Parsing large amounts of data
	Summary

	Chapter 6: Further Reading
	Keyword cpdef
	OpenMP support
	Object initialization
	Compile time
	Python 3
	Using PyPy
	AutoPXD
	Pyrex versus Cython
	SWIG versus Cython
	Cython and NumPy
	Numba versus Cython
	Parakeet and Numba
	Links and further reading

	Summary

	Index

