
www.allitebooks.com

http://www.allitebooks.org

Learning Vaadin

Master the full range of web development features
powered by Vaadin-built RIAs

Nicolas Fränkel

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Vaadin

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2011

Production Reference: 1141011

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-522-1

www.packtpub.com

Cover Image by Grand-Duc, Wikipedia
(https://secure.wikimedia.org/wikipedia/en/wiki/User:Grand-Duc)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nicolas Fränkel

Reviewers
Phil Barrett

Jouni Lehto

Risto Yrjänä

Acquisition Editor
Chaitanya Apte

Development Editor
Kartikey Pandey

Meeta Rajani

Technical Editors
Azharuddin Sheikh

Kavita Iyer

Project Coordinator
Joel Goveya

Proofreader
Mario Cecere

Indexers
Tejal Daruwale

Hemangini Bari

Graphics
Nilesh Mohite

Valentina D'silva

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

When we started designing Vaadin Framework in year 2000—then called Millstone
Framework—we had a clear vision of creating a platform that would make
building web applications fast, easy, and modular. Something that we wanted to
use by ourselves in the process of building business oriented web applications.
We envisioned a full stack of technologies starting from a web server, an object
relationship-mapping tool, rich set of user interface components, and extensible
theme system. Everything built from scratch with a tiny team with no funding and
little experience. Fortunately, we did not have a clue on the size and complexity of
the task or the lack of our experience; otherwise, we would have never dared to start
working on such a huge task. Finally, it took two years and three complete rewrites
to understand the value of focusing solely on the user interface layer and being able
to release something solid that has outgrown all the expectations we had.

Now when I look back to the design principles we chose for Vaadin, three principles
in particular seem to have contributed to the longevity of the framework. First, we
reasoned that the diversity and incompatibility of web browsers we experienced
back in year 2000 was not going away—quite the contrary. While the Web has
gained more and more popularity as a platform for building interactive application
user interfaces, the features in web browsers have exploded and the number of web
browsers have grown to include smartphones and tablets in addition to 5-10 desktop
browsers that should be supported. Therefore, we chose to embrace this diversity
and abstract away from the browser to make it easier for developers to support "all"
browsers at once. Secondly, we set our optimization target to be developer efficiency
what could in most cases be roughly measured by the number of code lines in the
user interface layer of the program. This has been a good choice as developers
continue to be more expensive resource in business application projects than servers
are. Finally, we recognized the need to support heterogeneous teams where some
developers might be more experienced than others. Some of the mechanisms to
support teams include theme packaging, multiple levels of abstraction, support
for data bindings side-by-side with internal data in components, deep inheritance
hierarchies for user interface components to name a few.

www.allitebooks.com

http://www.allitebooks.org

I have always been a huge fan of open source being introduced to it by starting to
play around with Linux kernel 0.3 and early Linux distributions. Working on, living
in, and breathing open source did make it natural to choose to release Vaadin with
an open source license and to build community around it. After years of trying and
failing to build impactful community, all pieces finally clicked together in 2009 with
the release of Vaadin 6. Seeing how people all over the world started to use Vaadin
for building applications their businesses depend on for years to come had been
great. What have been even more amazing is how people have started to contribute
back to Vaadin—in the terms of add-on components, helping each other on the
forums, and promoting the framework to their peers have been amazing. At the end
of the day, lively and friendly community and ecosystem around Vaadin has been
the key to the rapid growth of adoption.

I think that I first heard of Nicolas Frankel by reading one of his many insightful blog
posts couple of years back. Also, remember him being one of the more active Vaadin
community members helping others on the forum. One year ago, Nicolas was
working on a really interesting project for a multinational organization. He invited
me on a really nice dinner in Geneva where I was visiting Soft-Shake conference to
discuss of Vaadin and overeat excellent Swiss fondue. During the dinner, we ended
up talking about the need for a book that would tutor beginners through Vaadin and
would introduce them to common patterns for Vaadin development. I remembered
being contacted by Packt Publishing about getting in touch with potential authors for
such a book. Nicolas had quite a lot of Vaadin experience and I asked if he would be
interested in considering writing the book. To my surprise, he agreed.

You might be familiar with Book of Vaadin—a free book about Vaadin. While being
a complete reference of Vaadin and anything related to it, the amount of contents
and the referential approach can make it overwhelming for a beginner. This book
takes another approach. Instead of trying to be a reference, it teaches the reader
about Vaadin concepts by introducing them one by one in an order natural for
learning. It is written as a journey of building a simple Twitter client while learning
the most important aspects of Vaadin—one by one.

In conclusion, I would like to give my deep thanks to Nicolas for taking the challenge
of writing this book which I am sure will help many people to get a quick start for
writing Vaadin based applications. I hope that these applications will benefit the
companies investing in them, as well as save a lot of time and frustration from the
end users. However, at the end of the day—it is the most important to me—and I am
sure that Nicolas shares this thought—that you as a developer of those applications
will save your time and frustration and be able to accomplish something that would
not be possible otherwise.

Dr. Joonas Lehtinen
Vaadin, CEO and Founder

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nicolas Fränkel comes from a rather unorthodox background, as he holds an MSc
in both Architecture and Civil Engineering. Now a Sun Certified professional, he
operates as a successful Java/Java EE architect with more than 10 years of experience
in consulting for different clients.

Based in France, he also practices (or practiced) as WebSphere Application Server
administrator, certified Valtech trainer, and part-time lecturer in different French
universities, so as to broaden his understanding of software craftsmanship.

His interests in computer software are diversified, ranging from Rich Client
Application, to Quality Processes through open source software. When not tinkering
with new products, or writing blog posts, he may be found practicing sports: squash,
kickboxing, and skiing at the moment. Other leisure activities include reading
novels, motorcycles, photography, and drawing, not necessarily in that order.

I would like to thank my wonderful wife, Corinne, for letting me
throw myself in the formidable task of writing a book, fully knowing
the time it takes. I love you, deeply.

I would like to thank my son, Dorian, for making me proud to be
a father.

I would like to thank Joonas Lehtinen, Vaadin's creator, for letting
me ask him so many questions and always having time to answer
them all and in detail despite his many responsibilities. I would also
like to thank the Vaadin team as a whole: Artur, Sami, Vile, Fredrik,
and countless others I don't know of, but who made Vaadin possible
by their work and their dedication to the framework.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Phil Barrett, father of two, living abroad. He is an open source addict who still lives
with the vague belief that HashMaps are the answer.

Jouni Lehto has over 10 years of experience on different kinds of web technologies
and has been involved in a few projects where Vaadin has been the choice.

Risto Yrjänä is currently working as Vaadin Expert at Vaadin Ltd. He has several
years of experience in software design and development, as well as maintaining
Vaadin projects for both the company and their clients. Risto is particularly
interested in UI-design, RIA, and lean methodologies.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Vaadin and its context 7

Rich applications 8
Application tiers 8

Tiers migration 9
Limitations of the thin-client applications approach 11

Poor choice of controls 11
Many unrelated technologies 11
Browser compatibility 13
Page flow paradigm 14

Beyond the limits 14
What are rich clients? 15
Some rich client approaches 15

Why Vaadin? 19
State of the market 19
Importance of Vaadin 20
Vaadin's integration 20

Integrated frameworks 21
Integration platforms 22

Using Vaadin in the real world 22
Concerns about using a new technology 22
More reasons 24

Summary 25
Chapter 2: Environment Setup 27

Vaadin in Eclipse 28
Setting up Eclipse 28

When Eclipse is not installed 28
Installing the Vaadin plugin 29
Creating a server runtime 31
Creating our first Eclipse Vaadin project 32
Testing our application 34

Table of Contents

[ii]

Alternatives 35
Vendor-specific distribution 35
When Eclipse is already installed 35

Vaadin in NetBeans 38
Setting up NetBeans 38

Checking if Java Web features are present 41
Checking if the Vaadin plugin is installed 42
Installing the Vaadin plugin 42

Creating our first NetBeans Vaadin project 43
Changing the Vaadin version 45

Testing the application 46
Vaadin and other IDEs 46

Adding the Vaadin library 46
Creating the application 47
Adding the servlet mapping 47

Declaring the servlet class 48
Declaring the Vaadin's entry point 48
Declaring the servlet mapping 48

Summary 49
Chapter 3: Hello Vaadin! 51

Understanding Vaadin 51
Vaadin's philosophy 51
Vaadin's architecture 52

Client server communication 53
The client part 54
The server part 56
Terminal and adapter 57
Client server synchronization 57

Deploying a Vaadin application 58
Inside the IDE 58

Creating an IDE-managed server 58
Adding the application 61
Launching the server 61

Outside the IDE 63
Creating the WAR 63
Launching the server 63

Using Vaadin applications 64
Browsing Vaadin 64
Out-of-the-box helpers 64

The debug mode 65
Restart the application, not the server 66

Behind the surface 67
Stream redirection to Vaadin servlet 67
Vaadin request handling 67

Table of Contents

[iii]

What does an application do? 68
Application responsibilities 69
Application configuration 69
Application and session 70

Scratching the surface 71
The source code 71
The generated code 72
Things of interest 73

Summary 74
Chapter 4: Components and Layouts 75

Thinking in components 75
Terminology 75
Component class design 76

Component 76
MethodEventSource 77
Abstract component 77

Windows 78
ComponentContainer 79
Panel 79
Window 80
Subwindow 87

Labels 90
Label class hierarchy 90
Property 90
Label 91

Text inputs 92
Validation 93
Change buffer 97
Input 98

Laying out the components 103
Size 103
Layouts 105

About layouts 105
Layout and abstract layout 105
Layout types 105
Choosing the right layout 109
Split panels 109

Bringing it all together 110
Introducing Twaattin 110

The Twaattin design 111
The login window 111
The main window 111

Let's code! 111
Project setup 111
Project sources 112

Summary 115

Table of Contents

[iv]

Chapter 5: Event listener model 117
Event-driven model 117

The observer pattern 117
Enhancements to the pattern 118

Events in Java EE 119
UI events 120

Event model in Vaadin 121
Standard event implementation 122

Event class hierarchy 122
Listener interfaces 123
Managing listeners 124

Alternative event implementation 125
Method event source details 126
Listener methods 127
Abstract component and event router 129

Expanding our view 129
Button 130

Events outside UI 131
User changed event 131

Architectural considerations 132
Anonymous inner classes as listeners 132
Widgets as listeners 132
Presenters as listeners 133
Services as listeners 134
Conclusion on architecture 134

Twaattin is back 135
Project sources 136
Additional features 138

Summary 142
Chapter 6: Containers and Related Widgets 143

Data binding 143
Data binding properties 144

Renderer and editor 144
Buffering 144
Data binding 144

Data in Vaadin 145
Entity abstraction 145

Property 145
Item 150
Container 159

Containers and the GUI 166
Container data source 166
Container widgets 169
Tables 173
Trees 187

Table of Contents

[v]

Refining Twaattin 188
Requisites 189
Adaptations 189
Sources 189

The login window 189
The Twaattin application 191
The timeline window 193
The name column generator 195
The date column generator 196

Summary 198
Chapter 7: Advanced Features 201

Core features 202
Accessing with the request-response model 202

The brute force approach 202
The integrated approach 204

Bookmarks 205
URL fragment 206
URI fragment utility 206

Embedding Vaadin 208
Basic embedding 209
Nominal embedding 210

Custom error handling 212
Design 212
Error listener example 215

Lifecycles 217
Application lifecycle 217

Third-party additional features 218
Vaadin add-ons 218

Add-ons directory 218
Noteworthy add-ons 222

Twaattin improves! 241
Twaattin application 242
Timeline window 245
New item handler 248

Summary 249
Chapter 8: Creating Custom Components 251

Widget composition 251
Manual composition 252
Strategy for custom components 254
Graphic composition 254

Visual editor setup 254
Visual editor use 256
Limitations 258

Table of Contents

[vi]

GWT widget wrapping 259
Vaadin GWT architecture 260

Client side 260
Server side 264
Server client communication 265
Client server communication 268

Componentized Twaattin 271
Designing the component 271
Updating Twaattin's code 272

Tweet component 272
Tweet label 274
When label 276
Timeline window 278
Final touch 279

Summary 280
Chapter 9: Integration with Third-party Products 281

Spring 282
Inversion of Control and Dependency Injection 282

Inversion of Control 282
Dependency Injection 282

Spring use-cases 283
Prerequisites 283

Downloading Spring 283
IDE enhancements 284

Design 284
Bean factory and application context 284
Vaadin application and servlet 285
Requirements and specifications 285

Code 286
Servlet code 286
Spring configuration 288

Additional thoughts 290
Java EE 6 290

Introduction 291
Profiles 291
Tomcat and the web profile 291

Prerequisites 291
Glassfish 3.1 291

Code 293
Servlet 293
Application 294
Window 295

Hibernate 296
Hibernate mappings 297

Seeing is believing 297

Table of Contents

[vii]

Hibernate container 298
Container architecture 298
Managing transactions 299
At last, the window 306

Putting it all together 311
Hibernate 311
SLF4J 311
HbnContainer 312

Final notes 312
Serialization exception 312
Optimizations 312
Rollback management 313

Java Persistence API 313
Summary 313

Chapter 10: Beyond Application Servers 315
Build tools 315

Available tools 316
Apache Ant 316
Apache Maven 316
Fragmentation 317
Final choice 317

Tooling 317
Maven in Vaadin projects 317

Mavenize a Vaadin project 318
Vaadin support for Maven projects 319

Mavenizing Twaattin 321
Preparing the migration 322
Enabling dependency management 322
Finishing touches 323
Final POM 327

Portals 327
Portal, container, and portlet 327
Choosing a platform 328

Liferay 329
GateIn 329

Tooling 332
A simple portlet 332

Creating a project 332
Portlet project differences 333
Using the portlet in GateIn 336

Configuring GateIn for Vaadin 338
Themes and widgetsets 338

Advanced integration 340
Restart and debug 340
Handling portlet specifics 341

Table of Contents

[viii]

Portlet development strategies 342
Keep our portlet servlet-compatible 343
Portal debug mode 343
Updating a deployed portlet 344

Integrating Twaattin 344
Portlet deployment descriptor 344
Web deployment descriptor 345
Maven changes 346

OSGi 349
Choosing a platform 350

Glassfish 351
Tooling 355
Vaadin OSGi use-cases 355

Vaadin bundling 355
Modularization 356

Hello OSGi 356
Making a bundle 356
Export, deploy, run 357
Correcting errors 358

Integrating Twaattin 360
Bundle plugin 360
Multiplatform build 363
Build and deploy 364

Cloud 364
Cloud offering levels 364
State of the market 365
Tooling 366
Hello cloud 367

Registration 367
Cloud setup 367
Application deployment 368
Alternative deployment 369

Integrating Twaattin 370
Creating the datasource 370
Using the datasource 370
Finishing touches 371

Summary 372
Index 373

Preface
Vaadin is a new Java web framework for making applications look great and
perform well, making your users happy. Vaadin promises to make your user
interfaces attractive and usable while easing your development efforts and boosting
your productivity. With this book in hand, you will be able to utilize the full range
of development and deployment features offered by Vaadin while thoroughly
understanding the concepts.

Learning Vaadin is a practical systematic tutorial to understand, use, and master the
art of RIA development with Vaadin. You will learn about the fundamental concepts
that are the cornerstones of the framework, at the same time making progress on
building your own web application. The book will also show you how to integrate
Vaadin with other popular frameworks and how to run it on top of internal, as well
as externalized infrastructures.

This book will show you how to become a professional Vaadin developer by giving
you a concrete foundation through diagrams, practical examples, and ready-to-use
source code. It will enable you to grasp all the notions behind Vaadin one-step at
a time: components, layouts, events, containers, and bindings. You will learn to
build first-class web applications using best-of-breed technologies. You will find
detailed information on how to integrate Vaadin's presentation layer on top of other
widespread technologies, such as Spring, CDI, and Hibernate. Finally, the book
will show you how to deploy on different infrastructures, such as Liferay portlet
container and Google App Engine.

This book is an authoritative and complete systematic tutorial on how to create
top-notch web applications with the RIA Vaadin framework.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

What this book covers
Chapter 1, Vaadin and its context is an introduction to Vaadin, its features, its
philosophy, and the environment surrounding it.

Chapter 2, Environment Setup is a detailed how-to that describes how to set up the
development environment, whether using Eclipse or NetBeans.

Chapter 3, Hello Vaadin is the creation of a basic Vaadin project, and the explanation
of what happens under the hood.

Chapter 4, Components and Layouts presents the building blocks of any Vaadin
application worth its salt.

Chapter 5, Event Listener Model illustrates the interactions between users and your
application and the way they are implemented in Vaadin.

Chapter 6, Containers and Related Widgets explains not only widgets presenting
collections of beans, but also the ways they can be bound to the underlying data.

Chapter 7, Advanced Features portrays real-life problems and how to resolve them,
such as accessing the request/response from inside Vaadin, running Vaadin
applications inside legacy ones and customizing error handling.

Chapter 8, Creating Custom Components depicts the strategies available to create your
own reusable components.

Chapter 9, Integrating with Third-party Products details how to run Vaadin on top of
other frameworks such as Spring, CDI and Hibernate.

Chapter 10, Beyond Application Servers describes how to deploy Vaadin applications
in other contexts: GateIn for portals, Glassfish for OSGi and finally Cloud Foundry
for "the cloud".

What you need for this book
In order to get the most out of this book, it is advised to have a computer, a Java
Developer Kit 6 installed on it, as well as Internet access.

Who this book is for
If you are a Java developer with some experience in Java web development and want
to enter the world of Rich Internet Applications, then this technology and book are
ideal for you. Learning Vaadin will be perfect as your next step towards building
eye-candy dynamic web applications on a Java-based platform.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

import com.vaadin.Application;
import com.vaadin.ui.*;

public class HelloWorldApp extends Application

 public void init() {

 Window mainWindow = new Window("Hello World Application");
 Label label = new Label("Greetings, Vaadin user!");
 mainWindow.addComponent(label);
 setMainWindow(mainWindow);
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<servlet>
 <servlet-name>Spring Integration</servlet-name>
 <servlet-class>
 com.packtpub.vaadin.SpringApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>applicationBeanName</param-name>
 <param-value>app</param-value>
 </init-param>
</servlet>

Any command-line input or output is written as follows:

Welcome to Apache Felix Gogo

g! help

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Right-click
on the Server tab and select New | Server".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Vaadin and its context
Developing Java applications and more specifically, developing Java web
applications should be fun. Instead, most projects are a mess of sweat and toil,
pressure and delays, costs and cost cutting. Web development has lost its appeal.
Yet, among the many frameworks available, there is one in particular that draws our
attention because of its ease of use and its original stance. It has been around since
the past decade and has begun to grow in importance. The name of this framework
is Vaadin. The goal of this book is to see, step-by-step, how to develop web
applications with Vaadin.

Vaadin is the Finnish word for a female reindeer. This piece of
information will do marvels to your social life as you are now one of the
few people on Earth who know this (outside Finland).

We are going to see Vaadin in detail in later chapters; the following is a preview of
what it is:

• A component-based approach that really works, and provides a bunch of
out-of-the-box components

• Full web compatibility, in addition to Google Web Toolkit
• All development is made completely in Java
• Integration with Eclipse and NetBeans IDEs
• And much, much more

Before diving right into Vaadin, it is important to understand what led to its creation.
Readers who already have this information (or who don't care) should go directly to
Chapter 2, Environment Setup.

Vaadin and its context

[8]

In this chapter, we will look into the following:

• The evolution from mainframe toward the rich client
 ° The concept of application tier
 ° The many limits of the thin-client approach
 ° What stands beyond those limits

• Why choose Vaadin today?

 ° The state of the market
 ° Vaadin's place in the market
 ° A preview of what other frameworks Vaadin can be integrated with

and what platforms it can run on

Rich applications
Vaadin is often referred to as a Rich Internet Application (RIA). Before explaining
why, we need to first define some terms which will help us describe the framework.
In particular, we will have a look at application tiers, the different kind of clients
and their history.

Application tiers
Some software run locally, that is, on the client machine and some run remotely,
such as on a server machine. Some applications also run on both the client and the
server. For example, when requesting an article from a website, we interact with a
browser on our client but the order itself is passed on a server.

Traditionally, all applications can be logically separated into tiers, each having
different responsibilities as follows:

• Presentation: The presentation tier is responsible for displaying the end-user
information and interaction. It is the realm of the user interface.

• Business Logic: The logic tier is responsible for controlling the application
logic and functionality. It is also known as the application tier, or the middle
tier as it is the glue between the other two surrounding tiers, thus leading to
the term middleware.

• Data: The data tier is responsible for storing and retrieving data. This
backend may be a file system. In most cases, it is a database, whether
relational, flat, or even an object-oriented one.

Chapter 1

[9]

This categorization not only naturally corresponds to specialized features, but
also allows you to physically separate your system into different parts, so that
you can change a tier with reduced impact on adjacent tiers and no impact on
non-adjacent tiers.

Tiers migration
In the history of computers and computer software, these three tiers have moved
back and forth between the server and the client.

Mainframes
When computers were mainframes, all tiers were handled by the server. Mainframes
stored data, processed it, and were also responsible for the layout of the presentation.
Clients were dumb terminals, suited only for displaying characters on the screen and
accepting the user input.

Client Server

Pr
es

en
ta

tio
n

Lo
gi

c

D
at

a

Client server
Not many companies could afford the acquisition of a mainframe (and many still
cannot). Yet, those same companies could not do without computers at all, because
the growing complexity of business processes needed automation. This development
in personal computers led to a decrease in their cost. With the need to share data
between them, the network traffic rose.

Vaadin and its context

[10]

This period in history saw the rise of the personal computer, as well as the
Client server term, as there was now a true client. The presentation and logic tier
moved locally, while shared databases were remotely accessible, as shown in the
following diagram:

Client Server

Pr
es

en
ta

tio
n

Lo
gi

c

D
at

a

Thin clients
The big enterprises migrating from mainframes to fat clients thought that deploying
software on ten client machines at the same site was relatively easy and could
be done in a few hours. However, they quickly became aware of the fact that
with the number of machines growing in a multi-site business, it could quickly
become a nightmare.

Enterprises also found that it was not only the development phase that had to be
managed like a project, but also the installation phase. When upgrading either the
client or the server, you most likely found that the installation time was high, which
in turn led to downtime and that led to additional business costs.

It was some time ago that Sir Tim Berners-Lee invented the Hyper Text Markup
Language, better known as HTML. Some people considered tweaking its original
use, which is to navigate between documents, to make web applications. This
solved the deployment problem as the logic tier was run on a single-server node
(or a cluster), and each client connected to this server. A deployment could be done
in a matter of minutes, at worst overnight, which was a huge improvement. The
presentation layer was still hosted on the client, with the browser responsible for
displaying the user interface and handling user interaction.

Chapter 1

[11]

This new approach brought new terms, which are as follows:

• The old client-server architecture was now referred to as fat client
• The new architecture was coined as thin client:

Client Server

Pr
es

en
ta

tio
n

Lo
gi

c

D
at

a

Limitations of the thin-client applications
approach
Unfortunately, this evolution was made for financial reasons and did not take into
account some very important drawbacks of the thin client.

Poor choice of controls
HTML does not support many controls, and what is available is not on par with
fat client technologies. Consider, for example, the list box: in any fat client, choices
displayed to the user can be filtered according to what is typed in the control. In
HTML, there's no such feature and all lines are displayed in all cases. This is a usability
disaster if you need to display the list of countries (more than 200 entries!). As such,
ergonomics of true thin clients have nothing to do with their fat client ancestors.

Many unrelated technologies
Developers of fat client applications have only to learn two languages: SQL and the
technology's language, such as Visual Basic, Java, and so on.

Web developers, on the contrary, have to learn an entire stack of technologies, both
on the client side and on the server side.

www.allitebooks.com

http://www.allitebooks.org

Vaadin and its context

[12]

On the client side, the following are the requirements:

• First, of course, is HTML. It is the basis of all web applications, and although
some do not consider it a language per se, every web developer must learn it
so that they can create content to be displayed by browsers.

• In order to apply some sense of unity into your application, one will
probably have to learn the Cascading Style Sheets (CSS) technology. CSS is
available in three main versions, each version being more or less supported
by browser version combinations (see Browser compatibility).

• Most of the time, it is nice to have some interactivity on the client side, like
pop-up windows or others. In this case, we will need a scripting technology
such as ECMAScript.

ECMAScript is the real name of JavaScript, standardized by the ECMA
organization. See http://www.ecma-international.org/
publications/standards/Ecma-262.htm for more information on
the subject

• Finally, one will probably need to update the structure of the HTML page,
a healthy dose of knowledge of the Document Object Model (DOM)
is necessary.

As a side note, consider that HTML, CSS, and DOM are W3C
specifications and ECMAScript is an ECMA standard.

From a Java point-of-view and on the server side, the following are the requirements:

• As servlets are the basis of all human user interactions in Java EE, every
developer worth his salt has to know both the Servlet specification and the
Servlet API.

• Moreover, most web applications tend to enforce the Model-View-Controller
paradigm. As such, the Java EE specification enforces the use of servlets for
controllers and JavaServer Pages (JSP) for views. As JSP are intended to be
templates, developers who create JSP have an additional syntax to learn,
even though they offer the same features as servlets.

• JSP accept scriptlets, that is Java code snippets, but good coding practices
tend to frown upon this as Java code can contain any feature, including
some that should not be part of views—database access code for example.
Therefore, a completely new technology stack is proposed in order to
limit code included in JSP: the Tag libraries. These tag libraries also have a
specification and API, and that is another stack to learn.

Chapter 1

[13]

However, these are a few of the standard requirements that you should know
in order to develop web applications in Java. Most of the time, in order to boost
developer productivity, one has to use frameworks. These frameworks are available
in most of the previously cited technologies. Some of them are supported by Oracle,
such as Java Server Faces, others are open source, such as Struts.

Knowing so much has negative effects, a few are as follows:

• On the technical side, as web developers have to manage so many different
technologies, web development is more complex than fat-client development,
potentially leading to more bugs

• On the human resources side, different meant either different profiles were
required or more resources, either way it added to the complexity of human
resource management

• On the project management side, increased complexity caused lengthier
projects: developing a web application was potentially taking longer than
developing a fat client application

All of these factors tend to make the thin client development cost much more than
fat-client, albeit the deployment cost was close to zero.

Browser compatibility
The Web is governed by standards, most of them upheld by the World Wide Web
Consortium. Browsers more or less implement these standards, depending on
the vendor and the version. The ACID test, now in version 3, is a test for browser
compatibility with web standards. The following summary speaks for itself:

Browser Version Score
Google Chrome 5.0 100
Apple Safari 4.0 100
Mozilla Firefox 4.0 97
Internet Explorer 9.0 95
Mozilla Firefox 3.6 94
Netscape Navigator 9.0 52
Internet Explorer 6.0 12

Some browsers even make the standards evolve, such as Microsoft which
implemented the XmlHttpRequest object in Internet Explorer and thus
formed the basis for Ajax.

Vaadin and its context

[14]

One should be aware of the combination of the platform, browser, and version. As
some browsers cannot be installed with different versions on the same platform,
testing can quickly become a mess (which can fortunately be mitigated with virtual
machines). Applications should be developed with browser combinations in mind,
and then tested in order to ensure application compatibility.

For intranet applications, the number of supported browsers is normally limited.
For Internet applications, however, most common combinations must be supported
in order to increase availability. If this wasn't enough, then the same browser in the
same version may run differently on different operating systems. At least one such
difference has been detected by the Vaadin team when running Firefox 3.0.0 on
Linux/OSX/Windows.

In all cases, each combination has an exponential impact on the application's
complexity, and therefore, on cost.

Page flow paradigm
Fat-client applications manage windows. Most of the time, there's a main window.
Actions are mainly performed in this main window, even if sometimes managed
windows or pop-up windows are used.

As web applications are browser-based and use HTML over HTTP, things are
managed differently. In this case, the presentation unit is not the window but the
page. This is a big difference that entails a performance problem: indeed, each time
the user clicks on a submit button, the request is sent to the server, processed by it,
and the HTML response is sent back to the client.

For example, when a client submits a complex registration form, the entire page is
recreated on the server side and sent back to the browser even if there is a minor
validation error, even though the required changes to the registration form would
have been minimal.

Beyond the limits
Over the last few years, users have been applying some pressure in order to have
user interfaces that offer the same richness as good old fat-client applications. IT
managers, however, are unwilling to go back to the old deploy-as-a-project routine
and its associated costs and complexity. They push towards the same deployment
process as thin-client applications. It is no surprise that there are different solutions
in order to solve this dilemma.

Chapter 1

[15]

What are rich clients?
All the following solutions are globally called rich clients, even if the approach
differs. They have something in common though: all of them want to retain the
ease of deployment of the thin-client and solve some or all of the problems
mentioned above.

Rich clients fulfill the fourth quadrant of the following schema, which is like a dream
come true, as shown in the following diagram:

Client server aka fat client

Fe
at

ur
es

Rich Client aka the Holy Grail

Ease of deployment

Thin client

Mainframes

Some rich client approaches
The following solutions are strategies that deserve the rich client label.

Ajax
Ajax was one of the first successful rich-client solutions. The term means
Asynchronous JavaScript with XML. In effect, this browser technology enables
sending asynchronous requests. When receiving the response, the handling script
manipulates the DOM representing the web page according to the data in the
response, and updates parts of the former.

Vaadin and its context

[16]

Ajax addresses the richness of controls and the page flow paradigm. Unfortunately:
• It aggravates browser-compatibility problems as Ajax is not done the same

way in all browsers.
• It has problems unrelated directly to the technologies, which are as follows:

 ° Either, one learns all the necessary technologies to do Ajax on its
own, that is, JavaScript, Document Object Model, and JSON/XML, to
communicate with the server and write all common features such as
error handling from scratch.

 ° Alternatively, one uses an Ajax framework, and thus, one has to learn
another technology stack.

Richness through a plugin
The oldest way to bring richness to the user's experience is to execute the code on
the client side and more specifically, in the browser's plugin. Sun—now Oracle—
proposed the applet technology, whereas Microsoft proposed ActiveX. The latest
technology using this strategy is Flash.

Both were commercial failures due to technical problems, including performance
lags, security holes, and plain-client incompatibility.

There is an interesting try to revive the applet with the Apache Pivot project, as
shown in the following screenshot (http://pivot.apache.org/), but it hasn't
made a huge impact yet.

Chapter 1

[17]

A more recent and successful attempt at executing code on the client side through a
plugin is through Adobe's Flex. A similar path was taken by Microsoft's Silverlight
technology.

Flex is a technology where static views are described in XML and dynamic behavior
in ActionScript. Both are transformed at compile time in Flash format. As the
penetration rate for the Flash plugin was found to be near 99% in March 2011. See
http://www.adobe.com/products/player_census/flashplayer/. Flex is one of
the de facto standards for rich-client applications. Readers wanting more information
on this technology should read Flex 3 with Java, Satish Kore, Packt Publishing.
https://www.packtpub.com/flex-3-with-java/book

Deploying and updating fat-client from the web
The most direct way toward rich-client applications is to deploy (and update) a fat-
client application from the web.

Java Web Start
Java Web Start (JWS), available at http://download.oracle.com/javase/1.5.0/
docs/guide/javaws/, is a proprietary technology invented by Sun. It uses a
deployment descriptor in Java Network Launching Protocol (JNLP) that takes the
place of the manifest inside a JAR file and supplements it. For example, it describes
the main class to launch, the classpath, and also additional information such as the
minimum Java version, icons to display on the user desktop, and so on.

This descriptor file is used by the javaws executable, which is bundled in the Java
Runtime Environment. It is javaws's responsibility to read the JNLP file and do the
right thing according to it. In particular, when launched, javaws will download the
updated JAR.

The detailed process goes something like the following:

1. The user clicks on a JNLP file
2. The JNLP file is downloaded on the user machine, and interpreted by the

local javaws application
3. The file references JARs that javaws can download

Vaadin and its context

[18]

4. Once downloaded, JWS reassembles the different parts, creates the classpath,
and launches the main class described in the JNLP

JAR1

5

7

2

3

4

references to JARs

javaws

JNLP
File

JWS correctly tackles all problems posed by the thin-client approach. Yet, it never
reaches critical mass for a number of reasons:

• First time installations are time-consuming because typically lots of
megabytes need to be transferred on the wire before the users can even
start using the app. This is a mere annoyance for Intranet applications, but a
complete no go for Internet apps.

• Some persistent bugs weren't fixed across major versions.
• Finally, the lack of commercial commitment by Sun was the final straw.

A good example of a successful JWS application is JDiskReport (http://www.
jgoodies.com/download/jdiskreport/jdiskreport.jnlp), a disk space analysis
tool by Karsten Lentzsch, which is available on the Web for free.

Update sites
Updating software through update sites is a path taken by both Integrated
Development Environment (IDE) leaders, NetBeans and Eclipse. In short, once the
software is initially installed, updates and new features can be downloaded from the
application itself.

Both IDEs also propose an API to build applications.

This approach also handles all problems posed by the thin-client approach.
However, like JWS, there's no strong trend to build applications based on these IDEs.
This can probably be attributed to both IDEs using the OSGI standard whose goal is
to address some of Java's shortcomings but at the price of complexity.

Chapter 1

[19]

Google Web Toolkit
Google Web Toolkit (GWT) is the framework used by Google to create its own
applications, such as Wave. Its point of view is very unique among the technologies
presented here. It lets you develop in Java, and then the GWT compiler transforms
your code to JavaScript, which in turn generates HTML. It's GWT's responsibility to
handle browser compatibility. This approach also solves the other problems of the
pure thin-client approach.

Yet, GWT does not shield developers from all the dirty details. In particular, the
developer still has to write the code to handle the server-client communication, and
he has to deal with DOM manipulation through JavaScript.

Why Vaadin?
Vaadin is a solution evolved from a decade of problem-solving approach, provided
by a Finnish company named Vaadin, formerly IT Mill.

Therefore, having so many solutions available, one could question the use Vaadin
instead of Flex or GWT? Let's first have a look at the state of the market for web
application frameworks in Java, then detail what makes Vaadin so unique in
this market.

State of the market
Despite all the cons of the thin-client approach, an important share of applications
developed today uses this paradigm, most of the time with a touch of Ajax
augmentation.

Unfortunately, there is no clear leader for web applications. Some reasons include
the following:

• Flex would be a good candidate, as the technology is mature and Adobe
a commercial force to be reckoned with, but Apple did not add the Flash
player to its iOS platforms. Thus, surfing mobile with these devices cuts you
from Flex content.

• Most developers know how to develop plain old web applications, with
enough Ajax added in order to make them usable by users.

• GWT, although new and original, is still complex and needs seasoned
developers in order to be effective.

Vaadin and its context

[20]

From a Technical Lead or an IT Manager's point of view, this is a very fragmented
market where it is hard to choose a solution that will meet users' requirements as
well as offering guarantees to be maintained in the years to come.

Importance of Vaadin
Vaadin is a unique framework in the current ecosystem; its differentiating features
include the following:

• There is no need to learn different technology stacks, as the coding is solely
in Java. The only thing to know beside Java is Vaadin's own API, which is
easy to learn. This means:

 ° The UI code is fully object-oriented
 ° There's no spaghetti JavaScript to maintain
 ° Furthermore, the IDE's full power is in our hands with refactoring

and code completion

• No plugin to install on the client's browser, ensuring all users that browse
our application will be able to use it "as is".

• As Vaadin uses GWT under the cover, it supports all browsers that GWT also
supports. Therefore, we can develop a Vaadin application without paying
attention to the browsers and let GWT handle the differences. Our users will
interact with our application in the same way, whether they use an outdated
version (such as Firefox 3.5), or a niche browser (like Opera).

• Moreover, Vaadin uses an abstraction over GWT so that, in theory, you can
use another rendering engine, even Swing! This architecture works toward
alleviating risks of GWT becoming a closed source in the future and the
Vaadin team is committed to open source.

• Finally, Vaadin conforms to standards such as HTML and CSS, making
the technology future proof. For example, many applications created with
Vaadin run seamlessly on mobile devices although they were not initially
designed to do so.

Vaadin's integration
In today's environment, integration features of a framework are very important as
normally every enterprise has rules about which framework is to be used in some
context. Vaadin is about the presentation layer and runs on any servlet container
capable environment.

Chapter 1

[21]

Integrated frameworks
A whole chapter (see Chapter 9, Integration with Third-party Products) is dedicated to
the details of how Vaadin can be integrated with some third-party frameworks and
tools. There are three integration levels possible which are as follows:

• Level 1: out-of-the-box or available through an add-on, no effort required
save reading the documentation

• Level 2: more or less documented
• Level 3: possible with effort

The following are examples of such frameworks and tools with their respective
integration estimated effort:

• Level 1:
 ° Java Persistence API (JPA): JPA is the Java EE 5 standard for all

things related to persistence. An add-on exists that lets us wire
existing components to a JPA backend. Other persistence add-ons
are available in the Vaadin directory, such as a container for
Hibernate, one of the leading persistence frameworks available
in the Java ecosystem.

 ° A bunch of widget add-ons, such as tree tables, popup buttons,
contextual menus, and many more.

• Level 2:
 ° Spring is a framework which is based on Inversion of Control

(IoC) that is the de facto standard for Dependency Injection. Spring
can easily be integrated with Vaadin, and different strategies are
available for this. We will see those strategies in detail in Chapter 9.

 ° Context Dependency Injection (CDI): CDI is an attempt at making
IoC a standard on the Java EE platform. Whatever can be done with
Spring can be done with CDI.

 ° Any GWT extensions such as Ext-GWT or Smart GWT can easily be
integrated in Vaadin as Vaadin is built upon GWT's own widgets.
This will be seen in complete detail in Chapter 8, Creating Custom
Components where we will create such new components.

• Level 3:
 ° We can use another entirely new persistence framework such as

Apache iBatis, and integrate it with Vaadin.

www.allitebooks.com

http://www.allitebooks.org

Vaadin and its context

[22]

Integration platforms
Vaadin provides an out-of-the-box integration with two important third-party
platforms:

• Liferay is an open source enterprise portal backed by Liferay Inc. Vaadin
provides a specialized portlet that enables us to develop Vaadin applications
as portlets that can be run on Liferay.

• Google Application Engine (GAE): Google provides us with limited Java EE
hosting in the cloud. Pricing depends on many factors, but suffice to say that
basic levels are available for free, making GAE an environment of choice for
deploying test applications. Like Liferay, a specialized servlet takes care of all
gruesome details, letting us deploy our Vaadin application on GAE.

Using Vaadin in the real world
If you embrace Vaadin, then chances are that you will want to go beyond toying with
the Vaadin framework and develop real-world applications.

Concerns about using a new technology
Although it is okay to use the latest technology for a personal or academic project,
projects that have business objectives should just run and not be riddled with
problems from third-party products. In particular, most managers are very wary
when confronted by a new product (or even a new version), and developers
should be too.

The following are some of the reasons to be cautious of new technologies, and why
they don't apply to Vaadin:

• Product being bug-ridden: The Vaadin team has done rigorous testing
throughout their automated build process. Currently, it consists of more than
8,000 unit tests. Moreover, in order to guarantee full compatibility between
versions, some tests include pixel-level regression testing.

• Lack of support:
 ° Commercial: Although completely committed to open source, Vaadin

Limited offer commercial support for their product. Check their Pro
Account offering.

Chapter 1

[23]

 ° User forums: A Vaadin user forum is available. Anyone registered
can post questions and see them answered by a member of the team
or of the community.

Note that Vaadin registration is free, as well as hassle-free: you will just
be sent the newsletter once a month.

• Incompatible changes from version to version:
 ° API: The server-side API is very stable, version after version, and has

survived major client-engines rewrite.
 ° Architecture: Vaadin's architecture favors abstraction and is at the

root of it all.

• No documentation available:
 ° Product documentation: Vaadin's site provides three levels of

documentation regarding Vaadin: a 5-minute tutorial, a one-hour
tutorial, and the famed Book of Vaadin.

 ° Tutorials
 ° API documentation: The Javadocs are available online; there is no

need to build the project locally.

• No course/webinar offerings: Vaadin Ltd currently provides four different
courses, which tackle all the needed skills for a developer to be proficient
in the framework.

• Absence of community around the product: There is a community gathering,
which is ever growing and actively using the product. There are plenty of
blogs and articles online on Vaadin. Furthermore, there are already many
enterprises using Vaadin for their applications.

• Lack of competent resources: There are more and more people learning
Vaadin. Moreover, if no developer is available, the framework can be learnt
in a few days.

• No integration with existing product/platforms: Vaadin is built to be easily
integrated with other products and platforms. The Book of Vaadin describes
how to integrate with Liferay and Google App Engine.

Vaadin and its context

[24]

More reasons
Vaadin has answers for each of the previous concerns, but management's fears
mainly focus around Vaadin being new and that the enterprise will be the first to
experience bugs.

Vaadin is 10 years old
The latest version of Vaadin, at the time of this writing, is 6.7. It shouldn't be
considered the latest trend, but managers being managers, they will probably check
and double-check, just in case. Doing that, they will encounter no prior version! Does
it mean that Vaadin 6 was the first version? The answer is yes, but only because of a
name change.

In fact, the following are the major steps in the history of Vaadin:

• At first, a Finnish company named IT Mill created applications for their
customers. In order to be more productive, they developed a framework. In
2001, the first internal version was ready.

• In 2002, they released it to the public under the name Millstone 3 and with an
open source license.

• In 2005, Millstone 3 was deemed too static and enhanced with Ajax features
built on top of it. The client-side engine was rewritten, as well as the server-
side API (the latter looks like the one available today and has only marginally
changed since this version).

• In 2006, there was another major change on the client side in order to blend
in Ajax features. It was released as the IT Mill Toolkit 4. However, it included
a lot of proprietary JavaScript and was difficult to extend.

• In 2007, the choice was made to remove those proprietary implementations
and instead run on top of GWT. This led to a complete client side rewriting
and the release of IT Mill Toolkit 5.

• In 2009, IT Mill released the sixth version of the toolkit and changed its name
to Vaadin.

• Finally, in 2010, Vaadin overshadowed IT Mill in terms of public recognition
and the company IT Mill was renamed Vaadin, confirming the company's
long-term commitment to the product.

Others already use Vaadin
Upon reading this, managers and developers alike should realize Vaadin is mature
and is used on real-world applications around the world. If you still have any
doubts, then you should check http://vaadin.com/who-is-using-vaadin and be
assured that big businesses trusted Vaadin before you.

Chapter 1

[25]

Summary
In this chapter, we saw the migration of application tiers in the software architecture
between the client and the server.

We saw that each step resolved the problems in the previous architecture:

• Client-server used the power of personal computers in order to decrease
mainframe costs

• Thin clients resolved the deployment costs and delays

Thin clients have numerous drawbacks. For the user, a lack of usability due to poor
choice of controls, browser compatibility issues, and the navigation based on page
flow; for the developer, many technologies to know.

As we are at the crossroad, there is no clear winner in all the solutions available:
some only address a few of the problems, some aggravate them.

Vaadin is an original solution that tries to resolve many problems at once:

• It provides rich controls
• It uses GWT under the cover that addresses most browser compatibility issues
• It has abstractions over the request response model, so that the model used is

application-based and not page based
• The developer only needs to know one programming language: Java, and

Vaadin generates all HTML, JavaScript, and CSS code for you

Now, we can go on and create our first Vaadin application!

Environment Setup
In this chapter, we will set up our IDE in order to ease the use of Vaadin and create
new projects using this framework.

In particular, we will see how to:

•	 Download and install the right distribution of the IDE
•	 Check that your currently installed IDE is the right distribution
•	 Install the Vaadin plugin in your IDE
•	 Create a new Vaadin project using our now enhanced IDE

The first section is dedicated to Eclipse from the Eclipse Foundation, the second to
the NetBeans from Oracle (formerly Sun).

Note that at the time of this writing, there is no support for IntelliJ IDEA. A ticket
is open in the Vaadin's tracking system at http://dev.vaadin.com/ticket/4420.
Users who strive to code with IntelliJ IDEA above all else should subscribe to this
ticket; there is hope! Depending on your own personal taste, you can go directly to
your preferred section and ignore the other one or browse both.

Finally, we will look at the configuration performed by the Vaadin plugin when
we create a new Vaadin project if you want to configure your project in other IDEs
or manually.

Environment Setup

[28]

Vaadin in Eclipse
In order to add Vaadin capabilities to Eclipse IDE, we will first need to have the
Web Tools Platform (or WTP for short). Eclipse's WTP concerns itself with all that is
centered on web standards in the Java ecosystem: servlets, JSP, HTML, JavaScript,
and so on. As everything is a plugin in Eclipse, WTP itself is available as a collection
of plugins.

Setting up Eclipse
If you already have Eclipse installed on your system, chances are that it already
contains WTP and its dependencies. If not, you could want to start from scratch and
install an Eclipse bundled with WTP (aka Eclipse for Java EE developers) or just
have WTP and its dependencies added to your existing installation.

Note that the recommended way is to install the complete Java EE bundle,
not only because it is recommended by Vaadin but also because manual
handling of WTP dependencies can be a bore.

When Eclipse is not installed
A more straightforward way to download an Eclipse bundled with WTP is to go
to the Eclipse downloads website at http://www.eclipse.org/downloads/ and
choose Eclipse IDE for Java EE Developers. The exact URL changes with each
Eclipse major release. At the time of this writing, it references the Indigo (Eclipse 3.7)
release: http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-
developers/indigor.

Astute readers will note, and rightly so, that the "Eclipse IDE for Java EE
Developers" distribution contains much more than simply the Eclipse
IDE and WTP; EJB features for example. Although those features are
unnecessary, it is the simplest way to have the WTP features.

Chapter 2

[29]

Now choose your OS carefully on the right panel of the screen and click on the
proposed distribution site, as shown in the following screenshot:

Installing the Vaadin plugin
Carry out the following steps:

1. In Eclipse, go to the Help menu | Install new software.
2. Click on the Add button. You will be presented with a dialog prompting you

for a name and an update site's location. So, type Vaadin in the first field and
http://vaadin.com/eclipse in the second.

Naturally, you can name the update site any way you choose, prudence
would suggest you make this name relevant.

Environment Setup

[30]

3. Click on Next and complete the wizard as follows:
	° Select the Vaadin item: It should include both Book of Vaadin

and Vaadin plug-in for Eclipse (the former being Vaadin's
documentation), as shown in the following screenshot:

	° Review the choices
	° Accept the terms of the license agreement
	° Finally restart Eclipse in order to have the Vaadin features

4. Now, we can check the installed features: go to the menu Help | About
Eclipse. The opening pop up should display the Vaadin logo, as shown in
the following screenshot:

Chapter 2

[31]

Troubleshooting
If Vaadin does not appear in the plugins list, then restart Eclipse.

Congratulations, now we have completed the IDE setup. It is now time to create our
first Vaadin project!

Creating a server runtime
Before creating the project itself, we need a server to run it on. Therefore, carry out
the following steps:

1. On the Server tab, right-click and select New Server. The following screen
should then pop up:

5. On the opening window, select J2EE Preview, as it is the simplest server
Vaadin can run on. Click on Finish and the newly created server should
appear in the Server tab.

www.allitebooks.com

http://www.allitebooks.org

Environment Setup

[32]

Creating our first Eclipse Vaadin project
Carry out the following steps:

1. Go to the menu File | New | Vaadin Project.
2. Set the project name as you wish, MyFirstVaadinApp for example.
3. Choose the previously created J2EE preview as the target runtime.
4. We will update the configuration slightly (those are Eclipse facets for Eclipse

experts): click on Modify. A pop up opens with the following options:
	° Check Dynamic Web Module and choose 2.5
	° Check Java and choose 1.6
	° Check Vaadin

If you followed the previous instructions, then all three components should
be checked from the start. The only thing to do is to select the right version.

	° Click on the OK button.

5. Now let's get back to our previous window. Keep Servlet (default) for the
server configuration. The Vaadin version should be set to the latest stable
release by default. The steps are depicted in the following screenshot:

Chapter 2

[33]

6. Click on the Next button. On the Java step, keep the source and the build
folders as they are and click on Next.

7. On the Web Module step, change the context root to myfirstvaadinapp and
click on Next.

Context roots are used to separate multiple web applications
installed in the same servlet container and accessible on the
same port.

8. In the last step, change the values as follow:
	° My First Vaadin Application for the Application name
	° com.packt.learnvaadin for the Base package name
	° MyApplication for the Application class name

9. Finally, click on Finish. The project should look something similar to
the one shown on the following screenshot in the Project Explorer Tab,
when expanded:

Environment Setup

[34]

Note that although Eclipse adds a bunch of libraries, Vaadin does not
need JAX-WS Web Services, EAR libraries nor JavaScript resources.
These can be safely removed from the project classpath, even though they
are provided by default.

There is one last action to complete our project. Open the web.xml deployment
descriptor and search for servlet-mapping:

<servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

In order to be fully generic:

•	 Change the URL pattern from /* to /app/* as follows:
<servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/app/*</url-pattern>
</servlet-mapping>

•	 Add the /VAADIN/* mapping as follows:

<servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
</servlet-mapping>

The rationale behind these changes can be found later in the Declaring the servlet
mapping section in this chapter.

Testing our application
Finally, select the project, right-click and on the contextual menu, select Run As |
Run on Server.

Chapter 2

[35]

It should display a welcome message for us in Eclipse's internal browser, as shown
in the following screenshot:

That is it. Congratulations, your first project just runs!

Alternatives
There are a few alternatives in the process we have just seen. The first approach
consists of using a vendor-specific distribution, the second of adding the Web Tools
Project plugin to an existing distribution devoid of it.

Vendor-specific distribution
Some vendors provide distribution, which contains WTP along some of its specific
plugins in one big download package.

Spring Source, which is the provider of the well-known Spring framework gives
away such a distribution. It is known as the Spring Source Tools Suite (or STS for
short). STS is free—but not open source—provided you first register yourself and
accept the license terms. The download is available, at the time of this writing, from
the following URL:

http://www.springsource.com/landing/best-development-tool-enterprise-
java.

Choosing STS is the right choice if you also intend to use Spring
intensively with Vaadin (or without for that matter) or Cloud Foundry as
will be seen in Chapter 9, Integration with Third-party Products. If in doubt,
stick with Eclipse and WTP, plugins are also available to help with the
Spring development.

When Eclipse is already installed
If you already have Eclipse installed and want to use this existing installation, then
the first thing to do is to check whether WTP is present, as it is a dependency of the
Vaadin plugin.

Environment Setup

[36]

Checking if WTP is present
In order to check whether an Eclipse installation has WTP, you have to launch
it and open the menu Help | About Eclipse. The pop up that opens will show
some information along with an icon list. Check the wtp icon, as can be seen
in the following screenshot, to know whether WTP is installed:

If you have WTP installed, then head back to the section named Installing the
Vaadin plugin in this chapter, otherwise, please first follow the instructions in the
following section.

Adding WTP to Eclipse
In Eclipse, adding additional features to the core is done through a two-step process,
which is as follows:

1. Add an update site which is an URL that describes the deployment of
additional components.

2. Use the update site to download and install them.

In order to add the WTP features to an existing Eclipse installation, we will first add
an update site. As seen in the Installing the Vaadin plugin section in this chapter, go to
the Help menu | Install new software and carry out the following steps:

1. Click on the Add button. You will be presented with a dialog prompting
you for a name and an update site's location (as shown in the following
screenshot). So, type WTP in the first field and http://download.eclipse.
org/webtools/repository/indigo/ in the second (the last part of the
URL depending on the particular Eclipse release).

Chapter 2

[37]

2. Clicking on OK will populate the preceding window. For the purpose of
using Vaadin, we only need the latest version that does not include the SDK
(at the time of this writing, it is Version 3.3.0).

Environment Setup

[38]

The SDK is only required when writing WTP plugins, which is not the
case. The bare version is preferable as it is much lighter (thus, faster to
download).

Dependencies
Depending on the exact Eclipse installation and the precise WTP version,
there may be some need to download additional WTP dependencies. As
such, it is very important to select the option Contact all update sites
during install to find required software to let Eclipse do just that.

3. Click on Next and complete the wizard as follows:
	° Review your choices
	° Accept the license agreement
	° Finally, restart Eclipse with our much wanted WTP features

4. Once restarted, you should see WTP installed as described in the preceding
section named Checking if WTP is present.

Troubleshooting
If WTP still does not appear in the plugins list or behaves strangely, then
make sure to restart Eclipse. Using a freshly installed Eclipse without
restarting may well have unpredicted side effects, such as leaving Eclipse
in an unstable state. Therefore, it is a good practice to always restart it just
after having installed a new plugin or a new version of the plugin.

Vaadin in NetBeans
If you do not intend to use NetBeans, then you can safely skip this NetBeans-specific
part and go to the Vaadin and other IDEs section.

Setting up NetBeans
Like in Eclipse, there is a plugin available for NetBeans. This plugin is not provided
by the Vaadin team, but personally by Geertjan Wielenga and Sami Ekblad (the latter
from the Vaadin team). As such, we don't get to choose the version of Vaadin we
want to use like in Eclipse, but it is set at 6.1.3. We will need to tweak this behavior a
bit, as this is not the one we want.

Chapter 2

[39]

At the time of this writing, the latest NetBeans version is 7.0. There are a few
different distributions available. You can download them from the following URL:

http://netbeans.org/downloads/index.html

The distribution needed to create a Vaadin project, is the one named Java EE which
provides servlet capabilities, as shown in the following screenshot:

Environment Setup

[40]

1. Install the product, choosing Tomcat 7.0.11, as shown in the following
screenshot. We can safely replace the GlassFish Server by Tomcat, as
Vaadin only needs a simple servlet container to run on. We can also keep
GlassFish or install both; it all depends on one's personal taste regarding
application servers.

In this book, we will use either Eclipse's internal servlet
container or Tomcat as they are the simplest containers able
to run Vaadin. You may however use your favorite servlet
container such as Jetty, or more advanced application server,
such as Red Hat JBoss Application Server or OW2 JOnAS. In
most cases, this won't matter however.

2. Click on Next and accept the license agreement.
3. Click on Next and accept the license agreement to use JUnit.
4. Click on Next and choose:

	° NetBeans folder location
	° The JDK 7 folder location

Chapter 2

[41]

5. Click on Next and choose Tomcat 7.0 folder location. Finally, click on Install
to begin the installation process.

Go have a coffee during the installation process; it may take some time depending on
each specific machine.

A final screen asks for permission to use our usage data anonymously: choose
depending on your own personal taste and click on Finish.

Checking if Java Web features are present
Launch NetBeans and go to the menu Tools | Plugin. Select the Installed tab, type
web in the Search field, and then press Enter.

If the Java Web Applications plugin appears, it is installed and you should check if
the Vaadin plugin is already installed (see the following section). If not, then either
install a compatible version as described above or install the Java Web Applications
plugin from inside NetBeans.

www.allitebooks.com

http://www.allitebooks.org

Environment Setup

[42]

Checking if the Vaadin plugin is installed
Launch NetBeans and go to the menu Tools | Plugin. Select the Installed tab, type
Vaadin in the Search field, and then press Enter.

If the Vaadin plugin appears, it is installed, if not, then go to the section aptly named
Installing the Vaadin plugin in this chapter.

Installing the Vaadin plugin
Go to the Vaadin plugin homepage at http://plugins.netbeans.org/
PluginPortal/faces/PluginDetailPage.jsp?pluginid=21965. Click on the
Download button and save the NBM file on your hard drive.

The plugin was developed with NetBeans 6.8 in mind. However, luckily it
is also compatible with 7.0.

Now, in NetBeans, go to the menu Tools | Plugin. Select the Downloaded tab and
click on the Add Plugins button. Select the previous NBM file.

Chapter 2

[43]

Finally, click on Install, at the bottom left corner: accept the license agreement and
confirm that the plugin is not signed.

Creating our first NetBeans Vaadin project
Go to the menu File | New Project. It opens a multi-step window.

1. Step 1: Choose Project: Choose Java Web project, and then Web Application
and click on Next.

Troubleshooting:
If Java Web project does not appear in the categories list, then
first check that the Java Web features are installed, as seen in
preceding section named Checking if you have Java Web features.

2. Step 2: Name and location. Fill the name, application, and folder fields
according to your preferences and click on Next.

3. Step 3: Server and settings. For server, select the server you installed during
the NetBeans setup, or if you installed both GlassFish and Tomcat, select the
server with which you are most comfortable. If you don't know which one to
choose, then select Tomcat as it is the simplest.

Environment Setup

[44]

For the Java EE version, keep Java EE 5. For context path, choose /my-
firstvaadinapp and click on Next.

Just so you know, Vaadin can run in a J2EE 1.4 compatible
web container so we can also choose this particular version if
we want.

4. Step 4: Frameworks: Scroll down and select Vaadin 6.1.3. Don't worry; we
will change to the desired version in the next section.
Keep /vaadin/* as the servlet URL pattern and MyApplication as the
Vaadin application class name. Finally, change the main package to
com.packt.learnvaadin.

Troubleshooting:
If Vaadin does not appear in the framework list, then check
that the plugin is installed first, as seen in the preceding section
named Checking if you have the Vaadin plugin installed.

Clicking on Finish should create the project. The Projects tab should look similar to
the one shown in the following screenshot:

Chapter 2

[45]

Changing the Vaadin version
As was said before, there is a slight problem with the NetBeans Vaadin plugin in
its current form: we are stuck with using the version configured in it, which is 6.1.3.
As we want the latest 6 version (at the time of this writing, it is 6.7), we have to
download it manually.

Just go to http://vaadin.com/releases and select Download Vaadin-6.7.x.jar.
This will download the latest version.

Now carry out the following steps:

1. Save the JAR to <APP_ROOT>/build/web/WEB-INF/lib where APP_ROOT
references the root of our MyFirstVaadinApp project. There should already
be vaadin-6.1.3.jar at this location.

2. In NetBeans, right click on vaadin-6.1.3.jar and choose remove.
3. In NetBeans, right click on the Library folder and choose Add JAR/Folder.

Select the previously downloaded JAR in <APP_ROOT>/build/web/WEB-INF/
lib.

4. We can now safely remove vaadin-6.1.3.jar from the file system.

This should yield the following structure:

To be frank, this is not really an easy setup, yet, it is the only one that gets us the
right result, apart from doing everything manually.

Environment Setup

[46]

Readers that have good proficiency in creating NetBeans plugins are
encouraged to get in touch with the plugin lead committer in order to
ease the setup of Vaadin projects under NetBeans. The plugin site is
located on project Kenai at http://kenai.com/projects/org-
vaadin-support/ where all relevant information can be found
including the mailing list, chat rooms, and the lead committer.

Testing the application
In order to test the application, right click on the newly created project and select
Run. It should display a welcome message for us in our default browser, as shown
in the following screenshot:

Vaadin and other IDEs
In both IDEs, the Vaadin plugin helps us jumpstart a project in a matter of minutes.
However, it may be interesting to understand what is really done in the created
project by the plugin in case we need to do it manually in other IDEs which don't
have such plugins.

Adding the Vaadin library
First, we should add the Vaadin library to the web application's WEB-INF/lib folder.
According to Java EE specifications, this means that our code can now access the
Vaadin JAR as it is on the web application's classpath.

Chapter 2

[47]

Creating the application
Then, we also need to create a class named com.packt.vaadin.MyApplication as
defined in our preceding sample application. Now, if we look at this class, we can
see that it inherits from com.vaadin.Application.

For now, suffice to say that Application is the entry point of all what we code in
Vaadin. For example, it lets us:

•	 Reference and open "main" windows, that is, windows that fit the whole
screen

•	 Manage the application lifecycle and more specifically, the closing of the
application

•	 Change the application's theme

Adding the servlet mapping
The last thing the plugin does is updating the WEB-INF/web.xml file, also known as
the web deployment descriptor.

Looking at the file, we see the following Vaadin-specific lines:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>VaadinApplication</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 com.packt.learnvaadin.MyApplication
 </param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>VaadinApplication</servlet-name>
 <url-pattern>/app/*</url-pattern>
 </servlet-mapping>

Environment Setup

[48]

 <servlet-mapping>
 <servlet-name>VaadinApplication</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
 </servlet-mapping>
</web-app>

Declaring the servlet class
The first thing to do is to declare the servlet. For servlet containers and full
application servers, the servlet is provided by Vaadin and is com.vaadin.terminal.
gwt.server.ApplicationServlet. We will see in Chapter 10, Beyond Application
Servers that for more exotic platforms such as portlet containers and other classes
are provided.

The servlet class is of utmost importance as it is the entry point of HTTP (as well as
HTTPS) requests, as well as the exit point of their respective responses in Java Web
Applications. The good news is that Vaadin takes care of handling requests (and
sending responses) for us. However, we can inherit from ApplicationServlet or its
parent class AbstractApplicationServlet in order to respectively supplement or
override the Vaadin's default behavior.

Declaring the Vaadin's entry point
We saw in the preceding section named Creating an application that the real entry
point in Vaadin is not the servlet anymore, but a class that extends Vaadin's
Application. We should make the servlet aware of this entry point and this is
done with the servlet initialization parameter named application.

This parameter is not optional and Vaadin will vigorously complain if this parameter
is omitted with the following explicit message:

javax.servlet.ServletException: Application not specified in servlet parameters

Application not specified in servlet parameters
If you ever encounter such a message, then your first reflex should be to
check the deployment descriptor for the missing application servlet
initialization parameter.

Declaring the servlet mapping
Like in any Java Web Application, we should make our servlet available through
a mapping that represents the URL part after the protocol, domain name, port
(optional), and context-root that will activate the Vaadin servlet.

Chapter 2

[49]

Refresher: in http://packtpub.com:80/vaadin, packtpub.com
is the domain, 80 is the port, and vaadin is the context-root. The
context-root we set up previously in the project is /myfirstvaadinapp.

In our previous setup, we configured the web application creation wizard to use
the /app/* mapping.

Apart from specific cases, it is a bad idea to use the /* mapping for
Vaadin servlet. That would mean that Vaadin servlet would have to
handle every request in our application, including static resources, JAAS
login form, and so on. We definitely don't want that.
Moreover, we will see later in Chapter 7, Advanced Features that it is also
necessary in order to properly close Vaadin applications.

The second servlet mapping is added because the internal Vaadin's themes and
resources are referenced under <context-root>/VAADIN/* and thus, should be
handled by the Vaadin servlet. As a developer, you can safely ignore this part (but
don't remove it!).

Alternatively, we can also provide access to themes and resources ourselves, but this
is the simplest option.

If you run the Vaadin servlet under the more general /* mapping, then
there is no need for this additional mapping.

Summary
In this chapter, we have seen how to:

•	 Correctly set up our IDE, depending on whether it is already present on our
system or not

•	 Enhance our IDE with specific Vaadin features, to make our project
set up faster

•	 Create a new project, using the plugin's help.
•	 Add the Vaadin framework to a project when no plugin is available

This chapter forms the basis of all your future work with Vaadin, be sure to grasp
all the concepts explained in it. After having created a basic "Hello World" project,
the next chapter will detail Vaadin internals, as well as how to deploy our project
outside the IDE.

Hello Vaadin!
In this chapter, we will:

• Learn key concepts behind the Vaadin framework
• Have an overview of its internal architecture
• See how to deploy a Vaadin application to a servlet container, be it in an IDE

or outside it
• See how to update the previously developed application with a very simple

interaction in order to display "Hello Vaadin!"

In the rest of this book, we will use the Eclipse IDE for detailed
explanations and screenshots. However, there are enough similarities
between Eclipse and NetBeans such that those same explanations can
safely be used in NetBeans.

Now enough with the talk, let's begin.

Understanding Vaadin
In order to understand Vaadin, we should first understand what is its goal regarding
the development of web applications.

Vaadin's philosophy
Classical HTML over HTTP application frameworks are coupled to the inherent
request/response nature of the HTTP protocol. This simple process translates
as follows:

1. The client makes a request to access an URL.
2. The code located on the server parses request parameters (optional).

www.allitebooks.com

http://www.allitebooks.org

Hello Vaadin!

[52]

3. The server writes the response stream accordingly.
4. The response is sent to the client.

All major frameworks (and most minor ones, by the way) do not question this
model: Struts, Spring MVC, Ruby on Rails, and others, completely adhere to this
approach and are built upon this request/response way of looking at things. It is no
mystery that HTML/HTTP application developers tend to comprehend applications
through a page-flow filter.

On the contrary, traditional client-server application developers think in components
and data binding because it is the most natural way for them to design applications
(for example, a select-box of countries or a name text field).

A few recent web frameworks, such as JSF, tried to cross the bridge between
components and page-flow, with limited success. The developer handles
components, but they are displayed on a page, not a window, and he/she
still has to manage the flow from one page to another.

The Play Framework (http://www.playframework.org/) takes a radical stance
on the page-flow subject, stating that the Servlet API is a useless abstraction on the
request/response model and sticks even more to it.

Vaadin's philosophy is two-fold:

• It lets developers design applications through components and data bindings
• It isolates developers as much as possible from the request/response model

in order to think in screens and not in windows

This philosophy lets developers design their applications the way it was before the
web revolution. In fact, fat client developers can learn Vaadin in a few hours and
start creating applications in no time.

The downside is that developers, who learned their craft with the thin client
and have no prior experience of fat client development, will have a hard time
understanding Vaadin as they are inclined to think in page-flow. However,
they will be more productive in the long run.

Vaadin's architecture
In order to achieve its goal, Vaadin uses an original architecture. The first fact of
interest is that it is comprised of both a server and a client side.

• The client side manages thin rendering and user interactions in the browser

Chapter 3

[53]

• The server side handles events coming from the client and sends changes
made to the user interface to the client

• Communication between both tiers is done over the HTTP protocol

Datasources

Client Server

Vaadin Client-side
engine

GWT

HTTP
JSON
UIDL

AJAX

UI Events

Terminal Adapter

UI Changes

Th
em

es

Data binding

Server-side UI
component

CSS

We will have a look at each of these tiers.

Client server communication
Messages in Vaadin use three layers: HTTP, JSON, and UIDL. The former two are
completely un-related to the Vaadin framework and are supported by independent
third parties; UIDL is internal.

HTTP protocol
Using the HTTP protocol with Vaadin has the following two main advantages:

1. There is no need to install anything on the client, as browsers handle HTTP
(and HTTPS for that matter) natively.

2. Firewalls that let pass the HTTP traffic (a likely occurrence) will let Vaadin
applications function normally.

Hello Vaadin!

[54]

JSON message format
Vaadin messages between the client and the server use JavaScript Objects Notation
(JSON). JSON is an alternative to XML that has the following several differences:

• First of all, the JSON syntax is lighter than the XML syntax. XML has both a
start and an end tag, whereas JSON has a tag coupled with starting brace and
ending brace. For example, the following two code snippets convey the same
information, but the first requires 78 characters and the second only 63. For a
more in depth comparison of JSON and XML, refer to the following URL:

http://json.org/xml.html

<person>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
</person>

{"person" {
 {"firstName": "John"},
 {"lastName": "Doe"}
}

The difference varies from message to message, but on an average, it is about
40%. It is a real asset only for big messages, and if you add server GZIP com-
pression, size difference starts to disappear. The reduced size is no disadvan-
tage though.

• Finally, XML designers go to great length to differentiate between child tags
and attributes, the former being more readable to humans and the latter to
machines. JSON messages design is much simpler as JSON has no attributes.

UIDL "schema"
The last stack that is added to JSON and HTTP is the User Interface Definition
Language (UIDL). UIDL describes complex user interfaces with JSON syntax.

The good news about these technologies is that Vaadin developers won't be exposed
to them.

The client part
The client tier is a very important tier in web applications as it is the one with which
the end user directly interacts.

In this endeavor, Vaadin uses the excellent Google Web Toolkit (GWT) framework.
GWT has been mentioned in Chapter 1, Vaadin and its Context. However, we will need
to go deeper to understand how it is used in Vaadin.

Chapter 3

[55]

In the GWT development, there are the following mandatory steps:

1. The code is developed in Java.
2. Then, the GWT compiler transforms the Java code in JavaScript.
3. Finally, the generated JavaScript is bundled with the default HTML and CSS

files, which can be modified as a web application.

Although novel and unique, this approach provides interesting key features that
catch the interest of end users, developers, and system administrators alike:

• Disconnected capability, in conjunction with HTML 5 client-side data stores
• Displaying applications on small form factors, such as those of

handheld devices
• Development only with the Java language
• Excellent scalability, as most of the code is executed on the client side, thus

freeing the server side from additional computation

On the other hand, there is no such thing as a free lunch! There are definitely
disadvantages in using GWT, such as the following:

• The whole coding/compilation/deployment process adds a degree of
complexity to the standard Java web application development.

• Although a Google GWT plugin is available for Eclipse and NetBeans, IDEs do
not provide standard GWT development support. Using GWT development
mode directly or through one such plugin is really necessary, because without
it, developing is much slower and debugging almost impossible.

For more information about GWT dev mode, please refer to
the following URL:
http://code.google.com/intl/en/webtoolkit/
doc/latest/DevGuideCompilingAndDebugging.html.

• There is a consensus in the community that GWT has a higher learning curve
than most classic web application frameworks; although the same can be said
for others, such as JSF.

• If the custom JavaScript is necessary, then you have to bind it in Java with
the help of a stack named JavaScript Native Interface (JSNI), which is both
counter-intuitive and complex.

Hello Vaadin!

[56]

• With pure GWT, developers have to write the server-side code themselves (if
there is any).

• Finally, if ever everything is done on the client side, it poses a great security
risk. Even with obfuscated code, the business logic is still completely open
for inspection from hackers.

Vaadin uses GWT features extensively and tries to downplay its disadvantages as
much as possible. This is all possible because of the Vaadin server part.

The server part
Vaadin's server-side code plays a crucial role in the framework.

The biggest difference in Vaadin compared to GWT is that developers do not
code the client side, but instead code the server side that generates the former. In
particular, in GWT applications, the browser loads static resources (the HTML and
associated JavaScript), whereas in Vaadin, the browser accesses the servlet that
serves those same resources from a JAR (or the WEB-INF folder).

The good thing is that it completely shields the developer from the client-code, so
he/she cannot make unwanted changes. It may be also seen as a disadvantage, as it
makes the developer unable to change the generated JavaScript before deployment.

It is possible to add custom JavaScript, although it is rarely necessary.

In Vaadin, you code only the server part!

There are two important tradeoffs that Vaadin makes in order achieve this:

1. As opposed to GWT, the user interface related code runs on the server,
meaning Vaadin applications are not as scalable as pure GWT ones. This
should not be a problem in most applications, but if you need to, you should
probably leave Vaadin for some less intensive part of the application; stick
to GWT or change an entirely new technology.

While Vaadin applications are not as scalable as applications architecture
around a pure JavaScript frontend and a SOA backend, a study found that
a single Amazon EC2 instance could handle more than 10,000 concurrent
users per minute, which is much more than your average application. The
complete results can be found at the following URL:
http://vaadin.com/blog/-/blogs/vaadin-scalability-
study-quicktickets

Chapter 3

[57]

2. Second, each user interaction creates an event from the browser to the server.
This can lead to changes in the user interface's model in memory and in turn,
propagate modifications to the JavaScript UI on the client. The consequence
is that Vaadin applications simply cannot run while being disconnected from
the server! If your requirements include the offline mode, then forget Vaadin.

Terminal and adapter
As in any low-coupled architecture, not all Vaadin framework server classes
converse with the client side. In fact, this is the responsibility of one simple interface:
com.vaadin.terminal.Terminal.

In turn, this interface is used by a part of the framework aptly named as the
Terminal Adapter, for it is designed around the Gang of Four Adapter
(http://www.vincehuston.org/dp/adapter.html) pattern.

This design allows for the client and server code to be completely independent of
each other, so that one can be changed without changing the other. Another benefit
of the Terminal Adapter is that you could have, for example, other implementations
for things such as Swing applications. Yet, the only terminal implementation
provided by the current Vaadin implementation is the web browser, namely
com.vaadin.terminal.gwt.server.WebBrowser.

However, this does not mean that it will always be the case in
the future. If you are interested, then browse the Vaadin add-ons
directory (see Chapter 7, Advanced Features) regularly to check for
other implementations, or as an alternative, create your own!

Client server synchronization
The biggest challenge when representing the same model on two heterogeneous tiers
is synchronization between each tier. An update on one tier should be reflected on
the other or at least fail gracefully if this synchronization is not possible (an unlikely
occurrence considering the modern day infrastructure).

Vaadin's answer to this problem is a synchronization key generated by the server
and passed on to the client on each request. The next request should send it back
to the server or else the latter will restart the current session's application.

Hello Vaadin!

[58]

This may be the cause of the infamous and sometimes frustrating "Out of Sync" error,
so keep that in mind.

Deploying a Vaadin application
Now, we will see how we can put what we have learned to good use.

Vaadin applications are primarily web applications and they follow all specifications
of Web Archive artifacts (WARs). As such, there is nothing special about deploying
Vaadin web applications. Readers who are familiar with the WAR deployment
process will feel right at home!

WAR deployment is dependent on the specific application server
(or servlet/JSP container).

Inside the IDE
In the last chapter, we smoke tested our brand-new Vaadin application with Eclipse's
mock servlet container. In most cases, we will need features not available on the
latter, for example, data sources management.

Creating an IDE-managed server
Although it is possible to export our project as a WAR file and deploy it on the
available servlet container, the best choice is to use a server managed by the IDE.
It will let us transparently debug our Vaadin application code.

The steps are very similar to what we did with the mock servlet container in
Chapter 2, Environment Setup.

Selecting the tab
First of all, if the Server tab is not visible, then go to the menu Window | Open
perspective | Other... and later choose Java EE.

Chapter 3

[59]

Creating a server
In order to be as simple as possible, we will use Tomcat. Tomcat is a servlet
container, as opposed to a full-fledged application server, and only implements the
servlet specifications, not the full Java EE stack. However, what it does, it does it so
well that Tomcat was the servlet API reference implementation.

Right-click on the Server tab and select New | Server. Open Apache and select
Tomcat 6.0 Server. Keep both Server's host name and Server name values and
click on Next.

For running Vaadin applications, Tomcat 6.0 is more than enough as
compared to Tomcat 7.x. In fact, it can be downloaded and installed
with just a push button. If you want to use Tomcat 7.x, then the process
is similar, but you will have to download it separately out of Eclipse.
Download it from the following URL:
http://tomcat.apache.org/download-70.cgi.
However, beware that the first stable version of the 7.x branch is 7.0.6.

Hello Vaadin!

[60]

Now, the following two options are possible:

1. If you don't have Tomcat 6 installed, then click on Download and install.
Accept the license agreement and then select the directory where you want
to install it as shown in the following screenshot:

2. If you already do, just point to its root location in the Tomcat installation
directory field.

By default, you should see a warning message telling you that Tomcat needs a Java
Development Kit (JDK) and not a Java Runtime Environment (JRE).

A JRE is a subset of the JDK as it lacks the javac compiler tool (along with
some other tools such as javap, a decompiler tool). As JSPs are compiled
into servlets at runtime and most regular web applications make heavy
use of them, it is a standard to choose a JDK to run Tomcat.

The good thing about Vaadin is that it does not use JSP, so we can simply ignore
the warning.

Click on the Finish button.

Chapter 3

[61]

Verifying the installation
At the end of the wizard, there should be a new Tomcat 6.0 server visible under the
Servers tab, as shown in the following screenshot. Of course, if you chose another
version or another server altogether, that will be the version or server displayed.

Adding the application
As Vaadin applications are web applications, there is no special deployment process.

Right-click on the newly created server and click on the Add and Remove menu
entry. A pop-up window opens. On the left side, there is the list of available web
application projects that are valid candidates to be deployed on your newly created
server. On the right side, there is the list of currently deployed web applications.

Select MyFirstVaadinApp project we created in Chapter 2 and click on the Add
button. Then, click on Finish.

The application should now be visible under the server.

Launching the server
Select the server and right-click on it. Select the Debug menu entry. Alternatively,
you can:

• Click on the Debug button (the one with the little bug) on the Server
tab header

• Press Ctrl + Alt + d

Each IDE has its own menus, buttons, and shortcuts. Know them and you
will enjoy a huge boost in productivity.

Hello Vaadin!

[62]

The Console tab should display a log similar to the following:

12 janv. 2011 21:14:36 org.apache.catalina.core.AprLifecycleListener init

INFO: The APR based Apache Tomcat Native library which allows optimal
performance in production environments was not found on the java.library.path:
...

12 janv. 2011 21:14:36 org.apache.tomcat.util.digester.SetPropertiesRule begin

ATTENTION: [SetPropertiesRule]{Server/Service/Engine/Host/Context} Setting
property 'source' to 'org.eclipse.jst.jee.server:MyFirstVaadinApp' did not find a
matching property.

12 janv. 2011 21:14:36 org.apache.coyote.http11.Http11Protocol init

INFO: Initialisation de Coyote HTTP/1.1 sur http-8080

12 janv. 2011 21:14:36 org.apache.catalina.startup.Catalina load

INFO: Initialization processed in 484 ms

12 janv. 2011 21:14:36 org.apache.catalina.core.StandardService start

INFO: Démarrage du service Catalina

12 janv. 2011 21:14:36 org.apache.catalina.core.StandardEngine start

INFO: Starting Servlet Engine: Apache Tomcat/6.0.26

12 janv. 2011 21:14:37 org.apache.coyote.http11.Http11Protocol start

INFO: Démarrage de Coyote HTTP/1.1 sur http-8080

12 janv. 2011 21:14:37 org.apache.jk.common.ChannelSocket init

INFO: JK: ajp13 listening on /0.0.0.0:8009

12 janv. 2011 21:14:37 org.apache.jk.server.JkMain start

INFO: Jk running ID=0 time=0/21 config=null

12 janv. 2011 21:14:37 org.apache.catalina.startup.Catalina start

INFO: Server startup in 497 ms

This means Tomcat started normally.

Chapter 3

[63]

Outside the IDE
In order to deploy the application outside the IDE, we should first have a
deployment unit.

Creating the WAR
For a servlet container, such as Tomcat, the deployment unit is a Web Archive, better
known as a WAR.

Right-click on the project and select the Export menu | WAR file. In the opening pop
up, just update the location of the exported file: choose the webapps directory where
we installed Tomcat and name it myfirstvaadinapp.war.

Launching the server
Open a prompt command. Change the directory to the bin subdirectory of the
location where we installed Tomcat and run the startup script.

Troubleshooting
If you have installed Tomcat for the first time, then chances are that the
following message will be displayed:
Neither the JAVA_HOME nor the JRE_HOME environment variable is
defined
At least one of these environment variables is needed to run this
program
In this case, set the JAVA_HOME variable to the directory where Java is
installed on your system (and not its bin subdirectory!).

The log produced should be very similar to the one displayed by running Tomcat
inside the IDE (as shown in preceding section), apart from the fact that Apache
Portable Runtime will be available on the classpath and that does not change
a thing from the Vaadin point of view.

Hello Vaadin!

[64]

Using Vaadin applications
Vaadin being a web framework, its output can be displayed inside a browser.

Browsing Vaadin
Whatever way you choose to run our previously created Vaadin project, in
order to use it, we just have to open one's favorite browser and navigate to
http://localhost:8080/myfirstvaadinapp/vaadin. Two things should happen:

1. First, a simple page should be displayed with the message Hello Vaadin user
2. Second, the log should output that Vaadin has started

==

Vaadin is running in DEBUG MODE.

Add productionMode=true to web.xml to disable debug features.

To show debug window, add ?debug to your application URL.

==

Troubleshooting
In case nothing shows up on the browser screen and after some initial
delay an error pop up opens with the following message:
Failed to load the widgetset: /myfirstvaadinapp/VAADIN/
widgetsets/com.vaadin.terminal.gwt.DefaultWidgetSet/
com.vaadin.terminal.gwt.DefaultWidgetSet.nocache.
js?1295099659815

Be sure to add the /VAADIN/* mapping to the web.xml as shown
in Chapter 2 in the section Declare the servlet mapping and redeploy the
application.

Out-of-the-box helpers
Before going further, there are two things of interest to know, which are precious
when developing Vaadin web applications.

Chapter 3

[65]

The debug mode
Component layout in real-world business-use cases can be a complex thing to say
the least. In particular, requirements about fixed and relative positioning are a real
nightmare when one goes beyond Hello world applications, as they induce nested
layouts and component combinations at some point.

Given the generated code approach, when the code does not produce exactly what
is expected on the client side, it may be very difficult to analyze the cause of the
problem. Luckily, Vaadin designers have been confronted with them early on and
are well aware of this problem.

As such, Vaadin provides an interesting built-in debugging feature: if you are ever
faced with such a display problem, just append ?debug to your application URL.
This will instantly display a neat window that gives a simplified tree view of your
components/layouts with additional information such as the component class, the
internal Vaadin id, the caption, and the width.

Just be aware that this window is not native (it is just an artifact created
with the client-side JavaScript). It can be moved with its title bar, which
is invaluable if you need to have a look at what is underneath it. Likewise,
it can be resized by pressing the Shift key while the cursor is over the
debug window.

Although it considerably decreases the debugging time during the development
phase, such a feature has no added value when in production. It can even be seen as
a security risk as the debug windows displays information about the internal state of
Vaadin's component tree.

Hello Vaadin!

[66]

Vaadin provides the means to disable this feature. In order to do so, just add the
following snippet to your WEB-INF/web.xml:

<context-param>
 <description>Vaadin production mode</description>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
</context-param>

Now, if you try the debug trick, nothing will happen.

Production mode is NOT default
As such, it is a good idea to always set the productionMode context
parameter from the start of the project, even if you set it to false. Your
build process would then set it to true for release versions. This is much
better than forgetting it altogether and having to redeploy the webapp
when it becomes apparent.

Restart the application, not the server
We have seen in the Vaadin's architecture section that Vaadin's user interface model is
sent to the client through UIDL/JSON messages over HTTP. The whole load is sent
at the first request/response sequence, when the Application instance is initialized;
additional sequences send only DOM updates.

Yet, important changes to the component tree happen often during the development
process. As Vaadin stores the UI state in memory on the server side, refreshing the
browser does not display such changes.

Of course, restarting the server discards all the states in memory and remedies the
problem, but this operation is not free for heavyweight application servers. Although
recent releases of application servers emphasize better startup time, it is a time
waste; even more so if you need to restart 10 or 15 times per hour, which is not an
unlikely frequency at the start of a new application development.

As for the debugging feature, Vaadin provides the means to reload the computed UI
through an URL parameter: change your server-side code, wait for the changes to
take effect on the server, just append ?restartApplication, and watch the magic
happen. Alternatively, if you are already in the debug mode, there is a button labeled
Restart app that has the same effect.

Chapter 3

[67]

Increase performance
You should remove the restartApplication URL parameter as
soon as it is not needed anymore. Otherwise, you will re-run the whole
initialization/send UI process each time your refresh the browser, which
is not welcome.

Behind the surface
Wow, in just a few steps, we created a brand new application! Granted, it does
not do much, to say the least. Yet, those simple actions are fundamental to the
comprehension of more advanced concepts seen in further chapters. So, let's catch
our breath and see what really happened under the hood.

Stream redirection to Vaadin servlet
The URL http://localhost:8080/myfirstvaadinapp/vaadin can be decomposed
in the following three parts, each part being handled by a more specific part:

1. http://localhost:8080 is the concatenation of the protocol, the domain,
and the port. This URL is handled by the Tomcat server we installed and
started previously, whether inside the IDE or normally.

2. /myfirstvaadinapp is the context root and references the project we created
before. Thus, Tomcat redirects the request to be handled by the webapp.

3. In turn, /vaadin is the servlet mapping the Vaadin plugin added to the web
deployment descriptor when the project was created. The servlet mapping
uses the Vaadin servlet, which is known under the logical name My First
Vaadin Application. The latter references the com.vaadin.terminal.gwt.
server.ApplicationServlet class.

Vaadin request handling
As you can see, there is nothing magical in the whole process: the URL we browsed
was translated as a request that is being handled by the ApplicationServlet.
service() method, just like any Java EE compliant servlet would do.

To be exact, the service() method is not coded in ApplicationServlet
directly, but in its super class, com.vaadin.terminal.gwt.server.
AbstractApplicationServlet.

Hello Vaadin!

[68]

Vaadin's servlet directly overrides service() instead of the whole
group of doXXX() methods (such as doGet() and doPost()). This
means that Vaadin is agnostic regarding the HTTP method you use.
Purists and REST programmers will probably be horrified at this mere
thought, but please remember that we are not manipulating HTTP verbs
in request/response sequences and instead using an application.

The following are the rough steps on how the Vaadin servlet services the request
response model:

• Finds out which application instance this request is related to; this means either
create or locate the instance. It delegates to the effective implementation of the
Vaadin servlet. For example, when using Spring or CDI, the code will locate
the Spring/CDI bean (see Chapter 9 for a real-life example).

• If the application is not running, Vaadin launches it. For detailed
explanations on the application concept, see the next section.

• Locates the current window and delegates it to the request handling.
• If the need be:

 ° Stops the application
 ° Or sends initial HTML/JS/CSS to the client that will interact with

the server

The initial load time
Be wary of this last step when creating your own applications: an initial
screen that is too big in size will generate an important latency followed
by a strange update of your client screen. This is generally not wanted:
either try to decrease your initial page complexity or use a change
manager that will mitigate the user's feelings about it.

What does an application do?
In Vaadin, an application represents the sum of all components organized in
windows, layouts, and having a theme applied. The central class representing an
application is the com.vaadin.Application class.

Chapter 3

[69]

Application responsibilities
Application responsibilities include the following:

• Managing windows: adding and removing them for the windows registry.
Windows are first-level container components, and as such, are of utmost
importance to all Vaadin applications.

• Callbacks during the lifecycle of the application: Two such hooks are
possible: before starting and after stopping. For example, the following
initialization actions are possible:

 ° Making a connection to a database
 ° Reading properties file

These callbacks can replace the Java EE standard—javax.servlet.Servlet-
ContextListener—which does the same, in a more Vaadin-oriented way.

• Setting themes: Vaadin, being an abstraction layer over HTML/JS/CSS,
lets you manage your CSS as a single bundle named a theme. As such,
you can change the whole look and feel of your applications by a single
server-side command.

Two themes are provided out-of-the-box by Vaadin (reindeer and
runo). You can also tweak them and reference them under a new theme
name or create entirely new themes from scratch. Themes, being very
simple to use but much more complex to create, are outside the scope
of this book. Readers interested into going further on this road can find
documentation at the following link:
http://vaadin.com/book/-/page/themes.creating.html

Application configuration
In our first project, having a look at the web deployment descriptor, notice there is an
application servlet parameter configured for the Vaadin servlet:

<servlet>
 <servlet-name>VaadinApplication</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 com.packt.learnvaadin.MyApplication

Hello Vaadin!

[70]

 </param-value>
 </init-param>
</servlet>

As such, there can be only a single Vaadin application configured for each
Vaadin servlet.

Application and session
The most important fact about the Application class is that one instance of it is
created the first time a user session requests the Vaadin servlet; this instance is
stored in the HttpSession related to the session from then on.

In reality, the Application instances are not stored directly in
HttpSession, but within a com.vaadin.terminal.gwt.server.
WebApplicationContext instance that is stored in the session. There
is a 1-n relationship from WebApplicationContext to Application
meaning there is a possibility that more than one Application could
relate to the same session. You should keep in mind that each session stores
one and only one application object for each configured Vaadin servlet.

Vaadin's object model encompasses Application, Window, and AbstractComponent
as shown in the following diagram:

+com.vaadin.Application

+com.vaadin.ui.Window

1

1

1..*

*
<<

+
interface>>

com.vaadin.ui.Component

+com.vaadin.ui.AbstractComponent

Out of memory
Storing the UI state in the session has a major consequence. Great care
must be taken in evaluating the number of users and the average load of
each user session because the session is more loaded than in traditional
Java EE web applications, thus greater is the risk of java.lang.
OutOfMemoryError.

Chapter 3

[71]

Scratching the surface
Having said all that, it is time to have a look at the both the source code that was
created by the Vaadin plugin and the code that it generated and pushed on the client.

The source code
The source code was taken care of by Vaadin plugin:

import com.vaadin.Application;
import com.vaadin.ui.*;

public class HelloWorldApp extends Application

 public void init() {

 Window mainWindow = new Window("Hello World Application");
 Label label = new Label("Greetings, Vaadin user!");
 mainWindow.addComponent(label);
 setMainWindow(mainWindow);
 }
}

Though having no prior experience in Vaadin and only armed with some basic
concepts, we can guess what the class does. That is the strength of Vaadin, compared
to competitor frameworks, it is self-evident!

• At line 1 of the init() method, we create a new window with a title.
Windows are first-class components in Vaadin as they can be the
top-most elements.

• At line 2, we create a new label. Labels are used to display static messages.
They are often found in web forms as description for fields. Our label has
a specific text. Notice it is displayed in the final screen.

• At line 3, we add the label to the window. Even when you have no prior
experience with component-based development (whether thin or fat client
based), it is clear that the label will be displayed in the window.

Hello Vaadin!

[72]

• Finally, at line 4, we set the window we created as the main window of the
screen, displaying it as a root component. We can check that the window's
very title takes place in the HTML <title> element. With most browsers,
it is also shown in the browser window title.

The generated code
In your favorite browser, right-clicking and selecting the menu that shows the source
will only display JavaScript—gibberish to the inexperienced eye.

In fact, as the UI is generated with GWT, we don't see anything interesting in the
HTML source—only the referenced JavaScript and a single <noscript> tag that
handles the case where our browser is not JavaScript-enabled (an unlikely occurrence
in our time, to say the least).

There is a consensus on the Web that AJAX-powered web applications
should degrade gracefully, meaning that if the user deactivates JavaScript,
applications should still run, albeit with less user-friendliness. Although a
very good practice, most of the time, JavaScript applications will not run
at all in this case. GWT and thus Vaadin are no exceptions in this matter.

Of much more interest is the generated HTML/JS/CSS. In order to display it, we will
need Google Chrome, Firefox with the Firebug plugin, or an equivalent feature in
another browser.

More precisely, locate the following snippet:
<div class="v-app v-theme-reindeer v-app-HelloWorldApp"
 id="myfirstvaadinappvaadin-627683907">
 <div class="v-view" tabindex="1" style="">

Chapter 3

[73]

 <div style="position: absolute; display: none;"
 class="v-loading-indicator"></div>
 <div style="overflow: hidden; width: 1680px;
 height: 54px;" class="v-verticallayout">
 <div style="overflow: hidden; margin: 18px;
 width: 1644px; height: 18px;">
 <div style="height: 18px; width: 1644px;
 overflow: hidden; padding-left: 0px;
 padding-top: 0px;">
 <div style="float: left; margin-left: 0px;">
 <div class="v-label" style="width: 1644px;">
 Greetings, Vaadin user!</div>
 </div>
 </div>
 <div style="width: 0px; height: 0px;
 clear: both; overflow: hidden;"></div>
 </div>
 </div>
 </div>
</div>

Things of interest
First of all, notice that although only a simple message is displayed on the user
screen, Vaadin has created an entire DOM tree filled with <div> elements that has
both style and class attributes. We will see later in Chapter 4 that Vaadin (through
GWT) creates, at least, such a <div> element for every layout and component. For
now, just be aware that:

• The class v-view denotes a window
• The class v-label indicates a label
• The class v-verticallayout represents a vertical layout

Although we didn't code a vertical layout per se, standard components
cannot be the first-level children of windows. By default, the Window
class uses a vertical layout and components added to the window are in
fact added to the latter.

Moreover, the vertical layout is not the only child div of the view: there is another
one that has v-loading-indicator as a class. You probably did not notice as the
UI is very simple, but if you refresh the browser window, there should be a circular
loading indicator displayed at the left of the page just before the UI finishes loading:

Hello Vaadin!

[74]

Be aware that it gives no indication on the progress whatsoever, but it at least lets
users know that the application is not ready to be used. Such indicators are added,
for free, each time a window instance is set as the main window of an application.

Summary
We saw a few things of importance in this chapter.

First, we had an overview of the Vaadin's philosophy. Vaadin creates an abstraction
over the classic request/response sequence in order for developers to think in
"applications" and no more in "pages".

In order to do that, the Vaadin architecture has three main components:

• The client side: that is JavaScript upon the Google Web Toolkit.
• The server side that generates the client code. One concept of note on the

server side is the terminal one: the terminal is in charge of abstracting over
the client side. Should the need arise; we could create an abstraction that is
not web-oriented.

• Communications between the client and the server are implemented with
JSON/UIDL messages over the HTTP protocol.

Then, we deployed the Vaadin application we developed in Chapter 2. There is
nothing special with Vaadin applications, they are simple web archives and are
deployed as such. Two tools bundled with Vaadin will prove useful during the
development:

1. The debug window that is very convenient when debugging display and
layout-related bugs

2. How to restart the framework without necessarily restarting the
application server

Finally, we somewhat scratched the surface of how it all works and most notably:

• The handling of an HTTP request by Vaadin
• The notion of application in the framework
• The code, both the source generated by the plugin and the HTML structure

generated by the former

This chapter concludes the introduction to Vaadin. It is a big step on the path to
learning Vaadin. If you feel the need to take a pause, then it is the right time
to do so. If not, go on to learn about components and layouts in Chapter 4!

Components and Layouts
In this chapter, we will examine the building blocks of Vaadin applications,
namely the components. Technologies such as Swing, SWT, Flex, or JSF all provide
components that are composed in order to produce a user interface. It is no mystery
then that Vaadin also provides them.

Numerous components are available in Vaadin; even more are available as add-ons
and we will see in Chapter 8, Creating Custom Components, how to build our own.
However, the following which are provided out-of-the-box are fundamental:

• Window

• Label

• Field

Then, we will have a look on how these components can be arranged; this will let us
detail the layouts:

• Layout

• Panel

Starting from this chapter, we will build an application that will be used throughout
the rest of this book. The goal of this application will be to interact with Twitter.

Thinking in components
Components are at the core of any rich application framework worth its salt.

Terminology
In Vaadin, the term widget refers to the client-side UI component made with GWT,
whereas the term component refers to the server-side Java-compiled component, as
well as the whole GWT + Java class association.

Components and Layouts

[76]

Component class design
Before diving right into concrete components that we will manipulate in order
to create our user interface, let's take some time to analyze the component class
hierarchy design in Vaadin.

The following is a simplified components class diagram:

java.jo.Serializable

<<interface>>
com.vaadin.ui.sizeable

getHeightUnits():int
getHeight():float

getWidthUnits():int
setHeightUnits(in width : float, in unit : int)
setWidth(in width : String)
setHeight(in width : float, in unit : int)
setSizeFull()
setSizeUndefined()

getWidth():float

java.util.EventListerner

com.vaadin.ui.Paintable

com.vaadin.ui.AbstractComponent

com.vaadin.ui.Component

addListene(in eventType : class, in object, in method : Method)
addListene(in eventType : class, in object,in methodName : string)

in eventType : class, in target, object, in method : Method
removeListener(in eventType : class, in target, object, in methodName : string)
removeListener(in eventType : class, in target : object)

removeListener()

<<interface>>
com.vaadin.MethodEventSource

Component
At the root of the Vaadin component hierarchy lies the Component interface. This
interface inherits, directly or indirectly, from other interfaces, some of which belong
to the Java API and others to the Vaadin API:

• Serializable: It is critical that Vaadin components be serializable, as we
have seen in Chapter 3, Hello Vaadin! that Application objects are tied to the
HTTP session. Were components not serializable, it would still be possible
to store Application instances in the session, but some application servers
would not be able to serialize them between cluster nodes or even when
stopping with active sessions. Therefore, Vaadin tackles this problem right
from the start and makes all components serializable.

For example, Apache Tomcat uses serialization to store
user sessions before terminating. Also, note the Google
App Engine passes user sessions through cluster nodes
using serialization.

Chapter 4

[77]

From a code point of view, this changes nothing as serializable is a marker
interface and as such, has no methods. The only thing we have to do when
inheriting from Vaadin components is not to forget to add the following
serial version unique identifier field:
private static final int serialVersionUID = .;

This is the sole API requirement for this interface.
• EventListener: This interface tags components as being, guess what, an

events listener. Like Serializable, EventListener is a marker interface
and changes nothing in the code.

• Paintable: The Paintable interface is the contract that all objects must
adhere to in order for the Vaadin framework to paint them and serialize
them to UIDL format. This interface is used only by developers who create
their own components wrapping GWT widgets, and will be seen in more
details in Chapter 8.

• Sizeable: The Sizeable interface is of much more interest as it governs the
size the components will have. We will describe it in detail in the section
named Laying out the components later in this chapter.

MethodEventSource
MethodEventSource is an interface that is part of the Observer pattern [GOF:293].
It represents the subject part of the observer/subject pair. As such, it knows how
to register/unregister third-party observers.

This particular interface and its methods will be under intense scrutiny in Chapter 5,
Event Listener Model where we will detail the event model in Vaadin.

Abstract component
The AbstractComponent class implements all the aforementioned interfaces, so that
each and every component in Vaadin will have the same behavior for free.

This also means that all the custom components we develop, as soon as we inherit
from AbstractComponent, will be handled just in the way we intend.

Although this design may seem trivial, it is always a bad surprise
when an application does not behave as expected. In Vaadin,
all components have the same expected behavior, provided the
developer did not implement his/her own, of course.

Components and Layouts

[78]

Immediate mode
immediate is a property of AbstractComponent. It governs how events are sent from
the client to the server (more details on events in Chapter 5).

When immediate is set to true, the event is immediately sent to the server; when set
to false, it is buffered in a local queue located on the client side and sent along the
next immediate event.

As an example, for a form, if we want legacy behavior where
the entire form is sent and validated when the user presses a
button, we change nothing. However, if we want a more modern
behavior where each field is sent and validated separately, we set
immediate to true on each field.

Troubleshooting
The immediate mode is the most common source of confusion
for Vaadin beginners: if events seem not to be sent to the server,
be sure to check the immediate property.

Windows
Windows are every rich application's root component. In fact, the Vaadin plugin,
already created a window in our previous "Hello Vaadin" project (see section named
The source code from Chapter 3).

The Window class does not inherit directly from AbstractComponent; there are some
intermediate classes in the hierarchy as seen in the following diagram:

addComponent(in c : Component)
removeComponent(in c : Component)

Components
replaceComponent(in oldComponent : Component,in newComponent : Component)
moveComponentsFrom(in source : ComponentContainer)

removeAll ()

<<interface>>
com.vaadin.ui.ComponentContainer

com.vaadin.ui.AbstractComponent

com.vaadin.ui.AbstractComponentContainer

com.vaadin.ui.Panel

com.vaadin.ui.Window

Chapter 4

[79]

ComponentContainer
The interface named ComponentContainer represents a component that holds other
components. As such, it has methods that manage child components and precisely:

• Add a child component
• Remove a child component
• Replace a child component
• Remove all child components
• Move all child components from one component container to another

The abstract class that provides these implementations is
AbstractComponentContainer. It also inherits from AbstractComponent
and as such, has all features seen earlier.

Panel
Descending the class hierarchy, the next class is a concrete one, Panel. We will use it
throughout our application, and as can be guessed, it represents a panel.

Panel adds an interface to the AbstractComponentContainer, Scrollable.

Scrollable lets us programmatically scroll our panel components. Note that the
scrolling unit is a pixel.

Panel also adds the content property, of type ComponentContainer. This
means that:

• Only a single component can be set as a child element of the panel and it acts
as its root

• This component can only be a component container
• Elements added to the panel with the addComponent(Component comp)

method are not added to the panel but the root instead

If no content is set prior to adding components, then Vaadin sets a vertical layout
as the default window layout.

This means that if a vertical layout is not the intended layout; the latter should be set
prior to adding any other component.

Components and Layouts

[80]

Window
Finally, Window is the last class in the window class hierarchy. Note that it is not a
leaf class, meaning it can be extended should the need arise.

In UML (Unified Modeling Language), leaf classes are classes
that cannot be extended. In Java, that translates to final classes.

Windows are vital in Vaadin as they form the bridge between the Application
instance tied to the HTTP session and other components.

Windows are the entry point into some important Vaadin features.

On the client side, and given the web browser terminal, application windows are the
outermost component the user sees. As such, the window API is tightly integrated
with the browser.

Title
Each window can set its title. This title will be written in the generated HTML output
under the <title> tag and will be visible in the title bar of most browsers.

Theming
In Vaadin, a combination of CSS, images, and HTML layouts (refer the section
named Layout types later in this chapter) can be brought together and applied
to the application. This combination is called a theme.

Theme creation is a specialized topic and could easily fit a small
book in itself. Interested readers can refer to http://vaadin.
com/book/-/page/themes.html for more information.

Setting a theme can be done application-wide, thus affecting the entire application,
but it can also be set on a single window.

In order to do this, call the setTheme(String theme) method either on the
application or on the window. If set on the window, then we have to set the
theme before setting the window as the main window.

Available themes in Vaadin are reindeer (the default) and runo. Additional themes
can be obtained through the Vaadin directory as add-ons (see Chapter 7 for more
information on Vaadin directory and add-ons).

Chapter 4

[81]

URL fragment
Under normal conditions, Vaadin implements the Single Page Interface, meaning
that during the entire application lifecycle and window change, Vaadin does not
change the URL of the first request that launched it.

In order to know more about the Single Page Interface, refer to the
following URL:
https://secure.wikimedia.org/wikipedia/en/wiki/
Single-page_application

This is an acceptable default for standard applications. Yet, for web applications,
users are used to bookmark different pages in order to easily find them later: it is
the legacy of page-flow applications. Even more, some applications have real need
for fine-grained URL, like online stores where each item can be set its own URL.
This also lets these different items be referenced separately by search engines
such as Google.

In this case, the method setName(String name) of the Window class is useful in that
it lets developers append an URL fragment to the URL application.

As an example, the following snippet will make available anotherWindow at the URL
http://localhost:8080/<context>/<vaadin-servlet>/another:

// window is the main window
Window anotherWindow = new Window("Another window");
anotherWindow.setName("another");

Window's name and the main window
In the case of a window that will be set as the main window, the
setName() method must be called prior to calling setMainWindow();
otherwise, Vaadin will throw the following exception: java.lang.
IllegalStateException: Window name can not be changed
while the window is in application.

JavaScript
From a design point of view, the preferred way to add behavior to an application is
to create custom reusable components (see Chapter 8).

Although Vaadin tries to isolate the developer from the gritty details of the web
browser intricacies, there are good reasons to short-circuit everything and execute
JavaScript directly. Such reasons include the fact that creating components could
be a time-consuming process and project deadlines are sometimes in favor of more
direct strategies.

Components and Layouts

[82]

In this case, just use the executeJavascript(String script) method and watch
the magic happen.

For example, the following snippet will display an alert box when Vaadin sends the
response to the client:

// window is the main window
window.executeJavaScript("alert('Hello world')");

Third-party content
Sometimes, the content sent to the user should not be related to the user interface,
but to the third-party content, whether in text or binary format. This is the case when
the user requests an image, a PDF, or even a bare HTML document that cannot be
served by the Vaadin framework.

In order to cover these cases, Vaadin provides an abstraction: Resource.

ExternalResource(in sourceURL : String, in mimeType : String)
ExternalResource(in sourceURL : URL, in mimeType : String)
ExternalResource(in sourceURL : String)
ExternalResource(in sourceURL : URL)

com.vaadin.terminal.ExternalResource<<interface>>
com.vaadin.terminal.ApplicationResource

get ():
getBufferSize():int

getFilename():String
setStream():DownloadStream

Application Application

getCacheTime():long

Serializable

<<interface>>
com.vaadin.terminal.Resource
getMIMEType():String

com.vaadin.terminal.FileResource
FileResource(in file : File, in application : Application)

com.vaadin.terminal.classResource
class (in clazz : Class, in resourceName : String,in application : Application)Resource

com.vaadin.terminal.StreamResource
Stream (in file : StreamSource, in fileName : String, in application : Application)Resource

<<interface>>
StreamSource

getStream():InputStream

The Resource interface represents something provided to the terminal for
presentation. How the terminal really handles the display is left to it.

Chapter 4

[83]

In Vaadin, resources may come from two different locations:

1. From inside the application (or at least from where the application is located,
in the case of files):

 ° Resources on the classpath
 ° Resources from streams accessible by the code
 ° File resources located on the server filesystem

2. From outside the application, for example, resources accessible by an URL.

Windows, either main or subwindows, can open resources with the open() method.
These resources can be displayed in the same window or in a native pop-up window.
In the latter case, Vaadin accepts the new window name (mandatory) and the
dimensions (optional).

If a window is already opened with the specified name, then Vaadin replaces its
content with the new resource.

Some window names hold a special meaning. Those are the same as in JavaScript's
window.open() and are summarized here for ease of reference:

• _blank always opens a new window, even if a previous blank named
window is open already

• _self indicates the current window, hence using it is equivalent to not using
a window name at all

• _parent and _top reference respectively the frame's parent and the frameset.
If frames are not used, then it is the same as _self.

The following snippet creates two pop-up windows displaying the Packt homepage:

// window is the main window
try {
 URL url = new URL("http://www.packtpub.com/");
 Resource resource = new ExternalResource(url);
 window.open(resource, "_blank", 640, 480, 2);
 window.open(resource, "_blank", 640, 480, 2);
} catch (MalformedURLException e) {
 throw new RuntimeException(e);
}

Components and Layouts

[84]

User messages
Applications generally need to inform users. For example, when a user deletes or
updates an entry, it is a good practice to let users know their operation succeeded.

Traditionally, there have been two ways to communicate these facts to the user for
web applications:

• Opening an information box through JavaScript. This pop-up is modal,
that is, it blocks inputs outside it and forces the user to acknowledge the
displayed message.

• A space is reserved for a message on the screen, most of the time a banner
at the top of the page. It may also be used for error messages: standard
information messages are displayed in a neutral color, errors in red.

Vaadin's notification system employs yet another strategy: the framework displays
the message on top of the window.

The notification class
In order to do that, an inner-class from Window named Notification is used.

From a graphical point of view, a notification displays elements in a horizontal
layout in the following order, from left to right: an icon, a caption, and description.

Each one corresponds to a Java property, thus having both a getter and a setter. The
following table sums it up:

Property Type Constructor
argument

Mandatory /
optional

Default
value

caption String yes mandatory N/A
description String yes optional null

icon com.vaadin.terminal.
Resource

no optional null

A notification is defined by its type. Currently, there are three types denoting
different severity level and one special type. The former are, in order of gravity:

• Information, also known as humanized, notifications denote fairly
unimportant content, for example, operation acknowledgement such as
"Entry deleted". Note that an information message fades as soon as Vaadin
detects a keyboard input or a mouse click or move from the user.
Information notifications are created using the TYPE_HUMANIZED_MESSAGE
constant in the Notification constructor.

Chapter 4

[85]

• Warning notifications are similar to information messages, except they fade
only when a delay has passed or after some user interaction. In this way, they
are more noticeable than information messages.
Warning notifications are created using the TYPE_WARNING_MESSAGE constant
in the Notification constructor or leaving it unspecified as it is the
default style.

• Error type notifications behave more like modal alert boxes. Their message is
shown until the user clicks on the notification (the X in the top right corner is
only for show).
Error notifications are created using the TYPE_ERROR_MESSAGE constant in the
Notification constructor.

Finally, tray notifications are used for low-severity messages. However, unlike the
other notifications, they will stack in front of one another, always displaying the
most recent. Clicking on the visible tray notification will dismiss it and display the
underlying notification. This will continue until there are no more notifications
to display.

Tray notifications are created using the TYPE_TRAY_NOTIFICATION constant in the
Notification constructor.

Beware of humanized notifications
Be aware that if the user interacts in any way with the application while
the notification is shown, he/she will likely be unable to read the content
of the message. Therefore, it is advised to restrain the use of humanized
notifications to information that can be lost without harm. If it is not the
case, then it is best to use tray notifications (see below) instead.

Components and Layouts

[86]

Notifications additional properties
Tray notifications are displayed at the bottom left corner; other notifications are
centered on the screen. It is however possible to override this position with the
setPosition(int position) method.

In addition, the delay for the notification can be configured as can the style name. All
three, position, delay, and style name are Java properties.

Property Type Constructor
argument

Mandatory /
optional

Default value

position int no optional Depends on the type
delayMsec int no optional 1500 for TYPE_

WARNING_MESSAGE

3000 for TYPE_
HUMANIZED_MESSAGE

styleName String no mandatory Depends on the type
("tray", "warning"
or "error")

POSITION_CENTERED_TOP

POSITION_CENTERED

POSITION_CENTERED_BOTTOM

POSITION_TOP_LEFT POSITION_TOP_RIGHT

POSITION_ _RIGHTBOTTOMPOSITION_BOTTOM_LEFT

Displaying notifications
The standard steps to display notifications are the following:

• Create a new notification instance
• Customize the instance
• Call the showNotification(Notification notification) method on

the window

Chapter 4

[87]

As an example, the following snippet displays a welcome message:

// window is the main window
Window.Notification notification = new Window.Notification("Welcome
Vaadin", "It's our first application");
window.showNotification(notification);

However, we had no need to customize the notification, neither its position nor its
display delay. In fact, this is the use-case encountered more frequently: just create a
plain notification and display it.

Therefore, Vaadin provides some very productive overrides to the
showNotification() method:

• showNotification(String caption): Shows a standard warning
notification

• showNotification(String caption, int type): Shows a notification,
letting us choose the type

• showNotification(String caption, String description): Shows a
warning notification complete with description

• showNotification(String caption, String description, int type):
Shows a notification, letting us specify description and type

Hence, the previous snippet can be considerably shortened to the following:

// window is the main window
window.showNotification("Welcome Vaadin", "It's our first
 application");

Use shortcuts when possible
Of course, there is no magic involved: Vaadin creates the
notification instance for us. Yet, as creating it ourselves has no
interest if we just need standard behavior, it is well advised to use
these overridden methods whenever possible. It cleans the code,
if only a little, and lets us focus on the real meaningful parts.

Subwindow
Main windows are attached to the application instance and from a user point-of-
view are the canvases upon which their child components are displayed.

Components and Layouts

[88]

Subwindows however are attached to a window. There are several limitations on
these particular windows:

• They are not accessible through a specific URL
• They cannot attach other subwindows. In effect, this means there is only

a single level of subwindowing allowed.

There is no limit to the number of subwindows a window can attach.

Subwindow structure
Subwindows are composed out-of-the-box from the following elements:

• A title bar with:
 ° A title located at the top left corner
 ° An X icon button located at the top right corner, for closing the pop

up

• A handle located at the bottom right corner, for resizing the subwindow
• A canvas, the same as for main windows, where other components can be

laid out

Customizing subwindows
Most of the time, the defaults for structure and behavior of a subwindow won't fit
our needs. However, the Vaadin framework allows us to customize both.

Basic configuration
Properties are available in order to customize our subwindow. These are summed up
in the following table:

Property Type Default value
closable boolean true

resizable boolean true

draggable boolean true

Chapter 4

[89]

• An unclosable subwindow does not display the X icon button in the title
bar. Thus, we have to provide another means to close it; or it will stay
there indefinitely!

• An unresizable subwindow does not display the handle at the bottom
right corner.

• Regular subwindows can be dragged around when the title bar is clicked.
However, we can remove this behavior with the setDraggable(Boolean
draggable) method.

Location
Setting the right location on the user screen is very important from an ergonomic
point of view. In order to do this, Vaadin provides a few methods.

Most of the time, centering the subwindow relative to the parent main window fits
our needs: just use the center() method.

y

X

y

X

In order to go beyond centering and to set the location of the subwindow relative to
the left and the top border of the parent main window, Vaadin respectively provides
the setPositionX(int positionX) and setPositionY(int positionY) methods.
The position parameter's unit is the pixel.

Modality
Modality is the capacity for the subwindow to intercept all events from the user
to the underlying UI.

In effect, a modal window blocks all relations to the parent application until it is closed,
whereas a non-modal window lets the user interact normally with the application.

By default, subwindows are non-modal. However, we can change the modality with
the setModal(boolean modal) method of the subwindow Window instance.

Components and Layouts

[90]

Weak modality
Notice that subwindows are displayed as an HTML <div> element
on the client-side, not as browser native windows. As a result,
modality is enforced, neither by the browser nor the system, but by
JavaScript. Hence, we should never rely on this weak modality in
order to enforce security constraints, as it can easily be bypassed.

In case of a doubt, the isModal() method of the Window class returns whether the
subwindow is indeed modal.

Labels
Labels are widgets used to display non-editable text content. In Vaadin, labels
are used infrequently as editable fields use captions (refer to section named Field
in this chapter).

Label class hierarchy
Label is a subclass of AbstractComponent but also implements the Property interface.

set (in :)
get ():

isReadOnly():boolean
getType():Class

Value Value Object
Value Object

setReadOnly(in readOnly : boolean)

<<interface>>
com.vaadin.data.Property

com.vaadin.ui.Label

com.vaadin.ui.AbstractComponent

As the Property interface is implemented throughout the whole Component class
hierarchy, it is best to have a look closely at it before going further.

Property
In essence, the Property interface simply designates a single value data holder,
with accessors.

It is very important to note that Vaadin does not take advantage
of Java 5 Generics: values are stored as Object. So, don't forget
to cast into the right class when needed!

Moreover, there is a read-only property: by contract, calling the setValue(Object
value) on a read-only instance should throw a Property.ReadOnlyException.

Chapter 4

[91]

Finally, Vaadin provides the getType() method to let us query the type stored by
the Property implementation instance.

Label
As shown in the preceding class diagram, a Label is an AbstractComponent that
implements the Property interface.

Formats
However, labels have a distinguishing feature that set them apart from other
components: they allow for formatting.

Reminder: In Vaadin, the only provided terminal is the web browser.
Therefore, the following formatting explanations are tightly coupled
with HTML specifications. Should we use another terminal, either
coming from a third-party provider or our own, we would have to be
extra careful as to how the terminal really uses these hints.

Available formats are:

• Text format: It is not as simple as it sounds since the final output should
be valid HTML. Hence, all HTML entity characters are translated into
their equivalent HTML alphanumeric code. For example, the < entity is
transformed by Vaadin into <. This process ensures the user really
sees what the developer intended.
This format is hinted at by the CONTENT_TEXT constant.

For the complete entities list, visit the following URL:
http://www.w3.org/TR/REC-html40/sgml/entities.html

• Preformatted: Browsers conveniently lay out HTML paragraphs depending
on the window size. If the size changes, then the paragraph will be laid
out differently.
Yet, it may be required that the paragraph be laid out in a predefined certain
way, for example that line breaks occurs at certain places. This is the case
for computer code, especially for Python for example. For these use-cases,
HTML provides the <pre> tag which lays out the paragraph exactly the way
it is typed. By using preformatted, Vaadin will also use this tag to render
the paragraph.
This format is governed by the CONTENT_PREFORMATTED constant.

Components and Layouts

[92]

• Raw: Raw formatting uses the complete set of HTML tags to let us
customize the rendering. The written HTML is used as is: if we need a truly
XHTML-compliant output, we have to use the format described below.
This format is used in conjunction with the CONTENT_RAW constant.

• XHTML: This formatting is similar to the previous one, but also tidies the
written HTML, so that the produced output is XML-compliant.
For example, the following server-code HelloVaadin will
produce this HTML output: HelloVaadin.
This is used with the CONTENT_XHTML constant.

• XML: This formatting is a legacy from other terminals provided by previous
versions of Vaadin. It now behaves the same as XHTML and may possibly be
deprecated at the time of reading.

Formatters are either set in the constructor or changed later with the
setContentMode(int contentMode) method where the contentMode parameter is
one of the previous constants.

For example, the following code displays a welcome message into our application:

// window is the main window
Label label = new LabelWelcomeLabel("WelcomeLabelWelcome to <i
style='color:red' title='Vaadin rules!'>Vaadin", Label.CONTENT_XHTML);
mainWindow.addComponent(label);

The following screenshot shows the result:

It should be noted that though label formatting is a feature
brought by Vaadin, the proper way to style labels is through
themes (and thus CSS).

Text inputs
Text fields are the simplest components available to users in order to send data to
an application.

In our case however, they are also a very good entry point into Vaadin field class
hierarchy, as they are devoid of more complex features.

Chapter 4

[93]

Validation
Validation is a major feature of components. As soon as an application needs a user
input, there is a need for this input validation. In Vaadin, the validation process is
handled by the Validatable / Validator pair.

java.io.Serializable

add (in :)
get ():

is InValidAllowed():boolean
remove (in)
SetInvalidAllowed(in invalidValueAllowed : boolean)
validate()

Validator Validator Validator
Validators Collection

Validator Validator : Validator

isValid():boolean

<<interface>>
com.vaadin.data.Validatable

<<interface>>
com.vaadin.data.Validator

is valid (in value : Object):boolean
validate (in value : Object)

InvalidValue Exception

EmptyValue Exception

Validator
Validators are specialized objects that fulfill a double purpose:

• Checking if an Object is valid
• Validating an Object, that is throwing a Validator.

InvalidValueException if the object is invalid

Validator coherence
It is mandatory, by contract, that the isValid() and validate()
methods be coherent with each other. Vaadin's default implementation
respects this rule as AbstractValidator.validate() effectively
calls isValid(). However, when directly implementing Validator,
we should take care to enforce this in our code.

Components and Layouts

[94]

Validators hierarchy
The validators hierarchy is shown in the following diagram:

<<interface>>
com.vaadin.data.Validator

getErrorMessage():String
setErrorMessage(in errorMessage : String)
validate(in value : Object)

com.vaadin.data.AbstractValidator

isValid(in value : Object):boolean
isValidString(in value : String):boolean

com.vaadin.data.AbstractValidator

isValidString(in value :):booleanString

com.vaadin.data.DoubleValidator

isValidString(in value :):booleanString

com.vaadin.data.IntegerValidator

isValidString(in value :):booleanString

com.vaadin.data.RegexpValidator

com.vaadin.data.EmailValidator

MODE AND : String=0
MODE OR : String=1

com.vaadin.data.CompositeValidator

addValidator(in validator : validator)
removeValidator(in validator : validator)
isvalid(in value : Object):boolean
getmode():int
setMode(in mode : int)

isValid(in value : Object):boolean
getMaxLength():int
getMinLength():int
setmaxLength(in maxLength : int)
setMinLength(in maxLength : int)

com.vaadin.data.StringLengthValidator

Some concrete validators are available out-of-the-box in Vaadin's API and should fit
most of your needs. These are the following:

• DoubleValidator and IntegerValidator are used for validating Double
and Integer values respectively. Note that although they validate numeric
values, they inherit from AbstractStringValidator because HTML text
input can only hold strings.

• RegexpValidator is used for validating regular expressions. This
validator is very interesting as it is generic enough to be used for ZIP codes,
telephone numbers, and similar objects. The regular expression is passed
to the constructor, hence preventing the rule being changed during the
validator life.

Chapter 4

[95]

For more information on regular expressions, visit the
following URL:
http://www.regular-expressions.info/

For specific patterns and rules used in Java, visit the
following URL:
http://download.oracle.com/javase/6/docs/api/
java/util/regex/Pattern.html

• EmailValidator is used for validating e-mails, whereas
StringLengthValidator is used for string length input.

Regexp, e-mail, and string length validators
Be aware that everything that can be validated with either an
EmailValidator or a StringLengthValidator can also
be validated with a RegexpValidator. However, the former
are much easier to use, are more semantically significant and
there is no risk of mistyping regular expressions.

• CompositeValidator implements the Composite pattern [GOF:163]. Each
one holds a list of other Validator instances. When asking the composite
for validation, it will ask each validator in the list for validation.
Now, the composite may run in two different exclusive modes:

 ° In AND mode, validating succeeds if no referenced validators fail
validation. The AND mode is the default one.

 ° In OR mode, validating succeeds if a single referenced validator
succeeds.

The order in which the validators are executed has no importance
whatsoever as all validators in the list will run, even in OR mode:
a failed validation will not stop other validations.

If ours needs go beyond that, and our input cannot be validated with a regular
expression, then we should probably use AbstractStringValidator as the
basis for our brand new validator.

Components and Layouts

[96]

Error message
Validators can be set an error message at the AbstractValidator level.
InvalidValueException instances are initialized using this error message.
InvalidValueException accepts a single placeholder that is filled with the
field value should the validation fail, or null if the value is null.

The exception handling mechanism itself will be explained in
detail in Chapter 5.

For example, the following code snippet will display an error message relative to the
value when the submit button is pressed:

// window is the main window
TextField tf = new TextField();
IntegerValidator validator = new IntegerValidator("{0} is not an
int");
tf.addValidator(validator);
window.addComponent(tf);
Button button = new Button("Submit");
window.addComponent(button);

Validatable
A Validatable stands for objects that know how to validate their input based on a
collection of internal validators.

Like Validator, Validatable has two main methods that must be kept in synch:

1. isValid() that checks if an Object is valid
2. validate()that throws a Validator.InvalidValueException if the object

is invalid.

Unlike Validator, it delegates this logic to its underlying validators.

Chapter 4

[97]

Change buffer
In computer software, a buffer is a zone that is used to temporarily store data.

In Vaadin, the Buffered interface represents an object that can flush or cancel
changes made to its buffer to the real value object, but has the option to override this
behavior altogether and ignore the buffer in one or both ways (read and write).

The following schema illustrates this:

Write-through

Read-through

write

read discard

commit
Caller Buffer Value

• In a read-through mode, the value read from the buffer is always in sync
with the underlying value

• In a write-through mode, the new value is immediately updated

Note that each behavior is completely independent: A
buffered object may be write-buffered but read-through
or the opposite, read-buffered but write-through. Beware
that those combinations are highly unorthodox, even if
sometimes desired, and may result in puzzling behavior at
first glance.

The Buffered interface is very similar to Relational Databases Management systems
as the latter also uses a buffer to handle transactions and isolation levels for SQL
Data Manipulation Language (INSERT, DELETE, and UPDATE) statements:

• commit() will update the real value with the value held in the buffer
• discard() will replace the buffered value with the real one, just like a

rollback statement

Components and Layouts

[98]

Buffered and validatable
Input fields can be at the same time buffered and validatable. Vaadin introduces the
BufferedValidatable to the hierarchy which unsurprisingly inherits from both
Buffered and Validatable.

<<interface>>
com.vaadin.data.Buffered

+commit()
+discard()

<<interface>>
+com.vaadin.data.Validatable

<<interface>>
+com.vaadin.data. ValidatableBuffered

This interface just adds to its superinterfaces how to set/unset that the current
buffer invalid value has been committed and query this information through the
invalidCommited property.

These methods are used by Vaadin's internals to verify if it needs
to send change value events, they can comfortably stay in the dark.

Input
From this point on, Vaadin weaves display features into the data class hierarchy.

Focusable
As inputs are meant to be displayed, they can also receive focus. Component
describes the Focusable interface that has the following three methods:

1. setTabIndex(int tabIndex) to set the tabulation order.
2. getTabIndex() to get it.
3. Finally, focus() to programmatically set focus on a particular component.

A thing worth noticing is that although Focusable is declared in Component,
components are not intrinsically focusable, fields are however. That means that
labels, which are components but not fields, won't be able to receive focus.

Chapter 4

[99]

Field
The Field interface inherits from BufferedValidatable, Focusable, and
Component. Moreover, it adds features that characterize input fields.

<<interface>>
+com.vaadin.data.Property

<<interface>>
+com.vaadin.ui.Component

<<interface>>
+ .FocusableComponent

<<interface>>
+com.vaadin.data.BufferedValidatable

com.vaadi .ui.AbstractComponent <<interface>>
+com.vaadin.ui.Field

com.vaadi .ui.AbstractField

In Vaadin, the following properties are inherent to a field:

Property Type Comment
caption String Write only
description String

required boolean

requiredError String

• caption is the "title" of the field. It is displayed near the field, depending on
the layout (see below) while description is a detailed explanation about the
field. Description is often displayed as a tooltip.

• required is an indicator set to true if the field should throw an
EmptyValueException if it is empty, while requiredError is the associated
message. These are propagated in the same way as InvalidValueException
seen previously in the above sections.

As Field is an interface, it has no property per se, yet
getter/setter combinations are handled by properties in the
AbstractField child class so it is not far-fetched to call
them properties even at the interface level

AbstractField is a straight abstract class that provides implementation of the Field
interface. It also inherits from the AbstractComponent class, like Label, but can hold
a value thanks to the Property interface.

Components and Layouts

[100]

Also, AbstractField provides the isEmpty() method to check whether the
property managed by the field is empty or null.

There is not much more to say about it, except that all input components such as
text field, select box, and so on provided by the Vaadin API inherit either directly or
transitively from this abstract class. If we need to create our own component, then it
is the first class to consider extending.

The text field
The text field class hierarchy in Vaadin begins with AbstractTextField, which
defines additional features to enhance AbstractField.

+com.vaadin.ui.AbstractField

+com.vaadin.ui.AbstractTextField

+selectAll()
+setSelectionRange(in pos : int, in length : int)

+com.vaadin.ui.TextField +com.vaadin.ui.PasswordField +com.vaadin.ui.TextArea

Descending in the hierarchy, there are specialized classes for some use-cases:

• Simple text field when nothing more is needed: this will translate on the
browser to an HTML input of type text

• Password field that hides the characters typed in it which will be displayed
with an HTML input of type password

• Text area that is represented by an HTML textarea

However, the real power lies in the AbstractTextField that factorizes common
behavior and properties. The following table lists those properties that are
described below:

Property Type Default value Misc.
columns int 0 Set to 0 for implicit

calculation by the terminal
adapter

cursorPosition int N/A
inputPrompt String null

Chapter 4

[101]

Property Type Default value Misc.
maxLength int -1 Set to -1 for unlimited

length
nullRepresentation String null

nullSettingsAllowed boolean false

Null
For a computer programmer, null and empty values are not the same thing and may
have a very different meaning (or not), both in the code and in the database.

Some software handles the case, others do not. In the former case, the most well
known example is when we have to use a GUI to set a NULL value into the database.
There is probably a cabalistic keys combination to set the value to null.

The good news is that Vaadin lets us handle null values differently from empty ones.
On the other hand, if this is the desired behavior, the null value must be assigned
a string representation. This means that this string will be interpreted by Vaadin
as null, and it won't be available as a real string value anymore. For this reason, it is
very important to assign only strings that have no meaning for the user. Examples of
such meaningless strings include, but are not limited to: <NULL>, <null>, #null, or
an empty string.

Note that this feature may only be used when null values are indeed allowed
for the field: it is not the case by default and must be activated if necessary with
setNullSettingsAllowed(true) on the text field instance.

Input prompt
An input prompt is the text that is shown in the field itself as a hint for accepted
values to the user. As soon as the user starts typing into the field, the prompt is
hidden. The prompt font is usually shown with less visibility than the input
font itself in order to have a clear discrimination between prompt and input, as
shown in the following screenshot:

Setting the input prompt is simply done by calling the setInputPrompt(String
inputPrompt) method. We can also query it with getInputPrompt().

Components and Layouts

[102]

The value of the input prompt
Not only is setting an input prompt in your own applications an
interesting alternative (as well as a cheaper one) to a carefully
documented help, it is also a UI design pattern.
Refer http://ui-patterns.com/patterns/InputPrompt
for more information.

Cursor
Vaadin lets us programmatically manage the cursor position within the field. This is
simple and straightforward. Note that calling the setCursorPosition(int pos) will
also give focus to the field the method is called on.

Selection
We can select a text field's content with either of the following methods:

• selectAll() selects the whole of the text content
• setSelectionRange(int pos, int length) selects characters from the pos

index (included and beginning with 0) to the pos + length index (excluded)

For example, the following code snippet will select "23":

TextField tf = new TextField();
tf.setValue("123456789");
tf.setSelectionRange(1, 2);

A "real-world" text field example
Can you guess what the next code snippet does?

TextField tf = new TextField("Age");
tf.setInputPrompt("Please enter age");
CompositeValidator validators = new CompositeValidator();
IntegerValidator intValidator = new IntegerValidator("{0} is not an
age");
validators.addValidator(intValidator);
StringLengthValidator lengthValidator = new StringLengthValidator("Age
must be below 100");
lengthValidator.setMaxLength(2);
validators.addValidator(lengthValidator);
tf.addValidator(validators);
window.addComponent(tf);

Chapter 4

[103]

Here is the answer: It creates a text field, complete with label and input prompt. This
field accepts only integer values that have no more than two digits.

Laying out the components
How the UI components are placed on the browser is reliant on the following
two factors:

1. The size of the components
2. The layout of the components

Size
Previously, when we stared at the Component interface, we noticed it inherited from
Sizeable and we have a look at that now.

Moreover, we have seen in Chapter 3 that the only terminal concrete implementation
provided out-of-the-box with Vaadin is the web browser. As such, size in Vaadin is
governed by two properties: unit and value.

Available units are exactly the same as those defined by the W3C CSS1 specifications.

Visit http://www.w3.org/TR/REC-CSS1/#units for detailed information about W3C
CSS1 specifications.

As a quick reminder, these are summed up in the following table:

Unit Type Symbol Description Constant
inch absolute in UNITS_INCH

centimeter absolute cm 2.54 cm = 1 inch UNITS_CM

millimeter absolute mm 1000 mm = 1 cm UNITS_MM

point absolute pt 12 pt = 1 pica UNITS_POINTS

pica absolute p 6 picas = 1 inch UNITS_PICAS

pixel absolute px UNITS_PIXELS

em relative em UNITS_EM

ex relative ex UNITS_EX

percentage relative % UNITS_
PERCENTAGE

Components and Layouts

[104]

Setting the length of a component, either the height or a width, is done with either of
the following two methods:

1. setHeight/setWidth(float length, int unit): In this case, both the value
and the unit are set. The latter parameter is taken from the constants defined
in the Sizeable interface, as described in the previous table.

2. setHeight/setWidth(String lengthAndUnit): In this case, the Vaadin
framework parses the string value in order to compute the desired length
and its unit. The string is parsed by following exactly the same rules as
followed for CSS 1 length units' specifications.

Calling setHeight/setWidth() with either the empty
string or null as an argument will clear the length value
and set the unit to pixel for the desired dimension.

There are also two shortcut methods:

1. setSizeFull() is the equivalent to calling setHeight("100%") and
setWidth("100%").

2. setSizeUndefined() clears both the height and width information.

For example, these two lines of code are equivalent:

myComponent.setHeight(100, Sizeable.UNITS_PIXEL);
myComponent.setHeight("100px");

These two are also equivalent:

myComponent.setWidth(20, Sizeable.UNITS_PERCENTAGE);
myComponent.setWidth("20%");

Which style to choose?
Using one or the other is more or less a question of taste. Using
strings has the disadvantage of mistyping, but you could also
use an unwanted unit constant. It is advised to use the style that
suits you best but in a consistent manner throughout the project.

Chapter 4

[105]

Layouts
In Vaadin, layouts are components: they all inherit from
AbstractComponentContainer. In this aspect, layouts are full-fledged
components and have an intrinsic size.

About layouts
The web browser terminal translates components into HTML elements. For layouts,
this means each of them generates a <div> tag.

Depending on several factors (including user machine performance, web browser
type and version, server performance, and network latency), users may experience
unresponsive behavior when resizing a native window displaying a Vaadin
application, if there are too many nested layouts.

There is already some nesting done by Vaadin, so it is better not to add more than
three extra nested levels. Beyond that, you should take care to know your audience
(intranet, extranet) and to extensively test your UI. Failing all that, the best move is to
migrate from simple nested layouts to a more complex layout, CustomLayout being
the ideal candidate (see section Custom layout in this chapter for details).

Layout and abstract layout
Layout is the base interface for all layouts. It just knows how to use margin or not,
on all four sides or side by side. The space used for the margin is dependent on both
the terminal and the theme used.

AbstractLayout is the straightforward implementation of Layout and inherits from
AbstractComponentContainer.

Layout types
Vaadin provides many different layouts out-of-the-box; there will always be one that
will fit your needs. If you are really stuck with a particularly complex graphic design,
then just take a look at CssLayout which is described in this section. The following
are the types of layout:

• Simple layouts: Simple layouts are efficient and let you forget about HTML
and CSS.

Components and Layouts

[106]

• Horizontal and vertical layouts: Horizontal and vertical layouts position
child components respectively in a horizontal and vertical way. Those
layouts are the simplest we can use: they just put components next to
one another in a single neat row/column, regardless of the user screen's
dimensions. It is the responsibility of the web browser to provide the means
to display UI parts that are out of view, usually with the help of scrollbars.

Horizontal Layout

Vertical Layout

• Grid layout: Of more interest is the GridLayout. As its name implies, Vaadin
will lay out the child components in a grid-like fashion.
GridLayout's constructor needs both the number of columns and the number
of rows.

• Form layout: Fields captions are usually displayed on the top of the relevant
field; it is the default location. However, forms are usually label-field pairs
where the label is displayed left of the field and each pair stacked vertically.
Vaadin emulates this presentation when using the form layout. This is shown
in the following screenshot:

• Advanced layouts: When our needs are more elaborate than the preceding
simple cases, Vaadin still has the answer. In fact, HTML and CSS let you
have a more precise hand over the overall design of your screens.

Chapter 4

[107]

Leaky abstractions
Using these layouts is a case of leaky abstraction: In most
cases, Vaadin shields us from the mechanics and the
technology of lower layers. On the contrary, absolute, CSS,
and custom layouts force us to dirty our hands with gritty
details. Do not overuse them (or at least, be aware), for
their use defeats the abstraction the frameworks bring.

• Absolute layout: The Absolute layout translates to absolute CSS positioning.
As a reminder, it has four possible attributes: top, bottom, left, and right.
Each attribute can be affected by a length, containing both a value and a unit
as seen in the section named Size earlier in this chapter, and the browser will
draw the component at the exact position relative to the screen.

It may seem counterintuitive but "absolute positioning"
means "relative to the layout area edges".

In order to make that work, AbsoluteLayout adds the
addComponent(Component c, String cssPosition) where cssPosition is
the absolute position written respecting the CSS specifications.
For example, the following code will display the label in the bottom
left corner:
layout.addComponent(new Label("Made with Vaadin"),
 "left:10px;bottom:10px");

• CSS layout: The CSS layout goes even further than the previous absolute
layout in that it renders its children components in the same HTML <div>
and lets the CSS position them on the final page. Obviously, it is only to be
used for the web browser's terminal.
A whole book could be devoted to CSS specifications and Vaadin theming
and targeted at designers. For developers like us, the only thing to know is
that each Vaadin component is affected a CSS class in the generated HTML.
In order to effectively use CSS, we have to tell the designer how the class
name is computed.

Components and Layouts

[108]

The rule is very simple: the class name is "v-" concatenated with the name of
the Java component in lowercase. The following table shows some examples
of this rule:

Java component CSS class name
TextField v-textfield

Button v-button

CssLayout v-csslayout

Remember that layouts are components too!

• Custom layout: Vaadin can also be used as a templating engine with the help
of the CustomLayout. In order to do this, carry out the following steps:

 ° First, find the desired HTML template to feed the layout, whether
on the fly by loading the desired resource from an input stream or
through a theme template.

With theme templates, the template is fetched
either from the web application's root or from an
accessible JAR. In both cases, the layout is referenced
under VAADIN/themes/<CURRENT_THEME>/
layouts/<LAYOUT_NAME>.html.

 ° Then, set the placeholders. Placeholders must be div elements and
should be set a unique location attribute.

 ° Finally, add components to the CustomLayout by using
addComponent(Component c, String location). Vaadin will
replace the previously defined div with the corresponding
component using location as the key.

As an example, the following snippet of code warmly welcomes Vaadin:
// window is main window
CustomLayout layout = new CustomLayout
 (new ByteArrayInputStream("<body><h1>Hello</h1>
 <div location='who' />".getBytes()));
layout.addComponent(new TextField("name", "Vaadin!"), "who");
window.setContent(layout);

Chapter 4

[109]

Choosing the right layout
It may seem a banal, but the right layout is the one that fits your needs. However,
there are some general guidelines:

• It is a good practice to begin with a simple layout, that lets you forget HTML
and CSS specifications, and then progress to advanced ones if there is a real
added-value

• If you come from a client-server background (Swing, SWT, or something
else), then realize there is a performance penalty when nesting too many
levels of layout

• If only a small part of the screen is complex, then prefer a top-level simple
layout that nests an advanced one over a single advanced one

Of course, these principles are too broad to be one-size-fits-all. Nonetheless, they
should be useful most of the time: don't have any scruples in adapting them to each
specific situation though.

Split panels
In Vaadin, split panels are designed as specialized layouts. They behave as their
client-server counterpart though: they contain two components separated by a
split bar.

Available properties are as follows:

Property Type Default value
firstComponent Component null

secondComponent Component null

locked boolean false

Components and Layouts

[110]

Regardless of the locked indicator, we can programmatically set the position of the
split bar with the setSplitPosition() method. It accepts the following parameters:

• The position value as an int, required.
• The position unit as an int (optional and defaults to UNITS_PERCENTAGE).

See the section named Size for a refresher on available units.
• A reverse indicator as a boolean, optional. If not specified or if set to false,

then the position is measured by the first region, else it is by the second.

For example, the following code fragment displays a locked vertical split panel
where the first pane takes 100 pixels and the second the rest of the screen:

AbstractSplitPanel panel = new HorizontalSplitPanel();
panel.setFirstComponent(new Label("Hello"));
panel.setSecondComponent(new Label("Vaadin!"));
panel.setLocked(true);
panel.setSplitPosition(100, Sizeable.UNITS_PIXELS);

Bringing it all together
Before jumping into the next chapter, in order to learn from a real world example, we
will begin creating an application in Vaadin. This application will be our main thread
in bringing together all we learned of the framework.

Introducing Twaattin
Our application's focus will be to provide an interface to Twitter. As it will be
developed with the Vaadin framework, it is only natural to name this brand new
application Twaattin.

Chapter 4

[111]

The Twaattin design
In this chapter, we will focus our design on what we learned here. From a window
point of view, there will be the following two windows:

1. Twaattin won't let us connect to Twitter without first requesting a login and a
password. The first window is thus the login window.

2. The Twitter timeline is shown as the second window.

The login window
The login window contains a login field, a password field, and a submit button.

If the login process fails, for whatever reason, then Twaattin does nothing but
display an error message. If the login is successful, then Twaattin displays the
Twitter timeline and shows a confirmation message.

The main window
The main window aggregates tweets, stacked from the more recent to the more
ancient vertically.

Let's code!
OK, the design is done; now we will begin the real work.

Project setup
Create another project like the one we did in Chapter 2, Environment Setup, although
there are some changes:

• Twaattin should be the project name
• Use com.packtpub.learnvaadin.twaattin for the base package name
• The application class name is TwaattinApp
• Finally, the context-root is better changed to twaattin

Components and Layouts

[112]

Project sources
The sources consist of files updated or created by hand.

Application
package com.packtpub.learnvaadin.twaattin;

import com.packtpub.learnvaadin.twaattin.ui.LoginWindow;
import com.packtpub.learnvaadin.twaattin.ui.TimelineWindow;
import com.vaadin.Application;
import com.vaadin.ui.Window;

public class TwaattinApp extends Application {

 private Window loginWindow;
 private Window timelineWindow;

 @Override
 public void init() {

 loginWindow = new LoginWindow();

 timelineWindow = new TimelineWindow();

 setMainWindow(loginWindow);
 }

 public void applicationUserChanged(UserChangeEvent event) {

 setMainWindow(timelineWindow);

 removeWindow(loginWindow);

 timelineWindow.showNotification("You're authentified");
 }
}

The application class of Twaattin has not much more than the one generated by the
plugin apart from the following:

• Private attributes for windows. Although the parent class has references to
windows, there is a need for a distinction between them in order to show/
hide them.

Chapter 4

[113]

• The applicationUserChanged() method. This method is called nowhere in
the code right now, but all will be explained in Chapter 5.
For now, just bear in mind how to change the main window: first set another
main window, and then remove the previous window. Notice the user is also
notified that he has currently been logged as per the specs and that the notifi-
cation is to occur on the new window.

The login window
package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.ui.Window.Notification.TYPE_ERROR_MESSAGE;

import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.PasswordField;
import com.vaadin.ui.TextField;
import com.vaadin.ui.Window;

public class LoginWindow extends Window {

 private TextField loginField;
 private PasswordField passwordField;
 private Button submitButton;

 public LoginWindow() {

 loginField = new TextField("Login", "packtpub");
 passwordField = new PasswordField("Password");
 submitButton = new Button("Submit");

 setCaption("Twaattin Login");

 FormLayout formLayout = new FormLayout();

 formLayout.setMargin(true);

 formLayout.addComponent(loginField);
 formLayout.addComponent(passwordField);
 formLayout.addComponent(submitButton);

 addComponent(formLayout);
 }

 public void authenticate(ClickEvent event) {

Components and Layouts

[114]

 String login = (String) loginField.getValue();

 if ("packtpub".equals(login)) {

 getApplication().setUser(login);

 } else {

 showNotification("You couldn't be authenticated",",
 TYPE_ERROR_MESSAGE);
 }
 }
}

Wow, that is our first real window! There are a few occurrences worth noticing:

• First, like our application references windows, the login window in turn
references each widget as private attributes.

• Instantiating the objects is the first thing done in the constructor. Doing it
here or in each attribute declaration is largely a matter of taste.

• Finally, like in the application, there is a mysterious method that does
not seem to be called anywhere. It seems to check the user input, and then
either sets the application's user (uh?) or warns the user that his login has
been rejected.

The timeline window
package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.ui.Label.CONTENT_XHTML;

import com.vaadin.ui.Label;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;

public class TimelineWindow extends Window {

 public TimelineWindow() {

 VerticalLayout vLayout = new VerticalLayout();

 vLayout.setMargin(true);
 vLayout.setWidth(300, UNITS_PIXELS);

 setContent(vLayout);

Chapter 4

[115]

 fillTweets();
 }

 public void fillTweets() {

 for (int i = 0; i < 10; i++) {

 Label label = new Label();

 label.setValue("Lorem ipsum dolor sit amet, consectetur " +
 "adipisicing elit, sed do eiusmod tempor incididunt " +
 "ut labore et dolore magna aliqua. Ut enim ad minim " +
 "veniam, quis nostrud exercitation ullamco laboris " +
 "nisi ut aliquip ex ea commodo consequat.");

 label.setContentMode(CONTENT_XHTML);

 addComponent(label);
 }
 }
}

For now, the timeline window is just a placeholder: a bunch of labels stacked
vertically. In all cases, there is no way it can be displayed at the time.

Summary
In the first section of this chapter, we have seen the building blocks of the Vaadin
framework, namely widgets. This was a good reason to detail the Component class
hierarchy, which was an excuse to have a look at the following classes and interfaces:

• Component is the root interface for widgets, and has important ancestors
 ° MethodEventSource to add listeners to the widget
 ° Paintable to make the component displayable on the terminal
 ° Sizeable to let the widget be resized

• Window is the base class for screens. It introduced us to:
 ° ComponentContainer, a component that can hold other widgets
 ° The concept of both "main window" and "subwindow"

Components and Layouts

[116]

• Label is the simplest widget in Vaadin. It showed the Property interface, a
way to decouple the widget itself from its value.

• Text field is a plain input field. Yet, we discovered several features not
present in plain labels, brought by its hierarchy:

 ° Validation with the Validator/Validatable pair
 ° Change buffering with the Buffered interface
 ° Focus feature brought by Focusable
 ° Finally, the Field interface and its properties

Although we only brushed the surface of the variety of components Vaadin offers,
looking at each node in the class hierarchy allows us to easily understand future
as-yet-unseen widgets.

Components are interesting intrinsically, but each UI worth its salt needs them to
be laid out the way we want. The second section lets us browse the many layouts,
which also are components, provided by Vaadin:

• Simple layouts such as vertical/horizontal layouts, grids, or even forms
• More advanced ones, such as absolute, CSS, or custom layouts. These are

much more powerful, but at the cost of a tighter coupling with the web
browser terminal.

Finally, we examined split panels, which are handled by Vaadin as specialized layouts.

We finished this chapter with the first Java classes of our Twaattin killer application!

As yet, components and layouts are next to useless because there is no interaction
between them and the server. The next chapter is the answer to this lack, as we will
dive into the event-listener model in Vaadin.

Event listener model
In this chapter, we will see how Vaadin widgets communicate with each other.

Widgets have to work together in order to achieve a common goal. Like ants, they
cannot do so without a means to pass information. In Vaadin and other software,
this is done through events and listeners.

In the first section of this chapter, we will explain this whole event and listener
thing. We will have a look at the famous observer pattern and the way it is used
in Java EE applications.

Then, we will get a grasp on how it is implemented in Vaadin and the different ways
one can wire widgets together so one can be the subject and the other observers. A
discussion will follow in order to determine which components category is the more
suitable to serve as observers.

Finally, we will go further into Twaattin and wire some event listener behaviors
into it.

Event-driven model
Most of the time, web developers are blissfully ignorant of what is known as
event-driven software. It is however, the bread and butter of the client server
application developers. We will have a detailed look at this model.

The observer pattern
The event-driven model is based on a design pattern described in detail in Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson,
and Vlissides.

Event listener model

[118]

In this computer software book, the authors present answers to common software
challenges. Each problem-solution pair is known as a design pattern and constitutes
a design library one can draw upon when facing a particular quandary. The observer
pattern is such a pattern. Here is the problem and its associated solution:

Suppose we have an object that is subject to changes throughout the application
lifecycle. Now, this object has to tell other objects about these updates. For example,
when a user clicks on a button (the main object) and until the server responds, the
button has to be disabled, the menu has to be grayed, and a waiting cursor should
be displayed.

We could of course handle the button click from the user and, having references to
the other widgets call the adequate methods on them. Then again, the separation of
concerns principle encourages us to decouple the button's code from other widgets.

That is where the Observer pattern comes into play. Using it, we will register
widgets that are interested in being informed that a click occurred. At the time
of the click, a single generic method (for example notify()) will be called in each
of the observers. What the method really does is up to the implementation of
each observer.

notifyObservers()
for observer in observerCollection
call observer.notify()ConcreteObserverBConcreteObserverA

Observer

+notify()

Subject

+observerCollection

+registerObserver(observer)
+unregisterObserver(observer)
+notifyObservers()

+notify() +notify()

Enhancements to the pattern
The observer pattern is very general and has nothing to do with user interfaces. In
order to manage the complexity of the latter, there are some necessary enhancements.

Chapter 5

[119]

Event
An event is an action that is initiated outside the flow of the software:

• The code may or may not handle an event
• Event-handling may be either synchronous or asynchronous
• Those events can in turn fire other events

Event details
In the plain observer pattern, the notify() method has no parameters. In order
to pass information from the subject to the observers, we can introduce one in the
form of a detail object.

Detail attributes may include the timestamp of the event, the event's source, and
other attributes depending on the event type (see below).

Event types
Passing information through a parameter somewhat enhances the starting pattern,
but lacks handling granularity. This means that an observer that is registered to two
or more subjects is unable to distinguish between them when notified of an event.

Therefore, an area of improvement is the creation of different event types.
The granularity of types is of course dependent on the considered system, no
differentiation between types to a type per real event (click, value selection,
key type, and so on).

Events in Java EE
Interestingly enough, events and the observer pattern are not widespread
throughout Java EE. There are some notable exceptions though:

• Java Messenger Service listeners are objects that connect to a JMS queue. As
soon as a message is posted in the queue, the onMessage() method of the
listener is called.

• Message Driven Beans are specialized Enterprise Java Beans that integrate a
JMS listener in the EJB architecture, adding transactional and security features.

Event listener model

[120]

• In web application specifications, there are also some listener interfaces
available since version 2.3. As a reminder, they correspond to events regarding:

 ° Request: creation/destruction and attributes binding/unbinding in
request scope

 ° Session: creation/destruction, activation/passivation, and attributes
binding/unbinding in session scope

 ° Application: start/stop and attributes binding/unbinding in
application scope

Now, readers probably noticed Java EE does not provide any event-listener pair that
is both related to user interface and generic: Java Server Faces specifications has its
own event handling, provided of course that we use the whole stack, which is not
our goal.

UI events
Thus, event handling in JSF-free Java web applications has to use another path.
This path is not specific to Java, but can also be used in PHP, ASP, or other web
applications technologies.

Client-server events
One type of event that has to be addressed is the sending of messages from the client
tier to the server tier, which can be referred to as "HTTP events".

For example:

• When the user clicks on a submit button, the client asks an URL resource
from the server, the server sends the whole page, and the browser displays it

• When the user needs to open a pop-up window, it is the same

In traditional web pages, you can navigate URLs by clicking on hyperlinks and
submitting forms whether in straight HTML or through JavaScript.

Different interactions maybe represented by different URLs or a single URL can
interpret HTML parameters, so as to have different actions depending on those
parameters and their respective values.

Client events
Likewise, client events—events that are limited to the client—are implemented in
JavaScript. Examples of such events include the following:

• Changing values of a particular drop-down list depending on the selected
value of another: when sex is Male, selectable title values should be set to Mr

Chapter 5

[121]

• Clicking on a submit button disables all buttons on a page so as to prevent
multiple submissions

• On the contrary, checking a checkbox labeled as "Accept general terms and
conditions" enables the submit button

Limitations of URL and JS for events
In addition, there are several limitations to these particular client event
implementations:

• First, they are as low-level as can be. This directly translates into a lack of
abstractions and therefore, a lack of productivity. In modern computer
software, you don't have to think about bits.

• Then, both the client and server code have to be kept synchronized.
Changing one end can have side effects on the other one. Unit testing is thus
impossible; one has to rely on integration tests that are more complex, more
heavyweight, and more fragile.

• Finally, as was said earlier in Chapter 1, JavaScript is somewhat browser-
dependent and code that goes beyond "Hello world" has to take the
differences between browsers, versions, and platforms into account. Not only
does it vastly increase the code complexity and decrease readability, but also
makes bugs more probable. All these factors have a direct impact on costs.

Event model in Vaadin
The event model in Vaadin is twofold:

1. Implement the Observer pattern
2. Add an abstraction layer to the HTML/JavaScript event

In Vaadin, there are two different ways to add event routing to our objects.

Note that Vaadin handles the sending of client-side browser
events and firing its own events on the server side.

Event listener model

[122]

Standard event implementation
The first way for Vaadin to offer event routing capabilities is with an implementation
based on typed event-listener pairs. Each event has a corresponding pair.

For example, in order to act on focus and blur events, Vaadin provides the
following pairs:

• BlurListener / BlurEvent
• FocusListener / FocusEvent

This design is very similar to what is done in AWT. However,
there is a subtle difference in the implementation: the pairs
are specialized and are related to a single occurrence type. For
example, whereas in AWT there is a single event-listener for both
focus and blur event, with the listener having to implement two
methods even if it needs only one of the two, in Vaadin there is
one for focus and one for blur events, leading to a decrease in
useless code.

Event class hierarchy
At the root of Vaadin event class hierarchy lies a core Java library class, namely
java.util.EventObject. As a reminder, event object is just a thin wrapper
around the event source (and it has access to it).

Event
The first class that Vaadin introduces, and that inherits from the former is Event.
The only contribution of event is to narrow the return type of Event.getSource():
it provides the getComponent() method that, guess what, surprisingly returns a
Component instance, which is just a way not to cast yourself.

Typed events
Subclasses of Event are of much more interest to us. In fact, each of the widgets seen
in Chapter 4 holds at least one event inner class of its own.

The design of these event classes shows a good use of inner
classes as the event type is only pertaining to its outer class.
For example, CloseEvent defined in Window, has no sense
for labels.

Chapter 5

[123]

java.util.EventObject

<<interface>>
com.vaadin.data.Property

<<interface>>
com.vaadin.ui.Field

ValueChangeEvent

getProperty():Property

com.vaadin.ui.Label com.vaadin.ui.Window

CloseEvent ResizeEvent

getWindow():Window getWindow():Window

<<interface>>
com.vaadin.ui.Component

Event

getComponent():Component

ValueChangeEvent

getProperty():Property

<<interface>>
ValueChangedEvent

See how subclasses of Event add a getter method with the narrowest return type
possible in order to avoid casting the event source? Should you extend the hierarchy
further, it is advised to do so, even if nothing enforces it. It is one of those nice
comfortable features that makes Vaadin so comfortable to code with.

Listener interfaces
There are many listeners available in Vaadin, and they all share some common
features:

• There is one listener for each event type; events and listeners go in pairs.
• There is no inheritance hierarchy between them.
• They extend Serializable so as to be serialized during the session

serialization
• They are designed as inner interfaces of the relevant class; for example,

ClickListener which waits for click events on buttons is defined in the
Button class

• Also, they are defined as being static
• They have a semantic significance, meaning one can understand what it does

without looking at the documentation
• They are single method interfaces and the latter:

 ° has a name pertaining to the listener
 ° has a single parameter which is an event coupled to the listener

In order to continue with the ClickListener, the only method's signature is
buttonClick(ClickEvent event).

Event listener model

[124]

Window
Now, remember our old friend the Window widget from Chapter 4? At the time,
nothing was said about it, but it contains the following two listeners (as well as
two events, but let's focus on the former):

1. CloseListener: that triggers when a window is closed, whether it is a main
window or a subwindow.

2. ResizeListener: that is called when the user resizes it.

The following code will display a notification when the subwindow is closed:

public class MyWindow extends Window implements CloseListener {

 private Window subwindow = new Window();

 public MyWindow() {

 addWindow(subwindow);

 subwindow.addListener((CloseListener) this);
 }

 public void windowClose(CloseEvent e) {

 showNotification("Just closed the window");
 }
}

Note that we have to cast this to the right listener type, otherwise, the compiler
complains about the ambiguous type.

Managing listeners
Each widget that may be an event source has two methods for each event-listener pair:

1. A method to add a specific listener, addListener(XXXListener listener).
2. The inverse method to remove it, removeListener(XXXListener listener).

This leads us to the following schema, inner classes' structure notwithstanding:

Component

addListener(in listener : ComponentEventListener)
removeListener(in listener : ComponentEventListener)

Event
<<interface>>

ComponentEventListener

componentEvent(in event : Event)

Chapter 5

[125]

This design is used throughout Vaadin, so it is better to keep it in mind as it is very
helpful when using a component-listener-event triplet we don't know. In addition, if
we implement our own, it is better to copy this design.

Multi-implementations listeners
Note that listeners adding and removing methods are all called respectively
addListener() and removeListener() with no regard to the listener type. If a
widget needs to be the subject for different listener types, we need different methods
whose only difference comes from the listener type parameter. It is not a problem for
Java, as it comes bundled with a method-overloading feature.

For more information about the method overloading, refer to the
following URL:
http://en.wikipedia.org/wiki/Function_overloading

However, troubles arise when the listener passed in a parameter has more than
one listener implementation and when the widget is able to add (or remove) these
alternative implementations.

We will take an example: our good friend Window can have listeners for both
close and resize events. If we add a listener that is both a close and a resize listener,
which method should be called? Since there is no deterministic answer, the compiler
loudly complains:

The method addListener() is ambiguous for the type Window

This means that we have to cast the parameter into the wanted type parameter to let
the compiler know which method will have to be called:

window.addListener((ResizeListener) myMultiListener);

Alternative event implementation
The standard listener implementation has a "clean" design from an architectural
point of view. Nonetheless, it carries the limitation that the listener has to implement
an interface. While this may be only undesirable in some cases, it may also be
downright impossible when integrating classes from a third party API.

In order to address this problem, Vaadin also provides an untyped listener
implementation. Although very powerful, be aware that its versatility comes at a
price. It enforces no contract on the listener, thus making it very hard to analyze
what objects are listeners in the end.

Event listener model

[126]

Method event source details
In Vaadin, this type of flexibility is achieved through the use of reflection.
The framework introduces the MethodEventSource interface, which is an
implementation of the Observer pattern mentioned earlier in this chapter.

For detailed information about Java reflection, visit the following URL:
http://download.oracle.com/javase/tutorial/reflect/
index.html

It has the following methods:

• addListener(Class<?> eventType, Object object, String methodName)
will add a single listener where:

 ° eventType is the event class the listener will respond to
 ° object is the listener object itself
 ° methodName is the method that will be called when the event type is

received. Other event types won't trigger anything
For example, the following code extract will invoke the "sayHello" method
of the current object when it receives a ResizeEvent:
Window window = new Window();
window.addListener(ResizeEvent.class, this, "sayHello");

Note: an overloaded method exists that accepts java.lang.
reflect.Method instead of a string. It is advised not to use
it unless the Method object is already available: code to obtain
the latter has to be cluttered with an exception handling logic
and it is the same code that Vaadin executes in the method
with the String parameter method anyway.

• removeListener(Class<?> eventType, Object object, String
methodName) where the parameters are the same as above; it will remove the
previously added listener.

Additionally, not using the third argument will remove all listeners for the
event type on the target object.
Note that Vaadin's implementation has both pros and cons regarding the
former typed listener approach:

Chapter 5

[127]

• Using a String as the method name's parameter, whether directly or
through a Method, is very unfriendly toward refactoring. This means that
if we refactor a method's name, we run the risk of that method being called
in the code through reflection: it will still compile all right but will cause a
runtime exception when running.

• However, this strategy lets us use any object as a listener (or observer). Of
course, these can be Vaadin widgets, but also our service layer or even third-
party classes that can be used as-is since there is no contract to be enforced
on their part!
This is a very powerful tool that Vaadin puts at our disposal. However, re-
member, with great powers come great responsibilities!

• As a corollary, using strings also means that advanced programming
techniques such as Aspect-Oriented Programming (visit http://
en.wikipedia.org/wiki/Aspect-oriented_programming for more
information on AOP) will be very difficult to implement, if at all since
there is no common transversal interface to capture in our pointcuts.
Of course, one could use marker interfaces, but that would not solve which
method to advise, and would raise other problems such as keeping refer-
enced listeners and interfaces in synch.

Listener methods
Although we can use any method of any object as a listener model in the Vaadin
model, there are some subtle limitations one should be aware of in order to prevent
nasty surprises at runtime.

Return value discard
First, return values are ignored by the event listener mechanism. This does not
mean that the method signature cannot have a return value, just that it won't be
handled anywhere.

For example, the following snippet will execute flawlessly, but there won't be any
sign of it as toString() only returns the String representation of the object:

Object object = new Object();
Window window = new Window();
window.addListener(ResizeEvent.class, this, "toString");

Functional programming gurus, take heed: listener methods
should not use functional programming style (that is with no
side-effects) as return values are discarded.

Event listener model

[128]

Parameter types
Listener methods can either have:

• No arguments: method will be called as expected.
• A single argument: in this case, the parameter type should be of the type of

the listened event or a more general super type.

In order to illustrate these interactions, consider the following event class hierarchy:
the fictional ChildEvent class inherits from also fictional ParentEvent. The
following table describes what happens when a certain event interacts with a given
parameter type.

Sent type à

Parameter type

â

ChildEvent ParentEvent

No parameter Method is called Method is called
ChildEvent Method is called Throws IllegalArgumentException

when adding listener
ParentEvent Method is called Method is called
Object Method is called Method is called

Notice that Vaadin does not enforce any bound for the event
type Class parameter. However, it is a good idea to limit
yourself to subtypes of EventObject (see below), since it
makes sense. In addition, future implementations of Vaadin
may not be so lenient.

Overloaded method bug
At the time of the writing of this book, there is a nasty bug in
the way reflection is used. As it can only use a single method as
a listener, it uses the last it finds based on the string passed as a
parameter.
This means that using overloaded methods, methods with the
same name but different signatures (read parameters) may
work or not depending on the order of said methods in your
source files. It is a good idea not to use overloaded methods as
listeners until this bug is closed.

Chapter 5

[129]

Abstract component and event router
Now, the contract is for every abstract component to also be a method event source.
In order to achieve this, Vaadin introduces an implementation of the method event
source, the EventRouter.
This class has the following two important advantages:

1. Abstract components can delegate the event routing logic to the router, thus
decoupling event and widget concerns.

2. Additionally, it lets us, if the need be, encapsulate an event router in our
own widgets, should we choose not to inherit from AbstractComponent
but rather use our own implementation.

<<interface>>
com.vaadin.ui.Component

1 1

<<interface>>
com.vaadin.event.MethodEventSource

addListener(in eventType : Class, in object : Object, in method : Method)
addListener(in eventType : Class, in object : Object, in methodName : String)
removeListener(in eventType : Class, in target : Object, in method : Method)
removeListener(in eventType : Class, in target : Object, in methodName : String)
removeListener(in eventType : Class, in target : Object)

com.vaadin.event.EventRouter

fireEvent(in event : EventObject)
hasListeners():boolean
removeAllListeners()
addListener(in eventType : Class, in object : Object, in method : Method)
addListener(in eventType : Class, in object : Object, in methodName : String)
removeListener(in eventType : Class, in target : Object, in method : Method)
removeListener(in eventType : Class, in target : Object, in methodName : String)
removeListener(in eventType : Class, in target : Object)

com.vaadin.ui.AbstractComponent

Expanding our view
The respective class and listener classes described earlier are by no means extensive.
As for the widgets, it makes no sense to plainly list them, it has no benefit, and such
is not the scope of this book. It would only paraphrase the Javadocs anyway.

However, a concrete example will show us that there is no need for it as Vaadin
implementation is uniform throughout the class hierarchy: what we learned here
can be extended to any provided widget.

If you want to challenge my claim, feel free to do so. Take
a widget and verify it is designed as it should be, you will
be pleasantly surprised: that is what makes Vaadin such an
enjoyable framework to work with.

Event listener model

[130]

Button
Buttons are such standard widgets that Vaadin of course provides them.

The most important thing that can happen on a button is the click. From what we
have learned, Button should provide an inner class ClickEvent or something
similar. This event should have a single method, getButton() that returns a Button,
the latter being the button the user clicked on.

Also, Button should encompass a static inner interface ClickListener that has a
single method with the following signature buttonClick(ClickEvent e).

Finally, there has to be an addListener(ClickListener listener) method on the
Button class itself.

Looking at http://vaadin.com/api/com/vaadin/ui/Button.ClickEvent.html,
we can challenge our theory. It appears completely in line with what we have just
guessed before!

Chapter 5

[131]

Events outside UI
In general, but also in Vaadin, events are not limited to interactions with
user interface.

User changed event
In fact, there is one event that is of particular interest to us not only because it is
used in Twaattin, but also because there are good chances it will be used throughout
your future Vaadin applications. It is the "user changed" event; its structure follows
the guidelines we saw earlier in this chapter.

In most applications, once a user logs in, its name, login, or whatever is displayed on
the screen. Vaadin takes that into account and provides the following:

• A way to store an object representing the user in the application. As every
widget knows its window, and the window in turn has a reference to the
application, every widget can access and use the user object.

Note that Vaadin makes no assumption on the particular object
type used. It can be a principal, a Spring Security user details, a
plain string, or your own custom implementation.
For more details on Java security, JAAS, and Principal, visit
http://java.sun.com/developer/technicalArticles/
Security/jaasv2/

Fore more details on Spring Security and UserDetails, visit
http://static.springsource.org/spring-security/
site/docs/3.0.x/reference/springsecurity-single.
html#d0e1588

• An event model centered about changes made to the user stored in
the application.

• A user change event that holds both the previous user and the new user. This
design lets us manage both login events (when old user is null and new user
is not) and logout events (when old user is not null but new user is) and
react accordingly.

The only limitation is that even if listeners can be registered to user changed events,
we have to call the setUser() method explicitly: such a call usually is made when
the actual user successfully passed the authentication process, whatever it is.

Event listener model

[132]

Architectural considerations
Until then, we described the event model in Vaadin but we didn't map these listeners
to any component (in the conceptual sense) or objects belonging to a particular layer
in our architecture.

In fact, there are so few constraints enforced on listener classes (and even fewer
when using the alternative implementation) that any object is a candidate for
being a listener in its own right, isn't it?

Yet, it is not because something is possible that it is the right thing to do. Here, we
stray from the pure Vaadin learning path to something that is more conceptual and
thus, more subject to debate. Some architectural choices are in order for listeners.

Anonymous inner classes as listeners
As Swing developers know, the vast majority of Swing examples found on the Web,
and even some Sun code, use a vast amount of anonymous inner classes.

This Java language feature lets developers implement an interface or override a class
while creating a new instance like in the following example:

window.addListener(new ResizeListener() {

 public void windowResized(ResizeEvent e) {

 showNotification("Window resized");
 }
});

Anonymous inner classes have both pros and cons:

• Inner classes have access to their wrapping class final attributes
• Overuse of them renders the code confused and decreases readability

Overall, beyond simple "Hello world" applications or prototypes, it is discouraged to
use them in applications.

Widgets as listeners
"Widgets as listeners" is the simplest option possible. In fact, there is nothing that
prevents us to make them so, as it is legal to do so. Twaattin is constructed this way
(see the section named Twaattin is back) and it works just fine.

Chapter 5

[133]

However, this model has some limits that are worth mentioning:

• When going beyond simple "Hello world" applications, the sheer number
of event listening methods just clutters the code and dreadfully impairs
its readability.

• From a design point of view, this grouping denies the single responsibility
principle that forms the basis of good object-oriented software: widget
responsibilities should be limited to displaying and event firing, not
event handling.

• As a corollary, this coupling also prevents us from reusing separately both
widgets and event handling behaviors, which is a shame since it should
be a feature of OO design.

Nonetheless, this design lets us create quickly simple applications that just work.
If used only within this restricted perimeter, or for prototypes, then it is the right
choice as it follows the KISS principle.

For more details on the KISS principle, visit the following URL:
http://en.wikipedia.org/wiki/KISS_principle

Presenters as listeners
In "standard" web applications, the Model View Controller design pattern is a
common occurrence. In Java, this pattern is implemented like so:

• The view is represented by a Java Server Page. It has only presentation logic
and the data is set by the controller.

• The controller is a servlet that:
 ° Requests data from the model
 ° Feeds the data to the view
 ° Redirects the control flow to the latter

• Finally, the model is implemented either as Session Enterprise Java Beans or
as Plain Old Java Objects, depending on each application's architecture.

In order to know more about Plain Old Java Objects, refer to the
following URL:
http://en.wikipedia.org/wiki/Plain_Old_Java_Object

Event listener model

[134]

In rich client applications, the MVC model is often replaced with the Model-View-
Presenter design pattern. There are some slight differences between them, but the
most important is that the view is in charge for managing UI events, whereas it is
the controller's responsibility in MVC.

In such architecture, presenters are listeners par excellence.

Services as listeners
Most applications are also designed as layered: the first is the presentation, the
second the service (also known as business), finally the data access. Such designs
let us change a layer and affect only the calling layer.

One could think about services being called through an event handling mechanism;
for example, in order to populate a widget's data in response to a button click.

However, this does not work well in Vaadin, in either event model implementation
for the classic one has no return values in listener methods, and the reflection one
discards them if they exist.

Conclusion on architecture
In regards to architecture, there is no universal good or bad design. As in
construction, architecture in software is contextual and should always be thought
of from this point of view. A whole book could be entirely devoted to this subject,
and it won't even begin to cover all the cases, as architectural considerations are
somewhat empirical and somewhat based on personal experiences.

However, the following points represent some of the factors that can influence
architectural decisions:

• Application size: A small application is more lenient towards cluttering. In
this case, we can probably use anonymous inner classes without too many
side effects. On the contrary, a big application will require a more structured
way in order to be manageable.

• Expected lifespan: For a constant ROI, the lesser the lifespan of an
application, the lesser the cost. As such, an application that is a temporary
solution has not to be designed as a software jewel. For example, a Proof of
Concept application is just that, it probably will be discarded after the proof
has been made. Don't waste time on architecture!

• Team experience: In this regard, experience is not only quantitative, but also
qualitative. While it is true that more experienced developers are naturally
inclined to use more structured solutions, you should also consider how
developers actually code. If your team already practices MVP daily, then
maybe it is a good thing not to change things to much.

Chapter 5

[135]

• QA: Of course, QA is the biggest reason of all to adopt a specific architecture.
If the norm is to use widgets as listeners, then don't hurt your head too much
and do as you are told.

The previous sections are some examples of possible architectures: there is nothing
that prevents you to design other solutions. In fact, you are encouraged to do so if
none fit your particular needs for an application.

Twaattin is back
We will put what we have seen in this chapter regarding events and listeners to good
use: Twaattin awaits us!

We have left it in a state where only the login window could be displayed, although
we provided a timeline window, because we did not know how to manage login. As
now we can, let's continue our coding to conform to the following sequence diagram:

<<create>>

authenticate

get application

set user

:Actor

:Button

:LoginWindow

:TwaatinApp

click

<<create>>

user changed

Event listener model

[136]

Project sources
These are the complete files. Differences with Chapter 4 are outlined.

The login window
package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.ui.Window.Notification.TYPE_ERROR_MESSAGE;

import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.PasswordField;
import com.vaadin.ui.TextField;
import com.vaadin.ui.Window;

public class LoginWindow extends Window {

 private static final long serialVersionUID = 1L;

 private TextField loginField;

 private PasswordField passwordField;

 private Button submitButton;

 public LoginWindow() {

 loginField = new TextField("Login", "packtpub");
 passwordField = new PasswordField("Password");
 submitButton = new Button("Submit");

 submitButton.addListener(ClickEvent.class, this, "authenticate");

 setCaption("Twaattin Login");

 FormLayout formLayout = new FormLayout();

 formLayout.setMargin(true);

 formLayout.addComponent(loginField);
 formLayout.addComponent(passwordField);
 formLayout.addComponent(submitButton);

 addComponent(formLayout);
 }

 public void authenticate(ClickEvent event) {

 String login = (String) loginField.getValue();

Chapter 5

[137]

 if ("packtpub".equals(login)) {

 getApplication().setUser(login);

 } else {

 showNotification("You couldn't be authentified",
 TYPE_ERROR_MESSAGE);
 }
 }
}

In the login window, we just add a single line in order for the authenticate method to
act as a listener when the button is clicked.

Now, on the button click, the authenticate method is called: if the authentication
succeeds, it sets the application user as the login; if not, it displays a failure message.

Note that the ClickEvent parameter is not used in the method, and it would be
legal to remove it as we have seen in the section named Parameter types earlier in this
chapter. However, it has the following two advantages:

1. It marks the method as being used as a listener in Vaadin. It is arguably
a benefit, but if used in a consistent manner throughout the application,
it lets us analyze which methods are listeners, as well as use advanced
programming techniques such as AOP.

2. It lets us use the parameter if the need arises and has no side effect whatsoever.

Application
package com.packtpub.learnvaadin.twaattin;

import com.packtpub.learnvaadin.twaattin.ui.LoginWindow;
import com.packtpub.learnvaadin.twaattin.ui.TimelineWindow;
import com.vaadin.Application;
import com.vaadin.Application.UserChangeListener;
import com.vaadin.ui.Window;

public class TwaattinApp extends Application implements
UserChangeListener {

 private static final long serialVersionUID = 1196719916711333325L;

 private Window loginWindow;

 private Window timelineWindow;

 @Override

Event listener model

[138]

 public void init() {

 loginWindow = new LoginWindow();

 timelineWindow = new TimelineWindow();

 setMainWindow(loginWindow);

 addListener(this);
 }

 public void applicationUserChanged(UserChangeEvent event) {

 setMainWindow(timelineWindow);

 removeWindow(loginWindow);

 timelineWindow.showNotification("You're authentified");
 }
}

For the application class, we have to implement the user changed listener and add
the application itself as the listener.

We cannot use reflection event handling because
Application is not a Component and as such, does
not have the right method. Alternatively, we could have
encapsulated MethodEventSource and added the right
delegate method to it. Yet, what is done is much simpler.

Now step back and have a look: with two and half lines of code, we introduced event
handling. However, it is impressive, even if listener methods were already present.

Additional features
However, now we can log in, two more features would be nice to have:

1. Since we could log in to more than one user, the ability for the application to
display the user log in is necessary.

2. Additionally, being able to log out without closing the browser and deleting
the cookie is a good thing.

Some small changes are in order to implement these new features.

Chapter 5

[139]

The timeline window
package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.ui.Label.CONTENT_XHTML;

import com.vaadin.Application.UserChangeEvent;
import com.vaadin.Application.UserChangeListener;
import com.vaadin.ui.Button;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.Layout;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;
import com.vaadin.ui.Button.ClickEvent;

public class TimelineWindow extends Window implements
UserChangeListener {

 private static final long serialVersionUID = 1L;

 private Label user;

 private Button logout;

 public TimelineWindow() {

 VerticalLayout mainLayout = new VerticalLayout();

 mainLayout.setSpacing(true);
 mainLayout.setMargin(true);

 setContent(mainLayout);

 HorizontalLayout hLayout = new HorizontalLayout();

 hLayout.setSpacing(true);

 addComponent(hLayout);

 user = new Label();

 hLayout.addComponent(user);

 logout = new Button("Logout");

 logout.addListener(ClickEvent.class, this, "logout");

 hLayout.addComponent(logout);

 VerticalLayout vLayout = new VerticalLayout();

 vLayout.setWidth(300, UNITS_PIXELS);

 addComponent(vLayout);

Event listener model

[140]

 fillTweets(vLayout);
 }

 public void logout() {

 getApplication().setUser(null);
 }

 public void fillTweets(Layout layout) {

 for (int i = 0; i < 10; i++) {

 Label label = new Label();

 label.setValue("Lorem ipsum dolor sit amet, consectetur "
 + "adipisicing elit, sed do eiusmod tempor incididunt "
 + "ut labore et dolore magna aliqua. Ut enim ad minim "
 + "veniam, quis nostrud exercitation ullamco laboris "
 + "nisi ut aliquip ex ea commodo consequat.");

 label.setContentMode(CONTENT_XHTML);

 layout.addComponent(label);
 }
 }

 public void applicationUserChanged(UserChangeEvent event) {

 user.setValue(event.getNewUser());
 }
}

Of course, we need a label to display the user and a logout button that listens to click
events, just as we have seen previously.

More interesting is the way the logout method is implemented: it just sets the new
user as null, which is semantically equivalent as unsetting the current user.

Moreover, this version is now a user changed listener, with the implementation
method changing the user label; it is necessary but not enough as will be seen
in the TwaattinApp code.

TwaattinApp
package com.packtpub.learnvaadin.twaattin;

import com.packtpub.learnvaadin.twaattin.ui.LoginWindow;
import com.packtpub.learnvaadin.twaattin.ui.TimelineWindow;
import com.vaadin.Application;
import com.vaadin.Application.UserChangeListener;
import com.vaadin.ui.Window;

Chapter 5

[141]

public class TwaattinApp extends Application implements
UserChangeListener private static final long serialVersionUID = 1L;

 private Window loginWindow;

 private TimelineWindow timelineWindow;

 @Override
 public void init() {

 loginWindow = new LoginWindow();

 timelineWindow = new TimelineWindow();

 setMainWindow(loginWindow);

 addListener(this);

 addListener(timelineWindow);
 }

 public void applicationUserChanged(UserChangeEvent event) {

 if (event.getNewUser() == null) {

 setMainWindow(loginWindow);

 removeWindow(timelineWindow);

 loginWindow.showNotification("You're logged out");

 } else if (event.getNewUser() != null) {

 setMainWindow(timelineWindow);

 removeWindow(loginWindow);

 timelineWindow.showNotification("You're authentified");
 }
 }
}

In the application, there are two things of note:

1. The timeline window is added as a listener for user changed events. Thus,
when the new user is set, the appropriate method will be called and the label
changed as well.

2. The user changed method is updated to take into account that it will be
called in two different contexts: when a user logs in and when he logs out.
The logout behavior is symmetric to the login one: set the new main window,
remove the old one, and show a notification with the latter.

Event listener model

[142]

Summary
In this chapter, we tackled the concept of events and listeners. Both form the basis for
the observer design pattern implementation. The latter can be summed up as: when
objects want to be notified of certain occurrences in another object, they register as
observers and a certain behavior is called, depending on each object's implementation.

Then, we learned that this pattern is used throughout fat client software's user
interfaces, but web developers are seldom aware of it: there are some event model
implementations in Java EE, but they are unrelated to UI.

In Vaadin, however, we can keep our event-listener related knowledge (or acquire it)
because it is fully observer-compliant. There are two ways to register an observer:

1. The old-fashioned way with the implementation of an interface.
2. With a powerful reflection-based API.

The latter has the advantage of making any method a listener method, thus easily
integrating the third-party code.

Then, we discussed architectural considerations: the thing to remember here is
that the architecture is based on each project's own features. There is no right or
wrong answer, but this section hinted at some factors one has to take into account
to determine which components are the best for listeners.

Finally, we went further into building Twaattin. Now we have the entire
login-logout behavior fully implemented.

In the next chapter, we will connect objects and collections to UI widgets.

Containers and Related
Widgets

In previous chapters, we have learned about Vaadin's widget-based approach and
how it is implemented and how those widgets send events to each other in a nicely
decoupled way. This chapter is about the second important part of the framework,
data binding.

This chapter is separated into two sections. In the first section, after a general view
on data binding, we will have a thorough look at the three types available in Vaadin:
property, item, and container.

In the second section, we will discover two new widgets that are able to display
containers, tables, and trees. As tables are present in so many applications, Vaadin
provides a great deal of features which we will take some time to describe in detail.

Data binding
Data binding is the ability of an application to link the value displayed by a widget
with the underlying data. However, it is not a monolithic feature but has the following
properties, which can be implemented or not depending on the technology:

• Accessing the data either in the read mode, that is, displaying the data
through the widget, or in the write mode, that is, updating the data through
the widget

• Storing changes made to the widget's value in a buffer so they could
be committed.

• Binding the data to the widget, so that changes to the underlying data value
change the value displayed to the user.

Containers and Related Widgets

[144]

Data binding properties
Properties of data binding are as follows: renderer and editor, buffering, and
value-widget binding.

Renderer and editor
The important aspect is that there is a transformation necessary between the data,
which is an object in its own right and its graphical representation.

For example, one can ask how a date should be shown to the end user. Most solid
frameworks create the following two abstractions in order to standardize this process:

1. A renderer component that is able to display data items on the screen,
thereby creating a string representation of the data.
In our example, the date can be processed by the renderer that will
probably format it in some way, based on either a standard locale or
even the user's locale.

2. An editor component that allows us to change objects; this can be done either
from a string representation or from a specialized widget.
Again, with our date example, the editor could let us change the date from
its string representation, and take the risk that days and month are not at
the same place depending on which region of the globe you come from, or
display a nice calendar.

Buffering
Buffering is a way for widgets to discard changes made to it concerning the
underlying data. In this regard, the widget also provides a way to commit the
buffered value to the underlying data, or to reset the buffer from the latter.

Note that it is different from an HTML text field that holds a value as the widget
could disappear from a view and still hold the buffered value as long as it is the
same object.

Data binding
Data binding comes in two flavors: the easiest is when updating the UI component's
displayed value really changes the underlying data.

The other flavor is very addictive once tasted: imagine the ability for a value to send
change events to widgets to which it is bound. For example, when changing the
person's first name variable in the code, the value is magically changed for the user
in the GUI.

Chapter 6

[145]

In order to achieve this, data is to be wrapped by a custom component that adds a
whole event-listener model around it.

Data in Vaadin
The good news is that Vaadin brings renderers, editors, and buffering to the table.
The bad news is that data is not supported out-of-the-box.

Entity abstraction
Regarding the entity abstraction problem, Vaadin provides a clean design with three
interfaces corresponding to a different grouping level:

• A property level
• An item level, the item here being the entity
• A container, representing a collection of related items

Property
We have seen in Chapter 4, Components and Layouts the Property interface. As a
reminder, it represents a single isolated value, with accessors available for value,
read only indicator and data type (only getter available). In Chapter 5, Event Listener
Model we have seen that it also provides a change event listener.

Now is a good time to learn that Property also provides two interfaces: Viewer and
Editor, which Field extends.

<<interface>>
com.vaadin.data.Property

setValue(in value : Object)
getValue(): Object
setReadOnly(in readOnly : boolean)
isReadOnly():boolean
getType():Class

<<interface>>
Viewer

getPropertyDataSource():Property
set (in new :)PropertyDataSource DataSource Property

<<interface>>
Editor

<<interface>>
com.vaadin.ui.Field

Containers and Related Widgets

[146]

The following two facts are worth noticing:

1. First, viewer and editor have a slightly different meaning than above:
 ° A viewer represents a class able to use a property as a data source.
 ° Editor is only a marker interface. It means that the property can be

changed through the editor. If not implemented, then the property
can still be set, but only in the code with the setValue() method.
Likewise, even if implemented, we still cannot call the previous
method if the property is in read-only mode.

2. Second, for a property to be and editor, it has to be a viewer, which makes
sense: ever tried to edit a value you couldn't see?

Finally, as we have seen before, Property's single subinterface is Field, which
is implemented by all widgets in the class hierarchy (with the notable exception
of widgets that do not wrap around an editable value such as labels, menu bars,
layouts, and so on).

Object property
ObjectProperty is a straight implementation of Property and
ValueChangeNotifier.

It also forms the basis of a wrapper around values connected to widgets. The
following code snippet connects a date object to a label:

Property property = new ObjectProperty<Date>(new Date());

Label label = new Label();

label.setPropertyDataSource(property);

It will display the current date as follows:

Thu Mar 10 23:23:56 CET 2011

Note that Vaadin core components automatically listen to the change events of their
respective data sources: changes to the underlying property will be propagated to
the label widget.

Property formatter
Astute readers may have some questions regarding the previous example: we have
seen previously that a viewer component should bridge the object world and their
string representation. The date displayed earlier is just a straightforward result
of toString().

Chapter 6

[147]

Of course, Vaadin provides a way to display our date the way we want in the form
of the abstract PropertyFormatter class, which is a Property in its own right, but
adds formatting and parsing features.

PropertyFormatter

parse()

format()

Property

value

set()

get()

Given this ancestry, PropertyFormatter can act as a wrapping proxy around the
"real" property. Let's change our previous example somewhat, starting by creating a
date formatter:

public class DateFormatter extends PropertyFormatter {

 private static final String PATTERN = "MM/dd/yy";

 public DateFormatter(Property propertyDataSource) {

 super(propertyDataSource);
 }

 @Override
 public String format(Object value) {

 if (value instanceof Date) {

 return new SimpleDateFormat(PATTERN).format((Date) value);
 }

 throw new RuntimeException(value + " is not a Date");
 }

 @Override
 public Object parse(String formattedValue) throws Exception {

 return new SimpleDateFormat(PATTERN).parse(formattedValue);
 }
}

Now, just wrap the object property inside the formatter as follows:

label.setPropertyDataSource(new DateFormatter(property));

Containers and Related Widgets

[148]

The same can be done with an editable widget, with the expected result. We just
have to replace the label with a text field and it yields the correct result as follows:

Real-world date field
The previous example is just that, an example. If you need a text field
that holds the date value, then just pick a Vaadin widget made just for
this case: com.vaadin.uiDateField, or even better, com.vaadin.
ui.PopupDateField that comes bundled with a nice calendar editor,
you will love it.
Just remember that common use-cases have a high probability of having
been dealt with by Vaadin developers.

Handling changes
As seen in Chapter 4, all Vaadin widgets are buffered regarding the data they hold
and as such, have two important operations: commit() and discard(). Now that
we have seen properties and events, it is the right time to put it all together.

Consider the following use-case: we have a text-field. Once updated, its changes can
either be saved or cancelled. The next window code does exactly that:

import static com.vaadin.ui.Window.Notification.TYPE_TRAY_
NOTIFICATION;

import com.vaadin.data.Property;
import com.vaadin.data.util.ObjectProperty;
import com.vaadin.event.FieldEvents.TextChangeEvent;
import com.vaadin.event.FieldEvents.TextChangeListener;
import com.vaadin.ui.Button;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.TextField;
import com.vaadin.ui.Window;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;

public class CommitDiscardWindow extends Window {

 private TextField tf;

 public CommitDiscardWindow() {

 setContent(new HorizontalLayout());

Chapter 6

[149]

 Property property = new ObjectProperty<String>("ABC");

 tf = new TextField();

 tf.setImmediate(true);

 tf.setWriteThrough(false);

 tf.setPropertyDataSource(property);

 tf.addListener(new TextChangeListener() {

 public void textChange(TextChangeEvent event) {

 showNotification("Change : " + event.getText(),
 TYPE_TRAY_NOTIFICATION);
 }
 });

 addComponent(tf);

 Button commit = new Button("Save");

 commit.addListener(new ClickListener() {

 public void buttonClick(ClickEvent event) {

 showNotification("Before commit (property) : " +
 tf.getPropertyDataSource().getValue(),
 TYPE_TRAY_NOTIFICATION);

 tf.commit();

 showNotification("After commit (property) : " +
 tf.getPropertyDataSource().getValue(),
 TYPE_TRAY_NOTIFICATION);
 }
 });

 addComponent(commit);

 Button discard = new Button("Cancel");

 discard.addListener(new ClickListener() {

 public void buttonClick(ClickEvent event) {

 showNotification("Before discard (buffer) : " +
 tf.getValue(), TYPE_TRAY_NOTIFICATION);

 tf.discard();

 showNotification("After discard : (buffer) " +
 tf.getValue(), TYPE_TRAY_NOTIFICATION);
 }
 });

 addComponent(discard);
 }
}

Containers and Related Widgets

[150]

The graphical result is as follows:

From this point on, try the following sequential interactions:

1. Change the text: changes are immediately sent to the server with the
setImmediate(true) call on the text field.

2. Click on Cancel. Prior to the click, tf.getValue() returns the previously
entered value, stored in the buffer. In essence tf.getValue() !=
datasource.getValue(). After the click, the buffer is reset to "ABC"
which is the value of the data source.

3. Change the value again, and click on Commit. As the field is in a read-
through mode, prior to the click, tf.getValue() delegates to datasource.
getValue() and returns "ABC"; after the click, tf.setValue() calls
datasource.setValue().

Item
The previous section taught us about formatting, parsing, and buffering on individual
fields. We did not address the unrelated fields syndrome described earlier.

Method property
When faced with the challenge of displaying a structured object, the first solution
to our quandary would be to get a reference to each single attribute, wrap it inside
an ObjectProperty; and then connect it to the right field. That would be too
cumbersome and against Vaadin's philosophy.

There is a shortcut to this whole thing, in the form of the MethodProperty class.
Whereas ObjectProperty envelops a single object, MethodProperty encapsulates
an accessor method.

<<interface>>
com.vaadin.data.Property

<<interface>>
ValueChangeNotifier

com.vaadin.data.util.MethodProperty

MethodProperty(in instance : Object,in beanPropertyName : String)
MethodProperty(in type : Class, in instance : Object,in getMethod : Method, in setMethod : Method)
MethodProperty(in type : Class, in instance : Object,in getMethodName : String, in setMethodName : String)

T

Chapter 6

[151]

For example, let's consider our previous Person, which has properties for first name,
last name, and birthdate and a read-only ID. In order to display a person, we would
have to do the following:

MethodProperty<Person> firstName = new MethodProperty<Person>(person,
"firstName");

It is understood that it would have to be done for each single field we would want
to display. It is better than the previous solution, but still not satisfactory.

The right level of abstraction
The right thing to do is to use one of Vaadin's most important interfaces, Item.

Just as ObjectProperty wraps a simple object and MethodProperty wraps a
structured object's methods, Item wraps a bag of properties. Even better, wrapping a
BeanItem, Item's standard implementation around such an object will automatically
enclose each of its property inside MethodProperty!

<<interface>>
com.vaadin.data.Item

addItemProperty(in id : Object, in property : Property):boolean
getItemProperty():Property
getItemPropertyIds():Collection
removeItemProperty(in id : Object):boolean

in id : Object

<<interface>>
PropertySetChangeEvent

<<interface>>
Viewer

getItemDataSource():Item
getItemDataSource(in newDataSource : Item)

<<interface>>
Editor

<<interface>>
PropertySetChangeListener

itemPropertySetChange(in event : PropertySetChangeEvent)

<<interface>>
PropertySetChangeNotifier

addListener(in listener : PropertySetChangeListener)
removeListener(in listener : PropertySetChangeListener)

com.vaadin.data.BeanItem

BeanItem(in bean : BT)
BeanItem(in bean : BT, in propertyIds : Collection)
BeanItem(in bean : BT, in propertyIds : [*] String)
getBean():BT

BT

com.vaadin.data.PropertysetItem

Containers and Related Widgets

[152]

Notice that the previous class diagram represents every aspect
of Vaadin seen previously in the same class diagram: event
model and viewer/editor pair.
Also, note that in order to see the big picture, I did not represent
that all interfaces and classes are serializable. Just keep it in
mind for future development.

This wrapping may be done in different ways, but the reference to the enclosed
object is immutable, that is, it cannot be changed after the item instantiation. The
constructor has different available signatures:

• When only the wrapped bean is specified, automatic wrapping occurs
based on reflection. Vaadin will try to find the appropriate bean descriptor
(see http://download.oracle.com/javase/6/docs/api/java/beans/
BeanDescriptor.html for more information) and if not found will default
to listing methods and finding those, which begin with get/set.

• In addition to the wrapped bean, properties to be wrapped can also be
specified as a collection of strings or as a string array.

Reflection and valid properties
In all three cases, Vaadin will wrap a Property only if a valid
getter/setter pair can be found (actually, a property with no
setter is equally valid from a Vaadin point of view, but enforces
the property to be read only). In the first case, this is easy as
the framework will provide only valid ones. For the last two,
extra-care has to be taken in order to synchronize the string
parameter values with real properties.
Remember, reflection, and string mean painful refactoring.

Once wrapped inside BeanItem, we can query for the right Property and set it as a
field data source very easily.

The following window uses a Person instance and wraps it inside BeanItem, ready
to be used in our application:

import java.util.Date;

import com.vaadin.data.util.BeanItem;
import com.vaadin.ui.Label;
import com.vaadin.ui.TextField;
import com.vaadin.ui.Window;

Chapter 6

[153]

public class PersonWindow extends Window {

 private TextField firstName;
 private TextField lastName;
 private TextField birthdate;

 public PersonWindow() {

 Person person = new Person(1L);

 person.setFirstName("John");
 person.setLastName("Doe");
 person.setBirthdate(new Date(0));

 BeanItem<Person> item = new BeanItem<Person>(person);

 Label id = new Label(item.getItemProperty("id"));
 firstName = new TextField("First name",
 item.getItemProperty("firstName"));
 lastName = new TextField("Last name",
 item.getItemProperty("lastName"));
 birthdate = new TextField("Birthdate", new
 DateFormatter(item.getItemProperty("birthdate")));

 addComponent(id);
 addComponent(firstName);
 addComponent(lastName);
 addComponent(birthdate);
 }
}

The following screenshot shows the final result:

Containers and Related Widgets

[154]

Easy commit with forms
Our screen is nice and good, but probably misses a commit and a cancel button, as
shown for the single date field previously.

If we try to do it, we are going to run into some hardship. Which one? Well, in our
previous date example, committing or discarding involved a single field. Now, with
three fields, are we going to commit/discard each field individually? That wouldn't
be very productive; surely, there must be a way to make it easier.

In fact, there is one, in the form of the Form class. We talked about Form when
describing available layouts in Chapter 4. Forms have another nice feature: they can
have an Item as their data source, but they also have both global commit() and
discard() operations that will commit/discard all wrapped item properties globally.

Form's default layout is FormLayout which displays fields on the
same "line" as their respective label but it can have any layout.

Just replace the individual component addition in the previous snippet with the
following code:

Form form = new Form();
form.setItemDataSource(item);
addComponent(form);

We get the following result, without any further configuration:

Chapter 6

[155]

This approach has both pros and cons. Among the advantages, we can list the
following:

• It is both simpler and more concise
• We get a date field input for free, with calendar included
• When there is no setter, Vaadin is smart enough to only display a label
• Labels are given for free

However, field formatting and field ordering defaults may not suit our needs. The
good news is that all these defaults are fully configurable!

Configuring field types
By default, Vaadin creates fields for each of the following types:

Type Field Graphical representation
java.util.Date PopupDateField

boolean CheckBox

Any other type TextField

Nonetheless, it is always possible to override this behavior with a little effort.

Above, we presented the Item interface: it has methods for managing properties, so
it is feasible to remove the one we don't like and add what we prefer. Restoring the
previous date field is just a matter of doing it:

Property property = new MethodProperty<Person>(person, "birthdate");
item.removeItemProperty("birthdate");
item.addItemProperty("birthdate", new DateFormatter(property));

Containers and Related Widgets

[156]

As a word of warning, be aware that adding an already present
property to an item will change nothing, but return false to hint
at this behavior; in this regard, it is very similar to the Collections
API. It is also why we have to remove the property first before
adding a new one under the same key.

Ordering fields
Default field ordering is unspecified, so it has to be configured in most cases.

Ordering fields is as simple as passing the rightly ordered array to the BeanItem
constructor along with the object to wrap. It also has the side effect of allowing
us to remove the fields we don't want to be shown.

In our case, this code orders the fields as in our original person example.

BeanItem<Person> item = new BeanItem<Person>(person, new String[]
{"id", "firstName", "lastName", "birthdate"});

Changing captions
Default captions use the property name and convert it to upper cased spaced text.

If the caption is not desired, Form has a field getter method, getField(Object
propertyId). Changing a caption is just a matter of getting a reference on the right
field and changing its caption property. The following code removes the caption of
the ID and sets the caption for firstName and lastName:

form.getField("id").setCaption(null);
form.getField("firstName").setCaption("First name");
form.getField("lastName").setCaption("Last name");

Updating our code to reflect these changes gives us the following appearance:

Chapter 6

[157]

Overall form configuration
In most cases, Form default display behavior is enough and the remaining
configuration is small potatoes compared to creating all fields from scratch.

In other cases, however, the configuration effort nears the amount of scratch code
required. Think about the single case of dates: in Vaadin, date fields use the JVM
locale for formatting and parsing dates. This may be a desirable default, but some
companies store such preferences elsewhere, requiring us to access and use that
preference. Thus, we would need to access the latter and the formatting to the
desired value.

We could of course manage to configure each date throughout our applications, but
that doesn't sound like a very interesting task to do (not to mention the probability of
oversights). It is fortunate indeed that Vaadin provides the right way to do it, which
works as follows.

In fact, fields provided by forms do not come out of thin air. Forms delegate their
creation to a factory, and Vaadin provides one that, for example, creates pop-up date
fields from Date properties.

com.vaadin.data.Form
getFormFieldFactory():FormFieldFactory
setFormFieldFactory(in fieldFactory : FormFieldFactory)createField(in item : Item,in propertyId : Object,in uiContext : Component):Field

<<interface>>
com.vaadin.ui.FormFieldFactory

com.vaadin.ui. DefaultFieldFactory
createrField(in item : Item, in propertyId : Object,in uiContext : Component):Field
createCaptionByPropertyId(in propertyId : Object): String
createFieldByPropertyType(in type : Class):Field
get():DefaultFieldFactory

*1

We have several options in order to create our own factory:

• Create one from scratch
• Inherit from the default and override the createField() method
• Compose one from encapsulating the default and delegate appropriate calls

to it

As composition is preferable over inheritance and the default factory is a singleton,
we will implement the last solution. It is a two-step process.

Containers and Related Widgets

[158]

First, create a text field class that knows how to display dates as strings and strings
as dates. It reuses the former date formatter;

public class CustomDateField extends TextField {

 @Override
 public void setPropertyDataSource(Property newDataSource) {

 super.setPropertyDataSource(new DateFormatter(newDataSource));
 }
}

Second, create the factory. It creates a custom date field if the property is of the type
Date, otherwise delegate to the default field factory:

public class CustomFieldFactory implements FormFieldFactory {

 private FormFieldFactory delegate = DefaultFieldFactory.get();

 @Override
 public Field createField(Item item, Object propertyId,
 Component uiContext) {

 Class<?> type = item.getItemProperty(propertyId).getType();

 if (Date.class.isAssignableFrom(type)) {

 CustomDateField cdf = new CustomDateField();

 cdf.setCaption(
 DefaultFieldFactory.createCaptionByPropertyId(propertyId));

 return cdf;
 }

 return delegate.createField(item, propertyId, uiContext);
 }
}

Now, setting the custom field factory to the form before setting the data source will
yield the expected result, as shown in the following screenshot:

Chapter 6

[159]

Container
In the previous section, we made the step from displaying a single object to a
structured object. The next step is to learn how to display a list of structured objects,
and that is the realm of Vaadin's Container interface.

Containers bring a completely new dimension to data binding.

addContainerProperty(in propertyId : Object, in type : Class, in defaultValue : Object):boolean
addItem():Object
addItem(in itemId : Object):Item
containsId(in itemId : Object):boolean
getContainerProperty(in itemId : Object, in propertyId : Object):Property
getContainerPropertyIds():Collection
getItem(in itemId : Object):Item
getItemIds():Collection
getType(in propertyId : Object):Class
removeAllItems():boolean
removeContainerProperty(in propertyId : Object):boolean
removeItem(in itemId : Object):boolean
size():int

<<interface>>
com.vaadin.data.Container

The best way to picture a container is to think of a 2D matrix: lines are items and
columns are properties or a SQL table where a single property is a column, items
are rows and the container the table itself.

However, there are some constraints on items put in a container:

• All items in a container must have the same properties, meaning:
 ° Properties must have the same ID
 ° Properties must have the same data type

• Each item must be identified by a unique non-null identifier. Container
enforces no particular condition on this ID, though children classes can. In
essence, the ID is a key to access the corresponding item.

Filtering and sorting
Containers may also have additional capabilities.

Containers and Related Widgets

[160]

Filterable
Filterable containers may display only some of its contained items, based on
declared filters.

<<interface>>
com.vaadin.data.Container

<<interface>>
Filterable

addContainerFilter(in filter : Filter)
removeAllContainerFilters()
removeContainerFilters(in filter : Filter)

Filters can be either added or removed, and they are additive.

Filter

API change
Filters are the single are of incompatibility between Vaadin 6.5
and 6.6. In version 6.5, only filters based on string representations
could be added. Version 6.6 filters are described below: when
migrating, take care of filters.

Filters are based on the Filter interface, which has two simple methods:

1. appliesToProperty(Object propertyId) checks whether this filter applies
to a specific property and returns a boolean accordingly. It's used as a first
step, in order to avoid possible algorithm overheads by the second method.

2. passesFilter(Object itemId, Item item) applies the real filter to the
object and also returns a boolean whether this object passes the filter and
should be displayed.

Chapter 6

[161]

Ordered

<<interface>>
com.vaadin.data.Container

<<interface>>
Ordered

addItemAfter(in previousitemId : Object):Object)
addItemAfter(in previousitemId : Object, in newItemId : Object):Object
firstItemId():Object
isFirstId(in itemId : Object):boolean
isLastId(in itemId : Object):boolean
lastItemId():Object
nextItemId(in itemId : Object):Object
prevItemId(in itemId : Object):Object

addItemAt(in index : int):Object
addItemAt(in index : int, in newItemId : Object):Object
getIdByIndex(in index : int):Object
indexOfId(in itemId : Object):int

<<interface>>
Indexed

getSortableContainerPropertyIds():Collection
sort(in propertyId : [*]Object, in ascending : [*] boolean)

<<interface>>
Sortable

An ordered container lets us:

• Insert an item after an already present item
• Get the first/last present item
• Get the next/previous item given a present item ID

That is it, it stops there. However, it has two more interesting child interfaces.

Containers that are also Indexed let us add items based on an index, as well as get
the index of an object from its ID and vice versa. These features are seldom used; of
much more interest is the Sortable interface.

As its name implies, it allows us to sort the items found in the container. The sort()
method accepts the following two parameters:

1. An array of property IDs. The sort is executed on the first property. If there is
equality, sort continues with the second property, and so on.

2. An array of boolean values that refer to the sort order; true meaning
ascending, false descending.

Note that both arrays must have the same length. Moreover, we have to explicitly
tell which properties are sortable with the getSortableContainerPropertyIds()
method.

Containers and Related Widgets

[162]

Before playing with ordering, we will need some data. We will use the Person class
defined earlier

ID First name Last name Birth date
1 John DOE 01/01/1970
2 Jane doe 01/01/1970
3 jules winnfield 12/21/1948
4 vincent Vega 02/17/1954

If we try to sort combinations on the sample data, here are the results:

Property Ascending Lines order
firstName true 2, 1, 3, 4 ("Jane", "John", "jules", "vincent")
firstName false 4, 3, 1, 2 ("vincent", "jules", "John", "Jane")
lastName true 1, 4, 2, 3 ("DOE", "Vega", "doe", "winnfield")
birthdate true 3, 4, 1, 2

The first and the second sort seem to display the expected result. However, the third
sort seems to be case-sensitive. However, with the fourth sort, it gets right again: sort
is based on underlying the date value, which is desirable.

Item sorter
The fact is, concrete sortable container classes (which we will see later in this chapter,
have patience) delegate sorting to an item sorter.

compare(in itemId1 : Object,in itemId2 : Object) :int
setSortProperties(in container : Sortable, in propertyId : [*] Object, in ascending : [*] boolean)

<<interface>>
com.vaadin.data.util.ItemSorter

com.vaadin.data.util.DefaultItemSorter

compareProperty(in propertyId : Object, in sortDirection : boolean, in item1 : Item, in item2 ; Item):int
DefaultItemSorter()
DefaultItemSorter(in propertyValueComparator : Comparator)

DefaultPropertyValueComparator

Serializable Cloneable Comparator

Chapter 6

[163]

DefaultItemSorter is, guess what, the item sorter that is used if no other is set. In
turn, it uses a DefaultPropertyValueComparator in order to compare each property.
Note that the latter implementation infers compares properties using Comparable.

If properties are not Comparable, Vaadin will throw a
ClassCastException.

Therefore, dates being Comparable are sorted in the right order. Yet, last
names being strings are compared using the compareTo() method which is
case-sensitive manner by default. In order to be case-insensitive, we should
use compareToIgnoreCase().

As an example, we will create a property value comparator that will sort persons by
names, either first or last, with no regard to case:

public class CaseInsensitivePropertyValueComparator
 implements Comparator<Object> {

 private Comparator<Object> delegate = new
 DefaultPropertyValueComparator();

 @Override
 public int compare(Object prop1, Object prop2) {

 if (prop1 instanceof String && prop2 instanceof String) {

 String string1 = (String) prop1;
 String string2 = (String) prop2;

 return string1.compareToIgnoreCase(string2);
 }

 return delegate.compare(prop1, prop2);
 }
}

This new comparator does the same as the default one (in fact, it delegates to it if
compared properties are not strings), but compares strings with the right method.

Then, it is just a matter of passing the comparator as a constructor argument to the
sorter, and then the sorter to the container implementation. Now, the third sort
becomes 1, 2, 4, and 3 ("DOE", "doe", "vega", "winnfield") which is the expected result.

Containers and Related Widgets

[164]

Concrete indexed containers
Though container properties (filterable, sortable, and ordered) are designed so as to
be independent, the vital AbstractBeanContainer implements all three. This suits
our needs just fine nonetheless.

AbstractBeanContainer also introduces two important concepts:

1. Item sorter, that we just talked about above
2. Bean ID resolver. When we described container previously, we saw that an

ID was just a key to a glorified hash map. Now, there must be some way to
get the key: either pass it when adding an item or provide a way to compute
the key from the bean. The latter is the responsibility of the bean ID resolver.

From there, the framework provides two simple implementations, which both use
introspection on items to define what the container properties will be:

• BeanItemContainer which uses the bean itself as the identifier. In order to
do this, it redefines a very simple bean ID resolver IdentityBeanResolver

• BeanContainer which either enforces:
 ° Passing an identifier along with the item to be added with the

addItem() method
 ° Using a bean ID resolver which computes an ID when adding a bean

with the addBean() method

<<interface>>
+Container.Filterable

<<interface>>
+Container.Sortable

<<interface>>
+Indexed

+getItemSorter() :ItemSorter
+setItemSorter(in itemSorter : ItemSorter)
+getBeanIdResolver() :BeanIdResolver
#setBeanIdResolver(in beanIdResolver : BeanIdResolver)

+com.vaadin.data.util.AbstractBeanContainer

<<interface>>
+com.vaadin.data.util.ItemSorter

<<interface>>
+BeanIdResolver

getIdForBean(in bean : B): I

#PropertyBasedBeanIdResolver

+BeanContainer(in type : Class)
+BeanContainer(in type : Class, in collection : Collection)
+addAll(in collection : Collection)
+addBean(in bean : B):BeanItem
+addItem(in ItemId : Object):BeanItem

+com.vaadin.data.util.BeanItemContainer

-IdentityBeanIdResolver B

+BeanContainer(in type : Class)
+addAll(in collection : Collection)
+addBean(in bean : B):BeanItem
+addItem(in itemId : I, in bean : B):BeanItem
+setBeanIdProperty(in propertyId : Object)
+setBeanIdResolver(in beanIdResolver : BeanIdResolver)

+com.vaadin.data.util.BeanContainer
I,B

I,B

1

1

I,B

B

I,B

Chapter 6

[165]

In order not to add even more complexity to the diagram, which
is already dense enough, methods coming from Ordered and
Indexed are not shown. Just remember they exist.

As an example, let's create a bean container for our persons. This container will use
the person's id as the key to the person itself.

The first step consists of creating the bean ID resolver. It is simple enough:

public class PersonIdResolver implements BeanIdResolver<Long, Person>
{

 @Override
 public Long getIdForBean(Person person) {

 return person.getId();
 }
}

Then, we can use our bean container as expected:

BeanContainer<Long, Person> container =
 new BeanContainer<Long, Person>(Person.class);

container.setBeanIdResolver(new PersonIdResolver());

container.addAll(persons);

Person person1 = container.getItem(1L);

This example is trivial, however, how many times will we need an ID resolver that is
not based on an identifier present in the bean? In order to prevent creating a bean ID
resolver each time, Vaadin also provides a bean ID resolver based on a property. The
previous code therefore becomes:

BeanContainer<Long, Person> container =
 new BeanContainer<Long, Person>(Person.class);

container.setBeanIdProperty("id");

container.addAll(persons);

Now, we can forget about our custom bean ID resolver. Note that Vaadin uses the
PropertyBasedBeanIdResolver under the covers.

Hierarchical
Simple tabular data management is addressed by the previous features and
AbstractBeanContainer implementations; hierarchized data management,
however, is not.

Containers and Related Widgets

[166]

Vaadin provides another abstraction to manage it however, with the Hierarchical
interface.

<<interface>>
+com.vaadin.data.Container

+areChildrenAllowed(in itemId : Object):boolean
+getChildren(in itemId : Object):Collection

+hasChildren(in itemId : Object):boolean
+isRoot(in itemId : Object):

+getParent(in itemId : Object):Object

boolean
+rootItemIds():Collection
+setChildrenAllowed(in itemId : Object, in areChildrenAllowed : boolean):boolean
+setParent(in itemId : Object, in newParentId : Object):boolean

<<interface>>
+Container.Hierarchical

It provides some ways to organize data in a tree-like way:

• Get/set leaf status of a node
• Get root status of a node
• Query for root nodes, note that multiple roots are possible
• Get the parent/children of a node
• Set a new parent for a node, thereby moving it around

Containers and the GUI
When we talked about Property earlier, it was a no-brainer to set it as a text field
data source in order to display it.

Container data source
In order to use Container as a widget data source, there are still some details about
it we have to understand:

• First, Container mimics the structure of Property insofar as it encloses both
a Viewer and an Editor interface.

• Second, there is a parallel between AbstractField and AbstractSelect, the
parent class for all widgets able to display a Container.

Chapter 6

[167]

+com.vaadin.ui.AbstractSelect

+select(in itemId : Object)
+unselect(in itemId : Object)
+getItemCaption(in itemId : Object):String
+setItemCaption(in itemId : Object, in caption : String):String
+getItemIcon(in itemId : Object):Resource
+setItemIcon(in itemId : Object, in icon : Resource):String

<<interface>>
+NewItemHandler

+addNewItem(in newItemCaption : String)

+DefaultNewItemHandler

<<interface>>
+com.vaadin.data.Container

+getContainerDataSource():Container
+getContainerDataSource(in newDataSource : Container)

<<interface>>
+Container.Viewer

<<interface>>
+Container.Editor

+com.vaadin.ui.AbstractField

In addition to the previous methods, AbstractSelect also has some properties.
These are summarized in the following table:

Property Type Default value
itemCaptionMode int ITEM_CAPTION_MODE_EXPLICIT_

DEFAULTS_ID

itemCaptionPropertyId Object null

itemIconPropertyId Object null

multiSelect boolean false

newItemHandler NewItemHandler DefaultNewItemHandler

newItemsAllowed boolean false

nullSelectionAllowed boolean true

nullSelectionItemId Object null

Displaying items
Items may be represented both by caption and by icon.

The simplest way to do that is to assign a specific item a caption and/or an icon with
the setItemCaption() and setItemIcon() respectively:

// select is an abstract select
select.addItem(person);
select.setItemCaption(person, person.getFirstName() + " " + person.
getLastName());

Containers and Related Widgets

[168]

However, in this case, we have to add items one by one and lose the ability to
initialize the widget with a container data source which is the whole point.

Abstract select has a mode property that lets us manage it as such. Available values
for this property are:

Constant Computed caption value
ITEM_CAPTION_MODE_EXPLICIT None: we have to set it for each item explicitly,

like in the previous example
ITEM_CAPTION_MODE_ICON_ONLY None: only an icon is shown. Icon must be set

explicitly for each item
ITEM_CAPTION_MODE_ID Item's id toString()
ITEM_CAPTION_MODE_ITEM Item toString()
ITEM_CAPTION_MODE_INDEX Item's index in the container
ITEM_CAPTION_MODE_EXPLICIT_
DEFAULTS_ID

By default Item's id toString(), but individual
items can be set a caption, thus overriding the
default value

ITEM_CAPTION_MODE_PROPERTY An item property is used, which is specified with
setItemCaptionPropertyId()

Note that setting the caption item by item or using a general strategy is mutually
exclusive, save in the case of ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID, which is
the default. Also, be aware that:

• The defined strategy will take precedence over manually set caption
• The framework won't say anything about it if we try to set it anyway

As an example, let's display our persons. We would like to show both the first and
the last name, and nothing really suits our needs: item IDs have a whole different
purpose and redefining toString() seems a bad option. However, we could surely
create a computed property from scratch as follows:

public String getDisplayName() {
 return firstName + " " + lastName;
}

Then, using this property is just a matter of configuring the abstract select:
select.setItemCaptionMode(AbstractSelect.ITEM_CAPTION_MODE_PROPERTY);
select.setItemCaptionPropertyId("displayName");

From a design point of view, it would have been cleaner to
create a view object but for clarity's sake, it is simpler this way.

Chapter 6

[169]

Handling new items
New items may be added to the abstract select. The exact behavior is delegated to
a NewItemHandler. The default one just checks whether the select is read-only and
throws a Property.ReadOnlyException in this case.

Typical use-cases of new item handlers include:

• Inserting the new item as a row in the data tier (read database)
• Tracing the identity of the connected user and so on

Null items
Use-cases may allow (or not) selecting null values. Such configuration can easily be
done through the nullSelectionAllowed() method.

null values cannot be added to containers as such, but AbstractSelect can have
items that contain null value. Just create a specific item ID (or object depending on
the bean item container implementation) and call setNullSelectionItemId() with
it as a parameter.

Now querying the value of the widget when the dummy is selected will return null
and not the real object.

Container widgets
Beyond AbstractSelect, there are some concrete widgets that all may display a
container in the GUI.

Depending on the properties described earlier and the type of implementation, we
can get virtually any result we need.

+com.vaadin.ui.AbstractSelect

+com.vaadin.ui.ListSelect
+getRows():int
+setRows(in rows : int)

+com.vaadin.ui.NativeSelect
+setMultiSelect(in multiSelect : boolean)
+setNewItemsAllowed(in allowNewOptions : boolean)

+com.vaadin.ui.OptionGroup
+isItemEnabled(in itemId : Object):boolean
+set (in)ItemEnabled itemId : Object, in enabled : boolean

+com.vaadin.ui.Select
+getFilteringMode():int
+set (in : int)FilteringMode filteringMode

+com.vaadin.ui.TwinColSelect
+getRows():int

LeftColumnCaption
+getRightColumnCaption():String
+setRows(in rows : int)
+setLeftColumnCaption(in caption : String)
+setRightColumnCaption(in caption : String)

+get ():String

Containers and Related Widgets

[170]

Note that all subclasses of AbstractSelect have the following constructors:

• A constructor with no parameters that comes in handy when we have no
idea of the content at the instantiation time.

• A constructor with a String parameter. It is the same as the previous
constructor, only with a caption.

• A constructor with both String and Container parameters. The String
references the widget's caption and the Container the items to be displayed
in the widget.

Moreover, widgets in this section (but excluding tables and trees) have a fourth
constructor that accepts both a caption and a Collection parameter.

Since a picture is worth a thousand words, here are samples of different
configurations of the preceding widget, all set a person's bean item container
as a data source:

Code Representation
ListSelect select = new
ListSelect();

NativeSelect select = new
NativeSelect();

OptionGroup select = new
OptionGroup ();

OptionGroup select = new
OptionGroup ();
Select.setMultiSelect(true);

Chapter 6

[171]

Code Representation
Select select = new Select();

Select select = new Select();
select.
setNullSelectionAllowed(false);

TwinColSelect select = new
TwinColSelect();

Notice that in the previous snippets, configuring the same widget in different ways
gets us a different graphical representation.

For a practical example, consider we want the user to select a single person. Space
requirement constrains us to use the smallest space possible. Moreover, there maybe
many persons available: it would be a good idea to let the user type some characters
in order to filter out choices. In this case, our widget of choice is Select, as it does
not use much space and lets us filter options:

public class SelectPersonWindow extends Window {

 public SelectPersonWindow() {

 Select select = new Select();

 select.setImmediate(true);

 select.setNullSelectionAllowed(false);

 select.setItemCaptionPropertyId("firstName");

 Person person = new Person();

 BeanItemContainer<Person> bic = new
 BeanItemContainer<Person>(Person.class, ...
 person collection...);

 select.setContainerDataSource(bic);

 addComponent(select);

 select.addListener(new ValueChangeListener() {

Containers and Related Widgets

[172]

 public void valueChange(ValueChangeEvent event) {

 Person selected = (Person) ((Select)
 event.getProperty()).getValue();

 getWindow().showNotification(selected.getId() +
 " (" + selected.getFirstName() + ")");
 }
 });
 }
}

Three points are important in the previous code:

• setBeanIdProperty("id") lets us use the id property of the person item
as its ID. We could have used any other property, but it is the only one that
guarantees uniqueness, as per the contract.

• We use the computed displayName property in order to display a user-
friendly value to the user. If the probability to have duplicates were higher,
then we should also have included unique data such as the ID.

• In Select, filtering is enabled by default in the "starts with" pattern. There is
nothing more to code to make it work.

• Last but not least, getting the select's value returns the item itself! This means
that getting the selected value is a breeze.

Value type
The return type in the signature of the getValue() method
is Object. We can easily cast it to the item type, in our
example Person. Be aware however, that when multi
selection is enabled, the returned value is a set of all selected
item IDs. When multi selection can be enabled or disabled
take extra-care when casting the return value.

Chapter 6

[173]

Tables
Tables merit their own section as they display multiple columns, something the
widgets in the previous section are not meant to handle.

Besides specific event-listener pairs, tables add important features to a simple select:

• Computed columns, that is, columns not found in the underlying container.
Does the display name property ring any bells?

• Configurable columns, in order to display exactly what we want; it includes
displaying date values with the right format but also using checkboxes for
boolean values, and so on

• Drag-and-drop; tables are both eligible source and target
• A viewpoint to a very high number of items

Consistence of table hierarchy
In essence, tables are abstract selects, of sorts. This means
that they add methods and behaviors of their own, but
some defined in their parent class have no meaning: for
example, for Table instances, the itemCaptionMode
property makes no sense.

Table structure
The first thing to understand for Vaadin tables is how they are structured.

Prop.1 header Prop.2 header Prop.n header Gen. col.1 header
item1.row header item1.property1 item1.property2 item1.propertyn item1.gencol1

Item2.row header item2.property1 item2.property2 item2.propertyn Item2.gencol1

Itemn.row header Itemn.property1 itemn.property2 itemn.propertyn Itemn.gencol1

Prop.1 footer Prop.2 footer Prop.n footer Gen. col.1 footer

Columns
Each column of a table is referenced by a property ID. Those IDs are either explicitly
set, but in most cases, it is the property's name of the bean item type stored in the
underlying container. For our Person type, they are firstName, lastName, and
so on.

Containers and Related Widgets

[174]

Column properties can either be set or get:

• Globally, the method expects an array of the right types as parameter
• Column by column, parameters are respectively the property ID and the

right type

For example, should we want to set column headers in one line, we could do
the following:

table.setColumnHeaders(new String[] {"First Name", "Last Name", "Birth
date", "ID", "Display name"});

Alternatively, the same result could be achieved with the following:

table.setColumnHeader("firstName", "First Name");
table.setColumnHeader("lastName", "Last Name");
table.setColumnHeader("birthdate", "Birth date");
table.setColumnHeader("id", "ID");
table.setColumnHeader("displayName", "Display name");

Global column properties are summed up in the following table:

Property Type Default value
columnAlignments String[]

columnHeaders String[]

columnIcons Resource[]

The following table recaps single column "properties":

Property Type Default value
columnAlignment String ALIGN_LEFT

columnCollapse boolean

columnExpandRatio float

columnFooter String null

columnHeader String

columnIcon Resource null

columnWidth int -1

Most are self-describing, however, a little explanation on how table width works in
Vaadin would be in order.

Chapter 6

[175]

As the web terminal is the sole terminal available, it boils down to how the
framework integrates with HTML: when the column width is set to -1, no width is
set in it and thus, it bases its real width on both CSS and available space in the page.
If not, it uses the width set.

Collapsing
Vaadin allows us to hide some columns at first, but provides us with the means to
display them later. This is known as collapsing column. First, we have to call setCol
umnCollapsingAllowed(true) in order to enable the feature.

Then, individual columns may be collapsed with the setColumnCollapse() method.
This code collapses unnecessary columns:

table.setColumnCollapsed("firstName", true);

In the previous screenshot, see how Vaadin displays a selector to choose columns to
be shown.

Table width and collapsing
Beware that collapsed columns are not used when
computing total table width. It is advised to explicitly set the
table's width in order to ensure un-collapsed columns will
get enough place to be put in view.

Header and footer
Headers and footers are structuring elements of tables.

The former code snippet showed us how to set headers explicitly, even if most of the
time, the strategy used for creating headers (which is the same as the one for creating
captions, see the section Changing captions in this chapter) from item properties is
good enough.

Containers and Related Widgets

[176]

Like captions, we can change the strategy used with the setColumnHeaderMode()
and these constants:

Constant Computed row header value
COLUMN_HEADER_MODE_HIDDEN No column header is shown
COLUMN_HEADER_MODE_EXPLICIT None: we have to set it for each column explicitly
COLUMN_HEADER_MODE_EXPLICIT_
DEFAULTS_ID

Default: spaced uppercased property is used,
but individual columns can be set a header, thus
overriding the computed value

COLUMN_HEADER_MODE_ID Spaced uppercased property

Footers however must be set independently as they are empty by default. Moreover,
we have to call setFooterVisible(true) to display the entire footer bar as it is
hidden otherwise.

Row header column
The row header column is a special column hidden by default. Think of it as a
summary of the row item, made comprehensible for mere humans. In fact, it works
exactly the same as the caption mode of AbstractSelect only the method is
setRowHeaderMode() and the constants are the following:

Constant Computed row header value
ROW_HEADER_MODE_HIDDEN Default value: no header column is shown
ROW_HEADER_MODE_EXPLICIT None: we have to set it for each item explicitly
ROW_HEADER_MODE_ICON_ONLY None: only an icon is shown. Icon must be set

explicitly for each item
ROW_HEADER_MODE_ID Item's ID toString()
ROW_HEADER_MODE_ITEM Item toString()
ROW_HEADER_MODE_INDEX Item's index in the container
ROW_HEADER_MODE_EXPLICIT_
DEFAULTS_ID

By default item's ID toString(), but individual
items can be set a header, thus overriding the default
value

ROW_HEADER_MODE_PROPERTY An item property is used, which is specified with
setItemCaptionPropertyId()

In our Person table, we could use the display name property as the row header:

table.setRowHeaderMode(Table.ROW_HEADER_MODE_PROPERTY);
table.setItemCaptionPropertyId("displayName");

Chapter 6

[177]

Ordering and reordering
By default, column ordering is incomprehensible to say the least. In all cases, it is
better to explicitly set column ordering with the setVisibleColumns(String[]
visibleColumns) method which takes an array of item properties as an argument.

By default, users cannot change column ordering. By calling setColumnReordering
Allowed(true), this behavior can be enabled. Note that both of these changes do not
affect the row header column.

For our example, the following order suits our need just fine. Notice that the
displayName property is not used (but is as the row header in a previous snippet):

table.setVisibleColumns(new String[] {"id", "firstName", "lastName",
"birthdate"});

Formatting properties and generated columns
Formatting table properties can be achieved through three different means:

1. Using a property formatter (see section Property formatter in this chapter). It is
particularly unwieldy since it would require wrapping the to-be-formatted-
property of each item individually.

2. Overriding the protected formatPropertyValue(Object itemId, Object
propertyId, Property property) method.
For example, let's format the birth date value in our Person table as follows:
@Override
protected String formatPropertyValue(Object itemId,
 Object propId,
 Property property) {

 Object value = property.getValue();

 if (value instanceof Date) {

 Date date = (Date) value;

 return new SimpleDateFormat("MM/dd/yyyy").format(date);
 }

 return super.formatPropertyValue(itemId, propId, property);
}

Containers and Related Widgets

[178]

Alternatively, we could have checked on the property's ID.
Our choice is better since if other date attributes are added to
the JavaBean, they will benefit from the formatting.

3. Finally, creating a generated column that overrides the wanted property's
name is a definite possibility. Generated columns offer something
more though.

In abstract selects, we had to explicitly create the display name computed
property on Person. It was bad design but alternatives were either complex
or unsatisfying.
Table offers a feature that AbstractSelect does not: computed columns.
These columns are the answer to the previous quandary and implement it in
a clean way. In order to achieve this, Vaadin introduces the ColumnGenera-
tor interface.

+com.vaadin.ui.Table

<<interface>>
+ColumnGenerator

+addGeneratedColumn(in propertyId : Object, in generator : ColumnGenerator)

+generateCell(in source : Table, in itemId : Object, in columnId : Object):Component

Once implemented, it can be added to the table under a property id.
Let's remove the display name property on the Person and create it
as a generated column.
public class DisplayNameColumn implements ColumnGenerator {

 @Override
 public Component generateCell(Table source, Object itemId,
 Object columnId) {

 Item item = source.getItem(itemId);

 String firstName = (String)
 item.getItemProperty("firstName").getValue();
 String lastName = (String)
 item.getItemProperty("lastName").getValue();

 return new Label(firstName + " " + lastName);
 }
}

Chapter 6

[179]

Now, it's just a matter of using the generated column:
table.addGeneratedColumn("displayName", new
 DisplayNameColumn());
table.setColumnHeader("displayName", "Display name");
table.setVisibleColumns(new String[] { "id", "displayName",
 "birthdate" });

Notice that generated columns cannot be sorted (see below)
as there is no underlying property the container may be
aware of.

Sorting
By default, Vaadin tables are sortable: users can choose a column to sort from, by
clicking on the column header.

Note that sorting is executed on the underlying property
value, and not on its string representation.

User sorting
In order to prevent the user sorting, there are two solutions:

1. Calling the setSortDisabled(true) method
2. Hiding column headers with setColumnHeaderMode(COLUMN_HEADER_MODE_

HIDDEN) seen previously

Programmatic sorting
Alternatively, developers can use sorting on the server side, based on the two
properties: the property's ID and an indicator on whether the sort is ascending
(which is the default).

For example, the following snippet sorts the table from the last name, descending:

table.setSortContainerPropertyId("lastName");
table.setSortAscending(false);

This approach has a strong limitation; it can only be used for sorting on a single
column. In order to overcome this, remember that Container.Sortable provides
the sort(Object[] propertyId, boolean[] ascending) method. Thus, the
following snippet is equivalent to the former:

table.sort(new String[] {"lastName"}, new boolean[] {false});

Containers and Related Widgets

[180]

Viewpoint
Tables can be set a container with a very high number of items and still be efficient
since not all are displayed to the user. In order to achieve this, tables use the concept
of viewpoint when the number of items is greater than the number of rows shown.

First, we can set the number of visible rows with the setPageLength(int
pageLength) method, which is 15 by default. Notice that in combination to row
height, it sets the default table height. If set to zero, the table will adjust its height
to display all the items in the container: be sure that it is the desired behavior, since
it can have a great impact on both performance and ease of use. Also, setting the
page length to zero means that the table will adhere to the setHeight() contact;
otherwise it won't. This is important when trying to fit the table in a specific place,
for example, when setSizeFull() must scale the table accordingly.

Additionally, we can programmatically scroll to the first item in the list, either by
item's ID or by index. This is done with the methods setCurrentPageFirstItemI
d(Object currentPageFirstItemId) and setCurrentPageFirstItemIndex(int
newIndex) respectively.

Viewpoint change event
Table does not come with an event model around scrolling visible items. Out-of-
the-box, the framework displays the range of visible items when the user scrolls
at the top of the table, just below the column headers. If we need to be informed
about scrolling, we would have to override the protected refreshRenderedCells()
method, in order to implement the desired behavior (and still call the parent method,
of course).

Improving responsiveness
Scrolling the viewpoint in order to show different items will make the table fetch
newly visible items from the underlying container. As such, there would be a
noticeable waiting time for the user if not for a nifty feature of the framework.

Indeed, the table fetches more items than need to be displayed and caches the
superfluous items in-memory. The number of such items is pageLength times the
value of a property named cacheRate, above and below the table. Therefore, if users
complain about response time, increasing the cache rate could be a good idea.

Of course, if the user scrolls too fast, it won't do anything. In most cases, however, it
just increases the responsiveness with no side effect.

Editing
Until now, we have learned how to configure data to display the way we want and
that is no mean feat. Nonetheless, displaying is one thing but editing is another.

Chapter 6

[181]

In Vaadin, making a table editable is as simple as calling setEditable(true) on it.
Behold the result: in just one line, we have a fully editable table.

The following two things are worth noticing:

1. Editable fields are specifically tailored to the property type and in exactly
the same way as for single fields (see section Configuring field types in this
chapter).

2. Properties with no setter such as the computed display name property are
still shown as simple read-only labels and not as a field.

In fact, like forms, tables delegate field generation to a factory: a TableFieldFactory
interface and DefaultFieldFactory also implements it, as presented in the
following diagram:

<<interface>>
+com.vaadin.ui.TableFieldFactory

+createField(in container : , in itemId : Object, in propertyId : Object, in uiContext : Component):FieldContainer

<<interface>>
+com.vaadin.ui.FormFieldFactory

+com.vaadin.ui.DefaultFieldFactory

+createField(in container : Container, in itemId : Object, in uiContext : Component):FieldpropertyId : Object, in
+createField(in item : Item, in propertyId : Object, in uiContext : Component):Field
+createCaptionByPropertyId(in propertyId : Object):string
+createFieldByPropertyType(in type : Class):Field
+get():DefaultFieldFactory

+com.vaadin.ui.Table

1

Configuring our editable table is just a matter of creating the right table field factory.
If we want not to display calendars but old-fashioned fields for dates, then it is just a
matter of creating the implementation:

public class CustomTableFieldFactory implements TableFieldFactory {

 private TableFieldFactory delegate = DefaultFieldFactory.get();

 @Override
 public Field createField(Container container, Object itemId,
 Object propertyId, Component uiContext) {

Containers and Related Widgets

[182]

 Class<?> type = container.getType(propertyId);

 if (Date.class.isAssignableFrom(type)) {

 return new CustomDateField();
 }

 return delegate.createField(container, itemId,
 propertyId, uiContext);
 }
}

Notice that it is very similar to our previous custom form field factory. Well, it is
even simpler since column header is not handled (and should not be).

Selection
On the client side, items in standard tables are just a bunch of characters put one next
to another.

Just calling the setSelectable(true) on the table will make each row appear as a
single object to the user and selectable as such.

By default, only a single row can be selected at a time. In order to select multiple
rows, we need to invoke setMultipleSelect(true) on the table. When multiple
selections is enabled, users can select a range of rows with the SHIFT key and
individual rows can be added or removed from the selection with the CTRL key.

Drag-and-drop
Tables are a good entry point into Vaadin's drag-and-drop capabilities.

The framework uses the following abstractions in order to accomplish
drag-and-drop:

• Transferable represents the data transferred
• DragSource stands for the source component
• DropTarget denotes the target component

Chapter 6

[183]

Transferable
Transferable wraps the data to be dragged and dropped between components.

<<interface>>
+com.vaadin.event.Transferable

+getData(in dataFlavor : String):Object
+setData(in dataFlavor : String, in value : Object)
+getDataFlavors():Collection
+getSourceComponent():Component

+com.vaadin.event.TransferableImpl

+com.vaadin.event.DataBoundTransferable

+getItemId():Object
+getPropertyId():Object

+com.vaadin.ui.Table

+TableTransferable

+java.io.Serializable

TransferableImpl is just a straightforward implementation of Transferable. As
Transferable may apply to a great number of differently structured data, it is built
around a hash map.

Keys are called data flavors and vary depending on the concrete type of
transferable. We can query for all data flavors of a particular transferable with
the getDataFlavors() method. Then, DataBoundTransferable is a specialized
transferable designed for containers.

Finally, at the table level, drag sources are cells, so TableTransferable is an
implementation that you can get both the cell's item ID and its property ID from.

Drag source
DragSource knows how to create a transferable object. Concrete classes shall
implement the single method getTransferable(Map<String, Object>
rawVariables) that return a Transferable instance to do just that.

Containers and Related Widgets

[184]

Drop target
Drop target model design is somewhat more complex than the drag source. Some
classes need to collaborate to provide the wanted behavior.

<<interface>>
+com.vaadin.event.dd.DropHandler

+drop(in event : DragAndDropEvent)
+getAcceptCriterion():AcceptCriterion

<<interface>>
+com.vaadin.event.dd.acceptcriteria .AcceptCriterion

+accept(in dragEvent : DragAndDropEvent):boolean
+isClientSideVerifiable():boolean

+com.vaadin.event.dd.DragAndDropEvent

+DragAndDropEvent(in transferable : Transferable, in dropTargetDetails : Targetdetails)
+getTargetDetails():TargetDetails
+getTransferable():Transferable

<<interface>>
+com.vaadin.event.dd.TargetDetails

+getData(in key : String):Object
+getTarget():DropTarget

<<interface>>
+com.vaadin.event.dd.DropTarget

+getDropHandler():DropHandler
+translate (in clientVariables : Map):TargetDetailsDropTargetDetails

1

1

+Transferable

• At the heart of the model lies DragAndDropEvent, which is not a real
event per se (it does not inherit from EventObject) but is still sent by the
framework. It encapsulates both a transferable and a TargetDetails
instance.

• TargetDetails in turn wraps the drop target, as well as all information
contained in the aforementioned transferable. Concrete target details classes
are provided throughout Vaadin by components, including tables (and trees).

• DropTarget represents the target of the drag-and-drop operation. It
delegates the drop itself to a DropHandler.

• DropHandler is the class responsible for managing what really happens
in the drop through the drop() method. However, in order to improve
performance, drop handlers have to detail under what conditions the
drop is valid.

• AcceptCriterion wraps possibly many criteria in order to determine
whether to drop the transferable on the target or to abort the operation.

Chapter 6

[185]

Accept criterion
Accept criterion can be rescinded into two main groups: criteria that can work solely
on the client side and criteria that need server-side validation.

<<interface>>
+AcceptCriterion

+accept(in dragEvent : DragAndDropEvent):boolen
+isClientSideVerifiable():boolean

+ServerSideCriterion

+ClientSideCriterion
+AcceptAll

+get():SourceIsTarget

+SourceIs
+SourceIs(in components : [*] Component)

+SourceIsTarget
+get() : AcceptCriterion

+ContainsDataFlavor
+ContainsDataFlavor(in dataFlavor) : String)

+TargetDetailsIs
+TargetDetailsIs(in dataFlavor): String, in value : String

+Or

+Or(in criteria : [*] ClientSideCriterion)

+Not

+Not(in acceptCriterion : ClientSideCriterion)

+And

+And(in criteria : [*] ClientSideCriterion)

In order to ease the understanding of the diagram, package was not
represented. It is com.vaadin.event.dd.acceptcriteria.

From this point, the different types of criteria are fairly self-explanatory.

Table drag-and-drop
Table is a component which is drag-and-drop ready, having implementations on all
previous interfaces, save DropHandler, which is application-specific anyway.

In order to enable dragging from the table, we just have to call
setDragMode(TableDragMode dragMode) with the right value: either ROW or
MULTIROW. It is NONE by default, meaning the drag is disabled. Note that in
order for multirow to work, table must be set as selectable and multi select.

Now, in order to enable dropping to a table, we just have to create a new
DropHandler and set it on the table.

Containers and Related Widgets

[186]

The following example duplicates the dragged person in the table:

table.setDragMode(ROW);

table.setDropHandler(new DropHandler() {

 public void drop(DragAndDropEvent event) {

 TableTransferable transferable = (TableTransferable) event
 .getTransferable();

 Object itemId = transferable.getItemId();

 BeanItem<Person> item = (BeanItem) table.getItem(itemId);

 Person originalPerson = item.getBean();

 Collection<?> itemIds = table.getItemIds();

 Long maxId = getMax(itemIds) + 1;

 Person newPerson = new Person(maxId);

 newPerson.setFirstName(originalPerson.getFirstName());
 newPerson.setLastName(originalPerson.getLastName());
 newPerson.setBirthdate(originalPerson.getBirthdate());

 table.addItem(newPerson);

 table.requestRepaint();
 }

 private long getMax(Collection<?> itemIds) {

 long max = 0;

 for (Object itemId : itemIds) {

 BeanItem<Person> item = (BeanItem) table.getItem(itemId);

 Person person = item.getBean();

 max = Math.max(max, person.getId());
 }

 return max;
 }

 public AcceptCriterion getAcceptCriterion() {

 return SourceIsTarget.get();
 }
});

Chapter 6

[187]

Some noteworthy facts are as follows:

• We set the drag mode to row, in order for the table to be a drag source
• We created a drop handler and set it on the table, so as to make the latter a

drag source too
• Finally, the accept criterion constrains the drop source, so that it can only be

the table itself

Trees
Trees are another widget that has the capability to use a container data source,
whereas tables are meant to display items of flat containers, trees are meant to do the
same for hierarchical ones (see the section named Hierarchical for a small reminder in
this chapter).

From a UI point of view, trees are about nodes and parent-child relationships
between them.

+com.vaadin.ui.AbstractSelect <<interface>>
+Container.Hierarchical

+com.vaadin.ui.Tree

+collapseItem(in itemId : Object): boolean
+collapseItemRecursively(in itemId : Object):boolean
+expandItem(in itemId : Object):boolean
+expandItemRecursively(in itemId : Object):boolean
+hasChildren(in itemId : Object):boolean
+isExpanded(in itemId : Object):boolean
+isRoot(in itemId : Object):boolean
+rootItemIds():Collection
+setChildrenAllowed(in itemId : Object, in areChildrenAllowed : boolean):boolean
+setParent(in itemId : Object, in newParentId : Object)

The Tree class is much simpler than Table as there are no columns: only nodes are
displayed, albeit in a hierarchical fashion.

Collapse and expand
A feature of Tree is its ability to let us either collapse a node (hide its children) or
expand it (show its children) programmatically.

Containers and Related Widgets

[188]

Two method flavors are available:

1. One that just acts upon the node and its direct children
2. The other proceeds recursively from the node parameter

One can also query for expanded status of a particular node with the
isExpanded(Object itemId) method.

Parent and child
As trees are all about parent and child nodes, Vaadin provides the following
methods in order to manage relationships:

• With the rootItemIds() method, we can get the root item IDs
• For a particular item, isRoot() returns the root status and

hasChildren(Object itemId) whether it has children (that would be pretty
self-explanatory)

Then, leaf status of a node can be set with the help of the setChildrenAllowed()
method.

Finally, one can change the entire node structure by using setParent(). For
example, the following snippet simply rearranges the second and the fourth items
respectively under the first and third items for a 4-items tree:

Tree tree = new Tree("", container);

Iterator<?> iterator = tree.getVisibleItemIds().iterator();

tree.setParent(iterator.next(), iterator.next());
tree.setParent(iterator.next(), iterator.next());

Item labels
Labels are handled the same way for trees as for selects, meaning we should use the
same solutions as seen in the section Displaying items, earlier in this chapter.

Refining Twaattin
Finally, we are ready to connect Twaattin to the Twitter API. For that, we will use
Twitter4j, available at http://twitter4j.org/. Twitter4j is open source, free,
and well designed so it just fits our needs. As this book is not about it, detailed
information can be found on the website.

Chapter 6

[189]

Requisites
In order to use Twitter for authentication, the first thing to do is to register a client
application using the following form: https://dev.twitter.com/apps/new. This
will get us a consumer key and a consumer secret that will have to be passed to
Twitter4j, then to Twitter to prove who we are.

Adaptations
The biggest adaptation to our application is that since the Twitter API uses OAuth
for authentication, we don't need to log in in Twaattin but in Twitter.

OAuth is an open protocol that delegates authentication to
so-called OAuth providers. More information is available at
http://oauth.net/.

When authenticated, the latter will return us a PIN that will be used to verify our
credentials in later calls.

Thus, the login window will have to be changed in order to provide a link to
Twitter's authentication window and a PIN field.

Sources
Here are the new Twaattin sources.

The login window
package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.ui.Window.Notification.TYPE_ERROR_MESSAGE;
import twitter4j.TwitterException;
import twitter4j.User;

import com.packtpub.learnvaadin.twaattin.TwaattinApp;
import com.packtpub.learnvaadin.twaattin.service.TwitterService;
import com.vaadin.terminal.ClassResource;
import com.vaadin.terminal.ExternalResource;
import com.vaadin.ui.Button;
import com.vaadin.ui.Embedded;
import com.vaadin.ui.Link;
import com.vaadin.ui.TextField;
import com.vaadin.ui.VerticalLayout;

Containers and Related Widgets

[190]

import com.vaadin.ui.Window;
import com.vaadin.ui.Button.ClickEvent;

public class LoginWindow extends Window {

 private static final long serialVersionUID = 1L;

 private TextField pinField;
 private Button submitButton;
 private Link link;

 public LoginWindow() {

 VerticalLayout layout = new VerticalLayout();

 layout.setMargin(true);

 setContent(layout);

 link = new Link();

 link.setCaption("1. Get PIN");

 link.setTargetName("twitter");

 addComponent(link);

 pinField = new TextField("2. Enter PIN");

 addComponent(pinField);

 submitButton = new Button("3. Submit");

 submitButton.addListener(ClickEvent.class, this, "authenticate");

 addComponent(submitButton);
 }

 public void initialize() {

 TwitterService twitterService = ((TwaattinApp) getApplication()).
 getTwitterService();

 try {

 String authUrl = twitterService.getAuthenticationUrl();

 link.setResource(new ExternalResource(authUrl));

 } catch (TwitterException e) {

 e.printStackTrace();

 showNotification("Initialization error: " + e.getMessage(),
 TYPE_ERROR_MESSAGE);
 }
 }

Chapter 6

[191]

 public void authenticate(ClickEvent event) {

 TwitterService twitterService = ((TwaattinApp)
 getApplication()).getTwitterService();

 try {

 User user = twitterService.authenticate((String)
 pinField.getValue());

 getApplication().setUser(user);

 pinField.setValue("");

 } catch (TwitterException e) {

 e.printStackTrace();

 showNotification("Authentication error: " + e.getMessage(),
 TYPE_ERROR_MESSAGE);
 }
 }
}

Noteworthy parts are as follows:

• The declaration of a Link object: Links render as HTML links to a wrapped
Resource. In our case, it is wrapped around Twitter's authentication
page URL.

• The target's name property for Link lets us create a new pop-up window.
When not specified, the URL is opened in the current window.

• The creation of the initialize() method. It is a common mistake found in
beginners Vaadin code: remember that the ExternalResource constructor
takes the application as a parameter. It is possible for a window to query
its application, but it will return null if it has not been set as the main
window. Thus, it is impossible to initialize the resource in the constructor;
it has to be delayed until the window has been set.

• Finally, we use a stateful Twitter service to use the Twitter4j API for us. The
former is a facade over the latter that allows us to conveniently ignore the
API itself.

The Twaattin application
package com.packtpub.learnvaadin.twaattin;

import com.packtpub.learnvaadin.twaattin.service.TwitterService;
import com.packtpub.learnvaadin.twaattin.ui.LoginWindow;
import com.packtpub.learnvaadin.twaattin.ui.TimelineWindow;

Containers and Related Widgets

[192]

import com.vaadin.Application;
import com.vaadin.Application.UserChangeListener;

public class TwaattinApp extends Application implements
UserChangeListener {

 private static final long serialVersionUID = 1L;

 private LoginWindow loginWindow;
 private TimelineWindow timelineWindow;
 private transient TwitterService twitterService;

 @Override
 public void init() {

 loginWindow = new LoginWindow();

 timelineWindow = new TimelineWindow();

 setMainWindow(loginWindow);

 loginWindow.initialize();

 addListener(this);

 addListener(timelineWindow);
 }

 public void applicationUserChanged(UserChangeEvent event) {

 if (event.getNewUser() == null) {

 setMainWindow(loginWindow);

 loginWindow.initialize();

 removeWindow(timelineWindow);

 loginWindow.showNotification("You're logged out");

 } else if (event.getNewUser() != null) {

 setMainWindow(timelineWindow);

 removeWindow(loginWindow);

 timelineWindow.showNotification("You're authentified");
 }
 }

 public TwitterService getTwitterService() {

 if (twitterService == null) {

 twitterService = new TwitterService();
 }

 return twitterService;
 }
}

The application class is changed in order to first create the login window, and then
initialize it, as said previously.

Chapter 6

[193]

The timeline window
package com.packtpub.learnvaadin.twaattin.ui;

import java.util.Iterator;

import twitter4j.ResponseList;
import twitter4j.Status;
import twitter4j.TwitterException;
import twitter4j.User;

import com.packtpub.learnvaadin.twaattin.TwaattinApp;
import com.packtpub.learnvaadin.twaattin.service.TwitterService;
import com.vaadin.Application.UserChangeEvent;
import com.vaadin.Application.UserChangeListener;
import com.vaadin.data.util.BeanContainer;
import com.vaadin.ui.Button;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.Table;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;
import com.vaadin.ui.Button.ClickEvent;

public class TimelineWindow extends Window implements
 UserChangeListener {

 private static final long serialVersionUID = 1L;
 private Label user;
 private BeanContainer<Long, Status> container;

 public TimelineWindow() {

 VerticalLayout mainLayout = new VerticalLayout();

 mainLayout.setSpacing(true);
 mainLayout.setMargin(true);

 setContent(mainLayout);

 HorizontalLayout menuBar = new HorizontalLayout();

 menuBar.setSpacing(true);

 addComponent(menuBar);

 user = new Label();

 menuBar.addComponent(user);

 Button logout = new Button("Logout");

Containers and Related Widgets

[194]

 logout.addListener(ClickEvent.class, this, "logout");

 menuBar.addComponent(logout);

 Button timelineButton = new Button("Timeline");

 timelineButton.addListener(ClickEvent.class, this, "fill");

 addComponent(timelineButton);

 container = new BeanContainer<Long, Status>(Status.class);

 container.setBeanIdResolver(new BeanIdResolver<Long, Status>() {

 public Long getIdForBean(Status status) {

 return status.getId();
 }
 });

 Table table = new Table("", container);

 addComponent(table);

 customizeTable(table);
 }

 public void logout() {

 getApplication().setUser(null);
 }

 public void fill() {

 TwitterService twitterService = ((TwaattinApp)
 getApplication())
 .getTwitterService();

 container.removeAllItems();

 try {

 ResponseList<Status> statuses =
 twitterService.getTimeline();

 Iterator<Status> iterator = statuses.iterator();

 while (iterator.hasNext()) {

 Status status = iterator.next();

 container.addBean(status);
 }

 } catch (TwitterException e) {

 throw new RuntimeException(e);
 }

Chapter 6

[195]

 }

 public void applicationUserChanged(UserChangeEvent event) {

 User newUser = (User) event.getNewUser();

 if (newUser != null) {

 user.setValue(newUser.getScreenName());
 }
 }

 private void customizeTable(Table table) {

 table.addGeneratedColumn("when", new WhenColumnGenerator());
 table.addGeneratedColumn("user", new NameColumnGenerator());

 table.setVisibleColumns(new String[] { "user", "text", "when" });
 }
}

The three important pieces of code that take place in the new timeline window are
as follows:

1. The first noticeable lines use a bean container and the status ID property as
its key with the help of a custom bean resolver. Using the status ID for the
status goes a long way towards making our life easier for manipulating the
items in the container. Alternatively, we also could have used container.
setBeanIdProperty("id") instead of a bean resolver and then added items
with the status key (not beans) to our container. It is cleaner this way though.

2. Second, as what we get is a response list, we have to add each item in the
container manually and specify the item's ID.

3. Finally, we define which columns are meant to be shown, as well as assign
column generators to two of them in order to tweak the display. Beware that
adding a column generator under a new label must take place before using
the aforementioned label or Vaadin will loudly complain.

The name column generator
package com.packtpub.learnvaadin.twaattin.ui;

import twitter4j.Status;
import twitter4j.User;

import com.vaadin.data.util.BeanItem;
import com.vaadin.ui.Component;
import com.vaadin.ui.Label;
import com.vaadin.ui.Table;

Containers and Related Widgets

[196]

import com.vaadin.ui.Table.ColumnGenerator;

class NameColumnGenerator implements ColumnGenerator {

 public Component generateCell(Table source, Object itemId,
 Object columnId) {

 BeanItem<Status> item = (BeanItem<Status>)
 source.getItem(itemId);

 Status status = (Status) item.getBean();

 Label label = new Label();

 User user = status.isRetweet() ? status.getRetweetedStatus().
 getUser() : status.getUser();

 label.setValue(user.getScreenName());

 return label;
 }
}

We need a name column generator as the getUser() method of the Status object
returns a structured User object and not an easily displayed String. Moreover, this
lets us choose to display the original message sender over the retweeter when the
former is indeed a retweet.

At present, Table's setVisibleColumns() only accept
properties of the container's bean type such as job for a Person
but not subproperties, such as job.label. Watch out for this
feature in the future, or even better, implement it yourself! Until
that point, use column generators.

The date column generator
package com.packtpub.learnvaadin.twaattin.ui;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Calendar;

import twitter4j.Status;

import com.vaadin.data.util.BeanItem;
import com.vaadin.ui.Component;
import com.vaadin.ui.Label;
import com.vaadin.ui.Table;
import com.vaadin.ui.Table.ColumnGenerator;

Chapter 6

[197]

class WhenColumnGenerator implements ColumnGenerator {

 public Component generateCell(Table source, Object itemId,
 Object columnId) {

 Label label = new Label();

 BeanItem<Status> item = (BeanItem<Status>)
 source.getItem(itemId);

 Status status = item.getBean();

 Calendar oneDayAgo = Calendar.getInstance();

 oneDayAgo.add(Calendar.DAY_OF_MONTH, -1);

 Calendar tweetTime = Calendar.getInstance();

 tweetTime.setTime(status.getCreatedAt());

 String value;

 if (tweetTime.after(oneDayAgo)) {

 value = getLabel(tweetTime, Calendar.HOUR_OF_DAY, "hour");

 if (value == null) {

 value = getLabel(tweetTime, Calendar.MINUTE, "minute");
 }

 if (value == null) {

 value = "right now";
 }

 } else {

 DateFormat format = new SimpleDateFormat("d MMM yy");

 value = format.format(tweetTime.getTime());
 }

 label.setValue(value);

 return label;
 }

 private String getLabel(Calendar then, int field, String label) {

 Calendar now = Calendar.getInstance();

 int diff = 0;

 while (then.before(now)) {

 now.add(field, -1);

 diff++;
 }

 switch (diff) {

Containers and Related Widgets

[198]

 case 0: return null;
 case 1: return diff + " " + label + " ago";
 default: return diff + " " + label + "s ago";
 }
 }
}

Column generators are not limited to trivial display: In this case, we show the tweet's
date only if it is older than one day ago. Otherwise, we compute the time from now
and display it in either hours or minutes. Finally, the timeline window looks similar
to the one shown in the following screenshot:

Summary
In this chapter, we have learned two great parts of many Vaadin applications.

The first part described the three levels of data wrapping in Vaadin:

1. Property: It represents a simple object such as a String or a Date.
Properties can be tweaked in order to display the encapsulated data
the way we really want.

2. Item: It wraps around a single structured object. We used our Person class to
show how it could be encapsulated in Item, and finally displayed in a form.
Forms are a nice façade over a single item, whether in a read-only or read-
write mode.

Chapter 6

[199]

3. Container: It is the final level and lets us wrap around a collection of items.
Containers may have additional properties such as filterable, sortable, and
hierarchical, each one bringing features to the container.

Then, we saw two important widgets that are able to be set container data sources:
tables and trees. Where trees are hierarchical containers, tables can be filterable and
sortable at the same time. As tables are such important widgets of many applications,
Vaadin provides many configuration features around them and we spent some time
looking at those capabilities:

• Column features such as collapsing, ordering, and headers and footers
• Sorting, both from a user point of view and a developer point of view
• Table viewpoint
• Selection and editing of tables
• Finally, the drag-and-drop feature was a good entry point into the more

general drag-and-drop model in Vaadin

At this point, we have seen all the basics of the framework. You should now be
able to create simple applications from scratch. The next chapter is about advanced
features of the framework, both out-of-the-box and third party.

Advanced Features
In this chapter, we will go beyond simple features to tackle what will make our
applications well thought out and professional.

The first section of this chapter will be devoted to features provided out-of-the-box
by the framework that we have not seen until now. These include:

• Accessing request and response objects from Vaadin
• Bookmarking windows state
• Embedding Vaadin applications in third-party applications
• Default error handling and how to override it
• Application lifecycle

As the Vaadin team wants to keep the framework as cohesive as possible, some very
interesting capabilities are not integrated into the core, but are available as add-ons.

In the second section, we will describe the Vaadin add-ons portal then detail some
add-ons that bring new features or just make our life easier. Those will be:

• Embedding Vaadin applications in third-party sites
• SQL container to connect our tables to, so as to directly display tables

to Vaadin
• Push capabilities!

Advanced Features

[202]

Core features
Core features are capabilities provided by the Vaadin JAR.

Accessing with the request-response model
In some cases, we will want to get a handle on the underlying request-response
model. This could be motivated by the following needs:

• Access some web application context where the entry-point is the
request, including:

 ° The servlet context in order to integrate with some third-party
framework: Spring comes to mind but other frameworks also store
information in this context.

 ° The session context, to get data stored there by a legacy part of
the application.

• Managing cookies, either to read or write them, for example to pass
cookie-based authentication reverse-proxies

The possibilities are virtually endless! The problem is that in the previous chapters,
no method signature provided a handle to either our good old HttpServletRequest
or HttpServletResponse.

Do not send redirect!
Never ever send redirects response streams outside the current
Vaadin application (even to another Vaadin application in the same
web application). The client part is waiting for some server sent
information and will complain rather loudly if it does not get them.
If you really need to escape the application, then use the
open(ExternalResource) method of the Window class.

The brute force approach
The first approach is to get a reference on the Vaadin application object from outside
the framework and then communicate with it, for example setting it objects.

This is done with the help of a simple utility class. This class is
WebApplicationContext.

Chapter 7

[203]

Application contexts store individual applications and information about them.
For web applications, the web application context stores the context under the user
session. The most important thing is that we can get the application context with the
static getApplicationContext(HttpSession session) method.

Notice the plural about applications. Even if it is a very rare
occurrence, we might need to serve to different subcontexts with
one single Vaadin servlet for each: they will all be grouped under
the same WebApplicationContext and that is stored in the user's
HTTP session.

+com.vaadin.service.AbstractWebApplicationContext

+getApplications() : Collection
+getBaseDirectory() : File
+getBrowser() : WebBrowser
+valueBound(in event : HttpSessionBindingEvent)
+valueUnbound(in event : HttpSessionBindingEvent)
#removeApplication(in application : Application)

+com.vaadin.service.WebApplicationContext

#addApplication(in application : Application)
+getApplicationContext(in session : HttpSession) : WebApplicationContext

<<interface>>
+com.vaadin.service.ApplicationContext

+getApplications():Collection
+getBaseDirectory():File

+HttpSessionBindingListener +EventListener

As an example, we could make use of a servlet filter to get a handle on the
application itself.

public void doFilter(ServletRequest req, ServletResponse resp,
 FilterChain chain) throws IOException, ServletException {

 HttpServletRequest request = (HttpServletRequest) req;

 WebApplicationContext ctx =
WebApplicationContext.getApplicationContext(request.getSession(true));

Advanced Features

[204]

 Collection<Application> apps = ctx.getApplications();

 Application app = null;

 if (!apps.isEmpty()) {

 Application app = apps.iterator().next();

 // Set a cookie here
 }

 chain.doFilter(req, resp);

 if (app == null) {

 // Read a cookie there
 }
}

The integrated approach
The previous approach works well but put the responsibility of the integration
outside the Vaadin application, meaning external components have to know the
internals of Vaadin, which is not particularly desirable.

In order to provide a solution, Vaadin comes up with the
HttpServletRequestListener interface.

<<interface>>
+com.vaadin.terminal.gwt.server.HttpServletRequestListener

+onRequestStart(in request : HttpServletRequest, in response : HttpServletResponse)
+onRequestEnd(in request : HttpServletRequest, in response : HttpServletResponse)

+javax.servlet.http.HttpServletRequest +javax.servlet.http.HttpServletResponse

When implemented by an application, Vaadin will call onRequestStart(
HttpServletRequest request, HttpServletResponse response) and
onRequestEnd(HttpServletRequest request, HttpServletResponse response)
respectively at the start and end of each request-response sequence.

Vaadin will call the methods only when implemented by an
application. This will have no effect whatsoever when implemented
by components, windows or anything else.

Chapter 7

[205]

The previous code could advantageously be replaced with the following snippet:

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.HttpServletRequestListener;
import com.vaadin.ui.Window;

public class MyApplication extends Application implements
 HttpServletRequestListener {

 @Override
 public void init() {

 setMainWindow(new Window());
 }

 @Override
 public void onRequestStart(HttpServletRequest request,
 HttpServletResponse response) {

 // Set cookie here
 }

 @Override
 public void onRequestEnd(HttpServletRequest request,
 HttpServletResponse response) {

 // Read cookie there
 }
}

Other use-cases such as making the application accessible to unrelated
classes are possible: in this case, the use of the ThreadLocal pattern
is advised, as discussed at the following URL:
https://vaadin.com/wiki/-/wiki/Main/ThreadLocal%20
Pattern.

Bookmarks
We discussed in Chapter 1 about Vaadin's approach opposite to traditional page
flow paradigm and how it is a good thing since applications are about windows
and not pages.

Advanced Features

[206]

However, this single URL thing is precisely what prevents us from bookmarking
individual pages. We have seen in Chapter 4 that windows can be set a name that
translates to a subcontext in the URL bar but this subcontext property only captures
a specific window, completely disregarding its exact state.

In some cases, however, this is highly desirable. Consider for example the
following use-cases:

• A large bookstore application offers many features dispatched in different
screens. A single screen displays details about the book, and the publisher
really wants customers to bookmark a precise book. In fact, any such
catalogue application would probably have the same requirements.

• In the same vein, a forum application could probably host many different
subjects. It would be a real asset to this application to let users bookmark a
specific subject or even a particular thread.

URL fragment
HTML provides a nice feature in the form of the URL fragment. Quoting the W3C:

Some URIs refer to a location within a resource. This kind of URI ends with "#"
followed by an anchor identifier (called the fragment identifier).

Refer the following URL for more details:
http://www.w3.org/TR/html401/intro/intro.
html#h-2.1.2

Therefore, this enables us to stay in the same "page", and yet reference different
states, that can be read or written on the server side. Be aware that it is up to the
application developer to bridge between the string fragment and the whole state.
Taking our previous use-cases as examples, the fragment can be the book's, forum's,
or thread's ID. Let's do this with Vaadin!

URI fragment utility
First, we have to understand that Vaadin widgets may have a graphical representation
but it is not mandatory. The non-graphical part is just as important as it adds the
behavioral code.

Chapter 7

[207]

In Vaadin, URI fragments are managed in the form of the UriFragmentUtility
component.

+com.vaadin.ui.AbstractComponent

+Component.Event

1

+Com.vaadin.ui.UriFragmentUtility

+addListener(in listener : FragmentChangedListener)
+removeListener(in listener : FragmentChangedListener)
+getFragment():String
+setFragment(in newFragment : String, in fireEvent : boolean)
+setFragment(in newFragment : String)

+FragmentChangedEvent

+getUriFragmentUtility():UriFragmentUtility

<<interface>>
+FragmentChangedListener

+FragmentChanged(in source : FragmentChangedEvent)

The widget comes bundled with a whole event-listener model wrapped around
changing fragments.

The following code displays the fragment to the user when it is changed on the
address bar:

import com.vaadin.Application;
import com.vaadin.ui.Label;
import com.vaadin.ui.UriFragmentUtility;
import com.vaadin.ui.UriFragmentUtility.FragmentChangedEvent;
import com.vaadin.ui.UriFragmentUtility.FragmentChangedListener;
import com.vaadin.ui.Window;

public class FragmentApplication extends Application {

 private UriFragmentUtility ufu = new UriFragmentUtility();

 private Label label = new Label();

 @Override
 public void init() {

 Window window = new Window();

 ufu.addListener(new FragmentChangedListener() {

Advanced Features

[208]

 @Override
 public void fragmentChanged(FragmentChangedEvent source) {

 label.setValue(ufu.getFragment());
 }
 });

 window.addComponent(ufu);
 window.addComponent(label);

 setMainWindow(window);
 }
}

This will provide us with the following display:

Of course, more realistic examples could load the corresponding
entity. Using the entity's ID directly is good enough for catalogue
applications. Depending on the required level of security, it may
be a bad idea to expose it: in this case, symmetric encoding may
be the solution.

Note that there is no point to add more than one URI fragment utility to a single
window as they will all share the same fragment (their state).

Embedding Vaadin
In our previous examples, the whole application was a Vaadin-based web
application. This may not be desirable for a variety of reasons:

• Legacy applications may have to be upgraded one part at a time, thus having
one part managed by the old application and the other part by the Vaadin
framework.

Chapter 7

[209]

• Even though Vaadin-based applications can easily be integrated with other
frameworks, some may be unsuitable for such integration, thus creating the
need for embedding either the Vaadin or the other application.

• Finally, we may need to display more than one Vaadin application at the
same time in the same page.

In addition, sometimes there is a need to use the Vaadin application as a small part of
a larger, static web page. Sometimes, the static content is better made with something
else than Vaadin. That is why it is great that it is so easy to embed Vaadin.

Basic embedding
At the simplest level, Vaadin can be embedded using a simple HTML iframe. In
this case, the embedding page and the iframe Vaadin servlet have to come from the
same domain.

More information on iframes can be found at the following URL:
http://www.w3.org/TR/html4/present/frames.html#h-16.5

In this case, we need a dedicated servlet mapping in the web application deployment
descriptor to serve Vaadin and use it as the iframe src's attribute. The servlet
mapping would look something akin to the following:

<servlet-mapping>
 <servlet-name>VaadinServlet</servlet-name>
 <url-pattern>/vaadin/*</url-pattern>
</servlet-mapping>

On the HTML page, the iframe is referenced as follows:

<iframe src="/vaadin/">[Cannot display Vaadin]</iframe>

This technique is very easy to use and requires no specific knowledge at all.
Nonetheless, using iframes brings some disadvantages, including:

• Making the bookmarking feature discussed earlier impossible
• Increasing complexity of page-iframe communications
• Decreasing accessibility of pages as screen readers have two different

structures to analyze

Advanced Features

[210]

Nominal embedding
The next embedding approach uses Vaadin directly in a div on the desired page,
without the need for further artifacts. However, whereas Vaadin took care of loading
the client-side engine when used in non-embedded mode, this method requires us
to go into the detail of doing it ourselves.

The following is the whole HTML page, each following section details a part:

<html>
<head>
<!-- Configuration -->
<script type="text/javascript">
 var vaadin = {
 vaadinConfigurations : {
 twaattin : {
 appUri : '/<CONTEXT_ROOT>/<SERVLET_MAPPING>',
 versionInfo : {
 vaadinVersion : "<VERSION>",
 applicationVersion : "NONVERSIONED"
 }
 }
 }
 };
</script>
<!-- End configuration -->
<!-- Loading -->
<script type="text/javascript"
 src='/<CONTEXT_ROOT> /VAADIN/widgetsets/com.vaadin.terminal.gwt.
DefaultWidgetSet/com.vaadin.terminal.gwt.DefaultWidgetSet.nocache.
js'></script>
<!-- End loading -->
<!-- Stylesheet -->
<link rel="stylesheet" type="text/css"
 href="/<CONTEXT_ROOT>/VAADIN/themes/<THEME_NAME>/styles.css">
<!—End stylesheet -->
</head>
<body>
 <!-- Here will be shown the Vaadin app -->
 <div id="<APP_NAME>" class="v-app"></div>
</body>
</html>

Chapter 7

[211]

Configuration
The first step is to configure the framework, so that the loader can do its job. This is
done through JavaScript with JSON structure. It has to be included in a script tag in
the HTML page's head.

Replace the following values, as shown above, with your real values:

• APP_NAME is the application's name in Vaadin internal repository. Different
Vaadin applications can be used in the same page using different entries.

• CONTEXT_ROOT is the web application's context root since Vaadin uses links
relative to the server root. When possible, it is better to use either scriptlets or
JSTL to read it dynamically and not to hard-code it.

• SERVLET_MAPPING is the mapping of the application mapping (as more than
one is possible).

• THEME_NAME is the desired theme's name. If unsure, just use "reindeer", which
is the default.

• VERSION is the framework's version. Just look at the version of the JAR.

Loading
Loading the client-side engine is just a matter of writing the second script (after the
configuration): Aside from the context root, everything else is static.

Style sheet
As Vaadin does not serve the whole page, a link has to be manually added to
reference the correct CSS.

Div
Finally, in the HTML page, we must insert a div element that has exactly the
same id attribute as the aforementioned APP_NAME in the preceding section
named Configuration.

There might be a slight difference in appearance about a full
Vaadin application. If we want the same output, then we should
set the "v-app" value to the class attribute of the div.

The final way of embedding Vaadin applications is to use an application deployed
on another server altogether. It is not as simple as it seems because browser
security models tend to view AJAX requests made across third-party domains
as security breaches.

Advanced Features

[212]

As complying with security rules and still providing the feature is not trivial, this
is proposed as a third-party capability under the form of an add-on (see section
Cross-site embedding in this chapter for more details).

Custom error handling
Until now, two different error types are apparent in Vaadin.

• Caught exceptions: these are managed in the way the developer wants. Most
of the time, they are printed as a stack in the System.err and the user is
displayed an error notification, with more or less detail.

• Uncaught exceptions: such exceptions are uncaught, either because they
are runtime exceptions that are left to propagate upwards, or because
they are outside the developers reach. In those cases, it falls to the
ApplicationServlet to handle it.

• The component at the cause of the exception is decorated with a little error
icon and when the user hovers over it, a pop up displaying the stack trace
is shown.

This behavior exposes the user to the inner intricacies of the technology that is not
something desirable most of the time. The section Error listener example in this chapter
proposes an alternative.

Design
The main elements in the error handling chains are the following:

• The upper component in the exception handling chain, the one tasked to
manage the behavior, is the servlet like in most other web applications.

• The next item in the chain is the application instance itself, which contains
an error listener.

Chapter 7

[213]

• The real magic is done in the Application which inherits from
ErrorListener and an application is its own listener if another is not set.
By default, the application-listener does some interesting things:

 ° Locate the component at the root of the exception-causing event
 ° Set the object in error, that is displaying the icon and the stack trace

in a hover pop up
 ° Finally, log the stack in the System.err

The following diagram shows the collaborating classes in the default exception
handling mechanism:

+com.vaadin.Application <<interface>>
+com.vaadin.terminal.ErrorEvent

<<interface>>
+Terminal.ErrorEvent

+com.vaadin.ui.AbstractComponent

+getComponentError():ErrorMessage
+setComponentError(in componentError : ErrorMessage)

<<interface>>
+com.vaadin.terminal.ErrorMessage

SYSTEMERROR : int=5000
CRITICAL : int=4000
ERROR : int=3000
WARNING : int=2000
INFORMATION : int=1000

+getErrorLevel():int

<<interface>>
+ErrorListener

+terminalError(in event : ErrorEvent)

+com.vaadin.ui.Paintable

Another look at the system can be from a dynamic point of view.

Note that on one hand, the terminalError() method takes an ErrorEvent
as a single parameter, which is only a simple Vaadin wrapper around a
Throwable instance.

Advanced Features

[214]

On the other hand, the setComponentError() takes an ErrorMessage. An error
message is a Paintable, which means it can be displayed on the client side.

c : AbstractComponent s : ApplicationServlet

Exception

findApplicationInstance()

app

handleServiceException(app)

getErrorHandler()

handler

terminalError(msg)

setComponentError(error)

a : Application

Error messages
Different flavors of error messages are available out-of-the-box in Vaadin. The most
important of those are:

• User errors that represent errors provoked by the user. They are expected
during the course of the application, and are intended as a guide to the user.

• System errors, on the other hand, are unexpected errors. It inherits from
RuntimeException in order to convey contextual information about these
abnormal conditions.

Chapter 7

[215]

Another group of error messages is formed by messages that are internal to Vaadin
behavior and components. Most of the time, we won't have to interact with them,
and in that case, it is enough to know the ErrorMessage API.

Finally, the CompositeErrorMessage class allows us to encapsulate one or more
error messages should the need arise.

+java.lang.RuntimeException

+Buffered.SourceException

+getCauses():Throwable[*] +SystemError +CompositeErrorMessage

+iterator():Iterator

+UserError

+Validator.InvalidValueException

+getCauses() : InvalidValueException[*]

+ErrorMessage

Error listener example
Suppose the default behavior does not suit us: the error should be displayed in a
more visible manner and the user should not be shown the stack.

As a trivial example, window tray notifications seen in Chapter 4 could do the trick.
Let's create such a listener.

Application
The following initialization code creates a simple application with a button that
provokes an exception:

public void init() {

 Window mainWindow = new Window("Error Listener example");

 Button button = new Button("Create an exception");

 button.addListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 Exception first = new Exception();

Advanced Features

[216]

 IllegalArgumentException second = new
 IllegalArgumentException(first);

 RuntimeException third = new RuntimeException(second);

 throw third;
 }
 });

 mainWindow.addComponent(button);

 setMainWindow(mainWindow);
}

Clicking on the button logs the exception stack in the error log and shows an
exclamation mark icon right next to the text on the button.

The listener
The next code just does what is expected; displays a tray notification for
each exception.

public class TrayNotificationListener implements ErrorListener {

 private Application application;

 public TrayNotificationListener(Application application) {

 this.application = application;
 }

 @Override
 public void terminalError(ErrorEvent event) {

 Window window = application.getWindows().iterator().next();

 DateFormat format = DateFormat.getTimeInstance();

 String msg = format.format(new Date()) + ":
 an unexpected error occured";

 window.showNotification(msg, TYPE_TRAY_NOTIFICATION);

 Throwable e = event.getThrowable();

 // Logs Throwable with the desired API
 }
}

Note that the listener constructor has to be passed the reference to the application
since the ErrorEvent parameter cannot access it.

We just have to instantiate a listener object and set it as the error handler in the
application init() method as follows:

 setErrorHandler(new TrayNotificationListener(this));

Chapter 7

[217]

Lifecycles
In Chapter 3, we saw about the application's init() method and how we could not
only build the GUI, but also initialize resources. However, Vaadin's objects lifecycle
is much richer than that.

Application lifecycle
Regarding the application, there is a counterpart to the initialization phase, the
closing phase implemented by the close() method. By default, the following
actions take place in this method:

• The application stops returning windows
• Vaadin's servlet removes the application from the user session
• From there, two things can happen:

 ° By default, the user is redirected to the root of the application, thus
starting the application initialization again.

 ° Alternatively, we can set an URL through the application's
setLogoutURL() method and we will be redirected to it.
Note that Vaadin uses the sendRedirect() method from the
HttpServletResponse and as such, the set URL can be either
relative to the context root or absolute.

Even the name might be slightly misleading; most of the time
closing the application will be done when the user logs out.

Avoid serving Vaadin from the context root
Mapping Vaadin at the context root will cause every closing
action to restart the whole start sequence again, including
creating a new application and storing it in the user session.
That is why it is advised to create a simple welcome page
and serve Vaadin from the context root rather than from a
subcontext.

Advanced Features

[218]

Third-party additional features
Vaadin's design is made around a restricted core of features. In order not to bloat this
core, additional capabilities are added by third-party modules.

Therefore, beside the preceding elements, there are many more available or that
can be developed. In conclusion, it is not because Vaadin does not offer a required
feature that it is the end of the road.

Vaadin add-ons
In Vaadin, third-party modules are called add-ons. Some are supplied by Vaadin
Ltd, but the most part is by others (either individuals or companies).

Add-ons directory
Vaadin provides an add-on store available online at http://vaadin.com/directory.
Anyone, including you, can publish on this directory.

Add-ons search
The store provides categorization in order to search for certain specific features.
Those categorizations are available in different flavors.

Results obtained using the following criteria, either alone or in conjunction, can then
be sorted. Sorting is possible by release date, number of downloads and grade.

Typology
Available categories are:

• UI components: these add-ons have graphical representations that are
displayed to users when added to a window.

• Data components: this category groups add-ons containers that can connect
to data tiers, such as SQL databases. These connectors provide a way to
manage data (direct SQL, JPA, Hibernate, and so on).

• Themes: theme add-ons offer a quick route to change an application look
and feel.

• Miscellaneous: add-ons that are no part of another category are put in there.

Chapter 7

[219]

Stability
Add-ons are classified into different stability levels:

• Certified add-ons are provided by Vaadin Ltd, the company behind the
framework, and as such guarantee the best level of reliability and integration.
Third-party add-ons can also be certified by the company, against a set fee.

• Stable add-ons have been subject to at least one whole release lifecycle. They
can usually be trusted to function in an expected way.

• Beta add-ons are just that. It is advised not to use them in a production
environment because they do not guarantee to be completely bug-free.

• Experimental add-ons should not be used: they are here just to give you a
preview of what is to come. If interested, you should probably contact the
publisher to help!

Add-ons presentation
Add-on presentation is handled by the directory and thus highly standardized.
Each add-on has two views: a summarized view, displayed in search results,
and a detailed view.

Summarized view
Displayed information in the summarized view includes:

• Name
• Category
• Provider
• A short description
• Version
• Maturity
• Grade, rated from 1 to 5
• Number of downloads

Advanced Features

[220]

Detailed view
Clicking on the add-on's name opens the detailed view. In addition to the previous
information, it displays:

• The version: it is selectable so we can see the data related to
previous versions

• The license information
• A table of browsers' compatibility (including versions)
• A detailed description
• One or more pop-up windows providing either code example or screenshot
• The release notes for the current version
• A download link
• The Maven snippet to include in the POM
• A list of links; commons links include (but are not limited to):

 ° Demo application
 ° Source Control Manager repository
 ° Afferent documentation
 ° Discussion forum
 ° Issue tracker

• A "like it" bar, for sharing the add-on on a variety of social networks
• Finally, the page's permalink

Chapter 7

[221]

These are depicted in the following screenshot:

Advanced Features

[222]

Noteworthy add-ons
At the date of the writing of this book, the Vaadin directory contains 51 add-ons,
stable or certified on a total of 198 (at the time of writing). It is well beyond the scope
of this book to see them all in detail. However, a few are worth describing, as they
really set Vaadin on another level.

Cross-site embedding
Earlier we looked at different ways to embed Vaadin applications. Those are
provided out-of-the-box, but there is another method provided by the Vaadin XS
plugin, available at http://vaadin.com/directory#addon/vaadin-xs.

Stability risk
Note that at the moment of the writing of this book, the XS add-on is
only available in beta because of some possible incompatibilities with
third-party libraries and/or JavaScript. Things may change quickly
depending on its popularity, which may uncover those mismatches
(and the solutions).

Use-case
Vaadin XS provides a different way of application embedding from the previous
ones. Both former methods are intended to be used in the same context or at least
in the same domain.

Vaadin XS enables us to reuse applications cross-domain. Suppose we have designed
a nice application available online at http://packtpub.com. We want to embed this
application in our site http://frankel.ch by reusing the available instance instead
of deploying another one.

Tweaks
Vaadin XS provides three differences to the standard Vaadin behavior:

• First, whereas in standard mode Vaadin creates and stores an application
instance per user session, Vaadin XS does it per authorized external domain.

• Second, as domains access the Vaadin application using GET, payloads
would easily be accessible in logs or simple HTTP listeners. In order to
prevent this, Vaadin XS encrypts the payload using 128-bits based Advanced
Encryption Standard (AES).

• Finally, the communication "method" is changed from XmlHttpRequest
to JSON with Padding (or JSONP). For an overview of JSONP, see
http://en.wikipedia.org/wiki/JSONP.

Chapter 7

[223]

Installation
Like any other add-on, in order to use it, just add the right dependency snippet in
your Maven POM or drop the JAR in the WEB-INF/lib of your application.

In the latter case however, don't forget to also drop the commons-codec
JAR along, as the add-on has a dependency on it (if using Maven, it
does it for you).

Compilation
The following steps will have to be carried out in order for the add-on to function.
The Eclipse plugin will take care of them; if not using it, you will have to execute
them manually which goes well beyond the scope of this book. See GWT's
documentation at the following URL:

http://code.google.com/webtoolkit/gettingstarted.html#compile

Note that some add-ons do not have a client-side component: those
don't need compilation.

• Creation of a widget set XML file in the source folder. If generated by the
plugin, the name of the file and its content are dependent on the dropped
JAR itself. The extension should be gwt.xml. For the XS add-on, it should
include the following line:
<inherits name="com.vaadin.addons.xs.gwt.XSWidgetSet" />

• Compilation of the Java GWT code into JavaScript in order for the GWT
framework to be able to use it. The Vaadin Eclipse plugin will take care of
that for us: a warning will appear. Click on Yes and wait for the compilation
to finish, as shown in the following screenshot:

Advanced Features

[224]

Shortening widgetset compilation time
During development, we can drastically shorten the widgetset
compilation time by compiling only for the browser used. Go to the
gwt.xml widgetset file and follow instructions in the comment.

Compiled files are located in the web content under the VAADIN/widgetsets
folder.

Note that this compilation step has to be executed each time a new
different JAR is embarking Vaadin add-ons that have a client-side
presence (not necessarily a graphical representation).

• Last but not least, the web deployment descriptor has to be updated:
 ° The Vaadin servlet should point to the com.vaadin.addons.

xs.server.XSApplicationServlet. Note that is not necessary
for all add-ons: most are usable as-is with Vaadin's default
ApplicationServlet.

 ° The widgetset init-param should reference the previous widget set
XML file.

<servlet>
 <servlet-name>EmbeddedVaadinApplication</servlet-name>
 <servlet-class>
 com.vaadin.addons.xs.server.XSApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 com.packtpub.learnvaadin.EmbeddedApplication
 </param-value>
 </init-param>
 <init-param>
 <param-name>widgetset</param-name>
 <param-value>
com.packtpub.learnvaadin.widgetset.EmbeddedvaadinexampleWidgetset
 </param-value>
 </init-param>
</servlet>

Chapter 7

[225]

Use
Having done all the previous steps, using the application from another domain is just
a matter of creating a div in the calling page with the exact subcontext getEmbedJs.

This would look like the following code:

<div>
 <script src="path/to/Vaadin/app/getEmbedJs"
 type="text/javascript">
 </script>
</div>

Add-on configuration
By default, all external domains are allowed to reference our application. Nonetheless,
it seldom should be the case, as we probably don't want any domain to access it, but
only our own.

This is done through the allowedReferrers init parameter of the Vaadin XS servlet
in the web deployment descriptor. Different domains are separated by carriage
returns, like so:

<init-param>
 <param-name>allowedReferrers</param-name>
 <param-value>http://portal.packtpub.com/
 http://packtpub.com/</param-value>
 </init-param>

SQL adapter
In Chapter 6, when we looked into the table widget, we left how to fill the container
with data aside. Were we in a standard layered architecture, we would explicitly
call the service layer in order to call the persistence layer which would itself query
the database.

If our needs are just to manage CRUD operations, this is simply overkill. In order to
manage these, the add-ons directory provides many database-oriented containers.
Those are able to directly connect to a database using an API depending on the kind
of add-on.

Facts
At present, we will have a look at the SQLContainer add-on, which lets us directly
connect to a SQL database and present the data in a tabular manner. It is available
at http://vaadin.com/directory#addon/vaadin-sqlcontainer.

Advanced Features

[226]

SQLContainer is provided by Vaadin Limited, is released under the friendly
Apache 2.0 license, and is tagged as stable. Considering the general high quality
of the framework in general, the add-on can be taken as an optional feature, not a
separate module.

The latest version available at the time of the writing of this book is 1.0.0 and
provides compatibility with HSQLDB, MySQL, Microsoft SQL Server, and Oracle.

Architecture
The Vaadin SQLContainer add-on is built around the SQLContainer class, which
has all the nice properties we expect from a container: it is indexed, sortable,
and filterable.

<<interface>>
+Container

+Filterable +Indexed +Sortable

+com.vaadin.addon.sqlcontainer.SQLContainer

+SQLContainer(in delegate : QueryDelegate)
+addFilter(in filter : Filter)
+addOrderBy(in orderBy : OrderBy)
+commit()
+getPageLength() : int
+isAutoCommit()
+refresh()
+rollback()
+setAutoCommit(in autoCommitEnabled : boolean)
+setDebugMode(in debugMode : boolean)
+setFilteringMode(in filteringMode : FilteringMode)
+setPageLength(in pageLength : int)

*

1

+Item

+com.vaadin.addon.sqlcontainer.RowItem

<<interface>>
+com.vaadin.addon.sqlcontainer.QueryDelegate

FILTERING_MODE_INCLUSIVE
FILTERING_MODE_EXCLUSIVE

<<enumeration>>
FilteringMode

12...

+com.vaadin.addon.sqlcontainer.OrderBy

+getColumn():String
+isAscending():boolean
+setAscending(in ascending : boolean)
+setColumn(in column : String)

Items in the container are specialized instances, namely RowItem. This type is
encapsulated and not to be manipulated directly by the developer, even though
it is part of the API (it has public visibility).

Chapter 7

[227]

Features
Features of SQL container include:

• Transaction management: Changes made to the container can be either
committed or rollbacked to the data tier. Alternatively, we can set each
operation to the container to be autocommited. Note that the default
behavior doesn't use autocommit.

• Programmatic filtering: Uses Vaadin's filter API already seen in section
Filter of Chapter 6.

• Programmatic ordering: An OrderBy instance is as simple as a column name
and whether it is ascending or descending.

• Initialization: The container can be initialized with data from the underlying
data tier with the refresh() method.

• Paging: The container uses a page length attribute in order to optimize
performance. Like in tables (see section Viewpoint in Chapter 6), SQL
containers use a page length, as well as a cache ratio. Unlike table, cache ratio
is set to 2 and cannot be changed, at least not without serious hacking. This
means that requests made through the query delegate (see below) limit the
number of occurrences to 2 times the page length.

Query delegate
SQL container's responsibilities are those of a container. Real interaction with the
database is delegated to an instance of QueryDelegate, which in turn delegates
connection management to an instance of JDBCConnectionPool.

JDBC connection pool can either wrap a direct connection to the
database, driver manager style or a data source retrieved from the
application server, depending on the type of the concrete class. Note
that in the former case, the class creates a pseudo-shareable. For more
information on driver manager, visit the following URL:
http://download.oracle.com/javase/6/docs/api/java/
sql/DriverManager.html

For more information on data source, visit the following URL:
http://download.oracle.com/javase/6/docs/api/javax/
sql/DataSource.html

Advanced Features

[228]

Query delegates come in two flavors:

• For simple table display, just use a TableQuery, passing the table's name and
the JDBC connection pool to use. The delegate will retrieve all occurrences
from the database. The only thing left to do is to customize the appearance of
the table as was done in Chapter 6.

• Alternatively, when we need to go beyond only getting all occurrences from
a single table, we can use FreeformQuery. It allows us pass the query, as well
as the JDBC connection pool, and all primary key columns.

Note that without the last parameter, only SELECT orders can be executed, thus
rendering the wrapping table read-only.
In both cases, programmatic order bys and filters can be added in order to go
even further.

+com.vaadin.addon.sqlcontainer.QueryDelegate

+com.vaadin.addon.sqlcontainer.TableQuery

+TableQuery(in tableName : String, in connectionPool : JDBCConnectionPool)
+TableQuery(in tableName : String, in connectionPool : JDBCConnectionPool, in generator : SQLGenerator

1 1

+com.vaadin.addon.sqlcontainer.SimpleJDBCConnectionPool

+SimpleJDBCConnectionPool(in driverName : String, in connectionUri : String, in userName : String, in password : String)
+SimpleJDBCConnectionPool(in driverName : String, in connectionUri : String, in userName : String, in password : String, in initialConnections : int, in maxConnections : int)

+com.vaadin.addon.sqlcontainer.J2EEConnectionPool

+J2EEConnectionPool(in dataSourceJndiName : String)

+com.vaadin.addon.sqlcontainer.FreeformQuery

+FreeformQuery(in queryString : String, in connectionPool : JDBCConnectionPool, in primaryKeyColumns : [*] String)

<<interface>>
+com.vaadin.addon.sqlcontainer.JDBCConnectionPool

+destroy()

reserveConnection()
+releaseConnection(in connection : Connection)
+

Not that table query is relatively straightforward, and does not require much effort
in order to create an editable table widget backed by a database table.

In fact, we could in theory create adapters for other relational data base
management systems.

NoSQL backends are incompatible with the SQL container add-on

As table query delegates much of the SQL generation to a SQLGenerator, using
another RDBMS is just a matter of creating the right implementation (inheriting from
DefaultSQLGenerator seems a good starting point).

Chapter 7

[229]

+com.vaadin.addon.sqlcontainer.TableQuery

1

<<interface>>
+com.vaadin.addon.sqlcontainer.SQLGenerator

+com.vaadin.addon.sqlcontainer.DefaultSQLGenerator

+com.vaadin.addon.sqlcontainer.OracleGenerator +com.vaadin.addon.sqlcontainer.MSSQLGenerator

+com.vaadin.addon.sqlcontainer.StatementHelper

+generateSelectQuery(in tableName : String, in filters : List, in orderBys : List, in offset : int, in pageLength : int, in toSelect : String):StatementHelper
+generateSelectQuery(in tableName : String, in filters : List, in filterMode : FilteringMode, in orderBys : List, in offset : int, in pageLength : int, in toSelect : String):StatementHelper
+generateDeleteQuery(in tableName : String, in item : RowItem):StatementHelper
+generateInsertQuery(in tableName : String, in item : RowItem):StatementHelper
+generateUpdateQuery(in tableName : String, in item : RowItem):StatementHelper

Note that SQLGenerator represents an abstraction over the
RDBMS product whereas StatementHelper, as its name implies,
is a helper whose responsibility is to help creating SQL statements;
it should generally not be used directly.

From there, it is easy to create a generic window meant to display any data table
(with a Primary Key constraint) within a table widget, along with two global
commit/rollback buttons. Each row also shows a delete button:

package com.packtpub.learnvaadin;

import java.sql.SQLException;

import com.vaadin.addon.sqlcontainer.SQLContainer;
import com.vaadin.addon.sqlcontainer.query.QueryDelegate;
import com.vaadin.addon.sqlcontainer.query.TableQuery;
import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Component;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Table;
import com.vaadin.ui.Table.ColumnGenerator;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;

public class MainWindow extends Window {

 private static final long serialVersionUID = 1L;

 private final String tableName;

 private SQLContainer container;

 private Table table;

Advanced Features

[230]

 @SuppressWarnings("serial")
 public MainWindow(String tableName) {

 this.tableName = tableName;

 VerticalLayout vLayout = new VerticalLayout();

 vLayout.setMargin(true);

 setContent(vLayout);

 table = new Table();

 table.setPageLength(10);
 table.setEditable(true);
 table.setSizeFull();

 table.addGeneratedColumn("delete", new ColumnGenerator() {

 @Override
 public Component generateCell(Table source, Object itemId,
 Object columnId) {

 Button button = new Button("Delete");

 button.setData(itemId);

 button.addListener(ClickEvent.class, MainWindow.this,
 "delete");

 return button;
 }
 });

 addComponent(table);

 HorizontalLayout hLayout = new HorizontalLayout();

 hLayout.setMargin(true);
 hLayout.setSpacing(true);

 Button commit = new Button("Commit");
 commit.addListener(ClickEvent.class, this, "commit");
 hLayout.addComponent(commit);

 Button rollback = new Button("Rollback");
 rollback.addListener(ClickEvent.class, this, "rollback");
 hLayout.addComponent(rollback);

 addComponent(hLayout);
 }

 public void initialize() throws SQLException {

 // Provide the JDBC pool instance here
 QueryDelegate query = new TableQuery(tableName, ...);

 container = new SQLContainer(query);

Chapter 7

[231]

 table.setContainerDataSource(container);
 }

 public void commit() throws SQLException {

 container.commit();

 showNotification("Changes committed");
 }

 public void rollback() throws SQLException {

 container.rollback();

 showNotification("Changes rolled back");
 }

 public void delete(ClickEvent event) {

 Object itemId = event.getButton().getData();

 container.removeItem(itemId);
 }
}

In order to use this window, we just have to provide a JDBC pool instance, for
example by tasking the application to create it during initialization as follows:

public class SqlContainerApplication extends Application {

 private JDBCConnectionPool jdbcPool;

 @Override
 public void init() {

 MainWindow window = new MainWindow();

 setMainWindow(window);

 try {

 jdbcPool = new
 SimpleJDBCConnectionPool("org.hsqldb.jdbc.JDBCDriver",
 "jdbc:hsqldb:mem:learnvaadin", "SA", "");

 window.initialize();

 } catch (SQLException e) {

 e.printStackTrace();

 throw new RuntimeException(e);
 }
 }

 JDBCConnectionPool getJdbcPool() {

 return jdbcPool;
 }
}

Advanced Features

[232]

Notice that we use the data property from AbstractComponent to pass the row
item's ID from the button to the delete() method through the event.

The initialize() method could have been coded in the
constructor. Yet, separating the code in two as it is done lets us
get the JDBC pool instance from the application. Remember the
application cannot be retrieved from a window until the window
has been set as the application's main window.

Let's take as an example, a table that maps our Person entity from Chapter 6.

PERSON

PK ID LONG

FIRST_NAME
LAST_NAME
BIRTHDATE

VARCHAR(40)
VARCHAR(40)
DATETIME

If we use the previous window on a table that maps, we get the following display:

Chapter 7

[233]

Notice that the ID column is automatically set as read-only, and shown as a label and
not a field, since it represents the Primary Key!

References
Table queries are enough when viewing/updating data from a single table.
However, most of the time, data is scattered through more than one table.

In truth, SQL containers know how to reference other SQL containers so Vaadin can
create relationships of sort without using a single line of SQL. In order to do that,
the add-on uses Reference instances internally. Such references are relationships
between a referencing container and its referencing column and a referenced
container and its referenced column.

+com.vaadin.addon.sqlcontainer.SQLContainer

+addReference(in refdCont : SQLContainer, in refingCol : String, in refdCol : String)
+removeReference(in refdCont : SQLContainer):boolean
+setReferencedItem(in itemId : Object, in refdItemId : Object, in refdCont : SQLContainer):boolean
+getReferencedItemId(in itemId : Object, in refdCont : SQLContainer):Object

~com.vaadin.addon.sqlcontainer.Reference

~getReferencedContainer():SQLContainer
~getReferencingColumn():String
~getReferencedColumn():String

1

*

As an example, let's change our former table diagram to create n-to-1 job
relationships for each person.

PERSON

PK ID LONG

FIRST_NAME
LAST_NAME
BIRTHDATE
JOB_ID

VARCHAR(40)
VARCHAR(40)
DATETIME
LONG

PK,FK1

LABEL VARCHAR(40)

PERSON

ID LONG

Advanced Features

[234]

Changes to the previous window's code let us view this new data. Notice that in this
case, it is hard to be generic so it is better to just display what we want:

@SuppressWarnings("serial")
public void initialize() throws SQLException {

 SqlContainerApplication app = (SqlContainerApplication)
 getApplication();

 QueryDelegate personsQuery = new TableQuery("PERSON",
 app.getJdbcPool());
 QueryDelegate jobsQuery = new TableQuery("JOB", app.getJdbcPool());

 personsContainer = new SQLContainer(personsQuery);
 // jobsContainer is declared as a window attribute
 jobsContainer = new SQLContainer(jobsQuery);

 personsContainer.addReference(jobsContainer, "JOB_ID", "ID");

 table.setContainerDataSource(personsContainer);

 table.addGeneratedColumn("Job", new ColumnGenerator() {

 @Override
 public Component generateCell(Table source, Object itemId,
 Object columnId) {

 Label label = new Label();

 Item job = personsContainer.getReferencedItem(itemId,
 jobsContainer);

 Property property = job.getItemProperty("LABEL");

 label.setValue(property.getValue());

 return label;
 }
 });

 table.setVisibleColumns(new String[] {"ID", "FIRST_NAME",
 "LAST_NAME", "BIRTHDATE", "Job", "delete"});
}

The most important lines above are:

• Create the relationship between the person's job ID in the persons container
and the job's ID in the jobs container

• Retrieve the job as an item without coding a single line of SQL

Chapter 7

[235]

Free form query

+RowItem

<<enumeration>>
FilteringMode

FILTERING_MODE_INCLUSIVE
FILTERING_MODE_EXCLUSIVE

12...

<<interface>>
+com.vaadin.addon.sqlcontainer.FreeformQueryDelegate

+removeRow(in connection : Connection, in row : RowItem):boolean
+storeRow(in connection : Connection, in row : RowItem):int
+setFilters(in filters : List)
+setFilters(in filters : List, in filteringMode : FilteringMode)
+setOrderBy(in orderBys : List)

<<interface>>
+com.vaadin.addon.sqlcontainer.FreeformStatementDelegate

+getQueryStatement(in offset : int, in limit : int):StatementHelper
+getCountStatement():StatementHelper
+getContainsRowQueryStatement(in keys : Object):StatementHelper

+com.vaadin.addon.sqlcontainer.FreeformQuery

+getDelegate():FreeformQueryDelegate
+setDelegate(in delegate : FreeformQueryDelegate)

0..1

Free form queries offer much more flexibility than table queries, but we need to
write SQL code. Moreover, they also require more effort, at least when executing
CUD statements.

CRUD without read: INSERT, UPDATE, and DELETE

As was seen in section Query delegate, we have to pass both the SQL select statement
and the IDs collection to the FreeformQuery constructor. If we reuse our previous
persons/jobs example, then the window's code has to be changed as follows:

public void initialize() throws SQLException {

 SqlContainerApplication app = (SqlContainerApplication)
 getApplication();

 QueryDelegate personsQuery = new FreeformQuery(
 "SELECT ID, FIRST_NAME, LAST_NAME, BIRTHDATE,
 LABEL AS JOB FROM PERSON, JOB WHERE PERSON.JOB_ID = JOB.ID",
 app.getJdbcPool());

 personsContainer = new SQLContainer(personsQuery);

Advanced Features

[236]

 table.setContainerDataSource(personsContainer);

 table.setVisibleColumns(new String[] {"ID", "FIRST_NAME",
 "LAST_NAME", "BIRTHDATE", "JOB", "delete"});
}

Pros and cons are readily visible: the code as a whole is much shorter but in
exchange, we need to code the SQL select statement, which may be more or less
easy depending on the relationships between tables.

Troubleshooting
Always be careful to use the right column name: when Vaadin
complains about Ids must exist in the Container or as
a generated column , missing id: xxx, the first thing to
check is the visible column names case. As a first measure, it
is advised to always use upper case when referencing column
names from the database.

The preceding code produces the following output:

Chapter 7

[237]

The only difference between using referenced containers and free form queries is
that in the former case, referenced column IDs are displayed as labels by default,
thus read-only whereas in the latter, all non-identity columns are displayed as fields,
thus read-write.

This minor update is enough to display data, but as soon as we need to make
updates, we have to go beyond that.

Using table queries, Vaadin can infer from the table metadata. When using free
form queries, it is impossible. As such, any CUD operation delegates to a free form
statement query delegate that has to be set in order to execute such operations.

Troubleshooting
If Vaadin complains about java.lang.
UnsupportedOperationException: FreeFormQueryDelegate
not set, it is because setting a delegate to handle updates to the
underlying data was forgotten.

Developing a free form query delegate may be done at two different levels:

1. For simple implementations, FreeformQueryDelegate is enough to fit
our needs.

2. If we want to use PreparedStatement instead of regular statements, we
need to implement FreeformStatementDelegate.

The add-on's code is smart enough to adapt what is used to the implemented interface.

Considering PreparedStatement is compiled once to the native
RDBMS internal language and then reused over and over, and the
decreased possibility of SQL injection, it is advised to always use it.

Similar add-ons
Should SQL be a little too old-fashioned (or if your developers cannot code SQL),
some add-ons may be of interest:

• A container over a Hibernate backend, HbnContainer, provided by Matti
Tahvonen of the Vaadin team. It is provided in Version 1.0 under the friendly
Apache 2.0 license and is considered stable.

• EclipseLink Container is similar to the previous, but with EclipseLink in
mind instead of Hibernate. However, beware that it is considered beta,
and has seen no update since late 2009.

Advanced Features

[238]

• Finally, JPAContainer is a commercial add-on, also available under an AGPL
license that provides a nice way for widgets to use a JPA backend.

All of those can be downloaded from the directory.

Server push
Traditional HTML-based applications use the request-response model. Requests
are initiated by the client, sent to the server, and the latter sends the response back
to the client.

Nonetheless, some use-cases require the server to notify the client without the client
initiating the sequence. Such use-cases would include chat applications and real-time
trading platforms.

At present, push is not provided by Vaadin as-is but by two add-ons: ICEPush and
DontPush. The following table sums up some key information about them:

ICEPush DontPush
Underlying technology ICEPush WebSocket, a part of HTML5
Version browser
compatibility

Firefox 3
Chrome 5à7
Internet Explorer 6à8
Opera 10
Safari 3à5

Firefox 3
Chrome 7
Internet Explorer 8
Opera 10
Safari 5

Server compatibility Servlet API 2.5
Otherwise, server agnostic

Jetty 7

Approach Invisible widget on
window
Calls to push() method

Use of the event-listener model

Both add-ons are experimental and provided by members of the Vaadin team.
DontPush, however, is highly coupled to the Jetty API, especially the WebSocket
part and as such only presented as a proof of concept.

Even if ICEPush is also experimental, it has more usages in its current form: let's look
at it in detail.

Chapter 7

[239]

Installation
In order to use ICEPush, we need to add the dependency snippet in our Maven POM
or drop the JAR in the WEB-INF/lib of our application. In the latter case, the JAR
add-on is distributed with the ICEPush JAR itself and an adapter for GWT.

Once done, the compilation step takes place, either automatically or manually
(see section Compilation of Vaadin XS above, it's the same).

How-to
For the push to take place, some specific steps are necessary:

• First, the Vaadin servlet in the web application deployment descriptor should
be updated with the org.vaadin.artur.icepush.ICEPushServlet class.

• From there, we have to add a single org.vaadin.artur.icepush.ICEPush
widget to our window. It does not appear to the user as the client side is just
JavaScript making heavy use of AJAX.

• Finally, once the need for pushing data to the client arises, call the push()
method on the ICEPush widget. Done!

Note that like in many matters in Vaadin, the gritty details
are completely abstracted under some very simple steps. We
don't have to understand ICEPush (although you can browse
through its documentation).

Example
As an example, we want to start a client-side clock upon user interaction and stop it
upon another one.

package com.packtpub.learnvaadin;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;

import org.vaadin.artur.icepush.ICEPush;

import com.vaadin.Application;
import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.ui.CheckBox;
import com.vaadin.ui.Label;
import com.vaadin.ui.Window;

Advanced Features

[240]

@SuppressWarnings("serial")
public class PushApplication extends Application {

 private Thread thread = new Thread(new TimeRunnable());

 private Label label = new Label();

 private ICEPush icepush = new ICEPush();

 private CheckBox checkbox;

 @Override
 public void init() {

 Window window = new Window("Push Application");

 window.addComponent(icepush);

 checkbox = new CheckBox("Check to start");

 checkbox.addListener(new ValueChangeListener() {

 @Override
 public void valueChange(ValueChangeEvent event) {

 boolean checked = (Boolean) event.getProperty().getValue();

 if (checked && !thread.isAlive()) {

 thread.start();
 }
 }
 });

 checkbox.setImmediate(true);

 window.addComponent(checkbox);

 window.addComponent(label);

 setMainWindow(window);

 changeLabel();
 }

 private class TimeRunnable implements Runnable {

 @Override
 public void run() {

 try {

 while (true) {

 if ((Boolean) checkbox.getValue()) {

 changeLabel();

Chapter 7

[241]

 icepush.push();

 }

 Thread.sleep(1000);
 }

 } catch (InterruptedException e) {

 } catch (Exception e) {

 e.printStackTrace();
 }
 }
 }

 private void changeLabel() {

 DateFormat format = new SimpleDateFormat("hh:mm:ss");

 String date = format.format(new Date());

 label.setValue(date);
 }
}

Important snippets above create the ICEPush widget and add it to the window.

The rest starts the thread the first time the checkbox is checked: once started, it
periodically checks for the checked state to update the label and send it to the
client if it is "on".

Threads in web application
The preceding code should not be taken at face value and used in a
production environment as spawning new threads is frowned upon
in a Java EE application. Threads should not be started unless you
really know what you are doing. Real-world applications should
probably use an event-based stack, such as JMS, an EJB timer or a
third-party framework like Quartz.

Twaattin improves!
Given the current state of Twaattin and our current knowledge, some improvements
automatically come to mind:

• Change the way a user logs out in order to use the application's close feature
• Provide an ability to browse other users' timelines, as well as to store

previously browsed timelines. We will use the SQL container add-on
to do this.

Advanced Features

[242]

From a GUI point-of-view, the screen name field has to be changed to a combo.
Values in the combo are previously entered screen names.

• Automatically refresh timelines when displayed, thus push changes to the
client, with the help of the ICEPush add-on.

Two additional third-party components will be needed: a
database to be connected to the SQL container and a scheduling
framework to manage threads. We will use HSQL DB for the
former and Quartz for the latter.
In order to get more information about HSQL DB, visit
http://hsqldb.org/ and to know further about Quartz,
visit http://www.quartz-scheduler.org/.

Twaattin application
package com.packtpub.learnvaadin.twaattin;

import static org.quartz.JobBuilder.newJob;
import static org.quartz.TriggerBuilder.newTrigger;

import java.sql.SQLException;

import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.impl.StdSchedulerFactory;

import com.packtpub.learnvaadin.twaattin.service.TwitterJob;
import com.packtpub.learnvaadin.twaattin.service.TwitterService;
import com.packtpub.learnvaadin.twaattin.ui.LoginWindow;
import com.packtpub.learnvaadin.twaattin.ui.TimelineWindow;
import com.vaadin.Application;
import com.vaadin.Application.UserChangeListener;
import com.vaadin.addon.sqlcontainer.connection.JDBCConnectionPool;
import com.vaadin.addon.sqlcontainer.connection.
SimpleJDBCConnectionPool;

public class TwaattinApp extends Application implements
UserChangeListener {

 private static final long serialVersionUID = 1L;

Chapter 7

[243]

 private LoginWindow loginWindow;

 private TimelineWindow timelineWindow;

 private JDBCConnectionPool jdbcPool;

 private transient TwitterService twitterService;

 @Override
 public void init() {

 try {

 jdbcPool = new
 SimpleJDBCConnectionPool("org.hsqldb.jdbc.JDBCDriver",
 "jdbc:hsqldb:file:" + PathUtils.getDbDataPath() +
 "/data", "SA", "");

 loginWindow = new LoginWindow();

 timelineWindow = new TimelineWindow();

 setMainWindow(loginWindow);

 loginWindow.initialize();

 addListener(this);

 addListener(timelineWindow);

 } catch (SQLException e) {

 throw new RuntimeException(e);
 }
 }

 public void applicationUserChanged(UserChangeEvent event) {

 setMainWindow(timelineWindow);

 removeWindow(loginWindow);

 timelineWindow.showNotification("You're authentified");

 try {

 timelineWindow.initialize();

 Scheduler scheduler =
 StdSchedulerFactory.getDefaultScheduler();

 scheduler.getContext().put("window", timelineWindow);

 JobDetail details =
 newJob(TwitterJob.class).withIdentity("twitter").build();

 SimpleScheduleBuilder ssb =
 SimpleScheduleBuilder.repeatSecondlyForever(30);

 Trigger trigger =
 newTrigger().withSchedule(ssb).startNow().build();

 scheduler.scheduleJob(details, trigger);

Advanced Features

[244]

 scheduler.start();

 } catch (SQLException e) {

 throw new RuntimeException(e);

 } catch (SchedulerException e) {

 throw new RuntimeException(e);
 }
 }

 public TwitterService getTwitterService() {

 if (twitterService == null) {

 twitterService = new TwitterService();
 }

 return twitterService;
 }

 public JDBCConnectionPool getJdbcPool() {

 return jdbcPool;
 }

 public void close() {

 try {

 Scheduler scheduler =
 StdSchedulerFactory.getDefaultScheduler();

 scheduler.shutdown();

 } catch (SchedulerException e) {

 e.printStackTrace();
 }

 super.close();
 }
}

Updates made to the application class are of two types:

• Creation of the JDBC connection pool for the SQL container and the code that
lets the timeline window use it.

• Starting and stopping the scheduler to launch the job that will update the
timeline regularly.

Describing the Quartz code in detail, however, is outside the scope of this
book. Just know that the init() method starts the refreshing thread and the
close() method stops it.

Chapter 7

[245]

Timeline window
package com.packtpub.learnvaadin.twaattin.ui;

import java.sql.SQLException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;

import org.quartz.SchedulerException;
import org.vaadin.artur.icepush.ICEPush;

import twitter4j.ResponseList;
import twitter4j.Status;
import twitter4j.TwitterException;
import twitter4j.User;

import com.packtpub.learnvaadin.twaattin.TwaattinApp;
import com.packtpub.learnvaadin.twaattin.persistence.
NewNameItemHandler;
import com.packtpub.learnvaadin.twaattin.service.TwitterService;
import com.vaadin.Application.UserChangeEvent;
import com.vaadin.Application.UserChangeListener;
import com.vaadin.addon.sqlcontainer.RowId;
import com.vaadin.addon.sqlcontainer.SQLContainer;
import com.vaadin.addon.sqlcontainer.connection.JDBCConnectionPool;
import com.vaadin.addon.sqlcontainer.query.TableQuery;
import com.vaadin.data.Item;
import com.vaadin.data.util.BeanContainer;
import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.ComboBox;
import com.vaadin.ui.Field.ValueChangeEvent;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.Table;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;

public class TimelineWindow extends Window implements
UserChangeListener {

 private static final long serialVersionUID = 1L;

 private Label userLabel = new Label();

Advanced Features

[246]

 private BeanContainer<Long, Status> tweetsContainer = new
 BeanContainer<Long, Status>(Status.class);

 private SQLContainer namesContainer;

 private ComboBox namesCombo = new ComboBox();

 private ICEPush pusher = new ICEPush();

 public TimelineWindow() {

 VerticalLayout mainLayout = new VerticalLayout();

 mainLayout.setSpacing(true);
 mainLayout.setMargin(true);

 setContent(mainLayout);

 HorizontalLayout menuBar = new HorizontalLayout();

 menuBar.setSpacing(true);

 addComponent(menuBar);

 menuBar.addComponent(userLabel);

 Button logout = new Button("Logout");

 logout.addListener(ClickEvent.class, this, "logout");

 menuBar.addComponent(logout);

 addComponent(namesCombo);

 namesCombo.setNewItemsAllowed(true);
 namesCombo.setNullSelectionAllowed(false);
 namesCombo.setImmediate(true);

 namesCombo.setItemCaptionPropertyId("SCREEN_NAME");

 namesCombo.addListener(ValueChangeEvent.class, this, "fill");

 tweetsContainer.setBeanIdProperty("id");

 Table table = new Table("", tweetsContainer);

 table.setSizeFull();

 addComponent(table);

 customizeTable(table);
 }

 public void logout() throws SchedulerException {

 getApplication().close();
 }

 public void fill() {

 TwitterService twitterService = ((TwaattinApp)
 getApplication()).getTwitterService();

 tweetsContainer.removeAllItems();

 Item item = namesContainer.getItem(namesCombo.getValue());

Chapter 7

[247]

 try {

 String screenName = (String)
 item.getItemProperty("SCREEN_NAME").getValue();

 ResponseList<Status> statuses =
 twitterService.getTimeline(screenName);

 Iterator<Status> iterator = statuses.iterator();

 while (iterator.hasNext()) {

 Status status = iterator.next();

 tweetsContainer.addItem(status.getId(), status);
 }

 } catch (TwitterException e) {

 throw new RuntimeException(e);
 }
 }

 public void applicationUserChanged(UserChangeEvent event) {

 User newUser = (User) event.getNewUser();

 String screenName = newUser.getScreenName();

 userLabel.setValue(screenName);

 Collection<RowId> eligibleIds = new ArrayList<RowId>();

 Collection<?> ids = namesContainer.getItemIds();

 for (Object id : ids) {

 Item item = namesContainer.getItem(id);

 Object value = (String)
 item.getItemProperty("SCREEN_NAME").getValue();

 if (screenName.equals(value)) {

 eligibleIds.add((RowId) id);

 break;
 }
 }

 if (!ids.isEmpty()) {

 namesCombo.select(ids.iterator().next());
 }
 }

 private void customizeTable(Table table) {

 table.addGeneratedColumn("when", new WhenColumnGenerator());
 table.addGeneratedColumn("user", new NameColumnGenerator());

 table.setVisibleColumns(new String[] { "user", "text", "when" });
 }

Advanced Features

[248]

 public void initialize() throws SQLException {

 TwaattinApp TwaattinApp = (TwaattinApp) getApplication();

 JDBCConnectionPool jdbcPool = TwaattinApp.getJdbcPool();

 TableQuery tableQuery = new TableQuery("TWITTER", jdbcPool);

 namesContainer = new SQLContainer(tableQuery);

 namesCombo.setContainerDataSource(namesContainer);

 NewNameItemHandler newItemHandler = new
 NewNameItemHandler(TwaattinApp.getTwitterService(),
 namesContainer);

 namesCombo.setNewItemHandler(newItemHandler);

 addComponent(pusher);
 }

 public void fillAndPush() {

 fill();

 pusher.push();
 }
}

Important lines of preceding code are the following:

• Declaration, instantiation, and initialization of the SQL container, the
ICEPush widget and the new item handler (see the following section)

• Declaration of a method to be called by the polling job that will get new
tweets, fill the table, and push the result to the client

• Automatically select the logged in user in the combo

New item handler
In Chapter 6, we have learned about new item handlers. Those are used when new
values are entered in an abstract select: it is exactly what we need, so that those
values are persisted in the database.

package com.packtpub.learnvaadin.twaattin.persistence;

import java.sql.SQLException;

import twitter4j.TwitterException;
import twitter4j.User;

import com.packtpub.learnvaadin.twaattin.service.TwitterService;
import com.vaadin.addon.sqlcontainer.RowId;
import com.vaadin.addon.sqlcontainer.RowItem;
import com.vaadin.addon.sqlcontainer.SQLContainer;
import com.vaadin.ui.AbstractSelect.NewItemHandler;

Chapter 7

[249]

public class NewNameItemHandler implements NewItemHandler {

 private static final long serialVersionUID = 1L;

 private final TwitterService twitterService;

 private final SQLContainer nameContainer;

 public NewNameItemHandler(TwitterService twitterService,
 SQLContainer nameContainer) {

 this.twitterService = twitterService;
 this.nameContainer = nameContainer;
 }

 public void addNewItem(String userName) {

 try {

 User user = twitterService.getUser(userName);

 RowId id = (RowId) nameContainer.addItem();

 RowItem item = (RowItem) nameContainer.getItem(id);

 item.getItemProperty("TWITTER_ID").setValue(user.getId());
 item.getItemProperty("SCREEN_NAME").setValue
 (user.getScreenName());

 nameContainer.commit();

 } catch (TwitterException e) {

 throw new RuntimeException(e);

 } catch (SQLException e) {

 throw new RuntimeException(e);
 }
 }
}

Summary
In this chapter, we learned about some advanced features of Vaadin that span a large
perimeter. In the first section, we saw the following use-cases and the way Vaadin
could meet our needs out-of-the-box:

• Should we need to go deeper in order to access any of the available web
contexts (servlet, application and session), we just have to make our
application implement HttpServletRequestListener.

• With the help of Vaadin's bookmarking capabilities, we can capture the
state of a window, and set it as an URL fragment on the address bar while
staying on the same screen. Also, the reverse can be done: taking the
fragment and using it to set information on the window, all thanks to the
UriFragmentUtility widget.

Advanced Features

[250]

• Moreover, we learned how legacy applications and/or sites can be integrated
with Vaadin application and how more than one Vaadin application can run
in the same context, with just a touch of HTML and JavaScript configuration.

• If the default error handler mechanism does not suit us, we know how to
override it to do exactly what we want with the ErrorListener interface.

• Also, we found out how to stop Vaadin the proper way and eventually
redirect the user to an URL outside (to prevent it from starting again) with
the setLogoutURL() method.

In the second section, we detailed how Vaadin can be enriched with an add-on
coming from the Vaadin directory and how we could search the latter.

In particular, other features are brought by third-party add-ons:

• Safely embedding Vaadin applications in third-party sites from another
domain. The add-on manages the security, so as to configure domains
permitted to access the application.

• Most applications need a data backend and Vaadin ones are not different.
The SQL Container add-on is an easily configurable adapter between the
GUI and the database.

• Finally, when the application needs to send updates to clients, we can count
on the ICEPush add-on that draws on the power of the ICEPush product. It is
only a matter of adding the right widget to the window and calling the push
method when we need to.

At this point, we understand Vaadin fairly well. Features that are not part of the
core framework, such as additional widgets, persistence features, themes and others,
should be searched in the directory.

In the next chapter, we will get on the next step to develop top-notch Vaadin
applications, creating custom components.

Creating Custom Components
Although Vaadin provides many great components out-of-the-box, you may have
a need to create a widget of your own. Also, enterprises as well as individual
developers are bound to propose some, either free of charge or commercially.

Allowing the creation of custom components is a feature designed into Vaadin itself.
In this chapter, we'll have a look at doing it in two different ways:

• The first method to create a custom component in Vaadin is to compose it
from other widgets

• The second way is to wrap a GWT widget in a Vaadin envelope

Learning both these techniques will get you a long way toward getting the best out
of the framework.

Widget composition
Composing other widgets can either be very simple or be a daunting task depending
on the number of widgets involved.

Widget composition is by far the easiest way (compared to wrapping GWT
components) to create custom widgets. However, it fits only limited use-cases, for
example, when we need to reuse some graphical part of an application, the keyword
here being reusable component. Examples of such components include:

• An address component, with address lines, state, zip code, and city.
• A yes/no/cancel options dialog, similar to the ones found in Swing.
• A window template, including a top menu and a left bar.
• A reusable menu among all the windows of an application.

Creating Custom Components

[252]

The following screenshot is an example of a reusable dialog box.

Manual composition
The basis of custom widget composition in Vaadin is the CustomComponent class,
which is inherited from AbstractComponentContainer.

As far as components are considered, custom components are very straightforward
since they just inherit from the abstract component container, as seen in Chapter 4,
along with windows and panels.

The only twist is that the addComponent() method doesn't work (it throws
an UnsupportedOperationException) and it should be replaced with the
setCompositionRoot() method. Adding components is just a matter of adding
them to the parameter of the latter method—the root, which probably is a layout.

Limitation
An important limitation of this approach is that we have to
basically create at least two classes: one being the custom
component, playing the role of the content, and the other being
the topmost widget, the content container. Such containers can
be windows, panels, or whatever, so long as we reuse them.

This is it! There's no fancy API: we just add the child widgets to our custom
component's root and we are good to go.

As an example, let's create a reusable custom confirm dialog, just like the one seen
above. It would look something along these lines:

public class CustomDialog extends Window {

 private static final long serialVersionUID = 1L;

 private String clickedValue;

 public CustomDialog() {

 addComponent(new CustomComponentDialogContent());
 }

Chapter 8

[253]

 public String getClickedValue() {

 return clickedValue;
 }

 private class CustomComponentDialogContent extends CustomComponent {

 private static final long serialVersionUID = 1L;

 private Label message = new Label("This is a confirm dialog.");

 private Button yesButton = new Button("Yes");
 private Button cancelButton = new Button("Cancel");
 private Button noButton = new Button("No");

 public CustomComponentDialogContent() {

 VerticalLayout mainLayout = new VerticalLayout();

 mainLayout.setMargin(true);
 mainLayout.setSpacing(true);

 setCompositionRoot(mainLayout);

 HorizontalLayout upperLayout = new HorizontalLayout();

 mainLayout.addComponent(upperLayout);

 upperLayout.addComponent(message);

 HorizontalLayout buttonLayout = new HorizontalLayout();

 mainLayout.addComponent(buttonLayout);

 Button[] buttons = new Button[] { yesButton, noButton,
 cancelButton };

 for (Button button : buttons) {

 buttonLayout.addComponent(button);
 button.addListener(new StoreLabelListener());
 }
 }
 }

 private class StoreLabelListener implements ClickListener {

 private static final long serialVersionUID = 1L;

 @Override
 public void buttonClick(ClickEvent event) {

 Button button = (Button) event.getSource();

 clickedValue = (String) button.getCaption();

 Window popup = button.getWindow();

 popup.getParent().removeWindow(popup);
 }
 }
}

Creating Custom Components

[254]

As explained before, we have two widget classes: CustomComponentDialogContent
for the content and CustomDialog for the window. The StoreLabelListener is just
common behavior for all three buttons.

Strategy for custom components
The reason behind using custom components is reuse. As such, a well thought out
design is a must have in those cases.

In the preceding code, this is very straightforward: we provided the
getClickedValue() method to return the button clicked. And yet, we should ask
ourselves some questions:

• Is String the right return type? Or should we provide an enum to carry the
return type?

• Neither the text for the buttons nor the message can be customized. For the
buttons, it prevents internationalization, but a static message prevents reuse!

• Shouldn't the cancel button be optional?

In practice, reusable component design should be constrained by two major
concerns: providing sensible defaults, but enabling parameterization so that the
component can really be reused in a variety of contexts (but not too much!).

Apart from that, only experience will tell you how much you should expose in your
personal context.

Graphic composition
Previous sections explained about manual coding of custom components to meet
our needs.

Nonetheless, the fastest way to create a custom component by assembling widgets is
to do it graphically. It's a nice thing then that the Vaadin Eclipse plugin provides a
graphical editor, named the Visual Editor (or VE for short).

Visual editor setup
Vaadin's graphical editor is bundled within the plugin. To check that it is installed,
go to Help | Install New Software and select the Vaadin update site.

Chapter 8

[255]

The update site URL is http://vaadin.com/eclipse. Go
back to Chapter 2 if you need more information.
Vaadin graphical editor is experimental at the time of writing.
If anything unexpected happens, fill a bug in Vaadin's Trac at
http://dev.vaadin.com/ because, well... it's expected.

We'll also need XUL Runner from the Mozilla Foundation, in version 1.9+. For
Windows users, download it from SourceForge.net at http://sourceforge.net/
projects/xulrunnerinstal/ and install it. For Linux users, download it from
the Mozilla Foundation at the following URL:

http://releases.mozilla.org/pub/mozilla.org/xulrunner/releases/

Troubleshooting
If at any point a dialog appears with the message "Could not
start XULRunner (version 1.9 or higher required)", you should
install XUL Runner from the Sourceforge link provided and not
from the Mozilla Foundation download site.

Creating Custom Components

[256]

Visual editor use
Once the graphical editor is installed, just go the File menu and click on New.

Then choose Vaadin | Vaadin Composite. It immediately opens the standard Java
code viewpoint where there are two tabs underneath, a code one that is shown,
and a design one.

Selecting the design tab will display the graphical editor. It is separated into two
main parts:

• A canvas with a gridline occupies the main space.
• A vertical bar at the left displays the following three sections:

 ° A component palette that shows all available widgets. Remember
that in Chapter 4 we learned that layouts are components too (albeit
special ones).

 ° The custom widget component hierarchy.
 ° The properties of the currently selected widget.

Components from the palette can be dragged-and-dropped either to the canvas or
to the component hierarchy.

Chapter 8

[257]

A full guide to the Visual Editor is beyond the scope of this book, but there are
nonetheless some guidelines that will save us a considerable amount of time.

Position and size
The first tab for a selected component is the layout one. It represents properties that
manage position and size.

Available properties are:

• Width and height. Those correspond respectively to the setWidth() and
setHeight() methods of the Paintable interface, and accept the same values.
In order to use setXXXUndefined(), the value to enter is "auto".

• Visible, margin and spacing are standard properties seen in Chapter 4. Note
that setting the margin independently on the four borders is not possible
with the VE.

• Component alignment manages the position of the element in its
available space.

• Expand ratio refers to the space provided to the component when space
has to be shared.

On the design canvas, we can also see a small rectangle when selecting a component.
It's a shortcut to changing size and position.

Creating Custom Components

[258]

The second tab displays every property not shown on the first tab.

The preceding screenshot presents the available properties for a label.

Limitations
Note that the editor is an important tool for designing Vaadin applications and is
deemed as such by Vaadin's team. Therefore, at the time of writing, a new version
of the editor called the Visual Designer is being developed and will overcome some
of the following limitations.

Restricted compatibility
The most important limitation of the Visual Editor in its current state is its inability
to display existing components, whether windows or applications, or any component
that was not initially designed with the VE.

Top level element
Moreover, the top level element designed in the VE can only be a layout. By default,
it's an AbsoluteLayout. If we need to change this, we cannot graphically update the
type: we have to go to the code tab and modify the code itself.

This prevents us from creating reusable windows, complete with title. The biggest
reusable unit is the window's content.

Chapter 8

[259]

Rigid structure
The generated code is set to some pattern that the editor expects. This has three
important consequences:

• Every component is declared as an attribute and assigned an AutoGenerated
annotation.

• It is instantiated and configured in its own private builder method that is
called in the constructor.

• Custom non-generated code, if it exists, has to take place after those calls in
the constructor.

Any change to these will likely prevent Vaadin from opening the Visual Editor.

Limited embed capability
The Embedded component lets us display a Resource, which was seen in Chapter 4.
However, some resources need a reference to the application instance, which is only
set when the parent window is set as the application window.

Thus, legal resources can only be those which do not need a reference to the
application: ExternalResource (available online from HTTP) and ThemeResource
(available under a theme). Other types (file system, class and stream resources)
won't work.

GWT widget wrapping
The second way to create custom components in Vaadin is to wrap an available GWT
widget under a Vaadin layer. This is the way that out-of-the-box Vaadin components
are themselves provided.

Before diving into widget wrapping, we have to understand somewhat how Vaadin
uses GWT under the cover.

This book is not about GWT, but since Vaadin uses GWT, we
need some basic comprehension about how it works. For more
information, see http://code.google.com/webtoolkit/.

Creating Custom Components

[260]

Vaadin GWT architecture
Vaadin GWT architecture is based on two foundations: the client side and the
server side.

In this section, we'll use the GWT incubator as a source for
new and interesting widgets. Nevertheless, it's only an
example since we can use every available GWT widget! See
http://code.google.com/p/google-web-toolkit-incubator/

Client side
On the client side, we have to inherit from the desired widget with a class
implementing com.vaadin.terminal.gwt.client.Paintable. Be aware that it's
not the same Paintable we've seen in Chapter 4, as this one is on the client side!

+com.google.gwt.user.client.ui.Widget

+CustomWidget

+VCustomWidget

+updateFromUIDL(in uidl : UIDL, in client : ApplicationConnection)

<<interface>>
+com.vaadin.terminal.gwt.client.Paintable

+updateFromUIDL(in uidl : UIDL, in client : ApplicationConnection)

We tackled the UIDL in Chapter 3, when talking about Vaadin architecture. As a short
reminder, UIDL is the way the user interface is sent to the client by Vaadin.

The updateFromUIDL() method from Paintable is responsible for reading the UIDL
stream sent from the server, and updating the client component accordingly. If that
sounds daunting, rejoice since the ApplicationConnection parameter does just that
with its updateComponent() method. It takes three parameters:

• The widget to update, in our context, this.
• The UIDL sent, which is the other parameter in the calling method.
• Finally, a boolean value that indicates whether to delegate caption, icon,

description, and error messages management to the parent component. In
most cases, captions and icons are handled by layouts by placing them next
to the component.

Chapter 8

[261]

It also returns true if no further action is necessary. This method is tasked with
synching the different graphical attributes of the component with the state sent
from the server. Such attributes include:

• disabled

• readonly

• invisible

• style (for the CSS)

Thus, a typical implementation of the method is the following:
public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {
 if(client.updateComponent(this, uidl, true)) {
 return;
 }
 // Do more here, if needed
}

Some possible additional actions include storing data from parameters, for example:
• The UIDL unique ID in order to send back information to the server, mostly

upon user interaction.
• The immediate attribute so that future events are sent immediately.

GWT and compilation
In Chapter 7, when using add-ons from the directory, Vaadin always asked us about
compiling the widget set. It's exactly the same when creating our own widgets.

Before going further, we have to understand some things about the Google Web
Toolkit. Google's approach to web applications is that the development is made in
Java then a compiler translates the code into JavaScript and HTML to be executed on
the client side by the browser.

In order to create the client-side Vaadin widget, we have to do a little more:
• First things first, we have to create the client-side code, as seen in the

previous section. It should be under a ui.client sub-package, relative
to the widgetset file (see the following code).

• Then, we have to create this widgetset file. It's an XML file that should have
the gwt.xml suffix and be present in a package ending with widgetset. It
should list all widget sets used by the Vaadin code.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit
1.7.0//EN" "http://google-web-toolkit.googlecode.com/svn/
tags/1.7.0/distro-source/core/src/gwt-module.dtd">

Creating Custom Components

[262]

<module>
 <inherits name="com.vaadin.terminal.gwt.DefaultWidgetSet" />
 <!-- Just an example of a third-party widgetset -->
 <inherits name="com.google.gwt.widgetideas.WidgetIdeas" /></
module>

• Finally, the path to this file must be referenced in the web deployment
descriptor in an init parameter of the Vaadin servlet, just like so:
<init-param>
 <param-name>widgetset</param-name>
 <param-value>com.packtpub.vaadin.widgetset.GwtWrapperWidgetset</
param-value>
</init-param>

The whole setup should present the following structure:

Notice the whole widgeset and client.ui packages and their hierarchy.

The good news is that the Vaadin Eclipse plugin takes care of the creation of the gwt.
xml file and its use in the web.xml. However, we have to manually include GWT
XML modules in it. Moreover, each time Vaadin detects a change that has an effect
on the generated JavaScript, it will ask to compile.

Chapter 8

[263]

Optimizing compilation
The compilation is a very lengthy process, since the compiler
creates compatible JavaScript files for every supported browser.
In order to speed it, it's advised to only compile for the
browser used during development. This is done in the main
widget set file, through the user.agent property. This is the
documentation found in the template file, reproduced here for
simplicity's sake:
"Multiple browsers can be specified for GWT as a comma
separated list. The supported user agents at the moment of
writing were:

 ie6,ie8,gecko,gecko1_8,safari,opera

The value gecko1_8 is used for Firefox 3 and later and Safari is
used for webkit-based browsers including Google Chrome."

A limitation of the client class is that it has to have a zero-argument constructor.

Even if we provide a constructor with arguments along
the zero-argument one, Vaadin will use the latter through
reflection.

Widget styling
Application and custom widgets style are different: we need some notions about
the latter when wrapping GWT widgets since Vaadin doesn't provide a CSS style
for them.

The stylesheet can be named however we like, but has to be present in a public
directory and referenced in the widgetset gwt.xml file like so:

<stylesheet src="<CSS_NAME>.css" />

Troubleshooting
If nothing shows in the browser, first check the DOM with your
browser (Google Chrome or Firefox with the Firebug plugin) to
see if the widget is here. In most cases, it's the case but it has no
CSS attached.

Creating Custom Components

[264]

Example
As an example, let's create a simple Vaadin client wrapper around one of the
simplest GWT Incubator widgets, the YouTubeViewer.

public class VYouTubeViewer extends YouTubeViewer implements Paintable
 public VYouTubeViewer() {

 super("5P-29p7-Knc");// The string is just the video's id
 }

 @Override
 public void updateFromUIDL(UIDL uidl, ApplicationConnection client)
 {

 if(client.updateComponent(this, uidl, true)) {
 return;
 }
 }
}

Notice there's nothing fancy apart from a no-argument constructor that calls the one-
argument super constructor.

As a convention, it's recommended that custom client-side
widget names are prefixed with V (like Vaadin). Not only is it
done in the core framework, it also prevents us from confusing
the client and server classes as well as using fully-qualified class
names to distinguish between them in the same file.

Server side
The server side widget is the object we will manipulate when developing our
standard applications.

First, it has to inherit from a Vaadin component: the hardest thing will be to
determine which component to inherit from. This choice will be driven by common
sense, depending on the client widget's type. As a rule of thumb, most of the time,
extend AbstractComponent.

Second, it has to be bound to the client side widget: it's done with the @
ClientWidget annotation on the type, which takes the client class as the value.

Chapter 8

[265]

In order to create the server side for the YouTube viewer, we just have to write the
following lines:

@ClientWidget(VYouTubeViewer.class)
public class YouTubeViewer extends AbstractComponent {

 private static final long serialVersionUID = 1L;
}

Now, if we use this newly created widget in a window, we have a mighty surprise!

Note that since the GWT widget is just a thin wrapper around a Flash object, it's all
right to inherit from AbstractComponent as we don't need to draw the widget on the
browser, the Flash Player will manage it on its own.

Server client communication
Having a widget on each side is nice, but it feels a little useless. It would be a great
asset to pass information from the server to the client.

In the Client side section, we learned about updateFromUIDL(). Changes sent from
the server to the client are found in the uidl parameter of this method.

As was seen in Chapter 3, UIDL is the serialized form of the user interface (or GUI
change fragments).

UIDL characteristics
UIDL is characterized by some properties:

• The paintable identifier (or PID), a unique identifier for each component.
• The tag name, which is also unique but for each component type and not per

instance. For example, for Button objects, it is "button".
• Attributes, which are those usually found in JSON (remember UIDL is

JSON). There's an attribute for each widget's property. For example, there are
disabled and readonly attributes for fields.

• Finally, there are variables that are more like stored values.

Object serialization
Objects are serialized in UIDL format with the help of two methods, paint() which
writes the start and the end tags, and paintContent() which writes the content, as
you can guess. Both methods use a PaintTarget as a parameter.

Creating Custom Components

[266]

The previous versions of Vaadin used XML serialization. The
writing of end tags has endured in newer versions, albeit in
JSON, it's a no-brainer.

The latter is an interface, with a single concrete implementation, JsonPaintTarget
used by Vaadin to serialize widget instances into UIDL format.

+com.vaadin.ui.AbatractComponent

+paint(in target : PaintTarget)
+paintContent(in target : PaintTarget) +com.vaadin.terminal.PaintTarget

+com.vaadin.terminal.gwt.server.JsonPaintTarget

Descending communication
Apart from the preceding methods, paint targets have a bunch of methods of the
form addVariable(VariableOwner owner, String name, <TYPE> value) where:

• The owner parameter is the component itself.
• name is the key to store the variable under.
• And TYPE can be boolean, int, long, float, double, String, string

arrays and com.vaadin.terminal.Paintable.

These methods are used to pass information from the server component to the client
component.

On the client side, it's in the updateFromUIDL() that the reading takes place, as the
UIDL is the first parameter.

+com.vaadin.terminal.gwt.client.UIDL

+getAttributeNames():Set
+getId():String
+getVariableNames():Set
+hasAttribute(in name : String):boolean
+hasVariable(in name : String):boolean

Chapter 8

[267]

Also, UIDL has methods of the form get<TYPE>Variable(String name) where
TYPE can be the same as in the previous addVariable() method. Thus, the server
widget can set variables and the client component can read them (without the need
for casting).

Do not forget super.paintContent()
Adding variables takes place in the paintContent()
method. However, each component type has code on its own
to manage content serialization. Thus, we have to call super.
paintContent() or the widget's content will not be sent to the
client side and it will be invisible to the user.

YouTube viewer example
Creating a component that can display a single video is nice, but we would like
to be able to have a component that can display any video: that's the point of reuse,
after all and the current one doesn't fit this need as the video key is initialized in
the constructor.

Astute readers may have noticed that the binding between the server and the client
components is achieved through an annotation that takes a class: it prevents us
from using constructors that have arguments. The only way left is through standard
Vaadin server-to-client communication.

Let's update our previous viewer with the way to pass the movie ID from the server
to the client. The client component's code now looks like this:

public class VYouTubeViewer extends YouTubeViewer implements Paintable
{

 public VYouTubeViewer() {

 super("");
 }

 @Override
 public void updateFromUIDL(UIDL uidl, ApplicationConnection client)
 {

 if(client.updateComponent(this, uidl, true)) {
 return;
 }

 String movieId = uidl.getStringVariable("movie-id");

 setMovieID(movieId);
 }
}

Creating Custom Components

[268]

Important parts show that no movie ID is initialized at first, but that it's extracted
from the UIDL in the update method as a string.

The setMovieID() is part of the YouTubeViewer GWT
widget API and plays no part in our understanding of Vaadin

On the server side, the changes are slightly more important:

public class YouTubeViewer extends AbstractComponent {

 private static final long serialVersionUID = 1L;

 public String movieId;

 public YouTubeViewer(String movieId) {

 this.movieId = movieId;
 }

 @Override
 public void paintContent(PaintTarget target) throws PaintException {

 target.addVariable(this, "movie-id", movieId);

 super.paintContent(target);
 }

 public void setMovieId(String movieId) {

 this.movieId = movieId;
 }
}

Important stuff takes place in the paintContent() method: it just adds the movie
ID as a string variable. The rest of the changes are just there to pass the movie ID
between the setter or the constructor and the paint method.

The viewer doesn't need any CSS to be displayed, so we can
easily forget the theming part.

Client server communication
Server-client communication is not enough: in most cases, we'll want to listen to user
events, and now it's the other way around, from client to server.

Chapter 8

[269]

The sending on the client part is achieved through the ApplicationConnection
parameter available in the updateFromUIDL() method. It has updateVariable(String
paintableId, String variableName, <TYPE> newValue, boolean immediate)
methods. TYPE is the same as those from the previous section variables.

On the server part, the component's method changeVariables(Object source,
Map<String, Object> variables) is called when the framework is made aware
of a change on the client side: immediately if the immediate flag is set to true or
false during the next event when not. As for the paint target's paintComponent()
method, we have to call the parent method in order for the Vaadin framework to
function properly.

Slider example
The GWT incubator has an appropriate example for client-server communication in
the form of the slider widget. Let's create a Vaadin component around it so as to use
it in our applications.

Client wrapper
Like for the YouTube viewer previously, the client component inherits from the
GWT widget and implements Paintable.

public class VSliderBar extends SliderBar implements Paintable {

 private ApplicationConnection client;

 private String uidlId;

 public VSliderBar() {

 super(0, 100);
 setTitle("Percentage");
 setNumLabels(10);
 setNumTicks(20);
 setStepSize(5);
 setCurrentValue(50);

 addChangeListener(new ChangeListener() {

 @Override
 public void onChange(Widget sender) {

 client.updateVariable(uidlId, "value", VSliderBar.this.
 getCurrentValue(), true);
 }
 });
 }

Creating Custom Components

[270]

 @Override
 public void updateFromUIDL(UIDL uidl, ApplicationConnection client)
 {

 if(client.updateComponent(this, uidl, true)) {

 return;
 }

 this.client = client;

 uidlId = uidl.getId();
 }
}

Two things are worth noticing:

• The update method stores the ApplicationConnection and the UIDL
identifier for later use.

• We have to add a change listener using GWT's API which calls the
updateVariable() with the help of the attributes we stored. This depends
on the widget used, so be aware that you'll have to read its documentation
(in the case it exists!).

Style
Luckily, there's a supplied CSS for the slidebar at http://code.google.com/
docreader/#p=google-web-toolkit-incubator&s=google-web-toolkit-
incubator&t=SliderBar. We just have to copy its content into a new CSS under
the widgetset/public folder and reference it in GwtWrapperWidgetset.gwt.xml.

Server component
Plenty of options are possible but just displaying the new value as a notification
is a good example.

@ClientWidget(VSliderBar.class)
public class SliderBar extends Label {

 private static final long serialVersionUID = 1L;

 @Override
 public void changeVariables(Object source, Map<String, Object>
 variables) {

 super.changeVariables(source, variables);

 double value = (Double) variables.get("value");

 getWindow().showNotification("Value changed: " + value);
 }
}

Chapter 8

[271]

This snippet is self-explanatory. Just don't forget to call the method of the parent
class to prevent strange behavior!

Componentized Twaattin
The table we used to display our tweets in Chapter 7 displayed the data, but it was
lacking in design.

Moreover, Twitter itself has another way of showing the tweets: looking at the
site, we can easily see there's potential for a reusable component in the form of
a tweet widget!

Designing the component
On the Twitter site, a tweet looks something like this:

Screen_name

Lorem ipsum dolor sit amet consectetir adipiscing
elt. Sed vitae elo vitare mauris

Full Name

when favorite reply delete

Photo

There's not much chance a GWT widget is available. So, we are going to go for the
composition approach we learned about in the first section.

Laying out the component would look something like this:

M
ai

n(
ve

rt
ic

al
 la

yo
ut

)

Names block

Tweet

Action bar

Creating Custom Components

[272]

Updating Twaattin's code
The most important Twaattin change is the new component.

Tweet component
In the component, we only use base widgets seen before: layouts, labels, links, and
embedded.

package com.packtpub.learnvaadin.twaattin.ui;

import java.net.URL;
import java.util.Date;

import com.vaadin.terminal.ExternalResource;
import com.vaadin.ui.CustomComponent;
import com.vaadin.ui.Embedded;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.Link;
import com.vaadin.ui.VerticalLayout;

@SuppressWarnings("serial")
public class TweetComponent extends CustomComponent {

 public TweetComponent(URL picture, String screenName, String
 fullName, String text, Date when, long tweetId) {

 setStyleName("v-tweet-component");

 HorizontalLayout root = new HorizontalLayout();

 root.setSizeFull();
 root.setSpacing(true);
 root.setMargin(true, false, true, false);

 setCompositionRoot(root);

 Embedded pictureEmbed = new Embedded("", new
 ExternalResource(picture));

 root.addComponent(pictureEmbed);

 VerticalLayout main = new VerticalLayout();

 main.setWidth("100%");

 root.addComponent(main);
 root.setExpandRatio(main, 1);

Chapter 8

[273]

 HorizontalLayout namesBlock = new HorizontalLayout();

 namesBlock.setSpacing(true);

 main.addComponent(namesBlock);

 Link screenNameLink = new Link(screenName, new
 ExternalResource("http://twitter.com/#!/" + screenName));

 screenNameLink.setStyleName("v-tweet-screen-name");

 namesBlock.addComponent(screenNameLink);

 Label fullNameLabel = new Label(fullName);

 fullNameLabel.setStyleName("v-tweet-full-name");

 namesBlock.addComponent(fullNameLabel);

 TweetLabel tweet = new TweetLabel(text);

 tweet.setWidth("100%");

 main.addComponent(tweet);

 HorizontalLayout actionsBar = new HorizontalLayout();

 main.addComponent(actionsBar);

 actionsBar.addComponent(new WhenLink(when, screenName, tweetId));
 }
}

Apart from the whole layout code, two important things are worthy of notice:

• The first is the component constructor. It has parameters for all data needed
for the component creation. We don't provide setters so that this data is used
for initialization only, the component is immutable.

We could have used the Status Twitter4J object directly
as a single parameter: it would have rendered the
signature more readable at the cost of the component
coupling with the Twitter4J API.

• Also, we remembered to use the setCompositionRoot() method and not
to add components directly to the component but to the root instead.

Of less importance, the setStyleName() calls are here so we can customize
the design with theming. They should be used in any composite component
worth reusing.

Creating Custom Components

[274]

Tweet label
The previous component used an unknown class, the TweetLabel. Such a
specialized label changes the displayed text so as to display HTML hyperlinks on
specific characters or groups thereof: URL of course but also @ and #.

This process is done at instantiation time with the help of three recursive methods,
one for each group.

Note that the next code could be further refined: at
present, it will sometimes include the trailing punctuation
character in the URL.

package com.packtpub.learnvaadin.twaattin.ui;

import com.vaadin.ui.Label;

@SuppressWarnings("serial")
public class TweetLabel extends Label {

 private static final String PROFILE_URL = "http://twitter.com/";

 private static final String SEARCH_URL = "http://twitter.com/#!/
 search?q=";

 public TweetLabel(String text) {

 setContentMode(CONTENT_XML);

 String enrichedText = enrichUrlRecursive(text, 0);

 enrichedText = enrichProfilesRecursive(enrichedText, 0);

 enrichedText = enrichSearchRecursive(enrichedText, 0);

 setValue(enrichedText);

 setStyleName("v-tweet-text");
 }

 private String enrichUrlRecursive(String text, int start) {

 StringBuilder builder = new StringBuilder(text);

 int http = text.indexOf("http", start);

 if (http > -1) {

 int space = text.indexOf(' ', http);

 if (space == -1) {

Chapter 8

[275]

 space = text.length();
 }

 String url = text.substring(http, space);

 builder.insert(http, "");

 int length = http + 2 * url.length() + 11;

 builder.insert(length, "");

 return enrichUrlRecursive(builder.toString(), length + 4);
 }

 return builder.toString();
 }

 private String enrichProfilesRecursive(String text, int start) {

 StringBuilder builder = new StringBuilder(text);

 int at = text.indexOf('@', start);

 if (at > -1) {

 int space = text.indexOf(' ', at);
 int colon = text.indexOf(':', at);

 int end = colon == space - 1 ? colon : space;

 if (end == -1) {

 end = text.length();
 }

 String profile = text.substring(at + 1, end);

 String profileUrl = "";

 builder.insert(at + 1, profileUrl);

 int length = end + profileUrl.length();

 builder.insert(length, "");

 return enrichProfilesRecursive(builder.toString(), length + 4);
 }

 return builder.toString();
 }

 private String enrichSearchRecursive(String text, int start) {

 StringBuilder builder = new StringBuilder(text);

Creating Custom Components

[276]

 int hash = text.indexOf('#', start);

 if (hash > -1) {

 int space = text.indexOf(' ', hash);
 int semicolon = text.indexOf(',', hash);

 int end = semicolon == space - 1 ? semicolon : space;

 if (end == -1) {

 end = text.length();
 }

 String term = text.substring(hash, end).replace("#", "%23");

 String searchUrl = "";

 builder.insert(hash, searchUrl);

 int length = hash + searchUrl.length() + term.length() - 2;

 builder.insert(length, "");

 return enrichSearchRecursive(builder.toString(), length + 4);
 }

 return builder.toString();
 }
}

When label
Also, the Tweet component uses another custom class, the WhenLink. It's just a
simple port of our previous WhenColumnGenerator (see Chapter 6 if you forgot
about it) that generates the tweet's creation date and adds a hyperlink to the tweet
on Twitter.

package com.packtpub.learnvaadin.twaattin.ui;

import static java.util.Calendar.DAY_OF_MONTH;
import static java.util.Calendar.HOUR_OF_DAY;
import static java.util.Calendar.MINUTE;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date;

import com.vaadin.terminal.ExternalResource;
import com.vaadin.ui.Link;

Chapter 8

[277]

@SuppressWarnings("serial")
public class WhenLink extends Link {

 public WhenLink(Date when, String screenName, long tweetId) {

 Calendar oneDayAgo = Calendar.getInstance();

 oneDayAgo.add(DAY_OF_MONTH, -1);

 Calendar tweetTime = Calendar.getInstance();

 tweetTime.setTime(when);

 String value;

 if (tweetTime.after(oneDayAgo)) {

 value = getText(tweetTime, HOUR_OF_DAY, "hour");

 if (value == null) {

 value = getText(tweetTime, MINUTE, "minute"); }

 if (value == null) {

 value = "right now";
 }

 } else {

 DateFormat format = new SimpleDateFormat("d MMM yy");

 value = format.format(tweetTime.getTime());
 }

 String tweetUrl = "http://twitter.com/" + screenName + "/status/"
 + tweetId;

 setResource(new ExternalResource(tweetUrl));

 setCaption(value);

 setStyleName("v-tweet-date");
 }

 private String getText(Calendar then, int field, String label) {

 Calendar now = Calendar.getInstance();

 int diff = 0;

 while (then.before(now)) {

 now.add(field, -1);

 diff++;
 }

 switch (diff) {

Creating Custom Components

[278]

 case 0:
 return null;

 case 1:
 return diff + " " + label + " ago";

 default:
 return diff + " " + label + "s ago";
 }
 }
}

As custom components go, we treat it in the same way: provide all needed data in
the constructor and set a style name for possible CSS customization.

Timeline window
The timeline window has to be changed to remove the table and add a panel to stack
the tweet components. You can download this code from the Packt site.

In the code itself, changes are few and involve replacing the table with a panel. The
most important thing is to use a Panel instead of a layout: it has the ability to show a
scrollbar to let the user display the entirety of its content.

Chapter 8

[279]

Final touch
The final touch consists of setting a theme during the application's initialization:

setTheme("twaattin");

Also, we have to create a styles.css file under the WebContent/VAADIN/themes/
twaattin folder. This CSS inherits from the reindeer theme and is used in order for
Twaattin to look like the Twitter application.

This file is printed below for reference:

@import "../reindeer/styles.css";

.v-link-v-tweet-screen-name {

 font-weight: bold;
 font-size: 11pt;
}

.v-link-v-tweet-screen-name a:link span,

.v-link-v-tweet-screen-name a:visited span {

 color: #333333;
 text-decoration: none;
}

.v-tweet-text a:link,

.v-tweet-text a:visited {

 color: #2970a6;
 text-decoration: none;
}

.v-link-v-tweet-screen-name a:hover span,

.v-tweet-text a:hover {

 color: #2970a6;
 text-decoration: underline;
}

.v-tweet-component {

 border-bottom: 1px solid #ebebeb;
}

.v-tweet-component:hover {

 background-color: #e9f0f6;
}

Creating Custom Components

[280]

.v-tweet-full-name {

 color: #999999;
}

.v-tweet-date a:link span,

.v-tweet-date a:visited span {

 font-size: 8pt;
 color: #999999;
 text-decoration: none;
}

.v-tweet-date a:hover span {

 color: #2970a6;
 text-decoration: underline;
}

Summary
In this chapter, we learned the two ways to create custom components to extend our
palette of existing widgets.

The first section told us about component composition. Composition is all about
inheriting from CustomComponent. This can be done manually or graphically
through the Visual Editor available in the Eclipse Vaadin plugin.

In the second section, we saw that the way Vaadin wraps GWT widgets is also
available to us as developers. We just have to provide:

• A client class that inherits from the GWT widget and has to implement
Paintable. It will be compiled into JavaScript and managed by GWT.

• A server class that binds the client class through an annotation. It will
be this one we will use in our code.

Communication between the two components is possible, in a bidirectional
route. From the server to the client, changes are sent through the standard UIDL
serialization process. For the other way, they are managed by GWT event handlers.
In both cases, they are stored in the variables attached to each widget.

Integration with Third-party
Products

At this point, we are fairly proficient with the Vaadin framework as all its concepts
have been seen in the previous chapter. However, just the presentation layer is not
enough in most applications.

In those cases, we will need to go beyond even advanced notions and integrate
Vaadin with other third-party APIs and products, which have other responsibilities.
In this chapter, we will look at some widespread or rising products which we will
have to integrate with at one point or another. These are as follows:

• Spring, on the service layer. Spring is a great and widely used framework
that allows us to decouple classes in applications. Using Spring in Vaadin
will produce components that can be assembled through configuration.

• Java EE 6, and more precisely Context and Dependency Injection, as well as
Servlet 3.0. The former is highly similar to Spring, and the latter will let us
create a Java EE 6-compatible servlet.

• Hibernate, on the data access layer. Hibernate was the bootstrap for
persistence layer standards such as JPA and is still widely used. We will use
it to connect tables to databases.

However, note that beyond a general presentation, the goal of this chapter is not to
explain those different products in detail (which is well beyond the scope of a single
book anyway). You are welcome to browse through Packt available books
for detailed books on the subject at hand at http://www.packtpub.com/

Integration with Third-party Products

[282]

Spring
Spring is a proprietary framework made available by SpringSource (http://www.
springsource.org/about) that provides Inversion of Control through
Dependency Injection.

Inversion of Control and Dependency
Injection
Inversion of Control and Dependency Injection are notions that are often used
interchangeably, but there is a slight difference between them.

Inversion of Control
Inversion of Control, or IoC, is the principle by which a component can get
a reference on another component without first instantiating it so there is low
coupling between the two.

In Java and Java EE, there are several ways to achieve IoC:

• The first way is through the Abstract Factory [GOF:87] pattern which is
possible in pure Java.

• Another implementation in Java EE only, is through the Service Locator
pattern. In this pattern, the application server instantiates services and make
them available, whereas applications look up for them in order to use them.

• The final possibility is Dependency Injection.

For more information on Service Locator, visit the following URL:
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/ServiceLocator.html

Dependency Injection
Dependency Injection, or DI, is a specific form of IoC. In DI, both object creation and
injection of its dependencies are delegated to a specific part of the system.

IoC comes in different flavors:

• Interface injection is the most intrusive. In this case, we have to implement
an interface to benefit from injection.

Chapter 9

[283]

• Constructor injection needs constructors where all needed dependencies are
passed as parameters. This is a one-time initialization.

• Finally, in setter injection, the class has to provide a setter for each
dependency. The injector then has to call the setter associated with
each configured dependency.

Spring use-cases
Spring is used to decouple the building blocks of our application from one another,
be they classes, packages, or JARs. Spring lets us abstract our dependencies, so we
can inject a class in an environment such as an integration test, and another class in
the standard running environment.

This also allows us to stub our dependencies with mock objects to test our class in
isolation, for unit testing.

As an example, the Twitter service used in Twaattin is a good use case of using
Spring. The current code has flaws: the application is tightly coupled to the service,
thus preventing unit testing: it is not possible to test the UI without using Twitter,
which makes testing difficult.

Prerequisites
Once the Vaadin project is developed in our favorite IDE, we need to do a few
things first.

Downloading Spring
Our first action is to download Spring itself. It is available on the SpringSource
website, at http://www.springsource.com/download/community. Just grab the
latest distribution, which is 3.0.6 at the time of writing.

Open the archive and copy from the dist folder to the WebContent/WEB-INF/lib
directory the following modules: asm, beans, context, core, expressions, and web.

Also, note that Spring has dependencies on some third-party frameworks. For
non-Maven users, we will need to download them manually:

JAR Download URL Description
Commons
Logging 1.1.1

http://commons.apache.org/
logging/download_logging.cgi

Facade over other logging tools
such as Log4j or JDK 1.4 log

CGLIB 2.2 http://sourceforge.net/
projects/cglib/files/

Bytecode manipulation

Integration with Third-party Products

[284]

JAR Download URL Description
AOP
Alliance 1.0

http://sourceforge.net/
projects/aopalliance/files/
aopalliance/

Cross-cutting concerns
management through an
abstraction over raw bytecode
manipulation

Maven is an open source build tool brought by the Apache
Foundation. If you don't already use Maven, then you are welcome
to browse through http://maven.apache.org/

IDE enhancements
In order to ease Spring application development, there are a few options:

• The easiest way is to use the Spring Tools Suite (STS), which was discussed
in Chapter 2. Environment Setup. STS is the IDE to use when heavily
developing with the Spring framework.

• Alternatively, we could also use the Spring IDE Eclipse plugin. It is available
as an update site at http://springide.org/updatesite. See Chapter 2 for
reminders on how to configure an update site in Eclipse.

• Finally, there is partial Spring support in NetBeans. Detailed feature matrix is
available at http://wiki.netbeans.org/SpringSupport.

Whatever the choice you make, be sure that you are comfortable with it.

Design
Before developing the integration glue between Vaadin and Spring, we have to
understand how both work in more detail.

Bean factory and application context
In Spring, every object is a bean and the bean factory's responsibility is to instantiate
them. Moreover, the latter also configures the beans and wires them together to
fill the dependencies when needed. This wiring can either be done explicitly or
detected automatically.

Chapter 9

[285]

Spring applications use a refined bean factory, the application context, that provides
additional features such as internationalization (i18n), event handling and lifecycle
management, such as stopping the context.

Finally, Spring web applications use a special application context that the framework
binds to the servlet context of the web application.

Vaadin application and servlet
In Chapter 3, Hello Vaadin, we learned that one of the servlet's responsibilities is to
create (and subsequently locate) the application instance relative to the user's session.

Integrating Spring would change this default behavior in order to configure the
application instance in the Spring's application context and connect to the latter
to retrieve it. That is what we are going to do.

Requirements and specifications
In order to be the most generic and be used in as many applications as possible, it is
best to have some requirements and specifications:

• Code should not have additional dependencies but Vaadin, Spring, and
Spring's own transitive dependencies.

• Configuration should not need custom files. It should only be done in the
web deployment descriptor, or in Spring bean definition files.

• The code should fit seamlessly into the existing Vaadin framework.
• Finally, the code should not impose limitations or inheritance requirements,

so that legacy applications could be migrated without changes.

Integration with Third-party Products

[286]

Code
The code is very straightforward and takes a single servlet to implement:

Servlet code
The following is the servlet code:

package com.packtpub.vaadin;

import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;

import org.springframework.web.context.WebApplicationContext;
import org.springframework.web.context.support.
WebApplicationContextUtils;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.AbstractApplicationServlet;

@SuppressWarnings("serial")
public class SpringApplicationServlet extends
 AbstractApplicationServlet {

 private static final String DEFAULT_APP_BEAN_NAME = "application";

 private String name;

 private WebApplicationContext wac;

 @Override
 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 String name = config.getInitParameter("applicationBeanName");

 this.name = name == null ? DEFAULT_APP_BEAN_NAME : name;

 ServletContext servletContext = config.getServletContext();

 wac = WebApplicationContextUtils.getWebApplicationContext
 (servletContext);

 if (wac == null) {

 throw new ServletException("Cannot
 initializeWebApplicationContext");
 }
 }

Chapter 9

[287]

 @Override
 protected Application getNewApplication
 (HttpServletRequest request) throws ServletException {

 Object bean = wac.getBean(name);

 if (!(bean instanceof Application)) {

 throw new ServletException("Bean " + name + " is not of
 expected class Application");
 }

 return (Application) bean;
 }

 @SuppressWarnings({ "unchecked", "rawtypes" })
 @Override
 protected Class<? extends Application> getApplicationClass() throws
 ClassNotFoundException {

 Object bean = wac.getBean(name);

 if (bean == null) {

 throw new ClassNotFoundException("No application bean found
 under name " + name);
 }

 return (Class) bean.getClass();
 }
}

The Spring integration servlet is just a simple servlet that inherits from
AbstractApplicationServlet. Thus, we have to implement two methods,
respectively getApplicationClass () and getNewApplication().

• The first one is also the first one called. It is mainly used to get the CSS class
name of the application, as well as get internationalized messages templates.
In our case, we just read the bean from the context and get its class.

• The second method is used to get the application instance itself. As
previously, we get it from the Spring context.

The servlet itself is pretty straightforward and not cause for many questions. The
only thing to take care of is error management (if the bean is not present in the
context or not of the right class).

Integration with Third-party Products

[288]

Additionally, we supply a way to configure the expected bean name in the
Spring context. By default, it is "application" but it can also be parameterized
in the web.xml:

<servlet>
 <servlet-name>Spring Integration</servlet-name>
 <servlet-class>
 com.packtpub.vaadin.SpringApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>applicationBeanName</param-name>
 <param-value>app</param-value>
 </init-param>
</servlet>

This way, we can work with more than one Vaadin servlet, each having its
own bean.

Spring configuration
The Spring configuration however, is a little bit more complex.

Scope
Application instances are stored in the session scope. Spring "standard" scopes are
singleton, meaning there is only a single instance for the entire application, and
prototype, which means a new instance is returned for each get.

Spring, and more particularly the web module, provides more scope than these two.
In particular, there is a session scope. However, its use requires some explanations.

When working with session-scoped dependencies, Spring fills them with proxies.
It is only when there is enough information that those proxies are replaced with the
real dependency. This has some important consequences:

• First, we need to use Aspect-Oriented Programming in order to change the
bytecode. Don't worry, Spring will take care of most tasks.

 ° We have to add the namespace "http://www.springframework.
org/schema/aop" to our Spring bean configuration file under the
aop prefix.

 ° In order for the dependency to be temporarily replaced by a proxy,
the bean should use a subtag <aop:scoped-proxy />.

Chapter 9

[289]

The following is an example of such a configuration file:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
 3.0.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">
 <bean name="application" scope="session"
 class="com.packtpub.vaadin.SpringVaadinApplication">
 <aop:scoped-proxy />
 <property name="message" value="Hello World!" />
 </bean>
</beans>

• Second, we need the proxied application to be replaced with the real session-
scoped application when the request is received (and thus, when the session
becomes available). This is done in the web deployment descriptor through
Spring's RequestContextListener.

An example of such web.xml would look like so:
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://
java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 id="WebApp_ID" version="2.5">
 <display-name>SpringVaadinApplication</display-name>
 <context-param>
 <param-name>productionMode</param-name>
 <param-value>false</param-value>
 </context-param>
 <servlet>
 <servlet-name>Spring Integration</servlet-name>
 <servlet-class>
 com.packtpub.vaadin.SpringApplicationServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Spring Integration</servlet-name>
 <url-pattern>/*</url-pattern>

Integration with Third-party Products

[290]

 </servlet-mapping>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
</web-app>

In addition, notice the Spring framework bootstrapping listener is configured to start
Spring automatically.

Additional thoughts
This very simple servlet lets us use Spring transparently in our applications. We can
create injected Spring—managed instances fairly simply.

Moreover, this lets us use more than one Vaadin application in our application: each
is configured as a Vaadin servlet and can be configured its own application bean in
the Spring context. For more details on how to configure more than one application
on the same page client side, see the section named Nominal embedding of Chapter 7,
Advanced Features.

Finally, there is one drawback to this approach: the serialized application has to
reattach itself to the Spring context when being deserialized. This behavior is left
as an exercise to the reader.

Java EE 6
Java EE 6 is the latest version in the line of available standard platforms for Java
Enterprise applications. In our case, two stacks are of particular interest to us: Java
Servlet 3.0 (also known as JSR 315) and Context and Dependency Injection (also
known as JSR 299).

Chapter 9

[291]

Introduction
Before going further, we will need to quickly browse through Java EE 6 101.

Profiles
Java EE 6 comes with the concept of profiles. A profile is a combination of different
stacks, oriented toward specific use-cases. This strategy let suppliers provide less
than the full stacks implemented, yet fulfill customer needs and be recognized as
Java EE 6-compliant.

The smallest support that encompasses both Servlet 3 and CDI is called the Web
Profile, which is intended for applications not needing the whole package of
enterprise-grade features.

For a complete description of all stacks included in the Web Profile,
refer to the following URL:
http://java.sun.com/developer/technicalArticles/
JavaEE/JavaEE6Overview_Part3.html#webprof

Tomcat and the web profile
Unfortunately, even the latest version of Tomcat does not implement the Web
Profile. It only provides JSP 2.2, EL 2.2, and Servlet 3.0. As such, Tomcat is not
suitable for illustrating our Vaadin Java EE 6 integration.

Prerequisites
As Tomcat does not meet our needs, we need to use a compliant application server.

Glassfish 3.1
Glassfish is a fully compliant Java EE 6 open source application server supplied by
Oracle and completely free. As it fits all our requirements, let's see how we can use it.

Glassfish download
Glassfish can be downloaded on java.net at http://glassfish.java.net/
downloads/3.1-final.html. Choose the full platform or the web profile
distribution: the latter is enough for our usage.

Integration with Third-party Products

[292]

Glassfish installation
Once downloaded, launch the executable. As the Glassfish installation is
beyond the scope of this book and there is a fairly complete guide, refer to it
at http://glassfish.java.net/docs/3.1/installation-guide.pdf.

Eclipse integration
Prior to creating the managed server under Eclipse, we have to install the Glassfish
plugin available at http://dlc.sun.com.edgesuite.net/glassfish/eclipse/
helios/. Please refer to Adding WTP to Eclipse in Chapter 2 for instructions in how
to use or install a plugin. You will have to restart Eclipse at the end of the
installation.

In the Server view (where we already created the Tomcat server), right click: New
| Server. It will open a dialog window, as shown in the following screenshot: select
Glassfish 3.1 and click on Next:

Fill in the chosen JDK (must be at least Java 6) and the path to the folder you
installed Glassfish in and click on Next.

If Eclipse complains that "The specified directory is not a valid
GlassFish installation, but contains a glassfish subdirectory which
might be valid", be sure to choose the glassfish subdirectory.

Chapter 9

[293]

Fill the values according to the values entered during the Glassfish installation.

Click on Finish and we are ready to go!

From this point on, we just have to deploy Java EE applications to Glassfish just as
we did for Tomcat under Eclipse.

Code
Like in Spring, the main focus of Java EE 6 integration lies in the dependency
injection through CDI. Like in Spring, this is done in the servlet; unlike in Spring,
it is a no-brainer.

Servlet
The CDI-Vaadin integration servlet looks like this:

package com.packtpub.vaadin;

import javax.enterprise.context.SessionScoped;
import javax.inject.Inject;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServletRequest;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.AbstractApplicationServlet;

@SuppressWarnings("serial")

Integration with Third-party Products

[294]

@WebServlet(urlPatterns = "/*")
public class CdiIntegrationServlet extends AbstractApplicationServlet
{

 @Inject
 private CdiIntegrationApplication application;

 @Override
 protected Application getNewApplication(HttpServletRequest
 request) throws ServletException {

 return application;
 }

 @Override
 protected Class<? extends Application> getApplicationClass()
 throws ClassNotFoundException {

 return application.getClass();
 }
}

For dependency injection, we just use the @Inject annotation. As the application
instance is stored in the session, don't forget to annotate it with @SessionScoped
(see below). That is all!

Additionally, we can map the servlet to an URL pattern in the code itself.

In this case, note that this decreases the portability of your code
in third-party applications as annotations belong to the code.
Alternatively, we could let end-developers map the servlet in their
webapps own deployment descriptor.

Application
The following is the Vaadin application's code:

package com.packtpub.vaadin;

import javax.enterprise.context.SessionScoped;
import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.HttpServletRequestListener;

Chapter 9

[295]

@SuppressWarnings("serial")
@SessionScoped
public class CdiIntegrationApplication extends Application implements
HttpServletRequestListener {

 @Inject
 private CdiWindow window;

 @Override
 public void init() {

 setMainWindow(window);
 }

 public void onRequestStart(HttpServletRequest request,
 HttpServletResponse response) {

 window.setSessionId(request.getSession().getId());
 }

 public void onRequestEnd(HttpServletRequest request,
 HttpServletResponse response) {}
}

The application has a single requirement: it has to be annotated with @SessionScoped
in order for the CDI component to store it in the session, just like in the standard
behavior.

From there, we can configure attributes to be injected in application instances.

This particular application implementation reads jessionid, so that we can test two
different instances to really be in two separate sessions.

Window
A window example looks like the following:

package com.packtpub.vaadin;

import javax.annotation.PostConstruct;

import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.CheckBox;
import com.vaadin.ui.Label;
import com.vaadin.ui.Window;

Integration with Third-party Products

[296]

@SuppressWarnings("serial")
public class CdiWindow extends Window {

 private Label label;

 public CdiWindow() {

 super("CDI Integration");
 }

 @PostConstruct
 protected void initialize() {

 label = new Label("Hello");

 addComponent(label);

 CheckBox check = new CheckBox();

 check.setImmediate(true);

 check.addListener(new ClickListener() {

 public void buttonClick(ClickEvent event) {

 CdiWindow.this.showNotification(event.getSource().toString());
 }
 });

 addComponent(check);
 }

 public void setSessionId(String id) {

 label.setValue("Hello " + id);
 }
}

Finally, windows are nothing special. However, in our code, we used the
@PostConstruct annotation to nicely decouple the constructor code and
initialization code.

Our specific implementation displays both the session identifier and a message
stating whether the checkbox is checked or not. These let us make sure that the
application and its associated window is bound to the session.

Hibernate
Hibernate, along with EclipseLink (formerly TopLink), is one of the most used Object
Relational Mapping in the Java world. Chances are you are already using it and in
this case, you will probably want to keep it, this time in conjunction with Vaadin.

Chapter 9

[297]

Hibernate mappings
Hibernate being an ORM tool, basically maps between a Java class and a table, and
their respective attributes and columns.

Seeing is believing
Throughout this section, we will take a simple example. In order to simplify things,
we will use the Person/Job example already used in Chapter 7 and update it to
use Hibernate.

Job
The following is the source of the Job entity:

package com.packtpub.learnvaadin;

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Job {

 @Id
 private Long id;
 private String label;

 ... // Trivial getters and setters

The Job class is as straightforward as can be. In order for the class to become an
entity, we use JPA annotations: specifically @Entity and @Id from the javax.
persistence package.

Person
The following is the source of the Person entity, which has an association to a
single Job:

package com.packtpub.learnvaadin;

import java.util.Date;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.ManyToOne;

Integration with Third-party Products

[298]

@Entity
public class Person {

 @Id
 private Long id;
 private String firstName;
 private String lastName;
 private Date birthdate;
 @ManyToOne
 private Job job;

 ... // Trivial getters and setters

A person can have a job, which can be the same for two or more persons. As such,
we introduce the @ManyToOne annotation to qualify such an association.

Both sources use simple JPA annotations. For the complete
reference documentation on the JSR, visit the following URL:
https://cds.sun.com/is-bin/INTERSHOP.
enfinity/WFS/CDS-CDS_JCP-Site/en_US/-/USD/
ViewProductDetail-Start?ProductRef=ejb-3_0-fr-
eval-oth-JSpec@CDS-CDS_JCP

Hibernate container
We learned in Chapter 7 about the SQL Container add-on. There is also a Hibernate
add-on available, which suits our needs just fine.

Container architecture
The container's architecture is very simple. It is a single class, the container itself,
with an associated session manager that handles Hibernate sessions.

Chapter 9

[299]

The Hibernate container has all the properties from a container used for tables.

HbnContainer maturity
The Hibernate container add-on was developed from a proof-of-
concept. As such, and although it is fully functional, it also has some
flaws. First, it packages examples in the production JAR. Second, the
update method uses save() instead of update() or merge(): you
should not use it but rely on Session methods directly.

The container needs a session manager. The latter is an interface whose sole
responsibility is to supply Hibernate sessions.

In web applications, this is done with the getCurrentSession() method of the
SessionFactory instance. This method either opens a connection to the database
and stores it in a specific context or it retrieves it from the same context. This context
can be configured when creating the session factory. In prototyping use-cases, it is
the thread with the help of the ThreadLocal class.

More information on contextual sessions is available at the following
URL:
http://docs.jboss.org/hibernate/core/3.6/reference/
en-US/html_single/#architecture-current-session

Managing transactions
The real challenge in using Hibernate in a Vaadin context lies in the transaction
manager. For example, Hibernate will vehemently complain if it does not find an
active transaction before creating a criterion. This is exactly what the Hibernate
container does.

org.hibernate.HibernateException: createCriteria is not valid without active
transaction

Thus, a transaction is necessary, meaning we have to demarcate the transaction that
is both a start point and a commit/rollback to end it.

Integration with Third-party Products

[300]

Starting transaction
Starting the transaction is very straightforward: basically, it can be done when asking
the session manager for a session.

In this case, do not forget to check to see whether there is a transaction already
started (a possible occurrence) on the session:

public Session getSession() {

 Session session = factory.getCurrentSession();

 if (!session.getTransaction().isActive()) {

 session.beginTransaction();
 }

 return session;
}

Committing/rollbacking
Rollbacking is never a problem: when there is an exception, check if there is an active
transaction and then rollback changes.

On the contrary, committing should only be called if everything ran fine and should
be executed at the very end. The question is how can we find this "very end" spot?

This is a complex question with multiple answers.

Committing filter
The first solution is to use a standard Java EE filter. Filters are the solution when one
wants to change either or both the request and/or the response.

In this case, the filter is used to "clean" our transaction. Although not really among
standard filters' use-cases, it works.

package com.packtpub.learnvaadin;

import java.io.IOException;
import java.util.Iterator;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

Chapter 9

[301]

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.hibernate.Session;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.WebApplicationContext;

public class CommitFilter implements Filter {

 @Override
 public void destroy() {}

 @Override
 public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain chain) throws IOException, ServletException {

 chain.doFilter(req, res);

 HttpServletRequest request = (HttpServletRequest) req;

 HttpSession httpSession = request.getSession();

 WebApplicationContext context =
 WebApplicationContext.getApplicationContext(httpSession);

 Iterator<Application> apps =
 context.getApplications().iterator();

 if (apps.hasNext()) {

 SqlContainerApplication app = (SqlContainerApplication)
 apps.next();

 Session session = app.getSessionManager().getSession();

 Transaction transaction = session.getTransaction();

 if (transaction.isActive()) {

 transaction.commit();
 }
 }

 @Override
 public void init(FilterConfig config) throws ServletException {}
}

Application contexts were seen in Chapter 7. If you need a quick reminder, please
refer to the section Accessing with the request-response model in Chapter 7.

Integration with Third-party Products

[302]

In essence, the filter passes the request to the servlet and then:

• Gets the application from the session
• Gets the session from the application; we assume it is one of its

responsibilities: it's valid for the rest of this section
• Gets the transaction from the session and commits it if it is active

Note that the filter is applied for every request, even if there are no changes to
commit. As such, it is not very efficient.

Committing aspect
Committing here has to be executed just before sending the response; it is a potential
subject of an Aspect Oriented Programming (AOP). In this regard, an aspect that
runs just after the service() method of the Vaadin servlet(s) would suit our needs
just fine.

As AOP is well beyond the scope of this book, readers interested in this approach are
encouraged to create an aspect using their preferred framework: the preceding filter
code is basically the same.

Committing servlet
Another solution, albeit a bit brutal, would be to inherit from Vaadin's com.vaadin.
terminal.gwt.server.ApplicationServlet and override the service() method
to add the commit code.

package com.packtpub.learnvaadin;

import java.io.IOException;
import java.util.Iterator;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import org.hibernate.Session;
import org.hibernate.Transaction;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.ApplicationServlet;
import com.vaadin.terminal.gwt.server.WebApplicationContext;

@SuppressWarnings("serial")
public class CommitServlet extends ApplicationServlet {

Chapter 9

[303]

 @Override
 protected void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException
{

 super.service(request, response);

 HttpSession httpSession = request.getSession();

 WebApplicationContext context =
 WebApplicationContext.getApplicationContext(httpSession);

 Iterator<Application> apps =
 context.getApplications().iterator();

 if (apps.hasNext()) {

 SqlContainerApplication app =
 (SqlContainerApplication) apps.next();

 Session session = app.getSessionManager().getSession();

 Transaction transaction = session.getTransaction();

 if (transaction.isActive()) {

 transaction.commit();
 }
 }
 }
}

The main drawback of this strategy is that it is highly dependent on the servlet, thus
preventing us to reuse it with either our Spring or CDI servlets (or at least needing a
certain amount of copy-pasted code).

Vaadin native approach
The application context is designed to add/remove transaction listeners.

These listeners are called before each communication between the server and client
(what is called a transaction).

Integration with Third-party Products

[304]

In essence, we keep the database transaction start when we get the session and we
commit it when the communication is sent to the client (and only if active).

Such a transaction listener would look like this:

package com.packtpub.learnvaadin;

import org.hibernate.Session;
import org.hibernate.Transaction;

import com.vaadin.Application;
import com.vaadin.service.ApplicationContext.TransactionListener;

@SuppressWarnings("serial")
class CommitTransactionListener implements TransactionListener {

 @Override
 public void transactionStart(Application application, Object
 transactionData) {}

 @Override
 public void transactionEnd(Application application, Object
 transactionData) {

 SqlContainerApplication sqlContainerApplication =
 (SqlContainerApplication) application;

 Session session =
 sqlContainerApplication.getSessionManager().getSession();

 Transaction transaction = session.getTransaction();

 if (transaction.isActive()) {

 transaction.commit();
 }
 }
}

We reuse the same code as before, but in a "Vaadin way". Note that both methods
are called for every communication. Thus, it is added for every UI change. For
example, when displaying the content of a list box for which there is no reason
for a transaction.

As such, as for filters, the preceding code may not be very efficient.

Example session manager
Now that the commit strategy is chosen, we need a session manager implementation.
As said previously, it's best to rely on the getCurrentSession() that either creates
the session or gets it from a context.

package com.packtpub.learnvaadin;

import org.hibernate.Session;

Chapter 9

[305]

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

import com.vaadin.data.hbnutil.HbnContainer.SessionManager;

final class CurrentSessionManager implements SessionManager {

 private final SessionFactory factory;

 CurrentSessionManager() {

 Configuration cfg = new Configuration().addAnnotatedClass
 (Person.class).addAnnotatedClass(Job.class);

 factory = cfg.buildSessionFactory();
 }

 @Override
 public Session getSession() {

 Session session = factory.getCurrentSession();

 if (!session.getTransaction().isActive()) {

 session.beginTransaction();
 }

 return session;
 }
}

Note we also start the transaction if it wasn't already active.

The application
The application is tasked with making sessions available, and delegates to the
session manager.

package com.packtpub.learnvaadin;

import java.sql.Date;

import org.hibernate.Session;

import com.vaadin.Application;
import com.vaadin.data.hbnutil.HbnContainer.SessionManager;

public class SqlContainerApplication extends Application {

 private static final long serialVersionUID = 1L;

 private transient SessionManager sessionManager;

 @Override
 public void init() {

Integration with Third-party Products

[306]

 getContext().addTransactionListener
 (new CommitTransactionListener());

 // GUI code here
 }

 public synchronized SessionManager getSessionManager() {

 if (sessionManager == null) {

 sessionManager = new CurrentSessionManager();
 }

 return sessionManager;
 }
}

Important facts about the previous code are:

• As the session manager should not be serialized, it is marked as transient.
• In order to retrieve the session manager when it has not already been

instantiated (either because it is the first call or because the application has
just been deserialized), we use the singleton pattern with a lazy initialization.
Notice the method is synchronized to have only a single instance at any time.
Besides, it may be seen as overkill since two different instances would return
the same session anyway.

At last, the window
The last piece in our application is the window itself. It displays persons in a table,
with text fields for simple attributes, a select widget for the job and a delete button
for removing the entity from the table.

Delete button
The delete button is a basic implementation and is not tied to the underlying
container, Hibernate or whatever.

package com.packtpub.learnvaadin;

import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.Component;
import com.vaadin.ui.Table;
import com.vaadin.ui.Table.ColumnGenerator;

Chapter 9

[307]

@SuppressWarnings("serial")
class DeleteColumnGenerator implements ColumnGenerator {

 @Override
 public Component generateCell(final Table source, Object itemId,
 Object columnId) {

 Button button = new Button("Delete");

 button.setData(itemId);

 button.addListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 Object itemId = event.getButton().getData();

 source.removeItem(itemId);
 }
 });

 return button;
 }
}

When deleting, we remove the item from the table, which in turn delegates the
removing to the container. Therefore, we are isolated from the container's type
and we can reuse this delete button in many containers, with no knowledge of the
underlying container's specific type.

Job select
The job select column generator lets us display the job of a person in the form of
a simple select.

The select has two important requirements:

• When initially displayed, it should show the job of the person as it is in
the database.

• When its value is changed, the foreign key value in the database should be
changed accordingly.

package com.packtpub.learnvaadin;

import org.hibernate.Session;

import com.vaadin.data.Property;
import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;

Integration with Third-party Products

[308]

import com.vaadin.data.hbnutil.HbnContainer;
import com.vaadin.data.hbnutil.HbnContainer.SessionManager;
import com.vaadin.ui.Component;
import com.vaadin.ui.Select;
import com.vaadin.ui.Table;
import com.vaadin.ui.Table.ColumnGenerator;

@SuppressWarnings("serial")
class JobColumnGenerator implements ColumnGenerator {

 private SqlContainerApplication application;

 JobColumnGenerator(SqlContainerApplication application) {

 this.application = application;
 }

 @Override
 public Component generateCell(final Table source, final
 Object itemId, Object columnId) {

 HbnContainer<Job> jobContainer = new
 HbnContainer<Job>(Job.class, application.getSessionManager());

 final Select select = new Select("", jobContainer);

 select.setItemCaptionPropertyId("label");

 select.setImmediate(true);

 Property jobProperty =
 source.getItem(itemId).getItemProperty("job");

 Long jobId = (Long) jobProperty.getValue();

 if (jobId != null) {

 select.select(jobId);
 }

 select.addListener(new ValueChangeListener() {

 @Override
 public void valueChange(ValueChangeEvent event) {

 Long jobId = (Long) event.getProperty().getValue();

 Job job = null;

 SessionManager sessionManager =
 application.getSessionManager();

 Session session = sessionManager.getSession();

 Person person = (Person) session.get(Person.class,
 (Long) itemId);

Chapter 9

[309]

 if (jobId != null) {

 job = (Job) session.get(Job.class, jobId);

 }

 person.setJob(job);
 }
 });

 return select;
 }
}

The previous code just implements the initial value selection and the update process.
Some things are worth mentioning:

• We use the application getSessionManager() method in order to use
the lazy instance provided by it. In this way, we do not store the session
and avoid getting stale connections while sharing the session across all
containers.

• We easily get the job's ID: there is no coupling to the Hibernate container as
we manipulate high-level abstractions. As such, selecting the correct job in
the select widget is a no-brainer.

It consists of getting the person's job property value, which is a foreign key,
and setting it on the select, which uses the job's primary key.

• Finally, changing the database to the value of the selected job is just a matter
of creating a listener. The latter gets the job and the person, and associates
both. The only "difficulty" is managing null selection.

For Hibernate's less seasoned developers, note there's no call to
update() or merge() since we load the Person entity from
the session. Committing the transaction will flush the session
and thus execute the UPDATE.

Main window
The main window just has to use a Hibernate container for persons.

Like components we already developed, this one has initialization code separated
in two parts: one in the constructor and one in another method so as to access
the application.

package com.packtpub.learnvaadin;

import com.vaadin.data.hbnutil.HbnContainer;
import com.vaadin.data.hbnutil.HbnContainer.SessionManager;

Integration with Third-party Products

[310]

import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Table;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;

public class MainWindow extends Window {

 private static final long serialVersionUID = 1L;

 private Table table;

 public MainWindow() {

 VerticalLayout vLayout = new VerticalLayout();

 vLayout.setMargin(true);

 setContent(vLayout);

 table = new Table();

 table.setPageLength(10);
 table.setEditable(true);
 table.setSizeFull();

 table.addGeneratedColumn("delete", new DeleteColumnGenerator());

 addComponent(table);

 HorizontalLayout hLayout = new HorizontalLayout();

 hLayout.setMargin(true);
 hLayout.setSpacing(true);

 addComponent(hLayout);
 }

 void initialize() {

 SqlContainerApplication app = (SqlContainerApplication)
 getApplication();

 SessionManager sessionManager = app.getSessionManager();

 HbnContainer<Person> personContainer = new
 HbnContainer<Person>(Person.class, sessionManager);

 table.setContainerDataSource(personContainer);

 table.addGeneratedColumn("job", new
 JobColumnGenerator((SqlContainerApplication) getApplication()));

 table.setVisibleColumns(new Object[] { "firstName", "lastName",
 "birthdate", "job", "delete" });
 }
}

Note that very few lines (those highlighted) are coupled to the Hibernate container.
We could easily provide an implementation that uses the SQL container of Chapter 7.

Chapter 9

[311]

Hibernate configuration
For the sake of completeness, here is the hibernate.properties file. It uses
HyperSonic SQL database.

hibernate.connection.url=jdbc:hsqldb:mem:vaadin
hibernate.connection.driver_class=org.hsqldb.jdbc.JDBCDriver
hibernate.connection.username=SA
hibernate.connection.password=
hibernate.show_sql=true
hibernate.dialect=org.hibernate.dialect.HSQLDialect
hibernate.current_session_context_class=thread
hibernate.hbm2ddl.auto=update

Putting it all together
Before using these classes, a few steps are required.

Hibernate
Download Hibernate first: it is available on SourceForge, at http://sourceforge.
net/projects/hibernate/files/hibernate3/. The latest distribution is 3.6.4.
Final at the time of writing.

Open the archive and copy the hibernate.jar to the WebContent/WEB-INF/lib
directory, as well as the content of the lib/required.

For Maven users just add the dependency to your POM and you are done!

SLF4J
However, note that Hibernate is dependent on a logging framework named SLF4J.

Interested readers can go to http://www.slf4j.org/ for
more details

This framework is available in two JARs, one for the API, the other for different
implementations. Although the former is distributed along Hibernate, the latter is
a personal choice. Whether we are using Maven or not, we have to decide which
implementation to use: Log4j, Jakarta Commons Logging, JDK logging or simple
System.out and System.err calls. In all cases, we will have to download the
implementation JAR from http://www.slf4j.org/download.html. Moreover,
in the two former cases, we will also need to download the right JAR from their
respective sites.

Integration with Third-party Products

[312]

Version match
It goes without saying that both API and implementation
versions have to match. Furthermore, both must also be
compatible with the "true" logging framework in the case
of Log4j or Commons Logging. Maven will take care of this
through the POM but otherwise, it is advised to carefully
read the documentation to align versions.

HbnContainer
Additionally, download the Hibernate container itself. This add-on is available at
http://vaadin.com/directory#addon/hbncontainer.

Final notes
Before closing the door on the Hibernate container, there are some remarks that need
to be made.

Serialization exception
When using the Hibernate container, during consecutive restarts, a strange
exception may appear in the log: java.io.WriteAbortedException: writing
aborted; java.io.NotSerializableException: org.hibernate.persister.entity.
SingleTableEntityPersister.

Although not impacting application's normal run, this causes data not to be
serialized (and thus state loss) during session serialization. In essence, it all boils
down to a single ClassMetadata field of the Hibernate container. Therefore, we
should either subclass the container and provide our own serialization process or
live with the stack in the log.

Optimizations
Seasoned Hibernate developers (and less experienced ones) noticed the stack is full
of Hibernate queries.

For example, it seems jobs are queried for every line, which is not a very good idea as
they are more like a repository table.

In order to reduce the number of queries, it is advised to set up a second level
cache, based on your favorite product (see Ehcache or JBoss cache for example)
and configure it for the container's usage.

Chapter 9

[313]

This goes well beyond Vaadin; the lesson here being that using Vaadin should
not make you forget parts of the application unrelated to the presentation are
also important, if not more so.

Rollback management
Our code does not manage any rollback for the sake of simplicity. In production code
however, it is not an option.

What really matters in this case is re-synchronizing the GUI with the data. As such,
in case of rollbacks, it is advised to reload the data from the database tier.

Java Persistence API
Although JPA is part of Java EE 6, it merits its own section.

JPA is very similar to Hibernate, in that it is the standardized way to access database,
whereas Hibernate is a proprietary approach.

The add-on directory also offers a container able to use JPA 1.0: the Vaadin JPA
Container. The add-on is certified by the Vaadin Company, note that it is available
under either the AGPL license if your project is compatible or a commercial license.

We won't go into further details here as most concepts are very similar to Hibernate
container. Moreover, we also used JPA mappings for our previous example.
Anyway, knowing this add-on exists can be a lifesaver.

Summary
This chapter saw us browsing through a variety of third-party products and
standards. In all cases, Vaadin could use them to provide the expected service,
proving its well-thought design and versatility.

On the service layer, we learned how to use both Spring and CDI, the use of each
depending on one's personal taste and one's environment. Both adopt very similar
integration strategy, a custom servlet.

On the persistence layer, we discovered how to connect table widgets to databases
using the renowned Hibernate framework through the use of the Hibernate
Container add-on.

Integration with Third-party Products

[314]

There are two things to keep in mind from this chapter:

1. First, when an integration need arises, be sure to check the Vaadin add-on
directory first. Chances are someone already tackled the problem. Before
using the add-on however, check the ratings, the comments, the license, and
eventually the cost. Carefully evaluate the risk of using a third-party add-on
and the cost of developing your own.

2. Second, integration can be done at different levels, depending on the type of
third-party product. For service layer frameworks, think about the servlet
level, for persistence layer, about the container level for collections (or the
item level for single objects).

The next (and final) chapter will be about running Vaadin on different platforms.

Beyond Application Servers
Until now, we used Vaadin in a "standard" way, with an underlying application
server (or JSP/servlet container). This chapter will show us in detail how to run
Vaadin applications on a variety of other platforms encountered in enterprises today:

• Portals, as portlets
• OSGi platforms, as services
• Finally, "in the cloud"

We will take a brief look at what each platform really is, and then see how Vaadin
can run on them with more or less tweaking.

First, we will see how to manage multiplatform development and how to build tools
to minimize the required effort.

Build tools
Until now, in order to create our WAR, we have used Eclipse's (or another IDE's)
export feature, which is nice but not comprehensive enough. During the normal
course of a project, builds are executed through standard build tools. There are
a few arguments in favor of such tools:

• Nowadays, we need automated and reproducible builds, so that we may
have continuous builds. Every time a commit is detected or at fixed times,
the build is launched and a bad commit—one that breaks the build—is
spotted as early as possible.

• Moreover, if we want our project to be multiplatform, and since some
configuration may be in conflict, we need to remove those manual and
error-prone configuration changes for each build.

Beyond Application Servers

[316]

• If our project does not have a single developer, it lets each one develop with
its favorite IDE, confident in the fact that a third-party tool will handle the
build itself.

• Finally, build tools let us plug in other features such as automated tests.

Available tools
Nowadays, plenty of enterprise-quality build tools are available for free. The
problem lies in choosing the right one.

Apache Ant
In Java, the first portable build tool was Apache Ant (http://ant.apache.org/).
At the time, it was a revolution that soon engulfed the entire ecosystem: every project
worth its salt provided an Ant build file that let users build it regardless of their
respective operating system.

However, Ant's limitations soon became apparent:

• The Ant build file is very liberal in its approach. To be simplistic, it just
defines targets, whatever those may be: compiles, copies, creates the archive,
and so on. As such, no two build files look the same, even if they perform
the same thing. In short, build files are not paragons of readability.

• In addition, Ant's compile target needs the classpath definition. As a
build has to be consistent, external libraries have to be provided and thus
committed to the project's source versioning software which it then bloats,
and adds no particular value to.

Apache Maven
In order to correct Ant's flaws, Apache launched a new build tool, Maven
(http://maven.apache.org/). It corrected the previous shortcomings with
two brand-new ideas at the time:

• Maven brought standardization to builds:
 ° A standardized build cycle: compile, copy, archive, and so on. As

such, Maven's build file, the famed POM (Project Object Model), does
not tell what it does like Ant, but only configures how it does it.

 ° Standardized subprojects in the form of modules. Now, two projects
using WAR included in an EAR looked alike!

• Maven also brought the concept of a repository where every project should
put its artifacts. Then, instead of manually downloading third-party libraries,
projects would only need to reference them in the registry.

Chapter 10

[317]

Fragmentation
Maven's approach was not to every developer's taste. Some argued against XML
format verbosity, others against the POM's lack of extensibility, some just wanted to
hold onto something they practiced for years, like Ant.

The explosion of languages on the JVM added to the confusion, with every language
coming with its own build tool: Gradle for Groovy, Rake for Ruby, Gant for Grails,
SBT for Scala, and the list goes on.

Final choice
Choosing a build tool in such a context is hard, yet necessary. In the context of this
book, we will use Maven to manage our build. The most important reason is that
despite the many criticisms against Maven, it actually is a major build tool, if not
the tool of choice.

Tooling
In Eclipse (or Eclipse-based STS), Maven tooling is provided by the Eclipse's
m2e plugins, available at http://download.eclipse.org/technology/m2e/
releases/ update sites. Please refer to Chapter 3 for a reminder regarding the
use of update sites.

Troubleshooting
If during the web application testing Vaadin throws javax.
servlet.ServletException: Failed to load application class,
check the deployment folder on the server. Chances are vaadin.
jar is missing. In this case, it is perhaps because the Maven
Integration for WTP is not installed.

NetBeans supplied Maven support out-of-the-box. Enjoy!

Maven in Vaadin projects
In Eclipse, there are basically two ways to build Vaadin projects with Maven: either
create a Vaadin project and add Maven features to it or the other way around.

Both are valid depending on our use-cases.

Beyond Application Servers

[318]

Mavenize a Vaadin project
First, create a Vaadin project just as we did in Chapter 3 with three important
differences:

• For the Java sources folder, click on Remove on src and then Add Folder
src/main/java

• For default output folder, enter target/classes
• Finally, for the web content directory folder, enter src/main/webapp

If these values remind you of the standard Maven folder
structure, you are absolutely right! Entering these values
will prevent us from manually moving folders around after
adding Maven to the mix.

Then, right click on the project directory and select Maven | Enable Dependency
Management. This opens a window: group id, artifact id, version, packaging, name,
and description fields are used by the plugin to create the POM.

Fill the values as you would a brand new POM. However, Packaging should be war
in all cases! Click on Next, as shown in the following screenshot:

Chapter 10

[319]

Then, add dependencies. We should at least have Vaadin as a dependency.

Click on Finish.

Now comes the manual part: we have to manually clean up our project. Click on the
project and display Java Resources | Libraries. Now select Apache Tomcat 6.0 (the
server library), EAR libraries and Web App Libraries, right click and click on Build
Path | Remove from Build Path.

Finally, delete src/main/webapp/WEB-INF/lib/vaadin-6.7.x.jar.

Vaadin support for Maven projects
As an alternative, we could also create a Maven project and add Vaadin support.

Go to File | New | Project. Locate Maven Project and click on Next two times
(default values are OK for the first window).

Beyond Application Servers

[320]

For archetype selection, filter with Vaadin and select com.vaadin: vaadin-archetype-
clean and click on Next, as shown in the following screenshot:

Enter the same values as for section Mavenize Vaadin project above and click
on Finish.

A quick glance at the POM tells us it is much more furnished as compared to adding
dependency management to a Vaadin project:

• The property project.build.sourceEncoding avoids making our POM
platform-dependent

• The other properties manage versions: Vaadin, GWT, and GWT plugins
• The Maven compiler plugin is configured to use Java 1.5 by default
• The Jetty plugin will let us easily test our Vaadin application with the Jetty

servlet container
• Finally, two additional repositories are added besides the main Maven

repository: one for Vaadin snapshots, the other for Vaadin add-ons

Chapter 10

[321]

In order to use Vaadin Eclipse plugin, right click on the project and click on
Properties. Select Project Facets on the left and check Vaadin Plug-in for
Eclipse as shown in the following screenshot:

Version 1.5 of the archetype is the latest version available. Yet,
it still uses GWT compiler 2.2.0 (as opposed to 2.3.0 in Eclipse).
If this does not suit you, you will have to sully your nails and
make manual changes to Eclipse configuration files, which is not
recommended unless you know what you are doing.

Mavenizing Twaattin
There is no advantage to migrate Twaattin under Maven at this time, but we will
prepare the project now to be ready for the rest of the chapter.

Beyond Application Servers

[322]

Preparing the migration
Since we are to migrate an existing project instead of creating the right project
structure from the beginning, we will need to move directories around:

• First, create the src/main/java directory. Move files from src to it. Then,
right click on the project and select Properties. Click on Build Path, tab
Sources. Remove src and add src/main/java.

• While we are at it, set the output directory to target/classes instead of
build/classes on the same tab.

• Finally, create folder src/main/webapp and move files from WebContent
to it. Eclipse does not take kindly on this sort of operation, we will need to
smooth it somewhat: locate the org.eclipse.wst.common.component file
under the .settings directory. Change the source-path attribute of the
following tag by the new location:

<wb-resource deploy-path="/" source-path="/WebContent"/>

Enabling dependency management
Now we just follow the preceding section procedure. Dependencies go well
beyond Vaadin:

• Servlet API
• Vaadin SQL Container
• Quartz
• Twitter4J
• SLF4J API and an implementation
• ICEPush and ICEPush GWT

Moreover, in order to add the SQL Container and ICEPush add-ons features,
we need to reference the Vaadin Directory repository where those add-ons are
registered (they are not in repo1).

<project ...>
...
 <repositories>
 <repository>
 <id>vaadin-addons</id>
 <url>http://maven.vaadin.com/vaadin-addons</url>
 </repository>
 </repositories>
</project>

Chapter 10

[323]

Finally, both icepush and icepush-gwt JAR are in no available repository at
the time of the writing. We have to download it at http://www.icepush.org/
downloads.html. It is mandatory to register, however.

Grab icepush-gwt-2.0.0-alpha3.zip, extract the files, and build the JAR with
Ant. Calling ant bin-dist in the extracted directory is enough; the target will build
the needed archives.

When done, install both built archives in your own local repository (or better yet,
your enterprise repository):

mvn install:install-file -Dfile=dist/icepush.jar -DgroupId=org.icepush
-artifactId=icepush -Dversion=2.0.0-alpha3 -Dpackaging=jar

mvn install:install-file -Dfile=dist/icepush-gwt.jar -DgroupId=org.
icepush -DartifactId=icepush-gwt -Dversion=2.0.0-alpha3 -Dpackaging=jar

Finishing touches
The last step just lets us use Maven dependency management. A few steps are still
needed in order to build the entire project outside Maven.

GWT build
As of now, the Vaadin Eclipse plugin takes care of creating the widgetset. We need
to enforce this in Maven alone.

First things first, the version of the GWT compiler needed by Vaadin 6.7 is 2.3 and is
dependent on Java 6. Configure the Java version in the Maven compiler plugin in the
POM as follows:

<project ...>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Beyond Application Servers

[324]

Be sure to right-click on the project, Maven | Update Project Configuration so as to
let Eclipse know something changed.

This is a prerequisite, but by no mean does it change anything regarding GWT
compilation. Moreover, Version 2.3 of the GWT compiler adds a dependency to
the Java Validation API (both JAR and sources). Therefore, we need to add these to
Twaattin's dependencies—in provided scope so as not to package them in the WAR:

<project ...>
...
 <dependencies>
 <dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.0.0.GA</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.0.0.GA</version>
 <classifier>sources</classifier>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

We would expect to put these in the GWT plugin section, but
it does not work. Somehow, the GWT plugin needs them to
be in the compile classpath.

The following plugins configuration gets the job done:

<project ...>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>gwt-maven-plugin</artifactId>
 <version>2.2.0</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>

Chapter 10

[325]

 </goals>
 <phase>compile</phase>
 </execution>
 </executions>
 <configuration>
 <webappDirectory>
 src/main/webapp/VAADIN/widgetsets
 </webappDirectory>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-user</artifactId>
 <version>2.3.0</version>
 </dependency>
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-dev</artifactId>
 <version>2.3.0</version>
 </dependency>
 </dependencies>
 </plugin>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>1.0.2</version>
 <executions>
 <execution>
 <goals>
 <goal>update-widgetset</goal>
 </goals>
 <phase>compile</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Note that we deliberately upgraded the GWT compiler version from 2.2.0 (the
plugin's version) to 2.3.0 in order to be fully compatible with the version from
Vaadin Eclipse plugin.

Beyond Application Servers

[326]

Cleaning up warning messages
There are still some disturbing warning messages that pollute our nice build:

• The POM for org.icepush:xxx:jar:2.0.0-alpha3 is missing: This message can
be removed by properly installing the JAR in the Maven local repository;
please see https://maven.apache.org/plugins/maven-install-plugin/
usage.html for details.

• Using platform encoding (Cp1252 actually) to copy filtered resources, i.e.
build is platform dependent: This message appears when developing on
Windows. We need to add a property to our POM to specify the file encoding.

<project ...>
...
 <properties>
 <project.build.sourceEncoding>
 UTF-8
 </project.build.sourceEncoding>
 </properties>
</project>

• Warning: selected war files include a WEB-INF/web.xml which will be
ignored: This message comes from the newest Version (2.1.1) Maven WAR
plugin. Add the following configuration to your POM:

<project ...>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <packagingExcludes>
 WEB-INF/web.xml
 </packagingExcludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Chapter 10

[327]

Optimizations
Some artifacts versions are the same because they are somehow coupled together,
such as Icepush/Icepush GWT, GWT user/dev and validation and its associated
source. Those can be factorized in properties in order to DRY (Don't Repeat Yourself)
the POM.

Finally, notice that the widgetset generation output, either through Eclipse or
through Maven, is localized in src/main/webapp and not in target. This means
that we have no need to compile it with each build and it can be safely isolated in
an activatable profile. As this plugin takes a good part of the build time, it is worth
doing it.

Final POM
The final POM is available on Packt's website.

This may seem quite a struggle for little added value, but it is the prerequisite to
effortlessly add additional platforms to run Twaattin on.

Portals
Although not as widespread as some wished them to be 10 years ago, portals are still
common enough to be a target of choice for Vaadin web applications.

Portal, container, and portlet
Before going further, one has to understand some essential notions about what a
portal is and how it is constituted.

Three different concepts are each attached to a different granularity level.

• Portlet: A portlet is a pluggable software component, meant to be displayed
inside a portal. As opposed to a servlet, a portlet only generates a part of the
rendered page. If we liken it to a wall, a portlet would be a brick.

• Portal: A portal is a full-fledged application that aggregates portlets. Most
portals will also allow administrators (or individual users) to customize the
portlets' layout, as well as the global portal's look-and-feel.

To continue our wall analogy, the portal would be the wall itself.

Beyond Application Servers

[328]

• Portlet container: A portlet container is the technical layer that manages
portlets. It plays the same role for them, as would a servlet container
for servlets, including request forwarding, response handling, lifecycle
management, and so on.
In a wall, the container would be the cement that sits between the wall and
each separate brick.

Choosing a platform
Currently, there are two different JSRs for portlet API:

• JSR-168 also known as the Java Portlet API, is the first generation
specification introducing portlets in Java. As many first specifications
go, it has limits which the next JSR tries to address.

• JSR-286 is the Java Portlet API 2.0 and is meant to replace the former
specification. It tries to align itself with the OASIS portlet specifications
(WSRPS 2.0) and introduces new features such as:

 ° Inter-portlets events
 ° Shared rendering parameters
 ° Non-HTML resource serving
 ° Portlet filters

In addition, different products implementing these specifications are available. At
the time of writing this book, enterprise-grade portals that can be considered for use
comprise both commercial products and free/open source ones.

• Commercial products include:
 ° IBM WebSphere Portal is a part of the many offerings of IBM

WebSphere (http://www-01.ibm.com/software/websphere/
portal/)

 ° Oracle WebLogic Portal (http://www.oracle.com/technetwork/
middleware/weblogic-portal/)

• Free/open source products consist of:
 ° Apache Jetspeed 2 (http://portals.apache.org/jetspeed-2/) is

a portal relying on Apache Pluto (http://portals.apache.org/
pluto/), a raw portlet container. It does not seem very widespread.

 ° JBoss GateIn (http://www.jboss.org/gatein) is the result of the
merging of former projects JBoss Portal and eXo Portal.

 ° Last but not least, Liferay is a portal commonly found in the
enterprise. It is developed by Liferay Inc. which also provides
commercial fee-based support for it.

Chapter 10

[329]

Liferay
Vaadin's demo itself runs in Liferay. Both companies already work together in a
partnership to integrate their products with each other, so there is plenty of good
documentation on the Web, mostly on vaadin.com and on liferay.com, that
describes how to do that. Interesting articles are:

• Develop Vaadin Apps as Portlets at http://www.liferay.com/community/
wiki/-/wiki/1071674/develop+vaadin+apps+as+portlets/maximized,
oriented toward Liferay 6.0

• Running Vaadin Mail Portlet in Liferay 5.2.x at http://vaadin.com/
wiki/-/wiki/Main/Running%20Vaadin%20Mail%20Portlet%20in%20
Liferay%205.2.x, for Liferay 5.2

Both articles, coupled with sound portal and portlet development knowledge should
be enough for one to create and deploy portlets in Liferay, regardless of the version.

Starting from Liferay Version 6.0, Vaadin widgetsets are
included so there is nothing to install on the platform to
run Vaadin applications on it.

If one still encounters difficulties running Vaadin apps as portlets, then one should
turn to the Vaadin forums, which provide answers to many questions.

GateIn
The platform of choice taken as an example for the rest of this section is GateIn: what
is explained in the following sections can be adapted to your portal of choice.

For enterprise users, GateIn is also available in an enterprise
edition, JBoss Enterprise Portal Platform (JEPP). It is a
boosted version of GateIn for which JBoss provides support,
at a price. For more information on JEPP, visit http://www.
jboss.com/products/platforms/portals/.

Downloading and installation
GateIn comes bundled with either JBoss AS 5.1.0 or with Tomcat 6.0.20. Using one or
the other depends on one's requirements and personal tastes. In the context of this
book, we will use Tomcat 6.0.20.

Beyond Application Servers

[330]

Download the version that is suitable for you from the following URL:

http://www.jboss.org/gatein/downloads

Installing GateIn is just a matter of unzipping the downloaded archive. For Windows
users, take care to extract it under a path that contains no space characters.

Preparing the platform
GateIn uses HSQLB (Hyper Structured Query Language Database) as its internal
database. If we intend to use data sources instead of a direct connection to the
database, experience shows that HSQLDB has unsupported features that will break
our applications. Moreover, it will only become apparent during the execution.

Therefore, the wisest course of action would be to configure GateIn to use a more
compliant SQL RDBMS. As MySQL is both free and open source and GateIn
supports it, we will first configure the portal to use it.

GateIn offers a Java Content Repository (JCR) should we need JCR for our portlets.
Locate <GATEIN_HOME>/gatein/conf/configuration.properties and replace the
following lines:

gatein.jcr.datasource.driver=com.mysql.jdbc.Driver
gatein.jcr.datasource.url=jdbc:mysql://localhost:3306/gatein
gatein.jcr.datasource.username=gatein
gatein.jcr.datasource.password=gateinpassword

This is also the configuration place for the identity management store, that is where
identities and credentials are managed. Since we are there, change the configuration
to use MySQL:

gatein.idm.datasource.name=jdbcidm
gatein.idm.datasource.driver=com.mysql.jdbc.Driver
gatein.idm.datasource.url=jdbc:mysql://localhost:3306/gatein
gatein.idm.datasource.username=gatein
gatein.idm.datasource.password=gateinpassword

Finally, put the MySQL drivers, compatible with the version of MySQL in <GATEIN_
HOME>/lib.

Create schemas beforehand
As opposed to HSQLDB, we will have to create MySQL schemas
before first launching GateIn. Use your preferred tool to do that,
GateIn will create the tables.

Chapter 10

[331]

Launch
Finally, navigate to <GATEIN_HOME>/bin and type:

gatein start

Alternatively, calling gatein-dev shell (or bat) instead of plain gatein lets us launch
GateIn in debug mode, in order to connect Eclipse to it and check our code.

In order to check whether GateIn launched normally, navigate to http://
localhost:8080/portal. The default portal home page should be displayed.

Now it is done, we are good to go further!

Troubleshooting
If Tomcat runs fine but you get a 404 not found in your
browser, then be sure to check that the environment variable
CATALINA_HOME is not set (or at least set to GateIn extract
directory).

Beyond Application Servers

[332]

Tooling
The good news here is that we already have all the needed tooling at our disposal,
as the Vaadin Eclipse plugin has the right parameters to create portlets instead of
standard web applications.

A simple portlet
As an example, we will develop a simple portlet that displays a message when a
button is clicked.

The development of such an application holds no secret for us, so let's focus our
attention on the differences when developing portlets.

Creating a project
Portlet project creation starts like any other Vaadin project: File | New | Other and
choose Vaadin Project.

Fill the wizard as we did in Chapter 3. Now in deployment configuration, which is
Servlet by default, choose Generic Portlet. As a side note, bear in mind that Generic
Portlet is Portlet v2.0 (also known as JSR 286) and that Old Portlet is Portlet v1.0 (also
known as JSR 168).

In order to configure the context root, enter "hello" during the WebModule step.

In the final step, the Portlet version is asked for again: do not change it as it could
have adverse effects on the project's integrity.

In essence, the Deployment Configuration list-box determines
which XML schema will be used in the portlet.xml while
the Portlet Version list-box is about which Vaadin portlet to
inherit from. The plugin pre-selects the portlet version from the
deployment configuration, but still allows the user to choose both
independently which is not particularly a good idea.

Finishing the wizard, Vaadin creates the project, just like in Chapter 3.

Chapter 10

[333]

Portlet project differences
There are some subtle (and not so subtle) differences however, that we will look into
in detail.

Portlet deployment descriptor
The Vaadin Eclipse plugin created a file named portlet.xml under WEB-INF in our
project. Developers familiar with portals know this file as the portlet deployment
descriptor. For those unfamiliar, it is very akin to a web deployment descriptor
(web.xml), but aimed at portals instead of applications servers.

The generated descriptor is as follows (comments excluded):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-
app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Beyond Application Servers

[334]

 version="2.0" xsi:schemaLocation="http://java.sun.com/xml/ns/
portlet/portlet-app_2_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Hello Portlet portlet</portlet-name>
 <display-name>Hello Vaadin</display-name>
 <portlet-class>
com.vaadin.terminal.gwt.server.ApplicationPortlet2
 </portlet-class>
 <init-param>
 <name>application</name>
 <value>
com.packtpub.learnvaadin.HelloPortletApplication
 </value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Hello Vaadin</title>
 <short-title>Hello Vaadin</short-title>
 </portlet-info>
 </portlet>
</portlet-app>

The following describes the differences as compared to a generated web
deployment descriptor:

• The XML schema points to a portlet schema, not a web app schema
• The portlet class is ApplicationPortlet2. It is compatible with the Portlet

2.0. API. Note that ApplicationPortlet is available for Portlet 1.0 API
retro-compatibility.

• The support section displays both the output mime-type and the portlet-
mode. As a general rule, the former should not be changed since it fits
Vaadin's output. As for the mode, the specification defines three modes:

 ° View displays the portlet; it is the standard mode
 ° Edit lets the user change/configure/manage the portlet
 ° Help displays help for the portlet

In addition to the three standard modes, it is also possible to define
custom modes.

Chapter 10

[335]

Although each of these modes has a semantically unique meaning, nothing
prevents us from using the view mode to configure the portlet. By default,
the mode is "view" and it matches most of our use-cases.

• Finally, title and short-title have to be filled. Both Liferay and
GateIn will look for these pieces of data and won't display the portlet
if they are missing.

Portal proprietary files
The Vaadin Eclipse plugin also creates the Liferay proprietary files: liferay-
display.xml, liferay-portlet.xml, and liferay-plugin-package.properties.

When using GateIn as the portal platform, those can safely be ignored or deleted.

Beyond Application Servers

[336]

Similarities
Despite the previous differences, keep in mind that there are also a few similarities:
the application instance is the same regardless of the deployed platform. This means
that we can keep our code, just update the deployment descriptor, and we are good
to go on an entirely different platform!

There is a slight reservation to this, however, as listeners (if in
scope) are context-dependent: see the section named Handling
portlet specificities in this chapter.

Using the portlet in GateIn
Now all the necessary development tasks are done, we still have to make the
portlet available to GateIn and add it in a page.

Deploying in GateIn
Deploying the portlet in GateIn will make it available for further use. In order
to do this:

• Export the portlet as a WAR file. Right-click on the project and choose
Export | WAR file.

• Copy-paste the exported WAR file under <GATEIN_HOME>/webapps

If the initial configuration is kept, then Tomcat will automatically and recursively
unpack the exported WAR in the webapps directory and start the application. This
can be verified by the following Vaadin trace in Tomcat's command window:

14 may 2011 00:01:49 com.vaadin.terminal.gwt.server.AbstractApplicationPortlet c

heckProductionMode

WARN:

==

Vaadin is running in DEBUG MODE.

Add productionMode=true to web.xml to disable debug features.

To show debug window, add ?debug to your application URL.

==

Chapter 10

[337]

Adding the portlet to a page
In order to add the portlet to a page, we need to login in the portal with the
credentials to do it.

Sign in
Click on Sign in on the left side of the menu bar. It opens a pop-up login window. By
default, root/gtn will enable us to have enough credentials to make changes to pages
(or add new ones for that matter).

Refresh portlets
Before adding the portlet to a page, a user action is needed. Once logged in, navigate
to the Group menu and choose Administration | Application Registry. It opens
the complete list of available portlets. At this point, we cannot see our newly
deployed servlet.

Click on the Import Applications option at the top left corner of the window (just
below Portlet | Gadget). A confirm dialog opens asking whether portlets should be
imported (this will be done in their respective category) and click on OK.

A new category appears, matching the deployed WAR's name. Under it, there
should be a single portlet that takes its name from the portlet deployment descriptor.

Add portlet
From this point on, portlets exported to GateIn webapps directory will be available
for use by end users.

Therefore, navigate to the Site Editor menu and choose Edit Page. This will change
the page mode to edit and change the display. On the Page Editor tool pane, search
for the freshly added category, and drag and drop the child portlet where you want
on the main layout.

Beyond Application Servers

[338]

Saving is achieved by clicking on the disk icon on the Page Editor tool pane. The new
portlet will be displayed but unfortunately, nothing shows apart from a plain "Done"
message. Why is that?

Configuring GateIn for Vaadin
In fact, we missed a crucial step in using Vaadin in GateIn and that is the portal
configuration. We will correct this in the following sections.

Themes and widgetsets
Vaadin client's code needs access to the /VAADIN path, where both themes and GWT
compiled widget sets lie. When served by a servlet, this path is relative to the root of
the web application.

Unfortunately, in the context of a portal, Vaadin has no reference to the servlet
context, thus it cannot get the webapp's root. Therefore, the framework will try
to access /html/VAADIN relative to the server's root to get these files.

There are some options to make this work.

Chapter 10

[339]

Serve files from the portal
The first solution is to serve files directly from the portal. We need to:

• Put the files from the WAR's /VAADIN directory in the ROOT webapp /html/
VAADIN directory

• Extract files from Vaadin's JAR /VAADIN directory in the ROOT webapp

This has the advantage of putting the default widgetset in a common location, so
that all Vaadin's portlets use it. On the other side, this makes the build process more
complicated as we have to separate static Vaadin files in one archive from the rest in
the WAR.

Serve files from an HTTP server
As an alternative, if we have an HTTP server (Apache HTTP server, Microsoft IIS, or
another) in front of our application server, we could serve these files from the HTTP
server instead of the application server.

It has the same pros and cons as the previous solution, only with an additional tier.

Configure files location
Another option is to configure the Vaadin static files location. There are two ways to
achieve this: either through the portal's own configuration—and we will have to look
at each product's documentation to manage that, or through code.

AbstractApplicationPortlet has a getStaticFilesLocation() method that
returns html as the default, but we could override the return value. As portlet
containers manage WAR, it is a no-brainer to reference the WAR context root.
Thus, our portlet would look something like this:

package com.packtpub.learnvaadin.twaattin;

import javax.portlet.PortletRequest;

import com.vaadin.terminal.gwt.server.ApplicationPortlet2;

public abstract class AbstractPortalPortlet extends
ApplicationPortlet2 {

 @Override
 protected String getStaticFilesLocation(PortletRequest request) {

 return request.getContextPath();
 }
}

Beyond Application Servers

[340]

Pick a solution and use it here: refreshing the page will display the Vaadin portlet, as
shown in the following screenshot:

Advanced integration
Beyond a simple Hello World, we sometimes need advanced capabilities brought by
Vaadin. We will check how they work in a portal context.

Restart and debug
We can use Vaadin restart and debug features in GateIn (or any other portal) like we
used in standard web applications.

Just append restartApplication and/or debug query parameters and watch the
magic happen.

Be wary that in this case, it will restart all Vaadin portlets
displayed on the page at refresh time. Moreover, it will only
show the debug window of a single Vaadin portlet, in a non-
deterministic way. Hence, it is easier to use these parameters
during development when there is only a single Vaadin portlet:
that is when they are used for anyway.

Chapter 10

[341]

Handling portlet specifics
Portlets have some features that are unique, as regards to standard web applications.

First, they have a unique lifecycle. Beyond classical init() and destroy() methods,
two steps are also important: the process action phase and the render phase.

Second, a portlet container also manages for each portlet:

• Its mode: edit, view, and help
• Its window state: normal, minimized, and maximized

Finally, JSR 286 also adds event handling between portlets.

All of these features translate into the portlet API. However, much like the servlet
API, the Vaadin framework hides the latter, so developers do not have to worry
about it.

In order to let us interact with these elements, Vaadin makes the PortletListener
interface available which is defined in the PortletApplicationContext2 class.

There is a parallel between the PortletApplicationContext2 and
the WebApplicationContext, and between PortletListener
and TransactionListener. Among these similarities, note that
implementing PortletListener should be the responsibility of
the application alone, much like TransactionListener is for
applications running in servlet containers.

Adding a listener to the application is just a matter of checking the context to see the
context's type (web, portal 1.0, or portal 2.0). The following snippet illustrates this:

public class ListenerPortlet extends Application implements
PortletListene
 @Override
 public void init() {

 // Some initialization code
 if (getContext() instanceof PortletApplicationContext2) {

 PortletApplicationContext2 ctx = (PortletApplicationContext2)
 getContext();

 ctx.addPortletListener(this, this);
 }
 }
}

Beyond Application Servers

[342]

Each of the listener's methods gently maps one of the following request-processing
phases:

Phase Method Description
Render handleRenderRequest() Generate HTML
Action handleActionRequest() Process user actions
Resource handleResourceRequest() Serve resources
Event handleEventRequest() Manage events

The Vaadin framework handles the request/response pair in the event phase.

This means that the only method to implement is handleResourceRequest(),
and eventually handleEventRequest() if we need to listen to events. The request
parameter for these methods lets us access the portlet mode, the portlet context,
the portlet session, and other portlet attributes.

+com.vaadin.service.ApplicationContext

+com.vaadin.terminal.gwt.server.AbstractWebApplicationContext

+com.vaadin.terminal.gwt.server.PortletApplicationContext2

+addPortletListener(in pp : Application,in listener : PortletListener)
+removePortletListener(in app : Application, in listener : PortletListener)
+getApplicationForWindowId(String)(in portletWindowId : String):Application

<<interface>>
+portletApplicationContext2.portletListener

+handleRenderRequest(in request : RenderRequest, in response : RenderResponse
)+handleActionRequest(in request : ActionRequest, in response : ActionResponse

+handleEventRequest(in request : EventRequest, in response : EventResponse)
+handleResourceRequest(in request : ResourceRequest, in response : ResourceResponse)

Portlet development strategies
During development, chances are we won't get our portlet right the first time. In
order to ease our work, there are some techniques we can use.

Chapter 10

[343]

Keep our portlet servlet-compatible
As a rule of thumb, portlet development is generally much slower than servlet
development because of all the packaging and deployment involved. Tomcat or
NetBeans integration in Eclipse, through the WTP plugin, lets us update classes and
see changes on the fly. Hence, it is better if we can develop a servlet: it is advised to
keep the servlet-compatibility mode the longest time possible to test our portlet in
a simple applications server.

Portal debug mode
When this parallel cannot be maintained, for example, in order to add inter-portlet
communication features, we will have to deploy our newly developed portlet on the
target portal to develop further. In order to be able to debug the portlet, two actions
are in order:

• Launch GateIn in debug mode, with the help of the gatein-dev start
command (instead of the standard gatein start)

• In Eclipse, connect to the JVM launched in the debug mode. In order to
accomplish this, click on the scrolling menu of the Debug button on the
toolbar (the one that looks like a bug) and choose Debug Configurations.

This will open a window: select Remote Java Application in the list and
click on the New Launch Configuration in the upper left corner. Default
port (8000) is suitable if GateIn also uses the default configuration.

Beyond Application Servers

[344]

• For NetBeans users, we can also connect to an external JVM. Click on Debug
menu | Attach Debugger.
In the opened window, keep the defaults and set the port to 8000, it is done.

From this point on, we can set breakpoints in our portlet and manage the flow from
inside the IDE!

Updating a deployed portlet
Finally, successive portlet deployments are likely to be in order. In order to do that,
we only have to do as for the first deployment: first export the WAR to GateIn, and
then import applications in the portal (see the section name Deploying in GateIn in
this chapter for a quick reminder).

Integrating Twaattin
In order to integrate Twaattin, we not only need to take the actions described earlier
but also tweak somewhat our previous code in order to manage potential mismatches.

In addition to using the context-using portlet, standard updates are localized in the
POM and in the deployment descriptors.

Portlet deployment descriptor
Our brand new portlet deployment descriptor looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-
app_2_0.xsd"
 version="2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-
app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Twaattin</portlet-name>
 <portlet-class>com.packtpub.learnvaadin.twaattin.TwaattinPortlet</
portlet-class>
 <init-param>
 <name>application</name>
 <value>com.packtpub.learnvaadin.twaattin.TwaattinApp</value>
 </init-param>
 <init-param>
 <name>widgetset</name>
 <value>

Chapter 10

[345]

com.packtpub.learnvaadin.twaattin.widgetset.TwaattinWidgetset
 </value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Twaattin Application</title>
 <short-title>Twaattin</short-title>
 </portlet-info>
 </portlet>
</portlet-app>

The only Vaadin-specific part lies in the widgetset tag, in order for the framework to
locate it (just like in the web.xml previously).

Web deployment descriptor
The web deployment descriptor has major changes:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns:javaee="http://java.sun.com/xml/ns/
javaee"
 xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd ">
 <display-name>Twaattin</display-name>
 <context-param>
 <param-name>productionMode</param-name>
 <param-value>false</param-value>
 </context-param>
 <servlet>
 <servlet-name>ICEPush for Portlets</servlet-name>
 <servlet-class>org.vaadin.artur.icepush.ICEPushServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>ICEPush for Portlets</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 <listener>

Beyond Application Servers

[346]

 <listener-class>
 com.packtpub.learnvaadin.twaattin.DataInitializationListener
 </listener-class>
 </listener>
</web-app>

Note there is no more declaration or mapping for the Twaattin Servlet as it is now
handled at the portlet level.

On the other hand, we have to let the ICEPush servlet respond to asynchronous calls
from the client. It cannot be handled by portlets in any case, so we must fall back to
the standard servlet. Note that the load-on-startup tag has to be filled in all cases
or we will run into a nasty NullPointerException.

Maven changes
Maven updates come from adding/removing dependencies but also making
Twaattin run in both portals and standard application servers.

Dependency changes
As we directly use the portlet API, we need to add the javax.portlet:portlet-
api:2.0 dependency, in scope provided of course.

In addition, GateIn provides some dependencies we previously included in the
WAR, so the following dependencies are to be removed:

• HSQLDB (and use MySQL instead)
• JTA and the SLF4J API from Quartz transitive dependencies
• SLF4J runtime as well

Those can be handled in the POM. The next section will show us another
option though.

Multiplatform build
Multiplatform build is a little difficult to manage. Basically, there are two ways to
achieve this:

• A single Maven project with assemblies created with the Maven Assembly
Plugin, one for each platform

• A Maven parent project and one module for each platform

Both are equally valid: we will go with the former because an assembly is both easier
to do and to explain than multimodule projects.

Chapter 10

[347]

Assembly descriptor
The assembly plugin lets us create an assembly descriptor for each additional artifact
attached to a main artifact. It looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
 <id>portlet</id>
 <formats>
 <format>war</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>src/main/webapp</directory>
 <outputDirectory>/</outputDirectory>
 <excludes>
 <exclude>**/web.xml</exclude>
 </excludes>
 </fileSet>
 <fileSet>
 <directory>
 ${project.build.outputDirectory}
 </directory>
 <outputDirectory>/WEB-INF/classes</outputDirectory>
 </fileSet>
 <fileSet>
 <directory>src/main/assembly/gatein</directory>
 <outputDirectory>/WEB-INF</outputDirectory>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 <excludes>
 <exclude>*:war</exclude>
 <exclude>javax.transaction:jta</exclude>
 <exclude>org.slf4j:slf4j-api</exclude>
 <exclude>org.slf4j:slf4j-simple</exclude>
 </excludes>
 </dependencySet>
 </dependencySets>
</assembly>

Beyond Application Servers

[348]

This recreates the WAR as the Maven WAR plugin does, only we are able to
both remove dependencies and add GateIn files, such as the portlet deployment
descriptor and a specific web deployment descriptor.

Final POM
Changes in the POM are found in two parts:

• First, we have to activate assemblies, through the Maven Assembly plugin in
the POM. We do this as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2.1</version>
 <configuration>
 <descriptors>
 <descriptor>src/main/assembly/gatein.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>single</goal>
 </goals>
 <phase>package</phase>
 </execution>
 </executions>
</plugin>

• We should exclude portlet specific classes and configuration files from the
"plain" WAR. As of now, it only includes our portlet. This is easily resolved
in the Maven WAR plugin configuration.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <packagingExcludes>WEB-INF/**/TwaattinPortlet.class
 </packagingExcludes>
 </configuration>
</plugin>

Congrats! With just these two minor updates, we made Twaattin available as a
webapp and a portlet.

Chapter 10

[349]

OSGi
OSGi is a very promising technology that aims to resolve some deficiencies in Java.
Despite its inherent structure, OSGi concepts are straightforward and aim to work
at three different levels.

• First, OSGi comes with the concept of a bundle. Bundles are JARs, but
provide additional information in their manifest: most notably, a bundle
expresses which packages it exposes to the outside world (read which
ones have public visibility) and which one it needs in order to fulfill its
dependencies. Optionally, it may also define an activator class, which is
a listener used on the next level. This defines the modularity layer.

• OSGi also provides the way to manage a bundle's lifecycle. Basically, a
bundle may be in six different states and transitions between states are well
defined. The six states are as follows:

State Description
INSTALLED Platform aware of bundle
RESOLVED Checked for OSGi-correctness
STARTING Being started. If an activator is defined for the bundle, calls its

start() method.
ACTIVE Running and available in the OSGi platform to be used by

other bundles
STOPPING Being stopped. If an activator is defined for the bundle, calls

its stop() method.
UNINSTALLED Final state

start

stop

Starting

Active

Stopping

Installed

Resolved

Uninstalled

This layer is known as the lifecycle layer. A major benefit of this layer is hot
deployment of bundles.

Beyond Application Servers

[350]

• Finally, some common capabilities are described in the service layer,
each in the form of a Java interface. These interfaces are grouped in three
different sets:

 ° System, like logging, deployment and admin
 ° Protocol, like HTTP and Universal Plug-and-Play
 ° Miscellaneous, like XML parsing

Bundles may implement those services and register in the services registry
for other bundles to discover and use them.

Also, note that OSGi is a standard promoted by the OSGi Alliance, which includes
notable members IBM, Oracle Red Hat, and VMware. For a deeper insight into OSGI,
visit the OSGI Alliance site at http://www.osgi.org/.

Choosing a platform
Some OSGi platforms are available to add our own bundles to the following:

• Knopflerfish (http://www.knopflerfish.org/), an independent OSGi
implementation

• Apache Felix (http://felix.apache.org/), a small yet compliant
OSGi platform

• Eclipse IDE manages its plugin architecture with the help of OSGi. The
Equinox project (http://www.eclipse.org/equinox/), a whole OSGi
implementation was started to achieve that.

Many applications servers also run on top of OSGi in order to manage complexity
through modularization: Oracle Glassfish 3, Oracle WebLogic, IBM WebSphere, Red
Hat JBoss, and OW Jonas 5 are such application servers.

Another way to use OSGi is to embed a compatible container in
the application. As one should probably tweak the application
server the application will run into, chances are that it won't be
considered as a viable option in the enterprise. Thus, we will
focus on the "running in an OSGi container" way.

In order to illustrate OSGi, we will use Oracle Glassfish in the rest of this document.
Glassfish uses Felix under the cover. In most cases, however, it should play no part
as OSGi is a specification and Felix is only an implementation among others.

Chapter 10

[351]

Glassfish
Like many other providers, Oracle supplies two distributions of its Glassfish
application server: Glassfish Server Open Source Edition (available under CDDL or
GPLv2 license) and Glassfish Server which is available under a commercial license.

In order to stay true with the open source approach, we will use the Open Source
distribution.

Deploying bundles
There are basically three ways to deploy an OSGi bundle to Glassfish. However, for
the first two, we will need to update Glassfish configuration in order to enable them.
These are worth the effort.

Prerequisites
Edit the file <GLASSFISH_ROOT>/domains/domain1/config/domain.xml. Locate the
JVM options line starting with -Dorg.glassfish.additionalOSGiBundlesToStart.

Append org.apache.felix.fileinstall,org.apache.felix.shell.remote
at the end of the line. The first parameter is for the file system deployment and the
second is for telnet.

The final line should look like this:

<jvm-options>-Dorg.glassfish.additionalOSGiBundlesToStart=org.apache.
felix.shell,org.apache.felix.gogo.runtime,org.apache.felix.gogo.
shell,org.apache.felix.gogo.command,org.apache.felix.shell.remote,org.
apache.felix.fileinstall</jvm-options>

Start (or restart) Glassfish.

There are other ways to change Glassfish configuration. They
include the asadmin command line, as well as the Glassfish
console. Please refer to the appropriate documentation if the
need be.

Telnet deployment
Once the configuration is updated, we can type the following in the command prompt:

telnet localhost 6666

Beyond Application Servers

[352]

The command prompt will display the following text.

Welcome to Apache Felix Gogo

g! help

For security-minded readers, Glassfish should only allow
local telnet connections by default. We should not worry too
much about letting remote users access the console.

Installing an OSGi bundle is just a matter of typing on the prompt:

install file:///path/to/bundle

Glassfish will neatly return the newly installed bundle's ID:

Bundle ID: xxx

Just remember to then start the bundle (pass the start command the returned ID).

start xxx

To be sure everything went OK, type lb on the command prompt. It displays the
whole list of all installed bundles, as well as their current status: it should show the
new bundle (probably as the last item) as ACTIVE.

File system deployment
The second way to deploy a bundle to the Glassfish server is the simplest: just put
the bundle in the <GLASSFISH_HOME>/domains/<MY_DOMAIN>/autodeploy/bundles
folder.

A look at the log can confirm it works:

Installed <GLASSFISH_ROOT>/domains/domain1/autodeploy/bundles/vaadin-
6.7.x.jar

In addition, we can check the Felix console just like with the previous method.

Chapter 10

[353]

Web console deployment
Navigate to Glassfish administration panel at http://localhost:4848/.

Click either on Deploy an Application on the homepage or on the Applications
menu on the left.

Fill the opening window as follows:

• Select the bundle to deploy
• Type: Other
• Status: check Enabled
• OSGi Type: check
• Run Verifier: check
• Force Redeploy: check if the bundle is already deployed

Beyond Application Servers

[354]

Click on OK; this will deploy the bundle. The preceding options are depicted in the
following screenshot:

Logs should display the operation's status as follows:

INFO: Installed xxx.yyy [242] from reference:file:/<GLASSFISH_ROOT>/domains/
domain1/applications/yyy-s.t.v/

INFO: Started com.vaadin [242]

Chapter 10

[355]

INFO: yyy-s.t.v was successfully deployed in 11 555 milliseconds.

Whatever the method used, the result would be the same, that is, separating the
Vaadin JAR from the WAR.

Tooling
The good news here is that there is no need for further tooling beside what we
already installed: we will keep Eclipse (or NetBeans) as our IDE and Glassfish will
serve as an OSGi container.

The bad news is that the many OSGi advantages come at a price: OSGi makes
development more structured. Whereas we previously could use a build tool or not,
now we have to use one in order to reproduce builds through automation. In order
to be consistent with former sections of this chapter, it is advised to use Maven: how
to do it is the goal of the following sections. Alternatively, one could choose Ant, SBT
or even Make if one is really desperate.

Vaadin OSGi use-cases
Benefits from OSGi are varied and depend on what layers are used.

Vaadin bundling
Strategies regarding libraries in an application server context come in three different
flavors, each having pros and cons:

• Often, every web application comes with its libraries bundled in its WEB-INF/
lib folder. The good part is that each is then independent; the bad is that
even with similar libraries in the same versions, it adds to the WAR size, but
also unnecessarily increases the memory load since each WAR's class loader
has to load an instance of the library.

• Another approach is to put libraries in the application server's shared
libraries folder. In this case, WAR can be very lightweight. Moreover, only
the application server class loader has to load the library: it is done once. On
the downside, applications have no choice on the version of these libraries,
and have to use the one provided by the application server (much like the
servlet API library).

• Finally, most application servers allow administrators to add libraries
to the classpath of single applications; some even allow the defining of
groups of libraries to ease that. This strategy gets the best of both worlds—
independency and memory optimization—at the cost of much higher
administration cost.

Beyond Application Servers

[356]

With OSGi, the administrator could deploy different versions of Vaadin on the OSGi
platform and each deployed application would specify which version it needs. The
platform would then resolve dependencies for us.

Modularization
A non Vaadin-specific use-case for Vaadin we could benefit from is modularization.
We could decouple an application in modules, and then manage each one's lifecycle
independently from one another.

A good example of module granularity would be application objects, in the case
of multiple Vaadin application per WAR. A slightly more convoluted—yet still a
possible case would be Vaadin windows: one could conceive an application, so that
screens could be upgraded separately.

Hello OSGi
As an example, we will deploy a simple application as an OSGi bundle.

First, we will need to create a Vaadin project that we will make OSGi-compatible.
Proceed as usual or refer to the description in Chapter 3.

Making a bundle
As can be expected, making the JAR OSGi-compliant is just a matter of putting the
right information in the manifest.

At the very least, manifest headers should include

Header Value Description
Bundle-
ManifestVersion

2 OSGi version compatibility.
2 means OSGi R4

Bundle-Name hello-osgi Human readable name
Bundle-
SymbolicName

com.packtpub.learnvaadin.
osgi

System name

Bundle-Version 1.0.0 Bundle version
Require-Bundle com.vaadin;bundle-

version="6.1.0"
Bundle dependency. Here,
we only use Vaadin 6.1.0

Web-ContextPath /osgi context root
Export-Package com.packtpub.learnvaadin Exposed package entry

points

Chapter 10

[357]

Header Value Description
Import-Package javax.servlet, javax.

servlet.http
Package dependency

Bundle-ClassPath WEB-INF/classes Classpath. Since it's not
a standard webapp but
a bundle, we have to
redefine the classpath the
OSGi way

For a complete list of headers, visit the following URL:
http://www.osgi.org/Specifications/ReferenceHeaders

The complete manifest looks like the following:

Bundle-ManifestVersion: 2
Bundle-Name: hello-osgi
Bundle-SymbolicName: com.packtpub.learnvaadin.osgi
Bundle-Version: 1.0.0
Bunlde-Vendor: Nicolas Frankel
Require-Bundle: com.vaadin;bundle-version="6.1.0"
Web-ContextPath: /osgi
Export-Package: com.packtpub.learnvaadin
Import-Package: javax.servlet, javax.servlet.http
Bundle-ClassPath: WEB-INF/classes

Note that the formatting should be taken care of precisely
since there is a limit of 72 characters for a line, according to
the JAR specifications (visit http://download.oracle.
com/javase/1.4.2/docs/guide/jar/jar.html#Name-
Value%20pairs%20and%20Sections for more information).

Export, deploy, run
The previous manifest is enough. Now is time to run the application.

First, we need to export it: right-click on the project and choose export as WAR. As
Eclipse has no hint that we want an OSGi bundle, we need to use our favorite ZIP
tool, open the exported archive and remove the WEB-INF/lib directory as it will be
available in Glassfish as a bundle dependency.

Beyond Application Servers

[358]

Removing the WEB-INF/lib directory is not mandatory per
se because we did not configure Vaadin to be available on the
classpath but it's proper to do so.

Then, just like the Vaadin JAR in section named File system deployment in this chapter,
put the JAR in the <GLASSFISH_HOME>/domains/<MY_DOMAIN>/autodeploy/
bundles folder and it is done.

Finally, point your browser to http://localhost:8080/osgi and watch the
magic happen.

Correcting errors
Actually, the magic consists of two errors that make the developed application
unusable. Let's correct them.

Application class
First, OSGi dynamic class loading specifics make the standard Vaadin code throw
the following runtime exception:

javax.servlet.ServletException: Failed to load application class: com.
packtpub.learnvaadin.HelloOsgiApplication

In fact, the newInstance() method in our good old ApplicationServlet class is
unusable in an OSGi context. In order to correct this, we have to throw away the
servlet and create our own that just returns a brand-new application instance with no
fancy stuff around.

package com.packtpub.learnvaadin;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.AbstractApplicationServlet;

@SuppressWarnings("serial")
public class OsgiApplicationServlet extends AbstractApplicationServlet
{

 @Override
 protected Application getNewApplication(HttpServletRequest request)
 throws ServletException {

 return new HelloOsgiApplication();
 }

Chapter 10

[359]

 @Override
 protected Class<? extends Application> getApplicationClass() throws
 ClassNotFoundException {

 return HelloOsgiApplication.class;
 }
}

This bare servlet code is not generic and cannot be factorized but just works.

Accessing the widgetset
The previous servlet lets us see the loading indicator, but then an information box
complains about the widgetset failing to load:

Failed to load the widgetset: /osgi/VAADIN/widgetsets/com.
vaadin.terminal.gwt.DefaultWidgetSet/com.vaadin.terminal.gwt.
DefaultWidgetSet.nocache.js?1307388448247

What happens is that the default widgetset is contained in Vaadin's JAR and our
servlet cannot access them due to OSGi class isolation. Like always, there is more
than one solution, but a single one can be implemented with no action except to
our project.

We just have to add the widgetset to our project:

1. Compile the widgetset, which has the default widgetset as its only widgetset
2. Reference the widgetset in the web deployment descriptor

<servlet>
 <servlet-name>Hello OSGi Application</servlet-name>
 <servlet-class>
 com.packtpub.learnvaadin.OsgiApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>widgetset</param-name>
 <param-value>
 com.packtpub.learnvaadin.widgetset.HelloosgiWidgetset
 </param-value>
 </init-param>
</servlet>

This configuration lets us bundle the widgetset along with the JAR and access it from
within the Vaadin's code.

Beyond Application Servers

[360]

Integrating Twaattin
Now it is time to go beyond a simple example and update Twaattin to be an OSGi
bundle in its own right. Naturally, we will keep our previous compatibility, offering
three artifacts: one standard, one GateIn, and one OSGi.

Bundle plugin
In the previous Hello OSGi example, we manually created the OSGi manifest. As
Twaattin already uses Maven, much information is already available in the POM.
As such, it is a good idea to also let Maven handle the OSGi manifest.

To this end, the Apache Felix project provides the maven-bundle-plugin, which
is based on the Bnd utility. The complete documentation of the plugin is available
online at http://felix.apache.org/site/apache-felix-maven-bundle-
plugin-bnd.html.

Bnd is a free tool (provided by the aQute company) that
can generate a project's OSGi manifest from its classes and
libraries. More information can be found at http://www.
aqute.biz/Bnd/Bnd.

The plugin takes Bnd one step further and uses all Maven provided data, including
dependencies, which suits our purpose just fine. Goals are provided not only to
generate the OSGi bundle, but also to just generate the manifest.

Like with the rest of the Maven ecosystem, the plugin infers reasonable defaults for
most pieces of information, meaning we only need to configure specific parts.

It translates like so for Twaattin:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.4</version>
 <extensions>true</extensions>
 <configuration>
 <supportedProjectTypes>
 <supportedProjectType>war</supportedProjectType>
 </supportedProjectTypes>
 <manifestLocation>${bundle.manifest.dir}</manifestLocation>
 <instructions>
 <Bundle-ManifestVersion>2</Bundle-ManifestVersion>

Chapter 10

[361]

 <Require-Bundle>com.vaadin;bundle-version="6.7.0"</Require-
 Bundle>
 <Web-ContextPath>/${project.artifactId}</Web-ContextPath>
 <Import-Package>javax.servlet,
 javax.servlet.http,javax.naming,javax.sql,javax.crypto,
 javax.crypto.spec</Import-Package>
 <Bundle-ClassPath>.,WEB-INF/classes</Bundle-ClassPath>
 <Embed-Dependency>*;scope=compile|runtime;artifactId=!vaadin
 </Embed-Dependency>
 <Embed-Directory>WEB-INF/lib</Embed-Directory>
 <Embed-Transitive>true</Embed-Transitive>
 </instructions>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>manifest</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This configuration does many things; we will have a look at each part.

The first thing to know is that by default, the plugin only operates on jar and
bundle packaging types. It does not work for other artifact types (it fails silently).
Nevertheless, it can be configured to allow other packaging: the first thing to do is to
instruct the plugin we understand it is a WAR, but we still want the OSGi manifest.
This is done with the supportedProjectType tag in the previous XML snippet.

Then, the goal is only to create the manifest, so that we may include it in our bundle.
In order to achieve this, we isolate it in a specific folder, defined as a Maven property
so we don't have to hard-configure it in the assembly.

Finally, the instructions tag references individual headers we will find in the OSGi
manifest. The following two things are of particular interest:

1. Although our own code only requires some packages, we absolutely have to
import javax.crypto and javax.crypto.spec packages for Twitter4J uses
them. These additional packages can only be found empirically (that is,
running the application and reading the ensuing error).

Beyond Application Servers

[362]

2. OSGi specific class loading system disregards the standard WEB-INF/
classes and WEB-INF/lib folders, meaning we have to configure them in
the manifest. Moreover, whereas folders can be used for classes, they cannot
be used for JAR: luckily, the plugin handles the writing of each dependency.
The *;scope=compile|runtime;artifactId=!vaadin expression reads as
"any Maven dependency of scope compile or runtime that is not Vaadin".

The previous fragment produces the following OSGi manifest (for readability
purposes, the presented manifest does not respect the 72 characters per line limit):

Manifest-Version: 1.0
Export-Package: com.packtpub.learnvaadin.twaattin;uses:="javax.
servlet,javax.sql,javax.naming,com.packtpub.learnvaadin.
twaattin.service,com.packtpub.learnvaadin.twaattin.ui",com.
packtpub.learnvaadin.twaattin.persistence;uses:="com.packtpub.
learnvaadin.twaattin.service",com.packtpub.learnvaadin.twaattin.
service;uses:="com.packtpub.learnvaadin.twaattin.ui",com.packtpub.
learnvaadin.twaattin.ui;uses:="com.packtpub.learnvaadin.twaattin,com.
packtpub.learnvaadin.twaattin.service,com.packtpub.learnvaadin.
twaattin.persistence"
Embed-Directory: WEB-INF/lib
Bundle-ClassPath: .,WEB-INF/classes,WEB-INF/lib/quartz-2.0.1.jar,WEB-
INF/lib/slf4j-api-1.6.1.jar,WEB-INF/lib/twitter4j-core-2.2.2.jar,WEB-
INF/lib/slf4j-simple-1.6.1.jar,WEB-INF/lib/icepush-0.2.1.jar,WEB-INF/
lib/icepush-gwt-2.0.0-alpha3.jar,WEB-INF/lib/jta-1.1.jar,WEB-INF/
lib/vaadin-sqlcontainer-1.1.0.jar,WEB-INF/lib/icepush-2.0.0-alpha3.
jar,WEB-INF/lib/c3p0-0.9.1.1.jar
Built-By: frankeln
Tool: Bnd-1.15.0
Bundle-Name: Twaattin
Created-By: Apache Maven Bundle Plugin
Web-ContextPath: /twaattin
Require-Bundle: com.vaadin;bundle-version="6.7.0"
Build-Jdk: 1.6.0_24
Bundle-Version: 1.0.0.SNAPSHOT
Bnd-LastModified: 1307519252812
Embed-Transitive: true
Bundle-ManifestVersion: 2
Bundle-Description: Twaattin is a Vaadin Twitter client
Embed-Dependency: *;scope=compile|runtime;artifactId=!vaadin
Import-Package: javax.crypto,javax.crypto.spec,javax.naming,javax.
servlet,javax.servlet.http,javax.sql
Bundle-SymbolicName: com.packtpub.learnvaadin.twaattin

Chapter 10

[363]

Note that metadata such as Bundle-Name, Bundle-SymbolicName and the like are
automatically taken from the POM's artifactId, groupId, and version. Although
it is possible to override these values, defaults are good enough for Twaattin.

Moreover, the Export-Package header is taken care of by the plugin (and Bnd
underneath) and read from our source code.

If crafted by hand, take care that OSGi expects the version
to be in MAJOR.MINOR.MICRO.QUALIFIER format. These
components have to be separated by dots, so Maven -SNAPSHOT
qualifier should be replaced.

Multiplatform build
In order for our build to be truly multiplatform, we now just have to provide an
assembly descriptor for the bundle (as well as configure it in the POM).

<?xml version="1.0" encoding="UTF-8"?>
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-
 plugin/assembly/1.1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
 plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-
 1.1.2.xsd">
 <id>bundle</id>
 <formats>
 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>src/main/webapp</directory>
 <outputDirectory>/</outputDirectory>
 </fileSet>
 <fileSet>
 <directory>${project.build.outputDirectory}</directory>
 <outputDirectory>/WEB-INF/classes</outputDirectory>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>

Beyond Application Servers

[364]

 <outputDirectory>/WEB-INF/lib</outputDirectory>
 <excludes>
 <exclude>*:war</exclude>
 <exclude>javax.transaction:jta</exclude>
 <exclude>com.vaadin:vaadin</exclude>
 </excludes>
 </dependencySet>
 </dependencySets>
</assembly>

We see that OSGi packaging is not more complex than for our previous portlet, the
real piece of work was done in the bundle plugin.

We just have to take care to remove the Vaadin JAR from the WEB-INF folder, for
it is provided by the OSGi container.

Build and deploy
With only these two changes, we made Twaattin an OSGi bundle in its own right.
Moreover, this also reinforces the fact that using Maven was a good step towards
true multiplatform build.

Cloud
What is dangerous with the word "cloud" nowadays is that it is a relatively young
approach, so that not everyone necessarily has the same.

In order for certain terms to have the same meaning in the scope of this book, some
definitions are in order.

Cloud offering levels
Currently, there is some agreement however, that there are three different service
levels offered by clouds. This should be the shared understanding for our following
work on clouds.

1. Infrastructure as a Service (IaaS): In IaaS, only the hardware is
dematerialized. In effect, this only affects system administrators and only in
that they interact with a server whose location they don't know, as opposed
to one they know of. The net gain here is a decrease on hardware costs as it is
mutualized. We still have to install JVM, application servers, and the rest.

Chapter 10

[365]

2. Platform as a Service (PaaS): PaaS goes one step further and also provides
the platform, for example, the JVM and the application servers, on top of the
distant hardware. In this case, the cloud vendor completely isolates users
from the underlying infrastructure behind a façade, which also offers a user
interface to configure the different platforms.

3. Software as a Service (SaaS): The last level of cloud offering is the SaaS,
which is an application hosted distantly.

What is common in all three levels is the virtualization of hardware. One never
knows on which physical server one runs the OS, the platform, or the software.

Saas

PaaS

laaS

For our purposes, the needed offering is situated on the PaaS level: In this case, we
will just deploy our software "in the cloud".

State of the market
This field being relatively new, things are changing fast. In the Java ecosystem,
however, there are three stable players providing a cloud platform for our software
to run on:

• Google was the first major company to provide a "free" cloud platform for
Java web applications in the form of Google App Engine.
This approach has some disadvantages, including a reduced scope of the
Java API that prevents some tasks such as thread launching, file creation, and
so on. Moreover, persistence can only be achieved through JPA or JDO, and
only so with the help of the DataNucleus product, thus forcing us to use it
locally as well.

Beyond Application Servers

[366]

Finally, although free at the entry level, there are some fees when one goes
above some quotas (but these are quite high; for an up-to-date reference on
these limits, refer to http://code.google.com/intl/fr/appengine/docs/
quotas.html).

• The second Java offering comes strangely from Microsoft in the form of its
Azure platform. Though not free in the true sense of the term—the trial is
free and ends on September 30—the initiative is unique enough to be cited.
In fact, for Java apps anyway, Azure is not PaaS enough as we need to
deploy the application server on our own.

• Finally, the newest player on the scene is VMware which supplies the Cloud
Foundry software. This software is provided as an open source project
(for private clouds), as well as a platform to deploy on.

As Google was the first, Vaadin provides a specific servlet to run on GAE. Yet, GAE
put too many constraints:

• Only a subset of the Java API is available (no threads, no files, and so on)
• Persistence has to be used through the Java Data Object API (JDO—for

details, see http://www.oracle.com/technetwork/java/index-
jsp-135919.html)

• Every object put in session has to be serializable
• Finally, deployment time is lengthy, even on the local testing platform

Therefore, the winner is Cloud Foundry in the scope of this book.

Tooling
We will see in the following section that we can run a standard webapp with no
changes in Cloud Foundry. However, the deployment of the application to the
cloud can be eased with the help of the right tool.

In our case, the right tool is SpringSource Tools Suite that we discussed in
Chapter 2. Beginning with Version 2.5.1 from STS, we can install the Cloud Foundry
plugin from inside the IDE. Alternatively, we can also install the plugin within a
simple Eclipse 3.7. The update site address is http://dist.springsource.com/
release/TOOLS/market-place/e3.7/. The Cloud Foundry feature is located under
Core / Cloud Foundry integration.

Chapter 10

[367]

Hello cloud
In this section, we will deploy our first web application to Cloud Foundry. Please
first create a Vaadin project as we have done before.

Registration
If you intend to use the Cloud Foundry platform, then you need to register on the
website to get an account first. Go to http://cloudfoundry.com/ and come back
when it is done. Be warned that it takes a couple of days to get an answer.

Cloud setup
In a standard environment, we would need to create a new virtual server. In the
cloud, we need to configure it, but the steps are the same.

1. Locate the Servers tab. Right-click and select New | Server.
2. With the Cloud Foundry plugin installed, there should be a new entry named

Cloud Foundry under the VMware folder. Select it and click on Next, as
shown in the following screenshot:

Beyond Application Servers

[368]

3. Now, fill in the information sent by Cloud Foundry and validate the account.
Then, click on Next, as shown in the following screenshot:

4. Finally, select the project to setup and click on Finish. Notice a new "server"
appeared in the tab. Under it, there should be our project with the status Not
Deployed. Now, we have to upload the application.

Application deployment
In order for the application to be deployed "on the cloud", we will need to configure
it first. This can be done easily: select the newly available application, right-click on
it, and select Start.

Chapter 10

[369]

Even though ours is not a Spring application per se, we keep the default values. Click
on Next, as shown in the following screenshot:

In this step, we can customize the URL and the memory. The URL suits us just fine.
As for the memory, we can use the minimal value (64M) as there is no real need
for more.

Click on Finish and watch the magic happen.

Troubleshooting
Be extra-careful when choosing the URL because it must
be unique among all applications (mine, yours, and
everyone's). If a 400 error with the message "The URI xxx.
cloudfoundry.com has already been taken or reserved"
occurs, be sure to change the URI accordingly. Don't be
afraid to choose a long one!

Finally, navigate to your chosen URL and be amazed!

Alternative deployment
The IDE is not the only solution to deploy our applications in Cloud Foundry. The
latter comes with a command-line interface (CLI) named vmc. This client can be
installed as a Ruby gem, meaning we have to have Ruby installed on our system,
and is well beyond the scope of this book.

Readers interested in deploying with the CLI should refer to the documentation
available online at the following URL:

http://support.cloudfoundry.com/attachments/token/
dyizykvkgocs7yb/?name=Getting_Started_With_VMware_Cloud_Foundry_
using_vmc-u3.pdf.

Beyond Application Servers

[370]

Integrating Twaattin
Regarding the previous section, integrating Twaattin should be painless. In fact it is:
still, we need to change the way we get the reference on the datasource.

Creating the datasource
Before using the datasource, we have to create one and associate it with our
application. In Cloud Foundry, datasources are services. In order to create such a
service, double click on the Cloud Foundry virtual server and select the Services
section in the Application tab.

Click on the Add service button. In the opening pop-up, fill the fields as follows:

• Name: anything you like
• Type: MySQL database service

Click on Finish and then select the Twaattin application in the Applications section
and drag the newly created service in the Application Services section. This is it!

Using the datasource
Cloud Foundry makes information on services available as JSON entities in
an environment variable. As getting the variable and then parsing the JSON
is somewhat bothersome, Cloud Foundry also provides a library to access it
through an API.

Chapter 10

[371]

This library is available in the Spring Maven repo. In order to use it, the POM has to
be updated as follows:

<repository>
 <id>Spring</id>
 <url>http://s3.amazonaws.com/maven.springframework.org/milestone</
url>
</repository>

Then, we just add the dependency as follows:

<dependency>
 <groupId>org.cloudfoundry</groupId>
 <artifactId>cloudfoundry-runtime</artifactId>
 <version>0.6.0</version>
</dependency>

The last step is to use the datasource. This is how we got it:

CloudEnvironment env = new CloudEnvironment();

ApplicationInstanceInfo instanceInfo = env.getInstanceInfo();

MysqlServiceCreator creator = new MysqlServiceCreator(env);

ServiceNameTuple<DataSource> snt = creator.createSingletonService();

DataSource ds = snt.service;

Finishing touches
As we may run Twaattin in a variety of environments, we need to introduce a service
locator that knows how to get the datasource no matter where. In Cloud Foundry, it
will be using the utility API we just saw, otherwise (in GateIn or in GlassFish) it will
be from a JNDI resource.

package com.packtpub.learnvaadin.twaattin;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

import org.cloudfoundry.runtime.env.ApplicationInstanceInfo;
import org.cloudfoundry.runtime.env.CloudEnvironment;
import org.cloudfoundry.runtime.service.AbstractServiceCreator.
ServiceNameTuple;
import org.cloudfoundry.runtime.service.relational.
MysqlServiceCreator;

public class ServiceLocator {

Beyond Application Servers

[372]

 private static transient DataSource ds;

 private ServiceLocator() {
 }

 public static DataSource getDataSource() {

 if (ds == null) {

 CloudEnvironment env = new CloudEnvironment();

 ApplicationInstanceInfo instanceInfo = env.getInstanceInfo();

 if (instanceInfo != null) {

 MysqlServiceCreator creator = new MysqlServiceCreator(env);

 ServiceNameTuple<DataSource> snt =
 creator.createSingletonService();

 ds = snt.service;

 } else {

 try {

 ds = (DataSource) new
 InitialContext().lookup("java:comp/env/jdbc/twaattin");

 } catch (NamingException e) {

 throw new RuntimeException(e);
 }
 }
 }

 return ds;
 }
}

From this point on, Twaattin can be deployed on Cloud Foundry like our first trivial
example. It is accessible online at http://twaattin.cloudfoundry.com/.

Summary
In this chapter, we have deployed Vaadin applications on exotic platforms that
go well beyond simple applications servers: portals, OSGi containers, and the cloud.
In each case, we used a product, respectively GateIn, GlassFish, and Cloud Foundry
to demonstrate the feasibility of it. Should the need arise; however, we now have all
the necessary keys to deploy on other products, for example Liferay, Felix, or Google
App Engine.

The lesson here is that Vaadin applications can be run on a variety of platforms
without much adaptation.

Index
Symbols
_blank 83
@ClientWidget annotation 264
<div> tag 105
@Inject annotation 294
@ManyToOne annotation 298
<noscript> tag 72
_parent 83
@PostConstruct annotation 296
_self 83
@SessionScoped 294
<title> tag 80
_top 83

A
absolute layout 107
AbstractApplicationPortlet 339
AbstractApplicationServlet 287
AbstractBeanContainer 164
AbstractComponent class

about 77
immediate property 78

AbstractComponentContainer 252
Abstract Factory 282
AbstractSelect class

constructors, for subclasses 170
properties 167

accept criterion 185
accessor method 150
ACID test 13
ActiveX 16
addBean() method 164
addComponent() method 79, 252
addItem() method 164

addListener() method 125
add-on presentation

about 219
detailed view 220
summarized view 219

add-ons directory
about 218
add-on presentation 219
add-ons search 218

add-ons search
bout 218
stability levels 219
typology 218

add-ons, Vaadin
about 218
add-ons directory 218
noteworthy add-ons 222

address component 251
addVariable() method 267
advanced configuration, Vaadin

portlet specifics, handling 341, 342
restart and debug features 340

Advanced Encryption Standard (AES) 222
advanced layouts 106
Ajax

about 15, 19
limitation 16

alternative event implementation, Vaadin
about 125
abstract component 129
event router 129
listener methods 127
method event source details 126, 127

Ant build file 316
AOP 288, 302
AOP Alliance 1.0 284

[374]

Apache Ant
about 316
limitations 316
URL 316

Apache Felix 350
Apache iBatis 21
Apache Jetspeed 2 328
Apache Maven. See also Maven 316
Apache Pivot project 16
Apache Portable Runtime 63
Apache Tomcat 76
application configuration 69
application contexts 203
application lifecycle

listener 217
ApplicationServlet class 358
application tiers, Vaadin

about 8
data 8
logic 8
presentation 8
tiers migration 9

applicationUserChanged() method 113
appliesToProperty() method 160
APP_NAME 211
architectural considerations, Vaadin

about 132
anonymous inner classes, as listeners 132
conclusion 134
presenters, as listeners 133
services, as listeners 134
widgets, as listeners 132

architecture, Vaadin. See Vaadin architec-
ture

asadmin command line 351
aspect

committing 302
Aspect-Oriented Programming See AOP
assembly descriptor 347, 348
asynchronous JavaScript with XML. See Ajax
AutoGenerated annotation 259
Azure platform 366

B
basic embedding 209
BeanContainer 164

BeanItemContainer 164
beta add-ons 219
bookmarks

about 205
URI fragment utility 206-208
URL fragment 206

boolean type 155
brute force approach 202, 203
Buffered interface 97
buffering 144
build tools, Vaadin

about 315
Apache Ant 316
Apache Maven 316
fragmentation 317
selecting 317

Bundle-ClassPath header 357
Bundle-ManifestVersion header 356
Bundle-Name header 356
bundle plugin 360-362
bundles

about 349
deploying 351
file system deployment 352
prerequisites 351, 352
Telnet deployment 351, 352
web console deployment 353-355

Bundle-SymbolicName header 356
Bundle-Version header 356
button widget 130

C
caption property 84, 99
captions

modifying, in forms 156
Cascading Style Sheets. See CSS
CDI 21
CDI-Vaadin integration servlet 293, 294
center() method 89
certified add-ons 219
CGLIB 2.2 283
class attribute 73
ClassCastException 163
CLI 369
client event implementations

limitations 121

[375]

client events 120
client server communication, Vaadin archi-

tecture
about 53
HTTP protocol 53
JSON message format 54
UIDL schema 54

client server communication, Vaadin GWT
architecture

about 268
slider example 269

client-server events 120
client server synchronization, Vaadin archi-

tecture 57
client side, Vaadin GWT architecture

about 260, 261
compilation 261-263
widgets, styling 263, 264

client-side Vaadin widget
creating 261-263

client tier, Vaadin architecture
about 54, 56
GWT development 55

client wrapper 269, 270
closable property 88
close() method 217
Cloud

about 364
market state 365, 366
service levels 364
setting up 367, 368
tooling 366
Twaattin, integrating 370

Cloud Foundry 366
Cloud, service levels

IaaS 364
PaaS 365
SaaS 365

code, Java EE 6 293
collapsing column 175
columnAlignment property 174
columnAlignments property 174
columnCollapse property 174
columnExpandRatio property 174
columnFooter property 174
COLUMN_HEADER_MODE_EXPLICIT

constant 176

COLUMN_HEADER_MODE_EXPLICIT_
DEFAULTS_ID constant 176

COLUMN_HEADER_MODE_HIDDEN
constant 176

COLUMN_HEADER_MODE_ID constant
176

columnHeader property 174
columnHeaders property 174
columnIcon property 174
columnIcons property 174
columns

about 173
collapsing feature 175
footer 175
generated columns, formatting 177, 178
header 175
ordering 177
properties 174
reordering 177

columns property 100
columnWidth property 174
commit() operation 148, 154
Commons Logging 1.1.1 283
compareToIgnoreCase() method 163
compareTo() method 163
component

about 75
class diagram 76
EventListener interface 77
laying out 103
layouts 105
Paintable interface 77
Serializable interface 76, 77
size 103, 104
Sizeable interface 77

ComponentContainer interface 79
Component interface 76
components class diagram

about 76
AbstractComponent class 77
Component interface 76
MethodEventSource interface 77

CompositeErrorMessage class 215
CompositeValidator 95
concrete indexed containers 164, 165
constructor injection 283

[376]

container
concrete indexed containers 164, 165
constraints, for items 159
data source 166, 167
filterable containers 160
filtering capability 160
item sorter 162, 163
ordered container 161, 162
sorting capability 179

container data source
about 166, 167
items, displaying 167, 168
new items, handling 169
null items 169

container widgets 169
content property 79
CONTEXT_ROOT 211
Context Dependency Injection See CDI
cookies 202
core features, Vaadin

about 202
application lifecycle 217
bookmarks 205-208
custom error handling 212
embedding 208-212
reponse object, accessing 202-205
request object, accessing 202-205

createField() method 157
cross-site embedding

about 222
add-on configuration 225
compilation 223
installation 223
tweaks 222
use-case 222

CRUD operations 225
CSS 12
CSS layout 107
CUD statements 235
cursorPosition property 100
CustomComponent class 252
custom components

about 252
strategy 254

custom error handling
about 212
design 212, 213

error listener example 215, 216
custom layout 108

D
data binding

about 143
properties 143, 144

data binding, properties
buffering 144
editor 144
renderer 144
value-widget binding 144, 145

Data Manipulation Language 97
DataNucleus product 365
datasource

about 146
creating 370
using 370, 371

data tier 8
date column generator 196-198
debug mode, portal 343, 344
debug mode, Vaadin application 65
DefaultItemSorter 163
DefaultPropertyValueComparator 163
delayMsec property 86
delete() method 232
Dependency Injection 282
dependency management

enabling 322, 323
deployed portlet

updating 344
deployment descriptor, portlet 333-345
description property 84, 99
design, for custom error handling 212, 213
destroy() method 341
detailed view, add-on presentation 220
development strategies, portlet

about 342
deployed portlet, updating 344
portal debug mode 343
portlet servlet-compatible 343

DI. See Dependency Injection
discard() operation 148, 154
displayName property 172, 177
Document Object Model. See DOM
DOM 12, 15

[377]

DontPush
about 238
versus ICEPush 238

Don't Repeat Yourself. See DRY principle
DoubleValidator 94
downloading

GateIn 329
drag-and-drop capabilities, for tables

about 182
accept criterion 185
DragSource 183
Drop target 184
table drag-and-drop 185-187
Transferable 183

draggable property 88
DragSource 183
drop() method 184
drop target model design 184
DRY principle 327

E
Eclipse

about 18, 317
GWT, adding to 36-38
setting up 28

Eclipse-based STS 317
Eclipse Foundation 27
Eclipse IDE

Vaadin capabilities, adding to 31
Eclipse integration, Glassfish 292, 293
EclipseLink Container 237
Eclipse Vaadin project

creating 32-34
server runtime, creating 31
testing 34

ECMAScript 12
ECMA standard 12
editor component 144
Editor interface 145, 146
Embedded component 259
entity abstraction issue, Vaadin interfaces

containers 159
item level 150
property level 145, 146

Equinox project 350
ErrorEvent 213

error handling chains
elements 212

error listener example
about 215, 216
application 215, 216

error messages
about 214
system errors 214
user errors 214

error type notifications 85
error types, Vaadin

caught exceptions 212
uncaught exceptions 212

event 119
event class hierarchy

about 122
typed events 122, 123

event details 119
event-driven model

about 117
observer pattern 117, 118

event-driven software 117
event firing 133
event handling 119
EventListener interface 77
event model

about 121
alternative event implementation 125
standard event implementation 122

events, JavaEE 119
event types 119
executeJavascript(String script) method 82
experimental add-ons 219
Export-Package header 356
Ext-GWT 21

F
fat-client

about 11
deploying, from web 17
updating, from web 17

features, SQL containers
initialization 227
paging 227
programmatic filtering 227
programmatic ordering 227

[378]

transaction management 227
features, Vaadin 20
Field interface

about 99
properties 99

fields
ordering 156

field types
configuring 155

files
serving, from HTTP server 339
serving, from portal 339

files location
configuring 339

file system deployment 352
filter

about 160
committing 300

filterable containers 160
filtering 159
Filter interface

about 160
methods 160

final touch setting 279
firstComponent property 109
Flash 16
Flex 17, 19
Focusable interface

about 98
methods 98

formats, labels
preformatted 91
raw 92
text 91
XHTML 92
XML 92

Form class 154
form layout 106
FormLayout 154
forms

about 154
captions, modifying 156
configuration 157, 158
fields, ordering 156
field types, configuring 155

fragmentation 317
free form queries 235-237

FreeformQuery 228
FreeformQuery constructor 235

G
GAE 22, 366
Gang of Four Adapter

URL 57
Gant, for Grails 317
GateIn

about 329
configuring, for Vaadin 338
files location, configuring 339
installing 329
launching 331
platform, preparing 330
portlet, deploying in 336
portlet, using in 336
themes 338
widgetsets 338

generated columns
formatting 177, 178

getApplicationClass () method 287
getApplicationContext(HttpSession session)

method 203
getClickedValue() method 254
getComponent() method 122
getCurrentSession() method 299, 304
getDataFlavors() method 183
getNewApplication () method 287
getSessionManager() method 309
getSortableContainerPropertyIds() method

161
getStaticFilesLocation() method 339
getType() method 91
getUser() method 196
getValue() method 172
Glassfish

about 351
bundles, deploying 351
URL 292

Glassfish 3.1
about 291
downloading 291
Eclipse integration 292
installing 292

GlassFish Server 40

[379]

Google 365
Google App Engine 76, 365
Google Application Engine See GAE
Google Web Toolkit. See GWT
Gradle, for Groovy 317
graphic composition approach, for widgets

about 254
Visual editor, benefits 256
Visual editor, setting up 254

grid layout 106
GWT

about 19, 54, 75
and compilation 261
compilation, optimizing 263
development 54
disadvantages 55
features 55
widget wrapping 259

GWT build 323-325
GWT extensions 21
GWT + Java class association 75
GWT widget wrapping 259

H
handleActionRequest() method 342
handleEventRequest() method 342
handleRenderRequest() method 342
handleResourceRequest() method 342
HbnContainer 237, 312
HbnContainer maturity 299
Hello cloud application

about 367
alternative deployment 369
application deployment 368, 369

Hello OSGI project
about 356
application, running 357
bundle, creating 356, 357
errors, correcting 358

Hibernate
about 21, 296
container 298
downloading 311
mappings 297

Hibernate container
about 298

architecture 298, 299
transactions, managing 299
window 306

Hibernate mappings
about 297
Job entity 297
Person entity 297

hibernate.properties file 311
Hierarchical interface 166
history, Vaadin 24
horizontal layouts 106
HSQLB 330
HSQLDB 226
HTML 10-12, 206
HTTP protocol

advantages 53
using 53

HTTP server
files, serving from 339

HttpServletRequest 202
HttpServletRequestListener interface 204
HttpServletResponse 202
humanized notifications 85
Hyper Structured Query Language Data-

base. See HSQLB
Hyper Text Markup Language. See HTML

I
IaaS 364
IBM WebSphere Portal 328
ICEPush

about 238
versus DontPush 238

icon property 84
IDE 18
IDE enhancements, Spring 284
IDE-managed server

creating 58
installation, verifying 61
server, creating 59, 60
tab, selecting 58

iframes
about 209
disadvantages 209

immediate mode 78
immediate property 78

[380]

Import-Package header 357
information 84
information notification 84
Infrastructure as a Service. See IaaS
initialize() method 191, 232
init() method 71, 216, 217, 341
input prompt

about 101
setting 101
value 102

inputPrompt property 100
installing

GateIn 329
Vaadin plugin, in Eclipse IDE 29, 30
Vaadin plugin, in NetBeans IDE 43

IntegerValidator 94
Integrated Development Environment. See

IDE
integrated frameworks, Vaadin 21
integration features, Vaadin 20
IntelliJ IDEA 27
interface injection 282
invalidCommited property 98
Inversion of Control. See IoC
IoC

about 282
achieving 282
constructor injection 283
flavors 282
interface injection 282
setter injection 283

isModal() method 90
isRoot() method 188
ITEM_CAPTION_MODE_EXPLICIT con-

stant 168
ITEM_CAPTION_MODE_EXPLICIT_DE-

FAULTS_ID constant 168
ITEM_CAPTION_MODE_ICON_ONLY

constant 168
ITEM_CAPTION_MODE_ID constant 168
ITEM_CAPTION_MODE_INDEX constant

168
ITEM_CAPTION_MODE_ITEM constant

168
itemCaptionMode property 167, 173
ITEM_CAPTION_MODE_PROPERTY

constant 168

itemCaptionPropertyId property 167
item handlers 248, 249
itemIconPropertyId property 167
Item interface

about 150
MethodProperty class 150
right level, of abstraction 151-153

items
displaying 167, 168
new items, handling 169
null items 169

item sorter 162, 163

J
JARs 283
Java 11
Java Content Repository. See JCR
Java Development Kit (JDK) 60
Java EE 39

events 119
UI events 120

Java EE 6
about 290, 291
code 293
prerequisites 291
profiles 291
servlet code 293, 294
Tomcat 291
web profile 291
window example 295, 296

Java EE stack 59
java.lang.reflect.Method 126
Java Network Launching Protocol. See

JNLP
Java Persistence API. See JPA
Java Portlet API 328
Java Portlet API 2.0 328
Java Runtime Environment (JRE) 60
JavaScript 81
JavaScript Objects Notation. See JSON
JavaServer Pages. See JSP
Java Servlet 3.0 290
java.util.Date type 155
java.util.EventObject 122
Java web applications 7
Java Web features 41

[381]

Java Web Start. See JWS
javax.servlet.ServletException 317
JBoss Enterprise Portal Platform. See JEPP
JBoss GateIn

about 328
URL 328

JCR 330
JDBC connection pool 227
JDO 366
JEPP 329
Jetty 40
Jetty plugin 320
JNLP 17
Job entity 297
JPA

about 21, 313
integrating, with Vaadin 21

JPAContainer 238
JSON 54, 211, 265
JSON message format 54
JSONP 222
JSON with Padding. See JSONP
JSP 12
JSR-168 328
JSR-286 328
JSR 299 290
JSR 315 290
JWS 17, 18

K
KISS principle 133
Knopflerfish 350

L
label class hierarchy 90
labels

about 90
formats 91, 92
property interface 90

launching
GateIn 331

Layout interface 105
layouts

about 105
selecting 109
types 105-108

layouts, types
absolute 107
advanced 106
CSS 107
custom 108
form 106
grid 106
horizontal 106
simple 105
vertical 106

leaky abstractions 107
lifecycle layer 349
Liferay 22, 329
listener interfaces

about 123
Window widget 124

listener methods
about 127
parameter types 128
return value discard 127

listeners
managing 124, 125
multi-implementations listeners 125

locked property 109
logic tier 8
login window, Twaattin 111, 113, 189, 191

M
m2e plugins 317
mainframes

about 9
client server 9, 10

main window, Twaattin 111
manual composition approach, for widgets

about 252, 254
limitations 252

market state, Cloud 365, 366
market state, Vaadin 19, 20
Maven

about 284, 316
standardization 316
URL 284, 316

Maven changes, Twaattin
assembly descriptor 347, 348
dependency changes 346
multiplatform build 346

[382]

Maven feature
adding, to Vaadin 317

Mavenize Vaadin project 318, 319
Maven projects

Vaadin support, adding to 319-321
Maven tooling 317
maxLength property 101
MethodEventSource interface 77, 126
MethodProperty class 150
Microsoft SQL Server 226
modality 89
mode property 168
modularity layer 349
modularization 356
module granularity

example 356
multi-implementations listeners 125
multiSelect property 167
MySQL 226

N
name column generator 195, 196
NetBeans

about 18
distributions, downloading 38
setting up 38
Spring support 284
Vaadin 38

NetBeans Vaadin project
creating 43, 44
testing 46

newInstance() method 358
newItemHandler property 167
new items

handling 169
newItemsAllowed property 167
nominal embedding

about 210
configuring 211
div element 211
loading 211
stylesheet 211

non-editable text content 90
noteworthy add-ons

about 222
cross-site embedding 222

server push 238-241
SQL adapter 225

notification
about 84
displaying 86
methods 87
properties 86

notification class 84, 85
notification, types

error type 85
information 84
tray 85
warning 85

notify() method 118, 119
null items 169
nullRepresentation property 101
nullSelectionAllowed() method 169
nullSelectionAllowed property 167
nullSelectionItemId property 167
nullSettingsAllowed property 101
null value, text field 101

O
OAuth

about 189
URL, for info 189

ObjectProperty 146
object serialization 265
observer pattern

about 77, 117, 118
enhancements 118

observer pattern, enhancement
event 119
event details 119
event types 119

onMessage() method 119
open(ExternalResource) method 202
Oracle 16, 226
Oracle WebLogic Portal

URL 328
ordered container 161, 162
OSGi

about 349
platform, selecting 350
tooling 355
Twaattin, integrating 360

[383]

out-of-the-box helpers, Vaadin
about 64
debug mode 65

OW2 JOnAS 40

P
PaaS 365
page

portlet, adding to 337
paging 227
Paintable interface 77
paintContent() method 265, 268
paint() method 265
Panel 79
passesFilter() method 160
philosophy, Vaadin 51, 52
pixel 79
placeholders 108
Platform as a Service. See PaaS
Play framework

URL 52
POM 316, 318
portal

about 327
debug mode 343, 344
files, serving from 339
proprietary files 335
Twaattin, integrating 344

portlet
about 48, 327, 332
adding 337
adding, to page 337
deploying, in GateIn 336
deployment descriptor 333-345
development strategies 342
project, creating 332
refreshing 337
using, in GateIn 336

portlet API
JSR 328

portlet API, JSR
JSR-168 328
JSR-286 328

portlet container 328
portlet deployment descriptor 344, 345

portlet project
creating 332
differences 333-335
similarities 336

portlet project creation 332
portlet specifics

handling 341, 342
position property 86
preformatted, labels 91
prerequisites, Java EE 6

about 291
Glassfish 3.1 291

prerequisites, Spring 283
presentation tier 8
profile, Java EE 6 291
programmatic filtering 227
programmatic ordering 227
programmatic sorting 179
project

widgetset, adding to 359
project.build.sourceEncoding property 320
Project Object Model. See POM
project setup, Twaattin 111
project sources, Twaattin

about 112, 136
application 137, 138
application class 112
login window 113, 114, 136, 137
timeline window 114

property formatter 146-148
PropertyFormatter class 147
Property interface

about 90, 145, 146
changes, handling 148-150
ObjectProperty 146
property formatter 146-148
sequential interactions 150

Q
Quartz

URL 242
query delegates 227-233

R
Rake, for Ruby 317
raw format, labels 92

[384]

Red Hat JBoss Application Server 40
refresh() method 227
refreshRenderedCells() method 180
RegexpValidator 94
regular subwindows 89
remarks, Hibernate

about 312
optimizations 312
rollback management 313
serialization exception 312

removeListener() method 125
renderer component 144
RequestContextListener 289
request-response model

about 238
accessing with 202
brute force approach 202, 203
integrated approach 204, 205

Require-Bundle header 356
requiredError property 99
required property 99
resizable property 88
Resource interface 82, 83
reusable dialog box

example 252
rich clients 15
rich clients approaches

Ajax 15
GWT 19
JWS 17, 18
plugins 16, 17

Rich Internet Application (RIA) 8
rootItemIds() method 188
row header column 176
ROW_HEADER_MODE_EXPLICIT con-

stant 176
ROW_HEADER_MODE_EXPLICIT_DE-

FAULTS_ID constant 176
ROW_HEADER_MODE_HIDDEN constant

176
ROW_HEADER_MODE_ICON_ONLY

constant 176
ROW_HEADER_MODE_ID constant 176
ROW_HEADER_MODE_INDEX constant

176
ROW_HEADER_MODE_ITEM constant

176

ROW_HEADER_MODE_PROPERTY con-
stant 176

Ruby on Rails 52
RuntimeException 214

S
SaaS 365
SBT, for Scala 317
scriptlets 12
script tag 211
Scrollable 79
secondComponent property 109
sendRedirect() method 217
Serializable interface 76, 77
server client communication, Vaadin GWT

architecture
about 265
descending communication 266, 267
object serialization 265
UDIL 265
YouTube viewer example 267, 268

Server push
about 238
example 239, 241
installation 239

server-side code, Vaadin architecture 56, 57
server side, Vaadin GWT architecture 264,

265
server side widget 264
service layer 350
service levels, Cloud

IaaS 364
PaaS 365
SaaS 365

Service Locator 282
service() method 302
servlet

committing 302, 303
servlet class

about 48
declaring 48

servlet code, Java EE 6 293, 294
servlet code, Spring 286, 287
servlet context 202
servlet mapping

adding 47

[385]

declaring 48, 49
SERVLET_MAPPING 211
session context 202
setChildrenAllowed() method 188
setColumnCollapse() method 175
setColumnHeaderMode() method 176
setCompositionRoot() method 252, 273
setCurrentPageFirstItemId() method 180
setCurrentPageFirstItemIndex() method 180
setHeight() method 180, 257
setItemCaption() method 167
setItemIcon() method 167
setLogoutURL() method 217
setMainWindow() method 81
setModal(boolean modal) method 89
setMovieID() method 268
setName() method 81
setNullSelectionItemId() method 169
setPageLength(int pageLength) method 180
setParent() method 188
setRowHeaderMode() method 176
setSizeFull() method 104, 180
setSizeUndefined() method 104
setSplitPosition() method 110
setStyleName() method 273
setter injectiont 283
setTheme(String theme) method 80
setValue() method 146
setWidth() method 257
showNotification() method 87
showNotification(String caption, int type)

method 87
showNotification(String caption) method 87
showNotification(String caption, String

description, int type) method 87
showNotification(String caption, String

description) method 87
Silverlight technology 17
simple layouts 105
Sizeable interface 77
SLF4J

about 311
URL 311

slider example
about 269
client wrapper 269, 270
server component 270

style 270
Smart GWT 21
Software as a Service. See SaaS
Sortable interface 161
sorting

about 179
programmatic sorting 179
user sorting 179

sort() method 161
SourceForge

URL 311
split panels

about 109
properties 109

Spring
about 21, 282
application context 284
bean factory 284
code 286
Dependency Injection 282
design 284
downloading 283
ideas 290
IDE enhancements 284
Inversion of Control 282
prerequisites 283
requirements and specifications 285
servlet code 286, 287
session scope 288
session-scoped dependencies, working with

288
standard scope 288
URL 282
use-cases 283
Vaadin application and servlet 285
working 284

Spring configuration
about 288
scope 288

Spring IDE Eclipse plugin 284
Spring integration servlet 287
Spring MVC 52
Spring Source Tools Suite. See STS
SpringSource website

URL 283
Spring support, in NetBeans

URL 284

[386]

SQL 11
SQL adapter

about 225
architecture 226
facts 225
free form query 235-237
query delegate 227-233
references 233, 234
similar add-ons 237

SQL container
features 227

stability levels, add-on search
about 218
beta add-ons 219
certified add-on 219
experimental add-ons 219
stable add-ons 219

stable add-ons 219
standard event implementation, Vaadin

about 122
event class hierarchy 122
listener interfaces 123
listeners, managing 124, 125

start command 352
startup script 63
StoreLabelListener 254
StringLengthValidator 95
String parameter 126
Struts 52
STS 35, 284, 366
style attribute 73
styleName property 86
subwindow

about 87
basic configuration 88
customizing 88
limitations 88
properties 88
structure 88

subwindow, customizing
basic configuration 88
location 89
modality 89

summarized view, add-on presentation 219
Sun 16
system errors 214

T
table

about 173, 185, 186
collapsing column 175
column properties 174
columns 173
drag-and-drop capabilities 182
editable, making 180-182
footer element 175
header element 175
selection 182
structure 173
viewpoint 180
viewpoint change event 180

TableFieldFactory interface 181
table hierarchy 173
table properties

formatting 177, 178
TableQuery 228
table structure 173
Telnet deployment 351, 352
Terminal Adapter, Vaadin architecture 57
terminalError() method 213
text field

about 100
cursor 102
example 102
input prompt 101
null value 101
selecting 102

text field class hierarchy 100
text format, labels 91
text inputs

about 92
Buffered interface 97
Field interface 99
Focusable interface 98
validations 93

theme
about 80
creating 80

THEME_NAME 211
theming 80
thin-client applications approach

limitations 11-14

[387]

thin-client applications approach, limita-
tions

browser compatibility 13
client side, requisites 11
controls, poor choice 11
page flow paradigm 14
unrelated technologies 11-13

thin clients 10, 11
third-party frameworks, Springs

AOP Alliance 1.0 284
CGLIB 2.2 283
Commons Logging 1.1.1 283

ThreadLocal class 299
ThreadLocal pattern 205
threads 241
Throwable instance 213
tiers migration, Vaadin

about 9
client server 9, 10
ainframes 9
thin clients 10, 11

timeline window 245-278
timeline window feature, Vaadin 114, 139,

140, 193-195
title, Window class 80
Tomcat 40, 59, 291
Tomcat 7.x

download link 59
toString() method 146, 168
transaction management 227
transactions, Hibernate container

application 305, 306
aspect, committing 302
committing/rollbacking 300
filter, committing 300, 301
managing 299
servlet, committing 302, 303
session manager implementation 304, 305
starting 300
Vaadin native approach 303, 304

Transferable 183
tray notifications 85
trees

about 187
child node 188
collapse feature 187
expand feature 187

item labels 188
parent node 188

Twaattin
about 110, 135, 283
additional features 138-141
code, updating 272
dependency management, enabling 322,

323
design 111
existing project, migrating 322
final touch 279
GWT build 323-325
improvements 241, 242
integrating with OSGi 360
integrating with portals 344
login window 111
main window 111
Maven changes 346
new item handler 248, 249
portlet deployment descriptor 344, 345
project setup 111
project sources 112, 136-138
refining 188
timeline window 245-248, 278
timeline window feature 139, 140
Tweet component 272, 273
Tweet label 274
warning messages, cleaning up 326
web deployment descriptor 345
When label 276, 278

TwaattinApp 140, 141
twaattin application 191, 192, 242-244
Twaattin code

updating 272
Twaattin design 111
Twaattin, integrating with Cloud

datasource, creating 370
datasource, using 370, 371

Twaattin, integrating with OSGi
bundle plugin 360-362
multi-platform build 363, 364

Twaattin sources
date column generator 196-198
login window 189, 191
name column generator 195, 196
timeline window 193-195
twaattin application 191, 192

[388]

tweet
about 271
designing 271

Tweet component 272, 273
Tweet label 274
Twitter 271
Twitter4j 188
Twitter service 283
typed events 122, 123
TYPE_HUMANIZED_MESSAGE constant

84
TYPE_TRAY_NOTIFICATION constant 85
typology, add-on search

about 218
data components 218
miscellaneous 218
themes 218
UI components 218

U
UIDL

characteristics 265
UI events, JavaEE

client 120
client-server 120

UML 80
unclosable subwindow 89
Unified Modeling Language. See UML
unit testing 283
unresizable subwindow 89
UnsupportedOperationException 252
updateComponent() method 260
updateFromUIDL() method 260, 269
updateVariable() method 270
URI fragment utility 206-208
URL fragment 81, 206
use-cases, Spring 283
user change event, Vaadin 131
user errors 214
User Interface Definition Language (UIDL)

54
user messages

about 84
notification class 84, 85

user sorting
preventing 179

V
Vaadin

about 7
add-ons 218
advanced configuration 340
and other IDEs 46
application tiers 8
architectural considerations 132-134
architecture 52
basic embedding 209
blur events 122
browsing 64
build tools 315-317
button widget 130
component class hierarchy design 76
core features 202
data 145
data binding 143, 144
embedding 208
entity abstraction issue 145
error messages 214
error types 212
event model 121
features 20
focus events 122
GateIn, configuring for 338
GWT architecture 260
history 24
in NetBeans 38
integrated frameworks 21
integrating, with JPA 21
integrating, with Spring 21
integration features 20
integration platforms 22
market state 19, 20
need for 19
new technology concerns 22, 23
nominal embedding 210
overview 7
philosophy 51, 52
request-response model 202
rich applications 8
third-party additional features 218
user change event 131
using, in real world 22
version, modifying for 45

[389]

widgets, composing 251
Vaadin application

about 58
callbacks 69
configuration 69
deploying 58
deploying, in IDE 58
deploying, outside IDE 63
functions 68
generated code 72
out-of-the-box helpers 64
request handling 67, 68
responsibilities 69
restarting 66
session requests 70
source code 71
surface, scratching 71
themes, setting 69
URL, decomposing 67
using 64
windows, managing 69
working 67

Vaadin application code 294, 295
Vaadin application, deploying in IDE

about 58
application, adding 61
IDE-managed server, creating 58
server, launching 61, 62

Vaadin application, deploying outside IDE
about 63
server, launching 63
WAR, creating 63

Vaadin architecture
about 52
client part 54
client server communication 53
client server synchronization 57
diagrammatic representation 53
Terminal Adapter 57

Vaadin bundling 355, 356
Vaadin capabilities

adding, to Eclipse IDE 31
Vaadin graphical editor 255
Vaadin GWT architecture

about 260
client server communication 268
client side 260, 261

server client communication 265
server side 264, 265

Vaadin JAR 202
Vaadin library

adding 46
Vaadin native approach 303
Vaadin OSGi use-cases

about 355
modularization 356
Vaadin bundling 355, 356

Vaadin plugin
installing, in Eclipse IDE 29, 30
installing, in NetBeans IDE 42, 43
rich clients 15

Vaadin projects
Maven features, adding to 317

Vaadin support
Maven project, adding to 319-321

Vaadin XS 222
Validatable

about 96
methods 96

Validatable, methods
isValid() 96
validate() 96

validation 93
validator coherence 93
validators

about 93
error message 96
hierarchy 94, 95

validators hierarchy 94, 95
value-widget binding 144, 145
version

modifying, for Vaadin 45
VERSION 211
vertical layouts 106
viewer 146
Viewer interface 145, 146
viewpoint 180
viewpoint change event 180
Visual Basic 11
Visual editor

limitations 258, 259
position property 257, 258
setting up 254
size property 257, 258

[390]

uses 256
Visual editor, limitations

about 258
limited embed capability 259
restricted compatibility 258
rigid structure 259
top level element 258

v-loading-indicator 73
vmc 369
VMware 366

W
W3C CSS1 specifications 103
WAR 315
WAR deployment 58
warning messages

cleaning up 326
warning notification 85
web

fat client, deploying from 17
fat client, updating from 17

WebApplicationContext class 202
web console deployment 353-355
Web-ContextPath header 356
web deployment descriptor 47, 345
Web Profile

about 291
URL 291

Web Tools Platform. See WTP
Web Tools Project plugin 35
When label 276, 278
widget

about 75, 117
composing 251
graphic composition 254
manual composition 252, 254
styling 263, 264

widget composition 251
widgetset

accessing 359
adding, to project 359

widgetset compilation time
shortening 224

window 306
Window class

about 78, 80, 202
JavaScript 81
theming 80
third-party content 82, 83
title 80
URL fragment 81
user messages 84

window example, Java EE 6 295, 296
window, Hibernate container

about 306
delete button 306, 307
Hibernate configuration 311
job select 307-309
main window 309, 310

window.open() method 83
Windows

about 78, 80
ComponentContainer interface 79
Panel 79

window state
bookmarking 206

WTP
about 28
adding, to Eclipse 36-38
presence, verifying 36

X
XHTML format, labels 92
XML format, labels 92

Y
YouTube viewer

example 267, 268

Thank you for buying
Learning Vaadin

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery Mobile First Look
ISBN: 978-1-84951-590-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid Mobile Web Development

1. Easily create your mobile web applications
from scratch with jQuery Mobile

2. Learn the important elements of the framework
and mobile web development best practices

3. Customize elements and widgets to match your
desired style

4. Step-by-step instructions on how to use jQuery
Mobile

Java EE 6 Development with
NetBeans 7
ISBN: 978-1-84951-270-1 Paperback: 392 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use features of the popular NetBeans IDE to
accelerate development of Java EE applications

2. Develop JavaServer Pages (JSPs) to display both
static and dynamic content in a web browser

3. Covers the latest versions of major Java EE
APIs such as JSF 2.0, EJB 3.1, and JPA 2.0, and
new additions to Java EE such as CDI and
JAX-RS

4. Learn development with the popular
PrimeFaces JSF 2.0 component library

Please check www.PacktPub.com for information on our titles

Inkscape 0.48 Essentials for Web
Designers
ISBN: 978-1-84951-268-8 Paperback: 316 pages

Use the fascinating Inkscape graphics editor to create
attractive layout designs, images, and icons for your
website

1. The first book on the newly released Inkscape
version 0.48, with an exclusive focus on web
design

2. Comprehensive coverage of all aspects of
Inkscape required for web design

3. Incorporate eye-catching designs, patterns, and
other visual elements to spice up your web
pages

jQuery 1.4 Reference Guide
ISBN: 978-1-84951-004-2 Paperback: 336 pages

This book and eBook is a comprehensive exploration
of the popular JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery's
powerful plug-in architecture

5. Written by the creators of learningquery.com

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Vaadin and its context
	Rich applications
	Application tiers
	Tiers migration

	Limitations of the thin-client applications approach
	Poor choice of controls
	Many unrelated technologies
	Browser compatibility
	Page flow paradigm

	Beyond the limits
	What are rich clients?
	Some rich client approaches

	Why Vaadin?
	State of the market
	Importance of Vaadin
	Vaadin's integration
	Integrated frameworks
	Integration platforms

	Using Vaadin in the real world
	Concerns about using a new technology
	More reasons

	Summary

	Chapter 2: Environment Setup
	Vaadin in Eclipse
	Setting up Eclipse
	When Eclipse is not installed
	Installing the Vaadin plugin
	Creating a server runtime
	Creating our first Eclipse Vaadin project
	Testing our application

	Alternatives
	Vendor-specific distribution
	When Eclipse is already installed

	Vaadin in NetBeans
	Setting up NetBeans
	Checking if Java Web features are present
	Checking if the Vaadin plugin is installed
	Installing the Vaadin plugin

	Creating our first NetBeans Vaadin project
	Changing the Vaadin version

	Testing the application

	Vaadin and other IDEs
	Adding the Vaadin library
	Creating the application
	Adding the servlet mapping
	Declaring the servlet class
	Declaring the Vaadin's entry point
	Declaring the servlet mapping

	Summary

	Chapter 3: Hello Vaadin!
	Understanding Vaadin
	Vaadin's philosophy
	Vaadin's architecture
	Client server communication
	The client part
	The server part
	Terminal and adapter
	Client server synchronization

	Deploying a Vaadin application
	Inside the IDE
	Creating an IDE-managed server
	Adding the application
	Launching the server

	Outside the IDE
	Creating the WAR
	Launching the server

	Using Vaadin applications
	Browsing Vaadin
	Out-of-the-box helpers
	The debug mode
	Restart the application, not the server

	Behind the surface
	Stream redirection to Vaadin servlet
	Vaadin request handling
	What does an application do?
	Application responsibilities
	Application configuration
	Application and session

	Scratching the surface
	The source code
	The generated code
	Things of interest

	Summary

	Chapter 4: Components and Layouts
	Thinking in components
	Terminology
	Component class design
	Component
	MethodEventSource
	Abstract component

	Windows
	ComponentContainer
	Panel
	Window
	Subwindow

	Labels
	Label class hierarchy
	Property
	Label

	Text inputs
	Validation
	Change buffer
	Input

	Laying out the components
	Size
	Layouts
	About layouts
	Layout and abstract layout
	Layout types
	Choosing the right layout
	Split panels

	Bringing it all together
	Introducing Twaattin
	The Twaattin design
	The login window
	The main window

	Let's code!
	Project setup
	Project sources

	Summary

	Chapter 5: Event listener model
	Event-driven model
	The observer pattern
	Enhancements to the pattern

	Events in Java EE
	UI events

	Event model in Vaadin
	Standard event implementation
	Event class hierarchy
	Listener interfaces
	Managing listeners

	Alternative event implementation
	Method event source details
	Listener methods
	Abstract component and event router

	Expanding our view
	Button

	Events outside UI
	User changed event

	Architectural considerations
	Anonymous inner classes as listeners
	Widgets as listeners
	Presenters as listeners
	Services as listeners
	Conclusion on architecture

	Twaattin is back
	Project sources
	Additional features

	Summary

	Chapter 6: Containers and Related Widgets
	Data binding
	Data binding properties
	Renderer and editor
	Buffering
	Data binding

	Data in Vaadin
	Entity abstraction
	Property
	Item
	Container

	Containers and the GUI
	Container data source
	Container widgets
	Tables
	Trees

	Refining Twaattin
	Requisites
	Adaptations
	Sources
	The login window
	The Twaattin application
	The timeline window
	The name column generator
	The date column generator

	Summary

	Chapter 7: Advanced Features
	Core features
	Accessing with the request-response model
	The brute force approach
	The integrated approach

	Bookmarks
	URL fragment
	URI fragment utility

	Embedding Vaadin
	Basic embedding
	Nominal embedding

	Custom error handling
	Design
	Error listener example

	Lifecycles
	Application lifecycle

	Third-party additional features
	Vaadin add-ons
	Add-ons directory
	Noteworthy add-ons

	Twaattin improves!
	Twaattin application
	Timeline window
	New item handler

	Summary

	Chapter 8: Creating custom components
	Widget composition
	Manual composition
	Strategy for custom components
	Graphic composition
	Visual editor setup
	Visual editor use
	Limitations

	GWT widget wrapping
	Vaadin GWT architecture
	Client side
	Server side
	Server client communication
	Client server communication

	Componentized Twaattin
	Designing the component
	Updating Twaattin's code
	Tweet component
	Tweet label
	When label
	Timeline window
	Final touch

	Summary

	Chapter 9: Integration with Third-party Products
	Spring
	Inversion of Control and Dependency Injection
	Inversion of Control
	Dependency Injection

	Spring use-cases
	Prerequisites
	Downloading Spring
	IDE enhancements

	Design
	Bean factory and application context
	Vaadin application and servlet
	Requirements and specifications

	Code
	Servlet code
	Spring configuration

	Additional thoughts

	Java EE 6
	Introduction
	Profiles
	Tomcat and the web profile

	Prerequisites
	Glassfish 3.1

	Code
	Servlet
	Application
	Window

	Hibernate
	Hibernate mappings
	Seeing is believing

	Hibernate container
	Container architecture
	Managing transactions
	At last, the window

	Putting it all together
	Hibernate
	SLF4J
	HbnContainer

	Final notes
	Serialization exception
	Optimizations
	Rollback management

	Java Persistence API
	Summary

	Chapter 10: Beyond Application Servers
	Build tools
	Available tools
	Apache Ant
	Apache Maven
	Fragmentation
	Final choice

	Tooling
	Maven in Vaadin projects
	Mavenize a Vaadin project
	Vaadin support for Maven projects

	Mavenizing Twaattin
	Preparing the migration
	Enabling dependency management
	Finishing touches
	Final POM

	Portals
	Portal, container, and portlet
	Choosing a platform
	Liferay
	GateIn

	Tooling
	A simple portlet
	Creating a project
	Portlet project differences
	Using the portlet in GateIn

	Configuring GateIn for Vaadin
	Themes and widgetsets

	Advanced integration
	Restart and debug
	Handling portlet specifics

	Portlet development strategies
	Keep our portlet servlet-compatible
	Portal debug mode
	Updating a deployed portlet

	Integrating Twaattin
	Portlet deployment descriptor
	Web deployment descriptor
	Maven changes

	OSGi
	Choosing a platform
	Glassfish

	Tooling
	Vaadin OSGi use-cases
	Vaadin bundling
	Modularization

	Hello OSGi
	Making a bundle
	Export, deploy, run
	Correcting errors

	Integrating Twaattin
	Bundle plugin
	Multiplatform build
	Build and deploy

	Cloud
	Cloud offering levels
	State of the market
	Tooling
	Hello cloud
	Registration
	Cloud setup
	Application deployment
	Alternative deployment

	Integrating Twaattin
	Creating the datasource
	Using the datasource
	Finishing touches

	Summary

	Index

