
www.allitebooks.com

http://www.allitebooks.org

Learning Windows Azure
Mobile Services for Windows 8
and Windows Phone 8

A short, fast and focused guide to enhance your
Windows 8 applications by leveraging the power of
Windows Azure Mobile Services

Geoff Webber-Cross

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Windows Azure Mobile Services for Windows
8 and Windows Phone 8

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1090114

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78217-192-8

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Geoff Webber-Cross

Reviewers
Aidan Casey

Rafał Jońca

Peter Kirchner

Acquisition Editor
Neha Nagwekar

Grant Mizen

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Kapil Hemnani

Mrunmayee Patil

Copy Editors
Alisha Aranha

Roshni Banerjee

Project Coordinator
Michelle Quadros

Proofreader
Mario Cecere

Indexer
Rekha Nair

Graphics
Yuvraj Mannari

Production Coordinator
Nilesh Bambardekar

Cover Work
Nilesh Bambardekar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Geoff Webber-Cross has commercial and personal experience of developing
Windows 8 and Windows Phone applications and using Azure for websites, mobile
services, web services, and Windows services. He enjoys learning about new
technologies and solving difficult software problems.

I'd like to thank my wife for putting up with me tapping away on
my laptop every night for months on end while writing this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aidan Casey has over 16 years' experience in the software industry. He lives in
Ireland and works remotely as a solution architect for MYOB, Australia. He is a
passionate member of the technical community and a regular presenter at events
across Australia and Ireland. Outside of work, he enjoys running barefoot and
solving world's problems over a pint of Guinness!

Rafał Jońca has over 10 years of web development experience. In the past, he was
a lead developer responsible for creating high traffic websites (in PHP, Python,
and JavaScript), game servers (in node.js), and Smart TV in-house framework
(in JavaScript). Currently, he is the owner of Gluwer—a small company where he
works as an independent consultant. He helps his clients in topics related to web
services and website development using node.js and the Windows Azure cloud.
Also, he has over 13 years of experience in translating over 40 IT books about Flash,
PHP, Java, JavaScript, agile, and SQL into Polish.

Peter Kirchner has worked as a technical evangelist at Microsoft Germany since 2008.
In this role, he speaks at conferences and writes articles that focus on cloud computing,
with the goal to inspire new technologies. Also, he supports developers and
administrators to develop and use the Microsoft platform. Before working at Microsoft,
he gained experience while working in the area of SharePoint development and
consulting. As a student, he showed great interest in network technologies, security,
and distributed systems, and he graduated with a diploma in Computer Science.

I am very grateful to my employer for encouraging my passion for
technology and my fiancé Lena for her everlasting patience.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Preparing the Windows Azure Mobile Services Portal 7

Choosing a subscription 7
Pay-as-you-go subscription 8
Basic and Standard subscriptions 8
Free trial 8

Creating a Windows Azure account 9
Creating a mobile service 10

Mobile Services features 13
Managing keys 13
Mobile service dashboard 14
Configure 15
Scale 16
Logs 18

Summary 18
Chapter 2: Start Developing with Windows Azure Mobile Services 19

Preparing our development environment 19
Requirement for hardware 19
Setting up the software 20
Requirement for store accounts 20

Creating apps from the portal 21
Connecting existing apps to Windows Azure Mobile Services 23

Adding a Connected Service in Visual Studio 2013 24
Manually installing the SDK in Visual Studio 2012 Express for Windows
Phone 25
Creating a table 25
Writing a model of the table 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Interacting with the table 27
Summary 30

Chapter 3: Securing Data and Protecting the User 31
Configuring permissions 32

Rules for choosing permissions 32
Authentication providers 33
Authentication 33
Registering for Windows Live Connect Single Sign-on 34

Authentication in the app 35
Logging in 35
Storing credentials 37
Logging out 39
The DataServiceBase class 40

REST API and the master key 43
Summary 45

Chapter 4: Service Customization with Scripts 47
Understanding table scripts 47

Level-insert table script example 48
Score-insert script example 49
Score-read script example 49

API scripts 50
Creating an API script 50
High-score API script 51

Script debugging and logs 54
Scheduling 54
Working locally with Git 56

Pulling the repository 56
Updating our repository 57
Adding scripts manually 57
Pushing back changes 57

Implementing NPM modules 58
Summary 59

Chapter 5: Implementing Push Notifications 61
Understanding Push Notification
Service flow 62
Setting up Windows Store apps 63

Setting up tiles 66
Setting up badges 66

Setting up Windows Phone 8 apps 68
Service scripts 72

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

WNS scripts for Store apps 74
Sending toast notifications 75
Sending tile notifications 75
Sending multiple tiles 76
Sending badge notifications 77
MPNS scripts for Windows Phone apps 77
Sending toast notifications 77
Sending tile notifications 78

Summary 79
Chapter 6: Scaling Up with the Notifications Hub 81

Configuring the Hub 82
Setting up Windows Store and Windows Phone 8 apps 84
Calling the hub from scripts 86

Creating WNS scripts (for Store apps) 87
Sending toast notifications 87
Sending tile notifications 87
Sending badge notifications 88

Creating MPNS scripts (for Windows Phone 8 apps) 88
Sending toast notifications 89
Sending tile notifications 89

Backend services 90
Targeting audience using tags 91
Summary 93

Chapter 7: Best Practices for Web-connected Apps 95
App certification requirements for the Windows Store 95
UX guidelines 96
Implementing a privacy policy 98
Checking the network connection 98
Managing notifications settings 100
Implementing settings pages 103
Summary 104

Index 107

www.allitebooks.com

http://www.allitebooks.org

Preface
Windows Azure offers a wide range of cloud-based services, which are hosted on
a robust, well-managed infrastructure, and can be easily scaled to meet our business
demands. Windows Azure Mobile Services is a fantastic member of the Azure family,
which allows mobile developers to quickly build web-connected applications and
enhance user experience with push notifications.

Using traditional web technology, we will need to think about creating databases and
web services, deciding what security mechanisms to use; build tools to administer
the data and services; and write backend services to interface with the different Push
Notification Service providers we want to use.

With Windows Azure Mobile Services, we can build model-first services without
touching the database schema, get a fully managed and REST API for our data
without writing a line of code, and modify the database API methods using scripts.
Using scripts, we can also create API methods to access data, send push notifications,
and make HTTP requests.

This book aims to investigate all that Windows Azure Mobile Services has to offer
with practical examples, which can be used in real applications. Also, it covers areas
of application development to enhance user experience, help with store certification,
and improve development efficiency. I've created a simple game named TileTapper
in C#/XAML for Windows 8 and Windows Phone to help illustrate use cases for all
the service features and keep the book real!

Preface

[2]

The TileTapper game consists of a grid board seeded from a simple Boolean array of
active or inactive tiles. When the app launches, it prompts the user to log in using the
Windows Live connect authentication provider, downloads levels and current high
score from our backend service, and then begins the game. The phone app game grid
looks like the following screenshot:

The user has to tap on all the tiles before the time runs out to complete the level.
The score at the end of the game as well as high score are stored in the service,
if needed. Levels are generated automatically using a scheduled script and push
notifications are sent about new high scores achieved and new levels created.
Both apps have settings pages for managing notifications.

What this book covers
Chapter 1, Preparing the Windows Azure Mobile Services Portal, explains how to choose a
subscription, set up an Azure account, and create a Mobile Service; it also talks about the
current Mobile Services portal features.

Chapter 2, Start Developing with Windows Azure Mobile Services, covers what software
and hardware you need to develop Windows 8 and Windows Phone 8 apps using
Windows Azure Mobile Services. We'll also learn about creating preconfigured apps
from the portal and connecting existing apps from scratch.

Chapter 3, Securing Data and Protecting the User, looks at permission options for tables
and APIs and different authentication methods for protecting our data and users'
personal information. We'll also look at developing code to log in users with an
authentication provider and storing their credentials for subsequent app usage.

Preface

[3]

Chapter 4, Service Customization with Scripts, covers customizing scripts to perform
validation, manipulate data, and make HTTP requests. We'll also look at installing
a Node npm package and using it in on our scripts and finally, using the Git version
control to pull a copy of our scripts to work locally and as a backup.

Chapter 5, Implementing Push Notifications, explains configuring Windows Store and
Windows Phone 8 apps to implement push notifications; create a channels table to
manage push channel URIs; and send Tile, Toast, and Badge notifications using the
MPNS (Windows Phone) and WNS (Windows Store) providers.

Chapter 6, Scaling Up with the Notifications Hub, looks at the benefits of using the
Notifications Hub from the service bus family of services, building on Chapter 5,
Implementing Push Notifications. We adapt our code to register the push channel URI
with the Notifications Hub, create scripts for sending notifications using the Azure
for Node SDK, and use the Windows Azure Service Bus SDK to send notifications
from .NET backend services.

Chapter 7, Best Practices for Web-connected Apps, looks at what we need to do to get our
apps certified with respect to our Windows Azure Mobile Services implementation.
We'll look at the app certification requirements for the Windows Store and UX
guidelines and then talk about privacy statements, checking the cost impact of using
the Internet connection and managing push notifications.

What you need for this book
Chapter 2, Start Developing with Windows Azure Mobile Services, details what software
and hardware is needed, but as an overview, you need a machine with Windows
8.1 installed. If you want to create a phone app, it needs to be capable of running
the Windows Phone 8 Hyper-V emulators. Visual Studio Express 2013 for Windows
is needed for Windows 8 Store apps and Visual Studio Express 2012 for Windows
Phone for phone apps. When we look at managing scripts with the Git version
control, we need Git and also node.js for installing NPM modules.

Who this book is for
This book is aimed at developers wishing to build Windows 8 and Phone 8
applications with Windows Azure Mobile Services implementation. Basic C# and
JavaScript skills are advantageous; also some knowledge of building Windows 8
or Windows Phone 8 applications is required.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows
"The MobileServiceClient class has a Logout method that doesn't seem to do
anything other than clear the CurrentUser property."

A block of code is set as follows:

public void Logout() {
 this._mobileService.Logout();

 // Clear credentials
 StorageHelper.StoreSetting(USER_ID, null, true);
 StorageHelper.StoreSetting(USER_TOKEN, null, true);
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

GET https://tiletapper.azure-mobile.net/tables/
 leaderboard HTTP/1.1
X-ZUMO-APPLICATION: XXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxx
Host: tiletapper.azure-mobile.net

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once this
is done, copy Client ID and Client secret (v1) to the microsoft account settings
section on the IDENTITY tab in the Windows Azure Mobile Services portal and
click on SAVE."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preparing the Windows Azure
Mobile Services Portal

Before we get down to any coding or even looking at development tools, we need to
do some work on getting things prepared in Windows Azure. In this chapter, we're
going to talk about the following:

• Choosing a pricing plan for services you wish to implement
• Creating a Windows Azure account that allows you to use any Windows

Azure services
• Creating our first mobile service
• Exploring the Mobile Service portal

To use Windows Azure Services and create application store accounts, you're going
to need a Microsoft account (formerly known as Microsoft Live ID). If you haven't
already got one, go and create one here https://signup.live.com/signup.aspx.

Choosing a subscription
To get started, go to http://www.windowsazure.com and first check out the
pricing options; there will be a PRICING tab and a Mobile Services option under
the COMPUTE header. Take a look at the pricing calculator for mobile services at
http://www.windowsazure.com/en-us/pricing/calculator/?scenario=mobile
and have a quick look to make sure you have an idea of how much the services
you want to use might cost. If you don't know what you want, just sign up for
a free account.

Preparing the Windows Azure Mobile Services Portal

[8]

Pay-as-you-go subscription
Small apps and a bit of experimentation are unlikely to cost you anything. At the
time of writing this, you get the following for free. But check for yourself so that
you're not in for a nasty surprise if you sign up for a Pay-as-you-go (PAYG) account
and exceed your usage:

• 10 Mobile Services
• 20 MB SQL database for 12 months
• 500 K API calls per month
• Send push notifications via the Notification Hubs to up to 500 active devices
• 1,00,000 Notification Hubs operations per month

Throughout the book, I'll try to point out where you need to be careful to make sure
you don't start incurring costs if you want to maintain free service usage.

Basic and Standard subscriptions
Basic and Standard subscriptions need you to buy units (service instances) for the
number of API calls you expect to make. If you can calculate how many API calls
your apps are likely to be making and how much storage you need, you can decide
if either of these subscriptions will be the most economical for you.

Free trial
The free trial allows you to use 200 USD worth of any services (not just mobile)
you like per month.

Chapter 1

[9]

Creating a Windows Azure account
If you already have a Windows Azure account, skip to the next section; otherwise,
click on the Portal tab (https://manage.windowsazure.com/). It will take you to
log in using your Microsoft account if you are not already logged in. Once you have
logged in, you will see a page saying you have no subscription. Click on the SIGN
UP FOR WINDOWS AZURE link, https://account.windowsazure.com/SignUp.
You should end up on the Sign up page (There are a number of routes to get to
this page through the website, but this seemed to be the least clicks for me!). Your
personal details should appear on your details in the account info page and you'll
need to verify it with an SMS message or a call verification:

Once verified, you can enter your credit card details. You can also sign up for a free
trial or a pay-as-you-go account. Don't panic, you don't get automatically signed up
for any premium subscriptions; however, 1 USD will be charged to your credit card
for verification. Accept the agreement and click on the Purchase button, your card
details will be validated and you will be taken to the subscriptions page where you'll
be pleased to find you already have a free trial! From here, you can add subscriptions
to meet your own requirements. If you have chosen a trial subscription, there is a
spending limit feature so you don't incur any costs; once you reach the offer limits,
services will be disabled and data will be available as read only.

www.allitebooks.com

http://www.allitebooks.org

Preparing the Windows Azure Mobile Services Portal

[10]

Creating a mobile service
Now we've got all the boring sign up stuff out of the way, we can get to the bit
we're interested in. Go to the portal (https://manage.windowsazure.com) and it's
probably a good idea to bookmark the page in your browser as we'll be here quite
a bit. The portal should look something like the following screenshot, displaying all
the Windows Azure services on the left available to us:

The Windows Azure portal offers a plethora of services, but we're obviously going
to concentrate on Windows Azure Mobile Services and will touch upon Windows
Azure SQL Databases and Windows Azure Service Bus when we look at the
Notification Hubs.

To create a new mobile service perform the following steps:

1. Click on the + NEW toolbar button shown as follows:

Chapter 1

[11]

2. Select CREATE from the pop-up menu shown as follows:

3. Fill in the details for the service. I'm going to opt to use my PAYG
subscription, Create a free 20MB SQL database, and target North Europe.

At this point, if we choose the Create a new SQL database instance, we
will start incurring costs for the new database. If we had already created a
database, we would see this as an option too. Choose a region close to where
your target audience is likely to be so that the service is hosted as close to
them as possible. Mobile Services does not use affinity groups, so you have to
specify a region.

Preparing the Windows Azure Mobile Services Portal

[12]

4. The next screen will show us options for creating a database instance:

At this point, we need to choose a name for the database, set the login
credentials (make a note of them for future reference), and choose a location
for the database server. By default, the mobile service with the suffix _db is
set as the database name; this is fine for me as I only want to use it for one
service. However, if you don't want to spend money on more databases and
want to use it for multiple applications, you may want to choose a more
generic database name, something like AppsDatabase. It is sensible to host
the database server at the same location as your mobile service instance, so
that additional transfer costs are not incurred and they don't have to talk to
each other across the world every time a request is made!

5. I'm going to choose default database settings, but you can check
CONFIGURE ADVANCED DATABASE SETTINGS and you will be able
to change the collation of the database.

This page actually displays a message stating that we won't be charged for
the database configuration we've chosen, But if you change the database size,
it will become a paid database.

Chapter 1

[13]

Mobile Services features
Now that we've created a mobile service, we can explore the features available to
us in the portal. From the main portal, select Mobile Services and then click on the
service you have just created to navigate to the Mobile Services portal:

Along the top are all features available to us to help build our services and applications.
The bottom toolbar is context sensitive and has actions for the selected feature.

At the time of writing this, a number of features had a PREVIEW tag next to them;
you may also see beta and prerelease features. These features are likely to become
fully supported. However, if you use them, you need to bear in mind that they may
be changed or be completely removed. There is a terms of use article here, which is
worth a read: http://www.windowsazure.com/en-us/support/legal/preview-
supplemental-terms/. We'll investigate all the features, even the preview ones just
for completion. When you are reading this, there are likely to be more features.

Managing keys
Windows Azure Mobile Services have an application key and a master key, which
limit access to the API. Tables and APIs can be set to only grant access to calls from
application requests bearing the application key embedded in the application code.
However, it is not encrypted so is not considered secure. This means it is important
to authenticate users before accessing services.

Preparing the Windows Azure Mobile Services Portal

[14]

The master key is used for administrator access and should not be distributed with
the app. These keys can be managed from the MANAGE KEYS button on the
bottom toolbar, which appears on the main portal and various tabs:

The keys can be regenerated if there has been a security compromise, but should
not be changed unless absolutely necessary as it will stop all published apps from
accessing services and will mean they need to be republished with the new key.

Mobile service dashboard
This is an overview of what's going on with our service. The top section displays a
chart of our API and data usage; there are filters to change the time period and y-axis
scaling. The dashboard displays the following sections:

• Mobile service endpoint status: This allows us to monitor the availability of
our service (this is only available for premium subscriptions) when endpoint
monitoring has been configured. If you have a critical system, this is an
important feature for making sure the service is meeting your SLA.

• Usage overview: This is an overview of your API call, active device, and out
data usage.

• Autoscale status: If you have scaling enabled, this displays the current scaling
status. This can be set up by clicking on the CONFIGURE AUTO SCALE link
or going to the Scale tab. When enabled, the dashboard tells us about how
much cost reducing scaling is being achieved (depending on the demand):

This is a round about way of saying we've got one of three possible instances running.

• Quick glance: This section on the right and has a quick summary of the
service's current status.

Chapter 1

[15]

• Data: The Data tab lists all the tables configured in our database, shows us
an overview, and allows us to browse the data, modify the operation scripts,
edit columns, and change the permissions. These features will be discussed
in detail in subsequent chapters.

• API: The API tab allows us to manage custom APIs implemented in our
service. Each table has a default set of operation scripts that can be modified.
APIs allow us to create any operation that can make HTTP requests and
perform database operations. Each API has a standard set of HTTP methods
that can be implemented as required.

• Scheduler: From here, we can create and manage scheduled jobs that can
run scripts on a timed schedule or on demand.

• Push: For me, this is one of the coolest features of Windows Azure Mobile
Services that allows us to manage push notifications to our applications,
without having to manually create and host our own services, which
interface with Windows Push Notification Services (WNS), Apple Push
Notification Service (APNs), and Google Cloud Messaging (GCM) service.
We'll also look at the Notification Hubs, which is a more scalable way of
achieving push notifications; however, it's not configured directly from the
Mobile Services portal.

• Identity: Windows Azure Mobile Services delegates it's authentication
to providers such as Microsoft account, Facebook, Twitter, and Google.
This means we don't need to worry about storing and managing user
credentials or manually dealing with authentication mechanisms such
as OAuth2. This tab is where we configure the identity provider used to
authenticate our application.

Configure
The Configure tab contains miscellaneous settings for Windows Azure Mobile
Services as follows:

• Database settings: This section contains two links for configuring the
database and database server that Mobile Services use. Both of these links
take us out of the Mobile Services portal and into the SQL Databases portal.

• Source control: It's possible to manage the scripts used by the service (we'll
discuss these later in the book) using Git version control, by initially pulling
the repository to your machine, working locally, and then pushing back
updates you have made, instead of working in the portal. Once this is set up,
the dashboard displays the source control username.

Preparing the Windows Azure Mobile Services Portal

[16]

• Dynamic schema: This setting allows you to enable or disable the Dynamic
Schema feature. The feature allows the service to automatically add columns
to tables as they appear through the API so that you don't have to constantly
modify your database schema while you develop your services. It is
recommended that this feature is disabled once development is finished
and your app is in production.

• Cross-origin resource sharing (CORS): This section allows you to create a
list of hosts that are permitted to interact with your mobile service (including
wildcards such as *.example.com). Client-side JavaScript originating from
hosts in the list will be granted access to the service, otherwise they will be
denied. This does not affect native apps using the APIs.

• Developer analytics: This section allows you to set up the application
performance analytics.

• App settings: These are key-value pair values you can use and access in
scripts to help with things such as string settings, which you may want to
change from the dashboard rather than in the script. This is similar to the
AppSettings section in web.config and app.config files.

• Monitoring: If you have a premium subscription, up to two monitoring
endpoints can be configured from here, allowing you to monitor the service
availability from up to three geo-distributed locations.

Scale
One of the major features of Windows Azure is scalability . Windows Azure websites,
web services, windows services, mobile services, and so on run in virtual machine
instances managed by the Windows Azure Fabric Controller. This not only provides
us with resilience but also allows a service to be scaled across multiple instances to
meet the required capacity. We can configure the following features from here:

• General: This section allows us to change the MOBILE SERVICE TIER,
which determines whether certain features can be used. In the BASIC and
STANDARD mode, we can adjust the number of units in operation or
auto scaling.

• Capacity: If we use a basic or standard service tier, we can configure the
number of live units when SCALE-BY METRIC is set to OFF. These units
are always active and will cost a fixed amount all the time.

Chapter 1

[17]

SCALE-BY METRIC is a feature that allows the number of mobile service
instances to increase and decrease automatically to meet the demand on the
service. When SCALE-BY METRIC is set to ON, we can set the upper and
lower unit thresholds:

With this configuration, we will incur the highest costs on peak demand
when the system scales-up automatically, but it should be more economical
than having a fixed number of units always active.

• SQL Database: Here, we can change the database capacity if required. Once
we move away from the free 20 MB database, we will start incurring costs.

Preparing the Windows Azure Mobile Services Portal

[18]

Logs
The logs tab allows us to view logs created by script errors or logging during debugging.
We will cover more on this in Chapter 4, Service Customization with Scripts.

Summary
So far, we've chosen a subscription, signed up for a Windows Azure account, created
our first Windows Azure's Mobile Service, and got a taste of what a mobile service
has to offer us. Throughout the book, we'll be looking at these features in a lot more
detail and learning how to use them in our applications.

In the next chapter, we're going to start setting up our development environment,
get all the tools we will need, look at the portal starter solutions, and hook up an app
from scratch.

Start Developing with
Windows Azure Mobile

Services
So far, we've got everything ready in the Windows Azure portal, with an account
setup and our first Windows Azure Mobile Service created. Next, we're going to look
at the following topics:

• Preparing our development environment
• Creating starter apps from the portal
• Connecting existing apps to our service

Preparing our development environment
Chances are, you're already developing Windows Phone 8 or Windows Store apps so
you'll have some of the tools you need, but there are a few extra bits of software you
might need for certain features of Windows Azure Mobile Services. If you've not done
Windows Phone development before and plan on doing so, definitely read all of this.

Requirement for hardware
For Windows Store app development, there is no special hardware requirement.
However, to develop apps for Windows Phone 8, you need a machine which has
specific requirements in order to run the Hyper-V phone emulators. The Windows
Phone 8 SDK will do a prerequisite check before installation; however, you can
read the exact requirements here: http://msdn.microsoft.com/en-us/library/
windowsphone/develop/ff626524(v=vs.105).aspx.

www.allitebooks.com

http://www.allitebooks.org

Start Developing with Windows Azure Mobile Services

[20]

For phone development, it is always helpful to have a handset to test on. I would
advise testing an app on a real device before publishing it, to make sure that
everything works. The same goes for Windows 8; although Surface Pros and other
tablets running full Windows 8 have exactly the same OS as PCs and laptops, it's
helpful to test the touch gestures as well as keyboard as Surfaces (formerly called as
Surface RTs) run on a different OS designed for ARM devices so that it is useful to
have access to a tablet or machine with a touch screen.

Setting up the software
We will mainly use Visual Studio for developing Windows Store and Windows
Phone 8 applications. Since I started writing this book, Windows 8.1 was made
generally available; so, I'll be using Visual Studio Express 2013 for Windows (2012
version was labelled "for Windows 8") and Visual Studio Express 2012 for Windows
Phone (when you are reading this, there may be a 2013 version so use that instead).
Of course, you can use Professional and Ultimate versions of Visual Studio and
you'll need to download SDKs for Windows 8 and Windows Phone 8 project types.
All versions of Visual Studio can be downloaded here: http://www.microsoft.
com/visualstudio/eng/downloads.

When we start looking at scripts, we'll cover how to manage them using Git version
control. So, you'll need to install Git for doing this (http://git-scm.com/downloads).
When I use Git, I prefer to use the GUI; so, if you want to do the same, make sure you
select this option when you install. Also, I use the last option in the installer to prevent
Git from changing the file line endings for cross-platform projects so that I don't get
annoying warnings whenever I check something in.

We will also make use of NPM modules in scripts. So, we will need to install node.
js from here: http://nodejs.org/.

Fiddler is a really helpful HTTP debugging tool that we will mention when we look
at security. This can be installed from here: http://fiddler2.com/.

Requirement for store accounts
To publish your apps, you need a store account. You'll also need an account to
implement push notifications in Windows Store apps. Unlike Windows Azure
Mobile Services, you actually need to pay for these and there is no free option.
Previously, you needed separate accounts for Store and Phone apps; however, these
have now been merged and only cost 19USD for an individual. You can sign up at:
https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/Start.

Chapter 2

[21]

Creating apps from the portal
From the portal, we can download template solutions for Windows Store, Windows
Phone 8, iOS, Android, HTML/JavaScript, and Xamarin, which have a working
sample of creating a "To-do list"—complete with your app's URL and API key.
We're going to take a look at Windows Store app now.

For a Windows Store app, select Windows Store and click on the CREATE A NEW
WINDOWS STORE APP link:

If you haven't done so already, download Visual Studio. The boilerplate code in
the app uses a TodoItem table, so click on the button to create it (you can delete it
later if you like). We're going to discuss the C# app, but you can also download a
JavaScript app. The downloaded app is in a ZIP folder. Make sure you go to the ZIP
file properties and unblock it so we don't have security problems. Unzip the project
and open it in Visual Studio. When we examine the solution, we see that it already
has the NuGet packages installed for the Windows Azure Mobile Services API.

When we take a look at the App.xaml.cs class, we can see that there is a static
variable for accessing an instance of MobileServiceClient from anywhere in the
app. It has the service endpoint and API key configured:

namespace TileTapper
{
 /// <summary>
 /// Provides application-specific behavior to supplement the
default Application class.
 /// </summary>
 sealed partial class App : Application
 {

Start Developing with Windows Azure Mobile Services

[22]

 // This MobileServiceClient has been configured to communicate
with your Mobile Service's url
 // and application key. You're all set to start working with
your Mobile Service!
 public static MobileServiceClient MobileService = new
MobileServiceClient(
 "https://tiletapper.azure-mobile.net/",
 "XXXXXXXXXXXXxxxxxxxxxxxxxxxxxxx"
);

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www. packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

MainPage.xaml and MainPage.xaml.cs contain the template code for exercising the
TodoList table. Take a look round the code, then run the app, and have a quick play.
The app should look something like this:

Once you've inserted a few items, go back to the portal and take a look at the
TodoList table in the DATA tab:

Chapter 2

[23]

You can use the TRUNCATE button to delete all the records you've created.

The Windows Phone 8 app is pretty much identical, so we won't go through it now;
but have a look yourself or you may want to look at it instead of the Windows Store
version.

The SDK implemented in these template apps exposes the mobile service REST API,
which can be consumed by any platform capable of making HTTP requests, and not
just ones listed in the portal.

Connecting existing apps to Windows
Azure Mobile Services
Connecting existing apps is simple to do. We can add a Connected Service for Visual
Studio 2013 solutions and we need to install the Windows Azure Mobile Services
SDK NuGet package for Visual Studio 2012, or you can download the source from
the following link: https://github.com/WindowsAzure/azure-mobile-services.
As you can see, the SDK is open source and hosted on GitHub rather than CodePlex
which is the usual place Microsoft host SDKs. So, it shows that they're really building
a cross-platform service here.

Start Developing with Windows Azure Mobile Services

[24]

Adding a Connected Service in Visual Studio
2013
To connect to a service, follow these instructions:

1. Right-click a project in the solution explorer, select Add | Connected Service:

If you have imported a subscription, skip to the last step.

2. Click on Import subscriptions and the Import Windows Azure Subscriptions
dialog will appear.

3. Click on Download subscription file. Your default browser will be launched
and the subscriptions file will be downloaded automatically. If you are
logged into the portal, this will happen automatically; otherwise, you'll be
prompted to log in.

4. Once downloaded, browse to the downloaded file in the Import Windows
Azure Subscriptions dialog box and click on Import.

5. Select the subscription you want to use and click on OK.

The SDK NuGet package will be installed into our app and a static
MobileServiceClient instance will be added to App.xaml.cs, in the same way as
the app downloaded from the portal.

Chapter 2

[25]

Manually installing the SDK in Visual Studio
2012 Express for Windows Phone
First, we're going to install the NuGet package into our solution. This can be done
from the NuGet Package Manager dialog box by right-clicking on the project and
selecting Manage NuGet Packages; or alternatively, from the Package Manager
Console by typing the following command:

PM> Install-Package WindowsAzure.MobileServices

Install the package (accepting the licenses) and we're ready to go.

If the install fails, check whether your NuGet Package Manager
extension is up-to-date (by going to Tools | Extensions and
Updates | Updates).

I prefer to implement MobileServiceClient in my own DataService class.
So, I would install the package manually even in Visual Studio 2013 to save
cleaning up code in App.xaml.cs.

Creating a table
We've got a database, but we need a table to interact with to get started. For the
TileTapper game, we need a LeaderBoard table to keep track of player's high scores.
So, we'll create that now. Click on the CREATE button on the toolbar in the DATA tab:

Start Developing with Windows Azure Mobile Services

[26]

From the Create New Table dialog, enter the table name and for now, leave the
default permissions (we'll look at these when we start talking about permissions
in the next chapter). By default the database is set to have a dynamic schema.
This means that the table adds new columns as it finds them in the inserted data.

We can see that we've got a table which already has an indexed id column and
also _createdAt, _updatedAt, and _version columns for optimistic concurrency.

Writing a model of the table
We'll go back to Visual Studio and write a model for the LeaderBoard table that
will be used to read and write records to the table. When the database first sees the
model, it will create the table columns for us. Here's the code for the model:

using System;
using Newtonsoft.Json;
namespace TileTapper.Models
{
 [JsonObject(Title="leaderboard")]
 public class LeaderBoardItem
 {
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }

 [JsonProperty(PropertyName = "timeStamp")]
 public DateTime TimeStamp { get; set; }

 [JsonProperty(PropertyName = "name")]
 public string Name { get; set; }

 [JsonProperty(PropertyName = "score")]
 public int Score { get; set; }
 }
}

Chapter 2

[27]

You will notice that there are JsonObject and JsonProperty attributes on the class
and properties. These attributes tell the JSON serializer to use these names instead of
the property or class name when the object is serialized, so that we can have different
names (I didn't want my item to be called LeaderBoard as this didn't make sense),
our C# properties in Pascal case (PascalCase), and the JSON objects in Camel case
(camelCase).

Interacting with the table
The next step is to write some code to interact with the LeaderBoard service
that exposes the table. We're going to start a data service class to contain all the
operations we want to perform on the LeaderBoard table. I'm steering us towards
using an Model View View-Model (MVVM) pattern (you can read a bit about
MVVM at http://en.wikipedia.org/wiki/Model_View_ViewModel), but we'll try
and organise our code so that things are kept simple and our UI code is not littered
with data access code. Here's the service with a GetAll and Insert method:

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Microsoft.WindowsAzure.MobileServices;
using TileTapper.Models;

namespace TileTapper.Services
{
 public class DataService
 {
 // Our MobileServiceClient instance with Url and
 application key set
 private static readonly MobileServiceClient _mobileService
 = new MobileServiceClient(
 "https://tiletapper.azure-mobile.net/",
 "0000CZGhLgIKxkrBCFwxSGXKHzPLRq15"
);

 public async Task<IEnumerable<LeaderBoardItem>> GetAll()
 {
 var table =
 _mobileService.GetTable<LeaderBoardItem>();
 return await table.ToEnumerableAsync();
 }

 public async Task Insert(LeaderBoardItem item)
 {

Start Developing with Windows Azure Mobile Services

[28]

 var table =
 _mobileService.GetTable<LeaderBoardItem>();
 await table.InsertAsync(item);
 }
 }
}

The service contains its own instance of the MobileServiceClient object that allows
us to access the service we created. You can find the URL on the dashboard in the
portal and the key under Manage Keys on the portal's toolbar. We then interact
with the table using the generic GetTable method. You'll notice the use of async
and Task, these were introduced in C# 5 and feature heavily in Windows Store
and Windows Phone 8 app development. If you're not familiar with asynchronous
programming, it's worth having a quick read up on the Web. In C++ and JavaScript,
async is handled differently.

To give the service a test drive, I created some temporary methods that are called in
the app's MainPage.xaml.cs constructor to seed the table and examine the contents
afterwards:

private async void Demo()
{
 await this.Seed();
 await this.GetAll();
}

private async Task Seed()
{
 var service = new DataService();
 // Seed a few items into the Leader Board
 await service.Insert(new Models.LeaderBoardItem()
 {
 Name = "Tank Man",
 Score = 885562,
 TimeStamp = DateTime.Now
 });

 // A few others removed for brevity
}

private async Task GetAll()
{
 var service = new DataService();
 var task = await service.GetAll();

 // Materialize leaders so we can have a look
 var leaders = task.ToList();
}

Chapter 2

[29]

You'll notice that I'm not setting the id field in the models as these will be set by
the database. If we put a break point at the bottom of GetAll, we can see our four
leaders have been created and the IDs are set by the database:

If we now have a look at the table in the portal, we can see the data and the columns
that have been created for us:

www.allitebooks.com

http://www.allitebooks.org

Start Developing with Windows Azure Mobile Services

[30]

Summary
We've now got all the development tools we need installed on our machine, had a
look at the starter solutions which can be downloaded from the portal, installed the
SDK into our own solution, and started laying down some foundations in code ready
for adding some more interesting features.

In the next chapter, we'll look at the security features Windows Azure Mobile
Services offers us to protect our data and users.

Securing Data and Protecting
the User

Security is extremely important for any system that is exposed to the Internet. Using
Windows Azure Mobile Services with our applications is no different from any other
system; we are exposing our data to the Internet on the server side and our users on
the app side.

Windows Azure Mobile Services makes it easy to achieve a secure system by offering
us the following features:

• Services are hosted on a highly-secure infrastructure; so we don't have to
worry about hardening servers, configuring firewalls, and patching software.

• Granular permission control on individual tables and API methods means
that we can tailor permissions down to method level on tables and APIs.

• Authentication is delegated to third-party authentication providers. So we
don't need to store user credentials ourselves; we can let someone else take
care of this for us.

• With authentication delegation, we don't need to create a full set of user
admin UI in our application, which is time-consuming.

• Windows Azure Mobile Services use HTTPS, which means our data is
encrypted between the client and server.

In this chapter, we'll discuss permissions, setting up an authentication provider, writing
code to authenticate our users, and accessing the REST API with the master key.

Securing Data and Protecting the User

[32]

Configuring permissions
By default, table and API methods allow requests that are made with the app key.
This behavior can be changed to one of the following options per method:

• Everyone: This is the least secure option for a method as it allows anybody
who knows your service URL to call it

• Anybody with the Application Key: This is the default option
• Only Authenticated Users: If this option is chosen, requests must be

authenticated with one of the providers configured in the IDENTITY tab
• Only Scripts and Admins: If this option is chosen, only requests

authenticated with the master key or from internal scripts will be allowed

Rules for choosing permissions
The following is a list of rules to help choosing permissions:

• If a user doesn't need to use a service method and we only need to perform
administrative tasks, apply Only Scripts and Admins

• If a user requires the Insert, Update, and Delete methods, apply Only
Authenticated Users and make sure only the user's data is available to them
in the Read methods with custom scripts

• Read on public tables can have Anybody with the Application Key if we
aren't tracking the user

• Don't use the Everyone option unless you want anyone with the service URL
to use your service method

The leaderBoard table has INSERT PERMISSION set to Only Authenticated
Users and READ PERMISSION set to Anybody with the Application Key because
all users have access to this table and we're not tracking their credentials. UPDATE
PERMISSION and DELETE PERMISSION is set to Only Scripts and Admins
because they're not used, and we don't want these methods being used by anybody
except the administrators, as shown in the following screenshot:

Chapter 3

[33]

Authentication providers
Windows Azure Mobile Services support the following Oauth2 authentication providers:

• Microsoft: http://msdn.microsoft.com/en-us/live//default.aspx
• Twitter: https://dev.twitter.com/apps
• Facebook: https://developers.facebook.com/apps
• Google: https://code.google.com/apis/console

Any of the preceding can be implemented by creating an application with the
provider that will provide you with a client ID and secret key. These details are then
entered in the Identity tab of the portal.

Authentication
We should not think that if a user has been authenticated by a provider, they can be
trusted with all our services; they can't. Authentication just means that the users are
who they say they are, and we can use their identity to manage their data. We should
only allow them to access services they need, and only allow them to read, update,
and delete their own data and read public data.

Securing Data and Protecting the User

[34]

Registering for Windows Live Connect Single
Sign-on
Go to the Live Connect Developer Center at http://msdn.microsoft.com/en-us/
live//default.aspx, click on My apps, and enter the app's details, as shown in the
following screenshot:

Once you have accepted the terms and conditions, you need to configure the
application details, as shown in the following screenshot:

Chapter 3

[35]

Enter your Windows Azure Mobile Service's URL in the Redirect domain field and
select Yes for Mobile client app. I selected No for Restrict JWT Issuing because
I want my Windows 8 and Windows Phone 8 app to use the same authentication
provider application. Restricting JSON Web Token (JWT) is a security mechanism
for allowing just one application to use the Live Connect application.

Once this is done, copy Client ID and Client secret (v1) to the microsoft account
settings section on the IDENTITY tab in the Windows Azure Mobile Services portal
and click on SAVE, as shown in the following screenshot:

Authentication in the app
If you've created apps before that need to authenticate a user with OAuth2 in order
to use services from providers such as Twitter and Facebook, you'll know that it's not
straightforward. It has steps such as launching a web page for the user to log in and
collecting credentials from browser redirects. Authentication with Windows Azure
Mobile Services couldn't be simpler. The MobileServiceClient class has
a LoginAsync method that does everything for us.

Logging in
To log in, we use the MobileServiceClient class instantiated with our app key
and service URL that we saw in the previous chapter. We simply call the LoginAsync
method with the auth provider type we want to use. It will log us in and return a
MobileServiceUser object that contains a user ID and auth token, as shown in the
following code snippet:

// Login
var user = await this._mobileService
.LoginAsync(MobileServiceAuthenticationProvider.MicrosoftAccount);

Securing Data and Protecting the User

[36]

In a Windows 8 app, the LoginAsync method launches a login page that contains
the provider's login web page for the user to enter their details, as shown in the
following screenshot:

When we examine the user object that is returned, this is what we see:

Once we've done this, the MobileServiceClient object has the CurrentUser
property set to this user, and the details will be used to authenticate our requests,
as shown in the following screenshot:

If the authentication fails, an InvalidOperationException will be thrown with the
Error: Unauthorized message so that we can catch it, as shown in the following
code snippet:

Chapter 3

[37]

catch (InvalidOperationException ioex)
{
 // Task has failed because it was unauthorized try again
 if (ioex.Message == "Error: Unauthorized")
 {

 }
}

Storing credentials
This is all very good, but we don't want our users to log in every time they open the
app, or when the app resumes after suspension—it would not make for a good user
experience! We can get around this by storing the user credentials when they log in,
and then retrieving them and applying them to MobileServiceClient whenever
required. This is achieved by the following method:

public static async Task<bool> Login()
{
 // First have a look and see if we have the user's token
 var userId = StorageHelper.GetSetting<string>(USER_ID, null);
 var userToken = StorageHelper.GetSetting<string>(USER_TOKEN,
 null);

 bool success = true;

 if (userId != null && userToken != null)
{
 // Create user and apply to client
 var user = new MobileServiceUser(userId);
 user.MobileServiceAuthenticationToken = userToken;
 _mobileService.CurrentUser = user;
 }
 else
 {
 try
 {
 // Login
 var user = await _mobileService.LoginAsync(_provider);

 // Store credentials
 StorageHelper.StoreSetting(USER_ID, user.UserId, true);
 StorageHelper.StoreSetting(USER_TOKEN,
 user.MobileServiceAuthenticationToken, true);
 }
 catch (InvalidOperationException)
 {
 // Something has gone wrong, most likely user cancelled by

Securing Data and Protecting the User

[38]

 // backing-out
 success = false;
 }
 }

 return success;
}

StorageHelper is a helper class I wrote to read and write typed settings to storage.
You can get it in the code samples.

Now, our users don't have to log in every time they run the app. But what will
happen when the token expires? Some OAuth2 providers actually tell us the expiry
date of the token, but it's not available to us in MobileServiceUser object. What we
can do is look for a request that is failing because it is unauthorized or has expired,
and then ask the user to log in. I put together this helper method which takes Task
wrapped in a Func so that the task can be executed again if it fails, as shown in the
following code snippet:

protected async Task<T> ExecuteAuthenticated<T>(Func<Task<T>> t, int
 retries = 1)
{
 int retry = 0;
 T retVal = default(T);

 while (retry <= retries)
 {
 // If we have no current user, login
 if (_mobileService.CurrentUser == null)
 {
 // If login fails return default
 if (!await Login())
 return retVal;
 }

 // Try and execute task
 try
 {
 retVal = await t();
 break;
 }
 catch (InvalidOperationException ioex)
 {
 // If task has failed because it was unauthorised try again
 if (ioex.Message == "Error: Unauthorized" || ioex.Message ==
 "Error: The authentication token has expired.")

Chapter 3

[39]

 {
 Logout();
 }

 retry++;
 }
 }

 return retVal;
}

We can now make any request authenticated, as shown in the following code snippet:

public async Task<IEnumerable<LeaderBoardItem>> GetAll()
{
 // Make sure we're authenticated by passing the task into
 // ExecuteAuthenticated
 return await this.ExecuteAuthenticated(async () =>
 {
 var table =_mobileService.GetTable<LeaderBoardItem>();
 return await table.ToEnumerableAsync();
 });
}

Notice, we've modified the GetAll method in the LeaderBoard service and have
not changed its signature. So, we haven't touched our UI code, and we have now
automatically authenticated all our requests. Pretty cool!

Logging out
The MobileServiceClient class has a Logout method that doesn't seem to do
anything other than clear the CurrentUser property. It doesn't void the token with
the provider when it is called. If we're storing the user token, we'll also need to clear
these too so that the app doesn't log the user back in when it relaunches. The Logout
method does this for us, as shown in the following code snippet:

public void Logout()
{
 this._mobileService.Logout();

 // Clear credentials
 StorageHelper.StoreSetting(USER_ID, null, true);
 StorageHelper.StoreSetting(USER_TOKEN, null, true);
}

www.allitebooks.com

http://www.allitebooks.org

Securing Data and Protecting the User

[40]

The DataServiceBase class
Now that we've got all the things we need to log the user in and out, it would be nice
to wrap it all up so that it's common for all the data services we want to create. To do
this, I've created a base class which has a static instance of MobileServiceClient
and the methods we've just discussed, as shown in the following code snippet:

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Microsoft.WindowsAzure.MobileServices;
using TileTapper.Models;
using TileTapper.Helpers;
namespace TileTapper.DataServices
{
 public abstract class DataServiceBase
 {
 private const string USER_ID = "USER_ID";
 private const string USER_TOKEN = "USER_TOKEN";

 // Our MobileServiceClient instance with Url and application
 // key set
 protected readonly static MobileServiceClient _mobileService =
 new MobileServiceClient(
 "https://tiletapper.azure-mobile.net/",
 "IWwHCZGhLgIKxkrBCFwxSGXKHzPLRq15"
);

 protected static MobileServiceAuthenticationProvider _provider
 = MobileServiceAuthenticationProvider.MicrosoftAccount;

 protected async Task<T> ExecuteAuthenticated<T>(
 Func<Task<T>> t, int retries = 1)
 {
 int retry = 0;
 T retVal = default(T);

 while (retry < retries)
 {
 // If we have no current user, login
 if (_mobileService.CurrentUser == null)
 {
 // If login fails return default
 if (!await Login())
 return retVal;
 }

Chapter 3

[41]

 // Try and execute task
 try
 {
 retVal = await t();
 break;
 }
 catch (InvalidOperationException ioex)
 {
 // If task has failed because it was unauthorised try
 // again
 if (ioex.Message == "Error: Unauthorized" ||
 ioex.Message == "Error: The authentication token has
 expired.")
 {
 Logout();
 }
 retry++;
 }
 }

 return retVal;
 }
 public static async Task<bool> Login()
 {
 // First have a look and see if we have the user's token
 var userId = StorageHelper.GetSetting<string>(USER_ID,
 null);
 var userToken = StorageHelper.GetSetting<string>(USER_TOKEN,
 null);

 MobileServiceUser user = null;

 if (userId != null && userToken != null) {

 // Create user and apply to client
 user = new MobileServiceUser(userId);
 user.MobileServiceAuthenticationToken = userToken;
 }
 else
 {
 try
 {
 // Login
 user = await _mobileService.LoginAsync(_provider);

 // Store credentials
 StorageHelper.StoreSetting(USER_ID, user.UserId, true);

Securing Data and Protecting the User

[42]

 StorageHelper.StoreSetting(USER_TOKEN,
 user.MobileServiceAuthenticationToken, true);
 }
 catch (InvalidOperationException)
 {
 // Something has gone wrong, most likely user cancelled
 // by backing-out
 }
 }

 if (user != null)
 {
 _mobileService.CurrentUser = user;
 return true;
 }

 return false;
 }

 public static void Logout()
 {
 _mobileService.Logout();

 // Clear credentials
 StorageHelper.StoreSetting(USER_ID, null, true);
 StorageHelper.StoreSetting(USER_TOKEN, null, true);
 }
 }
}

Now, our data services can inherit from this base class, which means that they are
really neat and only concerned with data operations—not security. This is shown
in the following code snippet:

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using Microsoft.WindowsAzure.MobileServices;
using TileTapper.Models;
using TileTapper.Helpers;

namespace TileTapper.DataServices
{
 public class LeaderBoardService : DataServiceBase
 {
 /// <summary>
 /// Gets all LeaderBoardItems
 /// </summary>

Chapter 3

[43]

 /// <returns>Task to get an enumerable collection of
 /// LeaderBoardItem</returns>
 public async Task<IEnumerable<LeaderBoardItem>> GetAll()
 {
 // Make sure we're authenticated by passing the task into
 // ExecuteAuthenticated
 return await this.ExecuteAuthenticated(async () =>
 {
 var table = _mobileService.GetTable<LeaderBoardItem>();
 return await table.ToEnumerableAsync();
 });
 }
 }
}

REST API and the master key
So far, we've seen the app key in action in our app, but we have not really said
much about the master key. The master key allows us to access tables and APIs
with authentication protection, without authenticating it against our authentication
provider. Because the master key has this capability, it must not be distributed with
the mobile applications.

It is handy for administrative tasks as we don't need to implement OAuth2
workflow to access the services. Also, there is a useful feature that allows us to
suppress custom scripts implemented on table methods, so we can get base-level
CRUD operations on the table without any user customizations such as filtering by
user or validation affecting the results.

HTTP requests are authenticated with the following optional headers:

• X-ZUMO-APPLICATION: Application key
• X-ZUMO-AUTH: User auth token
• X-ZUMO-MASTER: Master key

In this example, I used Fiddler (http://fiddler2.com/) to compose some
HTTP requests (you can use any HTTP debugging tool you like). We'll preform
a GET request on an authentication-protected table (I temporarily changed the
LeaderBoard table for this example).

If we just use our app key, as shown in the following request:

GET https://tiletapper.azure-mobile.net/tables/
 leaderboard HTTP/1.1
X-ZUMO-APPLICATION: XXXXXXXXXXXXXXXXXxxxxxxxxxxxxxxxxxx
Host: tiletapper.azure-mobile.net

Securing Data and Protecting the User

[44]

We get a 401 Unauthorized response, as shown in the following:

HTTP/1.1 401 Unauthorized
Cache-Control: no-cache
Content-Length: 42
Content-Type: application/json
Server: Microsoft-IIS/8.0
x-zumo-version: Zumo.Main.0.1.6.4247.Runtime
X-Powered-By: ASP.NET
Set-Cookie: ARRAffinity=3b009d5d3272fba37561fb551f1b8cf912175fe784c5b1
c8ca93e16259dc3f19;Path=/;Domain=tiletapper.azure-mobile.net
Set-Cookie: WAWebSiteSID=b86a3feb64a4441dbbfaa4b72a1704ea; Path=/;
HttpOnly
Date: Tue, 10 Dec 2013 10:31:36 GMT

{"code":401,"error":"Error: Unauthorized"}

Then, if we use our master key as shown in the following request:

GET https://tiletapper.azure-mobile.net/tables/
 leaderboard HTTP/1.1
X-ZUMO-MASTER: YYYYYYYYYYYYYyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Host: tiletapper.azure-mobile.net

We get a 200 OK response and our JSON data, as shown in the following:

Response:
HTTP/1.1 200 OK
Cache-Control: no-cache
Content-Length: 468
Content-Type: application/json
Server: Microsoft-IIS/8.0
x-zumo-version: Zumo.Main.0.1.6.4247.Runtime
X-Powered-By: ASP.NET
Set-Cookie: ARRAffinity=3b009d5d3272fba37561fb551f1b8cf912175fe784c5b1
c8ca93e16259dc3f19;Path=/;Domain=tiletapper.azure-mobile.net
Set-Cookie: WAWebSiteSID=9d23b57f4f0447b080d0eb78ed69b328; Path=/;
HttpOnly
Date: Tue, 10 Dec 2013 10:38:26 GMT

[{"id":"2FD9E522-B276-44F2-9801-A0007B1E1286","timeStamp":"2013-
12-09T21:07:55.029Z","name":"Tank Man","score":885562},{"id":
"10E4FC3A-B55D-43AA-9104-850A99868C3F","timeStamp":"2013-12-
09T21:07:58.415Z","name":"Ultimate Fail","score":0},{"id":"36AB6BD0-
716B-4871-8FD8-04B9E43A7DB7","timeStamp":"2013-12-09T21:07:59.315Z"
,"name":"37337","score":999999999},{"id":"5CD944F0-7F2F-489E-B8BC-
512FDDB764E6","timeStamp":"2013-12-09T21:08:00.247Z","name":"geoff","
score":1000}]

Chapter 3

[45]

To suppress scripts and go straight into the table, we add the noscript parameter as
shown in the following URL:

https://tiletapper.azure-mobile.net/tables/leaderboard?noscript=true

The API supports OData queries, so we can build pretty flexible admin applications.
The table methods have the following HTTP methods:

• Query: GET
• Insert: POST
• Update: PATCH
• Delete: DELETE

The POST and PATCH methods place JSON in the request body. In code, this is achieved
by writing JSON text into the request stream before reading the response stream.

Summary
We've talked about the importance of security, discussed the options available to
control access to our services, and implemented authentication in our app using
Windows Live Connect. We've also implemented a base class for managing login,
logout, and storing user credentials so the users don't have to log in repeatedly.

In the next chapter, we are going to learn how to customize our service behavior
by using scripts.

Service Customization with
Scripts

When we create a table, we get a set of methods (Query, Insert, Update, and Delete).
For many implementations, these methods will be fine as they are, but we can also
change their behavior with JavaScript scripts. When we first create a table, we get a set
of stubbed scripts, which we can modify to do things such as validate and manipulate
our data and filter data for authenticated users.

Just like modifying table methods, we can also create our own API methods outside
the scope of a table's operations to do anything we like.

Scripts can access tables, trigger push notifications, make HTTP requests, or do
anything we like with third-party libraries using NPM modules. The portal has a
fantastic script editor with intelliSense, but we can also pull a copy of all the scripts
to work on locally using Git version control.

In this chapter, we'll look at some examples which try and incorporate a number of
features in one go rather than examining things individually out of context.

Understanding table scripts
Each table's Insert, Update, Delete, and Read methods can be modified. All the
methods take a user and request parameter. The method signatures look like
the following:

function del(id, user, request)
function insert(item, user, request)
function read(query, user, request)
function update(item, user, request)

Service Customization with Scripts

[48]

The following parameters are used in the method signatures:

• id: This is the ID of an item to be deleted with the delete method.
• item: This is the item object to be inserted or updated. It will have the same

properties as the model that we created in the app.
• query: This is the OData query expression for reading data with a query.
• user: This is the user object with user ID, level (admin, anonymous, and

authenticated), and access tokens properties.
• request: This contains execute methods that execute the default action for

the method and a respond method that returns the response.

Level-insert table script example
I've created a table to store game levels called Levels. When the app starts, it loads
the levels from the service. This script is implemented in the insert method of the
Levels table to validate the data and check if the board cells are square. The steps
are as follows:

1. First we do a null check:
if(item === null || item.name === null || item.time === null){
 valid = false;
}

2. Next check if the cells property is square (and not null):
if(valid &&item.cells !== null){
 var sqrt = Math.sqrt(item.cells.length);
 if(Math.pow(sqrt, 2) != item.cells.length){
 valid = false;
 }
}
else {
 valid = false;
}

3. Finally, we execute if valid or respond with a bad request:

if(valid){
 request.execute({
 success: function(results) {
 console.log("Inserted level");
 },
 error: function(error) {
 console.error(error);

Chapter 4

[49]

 }
 });
 }else {
 request.respond(statusCodes.BAD_REQUEST);
}

You can see the full script in the samples.

Score-insert script example
The scores table holds user scores. Therefore, we need to make sure we track the
authenticated user's ID so that we can filter their results for other operations.
The insert script populates the owner property from user.userId:

function insert(item, user, request) {

 item.owner = user.userId;
 request.execute();

Score-read script example
Because we only want to return results for the calling user, we can filter just their
data as follows:

function read(query, user, request) {

 query.where({
 owner: user.userId
 });
 request.execute();
}

For both the Score methods, users must be authenticated. For the TileTapper game,
the user doesn't need to use the update or delete method, so I've set these to be
Only Authenticated Users. But, if you need to use them, the item's owner should be
checked before execution.

www.allitebooks.com

http://www.allitebooks.org

Service Customization with Scripts

[50]

API scripts
API scripts can be used to do things outside the scope of a table's method, such as
making HTTP requests to call other web services and performing push notification
requests (this will be discussed in the next chapter). We can still access tables
through the request.service.tables object, which exposes our tables and all their
methods. However, these methods go directly into the table and not through the
API. Hence, any table script modifications will be bypassed.

API scripts support the following five HTTP methods:

• GET

• POST

• PUT

• PATCH

• DELETE

Creating an API script
To create an API script, follow this procedure:

1. Go to the API tab in the portal and click on the CREATE button:

2. Enter the name and choose the permissions:

Chapter 4

[51]

3. Once created, select it from the API list in the portal. A stubbed GET and POST
method is created for you:
exports.post = function(request, response) {
 // Use "request.service" to access features of your mobile
service, e.g.:
 // var tables = request.service.tables;
 // var push = request.service.push;

 response.send(statusCodes.OK, { message : 'Hello World!' });
};

exports.get = function(request, response) {
 response.send(statusCodes.OK, { message : 'Hello World!' });
};

4. You can modify or delete these methods. To add different methods, just add
a new exports method with the HTTP method you require.

High-score API script
The TileTapper game uses an API called HighScore. The high score POST script adds
a new item to the leaderboard table, validates that it is the highest score, and calls an
external web service:

1. First, we're going to grab the JSON object from the request body:
exports.post = function(request, response) {

 // Get item from request body
 var item = request.body;

2. Next, we query the leaderboard table to get the highest score by performing
an orderByDescending and take(1) operation and then calling read, which
takes a success and error function (I've chopped the inside out of the success
function so you can see it in one.). The error function logs the error and
returns an error response (400), shown as follows:
// Get high score
 var leaderBoardTable = request.service.tables.
getTable('leaderboard');
 leaderBoardTable
 .orderByDescending('score').take(1)
 .read({
 // Read success function
 success: function(results) {

Service Customization with Scripts

[52]

 // Success code removed for brevity
 },
 // Read error function
 error: function(err) {
 console.error(err);
 response.send(400);
 }
 });

3. When the read is successful, we go on to get the value from the results, then
check if the user score is actually higher. Again, if it is not, we log an error
and return an error response (400), shown as follows:
var highScore = 0;

 // Try and get high score
 if(results.length > 0){
 highScore = results[0].score;
 }

 // If new score is higher execute
 if(item.score > highScore){

 // Success code removed for brevity
 }
 else { // Otherwise return failure
 var msg = "Score " + item.score + ", is lower than high
score " + highScore;
 console.error(msg);
 response.send(statusCodes.BAD_REQUEST, msg);
 }

4. If the score is higher, we insert the item into the table and use success and
error functions again:
 // Insert into table
 leaderBoardTable.insert(item, {success:
function(results)
 {
 // Success code removed for brevity
 },
 error: function(err) {
 console.error(err);
 response.send(statusCodes.BAD_REQUEST, err);
 }});

Chapter 4

[53]

5. Once inserted, we're going to send the new high score to an external web
service. I published an MVC Web API service to an Azure website to test
it. We load an NPM package (already installed) called request, which
simplifies HTTP operations in JavaScript, by using the require method:

// Send score to external web service
var httpRequest = require("request");
var url = "http://tiletapperadmin.azurewebsites.net/api/
leaderboard";
httpRequest.post({
 url: url,
 json: item
 }, function(err, response, body) {
 if (err) {
 console.error("Error connecting to admin service");
 } else if (response.statusCode !== 200) {
 console.error("Error posting to admin service");
 } else {
 console.log("Posted to admin service, response: " +
JSON.stringify(body));
 }
 });

 response.send(statusCodes.OK, results);

Finally, we've got to the bit of the script where we can send an OK result (200) along
with the inserted item and its ID set. Note that I've not worried about the output of
the result of the web request. The results are logged, but if it fails, I don't want to
return an error as we've still successfully inserted the item in the table.

API methods can be called using the InvokeApiAsync method, which has a number
of overloads for whether you want to pass in an object, return an object, or pass in
queries. We can call this method using the following code:

var result = await _mobileService.InvokeApiAsync<HighScore,
LeaderBoardItem>("highScore", item);

Here, item is an instance of the highScore model:

[JsonObject(Title = "highScore")]
public class HighScore
{
[JsonProperty(PropertyName = "name")]
 public string Name { get; set; }

 [JsonProperty(PropertyName = "score")]
 public int Score { get; set; }
}

Service Customization with Scripts

[54]

Script debugging and logs
Scripts can easily be debugged using the console object, which has the following
methods:

• console.log(formatString, obj1, obj2, ...): This method logs at
info level

• console.info(formatString, obj1, obj2, ...): This method logs at
info level

• console.warn(formatString, obj1, obj2, ...): This method logs at
warn level

• console.error(formatString, obj1, obj2, ...): This method logs at
error level

These methods output a single log entry that can be viewed under the LOGS tab in
the portal. All the methods can be called with a single string or a formatter and object
arguments, shown as follows:

• Number (%d): console.log("Board size: %d", size);
• String (%s): console.log("Board: %s", board);
• JSON (%j): console.log("Level JSON: %j", level);

While working with scripts, we soon learn that logging is our friend. Every time we
make a mistake (which we will as we can't debug them in our own IDE), errors will
be logged, which we can view under the LOGS tab in the portal. Logged errors are
generally pretty helpful, telling you which script failed and what the error was.
I had the following error on the api/highscore.js script:

{ _super: undefined, message: 'A value cannot be specified for
property \'id\'', code: 'BadInput' }

It was telling me that I was trying to insert an object with the id property set into the
leaderboard table.

Scheduling
From the SCHEDULER tab in the portal, it's possible to write scripts to be run on
a schedule (or on demand) to perform tasks such as cleaning up data or sending
push notifications.

Note that free and basic subscriptions are allowed one task
and standard subscriptions are allowed 10.

Chapter 4

[55]

For the TileTapper game, I created a scheduled script to create daily game levels:

function DailyLevel() {
 // Set board size
 var min = 3;
 var max = 10;

var size = Math.floor((Math.random()*(max-min))+min);

 // Create board
 var board = "";
 for(var i = 0; i < size; i++)
 {
 for(var j = 0; j < size; j++)
 {
 if(Math.random() < 0.5){
 // Active tile
 board += "1";
 }
 else{
 // Inactive tile
 board += "0";
 }
 }
 }

// Set allowed time
 min = 100;
 max = 3000;

 var time = Math.floor((Math.random()*(max-min))+min);

 // Get reference to Levels table
 var levelsTable = tables.getTable('levels');

 // Add level
 levelsTable.insert({
 name: "Level X",
 cells: board,
 time: time
 });
}

Service Customization with Scripts

[56]

The script makes use of the standard JavaScript Math object to randomize board size
and time allowance, and then uses the API-specific tables object to insert the level
into the table.

Working locally with Git
We can work on scripts in the portal if we like; however, we can also pull a copy if
we want to work locally or for a backup using Git version control. I personally use
the Git GUI; however, I don't want to waste pages with screenshots of this, so we'll
talk about using Git Bash (the console)!

Pulling the repository
First, we need to get a copy of the repository onto our local machine. To do this,
follow this procedure:

1. We need to set up the service's repository Git credentials. On the dashboard,
click on the Set up source control button and enter some credentials for Git
authentication.

2. Create a folder somewhere for the repository (I put mine in one of the Visual
Studio projects, so I can work on the scripts easily in Visual Studio). Next,
launch Git Bash by right-clicking on the folder and selecting Git Bash or
launching Bash and setting the path to the directory you want.

3. Type the following command into Bash (You can copy the URL from the GIT
URL setting under the CONFIGURE tab):
$ git clone https://your_service.scm.azure-mobile.net/Your_
Service.git

Enter the user name and password when prompted.

4. We should now have a full copy of the service's scripts in our directory:

5. If you've pulled them under one of your projects, you can add the directory
into your solution and even check them in to TFS if you're using it.

Chapter 4

[57]

Updating our repository
When we add or change tables or other scripted items in our service through the
portal, we can call a pull to update our local repository:

$ git pull origin master

Enter the username and password when prompted. If there are any conflicts, edit the
conflicting files and call commit.

Adding scripts manually
I manually added a script named LeaderBoard.insert.js to modify the insert
behavior of the LeaderBoard table:

function insert(item, user, request) {
 request.execute();
 console.log(item);
}

This will asynchronously insert the item into the table and log the JSON item object
to a log file, which we can view in the portal.

We need to add this to the repository by calling an add to add the file to the repository:

$ git add service/table/LeaderBoard.insert.js

Or we can use the following:

$ git add *

Once added, we can commit the change and add a comment:

$ git commit -m "Added LeaderBoard insert script"

Pushing back changes
Once we've done some work and committed everything, we can go and push the
changes back to the service by calling a push:

$ git push origin master

Enter the username and password when prompted. We can now see that any
changes made are reflected in the portal.

Service Customization with Scripts

[58]

Implementing NPM modules
It's possible to make use of existing script libraries that have a Node NPM module.
For the TileTapper game, I decided to use the moment.js library to easily get a
formatted date string for the level name. To use a NPM module in your scripts,
follow the following procedure:

1. Make sure you have installed node.js (see Chapter 2, Start Developing with
Windows Azure Mobile Services).

2. Launch Git Bash and navigate to your repository.
3. Update your repository (commit any changes first):

$ git pull origin master

4. Navigate to the service directory.
5. Install the NPM package with the following command:

$ npm install package_name

6. We should see the following results:

7. We can see a node_modules directory in our service folder.
8. Add the modules to the repository:

$ git add *

Chapter 4

[59]

9. Now, we can edit the script we want (if you want to do it in the portal, skip
to committing and pushing).

10. Use the require method to get a reference to the installed package and use it
as needed. I created a level name using the following code:
var moment = require('moment');
var name = moment().format('YYMMDD dddd [Level]');

// Add level
 var level = {
 name: name,
 cells: board,
 time: time
 }

 levelsTable.insert(level, {
 success: function(results) {
 console.log("Inserted level");
 },
 error: function(error) {
 console.error(error);
 }});

 console.log("Level JSON: %j", level);

11. Commit the changes:
$ git commit -m "Added moment package and modified daily script"

12. Push the changes back:
$ git push origin master

13. Test if the script changes work with the installed module (look in the LOGS
tab for errors).

Summary
We've seen that scripts are fantastic for customizing our services in order to
manipulate data and do pretty much anything we can think of using external
services and a third-party library with an NPM module. We've also learned how to
pull and push our scripts using the Git version control and install NPM modules
using Node.

We're not yet done with scripts either. In the next chapter, we will send different
types of push notifications with the push object.

www.allitebooks.com

http://www.allitebooks.org

Implementing Push
Notifications

Push Notifications allow us to expand our application's user experience outside
the bounds of the app with live tile updates, toast notifications, and badges
in Windows 8. Windows Azure Mobile Services makes it very easy for us to
trigger notifications via Windows Notifications Service (WNS) (for Store apps),
Microsoft Push Notification Service (MPNS) (for Windows Phone 8 apps), Apple
Notifications Service (ANS), and Google Notifications Service (GCM).We're going
to discuss how to configure Windows 8 and Windows Phone applications to allow
notifications, send different types of notifications using scripts, and create a list of
devices to manage our user's notification channels.

Implementing Push Notifications

[62]

Understanding Push Notification
Service flow
The following procedure illustrates Push Notification Service (PNS) flow from
establishing a channel to receiving a notification:

1. The mobile device establishes a channel with the PNS and retrieves its
handle (URI).

2. The device registers its handle with a backend service (in our case, a table
in our Mobile Service).

3. A notification request can be made by another service, an admin system,
and so on, which calls the backend service (in our case, an API).

4. The service makes a request to the correct PNS for every device handle.
5. The PNS notifies the device.

Chapter 5

[63]

Setting up Windows Store apps
Visual Studio 2013 has a new wizard, which associates the app with the store in order
to obtain a push notifications URI. Code is added to the app to interact with the service
that will be updated to have a Channels table. This table has an Insert script to insert
the channel and ping back a toast notification upon insert. The following procedure
takes us through using the wizard to add a push channel to our app:

1. Right-click on the project, and then navigate to Add | Push Notification.
2. Follow the wizard and sign in to your store account (if you haven't got one,

you will need to create one).
3. Reserve an app name and select it. Then, continue by clicking on Next.
4. Click on Import Subscriptions... and the Import Windows Azure

Subscriptions dialog box will appear.
5. Click on Download subscription file. Your default browser will be launched

and the subscriptions file will be automatically downloaded. If you are
logged into the portal, this will happen automatically; otherwise, you'll be
prompted to log in.

6. Once the subscription file is downloaded, browse to the downloaded file in
the Import Windows Azure Subscriptions dialog box and click on Import.

7. Select the subscription you wish to use, click on Next, and then click on
Finish in the final dialog box. In the Output window in Visual Studio, you
should see something like the following:

Attempting to install 'WindowsAzure.MobileServices'
Successfully installed NuGet Package 'WindowsAzure.MobileServices'
Successfully added 'push.register.cs' to the project
Added field to the App class successfully
Initialization code was added successfully
Updated ToastCapable in the app manifest
Client Secret and Package SID were updated successfully on the
Windows Azure Mobile Services portal
The 'channels' table and 'insert.js' script file were created
successfully
Successfully updated application redirect domain
Done

Implementing Push Notifications

[64]

We will now see a few things have been done to our project and service:

• The Package.StoreAssociation.xml file is added to link the project with
the app on the store.

• Package.appxmanifest is updated with the store application identity.
• Add a push.register.cs class in services\mobile services\[Your

Service Name], which creates a push notifications channel and sends the
details to our service.

• The server explorer launches and shows us our service with a newly
created table named channels, with an Insert method that inserts or
updates (if changed) our channel URI. Then, it sends us a toast notification
to test that everything is working.

Run the app and check that the URI is inserted into the table. You will get a toast
notification. Once you've done this, remove the sendNotifications(item.
channelUri); call and function from the Insert method. You can do this in Visual
Studio via the Server Explorer console. I've modified the script further to make sure
the item is always updated, so when we send push notifications, we can send them to
URIs that have been recently updated so that we are targeting users who are actually
using the application (channels actually expire after 30 days too, so it would be a waste
of time trying to push to them). The following code details these modifications:

function insert(item, user, request)
{
 var ct = tables.getTable("channels");
 ct.where({ installationId: item.installationId }).read({
 success: function (results)
 {
 if (results.length > 0)
 {
 // always update so we get the updated date
 var existingItem = results[0];
 existingItem.channelUri = item.channelUri;
 ct.update(existingItem,
 {
 success: function ()
 {
 request.respond(200, existingItem);
 }
 });
 }

Chapter 5

[65]

 else
 {
 // no matching installation, insert the record
 request.execute();
 }
 }
 })
}

I've also modified the UploadChannel method in the app so that it uses a
Channel model that has a Platform property. Therefore, we can now work out
which PNS provider to use when we have multiple platforms using the service.
The UploadChannel method also uses a new InsertChannel method in our
DataService method (you can see the full code in the sample app). The following
code details these modifications:

public async static void UploadChannel()
{
 var channel = await Windows.Networking.PushNotifications.
 PushNotificationChannelManager.
 CreatePushNotificationChannelForApplicationAsync();
 var token = Windows.System.Profile.
 HardwareIdentification.GetPackageSpecificToken(null);
 string installationId = Windows.Security.Cryptography.
 CryptographicBuffer.EncodeToBase64String(token.Id);
 try
 {
 var service = new DataService();
 await service.InsertChannel(new Channel()
 {
 ChannelUri = channel.Uri,
 InstallationId = installationId,
 Platform = "win8"
 });
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
}

Implementing Push Notifications

[66]

Setting up tiles
To implement wide or large square tiles, we need to create the necessary assets and
define them in the Visual Assets tab of the Package.appxmanifest editor. This is
shown in the following screenshot:

Setting up badges
Windows Store apps support badge notifications as well as tile and toast. However,
this requires a slightly different configuration. To implement badge notifications,
we perform the following steps:

1. Create a 24 x 24 pixel PNG badge that can have opacity, but must use only
white color.

2. Define the badge in the Badge Logo section of the Visual Assets tab of the
Package.appxmanifest editor.

Chapter 5

[67]

3. Add a Background Tasks declaration in the Declarations tab of the Package.
appxmanifest editor, select Push notification, and enter a Start page, as
shown in the following screenshot:

4. Finally, in the Notifications tab of the Package.appxmanifest editor, set Lock
screen notifications to Badge. This is shown in the following screenshot:

5. To see the badge notification working, you also need to add the app to the
lock screen badge slots in Lock Screen Applications | Change PC Settings |
Lock Screen.

Implementing Push Notifications

[68]

Setting up Windows Phone 8 apps
Visual Studio 2012 Express for Windows Phone doesn't have a fancy wizard like
Visual Studio 2013 Express for Windows Store. So, we need to configure the channel
and register it with the service manually. The following procedure sets up the
notifications in the app by using the table that we created in the preceding Setting up
Windows Store apps section:

1. Edit the WMAppManifest.xml file to enable ID_CAP_IDENTITY_DEVICE,
which allows us to get a unique device ID for registering in the Channels
table, and ID_CAP_PUSH_NOTIFICATION, which allows push
notifications in the app. These options are available in the Capabilities tab,
as shown in the following screenshot:

Chapter 5

[69]

2. To enable wide tiles, we need to check Support for large Tiles (you can't see
the tick unless you hover over it, as there is apparently a theming issue in
VS!) and pick the path of the wide tile we want to use (by default, there is one
named FlipCycleTileLarge.png under Tiles in the Assets folder). This is
shown in the following screenshot:

3. Next, we need to add some code to get the push channel URI and send it to
the service:
using Microsoft.Phone.Info;
using Microsoft.Phone.Notification;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Text;
using System.Threading.Tasks;
using TileTapper.DataServices;
using TileTapper.Models;

namespace TileTapper.Helpers
{
 public class ChannelHelper
 {
 // Singleton instance
 public static readonly ChannelHelper Default =
 new ChannelHelper();

Implementing Push Notifications

[70]

 // Holds the push channel that is created or found
 private HttpNotificationChannel _pushChannel;

 // The name of our push channel
 private readonly string CHANNEL_NAME =
 "TileTapperPushChannel";

 private ChannelHelper() { }

 public void SetupChannel()
 {
 try
 {
 // Try to find the push channel
 this._pushChannel =
 HttpNotificationChannel.Find(CHANNEL_NAME);

 // If the channel was not found, then create a new
 // connection to the push service
 if (this._pushChannel == null)
 {
 this._pushChannel = new
 HttpNotificationChannel(CHANNEL_NAME);
 this.AttachEvents();
 this._pushChannel.Open();

 // Bind channel for Tile events
 this._pushChannel.BindToShellTile();

 // Bind channel for Toast events
 this._pushChannel.BindToShellToast();
 }
 else
 this.AttachEvents();
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
 }

 private void AttachEvents()
 {
 // Register for all the events before attempting to
 // open the channel
 this._pushChannel.ChannelUriUpdated + =
 async (s, e) =>
 {
 // Register URI with service

Chapter 5

[71]

 await this.Register();
 };

 this._pushChannel.ErrorOccurred += (s, e) =>
 {
 System.Diagnostics.Debug.WriteLine(e.ToString());
 };
 }

 private async Task Register()
 {
 try
 {
 var service = new DataService();
 await service.InsertChannel(new Channel()
 {
 ChannelUri =
 this._pushChannel.ChannelUri.AbsoluteUri,
 InstallationId = this.GetDeviceUniqueName(),
 Platform = "wp8"
 });
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
 }

 // Note: to get a result requires
 // ID_CAP_IDENTITY_DEVICE
 // to be added to the capabilities of the WMAppManifest
 // this will then warn users in marketplace
 private byte[] GetDeviceUniqueID()
 {
 byte[] result = null;
 object uniqueId;
 if (DeviceExtendedProperties.TryGetValue(
 "DeviceUniqueId", out uniqueId))
 result = (byte[])uniqueId;

 return result;
 }

 private string GetDeviceUniqueName()
 {
 byte[] id = this.GetDeviceUniqueID();
 string idEnc = Encoding.Unicode.GetString(
 id, 0, id.Length);

Implementing Push Notifications

[72]

 string deviceID = HttpUtility.UrlEncode(idEnc);

 return deviceID;
 }
 }
}

This is a singleton class that holds an instance of the
HttpNotificationChannel object, so that channel URI changes can be
captured and sent up to our service. The two methods at the end of the code
snippet, GetDeviceUniqueID and GetDeviceUniqueName, will give a unique
device identifier for the channels table.

4. Now that we have the code to manage the channel, we need to call the
SetupChannel method in the App.xaml.cs launching method as shown in
the following code snippet:

private void Application_Launching(
 object sender, LaunchingEventArgs e)
{
 TileTapper.Helpers.ChannelHelper.Default.SetupChannel();
}

Service scripts
In the TileTapper game, we send out notifications when a new level is created and
when a new high score is submitted. We'll see how to send all the notification types
(except raw; by all means do this if you need to in your application, but we're not
going to discuss it now).

First, we’ll look at a set of scripts which gets all the URIs from the channels table,
which have been updated in the last 30 days so we know they are likely to be active and
then sends notifications out to the correct PNS services depending on the platform type.

The sendNotifications function gets the channels from the channels table. Then, it
loops through them, calling the addToQueue method that queues PNS task functions for
each channel. We don't call the PNS methods in the for loop as they run asynchronously
and would try to execute simultaneously, which would lead to many failures as the
server can only make a limited number of HTTP requests concurrently. The following
code demonstrates this:

// Queue of PNS functions
var queue = [];

Chapter 5

[73]

function sendNotifications(levelName)
{
 // Query channels updated in the last 30 days
 var sql = "SELECT channelUri, platform FROM channels WHERE
 updated >= DATEADD(Day, -30, GETDATE())";
 mssql.query(sql, {
 success: function(results)
 {
 // Because the PNS functions are asynchronous, we will loop
 // through channels
 // and add a set of functions to a function queue for each
 // channel so we can
 // process requests one at a time to save starving our
 // connections and failing
 for(var i = 0; i < results.length; i++)
 {
 addToQueue(results[i], levelName);
 }
 // Process first item
 dequeue();
 }
 });
}

The addToQueue function determines which notification functions are required,
based on the platform type; and pushes a task function into the queue so that they
can be called one at a time as they complete, as shown in the following code snippet:

// Wrap functions and enqueue
function addToQueue(channel, levelName)
{
 if(channel.platform == "win8")
 {
 queue.push(function() { sendMultiTileWns(
 channel.channelUri, levelName); });
 queue.push(function() { sendToastWns(
 channel.channelUri, levelName); });
 queue.push(function() { sendBadgeWns(
 channel.channelUri, levelName); });
 }
 else if(channel.platform == "wp8")
 {
 queue.push(function() { sendToastMpns(
 channel.channelUri, levelName); });
 queue.push(function() { sendTileMpns(
 channel.channelUri, levelName); });
 }
}

Implementing Push Notifications

[74]

The dequeue method simply shifts a task function off the queue and calls it. As each
function completes, it calls this function whether it succeeds or fails to empty the
queue and process all PNS requests. The working of the dequeue method is shown
in the following code snippet:

function dequeue()
{
 // Dequeue and execute
 if(queue.length > 0)
 (queue.shift())();
}

If a notification fails, we delete the channel registration from the table using the
following function:

function deleteChannel(uri)
{
 var sql = "DELETE FROM channels WHERE channelUri =
 '" + uri + "'";
 mssql.query(sql);
}

WNS scripts for Store apps
WNS supports the following notifications:

• sendTile

• sendToast

• sendBadge

• sendRaw

• send

sendTile and sendToast have a template-specific suffix
to define the payload type.

WNS doesn't support tile templates with multiple tile sizes. So, we can use the send
method to stick multiple tile bindings together and update more than one tile.
There's a full reference available at http://msdn.microsoft.com/en-us/library/
windowsazure/jj860484.aspx.

Chapter 5

[75]

Sending toast notifications
The following function sends a toast notification using the sendToastText04 method:

function sendToastWns(uri, name)
{
 // Send wns push for store apps
 push.wns.sendToastText04(uri, {
 text1: "TileTapper",
 text2: "New level available",
 text3: name
 }, {
 success: function(pushResponse)
 {
 console.log("Sent push toast WNS:", pushResponse);
 dequeue();
 },
 error: function(error)
 {
 console.error(error);
 deleteChannel(uri);
 dequeue();
 }
 });
}

Sending tile notifications
The following function sends a tile notification using the sendTileSquareText01
method:

function sendTileWns(uri, name)
{
 // Send wns push for store apps
 push.wns.sendTileSquareText01(uri, {
 text1: "TileTapper",
 text2: "New level available",
 text3: name
 }, {
 success: function(pushResponse)
 {
 console.log("Sent push toast WNS:", pushResponse);
 dequeue();
 },
 error: function(error)
 {

Implementing Push Notifications

[76]

 console.error(error);
 deleteChannel(uri);
 dequeue();
 }
 });
}

Sending multiple tiles
The following function sends a tile notification using multiple bindings that are
defined using the raw XML templates. It gives us the benefit of sending multiple
tile templates in one request, rather than sending them individually.

function sendMultiTileWns(uri, name)
{
 // Send wns push for store apps
 push.wns.send(uri,
 "<tile>" +
 "<visual version='2'>" +
 "<binding template =
 'TileSquare150x150Text01' fallback='TileSquareText01'>" +
 "<text id='1'>TileTapper</text>" +
 "<text id='2'>New level available</text>" +
 "<text id='3'>" + name + "</text>" +
 "</binding>" +
 "<binding template =
 'TileWide310x150Text01' fallback='TileWideText01'>" +
 "<text id='1'>TileTapper</text>" +
 "<text id='2'>New level available</text>" +
 "<text id='3'>" + name + "</text>" +
 "</binding>" +
 "</visual>" +
 "</tile>",
 "wns/tile", {
 success: function(pushResponse)
 {
 console.log("Sent push toast WNS:", pushResponse);
 dequeue();
 },
 error: function(error)
 {
 console.error(error);
 deleteChannel(uri);
 dequeue();
 }
 });
}

Chapter 5

[77]

Sending badge notifications
The following function sends an alert badge notification using the sendBadge method:

function sendBadgeWns(uri, name)
{
 // Send wns push for store apps
 push.wns.sendBadge(uri, "alert", {
 success: function(pushResponse)
 {
 console.log("Sent push toast WNS:", pushResponse);
 dequeue();
 },
 error: function(error)
 {
 console.error(error);
 deleteChannel(uri);
 dequeue();
 }
 });
}

MPNS scripts for Windows Phone apps
MPNS supports the following notifications:

• sendFlipTile

• sendTile

• sendToast

• sendRaw

There's a full reference available at http://msdn.microsoft.com/en-us/library/
windowsazure/jj871025.aspx.

Sending toast notifications
The following function sends a toast notification using the sendToast method:

function sendToastMpns(uri, name)
{
 // Send wns push for store apps
 // We can add a param object to pass params to a certain page:
 // param: "NewPage.xaml?item=5"
 push.mpns.sendToast(uri, {
 text1: "TileTapper - New level available",
 text2: name
 }, {

Implementing Push Notifications

[78]

 success: function(pushResponse)
 {
 console.log("Sent push toast WNS:", pushResponse);
 dequeue();
 },
 error: function(error)
 {
 console.error(error);
 deleteChannel(uri);
 dequeue();
 }
 });
}

Sending tile notifications
The following function sends a tile notification using the sendFlipTile method:

function sendTileMpns(uri, name)
{
 // Send wns push for store apps
 // We can add a param object to pass params to a certain page:
 // param: "NewPage.xaml?item=5"
 push.mpns.sendFlipTile(uri, {
 backTitle: "TileTapper - New level available",
 backContent: name
 }, {
 success: function(pushResponse)
 {
 console.log("Sent push toast WNS:", pushResponse);
 dequeue();
 },
 error: function(error)
 {
 console.error(error);
 deleteChannel(uri);
 dequeue();
 }
 });
}

Chapter 5

[79]

Summary
In this chapter, we've covered setting up our Windows 8 and Windows Phone 8
applications to receive different notification types. We have also worked on the
service to send different notifications from the WNS and MPNS notifications service.

Tiles and toast notifications are big subjects as there are a plethora of templates on
each platform. So, it's worth having a good look at the documentation to help you
choose the right templates.

In the next chapter, we're going to build on what we've learned here with the
Notifications Hub, which provides us with a different, more scalable mechanism
for managing push notifications.

Scaling Up with the
Notifications Hub

The PNS facilities in Azure Mobile Services are great, but Azure has a more scalable
solution, available to us from the Service Bus group of services.

The Notifications Hub has the following benefits over push notifications:

• Manages device URI handles for us
• Only requires a single request from the backend to broadcast notifications
• Offers generic notifications across all platforms as well as native

notification types
• Tags to allow users to filter notifications
• Provides language support

The Notifications Hub flow is described as follows:

1. The mobile device establishes a channel with the PNS and retrieves its
URI handle.

2. The device registers with the Notifications Hub.
3. A notification request is made by another service or an admin system to

the hub.

Scaling Up with the Notifications Hub

[82]

4. The service makes a request for every device handle to the correct PNS.
5. The PNS notifies the device.

The main drawback of using the hub over Mobile Services push notifications is the
separate pricing model. You get 1,00,000 pushes per month on 500 devices for free.
On unlimited devices, you get 1 million pushes and 5 million pushes (per unit) for
basic and standard subscriptions, respectively.

Configuring the Hub
First, we're going to configure our Notifications Hub in the Service Bus Portal.
The steps are as follows:

1. In the Azure Portal, select SERVICE BUS from the left menu.
2. Click on CREATE A NAMESPACE.
3. Enter a name, select a region (pick the same one as you used for the database

and mobile service), and choose a subscription:

Chapter 6

[83]

4. Click on the newly created namespace to enter the SERVICE BUS Portal:

5. Select NOTIFICATION HUB from the menu.
6. Click on CREATE A NEW NOTIFICATIONS HUB.
7. From the pop-up menu, click on QUICK CREATE:

8. Enter a name in the NOTIFICATION HUB NAME field and click on the
CREATE A NEW NOTIFICATION HUB tick.

9. For Windows Store apps, under the Mobile Services Portal's CONFIGURE
tab, copy the CLIENT SECRET and PACKAGE SID keys from the PUSH
tab in the Mobile Services Portal, created when we configured push
notifications in the previous chapter. Paste them into the windows phone
notification settings section under the CONFIGURE tab.

Note that, at the time of writing this, they were in the opposite order!

Scaling Up with the Notifications Hub

[84]

10. For Windows Phone 8 apps, under the CONFIGURE tab, check the Enable
unauthenticated push notifications checkbox:

If you have obtained a MPNS certificate, you can use it here to get
un-throttled authenticated notifications.

Setting up Windows Store and Windows
Phone 8 apps
The following procedure sets up hub notifications in Windows 8 and Windows
Phone 8 apps:

1. Install the WindowsAzure.Messaging.Managed NuGet package by entering
the following command in the Package Manager Console:
Install-Package WindowsAzure.Messaging.Managed

2. Add the following namespace references to the ChannelHelper (Windows
Phone 8) or TileTapperPush (Windows 8) class we created in the previous
chapter:
using Microsoft.Phone.Notification;
using Microsoft.WindowsAzure.Messaging;

3. Add the following constants to the top of the class and change the HUB_NAME
constant to your hub name:
private readonly string HUB_NAME = "tiletapper";
private readonly string CONNECTION_STRING = "Endpoint=sb://
tiletapper.servicebus.windows.t/;SharedAccessKeyName=DefaultListen
SharedAccessSignature;SharedAccessKey=/xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx=";

Chapter 6

[85]

4. In the NOTIFICATION HUBS Portal, click on the CONNECTION
INFORMATION button on the toolbar to see the connection strings:

5. Copy the DefaultListenSharedAccessSignature string (use the copy button)
and paste it into the CONNECTION STRING constant:

6. Add the following to the ChannelHelper.Register (Windows Phone 8)
or TileTapperPush.UploadChannel (Windows 8) task:
// Register with hub
var hub = new NotificationHub(this.HUB_NAME, this.CONNECTION_
STRING);
var result = await hub.RegisterNativeAsync(this._pushChannel.
ChannelUri.AbsoluteUri);

7. For Windows Phone 8, uninstall the app, then re-deploy and run it to get
the channel to refresh and register with the hub.

8. It may take a few minutes once the RegisterNativeAsync has been called
for the channel to register and receive notifications.

Scaling Up with the Notifications Hub

[86]

Calling the hub from scripts
In the previous chapter, we talked about sending push notifications from our scripts
using the PNS libraries. There isn't a built-in library for the Notifications Hub, but
remember when we were looking at using NPM modules in our scripts? Well, we can
pull in a reference to the Azure SDK for a Node NPM package, which is preinstalled
in our service, so we don't even need to install it! The SDK is open source and can be
found on GitHub at https://github.com/WindowsAzure/azure-sdk-for-node.
It can be useful if you are having trouble finding examples of how to do certain things
because you can look at the code.

If you remember in the previous chapter, we had to maintain a table of channels,
then loop through the table, determine which provider to use, build a queue of
PNS functions for each channel URI, and call them one at a time! Well, for the
Notifications hub, this couldn't be simpler as we just need to make a single call to
the hub for each notification type we want to send:

function sendAllHubNotifications(levelName)
{
 sendToastHubMpns("TileTapper - New level available", levelName,
null);
 sendTileHubMpns("TileTapper - New level available", levelName,
null);

 sendToastHubWns("TileTapper", "New level available", levelName,
null);
 sendTileHubWns("TileTapper", "New level available", levelName,
null);
 sendBadgeHubWns("alert", null);
}

All PNS methods have prototypes similar to this (from SDK code):

MpnsService.prototype.send = function (tags, payload, targetName,
notificationClass, optionsOrCallback, callback)

Most of the parameters are self-explanatory; however, the notificationClass
controls the batching interval (you can read more on this at http://msdn.
microsoft.com/en-us/library/hh221551.aspx).

All the scripts shown next use the same constants:

var CONNECTION_STRING = "Endpoint=sb://tiletapper.servicebus.windows.
net/;SharedAccessKeyName=DefaultFullSharedAccessSignature;SharedAccess
Key=XX=";
var HUB_NAME = "tiletapper";

Use DefaultFullSharedAccessSignature from the Notifications Hub Portal.

Chapter 6

[87]

Creating WNS scripts (for Store apps)
We've already talked about the different notification types and templates, so we'll
just look at the code.

Sending toast notifications
The following function sends a WNS toast notification:

function sendToastHubWns(text1, text2, text3, tagExpression)
{
var azure = require("azure");
var notificationHubService = azure.createNotificationHubService(HU
B_NAME, CONNECTION_STRING);

var toast = "<toast>" +
 "<visual>" +
 "<binding template=\"ToastText04\">" +
 "<text id=\"1\">" + text1 + "</text>" +
 "<text id=\"2\">" + text2 + "</text>" +
 "<text id=\"3\">" + text3 + "</text>" +
 "</binding>" +
 "</visual>" +
 "</toast>";

notificationHubService.wns.send(tagExpression, toast, "wns/toast", 2,
function(error) {
if (error) {
 console.error(error);
 }});
}

Sending tile notifications
The following function sends a WNS tile notification:

function sendTileHubWns(text1, text2, text3, tagExpression)
{
var azure = require("azure");
var notificationHubService = azure.createNotificationHubService(HU
B_NAME, CONNECTION_STRING);

var tile = "<tile>" +
"<visual>" +
 "<binding template=\"TileSquareText01\">" +

Scaling Up with the Notifications Hub

[88]

 "<text id=\"1\">" + text1 + "</text>" +
 "<text id=\"2\">" + text2 + "</text>" +
 "<text id=\"3\">" + text3 + "</text>" +
 "</binding>" +
"</visual>" +
"</tile>";

notificationHubService.wns.send(tagExpression, tile, "wns/tile", 1,
function(error) {
if (error) {
 console.error(error);
}});
}

Sending badge notifications
The following function sends a WNS badge notification:

function sendBadgeHubWns(value, tagExpression)
{
var azure = require("azure");
var notificationHubService = azure.createNotificationHubService
(HUB_NAME, CONNECTION_STRING);

var badge = "<badge value=\"" + value + "\" />";

notificationHubService.wns.send(tagExpression, badge, "wns/badge", 2,
function(error) {
if (error) {
 console.error(error);
}});
}

Creating MPNS scripts (for Windows Phone 8
apps)
Again, we've already talked about the different notification types and templates,
so we'll just look at the code.

Chapter 6

[89]

Sending toast notifications
The following function sends a MPNS toast notification:

function sendToastHubMpns(text1, text2, tagExpression)
{
var azure = require("azure");
var notificationHubService = azure.createNotificationHubService
(HUB_NAME, CONNECTION_STRING);

var toast = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
"<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>" + text1 + "</wp:Text1>" +
 "<wp:Text2>" + text2 + "</wp:Text2>" +
 "</wp:Toast> " +
"</wp:Notification>";

notificationHubService.mpns.send(tagExpression, toast, "toast", 2,
function(error) {
if (error) {
 console.error(error);
}});
}

Sending tile notifications
The following function sends a MPNS tile notification:

function sendTileHubMpns(backTitle, backContent, tagExpression)
{
 var azure = require("azure");
 var notificationHubService = azure.createNotificationHubService
(HUB_NAME, CONNECTION_STRING);

 var tile = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\" Version=\"2.0\">" +
 "<wp:Tile Template=\"FlipTile\">" +
 "<wp:BackTitle>" + backTitle + "</wp:BackTitle>" +
 "<wp:BackContent>" + backContent + "</wp:BackContent>" +
 "<wp:WideBackContent>" + backContent + "</
wp:WideBackContent>" +
 "</wp:Tile> " +
 "</wp:Notification>";

 notificationHubService.mpns.send(tagExpression, tile, "token", 1,
function(error) {

Scaling Up with the Notifications Hub

[90]

 if (error) {
 console.error(error);
 }});
}

Backend services
Similar to calling the Notifications Hub from our scripts, we can call it from any
backend services we may have for generating app content and so on. To do this in a
.NET application, follow this procedure:

1. Install the Windows Azure Service Bus SDK NuGet package by typing the
following into the Package Manager Console:
Install-Package WindowsAzure.ServiceBus

2. Add the following namespace:
using Microsoft.ServiceBus.Notifications;

3. Add constants for the connection string and hub name:

private const string CONNECTION_STRING = "Endpoint=sb://
tiletapper.servicebus.windows.net/;SharedAccessKeyName=DefaultFull
SharedAccessSignature;SharedAccessKey=xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxx=";
private const string HUB_NAME = "tiletapper";

4. We can then send notifications shown as follows:

private async Task SendToastHubMpns(string text1, string text2,
string tagExpression)
{
 NotificationHubClient hub = NotificationHubClient.CreateClient
FromConnectionString(CONNECTION_STRING, HUB_NAME);
 string toast = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>" + text1 + "</wp:Text1>" +
 "<wp:Text2>" + text2 + "</wp:Text2>" +
 "</wp:Toast> " +
 "</wp:Notification>";
 var result = await hub.SendMpnsNativeNotificationAsync(toast,
tagExpression);
}

We'll not go into all the different notification types again as the payloads are very
similar to the Node version.

Chapter 6

[91]

Targeting audience using tags
The Notifications Hub has a concept of tagging notifications, whereby a user can pick
the types of notifications they are interested in. The app registers these as tags and
the backend service sends out tagged notifications, so users only get notifications
they want to receive.

In the TileTapper game, I created a TagHelper class that allows the settings page to
control notifications that the user wants to receive (via the view model):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace TileTapper.Helpers
{
 public class TagHelper
 {
 private const string TILE_HIGH_SCORE = "TILE_HIGH_SCORE";
 private const string TOAST_HIGH_SCORE = "TOAST_HIGH_SCORE";
 private const string TILE_LEVEL = "TILE_LEVEL";
 private const string TOAST_LEVEL = "TOAST_LEVEL";

 // Singleton instance
 public static readonly TagHelper Default = new TagHelper();

 private TagHelper()
 {

 }

 public bool IsTileHighScoreEnabled
 {
 get { return StorageHelper.GetSetting<bool>(TILE_HIGH_
SCORE); }
 set { StorageHelper.StoreSetting(TILE_HIGH_SCORE, value,
true); }
 }

 public bool IsToastHighScoreEnabled
 {

Scaling Up with the Notifications Hub

[92]

 get { return StorageHelper.GetSetting<bool>(TOAST_HIGH_
SCORE); }
 set { StorageHelper.StoreSetting(TOAST_HIGH_SCORE, value,
true); }
 }

 public bool IsTileLevelEnabled
 {
 get { return StorageHelper.GetSetting<bool>(TILE_LEVEL); }
 set { StorageHelper.StoreSetting(TILE_LEVEL, value, true);
}
 }

 public bool IsToastLevelEnabled
 {
 get { return StorageHelper.GetSetting<bool>(TOAST_LEVEL);
}
 set { StorageHelper.StoreSetting(TOAST_LEVEL, value,
true); }
 }

 public IEnumerable<string> GetTags()
 {
 var tags = new List<string>();

 if (this.IsTileHighScoreEnabled)
 tags.Add(TILE_HIGH_SCORE);

 if (this.IsToastHighScoreEnabled)
 tags.Add(TOAST_HIGH_SCORE);

 if (this.IsTileLevelEnabled)
 tags.Add(TILE_LEVEL);

 if (this.IsToastLevelEnabled)
 tags.Add(TOAST_LEVEL);

 return tags;
 }
 }
}

When these change we need to re-register our channel with the hub with the list of
tags like this:

// Register with hub
var tags = TagHelper.Default.GetTags();
var hub = new NotificationHub(this.HUB_NAME, this.CONNECTION_STRING);
var result = await hub.RegisterNativeAsync(this._pushChannel.
ChannelUri.AbsoluteUri, tags);

Chapter 6

[93]

Now, when we send notifications in our service, we can add tags to the requests
as follows:

// Hub functions
function sendAllHubNotifications(levelName)
{
 sendToastHubMpns("TileTapper - New level available", levelName,
"TOAST_LEVEL");
 sendTileHubMpns("TileTapper - New level available", levelName,
"TILE_LEVEL");

 sendToastHubWns("TileTapper", "New level available", levelName,
"TOAST_LEVEL");
 sendTileHubWns("TileTapper", "New level available", levelName,
"TILE_LEVEL");
 sendBadgeHubWns("alert", "BADGE_LEVEL");
}

At the time of writing this, there seems to be an issue with this working on
Windows Phone; however, it works fine on Windows 8.

Summary
In this chapter, we've seen how using the Notifications Hub can save us a lot of work
managing push notifications. It is probably a better choice over the built-in push
notifications support in the service.

The hub also offers a really good template feature that allows apps to register
templates for notification categories that the user is interested in, with just a single
notification request required on the server side. This is very powerful as we can target
multiple platforms with one request and provide localization support. Unfortunately,
we do not have the time to look at this now, but there are some good references:

• http://msdn.microsoft.com/en-us/library/windowsazure/
dn530748.aspx

• http://www.windowsazure.com/en-us/manage/services/
notification-hubs/breaking-news-localized-dotnet/

Next is the final chapter in which we are going to look at tying up everything we've
learned so far in the book and getting our apps ready for the store!

Best Practices for
Web-connected Apps

In this final chapter, we're going to look at what we need to do to prepare our apps
for store certification and to improve user experience (UX) with respect to network
connectivity and push notifications.

There are certain criteria your app must meet to be published on the store and
guidelines to help create better UX. Windows Store app guidelines are pretty
comprehensive and cover everything needed for Windows Phone apps too.
There are some specifics that need particular notice for any web-connected app
and apps that implement push notifications.

App certification requirements for the
Windows Store
It's worth reading through the App certification requirements for the Windows Store
section for general requirements of the applications (at the time of writing this,
the document version is 4.7, October 17, 2013), available at http://msdn.
microsoft.com/en-us/library/windows/apps/hh694083.aspx.

In particular, the following apply to this subject:

4.1.1 Your app must have a privacy statement if it is network-capable

If your app has the technical ability to transmit data, you must maintain a privacy
policy. You must provide access to your privacy policy in the Description page of your
app, as well as in the app's settings as displayed in the Windows Settings charm.

Best Practices for Web-connected Apps

[96]

App capability declarations that make your app network-capable include:
internetClient, internetClientServer and privateNetworkClientServer.

Your privacy policy must inform users of the personal information transmitted
by your app and how that information is used, stored, secured and disclosed, and
describe the controls that users have over the use and sharing of their information,
how they may access their information, and it must comply with applicable laws
and regulations.

4.2 Your app must respect system settings for notifications and remain functional
when they are disabled

This includes the presentation of ads and notifications to the customer, which
must also be consistent with the customer's preferences, whether the notifications
are provided by the Windows Push Notification Service or any other service. If a
customer disables the notification function, either on an app-specific or a system-
wide basis, your app must remain functional.

This means, we need to provide a privacy policy and make sure our apps function
when notifications are disabled either through the operating system or from our app.
It's a good idea to allow users to control notifications from the app. Let's take a look
at how to do it.

UX guidelines
The user guidelines are a good resource for helping us create user-friendly applications:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

Of particular interest is the Guidelines for connection usage data section available at
http://msdn.microsoft.com/en-us/library/windows/apps/hh452974.aspx,
specifically the following table:

Chapter 7

[97]

Network Cost Type Recommended App Behavior
Unrestricted Use the network connection freely.

Variable/Approaching
Data Cap

• Delay or schedule lower priority operations until an
unrestricted network is available.

• When streaming content to a user, such as a movie or
a video, use a lower bit-rate. For example, if your app is
streaming HD-Quality video, stream Standard Definition
when on a metered network.

• Use less bandwidth. For example, switching to header-only
mode when receiving emails.

• Use the network less frequently. An example solution
is to reduce the frequency of any polling operations for
syndicating news feeds, refreshing content for a website,
or getting web notifications.

• Allow users to explicitly choose to stream HD-Quality video,
retrieve full emails, download lower priority updates, etc.,
rather than doing so by default.

• Explicitly ask for user permission prior to using the network.
Unknown If the network cost type is unknown, then treat it as an unrestricted

network.

Also, read the Guidelines for push notifications (Windows Store apps) section at http://
msdn.microsoft.com/en-us/library/windows/apps/hh761462.aspx, with
particular attention to the following points:

• Respect your user's battery life
• Do not use push notifications for spam or with malicious intent
• Be aware that WNS has no delivery guarantees
• Do not send confidential or sensitive data through push notifications
• Keep your app server credentials a secret

The following guidelines are also worth referring to:

• Guidelines for toast notifications (Windows Store apps): http://msdn.
microsoft.com/en-us/library/windows/apps/hh465391.aspx

• Guidelines for tiles and badges (Windows Store apps): http://msdn.
microsoft.com/en-us/library/windows/apps/hh465403.aspx

Best Practices for Web-connected Apps

[98]

Implementing a privacy policy
When we create applications that connect to Internet services, we need to provide
a privacy policy that can be viewed in the app and that is needed for a Windows
Store app submission.

A privacy policy can be embedded in the app, but it's easier to have one on your
website (you need a website when you fill in your app's details on the store), and
then put a link on the settings page. There are a number of free policy generators
that can be used to quickly produce a policy. There's a good overview of different
generators available at http://www.applicationprivacy.org/do-tools/
privacy-policy-generator/.

Checking the network connection
Before we connect to our services or try and authenticate the user, we can check if the
device actually has the capability of making a request using the NetworkInterface.
GetIsNetworkAvailable method. We can also examine the cost involved using
the NetworkInformation.GetInternetConnectionProfile method to determine
whether we should warn the user about potentially high data costs (these are the same
for Windows 8 and Windows Phone 8). This is shown in the following code snippet:

using System;
using System.Net.NetworkInformation;
using System.Threading.Tasks;
using Windows.Networking.Connectivity;
using Windows.UI.Popups;

namespace TileTapper.Helpers
{
 public class NetworkHelper
 {
 public async static Task<bool> CheckAvailablity()
 {
 // Check network availability
 if (!NetworkInterface.GetIsNetworkAvailable())
 return false;

 // Check cost
 var cp = NetworkInformation.GetInternetConnectionProfile();
 var cost = cp.GetConnectionCost();

 if (cost.NetworkCostType == NetworkCostType.Unrestricted
 || cost.NetworkCostType == NetworkCostType.Unknown)

Chapter 7

[99]

 return true;

 else if ((cost.NetworkCostType == NetworkCostType.Fixed
 || cost.NetworkCostType == NetworkCostType.Variable
) && (!cost.OverDataLimit && !cost.Roaming))
 return true;

 // If none of the above criteria are met, ask user if they
 // wish to continue
 bool available = false;
 var title = "Network Usage Warning";
 var content = "The application needs to get data over the
 internet, but your current network cost may be high. Do
 you wish to proceed?";
 var md = new MessageDialog(content, title);
 md.Commands.Add(new UICommand("Yes", (e) =>
 { available = true; }));
 md.Commands.Add(new UICommand("No"));
 md.CancelCommandIndex = 1;
 md.DefaultCommandIndex = 0;

 await md.ShowAsync();

 return available;
 }
 }
}

For Windows Phone, the MessageDialog class is replaced with a MessageBox class,
otherwise, the methods are the same.

It is also possible to detect when the connection changes using the
NetworkAddressChanged event. In the TileTapper game, the constructor hooks
the event and then checks the network in the MainVM constructor. If the network
becomes available and the game has not initialized, this is then done:

public MainVM()
{
 // Constructor code removed for brevity

 // Detect network changes and check current state
 System.Net.NetworkInformation.NetworkChange.
 NetworkAddressChanged + = (s, e) => CheckNetwork();
 this.CheckNetwork();
}

Best Practices for Web-connected Apps

[100]

 private async void CheckNetwork()
 {
 // Check network is available
 if (! await NetworkHelper.CheckAvailablity())
 this.IsNetworkOverlayVisible = true;
 else
 {
 // Initialise if required
 if (!this._isInitialised)
 {
 this.Initialise();
 this._isInitialised = true;
 }

 this.IsNetworkOverlayVisible = false;
 }
 }
}

Managing notifications settings
For the Windows 8 app, we will use the TagHelper class discussed in Chapter 6,
Scaling Up with the Notifications Hub, to manage the types of notifications that the user
is interested in. For the Windows Phone app, a new SettingsHelper singleton class
is used, which just manages a single property accessed by the view model and the
ChannelHelper class. This is shown in the following code snippet:

namespace TileTapper.Helpers
{
 public class SettingsHelper
 {
 private const string PUSH_ENABLED = "PUSH_ENABLED";

 // Singleton instance
 public static readonly SettingsHelper Default =
 new SettingsHelper();

 private SettingsHelper() { }

 public bool IsPushEnabled
 {
 get {return StorageHelper.GetSetting<bool>(PUSH_ENABLED);}
 set {StorageHelper.StoreSetting(PUSH_ENABLED, value, true);}
 }
 }
}

Chapter 7

[101]

The ChannelHelper class is modified to close and dispose the channel and unregister
with the service and hub, if needed. This is shown in the following code snippet:

public async Task SetupChannel()
{
 try
 {
 bool attach = false;
 // Try to find the push channel
 if (this._pushChannel == null)
 {
 attach = true;
 this._pushChannel =
 HttpNotificationChannel.Find(CHANNEL_NAME);
 }

 // Check if user has enabled
 bool enabled = SettingsHelper.Default.IsPushEnabled;

 // If the channel was not found, then create a new connection
 // to the push service.
 if (this._pushChannel == null && enabled)
 {
 this._pushChannel =
 new HttpNotificationChannel(CHANNEL_NAME);
 this.AttachEvents();
 this._pushChannel.Open();

 // Bind channel for Tile events.
 this._pushChannel.BindToShellTile();

 // Bind channel for Toast events
 this._pushChannel.BindToShellToast();
 }
 // If channel was found but not required, close it
 else if (this._pushChannel != null && !enabled)
 {
 await this.UnRegister();

 this._pushChannel.Close();
 this._pushChannel.Dispose();
 this._pushChannel = null;
 }

Best Practices for Web-connected Apps

[102]

 // Channel is found and needed so just attach
 else if (this._pushChannel != null && enabled && attach)
 this.AttachEvents();
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
}

public async Task UnRegister()
{
 try
 {
 // UnRegister with service
 var service = new DataService();
 await service.DeleteChannel(this.GetDeviceUniqueName());

 // UnRegister with hub
 var hub = new NotificationHub(this.HUB_NAME,
 this.CONNECTION_STRING);
 await hub.UnregisterAllAsync(
 this._pushChannel.ChannelUri.AbsoluteUri);
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
}

I've left out the methods we've already discussed, and you can always refer to
the code.

Chapter 7

[103]

Implementing settings pages
In the Windows Phone game, I've put in a settings page (Settings.xaml) that has
a single ToggleSwitch to control whether the push channel is open and registered
with the hub or our service. The ToggleSwitch is bound to a property in the view
model, which exposes the SettingsHelper.Default.IsPushEnabled property and
calls the ChannelHelper.Default.SetupChannel method on change. This is shown
in the following screenshot:

There is also Version information and a button that launches a web browser with
our privacy policy using the WebBrowserTask method. Please refer to the code for
full view and view model implementations.

Best Practices for Web-connected Apps

[104]

Windows Store apps of course have a dedicated settings panel exposed via the
Charm bar. Fortunately, Windows 8.1 has a new SettingsFlyout control, which
makes creating settings flyouts vastly easier than in 8.0. Also, AppSettingsFlyout.
xaml allows the user to choose categories that they want to be notified about and the
type of notification. The toggle switches bind to properties in the TagHelper class
and calls the TileTapperPush.UploadChannel; method on change:

There is also Version information and a button which launches a web browser with
our privacy policy using the Launcher.LaunchUriAsync method. As with the phone
app, please refer to the code for full view and view model implementations.

Summary
Well, we've reached the end of the book and covered all the things we need to
develop our applications enabled with Windows Azure Mobile Service. By this point,
we've probably got some polishing up to do in our code and UI (I know I have), but
we can also get our service ready for production by doing the following things:

• Have a look at the logs and make sure there are no errors you need to fix.
• Turn off the automatic database schema function. In the portal's

CONFIGURE, tab under the Dynamic Schema section, disable the ENABLE
DYNAMIC SCHEMA switch.

Chapter 7

[105]

• Review the Rules for choosing permissions section in Chapter 3, Securing Data
and Protecting the User, and check if the permissions are correct on all the
tables and APIs.

• Pull a copy of the scripts using Git and back them up.
• Check any scheduled tasks are scheduled properly, if required.
• Check your scaling configuration.

Once we're live, we can then use the dashboard to monitor how our services are
performing and tune them once the apps are live.

Hopefully, you've enjoyed the book. I've had fun writing it! I've tried to put a lot of
stuff into the code samples to help round off the book, so make sure you check these
out too and feel free to copy and reuse as much as you can. The source is available at
http://www.packtpub.com.

Index
A
addToQueue function 73
ANS 61
API scripts

about 50
creating 50, 51
high-score API script 51
HTTP methods 50

app authentication
about 35
credentials, storing 37-39
DataServiceBase class 40, 42
logging in 35, 36
logging out 39

Apple Notifications Service. See ANS
Apple Push Notification Service (APNs) 15
application key 13
apps

creating, from portal 21-23
audience

targeting, tags used 91-93

B
Backend services 90
badge notifications, WNS scripts

sending 88
BASIC mode 16

C
ChannelHelper class 101
ChannelHelper.Default.SetupChannel

method 103
Configure tab

App settings 16

Cross-origin resource sharing (CORS) 16
Database settings 15
Developer analytics 16
Dynamic schema 16
monitoring 16
Source control 15

Create button 25
Create New Table dialog 26
Cross-origin resource sharing (CORS) 16
CurrentUser property 36

D
Database settings 15
DataService method 65
dequeue method 74
development environment

hardware requirements 19
preparing 19
software, setting up 20
store accounts, requirements 20

Dynamic schema 16

E
Everyone option 32
existing apps, connecting to Windows Az-

ure Mobile Services
Connected Service, adding 24
SDK manual installation, in Visual Studio

2012 Express 25
table, creating 25, 26
table, interacting with 27-29
table model, writing 26

exports method 51

[108]

F
Fiddler 20, 43

G
GCM 15
GetAll method 39
Git

changes, pushing 57
repository, pulling 56
repository, updating 57
scripts, adding manually 57
working with 56

Git Bash 56
Google Cloud Messaging See GCM

H
high-score API script 51-53
HTTP methods

Insert 45
Query 45
Update 45

Hub. See Notifications Hub
Hyper-V phone emulators 19

I
Insert method 27
InvokeApiAsync method 53

J
JSON Web Token (JWT) 35

K
key management

application key 13
master key 13

L
LeaderBoard table 26
level-insert table script

example 48
LoginAsync method 36

M
MANAGE KEYS button 14
master key 13, 43, 45
MessageDialog class 99
Microsoft account 7
Microsoft Live ID. See Microsoft account
Microsoft Push Notification Service. See

MPNS
mobile service

Configure tab 15
creating 10-12
dashboard 14
features 13
keys, managing 13
logs tab 18
scalability 16, 17

MobileServiceClient class 35, 39
mobile service dashboard

API tab 15
autoscale status 14
Data tab 15
Identity 15
mobile service endpoint status 14
Push 15
Quick glance section 14
Scheduler 15
usage overview 14

MOBILE SERVICE TIER 16
Model View View-Model (MVVM) pattern

27
MPNS 61
MPNS scripts

creating 88
tile notifications, sending 78, 89
toast notifications, sending 77, 89
Windows Phone apps 77

MVC Web API service 53

N
NetworkAddressChanged event 99
network connection

checking 98, 99
NetworkInformation.GetInternetConnec-

tionProfile method 98
Node NPM module 58

[109]

noscript parameter 45
Notifications Hub

benefits 81
calling, from scripts 86
configuring 82, 83
disadvantages 82
flow 81

notifications settings
managing 100, 102

NPM modules
about 20
implementing 58

O
Oauth2 authentication providers

Facebook 33
Google 33
Microsoft 33
Twitter 33

P
Pay-as-you-go (PAYG) account 8
permission

configuring 32
permission configuration

authentication 33
choosing, rules 32
Oauth2 authentication providers 33
Windows Live Connect Single Sign-on,

registering 34, 35
Platform property 65
PNS 62
PREVIEW tag 13
privacy policy

implementing 98
Purchase button 9
Push Notification Service. See PNS
push notifications (Windows Store apps)

URL 97

R
require method 59
REST API 43-45

S
scalability

capacity 16
general 16
SQL Database 17

SCALE-BY METRIC 17
scheduled script

creating 55, 56
SCHEDULER tab 54
score-insert script

example 49
score-read script

example 49
scripts

about 47
API scripts 50
debugging 54
level-insert table script 48
score-insert script 49
score-read script 49
table scripts 47, 48

sendBadge method 77
sendFlipTile method 78
send method 75
sendNotifications function 72
sendTileSquareText01 method 75
sendToast method 77
sendToastText04 method 75
service scripts

about 72, 73
WNS scripts 74

SettingsHelper.Default.IsPushEnabled
property 103

settings pages
implementing 103, 104

Source control 15
STANDARD mode 16
subscription

basic subscription 8
free trial 8
Pay-as-you-go subscription 8
selecting 7
Standard subscriptions 8

Surface Pros 20

[110]

T
table scripts 47, 48
TagHelper class 91, 100, 104
tags

used, for targeting audience 91, 93
tile notifications, MPNS scripts

sending 89
tile notifications, WNS scripts

sending 87
tiles and badges (Windows Store apps)

URL 97
tiles, Windows Store apps

badges, setting up 66, 67
setting up 66

toast notifications, MPNS scripts
sending 89

toast notifications (Windows Store apps)
URL 97

toast notifications, WNS scripts
sending 87

ToggleSwitch method 103
TRUNCATE button 23

U
UploadChannel method 65
user experience (UX) 95
UX guidelines

URL 96

V
Visual Assets tab 66
Visual Studio 20

W
Windows App

setting up 85
Windows Azure account

creating 9
Windows Azure Fabric Controller 16
Windows Azure Mobile Services

features 31

Windows Notifications Service. See WNS
Windows Phone 8 apps

setting up 68, 69, 72, 84, 85
Windows Push Notification Services (WNS)

15
Windows Store

App certification, requisites 95, 96
setting up 84, 85

Windows Store apps
about 63
setting up 63, 64
tiles, setting up 66

WNS 61
WNS scripts

badge notifications, sending 77, 88
creating 87
for Store apps 74
multiple tiles, sending 76
tile notifications, sending 75, 87
toast notifications, sending 75, 87

Thank you for buying
Learning Windows Azure Mobile Services for

Windows 8 and Windows Phone 8

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Azure: Enterprise
Application Development
ISBN: 978-1-84968-098-1 Paperback: 248 pages

Straight talking advice on how to design and build
enterprise applications for the cloud

1. Build scalable enterprise applications using
Microsoft Azure

2. The perfect fast-paced case study for
developers and architects wanting to enhance
core business processes

3. Packed with examples to illustrate concepts

Microsoft Windows Azure
Development Cookbook
ISBN: 978-1-84968-222-0 Paperback: 392 pages

Over 80 advanced recipes for developing scalable
services with the Windows Azure platform

1. Packed with practical, hands-on cookbook
recipes for building advanced, scalable
cloud-based services on the Windows Azure
platform explained in detail to maximize
your learning

2. Extensive code samples showing how to use
advanced features of Windows Azure blobs,
tables, and queues

Please check www.PacktPub.com for information on our titles

Microsoft SQL Azure: Enterprise
Application Development
ISBN: 978-1-84968-080-6 Paperback: 420 pages

Build enterprise-ready applications and projects with
SQL Azure

1. Develop large scale enterprise applications using
Microsoft SQL Azure

2. Understand how to use the various third
party programs such as DB Artisan, RedGate,
ToadSoft etc developed for SQL Azure

3. Master the exhaustive Data migration and Data
Synchronization aspects of SQL Azure

Windows Azure Programming
Patterns for Start-ups
ISBN: 978-1-84968-560-3 Paperback: 292 pages

A step-by-step guide to create easy solutions to build
your business using Windows Azure services

1. Explore the different features of Windows
Azure and its unique concepts

2. Get to know the Windows Azure platform by
code snippets and samples by a single start-up
scenario throughout the whole book

3. A clean example scenario demonstrates the
different Windows Azure features

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing the Windows Azure Mobile Services Portal
	Choosing a subscription
	Pay-as-you-go subscription
	Basic and Standard subscriptions
	Free trial

	Creating a Windows Azure account
	Creating a mobile service
	Mobile Services features
	Managing keys
	Mobile service dashboard
	Configure
	Scale
	Logs

	Summary

	Chapter 2: Start Developing with Windows Azure Mobile Services
	Preparing our development environment
	Hardware requirements
	Setting up the software
	Requirement for store accounts

	Creating apps from the portal
	Connecting existing apps to Windows Azure Mobile Services
	Adding a Connected Service in Visual Studio 2013
	Manually installing the SDK in Visual Studio 2012 Express for Windows Phone
	Creating a table
	Writing a model of the table
	Interacting with the table

	Summary

	Chapter 3: Securing Data and Protecting the User
	Configuring permissions
	Rules for choosing permissions
	Authentication providers
	Authentication
	Registering for Windows Live Connect Single Sign-on

	Authentication in the app
	Logging in
	Storing credentials
	Logging out
	The DataServiceBase class

	REST API and the master key
	Summary

	Chapter 4: Service Customization with Scripts
	Understanding table scripts
	Level-insert table script example
	Score-insert script example
	Score-read script example

	API scripts
	Creating an API script
	High-score API script

	Script debugging and logs
	Scheduling
	Working locally with Git
	Pulling the repository
	Updating our repository
	Adding scripts manually
	Pushing back changes

	Implementing NPM modules
	Summary

	Chapter 5: Implementing Push Notifications
	Understanding Push Notification
Service flow
	Setting up Windows Store apps
	Setting up tiles
	Setting up badges

	Setting up Windows Phone 8 apps
	Service scripts
	WNS scripts for Store apps
	Sending toast notifications
	Sending tile notifications
	Sending multiple tiles
	Sending badge notifications
	MPNS scripts for Windows Phone apps
	Sending toast notifications
	Sending tile notifications

	Summary

	Chapter 6: Scaling Up with the Notifications Hub
	Configuring the Hub
	Setting up Windows Store and Windows Phone 8 apps
	Calling the hub from scripts
	Creating WNS scripts (for Store apps)
	Sending toast notifications
	Sending tile notifications
	Sending badge notifications

	Creating MPNS scripts (for Windows Phone 8 apps)
	Sending toast notifications
	Sending tile notifications

	Backend services
	Targeting audience using tags
	Summary

	Chapter 7: Best Practices for
Web-connected Apps
	App certification requirements for the Windows Store
	UX guidelines
	Implementing a privacy policy
	Checking the network connection
	Managing notifications settings
	Implementing settings pages
	Summary

	Index

