
www.allitebooks.com

http://www.allitebooks.org

Learning Python Design
Patterns

A practical and fast-paced guide exploring
Python design patterns

Gennadiy Zlobin

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Python Design Patterns

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-337-8

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Gennadiy Zlobin

Reviewers
David Corne

Kamilla Holanda Crozara

Sakis Kasampalis

Acquisition Editors
Kunal Parikh

Llewellyn Rozario

Commissioning Editor
Sruthi Kutty

Technical Editors
Vrinda Nitesh Bhosale

Rohit Kumar Singh

Copy Editors
Alisha Aranha

Sarang Chari

Janbal Dharmaraj

Dipti Kapadia

Gladson Monteiro

Karuna Narayanan

Project Coordinator
Suraj Bist

Proofreader
Simran Bhogal

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gennadiy Zlobin works as Lead Software Engineer and Technical Leader in the
Russian music service, Zvooq.ru. His current employer is Zvooq Ltd. He has been
using Python as the primary language for more than 4 years, enjoying its elegance and
power every day. His professional interests include high-load software architectures,
good engineering practices, Android OS, and natural language processing.

Previously, he worked for the company that had the first search engine in Russia,
called Rambler. He was engaged in airline tickets' meta search service and Rambler's
index page.

I would like to thank my wife, Jane, for her patience and support.
I really appreciate it.

I am also grateful to my parents, Galina and Vitaliy for believing
in me. I love all of you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

David Corne is a professional Software Engineer based in Birmingham, UK.
He works for an engineering company that makes CAD/CAM software.
The application he is working on is written in C++ with a C# view layer in order
to use WPF.

However, he has a keen interest in Python. He has made many varied applications in
Python. These range from a real-time updating editor for Markdown, to a utility for
dice rolling, and PDF reading.

Kamilla Holanda Crozara is in her last year of college and is studying Software
Engineering and works at National Institute of Standards and Technology as a Guest
Researcher. She started to learn Python around two years ago, and it's her favorite
language although she has some experience with C, Java, and Perl languages.
She's a Linux user and has a special interest in contributing towards open
source projects.

Sakis Kasampalis is based in the Netherlands, where he currently works as
a Software Engineer for a location-based content B2B provider. When he is not
writing C++ and Rails code for a living, Sakis enjoys playing with his mbed
microcontroller and studying about programming, software engineering,
and operating systems.

He is not dogmatic about particular programming languages and tools; his principle
is that the right tool should be used for the right job. One of his favorite tools is
Python because he finds it very productive.

Among his FOSS activities is maintaining a GitHub repository related
to implementing design patterns in Python, which is available at
https://github.com/faif/python-patterns.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Model-View-Controller	 7

Model – the knowledge of the application	 8
View – the appearance of knowledge	 8
Controller – the glue between the model and view	 9
Benefits of using the MVC	 10
Implementation in Python	 10
Summary	 16

Chapter 2: Creating Only One Object with the Singleton Pattern	 17
A module-level singleton	 18
A classic singleton	 19
The borg singleton	 20
Implementation in Python	 21
Summary	 26

Chapter 3: Building Factories to Create Objects	 27
The Factory Method	 29

Advantages of using the Factory Method pattern	 30
The Factory Method implementation	 30

Abstract Factory	 35
Advantages of using the Abstract Factory pattern	 36
Abstract Factory implementation	 37

Abstract Factory versus Factory Method	 40
Summary	 41

Chapter 4: The Facade Design Pattern	 43
The Facade design pattern 	 43

Problems solved by the Facade pattern	 45
Advantages of the Facade design pattern	 45

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Facades in Python's standard library	 45
Implementation in Python	 47
Summary	 51

Chapter 5: Facilitating Object Communication with Proxy
and Observer Patterns	 53

Proxy design pattern	 54
Problems solved by the Proxy pattern	 54
The use of the Proxy pattern	 55
Advantages and disadvantages of the Proxy design pattern	 55
Implementation in Python	 55

Observer design pattern	 59
Problems solved by the Observer pattern	 60
Use of the Observer pattern	 61
Advantages of the Observer pattern	 61
Implementation in Python	 61

Summary	 65
Chapter 6: Encapsulating Calls with the Command Pattern	 67

Command Pattern terminology	 68
Use cases of the Command design pattern	 69
Advantages and disadvantages of the Command design pattern	 69
Implementation in Python	 70
Summary	 75

Chapter 7: Redefining Algorithms with the Template Method	 77
The Template Method design pattern	 77

The benefits of the Template Method design pattern	 78
Using hooks	 79

Implementation in Python	 79
Summary	 85

Index	 87

www.allitebooks.com

http://www.allitebooks.org

Preface
Python is a great programming language, elegant and concise, and at the
same time, very powerful. It has all the essential object-oriented features and
can be used to implement design patterns. A design pattern is a general reusable
solution to a commonly occurring problem within a given context. In everyday
work, a programmer faces issues that have been solved so many times in the past
by other developers that they have evolved common patterns to solve them.

The design pattern is not a concrete step to solve a problem, such as an algorithm;
it is rather a practice or a description of how to solve a problem that can be used in
different situations and implemented in different languages.

The design pattern accelerates the development process, providing a proven practice
to solve some type of problem. It is often more preferable than using an unproven
one because invisible problems often occur during the implementation, and the
solving of unforeseen problems slows down the development dramatically.

Besides that, it's a tool of communication between programmers. It's much easier to
say, "We use here the observer design pattern" rather than describing what the code
actually does.

Studying design patterns is a good next step on the road to becoming a great
developer, and this book is a good jumpstart.

What this book covers
Chapter 1, Model-View-Controller, describes what the model, view, and controller are,
how to use them together, and ends with the implementation of a very simple URL
shortening service.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 2, Creating Only One Object with the Singleton Pattern, describes ways to
create a class whose instantiated object will only be one throughout the lifecycle
of an application.

Chapter 3, Building Factories to Create Objects, describes the simple factory, Factory
Method, Abstract Factory patterns, and how to use them to separate object creation.

Chapter 4, The Facade Design Pattern, is about simplifying the interface of a complex
subsystem to facilitate the development.

Chapter 5, Facilitating Object Communication with Proxy and Observer Patterns, is
a pattern for implementing a publisher-subscriber model and a proxy, which
provides an object that controls access to another object.

Chapter 6, Encapsulating Calls with the Command Pattern, describes a pattern that
encapsulates an action and its parameters.

Chapter 7, Redefining Algorithms with the Template Method, is about a pattern
that provides the ability to create variations of the algorithm with minimum
modifications.

What you need for this book
You will require a Python 2.7 installation. It's usually available out of the box
on most Unix and Linux distributives and can be downloaded and installed on
Windows from http://python.org/.

Who this book is for
This book is for developers with an intermediate Python knowledge who want to
make learning design patterns their next step in their development career.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "As we see, Atom uses the <entry>
tag instead of the <item> tag, link is stored in attribute instead of text node."

Preface

[3]

A block of code is set as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<rss version="2.0">
 <channel>
 <title>A RSS example</title>
 <link>http://example.com</link>
 <description>Description of RSS example</description>
 <item>
 <title>The first news</title>
 <link>http://example.com/first</link>
 <description>Some description of the first news</description>
 </item>
 <item>
 <guid>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <title>The second news</title>
 <link>example.com/second</link>
 <description>Some description of the second
 news</description>
 <pubDate>Wed, 30 Sep 2013 13:00:00 GMT</pubDate>
 </item>
 </channel>
</rss>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

{
 "main": {
 "temp": 280.28,

 },
 "dt_txt": "2013-10-24 00:00:00"
}

Any command-line input or output is written as follows:

$ python controller.py

New terms and important words are shown in bold as: "The other frequent
use is to pass the Subject instance itself instead of data."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Model-View-Controller
Many applications start from something small, such as several hundred lines of code
prototype of a toy application written in one evening. When you add new features
and the application code clutters, it becomes much harder to understand how it
works and to modify it, especially for a newcomer. The Model-View-Controller
(MVC) pattern serves as the basis for software architecture that will be easily
maintained and modified.

The main idea of MVC is about separating an application into three parts: model,
view, and controller. There is an easy way to understand MVC—the model is the
data and its business logic, the view is the window on the screen, and the controller
is the glue between the two.

While the view and controller depend on the model, the model is independent of the
presentation or the controller. This is a key feature of the division. It allows you to
work with the model, and hence, the business logic of the application, regardless of
the visual presentation.

The following diagram shows the flow of interaction between the user, controller,
model, and view. Here, a user makes a request to the application and the controller
does the initial processing. After that it manipulates the model, creating, updating,
or deleting some data there. The model returns some result to the controller,
that passes the result to view, which renders data to the user.

Model-View-Controller

[8]

The MVC pattern gained wide popularity in web development. Many Python web
frameworks, such as web2py, Pyramid, Django (uses a flavor of MVC called MVP),
Giotto, and Kiss use it.

Let's review key components of the MVC pattern in more detail.

Model – the knowledge of the application
The model is a cornerstone of the application because, while the view and controller
depend on the model, the model is independent of the presentation or the controller.

The model provides knowledge: data, and how to work with that data. The model
has a state and methods for changing its state but does not contain information on
how this knowledge can be visualized.

This independence makes working independently, covering the model with tests
and substituting the controllers/views without changing the business logic of
an application.

The model is responsible for maintaining the integrity of the program's data,
because if that gets corrupted then it's game over for everyone.

The following are recommendations for working with models:

•	 Strive to perform the following for models:
°° Create data models and interface of work with them
°° Validate data and report all errors to the controller

•	 Avoid working directly with the user interface

View – the appearance of knowledge
View receives data from the model through the controller and is responsible for its
visualization. It should not contain complex logic; all such logic should go to the
models and controllers.

If you need to change the method of visualization, for example, if you need your
web application to be rendered differently depending on whether the user is using
a mobile phone or desktop browser, you can change the view accordingly. This can
include HTML, XML, console views, and so on.

Chapter 1

[9]

The recommendation for working with views are as follows:

•	 Strive to perform the following for views:
°° Try to keep them simple; use only simple comparisons and loops

•	 Avoid doing the following in views:

°° Accessing the database directly
°° Using any logic other than loops and conditional statements (if-then-

else) because the separation of concerns requires all such complex
logic to be performed in models

Controller – the glue between the model
and view
The direct responsibility of the controllers is to receive data from the request and
send it to other parts of the system. Only in this case, the controller is "thin" and
is intended only as a bridge (glue layer) between the individual components of
the system.

Let's look at the following recommendations for working with controllers:

•	 Strive to perform the following in controllers:
°° Pass data from user requests to the model for processing, retrieving

and saving the data
°° Pass data to views for rendering
°° Handle all request errors and errors from models

•	 Avoid the following in controllers:

°° Render data
°° Work with the database and business logic directly

Thus, in one statement:

We need smart models, thin controllers, and dumb views.

Model-View-Controller

[10]

Benefits of using the MVC
MVC brings a lot of positive attributes to your software, including the following:

1.	 Decomposition allows you to logically split the application into three
relatively independent parts with loose coupling and will decrease
its complexity.

2.	 Developers typically specialize in one area, for example, a developer might
create a user interface or modify the business logic. Thus, it's possible to limit
their area of responsibility to only some part of code.

3.	 MVC makes it possible to change visualization, thus modifying the view
without changes in the business logic.

4.	 MVC makes it possible to change business logic, thus modifying the model
without changes in visualization.

5.	 MVC makes it possible to change the response to a user action (clicking on
the button with the mouse, data entry) without changing the implementation
of views; it is sufficient to use a different controller.

Implementation in Python
For a practical example, we'll create a very simple but working URL shortening
service with a Flask micro framework that is developed by Pocoo.

Flask is a micro framework that is intended to create simple and short applications.
It provides API for handling typical web-development tasks. On the other hand,
it does not have object-relational mapping, form validations, and other features
typical to bigger frameworks such as Django or Pyramid. Flask is very expansible
with third-party libraries and modules. It does not use MVC out of the box, but let's
us take advantage of its high customization and allows us to use the MVC pattern
in Flask.

First, you should have Flask installed. Any one of the following commands should
be sufficient to install Flask:

•	 $ sudo pip install Flask

•	 $ sudo easy_install Flask

Let's create a model that contains all our data operations and business logic.

We create the Url class that represents the URL entity. This class will have two
properties: full_url and short_url. If the user accessed our website with a short
URL, we will find the Url instance using short_url and redirect the user there.

Chapter 1

[11]

The shorten method provides an interface method for the controller. The controller
will call this method by passing the full URL. The model will generate a short URL
and will save it for further retrieval.

The get_by_short_url method provides the second interface method for the
controller. The controller will call this method by passing the short_url value,
and the model will retrieve the Url instance with short_url and return it to
the controller.

The other methods are the helpers to process the business logic, for example,
to generate a short URL, as shown in the following code, in order or to save the Url
instance and retrieve it from storage.

The code for models.py is as follows:

import pickle

class Url(object):
 @classmethod
 def shorten(cls, full_url):
 """Shortens full url."""

 # Create an instance of Url class
 instance = cls()
 instance.full_url = full_url
 instance.short_url = instance.__create_short_url()
 Url.__save_url_mapping(instance)
 return instance

 @classmethod
 def get_by_short_url(cls, short_url):
 """Returns Url instance, corresponding to short_url."""
 url_mapping = Url.load_url_mapping()
 return url_mapping.get(short_url)

 def __create_short_url(self):
 """Creates short url, saves it and returns it."""
 last_short_url = Url.__load_last_short_url()
 short_url = self.__increment_string(last_short_url)
 Url.__save_last_short_url(short_url)
 return short_url

 def __increment_string(self, string):
 """Increments string, that is:
 a -> b

www.allitebooks.com

http://www.allitebooks.org

Model-View-Controller

[12]

 z -> aa
 az -> ba
 empty string -> a

 """
 if string == '':
 return 'a'

 last_char = string[-1]

 if last_char != 'z':
 return string[:-1] + chr(ord(last_char) + 1)

 return self.__increment_string(string[:-1]) + 'a'

 @staticmethod
 def __load_last_short_url():
 """Returns last generated short url."""
 try:
 return pickle.load(open("last_short.p", "rb"))
 except IOError:
 return ''

 @staticmethod
 def __save_last_short_url(url):
 """Saves last generated short url."""
 pickle.dump(url, open("last_short.p", "wb"))

 @staticmethod
 def __load_url_mapping():
 """Returns short_url to Url instance mapping."""
 try:
 return pickle.load(open("short_to_url.p", "rb"))
 except IOError:
 return {}

 @staticmethod
 def __save_url_mapping(instance):
 """Saves short_url to Url instance mapping."""
 short_to_url = Url.__load_url_mapping()
 short_to_url[instance.short_url] = instance
 pickle.dump(short_to_url, open("short_to_url.p", "wb"))

Chapter 1

[13]

Let's create our view. The view is responsible for rendering data from the model to
the end users, and here we have several options. The first option is to create another
class where every method is responsible to perform simple logic and call templates
to render.

The second option is to use the templates directly. Flask uses the Jinja2 template
engine that provides use of template tags. For example, to perform comparisons,
we can use the following:

{% if var == True %}
...//some code
{% endif %}

Jinja2 also allows us to use passed variables from the controller, iterate loops,
and inherit one template from another. So let's use this smart template engine as
views, and write a couple of views to render to the user.

Create a views directory and the main_page.html and success.html files should be
created in views directory.

The main_page.html file is the main page of the application that has a form with
an input field to enter the full URL of website and the submit button, when clicked,
sends full URL to controller.

The code for main_page.html is as follows:

<form action="/shorten/">
 <label>
 <input type="text" name="url" value="" />
 Link to shorten
 </label>
 <input type="submit" value="OK"/>
</form>

The success.html page is a view for rendering a success message with a short
version of the URL that the user asked to shorten.

The code for the success.html page looks like this:

Congratulations!

Your url: {{ short_url }}

The controller will need to process three types of requests:

•	 Render the main page
•	 Process the request to shorten the URL
•	 Process the request to convert the URL from short to full and then redirect it

Model-View-Controller

[14]

In the following code, the process function renders the main page. Please note how
it works: it takes the full URL from the request arguments, passes them to the model,
and then passes the returned data to the view.

The redirect_to_full_url method takes the short URL from the requests, gets the
full URL from the model, makes very simple validations, and redirects the user to
the full URL.

The code for controller.py is as follows:

Redirect function is used to forward user to full url if he came
from shortened
Request is used to encapsulate HTTP request. It will contain request
methods, request arguments and other related information
from flask import redirect, render_template, request, Flask
from werkzeug.exceptions import BadRequest, NotFound

import models

Initialize Flask application
app = Flask(__name__, template_folder='views')

@app.route("/")
def index():
 """Renders main page."""
 return render_template('main_page.html')

@app.route("/shorten/")
def shorten():
 """Returns short_url of requested full_url."""
 # Validate user input
 full_url = request.args.get('url')
 if not full_url:
 raise BadRequest()

 # Model returns object with short_url property
 url_model = models.Url.shorten(full_url)
 url_model.short_url

 # Pass data to view and call its render method
 short_url = request.host + '/' + url_model.short_url
 return render_template('success.html', short_url=short_url)

Chapter 1

[15]

@app.route('/<path:path>')
def redirect_to_full(path=''):
 """Gets short url and redirects user to corresponding full url if
found."""
 # Model returns object with full_url property
 url_model = models.Url.get_by_short_url(path)

 # Validate model return
 if not url_model:
 raise NotFound()

 return redirect(url_model.full_url)

if __name__ == "__main__":
 app.run(debug=True)

To run the application, place these files in one directory, open the terminal, run the
following command, and go to http://127.0.0.1:5000 in your browser:

$ python controller.py

You will get a view similar to the following screenshot:

Now fill the form with a URL, for example, http://www.packtpub.com, click on
OK, and see its shortened version.

If you copy its shortened version and paste it to your browser, you should be
redirected to www.packtub.com.

http://google.com/

Model-View-Controller

[16]

Summary
It is important to separate the areas of responsibility to maintain loose coupling
and for the maintainability of the software. MVC divides the application into three
relatively independent parts: model, view, and controller. The model is all about
knowledge, data, and business logic. The view is about presentation to the end users,
and it's important to keep it simple. The controller is the glue between the model and
the view, and it's important to keep it thin. In the practical example, you created a
simple but fully-functional URL shortening service with the MVC pattern.

In this chapter, you used the pickle module for conserving the application data.
But what if you were to use the database to do it? You would need to connect to the
database. Connecting to the database is a heavy operation, so it is better to connect
to it once and then just use this connection during the working of the application. In
the next chapter, you will learn about the Singleton pattern that allows you to create
only one object even if the instantiation has been done several times.

Creating Only One Object
with the Singleton Pattern

There are situations where you need to create only one instance of data throughout
the lifetime of a program. This can be a class instance, a list, or a dictionary,
for example. The creation of a second instance is undesirable. This can result in
logical errors or malfunctioning of the program. The design pattern that allows you
to create only one instance of data is called singleton. In this chapter, you will learn
about module-level, classic, and borg singletons; you'll also learn about how they
work, when to use them, and build a two-threaded web crawler that uses a singleton
to access the shared resource.

Singleton is the best candidate when the requirements are as follows:

•	 If you need to control concurrent access to a shared resource
•	 If you need a global point of access for the resource from multiple or

different parts of the system
•	 If you need to have only one object

Some typical use cases of a singleton are:

•	 The logging class and its subclasses (global point of access for the logging
class to send messages to log)

•	 Printer spooler (your application should only have a single instance of the
spooler in order to avoid having a conflicting request for the same resource)

•	 Managing a connection to a database
•	 File manager
•	 Retrieving and storing information on external configuration files
•	 Read-only singletons storing some global states (user language, time, time

zone, application path, and so on)

Creating Only One Object with the Singleton Pattern

[18]

There are several ways to implement singletons. We will look at a module-level
singleton, classic singletons, and a borg singleton.

A module-level singleton
All modules are singletons by nature because of Python's module importing steps:

1.	 Check whether a module is already imported.

2.	 If yes, return it.

3.	 If not, find a module, initialize it, and return it.

4.	 Initializing a module means executing code, including all module-level
assignments. When you import the module for the first time,
all initializations are done; however, if you try to import the module for
the second time, Python will return the initialized module.
Thus, the initialization will not be done, and you get a previously imported
module with all of its data

So, if you want to quickly make a singleton, use the following code and keep the
shared data as the module attribute:

 singletone.py:
 only_one_var = "I'm only one var"

 module1.py:
 import single tone
 print singleton.only_one_var
 singletone.only_one_var += " after modification"
 import module2

 module2.py:
 import singletone
 print singleton.only_one_var

Here, if you try to import a global variable in a singleton.py module and change its
value in the module1.py module, module2.py will recieve a changed variable.

This function is quick and sometimes is all you need; however, we need to consider
the following points:

•	 It's pretty error-prone. For example, if you happen to forget the global
statements, variables local to the function will be created and the module's
variables won't be changed, which is not what you want.

Chapter 2

[19]

•	 It's ugly, especially if you have a lot of objects that should remain as singletons.
•	 It pollutes the module namespace with unnecessary variables.
•	 They don't permit lazy allocation and initialization; all global variables will

be loaded during the module import process.
•	 It's not possible to reuse the code because you cannot use the inheritance.
•	 It has no special methods and no object-oriented programming benefits at all.

A classic singleton
In a classic singleton in Python, we check whether an instance is already created.
If it is created, we return it; otherwise, we create a new instance, assign it to a class
attribute, and return it.

Let's try to create a dedicated singleton class:

class Singleton(object):
 def __new__(cls):
 if not hasattr(cls, 'instance'):
 cls.instance = super(Singleton, cls).__new__(cls)
 return cls.instance

Here, before creating the instance, we check for the special __new__ method that is
called right before __init__ if we had created an instance earlier. If not, we create a
new instance; otherwise, we return the already created instance.

Let's check how it works:

>>> singleton = Singleton()
>>> another_singleton = Singleton()
>>> singleton is another_singleton
True
>>> singleton.only_one_var = "I'm only one var"
>>> another_singleton.only_one_var
I'm only one var

Try to subclass the Singleton class with another one:

class Child(Singleton):
 pass

If some class is a successor of Singleton, all successor's instances should also be the
instances of Singleton, thus sharing its states. But this doesn't work, as illustrated in
the following code:

 >>> child = Child()
>>> child is singleton
>>> False

Creating Only One Object with the Singleton Pattern

[20]

>>> child.only_one_var
AttributeError: Child instance has no attribute 'only_one_var'

To avoid this situation, the borg singleton is used.

The borg singleton
Borg is also known as monostate. In the borg pattern, all of the instances are different,
but they share the same state.

In the following code, the shared state is maintained in the _shared_state attribute.
And all new instances of the Borg class will have this state as defined in the __new__
class method:

class Borg(object):
 _shared_state = {}

 def __new__(cls, *args, **kwargs):

 obj = super(Borg, cls).__new__(cls, *args, **kwargs)
 obj.__dict__ = cls._shared_state
 return obj

Generally, Python stores the instance state in the __dict__ dictionary and when
instantiated normally, every instance will have its own __dict__. But, here we
deliberately assign the class variable _shared_state to all of the created instances.

The following code shows how it works with subclassing:

class Child(Borg):
 pass
>>> borg = Borg()
>>> another_borg = Borg()
>>> borg is another_borg
False
>>> child = Child()
>>> borg.only_one_var = "I'm the only one var"
>>> child.only_one_var
I'm the only one var

So, despite the fact that you can't compare objects by their identity, using the is
statement, all child objects share the parents' state.

If you want to have a class that is a descendant of the Borg class but has a different
state, you can reset shared_state as follows:

Chapter 2

[21]

class AnotherChild(Borg):
 _shared_state = {}

>>> another_child = AnotherChild()
>>> another_child.only_one_var
AttributeError: AnotherChild instance has no attribute 'shared_state'

It is up to you to decide which type of singleton should be used. If you expect that
your singleton will not be inherited, you can choose the classic singleton; otherwise,
it's better to stick with borg.

Implementation in Python
As a practical example, we'll create a simple web crawler that scans a website you
open on it, follows all the links that lead to the same website but to other pages,
and downloads all of the images it'll find.

To do this, we'll need two functions: a function that scans a website for links that
lead to other pages to build a set of pages to visit, and a function that scans
a page for images and downloads them.

To make it quicker, we'll download images in two threads. These two threads should
not interfere with each other, so don't scan pages if another thread has already
scanned them, and don't download images that are already downloaded.

So, a set with downloaded images and scanned web pages will be a shared resource
for our application, and we'll keep it in a singleton instance.

In this example, you will need a library for parsing and screen scraping websites
named BeautifulSoup and an HTTP client library, httplib2. It should be sufficient
to install both with either of the following commands:

•	 $ sudo pip install BeautifulSoup httplib2
•	 $ sudo easy_install BeautifulSoup httplib2

First of all, we'll create a Singleton class. Let's use the classic singleton in the
following example:

import httplib2
import os
import re
import threading
import urllib
from urlparse import urlparse, urljoin

www.allitebooks.com

http://www.allitebooks.org

Creating Only One Object with the Singleton Pattern

[22]

from BeautifulSoup import BeautifulSoup

class Singleton(object):
 def __new__(cls):
 if not hasattr(cls, 'instance'):
 cls.instance = super(Singleton, cls).__new__(cls)
 return cls.instance

It will return the singleton objects to all parts of the code that request it.

Next, we'll create a class for creating a thread. In this thread, we'll download images
from the website:

class ImageDownloaderThread(threading.Thread):
 """A thread for downloading images in parallel."""
 def __init__(self, thread_id, name, counter):
 threading.Thread.__init__(self)
 self.name = name

 def run(self):
 print 'Starting thread ', self.name
 download_images(self.name)
 print 'Finished thread ', self.name

The following function traverses the website using BFS algorithm, finds links,
and adds them to a set for further downloading. We are able to specify the maximum
links to follow if the website is too large:

def traverse_site(max_links=10):
 link_parser_singleton = Singleton()

 # While we have pages to parse in queue
 while link_parser_singleton.queue_to_parse:
 # If collected enough links to download images, return
 if len(link_parser_singleton.to_visit) == max_links:
 return

 url = link_parser_singleton.queue_to_parse.pop()

 http = httplib2.Http()
 try:
 status, response = http.request(url)
 except Exception:
 continue

Chapter 2

[23]

 # Skip if not a web page
 if status.get('content-type') != 'text/html':
 continue

 # Add the link to queue for downloading images
 link_parser_singleton.to_visit.add(url)
 print 'Added', url, 'to queue'

 bs = BeautifulSoup(response)

 for link in BeautifulSoup.findAll(bs, 'a'):

 link_url = link.get('href')

 # tag may not contain href attribute
 if not link_url:
 continue

 parsed = urlparse(link_url)

 # If link follows to external webpage, skip it
 if parsed.netloc and parsed.netloc != parsed_root.netloc:
 continue

 # Construct a full url from a link which can be relative
 link_url = (parsed.scheme or parsed_root.scheme) + '://' +
(parsed.netloc or parsed_root.netloc) + parsed.path or ''

 # If link was added previously, skip it
 if link_url in link_parser_singleton.to_visit:
 continue

 # Add a link for further parsing
 link_parser_singleton.queue_to_parse = [link_url] + link_parser_
singleton.queue_to_parse

The following function downloads images from the last web resource page in the
singleton.to_visit queue and saves it to the img directory. Here, we use
a singleton for synchronizing shared data, which is a set of pages to visit between
two threads:

def download_images(thread_name):
 singleton = Singleton()
 # While we have pages where we have not download images
 while singleton.to_visit:

Creating Only One Object with the Singleton Pattern

[24]

 url = singleton.to_visit.pop()

 http = httplib2.Http()
 print thread_name, 'Starting downloading images from', url

 try:
 status, response = http.request(url)
 except Exception:
 continue

 bs = BeautifulSoup(response)

 # Find all tags
 images = BeautifulSoup.findAll(bs, 'img')

 for image in images:
 # Get image source url which can be absolute or relative
 src = image.get('src')
 # Construct a full url. If the image url is relative,
 # it will be prepended with webpage domain.
 # If the image url is absolute, it will remain as is
 src = urljoin(url, src)

 # Get a base name, for example 'image.png' to name file locally
 basename = os.path.basename(src)

 if src not in singleton.downloaded:
 singleton.downloaded.add(src)
 print 'Downloading', src
 # Download image to local filesystem
 urllib.urlretrieve(src, os.path.join('images', basename))

 print thread_name, 'finished downloading images from', url

Chapter 2

[25]

Our client code is as follows:

if __name__ == '__main__':
 root = 'http://python.org'

 parsed_root = urlparse(root)

 singleton = Singleton()
 singleton.queue_to_parse = [root]
 # A set of urls to download images from
 singleton.to_visit = set()
 # Downloaded images
 singleton.downloaded = set()

 traverse_site()

 # Create images directory if not exists
 if not os.path.exists('images'):
 os.makedirs('images')

 # Create new threads
 thread1 = ImageDownloaderThread(1, "Thread-1", 1)
 thread2 = ImageDownloaderThread(2, "Thread-2", 2)

 # Start new Threads
 thread1.start()
 thread2.start()

Run a crawler using the following command:

$ python crawler.py

http://python.org/
http://python.org/

Creating Only One Object with the Singleton Pattern

[26]

You should get the following output (your output may vary because the order in
which the threads access resources is not predictable):

If you go to the images directory, you will find the downloaded images there.

Summary
A singleton is a design pattern for creating only one instance of a class. Modules in
Python are singletons by nature. A classic singleton checks whether the instance was
created earlier; if not, it creates and returns it. The Borg singleton uses shared state
for all objects. In the example shown in the chapter, we used the Singleton class for
accessing a shared resource and a set of URLs to fetch images from, and both threads
used it to properly parallelize their work.

In the next chapter, you will learn about other patterns for creating objects, including:
factory, the factory method, the abstract factory, and how they help to build objects.

Building Factories to Create
Objects

In object-oriented development terminology, a factory is a class for creating other
objects. Usually this class has methods that accept some parameters and returns
some type of object depending on the parameters passed.

In this chapter we will cover:

•	 How to create a simple factory
•	 What the Factory Method is, when to use it, and how to implement it for

building a tool that can be connected to a variety of web resources
•	 What the Abstract Factory is, when to use it, and how it is different from

the Factory method pattern

So why should we bother ourselves with factories instead of using direct object
instantiation?

•	 Factories provide loose coupling, separating object creation from using
specific class implementation.

•	 A class that uses the created object does not need to know exactly which class
is created. All it needs to know is the created class' interface, that is, which
created class' methods can be called and with which arguments. Adding
new classes is done only in factories as long as the new classes comply with
the interface, without modifying the client code.

•	 The Factory class can reuse existing objects, while direct instantiation
always creates a new object.

Building Factories for Creating Objects

[28]

In the following diagram the Client class uses the Factory class, which has the
create_product method. The Client class passes the type of the product to this
method and depending on that, the Factory class creates and returns Product1
or Product2.

Let's see a simple example of a factory, shown as follows:

class SimpleFactory(object):
 @staticmethod # This decorator allows to run method without
 # class instance, .e. SimpleFactory.build_connection
 def build_connection(protocol):
 if protocol == 'http':
 return HTTPConnection()
 elif protocol == 'ftp':
 return FTPConnection()

 else:
 raise RuntimeError('Unknown protocol')

if __name__ == '__main__':
 protocol = raw_input('Which Protocol to use? (http or ftp): ')
 protocol = SimpleFactory.build_connection(protocol)
 protocol.connect()
 print protocol.get_response()

In the preceding example, the factory is the SimpleFactory class, which has a static
method, build_connection.

Chapter 3

[29]

You pass it an argument (a type of protocol) and the factory constructs and returns
an object depending on the passed argument. So, the client code is not responsible
anymore for object creation; it just uses the object generated by the factory without
knowing exactly which object was generated as long as the generated object
implements some interface.

Factory is not a design pattern by itself; rather, it's a concept that serves as a basis for
several design patterns such as Factory Method and Abstract Factory.

The Factory Method
The Factory Method is similar to SimpleFactory, but it is a little bit more
complicated. As shown in the following diagram, typically this design pattern has
an abstract class, Creator, that contains the factory_method which is responsible
for creating some kind of objects. The some_operation method then works with
the created object. The ConcreteCreator class can redefine the factory_method to
change the created object in the runtime. The some_operation method does not care
which object is created as long as it implements the Product interface and provides
the implementation for all methods in that interface.

The essence of this pattern is to define an interface for creating an object, but let the
classes that implement the interface decide which class to instantiate. The interface
is factory_method in the Creator and ConcreteCreator classes, which decides
which subclass of Product to create. The Factory Method is based on inheritance;
object creation is delegated to the subclasses that implement the Factory methods
for object creation.

Building Factories for Creating Objects

[30]

Advantages of using the Factory Method
pattern
The main advantages of using the Factory Method pattern are:

•	 It makes code more universal, not being tied to concrete classes
(ConcreteProduct) but to interfaces (Product) providing low coupling.
It separates interfaces from their implementations.

•	 It decouples the code that creates objects from the code that uses them,
reducing the complexity of maintenance. To add a new class, you need to
add an additional else-if clause.

The Factory Method implementation
In this example we will create a tool for accessing web resources using
HTTP or FTP protocol.

Some web resources can be accessed with the FTP protocol. Typically, you open your
favorite FTP client, type a URL to connect to, and you can see the directory listing on
the server. Choose a file to download.

Some web servers, along with FTP, have HTTP frontend to the same resources.
This means that you can open the same web resource with a browser and see the
same directory listing as you could see if you opened it with an FTP client.

One of such sites is ftp.freebsd.org that can be accessed with http://ftp.
freebsd.org (HTTP protocol) and ftp://ftp.freebsd.org (FTP protocol).

In our application example, we want to be able to get a file list on such servers with
FTP and HTTP using the Factory Method pattern.

In this example, we will use one external library called: BeautifulSoup, and two
libraries from the Python standard library, urllib2 and abc. The abc library will
be used to implement abstract classes, urllib2 will be used for making network
requests, and BeautifulSoup for parsing HTML. If you do not have BeautifulSoup
installed, run the following command in the terminal:

$ sudo pip install beautifulsoup

Chapter 3

[31]

Let's create the Creator abstract class that will be named Connector. It will be
responsible for making the connection to the remote resource (HTTP or FTP),
reading the response, and parsing it. This abstract class does not know which port
and protocol to use for the connection because the standard port for HTTP is 80 and
for FTP is 22, and the protocol for HTTP is http or https, and the protocol for FTP
is ftp. So let's allow the child classes to decide which port to use in the runtime. In
the preceding diagram, these two ports will be ConcreteProducts.

import abc
import urllib2
from BeautifulSoup import BeautifulStoneSoup

class Connector(object):
 """Abstract class to connect to remote resource."""
 __metaclass__ = abc.ABCMeta # Declares class as abstract class

 def __init__(self, is_secure):
 self.is_secure = is_secure
 self.port = self.port_factory_method()
 self.protocol = self.protocol_factory_method()

 @abc.abstractmethod
 def parse(self):
 """Parses web content.
 This method should be redefined in the runtime."""
 pass

 def read(self, host, path):
 """A generic method for all subclasses, reads web content."""
 url = self.protocol + '://' + host + ':' + str(self.port) + path
 print 'Connecting to ', url
 return urllib2.urlopen(url, timeout=2).read()

 @abc.abstractmethod
 def protocol_factory_method(self):
 """A factory method that must be redefined in subclass."""
 pass

www.allitebooks.com

http://www.allitebooks.org

Building Factories for Creating Objects

[32]

 @abc.abstractmethod
 def port_factory_method(self):
 """Another factory method that must be redefined in subclass."""
 return FTPPort()

So, the Connector abstract class provides two Factory Methods to be implemented
in the protocol_factory_method and port_factory_method subclasses.
Let's create two concrete creators that will implement these Factory methods:

class HTTPConnector(Connector):
 """A concrete creator that creates a HTTP connector and sets in
runtime all its attributes."""
 def protocol_factory_method(self):
 if self.is_secure:
 return 'https'
 return 'http'

 def port_factory_method(self):
 """Here HTTPPort and HTTPSecurePort are concrete objects,
created by factory method."""
 if self.is_secure:
 return HTTPSecurePort()
 return HTTPPort()

 def parse(self, content):
 """Parses web content."""
 filenames = []
 soup = BeautifulStoneSoup(content)
 links = soup.table.findAll('a')
 for link in links:
 filenames.append(link['href'])
 return '\n'.join(filenames)

class FTPConnector(Connector):
 """A concrete creator that creates a FTP connector and sets in
runtime all its attributes."""
 def protocol_factory_method(self):
 return 'ftp'

 def port_factory_method(self):
 return FTPPort()

Chapter 3

[33]

 def parse(self, content):
 lines = content.split('\n')
 filenames = []
 for line in lines:
 # The FTP format typically has 8 columns, split them
 splitted_line = line.split(None, 8)
 if len(splitted_line) == 9:
 filenames.append(splitted_line[-1])

 return '\n'.join(filenames)

Now let's create an interface for our products. The interface consists of one method,
namely, __str__ that provides the string representation of the port:

class Port(object):
 __metaclass__ = abc.ABCMeta
 """Abstract product. One of its subclasses will be created in
factory methods."""

 @abc.abstractmethod
 def __str__(self):
 pass

The three subclasses implementing this interface are HTTPPort, HTTPSecurePort,
and FTPPort:

class HTTPPort(Port):
 """A concrete product which represents http port."""
 def __str__(self):
 return '80'

class HTTPSecurePort(Port):
 """A concrete product which represents https port."""
 def __str__(self):
 return '443'

class FTPPort(Port):
 """A concrete product which represents ftp port."""
 def __str__(self):
 return '21'

Building Factories for Creating Objects

[34]

And finally, let's create our client code that determines which Creator class to
instantiate to make a request to the remote resource and print its content:

if __name__ == '__main__':
 domain = 'ftp.freebsd.org'
 path = '/pub/FreeBSD/'

 protocol = input('Connecting to {}. Which Protocol to use? (0-http,
1-ftp): '.format(domain))

 if protocol == 0:
 is_secure = bool(input('Use secure connection? (1-yes, 0-no): '))
 connector = HTTPConnector(is_secure)
 else:
 is_secure = False
 connector = FTPConnector(is_secure)

 try:
 content = connector.read(domain, path)
 except urllib2.URLError, e:
 print 'Can not access resource with this method'
 else:
 print connector.parse(content)

If you run the preceding script, you will get the following message:

Connecting to ftp.freebsd.org. Which Protocol to use? (0-http, 1-ftp):

You can choose http or ftp and depending on your decision, the HTTPConnection
or FTPConnection object will be created for making requests and parse
the response.

If you choose http, you will get the following message:

Use secure connection? (1-yes, 0-no):

If you choose yes, HTTPSecurePort will be created and if not, HTTPPort will
be created.

So, the responsibility of making decisions about which port to instantiate was
moved to the subclasses of the Connection class, decoupling the method that uses
the connection (read) from the method that creates it (port_factory_method).

Chapter 3

[35]

Abstract Factory
If the goal of the Factory Method is to move instances creating to subclasses, the goal
of an abstract factory is to create families of related objects without depending on
their specific classes. As shown in the following diagram, every factory derived from
the AbstractFactory interface has methods to create instances of two interfaces,
AbstractProduct and AnotherAbstractProduct. The idea is that the created
objects should have the same interface, whereas, the created concrete objects are
different for every factory. So, if you want to get a different behavior, you can change
the factory in runtime and get a full set of different objects.

Abstract Factory is used when you need to create a family of objects that do some
work together.

Building Factories for Creating Objects

[36]

The benefit of using Abstract Factory is that it isolates the creation of objects from
the client that needs them, giving the client only the possibility of accessing them
through an interface, which makes the manipulation easier. If the products of
a family are meant to work together, the AbstractFactory class makes it easy
to use the objects from only one family at a time. On the other hand, adding
new products to the existing factories is difficult because the AbstractFactory
interface uses a fixed set of products that can be created. This is why adding a new
product would mean extending the factory interface, which involves changes in the
AbstractFactory class and all its subclasses:

Advantages of using the Abstract Factory
pattern
The main advantages of using the Abstract Factory pattern are as follows:

•	 It simplifies the replacement of product families
•	 It ensures the compatibility of the products in the product's family
•	 It isolates the concrete classes from the client

Abstract Factory implementation
The implementation of the preceding example using Abstract Factory is as follows:

import abc
import urllib2
from BeautifulSoup import BeautifulStoneSoup

Chapter 3

[37]

The AbstractFactory class is used to define the interface of the factories.
Thus, they have the create_protocol, create_port, and create_parser methods.

class AbstractFactory(object):
 """Abstract factory interface provides 3 methods to implement in its
 subclasses: create_protocol, create_port and create_parser."""

 __metaclass__ = abc.ABCMeta

 def __init__(self, is_secure):
 """if is_secure is True, factory tries to make connection secure,
otherwise not"""
 self.is_secure = is_secure

 @abc.abstractmethod
 def create_protocol(self):
 pass

 @abc.abstractmethod
 def create_port(self):
 pass

 @abc.abstractmethod
 def create_parser(self):
 pass

The HTTPFactory class creates its family of related objects: HTTPPort,
HTTPSecurePort, and HTTPParser, whereas, FTPFactory creates FTPPort
and FTPParser.

class HTTPFactory(AbstractFactory):
 """Concrete factory for building HTTP connection."""

 def create_protocol(self):
 if self.is_secure:
 return 'https'
 return 'http'

 def create_port(self):
 if self.is_secure:
 return HTTPSecurePort()
 return HTTPPort()

 def create_parser(self):
 return HTTPParser()

Building Factories for Creating Objects

[38]

class FTPFactory(AbstractFactory):
 """Concrete factory for building FTP connection."""
 def create_protocol(self):
 return 'ftp'

 def create_port(self):
 return FTPPort()

 def create_parser(self):
 return FTPParser()

The following code implements the Products classes Port and Parser with
their descendants:

class Port(object):
 __metaclass__ = abc.ABCMeta
 """An abstract product, represents port to connect. One of its
subclasses will be created in factory methods."""

 @abc.abstractmethod
 def __str__(self):
 pass

class HTTPPort(Port):
 """A concrete product which represents http port."""
 def __str__(self):
 return '80'

class HTTPSecurePort(Port):
 """A concrete product which represents https port."""
 def __str__(self):
 return '443'

class FTPPort(Port):
 """A concrete product which represents ftp port."""
 def __str__(self):
 return '21'

class Parser(object):
 """An abstract product, represents parser to parse web content.
One of its subclasses will be created in factory methods."""
 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
 def __call__(self, content):
 pass

Chapter 3

[39]

class HTTPParser(Parser):
 def __call__(self, content):
 filenames = []
 soup = BeautifulStoneSoup(content)
 links = soup.table.findAll('a')
 for link in links:
 filenames.append(link.text)
 return '\n'.join(filenames)

class FTPParser(Parser):
 def __call__(self, content):
 lines = content.split('\n')
 filenames = []
 for line in lines:
 splitted_line = line.split(None, 8)
 if len(splitted_line) == 9:
 filenames.append(splitted_line[-1])

 return '\n'.join(filenames)

Connector is a class that accepts a factory, and this factory is used to inject the
components protocol, port, and the method to parse:

class Connector(object):
 """A client."""
 def __init__(self, factory):
 """factory is a AbstractFactory instance which creates all
attributes of a connector according to factory class."""
 self.protocol = factory.create_protocol()
 self.port = factory.create_port()
 self.parse = factory.create_parser()

 def read(self, host, path):
 url = self.protocol + '://' + host + ':' + str(self.port) + path
 print 'Connecting to ', url
 return urllib2.urlopen(url, timeout=2).read()

 @abc.abstractmethod
 def parse(self):
 pass

In the runtime, the client code determines which factory to use, creates the factory,
and instantiates the connector passing the initialized factory.

Building Factories for Creating Objects

[40]

After that, it calls the read method that reads the content of the web resource, parses
it, and prints to the stdout:

if __name__ == '__main__':
 domain = 'ftp.freebsd.org'
 path = '/pub/FreeBSD/'

 protocol = input('Connecting to {}. Which Protocol to use? (0-http,
1-ftp): '.format(domain))

 if protocol == 0:
 is_secure = bool(input('Use secure connection? (1-yes, 0-no): '))	
 factory = HTTPFactory(is_secure)
 elif protocol == 1:
 is_secure = False
 factory = FTPFactory(is_secure)
 else:
 print 'Sorry, wrong answer'

 connector = Connector(factory)
 try:
 content = connector.read(domain, path)
 except urllib2.URLError, e:
 print 'Can not access resource with this method'
 else:
 print connector.parse(content)

Abstract Factory versus Factory Method
Let's look at the instances where we need to use the Abstract Factory or Factory Method.

•	 Use the Factory Method pattern when there is a need to decouple a client
from a particular product it uses. Use the Factory Method to relieve a client
of the responsibility of creating and configuring instances of a product.

•	 Use the Abstract Factory pattern when clients must be decoupled from the
product classes. The Abstract Factory pattern can also enforce constraints
specifying which classes must be used with others, creating independent
families of objects.

Chapter 3

[41]

Summary
In object-oriented development terminology, a factory is a class for creating other
classes. The Factory method defines an interface for creating an object, but lets
the classes that implement the interface decide which class to instantiate. The
Factory Method makes code more universal, not being tied to concrete classes
but to interfaces.

Abstract Factory provides an interface for creating families of related or dependent
objects without specifying their concrete classes. It simplifies the replacement of
product families and ensures the compatibility of the products consisting in the
product family.

In the next chapter you will learn about the Facade pattern, how it simplifies the
code for client usage, how it is implemented in the Python source code, and how
to implement it yourself.

www.allitebooks.com

http://www.allitebooks.org

The Facade Design Pattern
Sometimes a subsystem of classes and objects becomes so complex that it's hard to
understand how it works. It becomes even more difficult to understand how to use
this system and how to decrease the complexity. A Facade design pattern is designed
to solve this problem.

In this chapter we will cover:

•	 The Facade design pattern
•	 Implementation of the Facade design pattern in Python source code
•	 Building a weather forecast service in Python

The Facade design pattern
The Facade design pattern provides a unified interface instead of a set of interfaces
of some complex subsystem. Facade creates a higher-level interface that simplifies
subsystem usage. This design pattern aggregates classes that implement the
functionality of the subsystem but does not hide them completely. Facade basically
acts as a wrapper. It should not add any new functionality; it should just simplify the
access to a system.

Simply put, Facade is an object accumulating a method at a pretty high level of
abstraction for working with a complex subsystem. It is important to understand that
the client is not deprived of a low-level access to the subsystem classes if he or she
wants it, of course. Facade simplifies some operations with the subsystem, but does
not impose the use to the client.

In the physical world we always come across Facades; when you turn on the
computer, the operating system hides all the internal work of the computer
because the OS provides a simplified interface to use the machine.

The Facade Design Pattern

[44]

An automobile is another example: you have a simple interface with steering wheel,
gas, and brake pedals but you don't need to know exactly how the engine and the
transmission work to drive a car. When you turn a key, the car's electronics sends
multiple signals to different parts of the automobile subsystem through a single
interface; the ignition key. Facade is known as a structural pattern, as it's used to
identify a simple way to realize relationships between entities.

In the following diagram, we have a subsystem consisting of three modules. If
the client code will use three modules directly, it will lose flexibility because if
one of these three parts will be changed, the client code also needs to be changed.
Moreover, the code becomes more complicated to understand and modify. Instead
of this, the client uses Facade to aggregate all calls to the subsystem in one function,
do_something(). Internally, Facade uses submodules, calls them, and returns some
response to the client code. The client code does not need to know anything about
these three modules; it can just call the Facade and receive what it wants:

Third module

Facade

Cient

Second
module

First module

UsesUses Uses

do_something()

do_something()

From the architectural point of view, in the design of complex systems we often
use the principle of decomposition, in which a complex system is broken down
into smaller and simpler subsystems. These subsystems are often developed by
different teams of developers. But when they are integrated together and problem
of tight coupling arises. If some part of subsystem A changes and subsystem B that
uses subsystem A should modify all code that uses the modified code. If we use
the Facade, the subsystems can communicate over the Facade and its interface. If
Facade's interface remains the same, a code behind the Facade can be modified
without affecting the other modules.

Chapter 4

[45]

Problems solved by the Facade pattern
The problems solved by the Facade pattern are as follows:

•	 The pattern makes a software library easier to use and test, since the facade
has convenient methods for common tasks

•	 Reduces dependency of using external code, related to the facade code but
unrelated to the client code

•	 Provides a better and clearer API for the client code

Advantages of the Facade design pattern
Let's look at the advantages of the facade design pattern:

•	 It maintains loose coupling between client and subsystems
•	 It provides an interface to a set of interfaces in a subsystem (without

changing them)
•	 It wraps a complicated subsystem with a simplier interface
•	 Subsystem implementation gains flexibility and clients gain simplicity

Facades in Python's standard library
Facades can often be found in Python's source code.

The isdir function found in the os.path module serves as a Facade outshining
work stat and os.stat modules. Internally isdir calls the os.stat function and
that function in turn calls the stat() system call on the given path. This system call
returns a structure with members, namely:

•	 st_mode: This indicates some protection bits
•	 st_size: This is the size of the file, in bytes
•	 st_atime: This is the time of the most recent access

The Facade Design Pattern

[46]

stat.S_ISDIR internally applies a bit mask S_IFMT to detect if the file passed by is
actually a directory. This looks pretty confusing, but the good news is that the end
user of this function does not need to know these intricacies. The user just needs to
know about the isdir function.

def isdir(s):
 """Return true if the pathname refers to an existing directory."""
 try:
 st = os.stat(s)
 except os.error:
 return False
 return stat.S_ISDIR(st.st_mode)

Another example is if you want to load an object that is encoded in a JSON string,
you would typically insert the following:

import json
json.loads("[1,2,3]")

The following code illustrates the implementation of json.loads. It has a number of
optional parameters, but the only one that is mandatory is the string to decode. So, if
no additional parameters are provided, it uses the default decoder implemented as
another module in this library and that module in turn uses another scanner module
to parse the encoded string. So, looks like it is a complex subsystem behind
a simple facade:

def loads(s, encoding=None, cls=None, object_hook=None, parse_
float=None,
 parse_int=None, parse_constant=None, object_pairs_hook=None,
**kw):
if (cls is None and encoding is None and object_hook is None and
 parse_int is None and parse_float is None and
 parse_constant is None and object_pairs_hook is None and not
kw):
 return _default_decoder.decode(s)
 if cls is None:
 cls = JSONDecoder
 if object_hook is not None:
 kw['object_hook'] = object_hook
 if object_pairs_hook is not None:
 kw['object_pairs_hook'] = object_pairs_hook
 if parse_float is not None:
 kw['parse_float'] = parse_float
 if parse_int is not None:
 kw['parse_int'] = parse_int
 if parse_constant is not None:
 kw['parse_constant'] = parse_constant
 return cls(encoding=encoding, **kw).decode(s)

Chapter 4

[47]

Implementation in Python
Let's write our own example. Imagine that in our application we want to get the
current temperature in a city. We had explored a range of available APIs for that
and decided to use the openweathermap.org resource. It seems like a complicated
procedure—a client makes a request to the API, parses it, retrieves necessary data,
and converts from Kelvin to Celsius. This increases the complexity of the application.
An end user would be happy to call only one method to get the current temperature.
So, we can hide all of the intricacies of getting the weather condition behind the
facade, providing only one function as the interface for the facade.

Let's build the first component of our complex system. The WeatherProvider class
is responsible for making requests to the weather API endpoint and returning raw
data. In this toy example, we cannot implement this example as a really big and
complicated subsystem, so let us assume it is much more complicated than it seems.
The get_weather_data method takes inputs for city and country, produces a URL
string, makes HTTP request, and returns the data received.

import urllib
import urllib2
class WeatherProvider(object):
 def __init__(self):
 self.api_url = 'http://api.openweathermap.org/data/2.5/
forecast?q={},{}'
 def get_weather_data(self, city, country):
 city = urllib.quote(city)
 url = self.api_url.format(city, country)
 return urllib2.urlopen(url).read()

Next, we need to parse the raw data. The Parser class takes raw data and decodes it
in the JSON format. The API server sends the data in the following format:

{
 "list": [
 {
 "main": {
 "temp": 280.28,

 },
 "dt_txt": "2013-10-24 00:00:00"
 },
 {
 "main": {
 "temp": 279.54,
 },

The Facade Design Pattern

[48]

 "dt_txt": "2013-10-24 03:00:00"
 },
 {
 "main": {
 "temp": 278.64,
 },
 "dt_txt": "2013-10-26 06:00:00"
 },
 ...
]
}

So, as you can see, the API gives us the forecast data for every three hours for several
days. Since we want to get the forecast only for today, let's collect all temperature
information for today and process it later. The method parse_weather_data,
implemented in the following code, takes a JSON string with weather data.
Then it decodes it and starts to iterate over the data. If start_date is unassigned
(it is the first iteration), we assign it the first day of the forecast that we have. If it is
already assigned, we do not reassign a new value but check if we got forecast for the
next day. If yes, we just stop the loop, because we need forecast only for today.

from datetime import datetime
import json

class Parser(object):
 def parse_weather_data(self, weather_data):
 parsed = json.loads(weather_data)
 start_date = None
 result = []

 for data in parsed['list']:
 date = datetime.strptime(data['dt_txt'], '%Y-%m-%d %H:%M:%S')
 start_date = start_date or date
 if start_date.day != date.day:
 return result
 result.append(data['main']['temp'])

Caching forecast data on the disk to save some traffic seems like a good idea.
Let's create a class with methods to save some object to the the hard disk drive
and load it from the disk. The save method creates a dictionary with two values,
including weather information and the time when cache will expire. It lets us know
that the cache expires every three hours. The load method loads the cached data
from the local storage and checks the expiration date. If the forecast object is not
expired, the method returns the object. If it is expired, it returns None.

Chapter 4

[49]

from datetime import timedelta
import pickle

class Cache(object):
 def __init__(self, filename):
 self.filename = filename

 def save(self, obj):
 with open(self.filename, 'w') as file:
 dct = {
 'obj': obj,
 'expired': datetime.utcnow() + timedelta(hours=3)
 }
 pickle.dump(dct, file)

 def load(self):
 try:
 with open(self.filename) as file:
 result = pickle.load(file)
 if result['expired'] > datetime.utcnow():
 return result['obj']
 except IOError:
 pass

Note that we get data in Kelvin. To convert it to Celsius, we need another part of our
subsystem, the converter. The Converter class, demonstrated in the following code,
has a method that converts Kelvin to Celsius. To do that it subtracts 273.15 from the
temperature in Kelvin:

class Converter(object):
 def from_kelvin_to_celcius(self, kelvin):
 return kelvin - 273.15

And finally the Weather class. It receives an iterable of weather forecast for a day
and calculates the median forecast:

class Weather(object):
 def __init__(self, data):
 result = 0

 for r in data:
 result += r

 self.temperature = result / len(data)

The Facade Design Pattern

[50]

So, our system being a toy, has started to become big and monstrous. In the
following diagram, the UML diagram of this system is shown:

from_kelvin_to_celcius(temperature)

Converter WeatherProvider

Weather Parser

Cache

get_weather_data(city, country)

parse_weather_data(data)

save(object)
load()

Uses

Uses Uses

Uses

The client will deal with caching, making requests to API, converting, and so on.
What if to create a Facade for it? The client will use the get_forecast method,
passing it in two strings: the requested city and country, and the method returns
the forecasted temperature for today in Celsius.

The following code is of a class of our Facade. In the get_forecast method, first check
if we have a cached forecast to return. If yes, return it. Make a request to weather API
endpoint, parse response, and create weather instance from the data. Then convert to
Celsius, cache it, and return to the client. Much simpler for the client, isn't it?

class Facade(object):
 def get_forecast(self, city, country):
 cache = Cache('myfile')

 cache_result = cache.load()

 if cache_result:
 return cache_result

Chapter 4

[51]

 else:
 weather_provider = WeatherProvider()
 weather_data = weather_provider.get_weather_data(city, country)

 parser = Parser()
 parsed_data = parser.parse_weather_data(weather_data)

 weather = Weather(parsed_data)
 converter = Converter()
 temperature_celcius = converter.from_kelvin_to_celcius(weather.
temperature)

 cache.save(temperature_celcius)
 return temperature_celcius

Finally, our client code is as follows:

if __name__ == '__main__':
 facade = Facade()
 print facade.get_forecast('London', 'UK')

Run this code from the command-line prompt and you should receive the
following response:

$ python facade.py
10.425

So the forecast for today is about 10 degrees in London.

Summary
Facades are used when it is needed to provide a simpler interface to a complex
subsystem. Facades provide flexibility to subsystem, because all interaction with the
client goes through the Facade. It reduces dependency of external library that are
used inside the facade, but not related to the client code.

In the next chapter, you will learn about Proxy: another pattern that helps to
decrease the complexity of objects interaction and observer: a design pattern to
broadcast some information to multiple receivers whose amount can be changed in
the runtime.

www.allitebooks.com

http://www.allitebooks.org

Facilitating Object
Communication with Proxy

and Observer Patterns
Sometimes you need to work with a large object—so large that it is better to defer
its creation to the moment when it is actually used to save some memory and time.
When it is created, it is better not to create it again on every new request, but use
the previously created object and create a new reference. When all parts of the code
have completed work with it, it is required that some memory be freed up as soon as
possible. It means we need to count references to the heavy object, and to implement
it, we need a middleman that does all this intermediate work. A proxy is the solution
to this problem.

A Proxy is a design pattern that helps to decouple the client code from the object
that the client code uses. It means that the client code will use a surrogate proxy
object that acts like a real object; however, the surrogate object will delegate all
calls to the real object.

The example described previously is known as lazy initialization. You defer the
object initialization until you really need it. But it is not the only one use-case of a
proxy. Proxies help to implement logging, facilitate network connections, control
access to shared objects, implement reference counting, and have many other uses.

Facilitating Object Communication with Proxy and Observer Patterns

[54]

Proxy design pattern
A proxy is a class, functioning as an interface to another class that has the same
interface as the proxy. The client code instantiates and works directly with the proxy,
whereas, the proxy contains the real-object instance and delegates all calls to it,
adding the proxy's own logic.

The proxy serves as an interface with many things: a network connection, a large
object in memory, a file, or some other resource that is expensive or impossible
to duplicate.

In the following diagram, Proxy and RealSubject are inherited from the same
interface—Subject. Client uses Proxy which delegates calls to RealSubject.

do_something()
do_something_else()

do_something()

do_something()

Client Proxy RealSubject

<<interface>>
Subject

Uses Delegates

Problems solved by the Proxy pattern
The Proxy pattern solves the following problems that arise if objects maintain
tight coupling:

•	 The Proxy provides a placeholder for another object to control access to it
•	 The Proxy uses an extra level of indirection to support distributed,

controlled, or intelligent access
•	 The Proxy adds a wrapper and delegation to protect the real component

from undue complexity

Chapter 5

[55]

The use of the Proxy pattern
The Proxy pattern can be typically used when you need to extend another object's
functionalities, specifically the following:

•	 To control access to another object, for example, for security reasons.
•	 To log all calls to Subject with its parameters.
•	 To connect to Subject, which is located on remote machine or another

address space. A Proxy has an interface of a remote object but also handles
the connection routine that is transparent to the caller.

•	 To instantiate a heavy object only when it is really needed. It can also
cache a heavy object (or part of it).

•	 To temporarily store some calculation results before returning to multiple
clients that can share these results.

•	 To count references to an object.

Advantages and disadvantages of the Proxy
design pattern
The main pros and cons of proxy are as follows:

•	 A proxy can optimize the performance of an application, using caching of
heavy or frequently used objects.

•	 A proxy allows to improve the security of an application, checking access
rights in Proxy and delegating to RealSubject only if the rights are sufficient.

•	 Facilitating interaction between remote systems, a proxy can take over the
 job of network connections and transmission routine, delegating calls to
remote objects.

•	 Sometimes use of the Proxy pattern can increase the response time from the
object. For example, if you use proxy for lazy initialization and the object
is requested for the first time, the time of the response will be increased by
initialization time.

Implementation in Python
In this example, we need to instantiate a huge object, RealSubject, which contains
10 million digits. Instantiating it takes some time and space in RAM; that's why we
create a proxy to interface it.

Facilitating Object Communication with Proxy and Observer Patterns

[56]

In the following example, we will import the meta class ABCMeta and the
abstractmethod decorator. We will use them to implement abstract classes. An
abstract class is a class that has methods with no implementation. The abstract class
cannot be instantiated, and its descendants also cannot be instantiated unless they
provide implementation for methods marked by the abstractmethod decorator. Thus,
if you want to implement abstract class, assign its __metaclass__ attribute to ABCMeta
and decorate the methods having no implementation with abstractmethod decorator.

First, let's create an abstract class that provides an interface for both RealSubject
and its proxy:

from abc import ABCMeta, abstractmethod
import random

class AbstractSubject(object):
 """A common interface for the real and proxy objects."""

 __metaclass__ = ABCMeta

 @abstractmethod
 def sort(self, reverse=False):
 pass

Next is the RealSubject class, which inherits the AbstractSubject abstract
class, implementing the sort method.

class RealSubject(AbstractSubject):
 """A class for a heavy object which takes a lot of memory
 space and takes some time to instantiate."""

 def __init__(self):
 self.digits = []

 for i in xrange(10000000):
 self.digits.append(random.random())

 def sort(self, reverse=False):
 self.digits.sort()

 if reverse:
 self.digits.reverse()

Chapter 5

[57]

A Proxy class (instead of RealSubject) will be instantiated by the client code. The
proxy contains the count of references to the RealSubject class and keeps the only
instance of RealSubject, creating it only if it has not been created before. If it has
been created, the Proxy class increments reference count and returns a new link to
the RealSubject class.

The next interesting point is in the sort method. It logs the arguments of the method
and calls the method of RealSubject.

Finally, in the destructor, the reference count is decreased on every deletion of the
reference to RealSubject and if no references are left, the object is marked to be
garbage collected.

class Proxy(AbstractSubject):
 """A proxy which has the same interface as RealSubject."""

 reference_count = 0

 def __init__(self):
 """A constructor which creates an object if it is not exist and
 caches it otherwise."""

 if not getattr(self.__class__, 'cached_object', None):
 self.__class__.cached_object = RealSubject()
 print 'Created new object'
 else:
 print 'Using cached object'

 self.__class__.reference_count += 1

 print 'Count of references = ', self.__class__.reference_count

 def sort(self, reverse=False):
 """The args are logged by the Proxy."""

 print 'Called sort method with args:'
 print locals().items()

 self.__class__.cached_object.sort(reverse=reverse)

 def __del__(self):

Facilitating Object Communication with Proxy and Observer Patterns

[58]

 """Decreases a reference to an object, if the number of
 references is 0, delete the object."""
 self.__class__.reference_count -= 1

 if self.__class__.reference_count == 0:
 print 'Number of reference_count is 0. Deleting cached
 object...'
 del self.__class__.cached_object

 print 'Deleted object. Count of objects = ',
 self.__class__.reference_count

In the following client code, we create three instances of the Proxy class. While
creating the first instance, the RealSubject object will be created and stored in
Proxy.cached_object. The next two instances of Proxy will reuse the previously
created RealSubject object. Besides that, Proxy keeps number of links to the
RealSubject.

Then we run the sort method of the proxy. The proxy logs parameters and delegates
this call to RealSubject.

Finally we delete the second link to the RealSubject object, confirming that the
reference count works as expected.

if __name__ == '__main__':
 proxy1 = Proxy()
 print

 proxy2 = Proxy()
 print
 proxy3 = Proxy()
 print

 proxy1.sort(reverse=True)
 print

 print 'Deleting proxy2'
 del proxy2
 print

 print 'The other objects are deleted upon program termination'

Chapter 5

[59]

The result of program execution will appear, as shown in the following screenshot:

Observer design pattern
The Observer design pattern tries to facilitate one-to-many relationships in software
engineering. There are many situations that deal with one-to-many relationships:
several readers subscribe to a blog, several event listeners subscribe to handle mouse
clicks on a user interface item, or several phone applications subscribe to receive a
notification when they get data from the Internet.

The Observer design pattern is very similar to subscribing to a newspaper in the
following aspects:

•	 The subscriber opens subscription for the newspaper
•	 You subscribe to the newspaper
•	 Somebody else subscribes to the newspaper
•	 When there's a new newspaper, you and that somebody else get a new

newspaper
•	 If you don't want to receive the newspaper anymore, you cancel your

subscription and you will not receive next newspaper (but others will)

This is a kind of publishing-subscriber pattern, and in software engineering, unlike
the newspaper, it uses any kind of information, such as new data received from some
other resources, a concurrent thread signal, or a signal from an operational system.
This information should be delivered to subscribers and the Observer design pattern
serves for managing subscription and delivering it.

Facilitating Object Communication with Proxy and Observer Patterns

[60]

In the Observer pattern, an object called the subject keeps a set of other objects called
observers, and in case there are any state changes, it notifies them by calling one of
their methods.

As shown in the following diagram, Observer is an interface that has the abstract
method notify. ConcreteObserverA and ConcreteObserverB are derived from the
abstract Observer interface and need to implement the abstract method notify. A
subject keeps a set of instances of concrete observers, adds new Observer instances
calling register_observer, and removes instances calling the unregister_
observer method. When some event happens, the Subject interface calls the
notify_observers method. In this method, each registered observer is called
with the notify method.

register_observer()
unregister_observer()
notify_observer()

notify_observers:

for observer in self.observers:
observer.notify()

Subject
observers

ConcreteObserverA ConcreteObserverB

notify() notify()

notify()

Observer

Subject is the static part of the system; throughout the application lifetime, there is
only one Subject. On the contrary, Observers are the variable part. There can be many
or even zero observers, and this value changes during the lifetime of the application.
All the parts that are updated often are typically implemented as Observers.

Problems solved by the Observer pattern
If there is a requirement that a particular object change its state, and depending on
these changes some or a group of objects automatically change their state, we need
to implement the Observer pattern to reduce the coupling between objects.

A real-world example can be found on microblogging services, such as Twitter;
when you post a new tweet (change the state of you feed), all your followers
(observers) will be notified—their timeline will be updated with your new tweet.

Chapter 5

[61]

Use of the Observer pattern
The Observer pattern is used when a change in one object leads to a change in other
objects, and you don't know how many objects should be changed.

Advantages of the Observer pattern
The Observer design pattern has the following advantages:

•	 Maintaining a loose coupling between Subject and Observers. The Subject
only knows the list of Observers and their interfaces; it doesn't care about its
concrete class, details of implementation, and so on.

•	 Ability of broadcast messaging between Subject and Observers.
•	 The number of Observers can be changed at runtime.
•	 The Subject can keep any number of Observers.

Implementation in Python
Now we'll create a simple subject that will be able to add, remove, and notify the
observers. In this simplified example, the notify method of every observer will
get a Unix timestamp and will print it out in either the USA format (12 hour) or
the EU (24 hour) format.

Let's create Subject, which will keep a list of observers in self.observers and
provide methods to add and remove observers with register_observer and
unregister_observer. When we want to send some information to all observers,
we simply call the notify_observers method, which passes a new value of the
Unix timestamp to the observers.

 import time

 class Subject(object):
 def __init__(self):
 self.observers = []
 self.cur_time = None

 def register_observer(self, observer):
 if observer in self.observers:
 print observer, 'already in subscribed observers'
 else:

www.allitebooks.com

http://www.allitebooks.org

Facilitating Object Communication with Proxy and Observer Patterns

[62]

 self.observers.append(observer)

 def unregister_observer(self, observer):
 try:
 self.observers.remove(observer)
 except ValueError:
 print 'No such observer in subject'

 def notify_observers(self):
 self.cur_time = time.time()
 for observer in self.observers:
 observer.notify(self.cur_time)

Now we create an abstract class for the observer, with only one method, notify,
which Subject will call in its notify_observers method. We will use the same
abstractmethod decorator described in the previous chapter to implement the
abstract method notify.

from abc import ABCMeta, abstractmethod
import datetime

class Observer(object):
 """Abstract class for observers, provides notify method as
 interface for subjects."""

 __metaclass__ = ABCMeta

 @abstractmethod
 def notify(self, unix_timestamp):
 pass

And a couple of concrete observer derived from abstract observer.
 They need to implement notify method. This method will take UNIX
 timestamp converts it to 12H or 24H format and print it to
 standard out.

class USATimeObserver(Observer):
 def __init__(self, name):
 self.name = name

 def notify(self, unix_timestamp):

Chapter 5

[63]

 time =
 datetime.datetime.fromtimestamp(int(unix_timestamp)).strftime('%Y-
 %m-%d %I:%M:%S%p')
 print 'Observer', self.name, 'says:', time

class EUTimeObserver(Observer):
 def __init__(self, name):
 self.name = name

 def notify(self, unix_timestamp):
 time =
 datetime.datetime.fromtimestamp(int(unix_timestamp)).strftime('%Y-
 %m-%d %H:%M:%S')
 print 'Observer', self.name, 'says:', time

The following is the starting point of the application. Initially, we create a first
observer, register it in subject, and send some information to this sole observer.
The observer prints the current date in the 12-hour format. Next, we create a
second observer, register, and send information to both the observers.

They print the current date in the 12-hour format and the 24-hour format. After that
we unregister the first observer and send information only to the second observer.
It prints the current date in the 24-hour format.

if __name__ == '__main__':
 subject = Subject()

 print 'Adding usa_time_observer'
 observer1 = USATimeObserver('usa_time_observer')
 subject.register_observer(observer1)
 subject.notify_observers()

 time.sleep(2)
 print 'Adding eu_time_observer'
 observer2 = EUTimeObserver('eu_time_observer')
 subject.register_observer(observer2)
 subject.notify_observers()

 time.sleep(2)
 print 'Removing usa_time_observer'
 subject.unregister_observer(observer1)
 subject.notify_observers()

Facilitating Object Communication with Proxy and Observer Patterns

[64]

If you run the application, you should get results similar to what's shown in the
following screenshot:

In the previous example, we explicitly passed the unix_timestamp from the subject
to the concrete observers. The other frequent use is to pass the Subject instance itself
instead of data. In that case, the previous example would be written as follows:

def notify_observers(self):
 self.cur_time = time.time()
 for observer in self.observers:
 observer.notify(self)

Observer would to get the necessary data from the subject itself, by calling the
subject's methods and accessing attributes. The other option is not to pass any data
at all. The observer will be notified that some event happened and that it will be
responsible for getting the updated value and interpreting as it wants.

Chapter 5

[65]

Summary
A proxy is a class, functioning as an interface to another class, which has the same
interface as the proxy. The client code instantiates and works directly with the proxy,
whereas, the proxy delegates actual work to a client class. Proxies have many uses,
particularly for caching, reference count, and access-right control. Users of proxy
should be careful to avoid an increase in response time. The Observer design pattern
is used when you need to implement one-to-many relationships, for instance, to
broadcast the same information to multiple listeners called observers. The Observer
design pattern maintains loose coupling between the subject and observers because
the only thing the subject knows about the observers is the interface, namely, which
method to call to notify it. The number of observers can be arbitrary and changed in
the runtime.

In the next chapter you will learn about the Command design pattern, how it is used
to encapsulate the call in one object, and how to implement the undo functionality,
history, and macros with it.

Encapsulating Calls with the
Command Pattern

In this chapter you will learn about the Command design pattern, how to implement
undo and macro operations, and write very simple Unix command variations, which
can be cancelled after execution.

Imagine that you are writing the printer program and want to implement the
printer spooler. What is the the easiest way to do it? Create a Spooler class with
methods to add and remove printer jobs. The easiest way to execute printer jobs is
to create an object, which contains all necessary information: text to print, number of
copies, color, quality, and so on. The spooler will need to call the execute method of
the print job, and the print job will take care of everything by itself.

That's how the Command Pattern works: you create an object, which represents
and encapsulates all the information needed to call a method at a later time. This
information includes the method name, the object that owns the method, and values
for the method parameters.

You are able to pass these command objects to any code that knows how to call its
execute method, save these objects, and return from methods as any other object.
For instance, in Chapter 5, Facilitating Object Communication with Proxy and Observer
Patterns, you learned about the Observer pattern, whose main job was notifying
objects about some event. With the Command Pattern, you are able to pass the
Command instance as an observer and when the Subject notifies the observers
about some event, the Command instance will be called and some work
encapsulated in it will be done.

Encapsulating Calls with the Command Pattern

[68]

Command Pattern terminology
To understand how the Command Pattern works, let's define some terminologies:

•	 Command: This is an interface for executing an operation.
•	 ConcreteCommand: This class extends the Command interface and

implements the execute method. This class creates a binding between the
action and the receiver.

•	 Client: This class creates the ConcreteCommand class and associates it with
the receiver.

•	 Invoker: This class asks the command to carry out the request.
•	 Receiver: This class knows how to perform the operation.

In the following diagram, the Invoker class calls the execute method of an object
with the Command interface. Actually, it is an object of the ConcreteCommand class,
in which the execute method calls an object of the Receiver class that does some
actual work.

ConcreteCommand

Invoker

Client

Receiver

execute() do_work()

<<interface>>
Command

execute()

DelegatesCreates

Calls

The Command design pattern provides an interface to call a method to perform
some job and encapsulates all necessary information to do it in one object call,
which can be run separately after instantiation.

Chapter 6

[69]

Use cases of the Command design
pattern
It is better to apply the command in the following cases:

•	 When you need to keep a history of requests. An invoker can save command
instances after calling its execute method to implement history functionality
somewhere.

•	 When you need to implement callback functionality. If you pass to the
invoker two objects one after another, the second object will be a callback
for the first.

•	 When you need requests to be handled at variant times or in variant orders.
To achieve this, you can pass the command objects to different invokers,
which are invoked by different conditions.

•	 When the invoker should be decoupled from the object handling
the invocation.

•	 When you need to implement the undo functionality. To achieve this, you
need to define a method that cancels a operation performed in the execute
method. For example, if you created a file, you need to delete it.

Advantages and disadvantages of the
Command design pattern
The pros and cons of the Command design pattern are as follows:

•	 It is useful when creating a structure, particulary when the creating of
a request and executing are not dependent on each other. It means that the
Command instance can be instantiated by Client, but run sometime later by
the Invoker, and the Client and Invoker may not know anything about
each other.

•	 This pattern helps in terms of extensibility as we can add a new command
without changing the existing code.

•	 It allows you to create a sequence of commands named macro. To run the
macro, create a list of Command instances and call the execute method
of all commands.

The main disadvantage of the Command Pattern is the increase in the number
of classes for each individual command.

Encapsulating Calls with the Command Pattern

[70]

Implementation in Python
For this example, we will create an extremely simple implementation of several Unix
commands: ls, touch, and rm. We are going to use them in our shell, which we will
write sometime later. The killer feature of the shell will be the possibility to undo
all the operations executed since the shell started. Let's use the Command design
pattern to do it.

In this example, we will use the abc module that provides the abstractmethod
decorator to make methods abstract, so that this method should be implemented
in derived classes to instantiate them. Also, we need to assign abc.ABCMeta
to the __metaclass__ class attribute to let the abstractmethod decorator work.
More information can be found in Python's standard library documentation at
http://docs.python.org/2/library/abc.html.

First, let's create an interface for our commands as shown in the following code:

import abc
import os

history = []

class Command(object):
 """The command interface."""

 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod
 def execute(self):
 """Method to execute the command."""
 pass

 @abc.abstractmethod
 def undo(self):
 """A method to undo the command."""
 pass

Every command can be executed and undone. The first command will be ls, which
lists the current directory content.

class LsCommand(Command):
 """Concrete command that emulates ls unix command behavior."""

 def __init__(self, receiver):

Chapter 6

[71]

 self.receiver = receiver

 def execute(self):
 """The command delegates the call to its receiver."""
 self.receiver.show_current_dir()

 def undo(self):
 """Can not undo ls command."""
 pass

So, the ls command does not have any logic; it just contains the receiver and
delegates the actual work to the receiver. Let's create the receiver for it with the
following code:

class LsReceiver(object):
 def show_current_dir(self):
 """The receiver knows how to execute the command."""

 cur_dir = './'

 filenames = []
 for filename in os.listdir(cur_dir):
 if os.path.isfile(os.path.join(cur_dir, filename)):
 filenames.append(filename)

 print 'Content of dir: ', ' '.os.path.join(filenames)

The Unix touch command generally creates a file if it does not exist and updates
the access time of the file if it is already created. In our example, we will implement
it using the os.utime function, whose effect is similar to running the Unix touch
command. Thus, we will have the TouchCommand class derived from the Command
interface that has the execute method, and unlike the ls command, it will also have
an undo method implemented. The touch command creates a file and to undo the
command, we need to delete it.

To do the work, TouchCommand delegates all calls to TouchReceiver that has the
create_file and delete_file methods, which literally create and delete file.

class TouchCommand(Command):
 """Concrete command that emulates touch unix command
 behavior."""

 def __init__(self, receiver):
 self.receiver = receiver
 def execute(self):
 self.receiver.create_file()

 def undo(self):

Encapsulating Calls with the Command Pattern

[72]

 self.receiver.delete_file()

class TouchReceiver(object):

 def __init__(self, filename):
 self.filename = filename

 def create_file(self):
 """Actual implementation of unix touch command."""
 with file(self.filename, 'a'):
 os.utime(self.filename, None)

 def delete_file(self):
 """Undo unix touch command. Here we simply delete the file."""
 os.remove(self.filename)

It's not so easy to implement an undo operation for the rm command, which removes a
file. To achieve this, we will not delete file; we'll just mimic a deletion by renaming it.

class RmCommand(Command):
 """Concrete command that emulates rm unix command behavior."""
 def __init__(self, receiver):
 self.receiver = receiver

 def execute(self):
 self.receiver.delete_file()

 def undo(self):
 self.receiver.undo()

class RmReceiver(object):

 def __init__(self, filename):
 self.filename = filename
 self.backup_name = None

 def delete_file(self):
 """Deletes file with creating backup to restore it in undo
 method."""
 self.backup_name = '.' + self.filename
 os.rename(self.filename, self.backup_name)

 def undo(self):
 """Restores the deleted file."""
 original_name = self.backup_name[1:]
 os.rename(self.backup_name, original_name)
 self.backup_name = None

Chapter 6

[73]

That's our invoker. It takes a list of commands to create and delete files. When we
create or delete a file, all these commands are executed one after the other.

It is noteworthy that the invoker maintains a history of executed commands. We
need it to implement undo operations. When we want to undo the commands, we
get a list of executed commands. And at the end of it, the invoker calls the undo
method of all the previously executed commands.

class Invoker(object):
 def __init__(self, create_file_commands, delete_file_commands):
 self.create_file_commands = create_file_commands
 self.delete_file_commands = delete_file_commands
 self.history = []

 def create_file(self):
 print 'Creating file...'

 for command in self.create_file_commands:
 command.execute()
 self.history.append(command)

 print 'File created.\n'

 def delete_file(self):
 print 'Deleting file...'
 for command in self.delete_file_commands:
 command.execute()
 self.history.append(command)
 print 'File deleted.\n'

 def undo_all(self):
 print 'Undo all...'

 for command in reversed(self.history):
 command.undo()

 print 'Undo all finished.'

And the last part is our client code, which creates command objects, assigns them
receivers, and passes these commands to the receiver.

if __name__ == '__main__':
 # Client

Encapsulating Calls with the Command Pattern

[74]

 # List files in current directory
 ls_receiver = LsReceiver()
 ls_command = LsCommand(ls_receiver)

 # Create a file
 touch_receiver = TouchReceiver('test_file')
 touch_command = TouchCommand(touch_receiver)

 # Delete created file
 rm_receiver = RmReceiver('test_file')
 rm_command = RmCommand(rm_receiver)

 create_file_commands = [ls_command, touch_command, ls_command]
 delete_file_commands = [ls_command, rm_command, ls_command]

 invoker = Invoker(create_file_commands, delete_file_commands)

 invoker.create_file()
 invoker.delete_file()
 invoker.undo_all()

If you run the script, you will get the message as shown in the following screenshot:

The script created a new file, test_file, as a result of the invoker.create_file()
invocation.

Then, the invocation of delete_file() renamed test_file to .test_file,
emulating the backup functionality.

Finally, the undo_all invocation annuls all executed commands, executing the
corresponding undo method of every executed command and leaves us with
the same directory content we had before running the script.

Chapter 6

[75]

Summary
The Command design pattern provides an interface to call a method to perform
some job and encapsulates all necessary information to do it in one object call,
which can be run separately and later after instantiation.

The Command design pattern can be used to achieve undo operations if you
implement a method that cancels the execute function result.

The Command design pattern can be used to implement the history of executed
operations and macros as a set of Command instances, which can be executed in
a sequence.

In the next chapter, you will learn about the Template Method pattern that helps
you to adjust an algorithm to different contexts with minimal changes.

Redefining Algorithms with
the Template Method

Sometimes you have one algorithm that needs to be changed with slight
modifications. For example, imagine you are building authentication for some
website where you should be able to authenticate users via social network accounts.
The authentication processes via Twitter and Facebook, for example, are similar in
general but still require some changes; they use different URLs and pass different
data. Naively, you implement this algorithm again and again from start to finish,
but someday you realize that there are obvious code duplication and difficulties with
code maintenance; to change the logic of an algorithm, you need to change your code
at several places for every implementation.

But, apart from the naive version, we have a dedicated pattern to handle such tasks:
a Template Method design pattern.

The Template Method design pattern
The main idea of Template Method is to create a method that will hold a sequence of
steps (primitive operations) for our algorithm to achieve some goal. These primitive
operations will be implemented in separate methods. Some methods are the same for
every kind of algorithm and some methods are different. The same methods will be
implemented in the abstract class, whereas, the implementation of different methods
will be in separate classes for every kind of algorithm.

So, the sequence of steps to implement the Template Method is as follows:

1.	 Create a method for the algorithm.
2.	 Split the algorithm's implementation into several methods.
3.	 Methods that are the same for every class should be implemented in the base

class, whereas, specific methods should be implemented in the inherited class.

Redefining Algorithms with the Template Method

[78]

In the following diagram, AbstractClass has a method template_method that
consists of calls to primitive_operation1 and primitive_operation2 methods.
These two methods provide the default implementation of the algorithm in
template_method. In the ConcreteClass, primitive_operation2 is redefined,
leaving primitive_operation1 as it is. The redefined primitivie_operation2
redefines some part of the algorithm in template_method.

template_method()
primitive_operation1()
primitive_operation2()

AbstractClass

ConcreteClass

template_method()
primitive_operation1()
primitive_operation2()

primitive_operation2()

The benefits of the Template Method design
pattern
The main benefit of the Template Method design pattern is that it allows a class
to control and expose its parts, providing good extensibility. In addition to this, it
provides the following benefits:

•	 Minimizes code duplication—no need to write similar code again and again
•	 The algorithm itself is located in one place of code, so there is no need to

change it in different parts
•	 Ease of code modification; you need to create a new class and implement

some methods instead of rewriting the whole algorithm

Chapter 7

[79]

Using hooks
The hook is a method that can be defined in an abstract class and can be overridden
in concrete classes. The difference between primitive operations and hooks is
that hooks can be overridden by a derived class but is not obligated to do it,
whereas, a primitive operation must be implemented or the program will raise
NotImplementedError during the execution. Hooks are used for small changes
in an algorithm while avoiding code duplication.

Implementation in Python
Imagine you are building a news aggregator and want to get the latest news
from a lot of news sites. The news sites typically provide news with RSS and
Atom protocols. These protocols are based on XML and are mostly similar with
exception to some details.

The following is an example of an RSS feed. Here we have a set of item tags that
correspond to a published item (news, or blog posts, and so on).

In every item, we have a short title, longer description, and a direct link to an
item as shown in the following code:

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <rss version="2.0">
 <channel>
 <title>A RSS example</title>
 <link>http://example.com</link>
 <description>Description of RSS example</description>
 <item>
 <title>The first news</title>
 <link>http://example.com/first</link>
 <description>Some description of the first
 news</description>
 </item>
 <item>
 <guid>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <title>The second news</title>
 <link>example.com/second</link>
 <description>Some description of the second
 news</description>
 <pubDate>Wed, 30 Sep 2013 13:00:00 GMT</pubDate>
 </item>
 </channel>
 </rss>

Redefining Algorithms with the Template Method

[80]

An Atom feed is similar, but it has some differences. The following is the same
example represented in the Atom format:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>A RSS example</title>
<subtitle>Description of RSS example</subtitle>
<link href="http://example.org/"/>
<entry>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <title>The first news</title>
 <link href="http://example.com/first"/>
 <summary>Some description of the second news</summary>
 <updated>2013-09-30T13:00:00Z</updated>
</entry>
</feed>

As we see, Atom uses the <entry> tag instead of the <item> tag, and the link is
stored in an attribute instead of a text node. Also, Atom uses the <summary> tag
instead of <description>, and it uses <update> instead of <pubDate>. Additionally,
every feed provider can use their own version of the <guid>/<id> format, or this
item can even be omitted.

We need to use different algorithms to parse the feeds, but everything else should be
the same for both the feeds; we make a request, get a response, and print the parsed
content for the user.

We will use the Google News public feed that provides news in an Atom format, and
the Yahoo! News public feed that provides feeds in RSS. Say, our client wants to get
the latest news printed to stdout, without the knowledge of the type of feed. To do
this, let's decide with our parsing algorithm:

1.	 Get a URL to make a request to the feed server.
2.	 Get the raw content.
3.	 Parse it.
4.	 Print it for the end user.

How can we ensure that steps 2 and 4 will be the same for all the feeds, whereas 1
and 3 will be special?

To do this, let's create an abstract class that will hold our algorithm in the print_
top_news method.

Chapter 7

[81]

We need to import minidom from xml.dom.

import urllib2 # To make http requests to RSS and Atom feeds

class AbstractNewsParser(object):
 def __init__(self):
 # Prohibit creating class instance
 if self.__class__ is AbstractNewsParser:
 raise TypeError('abstract class cannot be instantiated')

 def print_top_news(self):
 """A Template method. Returns 3 latest news for every news
 website."""
 url = self.get_url()
 raw_content = self.get_raw_content(url)
 content = self.parse_content(raw_content)

 cropped = self.crop(content)

 for item in cropped:
 print 'Title: ', item['title']
 print 'Content: ', item['content']
 print 'Link: ', item['link']
 print 'Published: ', item['published']
 print 'Id: ', item['id']

 def get_url(self):
 raise NotImplementedError()

 def get_raw_content(self, url):
 return urllib2.urlopen(url).read()

 def parse_content(self, content):
 raise NotImplementedError()

 def crop(self, parsed_content, max_items=3):
 return parsed_content[:max_items]

Redefining Algorithms with the Template Method

[82]

In the preceding code, we left get_raw_content and parse_content
as not implemented to let subclasses implement them. We cannot provide
the implementation because every concrete feed parser will have its own
method to parse and a method that returns the URL for making requests.
In the parse_content method, we parse the XML and assign all of the
parsed values to a dictionary, which has the same format for Atom and RSS.

The following is the YahooParser class, which is inherited from the
AbstractNewsParser abstract class and provides implementation for
the get_url and parse_content abstract methods. The parse_content
method parses RSS feed and returns a dictionary filled with parsed data.

class YahooParser(AbstractNewsParser):
 def get_url(self):
 return 'http://news.yahoo.com/rss/'

 def parse_content(self, raw_content):

 parsed_content = []

 dom = minidom.parseString(raw_content)

 for node in dom.getElementsByTagName('item'):

 parsed_item = {}

 try:
 parsed_item['title'] =
 node.getElementsByTagName('title')[0].childNodes[0].
 nodeValue
 except IndexError:
 parsed_item['title'] = None

 try:
 parsed_item['content'] =
 node.getElementsByTagName('description')[0].childNodes[0].		
 nodeValue
 except IndexError:
 parsed_item['content'] = None

 try:
 parsed_item['link'] =
 node.getElementsByTagName('link')[0].childNodes[0].nodeValue
 except IndexError:
 parsed_item['link'] = None

Chapter 7

[83]

 try:
 parsed_item['id'] =
 node.getElementsByTagName('guid')[0].childNodes[0].nodeValue
 except IndexError:
 parsed_item['id'] = None

 try:
 parsed_item['published'] =
 node.getElementsByTagName('pubDate')[0].childNodes[0]. 	 	
 nodeValue
 except IndexError:
 parsed_item['published'] = None

 parsed_content.append(parsed_item)

 return parsed_content

The same is for GoogleParser; we parse an Atom feed and assign parsed values to a
dictionary as follows:

class GoogleParser(AbstractNewsParser):
 def get_url(self):
 return 'https://news.google.com/news/feeds?output=atom'

 def parse_content(self, raw_content):
 parsed_content = []
 dom = minidom.parseString(raw_content)

 for node in dom.getElementsByTagName('entry'):

 parsed_item = {}

 try:
 parsed_item['title'] =
 node.getElementsByTagName('title')[0].childNodes[0].
 nodeValue
 except IndexError:
 parsed_item['title'] = None

 try:

Redefining Algorithms with the Template Method

[84]

 parsed_item['content'] =
 node.getElementsByTagName('content')[0].childNodes[0].
 nodeValue
 except IndexError:
 parsed_item['content'] = None

 try:
 parsed_item['link'] =
 node.getElementsByTagName('link')[0].getAttribute('href')
 except IndexError:
 parsed_item['link'] = None

 try:
 parsed_item['id'] =
 node.getElementsByTagName('id')[0].childNodes[0].nodeValue
 except IndexError:
 parsed_item['id'] = None

 try:
 parsed_item['published'] =
 node.getElementsByTagName('updated')[0].childNodes[0].
 nodeValue
 except IndexError:
 parsed_item['published'] = None

 parsed_content.append(parsed_item)

 return parsed_content

In our client code, we create instances of RSS and Atom parsers and print out the
news in the print_top_news() template method indicating that they have parsed,
as illustrated in the following code. Both the parsers use the algorithm defined in
print_top_news(), but the implementation of the algorithm differs because we
have redefined several steps of the algorithm using the Template Method pattern.

if __name__ == '__main__':
 google = GoogleParser()
 yahoo = YahooParser()

 print 'Google: \n', google.print_top_news()
 print 'Yahoo: \n', yahoo.print_top_news()

Chapter 7

[85]

Summary
The Template Method is a design pattern that defines the basis of an algorithm and
enables successors to redefine some steps of the algorithm without changing its
structure. The Template Method pattern allows good extensibility of the algorithm,
but only where permitted. This design pattern is well applied when you have an
algorithm whose behavior is common but the implementation may vary and you
have some steps that need to be adapted to different contexts.

Index
A
Abstract Factory

about 35
advantages 36
implementing 37-40
versus, Factory Method 40

abstractmethod decorator 70

B
borg pattern 20

C
classic singleton 19
Command Pattern

advantages 69
disadvantages 69
functioning 68
implementing, in Python 70-74
terminologies 68
use cases 69

ConcreteCreator class 29
controller

about 9
recommendation 9

create_product method
about 28
versus, Factory method 28

D
do_something() function 44

F
Facade design pattern

about 44
advantages 45
diagrammatic representation 44
implementing, in Python 47-51
in Pythons standard library 45, 46
used, for troubleshooting 45

factory
about 27
example 28

Factory method
about 29
advantages 30
implementing 30-33

Flask 10

G
get_by_short_url method 11
get_forecast method 50
get_weather_data method 47

I
isdir function 45

L
lazy initialization 53

M
model

about 8
recommendations 8

[88]

proxy design pattern, implementing 55-58
singleton, implementing 21-26
Template Method design pattern,

implementing 79-84

R
redirect_to_full_url method 14
rm command 72

S
shorten method 11
SimpleFactory class 28
singleton

about 17
borg singleton 20
classic singleton 19
implementing, in Python 21-26
module-level singleton 18

some operation method 29
stat.S_ISDIR 46

T
Template Method design pattern

about, 77
AbstractClass, 78
benefits, 78
ConcreteClass, 78
diagrammatic representation, 78
hooks, using, 79
implementing, in Python, 79-84

TouchCommand class 71

U
Unix touch command 71

V
view

about 8
recommendation 9

W
WeatherProvider class 47

module-level singleton 18
monostate 20
MVC

about 7
benefits 10
controller 9
diagrammatic representation 7, 8
implementing, in Python 10-15
model 8
view 8

O
Observer design pattern

about 60
advantages 61
Concrete Observer A 60
diagramatic representation 60
implementing, in Python 61, 62
Observer 60
problems, solving 60
Subject 60
uses 61

P
parse_content method 82
parse_weather_data method 48
print_top_news() template method 84
process function 14
proxy design pattern

about, 54
advantages, 55
Client interface, 54
disadvantages, 55
implementing, in Python, 55-58
problems, solving, 54
Proxy, 54
RealSubject, 55
Subject, 55
uses, 55

Python
Command Pattern, implementing 70-74
Facade, implementing 47-50
MVC, implementing 10-15
Observer design pattern, implementing

61-64

Thank you for buying
Learning Python Design Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Appcelerator Titanium: Patterns
and Best Practices
ISBN: 978-1-84969-348-6 Paperback: 110 pages

Take your Titanium development experience to the
next level, and build your Titanium knowledge on
CommonJS structuring, MVC model implementation,
memory management, and much more

1.	 Full step-by-step approach to help structure
your apps in an MVC style that will make
them more maintainable, easier to code and
more stable

2.	 Learn best practices and optimizations
both related directly to JavaScript and
Titanium itself

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2.	 Apply object-oriented principles, design
patterns, and advanced syntax tricks

3.	 Manage your code with distributed version
control

4.	 Profile and optimize your code

Please check www.PacktPub.com for information on our titles

Python 2.6 Graphics Coobook
ISBN: 978-1-84951-384-5 Paperback: 260 pages

Over 100 great recipes for creating and animating
graphics using Python

1.	 Create captivating graphics with ease and
bring them to life using Python

2.	 Apply effects to your graphics using powerful
Python methods

3.	 Develop vector as well as raster graphics
and combine them to create wonders in the
animation world

4.	 Create interactive GUIs to make your creation
of graphics simpler

Python 3 Object Oriented
Programming
ISBN: 978-1-84951-126-1 Paperback: 404 pages

Harness the power of Python 3 objects

1.	 Learn how to do object-oriented programming
in Python using this step-by-step tutorial

2.	 Design public interfaces using abstraction,
encapsulation, and information hiding

3.	 Turn your designs into working software by
studying the Python syntax

4.	 Raise, handle, define, and manipulate
exceptions using special error objects

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Model-View-Controller
	Model – the knowledge of the application
	View – the appearance of knowledge
	Controller – the glue between the model and view
	Benefits of using the MVC
	Implementation in Python
	Summary

	Chapter 2: Creating Only One Object with the Singleton Pattern
	A module-level singleton
	A classic singleton
	The borg singleton
	Implementation in Python
	Summary

	Chapter 3: Building Factories to Create Objects
	The Factory Method
	Advantages of using the Factory Method pattern
	The Factory Method implementation

	Abstract Factory
	Advantages of using the Abstract Factory pattern
	Abstract Factory implementation

	Abstract Factory versus Factory Method
	Summary

	Chapter 4: The Facade Design Pattern
	The Facade design pattern
	Problems solved by the Facade pattern
	Advantages of the Facade design pattern

	Facades in Python's standard library
	Implementation in Python
	Summary

	Chapter 5: Facilitating Object Communication with Proxy and Observer Patterns
	Proxy design pattern
	Problems solved by the Proxy pattern
	The use of the Proxy pattern
	Advantages and disadvantages of the Proxy design pattern
	Implementation in Python

	Observer design pattern
	Problems solved by the Observer pattern
	Use of the Observer pattern
	Advantages of the Observer pattern
	Implementation in Python

	Summary

	Chapter 6: Encapsulating Calls with the Command Pattern
	Command Pattern terminology
	Use cases of the Command design pattern
	Advantages and disadvantages of the Command design pattern
	Implementation in Python
	Summary

	Chapter 7: Redefining Algorithms with the Template Method
	The Template Method design pattern
	The benefits of the Template Method design pattern
	Using hooks

	Implementation in Python
	Summary

	Index

