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 To technology innovators and early adopters…
 those who shake up the status quo

We dedicate this book to people who understand the limitations of our current way of
solving technology problems. They understand that by removing limitations, we can
solve problems faster and at a lower cost and, at the same time, become more agile.
Without these people, the NoSQL movement wouldn’t have gained the critical mass it
needed to get off the ground.

Innovators and early adopters are the people within organizations who shake up the
status quo by testing and evaluating new architectures. They initiate pilot projects and
share their successes and failures with their peers. They use early versions of software
and help shake out the bugs. They build new versions of NoSQL distributions from
source and explore areas where new NoSQL solutions can be applied. They’re the
people who give solution architects more options for solving business problems. We
hope this book will help you to make the right choices.
www.allitebooks.com
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foreword
Where does one start to explain a topic that’s defined by what it isn’t, rather than what
it is? Believe me, as someone who’s been trying to educate people in this field for the
past three years, it’s a frustrating dilemma, and one shared by lots of technical experts,
consultants, and vendors. Even though few think the name NoSQL is optimal, almost
everyone seems to agree that it defines a category of products and technologies better
than any other term. My best advice is to let go of whatever hang-ups you might have
about the semantics, and just choose to learn about something new. And trust me
please…the stuff you’re about to learn is worth your time.

 Some brief personal context up front: as a publisher in the world of information
management, I had heard the term NoSQL, but had little idea of its significance until
three years ago, when I ran into Dan McCreary in the corridor of a conference in
Toronto. He told me a bit about his current project and was obviously excited about
the people and technologies he was working with. He convinced me in no time that
this NoSQL thing was going to be huge, and that someone in my position should
learn as much as I could about it. It was excellent advice, and we’ve had a wonderful
partnership since then, running a conference together, doing webinars, and writing
white papers. Dan was spot on…this NoSQL stuff is exciting, and the people in the
community are quite brilliant.

 Like most people who work in arcane fields, I often find myself trying to explain
complex things in simple terms for the benefit of those who don’t share the same pas-
sion or context that I have. And even when you understand the value of the perfect
elevator pitch, or desperately want to explain what you do to your mother, the right
explanation can be elusive. Sometimes it’s even more difficult to explain new things to
xvii



xviii FOREWORD
people who have more knowledge, rather than less. Specifically in terms of NoSQL,
that’s the huge community of relational DBMS devotees who’ve existed happily and
efficiently for the past 30 years, needing nothing but one toolkit.

 That’s where Making Sense of NoSQL comes in. If you’re in an enterprise computing
role and trying to understand the value of NoSQL, then you’re going to appreciate
this book, because it speaks directly to you. Sure, you startup guys will get something
out of it, but for enterprise IT folks, the barriers are pretty daunting—not the least of
which will be the many years of technical bias accumulated against you from the peo-
ple in your immediate vicinity, wondering why the heck you’d want to put your data
into anything but a nice, orderly table. 

 The authors understand this, and have focused a lot of their analysis on the techni-
cal and architectural trade-offs that you’ll be facing. I also love that they’ve under-
taken so much effort to offer case studies throughout the book. Stories are key to
persuasion, and these examples drawn from real applications provide a storyline to
the subject that will be invaluable as you try to introduce these new technologies into
your organization. 

 Dan McCreary and Ann Kelly have provided the first comprehensive explanation
of what NoSQL technologies are, and why you might want to use them in a corporate
context. While this is not meant to be a technical book, I can tell you that behind the
scenes they’ve been diligent about consulting with the product architects and devel-
opers to ensure that the nuances and features of different products are represented
accurately. 

Making Sense of NoSQL is a handbook of easily digestible, practical advice for techni-
cal managers, architects, and developers. It’s a guide for anyone who needs to under-
stand the full range of their data management options in the increasingly complex
and demanding world of big, fast data. The title of chapter 1 is “NoSQL: It’s about
making intelligent choices,” and based on your selection of this book, I can confirm
that you’ve made one already.

 TONY SHAW

 FOUNDER AND CEO
 DATAVERSITY



preface
Sometimes we’re presented with facts that force us to reassess what we think we know.
After spending most of our working life performing data modeling tasks with a focus
on storing data in rows, we learned that the modeling process might not be necessary.
While this information didn’t mean our current knowledge was invalid, it forced us to
take a hard look at how we solved business technology problems. Armed with new
knowledge, techniques, and problem-solving styles, we broadened the repertoire of
our solution space.

 In 2006, while working on a project that involved the exchange of real estate trans-
actions, we spent many months designing XML schemas and forms to store the com-
plex hierarchies of data. On the advice of a friend (Kurt Cagle), we found that storing
the data into a native XML database saved our project months of object modeling,
relational database design, and object-relational mapping. The result was a radically
simple architecture that could be maintained by nonprogammers.

 The realization that enterprise data can be stored in structures other than RDBMSs
is a major turning point for people who enter the NoSQL space. Initially, this informa-
tion may be viewed with skepticism, fear, and even self-doubt. We may question our
own skills as well as the educational institutions that trained us and the organizations
that reinforce the notion that RDBMS and objects are the only way to solve problems.
Yet if we’re going to be fair to our clients, customers, and users, we must take a holistic
approach to find the best fit for each business problem and evaluate other database
architectures. 

 In 2010, frustrated with the lack of exposure NoSQL databases were getting at
large enterprise data conferences, we approached Tony Shaw from DATAVERSITY
xix
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xx PREFACE
about starting a new conference. The conference would be a venue for anyone inter-
ested in learning about NoSQL technologies and exposing individuals and organiza-
tions to the NoSQL databases available to them. The first NoSQL Now! conference
was successfully held in San Jose, California, in August of 2011, with approximately
500 interested and curious attendees. 

 One finding of the conference was that there was no single source of material that
covered NoSQL architectures or introduced a process to objectively match a business
problem with the right database. People wanted more than a collection of “Hello
World!” examples from open source projects. They were looking for a guide that
helped them match a business problem to an architecture first, and then a process
that allowed them to consider open source as well as commercial database systems.

 Finding a publisher that would use our existing DocBook content was the first step.
Luckily, we found that Manning Publications understands the value of standards.
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about this book
In writing this book, we had two goals: first, to describe NoSQL databases, and second,
to show how NoSQL systems can be used as standalone solutions or to augment cur-
rent SQL systems to solve business problems. We invite anyone who has an interest in
learning about NoSQL to use this book as a guide. You’ll find that the information,
examples, and case studies are targeted toward technical managers, solution archi-
tects, and data architects who have an interest in learning about NoSQL.

 This material will help you objectively evaluate SQL and NoSQL database systems
to see which business problems they solve. If you’re looking for a programming guide
for a particular product, you’ve come to wrong place. In this book you’ll find informa-
tion about the motivations behind NoSQL, as well as related terminology and con-
cepts. There might be sections and chapters of this book that cover topics you already
understand; feel free to skim or skip over them and focus on the unknown.

 Finally, we feel strongly about and focus on standards. The standards associated
with SQL systems allow applications to be ported between databases using a common
language. Unfortunately, NoSQL systems can’t yet make this claim. In time, NoSQL
application vendors will pressure NoSQL database vendors to adopt a set of standards
to make them as portable as SQL.

Roadmap

This book is divided into four parts. Part 1 sets the stage by defining NoSQL and
reviewing the basic concepts behind the NoSQL movement.

 In chapter 1, “NoSQL: It’s about making intelligent choices,” we define the term
NoSQL, talk about the key events that triggered the NoSQL movement, and present a
xxii



xxiiiABOUT THIS BOOK
high-level view of the business benefits of NoSQL systems. Readers already familiar with
the NoSQL movement and the business benefits might choose to skim this chapter.

 In chapter 2, “NoSQL concepts,” we introduce the core concepts associated with
the NoSQL movement. Although you can skim this chapter on a first read-through, it’s
important for understanding material in later chapters. We encourage you to use this
chapter as a reference guide as you encounter these concepts throughout the book.

In part 2, “Database patterns,” we do an in-depth review of SQL and NoSQL database
architecture patterns. We look at the different database structures and how we access
them, and present use cases to show the types of situations where each architectural
pattern is best used.

 Chapter 3 covers “Foundational data architecture patterns.” It begins with a review
of the drivers behind RDBMSs and how the requirements of ERP systems shaped the
features we have in current RDBMS and BI/DW systems. We briefly discuss other data-
base systems such as object databases and revision control systems. You can skim this
chapter if you’re already familiar with these systems.

 In chapter 4, “NoSQL data architecture patterns,” we introduce the database pat-
terns associated with NoSQL. We look at key-value stores, graph stores, column family
(Bigtable) systems, and document databases. The chapter provides definitions, exam-
ples, and case studies to facilitate understanding.

 Chapter 5 covers “Native XML databases,” which are most often found in govern-
ment and publishing applications, as they are known to lower costs and support the
use of standards. We present two case studies from the financial and government pub-
lishing areas.

In part 3, we look at how NoSQL systems can be applied to the problems of big data,
search, high availability, and agile web development.

 In chapter 6, “Using NoSQL to manage big data,” you’ll see how NoSQL systems
can be configured to efficiently process large volumes of data running on commodity
hardware. We include a discussion on distributed computing and horizontal scalabil-
ity, and present a case study where commodity hardware fails to scale for analyzing
large graphs.

 In chapter 7, “Finding information with NoSQL search,” you’ll learn how to
improve search quality by implementing a document model and preserving the docu-
ment’s content. We discuss how MapReduce transforms are used to create scalable
reverse indexes, which result in fast search. We review the search systems used on doc-
uments and databases and show how structured search solutions are used to create
accurate search result rankings.

 Chapter 8 covers “Building high-availability solutions with NoSQL.” We show how
the replicated and distributed nature of NoSQL systems can be used to result in sys-
tems that have increased availability. You’ll see how many low-cost CPUs can provide
higher uptime once data synchronization technologies are used. Our case study shows
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how full peer-to-peer architectures can provide higher availability than other distribu-
tion models.

 In chapter 9, we talk about “Increasing agility with NoSQL.” By eliminating the
object-relational mapping layer, NoSQL software development is simpler and can
quickly adapt to changing business requirements. You’ll see how these NoSQL systems
allow the experienced developer, as well as nonprogramming staff, to become part of
the software development lifecycle process.

In part 4, we cover the “Advanced topics” of functional programming and security,
and then review a formalized process for selecting the right NoSQL system.

 In chapter 10, we cover the topic of “NoSQL and functional programming” and
the need for distributed transformation architectures such as MapReduce. We look at
how functional programming has influenced the ability of NoSQL solutions to use
large numbers of low-cost processors and why several NoSQL databases use actor-
based systems such as Erlang. We also show how functional programming and
resource-oriented programming can be combined to create scalable performance on
distributed systems with a case study of the NetKernel system.

 Chapter 11 covers the topic of “Security: protecting data in your NoSQL systems.”
We review the history and key security considerations that are common to NoSQL
solutions. We provide examples of how a key-value store, a column family store, and a
document store can implement a robust security model.

 In chapter 12, “Selecting the right NoSQL solution,” we walk through a formal
process that organizations can use to select the right database for their business prob-
lem. We close with some final thoughts and information about how these technologies
will impact business system selection.

Code conventions and downloads

Source code in listings or in text is in a fixed-width font like this to separate it from
ordinary text. You can download the source code for the listings from the Manning
website, www.manning.com/MakingSenseofNoSQL.

Author Online

The purchase of Making Sense of NoSQL includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Making-
SenseofNoSQL. This page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of conduct on the forum. 

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of

www.manning.com/MakingSenseofNoSQL
www.manning.com/MakingSenseofNoSQL
www.manning.com/MakingSenseofNoSQL
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the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

DAN MCCREARY is a data architecture consultant with a strong interest in standards.
He has worked for organizations such as Bell Labs (integrated circuit design), the
supercomputing industry (porting UNIX) and Steve Job’s NeXT Computer (software
evangelism), as well as founded his own consulting firm. Dan started working with US
federal data standards in 2002 and was active in the adoption of the National Informa-
tion Exchange Model (NIEM). Dan started doing NoSQL development in 2006 when
he was exposed to native XML databases for storing form data. He has served as an
invited expert on the World Wide Web XForms standard group and is a cofounder of
the NoSQL Now! Conference.

ANN KELLY is a software consultant with Kelly McCreary & Associates. After spending
much of her career working in the insurance industry developing software and man-
aging projects, she became a NoSQL convert in 2011. Since then, she has worked with
her customers to create NoSQL solutions that allow them to solve their business prob-
lems quickly and efficiently while providing them with the training to manage their
own applications. 





Part 1

Introduction

In part 1 we introduce you to the topic of NoSQL. We define the term NoSQL,
talk about why the NoSQL movement got started, look at the core topics, and
review the business benefits of including NoSQL solutions in your organization. 

 In chapter 1 we begin by defining NoSQL and talk about the business drivers
and motivations behind the NoSQL movement. Chapter 2 expands on the foun-
dation in chapter 1 and provides a review of the core concepts and important
definitions associated with NoSQL. 

 If you’re already familiar with the NoSQL movement, you may want to skim
chapter 1. Chapter 2 contains core concepts and definitions associated with
NoSQL. We encourage everyone to read chapter 2 to gain an understanding of
these concepts, as they’ll be referenced often and applied throughout the book.





NoSQL: It’s about
making intelligent choices
The complexity for minimum component costs has increased at a rate of roughly a
factor of two per year...Certainly over the short term this rate can be expected to
continue, if not to increase.

—Gordon Moore, 1965

…Then you better start swimmin’…Or you’ll sink like a stone…For the times they are
a-changin’.

—Bob Dylan

In writing this book we have two goals: first, to describe NoSQL databases, and sec-
ond, to show how NoSQL systems can be used as standalone solutions or to aug-
ment current SQL systems to solve business problems. Though we invite anyone
who has an interest in NoSQL to use this as a guide, the information, examples,

This chapter covers
 What’s NoSQL?

 NoSQL business drivers

 NoSQL case studies 
3
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and case studies are targeted toward technical managers, solution architects, and data
architects who are interested in learning about NoSQL. 

 This material will help you objectively evaluate SQL and NoSQL database systems
to see which business problems they solve. If you’re looking for a programming guide
for a particular product, you’ve come to the wrong place. Here you’ll find informa-
tion about the motivations behind NoSQL, as well as related terminology and con-
cepts. There may be sections and chapters of this book that cover topics you already
understand; feel free to skim or skip over them and focus on the unknown. 

 Finally, we feel strongly about and focus on standards. The standards associated
with SQL systems allow applications to be ported between databases using a common
language. Unfortunately, NoSQL systems can’t yet make this claim. In time, NoSQL
application vendors will pressure NoSQL database vendors to adopt a set of standards
to make them as portable as SQL. 

 In this chapter, we’ll begin by giving a definition of NoSQL. We’ll talk about the
business drivers and motivations that make NoSQL so intriguing to and popular with
organizations today. Finally, we’ll look at five case studies where organizations have
successfully implemented NoSQL to solve a particular business problem. 

1.1 What is NoSQL?
One of the challenges with NoSQL is defining it. The term NoSQL is problematic since
it doesn’t really describe the core themes in the NoSQL movement. The term origi-
nated from a group in the Bay Area who met regularly to talk about common con-
cerns and issues surrounding scalable open source databases, and it stuck. Descriptive
or not, it seems to be everywhere: in trade press, product descriptions, and confer-
ences. We’ll use the term NoSQL in this book as a way of differentiating a system from
a traditional relational database management system (RDBMS). 

 For our purpose, we define NoSQL in the following way: 

NoSQL is a set of concepts that allows the rapid and efficient processing of data sets with
a focus on performance, reliability, and agility.

Seems like a broad definition, right? It doesn’t exclude SQL or RDBMS systems, right?
That’s not a mistake. What’s important is that we identify the core themes behind
NoSQL, what it is, and most importantly what it isn’t. 

 So what is NoSQL?

 It’s more than rows in tables—NoSQL systems store and retrieve data from many
formats: key-value stores, graph databases, column-family (Bigtable) stores, doc-
ument stores, and even rows in tables. 

 It’s free of joins—NoSQL systems allow you to extract your data using simple
interfaces without joins.

 It’s schema-free—NoSQL systems allow you to drag-and-drop your data into a
folder and then query it without creating an entity-relational model.
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 It works on many processors—NoSQL systems allow you to store your database on
multiple processors and maintain high-speed performance. 

 It uses shared-nothing commodity computers—Most (but not all) NoSQL systems
leverage low-cost commodity processors that have separate RAM and disk. 

 It supports linear scalability—When you add more processors, you get a consistent
increase in performance.

 It’s innovative—NoSQL offers options to a single way of storing, retrieving, and
manipulating data. NoSQL supporters (also known as NoSQLers) have an inclu-
sive attitude about NoSQL and recognize SQL solutions as viable options. To
the NoSQL community, NoSQL means “Not only SQL.”

 Equally important is what NoSQL is not: 

 It’s not about the SQL language—The definition of NoSQL isn’t an application
that uses a language other than SQL. SQL as well as other query languages are
used with NoSQL databases. 

 It’s not only open source—Although many NoSQL systems have an open source
model, commercial products use NOSQL concepts as well as open source initia-
tives. You can still have an innovative approach to problem solving with a com-
mercial product. 

 It’s not only big data—Many, but not all, NoSQL applications are driven by the
inability of a current application to efficiently scale when big data is an issue.
Though volume and velocity are important, NoSQL also focuses on variability
and agility.

 It’s not about cloud computing—Many NoSQL systems reside in the cloud to take
advantage of its ability to rapidly scale when the situation dictates. NoSQL sys-
tems can run in the cloud as well as in your corporate data center. 

 It’s not about a clever use of RAM and SSD—Many NoSQL systems focus on the effi-
cient use of RAM or solid state disks to increase performance. Though this is
important, NoSQL systems can run on standard hardware. 

 It’s not an elite group of products—NoSQL isn’t an exclusive club with a few prod-
ucts. There are no membership dues or tests required to join. To be considered
a NoSQLer, you only need to convince others that you have innovative solutions
to their business problems. 

NoSQL applications use a variety of data store types (databases). From the simple key-
value store that associates a unique key with a value, to graph stores used to associate
relationships, to document stores used for variable data, each NoSQL type of data
store has unique attributes and uses as identified in table 1.1.
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NoSQL systems have unique characteristics and capabilities that can be used alone or
in conjunction with your existing systems. Many organizations considering NoSQL sys-
tems do so to overcome common issues such as volume, velocity, variability, and agility,
the business drivers behind the NoSQL movement. 

1.2 NoSQL business drivers
The scientist-philosopher Thomas Kuhn coined the term paradigm shift to identify a
recurring process he observed in science, where innovative ideas came in bursts and
impacted the world in nonlinear ways. We’ll use Kuhn’s concept of the paradigm shift
as a way to think about and explain the NoSQL movement and the changes in
thought patterns, architectures, and methods emerging today. 

 Many organizations supporting single-CPU relational systems have come to a cross-
roads: the needs of their organizations are changing. Businesses have found value in
rapidly capturing and analyzing large amounts of variable data, and making immedi-
ate changes in their businesses based on the information they receive. 

 Figure 1.1 shows how the demands of volume, velocity, variability, and agility play a
key role in the emergence of NoSQL solutions. As each of these drivers applies pres-
sure to the single-processor relational model, its foundation becomes less stable and
in time no longer meets the organization’s needs. 

Table 1.1 Types of NoSQL data stores—the four main categories of NoSQL systems, and sample
products for each data store type

Type Typical usage Examples

Key-value store—A simple data stor-
age system that uses a key to access 
a value

• Image stores
• Key-based filesystems
• Object cache
• Systems designed to scale

• Berkeley DB
• Memcache
• Redis
• Riak
• DynamoDB

Column family store—A sparse matrix 
system that uses a row and a column 
as keys

• Web crawler results
• Big data problems that can 

relax consistency rules

• Apache HBase
• Apache Cassandra
• Hypertable
• Apache Accumulo

Graph store—For relationship-
intensive problems

• Social networks
• Fraud detection
• Relationship-heavy data

• Neo4j
• AllegroGraph
• Bigdata (RDF data store)
• InfiniteGraph (Objectivity)

Document store—Storing hierarchical 
data structures directly in the data-
base

• High-variability data
• Document search
• Integration hubs
• Web content management
• Publishing

• MongoDB (10Gen)
• CouchDB
• Couchbase
• MarkLogic
• eXist-db
• Berkeley DB XML
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1.2.1 Volume

Without a doubt, the key factor pushing organizations to look at alternatives to their
current RDBMSs is a need to query big data using clusters of commodity processors.
Until around 2005, performance concerns were resolved by purchasing faster proces-
sors. In time, the ability to increase processing speed was no longer an option. As chip
density increased, heat could no longer dissipate fast enough without chip overheat-
ing. This phenomenon, known as the power wall, forced systems designers to shift
their focus from increasing speed on a single chip to using more processors working
together. The need to scale out (also known as horizontal scaling), rather than scale up
(faster processors), moved organizations from serial to parallel processing where data
problems are split into separate paths and sent to separate processors to divide and
conquer the work. 

1.2.2 Velocity

Though big data problems are a consideration for many organizations moving away
from RDBMSs, the ability of a single processor system to rapidly read and write data is
also key. Many single-processor RDBMSs are unable to keep up with the demands of
real-time inserts and online queries to the database made by public-facing websites.
RDBMSs frequently index many columns of every new row, a process which decreases
system performance. When single-processor RDBMSs are used as a back end to a web
store front, the random bursts in web traffic slow down response for everyone, and tun-
ing these systems can be costly when both high read and write throughput is desired. 

1.2.3 Variability

Companies that want to capture and report on exception data struggle when attempt-
ing to use rigid database schema structures imposed by RDBMSs. For example, if a
business unit wants to capture a few custom fields for a particular customer, all cus-
tomer rows within the database need to store this information even though it doesn’t
apply. Adding new columns to an RDBMS requires the system be shut down and ALTER
TABLE commands to be run. When a database is large, this process can impact system
availability, costing time and money. 

Velocity Agility

Volume

Variability

Single-node
RDBMS

Figure 1.1 In this figure, we see how the business drivers 
volume, velocity, variability, and agility apply pressure to the 
single CPU system, resulting in the cracks. Volume and 
velocity refer to the ability to handle large datasets that 
arrive quickly. Variability refers to how diverse data types 
don’t fit into structured tables, and agility refers to how 
quickly an organization responds to business change.
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1.2.4 Agility

The most complex part of building applications using RDBMSs is the process of putting
data into and getting data out of the database. If your data has nested and repeated
subgroups of data structures, you need to include an object-relational mapping layer.
The responsibility of this layer is to generate the correct combination of INSERT,
UPDATE, DELETE, and SELECT SQL statements to move object data to and from the
RDBMS persistence layer. This process isn’t simple and is associated with the largest bar-
rier to rapid change when developing new or modifying existing applications. 

 Generally, object-relational mapping requires experienced software developers
who are familiar with object-relational frameworks such as Java Hibernate (or NHiber-
nate for .Net systems). Even with experienced staff, small change requests can cause
slowdowns in development and testing schedules. 

 You can see how velocity, volume, variability, and agility are the high-level drivers
most frequently associated with the NoSQL movement. Now that you’re familiar with
these drivers, you can look at your organization to see how NoSQL solutions might
impact these drivers in a positive way to help your business meet the changing
demands of today’s competitive marketplace. 

1.3 NoSQL case studies
Our economy is changing. Companies that want to remain competitive need to find
new ways to attract and retain their customers. To do this, the technology and people
who create it must support these efforts quickly and in a cost-effective way. New
thoughts about how to implement solutions are moving away from traditional meth-
ods toward processes, procedures, and technologies that at times seem bleeding-edge. 

 The following case studies demonstrate how business problems have successfully
been solved faster, cheaper, and more effectively by thinking outside the box. Table 1.2
summarizes five case studies where NoSQL solutions were used to solve particular busi-
ness problems. It presents the problems, the business drivers, and the ultimate findings.
As you view subsequent sections, you’ll begin to see a common theme emerge: some
business problems require new thinking and technology to provide the best solution. 

Table 1.2 The key case studies associated with the NoSQL movement—the name of the case study/
standard, the business drivers, and the results (findings) of the selected solutions

Case study/standard Driver Finding

LiveJournal’s Memcache Need to increase performance 
of database queries.

By using hashing and caching, data in 
RAM can be shared. This cuts down the 
number of read requests sent to the 
database, increasing performance.

Google’s MapReduce Need to index billions of web 
pages for search using low-cost 
hardware.

By using parallel processing, indexing 
billions of web pages can be done 
quickly with a large number of commod-
ity processors.
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1.3.1 Case study: LiveJournal’s Memcache

Engineers working on the blogging system LiveJournal started to look at how their sys-
tems were using their most precious resource: the RAM in each web server. Live-
Journal had a problem. Their website was so popular that the number of visitors using
the site continued to increase on a daily basis. The only way they could keep up with
demand was to continue to add more web servers, each with its own separate RAM. 

 To improve performance, the LiveJournal engineers found ways to keep the results
of the most frequently used database queries in RAM, avoiding the expensive cost of
rerunning the same SQL queries on their database. But each web server had its own
copy of the query in RAM; there was no way for any web server to know that the server
next to it in the rack already had a copy of the query sitting in RAM.

 So the engineers at LiveJournal created a simple way to create a distinct “signa-
ture” of every SQL query. This signature or hash was a short string that represented a
SQL SELECT statement. By sending a small message between web servers, any web
server could ask the other servers if they had a copy of the SQL result already exe-
cuted. If one did, it would return the results of the query and avoid an expensive
round trip to the already overwhelmed SQL database. They called their new system
Memcache because it managed RAM memory cache.

 Many other software engineers had come across this problem in the past. The con-
cept of large pools of shared-memory servers wasn’t new. What was different this time
was that the engineers for LiveJournal went one step further. They not only made this
system work (and work well), they shared their software using an open source license,
and they also standardized the communications protocol between the web front ends
(called the memcached protocol). Now anyone who wanted to keep their database from
getting overwhelmed with repetitive queries could use their front end tools. 

Google’s Bigtable Need to flexibly store tabular 
data in a distributed system.

By using a sparse matrix approach, 
users can think of all data as being 
stored in a single table with billions of 
rows and millions of columns without the 
need for up-front data modeling.

Amazon’s Dynamo Need to accept a web order 24 
hours a day, 7 days a week.

A key-value store with a simple interface 
can be replicated even when there are 
large volumes of data to be processed.

MarkLogic Need to query large collections 
of XML documents stored on 
commodity hardware using stan-
dard query languages.

By distributing queries to commodity 
servers that contain indexes of XML doc-
uments, each server can be responsible 
for processing data in its own local disk 
and returning the results to a query 
server.

Table 1.2 The key case studies associated with the NoSQL movement—the name of the case study/
standard, the business drivers, and the results (findings) of the selected solutions (continued)

Case study/standard Driver Finding
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1.3.2 Case study: Google’s MapReduce—use commodity hardware 
to create search indexes

One of the most influential case studies in the NoSQL movement is the Google
MapReduce system. In this paper, Google shared their process for transforming large
volumes of web data content into search indexes using low-cost commodity CPUs.

 Though sharing of this information was significant, the concepts of map and reduce
weren’t new. Map and reduce functions are simply names for two stages of a data
transformation, as described in figure 1.2.

 The initial stages of the transformation are called the map operation. They’re
responsible for data extraction, transformation, and filtering of data. The results of
the map operation are then sent to a second layer: the reduce function. The reduce
function is where the results are sorted, combined, and summarized to produce the
final result. 

 The core concepts behind the map and reduce functions are based on solid com-
puter science work that dates back to the 1950s when programmers at MIT imple-
mented these functions in the influential LISP system. LISP was different than other
programming languages because it emphasized functions that transformed isolated
lists of data. This focus is now the basis for many modern functional programming
languages that have desirable properties on distributed systems.

 Google extended the map and reduce functions to reliably execute on billions of
web pages on hundreds or thousands of low-cost commodity CPUs. Google made map
and reduce work reliably on large volumes of data and did it at a low cost. It was
Google’s use of MapReduce that encouraged others to take another look at the power
of functional programming and the ability of functional programming systems to
scale over thousands of low-cost CPUs. Software packages such as Hadoop have closely
modeled these functions. 

Map

Map

Map

Map

The map layer extracts the data from
the input and transforms the results into
key-value pairs. The key-value pairs are

then sent to the shuffle/sort layer.

The reduce layer collects
the sorted results and performs

counts and totals before it returns
the final results.

The shuffle/sort layer
returns the key-value pairs

sorted by the keys.

Input
data

Shuffle
sort

Final
result

Reduce

Figure 1.2 The map and reduce functions are ways of partitioning large datasets into 
smaller chunks that can be transformed on isolated and independent transformation 
systems. The key is isolating each function so that it can be scaled onto many servers.
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The use of MapReduce inspired engineers from Yahoo! and other organizations to
create open source versions of Google’s MapReduce. It fostered a growing awareness
of the limitations of traditional procedural programming and encouraged others to
use functional programming systems. 

1.3.3 Case study: Google’s Bigtable—a table with a billion rows 
and a million columns

Google also influenced many software developers when they announced their Big-
table system white paper titled A Distributed Storage System for Structured Data. The moti-
vation behind Bigtable was the need to store results from the web crawlers that extract
HTML pages, images, sounds, videos, and other media from the internet. The result-
ing dataset was so large that it couldn’t fit into a single relational database, so Google
built their own storage system. Their fundamental goal was to build a system that
would easily scale as their data increased without forcing them to purchase expensive
hardware. The solution was neither a full relational database nor a filesystem, but
what they called a “distributed storage system” that worked with structured data. 

 By all accounts, the Bigtable project was extremely successful. It gave Google
developers a single tabular view of the data by creating one large table that stored all
the data they needed. In addition, they created a system that allowed the hardware to
be located in any data center, anywhere in the world, and created an environment
where developers didn’t need to worry about the physical location of the data they
manipulated. 

1.3.4 Case study: Amazon’s Dynamo—accept an order 24 hours a day, 
7 days a week

Google’s work focused on ways to make distributed batch processing and reporting
easier, but wasn’t intended to support the need for highly scalable web storefronts that
ran 24/7. This development came from Amazon. Amazon published another signifi-
cant NoSQL paper: Amazon’s 2007 Dynamo: A Highly Available Key-Value Store. The busi-
ness motivation behind Dynamo was Amazon’s need to create a highly reliable web
storefront that supported transactions from around the world 24 hours a day, 7 days a
week, without interruption. 

 Traditional brick-and-mortar retailers that operate in a few locations have the lux-
ury of having their cash registers and point-of-sale equipment operating only during
business hours. When not open for business, they run daily reports, and perform back-
ups and software upgrades. The Amazon model is different. Not only are their custom-
ers from all corners of the world, but they shop at all hours of the day, every day. Any
downtime in the purchasing cycle could result in the loss of millions of dollars. Ama-
zon’s systems need to be iron-clad reliable and scalable without a loss in service.

 In its initial offerings, Amazon used a relational database to support its shopping
cart and checkout system. They had unlimited licenses for RDBMS software and a
consulting budget that allowed them to attract the best and brightest consultants for
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their projects. In spite of all that power and money, they eventually realized that a rela-
tional model wouldn’t meet their future business needs.

 Many in the NoSQL community cite Amazon’s Dynamo paper as a significant turn-
ing point in the movement. At a time when relational models were still used, it chal-
lenged the status quo and current best practices. Amazon found that because key-
value stores had a simple interface, it was easier to replicate the data and more reli-
able. In the end, Amazon used a key-value store to build a turnkey system that was reli-
able, extensible, and able to support their 24/7 business model, making them one of
the most successful online retailers in the world. 

1.3.5 Case study: MarkLogic

In 2001 a group of engineers in the San Francisco Bay Area with experience in docu-
ment search formed a company that focused on managing large collections of XML
documents. Because XML documents contained markup, they named the company
MarkLogic. 

 MarkLogic defined two types of nodes in a cluster: query and document nodes.
Query nodes receive query requests and coordinate all activities associated with execut-
ing a query. Document nodes contain XML documents and are responsible for executing
queries on the documents in the local filesystem. 

 Query requests are sent to a query node, which distributes queries to each remote
server that contains indexed XML documents. All document matches are returned to
the query node. When all document nodes have responded, the query result is then
returned. 

 The MarkLogic architecture, moving queries to documents rather than moving
documents to the query server, allowed them to achieve linear scalability with peta-
bytes of documents. 

 MarkLogic found a demand for their products in US federal government systems
that stored terabytes of intelligence information and large publishing entities that
wanted to store and search their XML documents. Since 2001, MarkLogic has matured
into a general-purpose highly scalable document store with support for ACID transac-
tions and fine-grained, role-based access control. Initially, the primary language of
MarkLogic developers was XQuery paired with REST; newer versions support Java as
well as other language interfaces.

 MarkLogic is a commercial product that requires a software license for any data-
sets over 40 GB. NoSQL is associated with commercial as well as open source products
that provide innovative solutions to business problems. 

1.3.6 Applying your knowledge

To demonstrate how the concepts in this book can be applied, we introduce you to
Sally Solutions. Sally is a solution architect at a large organization that has many busi-
ness units. Business units that have information management issues are assigned a
solution architect to help them select the best solution to their information challenge.
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Sally works on projects that need custom applications developed and she’s knowledge-
able about SQL and NoSQL technologies. Her job is to find the best fit for the busi-
ness problem. 

 Now let’s see how Sally applies her knowledge in two examples. In the first exam-
ple, a group that needed to track equipment warranties of hardware purchases came
to Sally for advice. Since the hardware information was already in an RDBMS and the
team had experience with SQL, Sally recommended they extend the RDBMS to
include warranty information and create reports using joins. In this case, it was clear
that SQL was appropriate. 

 In the second example, a group that was in charge of storing digital image infor-
mation within a relational database approached Sally because the performance of the
database was negatively impacting their web application’s page rendering. In this case,
Sally recommended moving all images to a key-value store, which referenced each
image with a URL. A key-value store is optimized for read-intensive applications and
works with content distribution networks. After removing the image management
load from the RDBMS, the web application as well as other applications saw an
improvement in performance.

 Note that Sally doesn’t see her job as a black-and-white, RDBMS versus NoSQL
selection process. Sometimes the best solution involves using hybrid approaches. 

1.4 Summary
This chapter began with an introduction to the concept of NoSQL and reviewed the
core business drivers behind the NoSQL movement. We then showed how the power
wall forced systems designers to use highly parallel processing designs and required a
new type of thinking for managing data. You also saw that traditional systems that use
object-middle tiers and RDBMS databases require the use of complex object-relational
mapping systems to manipulate the data. These layers often get in the way of an orga-
nization’s ability to react quickly to changes (agility).

 When we venture into any new technology, it’s critical to understand that each
area has its own patterns of problem solving. These patterns vary dramatically from
technology to technology. Making the transition from SQL to NoSQL is no different.
NoSQL is a new paradigm and requires a new set of pattern recognition skills, new
ways of thinking, and new ways of solving problems. It requires a new cognitive style.

 Opting to use NoSQL technologies can help organizations gain a competitive edge
in their market, making them more agile and better equipped to adapt to changing
business conditions. NoSQL approaches that leverage large numbers of commodity
processors save companies time and money and increase service reliability. 

 As you’ve seen in the case studies, these changes impacted more than early tech-
nology adopters: engineers around the world realize there are alternatives to the
RDBMS-as-our-only-option mantra. New companies focused on new thinking, technol-
ogies, and architectures have emerged not as a lark, but as a necessity to solving real
www.allitebooks.com
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business problems that don’t fit into a relational mold. As organizations continue to
change and move into global economies, this trend will continue to expand. 

 As we move into our next chapter, we’ll begin looking at the core concepts and
technologies associated with NoSQL. We’ll talk about simplicity of design and see how
it’s fundamental to creating NoSQL systems that are modular, scalable, and ultimately
lower-cost to you and your organization.



NoSQL concepts
Less is more.
—Ludwig Mies van der Rohe

In this chapter, we’ll cover the core concepts associated with NoSQL systems. After
reading this chapter, you’ll be able to recognize and define NoSQL concepts and
terms, you’ll understand NoSQL vendor products and features, and you’ll be able
to decide if these features are appropriate for your NoSQL system. We’ll start with a
discussion about how using simple components in the application development
process removes complexity and promotes reuse, saving you time and money in
your system’s design and maintenance. 

2.1 Keeping components simple to promote reuse
If you’ve worked with relational databases, you know how complex they can be.
Generally, they begin as simple systems that, when requested, return a selected row

This chapter covers
 NoSQL concepts

 ACID and BASE for reliable database transactions

 How to minimize downtime with database sharding

 Brewer’s CAP theorem
15
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from a single flat file. Over time, they need to do more and evolve into systems that
manage multiple tables, perform join operations, do query optimization, replicate
transactions, run stored procedures, set triggers, enforce security, and perform index-
ing. NoSQL systems use a different approach to solving these complex problems by
creating simple applications that distribute the required features across the network.
Keeping your architectural components simple allows you to reuse them between
applications, aids developers in understanding and testing, and makes it easier to port
your application to new architectures.

 From the NoSQL perspective, simple is good. When you create an application, it’s
not necessary to include all functions in a single software application. Application
functions can be distributed to many NoSQL (and SQL) databases that consist of sim-
ple tools that have simple interfaces and well-defined roles. NoSQL products that fol-
low this rule do a few things and they do them well. To illustrate, we’ll look at how
systems can be built using well-defined functions and focus on how easy it is to build
these new functions.

 If you’re familiar with UNIX operating systems, you might be familiar with the con-
cept of UNIX pipes. UNIX pipes are a set of processes that are chained together so
that the output of one process becomes the input to the next process. Like UNIX
pipes, NoSQL systems are often created by integrating a large number of modular
functions that work together. An example of creating small functions with UNIX pipes
to count the total number of figures in a book is illustrated in figure 2.1.  

 What’s striking about this example is that by typing about 40 characters you’ve cre-
ated a useful function. This task would be much more difficult to do on systems that
don’t support UNIX-style functions. In reality, only a query on a native XML database
might be shorter than this command, but it wouldn’t also be general-purpose. 

 Many NoSQL systems are created using a similar philosophy of modular compo-
nents that can work together. Instead of having a single large database layer, they often

The result is the number of figures in all chapters.

$ cat ch*.xml | grep '<figure' | wc -l
145

Concatenate all files that
start with “ch” and end with

“.xml” and send them
to the standard out.

From the input extract only
the lines that have ‘<figure’

and send them on to
the output.

From the input use
“word count” and
return the number

of lines.PipePipe

Figure 2.1 UNIX pipes as an example of reusing simple tools to create new functions. 
This figure concatenates (puts together) all chapter files in a book into a single file and 
counts the number of figures in all chapters. With UNIX pipes, we do this by stringing 
together three simple commands: concatenate (cat), a search function called grep, 
and word count (wc). No additional code is needed; each function takes the output from 
the previous function and processes it.
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have a number of simpler components that can be reassembled to meet the needs of
different applications. For example, one function allows sharing of objects in RAM
(memcache), another function runs batch jobs (MapReduce,) and yet another func-
tion stores binary documents (key-value stores). Note that most UNIX pipes were
designed to transform linear pipelines of line-oriented data streams on a single proces-
sor. NoSQL components, though modular, are more than a series of linear pipeline
components. Their focus is on efficient data services that are frequently used to power
distributed web services. NoSQL systems can be documents, messages, message stores,
file stores, REST, JSON, or XML web services with generic application program inter-
faces (APIs). There are tools to load, validate, transform, and output large amounts of
data, whereas UNIX pipes were really designed to work on a single processor.

STANDARDS WATCH: UNIVERSAL PIPES FOR STRUCTURED DATA At this point you
might be asking if you can still use the concepts behind UNIX pipes to process
your structured data. The answer is yes, if you use JSON or XML standards!
The World Wide Web Consortium has recognized the universal need for stan-
dard pipe concepts that work with any unstructured data. They have provided
a standard for processing pipelined data called XProc. Several NoSQL data-
bases have XProc built in as part of their architecture. XProc standards allow
data transformation pipelines built with one NoSQL database to be ported to
other XProc systems without modification. You can read more about XProc at
http://www.w3.org/TR/xproc/. There’s also a version of the UNIX shell
that’s specifically used for XML called XMLSH. You can read more about
XMLSH at http://www.xmlsh.org. 

The concept of simple functions in NoSQL systems will be a recurring theme. Don’t
be afraid to suggest or use a NoSQL system even if it doesn’t meet all your needs in a
single system. As you come to learn more about NoSQL systems, you’ll think of them
as collections of tools that become more useful the more you know about how they fit
together. Next, we’ll see how the concept of simplicity is important in the develop-
ment of the application layer with respect to NoSQL applications. 

2.2 Using application tiers to simplify design
Understanding the role of tiered applications is important to objectively evaluate one
or more application architectures. Since functions move between tiers, the compari-
son at times might not be as clear as when you look at a single tier. The best way to
fairly and objectively compare systems is to take a holistic approach, looking at the
overall application and how well it meets system requirements. 

 Using application tiers in your architecture allows you to create flexible and reusable
applications. By segregating an application into tiers, you have the option of modifying
or adding a specific layer instead of reworking an entire application when modifications
are required. As you’ll see in the following example, which compares RDBMSs and
NoSQL systems, functions in NoSQL applications are distributed differently. 

http://www.w3.org/TR/xproc/
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 When application designers begin to think about soft-
ware systems that store persistent data, they have many
options. One choice is to determine whether they need to
use application tiers to divide the overall functionality of
their application. Identifying each layer breaks the applica-
tion into separate architectural components, which allows
the software designer to determine the responsibility of
each component. This separation of concerns allows designers
to make the complicated seem simple when explaining the
system to others. 

 Application tiers are typically viewed in a layer-cake-like
drawing, as shown in figure 2.2. In this figure, user events
(like a user clicking a button on a web page) trigger code in
the user interface. The output or response from the user
interface is sent to the middle tier. This middle tier may
respond by sending something back to the user interface,
or it could access the database layer. The database layer may
in turn run a query and send a response back to the middle
tier. The middle tier then uses the data to create a report
and sends it to the user. This process is the same whether you’re using Microsoft Win-
dows, Apple’s OS X, or a web browser with HTML links.

 When designing applications it’s important to consider the trade-offs when putting
functionality in each tier. Because relational databases have been around for a long
time and are mature, it’s common for database vendors to add functionality at the
database tier and release it with their software rather than reusing components
already delivered or developed. NoSQL system designers know that their software
must work in complex environments with other applications where reuse and seam-
less interfaces are required, so they build small independent functions. Figure 2.3
shows the differences between RDBMS and NoSQL applications. 

 In figure 2.3 we compare the relational versus NoSQL methods of distributing appli-
cation functions between the middle and database tiers. As you can see, both models
have a user interface tier at the top. In the relational database, most of the application
functionality is found in the database layer. In the NoSQL application, most of the
application functionality is found in the middle tier. In addition, NoSQL systems lever-
age more services for managing BLOBs of data (the key-value store), for storing full-text
indexes (the Lucene indexes), and for executing batch jobs (MapReduce).

 A good NoSQL application design comes from carefully considering the pros and
cons of putting functions in the middle versus the database tier. NoSQL solutions
allow you to carefully consider all the options, and if the requirements include a high-
scalability component, you can choose to keep the database tier simple. In traditional
relational database systems, the complexity found in the database tier impacts the
overall scalability of the application. 

Database layer

Middle tier

User interface

Event triggers Response

Figure 2.2 Application 
tiers are used to simplify 
system design. The NoSQL 
movement is concerned 
with minimizing 
bottlenecks in overall 
system performance, and 
this sometimes means 
moving key components 
out of one tier and putting 
them into another tier.
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Remember, if you focus on a single tier you’ll never get a fair comparison. When per-
forming a trade-off analysis, you should compare RDBMSs with NoSQL systems as well
as think about how repartitioning will impact functionality at each tier. This process is
complex and requires an understanding of both RDBMS and NoSQL architectures.
The following is a list of sample pros and cons you’ll want to consider when perform-
ing a trade-off analysis. 

RDBMS pros: 
 ACID transactions at the database level makes development easier.
 Fine-grained security on columns and rows using views prevents views and

changes by unauthorized users.
 Most SQL code is portable to other SQL databases, including open source

options.
 Typed columns and constraints will validate data before it’s added to the data-

base and increase data quality.
 Existing staff members are already familiar with entity-relational design and

SQL.

RDBMS cons:
 The object-relational mapping layer can be complex.
 Entity-relationship modeling must be completed before testing begins, which

slows development.
 RDBMSs don’t scale out when joins are required.
 Sharding over many servers can be done but requires application code and will

be operationally inefficient.
 Full-text search requires third-party tools.
 It can be difficult to store high-variability data in tables. 

User interface

RDBMS

User interface

NoSQL

Object-relational

Search

Transactions

Caching

Blobs

Batch

Triggers

Middle
tier

Database
tier

Relational-object Key-value store

Lucene

MapReduce

Services

Caching Search

Transactions Batch

Documents

Figure 2.3 This figure compares application layers in RDBMSs and NoSQL systems. RDBMSs, on 
the left, have focused on putting many functions into the database tier where you can guarantee 
security and transactional integrity. The middle tier is used to convert objects to and from tables. 
NoSQL systems, on the right, don’t use object-relational mapping concepts; they move database 
functions into the middle tier and leverage external services.
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NoSQL pros:
 Loading test data can be done with drag-and-drop tools before ER modeling is

complete.
 Modular architecture allows components to be exchanged.
 Linear scaling takes place as new processing nodes are added to the cluster.
 Lower operational costs are obtained by autosharding.
 Integrated search functions provide high-quality ranked search results.
 There’s no need for an object-relational mapping layer.
 It’s easy to store high-variability data.

NoSQL cons:
 ACID transactions can be done only within a document at the database level.

Other transactions must be done at the application level.
 Document stores don’t provide fine-grained security at the element level. 
 NoSQL systems are new to many staff members and additional training may be

required.
 The document store has its own proprietary nonstandard query language,

which prohibits portability.
 The document store won’t work with existing reporting and OLAP tools. 

Understanding the role of placing functions within an application tier is important to
understanding how an application will perform. Another important factor to consider
is how memory such as RAM, SSD, and disk will impact your system. 

Terminology of database clusters
The NoSQL industry frequently refers to the concept of processing nodes in a data-
base cluster. In general, each cluster consists of racks filled with commodity com-
puter hardware, as shown in figure 2.4. 

CPU
RAM

Disk

Database cluster

Node

CPU
RAM

Node

Rack 1 Rack 2

Disk

CPU
RAM

Disk

Node

CPU
RAM

Node

Disk

Figure 2.4 Some of the terminology used in 
distributed database clusters. A cluster is 
composed of a set of processors, called 
nodes, grouped together in racks. Nodes are 
commodity processors, each of which has its 
own local CPU, RAM, and disk.
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2.3 Speeding performance by strategic use 
of RAM, SSD, and disk
How do NoSQL systems use different types of memory to increase system perfor-
mance? Generally, traditional database management systems weren’t concerned with
memory management optimization. In contrast, NoSQL systems are designed to be
cost effective when creating fast user response times by minimizing the amount of
expensive resources you need. 

 If you’re new to database architectures, it’s good to start with a clear understand-
ing about the difference in performance between queries that retrieve their data from
RAM (volatile random access memory) and queries that retrieve their data from hard
drives. Most people know that when they turn off their computer after a long work
day, the data in RAM is erased and must be reloaded. Data on solid state drives (SSDs)
and hard disk drives (HDDs) persists. We also know that RAM access is fast and, in com-
parison, disk access is much slower. Let’s assume 1 nanosecond is equal to approxi-
mately a foot, which is in fact roughly the time it takes for light to travel one foot. That
means your RAM is 10 feet away from you, but your hard drive is over 10 million feet
away, or about 2,000 miles. If you use a solid state disk, the result is slower than RAM,
but not nearly as slow as a spinning disk drive (see figure 2.5). 

 Let’s start by putting you in the city of Chicago, Illinois. If you want to get some-
thing from your RAM, you can usually find it in your back yard. If you’re lucky enough
to have data stored in a solid state disk, you can find it by making a quick trip some-
where in your neighborhood. But if you want to get something from your hard drive,
you’ll need to go to the city of Los Angeles, California, which is about 2,000 miles
away. Not a round trip you want to make often if you can avoid it.

 Rather than drive all the way to Los Angeles and back, what if you could check
around your neighborhood to see if you already have the data? The time it takes to do
a calculation in a chip today is roughly the time it takes light to travel across the chip.

(continued)
Each independent computer is called a node. 

For the purposes of this book, unless we’re discussing custom hardware, we’ll define
nodes as containing a single logical processor called a CPU. Each node has its own
local RAM and disk. The CPU may in fact be implemented using multiple chips, each
with multiple core processors. The disk system may also be composed of several
independent drives.

Nodes are grouped together in racks that have high-bandwidth connections between
all the nodes within a rack. Racks are grouped together to form a database cluster
within a data center. A single data center location may contain many database clus-
ters. Note that some NoSQL transactions must store their data on two nodes in dif-
ferent geographic locations to be considered successful transactions. 
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You can do a few trillion calculations while you’re waiting for your data to get back
from LA. That’s why calculating a hash is much faster than going to disk, and the more
RAM you have, the lower the probability you need to make that long round trip.

 The solution to faster systems is to keep as much of the right information in RAM
as you can, and check your local servers to see if they might also have a copy. This local
fast data store is often called a RAM cache or memory cache. Yet, accomplishing this and
determining when the data is no longer current turn out to be difficult questions. 

 Many memory caches use a simple timestamp for each block of memory in the
cache as a way of keeping the most recently used objects in memory. When memory
fills up, the timestamp is used to determine which items in memory are the oldest and
should be overwritten. A more refined view can take into account how much time or
resources it’ll take to re-create the dataset and store it in memory. This “cost model”
allows more expensive queries to be kept in RAM longer than similar items that could
be regenerated much faster.

 The effective use of RAM cache is predicated on the efficient answer to the ques-
tion, “Have we run this query before?” or equivalently, “Have we seen this document
before?” These questions can be answered by using consistent hashing, which lets you
know if an item is already in the cache or if you need to retrieve it from SSD or HDD. 

2.4 Using consistent hashing to keep your cache current
You’ve learned how important it is to keep frequently used data in your RAM cache,
and how by avoiding unnecessary disk access you can improve your database perfor-
mance. NoSQL systems expand on this concept and use a technique called consistent
hashing to keep the most frequently used data in your cache. 

 Consistent hashing is a general-purpose process that’s useful when evaluating how
NoSQL systems work. Consistent hashing quickly tells you if a new query or

Figure 2.5 To get a feel for how expensive it is to access your hard drive compared to 
finding an item in RAM cache, think of how long it might take you to pick up an item in 
your back yard (RAM). Then think of how long it would take to drive to a location in your 
neighborhood (SSD), and finally think of how long it would take to pick up an item in Los 
Angeles if you lived in Chicago (HDD). This shows that finding a query result in a local 
cache is more efficient than an expensive query that needs HDD access.
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document is the same as one already in your cache. Knowing this information pre-
vents you from making unnecessary calls to disk for information and keeps your data-
bases running fast.

 A hash string (also known as a check-
sum or hash) is a process that calculates
a sequence of letters by looking at each
byte of a document. The hash string
uniquely identifies each document
and can be used to determine whether
the document you’re presented with is
the same document you already have
on hand. If there’s any difference
between two documents (even a single
byte), the resulting hash will be differ-
ent. Since the 1990s, hash strings have
been created using standardized algo-
rithms such as MD5, SHA-1, SHA-256,
and RIPEMD-160. Figure 2.6 illustrates
a typical hashing process. 

 Hash values can be created for
simple queries or complex JSON or
XML documents. Once you have your
hash value, you can use it to make
sure that the information you’re send-
ing is the same information others are
receiving. Consistent hashing occurs
when two different processes running
on different nodes in your network
create the same hash for the same
object. Consistent hashing confirms
that the information in the document
hasn’t been altered and allows you to

let $hash := hash($invoice, 'md5')

d41d8cd98f00b204e9800998ecf8427einvoice.xml
MD5 hash
function

Figure 2.6 Sample hashing process. An input document such as a 
business invoice is sent through a hashing function. The result of the 
hashing function is a string that’s unique to the original document. A 
change of a single byte in the input will return a different hash string. A 
hash can be used to see if a document has changed or if it’s already 
located in a RAM cache.

Hash collisions
There’s an infinitesimally small chance
that two different documents could gener-
ate the same hash value, resulting in a
hash collision. The likelihood of this occur-
ring is related to the length of the hash
value and how many documents you’re
storing. The longer the hash, the lower
the odds of a collision. As you add more
documents, the chance of a collision
increases. Many systems use the MD5
hash algorithm that generates a 128-bit
hash string. A 128-bit hash can generate
approximately 1038 possible outputs.
That means that if you want to keep the
odds of a collision low, for example odds
of under one in 1018, you want to limit the
number of documents you keep to under
1013, or about 10 trillion documents.

For most applications that use hashing,
accidental hash collisions aren’t a con-
cern. But there are situations where
avoiding hash collisions is important. Sys-
tems that use hashes for security verifica-
tion, like government or high-security
systems, require hash values to be
greater than 128 bits. In these situations,
algorithms that generate a hash value
greater than 128 bits like SHA-1, SHA-
256, SHA-384, or SHA-512 are preferred. 
www.allitebooks.com

http://www.allitebooks.org
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determine whether the object exists in your cache or message store, saving precious
resources by only rerunning processes when necessary. 

 Consistent hashing is also critical for synchronizing distributed databases. For
example, version control systems such as Git or Subversion can run a hash not only on
a single document but also on hashes of hashes for all files within a directory. By doing
this consistently, you can see if your directory is in sync with a remote directory and, if
not, you can run update operations on only the items that have changed.

 Consistent hashing is an important tool to keep your cache current and your sys-
tem running fast, even when caches are spread over many distributed systems. Consis-
tent hashing can also be used to assign documents to specific database nodes on
distributed systems and to quickly compare remote databases when they need to be
synchronized. Distributed NoSQL systems rely on hashing for rapidly enhancing data-
base read times without getting in the way of write transactions. 

2.5 Comparing ACID and BASE—two methods of reliable 
database transactions
Transaction control is important in distributed computing environments with respect
to performance and consistency. Typically one of two types of transaction control mod-
els are used: ACID, used in RDBMS, and BASE, found in many NoSQL systems. Even if
only a small percentage of your database transactions requires transactional integrity,
it’s important to know that both RDBMSs and NoSQL systems are able to create these
controls. The difference between these models is in the amount of effort required by
application developers and the location (tier) of the transactional controls.

 Let’s start with a simple banking example to represent a reliable transaction. These
days, many people have two bank accounts: savings and checking. If you want to move
funds from one account to the other, it’s likely your bank has a transfer form on their
website. This is illustrated in figure 2.7.

Transfer

From account: Savings

To account: Checking 1

2Amount: 1,000.00

Start

End

Withdraw 1,000 from savings

Deposit 1,000 into checking

Steps

Begin transaction

End transaction

Figure 2.7 The atomic set of steps needed to transfer funds from one bank 
account to another. The first step subtracts the transfer amount from the 
source savings account. The second step adds the same transfer amount to 
the destination checking account. For the transaction to be considered 
reliable, both steps must work or both need to be undone. Between steps, 
no reports should be allowed to run that show the total amount as dropping 
by the transaction amount.
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When you click the Transfer button on the web page, two discrete operations must
happen in unison. The funds are subtracted from your savings account and then
added to your checking account. Transaction management is the process of making
sure that these two operations happen together as a single unit of work or not at all. If
the computer crashes after the first part of the transaction is complete and before the
second part of the transaction occurs, you’d be out $1,000 and very unhappy with
your bank. 

 Traditional commercial RDBMSs are noted for their reliability in performing finan-
cial transactions. This reputation has been earned not only because they’ve been
around for a long time and diligently debugged their software, but also because
they’ve made it easy for programmers to make transactions reliable by wrapping criti-
cal transactions in statements that indicate where transactions begin and end. These
are often called BEGIN TRANSACTION and END TRANSACTION statements. By adding
them, developers can get high-reliability transaction support. If either one of the two
atomic units doesn’t complete, both of the operations will be rolled back to their ini-
tial settings. 

 The software also ensures that no reports can be run on the accounts halfway
through the operations. If you run a “combined balance” report during the transac-
tion, it’d never show a total that drops by 1,000 and then increases again. If a report
starts while the first part of the transaction is in process, it’ll be blocked until all parts
of the transaction are complete. 

 In traditional RDBMSs the transaction management complexity is the responsibility
of the database layer. Application developers only need to be able to deal with what to
do if an entire transaction fails and how to notify the right party or how to keep retry-
ing until the transaction is complete. Application developers don’t need to know how
to undo various parts of a transaction, as that’s built into the database. 

 Given that reliable transactions are important in most application systems, the
next two sections will take an in-depth look at RDBMS transaction control using ACID,
and NoSQL transaction control using BASE.

2.5.1 RDBMS transaction control using ACID

RDBMSs maintain transaction control by using atomic, consistent, independent, and
durable (ACID) properties to insure transactions are reliable. The following defines
each of the associated properties:

 Atomicity—In the banking transaction example, we said that the exchange of
funds from savings to checking must happen as an all-or-nothing transaction.
The technical term for this is atomicity, which comes from the Greek term for
“dividable.” Systems that claim they have atomic transactions must consider all
failure modes: disk crashes, network failures, hardware failures, or simple soft-
ware errors. Testing atomic transactions even on a single CPU is difficult.

 Consistency—In the banking transaction example, we talked about the fact that
when moving funds between two related accounts, the total account balance
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must never change. This is the principle of consistency. It means that your data-
base must never have a report that shows the withdrawal from savings has
occurred but the addition to checking hasn’t. It’s the responsibility of the data-
base to block all reports during atomic operations. This has an impact on the
speed of a system when many atomic transactions and reports are all being run
on the same records in your database.

 Isolation—Isolation refers to the concept that each part of a transaction occurs
without knowledge of any other transaction. For example, the transaction that
adds funds doesn’t know about the transaction that subtracts funds from an
account. 

 Durability—Durability refers to the fact that once all aspects of a transaction are
complete, it’s permanent. Once the transfer button is selected, you have the
right to spend the money in your checking account. If the banking system
crashes that night and they have to restore the database from a backup tape,
there must be some way to make sure the record of this transfer is also restored.
This usually means that the bank must create a transaction log on a separate
computer system and then play back the transactions from the log after the
backup is complete.

If you think that the software to handle these rules must be complex, you’re right; it’s
very complex and one of the reasons that relational databases can be expensive. If
you’re writing a database on your own, it could easily double or triple the amount of
software that has to be written. This is why new databases frequently don’t support
database-level transaction management in their first release. That’s added only after
the product matures. 

 Many RDBMSs restrict transaction location to a single CPU. If you think about the
situation where your savings account information is stored in a computer in New York
and your checking account information is stored in a computer in San Francisco, the
complexity increases, since you have a greater number of failure points and the num-
ber of reporting systems that must be blocked on both systems increases.

 Although supporting ACID transactions is complex, there are well-known and well-
publicized strategies to do this. All of them depend on locking resources, putting extra
copies of the resources aside, performing the transaction and then, if all is well,
unlocking the resources. If any part of a transaction fails, the original resource in
question must be returned to its original state. The design challenge is to create sys-
tems that support these transactions, make it easy for the application to use transac-
tions, and maintain database speed and responsiveness. 

ACID systems focus on the consistency and integrity of data above all other consid-
erations. Temporarily blocking reporting mechanisms is a reasonable compromise to
ensure your systems return reliable and accurate information. ACID systems are said to
be pessimistic in that they must consider all possible failure modes in a computing
environment. At times ACID systems seem to be guided by Murphy’s Law—if anything
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can go wrong it will go wrong—and must be carefully tested in order to guarantee the
integrity of transactions.

 While ACID systems focus on high data integrity, NoSQL systems that use BASE take
into consideration a slightly different set of constraints. What if blocking one transac-
tion while you wait for another to finish is an unacceptable compromise? If you have a
website that’s taking orders from customers, sometimes ACID systems are not what you
want. 

2.5.2 Non-RDBMS transaction control using BASE

What if you have a website that relies on computers all over the world? A computer in
Chicago manages your inventory, product photos are on an image database in Vir-
gina, tax calculations are performed in Seattle, and your accounting system is in
Atlanta. What if one site goes down? Should you tell your customers to check back in
20 minutes while you solve the problem? Only if your goal is to drive them to your
competitors. Is it realistic to use ACID software for every order that comes in? Let’s
look at another option.

 Websites that use the “shopping cart” and “checkout” constructs have a different
primary consideration when it comes to transaction processing. The issue of reports
that are inconsistent for a few minutes is less important than something that prevents
you from taking an order, because if you block an order, you’ve lost a customer. The
alternative to ACID is BASE, which stands for these concepts:

 Basic availability allows systems to be temporarily inconsistent so that transac-
tions are manageable. In BASE systems, the information and service capability
are “basically available.”

 Soft-state recognizes that some inaccuracy is temporarily allowed and data may
change while being used to reduce the amount of consumed resources.

 Eventual consistency means eventually, when all service logic is executed, the sys-
tem is left in a consistent state.

Unlike RDBMSs that focus on consistency, BASE systems focus on availability. BASE sys-
tems are noteworthy because their number-one objective is to allow new data to be
stored, even at the risk of being out of sync for a short period of time. They relax the
rules and allow reports to run even if not all portions of the database are synchro-
nized. BASE systems aren’t considered pessimistic in that they don’t fret about the
details if one process is behind. They’re optimistic in that they assume that eventually
all systems will catch up and become consistent. 

BASE systems tend to be simpler and faster because they don’t have to write code
that deals with locking and unlocking resources. Their mission is to keep the process
moving and deal with broken parts at a later time. BASE systems are ideal for web
storefronts, where filling a shopping cart and placing an order is the main priority. 

 Prior to the NoSQL movement, most database experts considered ACID systems to
be the only type of transactions that could be used in business. NoSQL systems are
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highly decentralized and ACID guarantees may not be necessary, so they use BASE and
take a more relaxed approach. Figure 2.8 shows an accurate and somewhat humorous
representation of ACID versus BASE philosophies. 

 A final note: ACID and BASE aren’t rigid points on a line; they lie on a continuum
where organizations and systems can decide where and how to architect systems. They
may allow ACID transactions on some key areas but relax them in others. Some data-
base systems offer both options by changing a configuration file or using a different
API. The systems administrator and application developer work together to imple-
ment the right choice after considering the needs of the business.

 Transactions are important when you move from centralized to distributed systems
that need to scale in order to handle large volumes of data. But there are times when
the amount of data you manage exceeds the size of your current system and you need
to use database sharding to keep systems running and minimize downtime. 

2.6 Achieving horizontal scalability with database sharding
As the amount of data an organization stores increases, there may come a point when
the amount of data needed to run the business exceeds the current environment and
some mechanism for breaking the information into reasonable chunks is required.
Organizations and systems that reach this capacity can use automatic database sharding
(breaking a database into chunks called shards and spreading the chunks across a num-
ber of distributed servers) as a means to continuing to store data while minimizing sys-
tem downtime. On older systems this might mean taking the system down for a few
hours while you manually reconfigure the database and copy data from the old system
to a new system, yet NoSQL systems do this automatically. How a database grows and its
tolerance for automatic partitioning of data is important to NoSQL systems. Sharding

Figure 2.8 ACID versus BASE—understanding the trade-offs. This figure compares the rigid financial 
accounting rules of traditional RDBMS ACID transactions with the more laid-back BASE approach 
used in NoSQL systems. RDBMS ACID systems are ideal when all reports must always be consistent 
and reliable. NoSQL BASE systems are preferred when priority is given to never blocking a write 
transaction. Your business requirements will determine whether traditional RDBMS or NoSQL systems 
are right for your application.
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has become a highly automated process in both big data and fault-tolerant systems.
Let’s look at how sharding works and explore its challenges.

 Let’s say you’ve created a website that allows users to log in and create their own
personal space to share with friends. They have profiles, text, and product informa-
tion on things they like (or don’t like). You set up your website, store the information
in a MySQL database, and you run it on a single CPU. People love it, they log in, create
pages, invite their friends, and before you realize it your disk space is 95% full. What
do you do? If you’re using a typical RDBMS system, the answer is buy a new system and
transfer half the users to the new system. Oh, and your old system might have to be
down for a while so you can rewrite your application to know which database to get
information from. Figure 2.9 shows a typical example of database sharding. 

 The process of moving from a single to multiple databases can be done in a num-
ber of ways; for example: 

1 You can keep the users with account names that start with the letters A-N on the
first drive and put users from O-Z on the new system.

2 You can keep the people in the United States on the original system and put the
people who live in Europe on the new system.

3 You can randomly move half the users to the new system.

Each of these alternatives has pros and cons. For example, in option 1, if a user
changes their name, should they be automatically moved to the new drive? In
option 2, if a user moves to a new country, should all their data be moved? If people
tend to share links with people near them, would there be performance advantages to
keeping these users together? What if people in the United States tend to be active at
the same time in the evening? Would one database get overwhelmed and the other be

Warning—processor at 90% capacity!
Time to “shard”—copy half of the data
to a new processor.

Each processor gets
half of the load.

Before
shard

After
shard

Original processor New processor

Figure 2.9 Sharding is performed when a single processor can’t handle the 
throughput requirements of a system. When this happens you’ll want to 
move the data onto two systems that each take half the work. Many NoSQL 
systems have automatic sharding built in so that you only need to add a new 
server to a pool of working nodes and the database management system 
automatically moves data to the new node. Most RDBMSs don’t support 
automatic sharding.
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idle? What happens if your site doubles in size again? Do you have to continue to
rewrite your code each time this happens? Do you have to shut the system down for a
weekend while you upgrade your software?

 As the number of servers grows, you find that the chance of any one server being
down remains the same, so for every server you add the chance of one part not work-
ing increases. So you think that perhaps the same process you used to split the data-
base between two systems can also be used to duplicate data to a backup or mirrored
system if the first one fails. But then you have another problem. When there are
changes to a master copy, you must also keep the backup copies in sync. You must
have a method of data replication. The time it takes to keep these databases in sync
can decrease system performance. You now need more servers to keep up!

 Welcome to the world of database sharding, replication, and distributed comput-
ing. You can see that there are many questions and trade-offs to consider as your data-
base grows. NoSQL systems have been noted for having many ways to allow you to
grow your database without ever having to shut down your servers. Keeping your data-
base running when there are node or network failures is called partition tolerance—a
new concept in the NoSQL community and one that traditional database managers
struggle with. 

 Understanding transaction integrity and autosharding is important with respect to
how you think about the trade-offs you’re faced with when building distributed sys-
tems. Though database performance, transaction integrity, and how you use memory
and autosharding are important, there are times when you must identify those system
aspects that are most important and focus on them while leaving others flexible.
Using a formal process to understand the trade-offs in your selection process will help
drive your focus toward things most important to your organization, which we turn to
next. 

2.7 Understanding trade-offs with Brewer’s CAP theorem
In order to make the best decision about what to do when systems fail, you need to
consider the properties of consistency and availability when working with distributed
systems over unreliable networks.

 Eric Brewer first introduced the CAP theorem in 2000. The CAP theorem states that
any distributed database system can have at most two of the following three desirable
properties:

 Consistency—Having a single, up-to-date, readable version of your data available
to all clients. This isn’t the same as the consistency we talked about in ACID.
Consistency here is concerned with multiple clients reading the same items
from replicated partitions and getting consistent results.

 High availability—Knowing that the distributed database will always allow data-
base clients to update items without delay. Internal communication failures
between replicated data shouldn’t prevent updates. 
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 Partition tolerance—The ability of the system to keep responding to client
requests even if there’s a communication failure between database partitions.
This is analogous to a person still having an intelligent conversation even after a
link between parts of their brain isn’t working. 

Remember that the CAP theorem only applies in cases when there’s a broken connec-
tion between partitions in your cluster. The more reliable your network, the lower the
probability you’ll need to think about CAP.

 The CAP theorem helps you understand that once you partition your data, you
must consider the availability-consistency spectrum in a network failure situation.
Then the CAP theorem allows you to determine which options best match your busi-
ness requirements. Figure 2.10 provides an example of the CAP application. 

 The client writes to a primary master node, which replicates the data to another
backup slave node. CAP forces you to think about whether you accept a write if the
communication link between the nodes is down. If you accept it, you must take
responsibility for making sure the remote node gets the update at a later time, and
you risk a client reading inconsistent values until the link is restored. If you refuse the
write, you sacrifice availability and the client must retry later.

 Although the CAP theorem has been around since 2000, it’s still a source of confu-
sion. The CAP theorem limits your design options in a few rare end cases and usually
only applies when there are network failures between data centers. In many cases, reli-
able message queues can quickly restore consistency after network failures.

Client Master
node

Copy

Client Slave
node

Read

Write

Accept write Refuse write

Ok

Normal operation

Client Master
node

Link down Link down

Slave
node

High-availability option

Client Master
node

Slave
node

Consistency option

X X

X

Figure 2.10 The partition decision. The CAP theorem helps you decide the relative 
merits of availability versus consistency when a network fails. In the left panel, under 
normal operation a client write will go to a master and then be replicated over the 
network to a slave. If the link is down, the client API can decide the relative merits of 
high availability or consistency. In the middle panel, you accept a write and risk 
inconsistent reads from the slave. In the right panel, you choose consistency and block 
the client write until the link between the data centers is restored.
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The rules about when the CAP theorem applies are summarized in figure 2.11.
 Tools like the CAP theorem can help guide database selection discussions within an

organization and prioritize what properties (consistency, availability, and scalability)
are most important. If high consistency and update availability are simultaneously
required, then a faster single processor might be your best choice. If you need the
scale-out benefits that distributed systems offer, then you can make decisions about
your need for update availability versus read consistency for each transaction type.

 Whichever option you choose, the CAP theorem provides you with a formal pro-
cess that can help you weigh the pros and cons of each SQL or NoSQL system, and in
the end you’ll make an informed decision. 

2.8 Apply your knowledge
Sally has been assigned to help a team design a system to manage loyalty gift cards,
which are similar to bank accounts. Card holders can add value to a card (deposit),
make a purchase (withdrawal), and verify the card’s balance. Gift card data will be par-
titioned and replicated to two data centers, one in the U.S. and one in Europe. People
who live in the U.S. will have their primary partition in the U.S. data center and people
in Europe will have their primary partition in Europe.

 The data line between the two data centers has been known to fail for short peri-
ods of time, typically around 10-20 minutes each year. Sally knows this is an example of
a split partition and that it’ll test the system’s partition tolerance. The team needs to
decide whether all three operations (deposit, withdraw, and balance) must continue
when the data line is down.

 The team decides that deposits should continue to work even if the data line is
down, since a record of the deposit can update both sites later when the connection is
restored. Sally mentions that split partitions may generate inconsistent read results if
one site can’t update the other site with new balance information. But the team
decides that bank balance requests that occur when the link is down should still
return the last balance known to the local partition.

 For purchase transactions, the team decides that the transaction should go through
during a link failure as long as the user is connecting to the primary partition. To limit
risk, withdrawals to the replicated partition will only work if the transaction is under a
specific amount, such as $100. Reports will be used to see how often multiple withdraw-
als on partitions generate a negative balance during network outages.

Consistency AND availability

Each transaction can select between
consistency OR availability depending

on the context 

If you have… then you get…

A single processor or
many processors on a

working network

Many processors and
network failures

Figure 2.11 The CAP theorem shows 
that you can have both consistency 
and availability if you’re only using a 
single processor. If you’re using many 
processors, you can chose between 
consistency and availability depending 
on the transaction type, user, 
estimated downtime, or other factors.
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2.9 Summary
In this chapter, we covered some of the key concepts and insights of the NoSQL move-
ment. Here’s a list of the important concepts and architectural guidelines we’ve dis-
cussed so far; you’ll see these concepts mentioned and discussed in future chapters:

 Use simple building blocks to build applications.
 Use a layered architecture to promote modularity.
 Use consistent hashing to distribute data over a cluster.
 Use distributed caching, RAM, and SSD to speed database reads.
 Relaxing ACID requirements often gives you more flexibility.
 Sharding allows your database cluster to grow gracefully.
 The CAP theorem allows you to make intelligent choices when there’s a network

failure.

Throughout this book we emphasize the importance of using a formal process in eval-
uating systems to help identify what aspects are most important to the organization
and what compromises need to be made. 

 At this point you should understand the benefits of using NoSQL systems and how
they’ll assist you in meeting your business objectives. In the next chapter, we’ll build
on our pattern vocabulary and review the strengths and weaknesses of RDBMS archi-
tectures, and then move on to patterns that are associated with NoSQL data architec-
tures.

2.10 Further reading
 Birthday problem. Wikipedia. http://mng.bz/54gQ.
 “Disk sector.” Wikipedia. http://mng.bz/Wfm5.
 “Dynamic random-access memory.” Wikipedia. http://mng.bz/Z09P.
 “MD5: Collision vulnerabilities.” Wikipedia. http://mng.bz/157p.
 “Paxos (computer science).” Wikipedia. http://mng.bz/U5tm.
 Preshing, Jeff. “Hash Collision Probabilities.” Preshing on Programming. May 4, 

2011. http://mng.bz/PxDU.
 “Quorum (distributed computing).” Wikipedia.http://mng.bz/w2P8.
 “Solid-state drive.” Wikipedia. http://mng.bz/sg4R.
 W3C. “XProc: An XML Pipeline Language.” http://www.w3.org/TR/xproc/.
 XMLSH. http://www.xmlsh.org.
www.allitebooks.com
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Part 2

Database patterns 

Part 2 covers three main areas: legacy database patterns (which most solution
architects are familiar with), NoSQL patterns, and native XML databases. 

 Chapter 3 reviews legacy SQL patterns associated with relational and data
warehouse databases. If you’re already familiar with online transactional process-
ing (OLTP), online analytical processing (OLAP), and the concepts used in dis-
tributed revision control systems, you can skim this chapter.

 Chapter 4 introduces and describes the new NoSQL patterns. You’ll learn
about key-value stores, graph stores, column family stores, and document stores.
This chapter should be read carefully, as it’ll be referenced throughout the text.

 Chapter 5 looks at patterns that are unique to native XML databases and stan-
dards-driven systems. These databases are important in areas such as govern-
ment, health care, finance, publishing, integration, and document search. If
you’re not concerned with portability, standards, and markup languages, you
can skim this chapter.





Foundational data
architecture patterns
If I have seen further it is by standing on the shoulders of giants.
—Isaac Newton

You may be asking yourself, “Why study relational patterns? Isn’t this book about
NoSQL?” Remember, NoSQL means “Not only SQL.” Relational databases will con-
tinue to be an appropriate solution to many business problems for the foreseeable
future. But there are situations where relational databases aren’t the best match for
a business problem. This chapter will review how RDBMSs store data (in tabular and

This chapter covers
 Data architecture patterns

 RDBMSs and the row-store design pattern

 RDBMS implementation features

 Data analysis using online analytical processing 

 High-availability, read-mostly systems

 Hash trees in revision control systems and databases
37
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row-oriented structures) used by online transactional systems, and the performance
challenges this creates in distributed environments.

 We’ll begin with a definition of data architecture patterns and look at how the
needs of enterprise resource planning (ERP) systems drove RDBMS feature sets. We’ll then
look at the most common SQL patterns such as row stores (used in most RDBMSs) and
star schemas (used in OLAP, data warehouse, and business intelligence systems). We’ll
become familiar with key SQL terms and discuss the main features of directory ser-
vices, DNS services, and revision control systems. 

 After reading this chapter, you’ll understand the strengths and weaknesses of
RDBMS systems and know when a NoSQL solution is a better fit. You’ll recognize key
RDBMS terms and become familiar with some key features of directory services, DNS
services, and document revision control systems. Before we dive into RDBMS’s
strengths and weaknesses, we’ll start with a definition of a data architecture pattern
and talk about its significance when selecting a database for your business application.

3.1 What is a data architecture pattern?
So what exactly is a data architecture pattern and why is it useful in selecting the right
database? Architectural patterns allow you to give precise names to recurring high-
level data storage patterns. When you suggest a specific data architecture pattern as a
solution to a business problem, you should use a consistent process that allows you to
name the pattern, describe how it applies to the current business problem, and articu-
late the pros and cons of the proposed solution. It’s important that all team members
have the same understanding about how a particular pattern solves your problem so
that when implemented, business goals and objectives are met.

 The word pattern has many meanings. In general, it implies that given a new prob-
lem, you have the ability to recognize structures that you’ve seen in the past. For our
purposes, we define a data architecture pattern as a consistent way of representing data
in a regular structure that will be stored in memory. Although the memory you store
data in is usually long-term persistent memory, such as solid state disk or hard drives,
these structures can also be stored in RAM and then transferred to persistent memory
by another process.

 It’s also important to understand the difference between a broad high-level data
architecture pattern that’s used to identify how data is stored in a system versus a nar-
row low-level design pattern that identifies how you interact with the data. For exam-
ple, figure 3.1 shows the high-level, row-store data architecture pattern used in
RDBMSs at the top of the diagram, and the low-level design patterns like joins, transac-
tions, and views in the bottom part of the diagram. 

 As we continue along the NoSQL journey, we’ll talk about traditional RDBMS pat-
terns as well as patterns specific to the NoSQL movement. You’ll come to quickly rec-
ognize these patterns and how they’re used to build solutions that apply to your
organization’s business requirements. We’ll begin our pattern discussion by looking at
the RDBMS row-store pattern and the design patterns associated with it. 
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3.2 Understanding the row-store design pattern 
used in RDBMSs
Now that you have a basic understanding of an architectural pattern, let’s look at the
concepts and principles of the row-store pattern associated with relational database
management systems. Understanding the row-store pattern and its use of joins is
essential in helping you determine if a system can scale to a large number of proces-
sors. Unfortunately, the features that make row-store systems so flexible also limit their
ability to scale.

 Almost all RDBMSs store their data in a uniform object called a row. Rows consist of
data fields that are associated with a column name and a single data type. Since rows
are added and deleted as atomic units (a unit of work that’s independent of any other
transaction) using insert, update, or delete commands, the technical data architecture
pattern name is called a row store, which is more commonly known as an RDBMS or SQL
database. 

 We should note that not all SQL databases use the row-store pattern. Some data-
bases use columns as an atomic unit of storage. As you might expect, these systems are
called column stores. Column stores shouldn’t be confused with the term column family
store, which is used in Bigtable systems. Column-store systems are used when aggregate
(counts, sums, and so on) reporting speed is a priority over insert performance.

3.2.1 How row stores work

Rows are an atomic unit of data storage in RDBMSs. The general concept of a row
store is illustrated in figure 3.2. 

 The rows you insert comprise your tables in an RDBMS. Tables can be related to
other tables and data relationships are also stored in tables. The following list shows
how you might use an RDBMS to solve a business problem:

 A database modeling team meets with their business users. The business data is
modeled in a logical way to understand data types, groupings, and repeating
fields. When the modeling process is complete, the team has a physical table/
column model. This process is used for new data created within the organiza-
tion as well as for data that’s transmitted to the organization from an external
source.

Row store

Data definition
language

Fine-grained
authorization

Transactions

Typed
columns

Joins

Views

High-level data architecture
pattern

Low-level design
patterns

Figure 3.1 High-level data 
architecture patterns are used to 
discuss the fundamental ways data is 
stored in a system. Once you select a 
high-level data architecture pattern, 
there are many lower-level design 
patterns that a system may implement.
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 Tables are created using a specialized language called a data definition language
or DDL. The entire table, with all column definitions and their data types, must
be created before the first row is inserted into the table. Indexes are also cre-
ated for columns on large tables that have many rows to increase access speed.

 Columns must have unique names within a table and a single data type (for
example, string, date, or decimal) which is created when a table is first defined.
The semantics or meaning of each column is stored in an organization’s data
dictionary.

 New data is added to a table by inserting new rows using INSERT statements or
bulk loading functions. Repeating fields are associated with parent rows by ref-
erencing the parent's row identifier.

 The SQL INSERT statement can be used to insert a new row with any available
data that’s provided to the INSERT statement. SQL UPDATE operations can then
be used to change specific values of a row, but row identifiers must be used to
indicate what row to update.

 Reports are generated to create logical business documents from each table by
selecting all related rows with JOIN statements.

 Database rules, called triggers, can be set up to automatically delete all rows asso-
ciated with a business record.

Many commercial RDBMSs started with simple features. In time, new features were
added to meet the needs of large enterprise resource planning (ERP) systems until they
became robust and hardened for reliable commercial use. Initially, organizations
needed a way to store financial information in order to produce accurate business
statements. RDBMSs were created to store information about assets, sales, and pur-
chases from which a SQL reporting system created queries (reports) to show the

Column names must
be distinct.

Columns and their types
are defined when a

table is created.
Rows must

contain data for
each column.

New rows are
inserted at the
end of a table.

All data in a
single row
is grouped
together on

disk.

Individual cell
values can be

updated.

Columns may reference IDs of other tables.

ID ITEM_ID PRICE SIZECOLOR

1 12744 14.99  largegreen

2 56289 15.99 extra largeyellow

3 43589 13.99 smallblue

4 35734 24.45 redinsert medium

Figure 3.2 The basic rules of a row-store system. Row stores are created by first 
declaring a table with a fixed number of columns, each with a distinct name and a data 
type. Data is added row-by-row to the system, and each row must have data present for 
each column. All the data in a row is added as a unit and stored as a unit on disk.
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income, expenses, cash flow, and the organization’s overall net worth. These financial
statements were used to help decision makers think about whether to invest in new
ventures or conserve their cash. 

3.2.2 Row stores evolve

Beginning in the 1970s, many companies purchased separate siloed software applica-
tions for different aspects of their business, as seen in the left panel of figure 3.3. 

 In this stage, one database from a particular vendor might contain human
resource (HR) information, another database from a different vendor might store
sales information, and possibly a third vendor system would store customer relation-
ship management (CRM) information. This structure mimicked the structure of the
organization, where individual departments operated in their own world with limited
communication between groups. Companies found these siloed systems to be appro-
priate and secure in situations where it was necessary to protect sensitive data (such as
employee salary information or customer payment information). The isolated systems
made it easy for each department to manage and protect their own resources, but it
introduced challenges for the organization.

 A key problem with siloed systems was the challenge of creating up-to-date reports
that merged data from multiple systems. For example, a sales report in the sales track-
ing system might be used to generate commission information, but the list of sales
staff and their commission rates might be stored in a separate HR database. As each
change is made in the HR system, the new data must be moved to the sales tracking
system. The costs of continually moving data between separate siloed systems became
one of the largest budget items in many IT departments. To combat the problem of

1970s, ‘80s, ‘90s 1990s, 2000s

Documents

OLAP

Today

Siloed systems ERP drives BI/DW NoSQL and documents

HR

BI/Data
warehouse

Finance

Inventory Sales

ERP

BI/Data
warehouse NoSQL

ERP Documents

Figure 3.3 Understanding how NoSQL systems fit into the enterprise can be seen by 
looking at the three phases of enterprise databases. Initially organizations used 
standalone isolated systems (left panel). In time, the need arose to create integrated 
reports and the siloed systems were merged into ERP systems with fine-grained security 
controls, with separate systems for reporting on historical transactions (middle panel). 
These data warehouse and business intelligence systems use online analytical 
processing (OLAP) to create ad hoc reports without impacting ERP performance. The 
next stage (right panel) is when NoSQL systems are added for specialized tasks that 
RDBMSs aren’t well suited for, and also serve as a bridge to document integration.
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high integration costs, many organizations moved away from siloed systems and
toward more integrated systems, as shown in the middle panel of figure 3.3. 

 As organizations evolved, the need for an integrated view of the enterprise became
a requirement for assessing organization health and improving competitive position.
Organizations could invest large sums to install and customize ERP packages, which
incurred hefty vendor license fees and promises to add new features like fine-grained,
role-based access to company data that would continue to support the customers’
needs. 

IT managers continued to face high customization costs and, in time, the lack of
scalability began to cripple them. The license terms and associated technology didn’t
support migration to a large number of commodity processors, and most organiza-
tions lacked integrated document stores, making it difficult to retrieve information
from disparate systems.

 This was the technology landscape as we entered the twenty-first century. As we dis-
cussed in chapter 1, the power wall emerged, and with it the inability of CPUs to con-
tinue to get faster, which led to a new set of NoSQL technologies. In the right panel of
figure 3.3, we see the emergence of NoSQL systems not as standalone systems, but in
addition to the traditional RDBMSs. These systems are now key in solving problems
that RDBMSs can’t handle. The scalability of NoSQL solutions makes them ideal for
transforming large amounts of data used in data warehouse applications. Additionally,
their document nature and approach allows smooth integration of corporate docu-
ments directly into the analytical reporting and search services of an organization. 

3.2.3 Analyzing the strengths and weaknesses of the row-store pattern

Let’s take a look at some of the strengths and weaknesses of a typical enterprise
RDBMS system. This information is summarized in table 3.1. 

Table 3.1 RDBMS strengths and weaknesses—you can see that RDBMSs were driven by early
financial systems that stored data in tables. The pros and cons of RDBMSs drive the need to have
consistent and secure reporting over a large number of tables.

Feature Strength Weakness

Joins between tables New views of data from different tables 
can easily be created. 

All tables must be on the 
same server to make joins run 
efficiently. This makes it diffi-
cult to scale to more than one 
processor.

Transactions Defining begin point, end point, and 
completion of critical transactions in an 
application is simple. 

Read and write transactions 
may be slowed during critical 
times in a transaction unless 
the transaction isolation level 
is changed.
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We should note that RDBMSs are continuing to evolve to add finer-grained control of
ACID transactions. Some RDBMSs allow you to specify the isolation level of a transac-
tion using a command such as SET TRANSACTION ISOLATION LEVEL READ UNCOMMIT-
TED. Setting this option performs a dirty read or a read on data that hasn’t yet been
committed. If you add this option to a transaction, reports may have inconsistent
results, but they can return faster, which can result in increased read performance.

 When you look back at the information in this section, you can see that the needs
of ERP systems were influential in the RDBMS feature sets of today. This means that if
your business system has requirements that are similar to an ERP system, then an
RDBMS might be the right choice for you. Now let’s take a closer look at how these sys-
tems worked by using a sales order tracking example. 

3.3 Example: Using joins in a sales order
Now that you know about row stores and how they work, we’ll talk about how RDBMSs
use joins to create reports using data from multiple tables. As you’ll see, joins are flex-
ible from a reporting perspective, but create challenges when trying to scale RDBMSs
to multiple processors. Understanding joins is important since most NoSQL architec-
ture patterns are free of joins (with the exception of graph patterns, discussed in
chapter 4). The lack of joins allows NoSQL solutions to resolve the scalability problem
associated with single-processor systems by scaling across multiple systems.

 A join is a process of using a row identifier in a column of one table to reference a
particular row in another table. Relational databases are designed to find ways to cre-
ate relationships between tables of related data. The classic RDBMS example is a sales
order tracking system similar to a virtual shopping cart you’ll find on amazon.com.
See figure 3.4 as an example of how the data associated with a sales order might be
represented in an RDBMS. 

Table 3.1 (continued)

Feature Strength Weakness

Fixed data definitions and 
typed columns

Easy way to define structure and 
enforce business rules when tables are 
created. You can verify on insert that all 
data conforms to specific rules. Allows 
range indexes over columns.

Difficult to work with highly 
variable and exception data 
when adding to a column.

Fine-grained security Data access control by row and column 
can be done with a series of view and 
grant statements. 

Setup and testing security 
access for many roles can be 
a complex process.

Document integration None. Few RDBMSs are designed to 
easily query document structures.

Difficult to create reports 
using both structured and 
unstructured data.
www.allitebooks.com
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In this figure there are two distinct tables: the main SALES_ORDER table on the left
and the individual ORDER_ITEMS table on the right. The SALES_ORDER table con-
tains one row for each order and has a unique identifier associated with it called the
primary key. The SALES_ORDER table summarizes all the items in the ORDER_ITEMS
table but contains no detailed information about each item. The ORDER_ITEMS table
contains one row for each item ordered and contains the order number, item ID, and
price. When you add new items to an order, the systems application must add a new
row in the ORDER_ITEMS table with the appropriate order ID and update the total in
the SALES_ORDER table.

 When you want to run a report that lists all the information associated with an
order, including all the line items, you’d write a SQL report that joins the main
SALES_ORDER table with the ORDER_ITEMS table. You can do this by adding a WHERE
clause to the report that will select the items from the ORDER_ITEMS table that have
the same ORDER_ID. Figure 3.5 provides the SQL code required to perform this join
operation. 

 As you can see from this example, sales order and line-item information fit well
into a tabular structure since there’s not much variability in this type of sales data.

Primary key

Foreign key

ORDER_ID ORDER_DATE

ORDER_ID ITEM_ID PRICE

SHIP_STATUS TOTAL

123

124

125

Table: SALES_ORDER

Table: ORDER_ITEMS

2012-07-11

2012-07-12

2012-07-13

123

123

123

83924893

563344893

343978893

124

125

125

83924893

563344893

343978893

10.00

20.00

9.45

29.37

20.00

22.47

SHIPPED

BACKORDER

SHIPPED

39.45

29.37

42.47

Figure 3.4 Join example using sales, orders, and line items—how relational databases 
use an identifier column to join records together. All rows in the SALES_ORDER table on 
the left contain a unique identifier under the column heading ORDER_ID. This number is 
created when the row is added to the table and no two rows may have the same 
ORDER_ID. When you add a new item to your order, you add a new row to the 
ORDER_ITEMS table and “relate” it back to the ORDER_ID that the table is associated 
with. This allows all the line items with an order to be joined with the main order when 
creating a report.

SELECT * FROM SALES_ORDER, ORDER_ITEMS
WHERE SALES_ORDER.ORDER_ID = ORDER_ITEMS.ORDER_ID

Figure 3.5 SQL JOIN example—the query will return a new 
table that has all of the information from both tables. The first 
line selects the data, and the second line restricts the results 
to include only those lines associated with the order.
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There are challenges when retrieving the sales data information from all RDBMSs.
Before you begin to write your query, you must know and understand the data struc-
tures and their dependencies. Tables themselves don’t show you how to create joins.
This information can be stored in other tools such as entity-relationship design
tools—but this relationship metadata isn’t part of the core structure of a table. The
more complex your data is, the more complex your joins will be. Creating a report
that has data from a dozen tables many require complex SQL statements with many
WHERE statements to join tables together. 

 The use of row stores and the need for joins between tables can impact how data is
partitioned over multiple processors. Complex joins between two tables stored on dif-
ferent nodes requires that a large amount of data be transferred between the two sys-
tems, making the process very slow. This slow-down can be circumvented by storing
joined rows on the same node, but RDBMSs don’t have automatic methods to keep all
rows for objects together on the same system. To implement this strategy requires
careful consideration, and the responsibility for this type of distributed storage may
need to be moved from the database to the application tier. 

 Now that we’ve reviewed the general concepts of tables, row stores, and joins, and
you understand the challenges of distributing this data over many systems, we’ll look
at other features of RDBMSs that make them ideal solutions for some business prob-
lems and awkward for others. 

3.4  Reviewing RDBMS implementation features 
Let’s take a look at the key features found in most RDBMSs today:

 RDBMS transactions
 Fixed data definition language and typed columns
 Using RDBMS views for security and access control
 RDBMS replication and synchronization

Understanding that these features are generally built in to most RDBMS systems is crit-
ical when you’re selecting a database for a new project. If your project needs some or
all of these features, a RDBMS might be the right solution. Selecting the right data
architecture can save your organization time and money by avoiding rework and costly
mistakes before software implementation. It’s our goal to provide you with a good
understanding of the key features of RDBMS (transactions, indexes, and security) and
how they are important in RDBMSs.

3.4.1 RDBMS transactions

Using our Sales_Order sample from section 3.3, let’s look at how a typical RDBMS
database controls transactions and the steps that an application performs to maintain
consistency in the database, beginning with the following terms: 

 Transactions—A single atomic unit of work within a database management sys-
tem that’s performed against a database
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 Begin/End transaction—Commands to begin and end a batch of transactions
(inserts, updates, or deletes) that either succeed or fail as a group

 Rollback—An operation that returns a database to some previous state

In our SALES_ORDER example, there are two tables that should be updated together.
When new items are added to an order, a new record is inserted into the
ORDER_ITEMS table (which contains the detail about each item) and the total in the
SALES_ORDER table is updated to reflect the new amount owed.

 In RDBMSs it’s easy to make sure these two operations either both complete suc-
cessfully or they don’t occur at all by using the database transaction control statements
shown in figure 3.6. 

 The first statement, BEGIN TRANSACTION, marks the beginning of the series of
operations to perform. Following the BEGIN TRANSACTION, you’d then call the code
that inserts the new order into the ORDER_ITEMS table followed by the code that
updates the total in the SALES_ORDER table. The last statement, COMMIT TRANSAC-
TION, signals to the system that your transaction is finished and no further processing
is required. The database will prevent (block) any other operations from occurring on
either table while this transaction is in process so that reports that access these tables
will reflect the correct values.

 If for some reason the database fails in the middle of a transaction, the system will
automatically roll back all parts of the transaction and return the database to the sta-
tus it was prior to the BEGIN_TRANSACTION. The transaction failure can be reported
to the application, which can attempt a retry operation or request the user to try
again later.

 The functions that guarantee transaction reliability can be performed by any appli-
cation. The key is that RDBMS implementations make some parts of this automatic
and easy for the software developer. Without these functions, application developers
must create an undo process for each part of the transactions, which may require a
great deal of effort.

 Some NoSQL systems don’t support transactions across multiple records. Some
support transaction control but only within atomic units of work such as within a

BEGIN TRANSACTION;
-- code to insert new item into the order here...
-- code to update the order total with new amount here...
COMMIT TRANSACTION;
GO

Figure 3.6 This code shows how the BEGIN TRANSACTION and 
COMMIT TRANSACTION lines are added to SQL to ensure that both the 
new items are added to a sales order and the total of the sales order is 
updated as an atomic transaction. The effect is that the transactions 
are done together or not at all. The benefit is that the SQL developer 
doesn’t have to test to make sure that both changes occurred and then 
undo one of the transactions if the other one fails. The database will 
always be in a consistent state.
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document. If your system has many places that require careful transaction control,
RDBMSs may be the best solution. 

3.4.2 Fixed data definition language and typed columns

RDBMSs require you to declare the structure of all tables prior to adding data to any
table. These declarations are created using a SQL data definition language (DDL),
which allows the database designer to specify all columns of a table, the column type,
and any indexes associated with the table. A list of typical SQL data types from a
MySQL system can be seen in table 3.2.

The strength of this system is that it enforces the rules about your data up front and
prevents you from adding any data that doesn’t conform to the rules. The disadvan-
tage is that in situations where the data may need to vary, you can’t simply insert it into
the database. These variations must be stored in other columns with other data types
or the column type needs to be changed to be more flexible.

 In organizations that have existing databases with millions of rows of data in tables,
these tables must be removed and restored if there are changes to data types. This can
result in downtime and loss of productivity to your staff, your customers, and ulti-
mately the company bottom line. Application developers sometimes use the metadata
associated with a column type to create rules to map the columns into object data
types. This means that the object-relational mapping software must also be updated at
the same time the database changes.

 Though they may seem like minor annoyances to someone building a new system
with a small test data set, the process of restructuring the database in a production
environment may take weeks, months, or longer. There’s anecdotal evidence of orga-
nizations that have spent millions of dollars to simply change the number of digits in a
data field. The Year 2000 problem (Y2K) is one example of this type of challenge. 

Table 3.2 Sample of RDBMS column types for MySQL. Each column in an RDBMS is assigned
one type. Trying to add data that doesn’t contain the correct data type will result in an error.

Category Types

Integer INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

Numeric DECIMAL, NUMERIC, FLOAT, DOUBLE

Boolean BIT

Date and time DATE, DATETIME, TIMESTAMP

Text CHAR, VARCHAR, BLOB, TEXT

Sets ENUM, SET

Binary TINYBLOB,  BLOB, MEDIUMBLOB, LONGBLOB
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3.4.3 Using RDBMS views for security and access control

Now that you understand the concepts and structure of RDBMSs, let’s think about how
you might securely add sensitive information. Let’s expand the SALES_ORDER exam-
ple to allow customers to pay by credit card. Because this information is sensitive, you
need a way to capture and protect this data. Your company security policy may allow
some individuals with appropriate roles in the company to see sales data. Additionally,
you may also have security rules which dictate that only a select few individuals in the
organization are allowed to see a customer’s credit card number. One solution would
be to put the numbers in a separate hidden table and perform a join operation to
retrieve the information when required, but RDBMS vendors provide an easier solu-
tion by creating a separate view of any table or query. An example of this is shown in
figure 3.7. 

 In this example, users don’t access the actual tables. Instead, they see only a report
of information from the table, which excludes any sensitive information that they
don’t have access to based on your company security policy. The ability to use dynamic
calculations to create table views and grant access to views using roles defined within
an organization is one of the features that make RDBMSs flexible.

 Many NoSQL systems don’t allow you to create multiple views of physical data and
then grant access to these views to users with specific roles. If your requirements

The physical table
includes all the
column, including
credit card info.
Only select users
ever see the
physical table.

The view excludes
some fields like credit
card information.  All
sales analysts have
access to the views.

 We want to restrict
general access to this

column.

123

124

125

Physical table

2012-07-11

2012-07-12

2012-07-13

SHIPPED

BACKORDER

SHIPPED

VISA-1234…

MC-5678…

AMEX-9012…

39.45

29.37

42.47

123

124

125

View of table

2012-07-11

2012-07-12

2012-07-13

SHIPPED

BACKORDER

SHIPPED

39.45

29.37

42.47

ORDER_ID ORDER_DATE SHIP_STATUS CARD_INFO TOTAL

ORDER_ID ORDER_DATE SHIP_STATUS TOTAL

Figure 3.7 Data security and access control—how sensitive columns can be 
hidden from some users using views. In this example, the physical table that stores 
order information contains credit card information that should be restricted from 
general users. To protect this information without duplicating the table, RDBMSs 
provide a restricted view of the table that excludes this credit card information. 
Even if the user has a general reporting tool, they won’t be able to view this data 
because they haven’t been granted permission to view the underlying physical 
table, only a view of the table.
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include these types of functions, then RDBMS solutions might be a better match to
your needs. 

3.4.4 RDBMS replication and synchronization

As we’ve mentioned, early RDBMSs were designed to run on single CPUs. When orga-
nizations have critical data, it’s stored on a primary hard disk with a duplicate copy of
each insert, update, and delete transaction replicated in a journal or log file on a sep-
arate drive. If the database becomes corrupt, a backup of the database is loaded and
the journal “replayed” to get the database to the point it was when it was halted. 

 Journal files add overhead and slow the system down, but they’re essential to guar-
antee the ACID nature of RDBMSs. There are situations when a business can’t wait for
the backup to restore and the journal files to be played. In these situations, the data
can immediately be written not only to the master database but also to a copy (or mir-
ror) of the original database. Figure 3.8 demonstrates how mirroring is applied in
RDBMSs. 

 In a mirrored database, when the master database crashes, the mirrored system
(slave) takes over the primary system’s operations. When additional redundancy is
required, more than one mirror system is created, as the likelihood of two or more sys-
tems all crashing at the same time is slim and generally sufficient security for most
business processes. 

 The replication process solves some of the challenges associated with creating
high-availably systems. If one of the master systems goes down, the slave can step in to
take its place. With that being said, it introduces database administration staff to the
challenges of distributed computing. For example, what if one of the slave systems
crashes for a while? Should the master system stop accepting transactions while it waits
for the slave system to come back online? How does one system get “caught up” on the

Master database

Slave database Slave database

The application reads and
writes only to the master database.

Any changes to the master are
immediately copied to the slave servers.

Application

Figure 3.8 Replication and mirroring—how applications are 
configured to read and write all their data to a single master 
database. Any change in the master database immediately 
triggers a process that copies the transaction information 
(inserts, updates, deletes) to one or more slave systems that 
mirror the master database. These slave servers can quickly 
take over the load of the master if the master database 
becomes unavailable. This configuration allows the database to 
provide high availability data services.
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transactions that occurred while it was down? Who should store these transactions and
where should they be stored? These questions led to a new class of products that spe-
cialize in database replication and synchronization.

 Replication is different than sharding, which we discussed in chapter 2. Sharding
stores each record on different processors but doesn’t duplicate the data. In addition,
sharding allows reads and writes to be distributed to multiple systems but doesn’t
increase system availability. On the other hand, replication can increase availability
and read access speeds by allowing read requests to be performed by slave systems. In
general, replication doesn’t increase the performance of write operations to a data-
base. Since data has to be copied to multiple systems, it sometimes slows down total
write throughput rates. In the end, replication and sharding are independent pro-
cesses and in appropriate situations can be used together. 

 So what should happen if the slave systems crash? It doesn’t make sense to have the
master reject all transactions, since it would render the system unavailable for writes if
any slave system crashed. If you allow the master to continue accepting updates, you’ll
need a process to resync the slave system when it comes back online.

 One common solution to the slave resync problem is to use a completely separate
piece of software called a reliable messaging system or message store, as shown in figure 3.9. 

 Reliable messaging systems accept messages even if a remote system isn’t respond-
ing. When used in a master/slave configuration, these systems queue all update mes-
sages when one or more slave systems are down, and send them on when the slave
system is online, allowing all messages to be posted so that the master and slave
remain in sync. 

 Replication is a complex problem when one or more systems go offline, even if
only for a short period of time. Knowing exactly what information has changed and
resyncing the changed data is critical for reliability. Without some way of breaking
large databases into smaller subsets for comparison, replication becomes impractical.
This is why using consistent caching NoSQL databases (discussed in chapter 2) may
be a better solution.

 NoSQL systems also need to solve the database replication problem, but unlike
relational databases, NoSQL systems need to synchronize not only tables, but other
structures as well, like graphs and documents. The technologies used to replicate

Master database

Slave database Slave database

The master writes all update
transactions to a message store.

Update messages stay in the message
store till all subscribers get a copy
of the message.

Message store

Figure 3.9 Using message stores 
for reliable data replication—how 
message stores can be used to 
increase the reliability of the data 
on each slave database, even if the 
slave systems are unavailable for a 
period of time. When slave systems 
restart, they can access an 
external message store to retrieve 
the transactions they missed when 
they were unavailable.
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these structures will at times be similar to message stores and other times will need
more specialized structures.

 Now that we’ve taken a tour of the main features of RDBMS systems typically used
in online transaction systems, let’s see how similar systems solve the problem of deliv-
ering large complex reports using millions of records of historical transactions with-
out sacrificing transactional system performance by creating and using data
warehouse and business intelligence systems. 

3.5 Analyzing historical data with OLAP, data warehouse, 
and business intelligence systems
Most RDBMSs are used to handle real-time transactions such as online sales orders or
banking transactions. Collectively, these systems are known as online transaction process-
ing (OLTP) systems. In this section, we’ll shift our focus away from real-time OLTP and
look at a different class of data patterns associated with creating detailed, ad hoc
reports using historical transactions. Instead of using records that are constantly
changing, the records used in these analyses are written once but read many times. We
call these systems online analytical processing (OLAP).

OLAP systems empower nonprogrammers to quickly generate ad hoc reports on
large datasets. The data architecture patterns used in OLAP are significantly different
from transactional systems, even though they rely on tables to store their data. OLAP
systems are usually associated with front-end business intelligence software applica-
tions that generate graphical outputs used to show trends and help business analysts
understand and define their business rules. OLAP systems are frequently used to feed
data mining software to automatically look for patterns in data and detect errors or
cases of fraud. 

 Understanding what OLAP systems are, what concepts are used, and the types of
problems they solve will help you determine when each should be used. You’ll be able
to see how these differences are critical when you’re performing software selection
and architectural trade-off analysis.

 Table 3.3 summarizes the differences between OLTP and OLAP systems with respect
to their impact on the categories of business focus, type of updates, key structure, and
criteria for success. 

Table 3.3 A comparison of OLTP and OLAP systems

Online transaction processing (OLTP) Online analytical processing (OLAP)

Business focus Managing accurate real-time transac-
tions with ACID constraints

Rapid ad hoc analysis of historical 
event data by nonprogrammers even if 
there are millions or billions of records

Type of updates Mix of reads, writes, and updates by 
many concurrent users

Daily batch loads of new data and 
many reads. Concurrency is not a 
concern.
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In this chapter, we’ve focused on general-purpose transactional database systems that
interact in a real-time environment, on an event-by-event basis. These real-time sys-
tems are designed to store and protect records of events such as sales transactions,
button-clicks on a web page, and transfers of funds between accounts. The class of sys-
tems we turn to now isn’t concerned with button-clicks, but rather with analyzing past
events and drawing conclusions based on that information. 

3.5.1 How data flows from operational systems to analytical systems

OLAP systems, frequently used in data warehouse/business intelligence (DW/BI)
applications, aren’t concerned with new data, but rather focus on the rapid analysis of
events in the past to make predictions about future events. 

 In OLAP systems, data flows from real-time operational systems into downstream
analytical systems as a way to separate daily transactions from the job of doing analysis
on historical data. This separation of concerns is important when designing NoSQL
systems, as the requirements of operational systems are dramatically different than the
requirements of analytical systems.

 BI systems evolved because running summary reports on production databases
while traversing millions of rows of information was inefficient and slowed production
systems during peak workloads. Running reports on a mirrored system was an option,
but the reports still took a long time to run and were inefficient from an employee
productivity perspective. Sometime in the ’80s a new class of databases emerged, spe-
cifically designed to focus on rapid ad hoc analysis of data even if there were millions
or billions of rows. The pioneers in these systems came, not from web companies, but
from firms that needed to understand retail store sales patterns and predict what
items should be in the store and when.

 Let’s look at a data flow diagram of how this works. Figure 3.10 shows the typical
data flow and some of the names associated with different regions of the business
intelligence and data warehouse data flow. 

 Each region in this diagram is responsible for specific tasks. Data that’s constantly
changing during daily operations is stored on the left side of the diagram inside

Key structures Tables with multiple levels of joins Star or snowflake designs with a large 
central fact table and dimension tables 
to categorize facts. Aggregate struc-
tures with summary data are pre-
computed.

Typical criteria for 
success

Handles many concurrent users con-
stantly making changes without any 
bottlenecks

Analysts can easily generate new 
reports on millions of records, quickly 
get key insights into trends, and spot 
new business opportunities.

Table 3.3 A comparison of OLTP and OLAP systems (continued)

Online transaction processing (OLTP) Online analytical processing (OLAP)
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computers that track daily transactions. These computers are called the operational
source systems. At regular intervals new data is extracted from these source systems and
stored in the temporary staging area, as shown in the dashed-line box in the center. 

 The staging area is a series of computers that contain more RDBMS tables where
the data is massaged using extract, transform, and load (ETL) tools. ETL tools are
designed to extract data in tables from one RDBMS and move the data, after transfor-
mation, into another set of RDBMS tables. Eventually, the new data is added to fact
tables that store the fine-grained events of the system. Once the fact tables have been
updated, new sums and totals are created that include this new information. These
are called aggregate tables. 

 Generally, NoSQL systems aren’t intended to replace all components in a data
warehouse application. They target areas where scalability and reliability are impor-
tant. For example, many ETL systems can be replaced by MapReduce-style transforms
that have better scale-out properties. 

Staging area OLAP cubes

Nightly
replication

Fact
tables

Conformed
dimensions

Metadata web services

Presentation

Portlet Portlet

Portlet Portlet

web portal

Spreadsheet

Dashboard

Reports

Operational
source

systems

Pivot table

Controls
who can
see what

Metadata registry

Data
services

Security

New
transactions

recorded
here

The meaning of data
stored here

What the users
see herePrecalculated totals

Users never see
this area

Figure 3.10 Business intelligence and data warehouse (BI/DW) data flow—how data 
flows into a typical OLAP data warehouse system. In the first step, new transactions are 
copied from the operational source systems and loaded into a temporary staging area. 
Data in the staging area is then transformed to create fact and dimension tables that are 
used to build OLAP cube structures. These cubes contain precalculated aggregate 
structures that contain summary information which must be updated as new facts are 
added to the fact tables. The information in the OLAP cubes is then accessed from a 
graphical front-end tool through the security and data services layers. The precise 
meaning of data in any part of the system is stored in a separate metadata registry 
database that ensures data is used and interpreted consistently despite the many layers 
of transformation.
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3.5.2 Getting familiar with OLAP concepts

Generally, OLAP systems have the same row-store pattern as OLTP systems, but the con-
cepts and constructs are different. Let’s look at the core OLAP concepts to see how
they’re combined to generate sub-second transactional reports using millions of trans-
actions:

 Fact table—A central table of events that contains foreign keys to other tables
and integer and decimal values called measures.

 Dimension table—A table used to categorize every fact. Examples of dimensions
include time, geography, product, or promotion.

 Star schema—An arrangement of tables with one fact table surrounded by
dimension tables. Each transaction is represented by a single row in the central
fact table.

 Categories—A way to divide all the facts into two or more classes. For example,
products may have a Seasonal category indicating they’re only stocked part of
the year.

 Measures—A number used in a column of a fact table that you can sum or aver-
age. Measures are usually things like sales counts or prices.

 Aggregates—Precomputed sums used by OLAP systems to quickly display results
to users.

 MDX—A query language that’s used to extract data from cubes. MDX looks
similar to SQL in some ways, but is customized to select data into pivot-table
displays. 

For a comparison of MDX with SQL, see figure 3.11.
 In this example, we’re placing the total of each of the store sales in Minnesota

(WHERE STORE.USA.MN) in each of the columns and placing each of the sales quar-
ters (Q1, Q2, Q3, and Q4) in the rows. The result would be a grid that has the stores on
one axis and dates on the other axis. Each grid has the total of sales for that store for
that quarter. The SELECT and WHERE statements are identical to SQL, but ON COL-
UMNS and ON ROWS are unique to MDX. The output of this query might be viewed in
a chart, like in figure 3.12. 

 Note that this chart would typically be displayed by an OLAP system in less than a
second. The software doesn’t have to recompute sales totals to generate the chart.

Note the "ON ROWS"  and "ON COLUMNS"

{ Measures.STORE_SALES_NET_PROFIT } ON COLUMNS,
{ Date.2013.Q1, Date.2013.Q4 } ON ROWS
FROM SALES
WHERE ( STORE.USA.MN )

SELECT

Figure 3.11 A sample of an MDX 
query—like SQL, MDX uses the same 
keywords of SELECT, FROM, and 
WHERE. MDX is distinct from SQL in 
that it always returns a two-
dimensional grid of values for both 
column and row categories. The ON 
COLUMNS and ON ROWS keywords 
show this difference.
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The OLAP process creates precomputed
structures called aggregates for the monthly
store sales as the new transactions are
loaded into the system. The only calcula-
tion needed is to add the monthly totals
associated with each quarter to generate
quarterly figures. 

3.5.3 Ad hoc reporting using aggregates

Why is it important for users to create ad
hoc reports using prebuilt summary data
created by OLAP systems? Ad hoc reporting
is important for organizations that rely on
analyzing patterns and trends in their data
to make business decisions. As you’ll see
here, NoSQL systems can be combined
with other SQL and NoSQL systems to feed
data directly into OLAP reporting tools.

 Many organizations find OLAP a cost-
effective way to perform detailed analyses
of a large number of past events. Their
strength comes in allowing nonprogrammers to quickly analyze large datasets or big
data. To generate reports, all you need is to understand how categories and measures
are combined. This empowerment of the nonprogramming staff in the purchasing
department of retail stores has been one of the key factors driving down retail costs
for consumers. Stores are filled with what people want, when they want it. 

 Although this data may represent millions or billions of transactions spread out
over the last 10 years, the results are usually returned to the screen in less than a sec-
ond. OLAP systems are able to do this by precomputing the sums of measures in the
fact tables using categories such as time, store number, or product category code.
Does it sound like you’ll need a lot of disk to store all of this information? You might,
but remember disk is cheap these days and the more disk space you assign to your
OLAP systems, the more precomputed sums you can create. The more information
you have, the easier it might be to make the right business decision.

 One of the nice things about using OLAP systems is that as a user you don’t need to
know the process of how aggregates are created and what they contain. You only need
to understand your data and how it’s most appropriately totaled, averaged, or studied.
In addition, system designers don’t need to understand how the aggregates are cre-
ated; their focus is on defining cube categories and measures, and mapping the data
from the fact and dimension tables into the cube. The OLAP software does the rest.

 When you go to your favorite retailer and find the shelves stocked with your favor-
ite items, you’ll understand the benefits of OLAP. Tens of thousands of buyers and
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Figure 3.12 Sample business intelligence 
report that leverages summary information—
the result of a typical MDX query that places 
measures (the vertical axis) within categories
(store axis) to create graphical reports. The 
report doesn’t have to create results by directly 
using each individual sales transaction. The 
results are created by accessing precomputed 
summary information in aggregate structures. 
Even new reports that derive data from millions 
of transactions can be generated on an ad hoc 
basis in less than a second.
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inventory specialists use these tools every day to track retail trends and make adjust-
ments to their inventory and deliveries. Due to the popularity of OLAP systems and
their empowerment of nonprogammers to create ad hoc queries, the probability is
low that the fundamental structures of OLAP and data warehouses systems will be
quickly displaced by NoSQL solutions. What will change is how tools such as Map-
Reduce will be used to create the aggregates used by the cubes. To be effective, OLAP
systems need tools that efficiently create the precomputed sums and totals. In a later
chapter, we’ll talk about how NoSQL components are appropriate for performing
analysis on large datasets. 

 In the past 10 years, the use of open source OLAP tools such as Mondrian and Pen-
taho has allowed organizations to dramatically cut their data warehouse costs. In
order to be a viable ad hoc analysis tool, NoSQL systems must be as low-cost and as
easy to use as these systems. They must have the performance and scalability benefits
that current systems lack, and they must have the tools and interfaces that facilitate
integration with existing OLAP systems.

 Despite the fact that OLAP systems have now become commodity products, the cost
of setting up and maintaining OLAP systems can still be a hefty part of an organiza-
tion’s IT budget. The ETL tools to move data between operational and analytical sys-
tems still usually run on single processors, perform costly join operations, and limit
the amount of data that can be moved each night between the operational and analyt-
ical systems. These challenges and costs are even greater when organizations lack
strong data governance policies or have inconsistent category definitions. Though not
necessarily data architecture issues, they fall under enterprise semantics and standards
concerns, and should be taken to heart in both RDBMS and NoSQL solutions. 

Standards watch: standards for OLAP
Several XML standards are associated with OLAP systems that promote portability of
your MDX applications between OLAP systems. These standards include XML for
Analysis (XMLA) and the Common Warehouse Metamodel (CWM). 

The XMLA standard is an XML wrapper standard for exchanging MDX statements
between various OLAP servers and clients. XMLA systems allow users to use many
different MDX clients such as JPivot against many different OLAP servers. 

CWM is an XML standard for describing all components you might find in an OLAP
system including cubes, dimensions, measures, tables, and aggregates. CWM sys-
tems allow you to define your OLAP cubes in terms of a standardized and portable
XML file so that your cube definition can be exchanged between multiple systems.

In general, commercial vendors make it easy to import CWM data, but frequently
make it difficult to export this data. This makes it easy to start to use their products
but difficult to leave them. Third-party vendor products are frequently needed to pro-
vide high-quality translation from one system to another.
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OLAP systems are unique in that once event records are written to a central fact table,
they’re usually not modified. This write-once, read-many pattern is also common in
log file and web usage statistics processing, as we’ll see next. 

3.6 Incorporating high availability 
and read-mostly systems
Read-mostly non-RDBMSs such as Directory Services and DNS are used to provide
high availability for systems where the data is written once and read often. You use
these high-availability systems to guarantee that data services are always available and
your productivity isn’t lost when your login and password information isn’t available
on the local area network. These systems use many of the same replication features
that you see in NoSQL systems to provide high-availability data services. Studying
these systems carefully gives you an appreciation for their complexity and helps you to
understand how NoSQL systems can be enhanced to benefit from these same replica-
tion techniques. 

 If you’ve ever set up a local area network (LAN), you might be familiar with the
concept of directory services. When you create a LAN, you select one or more computers
to store the data that’s common to all computers on the network. This information is
stored in a highly specialized database called a directory server. Generally, directory serv-
ers have a small amount of read data; write operations are rare. Directory services
don’t have the same capabilities as RDBMSs and don’t use a query language. They’re
not designed to handle complex transactions and don’t provide ACID guarantees and
rollback operations. What they do provide is a fast and ultra-reliable way to look up a
username and password and authenticate a user.

 Directory services need to be highly available. If you can’t authenticate a user, they
can’t log in to the network and no work gets done. In order to provide a high-availabil-
ity service directory, services are replicated across the network on two, three, or four
different servers. If any of the servers becomes unavailable, the remaining servers can
provide the data you need. You see that by replicating their data, directory services
can provide high service levels to applications that need high availability.

 Another reference point for high availability systems is the topic of Domain Name
System (DNS). DNS servers provide a simple lookup service that translates a logical
human-readable domain name like danmccreary.com into a numeric Internet Protocol
(IP) address associated with a remote host, such as 66.96.132.92. DNS servers, like
directory servers, need to be reliable; if they’re not working properly, people can’t get
to the websites they need, unless they know the server IP address.

 We mention directory services and DNS-type systems because they’re true database
systems and are critical for solving highly specialized business problems where high
availability can only be solved by eliminating single points of failure. They also do this
better than a general RDBMS. 
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 Directory services and DNSs are great examples of how different data architecture
patterns are used in conjunction with RDBMSs to provide specialized data services.
Because their data is relatively simple, they don’t need complex query languages to be
effective. These highly distributed systems sit at different points in the CAP triangle to
meet different business objectives. NoSQL systems frequently incorporate techniques
used in these distributed systems to achieve different availability and performance
objectives.

 In our last section, we’ll look at how document revision control systems provide a
unique set of services that NoSQL systems also share. 

3.7 Using hash trees in revision control systems 
and database synchronization 
As we come to our last section, we’ll look at some innovations in revision control sys-
tems for software engineering to see how these innovations are being used in NoSQL
systems. We’ll touch on how innovations in distributed revision control systems like
Subversion and Git make the job of distributed software development much easier.
Finally, we’ll see how revision control systems use hashes and delta mods to synchro-
nize complex documents. 

Revision control systems are critical for projects that involve distributed teams of
developers. For these types of projects, losing code or using the wrong code means
lost time and money. These systems use many of the same patterns you see in NoSQL
systems, such as distributed systems, document hashing, and tree hashing, to quickly
determine whether things are in sync. 

 Early revision control systems (RCSs) weren’t distributed. There was a single hard
drive that stored all source code, and all developers used a networked filesystem to
mount that drive on their local computer. There was a single master copy that every-
one used, and no tools were in place to quickly find differences between two revisions,
making it easy to inadvertently overwrite code. As organizations began to realize that
talented development staff didn’t necessarily live in their city, developers were

Is it “version” or “revision” control?
The terms version control and revision control are both commonly used to describe
how you manage the history of a document. Although there are many definitions, ver-
sion control is a general term applied to any method that tracks the history of a doc-
ument. This would include tools that store multiple binaries of your Microsoft Word
documents in a document management system like SharePoint. Revision control is
a more specific term that describes a set of features found in tools like Subversion
and Git. Revision control systems include features such as adding release labels
(tags), branching, merging, and storing the differences between text documents.
We’ll use the term revision control, as it’s more specific to our context.
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recruited from remote locations and a new generation of distributed revision control
systems was needed.

 In response to the demand of distributed development, a new class of distributed
revision control systems (DRCs) emerged. Systems like Subversion, Git, and Mercurial
have the ability to store local copies of a revisioned database and quickly sync up to a
master copy when needed. They do this by calculating a hash of each of the revision
objects (directories as well as files) in the system. When remote systems need to be
synced, they compare the hashes, not the individual files, which allows syncing even
on large and deep trees of data to occur quickly.

 The data structure used to detect if two trees are the same is called a hash tree or
Merkle tree. Hash trees work by calculating the hash values of each leaf of a tree, and
then using these hash values to create a node object. Node objects can then be hashed
and result in a new hash value for the entire directory. An example of this is shown in
figure 3.13.

Hash trees are used in most distributed revision control systems. If you make a copy of
your current project’s software and store it on your laptop and head to the North
Woods for a week to write code, when you return you simply reconnect to the network
and merge your changes with all the updates that occurred while you were gone. The
software doesn’t need to do a byte-by-byte comparison to figure out what revision to
use. If your system has a directory with the same hash value as the base system, the soft-
ware instantly knows they’re the same by comparing the hash values.

 The “gone to the North Woods for a week” synchronization scenario is similar to
the problem of what happens when any node on a distributed database is discon-
nected from other nodes for a period of time. You can use the same data structures
and algorithms to keep NoSQL databases in sync as in revision control systems. 

hash

Hashes of
hashes

Hashes of root
node

Hashes of
individual files

hash hash

hash dochashhashhash hash

hash

docdocdocdocdoc

Figure 3.13 A hash tree, or Merkle tree, is created by calculating the 
hash of all of the leaf structures in a tree. Once the leaf structures have 
been hashed, all the nodes within a directory combine their hash values 
to create a new document that can also be hashed. This “hash of 
hashes” becomes the hash of the directory. This hash value can in turn 
be used to create a hash of the parent node. In this way you can 
compare the hashes of any point in two trees and immediately know if 
all of the structures below a particular node are the same.
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 Say you need to upgrade some RAM on one of your six servers, and it provides rep-
lication for a master node. You shut down the server, install the RAM, and restart the
server. While the slave server was down, additional transactions were processed and
now need to be replicated. Copying the entire dataset would be inefficient. Using
hash trees allows you to simply check what directories and files have new hash values
and synchronize those files—you’re done.

 As you’ve seen, distributed revision control systems are important in today’s work
environment for database as well as software development scenarios. The ability to syn-
chronize data by reconnecting to a network and merging changes saves valuable time
and money for organizations and allows them to focus on other business concerns. 

3.8 Apply your knowledge
Sally is working on a project that uses a NoSQL document database to store product
reviews for hundreds of thousands of products. Since products and product reviews
have many different types of attributes, Sally agrees that a document store is ideal for
storing this high-variability data. In addition, the business unit needs full-text search
capability also provided by the document store.

 The business unit has come to Sally: they want to perform aggregate analysis on a
subset of all the properties that have been standardized across the product reviews.
The analysis needs to show total counts and averages for different categories of prod-
ucts. Sally has two choices. She can use the aggregate functions supplied by the
NoSQL document database or she can create a MapReduce job to summarize the data
and then use existing OLAP software to do the analysis.

 Sally realizes that both options require about the same amount of programming
effort. But the OLAP solution allows more flexible ad hoc query analysis using a pivot-
table-like interface. She decides to use a MapReduce transform to create a fact table
and dimension tables, and then builds an OLAP cube from the star schema. In the
end, product managers can create ad hoc reports on product reviews using the same
tools they use for product sales. 

 This example shows that NoSQL systems may be ideal for some data tasks, but they
may not have the same features of a traditional table-centric OLAP system for some
analyses. Here, Sally combined parts of a new NoSQL approach with a traditional
OLAP tool to get the best of both worlds.

3.9 Summary
In this chapter, we reviewed many of the existing features of RDBMSs, as well as their
strengths and weaknesses. We looked at how relational databases use the concept of
joins between tables and the challenge this can present when scalability across multi-
ple systems is desired. 

 We reviewed how the large integration costs of siloed systems drove RDBMS ven-
dors to create larger centralized systems that allowed up-to-date integrated reporting
with fine-grained access control. We also reviewed how online analytical systems allow
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nonprogrammers to quickly create reports that slice and dice sales into the categories
they need. We then took a short look at how specific non-RDBMS database systems like
directory services and DNS are used for high availability. Lastly, we showed how distrib-
uted document revisioning systems have developed rapid ways to compare document
trees and how these same techniques can be used in distributed NoSQL systems. 

 There are several take-away points from this chapter. First, RDBMSs continue to be
the appropriate solution for many business problems, and organizations will continue
to use them for the foreseeable future. Second, RDBMSs are continuing to evolve and
are making it possible to relax ACID requirements and manage document-oriented
structures. For example, IBM, Microsoft, and Oracle now support XML column types
and limited forms of XQuery.

 Reflecting on how RDBMSs were impacted by the needs of ERP systems, we should
remember that even if NoSQL systems have cool new features, organizations must
include integration costs when calculating their total cost of ownership.

 One of the primary lessons of this chapter is how critical cross-vendor and cross-
product query languages are in the creation of software platforms. NoSQL systems will
almost certainly stay in small niche areas until universal query standards are adopted.
The fact that object-oriented databases still have no common query language despite
being around for 15 years is a clear example of the role of standards. Only after appli-
cation portability is achieved will software vendors consider large-scale migration away
from SQL to NoSQL systems.

 The data architecture patterns reviewed in this chapter provide the foundation for
our next chapter, where we’ll look at a new set of patterns called NoSQL patterns.
We’ll see how NoSQL patterns fit into new and existing infrastructures to assist organi-
zations in solving business problems in different ways.

3.10 Further reading
 “Database transaction.” Wikipedia. http://mng.bz/1m55.
 “Hash tree.” Wikipedia. http://mng.bz/zQbT
 “Isolation (database systems).” Wikipedia. http://mng.bz/76AF.
 PostgreSQL. “Table 8-1. Data Types.”http://mng.bz/FAtT.
 “Replication (computing).” Wikipedia. http://mng.bz/5xuQ.

http://mng.bz/1m55
http://mng.bz/zQbT
http://mng.bz/76AF
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NoSQL data architecture
patterns
...no pattern is an isolated entity. Each pattern can exist in the world only to the
extent that is supported by other patterns: the larger patterns in which it is embedded,
the patterns of the same size that surround it, and the smaller patterns which are
embedded in it.

—Christopher Alexander, A Timeless Way of Building

One of the challenges for users of NoSQL systems is there are many different archi-
tectural patterns from which to choose. In this chapter, we’ll introduce the most
common high-level NoSQL data architecture patterns, show you how to use them,
and give you some real-world examples of their use. We’ll close out the chapter by
looking at some NoSQL pattern variations such as RAM and distributed stores. 

This chapter covers
 Key-value stores

 Graph stores

 Column family stores

 Document stores

 Variations of NoSQL architecture patterns
62
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Table 4.1 lists the significant data architecture patterns associated with the NoSQL
movement. 

 After reading this chapter, you’ll know the main NoSQL data architectural pat-
terns, how to classify the associated NoSQL products and services with a pattern, and
the types of applications that use each pattern. When confronted with a new business
problem, you’ll have a better understanding of which NoSQL pattern might help pro-
vide a solution. 

 We talked about data architecture patterns in chapter 3; to refresh your memory, a
data architecture pattern is a consistent way of representing data in a structure. This is
true for SQL as well as NoSQL patterns. In this chapter, we’ll focus on the architec-
tural patterns associated with NoSQL. We’ll begin with the simplest NoSQL pattern,
the key-value store, and then look at graph stores, column family stores, document
stores, and some variations on the NoSQL theme. 

4.1 Key-value stores
Let’s begin with the key-value store and then move on to its variants, and how this pat-
tern is used to cost-effectively solve a variety of business problems. We’ll talk about

 What a key-value store is
 Benefits of using a key-value store
 How to use a key-value store in an application
 Key-value store use cases

We’ll start by giving you a clear definition.

Table 4.1 NoSQL data architecture patterns—the most important patterns introduced by the NoSQL
movement, brief descriptions, and examples of where these patterns are typically used

Pattern name Description Typical uses

Key-value store A simple way to associate a 
large data file with a simple 
text string

Dictionary, image store, document/file 
store, query cache, lookup tables

Graph store A way to store nodes and arcs 
of a graph

Social network queries, friend-of-
friends queries, inference, rules sys-
tem, and pattern matching

Column family (Bigtable) 
store

A way to store sparse matrix 
data using a row and a column 
as the key

Web crawling, large sparsely populated 
tables, highly-adaptable systems, sys-
tems that have high variance

Document store A way to store tree-structured 
hierarchical information in a 
single unit

Any data that has a natural container 
structure including office documents, 
sales orders, invoices, product descrip-
tions, forms, and web pages; popular 
in publishing, document exchange, and 
document search
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4.1.1 What is a key-value store?

A key-value store is a simple database that when presented with a simple string (the key)
returns an arbitrary large BLOB of data (the value). Key-value stores have no query
language; they provide a way to add and remove key-value pairs (a combination of key
and value where the key is bound to the value until a new value is assigned) into/from
a database. 

 A key-value store is like a dictionary. A dictionary has a list of words and each word
has one or more definitions, as shown in figure 4.1. 

 The dictionary is a simple key-value store where word entries represent keys and
definitions represent values. Inasmuch as dictionary entries are sorted alphabetically
by word, retrieval is quick; it’s not necessary to scan the entire dictionary to find what
you’re looking for. Like the dictionary, a key-value store is also indexed by the key; the
key points directly to the value, resulting in rapid retrieval, regardless of the number
of items in your store.

 One of the benefits of not specifying a data type for the value of a key-value store is
that you can store any data type that you want in the value. The system will store the
information as a BLOB and return the same BLOB when a GET (retrieval) request is
made. It’s up to the application to determine what type of data is being used, such as a
string, XML file, or binary image.

 The key in a key-value store is flexible and can be represented by many formats:

 Logical path names to images or files
 Artificially generated strings created from a hash of the value
 REST web service calls
 SQL queries

Values, like keys, are also flexible and can be any BLOB of data, such as images, web
pages, documents, or videos. See figure 4.2 for an example of a common key-value
store. 

Figure 4.1 A sample 
dictionary entry showing 
how a dictionary is similar 
to a key-value store. In this 
case, the word you’re 
looking up (amphora) is 
called the key and the 
definitions are the values.
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4.1.2 Benefits of using a key-value store

Why are key-value stores so powerful, and why are they used for so many different pur-
poses? To sum it up: their simplicity and generality save you time and money by mov-
ing your focus from architectural design to reducing your data services costs through

 Precision service levels
 Precision service monitoring and notification
 Scalability and reliability
 Portability and lower operational costs

MD5 hash

Image name

Web page URL

File path name

REST web service call

SQL query

Key Value

image-12345.jpg Binary image file

http://www.example.com/my-web-
page.html

HTML of a web page

N:/folder/subfolder/myfile.pdf PDF document

9e107d9d372bb6826bd81d3542a419d6 The quick brown fox jumps
over the lazy dog

view-person?person-
id=12345&format=xml

<Person><id>12345</id
.</Person>

SELECT PERSON FROM PEOPLE
WHERE PID="12345"

<Person><id>12345</id
.</Person>

Figure 4.2 Sample items in a key-value store. A key-value store has a key that’s 
associated with a value. Keys and values are flexible. Keys can be image names, web 
page URLs, or file path names that point to values like binary images, HTML web pages, 
and PDF documents.

The many names of a key-value store
A key-value store has different names depending on what system or programming lan-
guage you’re using. The process of looking up a stored value using an indexed key
for data retrieval is a core-data access pattern that goes back to the earliest days of
computing. A key-value store is used in many different computing systems but wasn’t
formalized as a data architecture pattern until the early 1990s. Popularity increased
in 1992, when the open source Berkley DB libraries popularized it by including the
key-value store pattern in the free UNIX distribution. Key-value store systems are
sometimes referred to as key-data stores, since any type of byte-oriented data can be
stored as the value. For the application programmer, a structure of an array with two
columns is generally called an associative array or map, and each programming lan-
guage may call it something slightly different—a hash, a dictionary, or even an object.
The current convention, and this text, uses the term key-value store. For more on the
history of Berkeley DB, see http://mng.bz/kG9c. 

http://mng.bz/kG9c
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PRECISION SERVICE LEVELS

When you have a simple data service interface that’s used across multiple applications,
you can focus on things like creating precise service levels for data services. A service
level doesn’t change the API; it only puts precise specifications on how quickly or reli-
ably the service will perform under various load conditions. For example, for any data
service you might specify

 The maximum read time to return a value
 The maximum write time to store a new key-value pair
 How many reads per second the service must support
 How many writes per second the service must support
 How many duplicate copies of the data should be created for enhanced 

reliability
 Whether the data should be duplicated across multiple geographic regions if

some data centers experience failures
 Whether to use transaction guarantees for consistency of data or whether even-

tual consistency is adequate

One of the best ways to visualize how developers control this is to think of a series of
knobs and controls similar to what you’d see on a radio tuner, as shown in figure 4.3.

 Each input knob can be adjusted to tune the service level that your business needs.
Note that as the knobs are adjusted, the estimated monthly cost of providing this data
service will change. It can be difficult to precisely estimate the total cost, since the
actual cost of running the service is driven by market conditions and other factors,
such as the cost for moving data into and out of the service. 

 You can configure your system to use a simple input form for setting up and allo-
cating resources to new data services. By changing the information using the form,
you can quickly change the number of resources allocated to the service. This simple
interface allows you to set up new data services and reconfigure data services quickly
without the additional overhead of operations staff. Because service levels can be
tuned to an application requirement, you can rapidly allocate the appropriate reliabil-
ity and performance resources to the system. 

Inputs Output

Max read
time

Max write
time

Reads per
second

Writes per
second

Duplicate
copies

Multiple
datacenters

Transaction
guarantees

Estimated
price/month

$435.50

Figure 4.3 NoSQL data services can be adjusted like the tuning knobs on a radio. Each knob can 
individually be adjusted to control how many resources are used to provide service guarantees. The 
more resources you use, the higher the cost will be.
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PRECISION SERVICE MONITORING AND NOTIFICATION

In addition to specifying service levels, you can also invest in tools to monitor your ser-
vice level. When you configure the number of reads per second a service performs, set-
ting the parameter too low may mean the user would experience a delay during peak
times. By using a simple API, detailed reports showing the expected versus actual loads
can point you to system bottlenecks that may need additional resource adjustments. 

 Automatic notification systems can also trigger email messages when the volume of
reads or writes exceeds a threshold within a specified period of time. For example,
you may want to send an email notification if the number of reads per second exceeds
80% of some predefined number within a 30-minute period. The email message
could contain a link to the monitoring tools as well as links that would allow you to
add more servers if the service level was critical to your users. 

SCALABILITY AND RELIABILITY

When a database interface is simple, the resulting systems can have higher scalability
and reliability. This means you can tune any solution to the desired requirements.
Keeping an interface simple allows novice as well as advanced data modelers to build
systems that utilize this power. Your only responsibility is to understand how to put this
power to work solving business problems.

 A simple interface allows you to focus on load and stress testing and monitoring of
service levels. Because a key-value store is simple to set up, you can spend more time
looking at how long it takes to put or get 10,000 items. It also allows you to share these
load- and stress-testing tools with other mem-
bers of your development team. 

PORTABILITY AND LOWER OPERATIONAL COSTS

One of the challenges for information systems
managers is to continually look for ways to
lower their operational costs of deploying sys-
tems. It’s unlikely that a single vendor or solu-
tion will have the lowest cost for all of your
business problems. Ideally, information sys-
tems managers would like to annually request
data service bids from their database vendors.
In the traditional relational database world, this
is impractical since porting applications
between systems is too expensive compared to
the relative savings of hosting your data on a
new vendor’s system. The more complicated
and nonstandardized they are, the less portable
they can be and the more difficult moving them
to the lowest cost operator is (see figure 4.4). 

Low portability

Complex and
nonstandard APIs

Database

Application

High portability

Simple and
standard APIs

Database

Application

Figure 4.4 Portability of any application 
depends on database interface complexity. 
The low-portability system on the left has 
many complex interfaces between the 
application and the database, and porting 
the application between two databases 
might be a complex process requiring a 
large testing effort. In contrast, the high-
portability application on the right only 
uses a few standardized interfaces, such 
as put, get, and delete, and could be 
quickly ported to a new database with 
lower testing cost.
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4.1.3 Using a key-value store

Let’s take a look at how an application developer might use a key-value store within an
application. The best way to think about using a key-value store is to visualize a single
table with two columns. The first column is called the key and the second column is
called the value. There are three operations performed on a key-value store: put, get,
and delete. These three operations form the basis of how programmers interface with
the key-value store. We call this set of programmer interfaces the application program
interface or API. The key-value interface is summarized in figure 4.5. 

 Instead of using a query language, application developers access and manipulate a
key-value store with the put, get, and delete functions, as shown here:

1 put($key as xs:string, $value as item()) adds a new key-value pair to the
table and will update a value if this key is already present.

2 get($key as xs:string) as item() returns the value for any given key, or it
may return an error message if there’s no key in the key-value store.

3 delete($key as xs:string) removes a key and its value from the table, or it
many return an error message if there’s no key in the key-value store.

Standards watch: complex APIs can still be portable if they’re standardized
and have portability tests
It’s important to note that complex interfaces can still permit high portability. For
example, XQuery, a query language used in XML systems, has hundreds of functions,
which can be considered a complex application-database interface. But these func-
tions have been standardized by the World Wide Web (W3C) and are still considered
to be a low-cost and highly portable application-database interface layer. The W3C
provides a comprehensive XQuery test suite to verify if the XQuery interfaces are con-
sistent between implementations. Any XQuery implementation that has over a 99%
pass rate allows applications to be ported without significant change. 

1 123PUT value123 123 value123

Inputs Outputs

2 456GET 456 value456 value456

3 789DELETE 789

Key Value

Figure 4.5 The key-value store API has three simple commands: put, get, and 
delete. This diagram shows how the put command inserts the input key "123" and 
value "value123" into a new key-value pair; the get command presents the key 
"456" and retrieves the value "value456"; and the delete command presents the 
key "789" and removes the key-value pair.
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Figure 4.6 shows how an application would store (put), retrieve (get), and remove
(delete) an image from a key-value store.  

In addition to the put, get, and delete API, a key-value store has two rules: distinct keys
and no queries on values:

1 Distinct keys—You can never have two rows with the same key-value. This means
that all the keys in any given key-value store are unique.

2 No queries on values—You can’t perform queries on the values of the table.

The first rule, distinct keys, is straightforward: if you can’t uniquely identify a key-value
pair, you can’t return a single result. The second rule requires some additional
thought if your knowledge base is grounded in traditional relational databases. In a
relational database, you can constrain a result set using the where clause, as shown in
figure 4.7.

 A key-value store prohibits this type of operation, as you can’t select a key-value
pair using the value. The key-value store resolves the issues of indexing and retrieval
in large datasets by transferring the association of the key with the value to the appli-
cation layer, allowing the key-value store to retain a simple and flexible structure. This
is an example of the trade-offs between application and database layer complexity we
discussed in chapter 2.

Key-value
store

put(' /images/my-image.png', $image-data) get(' /images/my-image.png')

delete(' /images/my-image.png')

Figure 4.6 The code and result of using the commands associated with a 
key-value store. To add a new key, you use the put command, as shown on 
the left; to remove, you use the delete command, as shown in the middle; 
and to retrieve, you use the get command, as shown on the right. 

Standards watch: REST API
Note that we use the verb put instead of add in a key-value store to align with the
standard Representational State Transfer (REST) protocol, a style of software archi-
tecture for distributed systems that uses clients to initiate requests and servers to
process requests and return responses. The use of as xs:string indicates that the
key can be any valid string of characters with the exception of binary structures. The
item() references a single structure that may be a binary file. The xs: prefix indi-
cates that the format follows the W3C definition of data types that’s consistent with
the XML Schema and the closely related XPath and XQuery standards.
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 There are few restrictions
about what you can use as a key as
long as it’s a reasonably short
string of characters. There are also
few restrictions about what types
of data you can put in the value of
a key-value store. As long as your
storage system can hold it, you can
store it in a key-value store, mak-
ing this structure ideal for multi-
media: images, sounds, and even
full-length movies. 

GENERAL PURPOSE

In addition to being simple, a key-
value store is a general-purpose
tool for solving business problems. It’s the Swiss Army knife of databases. What
enables the generality is the ability for the application programmer to define what
their key structures will be and what type of data they’re going to store in the values. 

 Now that we’ve looked at the benefits and uses of a key-value store, we’ll look at
two use case examples. The first, storing web pages in a key-value store, shows how web
search engines such as Google easily store entire websites in a key-value store. So if you
want to store external websites in your own local database, this type of key-value store
is for you. 

 The second use case, Amazon simple storage service (S3), shows how you can use a
key-value store like S3 as a repository for your content in the cloud. If you have digital
media assets such as images, music, or video, you should consider using a key-value
store to increase the reliability and performance for a fraction of the cost. 

4.1.4 Use case: storing web pages in a key-value store

We’re all familiar with web search engines, but you may not realize how they work.
Search engines like Google use a tool called a web crawler to automatically visit a web-
site to extract and store the content of each web page. The words in each web page
are then indexed for fast keyword search. 

 When you use your web browser, you usu-
ally enter a web address such as http://
www.example.com/hello.html. This uniform
resource locator, or URL, represents the key of a
website or a web page. You can think of the
web as a single large table with two columns,
as depicted in figure 4.8.

 The URL is the key, and the value is the
web page or resource located at that key. If

• Result set based on row values

Traditional relational model

• Values of columns must all have
the same data type

• Values of rows for large datasets
must be indexed

• All queries return a single item

• Values may contain any data type
• No indexes on values

Key-value store model

Figure 4.7 The trade-offs associated with traditional 
relational models (which focus on the database layer) 
versus key-value store models (which focus on the 
application layer).

Key Value

http://www.example.com/index.html <html>…

http://www.example.com/about.html <html>…

http://www.example.com/products.html <html>…

http://www.example.com/logo.png Binary…

Figure 4.8 How you can use URLs as a key in a 
key-value store. Since each web page has a 
unique URL, you can be assured that no two web 
pages have the same URL.

http://www.example.com/hello.html
http://www.example.com/hello.html
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all the web pages in only part of the web were stored in a single key-value store system,
there might be billions or trillions of key-value pairs. But each key would be unique,
like a URL to a web page is unique.

 The ability to use a URL as a key allows you to store all of the static or unchanging
components of your website in a key-value store. This includes images, static HTML
pages, CSS, and JavaScript code. Many websites use this approach, and only the
dynamic portions of a site where pages are generated by scripts are not stored in the
key-value store. 

4.1.5 Use case: Amazon simple storage service (S3)

Many organizations have thousands or millions of digital assets they want to store.
These assets can include images, sound files, and videos. By using Amazon Simple
Storage Service, which is really a key-value store, a new customer can quickly set up a
secure web service accessible to anyone as long as they have a credit card.

 Amazon S3, launched in the U.S. in March 2006, is an online storage web service
that uses a simple REST API interface for storing and retrieving your data, at any time,
from anywhere on the web. 

 At its core, S3 is a simple key-value store with some enhanced features: 

 It allows an owner to attach metadata tags to an object, which provides addi-
tional information about the object; for example, content type, content length,
cache control, and object expiration.

 It has an access control module to allow a bucket/object owner to grant rights
to individuals, groups, or everyone to perform put, get, and delete operations
on an object, group of objects, or bucket.

At the heart of S3 is the bucket. All objects you store in S3 will be in buckets. Buckets
store key/object pairs, where the key is a string and the object is whatever type of data
you have (like images, XML files, digital music). Keys are unique within a bucket,
meaning no two objects will have the same key-value pair. S3 uses the same HTTP REST
verbs (PUT, GET, and DELETE) discussed earlier in this section to manipulate objects: 

 New objects are added to a bucket using the HTTP PUT message.
 Objects are retrieved from a bucket using the HTTP GET message.
 Objects are removed from a bucket using the HTTP DELETE message.

To access an object, you can generate a URL from the bucket/key combination; for
example, to retrieve an object with a key of gray-bucket in a bucket called testbucket,
the URL would be http://testbucket.s3.amazonws.com/gray-bucket .png. 

 The result on your screen would be
the image shown in figure 4.9.

 In this section, we looked at key-value
store systems and how they can benefit
an organization, saving them time and
money by moving the focus from archi-

Figure 4.9 This image is the 
result of performing the 
http://testbucket.s3 
.amazonws.com/gray-bucket 
.png GET request from an 
Amazon S3 bucket.

http://testbucket.s3.amazonws.com/gray-bucket.png
http://testbucket.s3.amazonws.com/gray-bucket.png
http://testbucket.s3.amazonws.com/gray-bucket.png
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tectural design to reducing data services costs. We’ve demonstrated how these simple
and versatile structures can and are used to solve a broad range of business problems
for organizations having similar as well as different business requirements. As you
attack your next business problem, you’ll be able to determine whether a key-value
store is the right solution. 

 Now that you understand the key-value store, let’s move to a similar and more com-
plex data architecture pattern: the graph store. As you move through the graph store
section, you’ll see some similarities to the key-value store as well as different business
situations where a using a graph store is the more appropriate solution. 

4.2 Graph stores
Graph stores are important in applications that need to analyze relationships between
objects or visit all nodes in a graph in a particular manner (graph traversal). Graph
stores are highly optimized to efficiently store graph nodes and links, and allow you to
query these graphs. Graph databases are useful for any business problem that has
complex relationships between objects such as social networking, rules-based engines,
creating mashups, and graph systems that can quickly analyze complex network struc-
tures and find patterns within these structures. 

 By the end of this section, you’ll be able to identify the key features of a graph
store and understand how graph stores are used to solve specific business problems.
You’ll become familiar with graph terms such as nodes, relationships, and properties,
and you’ll know about the published W3C standards for graph data. You’ll also see
how graph stores have been effectively implemented by companies to perform link
analysis, use with rules and inference engines, and integrate linked data.

4.2.1 Overview of a graph store

A graph store is a system that contains a sequence of nodes and relationships that, when
combined, create a graph. You know that in a key-value store there two data fields: the
key and the value. In contrast, a graph store has three data fields: nodes, relationships,
and properties. Some types of graph stores are referred to as triple stores because of their
node-relationship-node structure (see figure 4.10). 

 In the last section, you saw how the structure of a key-value store is general and can
be applied to many different situations. This is also true of the basic node-relationship-
node structure of a graph store. Graph
stores are ideal when you have many items
that are related to each other in complex
ways and these relationships have properties
(like a sister/brother of). Graph stores allow
you to do simple queries that show you the
nearest neighboring nodes as well as queries
that look deep into networks and quickly
find patterns. For example, if you use a

RelationshipNode Node

Properties PropertiesProperties

Figure 4.10 A graph store consists of many 
node-relationship-node structures. Properties 
are used to describe both the nodes and 
relationships.
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relational database to store your list of friends, you can produce a list of your friends
sorted by their last name. But if you use a graph store, you can not only get a list of your
friends by their last name, you can also get a list of which friends are most likely to buy
you a beer! Graph stores don’t just tell you there’s a relationship—they can give you
detailed reports about each of your relationships.

 Graph nodes are usually representations of real-world objects like nouns. Nodes
can be people, organizations, telephone numbers, web pages, computers on a net-
work, or even biological cells in a living organism. The relationships can be thought of
as connections between these objects and are typically represented as arcs (lines that
connect) between circles in diagrams. 

 Graph queries are similar to traversing nodes in a graph. You can query to ask
things like these: 

 What’s the shortest path between two nodes in a graph?
 What nodes have neighboring nodes that have specific properties?
 Given any two nodes in a graph, how similar are their neighboring nodes?
 What’s the average connectedness of various points on a graph with each other?

As you saw in chapter 2, RDBMSs use artificial numbers as primary and foreign keys to
relate rows in tables that are stored on different sections of a single hard drive. Per-
forming a join operation in RDBMSs is expensive in terms of latency as well as disk
input and output. Graph stores relate nodes together, understanding that two nodes
with the same identifiers are the same node. Graph stores assign internal identifiers to
nodes and use those identifiers to join networks together. But unlike RDBMSs, graph
store joins are computationally lightweight and fast. This speed is attributed to the
small nature of each node and the ability to keep graph data in RAM, which means
once the graph is loaded into memory, retrieving the data doesn’t require disk input
and output operations. 

 Unlike other NoSQL patterns we’ll discuss in this chapter, graph stores are difficult
to scale out on multiple servers due to the close connectedness of each node in a
graph. Data can be replicated on multiple servers to enhance read and query perfor-
mance, but writes to multiple servers and graph queries that span multiple nodes can
be complex to implement.

 Although graph stores are built around the simple and general-purpose node-
relationship-node data structure, graph stores come with their own complex and
inconsistent jargon when they’re used in different ways. You’ll find that you interact
with graph stores in much the same way you do other types of databases. For example,
you’ll load, query, update, and delete data. The difference is found in the types of
queries you use. A graph query will return a set of nodes that are used to create a
graph image on the screen to show you the relationship between your data. 
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 Let’s take a look and see the variations on
terms used to describe different types of graphs. 

 As you use the web, you’ll often see links on a
page that take you to another page; these links can
be represented by a graph or triple. The current
web page is the first or source node, the link is the
arc that “points to” the second page, and the sec-
ond or destination page is the second node. In this
example, the first node is represented by the URL
of the source page and the second node or desti-
nation is the URL of the destination page. This
linking process can be found in many places on
the web, from page links to wiki sites, where each
source and destination node is a page URL.
Figure 4.11 is an example of a graph store that has
a web page that links to other web pages. 

 The concept of using URLs to identify nodes is appealing since it’s human readable
and provides a structure within the URL. The W3C generalized this structure to store
the information about the links between pages as well as the links between objects into
a standard called Resource Description Format, more commonly known as RDF. 

4.2.2 Linking external data with the RDF standard

In a general-purpose graph store, you can create your own method to determine
whether two nodes reference the same point in a graph. Most graph stores will assign
internal IDs to each node as they load these nodes into RAM. The W3C has focused on
a process of using URL-like identifiers called uniform resource identifiers (URIs) to create
explicit node identifiers for each node. This standard is called the W3C Resource
Description Format (RDF). 

RDF was specifically created to join together external datasets created by different
organizations. Conceptually, you can load two external datasets into one graph store
and then perform graph queries on this joined database. The trick is knowing when
two nodes reference the same object. RDF uses directed graphs, where the relation-
ship specifically points from a source node to a des-
tination node. The terminology for the source,
link, and destination may vary based on your situa-
tion, but in general the terms subject, predicate, and
object are used, as shown in figure 4.12.

 These terms come from formal logic systems
and language. This terminology for describing how
nodes are identified has been standardized by the
W3C in their RDF standard. In RDF each node-arc-
node relationship is called a triple and is associated

Source web page Destination web page

Figure 4.11 An example of using a 
graph store to represent a web page 
that contains links to two other web 
pages. The URL of the source web 
page is stored as a URL property and 
each link is a relationship that has a 
“points to” property. Each link is 
represented as another node with a 
property that contains the 
destination page’s URL.

Subject Object
Predicate

Figure 4.12 How RDF uses specific 
names for the general node-
relationship-node structure. The 
source node is the subject, and the 
destination node is the object. The 
relationship that connects them 
together is the predicate. The entire 
structure is called an assertion.
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with an assertion of fact. In figure 4.13 the first
assertion is (book, has-author, Person123), and
the second assertion is (Person123, has-name,
“Dan”).

 When stored in a graph store, the two state-
ments are independent and may even be
stored on different systems around the world.
But if the URI of the Person123 structure is the
same in both assertions, your application can
figure out that the author of the book has a
name of "Dan", as shown in figure 4.14.

The ability to traverse a graph relies on the fact that two nodes in different groups ref-
erence the same physical object. In this example, the Person123 node needs to glob-
ally refer to the same item. Once you determine they’re the same, you can join the
graphs together. This process is useful in areas like logic inference and complex pat-
tern matching.

 As you can imagine, the W3C, who created the RDF standard, is highly motivated to
be consistent across all of their standards. Since they already have a method for identi-
fying an HTML page anywhere in the world using a uniform resource locator struc-
ture, it makes sense to repurpose these structures whenever possible. The major
difference is that, unlike a URL, a URI doesn’t have to point to any actual website or
web page. The only criteria is that you must have a way to make them globally consis-
tent across the entire web and match exactly when you compare two nodes.

 While a pure triple store is the ideal, in the real world triple stores frequently asso-
ciate other information with each triple. For example, they might include what group
ID the graph belongs to, the date and time the node was created or last updated, or
what security groups are associated with the graph. These attributes are frequently
called link metadata because they describe information about the link itself. Storing
this metadata with every node does take more disk space, but it makes the data much
easier to audit and manage. 

4.2.3 Use cases for graph stores

In this section, we’ll look at situations where a graph store can be used to effectively
solve a particular business problem:

“Dan”
Has-name

Book Person123
Has-author Figure 4.14 How two distinct RDF 

assertions can be joined together to 
create a new assertion. From this 
graph you can answer yes to the 
question, “Does this book have any 
author that has the name "Dan"?”

Book Person123
Has-author

Person123 “Dan”
Has-name

Figure 4.13 Two distinct RDF assertions. 
The first assertion states that a book has a 
person as its author. The second assertion 
shows that this person has a name of Dan. 
Since the object of the first and the subject 
of the second have the same URI, they can 
be joined together.
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 Link analysis is used when you want to perform searches and look for patterns
and relationships in situations such as social networking, telephone, or email
records.

 Rules and inference are used when you want to run queries on complex structures
such as class libraries, taxonomies, and rule-based systems.

 Integrating linked data is used with large amounts of open linked data to do real-
time integration and build mashups without storing data.

LINK ANALYSIS

Sometimes the best way to solve a business problem is to traverse graph data—a good
example of this is social networking. An example of a social network graph is shown in
figure 4.15. 

 As you add new contacts to your friends list, you might want to know if you have
any mutual friends. To get this information, you’d first need to get a list of your
friends, and for each one of them get a list of their friends (friends-of-friends).
Though you can do this type of search against a relational database, after the initial
pass of listing out your friends, the system performance drops dramatically.

Figure 4.15 A social network graph generated by the LinkedIn InMap system. 
Each person is represented by a circle, and a line is drawn between two people 
that have a relationship. People are placed on the graph based on the number 
of connections they have with all the other people in the graph. People and 
relationships are shaded the same when there’s a high degree of connectivity 
between the people. Calculating the placement of each person in a social 
network map is best performed by an in-memory graph traversal program.
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Doing this type of analysis using an RDBMS would be slow. In the social networking
scenario, you can create a “friends” table for each person with three columns: the ID
of the first person, the ID of the second person, and the relationship type (family,
close friend, or acquaintance). You can then index that table on both the first and sec-
ond person, and an RDBMS will quickly return a list of your friends and your friends-
of-friends. But in order to determine the next level of relationships, another SQL
query is required. As you continue to build out the relationships, the size of each
query grows quickly. If you have 100 friends who each have 100 friends, the friends-of-
friends query or the second-level friends returns 10,000 (100 x 100) rows. As you
might guess, doing this type of query in SQL could be complex.

 Graph stores can perform these operations much faster by using techniques that
consolidate and remove unwanted nodes from memory. Though graph stores would
clearly be much faster for link analysis tasks, they usually require enough RAM to store
all the links during analysis.

 Graph stores are used for things beyond social networking—they’re appropriate
for identifying distinct patterns of connections between nodes. For example, creating
a graph of all incoming and outgoing phone calls between people in a prison might
show a concentration of calls (patterns) associated with organized crime. Analyzing
the movement of funds between bank accounts might show patterns of money laun-
dering or credit card fraud. Companies that are under criminal investigation might
have all of their email messages analyzed using graph software to see who sent who
what information and when. Law firms, law enforcement agencies, intelligence agen-
cies, and banks are the most frequent users of graph store systems to detect legitimate
activities as well as for fraud detection.

 Graph stores are also useful for linking together data and searching for patterns
within large collections of text documents. Entity extraction is the process of identifying
the most important items (entities) in a document. Entities are usually the nouns in a
document like people, dates, places, and products. Once the key entities have been
identified, they’re used to perform advanced search functions. For example, if you
know all the dates and people mentioned in a document, you can create a report that
shows which documents mention what people and when. 

 This entity extraction process (a type of natural language processing or NLP) can be
combined with other tools to extract simple facts or assertions made within a docu-
ment. For example, the sentence “John Adams was born on October 19, 1735” can be
broken into the following assertions: 

1 A person record was found with the name of John Adams and is a subject.
2 The born-on relationship links the subject to the object.
3 A date object record was found that has the value of October 19, 1735.

Although simple assertions can be easy to find using simple NLP processing, the pro-
cess of fully understanding every sentence can be complex and dependant on the con-
text of the situation. Our key takeaway is that if assertions are found in text, they can
best be represented in graph structures. 
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GRAPHS, RULES, AND INFERENCE

The term rules can have multiple meanings that depend on where you’re coming from
and the context of the situation. Here, we use the term to define abstract rules that
relate to an understanding of objects in a system, and how the object properties allow
you to gain insight into and better use large datasets. 

RDF was designed to be a standard way to represent many types of problems in the
structure of a graph. A primary use for RDF is to store logic and rules. Once you’ve set
these rules up, you can use an inference or rules engine to discover other facts about a
system.

 In our section on link analysis, we looked at how text can be encoded with entities
such as people and dates to help you find facts. We can now take things a step further
to get additional information from the facts that will help you solve business problems. 

 Let’s start with trust, since it’s an important aspect for businesses who want to
attract and retain customers. Suppose you have a website that allows anyone to post
restaurant reviews. Would there be value in allowing you to indicate which reviewers
you trust? You’re going out to dinner and you’re considering two restaurants. Each
restaurant has positive and negative reviews. Can you use simple inference to help you
decide which restaurant to visit? 

 As a first test, you could see if your friends reviewed the restaurants. But a more
powerful test would be to see if any of your friends-of-friends also reviewed the restau-
rants. If you trust John and John
trusts Sue, what can you infer about
your ability to trust Sue’s restaurant
recommendations? Chances are that
your social network will help you use
inference to calculate what reviews
should have more weight. This is a
simple example of using networks,
graphs, and inference to gain addi-
tional knowledge on a topic. The use
of RDF and inference isn’t limited to
social networks and product reviews.
RDF is a general-purpose structure
that can be used to store many forms
of business logic.

 The W3C does more than define
RDF; it has an entire framework of
standards for using RDF to solve busi-
ness problems. This framework is fre-
quently referred to as the Semantic
Web Stack. Some of these are
described in figure 4.16. 

User interface and applications

Trust

Proof

Unifying logic

Ontologies:
OWL

Rules:
RIF/SWRLQuerying:

SPARQL
Taxonomies: RDFS

C
ryptography

Data interchange: RDF

Syntax: XML

Identifiers: URI Character set: UNICODE

Figure 4.16 A typical semantic web stack with 
common low-level standards like URI, XML, and RDF 
at the bottom of the stack. The middle layer includes 
standards for querying (SPARQL) and standards for 
rules (RIF/SWRL). At the top of the stack are user 
interface and application layers above abstract layers 
of logic, proof, and trust building.
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 At the bottom of the stack, you see standards that are used in many areas, such as
standardized character sets (Unicode) and standards that represent identifiers to
objects in a URI-like format. Above that, you see that RDF is stored in XML files, a good
example of using the XML tree-like document structure to contain graphs. Above the
XML layer you see ways that items are classified using a taxonomy (RDFS) and above
this you see the standards for ontologies (OWL) and rules (RIF/SWRL). The SPARQL
query language also sits above the RDF layer. Above these areas, you see some of the
areas that are still not standardized: logic, proof, and trust. This is where much of the
research and development in the Semantic Web is focused. At the top, the user inter-
face layer is similar to the application layers we talked about in chapter 2. Finally,
along the side and to the right are cryptography standards that are used to securely
exchange data over the public internet.

 Many of the tools and languages associated with the upper layers of the Semantic
Web Stack are still in research and development, and the number of investment case
studies showing a significant ROI remain few and far between. A more practical step is
to store original source documents with their extracted entities (annotations) directly
in a document store that supports mixed content. We’ll discuss these concepts and
techniques later in the next chapter when we look at XML data stores. 

 In the next section, we’ll look at how organizations are combining publicly avail-
able datasets (linked open data) from domain areas such as media, medical and envi-
ronmental science, and publications to perform real-time extract, transform, and
display operations. 

USING GRAPHS TO PROCESS PUBLIC DATASETS

Graph stores are also useful for doing analysis on data that hasn’t been created by
your organization. What if you need to do analysis with three different datasets that
were created by three different organizations? These organizations may not even
know each other exists! So how can you automatically join their datasets together to
get the information you need? How do you create mashups or recombinations of this
data in an efficient way? One answer is by using a set of tools referred to as linked open
data or LOD. You can think of it as an integration technique for doing joins between
disparate datasets to create new applications and new insights.

LOD strategies are important for anyone doing research or analysis using publicly
available datasets. This research includes topics such as customer targeting, trend
analysis, sentiment analysis (the application of NLP, computational linguistics, and
text analytics to identify and extract subjective information in source materials), or
the creation of new information services. Recombining data into new forms provides
opportunities for new businesses. As the amount of LOD grows, there are often new
opportunities for new business ventures that combine and enrich this information.

LOD integration creates new datasets by combining information from two or more
publicly available datasets that conform to the LOD structures such as RDF and URIs. A
figure of some of the popular LOD sites called an LOD cloud diagram is shown in
figure 4.17. 
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At the center of LOD cloud diagrams you’ll see sites that contain a large number of
general-purpose datasets. These sites include LOD hub sites such as DBPedia or Free-
base. DBPedia is a website that attempts to harvest facts from Wikipedia and convert
them into RDF assertions. The data in the info boxes in Wikipedia is a good example
of a source of consistent data in wiki format. Due to the diversity of data in DBPedia,
it’s frequently used as a hub to connect different datasets together.

 Once you find a site that has the RDF information you’re looking for, you can pro-
ceed in two ways. The first is to download all the RDF data on the site and load it into
your graph store. For large RDF collections like DBPedia that have billions of triples,
this can be impracticable. The second and more efficient method is to find a web ser-
vice for the RDF site called a SPARQL endpoint. This service allows you to submit
SPARQL queries to extract the data from each of the websites you need in an RDF form
that can then be joined with other RDF datasets. By combining the data from SPARQL
queries, you can create new data mashups that join data together in the same way
joins combine data from two different tables in an RDBMS.

 The key difference between a SPARQL query and an RDBMS is the process that cre-
ates the primary/foreign keys. In the RDBMS, all of the keys are in the same domain,

Figure 4.17 The linked open data cloud is a series of shaded circles that are connected by lines. The shades 
indicate the domain—for example, darker for geographic datasets, lighter for life sciences. (Diagram by Richard 
Cyganiak and Anja Jentzsch: http://lod-cloud.net)

http://lod-cloud.net
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but in the LOD the data was created by different organizations, so the only way to join
the data is to use consistent URIs to identify nodes.

 The number of datasets that participate in the LOD community is large and grow-
ing, but as you might guess, there are few ways to guarantee the quality and consis-
tency of public data. If you find inconsistencies and missing data, there’s no easy way
to create bulk updates to correct the source data. This means you may need to manu-
ally edit hundreds of Wiki pages in order to add or correct data. After this is done, you
may need to wait till the next time the pages get indexed by the RDF extraction tools.
These are challenges that have led to the concept of curated datasets that are based
on public data but then undergo a postprocessing cleanup and normalization phase
to make the data more usable by organizations.

 In this section, we’ve covered graph representations and shown how organizations
are using graph stores to solve business problems. We now move on to our third
NoSQL data architecture pattern. 

4.3 Column family (Bigtable) stores
As you’ve seen, key-value stores and graph stores have simple structures that are useful
for solving a variety of business problems. Now let’s look at how you can combine a
row and column from a table to use as the key.

 Column family systems are important NoSQL data architecture patterns because
they can scale to manage large volumes of data. They’re also known to be closely tied
with many MapReduce systems. As you may recall from our discussion of MapReduce
in chapter 2, MapReduce is a framework for performing parallel processing on large
datasets across multiple computers (nodes). In the MapReduce framework, the map
operation has a master node which breaks up an operation into subparts and distrib-
utes each operation to another node for processing, and reduce is the process where
the master node collects the results from the other nodes and combines them into the
answer to the original problem.

 Column family stores use row and column identifiers as general purposes keys for
data lookup. They’re sometimes referred to as data stores rather than databases, since
they lack features you may expect to find in traditional databases. For example, they
lack typed columns, secondary indexes, triggers, and query languages. Almost all col-
umn family stores have been heavily influenced by the original Google Bigtable paper.
HBase, Hypertable, and Cassandra are good examples of systems that have Bigtable-
like interfaces, although how they’re implemented varies.

 We should note that the term column family is distinct from a column store. A column-
store database stores all information within a column of a table at the same location on
disk in the same way a row-store keeps row data together. Column stores are used in
many OLAP systems because their strength is rapid column aggregate calculation.
MonetDB, SybaseIQ, and Vertica are examples of column-store systems. Column-store
databases provide a SQL interface to access their data.
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4.3.1 Column family basics

Our first example of using rows and columns as a key is the spreadsheet. Though most
of us don’t think of spreadsheets as a NoSQL technology, they serve as an ideal way to
visualize how keys can be built up from more than one value. Figure 4.18 shows a
spreadsheet with a single cell at row 3 and column 2 (the B column) that contains the
text “Hello World!”

 In a spreadsheet, you use the combination of a row number and a column letter as
an address to “look up” the value of any cell. For example, the third column in the sec-
ond row in the figure is identified by the key C2. In contrast to the key-value store,
which has a single key that identifies the value, a spreadsheet has row and column
identifiers that make up the key. But like the key-value store, you can put many differ-
ent items in a cell. A cell can contain data, a
formula, or even an image. The model for this
is shown in figure 4.19.

 This is roughly the same concept in column
family systems. Each item of data can only be
found by knowing information about the row
and column identifiers. And, like a spread-
sheet, you can insert data into any cell at any
time. Unlike an RDBMS, you don’t have to
insert all the column’s data for each row. 

4.3.2 Understanding column family keys

Now that you’re comfortable with slightly more complex keys, we’ll add two additional
fields to the keys from the spreadsheet example. In figure 4.20 you can see we’ve
added a column family and timestamp to the key.

A B C

1
2
3 Hello World!
4
5
6

Figure 4.18 Using a 
row and column to 
address a cell. The cell 
has an address of 3B 
and can be thought of as 
the lookup key in a 
sparse matrix system.

Key

Column
family

Column
name Timestamp ValueRow-ID

Figure 4.20 The key structure in column family stores is similar to a 
spreadsheet but has two additional attributes. In addition to the 
column name, a column family is used to group similar column names 
together. The addition of a timestamp in the key also allows each cell 
in the table to store multiple versions of a value over time.

Key

Row
number

Column
letter Value

Figure 4.19 Spreadsheets use a row-
column pair as a key to look up the value 
of a cell. This is similar to using a key-
value system where the key has two parts. 
Like a key-value store, the value in a cell 
may take on many types such as strings, 
numbers, or formulas.
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The key in the figure is typical of column stores. Unlike the typical spreadsheet, which
might have 100 rows and 100 columns, column family stores are designed to
be...well...very big. How big? Systems with billions of rows and hundreds or thousands
of columns are not unheard of. For example, a Geographic Information System (GIS)
like Google Earth might have a row ID for the longitude portion of a map and use the
column name for the latitude of the map. If you have one map for each square mile
on Earth, you could have 15,000 distinct row IDs and 15,000 distinct column IDs.

 What’s unusual about these large implementations is that if you viewed them in a
spreadsheet, you’d see that few cells contain data. This sparse matrix implementation is
a grid of values where only a small percent of cells contain values. Unfortunately, rela-
tional databases aren’t efficient at storing sparse data, but column stores are designed
exactly for this purpose.

 With a traditional relational database, you can use a simple SQL query to find all
the columns in any table; when querying sparse matrix systems, you must look for
every element in the database to get a full listing of all column names. One problem
that may occur with many columns is that running reports that list columns and
related columns can be tricky unless you use a column family (a high-level category of
data also known as an upper level ontology). For example, you may have groups of col-
umns that describe a website, a person, a geographical location, and products for sale.
In order to view these columns together, you’d group them in the same column family
to make retrieval easier. 

 Not all column family stores use a column family as part of their key. If they do,
you’ll need to take this into account when storing an item key, since the column fam-
ily is part of the key, and retrieval of data can’t occur without it. In as much as the API
is simple, NoSQL products can scale to manage large volumes of data, adding new
rows and columns without needing to modify a data definition language. 

4.3.3 Benefits of column family systems

The column family approach of using a row ID and column name as a lookup key is a
flexible way to store data, gives you benefits of higher scalability and availability, and
saves you time and hassles when adding new data to your system. As you read through
these benefits, think about the data your organization collects to see if a column fam-
ily store would help you gain a competitive advantage in your market. 

 Since column family systems don’t rely on joins, they tend to scale well on distrib-
uted systems. Although you can start your development on a single laptop, in produc-
tion column family systems are usually configured to store data in three distinct nodes
in possibly different geographic regions (geographically distinct data centers) to
ensure high availability. Column family systems have automatic failover built in to
detect failing nodes and algorithms to identify corrupt data. They leverage advanced
hashing and indexing tools such as Bloom filters to perform probabilistic analysis on
large data sets. The larger the dataset, the better these tools perform. Finally, column
family implementations are designed to work with distributed filesystems (such as the
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Hadoop distributed filesystem) and MapReduce transforms for getting data into or
out of the systems. So be sure to consider these factors before you select a column
family implementation.

HIGHER SCALABILITY

The world Big in the title of the original Google paper tells us that Bigtable-inspired
column family systems are designed to scale beyond a single processor. At the core,
column family systems are noted for their scalable nature, which means that as you
add more data to your system, your investment will be in the new nodes added to the
computing cluster. With careful design, you can achieve a linear relationship between
the way data grows and the number of processors you require. 

 The principal reason for this relationship is the simple way that row IDs and col-
umn names are used to identify a cell. By keeping the interface simple, the back-end
system can distribute queries over a large number of processing nodes without per-
forming any join operations. With careful design of row IDs and columns, you give the
system enough hints to tell it where to get related data and avoid unnecessary network
traffic crucial to system performance. 

HIGHER AVAILABILITY

By building a system that scales on distributed networks, you gain the ability to repli-
cate data on multiple nodes in a network. Because column family systems use efficient
communication, the cost of replication is lower. In addition, the lack of join opera-
tions allows you to store any portion of a column family matrix on remote computers.
This means that if the server that holds part of the sparse matrix crashes, other com-
puters are standing by to provide the data service for those cells. 

EASY TO ADD NEW DATA

Like the key-value and graph stores, a key feature of the column family store is that
you don’t need to fully design your data model before you begin inserting data. But
there are a couple constraints that you should know before you begin. Your groupings
of column families should be known in advance, but row IDs and column names can
be created at any time.

 For all the good things that you can do with column family systems, be warned that
they’re designed to work on distributed clusters of computers and may not be appro-
priate for small datasets. You usually need at least five processors to justify a column
family cluster, since many systems are designed to store data on three different nodes
for replication. Column family systems also don’t support standard SQL queries for
real-time data access. They may have higher-level query languages, but these systems
often are used to generate batch MapReduce jobs. For fast data access, you’ll use a
custom API written in a procedural language like Java or Python.

 In the next three sections, we’ll look at how column family implementations have
been efficiently used by companies like Google to manage analytics, maps, and user
preferences. 
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4.3.4 Case study: storing analytical information in Bigtable

In Google’s Bigtable paper, they described how Bigtable is used to store website usage
information in Google Analytics. The Google Analytics service allows you to track
who’s visiting your website. Every time a user clicks on a web page, the hit is stored in a
single row-column entry that has the URL and a timestamp as the row ID. The row IDs
are constructed so that all page hits for a specific user session are together.

 As you can guess, viewing a detailed log of all the individual hits on your site would
be a long process. Google Analytics makes it simple by summarizing the data at regu-
lar intervals (such as once a day) and creating reports that allow you to see the total
number of visits and most popular pages that were requested on any given day. 

 Google Analytics is a good example of a large database that scales in a linear fash-
ion as the number of users increases. As each transaction occurs, new hit data is imme-
diately added to the tables even if a report is running. The data in Google Analytics,
like other logging-type applications, is generally written once and never updated. This
means that once the data is extracted and summarized, the original data is com-
pressed and put into an intermediate store until archived. 

 This pattern of storing write-once data is the same pattern we discussed in the data
warehouse and business intelligence section in chapter 3. In that section, we looked at
sales fact tables and how business intelligence/data warehouse (BI/DW) problems can
be cost-effectively solved by Bigtable implementations. Once the data from event logs
is summarized, tools like pivot tables can use the aggregated data. The events can be
web hits, sales transactions, or any type of event-monitoring system. The last step will
be to use an external tool to generate the summary reports. 

 In the case of using HBase as a Bigtable store, you’ll need to store the results in the
Hadoop distributed filesystem (HDFS) and use a reporting tool such as Hadoop Hive
to generate the summary reports. Hadoop Hive has a query language that looks simi-
lar to SQL in many ways, but it also requires you to write a MapReduce function to
move data into and out of HBase. 

4.3.5 Case study: Google Maps stores geographic information 
in Bigtable

Another example of using Bigtable to store large amounts of information is in the
area of geographic information systems (GIS). GIS systems, like Google Maps, store
geographic points on Earth, the moon, or other planets by identifying each location
using its longitude and latitude coordinates. The system allows users to travel around
the globe and zoom into and out of places using a 3D-like graphical interface. 

 When viewing the satellite maps, you can then choose to display the map layers or
points of interest within a specific region of a map. For example, if you post vacation
photos from your trip to the Grand Canyon on the web, you can identify each photo’s
location. Later, when your neighbor, who heard about your awesome vacation, is
searching for images of the Grand Canyon, they’ll see your photo as well as other pho-
tos with the same general location. 
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GIS systems store items once and then provide multiple access paths (queries) to
let you view the data. They’re designed to cluster similar row IDs together and result in
rapid retrieval of all images/points that are near each other on the map. 

4.3.6 Case study: using a column family to store user preferences

Many websites allow users to store preference information as part of their profile. This
account-specific information can store privacy settings, contact information, and how
they want to be notified about key events. Typically the size of this user preference
page for a social networking site is under 100 fields or about 1 KB in size, which is rea-
sonable as long as there’s not a photo associated with it. 

 There are some things about user preference files that make them unique. They
have minimal transactional requirements, and only the individual associated with the
account makes changes. As a result, ensuring an ACID transaction isn’t as important as
making sure the transaction occurs when a user attempts to save or update their pref-
erence information. 

 Other factors to consider are the number of user preferences you have and system
reliability. It’s important that these read-mostly events are fast and scalable so that
when a user logs in, you can access the preferences and customize their screen regard-
less of the number of concurrent system users.

 Column family systems can provide the ideal match for storing user preferences
when combined with an external reporting system. These reporting systems can be set
up to provide high availability through redundancy, and yet still allow reporting to be
done on the user preference data. In addition, as the number of users increases, the
size of the database can expand by the addition of new nodes to your system without
changing the architecture. If you have large datasets, big data stores may provide an
ideal way to create reliable yet scalable data services.

 Column family systems are known for their ability to scale to large datasets but
they’re not alone in this regard; document stores with their general and flexible
nature are also a good pattern to consider when scalability is a requirement. 

4.4 Document stores
Our coverage of NoSQL data patterns wouldn’t be complete without talking about the
most general, flexible, powerful, and popular area of the NoSQL movement: the doc-
ument store. After reading this section, you’ll have a clear idea of what document
stores are and how they’re used to solve typical business problems. We’ll also look at
some case studies where document stores have been successfully implemented. 

 As you may recall, key-value and Bigtable stores, when presented with a key, return
the value (a BLOB of data) associated with that key. The key-value store and Bigtable
values lack a formal structure and aren’t indexed or searchable. Document stores
work in the opposite manner: the key may be a simple ID which is never used or seen.
But you can get almost any item out of a document store by querying any value or con-
tent within the document. For example, if you queried 500 documents associated with
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the Civil War, you could search for those documents that referenced General Robert
E. Lee. The query would return a list of documents that contained his name. 

 A consequence of using a document store is everything inside a document is auto-
matically indexed when a new document is added. Though the indexes are large,
everything is searchable. This means that if you know any property of a document, you
can quickly find all documents with the same property. Document stores can tell not
only that your search item is in the document, but also the search item’s exact loca-
tion by using the document path, a type of key, to access the leaf values of a tree struc-
ture, as illustrated in figure 4.21.

 Even if a document structure is complex, a document store search API can remain
simple and provides an easy way to select a document or subset of a document. A key-
value store can store an entire document in the value portion of the key-value store,
but a document store can quickly extract subsections of a large number of documents
without loading each document into memory. If you want to display a single para-
graph of a book, you don’t need to load the entire book into RAM.

 We’ll begin our document store learning by visualizing something familiar: a tree
with roots, branches, and leaves. We’ll then look at how document and application
collections use the document store concept and the document store API. Finally, we’ll
look at some case studies and popular software implementations that use document
stores. 

4.4.1 Document store basics

Think of a document store as a tree-like structure, as shown in figure 4.21. 
 Document trees have a single root element (or sometimes multiple root ele-

ments). Beneath the root element there is a sequence of branches, sub-branches, and
values. Each branch has a related path expression that shows you how to navigate
from the root of the tree to any given branch, sub-branch, or value. Each branch may
have a value associated with that branch. Sometimes the existence of a branch in the
tree has specific meaning, and sometimes a branch must have a given value to be
interpreted correctly. 

Root

Branch Branch

BranchBranch Value

BranchBranchValue

Value Value

Figure 4.21 Document stores 
use a tree structure that begins 
with a root node, and have sub-
branches that can also contain 
sub-branches. The actual data 
values are usually stored at the 
leaf levels of a tree.
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4.4.2 Document collections

Most document stores group documents together in collections. These collections look
like a directory structure you might find in a Windows or UNIX filesystem. Document
collections can be used in many ways to manage large document stores. They can
serve as ways to navigate document hierarchies, logically group similar documents,
and store business rules such as permissions, indexes, and triggers. Collections can
contain other collections and trees can contain subtrees.

 If you’re familiar with RDBMSs, you might think it natural to visualize document
collections as an RDBMS. It might seem natural because you’ve used an XML column
data type within your system. In this example, the RDBMS is a single table that contains
XML documents. The problem with this view is that in the relational world, RDBMSs
don’t contain other tables, and you’d be missing the power and flexibility that comes
with using a document store: allowing collections to have collections. 

 Document collections can also be used as application collections, which are con-
tainers for the data, scripts, views, and transforms of a software application. Let’s see
how an application collection (package) is used to load software applications into a
native XML database like eXist. 

4.4.3 Application collections

In some situations, the collection in a document
store is used as a container for a web application
package, as shown in figure 4.22. 

 This packaging format, called a xar file, is similar
to a Java JAR file or a WAR file on Java web servers.
Packaged applications can contain scripts as well as
data. They’re loaded into the document store and
use packaging tools (scripts) to load the data if it’s
not already there. These packaging features make
document stores more versatile, expanding their
functionality to become application servers as well as
document stores.

 The use of collection structures to store applica-
tion packages shows that a document store can be
used as a container of high-level reusable compo-
nents that can run on multiple NoSQL systems. If
these developments continue, a market for reusable
applications that are easy to install by nonprogram-
mers and can run on multiple NoSQL systems will
soon be a reality. 

Figure 4.22 Document store 
collections can contain many 
objects, including other collections 
and application packages. This is 
an example of a package repository 
that’s used to load application 
packages into the eXist native XML 
database.
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4.4.4 Document store APIs

Each document store has an API or query language that specifies the path or path
expression to any node or group of nodes. Generally, nodes don’t need to have dis-
tinct names; instead, a position number can be used to specify any given node in the
tree. For example, to select the seventh person in a list of people, you might specify
this query: Person[7]. Figure 4.23 is a more complex example of a complete path
expression.

 In figure 4.23 you begin by selecting a subset of all people records that have the
identifier 123. Often this points to a single person. Next you look in the Address sec-
tion of the record and select the text from the Address street name. The full path name
to the street name is the following: People/Person[id='123']/Address/Street/
StreetName/text(). If you think this seems complicated, know that path expressions
are simple and easy to learn. When looking for something, you specify the correct
child element down a path of the tree structure, or you can use a where clause, called
a predicate, at any point in the path expression to narrow down the items selected. 

 We’ll discuss more on using the World Wide Web standard for selecting a path
using the XPath language in the next chapter. 

4.4.5 Document store implementations

A document store can come in many varieties. Some are based on simple serialized
object trees and some are more complex, containing content that might be found in
web pages with text markup. Simpler document structures are often associated with
serialized objects and may use the JavaScript Object Notation (JSON) format. JSON allows

People

Person PersonPerson

AddressFirstNameid

CityNameDan123

Street

StateCode

SteetNumber

Minneapolis

MN

StreetName

107

Main

Figure 4.23 How a document path is used like a key to get the value out of a 
specific cell in a document. In this example, the path to the street name is 
People/Person[id='123']/Address/Street/StreetName/text().
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arbitrary deep nesting of tree structures, but doesn’t support the ability to store and
query document attributes such as bold, italics, or hyperlinks within the text. We call
this complex content. In our context we refer to JSON data stores as serialized object stores
and to document stores that support complex content as true document stores with XML
as the native format. 

4.4.6 Case study: ad server with MongoDB

Do you ever wonder how those banner ads show up on the web pages you browse or
how they really seem to target the things you like or are interested in? It’s not a coinci-
dence that they match your interests: they’re tailored to you. It’s done with ad serving.
The original reason for MongoDB, a popular NoSQL product, was to create a service
that would quickly send a banner ad to an area on a web page for millions of users at
the same time. 

 The primary purpose behind ad serving is to quickly select the most appropriate
ad for a particular user and place it on the page in the time it takes a web page to load.
Ad servers should be highly available and run 24/7 with no downtime. They use com-
plex business rules to find the most appropriate ad to send to a web page. Ads are
selected from a database of ad promotions of paid advertisers that best match the per-
son’s interest. There are millions of potential ads that could be matched to any one
user. Ad servers can’t send the same ad repeatedly; they must be able to send ads of a
specific type (page area, animation, and so on) in a specific order. Finally, ad systems
need accurate reporting that shows what ads were sent to which user and which ads
the user found interesting enough to click on. 

 The business problem 10gen (creators of MongoDB) was presented with was that
no RDBMSs could support the complex real-time needs of the ad service market.
MongoDB proved that it could meet all of the requirements at its inception. It has
built-in autopartitioning, replication, load balancing, file storage, and data aggrega-
tion. It uses a document store structure that avoids the performance problems associ-
ated with most object-relational systems. In short, it was custom designed to meet the
needs and demands of the ever-growing ad serving business and in the process turned
out to be a good strategy for other problems that don’t have real-time requirements,
but want the ability to avoid the complex and slow object-relational mapping prob-
lems of traditional systems.

 As well as being used as a basis for banner ad serving, MongoDB can be used in
some of the following use cases:

 Content management—Store web content and photos and use tools such as geolo-
cation indexes to find items. 

 Real-time operational intelligence—Ad targeting, real-time sentiment analysis, cus-
tomized customer-facing dashboards, and social media monitoring.

 Product data management—Store and query complex and highly variable product
data.
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 User data management—Store and query user-specific data on highly scalable web
applications. Used by video games and social network applications.

 High-volume data feeds—Store large amounts of real-time data into a central
database for analysis characterized by asynchronous writes to RAM. 

4.4.7 Case study: CouchDB, a large-scale object database

In 2005, Damien Katz was looking for a better way to store a large number of complex
objects using only commodity hardware. A veteran Lotus Notes user, he was familiar
with its strengths and weaknesses, but he wanted to do things differently and created a
system called CouchDB (cluster of unreliable commodity hardware), which was
released as an open source document store with many of the same features of distrib-
uted computing as part of its core architecture. 

 CouchDB has document-oriented data synchronization built in at a low level. This
allows multiple remote nodes to each have different versions of documents that are
automatically synchronized if communication between the two nodes is interrupted.
CouchDB uses MVCC to archive document-oriented ACID transactions, and also has
support for document versioning. Written in Erlang, a functional programming lan-
guage, CouchDB has the ability to rapidly and reliably send messages between nodes
without a high overhead. This feature makes CouchDB remarkably reliable even when
using a large number of processors over unreliable networks.

 Like MongoDB, CouchDB stores documents in a JSON-style format and uses a
JavaScript-like language to perform queries on the documents. Because of its power-
ful synchronization abilities, CouchDB is also used to synchronize mobile phone data.

 Although CouchDB remains an active Apache project, many of the original devel-
opers of CouchDB, including Katz, are now working on another document store
through the company Couchbase. Couchbase provides a distinct version of the product
with an open source license.

 The four main patterns—key-value store, graph store, Bigtable store, and docu-
ment store—are the major architecture patterns associated with NoSQL. As with most
things in life, there are always variations on a theme. Next, we’ll take a look at a repre-
sentative sample of the types of pattern variations and how they can be combined to
build NoSQL solutions in organizations. 

4.5 Variations of NoSQL architectural patterns
The key-value store, graph store, Bigtable store, and document store patterns can be
modified by focusing on a different aspect of system implementation. We’ll look at
variations on the architectures that use RAM or solid state drives (SSDs), and then talk
about how the patterns can be used on distributed systems or modified to create
enhanced availability. Finally, we’ll look at how database items can be grouped
together in different ways to make navigation over many items easier.
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4.5.1 Customization for RAM or SSD stores

In chapter 2 we reviewed how access times change based on the type of memory
media used. Some NoSQL products are designed to specifically work with one type of
memory; for example, Memcache, a key-value store, was specifically designed to see if
items are in RAM on multiple servers. A key-value store that only uses RAM is called a 
RAM cache; it’s flexible and has general tools that application developers can use to
store global variables, configuration files, or intermediate results of document trans-
formations. A RAM cache is fast and reliable, and can be thought of as another pro-
gramming construct like an array, a map, or a lookup system. There are several things
about them you should consider: 

 Simple RAM resident key-value stores are generally empty when the server starts
up and can only be populated with values on demand.

 You need to define the rules about how memory is partitioned between the
RAM cache and the rest of your application.

 RAM resident information must be saved to another storage system if you want it
to persist between server restarts.

The key is to understand that RAM caches must be re-created from scratch each time a
server restarts. A RAM cache that has no data in it is called a cold cache and is why some
systems get faster the more they’re used after a reboot. 

SSD systems provide permanent storage and are almost as fast as RAM for read
operations. The Amazon DynamoDB key-value store service uses SSDs for all its stor-
age, resulting in high-performance read operations. Write operations to SSDs can
often be buffered in large RAM caches, resulting in fast write times until the RAM
becomes full.

 As you’ll see, using RAM and SSDs efficiently is critical when using distributed sys-
tems that provide for higher volume and availability. 

4.5.2 Distributed stores

Now let’s see how NoSQL data architecture patterns vary as you move from a single
processor to multiple processors that are distributed over data centers in different
geographic regions. The ability to elegantly and transparently scale to a large number
of processors is a core property of most NoSQL systems. Ideally, the process of data
distribution is transparent to the user, meaning that the API doesn’t require you to
know how or where your data is stored. But knowing that your NoSQL software can
scale and how it does this is critical in the software selection process.

 If your application uses many web servers, each caching the result of a long-
running query, it’s most efficient to have a method that allows the servers to work
together to avoid duplication. This mechanism, known as memcache, was introduced in
the LiveJournal case study in chapter 1. Whether you’re using NoSQL or traditional
SQL systems, RAM continues to be the most expensive and precious resource in an
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application server’s configuration. If you don’t have enough RAM, your application
won’t scale. 

 The solution used in a distributed key-value store is to create a simple, lightweight
protocol that checks whether any other server has an item in its cache. If it does, this
item is quickly returned to the requester and no additional searching is required. The
protocol is simple: each memcache server has a list of the other memcache servers it’s
working with. Whenever a memcache server receives a request that’s not in its own
cache, it checks with the other peer servers by sending them the key.

 The memcache protocol shows that you can create simple communication proto-
cols between distributed systems to make them work efficiently as a group. This type
of information sharing can be extended to other NoSQL data architectures such as
Bigtable stores and document stores. You can generalize the key-value pair to other
patterns by referring to them as cached items. 

 Cached items can also be used to enhance the overall reliability of a data service
by replicating the same items in multiple caches. If one server goes down, other serv-
ers quickly fill in so that the application gives the user the feeling of service without
interruption.

 To provide a seamless data service without interruption, the cached items need to
be replicated automatically on multiple servers. If the cached items are stored on two
servers and the first one becomes unavailable, the second server can quickly return
the value; there’s no need to wait for the first server to be rebooted or restored from
backup.

 In practice, almost all distributed NoSQL systems can be configured to store
cached items on two or three different servers. The decision of which server stores
which key can be determined by implementing a simple round-robin or random dis-
tribution system. There are many trade-offs relating to loads distributed over large
clusters of key-value store systems and how the cached items in unavailable systems
can be quickly replicated onto new nodes. 

 NoSQL systems dominate organizations that have large collections of data items,
and it becomes cumbersome to deal with these items if they can only be accessed in a
single linear listing. You can group items together in different ways to make them eas-
ier to manage and navigate, as you’ll next see. 

4.5.3 Grouping items

In the key-value store section, we looked at how web pages can be stored in a key-value
store using a website URL as the key and the web page as the value. You can extend
this construct to filesystems as well. In a filesystem, the key is the directory or folder
path, and the value is the file content. But unlike web pages, filesystems have the abil-
ity to list all the files in a directory without having to open the files. If the file content
is large, it would be inefficient to load all of the files into memory each time you want
a listing of the files.
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 To make this easier and more efficient, a key-value store can be modified to
include additional information in the structure of the key to indicate that the key-
value pair is associated with another key-value pair, creating a collection, or general-
purpose structures used to group resources. Though each key-value store system
might call it something different (such as folders, directories, or buckets), the concept
is the same.

 The implementation of a collection system can also vary dramatically based on
what NoSQL data pattern you use. Key-value stores have several methods to group
similar items based on attributes in their keys. Graph stores associate one or more
group identifiers with each triple. Big data systems use column families to group simi-
lar columns. Document stores use a concept of a document collection. Let’s take a
look at some examples used by key-value stores. 

 One approach to grouping items is to have two key-value data types, the first called
resource keys and the second collection keys. You can use collection keys to store a list of
keys that are in a collection. This structure allows you to store a resource in multiple
collections and also to store collections within collections. Using this design poses
some complex issues that require careful thought and planning about what should be
done with a resource if it’s in more than one collection and one of the collections is
deleted. Should all resources in a collection be automatically deleted?

 To simplify this process and subsequent design decisions, key-value systems can
include the concept of creating collection hierarchies and require that a resource be
in one and only one collection. The result is that the path to a resource is essentially a
distinct key for retrieval. Also known as a simple document hierarchy, the familiar concept
of folders and documents resonates well with end users. 

 Once you’ve established the concept of a collection hierarchy in a key, you can use
it to perform many functions on groups of key-value pairs; for example: 

 Associate metadata with a collection (who created the collection, when it was
created, the last time it was modified, and who last modified the collection).

 Give the collection an owner and group, and associate access rights with the
owner group and other users in the same way UNIX filesystems use permissions.

 Create an access control permission structure on a collection, allowing only
users with specific privileges the ability to read or modify the items within the
collection.

 Create tools to upload and/or download a group of items into a collection.
 Set up systems that compress and archive collections if they haven’t been

accessed for a specific period of time. 

If you’re thinking, “That sounds a lot like a filesystem,” you’re right. The concept
of associating metadata with collections is universal, and many file and document
management systems use concepts similar to key-value stores as part of their core
infrastructure. 
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4.6 Summary
In this chapter, we reviewed some of the basic NoSQL data architectural patterns and
data structures. We looked at how simple data structures like key-value stores can lead
to a simple API, which make the structures easy to implement and highly portable
across systems. We progressed from a simple interface such as key-value stores to the
more complex document store, where each branch or leaf in a document can be
selected to create query results. 

 By looking at the fundamental data structures being used by each data architec-
ture pattern, you can understand the strengths and weaknesses of each pattern for
various business problems. These patterns are useful for classifying many commercial
and open source products and understanding their core strengths and weaknesses.
The challenge is that many real-world systems rarely fit into a single category. They
may start with a single pattern, but then so many features and plug-ins are added, they
become difficult to put neatly into a single classification system. Many products that
began as simple key-value stores have many features common to Bigtable stores. So it’s
best to treat these patterns as guidelines rather than rigid classification rules.

 In our next chapter, we’ll take an in-depth look at the richest data architecture pat-
tern: the native XML database with complex content. We’ll see some case studies
where native XML database systems are used for enterprise integration and content
publishing.
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Native XML databases
The value of a standard is proportional to the square of the number of systems 
that use it.

—rephrasing of Metcalfe’s law 
and the network effect as applied to standards

Have you ever wanted to perform a query on the information in a web page, a
Microsoft Word document, or an Open Office presentation? Just think, if you have
links in an HTML page, wouldn’t it be nice to run a query to validate that all the
links are working? All of these document types have a common property referred
to as mixed content (data containing text, dates, numbers, and facts). One of the
challenges of using document databases is that they don’t support the use of que-
ries on mixed content. Native XML databases, which have been around longer than

This chapter covers
 Building native XML database applications

 Using XML standards to accelerate application 
development 

 Design and validate documents with XML schemas

 Extending XQuery with custom modules
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other NoSQL databases, do allow queries on mixed content and as a result can sup-
port a number of security models and standardized query languages.

 Native XML databases store and query a wider range of data types than any other
NoSQL data store. They have an expressive data format that allows you to store struc-
tured tables as well as unstructured documents, and they provide superior search ser-
vices. They tend to support web standards better than other document stores, which
increases their portability between native XML systems. But the reason most organiza-
tions choose native XML databases is because they increase application development
productivity and their ease of use allows nondevelopment staff to build and maintain
applications. 

 After reading this chapter, you’ll understand the basic features of native XML data-
bases and how they’re used to solve business problems in specific areas such as pub-
lishing or search. You’ll become familiar with the process of building a native XML
database application and transforming XML data, searching, and updating elements,
and you’ll see how standards are used to accelerate application development. Finally,
since almost all native XML databases use the XQuery language to query documents,
we’ll look at how XQuery is used to transform XML documents and how it can be
extended to include new functionality.

 Defining a native XML database is the first step in understanding when and how
they can help you solve business problems. In the next section, we’ll start with a defini-
tion and then give some examples of the types of problems native XML databases can
help you solve.

5.1 What is a native XML database?
Native XML databases use a document data architecture pattern. Like other document-
oriented databases, they have no need for middle-tier, object-relational mapping, nor
do they use join operations to store or extract complex data. Their ability to calculate
hashes for each query and document makes them cache-friendly, and their ability to
store data in a distributed environment allows them to scale elegantly. 

 Native XML databases existed before the term NoSQL was popular. They’re more
mature in some areas, and they integrate well with web standards managed by the
World Wide Web consortium (W3C). Today you see native XML databases such as
MarkLogic in areas of government, intelligence, integration, publishing, and content
management. 

 Native XML databases are unique in the NoSQL world because they attempt to
reuse data formats and standards to lower overall development costs. The philosophy
is driven by avoiding the introduction of proprietary database-specific query lan-
guages that will lock your application into a single database. Native XML databases are
forced to compete against each other in terms of ease of use, performance, and the
ability to scale queries without needing to introduce new APIs. Many of the open
source native XML databases share both concepts and extension functions.
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 Like the JSON (JavaScript Object Notation) data format (a text-based standard for
human-readable data interchange), XML stores its information in a hierarchical tree
structure. Unlike JSON, XML can store documents with mixed content and
namespaces. Mixed-content systems allow you to mix sequences of text and data in
any order. Elements in XML can contain text that has other trees of data interspersed
throughout the text. For example, you can add HTML links that contain bold, italic,
links, or images anywhere inside a paragraph of text. HTML files are a perfect example
of the type of mixed content that can’t be stored by or queried in a document data-
base that only supports the JSON format.

 Figure 5.1 shows the relationship between the features of comma-separated value
(CSV) flat files used in many SQL systems, JSON, and XML documents. 

 If you use spreadsheets or load data into RDBMS tables, you know that CSV files are
an ideal mechanism for storing data that’s loaded into a single table. The CSV struc-
ture of commas separating fields and newline characters separating rows is frequently
used to transfer data between spreadsheets and RDBMS tables. 

JSON files are ideal for sending serialized objects to and from a web browser. JSON
allows objects to contain other objects, and works well in hierarchical structures that
don’t need to store mixed content or use multiple namespaces. Due to its familiarity
in the JavaScript world, JSON is the de facto standard for storing hierarchical docu-
ments within a document store. But it was never designed as a general-purpose con-
tainer for mixed-content markup languages such as HTML.

 As mentioned, XML files are the best choice when your document includes mixed
content. XML also supports an often-controversial feature: namespaces. Namespaces
allow you to mix data elements from different domains within the same document, yet
retain the source meaning of each element. Documents that support multiple
namespaces allow applications to add new elements in new namespaces without dis-
rupting existing data queries. 

Mixed

XML

JSON

Mixed content

Namespaces

CSV
Hierarchical
documentsComma-separated

value (CSV) Flat files

JavaScript
object notation

(JSON)

Extensible
markup language

(XML)

Figure 5.1 The expressiveness of three document formats. Comma-separated value 
(CSV) files are designed to only store flat files that don’t contain hierarchy. JavaScript 
Object Notation (JSON) files can store flat files as well as hierarchical documents. 
Extensible Markup Language (XML) files can store flat files, hierarchical documents, 
and documents that contain mixed content and namespaces.



99What is a native XML database?
 For example, a database of online articles may contain elements that reference an
external library classification standard called the Dublin Core (elements like title,
author, and subject from traditional book cataloguing), tags for RSS feeds (Atom),
and additional presentation elements (HTML). By noting they’re in the Dublin Core
namespace, all cataloguing tools can be set up to automatically recognize these ele-
ments. Reusing external standards instead of inventing new tag names and constantly
remapping them to external standards makes it easier for external tools to understand
these documents. 

 Though useful, namespaces also have a cost. Tools that use multiple namespaces
need to be aware of multiple namespaces, and developers need training to use these
tools correctly. Namespaces are controversial in that they add an additional layer of
complexity that’s frequently not necessary in simple domain documents. Since single-
domain documents are used in training development staff, namespaces may seem
unnecessary and difficult to understand when first introduced. Without proper tools
and training, developers can become frustrated with documents that contain multiple
namespaces. 

 If you’re familiar with the format of a web page that uses HTML, you’ll quickly
understand how XML works. Figure 5.2 shows a sales order with XML markup. 

Figure 5.2 A sales order in XML markup format. The file begins with a processor 
instruction that indicates what version of XML the file uses, as well as what character 
encoding system is used (UTF-8). Each element has matching begin and end tags. The 
begin tags start with < and the end tags start with </. The sales order includes all of 
the items within the document, so no primary for foreign keys are needed. To generate 
a full report that includes item names or descriptions, a product lookup function can be 
used to convert the item ID into a full product description. This product lookup function 
would replace a join statement. The product lookup function extracts product 
information from another XML file.
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The key difference between HTML and XML is that the semantics (or meaning) of
each HTML element has been predefined by W3C standards. In the sales order exam-
ple, the meaning of each sales order element is determined by the individual organi-
zation. Even though there may be an XML standard for sales orders, each organization
can decide to create data element names specific to their organization and store those
element names, and their definition, in a data dictionary.

 Anyone who’s familiar with XML recognizes it as a mature standard with an ecosys-
tem of tools to support it. There are tools to extract subtrees from XML documents
(XPath), tools to query XML documents (XQuery), tools to validate XML documents
(XML Schema and Schematron), and tools to transform XML documents from one
format to another.

RDBMS vendors like Oracle, Microsoft, and IBM have included XML management
features in their products. Their approach is to add an XML column type to the
RDBMS. Once added, XML documents are stored in the column in the same way a
binary large object (BLOB) is stored. Though this strategy meets the needs of many use
cases, it lacks portability since object-relational mapping tools don’t generate the cor-
rect SQL to select XML elements within BLOBs. 

 The main disadvantage of XML, and a limitation of native XML systems, is that XML
is a standard that attempts to solve many different types of problems with a single for-
mat. Without adequate tools and training, development staff may become frustrated
with XML’s complexity and continue to use simpler formats such as JSON or CSV. With-
out good GUI tools, developers are forced to view raw XML files that can be more ver-
bose than the corresponding JSON representation.

 Despite this issue, many developers find that native XML databases offer a simpler
way of solving problems. Their rich query language and XML standards help to lower
overall costs. It should also be noted that native XML databases don’t store literal XML.
They store a compact version in a compressed format. XML files are only used to put
data into and retrieve data from the database.

 Now that you have an understanding of what native XML databases are and the
kinds of problems they solve, let’s explore how native XML databases are used to build
applications that can add, transform, search, and update XML documents. 

5.2 Building applications with a native XML database
Native XML databases and their associated tools are key to increasing developer pro-
ductivity. Using simple query languages allows programmers and nonprogrammers to
simply create and customize reports. The combination of standards, mature query
languages, robust tools, and document orientation makes the application develop-
ment process faster. You’ll find it difficult to convince native XML users to move to
another platform once they’ve created applications with these systems.

 Getting started with a native XML database can be simpler than you think. If you
understand the concept of dragging files and folders, you’re well on your way to creat-
ing your first native XML database. As you browse through the next section, you’ll see
how simple it can be to get started. 
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5.2.1 Loading data can be as simple as drag-and-drop

Most people are familiar with the concept of dragging and dropping to copy files from
one location to another. Adding data to a native XML database can be that easy.
Figure 5.3 shows how simple it can be to add new sales order data to an XML database. 

 You should note that you don’t need to perform any entity-relational modeling
prior to loading your data. The metadata structures of an XML file will be used to cre-
ate all relevant indexes within the database. By default, every element is indexed for
immediate search, and each leaf element is treated as a string unless previously associ-
ated with a data type such as a decimal or date. 

 Native XML databases have many options to load data. For example, you can

 Use an integrated XML IDE such as the Eclipse-based oXygen XML editor with
built-in support for a native XML databases to upload a single file or a collection
of XML files. The oXygen IDE can be used as a standalone program or as an
Eclipse plug-in. Note: oXygen is a commercial product sold by SyncroSoft. 

 Use a command-line tool or a UNIX shell script to load data from a file on your
filesystem. 

 Use a build script and Apache Ant task to load data. Many native XML databases
come with Apache Ant extensions for all database operations.

 Use an “uploader” web page that allows you to upload a local file into a remote
XML database.

 Use a backup-and-restore tool to load many XML files from an archive file.

Figure 5.3 Adding new sales order data to an XML database can be as easy as doing a drag-and-drop. 
Many desktop operating systems such as Windows and Mac OS X support remote access using the 
WebDAV protocol. This allows you to add new files to your XML database by dragging an XML file into 
a database collection. All metadata associated with the XML file is used to index each element. As 
soon as the file is added, the data can be immediately searched using XQuery. Data modeling is not 
required before the data is added.
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 Use a full desktop-based client that has been created for use with a specific
native XML database. For example, a thick Java client provided with the data-
base may provide upload or store features.

 Use a low-level Java API or an XML-RPC interface to load data (this requires you
have a background in Java development).

There are also third-party applications like Cyberduck (for Windows and OS X) or
Transmit (for OS X) that support a WebDAV protocol and will make your database
look like an extension of your filesystem. These tools are preferred by many develop-
ers for managing native XML collections because they can be used by nonprogram-
mers. These tools can be used for uploading new documents as well as moving,
copying, and renaming files in the same way you move and copy files in a filesystem.

 If you wanted to perform these same move, copy, or rename operations on
RDBMSs, it would require writing complex SQL statements or using a graphical user
interface tool customized for database administration. With native XML systems, these
operations are done with generic tools that may already be on your desktop and famil-
iar to your users, which results in rapid learning and fewer dollars invested in training
development skills. 

 Now that you know that native XML databases can be manipulated like folders, let’s
see how these structures (called collections) are used by native XML databases. 

5.2.2 Using collections to group your XML documents

Filesystems use a folder concept where folders can contain other folders as well as doc-
uments. Native XML databases support a similar structure called collection hierarchies,
which can contain both XML files and other collections. Using collections to store
your documents will make them easier to manage.

 Collections group your documents and data into subcollections in a way that’s
meaningful to your organization. For example, you can place daily sales orders for
each month into a separate collection for that year and month. Native XML databases
can easily query all XML documents in any folder or any subfolder to find the docu-
ment you request. 

CUSTOMIZING UPDATE BEHAVIOR WITH TRIGGERS

Collections also allow you to customize behavior for any action for all documents within
a collection by using database triggers. These triggers are then executed when any docu-
ment is created, updated, deleted, or viewed. Let’s say that a typical function of a doc-
ument collection is to indicate which elements in the document should be indexed.
Once a trigger has been configured for the collection, changes to any document below
that collection/subcollection will be automatically updated and indexed. The triggers
are usually defined by placing an XML configuration file in the collection. The XML file
will associate an XQuery function with each of the trigger types (insert, update, delete).
Triggers are ideal places to specify document rule checks (such as validation), copy the
prior version of a document into a version store, place a backup copy on a remote
server, or log specific events. 
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WORKING WITH FLEXIBLE DATABASES

XML databases are designed to be flexible with the amount of data stored in a collec-
tion or XML file. They work equally well if you have a single file with 10,000 sales trans-
actions or 10,000 individual transaction files. The query you write won’t need to be
changed if you alter how the files are grouped as long as you reference the root collec-
tion of your documents. 

 There are some design considerations to think about when you’re performing
concurrent reads and writes on a document collection. Some native XML databases
only guarantee atomic operations within a single document, so placing two different
data elements that must be consistent within an single document might be a good
practice. For example, a sales order might have both the individual line item amounts
and the sales order total within the same XML document. When the document is
updated, all numbers will be updated in a consistent state.

 You may also want to use a database lock on a document or a subdocument to pre-
vent other processes from modifying it at critical times. This feature is similar to the
file locks that are performed on a shared file in a filesystem. For example, if you’re
using a forms application to edit a document, you may not want someone else to save
their version over your document. Locking a document helps you avoid conflicts
when multiple people attempt to edit the same document at the same time. You can
also calculate hash tags on a document as you load it into an editor to verify that it
hasn’t been modified by someone else while you’ve been editing it. This strategy and
the use of HTTP ETags help you avoid the missing updates problem: when two users
open the same file and changes from user 1 are overwritten by user 2. 

STORING DOCUMENTS OF DIFFERENT TYPES

Native XML database collections can be used as a “primary taxonomy” to store docu-
ments of different types. This is similar to the categorization of a book in a library where
the book is found according to its primary subject. But unlike a physical book, a docu-
ment can contain many different category elements and thus doesn’t have to be copied
or moved between collections. An XML document can contain keywords and category
terms that allow search tools to find documents that fit multiple subject categories. 

GROUPING DOCUMENTS BY ACCESS PERMISSIONS

Collections can also be used as a way to group documents according to who can access
them. You may have an internal policy that only allows users with a particular role to
modify a document. Some native XML systems provide basic UNIX-style permissions
on each collection to allow specific groups write access. The UNIX-style permissions
result in a fast calculation of which users have access to a document. 

 The disadvantage of using UNIX-style permissions is that only a single group can be
associated with a collection. Other native XML collection management systems add
more flexible access control lists to protect each collection according to multiple
groups or roles. Role-based collection management is the most robust permission sys-
tem and is preferred by large organizations with many concurrent users from multiple
business units. Unfortunately, only some native XML databases support role-based
access control.
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 An example of using security-based collections to group web application function-
ality is shown in figure 5.4.

Figure 5.4 An example of using native XML collections to manage a set of 
web applications. The root folder in the main database and kma-site is a 
subfolder for one specific website. The apps folder within this contains all of 
the applications, one collection per application. The books collection 
contains subfolders for the application. books/data contains the location of 
the XML book data. Other collections include books/edit that stores tools 
to change the book data, and books/views for different report views of the 
book data. Each collection may have different permissions associated with it 
so that users who don’t have modify rights may not be able to access the 
books/edit collection.
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In this example, only a subset of all roles can add or update the XML files in the data
collection. A larger number of roles can view and search for books using the queries
in the view and search collections. The settings in the overall application information
file (app-info.xml) associate each role with specific read and write permissions.

 Native XML databases can store many different views of the same structure. Each
view is a different transformation of the underlying XML data. In the next two sec-
tions, you’ll see how XPath and XQuery are used to create these views. 

5.2.3 Applying simple queries to transform complex data with XPath

XPath, a language that works within XQuery, allows you to easily retrieve the data
you’re looking for even in complex documents using short path expressions. Keeping
your path expressions short allows you to quickly locate and retrieve the specific infor-
mation within the document you’re interested in, and not spend time writing long
queries or looking at extraneous data. 

 XPath expressions are similar to the path commands you type into a DOS or UNIX
shell to navigate to a specific directory or folder. XPath expressions consist of a series
of steps that tell the system how to navigate to a specific part of the document. For
example, the XPath expression $my-sales-order/order-item[3]/price will return
the price of the third item in a sales order. The forward slash indicates that the next
step in the hierarchy should be the child of the current location.

XML documents have a reputation for being complex, with good reason. When
you apply all the features of XML into a single document (for example, mixed con-
tent, namespaces, and encoded elements) you can create documents that are difficult
for humans to read. These documents are often complex because they try to accu-
rately capture the structure of the real world—which is sometimes complex. Yet using
complex structures doesn’t imply that the queries must also be complex. This fact may
not be intuitive, but it’s one of the most
important and sometimes overlooked
qualities of native XML databases and
XQuery. Let’s review this concept using
a concrete example.

 Each of the figures in this book is
assigned a number. The first digit repre-
sents the chapter number (1, 2, 3), and
the number following the chapter is a
sequential number which represents
where the figure is located in the chap-
ter. To calculate the figure number, we
only need to count the number of prior
figures in each chapter. Figure 5.5 is an
example of an XPath expression that
does this. 

count($figure/preceding::figure) + 1 

A count
function

A sequence of all the prior <figure>
elements in this chapter

The current figure
in the document

The XPath
function to get
all prior items
in a document

Select only the
prior <figure>
elements

Figure 5.5 How a complex document is queried 
using a simple XPath query expression. The 
expression is used to count figure numbers in each 
chapter of a book. It does this by counting the 
number of preceding <figure> elements in each 
chapter and adding one to calculate the current 
figure number. This allows sequential numbering of 
figures in each chapter as the book is converted 
from XML to HTML or PDF.



106 CHAPTER 5 Native XML databases
 This XPath expression may be unfamiliar to many, but its structure isn’t complex.
You tell the system to start at the current figure, count the number of preceding fig-
ures in the chapter, and add one to get the current figure number. To make finding
path expressions easy, there are also XML tools that allow you to select any element in
an XML file, and the tools will show you the path expression required to select that
specific element.

 XPath is a key component that makes managing complexity easy. If you were using
SQL, you’d need to store your complex data in many tables and use joins to extract
the right data. Although an individual RDBMS table may have a simple structure, stor-
ing complex data in SQL usually requires complex queries. Native XML systems are
just the opposite. Even if the data is complex, there are often simple XPath expres-
sions that can be used to efficiently get the data you need out of the system.

 Unlike other XML systems, native XML databases tend to use short, single-element
XPath expressions because each individual element is indexed as it’s added to the
database. For example, the path expression collection('/my-collection')//
PersonBirthDate will find all the person birth date records in a collection even if
each document has a radically different structure. The downside to this is that you
need more disk space to store your XML data. The upside is that queries are simple
and fast.

 Now that you have a feel for how XPath works, let’s look at how the XQuery lan-
guage is used to integrate XPath expressions to deliver a full solution that converts
XML data directly into other structures. 

5.2.4 Transforming your data with XQuery

Using the XQuery language and its advanced functional programming and parallel
query execution features allows you to rapidly and effortlessly transform large data-
sets. In the NoSQL world, XQuery replaces both SQL and application-level functional
programming languages with a single language.

 One of the greatest advantages of using native XML databases over other docu-
ment stores is how they use the XQuery language to transform XML data. As you’ll
see, XQuery is designed to query tabular as well as unstructured document data.
XQuery is a mature and widely adopted standardized query language, carefully con-
structed by query experts using a rigorous peer review process. Although other lan-
guages can be used with native XML databases, XQuery is preferred due to its
advanced functional structure and ability to run on parallel systems. A sample of
XQuery is shown in figure 5.6.

 As we move into our next few sections, you’ll see why users that need to query large
amounts of unstructured data prefer XQuery over other transformation languages. 

XQUERY—A FLEXIBLE LANGUAGE

The XQuery language was developed by the World Wide Web consortium (W3C), the
same organization that defined many other web and XML standards. Not long after
XML standards were published, the W3C formed a standards body that included many
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experts in query language design. Some of these experts assisted in developing stan-
dards for SQL, and in time found SQL inappropriate for querying nontabular data.
The W3C query standards group was charged with creating a single query language
that would work well for all use cases, which included business as well as text docu-
ments, books, and articles. Beginning with a list of relational and document query lan-
guages and a set of 70 use cases for structured and unstructured data sets, the W3C
group embarked on an multiyear mission to define the XQuery language.

 XQuery was designed to be a flexible language that allowed each of the 70 use
cases to be queried and run on multiple processors, and to be easy to learn, parse, and
debug. To accomplish its task, it borrowed concepts from many other query systems.
This rigorous process resulted in a query language that’s widely adopted and used in
many products. These XQuery products include not only native XML databases, but
also tools for in-memory data transformation and integration tools. 

XQUERY—A FUNCTIONAL PROGRAMMING LANGUAGE

XQuery is defined as a functional programming language because its focus is the parallel
transformation of sequences of data items using functions. Note that we’ll cover the
topic of functional programming in depth in chapter 11. With XQuery, functions can
be passed as parameters to other functions. XQuery has many features not found in
SQL that are used for the efficient transformation of hierarchical XML data. For exam-
ple, XQuery allows you to call recursive functions and returns not only tables but any
other tree-like data structures. XQuery can return simple XML or a sequence of items
including JSON or graph structures. Due to its functional nature, XQuery can be eas-
ier to execute on multiple CPU systems.

 The parallel processing power of XQuery is the FLWOR statement. FLWOR stands for
for, let, where, order, and return, as shown in figure 5.6. Unlike the for loops found in pro-
cedural languages such as Java or .Net, FLWOR statements can execute in independent
parallel processes and run on a large number of parallel CPUs or different processors. 

XQUERY—CONSISTENT WITH WEB STANDARDS

XQuery is designed to be consistent with other W3C standards beyond XPath. For
example, XQuery shares data types with other XML standards such as XML Schema,
XProc, and Schematron. Because of this standardization, XQuery implementations
tend to be more portable than applications that are ported between SQL databases.

where $sale/amount >15
order by $sale/amount descending
return
   $sale

FLWOR with loop
without any “let”

statements

“Where” clause similar
to SQL returns only

amounts over 15

“Order by” clause to
change sort order

“Return” returns
a sequence of

sale nodes

Get all “sale” nodes in this XML file

for $sale in doc('sales.xml')//sale

Figure 5.6 A sample 
FLWOR statement in XQuery 
that shows the for, where, 
order, and return 
statements. Many 
structures in XQuery, such 
as the where and order
by statements, are similar 
to SQL, so many SQL 
developers quickly learn 
basic XQuery statements.
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 XQuery can return any tree-structure data including tables, graphs, or entire web
pages. This feature eliminates the need for a middle-tier, table-to-HTML translation
layer. Avoiding a middle-tier translation, which includes a separate programming lan-
guage and another data type translation, makes the software development process
simpler and more accessible to nonprogrammers. The elimination of the middle-tier,
relational-to-object-to-HTML translation is one of the core simplification patterns that
makes NoSQL systems more agile and allows faster development of web applications. 

ONE QUERY LANGUAGE OR MANY?
There are many trade-offs to consider when selecting a query language for your data-
base. Small template languages are easy to create and easy to learn, but can be diffi-
cult to extend. Other languages are designed to be extensible with hundreds of
extension functions. Of the many new query languages created over the last dozen
years, XQuery stands out as the most ambitious. Defined by the W3C over a six-year
period using query experts from many domains, its goal was to create a single lan-
guage that can query a broad spectrum of data structures. Where SQL is perfect for
working with tabular data, and languages like XSLT are ideal for transforming docu-
ments, XQuery alone has become the central unification language for querying
diverse types of data in a single language. XQuery also attempts to combine the best
features of modern functional programming languages to prevent side effects and
promote caching (see chapter 10 for further details). Some of the use cases that drove
the specifications of XQuery include these:

 Queries on hierarchical data—Generating a table of contents on a document with
nested sections and subsections.

 Queries on sequences—Queries based on a sequence of items. For example, in a
calendar what events happen between two other events?

 Queries on relational data—Queries similar to SQL where joins are used to merge
data from multiple tables that share common keys.

 Queries on documents—Finding titles, paragraphs, or other markup within the
chapter of a book.

 Queries on strings—Scanning news feeds and merging data from press releases
and stock data.

 Queries on mixed vocabularies—XML data that merges information from auctions,
product descriptions, and product reviews.

 Recursive parts explosion—How a recursive query can be used to construct a hier-
archical document of arbitrary depth from flat structures.

 Queries with strongly typed data—Using type information in an XML schema to
transform a document.

Now that we’ve discussed the steps used to import XML and how to use XPath and
XQuery to transform XML data from one form into another, we’ll review how to run
updates on XML data and search XML documents that contain full text (structures
that contain natural-language text, for example, English language). 
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5.2.5 Updating documents with XQuery updates

As you may recall from section 5.2.1, we talked about how when new XML documents
are loaded into a native XML database, every element is immediately indexed. If you
think about it, you’ll see that this can be an expensive process, especially when you
have large documents that also contain many full-text structures that must be re-
indexed each time the document is saved. 

 To make saving documents with small changes easier, the W3C has provided a stan-
dard for updating one or more elements within an XML document without having to
update the entire document and the associated indexes. The update operations are

 insert—Insert a new element or attribute into a document.
 delete—Delete an element or attribute in a document.
 replace—Replace an element or attribute in a document with a new value.
 rename—Change the name of any element or attribute to a new name.
 transform—Transform an element into a new format without changing the

underlying structure on disk.

For example, to change the price of a specific book in your database, the code might
look like figure 5.7. 

 XQuery update operations weren’t part of the original 2006 XQuery 1.0 specifica-
tion, and at this point you might see books and XML systems that haven’t taken advan-
tage of the full specification. Some systems provide a method of updating XML, but
use a nonstandard method of doing so. Update operations are critical to make it easy

JSONiq and XSPARQL
There are two proposed language extensions to XQuery: JSONiq, which adds the abil-
ity to query JSON documents as well as XML structures, and XSPARQL, which allows
RDF data stores to be queried using XQuery. Some of the features can be imple-
mented using standard XQuery functions, but there are additional benefits to extend-
ing the XQuery language definition to include these features.

replace value of node
doc('books.xml')//book[ISBN='12345']/price with 39.95 

The XML file
of books

The new
price

The book you
want to update

Figure 5.7 A sample XQuery replace statement that changes the 
price of a book with a specific ISBN number to a new price. 
replace value of node is placed before the element and with
is placed before the new price. The net effect is that you can update 
a specific element without the overhead of replacing and re-indexing 
the entire document.
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and efficient to update XML documents. The larger the XML documents are, the
more critical it is to use the update function.

 The W3C standardized XQuery updates in 2011. The other XQuery specification
that was released by the W3C in 2011 was the full-text extension, which we’ll cover next. 

5.2.6 XQuery full-text search standards

Native XML systems are used to store both business documents like sales orders and
invoices, and written documents like articles or books. Because native XML databases
are used to store large amounts of textual information, there’s a strong demand for
high-quality search of these documents. Fortunately, the W3C has also created
XQuery-based standards for full-text search.

 XQuery supports a search extension module that standardizes how search func-
tions are performed on a full-text database (a database that contains a complete text
of the books, journals, magazines, newspapers, or other kinds of textual material in a
collection). This extension to the XQuery language specifies how search queries
should be specified in terms of XQuery functions

 Search standards are important because they allow your XQuery search applica-
tions to be portable to multiple native XML databases. In addition, using standards in
full-text search code and processes allows staff to port their knowledge from one XML
database to another, reducing training and application development time. 

 The specification also provides guidelines on advanced functions such as Boolean
and nearness operations. The key difference is that with native XML databases, each
node can be considered its own document and have its own indexing rules. This
allows you to set up rules to weight matches in the title of a document above matches
in the body of a document. We’ll review the concepts of search and weighting in
greater detail in chapter 7.

 We’ve now reviewed how to build a web application using a native XML database.
You’ve seen how data is loaded, transformed, updated, and searched using XQuery
and XQuery extensions. Now let’s take a look at other standards used in native XML
databases that allow you to build portable applications. 

5.3 Using XML standards within native XML databases
XML standards allow you to reuse your knowledge and code as you move from one
native XML database to another. They also allow you to keep your NoSQL applications
portable across different implementations of NoSQL databases and prevent vendor
lock-in. Standards make it easier to learn a new NoSQL system, which helps you and
your team get your products to market faster. If you’re already familiar with an API or
data standard, your application development using that standard will be faster with
each subsequent project.

 Let’s begin with an overview of some of the XML standards we’ve discussed and
add some new standards to the mix. Table 5.1 lists the key standards used in native
XML systems, the organization associated with the standard, and a description of how
the standard is used.
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Table 5.1 XML standards. Application portability between native XML systems is highly sensitive to the
standards each database implements. Note that not all standards are published by the W3C.

Standard name
Standards 

organization
Description

Extensible 
Markup 
Language (XML)

W3C The XML standard specifies how tree-structured data is stored in a 
text file using elements and attributes. The standard has precise 
information about what character sets are used, how special charac-
ters are escaped, and any special processing instructions that might 
be used by an application. Unlike JSON, XML supports multiple 
namespaces and mixed content.

XPath W3C The XPath specification describes how to select a subset of an XML 
file using simple path expressions. Path expressions are steps into a 
part of the document or complex expressions with conditional state-
ments and loops. XPath is a building block specification that’s used 
in other XML specifications including XSLT, XQuery, Schematron, 
XForms, and XProc.

XML Schema W3C XML schemas are XML files used to quickly validate the structure of 
an XML document in a single pass and check the format rules of 
each leaf element. XML schemas are designed so that validation on 
large documents occurs quickly. XML Schema 1.1 has added new fea-
tures that allow XPath expressions to be used to validate documents. 
XML Schema is a mature standard and is supported by graphical 
design tools.

XQuery W3C XQuery is a W3C standard for querying XML files and XML databases. 
XQuery is considered a functional programming language and is built 
around a parallel programming construct called a FLWOR statement 
that can be easily executed on multiple processors.

XQuery/XPath 
full-text Search

W3C The W3C full-text search standard specifies how full-text searches 
should be implemented in any XQuery or XPath engine.

Schematron ISO/IEC Schematron is a rule-based validation language for making asser-
tions about the presence or absence of patterns in XML trees. Unlike 
XML Schema, Schematron allows you to express if/then rules in 
XPath that can apply to any node in an XML document. A rule about 
the last node in a large file may reference an element in the first node 
of the file, so the entire file may need to be in memory to validate the 
rules.

XProc W3C XProc is a W3C XML declarative language for pipeline processing of 
documents. Typical steps might include expanding includes, validat-
ing, splitting documents, joining documents, transforming, and stor-
ing documents. XProc leverages other XML standards including 
XPath.

XForms W3C XForms is a W3C XML declarative language standard for building cli-
ent applications that use a model-view-controller (MVC) architecture. 
It has the ability to create complex web applications without using 
JavaScript.
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You may find each of the standards listed here applicable in different business situa-
tions. Some standards are used to define document structures, and others focus on
validating or transforming XML documents. This isn’t an exhaustive list, but rather a
representative sample of available standards. As we move into our next section, you’ll
see how you can apply the XML Schema standard to validate your XML data. 

5.4 Designing and validating your data 
with XML Schema and Schematron
XML schemas are used to design and validate XML documents stored in native XML
databases. A schema can be used to precisely communicate the structure of your doc-
uments with others as well as validate the XML document structure. Frequently, simple
graphical tools are used in the design process, which lets subject matter experts and
business analysts participate and take control of this task. 

 The terms schemaless and schema-free occur frequently in NoSQL. In general, the
terms indicate that you don’t have to create a full entity-relation-driven physical
schema, using a data definition language, prior to storing data into your NoSQL sys-
tem. This is true for all of the NoSQL databases we’ve discussed (key-value stores,
graph stores, Bigtable stores, and document stores). Native XML databases, though,
provide the option of designing and validating documents at any time in the data
loading lifecycle using a schema. In our case, the schemas aren’t required to load
data; they’re only optionally used to design and validate documents.

5.4.1 XML Schema

XML Schema is a foundational W3C specification that’s reused by other specifications
to make XML standards consistent. A good example of this reuse is the data type sys-
tem defined in the original XML Schema specification. This data type system is reused
in other XML specifications. Because XPath, XQuery, XProc, and XForms all use the

XSL-FO W3C XSL-FO is a document formatting standard ideal for specifying pagi-
nated layout used in printed material. Unlike HTML, XSL-FO has fea-
tures that allow you to avoid placing items on page break boundaries. 

EXPath EXPath—
W3C 
Committee

Repository of XML-related standards that aren’t currently in the scope 
of other standards organizations. Example libraries include HTTP, cryp-
tography, filesystems, FTP, SFTP, and packaging and compression 
libraries for XML applications.

NVDL ISO/IEC NVDL (Namespace-based Validation Dispatching Language) is an XML 
schema language for validating XML documents that integrate with 
multiple namespaces. It’s used within rule-based text editing systems 
that provide as-you-type rule checking.

Table 5.1 XML standards. Application portability between native XML systems is highly sensitive to the
standards each database implements. Note that not all standards are published by the W3C. (continued)

Standard name
Standards 

organization
Description
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same data types defined in the original XML Schema specification, it’s easy to verify
data types and check for data types in your functions. Once you learn the data types
used on one system, you’ll know how to use them in all systems.

 For example, if you have a data element that must be a nonzero positive integer,
you can declare the data type of that element in your XML schema as xs:positive-
Integer. You can then use an XML schema to validate those elements and receive noti-
fication when data varies from a valid format. If a zero, negative, or non-integer is
used in that element, you can receive a notification at any stage of your data loading
process. Even if you have data issues, you can choose to load the data and perform
cleanup operations using a script later on. In a similar way, an XQuery function that
must have a positive integer as a parameter can use the same positive integer data type
and perform the same consistency checks on input or output elements.

 Because XML Schema is a widely used mature standard, there are graphical tools
available to create and view these structures. A example of this view is shown in
figure 5.8 using the oXygen IDE. 

 This figure shows how simple graphical symbols are used to show both the struc-
ture and rules of a document. After learning the meaning of around a dozen symbols,
nontechnical users can play an active role in the design and verification of document
structures. For example, a solid black line in a schema diagram indicates that a
required element must be present for the document to be valid. A gray line implies
that an element is optional. One quick glance at a diagram can quickly indicate a spe-
cific rule. Using a black solid line for required elements isn’t part of any W3C stan-
dards, but most XML developer tools use similar conventions.

XML schemas are designed to perform a single pass, looking at the structure of the
document and the data formats in each of the leaf elements. This single-pass
approach can check approximately 95% of the rules that concern business users.
There are still a few types of rules that XML schemas aren’t designed to check. For
these rules, you use a companion format called Schematron. 

5.4.2 Using Schematron to check document rules

Schematron is considered the “feather duster” of document validation. Schema-
tron’s focus is the hard-to-reach areas of data type checking that can’t be done in a
single pass with XML Schema. Let’s say you want to check that the sum of all the line
items in a sales order is equal to the sales total; you could do this with a Schematron
rule. Schematron rules are used whenever you’re comparing two or more places in
an XML document.

 Users like Schematron document rules because they can customize the error mes-
sage associated with each rule to have a user-appropriate meaning. This customization
is more difficult with XML Schema, where an error message tells you where the error
occurred within the file but may not return a user-friendly message. For this reason,
sometimes Schematron is preferred in situations where error messages are sent to a
system user. 
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All Schematron rules are expressed using XPath expressions. This means you can use
simple path statements to select two parts of a document and do a comparison. Since
native XML databases index each element specified by a path, only part of the docu-
ment needs to be moved into RAM when running a rules check. Schematron rules can
also be configured to perform date checks and run web service validations. Schema-
tron is both simple and powerful. Many users say it’s one of the most underutilized
features in the XML family of products.

 Together, XML Schema and Schematron provide powerful and easy-to-use tools to
design XML documents and validate their structures. Graphical tools and simple path

Figure 5.8 Sample XML schema diagram showing how symbols are used to display document 
structure. In this example, the file shows the structure of a collection of one to many books. Each 
book has required elements (shown with darker lines, like id and title) as well as optional 
elements (shown with lighter lines, like description). Some elements, such as author-name, 
can be repeated, allowing many authors to be associated with a single book. The XML schema 
elements that have a suffix of code use enumerated values to specify the possible element 
values. Data types such as decimal can also be specified with each element.
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expressions make these tools available to a wide audience. Making projects easier to
use is a central theme of many XML projects. 

 Next you’ll see how XQuery developers are creating custom modules that make it
easier to take advantage of and use XQuery extensions. 

5.5 Extending XQuery with custom modules
Originally, XQuery was designed to have a narrow focus: querying XML files and data-
bases. Today, XQuery is used in a broader context that includes additional use cases.
For example, XQuery is replacing middle-tier languages like PHP in many web appli-
cations. As a result, there’s an increased demand for new functions and modules that
go beyond the original functions that were part of the original XQuery 1.0 specifica-
tion. EXPath is a central repository of these functions and can be used with multiple
databases. Using EXPath functions will make your applications more portable
between these databases.

 Unlike SQL, XQuery is extensible, allowing you to use your own as well as other
developers’ custom functions. XQuery functions are ideal for removing repetitive
code or abstracting complex code into understandable units.

 The XQuery 1.0 specification contains more than 100 built-in functions for tasks
like processing strings, dates, URIs, sums, and other common data structures. XQuery
3.0 has also added a handful of new functions for formatting dates and numbers. But
the real strength of XQuery is the easy way new functions are added. An excellent
example of this is the FunctX library. 

 FunctX contains almost 150 additional functions that can be added to your system
by downloading the function library and adding an import statement to your pro-
gram. The FunctX library extends the basic XQuery functions to allow you to perform
operations on strings, numbers, dates, times, and durations, as well as work with
sequences, XML elements, attributes, nodes, and namespaces. 

 EXPath modules pick up where the XQuery 1.0 function library leaves off. They
include cryptography functions, filesystem libraries, HTTP client calls, and functions
to compress and uncompress data. Many EXPath modules are wrappers to existing
libraries written in Java or other languages. 

5.6 Case study: using NoSQL at the Office 
of the Historian at the Department of State
In this case study, the ability to store, modify, and search historical documents contain-
ing mixed content was a key business requirement. You’ll see how the Office of the
Historian at the Department of State used an open source native XML database to
build a low-cost system with advanced features typically found in enterprise content
management systems.

 The historical mixed content documents contain presentation annotations (bold,
italics, and so on) as well as object entity annotations such as people, dates, terms, and
organizations. Object entity annotations are critical for high-value documents when
precision search and navigation is required.
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 After reading this case study, you’ll understand how annotations are used to solve
business problems and how native XML databases are unique in their ability to query
text with rich annotations. You’ll also become familiar with how open source native
XML databases use XQuery and Lucene full-text search library functions to create
high-quality search tools.

 The Office of the Historian at the Department of State is charged by statute with
publishing the official records associated with US foreign relations. A declassified
analysis of specific periods of US diplomatic history is published in a series of volumes
titled Foreign Relations of the United States (FRUS). Through a detailed editing and peer
review process, the Office of the Historian has become the “gold standard” for accu-
racy in the history of international diplomacy. FRUS documents are used in political
science and diplomacy classes as well as for other training throughout the world.

 In 2008, the Office of the Historian embarked on an initiative to convert the
printed FRUS textbooks into an online format that could be easily searched and
viewed using multiple formats. The Office of the Historian chose a standard XML for-
mat widely used for encoding historical documents called Text Encoding Initiative (TEI).
TEI was chosen because it has precise XML elements to encode a digital representa-
tion of historical documents and includes elements for indicating the people, organi-
zations, locations, dates, and terms used in the documents.

 To convert the FRUS volumes (each over 1,000 pages long) to TEI format, the doc-
uments are first sent to an outside service that enters the information into two sepa-
rate XML documents using an XML editor. The two XML files are compared against
each other to ensure accuracy. The TEI-encoded XML documents are then returned
to the Office of the Historian ready to be indexed and transformed into HTML, PDF,
or other formats. Figure 5.9 outlines this encoding process. 

B+tree

Subversion

Lucene
fulltext

eXist DB

HTML search forms

XQuery search service

Validation
with XML

Schema and
Schematron

Encoded in
TEI XML

format with
annotations

Printed
documents

Figure 5.9 The overall document workflow for converting printed historical 
documents into an online system using TEI encoding. TEI-encoded documents are 
validated using XML schemas and Schematron rules files and saved into a 
Subversion revision control system. XML documents are then loaded into the 
eXist native XML database. Search forms are used to send keyword queries to a 
REST XQuery search service. This service uses the eXist document tree indexes 
and Lucene indexes to create search results.
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The TEI-encoded FRUS documents are validated using XML validation tools (XML
Schema and Schematron) and uploaded into the eXist DB native XML database, where
each data element is automatically indexed. When XML elements contain text, they’re
also automatically indexed using Apache Lucene libraries, resulting in full-text
indexes of each document. When pages are viewed on the website, XQuery performs
a transformation and converts the TEI XML format into HTML. XQuery programs are
also used to transform the TEI XML into other formats, including RSS/Atom feeds,
PDF, and EPUB. No preconversion of TEI to other formats is required until a page or
document is requested on the website.

 A critical success factor for the Office of the Historian at the Department of State
project was the need for high-quality search. A sample search result for the query
“nixon in china” is shown in figure 5.10.

Figure 5.10 A sample web search result from the Office of the Historian at the Department of State. 
The result page uses Apache Lucene full-text indexes to quickly search and rank many documents. The 
bold words in the search result use the key-word-in-context (KWIC) function to show the search 
keywords found in the documents. The search interface allows users to utilize advanced search options 
to limit scope, and includes features such as Boolean, wildcard, and nearness, or proximity search.
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The TEI documents contain many entities (people, dates, terms) that are annotated
with TEI tags. For example, each person has a <person> tag wrapping the name of the
individual mentioned. A sample of these tags is shown in table 5.2.

XQuery makes it easy to query any XML document for all entities within the docu-
ment. For example, in figure 5.11 the XPath expression //person will return all per-
son elements found in a document including those found at the beginning, in the
middle, and at the end.

 An important note to this project: it was done on a modest budget, by nontechni-
cal internal staff and limited outside contractors. The internal staff had no prior

Table 5.2 Sample of TEI entity annotations for people, dates, glossary terms, and geolocations. Note
that an XML attribute such as corresp for persons is used to reference a global dictionary of entities.
Annotations are wrappers around text to describe the text. Attributes such as corresp="" are key-
value pairs within the annotation elements that add specificity to the annotations.

Entity type Example

Person <persName corresp="nixon-richard-m">the president</persName>

Date <date when="1967-06-09">June 9th</date>

Glossary term <gloss target="t_F41">Phantom F–4 aircraft</gloss>

Geolocations <placeName key="t_ROC1">China</placeName>

Figure 5.11 Each page of the FRUS document lists the entities found on that page. For 
example, the people and terms referenced in this page are also shown in the right margin 
of the page. Users can click on each entity for a full definition of that person or term.
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experience with native XML systems nor the XQuery language. One member of the
staff, a historian by training, learned XQuery over the course of several months and
created a prototype website using online examples and assistance from other mem-
bers of the eXist and TEI community.

 There are currently hundreds of completed FRUS volumes in the system, with
more being added each month. Search performance has met all the requirements for
the site with page rendering and web searches all averaging well under 500ms. 

5.7 Case study: managing financial derivatives 
with MarkLogic
In this case study, we’ll look at how a financial institution implemented a commercial,
native XML database (MarkLogic) to manage a high-stakes financial derivatives system.

 This study is an excellent example of how organizations with highly-variable data
are moving away from relational databases even if they’re managing high-stakes finan-
cial transactions. High-variability data is difficult to store in relational databases, since
each variation may need new columns and tables created in a RDBMS as well as new
reports.

 After reading this study, you’ll understand how organizations with high-variability
data can use document stores for transactional data. You’ll also see how these organi-
zations manage ACID transactions and use database triggers to process event streams.

5.7.1 Why financial derivatives are difficult to store in RDBMSs

This section presents an overview of financial derivatives and provides insight as to
why they’re not well suited for storage in tables within a RDBMS.

 Let’s start with a quick comparison. If you purchase items from any web retailer,
the information you enter for each item you want to purchase is limited. When you
purchase a dress or shirt, you choose the item name or number, size, color, and per-
haps a few other details such as the material type or item length. This information fits
neatly into the rows of an RDBMS. 

 Now consider purchasing a complex financial instrument like a derivative, where
each item has thousands of parameters and the parameters for every item are differ-
ent. Most derivatives contain a product ID, but they also contain conditional logic,
mathematical equations, lookup tables, decision trees, and even the full text of legal
contracts. In short, the information doesn’t lend itself to an RDBMS table. Note that
it’s possible to store the item as a binary large object (BLOB) in a traditional RDBMS,
but you wouldn’t be able to access any property inside the BLOB for reporting. 

5.7.2 An investment bank switches from 20 RDBMSs 
to one native XML system

A large investment bank was using 20 different RDBMSs to store complex financial
instruments called over-the-counter derivative contracts, as shown in figure 5.12. 
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Highlights of the banks conversion process included these: 

 Each system had its own method for ingesting the transactions, converting them
to row structures, storing the rows in tables, and reporting on the transactions. 

 Custom software was required for each new derivative type so key parameters
could be stored and queried. 

 In many instances, a single column stored different types of information based
on other parameters in the transaction. 

 After the data was stored, SQL queries were written to extract information for
downstream processing when key events occurred. 

 Because different data was shoehorned into the same column based on the
derivative type, reporting was complex and error prone. 

 Errors resulted in data quality issues and required extensive auditing of output
results before the data could be used by downstream systems. 

This complex conversion process made it difficult for the bank to get consistent and
timely reports and to efficiently manage document workflow. What they needed was a
flexible way to store the derivative documents in a standard format such as XML, and
to be able to report on the details of the data. If all derivatives were stored as full XML
documents, each derivative could contain its unique parameters, without changes to
the database. 

 As a result of this analysis, the bank converted their operational data store (ODS)
to a native XML database (MarkLogic) to store their derivative contracts. Figure 5.13
shows how the MarkLogic database was integrated into the financial organization’s
workflow. 

 MarkLogic is a commercial document-oriented NoSQL system that has been
around since before the term NoSQL was popular. Like other document stores, Mark-
Logic excels at storing data with high variability and is compliant with W3C standards
such as XML, XPath, and XQuery.

Figure 5.12 A sample data flow of an operational data store (ODS) for a complex 
financial derivatives system using multiple RDBMSs to store the data. The trading 
systems each stored data into RDBMSs using complex SQL INSERT statements. SQL 
SELECT statements were used to extract data. Each new derivative type required custom 
software to be written.
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The bank’s new system was ideal as a centralized store for the highly variable deriva-
tives contracts. Since MarkLogic supports ACID transactions and replication, the bank
maintained the reliability and availability guarantees it had with its RDBMS. MarkLogic
also supports event triggers on document collections. These are scripts that are exe-
cuted each time an XML file is inserted, updated, or deleted.

 Whereas RDBMSs require every record in a database to have the same structure
and data types, document stores are more flexible and allow organizations to capture
the variations in their data in a single database. As we move to our next section, we’ll
take a look at the major benefits of using a native XML document store. 

5.7.3 Business benefits of moving to a native XML document store

The move to a document-centric architecture resulted in the following tangible bene-
fits to the organization:

 Faster development—New instrument types added to the system by the front office
traders didn’t require additional software development, and therefore could be
supported in a matter of hours rather than days, weeks, or even months.

 Higher data quality—As new derivatives were loaded into the system as XML doc-
uments, the system was able to append the document with additional XML
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docs or specific data elements with XPath.
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Figure 5.13 Financial derivatives are stored in a native XML database being used as an 
ODS. Trading systems send XML documents for each trade or contract directly to the 
database where each element is directly and immediately indexed. Update triggers 
automatically send event data to a workflow system and system users use simple XPath 
expressions to perform ad hoc queries.
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elements needed to more precisely describe the derivative. Downstream analy-
sis and reporting became easier to manage and less error prone.

 Better risk management—New reporting capabilities aggregated the bank’s posi-
tion in real time, and provided an instant, accurate view of exposure to certain
risk aspects such as counter-parties, currencies, or geographies. 

 Lower operational costs—The elimination of processing errors associated with
multiple operational stores containing conflicting data reduced cost per trade;
the reduction of database administrators needed from 10 to 1 lowered human
resource expense; mechanisms that trigger all post-trade processing workflows
from a single source instead of 20 databases increased operational efficiencies;
and the ability to query the content of each individual derivative lowered
reporting costs. With its new infrastructure, the bank didn’t need to add
resources to meet regulators’ escalating demands for more transparency and
increased stress-testing frequency.

In addition to the more tangible benefits of the new system, the bank was able to
bring new products to market faster and perform more detailed quality checks on
diverse data. As a result of the new-found confidence in the data quality and accuracy,
the solution was adopted by other parts of the bank. 

5.7.4 Project results

The new MarkLogic system allowed the bank to cut the costs of building and main-
taining an operational data store for complex derivatives. In addition, the bank
became more responsive to the needs of the organization when new derivatives
needed to be added. Derivative contracts are now kept in a semantically precise and
flexible XML format while maintaining high data integrity, even as the format moves
into remote reporting and workflow systems. These changes had a positive impact on
the entire lifecycle of derivative contract management. 

5.8 Summary
If you talk with people who’ve been using native XML databases for several years, they
tell you they’re happy with these systems, and express their reluctance to return to
RDBMSs. Their primary reason for liking native XML systems isn’t centered around
performance issues, although there are commercial native XML databases such as
MarkLogic that store petabtyes of information. Their primary reason is related to
increased developer productivity and the ability for nonprogrammers to be able to
participate in the development process. 

 Seasoned software developers have exposure to good training and they frequently
use tools customized to the XML development process. They have large libraries of
XQuery code that can quickly be customized to create new applications in a short
period of time. The ability to quickly create new applications shortens development
cycles and helps new products make tight time-to-market deadlines. 
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 Although XML is frequently associated with slow processing speeds, this often has
more to do with a specific implementation of an XML parser or a slow virtual machine.
It has little to do with how native XML systems work. The generation of XML directly
from a compressed tree storage structure is usually on par with any other format such
as CSV or JSON.

 All native XML databases start with the cache-friendly document store pattern and
gain from the elimination of middle-tier, object-translation layers. They then leverage
the power of standards to gain both portability and reuse of XQuery function librar-
ies. The use of standard metaphors like data folders to manage document collections
and simple path expressions in queries make native XML databases easy to set up and
administer for nontechnical users. This combination of features has yet to appear in
other NoSQL systems, since standardization is only critical as third-party software
developers look for application portability.

 Despite the W3C’s work on extending XQuery for updates and full-text search,
there are still areas that lack standardization. Although native XML databases allow
you to create custom indexes for things like geolocation, RDF data, and graphs, there
are still few standards in these areas, making porting applications between native XML
databases more difficult than it needs to be. New work by the W3C, EXPath develop-
ers, and other researchers may mitigate these problems in the future. If these stan-
dards continue to be developed, XQuery-based document stores may become a more
robust platform for NoSQL developers.

 The cache-friendliness of documents and the parallel nature of the FLWOR state-
ment make native XML databases inherently more scalable than SQL systems. In the
next chapter, we’ll focus on the some of the techniques NoSQL systems use when
managing large datasets. 
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Part 3

NoSQL solutions

Part 3 is a tour of how NoSQL solutions solve the real-world business prob-
lems of big data, search, high availability, and agility. As you go through each
chapter, you’ll be presented with a business problem, and then see how one or
more NoSQL technologies can be cost-effectively implemented to result in a
positive return on investment for an organization. 

 Chapter 6 tackles the issues of big data and linear scalability. You’ll see how
NoSQL systems leverage large numbers of commodity CPUs to solve large data-
set and big data problems. You’ll also get an in-depth review of MapReduce and
the need for parallel processing. 

 In chapter 7 we identify the key features associated with a strong search
system and show you how NoSQL systems can be used to create better search
applications. 

 Chapter 8 covers how NoSQL systems are used to address the issues of high
availability and minimal downtime. 

 Chapter 9 looks at agility and how NoSQL systems can help organizations
quickly respond to changing organizational needs. Many people who are new to
the NoSQL movement underestimate how constraining RDBMSs can be when
market demand or business conditions change. This chapter shows how NoSQL
systems can be more adaptable to changing system and market requirements
and provide a competitive edge to an organization.





Using NoSQL
to manage big data
By improving our ability to extract knowledge and insights from large and complex
collections of digital data, the initiative promises to help solve some the Nation’s most
pressing challenges.

—US Federal Government, 
“Big Data Research and Development Initiative”

Have you ever wanted to analyze a large amount of data gathered from log files or
files you’ve found on the web? The need to quickly analyze large volumes of data is
the number-one reason organizations leave the world of single-processor RDBMSs
and move toward NoSQL solutions. You may recall our discussion in chapter 1 on
the key business drivers: volume, velocity, variability, and agility. The first two, vol-
ume and velocity, are the most relevant to big data problems.

This chapter covers
 What is a big data NoSQL solution?

 Classifying big data problems

 The challenges of distributed computing for big data 

 How NoSQL handles big data 
127
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 Twenty years ago, companies managed datasets that contained approximately a
million internal sales transactions, stored on a single processor in a relational data-
base. As organizations generated more data from internal and external sources, data-
sets expanded to billions and trillions of items. The amount of data made it difficult
for organizations to continue to use a single system to process this data. They had to
learn how to distribute the tasks among many processors. This is what is known as a
big data problem.

 Today, using a NoSQL solution to solve your big data problems gives you some
unique ways to handle and manage your big data. By moving data to queries, using
hash rings to distribute the load, using replication to scale your reads, and allowing
the database to distribute queries evenly to your data nodes, you can manage your
data and keep your systems running fast. 

 What’s driving the focus on solving big data problems? First, the amount of pub-
licly available information on the web has grown exponentially since the late 1990s
and is expected to continue to increase. In addition, the availability of low-cost sensors
lets organizations collect data from everything; for instance, from farms, wind tur-
bines, manufacturing plants, vehicles, and meters monitoring home energy consump-
tion. These trends make it strategically important for organizations to efficiently and
rapidly process and analyze large datasets.

 Now let’s look at how NoSQL systems, with their inherently horizontal scale-out
architectures, are ideal for tackling big data problems. We’ll look at several strategies
that NoSQL systems use to scale horizontally on commodity hardware. We’ll see how
NoSQL systems move queries to the data, not data to the queries. We’ll see how they
use the hash rings to evenly distribute the data on a cluster and use replication to scale
reads. All these strategies allow NoSQL systems to distribute the workload evenly and
eliminate performance bottlenecks.

6.1 What is a big data NoSQL solution?
So what exactly is a big data problem? A big data class problem is any business problem
that’s so large that it can’t be easily managed using a single processor. Big data prob-
lems force you to move away from a single-processor environment toward the more
complex world of distributed computing. Though great for solving big data problems,
distributed computing environments come with their own set of challenges (see fig-
ure 6.1). 

 We want to stress that big data isn’t the same as NoSQL. As we’ve defined NoSQL
in this book, it’s more than dealing with large datasets. NoSQL includes concepts and
use cases that can be managed by a single processor and have a positive impact on
agility and data quality. But we consider big data problems a primary use case for
NoSQL.

 Before you assume you have a big data problem, you should consider whether you
need all of your data or a subset of your data to solve your problem. Using a statistical
sample allows you to use a subset of your data and look for patterns in the subset. The
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trick is to come up with a process to ensure the sample you choose is a fair representa-
tion of the full dataset. 

 You should also consider how quickly you need your data processed. Many data
analysis problems can be handled by a batch-type solution running on a single proces-
sor; you may not need an immediate answer. The key is to understand the true time-
critical nature of your situation.

 Now that you know that distributed databases are more complex than a single pro-
cessor system and there are alternatives to using a full dataset, let’s look at why organi-
zations are moving toward these complex systems. Why is the ability to handle big data
strategically important to many organizations? Answering this question involves
understanding the external factors that are driving the big data marketplace.

 Here are some typical big data use cases:

 Bulk image processing—Organizations like NASA regularly receive terabytes of
incoming data from satellites or even rovers on Mars. NASA uses a large number
of servers to process these images and perform functions like image enhance-
ment and photo stitching. Medical imaging systems like CAT scans and MRIs
need to convert raw image data into formats that are useful to doctors and
patients. Custom imaging hardware has been found to be more expensive than
renting a large number of processors on the cloud when they’re needed. For
example, the New York Times converted 3.3 million scans of old newspaper arti-
cles into web formats using tools like Amazon EC2 and Hadoop for a few hun-
dred dollars. 

One database Many databasesOR

• Easy to understand
• Easy to set up and configure
• Easy to administer
• Single source of truth
• Limited scalability

• Data partitioning
• Replication
• Clustering
• Query distribution
• Load balancing
• Consistency/Syncing
• Latency/Concurrency
• Clock synchronization
• Network bottlenecks/failures
• Multiple data centers
• Distributed backup
• Node failure
• Voting algorithms for error detection
• Administration of many systems
• Monitoring
• Scalable if designed correctly

Figure 6.1 One or many databases? Here are some of the challenges you face when you 
move from a single processor to a distributed computing system. Moving to a distributed 
environment is a nontrivial endeavor and should be done only if the business problem 
really warrants the need to handle large data volumes in a short period of time. This is 
why platforms like Hadoop are complex and require a complex framework to make things 
easier for the application developer.
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 Public web page data—Publicly accessible pages are full of information that orga-
nizations can use to be more competitive. They contain news stories, RSS feeds,
new product information, product reviews, and blog postings. Not all of the
information is authentic. There are millions of pages of fake product reviews
created by competitors or third parties paid to disparage other sites. Finding
out which product reviews are valid is a topic for careful analysis.

 Remote sensor data—Small, low-power sensors can now track almost any aspect of
our world. Devices installed on vehicles track location, speed, acceleration, and
fuel consumption, and tell your insurance company about your driving habits.
Road sensors can warn about traffic jams in real time and suggest alternate
routes. You can even track the moisture in your garden, lawn, and indoor plants
to suggest a watering plan for your home.

 Event log data—Computer systems create logs of read-only events from web page
hits (also called clickstreams), email messages sent, or login attempts. Each of
these events can help organizations understand who’s using what resources and
when systems may not be performing according to specification. Event log data
can be fed into operational intelligence tools to send alerts to users when key
indicators fall out of acceptable ranges.

 Mobile phone data—Every time users move to new locations, applications can
track these events. You can see when your friends are around you or when cus-
tomers walk through your retail store. Although there are privacy issues
involved in accessing this data, it’s forming a new type of event stream that can
be used in innovative ways to give companies a competitive advantage.

 Social media data—Social networks such as Twitter, Facebook, and LinkedIn pro-
vide a continuous real-time data feed that can be used to see relationships and
trends. Each site creates data feeds that you can use to look at trends in cus-
tomer mood or get feedback on your own as well as competitor products.

 Game data—Games that run on PCs, video game consoles, and mobile devices
have back-end datasets that need to scale quickly. These games store and share
high scores for all users as well as game data for each player. Game site back
ends must be able to scale by orders of magnitude if viral marketing campaigns
catch on with their users.

 Open linked data—In chapter 4 we looked at how organizations can publish pub-
lic datasets that can be ingested by your systems. Not only is this data large, but
it may require complex tools to reconcile, remove duplication, and find invalid
items.

When looking at these use cases, you see that some problems can be described as
independent parallel transforms since the output from one transform isn’t used as an
input to another. This includes problems like image and signal processing. Their
focus is on the efficient and reliable data transformation at scale. These use cases
don’t need the query or transactions support provided by many NoSQL systems. They
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read and write to key-value stores or distributed filesystems like Amazon’s Simple Storage
Service (S3) or Hadoop Distributed File System (HDFS) and may not need the advanced fea-
tures of a document store or an RDBMS.

 Other use cases are more demanding and need more features. Big data problems
like event log data and game data do need to store their data directly into structures
that can be queried and analyzed, so they will need different NoSQL solutions.

 To be a good candidate for a general class of big data problems, NoSQL solutions
should 

 Be efficient with input and output and scale linearly with growing data size.
 Be operationally efficient. Organizations can’t afford to hire many people to

run the servers.
 Require that reports and analyses be performed by nonprogrammers using sim-

ple tools—not every business can afford a full-time Java programmer to write
on-demand queries.

 Meet the challenges of distributed computing, including consideration of
latency between systems and eventual node failures.

 Meet both the needs of overnight batch processing economy-of-scale and time-
critical event processing.

RDBMS can, with enough time and effort, be customized to solve some big data prob-
lems. Applications can be rewritten to distribute SQL queries to many processors and
merge the results of the queries. Databases can be redesigned to remove joins
between tables that are physically located on different nodes. SQL systems can be con-
figured to use replication and other data synchronization processes. Yet these steps all
take considerable time and money. In the long run, it might make sense to move to a
framework that has already solved many of these problems.

 Original SQL systems were revolutionary with their standardized declarative lan-
guage. By declarative, we mean that a developer can “declare” what data they want and
yet not be concerned with how they get it or where they get the data from. SQL develop-
ers want and need to be isolated from the question of how to optimize a query, how to
fetch the data, and what server the data is on. Unless your database isolates you from
these questions, you lose many of the benefits of declarative systems like SQL. 

 NoSQL systems try to isolate the developers from the complexities of distributed
computing. They provide interfaces that allow users to tell a cluster how many nodes a
record must be read to or written from before a valid response is returned. The goal is
to keep the benefits of both declarative systems and horizontal scalability as you move
to distributed computing platforms.

 If NoSQL systems really do have better horizontal scaling characteristics, you need
to be able to measure these characteristics. So let’s take a look at how horizontal scal-
ability and NoSQL might be measured. 
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6.2 Getting linear scaling in your data center
One of the core concepts in big data is linear scaling. When a system has linear scaling,
you automatically get a proportional performance gain each time you add a new pro-
cessor to your cluster, as shown in figure 6.2. 

There are additional types of scaling that might be important to you based on the type
of problem you’re trying to solve. For example:

 Scaling independent transformations—Many big data problems are driven by dis-
crete transformations on individual items without interaction among the items.
These types of problems tend to be the easiest to solve: simply add a new node
to your cluster. Image transformation is a good example of this.

 Scaling reads—In order to keep your read latency low, you must replicate your
data on multiple servers and move the servers as close to the users as possible
using tools like content distribution networks (CDNs). CDNs keep copies of data in
each geographic region so that the distance that data moves over a network can
be minimized. The challenge is that the more servers you have and the farther
apart they are, the more difficult it is to keep them in sync.

 Scaling totals—Scaling totals involves how quickly you can perform simple math
functions (count, sum, average) on large quantities of data. This type of scaling
is most often addressed by OLAP systems by precalculating subset totals in struc-
tures called aggregates so that most of the math is already done. For example, if
you have the total daily hits for a website, the weekly total is the sum of each day
in a particular week.

 Scaling writes—In order to avoid blocking writes, it’s best to have multiple serv-
ers that accept writes and never block each other. To make reads of these writes

Linear scalable

Nonscalable

Number of processors

Performance

Linear scalable architectures
provide a constant rate of

additional performance as the
number of processors

increases.

Nonscalable systems
reach a plateau of

performance where adding
new processors does
not add incremental

performance.

Figure 6.2 How some systems continue to add performance as more nodes 
are added to the system. Performance can be a measure of read operations, 
write operations, or transformations. Systems are considered linearly 
scalable if the performance curve doesn’t flatten out at some threshold. 
Many components can cause bottlenecks in performance, so testing for 
linear scalability is critical in system design.
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consistent, the servers should be as close to each other as possible. Users that
write their own data should always be able to read it back in a consistent state.

 Scaling availability—Duplicate the writes onto multiple servers in data centers in
distinct geographic regions. If one data center experiences an outage, the other
data centers can supply the data. Scaling availability keeps replica copies in sync
and automates the switchover if one system fails.

Figure 6.3 is an example of linear write scalability analysis done by Netflix using an
Amazon Elastic Compute Cloud (EC2) system.

The ability to scale linearly is critical to cost-effective big data processing. But the abil-
ity to read and write single records isn’t the only concern of many business problems.
Systems must also be able to effectively perform queries on your data, as you’ll see
next. 

6.3 Understanding linear scalability and expressivity
What’s the relationship between scalability and your ability to perform complex que-
ries on your data? As we mentioned earlier, linear scalability is the ability to get a con-
sistent amount of performance improvement as you add additional processors to your
cluster. Expressivity is the ability to perform fine-grained queries on individual ele-
ments of your dataset.

 Understanding how well each NoSQL technology performs in terms of scalability
and expressivity is necessary when you’re selecting a NoSQL solution. To select the
right system, you’ll need to identify the scalability and expressivity requirements of
your system and then make sure the system that you select meets both of these crite-
ria. Scalability and expressivity can be difficult to quantify, and vendor claims may not
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Figure 6.3 An example of a Cassandra cluster that has been used to simulate a large 
number of writes per second on multiple nodes. The start of the simulation shows around 
50 nodes accepting 170,000 writes per second. As the cluster grows to over 300 
nodes, the system can accept over a million writes per second. The simulation was done 
on a rented cluster of Amazon Elastic Compute Cloud (EC2). The ability to “rent” CPUs 
on an hourly basis has made it easy to test a NoSQL system for linear scalability. 
(Reference: Netflix)
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match actual performance for a particular business problem. If you’re making critical
business decisions, we recommend you create a pilot project and simulate an actual
load using leased cloud systems. 

 Let’s look at two extreme cases: a key-value store and a document store. After
reviewing the vendor brochures, you feel that both of these systems have similar linear
scalability rules that meet your business growth needs. Which one is right for your
project?

 The answer lies in how you want to retrieve the data from each of these systems. If
you only need to store images and using a URL to specify an image is appropriate,
then a key-value store is the right choice. If you need to be able to store items and
query on a specific subset of items based on the items’ properties, then a key-value
store isn’t a good match since the value portion of a key is opaque to queries. In con-
trast, a document store that can index dates, amounts, and item descriptions might be
a better match.

 Figure 6.4 shows a sample chart that ranks systems based on their scalability versus
expressivity. 

 The challenge is that both scalability and expressivity rankings are dependent on
your specific business situation. The scalability requirements for some systems might
focus on a high number of reads per second and others might focus on writes per sec-
ond. Other scalability requirements might only specify that a large amount of data be
transformed overnight. In the same way, your expressivity could include the require-
ments for ranked full-text search or the ability to query for annotations within text.

 If you’re involved in the software selection process, you want to remember that
there’s seldom one perfect solution. The scalability and expressivity analysis is a good
example of this trade-off analysis. As we look at other tools to help you make these
trade-off decisions, you’ll see that understanding your data will help you classify your
big data problems. 
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Single CPU

Key-value JSON XMLColumn
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Figure 6.4 A sample of how 
you might rank scalability 
(vertical axis) and expressivity 
(horizontal axis) for your 
requirements. Simple key-value 
stores are almost always the 
least expressive but most 
scalable. Document stores are 
usually the most expressive. 
How you rate scalability and 
expressivity may depend on 
your business situation.
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6.4 Understanding the types of big data problems
There are many types of big data problems, each requiring a different combination of
NoSQL systems. After you’ve categorized your data and determined its type, you’ll
find there are different solutions. How you build your own big data classification sys-
tem might be different from this example, but the process of differentiating data types
should be similar.

 Figure 6.5 is a good example of a high-level big data classification system. 

Let’s take a look at some ways you classify big data problems and see how NoSQL sys-
tems are changing the way organizations use data. 

 Read-mostly—Read-mostly data is the most common classification. It includes
data that’s created once and rarely altered. This type of data is typically found in
data warehouse applications but is also identified as a set of non-RDBMS items
like images or video, event-logging data, published documents, or graph data.
Event data includes things like retail sales events, hits on a website, system log-
ging data, or real-time sensor data. 

 Log events—When operational events occur in your enterprise, you can record it
in a log file and include a timestamp so you know when the event occurred. Log
events may be a web page click or an out-of-memory warning on a disk drive. In
the past, the cost and amount of event data produced were so large that many
organizations opted not to gather or analyze it. Today, NoSQL systems are
changing companies’ thoughts on the value of log data as the cost to store and
analyze it is more affordable. 

The ability to cost-effectively gather and store log events from all computers
in your enterprise has lead to BI operational intelligence systems. Operational
intelligence goes beyond analyzing trends in your web traffic or retail transac-
tions. It can integrate information from network monitoring systems so you can

Big data

Read-mostly Read-write

Image Event-log Documents

Real-time Batch

Clickstream Operational

High availability TransactionsGraph

Full-text

Simple text Annotations

Figure 6.5 A sample of a taxonomy of big data types. This chapter deals with read-mostly 
problems. Chapter 8 has a focus on read/write big data problems that need high availability.
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detect problems before they impact your customers. Cost-effective NoSQL sys-
tems can be part of good operations management solutions.

 Full-text documents—This category of data includes any document that contains
natural-language text like the English language. An important aspect of docu-
ment stores is that you can query the entire contents of your office document in
the same way you would query rows in your SQL system.

This means that you can create new reports that combine traditional data in
RDBMSs as well as the data within your office documents. For example, you
could create a single query that extracted all the authors of titles of PowerPoint
slides that contained the keywords NoSQL or big data. The result of this list of
authors could then be filtered with a list of titles in the HR database to show
which people had the title of Data Architect or Solution Architect. 

This is a good example of how organizations are trying to tap into the hid-
den skills that already exist within an organization for training and mentorship.
Integrating documents into what can be queried is opening new doors in
knowledge management and efficient staff utilization.

As you can see, you might encounter many different flavors of big data. As we move
forward, you’ll see how using a shared-nothing architecture can help you with most of
your big data problems, whether they’re read-mostly or read/write data. 

6.5 Analyzing big data with a shared-nothing architecture
There are three ways that resources can be shared between computer systems: shared
RAM, shared disk, and shared-nothing. Figure 6.6 shows a comparison of these three
distributed computing architectures. 

 Of the three alternatives, a shared-nothing architecture is most cost effective in
terms of cost per processor when you’re using commodity hardware. As we continue,
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Figure 6.6 Three ways to share resources. The left panel shows a 
shared RAM architecture, where many CPUs access a single shared 
RAM over a high-speed bus. This system is ideal for large graph 
traversal. The middle panel shows a shared disk system, where 
processors have independent RAM but share disk using a storage area 
network (SAN). The right panel shows an architecture used in big data 
solutions: cache-friendly, using low-cost commodity hardware, and a 
shared-nothing architecture.
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you’ll see how each of these architectures works to solve big data problems with differ-
ent types of data. 

 Of the architectural data patterns we’ve discussed so far (row store, key-value store,
graph store, document store, and Bigtable store), only two (key-value store and docu-
ment store) lend themselves to cache-friendliness. Bigtable stores scale well on shared-
nothing architectures because their row-column identifiers are similar to key-value
stores. But row stores and graph stores aren’t cache-friendly since they don’t allow a
large BLOB to be referenced by a short key that can be stored in the cache.

 For graph traversals to be fast, the entire graph should be in main memory. This is
why graph stores work most efficiently when you have enough RAM to hold the graph.
If you can’t keep your graph in RAM, graph stores will try to swap the data to disk,
which will decrease graph query performance by a factor of 1,000. The only way to
combat the problem is to move to a shared-memory architecture, where multiple
threads all access a large RAM structure without the graph data moving outside of the
shared RAM. 

 The rule of thumb is if you have over a terabyte of highly connected graph data
and you need real-time analysis of this graph, you should be looking for an alternative
to a shared-nothing architecture. A single CPU with 64 GB of RAM won’t be sufficient
to hold your graph in RAM. Even if you work hard to only load the necessary data ele-
ments into RAM, your links may traverse other nodes that need to be swapped in from
disk. This will make your graph queries slow. We’ll look into alternatives to this in a
case study later in this chapter.

 Knowing the hardware options available to big data is an important first step, but
distributing software in a cluster is also important. Let’s take a look at how software
can be distributed in a cluster. 

6.6 Choosing distribution models: 
master-slave versus peer-to-peer
From a distribution perspective, there are two main models: master-slave and peer-to-
peer. Distribution models determine the responsibility for processing data when a
request is made. 

 Understanding the pros and cons of each distribution model is important when
you’re looking at a potential big data solution. Peer-to-peer models may be more resil-
ient to failure than master-slave models. Some master-slave distribution models have
single points of failure that might impact your system availability, so you might need to
take special care when configuring these systems. 

 Distribution models get to the heart of the question who’s in charge here? There are
two ways to answer this question: one node or all nodes. In the master-slave model,
one node is in charge (master). When there’s no single node with a special role in tak-
ing charge, you have a peer-to-peer distribution model.

 Figure 6.7 shows how these models each work.
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Let’s look at the trade-offs. With a master-slave distribution model, the role of manag-
ing the cluster is done on a single master node. This node can run on specialized
hardware such as RAID drives to lower the probability that it crashes. The cluster can
also be configured with a standby master that’s continually updated from the master
node. The challenge with this option is that it’s difficult to test the standby master
without jeopardizing the health of the cluster. Failure of the standby master to take
over from the master node is a real concern for high-availability operations. 

 Peer-to-peer systems distribute the responsibility of the master to each node in the
cluster. In this situation, testing is much easier since you can remove any node in the
cluster and the other nodes will continue to function. The disadvantage of peer-to-
peer networks is that there’s an increased complexity and communication overhead
that must occur for all nodes to be kept up to date with the cluster status.

 The initial versions of Hadoop (frequently referred to as the 1.x versions) were
designed to use a master-slave architecture with the NameNode of a cluster being
responsible for managing the status of the cluster. NameNodes usually don’t deal with
any MapReduce data themselves. Their job is to manage and distribute queries to the
correct nodes on the cluster. Hadoop 2.x versions are designed to remove single
points of failure from a Hadoop cluster.

 Using the right distribution model will depend on your business requirements: if
high availability is a concern, a peer-to-peer network might be the best solution. If you
can manage your big data using batch jobs that run in off hours, then the simpler
master-slave model might be best. As we move to the next section, you’ll see how Map-
Reduce systems can be used in multiprocessor configurations to process your big data. 
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Figure 6.7 Master-slave versus peer-to-peer—the panel on the left 
illustrates a master-slave configuration where all incoming database 
requests (reads or writes) are sent to a single master node and 
redistributed from there. The master node is called the NameNode in 
Hadoop. This node keeps a database of all the other nodes in the 
cluster and the rules for distributing requests to each node. The panel 
on the right shows how the peer-to-peer model stores all the information 
about the cluster on each node in the cluster. If any node crashes, the 
other nodes can take over and processing can continue.
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6.7 Using MapReduce to transform your data 
over distributed systems
Now let’s take an in-depth look to see how MapReduce systems can be used to process
large datasets on multiple processors. You’ll see how MapReduce clusters work in con-
junction with distributed filesystems such as the Apache Hadoop Distributed File Sys-
tem (HDFS) and review how NoSQL systems such as Hadoop use both the map and
reduce functions to transform data that’s stored in NoSQL databases.

 If you’ve been moving data between SQL systems, you’re familiar with the extract,
load, and transform (ETL) process. The ETL process is typically used when extracting
data from an operational RDBMS to transfer it into the staging area of a data ware-
house. We reviewed this process and ETL in chapter 3 when we covered OLAP systems.

ETL systems are typically written in SQL. They use the SELECT statement on a
source system and INSERT, UPDATE, or DELETE functions on the destination system.
SQL-based ETL systems usually don’t have the inherent ability to use a large number of
processors to do their work. This single-processor bottleneck is common in data ware-
house systems as well as areas of big data.

 To solve this type of problem, organizations have moved to a distributed transfor-
mation model built around the map and reduce functions. To effectively distribute
work evenly over a cluster of processors, the output of a map phase must be a set of
key-value pairs where part of the key structure is used to correlate results into the
reduce phase. These functions are designed to be inherently linearly scalable using a
large number of shared-nothing processors. 

 Yet, at its core, the fundamental process of MapReduce is the parallel transforma-
tion of data from one form to another. MapReduce processes don’t require the use of
databases in the middle of the transformation. To work effectively on big data prob-
lems, MapReduce operations do require a large amount of input and output. In an
ideal situation, data transformed by a MapReduce server will have all the input on the
local disk of a shared-nothing cluster and write the results to the same local disk. Mov-
ing large datasets in and out of a MapReduce cluster can be inefficient.

 The MapReduce way of processing data is to specify a series of stepwise functions
on uniform input data. This process is similar to the functional programming con-
structs that became popular in the 1950s with the LISP systems at MIT. Functional pro-
gramming is about taking a function and a list, and returning a list where the function
has been applied to each member of the list. What’s different about modern Map-
Reduce is all the infrastructure that goes with the reliable and efficient execution of
transforms on lists of billions of items. The most popular implementation of the
MapReduce algorithm is the Apache Hadoop system. 

 The Hadoop system doesn’t fundamentally change the concepts of mapping and
reducing functions. What it does is provide an entire ecosystem of tools to allow map
and reduce functions to have linear scalability. It does this by requiring that the out-
put of all map functions return a key-value pair. This is how work can then be distrib-
uted evenly over the nodes of a Hadoop cluster. Hadoop addresses all of the hard
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parts of distributed computing for large datasets for you so that you can concentrate
on writing the map and reduce operations.

 It’s also useful to contrast the MapReduce way with RDBMSs. MapReduce is a way of
explicitly specifying the steps in a transformation, with the key being to use key-value
pairs as a method of distribution to different nodes in a cluster. SQL, on the other
hand, attempts to shield you from the process steps it uses to get data from different
tables to perform optimal queries.

 If you’re using Hadoop, MapReduce is a disk-based, batch-oriented process. All
input comes from disk, and all output writes to disk. Unlike MapReduce, the results of
SQL queries can be loaded directly into RAM. As a result, you’d rarely use the result of
a MapReduce operation to populate a web page while users are waiting for a web page
to render.

 The Hadoop MapReduce process is most similar to the data warehouse process of
precalculating sums and totals in an OLAP data warehouse. This process is tradition-
ally done by extracting new transactions each night from an operational data store
and converting them to facts and aggregates in an OLAP cube. These aggregates allow
sums and totals to be quickly calculated when users are looking for trends in purchas-
ing decisions.

 NoSQL systems each vary in how they implement map and reduce functions and
how they integrate with existing Hadoop clusters. Some NoSQL systems such as HBase
are designed to run directly within a Hadoop system. Their default behavior is to read
from HDFS and write the results of their transforms to HDFS. By taking this approach,
HBase can leverage existing Hadoop infrastructure and optimize input and output
processing steps.

 Most other NoSQL systems that target big data problems provide their own ways to
perform map and reduce functions or to integrate with a Hadoop cluster. For exam-
ple, MongoDB provides their own map and reduce operations that work directly on
MongoDB documents for both input and output. Figure 6.8 shows an example com-
paring MongoDB map reduce functions with SQL. 

 Now that you have an understanding of how MapReduce leverages many proces-
sors, let’s see how it interacts with the underlying filesystems. 

6.7.1 MapReduce and distributed filesystems

One of the strengths of a Hadoop system is that it’s designed to work directly with a
filesystem that supports big data problems. As you’ll see, Hadoop makes big data pro-
cessing easier by using a filesystem structure that’s different from a traditional system. 

 The Hadoop Distributed File System (HDFS) provides many of the supporting fea-
tures that MapReduce transforms need to be efficient and reliable. Unlike an ordi-
nary filesystem, it’s customized for transparent, reliable, write-once, read-many
operations. You can think of HDFS as a fault-tolerant, distributed, key-value store
tuned to work with large files.
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Traditional filesystems store data in a single location; if a drive fails, data is restored
from a backup drive. By default, files in HDFS are stored in three locations; if a drive
fails, the data is automatically replicated to another drive. It’s possible to get the same
functionality using a fault-tolerant system like RAID drives. But RAID drives are more
expensive and difficult to configure on commodity hardware.

HDFSs are different: they use a large (64 megabytes by default) block size to han-
dle data. Figure 6.9 shows how large HDFS blocks are compared to a typical operating
system. 

HDFS also has other properties that make it different from an ordinary filesystem.
You can’t update the value of a few bytes in an existing block without deleting the old
block and adding an entirely new block. HDFS is designed for large blocks of immuta-
ble data that are created once and read many times. Efficient updates aren’t a primary
consideration for HDFS.

 Although HDFS is considered a filesystem, and can be mounted like other filesys-
tems, you don’t usually work with HDFS as you would an additional disk drive on your
Windows or UNIX system. An HDFS system wouldn’t be a good choice for storing typi-
cal Microsoft office documents that are updated frequently. HDFS is designed to be a

Figure 6.8 A comparison of a mySQL SQL query with MongoDB’s map and reduce functions. The queries 
perform similar functions, but the MongoDB query can easily be distributed over hundreds of processors. 
(Attribution to Rick Osborne)
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highly available input or output destination for gigabyte and larger MapReduce batch
jobs.

 Now let’s take a closer look at how MapReduce jobs work over distributed clusters. 

6.7.2 How MapReduce allows efficient transformation of big data 
problems

In previous chapters, we looked at MapReduce and its exceptional horizontal scale-
out properties. MapReduce is a core component in many big data solutions.
Figure 6.10 provides a detailed look at the internal components of a MapReduce job. 

40 KB

Typical OS filesystem
block size is 4 KB.

The default HDFS block
size is 64 MB, or 6.4 of these.

4 KB

400 KB 1 MB 10 MB

Figure 6.9 The size difference between a filesystem block size on a typical desktop 
or UNIX operating system (4 KB) and the logical block size within the Apache Hadoop 
Distributed File System (64 MB), which is optimized for big data transforms. The 
default block size defines a unit of work for the filesystem. The fewer blocks used in 
a transfer, the more efficient the transfer process. The downside of using large blocks 
is that if data doesn’t fill an entire physical block, the empty section of the block can’t 
be used.
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Figure 6.10 The basics of how the map and reduce functions work together 
to gain linear scalability over big data transforms. The map operation takes 
input data and creates a uniform set of key-value pairs. In the shuffle phase, 
which is done automatically by the MapReduce framework, key-value pairs 
are automatically distributed to the correct reduce node based on the value 
of the key. The reduce operation takes the key-value pairs and returns 
consolidated values for each key. It's the job of the MapReduce framework 
to get the right keys to the right reduce nodes.
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The first part of a MapReduce job is the map operation. Map operations retrieve data
from your source database and convert it into a series of independent transform oper-
ations that can be executed on different processors. The output of all map operations
is a key-value structure where the keys are uniform across all input documents. The
second phase is the reduce operation. The reduce operation uses the key-value pairs
created in the map as input, performs the requested operation, and returns the values
you need. 

 When creating a MapReduce program, you must ensure that the map function is
only dependent on the inputs to the map function and that the output of the map
operation doesn’t change the state of data; it only returns a key-value pair. In Map-
Reduce operations, no other intermediate information can be passed between map
functions.

 At first glance, it may seem like creating a MapReduce framework would be simple.
Realistically, it’s not. First, what if your source data is replicated on three or more
nodes? Do you move the data between nodes? Not if you want your job to be efficient.
Then you must consider which node the map function should run on. How do you
assign the right key to the right reduce processor? What happens if one of the map or
reduce jobs fails in mid-operation? Do you need to restart the entire batch or can you
reassign the work to another node? As you can see, there are many factors to consider
and in the end it’s not as simple as it appears. 

 The good news is that if you stick to these rules, a MapReduce framework like
Hadoop can do most of the hard work finding the right processor to do the map, mak-
ing sure the right reduce node gets the input based on the keys, and making sure that
the job finishes even if there’s hardware failure during the job.

 Now that we’ve covered the types of big data problems and some of the architec-
ture patterns, let’s look into the strategies that NoSQL systems use to attack these
problems. 

6.8 Four ways that NoSQL systems 
handle big data problems
As you've seen, understanding your big data is important in determining the best solu-
tion. Now let’s take a look at four of the most popular ways NoSQL systems handle big
data challenges. 

 Understanding these techniques is important when you’re evaluating any NoSQL
system. Knowing that a product will give you linear scaling with these techniques will
help you not only to select the right NoSQL system, but also to set up and configure
your NoSQL system correctly.

6.8.1 Moving queries to the data, not data to the queries

With the exception of large graph databases, most NoSQL systems use commodity
processors that each hold a subset of the data on their local shared-nothing drives.
When a client wants to send a general query to all nodes that hold data, it’s more
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efficient to send the query to each node than it is to transfer large datasets to a central
processor. This may seem obvious, but it’s amazing how many traditional databases
still can’t distribute queries and aggregate query results.

 This simple rule helps you understand how NoSQL databases can have dramatic
performance advantages over systems that weren’t designed to distribute queries to
the data nodes. Consider an RDBMS that has tables distributed over two different
nodes. In order for the SQL query to work, information about rows on one table must
all be moved across the network to the other node. Larger tables result in more data
movement, which results in slower queries. Think of all the steps involved. The tables
can be extracted, serialized, sent through the network interface, transmitted over net-
works, reassembled, and then compared on the server with the SQL query.

 Keeping all the data within each data node in the form of logical documents
means that only the query itself and the final result need to be moved over a network.
This keeps your big data queries fast. 

6.8.2 Using hash rings to evenly distribute data on a cluster

One of the most challenging problems with distributed databases is figuring out a
consistent way of assigning a document to a processing node. Using a hash ring tech-
nique to evenly distribute big data loads over many servers with a randomly generated
40-character key is a good way to evenly distribute a network load.

 Hash rings are common in big data solutions because they consistently determine
how to assign a piece of data to a specific processor. Hash rings take the leading bits of
a document’s hash value and use this to determine which node the document should
be assigned. This allows any node in a cluster to know what node the data lives on and
how to adapt to new assignment methods as your data grows. Partitioning keys into
ranges and assigning different key ranges to specific nodes is known as keyspace man-
agement. Most NoSQL systems, including MapReduce, use keyspace concepts to man-
age distributed computing problems.

 In chapters 3 and 4 we reviewed the concept of hashing, consistent hashing, and
key-value stores. A hash ring uses these same concepts to assign an item of data to a
specific node in a NoSQL database cluster. Figure 6.11 is a diagram of a sample hash
ring with four nodes.

 As you can see from the figure, each input will be assigned to a node based on the
40-character random key. One or more nodes in your cluster will be responsible for
storing this key-to-node mapping algorithm. As your database grows, you’ll update the
algorithm so that each new node will also be assigned some range of key values. The
algorithm also needs to replicate items with these ranges from the old nodes to the
new nodes.

 The concept of a hash ring can also be extended to include the requirement that
an item must be stored on multiple nodes. When a new item is created, the hash ring
rules might indicate both a primary and a secondary copy of where an item is stored.
If the node that contains the primary fails, the system can look up the node where the
secondary item is stored. 
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6.8.3 Using replication to scale reads

In chapter 3 we showed how databases use replication to make backup copies of data
in real time. We also showed how load balancers can work with the application layer to
distribute queries to the correct database server. Now let’s look at how using replica-
tion allows you to horizontally scale read requests. Figure 6.12 shows this structure.

 This replication strategy works well in most cases. There are only a few times when
you must be concerned about the lag time between a write to the read/write node and
a client reading that same record from a replica. One of the most common operations
after a write is a read of that same record. If a client does a write and then an immedi-
ate read from that same node, there’s no problem. The problem occurs if a read
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Figure 6.11 Using a hash ring to assign a node to a key that uses a 40-character hex 
number. This number can be expressed in 2160 bits. The first bits in the hash can be used 
to map a document directly to a node. This allows documents to be randomly assigned 
to nodes and new assignment rules to be updated as you add nodes to your cluster.
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Figure 6.12 How you can replicate data to speed 
read performance in NoSQL systems. All incoming 
client requests enter from the left. All reads can be 
directed to any node, either a primary read/write 
node or a replica node. All write transactions can 
be sent to a central read/write node that will 
update the data and then automatically send the 
updates to replica nodes. The time between the 
write to the primary and the time the update 
arrives on the replica nodes determines how long 
it takes for reads to return consistent results.
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occurs from a replica node before the update happens. This is an example of an
inconsistent read.

 The best way to avoid this type of problem is to only allow reads to the same write
node after a write has been done. This logic can be added to a session or state man-
agement system at the application layer. Almost all distributed databases relax data-
base consistency rules when a large number of nodes permit writes. If your application
needs fast read/write consistency, you must deal with it at the application layer. 

6.8.4 Letting the database distribute queries evenly to data nodes

In order to get high performance from queries that span multiple nodes, it’s impor-
tant to separate the concerns of query evaluation from query execution. Figure 6.13
shows this structure. 

 The approach shown in figure 6.13 is one of moving the query to the data rather
than moving the data to the query. This is an important part of NoSQL big data strate-
gies. In this instance, moving the query is handled by the database server, and distribu-
tion of the query and waiting for all nodes to respond is the sole responsibility of the
database, not the application layer.

 This approach is somewhat similar to the concept of federated search. Federated
search takes a single query and distributes it to distinct servers and then combines the
results together to give the user the impression they’re searching a single system. In
some cases, these servers may be in different geographic regions. In this case, you’re
sending your query to a single cluster that’s not only performing search queries on a
single local cluster but also performing update and delete operations. 

6.9 Case study: event log processing with Apache Flume
In this case study, you’ll see how organizations use NoSQL systems to gather and
report on distributed event logs. Many organizations use NoSQL systems to process
their event log data because the datasets can be large, especially in distributed envi-
ronments. As you can imagine, each server generates hundreds of thousands of event
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Figure 6.13 NoSQL systems move 
the query to a data node, but don’t 
move data to a query node. In this 
example, all incoming queries arrive at 
query analyzer nodes. These nodes 
then forward the queries to each data 
node. If they have matches, the 
documents are returned to the query 
node. The query won’t return until all 
data nodes (or a response from a 
replica) have responded to the original 
query request. If the data node is 
down, a query can be redirected to a 
replica of the data node.
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records every day. If you multiply that by the number of servers to monitor, well, you
get the picture: it’s big data.

 Few organizations store their raw event log data in RDBMSs, because they don’t
need the update and transactional processing features. Because NoSQL systems scale
and integrate with tools like MapReduce, they’re cost effective when you’re looking to
analyze event log data.

 Though we’ll use the term event log data to describe this data, a more precise term
is timestamped immutable data streams. Timestamped immutable data is created once
but never updated, so you don’t have to worry about update operations. You only
need to focus on the reliable storage of the records and the efficient analysis of the
data, which is the case with many big data problems.

 Distributed log file analysis is critical to allow an organization to quickly find errors
in systems and take corrective action before services are disrupted. It’s also a good
example of the need for both real-time analysis and batch analysis of large datasets.

6.9.1 Challenges of event log data analysis

If you’ve ever been responsible for monitoring web or database servers, you know that
you can see what’s happening on a server by looking at its detailed log file. Log events
add a record to the log file when your system starts up, when a job runs, and when
warnings or errors occur.

 Events are classified according to their severity level using a standardized set of
severity codes. An example of these codes (from lowest to highest severity level) might
be TRACE, DEBUG, INFO, WARNING, ERROR, or FATAL. These codes have been stan-
dardized in the Java Log4j system. 

 Most events found in log files are informational (INFO level) events. They tell you
how fast a web page is served or how quickly a query is executed. Informational events
are generally used for looking at system averages and monitoring performance. Other
event types such as WARNING, ERROR, or FATAL events are critical and should notify
an operator to take action or intervene.

 Filtering and reporting on log events on a single system is straightforward and can
be done by writing a script that searches for keywords in the log file. In contrast, big
data problems occur when you have hundreds or thousands of systems all generating
events on servers around the world. The challenge is to create a mechanism to get
immediate notification of critical events and allow the noncritical events to be ignored.

 A common solution to this problem is to create two channels of communication
between a server and the operations center. Figure 6.14 shows how these channels
work. At the top of the diagram, you see where all events are pulled from the sever,
transformed, and then the aggregates updated in a reliable filesystem such as HDFS.
In the lower part of the diagram, you see the second channel, where critical events
are retrieved from the server and sent directly to the operations dashboard for imme-
diate action. 
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To meet these requirements, your system must meet the following objectives:

 It must filter out time-sensitive events based on a set of rules.
 It must efficiently and reliably transmit all events in large batch files to a central-

ized event store.
 It must reliably route all time-sensitive events using a fast channel.

Let’s see how you can meet these objectives with Apache Flume. 

6.9.2 How Apache Flume works to gather distributed event data

Apache Flume is an open source Java framework specifically designed to process event
log data. The word flume refers to a water-filled trough used to transport logs in the
lumber industry. Flume is designed to provide a distributed, reliable, and available sys-
tem for efficiently collecting, aggregating, and moving large amounts of log data from
different sources to a centralized data store. Because Flume was created by members
of the Hadoop community, HDFS and HBase are the most common storage targets. 

 Flume is built around the concept of a flow pipeline, as depicted in figure 6.15.
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Figure 6.14 Critical time-sensitive events must be quickly extracted from log event streams 
and routed directly to an operators console. Other events are processed in bulk using 
MapReduce transforms after they’ve been stored in a reliable filesystem such as HDFS.
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Figure 6.15 The key components of an Apache Flume flow pipeline. 
Data arrives at a Flume agent through a source component that’s driven 
by a client Java component. The agent contains multiple data channels 
that are made available to one or more sink objects.
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Here’s a narrative of how a flow pipeline works:

1 A client program such as a Log4jAppender writes log data into a log file. The cli-
ent program typically is part of the application being monitored.

2 A source within a Flume agent program receives all events and writes it to one or
more durable channels. Channel events persist even if a server goes down and
must be restarted.

3 Once an event arrives in a channel, it’ll stay there until a sink service removes it.
The channel is responsible for making sure that all events are reliably delivered
to a sink.

4 A sink is responsible for pulling events off of the channel and delivering them
to the next stage. This can be another source of another Flume agent, or a ter-
minal destination such as HDFS. Terminal sinks will typically store the event in
three or more separate servers to provide redundancy in case of a node failure.

Now let’s look at how you can configure Apache Flume to meet the specific slow and
fast processing requirements we just described. Figure 6.16 is an example of this
configuration.

 Once log events are stored in HDFS, a regularly scheduled batch tool can be peri-
odically run to summarize totals and averages for various events. For example, a report
might generate average response times of web services or web page rendering times. 

6.9.3 Further thoughts

This case study showed how Apache Flume supplies an infrastructure for allowing pro-
grams to subscribe to key events and route them to different services with different
latency requirements.

 Apache Flume is a custom-built framework specifically created with the intent of
reliably transferring event log data into a central data store such as HDFS. HDFS, in
turn, is ideally suited to storing large blocks of read-mostly data. HDFS has no extra
overhead for transaction control or update operations; its focus is large and reliable
storage. HDFS is designed as an efficient source for all your analytical reports written
in MapReduce. Since data can be evenly distributed over hundreds of nodes in a
Hadoop cluster, the MapReduce reports can quickly build whatever summary data you
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Figure 6.16 How Log4j agents might be configured to write log data to a Flume 
agent with a slow and a fast channel. All data will be written directly to HDFS. All 
time-critical data will be written directly to an operator console.
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need. This is ideal for creating materialized views and storing them in your RDBMSs or
NoSQL database.

 Although Apache Flume was originally written for processing log files, it’s a general-
purpose tool and can be used on other types of immutable big data problems such as
data loggers or raw data from web crawling systems. As data loggers get lower in price,
tools like Apache Flume will be needed to preprocess more big data problems. 

6.10 Case study: computer-aided discovery 
of health care fraud
In this case study, we’ll take a look at a problem that can’t be easily solved using a
shared-nothing architecture. This is the problem of looking for patterns of fraud
using large graphs. Highly connected graphs aren’t partition tolerant—meaning that
you can’t divide the queries on a graph on two or more shared-nothing processors. If
your graph is too large to fit in the RAM of a commodity processor, you may need to
look at an alternative to a shared-nothing system.

 This case study is important because it explores the limits of what a cluster of
shared-nothing systems can do. We include this case study because we want to avoid a
tendency for architects to recommend large shared-nothing clusters for all problems.
Although shared-nothing architectures work for many big data problems, they don’t
provide for linear scaling of highly connected data such as graphs or RDBMSs contain-
ing joins. Looking for hidden patterns in large graphs is one area that’s best solved
with a custom hardware approach.

6.10.1 What is health care fraud detection?

The US Congressional Office of Management and Budget estimates that improper
payments in Medicare and Medicaid came to $50.7 billion in 2010, nearly 8.5% of the
annual Medicare budget. A portion of this staggering figure is the result of improper
documentation, but it’s certain that Medicare fraud costs taxpayers tens of billions of
dollars annually.

 Existing efforts to detect fraud have focused on searching for suspicious submis-
sions from individual beneficiaries and health care providers. These efforts yielded
$4.1 billion in fraud recovery in 2011, around 10% of the total estimated fraud. 

 Unfortunately, fraud is becoming more sophisticated, and detection must move
beyond the search for individuals to the discovery of patterns of collusion among mul-
tiple beneficiaries and/or health care providers. Identifying these patterns is challeng-
ing, as fraudulent behaviors continuously change, requiring the analyst to hypothesize
that a pattern of relationships could indicate fraud, visualize and evaluate the results,
and iteratively refine their hypothesis. 
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6.10.2 Using graphs and custom shared-memory hardware 
to detect health care fraud

Graphs are valuable in situations where data discovery is required. Graphs can show
relationships between health care beneficiaries, their claims, associated care provid-
ers, tests performed, and other relevant data. Graph analytics search through the data
to find patterns of relationships between all of these entities that might indicate collu-
sion to commit fraud.

 The graph representing Medicare data is large: it represents six million providers,
a hundred million patients, and billions of claim records. The graph data is intercon-
nected between health care providers, diagnostic tests, and common treatments asso-
ciated with each patient and their claim records. This amount of data can’t be held in
the memory of a single server, and partitioning the data across multiple nodes in a
computing cluster isn’t feasible. Attempts to do so may result in incomplete queries
due to all the links crossing partition boundaries, the need to page data in and out of
memory, and the delays added by slower network and storage speeds. Meanwhile,
fraud continues to occur at an alarming rate.

 Medicare fraud analytics requires an in-memory graph solution that can merge
heterogeneous data from a variety of sources, use queries to find patterns, and dis-
cover similarities as well as exact matches. With every item of data loaded into mem-
ory, there’s no need to contend with the issue of graph partitioning. The graph can be
dynamically updated with new data easily, and existing queries can integrate the new
data into the analytics being performed, making the discovery of hidden relationships
in the data feasible.

 Figure 6.17 shows the high-level architecture of how shared-memory systems are
used to look for patterns in large graphs. 

 With these requirements in mind, a US federally funded lab with a mandate to
identify Medicare and Medicaid fraud deployed YarcData’s Urika appliance. The
appliance is capable of scaling from 1–512 terabytes of memory, shared by up to 8,192

Figure 6.17 How large graphs are 
loaded into a central shared-
memory structure. This example 
shows a graph in a central multi-
terabyte RAM store with 
potentially hundreds or thousands 
of simultaneous threads in CPUs 
performing queries on the graph. 
Note that, like other NoSQL 
systems, the data stays in RAM 
while the analysis is processing. 
Each CPU can perform an 
independent query on the graph 
without interfering with each other.
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graph accelerator CPUs. It’s worth noting that these graph accelerator CPUs were pur-
posely built for the challenges of graph analytics, and are instrumental in enabling
Urika to deliver two to four orders of magnitude better performance than conven-
tional clusters.

 The impact of this performance is impressive. Interactive responses to queries
become the norm, with responses in seconds instead of days. That’s important
because when queries reveal unexpected relationships, analysts can, within minutes,
modify their searches to leverage the findings and uncover additional evidence. Dis-
covery is about finding unknown relationships, and this requires the ability to quickly
test new hypotheses.

 Now let’s see how users can interact with a typical graph appliance. Figure 6.18
shows how data is moved into a graph appliance like Urika and how outputs can be
visualized by a user.

 The software stack of the appliance leverages the RDF and SPARQL W3C standards
for graphs, which facilitates the import and integration of data from multiple sources.
The visualization and dashboard tools required for fraud analysis have their own
unique requirements, so the appliance’s ability to quickly and easily integrate custom
visualization and dashboards is key to rapid deployment.

 Medicare fraud analytics is similar to financial fraud analysis, or the search for per-
sons of interest in counter-terrorism or law enforcement agencies, where the discovery
of unknown or hidden relationships in the data can lead to substantial financial or
safety benefits. 

6.11 Summary
In this chapter, we reviewed the ability of NoSQL systems to handle big data prob-
lems using many processors. It’s clear that moving from a single CPU to distributed
database systems adds new management challenges that must be considered. Luckily,
most NoSQL systems are designed with distributed processing in mind. They use
techniques to spread the computing load evenly among hundreds or even thousands
of nodes. 

 The problems of large datasets that need rapid analysis won’t go away. Barring an
event like the zombie apocalypse, big data problems will continue to grow at exponen-
tial rates. As long as people continue to create and share data, the need to quickly
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Figure 6.18 Interacting with the 
Urika graph analytics appliance. 
Users load RDF data into the 
system and then send graph 
queries using SPARQL. The results 
of these queries are then sent to 
tools that allow an analyst to view 
graphs or generate reports.
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analyze it and discover patterns will continue to be part of most business plans. To be
players in the future, almost all organizations will need to move away from single pro-
cessor systems to distributed computing to handle the ever-increasing demands of big
data analysis.

 Having large numbers of records and documents in your NoSQL database can
complicate the process of finding one or more specific items. In our next chapter,
we’ll tackle the problems of search and findability.
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Finding information
with NoSQL search
What we find changes who we become.
—Peter Morville

We’re all familiar with web search sites such as Google and Bing where we enter
our search criteria and quickly get high-quality search results. Unfortunately, many
of us are frustrated by the lack of high-quality search tools on our company intra-
nets or within our database applications. NoSQL databases make it easier to inte-
grate high-quality search directly into a database application by integrating the
database with search frameworks and tools such as Apache Lucene, Apache Solr,
and ElasticSearch. 

This chapter covers
 Types of search

 Strategies and methods for NoSQL search

 Measuring search quality

 NoSQL index architectures 
154
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 NoSQL systems combine document store concepts with full-text indexing solu-
tions, which results in high-quality search solutions and produces results with better
search quality. Understanding why NoSQL search results are superior will help you
evaluate the merits of these systems.

 In this chapter, we’ll show you how NoSQL databases can be used to build high-
quality and cost-effective search solutions, and help you understand how findability
impacts NoSQL system selection. We’ll start this chapter with definitions of search
terms, and then introduce some more complex concepts used in search technologies.
Later, we’ll look at three case studies that show how reverse indexes are created and
how search is applied in technical documentation and reporting. 

7.1 What is NoSQL search?
For our purposes, we’ll define search as finding an item of interest in your NoSQL
database when you have partial information about an item. For example, you may
know some of the keywords in a document, but not know the document title, author,
or date of creation.

 Search technologies apply to highly structured records similar to those in an
RDBMS as well as “unstructured” plain-text documents that contain words, sentences,
and paragraphs. There are also a large number of documents that fall somewhere in
the middle called semi-structured data. 

 Search is one of the most important tools to help increase the productivity of
knowledge workers. Studies show that finding the right document quickly can save
hours of time each day. Companies such as Google and Yahoo!, pioneers in the use of
NoSQL systems, were driven by the problems involved in document search and
retrieval. Before we begin looking at how NoSQL systems can be used to create search
solutions, let’s define some terms used when building search applications. 

7.2 Types of search
As you’re building applications, you’ll come to the point where building and provid-
ing search will be important to your users. So let’s look at the types of search that you
could provide: Boolean search used in RDBMSs, full-text keyword search used in
frameworks such as Apache Lucene, and structured search popular in NoSQL systems
that use XML or JSON type documents.

7.2.1 Comparing Boolean, full-text keyword, 
and structured search models

If you’ve used RDBMSs, you might be familiar with creating search programs that look
for specific records in a database. You might also have used tools such as Apache
Lucene and Apache Solr to find specific documents using full-text keyword search. In
this section, we’ll introduce a new type of search: structured search. Structured search
combines features from both Boolean and full-text keyword search. To get us started,
table 7.1 compares the three main search types.
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The challenge with Boolean search systems is that they don’t provide any “fuzzy
match” functions. They either find the information you’re looking for or they don’t.
To find a record, you must use trial and error by adding and deleting parameters to
expand and contract the search results. RDBMS search results can’t be sorted by how
closely the search results match the request. They must be sorted by database proper-
ties such as the date last modified or the author.

 In contrast, the challenge with full-text keyword search is that it’s sometimes diffi-
cult to narrow your search by document properties. For example, many document
search interfaces don’t allow you to restrict your searches to include documents cre-
ated over a specific period of time or by a specific group of authors.

 If you use structured search, you get the best of both worlds in a single search func-
tion. NoSQL document stores can combine the complex logic functions of Boolean
AND/OR queries and use the ranked matches of full-text keywords to return the right
documents in the right order. 

7.2.2 Examining the most common types of search

If you’re selecting a NoSQL system, you’ll want to make sure to look at the findability
of the system. These are the characteristics of a database that help users find the
records they need. NoSQL systems excel at combining both structure and fuzzy search
logic that may not be found in RDBMSs. Here are a few types of searches you may want
to include in your system:

Table 7.1 A comparison of Boolean, full-text keyword, and structured search. Most users are already
familiar with the benefits of Boolean and full-text keyword search. NoSQL databases that use document
stores offer a third type, structured search, that retains the best features of Boolean and full-text
keyword search. Only structured search gives you the ability to combine AND/OR statements with
ranked search results.

Search type Structures used
Ranked 
search 
results

Combine 
full-text and 

conditional logic
Best for

Boolean search—
used in RDBMSs. Ideal for 
searches where AND/OR 
logic can be applied to highly 
structured data.

Rows of tables that 
conditionally match 
a WHERE clause.

No No Highly 
structured data

Full-text keyword search—
used for unstructured docu-
ment search of natural lan-
guage text.

Documents, key-
words, and vector 
distance results.

Yes No Unstructured 
text files

Structured search—
combination of full-text and 
Boolean search tools.

XML or JSON docu-
ments. XML docu-
ment may include 
entity markup.

Yes Yes Semi-structured 
documents



157Types of search
 Full-text search—Full-text search is the process of finding documents that con-
tain natural language text such as English. Full-text search is appropriate when
your data has free-form text like you’d see in an article or a book. Full-text
search techniques include processes for removing unimportant short stop words
(and, or, the) and removing suffixes from words (stemming). 

 Semi-structured search—Semi-structured searches are searches of data that has
both the rigid structure of an RDBMS and full-text sentences like you’d see in a
Microsoft Word document. For example, an invoice for hours worked on a con-
sulting project might have long sentences describing the tasks that were per-
formed on a project. A sales order might contain a full-text description of
products in the order. A business requirements document might have struc-
tured fields for who requested a feature, what release it will be in, and a full-text
description of what the feature will do.

 Geographic search—Geographic search is the process of changing search result
ranking based on geographic distance calculations. For example, you might
want to search for all sushi restaurants within a five-minute drive of your current
location. Search frameworks such as Apache Lucene now include tools for inte-
grating location information in search ranking.

 Network search—Network search is the process of changing search result rank-
ings based on information you find in graphs such as social networks. You
might want your search to only include restaurants that your friends gave a four-
or five-star rating. Integrating network search results can require use of social
network APIs to include factors such as “average rating by my Facebook
friends.”

 Faceted search—Faceted search is the process of including other document prop-
erties within your search criteria, such as “all documents written by a specific
author before a specific date.” You can think of facets as subject categories to
narrow your search space, but facets can also be used to change search ranking.

Setting up faceted search on an ordinary collection of Microsoft Word docu-
ments can be done by manually adding multiple subject keywords to each docu-
ment. But the costs of adding keywords can be greater than the benefits gained.
Faceted search is used when there’s high-quality metadata (information about
the document) associated with each document. For example, most libraries
purchase book metadata from centralized databases to allow you to narrow
searches based on subject, author, publication date, and other standardized
fields. These fields are sometimes referred to as the Dublin Core properties of a
document. 

 Vector search—Vector search is the process of ranking document results based on
how close they are to search keywords using multidimensional vector distance
models. Each keyword can be thought of as its own dimension in space and the
distance between a query and each document can be calculated as a geographi-
cal distance calculation. This is illustrated in figure 7.1.  
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As you might guess, calculating search vectors is complex. Luckily, vector dis-
tance calculations are included in most full-text search systems. Once your full-
text indexes have been created, the job of building a search engine can be as
easy as combining your query with a search system query function.

Vector search is one of the key technologies that allow users to perform fuzzy
searches. They help you find inexact matches to documents that are “in the
neighborhood” of your query keywords. Vector search tools also allow you to
treat entire documents as a keyword collection for additional searches. This fea-
ture allows search systems to add functions such as “find similar documents” to
an individual document. 

 N-gram search—N-gram search is the process of breaking long strings into short,
fixed-length strings (typically three characters long) and indexing these strings
for exact match searches that may include whitespace characters. N-gram
indexes can take up a large amount of disk space, but are the only way to
quickly search some types of text such as software source code (where all char-
acters including spaces may be important). N-gram indexes are also used for
finding patterns in long strings of text such as DNA sequences. 

Although there are clearly many types of searches, there are also many tools that make
these searches fast. As we move to our next section, you’ll see how NoSQL systems are
able to find and retrieve your requested information rapidly. 

7.3 Strategies and methods that make 
NoSQL search effective
So how are NoSQL systems able to take your requested search information and return
the results so fast? Let’s take a look at the strategies and methods that make NoSQL
search systems so effective:

 Range index—A range index is a way of indexing all database element values in
increasing order. Range indexes are ideal for alphabetical keywords, dates,
timestamps, or amounts where you might want to find all items equal to a spe-
cific value or between two values. Range indexes can be created on any data

Search region threshold

Your search keyword

Other documents

Search score is distance
measurement

Keyword 2

Keyword 1

Figure 7.1 Vector search is a 
way to find documents that are 
closest to a keyword. By 
counting the number of 
keywords per page, you can 
rank all documents by a keyword 
space dimension.
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type as long as that data type has a logically distinct way of sorting items. It
wouldn’t make sense to create a range index on images or full-text paragraphs.

 Reverse index—A reverse index is a structure similar to the index you’ll find in
the back of a book. In a book, each of the entries is listed in alphabetical order
at the end of the book with the page numbers where the entry occurs. You can
go to any entry in the index and quickly see where that term is used in the book.
Without an index, you’d be forced to scan through the entire book. Search soft-
ware uses reverse indexes in the same way. For each word in a document collec-
tion there’s a list of all the documents that contain that word.

Figure 7.2 contains a screen image of a Lucene index of the works of Shake-
speare. 

Search frameworks such as Apache Lucene are designed to create and main-
tain reverse indexes for large document collections. These reverse indexes are
used to speed the lookup of documents that contain keywords.

 Search ranking—Search ranking is the process of sorting search results based on
the likelihood that the found item is what the user is looking for. So, if a docu-
ment has a higher keyword density of the requested word, then there is a
higher chance that document is about this keyword. The term keyword density

Figure 7.2 Browsing a reverse index of Shakespeare plays for the keywords that start 
with the string “love.” In this example, the plays were encoded in the TEI XML format and 
then indexed by Apache Lucene.



160 CHAPTER 7 Finding information with NoSQL search
refers to how often the word occurs in a document weighted by the size of the
document. If you only counted the total number of words in a document, then
longer documents with more keywords would always get a higher ranking.
Search ranking should take into account the number of times a keyword
appears in a document and the total number of words in the document so that
longer documents don’t always appear first in search results. Ranking algo-
rithms might consider other factors such as document type, recommendations
from your social networks, and relevance to a specific task.

 Stemming—Stemming is the process of allowing a user to include variations of a
root word in a search but still match different forms of a word. For example, if a
person types in the keyword walk then documents with the words walks, walked,
and walking might all be included in search results.

 Synonym expansion—Synonym expansion is the process of including synonyms
of specific keywords in search results. For example, if a user typed in aspirin
for a keyword, the chemical names for the drugs salicylic acid and acetylsalicylic
acid might be added to the keywords used in a search. The WordNet database is
a good example of using a thesaurus to include synonyms in search results.

 Entity extraction—Entity extraction is the process of finding and tagging named
entities within your text. Objects such as dates, person names, organizations,
geolocations, and product names might be types of entities that should be
tagged by an entity extraction program. The most common way of tagging text is
by using XML wrapper elements. Native XML databases, such as MarkLogic, pro-
vide functions for automatically finding and tagging entities within your text.

 Wildcard search—Wildcard search is the process of adding special characters to
indicate you want multiple characters to match a query. Most search frame-
works support suffix wildcards where the user specifies a query such as dog*,
which will match words such as dog, dogs, or dogged. You can use * to match zero
or more characters and ? to match a single character. Apache Lucene allows
you to add a wildcard in the middle of a string.

Most search engines don’t support leading wildcards, or wildcards before a
string. For example *ing would match all words that end with the suffix ing.
This type of search isn’t frequently requested, and adding support for leading
wildcards doubles the sizes of indexes stored.

 Proximity search—Proximity search allows you to search for words that are near
other words in a document. Here you can indicate that you’re interested in all
documents that have dog and love within 20 words of each other. Documents
that have these words closer together will get a higher ranking in the returned
results.

 Key word in context (KWIC)—Key-word-in-context libraries are tools that help you
add keyword highlighting to each search result. This is usually done by adding
an element wrapper around the keywords within the resulting document frag-
ments in the search results page.
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 Misspelled words—If a user misspells a keyword in a search form and the word the
user entered is a nondictionary word, the search engine might return a “Did you
mean” panel with spelling alternatives for the keyword. This feature requires
that the search engine be able to find words similar to the misspelled word.

Not all NoSQL databases support all of these features. But this list is a good starting
point if you’re comparing two distinct NoSQL systems. Next we look at one type of
NoSQL database, the document store, that lends itself to high-quality search. 

7.4 Using document structure to improve search quality
In chapter 4 we introduced the concept of document stores. You may recall that docu-
ment stores keep data elements together in a single object. Document stores don’t
“shred” elements into rows within tables; they keep all information together in a sin-
gle hierarchical tree.

 Document stores are popular for search because this retained structure can be
used to pinpoint exactly where in the document a keyword match is found. Using this
keyword match position information can make a big difference in finding a single
document in a large collection of documents.

 If you retain the structure of the document, you can in effect treat each part of a
large document as though it were another document. You can then assign different
search result scores based on where in the document each keyword was found.
Figure 7.3 shows how document stores leverage a retained structure model to create
better search results. 

Bag-of-words search

• All keywords in a single container

• Only count frequencies are stored
   with each word

Retained structure search

• Keywords associated with each
  subdocument component

‘Love’

‘Hate’
‘New’

‘Fear’

Keywords

Keywords

Keywords

Keywords

Keywords

Keywordsdoc-id

Figure 7.3 Comparison of two types of document structures used in search. The 
left panel is the bag-of-words search based on an extraction of all words in a 
document without consideration of where words occur in the document 
structure. The right panel shows a retained structure search that treats each 
node in the document tree as a separate document. This allows keyword matches 
in the title to have a higher rank than keywords in the body of a document.
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Let’s assume you’re searching for books on the topic of NoSQL. When you go to a
publisher’s website and type NoSQL into a keyword search form, you’ll get many
matches. The search system finds the keyword NoSQL in multiple places in each book:

 In the title of a book or title of a chapter
 In a glossary term or back-of-book index term
 In the body of the text of a book
 In a bibliographic reference

As you can guess, if a book has the keyword NoSQL in the title, there’s a good chance
that the entire book is about NoSQL. On the other hand, there may be related books
that have a chapter on the topic of NoSQL and a larger set of books that reference the
term NoSQL in the text or in a bibliographic reference. When the search system
returns the results to the user, it would make sense to give the matches to a book title
the highest score and the matches to a chapter title the second-highest score. A match
in a glossary term or indexed word term might be next, followed by a match in body
text. The last results might be in a bibliographic reference.

 The business rules for raising the search score based on where in a document the
word is found are called boosting. If you have no way to specify and find book and chap-
ter titles within your documents, it’ll be difficult to boost their ranking. Using a larger
font or a different font color won’t help search tools find the right documents. This is
why using structured document formats such as DocBook can create higher-precision
search rankings than using the bag-of-words patterns. 

 You can see how easy it is to improve your search results by using a document’s
original structure. As we move to our next section, you’ll see how measuring search
quality will help you compare NoSQL options. 

7.5 Measuring search quality
Accurately measuring search quality is an important process in selecting a NoSQL
database. From a quality perspective, you want your results to contain the search key
and accurately rank the results. To
measure search quality, you use two
metrics: precision and recall. As you’ll
see, combining these metrics will
help you objectively measure the
quality of your search results. 

 An illustration of search quality is
shown in figure 7.4.

 Your goal is to maximize both pre-
cision and recall. A metric called the
F-measure is roughly the mean of these
values and a larger F-measure indi-
cates higher search quality. 

Target documents
Missed

document

Actual
search results

Other documents

Figure 7.4 Search precision and recall. Search 
precision shows you the percent of target documents 
that are returned in actual search results. Two of the 
four documents in the actual search result are in the 
target area for a precision of .5. Recall is the fraction 
of all target documents (darker dots) found in your 
actual search results. In this example, only two of the 
three darker dots are in the actual search results, for a 
recall of .66.
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 Organizations that sell search services have dedicated quality teams that continu-
ally monitor and modify search ranking algorithms to get higher F-measures. They
develop processes that detect which search results users click on and look for ways to
automatically increase the ranking score of relevant items while lowering the ranking
score of items that users deem to be unrelated to their query.

 Each search system has a way of changing the balance of precision and recall by
including a broader set of documents in search results. A search engine can look up
synonyms for a keyword and return all documents that contain both the keyword and
the synonyms. Adding more documents to the search results will lower precision num-
bers and increase recall numbers. It’s important to strike a balance between precision
and recall percentages to fit into your system requirements. 

 Not all database selection projects will take the time to carefully measure precision
and recall of competing systems. Setting up a large collection of documents and mea-
suring relevancy of ranked search results can be time consuming and difficult to auto-
mate. But by retaining document structure, document stores have shown dramatic
gains in both precision and recall.

 Now that we’ve covered the types of searches and how NoSQL systems speed up
these searches, we can compare how distributed systems use different strategies to
store indexes used in search optimization. 

7.6 In-node indexes versus remote search services
There are two different ways that NoSQL systems store search indexes: in-node
indexes and using a remote search service. Most NoSQL systems keep their data and
indexes on the same node. But some NoSQL systems use external search services for
full-text search. These systems keep the full-text indexes on a remote cluster and use a
search API to generate search results. Since most NoSQL systems use one method or
another, understanding the trade-offs of each method will help you evaluate NoSQL
options. Figure 7.5 illustrates these two options. 

In-node index Remote search service

NoSQL cluster
Full-text search

cluster
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Data Index

Data IndexData Index
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IndexIndex
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Data

DataData

Figure 7.5 Integrated search vs. search services. The panel on the left shows how 
NoSQL systems store the indexes on the same node as the indexed data. The panel on 
the right shows a remote search service where indexes are stored on a remote cluster 
that executes a search service through an API.
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When you use an in-node search system, the reverse indexes are located on the same
node as the data. This allows you to send a query to each node and have it respond with
the search results without having to do any additional input/output to include search
information. If you retain document structure, you can also use structural match rules
to change the query results based on where in a document a match occurs.

 In contrast, a search service sends documents to an external search cluster when
they need to be indexed. This is usually done by a collection trigger that’s fired when
any document is added or updated in the database. Even if a single word within a doc-
ument is altered, the entire document is sent to the remote service and re-indexed.
When a search is performed, the keywords in the search are sent to the remote system
and all document IDs that match the search are returned. Note that the actual docu-
ments aren’t returned. Only a list of the document IDs and their ranking score are
returned. Apache Solr and ElasticSearch are both examples of software that can be
configured as a remote search service. 

 Let’s look at the various trade-offs of these two approaches.

Advantages of in-node index architecture:
 Lower network usage; documents aren’t sent between clusters, resulting in

higher performance
 Ideal for large documents that have many small and frequent changes
 Better fine-grained control search results on structured documents

Advantages of remote service architecture:
 Ability to take advantage of prebuilt and pretested components for standard

functions such as creating and maintaining full-text search indexes
 Easier to upgrade to new features of remote search services
 Ideal for documents that are added once without frequent updates

These are high-level guidelines, and each NoSQL system or version might have excep-
tions to these rules. You can see that how often you update documents has an impact
on what architecture is right for you. Whatever architecture you select, we recom-
mend that you take the time to test a configuration that closely matches your business
challenge.

 Our next section will take a look at one way to speed up the initial document
indexing process, and the creation of reverse indexes to support full-text search. 

7.7 Case study: using MapReduce 
to create reverse indexes
One of the most time-consuming parts of building any search system is creating the
reverse indexes for new full-text documents as they’re imported into your NoSQL
database. A typical 20-page document with 5,000 words can result in 5,000 additions to
your reverse index. Indexing 1,000 documents into your collection would require
approximately five million index updates. Spreading the load of this process over mul-
tiple servers is the best way to index large document collections. 
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 MapReduce is an ideal tool to use when creating reverse indexes due to its ability
to scale horizontally. Creating reverse indexes was the primary driver behind the
Google MapReduce project, and the reason the Hadoop framework was created. Let’s
take a step-by-step look at how you can use MapReduce to create reverse indexes.

 To design a MapReduce job, you must break the problem into multiple steps. The
first step is to write a map function that takes your inputs (the source documents) and
returns a set of key-value pairs. The second step is to write a reduce function that will
return your results. In this case, the results will be the reverse index files. For each key-
word, the reverse index lists what documents contain that word.

 You may recall that the interface between the map and reduce phases must be a set
of key-value pairs. The next question to answer is what to return for the key. The most
logical key would be the word itself. The “value” of the key-value pair would be a list of
all the document identifiers that contain that word.

 Figure 7.6 shows the detailed steps in this process. You can see from this figure that
before you process the inputs, you remove uppercase letters and small stop words
such as the, and, or, and to, since it’s unlikely they’ll be used as keywords. You then cre-
ate a list of key-value pairs for each word where the document ID is the “value” part of
the key-value pair. The MapReduce infrastructure then performs the “shuffle and
sort” steps and pass the output to the final reduce phase that collapses each of the
word-document pairs into a word-document list item, which is the format of the
reverse indexes.

 In our next two sections we’ll look at case studies to see how search can be used to
solve specific business problems. 

Sort
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pairs Final reverse
index

cats d2
like d2
cat d2
food d2

cats like play

cats like cat food

sue likes cats

Normalization

Cats like to play.

Cats like cat food.

Sue likes cats.

Input
documents

d3

d2

d1
sue d1
likes d1
cats d1

cat d2
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cats d1
cats d2
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like d3
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sue d1

sue: d1
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Map Reduce

Figure 7.6 Using the MapReduce algorithm to create a reverse index. The 
normalization step removes punctuation and stop words and converts all words to 
lowercase. The output of the map phase must be a set of key-value pairs. The reduce 
function groups the keyword documents to form the final reverse index.
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7.8 Case study: searching technical documentation
This case study will look at the problem of searching technical documents. Having a
high-quality search for technical documentation can save you time when you’re look-
ing for information. For example. if you’re using a complex software package and
need help with a specific function, a high-quality, accurate search can quickly get you
to the right feature.

 As you’ll see, retaining document structure creates search systems with higher pre-
cision and recall. In the following example, we’ll use a specific XML file format called
DocBook, which is ideal for search and retrieval of technical information. You’ll see
how Apache Lucene can be integrated directly into a NoSQL database to create high-
quality search. Note that the concepts used in this section are general and can be
applied to formats other than DocBook.

7.8.1 What is technical document search?

Technical document search focuses on helping you quickly find a specific area of interest
in technical documents. For example, you might be looking for a how-to tip in a soft-
ware users’ guide, a diagram in a car repair manual, an online help system, or a col-
lege textbook. Technical publications use a process called single-source publishing where
all the output formats, such as web, online help, printed, or EPUB, are all derived
from the same document source format. Figure 7.7 shows an example of how the Doc-
Book XML format stores technical documentation. 

 DocBook is an XML standard specifically targeting technical publishing. DocBook
defines over 600 elements that are used to store the content of a technical publication
including information about authors, revisions, sections, paragraph text, figures, cap-
tions, tables, glossary tags, and bibliographic information. 

<book>
   <title>Making sense of NoSQL</title>
   <chapter>
     <title>Finding information with NoSQL search</title>
     <sect1>
       <title>Returning search hits</title>

       <para>A<glossterm>Key Word In Context</glossterm>(KWIC) function

       can be used to highlight the keywords in the search hit.</para>
     </sect1>
   </chapter>
</book>

A hit in a book title has a
high search rank score.

A hit in a paragraph
has a lower score.

Hits in glossary terms may
get a higher boost value.

Figure 7.7 A sample of a DocBook XML file. The <title> directly under the 
<book> element is the title of the book. A keyword hit within a book title has a 
higher score than a hit within the body text of the book.
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DocBook is frequently customized for different types of publishing. Each organization
that’s publishing a document will select a subset of DocBook elements and then add
their own elements to meet their specific application. For example, a math textbook
might include XML markup for equations (MathML), a chemistry textbook might
include markup for chemical symbols (ChemML), and an economics textbook might
add charts in XML format. These new XML vocabularies can be placed in different
namespaces added to DocBook XML without disrupting the publishing processes. 

7.8.2 Retaining document structure in a NoSQL document store

There are several ways to perform search on large collections of DocBook files. The
most straightforward is to strip out all the markup information and send each docu-
ment to Apache Lucene to create a reverse index. Each word would then be associ-
ated with a single document ID. The problem with this approach is that all the
information about the word location within the document is lost. If a word occurs in a
book or chapter title, it can’t be ranked higher than if the word occurs in a biblio-
graphic note.

 Ideally, you want to retain the entire document structure and store the XML file in
a native XML database. Then any match within a title can have a higher rank than if
the match occurs within the body of the text.

 The first step in creating a search function is to load all the XML documents into a
collection structure. This structure logically groups similar documents and makes it
easy to navigate the documents, similar to a file browser. After the documents have
been loaded, you can run a script to find all unique elements in the document collec-
tion. This is known as an element inventory. 

 The element inventory is then used as a basis for deciding what elements might
contain information that you want to index for quick searches, and what index types
you’ll use. Elements that contain dates might use a range index and elements such as
<title> and <para> that contain full text might use a full-text index.

 In addition to the index type, you can also rank the probability that any element
might be a good summary of the concepts
in a section. We call this ranking process
setting the boost values for a document col-
lection. For example, a match on the title of
a chapter will rank higher than a section
title or a glossary keyword. After semantic
weights have been created, a configuration
file is created and the indexing process
begins. Table 7.2 shows an example of these
boost values.

 We should note that the boost values are
also stored with the search result indexes so
that they can be used to create precise

Table 7.2 Example of boost values for a 
technical book search site

Element Boost value

Book title 5.0

Chapter title 4.0

Glossary term 3.0

Indexed term 2.0

Paragraph text 1.0

Bibliographic reference 0.5
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search rankings. This means that if you change the boost values, the documents must
be re-indexed. Although this example is somewhat simplified, it shows that accurate
markup of book elements is critical to the search ranking process. 

 Once you’ve determined the elements and boost values, you’ll create a configura-
tion file that identifies the fields you’re interested in indexing. From there you can
run a process that takes each document and creates a reverse full-text index using the
element and boost values from your configuration file. Apache Lucene is an example
of a framework that creates and maintains these type of indexes. All the keywords
found in that element can then be associated with that element using a node identi-
fier for that element. By storing the element node as well as the document, you know
exactly in what element of the document the keyword was found.

 After indexing, you’re now ready to create search functions that can work with
both range and full-text indexes. The most common way to integrate text searches is
by using an XQuery full-text library that returns the ranked results of a keyword query.
The query is similar to a WHERE clause in SQL, but it also returns a score used to order
all search results. Your XQuery can return any type of node within DocBook, such as a
book, article, chapter, section, figure, or bibliographic entry.

 The final step is to return a fragment of HTML for each hit in the search. At the
top of the page, you’ll see the hits with the highest score. Most search tools return a
block of text that shows the keyword highlighted within the text. This is known as a
key-word-in-context (KWIC) function. 

7.9 Case study: searching domain-specific languages—
findability and reuse
Although we frequently think of search quality as a characteristic associated with a
large number of text documents, there are also benefits to finding items such as soft-
ware subroutines or specific types of programs created with domain-specific languages
(DSLs). This case study shows how a search tool saved an organization time and money
by allowing employees to find and reuse financial chart objects. 

 A large financial institution had thousands of charts used to create graphical finan-
cial dashboards. Most charts were generated by an XML specification file that
described the features of each chart such as the chart type (line chart, bar chart,
scatter-plot), title, axis, scaling, and labels. One of the challenges that the dashboard
authors faced was how to lower the cost of creating a new chart by using an existing
chart as a starting template.

 All charts were stored on a standard filesystem. Each organization that requested
charts had a folder that contained their charts. Because of the structure, there was no
way to find charts sorted by their characteristics. Experienced chart authors knew
where to look in the filesystem for an example of a template, but new chart authors
often spent hours digging through old charts to find an old template that matched up
with the new requirement.
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 One day a new staff member spent most of his day re-creating a chart when a simi-
lar chart already existed, but couldn’t be found. In a staff meeting a manager asked if
there was some way that the charts could be loaded into a database and searched.

 Storing charts in a relational database would’ve been a multimonth-long task.
There were hundreds of chart properties and multiple chart variations. Even the pro-
cess of adding keywords to each chart and placing them in a word document would’ve
been time consuming. This is an excellent example showing that high-variability data
is best stored in a NoSQL system.

 Instead of loading the charts into an RDBMS, the charts were loaded into an open
source native XML document store (eXist-db) and a series of path expressions were
created to search for various chart types. For example, all charts that had time across
the horizontal x-axis could be found using an XPath expression on the x-axis descrip-
tor. After finding specific charts with queries, chart keywords could be added to the
charts using XQuery update statements.

 You might find it ironic that the XML-based charting system was the preferred solu-
tion of an organization that had hundreds of person-years experience with RDBMSs in
the department. But the cost estimates to develop a full RDBMS seriously outweighed
the benefits. Since the data was in XML format, there was no need for data modeling;
they simply loaded and queried the information.

 A search form was then added to find all charts with specific properties. The chart
titles, descriptions, and developer note elements were indexed using the Apache
Lucene full-text indexing tools. The search form allowed users to restrict searches by
various chart properties, organization, and dates. After entering search criteria, the
user performed a search, and preview icons of the charts were returned directly in the
search results page.

 As a result of creating the chart search service, the time for finding a chart in the
chart library dropped from hours to a matter of seconds. A close match to the new tar-
get chart was usually returned within the first 10 results in the search screen.

 The company achieved additional benefits from being able to perform queries over
all the prior charts. Quality and consistency reports were created to show which charts
were consistent with the bank’s approved style guide. New charts could also be vali-
dated for quality and consistency guidelines before they were used by a business unit.

 An unexpected result of the new system was other groups within the organization
began to use the financial dashboard system. Instead of building custom charts with
low-level C programs, statistical programs, or Microsoft Excel, there was increased use
of the XML chart standard, because non-experts could quickly find a chart that was sim-
ilar to their needs. Users also knew that if they created a high-quality chart and added
it to the database, there was a greater chance that others could reuse their work.

 This case study shows that as software systems increase in complexity, finding the
right chunk of code becomes increasingly important. Software reuse starts with find-
ability. The phrase “you can’t reuse what you can’t find” is a good summary of this
approach. 
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7.10 Apply your knowledge
Sally works in an information technology department with many people involved in
the software development lifecycle (SDLC). SDLC documents include requirements,
use cases, test plans, business rules, business terminology, report definitions, bug
reports, and documentation, as well as the actual source code being developed.

 Although Sally’s department built high-quality search solutions for their business
units, the proverb “The shoemaker’s children go barefoot” seemed to apply to their
group. SDLC documents were stored in many formats such as MS Word, wikis, spread-
sheets, and source code repositories, in many locations. There were always multiple
versions and it wasn’t clear which versions were approved by a business unit or who
should approve documents.

 The source code repositories the department used had strong keyword search, yet
there was no way users could perform faceted queries such as “show all new features in
the 3.0 release of an internal product approved by Sue Johnson after June 1.”

 Sally realized that putting SDLC documents in a single NoSQL database that had
integrated search features could help alleviate these problems. All SDLC documents
from requirements, source code, and bugs could be treated as documents and
searched with the tools provided by the NoSQL database vendor. Documents that had
structure could also be queried using faceted search interfaces. Since almost all docu-
ments had timestamps, the database could create timeline views that allowed users to
see when code was checked in and by what developers and relate these to bugs and
problem reports.

 The department also started to add more metadata into the searchable database.
This included information about database elements and their definitions, list of
tables, columns, business rules, and process flows. This became a flexible metadata
registry for an official reviewed and approved “single version of the truth.”

 Using a NoSQL database as a integrated document store and metadata registry
allowed the team to quickly increase the productivity of the department. In time, new
web forms and easy-to-modify wiki-like structures were created to make it easier for
developers to add and update SDLC data.

7.11 Summary
In the chapter on big data, you saw that the amount of available data generated by the
web and internal systems continues to grow exponentially. As organizations continue
to put this information to use, the ability to locate the right information at the right
time is of growing concern. In this chapter, we’ve focused attention on showing you
how to find the right item in your big data collection. We’ve talked about the types of
searches that can be done by your NoSQL database and the ways in which NoSQL sys-
tems make searching fast.

 You’ve seen how retaining a document’s structure in a document store can increase
the quality of search results. This process is enabled by associating a keyword, not with
a document, but with the element that contains the keyword within a document.
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 Although we focused on topics you’ll need to fairly evaluate search components of
a NoSQL system, we also demonstrated that highly scalable processes such as Map-
Reduce can be used to create reverse indexes that enable fast search. Finally, our case
studies showed how search solutions can be created using open source native XML
databases and Apache Lucene frameworks.

 Both the previous chapter on big data and this chapter on search emphasize the
need for multiple processors working together to solve problems. Most NoSQL sys-
tems are a great fit for these tasks. NoSQL databases integrate the complex concepts
of information retrieval to increase the findability of items in your database. In our
next chapter, we’ll focus on high availability: how to keep all these systems running
reliably.
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Building high-availability
solutions with NoSQL
Anything that can go wrong will go wrong.
—Murphy’s law

Have you ever been using a computer application when it suddenly stops respond-
ing? Intermittent database failures can be merely an annoyance in some situations,
but high database availability can also mean the success or failure of a business.
NoSQL systems have a reputation for being able to scale out and handle big data
problems. These same features can also be used to increase the availability of data-
base servers.

 There are several reasons databases fail: human error, network failure, hard-
ware failure, and unanticipated load, to name a few. In this chapter, we won’t dwell
on human error or network failure. We’ll focus on how NoSQL architectures use
parallelism and replication to handle hardware failure and scaling issues.

This chapter covers
 What is high availability?

 Measuring availability

 NoSQL strategies for high availability
172
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 You’ll see how NoSQL databases can be configured to handle lots of data and keep
data services running without downtime. We’ll begin by defining high-availability data-
base systems and then look at ways to measure and predict system availability. We’ll
review techniques that NoSQL systems use to create high-availability systems even
when subcomponents fail. Finally, we’ll look at three real-world NoSQL products that
are associated with high-availability service.

8.1 What is a high-availability NoSQL database?
High-availability NoSQL databases are systems designed to run without interruption
of service. Many web-based businesses require data services that are available without
interruption. For example, databases that support online purchasing need to be avail-
able 24 hours a day, 7 days a week, 365 days a year. Some requirements take this a step
further, specifying that the database service must be “always on.” This means you can’t
take the database down for scheduled maintenance or to perform software upgrades.

 Why must they be always on? Companies demanding an always-on environment
can document a measurable loss in income for every minute their service isn’t avail-
able. Let’s say your database supports a global e-commerce site; being down for even a
few minutes could wipe out a customer’s shopping cart. Or what if your system stops
responding during prime-time shopping hours in Germany? Interruptions like these
can drive shoppers to your competitor’s site and lower customer confidence.

 From a software development perspective, always-on databases are a new require-
ment. Before the web, databases were designed to support “bankers’ hours” such as 9
a.m. to 5 p.m., Monday through Friday in a single time zone. During off hours, these
systems might be scheduled for downtime to perform backups, run software updates,
run reports, or export daily transactions to data warehouse systems. But bankers’
hours are no longer appropriate for web-based businesses with customers around the
world.

 A web storefront is a good example of a situation that needs a high-availability
database that supports both reads and writes. Read-mostly systems optimized for big
data analysis are relatively simple to configure for high availability using data replica-
tion. Our focus here is on high availability for large-volume read/write applications
that run on distributed systems.

 Always-on database systems aren’t new. Companies like Tandem Computers’ Non-
Stop system have provided commercial high-availability database systems for ATM net-
works, telephone switches, and stock exchanges since the 1970s. These systems use
symmetrical, peer-to-peer, shared-nothing processors that send messages between pro-
cessors about overall system health. They use redundant storage and high-speed fail-
over software to provide continuous database services. The biggest drawbacks to these
systems are that they’re proprietary, difficult to set up and configure, and expensive
on a cost-per-transaction basis.

 Distributed NoSQL systems can lower the per-transaction cost of systems that need
to be both scalable and always-on. Although most NoSQL systems use nonstandard
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query languages, their design and the ability to be deployed on low-cost cloud com-
puting platforms make it possible for startups, with minimal cash, to provide always-on
databases for their worldwide customers.

 Understanding the concept of system availability is critical when you’re gathering
high-level system requirements. Since NoSQL systems use distributed computing, they
can be configured to achieve high availability of a specific service at a minimum cost.

 To understand the concepts in this chapter, we’ll draw on the CAP theorem from
chapter 2. We said that when communication channels between partitions are broken,
system designers need to choose the level of availability they’ll provide to their cus-
tomers. Organizations often place a higher priority on availability than on consistency.
The phase “A trumps C” implies that keeping orders flowing through a system is more
important than consistent reporting during a temporary network failure to a replica
server. Recall that these decisions are only relevant when there are network failures.
During normal operations, the CAP theorem doesn’t come into play.

 Now that you have a good understanding of what high-availability NoSQL systems
are and why they’re good choices, let’s find out how to measure availability. 

8.2 Measuring availability of NoSQL databases
System availability can be measured in different ways and with different levels of preci-
sion. If you’re writing availability requirements or comparing the SLAs of multiple sys-
tems, you may need to be specific about these measurements. We’ll start with some
broad measures of overall system availability and then dig deeper into more subtle
measurements of system availability.

 The most common notation for describing overall system availability is to state
availability in terms of “nines,” which is a count of how many times the number 9
appears in the designed availability. So three nines means that a system is predicted to
be up 99.9% of the time, and five nines means the system should be up 99.999% of the
time.

 Table 8.1 shows some sample calculations of downtime per year based on typical
availability targets.  

 Stating your uptime requirements isn’t an exact science. Some businesses can asso-
ciate a revenue-lost-per-minute to total data service unavailability. There are also gray
areas where a system is so slow that a few customers abandon their shopping carts and

Table 8.1 Sample availability targets and annual downtime

Availability % Annual downtime

99% (two nines) 3.65 days

99.9% (three nines) 8.76 hours

99.99% (four nines) 52.56 minutes

99.999% (five nines) 5.26 minutes
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move on to another site. There are other factors, not as easily measured, which can
lead to losses as well, such as poor reputation and lack of confidence. 

 Measuring overall system availability is more than generating a single number. To
fairly evaluate NoSQL systems, you need an understanding of the subtleties of avail-
ability measurements.

 If a business unit indicates they can’t afford to be down more than eight hours in a
calendar year, then you want to build an infrastructure that would provide three-nines
availability. Most land-line telephone switches are designed for five-nines availability,
or no more than five minutes of downtime per year. Today five nines is considered the
gold standard for data services, with few situations warranting greater availability. 

 Although the use of counted nines is a common way to express system availability,
it’s usually not detailed enough to understand business impact. An outage for 30 sec-
onds may seem to users like a slow day on the web. Some systems may show partial out-
age but have other functions that can step in to take their place, making the system
only appear to work slowly. The end result is that no simple metric can be used to
measure overall system availability. In practice, most systems look at the percentage of
service requests that go beyond a specific threshold.

 As a result, the term service level agreement or SLA is used to describe the detailed
availability targets for any data service. An SLA is a written agreement between a ser-
vice provider and a customer who uses the service. The SLA doesn’t concern itself with
how the data service is provided. It defines what services will be provided and the avail-
ability and response time goals for the service. Some items to consider when creating
an SLA are

 What are the general service availability goals of the service in terms of percent-
age uptime over a one-year period?

 What are the typical average response times for the service under normal oper-
ations? Typically these are specified in milliseconds between service request and
response.

 What is the peak volume of requests that the service is designed to handle? This
is typically specified in requests per second.

 Are there any cyclical variations in request volumes? For example, do you
expect to see peaks at specific times of day, days of the week or month, or times
of the year like holiday shopping or sporting events?

 How will the system be monitored and service availability reported?
 What is the shape of the service-call response distribution curve? Keeping track

of the average response time may not be useful. Organizations focus on the
slowest 5% of service calls.

 What procedures should be followed during a service interruption?

NoSQL system configuration may be dependent on some of the exceptions to the
general rules. The key focus should not be a single availability metric. 
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8.2.1 Case study: the Amazon’s S3 SLA

Now let’s look at Amazon’s SLA for their S3 key-value store service. Amazon’s S3 is
known as the most reliable cloud-based, key-value store service available. S3 consis-
tently performs well, even when the number of reads or writes on a bucket spikes. The
system is rumored to be the largest, containing more than 1 trillion stored objects as
of the summer of 2012. That’s about 150 objects for every person on the planet. 

 Amazon discusses several availability numbers on their website: 

 Annual durability design—This is the designed probability that a single key-value
item will be lost over a one-year period. Amazon claims their design durability is
99.999999999%, or 11 nines. This number is based on the probability that your
data object, which is typically stored on three hard drives, has all three drives
fail before the data can be backed up. This means that if you store 10,000 items
each year in S3 and continue to do so for 10 million years, there’s about a 50%
probability you’ll lose one file. Not something that you should lose much sleep
over. Note that a design is different from a service guarantee.

 Annual availability design—This is a worst-case measure of how much time, over
a one-year period, you’ll be unable to write new data or read your data back.
Amazon claims a worst-case availability of 99.99%, or four-nines availability for
S3. In other words, in the worse case, Amazon thinks your key-value data store
may not work for about 53 minutes per year. In reality, most users get much bet-
ter results.

 Monthly SLA commitment—In the S3 SLA, Amazon will give you a 10% service
credit if your system is not up 99.9% of the time in any given month. If your data
is unavailable for 1% of the time in a month, you’ll get a 25% service credit. In
practice, we haven’t heard of any Amazon customer getting SLA credits.

It’s also useful to read the wording of the Amazon SLA carefully. For example, it
defines an error rate as the number of S3 requests that return an internal status error
code. There’s nothing in the SLA about slow response times. 

 In practice, most users will get S3 availability that far exceeds the minimum num-
bers in the SLA. One independent testing service found essentially 100% availability
for S3, even under high loads over extended periods of time. 

8.2.2 Predicting system availability 

If you’re building a NoSQL database, you need to be able predict how reliable your
database will be. You need tools to analyze the response times of database services.

 Availability prediction methods calculate the overall availability of a system by look-
ing at the predicted availability of each of the dependent (single-point-of-failure) sub-
components. If each subsystem is expressed as a simple availability prediction such as
99.9, then multiplying each number together will give you an overall availability pre-
diction. For example, if you have three single points of failure—99.9% for network,
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99% for master node, and 99.9% for power—then the total system availability is the
product of these three numbers: 98.8% (99.9 x 99 x 99.9).

 If there are single points of failure such as a master or name node, then NoSQL
systems have the ability to gracefully switch over to use a backup node without a major
service interruption. If a system can quickly recover from a failing component, it’s said
to have a property of automatic failover. Automatic failover is the general property of
any service to detect a failure and switch to a redundant component. Failback is the
process of restoring a system component to its normal operation. Generally, this pro-
cess requires some data synchronization. If your systems are configured with a single
failover, you must use the probability that the failover process doesn’t work in combi-
nation with the odds that the failover system fails before failback.

 There are other metrics you can use besides the failure metric. If your system has
client request timeout of 30 seconds, you’ll want to measure the total percentage of
client requests that fail. In such a case, a better metric might be a factor called client
yield, which is the probability of any request returning within a specified time interval.

 Other metrics, such as a harvest metric, apply when you want to include partial API
results. Some services, such as federated search engines, may also return partial
results. For example, if you search 10 separate remote systems and one of the sites is
down for your call window of 30 seconds, you’d have a 90% harvest for that specific
call. Harvest is the data available divided by the total data sources.

 Finding the best NoSQL service for your application may require comparing the
architecture of two different systems. The actual architecture may be hidden from you
behind a web service interface. In these cases, it might make the most sense to set up a
small pilot project to test the services under a simulated load. 

 When you set up a pilot project that includes stress testing, a key measurement will
be a frequency distribution chart of read and write response times. These distribu-
tions can give you hints about whether a database service will scale. A key point of this
analysis is that instead of focusing on average or mean response times, you should
look at how long the slowest 5% of your services take to return. In general, a service
with consistent response times will have higher availability than systems that some-
times have a high percentage of slow responses. Let’s take a look at an example of this. 

8.2.3 Apply your knowledge

Sally is evaluating two NoSQL options for a business unit that’s concerned about web
page response times. Web pages are rendered with data from a key-value store. Sally
has narrowed down the field to two key-value store options; we’ll call them Service A
and Service B. Sally uses JMeter, a popular performance monitoring tool, to create a
chart that has read service response distributions, as shown in figure 8.1.

 When Sally looks at the data, she sees that service A has faster mean response
times. But at the 95th percentile level, they’re longer than service B. Service B may
have slower average response times, but they’re still within the web page load time
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goals. After discussing the results with the business unit, the team selects service B,
since they feel it’ll have more consistent response time under load.

 Now that we’ve looked at how you predict and measure system availability, let's take
a look at strategies that NoSQL clusters use to increase system availability.

8.3 NoSQL strategies for high availability
In this section, we’ll review several strategies NoSQL systems use to create high-
availability services backed by clusters of two or more systems. This discussion will
include the concepts of load balancing, clusters, replication, load and stress testing,
and monitoring.

 As we look at each of these components, you’ll see how NoSQL systems can be con-
figured to provide maximum availability of the data service. One of the first questions
you might ask is, “What if the NoSQL database crashes?” To get around this problem,
a replica of the database can be created. 

8.3.1 Using a load balancer to direct traffic to the least busy node

Websites that aim for high availability use a front-end service called a load balancer. A
diagram of a load balancer is shown in figure 8.2.

 In this figure, service requests enter on the left and are sent to a pool of resources
called the load balancer pool. The service requests are sent to a master load balancer
and then forwarded to one of the application servers. Ideally, each application server
has some type of load indication that tells the load balancer how busy it is. The least-
busy application server will then receive the request. Application servers are responsi-
ble for servicing the request and returning the results. Each application server may
request data services from one or many NoSQL servers. The result of these query
requests are returned and the service is fulfilled. 

Web service
response time

Count Service A
Service B

95%
values

Mean
values

Figure 8.1 Frequency distribution chart showing mean vs. 95th percentile response 
times. Notice two web service response distributions for two NoSQL key-value data 
stores under load. Service A has a faster mean value response time but much longer 
response times at the 95th percentile. Service B has longer mean value response 
times but shorter 95% value responses.
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8.3.2 Using high-availability distributed filesystems 
with NoSQL databases

Most NoSQL systems are designed to work on a high-availability filesystem such as the
Hadoop Distributed File System (HDFS). If you’re using a NoSQL system such as Cas-
sandra, you’ll see that it has its own HDFS compatible filesystem. Building a NoSQL
system around a specific filesystem has advantages and disadvantages.

Advantages of using a distributed filesystem with a NoSQL database:
 Reuse of reliable components—Reusing prebuilt and pretested system components

makes sense with respect to time and money. Your NoSQL system doesn’t need
to duplicate the functions in a distributed filesystem. Additionally, your organi-
zation may already have an infrastructure and trained staff who know how to set
up and configure these systems.

 Customizable per-folder availability—Most distributed filesystems can be config-
ured on a folder-by-folder basis for high availability. This gets around using a
local filesystem with single points of failure to store input or output datasets.
These systems can be configured to store your data in multiple locations; the
default is generally three. This means that a client request would only fail if all
three systems crashed at the same time. The odds of this occurring are low
enough that three are sufficient for most service levels.

 Rack and site awareness—Distributed filesystem software is designed to factor in
how computer clusters are organized in your data center. When you set up your
filesystem, you indicate which nodes are placed in which racks with the assump-
tion that nodes within a rack have higher bandwidth than nodes in different
racks. Racks can also be placed in different data centers, and filesystems can
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Figure 8.2 A load balancer is ideal when you have a large number of processors that can 
each fulfill a service request. To gain performance advantages, all service requests arrive 
at a load balancer service that distributes the request to the least-busy processor. A 
heartbeat signal from each application server provides a list of which application servers 
are working. An application server may request data from one or more NoSQL databases.
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immediately duplicate data on racks in remote data centers if one data center
goes down.

Disadvantages of using a distributed filesystem with a NoSQL database:
 Lower portability—Some distributed filesystems work best on UNIX or Linux serv-

ers. Porting these filesystems to other operating systems, such as Windows, may
not be possible. If you need to run on Windows, you may need to add an addi-
tional virtual machine layer, which may impose a performance penalty.

 Design and setup time—When you’re setting up a well-designed distributed file-
system, it may take some time to figure out the right folder structure. All the
files within a folder share the same properties, such as replication factor. If you
use creation dates as folder names, you may be able to lower replication for files
that are over a specific period of time such as two years.

 Administrative learning curve—Someone on your staff will need to learn how to
set up and manage a distributed filesystem. These systems need to be moni-
tored and sensitive data must be backed up. 

8.3.3 Case study: using HDFS as a high-availability filesystem 
to store master data

In chapter 6 on managing big data, we introduced the Hadoop Distributed File Sys-
tem (HDFS). As you recall, HDFS can reliably store large files, typically from a gigabyte
to a terabyte. HDFS can also tune replication on a file-by-file basis. By default most files
in HDFS have a replication factor of 3, meaning that the data blocks that make up
these files are located on three distinct nodes. A simple HDFS shell command can
change the replication factor for any HDFS file or folder. There are two reasons you
should raise the replication factor of a file in HDFS:

 To lower the chance that the data will become unavailable—For example, if you have a
data service that depends on this data with a five-nines guarantee, you might
want to increase the replication factor from 3 to 4 or 5.

 To increase the read-access times—If files have a large number of concurrent reads,
you can increase the replication factor to allow more nodes to respond to those
read requests.

The primary reasons you lower replication is if you’re running out of disk space or you
no longer require the same service levels required by high replication counts. If
you’re concerned about running out of disk space, the replication factor can be low-
ered again when the lack of data availability costs are lower and the read requirements
aren’t as demanding. It’s not unusual for replication counts to go down as data gets
older. For example, data that’s over a year old might only have a replication factor
of 2, and data that’s over five years only may have a replication factor of 1.

 One of the nice features of HDFS is its rack awareness. This is the ability for you to
logically group HDFS nodes together in structures that reflect the way processors are
stored in physical racks and connected together by an in-rack network. Nodes that are
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physically stored in the same rack usually have higher bandwidth connectivity between
the nodes and using this network keeps data off of other shared networks. This is
shown in figure 8.3. 

 One of the advantages of rack awareness is that you can increase your availability
by carefully distributing HDFS blocks on different racks. 

 We’ve also discussed how NoSQL systems move the queries to the data, not the
data to the query. Since the data is stored on three nodes, which node should run the
query? The answer is usually the least-busy node. How does the query distribution sys-
tem know what nodes hold the data? This is where there must be a tight coupling of
the filesystem and the query distribution system. The information about what node
the data is on must be communicated to the client program.

 The primary disadvantage of using an external filesystem is that your database may
not be as portable on operating systems that don’t support these filesystems. For
example, HDFS is usually run on UNIX or Linux operating systems. If you want to
deploy HBase—which is designed to run on HDFS—you may have more hoops to
jump through to get HDFS to run on a Windows system. Using a virtual machine is one
way to do this, but there can be a performance penalty with using virtual machines.

 We should note that you can get the same replication factor by using an off-the-
shelf storage area network (SAN). What you won’t get with this configuration is an easy
way to keep the query and the data on the same server. Using a SAN for high-availability
databases can work for small datasets, but larger datasets will result in excessive net-
work traffic. In the long run, the Hadoop architecture of shared-nothing processors all
working on their own copy of a large dataset is the most scalable solution.

 Setting up a Hadoop cluster can be a great way to make sure your NoSQL database
has both high availability and scale-out performance. Early versions of Hadoop (usu-
ally referred to as version 1.x) had a single point of failure on the NameNode service.
For high availability, Hadoop used a secondary failover node that was automatically
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Figure 8.3 HDFS is designed to have rack awareness so that you can instruct data 
blocks to be spread onto multiple racks, which could be located in multiple data 
centers. In this example, all blocks are stored on three separate servers (replication 
factor of 3) and HDFS spreads the blocks over two racks. If either rack becomes 
unavailable, there will always be a replica of both block 1 and block 2.
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replicated with the data and could be swapped in if the master NameNode failed.
Since 2010, there have been specialized releases of Hadoop that removed the single
point of failure of the Hadoop NameNode.

 Although the NameNode was a weak link in setting up early Hadoop clusters, it
was usually not the primary cause of most service failures. Facebook did a study of
their service failures and found that only 10% were related to NameNode failures.
Most were the result of human error or systematic bugs on all Hadoop nodes. 

8.3.4 Using a managed NoSQL service

Organizations find that even with an advanced NoSQL database, it takes a huge
amount of engineering to create and maintain predictable high-availability data ser-
vices that scale. Unless you have a large IT budget and specialized staff, you’ll find it
more cost effective to let companies experienced in database setup and configuration
handle the job and let your own staff focus on application development. Today the
costs for using cloud-based NoSQL applications are a fraction of what internal IT
departments charge to set up and configure systems.

 Let’s take a look at how an Amazon DynamoDB key-value store can be configured
to give you high-availability. 

8.3.5 Case study: using Amazon DynamoDB 
for a high-availability data store

The original Amazon DynamoDB paper, introduced in chapter 1, was one of the most
influential papers in the NoSQL movement. This paper detailed how Amazon
rejected RDBMS designs and used its own custom distributed computing system to sup-
port the requirements of horizontal scalability and high availability for their web shop-
ping cart.

 Originally, Amazon didn’t make the DynamoDB software open source. Yet despite
the lack of source code, the DynamoDB paper heavily influenced other NoSQL sys-
tems such as Cassandra, Redis, and Riak. In February 2012, Amazon made DynamoDB
available as a database service for other developers to use. This case study reviews the
Amazon DynamoDB service and how it can be used as a fully managed, highly avail-
able, scalable database service.

 Let’s start by looking at DynamoDB’s high-level features. Dynamo’s key innovation
is its ability to quickly and precisely tune throughput. The service can reliably handle a
large volume of read and write transactions, which can be tuned on a minute-by-
minute basis by modifying values on a web page. Figure 8.4 shows an example of this
user interface. 

 DynamoDB handles how many servers are used and how the loads are balanced
between the servers. Amazon provides an API so you can change the provisioned
throughput programmatically based on the results of your load monitoring system.
No operator intervention is required. Your monthly Amazon bill will be automatically
adjusted as these parameters change.
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Amazon implements the DynamoDB service using complex algorithms to evenly dis-
tribute reliable read and write transactions over tens of thousands of servers.
DynamoDB is also unique in that it was one of the first systems to be deployed exclu-
sively on solid state disks (SSDs). Using SSDs allows DynamoDB to have a predictable
service level.

 One of the goals of DynamoDB is to provide consistent single-digit millisecond
read times. The exclusive use of SSDs means that DynamoDB never has to take disk-
access latency into consideration. The net result is your users get consistent responses
to all GET and PUT operations, and web pages built with data on DynamoDB will seem
faster than most disk-based databases.

 The DynamoDB API gives you fine-grained control of read consistency. A devel-
oper can choose if they want an immediate read of a value from the local node (called
an eventually consistent read) or a slower but guaranteed consistent read of an item. The
guaranteed consistent read will take a bit longer to make sure that the node you’re
reading from has the latest copy of your item. If your application knows that the values
haven’t changed, the immediate read will be faster.

 This fine-grained control of how you read data is an excellent example of how you
can use your knowledge of consistency (covered in chapter 2) to fine-tune your appli-
cation. It’s important to note that you can always force your reads to be consistent, but
it would be challenging to configure SQL-backed data services to integrate this fea-
ture. SQL has no option to “make consistent before select” when working with distrib-
uted systems.

 DynamoDB is ideal for organizations that have elastic demand. The notion of pay-
ing for what you use is a primary way to save on hosting expenses. Yet when you do

Figure 8.4 Amazon DynamoDB table throughput provisioning. By changing the number of 
read capacity units or write capacity units, you can tune each table in your database to use 
the correct number of servers based on your capacity needs. Amazon also provides tools 
to help you calculate the number of units your application will need.
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need to scale, DynamoDB has the headroom for quick growth. DynamoDB offers scal-
able transform Elastic MapReduce, which allows you to move large amounts of data
into and out of DynamoDB if you need efficient and scalable extract, transform, and
load (ETL) processes.

 Now that we’ve shown you how NoSQL systems use various strategies to create
high-availability database services, let’s look at two NoSQL products with strong repu-
tations for high availability. 

8.4 Case study: using Apache Cassandra 
as a high-availability column family store
This case study will look at Apache Cassandra, a NoSQL column-family store with a
strong reputation for scalability and high availability, even under intense write loads.
Cassandra was an early adopter of a pure peer-to-peer distribution model. All nodes in
a Cassandra cluster have identical functionality, and clients can write to any node in
the cluster at any time. Because Cassandra doesn’t have any single master node,
there’s no single point of failure and you don’t have to set up and test a failover node.
Apache Cassandra is an interesting combination of NoSQL technologies. It’s some-
times described as a Bigtable data model with a Dynamo-inspired implementation.

 In addition to its robust peer-to-peer model, Cassandra has a strong focus on mak-
ing it easy to set up and configure both write and read consistency levels. Table 8.2
shows the various write consistency-level settings that you can use once you’ve config-
ured your replication level. 

Table 8.2 The codes used to specify consistency levels in Cassandra tables on writes. Each table in
Cassandra is configured to meet the consistency levels you need when the table is created. You can
change the consistency level at any time and Cassandra will automatically reconfigure to the new
settings. There are similar codes for read levels

Level Write guarantee

ZERO (weak consistency) No write confirmation is done. No consistency guarantees. If the 
server crashes, the write may never actually happen.

ANY (weak consistency) A write confirmation from any single node, including a special “hinted 
hand-off” node, will be sufficient for the write to be acknowledged.

ONE (weak consistency) A write confirmation from any single node will be sufficient for the 
write to be acknowledged.

TWO Ensure that the write has been written to at least two replicas before 
responding to the client.

THREE Ensure that the write has been written to at least three replicas 
before responding to the client.

QUORUM (strong consistency) N/2 + 1 replicas where N is the replication factor.

LOCAL_QUORUM Ensure that the write has been written to <ReplicationFactor> / 2 + 1 
nodes, within the local data center (requires 
NetworkTopologyStrategy).
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Next, you consider what to do if one of the nodes is unavailable during a read transac-
tion. How can you specify the number of nodes to check before you return a new
value? Checking only one node will return a value quickly, but it may be out of date.
Checking multiple nodes may take a few milliseconds longer, but will guarantee you
get the latest version in the cluster. The answer is to allow the client reader to specify
a consistency level code similar to the write codes discussed here. Cassandra clients
can select from codes of ONE, TWO, THREE, QUORUM, LOCAL_QUORUM, EACH
_QUORUM, and ALL when doing reads. You can even use the EACH_QUORUM code to
check multiple data centers around the world before the client returns a value. 

 As you’ll see next, Cassandra uses specific configuration terms that you should
understand before you set up and configure your cluster. 

8.4.1 Configuring data to node mappings with Cassandra

In our discussion of consistent hashing, we introduced the concept of using a hash to
evenly distribute data around a cluster. Cassandra uses this same concept of creating a
hash to evenly distribute their data. Before we dive into how Cassandra does this, let’s
take a look at some key terms and definitions found in the Cassandra system. 

ROWKEY

A rowkey is a row identifier that’s hashed and used to place the data item on one or
more nodes. The rowkey is the only structure used to place data onto a node. No col-
umn values are used to place data on nodes. Designing your rowkey structure is a crit-
ical step to making sure similar items are clustered together for fast access. 

PARTITIONER

A partitioner is the strategy that determines how to assign a row to a node based on its
key. The default setting is to select a random node. Cassandra uses an MD5 hash of the
key to generate a consistent hash. This has the effect of randomly distributing rows
evenly over all the nodes. The other option is to use the actual bytes in a rowkey (not a
hash of the key) to place the row on a specific node. 

KEYSPACE

A keyspace is the data structure that determines how a key is replicated over multiple
nodes. By default, replication might be set to 3 for any data that needs a high degree
of availability.

Table 8.2 (continued)

Level Write guarantee

EACH_QUORUM Ensure that the write has been written to <ReplicationFactor> / 2 + 1 
nodes in each data center (requires NetworkTopologyStrategy).

ALL (strong consistency) All replicas must confirm that the data was written to disk.
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An example of a Cassandra keyspace is usually drawn as a ring, as illustrated in
figure 8.5. 

 Cassandra allows you to fine-tune replication based on the properties of keyspace.
When you add any row to a Cassandra system, you must associate a keyspace with that
row. Each keyspace allows you to set and change the replication factor of that row. An
example of a keyspace declaration is shown in figure 8.6. 

 Using this strategy will allow you to evenly distribute the rows over all the nodes in
the cluster, eliminating bottlenecks. Although you can use specific bits in your key,
this practice is strongly discouraged, as it leads to hotspots in your cluster and can be
administratively complex. The main disadvantage with this approach is that if you
change your partitioning algorithm, you have to save and restore your entire dataset.

 When you have multiple racks or multiple data centers, the algorithm might need
to be modified to ensure data is written to multiple racks or even to multiple data cen-
ters before the write acknowledgement is returned. If you change the placement-
strategy value from SimpleStrategy to NetworkTopologyStrategy, Cassandra will walk
around the ring until it finds a node that’s on a different rack or a different data center.

 Because Cassandra has a full peer-to-peer deployment model, it’s seen as a good fit
for organizations that want both scalability and availability in a column family system.
In our next case study, you’ll see how Couchbase 2.0 uses a peer-to-peer model with a
JSON document store. 

A B

D C

D1
C2
B3

B1
A2
D3

B2C1 A3

D2A1 C3

Figure 8.5 A sample of how replication works on a 
Cassandra keyspace using the SimpleStrategy
configuration. Items A1, B1, C1, and D1 are written 
to a four-node cluster with a replication factor of 3. 
Each item is stored on three distinct nodes. After 
writing to an initial node, Cassandra “walks around 
the ring” in a clockwise direction until it stores the 
item on two additional nodes.

CREATEKEYSPACE myKeySpace
with placement_strategy='org.apache.cassandra.locator.SimpleStrategy'
and strategy_options={replication_factor:3};

For a single location site, use “SimpleStrategy.”
If you have multiple sites, use “NetworkTopologyStrategy.”

We set a replication factor of 3 so that each
item will be stored on three separate nodes in the cluster.

Figure 8.6 A sample of how replication is configured within Cassandra. Replication is 
a property of keys that indicates the type of network you’re on and the replication for 
each key.
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8.5 Case study: using Couchbase 
as a high-availability document store
Couchbase 2.0 is a JSON document store that uses many of the same replication pat-
terns found in other NoSQL databases.

Like Cassandra, Couchbase uses a peer-to-peer distribution model, where all nodes
provide the same services, thus eliminating the possibility of a single point of failure.
Unlike Cassandra, Couchbase uses a document store rather than a column family
store, which allows you to query based on a document’s content. Additionally, Couch-
base uses the keyspace concept that associates key ranges with individual nodes.

 Figure 8.7 shows the components in a multidata-center Couchbase server. 
Couchbase stores document collections in containers called buckets, which are config-
ured and administered much like folders in a filesystem. There are two types of buckets:
a memcached bucket (which is volatile and resides in RAM), and a Couchbase bucket,

Couchbase vs. CouchDB
Couchbase technology shouldn’t be confused with Apache CouchDB. Though both
are open source technologies, they’re separate open source projects that have sig-
nificantly different capabilities, and they support different application developer
needs and use cases. Under the covers, Couchbase has more in common with the
original Memcached project than the original CouchDB project. Couchbase and
CouchDB share the same way of generating views of JSON documents, but their
implementations are different.
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Figure 8.7 High-availability documents in Couchbase. Couchbase buckets are logical 
collections of documents that are configured for high availability. Couchbase clients use 
cluster maps to find the physical node where the active version of a document is stored. 
The cluster map directs the client to a file on the active node (1). If Data server 1 is 
unavailable, the cluster map will make a replica of doc1 on Data server 2 the active version 
(2). If the entire US West data center goes down, the client will use cross data center 
replication (XDCR) and make a copy on Data server 3 active (3) from the US East region.
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which is backed up by disk and configured with replication. A Couchbase JSON docu-
ment is written to one or more disks. For our discussions on high-availability systems,
we’ll focus on Couchbase buckets. 

 Internally, Couchbase uses a concept called a vBucket (virtual bucket) that’s associ-
ated with one or more portions of a hash-partitioned keyspace. Couchbase keyspaces
are similar to those found in Cassandra, but Couchbase keyspace management is done
transparently when items are stored. Note that a vBucket isn’t a single range in a key-
space; it may contain many noncontiguous ranges in keyspaces. Thankfully, users
don’t need to worry about managing keyspaces or how vBuckets work. Couchbase cli-
ents simply work with buckets and let Couchbase worry about what node will be used
to find the data in a bucket. Separating buckets from vBuckets is one of the primary
ways that Couchbase achieves horizontal scalability.

 Using information in the cluster map, Couchbase stores data on a primary node as
well as a replica node. If any node in a Couchbase cluster fails, the node will be
marked with a failover status and the cluster maps will all be updated. All data requests
to the node will automatically be redirected to replica nodes.

 After a node fails and replicas have been promoted, users will typically initiate a
rebalance operation to add new nodes to the cluster to restore the full capacity of the
cluster. Rebalancing effectively changes the mapping of vBuckets to nodes. During a
rebalance operation, vBuckets are evenly redistributed between nodes in the cluster
to minimize data movement. Once a vBucket has been re-created on the new node,
it’ll be automatically disabled on the original node and enabled on the new node.
These functions all happen without any interruption of services.

 Couchbase has features to allow a Couchbase cluster to run without interruption
even if an entire data center fails. For systems that span multiple data centers, Couch-
base uses cross data center replication (XDCR), which allows data to automatically be repli-
cated between remote data centers and still be active in both data centers. If one data
center becomes unavailable, the other data center can pick up the load to provide
continuous service.

 One of the greatest strengths of Couchbase is the built-in, high-precision monitor-
ing tools. Figure 8.8 shows a sample of these monitoring tools. 

 These fine-grained monitoring tools allow you to quickly locate bottlenecks in
Couchbase and rebalance memory and server resources based on your loads. These
tools eliminate the need to purchase third-party memory monitoring tools or config-
ure external monitoring frameworks. Although it takes some training to understand
how to use these monitoring tools, they’re the first line of defense when keeping your
Couchbase clusters healthy.

 Couchbase also has features that allow software to be upgraded without an inter-
ruption in service. This process involves replication of data to a new node that has a
new version of software and then cutting over to that new node. These features allow
you to provide a 24/365 service level to your users without downtime. 
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8.6 Summary
In this chapter, you learned how NoSQL systems can be configured to create highly
available data services for key-value stores, column family stores, and document stores.
Not only can NoSQL data services be highly available, they can also be tuned to meet
precise service levels at reasonable costs. We’ve looked at how NoSQL databases lever-
age distributed filesystems like Hadoop with fine-grained control over file replication.
Finally, we’ve reviewed some examples of how turnkey data services have been created
to take advantage of NoSQL architectures.

 Organizations have found that high-availability NoSQL systems that run on multi-
ple processors can be more cost-effective than RDBMSs, even if the RDBMSs are config-
ured for high availability. The principal reason has to do with the use of simple

Figure 8.8 Couchbase comes with a set of customizable web-based operations monitoring reports to 
allow you to see the impact of loads on Couchbase resources. The figure shows a minute-by-minute, 
operations-per-second display on the default bucket. You can select from any one of 20 views to see 
additional information.
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distributed data stores like key-value stores. Key-value stores don’t use joins; they lever-
age consistent hashing; and they have strong scale-out properties. Simplicity of design
frequently promotes high availability.

 With all the architectural advantages of NoSQL for creating cost-effective, high-
availability databases, there are drawbacks as well. The principal drawback is that
NoSQL systems are relatively new and may contain bugs that become apparent in rare
circumstances or unusual configurations. The NoSQL community is full of stories
where high-visibility web startups experienced unexpected downtimes using new ver-
sions of NoSQL software without adequate training of their staff and enough time and
budget to do load and stress testing.

 Load and stress testing take time and resources. To be successful, your project may
need the people with the right training and experience using the same tools and con-
figuration you have. With NoSQL still newer than traditional RDBMSs, the training
budgets for your staff need to be adjusted accordingly. 

 In our next chapter, you’ll see how using NoSQL systems will help you be agile
with respect to developing software applications to solve your business problems. 
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Increasing agility
with NoSQL
Change is no longer just incremental. Radical “nonlinear change” which brings
about a different order is becoming more frequent.

—Cheshire Henbury, 
“The Problem”

Can your organization quickly adapt to changing business conditions? Can your
computer systems rapidly respond to increased workloads? Can your developers
quickly add features to your applications to take advantage of new business oppor-
tunities? Can nonprogrammers maintain business rules without needing help from
software developers? Have you ever wanted to build a web application that works
with complex data, but you didn’t have the budget for teams of database modelers,
SQL developers, database administrators, and Java developers?

This chapter covers
 Measuring agility

 How NoSQL increases agility

 Using document stores to avoid 
object-relational mapping
192
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 If you answered yes to any of these questions, you should consider evaluating a
NoSQL solution. We’ve found that NoSQL solutions can reduce the time it takes to
build, scale, and modify applications. Whereas scalability is the primary reason compa-
nies move away from RDBMSs, agility is the reason NoSQL solutions “stick.” Once
you’ve experienced the simplicity and flexibility of NoSQL, the old ways seem like a
chore. 

 As we move through this chapter, we’ll talk about agility. You’ll learn about the
challenges one encounters when attempting to objectively measure it. We’ll quickly
review the problems encountered when trying to store documents in a relational
database and the problems associated with object-relational mapping. We’ll close out
the chapter with a case study that uses a NoSQL solution to manage complex busi-
ness forms.

9.1 What is software agility?
Let’s begin by defining software agility and talk about why businesses use NoSQL tech-
nologies to quickly build new applications and respond to changes in business
requirements.

 We define software agility as the ability to quickly adapt software systems to chang-
ing business requirements. Agility is strongly coupled with both operational robust-
ness and developer productivity. Agility is more than rapidly creating new
applications; it means being able to respond to changing business rules without rewrit-
ing code.

 To expand, agility is the ability to rapidly

 Build new applications
 Scale applications to quickly match new levels of demand
 Change existing applications without rewriting code
 Allow nonprogrammers to create and maintain business logic

From the developer productivity perspective, agility includes all stages of the software
development lifecycle (SDLC) from creating requirements, documenting use cases,
and creating test data to maintaining business rules in existing applications. As you
may know, some of these activities are handled by staff who aren’t traditionally
thought of as developers or programmers. From a NoSQL perspective, agility can help
to increase the productivity of programmers and nonprogrammers alike.

 Traditionally, we think of “programmers” as staff who have a four-year degree in
computer science or software engineering. They understand the details of how

Agility vs. agile development
Our discussion of agility shouldn’t be confused with agile development, which is a set
of guidelines for managing the software development process. Our focus is the
impact of database architecture on agility.
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computers work and are knowledgeable about issues related to memory allocation,
pointers, and multiple languages like Java, .Net, Perl, Python, and PHP.

 Nonprogrammers are people who have exposure to their data and may have some
experience with SQL or writing spreadsheet macros. Nonprogrammers focus on get-
ting work done for the business; they generally don’t write code. Typical nonprogram-
mer roles might include business analyst, rules analyst, data quality analyst, or quality
assurance. 

 There’s a large body of anecdotal evidence that NoSQL solutions have a positive
impact on agility, but there are few scientific studies to support the claim. One study,
funded by 10gen, the company behind MongoDB, found that more than 40% of the
organizations using MongoDB had a greater than 50% improvement in developer
productivity. These results are shown in figure 9.1. 

 When you ask people why they think NoSQL solutions increase agility, many rea-
sons are cited. Some say NoSQL allows programmers to stay focused on their data and
build data-centric solutions; others say the lack of object-relational mapping opens up
opportunities for nonprogrammers to participate in the development process and
shorten development timelines, resulting in greater agility. 

 By removing object-relational mapping, someone with a bit of background in SQL,
HTML, or XML can build and maintain their own web applications with some training.
After this training, most people are equipped to perform all of the key operations
such as create, read, update, delete, and search (CRUDS) on their records. 

 Programmers also benefit from no object-relational mapping, as they can move
their focus from mapping issues to creating automated tools for others to use. But
the impact of all these time- and money-saving NoSQL trends puts more pressure on
an enterprise solution architect to determine whether NoSQL solutions are right for
the team.

 If you’ve spent time working with multilayered software architectures, you’re likely
familiar with the challenges of keeping these layers in sync. User interfaces, middle tier
objects, and databases must all be updated together to maintain consistency. If any
layer is out of sync, the systems fail. It takes a great deal of time to keep the layers in
sync. The time to sync and retest each of the layers slows down a team and hampers
agility. NoSQL architectures promote agility because there are fewer layers of software,

Greater than 75% 8%

33%

34%

20%

5%

50% – 74%

25% – 49%

10% – 24%

Less than 10%

By what percentage has MongoDB increased the
productivity of your development team?

Figure 9.1 Results of 
10gen survey of their users 
show that more than 40% 
of development teams 
using MongoDB had a 
greater than 50% increase 
in productivity. This study 
included 61 organizations 
and the data was validated 
in May of 2012. (Source: 
TechValidate. TVID: F1D-
0F5-7B8)
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and changes in one layer don’t cause problems with other layers. This means your
team can add new features without the need to sync all the layers. 

 NoSQL schema-less datasets usually refers to datasets that don’t require predefined
tables, columns (with types), and primary-foreign key relationships. Datasets that
don’t require these predefined structures are more adaptable to change. When you
first begin to design your system, you may not know what data elements you need.
NoSQL systems allow you to use new elements and associate the data types, indexes,
and rules to new elements when you need them, not before you get the data. As new
data elements are loaded into some NoSQL databases, indexes are automatically cre-
ated to identify this data. If you add a new element for PersonBirthDate anywhere in
a JSON or XML input file, it’ll be added to an index of other PersonBirthDate ele-
ments in your database. Note that a range index on dates for fast sorting many still
need to be configured. To take this a step further, let’s look at how specific NoSQL
data services can be more agile than an entire RDBMS.

 NoSQL systems frequently deliver data services for specific portions of a large web-
site or application. They may use dozens of CPUs working together to deliver these ser-
vices in configurations that are designed to duplicate data for faster guaranteed
response times and reliability. The NoSQL data service CPUs are often dedicated to
these services and no other functions. As the requirements for performance and reli-
ability change, more CPUs can be automatically added to share the load, increase
response time, and lower the probability of downtime. 

 This architecture of using dedicated NoSQL servers to create highly tunable data
services is in sharp contrast to traditional RDBMSs that typically have hundreds or
thousands of tables all stored on a single CPU. Trying to create precise data service lev-
els for one service can be difficult if not impossible if you consider that some data ser-
vices will be negatively impacted by large query loads on other unrelated database
tables. NoSQL data architectures, when combined with distributed processing, allow
organizations to be more agile and resilient to the changing needs of businesses. 

 Our focus in this chapter is the impact of NoSQL database architecture on overall
software agility. But before we wrap up our discussion of defining agility as it relates to
NoSQL architecture, let’s take a look at how deployment strategies also impact agility. 

9.1.1 Apply your knowledge: local or cloud-based deployment?

Sally is working on a project that has a tight budget and a short timeline. The organi-
zation she works for prefers to use database servers in their own data center, but in the
right situation they allow cloud-based deployments. Since the project is a new service,
the business unit is unable to accurately predict either the demand for the service or
the throughput requirements.

 Sally wants to consider the impact of a cloud-based deployment on the project’s
scalability and agility. She asks a friend in operations how long it typically takes for the
internal information technology department to order and configure a new database
server. She gets an email message with a link to a spreadsheet shown in figure 9.2. This
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figure shows a typical estimate of the steps Sally’s information technology department
uses to provision a new database server.

 As you can see by the Total Business Days calculation, it’ll take 19 business days or
about a month to complete the project. This stands in sharp contrast to a cloud-based
NoSQL deployment that can add capacity in minutes or even seconds. The company
does have some virtual machine–based options, but there are no clear guarantees of
average response times for the virtual machine options.

 Sally opts to use a cloud-based deployment for her NoSQL database for the first
year of the project. After the first year, the business unit will reevaluate the costs and
compare these with internal costs. This allows the team to quickly move forward with
their scale-out testing without incurring up-front capital expenditures associated with
ordering and configuring up to a dozen database servers.

 Our goal in this chapter is not to compare local versus cloud-based deployment
methods. It’s to understand how NoSQL architecture impacts a project’s development
speed. But the choice to use a local or cloud-based deployment should be a consider-
ation in any project.

 In chapter 1 we talked about how the business drives of volume, velocity, variability,
and agility were the drivers associated with the NoSQL movement. Now that you’re
familiar with these drivers, you can look at your organization to see how NoSQL solu-
tions might positively impact these drivers to help your business meet the changing
demands of today’s competitive marketplace. 

9.2 Measuring agility
Understanding the overall agility of a project/team is the first step in determining the
agility associated with one or more database architectures. We’ll now look at devel-
oper agility to see how it can be objectively measured.

 Measuring pure agility in the NoSQL selection process is difficult since it’s inter-
twined with developer training and tools. A person who’s an expert with Java and SQL
might create a new web application faster than someone who’s a novice with a NoSQL
system. The key is to remove the tools and staff-dependent components from the mea-
surement process.

Figure 9.2 Average time required to provision a 
new database server in a typical large organization. 
Because NoSQL servers can be deployed as a 
managed service, a month-long period of time can 
be dropped to a few minutes if not seconds to 
change the number of nodes in a cluster.
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An application development architecture’s overall software agility can be precisely
measured. You can track the total number of hours it takes to complete a project
using both an RDBMS and a NoSQL solution. But measuring the relationship between
the database architecture and agility is more complex, as seen in figure 9.3.

 Figure 9.3 shows how the database architecture is a small part of an overall soft-
ware ecosystem. The diagram identifies all the components of your software architec-
ture and the tools that support it. The architecture has a deep connection with the
complexity of the software you use. Simple software can be created and maintained by
a smaller team with fewer specialized skills. Simplicity also requires less training and
allows team members to assist each other during development.

 To determine the relationship between the database architecture and agility, you
need a way to subtract the nondatabase architecture components that aren’t relevant.
One way to do this is to develop a normalization process that tries to separate the
unimportant processes from agility measurements. This process is shown in figure 9.4.

 This model is driven by selecting key use cases from your requirements and analyz-
ing the amount of effort required to achieve your business goals. Although this sounds
complicated, once you’ve done this a few times, the process seems straightforward.

 Let’s use the following example. Your team has a new project that involves import-
ing XML data and creating RESTful web services that return only portions of this data
using a search service. Your team meets and talks about the requirements, and the
development staff creates a high-level outline of the steps and effort required. You’ve
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Figure 9.3 The factors that make it challenging to measure the impact of database 
architecture on overall software agility. Database architecture is only a single 
component of the entire SDLC ecosystem. Developer agility is strongly influenced by 
an individual’s background, training, and motivation. The tools layer includes items 
such as the integrated development environment (IDE), app generators, and 
developer tools. The interface layer includes items such as the command-line 
interface (CLI) as well as interface protocols.
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narrowed down the options to a native XML database using XQuery and an RDBMS
using a Java middle tier. For the sake of simplicity, effort is categorized using a scale of
1 to 5, where 1 is the least effort and 5 is the most effort. A sample of this analysis is
shown in table 9.1.

Performing this type of analysis can show you how suitable an architecture is for a par-
ticular use case. Large projects may have many use cases, and you’ll likely get conflict-
ing results. The key is to involve a diverse group of people to create a fair and objective
estimate of the total effort that’s decoupled from background and training issues.

 The amount of time you spend looking at the effort involved in each use case is up
to you and your team. Informal “thought experiments” work well if the team has peo-
ple with adequate experience in each alternative database and a high level of trust

Table 9.1 High-level effort analysis to build a RESTful search service from an XML dataset. The steps
to build the service are counted and a rough effort level (1-5) is used to measure the difficulty of each
step.

NoSQL document store SQL/Java method

1. Drag and drop XML file into data-
base collection (1)

2. Write XQuery (2)
3. Publish API document (1)

Total effort: 4 units

1. Inventory all XML elements (2)
2. Design data model (5)
3. Write create table statements (5)
4. Execute create table (1)
5. Convert XML into SQL insert statements (4)
6. Run load-data scripts (1)
7. Write SQL scripts to query data (3)
8. Create Java JDBC program to query data and Java REST pro-

grams to convert SQL results into XML (5)
9. Compile Java program and install on middle-tier server (2)
10. Publish API document (1)

Total effort: 29 units

Development tools

Developer training

Architectures

Agility metrics

Use cases

Objective
normalization

Figure 9.4 Factors such as development tools, training, architectures, 
and use cases all impact developer agility. In order to do a fair comparison 
of the impact of NoSQL architecture on agility, you need to normalize the 
non-architecture components. Once you balance these factors, you can 
compare how different NoSQL architectures drive the agility of a project.
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exists in the group’s ability to fairly compare effort. If there are disputes on the rela-
tive effort, you may need to write sample code for some use cases. Although this takes
time and slows a selection process, it’s sometimes necessary to fairly evaluate alterna-
tives and validate objective effort comparisons.

 Many organizations that are comparing RDBMSs and document stores find a signif-
icant reduction in effort in use cases that focus on data import and export. In our next
section, we’ll focus on a detailed analysis of the translations RDBMSs need to convert
data to and from natural business objects. 

9.3 Using document stores 
to avoid object-relational mapping
You may be familiar with the saying “A clever person solves a problem. A wise person avoids
it.” Organizations that adopt document stores to avoid an object-relational layer are
wise indeed. The conversion of object hierarchies to and from rigid tabular structures
can be one of most vexing problems in building applications. Avoiding the object-
relational layer mapping is a primary reason developer productivity increases when
using NoSQL systems.

 Early computer systems used in business focused on the management of financial
and accounting data. This tabular data was represented in a flat file of consistent rows
and columns. For example, financial systems stored general ledger data in a series of
columns and rows that represented debits and credits. These systems were easy to
model, the data was extremely consistent, and the variability between how customers
stored financial information was minimal. 

 Later, other departments began to see how storing and analyzing data could help
them manage inventory and make better business decisions. For many departments,
the types of data captured and stored needed to change. A simple tabular structure
could no longer meet the organization’s needs. Engineers did what they do best: they
attempted to work within their existing structure to accommodate the new require-
ments. After all, they had a sizeable investment in people and systems, so they wanted
to use the same RDBMS used in accounting.

 As things evolved, business components were represented in a middle tier using
object models. Object models were more flexible than the original punch card mod-
els, as they naturally represented the way business entities were stored. Objects could
contain other objects, which could in turn contain additional objects. To save the state
of an object, many SQL statements would need to be generated to save and reassemble
objects. In the late 1990s these objects also needed to be viewed and edited using a
web browser, sometimes requiring additional translations.

 The most common design was to create a four-step translation process, as shown in
figure 9.5. 

 If you think this four-step translation process is complex, it can be. Let’s see how
you might compare the four-translation pain to putting away your clothing.
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Imagine using this process on a daily basis as you return home from a long day at the
office. You’d take off your clothes and start by removing all of the thread, dismantling
your clothes bit by bit, and then putting them away in uniform bolts of cloth. When
you get up in the morning to go to work, you’d then retrieve your needle and thread
and re-sew all your clothes back together again. If you’re thinking, “This seems like a
lot of unnecessary work,” that’s the point of the example. Today, NoSQL document
stores allow you to avoid the complexities that were caused by the original require-
ments to store flat tabular data. They really allow development teams to avoid a lot of
unnecessary work.

 There have been multiple efforts to mitigate the complexities of four-step transla-
tion. Tools like Apache Hibernate and Ruby on Rails are examples of frameworks of
tools that try to manage the complexity of object-relational mapping. These were the
only options available until developers realized that using a NoSQL solution to store
the document structure directly in the database without converting it to another for-
mat or shredding it into tables and rows is a better solution.

 This lack of translation makes NoSQL systems simpler to use and, in turn, allows
subject matter experts (SMEs) and other nonprogramming staff to participate directly
in the application development process. By encouraging SMEs to have a direct involve-
ment in building applications, course corrections can be made early in the software
development process, saving time and money associated with rework. 

 NoSQL technologies show how moving from storing data in tables to storing data
in documents opens up possibilities for new ways of using and presenting data. As you
move your systems out of the back room to the World Wide Web, you’ll see how
NoSQL solutions can make implementation less painful.

 Next we’ll look at combining a no-translation architecture with web standards to
create a development platform that’s easy to use and portable across multiple NoSQL
platforms. 

Relational
database

Middle-tier
object layer

Web browser

T2

T3

T1

T4

Figure 9.5 The four-translation web-object-RDBMS model. This model 
is used when objects are used as a middle layer between a web page 
and a relational database. The first translation (T1) is the conversion 
from HTML web pages to middle-tier objects. The second translation 
(T2) is a conversion from middle tier objects to relational database 
statements such as SQL. RDBMSs return only tables so the third 
translation (T3) is the transformation of tables back into objects. The 
fourth translation (T4) is converting objects into HTML for display in 
web pages.
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9.4 Case study: using XRX to manage complex forms
This case study will look at how zero translation can be used to store complex form
data. We’ll look at the characteristics of complex forms, how XForms works, and how
the XRX web application architecture uses a document store to allow nonprogram-
mers to build and maintain these form applications.

XRX stands for the three standards that are used to build web form–based applica-
tions. The first X stands for XForms; the R stands for REST, and the final X stands for
XQuery, the W3C server-side functional programming language we introduced you to
in chapter 5. 

9.4.1 What are complex business forms?

If you’ve built HTML form applications, you know that building simple forms like a
login page or registration form is simple and straightforward. Generally, simple forms
have a few fields, a selection list, and a Save button, all of which can be built using a
handful of HTML tags.

 This case study looks at a complex class of forms that need more than simple
HTML elements. These complex forms are similar to those you’ll find in a large com-
pany or perhaps a shopping cart form on a retail website.

 If you can store your form data in a single row within an RDBMS table, then you
might not have a complex business application as defined here. Using simple HTML
and a SQL INSERT statement may be the best solution for your problem. But our expe-
rience is that there’s a large class of business forms that go beyond what HTML forms
can do. 

 Complex business forms have complex data and also have complex user interfaces.
They share some of the following characteristics:

 Repeating elements—Conditionally adding two or more items to a form. For
example, when you enter a person they may have multiple phone numbers,
interests, or skills.

 Conditional views—Conditionally enabling a region of a form based on how the
user fills out various fields. For example, the question “Are you pregnant?”
should be disabled if a patient’s gender is male.

 Cascading selection—Changing one selection list based on the value of another
list. For example, if you select a country code, a list of state or province codes
will appear for that country.

 Field-by-field validation—Business rules check the values of each field and give
the user immediate feedback.

 Context help—Fields have help and hint text to guide users through the selection
process.

 Role-based contextualization—Each role in an organization might see a slightly dif-
ferent version of the form. For example, only users with a role of Publisher
might see an Approve for Publishing button.
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 Type-specific controls—If you know an element is a specific data type, XForms can
automatically change the user interface control. Boolean true/false values
appear as true/false check boxes and date fields have calendars that allow you
to pick the date. 

 Autocomplete—As users enter characters in a field, you want to be able to suggest
the remainder of the text in a field. This is also known as autosuggest.

Although these aren’t the only features that XForms supports, they give you some idea
of the complexity involved in creating forms. Now let’s see how these features can be
added to forms without the need for complex JavaScript. 

9.4.2 Using XRX to replace client JavaScript 
and object-relational mapping

All of the features listed in the prior section could be implemented by writing
JavaScript within the web browser. Your custom JavaScript code would send your
objects to an object-relational mapping layer for storage within an RDBMS, which is
how many enterprise forms are created today. If you and your team are experienced
JavaScript developers and know your way around object-relational frameworks, this is
one option for you to consider. But NoSQL document stores provide a much simpler
option. With XRX, you can develop these complex forms without using JavaScript or
an object-relation layer. First let’s review some terminology and then see how XRX can
make this process simpler. 

 Figure 9.6 shows the three main components of a form: model, binding, and view.
When a user fills out a form, the data that’s stored when they click Save is called the
model. The components that are on the screen and visible to the user, including items
in a selection list, are referred to as the view components of a form. The process of
associating the model elements with the view is called binding. We call this a model-view
forms architecture.

 To use a form in a web browser, you must first move the default or existing form
data from the database to the model. After the model data is in place, the form takes
over and manages movement of data from the model to and from the views using the
bindings. As a user enters information into a field, the model data is updated. When

<item>
<id>1</id>
<name>Item Name</name>
<desc>Detailed description of item 1</desc>

<category>medium</category>
<status>draft</status>
<tag>tag-1</tag>

</item>

Model Binding View

Figure 9.6 The main components in a form. The model holds the business data to be saved to the 
server. The view displays the individual fields, including selection list options. The binding associates 
the user interface fields with model elements.
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the user selects Save, the updated model data is stored on the server. Figure 9.7 shows
a typical breakdown of code needed to implement business forms using a standard
model and view architecture. 

 From the figure, you can see that close to 90% of this code is similar for most busi-
ness forms and involves moving data between layers. This code does all the work of
getting data in and out of the database and moving the data around the forms as users
fill in the fields. These steps include transferring the data to a middle tier, then mov-
ing the code into the model of the browser, and finally, when the user clicks Save, the
path is reversed.

XRX attempts to automate all generic code that moves the data. In turn, the soft-
ware developer focuses on selecting and validating field-level controls as the user
enters the data and the logic to conditionally display the form. This architecture has a
positive impact on agility, and it empowers nonprogrammers to build robust applica-
tions without ever learning JavaScript or object-
relational mapping systems.

 Figure 9.8 shows how this works within the XRX
web application architecture. 

 With XForms, the entire structure that you’re
editing is stored as an XML document within the
model of the browser. On the server side, docu-
ment stores, such as a native XML database, are
used to store these structures. The beauty of this
architecture is there’s no conversion or need for
object-relational mapping; everything fits together
like a hand in a glove.

 Most native XML databases come with a built-in
REST interface. This is where the R in XRX comes
in. XForms allows you to add a single XML element
called <submission> to specify how the Save button
on your form will call a REST function on your
server. These functions are usually written in
XQuery, the final X in XRX.

Logic to validate
field-level data
and display rules

Updating view 
elements from
model

Binding model
to view
elements

Object-relational
mapping

AJAX calls
and libraries

Figure 9.7 The breakdown of code 
used in a typical forms applications 
when an RDBMS, middle-tier objects, 
and JavaScript are used. Middle-tier 
objects are moved to and from a 
model within the client. XRX attempts 
to automate all but the critical 
business logic components of forms 
processing (top-left wedge).

XML databaseBrowser

Save
Model

View

Update

Figure 9.8 How XML files from a 
native XML database are loaded into 
the model of an XForms application. 
This is an example of a zero-translation 
architecture. Once the XML data is 
loaded into the XForms model, views 
will allow the user to edit model 
content in a web form. When the user 
selects Save, the instance data in the 
model is saved directly to the database 
without the need for translation into 
objects or tables. No object-relational 
mapping layer is needed.
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 XForms is an example of a declarative domain-specific language customized for
data entry forms. Like other declarative systems, XForms allows you to specify what
you want the forms to do but tries to avoid the details of how the forms perform the
work.

 XForms is a collection of approximately 25 elements that are used to implement
complex business forms. A sample of XForms markup is shown in figure 9.9. 

 Because XForms is a W3C standard, it reuses many of the same standards found in
XQuery such as XPath and XML Schema datatypes. XForms works well with native
XML databases. 

 There are several ways to implement an XForms solution. You can use a number of
open source XForms frameworks (Orbeon, BetterForm, XSLTForms, OpenOffice 3)
or a commercial XForms framework (IBM Workplace, EMC XForms). These tools
work with web browsers to interpret the XForms elements and convert them into the
appropriate behavior. Some XForms tools from Orbeon, OpenOffice, and IBM also
have form-builder tools that use XForms to lay out and connect the form elements to
your model. 

 After you’ve created your form, you need to be able to save your form data to the
database. This is where using a native XML database shines. XForms stores the data

Figure 9.9 This figure shows how data from a native XML database is loaded into the 
model of XForms. Once the XML data is loaded into the model, XForms views will allow the 
user to edit the model content in a web form. When the user selects Save, the model is 
saved without change directly into the database. No object-relational mapping is needed.



205Summary
you’ve entered in the form into a single XML document. Most save operations into
a native XML database can be done with a single line of code, even if your form is
complex.

 The real strength of XRX emerges when you need to modify your application. Add-
ing a new field can be done by adding a new element to the model and a few lines of
code to the view elements. That’s it! No need to change the database, no recompila-
tion of middle-tier objects, and no need to write additional JavaScript code within the
browser. XRX keeps things simple. 

9.4.3 Understanding the impact of XRX on agility

Today, we live in a world where many information technology departments aren’t
focused on making it easy for business users to build and maintain their own applica-
tions. Yet this is exactly what XRX does. Form developers are no longer constrained by
IT development schedules of overworked staff who don’t have time to learn the com-
plex business rules of each department. With some training, many users can maintain
and update their own forms applications.

XRX is a great example of how simplicity and standards drive agility. The fewer
components, the easier it is to build new and change existing forms. Because stan-
dards are reused, your team doesn’t have to learn a new JavaScript library or a new
data format. XRX and NoSQL can have a transformative impact on the way work is
divided in a project. It means that information technology staff can focus on other
tasks rather than updating business rules in Java and JavaScript every time there’s a
change request.

 The lessons you’ve learned with XRX can be applied to other areas as well. If you
have a JSON document store like MongoDB, Couchbase, or CouchDB, you can build
JSON services to populate XForms models. There are even versions of XForms that
load and save JSON documents. The important architecture element is the elimina-
tion of the object-relational layer and the ability to avoid JavaScript programs on the
client. If you do this, then your SMEs can take a more active role in your projects and
increase organizational agility. 

9.5 Summary
The primary business driver behind the NoSQL movement was the need for graceful
horizontal scalability. This forced a break from the past, and opened new doors to
innovative ways of storing data. It allowed innovators to build mature systems that
facilitate agile software development. The phrase “We came for the scalability—we stayed
for the agility” is an excellent summary of this process.

 In this chapter, we stressed that comparing agility of two database architecture
alternatives is difficult, because overall agility is buried in the software developer’s
stack. Despite the challenges, we feel it’s worthwhile to create use-case-driven thought
experiments to help guide objective evaluations.
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 Almost all NoSQL systems demonstrate excellent scale-out architecture for opera-
tional agility. Simple architectures that drive complexity out of the process enable
agility in many areas. Our evidence shows that both key-value stores and document
stores can provide huge gains in developer agility if applied to the right use cases.
Native XML systems that work with web standards also work well with other agility-
enhancing systems and empower nonprogrammers.

 This is the last of our four chapters on building NoSQL solutions for specific types
of business problems. We’ve focused on big data, search, high availability, and agility.
Our next chapter takes a different track. It’ll challenge you to think about how you
approach problem solving, and introduce new thinking styles that lend themselves to
parallel processing. We’ll then wrap up with a discussion on security before we look at
the formal methods of system selection.
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Part 4

Advanced topics

In part 4 we look at two advanced topics associated with NoSQL: functional
programming and system security. In our capstone chapter we combine all of the
information we’ve covered so far and walk you through the process of selecting
the right SQL, NoSQL, or some combination of systems solution for your project. 

 At this point the relationship between NoSQL and horizontally scalable sys-
tems should be clear. Chapter 10 covers how functional programming, REST,
and actor-based frameworks can be used to make your software more scalable.

 In chapter 11 we compare the fine-grained control of RDBMS systems to doc-
ument-related access control systems. We also look at how you might control
access to NoSQL data using views, groups, and role-based access controls (RBAC)
mechanisms to get the level of security your organization requires.

 In our final chapter we take all of the concepts we’ve explored so far and
show you how to match the right database to your business problem. We cover
the architectural trade-off process from gathering high-level requirements to
communicating results using quality trees. This chapter provides you with a
roadmap for selecting the right NoSQL system for your next project. 





NoSQL and functional
programming
The world is concurrent. Things in the world don’t share data. Things communicate
with messages. Things fail.

—Joe Armstrong, cocreator of Erlang

In this chapter, we’ll look at functional programming, the benefits of using a func-
tional programming language, and how functional programming forces you to
think differently when creating and writing systems. 

 The transition to functional programming requires a paradigm shift away from
software designed to control state and toward software that has a focus on indepen-
dent data transformation. Most popular programming languages used today, such
as C, C++, Java, Ruby, and Python, were written with the needs of a single node as a
target platform in mind. Although the compilers and libraries for these languages

This chapter covers
 Functional programming basics

 Examples of functional programming

 Moving from imperative to functional programming
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do support multiple threads on multicore CPUs, the languages and their libraries were
created before NoSQL and horizontal scalability on multiple node clusters became a
business requirement. In this chapter, we’ll look at how organizations are using lan-
guages that focus on isolated data transformations to make working with distributed
systems easier.

 In order to meet the needs of modern distributed systems, you must ask yourself
how well a programming language will allow you to write applications that can expo-
nentially scale to serve millions of users connected on the web. It’s no longer suffi-
cient to design a system that will scale to 2, 4, or 8 core processors. You need to ask if
your architecture will scale to 100, 1,000, or even 10,000 processors.

 As we’ve discussed throughout this book, most NoSQL solutions have been specifi-
cally designed to work on many computers. It’s the hallmark of horizontal scalability
to keep all processors in your cluster working together and adapting to changes in the
cluster automatically. Adding these features after the fact is usually not possible. It
must be part of the initial design, in the lowest levels of your application stack. The
inability of SQL joins to scale out is an excellent example of how retrofits don’t work.

 Some software architects feel that to make the shift to true horizontal scale-out,
you need to make a paradigm shift at the language and runtime library level. This is
the shift from a traditional world of object and procedural programming to functional
programming. Today most NoSQL systems are embracing the concepts of functional
programming, even if they’re using some traditional languages to implement the
lower-level algorithms. In this chapter, we’ll look into the benefits of the functional
programming paradigm and show how it’s a significant departure from the way things
are taught in most colleges and universities today. 

10.1 What is functional programming?
To understand what functional programming is and how it’s different from other pro-
gramming methods, let’s look at how software paradigms are classified. A high-level
taxonomy of software paradigms is shown in figure 10.1. 

 We’ll first look at how most popular languages today are based on managing pro-
gram state and memory values. We’ll contrast this with functional programming,
which has a focus on data transformation. We’ll also look at how functional program-
ming systems are closely matched with the requirements of distributed systems.

 After reading this chapter, you’ll be able to visualize functional programming as
isolated transformations of data flowing through a series of pipes. If you can keep this
model in mind, you’ll understand how these transforms can be distributed over multi-
ple processors and promote horizontal scalability. You’ll also see how side effects pre-
vent systems from achieving these goals. 
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10.1.1 Imperative programming is managing program state

The programming paradigm of most computer systems created in the past 40 years
centers around state management, or what’s called imperative programming systems. Pro-
cedural and object languages are both examples of imperative programming systems. 

 Figure 10.2 is an illustration of this state-management-focused system. 

Software paradigms

Imperative Declarative

Object-orientedProcedural Functional

“What” not “how”

Transforms with
no side effects

Wrap statements in objects

Commands that
change state

Wrap statements
in procedures

Figure 10.1 A high-level taxonomy of software paradigms. In the English 
language, an imperative sentence is a sentence that expresses a command. 
“Change that variable now!” is an example of an imperative sentence. In 
computer science, an imperative programming paradigm contains sequences of 
commands that focus on updating memory. Procedural paradigms wrap groups of 
imperative statements in procedures and functions. Declarative paradigms focus 
on what should be done, but not how. Functional paradigms are considered a 
subtype of declarative programming because they focus on what data should be 
transformed, but not how the transforms will occur.

Program

Instruction

Instruction

Instruction

Instruction

Physical memory (RAM) Data

Logical functions

Program state

Program counter

a=1

b=7

reads

Data
block

Program
block

writes

Figure 10.2 Imperative programs divide physical memory (RAM) into two 
functional regions. One region holds the data block and the other the program block. 
The state of the program is managed by a program counter that steps through the 
program block, reading instructions that read and write variables in computer 
memory. The programs must carefully coordinate the reading and writing of data and 
ensure that the data is valid and consistent.
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Using program counters and memory to manage state was the goal of John von Neu-
mann and others in the 1940s when they developed the first computer architecture. It
specified that both data and programs were stored in the same type of core memory
and a program counter stepped through a series of instructions and updated memory
values. High-level programming languages divided memory into two regions: data and
program memory. After a computer program was compiled, a loader loaded the pro-
gram code into program memory and the data region of memory was allocated to
store programming variables. 

 This architecture worked well for single-processor systems as long as it was clear
which programs were updating specific memory locations. But as programs became
more complex, there was a need to control which programs could update various
regions of memory. In the late 1950s, a new trend emerged that required the ability to
protect data by allowing specific access methods to update regions of data memory.
The data and the methods, when used together, formed new programming constructs
called objects.

 An example of the object state is shown in figure 10.3.
 Objects are ideal for simulating real-world objects on a single processor. You model

the real world in a series of programming objects that represent the state of the
objects you’re simulating. For example, a bank account might have an account ID, an
account holder name, and a current balance. A single bank location might be simu-
lated as an object that contains all the accounts at that bank, and an entire financial
institution might be simulated by many bank objects.

 But the initial object model using methods to guard object state didn’t have any
inherent functions to manage concurrency. Objects themselves didn’t take into
account that there might be hundreds of concurrent threads all trying to update the
state of the objects. When it came to “undoing” a series of updates that failed halfway
through a transaction, the simple object model became complex to manage. Keeping
track of the state of many objects in an imperative world can become complex.

Your code

set-a get-b

get-a set-b

a=1

b=7

Object instance variables

Accessor “methods”
(getters and setters)

Figure 10.3 Object architecture uses encapsulation to protect the state 
of any object with accessor functions or methods. In this example, there 
are two internal states, a and b. In order to get the state of a, you must 
use the get-a method. To set the state of a, you must use the set-a
method. These methods are the gatekeepers that guard all access to the 
internal state variables of an object.
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Let’s take a look at a single operation on an object. In this example, the objective is to
increment a single variable. The code might read x = x + 1, meaning “x is assigned a
new value of itself plus one.” What if one computer or part of a network crashes right
around this line of code? Does that code get executed? Does the current state repre-
sent the correct value or do you need to rerun that line of code?

 Keeping track of the state of an ever-changing world is easy on a single system, but
becomes more complex when you move to distributed computing. Functional pro-
gramming offers a different way of approaching computation by recasting computa-
tion as a series of independent data transformations. After you make this transition,
you don’t need to worry about the details of state management. You move into a new
paradigm where all variables are immutable and you can restart transforms again with-
out worrying about what external variables you’ve changed in the process. 

10.1.2 Functional programming is parallel transformation 
without side effects

In contrast with keeping track of the state of objects, functional programming focuses
on the controlled transformation of data from one form to another with a function.
Functions take the input data and generate output data in the same way that you cre-
ate mathematical functions in algebra. Figure 10.4 is an example of how functional
programs work in the same way mathematical functions work. 

 It’s important to note that when using functional programming there’s a new con-
straint. You can’t update the state of the external world at any time during your trans-
form. Additionally, you can’t read from the state of the external world when you’re
executing a transform. The output of your transform can only depend on the inputs to
the function. If you adhere to these rules, you’ll be granted great flexibility! You can
execute your transform on clusters that have thousands of processors waiting to run
your code. If any processor fails, the process can be restarted using the same input
data without issue. You’ve entered the world of side-effect-free concurrent program-
ming, and functional programming has opened this door for you.

 The concepts of serial processing are rooted in imperative systems. As an example,
let’s look at how a for loop or iteration is processed in a serial versus a parallel process-
ing environment. Whereas imperative languages perform transformations of data

Figure 10.4 Functional programming works similarly to mathematical functions. Instead of methods 
that modify the state of objects, functional programs transform only input data without side effects.



214 CHAPTER 10 NoSQL and functional programming
elements serially, with each loop starting only after the prior loop completes, func-
tional programming can process each loop simultaneously and distribute the process-
ing on multiple threads. An example of this is shown in figure 10.5. 

 As you can see, imperative programming can’t process this in parallel because the
state of the variables must be fully calculated before the next loop begins. Some func-
tional programming languages such as XQuery keep each loop as a separate and fully
independent thread. But in some situations, parallel execution isn’t desirable, so
there are now proposals to add a sequential option to XQuery functions. 

 To understand the difference between an imperative and a functional program, it
helps to have a good mental model. The model of a pipe without any holes as shown
in figure 10.6 is a good representation.

 The shift of focus from updating mutable variables to only using immutable vari-
ables within independent transforms is the heart of the paradigm shift that underpins
many NoSQL systems. This shift is required so that you can achieve reliable and high-
performance horizontal scaling in multiprocessor data centers.

Using imperative serial processing

for loop in JavaScript for loop in XQuery

Using functional parallel processing

for(i=0; i < 5; i++){
  n = n + 1;
}

let $seq := ('a','b','c'…)
for $item in $seq
 return
   my-transform($item)

Figure 10.5 Iterations or for loops in imperative languages calculate one iteration of a loop 
and allow the next iteration to use the results of a prior loop. The left panel shows an 
example using JavaScript with a mutable variable that’s incremented. With some functional 
programming languages, iteration can be distributed on independent threads of execution. 
The result of one loop can’t be used in other loops. An example of an XQuery for loop is 
shown in the right panel.

Inputs

Output

Memory

Figure 10.6 The functional programming paradigm relies on creating a 
distinct output for each data input in an isolated transformation process. 
You can think of this as a data transformation pipe. When the 
transformation of input to output is done without modification of external 
memory, it’s called a zero-side-effect pipeline. This means you can rerun 
the transform many times from any point without worrying about the 
impact of external systems. Additionally, if you prevent reads from 
external memory during the transformation, you have the added benefit of 
knowing the same input must generate the exact same output. Then you 
can hash the input and check a cache to see if the transform has already 
been done.
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One way to visualize functional programming in a scale-out system is to look at a series
of inputs being transformed by independent processors. A consequence of using inde-
pendent threads of execution is that you can’t pass the result of an intermediate calcu-
lation from one loop to another. Figure 10.7 illustrates this process.

 This constraint is critical when you design transformations. If you need intermedi-
ate results from a transformation, you must exit the function and return the output. If
the intermediate result needs additional transformation, then a second function
should be called.

 Another item to consider is that the order of execution and the time that trans-
forms take to complete may vary based on the size of the data elements. For example,
if your inputs are documents and you want to count the number of words in each doc-
ument, the time it takes to count words in a 100-page document will be 10 times lon-
ger than the time it takes to count words in a 10-page document (see figure 10.8).

The deep roots of functional programming
A person who’s grown up in the imperative world might be thinking, These people
must be crazy! How could people ever write software without changing variables? The
concepts behind functional programming aren’t new. They go back to the founda-
tions of computer science in the 1940s. The focus on transformation is a core
theme of lambda calculus, first introduced by Alonzo Church. It’s also the basis of
many LISP-based programming languages popular in the 1950s. These languages
were used in many artificial intelligence systems because they’re ideal for managing
symbolic logic.

Despite their popularity in AI research, LISP languages, and their kin (Schema,
Clojure, and other languages), functional languages aren’t typically found in business
applications. Fortran dominated scientific programming because it could be vector-
ized with specialized compilers. COBOL became popular for accounting systems
because it tried to represent business rules in a more natural language structure. In
the 1960s, procedural systems such as PASCAL also became popular, followed by
object-oriented systems such as C++ and Java in the 1980s and 1990s. As horizon-
tal scalability becomes more relevant, it’s important to review the consequences of
the programming language choices you’ve made. Functional programming has many
advantages as processor counts increase. 

A B C

Figure 10.7 Functional programming means that the 
intermediate results of the transformation of item A 
can’t be used in the transformation of item B, and the 
intermediate results of B can’t be used in calculating C. 
Only end results of each of these transforms can be 
used together to create aggregate values.
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This variation in transformation times and the location of the input data adds an addi-
tional burden on the scheduling system. In distributed systems, input data is repli-
cated on multiple nodes in the cluster. To be efficient, you want the longest-running
jobs to start first. To maximize your resources, the tools that place tasks on different
nodes in a cluster must be able to gather processing information from multiple data
sources. Schedulers that can determine how long a transform will take to run on dif-
ferent nodes and how busy each node is will be most efficient. This information is gen-
erally not provided by imperative systems. Even mature systems like HDFS and
MapReduce continue to refine their ability to efficiently transform large datasets. 

10.1.3 Comparing imperative and functional programming at scale

Now let’s compare the capability of imperative and functional systems to support pro-
cessing large amounts of shared data being accessed by many concurrent CPUs. A
comparison of imperative versus functional pipelines is shown in figure 10.9. 

 You can see that when you prevent writes during a transformation, you get the ben-
efit of no side effects. This means that you can restart a failed transformation and be
certain that if it didn’t finish, the external state of a system wasn’t already updated.
With imperative systems, you can’t make this guarantee. Any external changes may
need to be undone if there’s a failure during a transformation. Keeping track of which
operations have been done can add complexity that will slow large systems down. The

3 1 2Start order

Execution time
5 sec 2 sec 3 sec

Figure 10.8 Functional programming 
means that you can’t guarantee the 
order in which items will be transformed 
or what items will finish first.

Imperative programming

Data in

Data out

Data leakage

Data leakage

Data leakage

Data leakage

Side
effects

Functional programming

Data in

Data out

Solid
steel
sides

Figure 10.9 Imperative programming (left 
panel) and functional programming (right 
panel) use different rules when transforming 
data. To gain the benefits of referential 
transparency, output of a transform must be 
completely determined by the inputs to the 
transform. No other memory should be read or 
written during the transformation process. 
Instead of a pipe with holes on the left, you can 
visualize your transformation pipes as having 
solid steel sides that don’t transfer any 
information.
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no-side-effect guarantee is critical in your ability to create reproducible transforms
that are easy to debug and easy to optimize. Not allowing external side-effect writes
during a transform keeps transforms running fast.

 The second scalability benefit happens when you prohibit external reads during a
transform. This rule allows you to know with certainty that the outputs are completely
driven by the inputs of a transformation. If the time to create a hash of the input is
small relative to the time it takes to run the transform, you can check a cache to see if
the transform has already been run.

 One of the central theories of Lambda calculus is that the results of a transform of
any data can be used in place of the actual transform of the data. This ability to sub-
stitute cached value results, instead of having to rerun a long-running transform, is
one way that functional programming systems can be more efficient than imperative
systems.

 The ability to rerun a transform many times and not alter data is called an idempo-
tent transform or an idempotent transaction. Idempotent transforms are transforma-
tions that will change the state of the world in consistent ways the first time they’re
run, but rerunning the transform many times won’t corrupt your data. For example, if
you have a filter that will insert missing required elements into an XML file, that filter
should check to make sure the elements don’t already exist before adding them.

 Idempotent transforms can also be used in transaction processing. Since idempo-
tent transforms don’t change external state, there’s no need to create an undo pro-
cess. Additionally, you can use transaction identifiers to guarantee idempotent
transforms. If you’re running a transaction on an item of data that increments a bank
account, you might record a transaction ID in the bank account transaction history.
You can then create a rule that only runs the update if that transaction ID hasn’t been
run already. This guarantees that a transaction won’t be run more than once.

 Idempotent transactions allow you to use referential transparency. An expression is
said to be referentially transparent if it can be replaced with its value without chang-
ing the behavior of the program. Any functional programming statement can have
this property if the output of the transform can be replaced with the functional call to
the transform itself. Referential transparency allows both the programmer and the
compiler system to look for ways to optimize repeated calls to the same set of func-
tions on the same set of data. But this optimization technique is only possible when
you move to a functional programming paradigm.

 In the next section, we’ll take a detailed look at how referential transparency
allows you to cache results from functional programs. 

10.1.4 Using referential transparency to avoid recalculating transforms

Now that you know how functional programs promote idempotent transactions, let’s
look at how these results can be used to speed up your system. You can use these tech-
niques in many systems, from web applications to NoSQL databases to the results of
MapReduce transforms.
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Referential transparency allows functional programming and distributed systems to
be more efficient because they can be clever about avoiding the recalculation of
results of transforms. Referential transparency allows you to use a cached version of an
item that stands in for something that takes a long time to calculate or a long time to
read data from a disk filesystem.

 Let’s take a simple example, as shown in figure 10.10, to see how an image is dis-
played within a web browser. 

 By default, browsers think that all images referenced by the same URL are the
same “static” images, since the content of the images doesn’t change even if you call
them repeatedly. If the same image is rendered on multiple web pages, the image will
be retrieved only once from the web server. But to do this, all pages must reference
the exact same URL. Subsequent references will use a copy of the image stored in a
local client cache. If the image changes, the only way to get the updated image is to
remove the original item from your local cache and refresh your screen or to refer-
ence a new URL.

 By default your browser considers many items static, such as CSS files, JavaScript
programs, and some data files if they’re marked accordingly by properties in the
HTML headers. If your data files do change, you can instruct your server to add infor-
mation to a file to indicate that the cached copy is no longer valid and to get a new
copy from the server.

 This same concept of caching documents also applies to queries and transforms
used to generate reports or web pages. If you have a large document that depends on
many transforms of smaller documents, then you can reassemble the large document
from the cached copies of smaller documents that don’t change and only re-execute
the transforms of smaller documents that do change. The process of using the trans-
form of documents from a cache is shown in figure 10.11. 

 This transform optimization technique fits perfectly into functional programming
systems and serves as the basis for innovative, high-performance website tools. As we
move into our case study, you’ll see how NetKernel, a performance optimization tool,
is used to optimize web page assembly. 

Inputs

Use cached data

Get URL

Get image from web server

URL in
cache?

Yes

No

Get new
data

OutputStore for
future use

Browser
cache

Figure 10.10 Your local browser will check to see if the URL of an image is in a 
local cache before it goes out to the web to get the image. Once the image is fetched 
from a remote host (usually a slow process), it can be cached for future use. Getting 
an image from a local cache is much more efficient.
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10.2 Case study: using NetKernel 
to optimize web page content assembly
This case study looks at how functional programming and REST services can be com-
bined to optimize the creation of dynamic nested structures. We’ll use as an example
the creation of a home page for a news-oriented website. We’ll look at how an
approach called resource-oriented computing (ROC) is implemented by a commercial
framework called NetKernel. 

10.2.1 Assembling nested content 
and tracking component dependencies

Let’s assume you’re running a website that displays news stories in the center of a web
page. The web page is dynamically assembled using page headers, footers, navigation
menus, and advertising banners around the news content. A sample layout is shown in
the left panel of figure 10.12. You use a dependency tree, as shown in the right panel
of figure 10.12, to determine when each web page component should be regenerated. 

 Though we think of public URLs as identifying web pages and images, you can use
this same philosophy with each subcomponent in the dependency tree by treating
each component as a separate resource and assigning it an internal identifier called a
uniform resource identifier (URI). In the web page model, each region of the web page is a
resource that can be assembled by combining other static and dynamic resources.
Each distinct resource has its own URI.

 In the previous section, you saw how functional programming uses referential
transparency to allow cached results to be used in place of the output of a function.
We’ll apply this same concept to web page construction. You can use URIs to check
whether a function call has already been executed on the same input data, and you
can track dependencies to see when functions call other functions. If you do this, you

Input

Use cached data

Calculate
hash

Data Transform pipeline

In
cache?

Yes

No

Transform
data

Only used if not
in cache

OutputStore for
future use

Cache

Figure 10.11 You can use referential transparency to increase the performance of any 
transform by checking to see if the output of a transform is already in a cache. If it’s 
in the cache, you can use the cached value instead of rerunning an expensive 
transformation process. If the item isn’t in the cache, you can store it in a RAM cache 
such as memcache to reuse the output.
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can avoid calling the same functions on the same input data and reuse information
fragments that are expensive to generate. 

 NetKernel knows what functions are called with what input data, and uses a URI to
identify if the function has already generated results for the same input data. NetKer-
nel also tracks URI dependencies, only re-executing functions when input data
changes. This process is known as the golden thread pattern. To illustrate, think of
hanging your clean clothes out on a clothes line. If the clothes line breaks, the
clothes fall to the ground and must be washed again. Similarly, if an input item
changes at a low level of a dependency tree, all the items that depend on its content
must be regenerated.

 NetKernel automatically regenerates content for internal resources in its cache
and can poll external resource timestamps to see if they’ve changed. To determine if
any resources have changed, NetKernel uses an XRL file (an XML file used to track
resource dependencies) and a combination of polling and expiration timestamps. 

10.2.2 Using NetKernel to optimize component regeneration

The NetKernel system takes a systematic approach to tracking what’s in your cache
and what should be regenerated. Instead of using hashed values for keys, NetKernel
constructs URIs that are associated with a dependency tree and uses models that calcu-
late the effort to regenerate content. NetKernel performs smart cache-content optimi-
zation and creates cache-eviction strategies by looking at the total amount of work it
takes to generate a resource. NetKernel uses an ROC approach to determine the total
effort required to generate a resource. Though ROC is a term specific to NetKernel, it
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Article
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Figure 10.12 Web pages for a typical news site are generated using a tree structure. 
All components of the web page can be represented in a dependency tree. As low-level 
content such as news or ads change, only the dependent parts of the web page need 
to be regenerated. If a low-level component changes (heavy-line links), then all 
ancestor nodes must be regenerated. For example, if some text in a news article 
changes, that change will cause the center section, the central content region, and the 
entire page to be regenerated. Other components such as the page borders can be 
reused from a cache layer without regeneration.
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signifies a different class of computing concepts that challenge you to reflect on how
computation is done. 

ROC combines the UNIX concept of using small modular transforms on data mov-
ing through pipes, with the distributed computing concepts of REST, URIs, and cach-
ing. These ideas are all based on referential transparency and dependency tracking to
keep the right data in your cache. ROC requires you to associate a URI with every com-
ponent that generates data: queries, functions, services, and codes. By combining
these URIs, you can create unique signatures that can be used to determine whether a
resource is already present in your cache. A sample of the NetKernel stack is shown in
figure 10.13.

 As you can see from figure 10.13, the NetKernel software is layered between two
layers of resources and services. Resources can be thought of as static documents, and
services as dynamic queries. This means that moving toward a service-oriented inter-
mediate layer between your database and your application is critical to the optimiza-
tion process. You can still use NetKernel and traditional, consistent hashing without a
service layer, but you won’t get the same level of clever caching that the ROC approach
gives you.

 By using ROC, NetKernel takes REST concepts to a level beyond caching images or
documents on your web server. Your cache is no longer subject to a simple time-
stamped eviction policy, and the most valuable items remain in cache. NetKernel can
be configured to use complex algorithms to calculate the total effort it takes to put an
item in cache, and only evicts items that have a low amount of effort to regenerate or
are unlikely to be needed. To get the most benefits, a service-oriented REST approach
should be used, and those services need to be powered by functions that return data
with referential transparency. You can only begin this journey if your system is truly
free from side effects, and this implies you may need to take a close look at the lan-
guages your systems use. 

Network

Application

Resources/Services

NetKernelTM

Resources/Services

NoSQL database

OS/VM

Network addresses

Logical addresses
(URls)

Physical
addresses

NetKernel sits between your static
resources and dynamic services
layers to prevent unneeded calls
to your NoSQL database.
NetKernel separates logical
resources expressed as URIs
from the physical calls to a
NoSQL database.

Figure 10.13 NetKernel works similarly to a memcache system that separates the 
application from the database. Unlike memcache, it’s tightly coupled with the layer that’s 
built around logical URIs and tracks dependencies of expensive calculations of objects 
that can be cached.
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In summary, if you associate URIs with the output of referentially transparent func-
tions and services, frameworks such as NetKernel can bring the following benefits: 

 Faster web page response time for users
 Reduced wasteful re-execution of the same functions on the same data
 More efficient use of front-end cache RAM

 Decreased demand on your database, network, and disk resources
 Consistent development architecture

Note that the concepts used in this front-end case study can also be applied to other
topics in back-end analytics. Any time you see functions being re-executed on the
same datasets, there are opportunities for optimization using these techniques.

 In our next section, we’ll look at functional programming languages and see how
their properties allow you to address specific types of performance and scalability
issues. 

10.3 Examples of functional programming languages
Now that you have a feeling for how functional programs work and how they’re differ-
ent from imperative programs, let’s look at some real-world examples of functional
programming languages. The LISP programming language is considered the pioneer
of functional programming. LISP was designed around the concept of no-side-effect
functions that work on lists. The concept of recursion over lists was frequently used.
The Clojure language is a modern LISP dialect that has many benefits of functional
programming with a focus on the development of multithreaded systems.

 Developers who work with content management and single-source publishing sys-
tems may use transformation languages such as XSLT and XQuery (introduced in
chapter 5). It’s no surprise that document stores also benefit from functional lan-
guages that leverage recursive processing. Document hierarchies that contain other
hierarchies are ideal candidates for recursive transformation. Document structures
can be easily traversed and transformed using recursive functions. The XQuery lan-
guage is a perfect fit with document stores because it supports recursion and func-
tional programming, and yet uses database indexes for fast retrieval of elements.

 There has been strong interest by developers working on high-availability systems
in a functional programming language called Erlang. Erlang has become one of the
most popular functional languages for writing NoSQL databases. Erlang was originally
developed by Ericsson, the Swedish telecommunications firm, to support distributed,
highly available phone switches. Erlang supports features that allow the runtime
libraries to be upgraded without service interruption. NoSQL databases that focus on
high availability such as CouchDB, Couchbase, Riak, and Amazon’s SimpleDB services
are all written in Erlang.

 The Mathematica language and the R language for doing statistical analysis also use
functional programming constructs. These ideas allow them to be extended to run on
a large numbers of processors. Even SQL, which doesn’t allow for mutable values, has
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some properties of functional languages. Both the SQL-like HIVE language and the
PIG system that are used with Hadoop include functional concepts.

 Several multiparadigm languages have also been created to help bridge the gap
between the imperative and functional systems. The programming language Scala was
created to add functional programming features to the Java language. For software
developers using Microsoft tools, Microsoft created the F# (F sharp) language to meet
the needs of functional programmers. These languages are designed to allow develop-
ers to use multiple paradigms, imperative and functional, within the same project.
They have an advantage in that they can use libraries written in both imperative and
functional languages.

 The number of languages that integrate functional programming constructs in dis-
tributed systems is large and growing. Perhaps this is driven by the need to write
MapReduce jobs in languages in which people feel comfortable. MapReduce jobs are
being written in more than a dozen languages today and that list continues to grow.
Almost any language can be used to write MapReduce jobs as long as those programs
don’t have side effects. This requires more discipline and training when using impera-
tive languages that allow side effects, but it’s possible.

 This shows that functional programming isn’t a single attribute of a particular lan-
guage. Functional programming is a collection of properties that make it easier to
solve specific types of performance, scalability, and reliability problems within a pro-
gramming language. This means that you can add features to an old procedural or
object-oriented language to make it behave more like a pure functional language. 

10.4 Making the transition from imperative 
to functional programming
We’ve spent a lot of time defining functional programming and describing how it’s
different from imperative programming. Now that you have a clear definition of func-
tional programming, let’s look at some of the things that will change for you and your
development team.

10.4.1 Using functions as a parameter of a function

Many of us are comfortable passing parameters to functions that have different data
types. A function might have input parameters that are strings, integers, floats, Bool-
eans, or a sequence of items. Functional programming adds another type of parame-
ter: the function. In functional programming, you can pass a function as a
parameter to another function, which turns out to be incredibly useful. For exam-
ple, if you have a compressed zip file, you might want to uncompress it and pass a fil-
ter function to only extract specific data files. Instead of extracting everything and
then writing a second pass on the output, the filter intercepts files before they’re
uncompressed and stored. 



224 CHAPTER 10 NoSQL and functional programming
10.4.2 Using recursion to process unstructured document data

If you’re familiar with LISP, you know that recursion is a popular construct in functional
programming. Recursion is the process of creating functions that call themselves. In
our experience, people either love or hate recursion—there’s seldom a middle
ground. If you’re not comfortable with recursion, it can be difficult to create new
recursive programs. Yet once you create them, they seem to almost acquire a magical
property. They can be the smallest programs that produce the biggest results.

 Functional programs don’t manage state, but they do use a call stack to remember
where they are when moving through lists. Functional programs typically analyze the
first element of a list, check whether there are additional items, and if there are, then
call themselves using the remaining items. 

 This process can be used with lists as well as tree structures like XML and JSON files.
If you have unstructured documents that consist of elements and you can’t predict the
order of items, then recursive processing may be a good way to digest the content. For
example, when you write a paragraph, you can’t predict the order in which bold or
italic text will appear in the paragraph. Languages such as XQuery and JASONiq sup-
port recursion for this reason. 

10.4.3 Moving from mutable to immutable variables

As we’ve mentioned, functional programming variables are set once but not changed
within a specific context. This means that you don’t need to store a variable’s state,
because you can rerun the transform without the side effects of the variable being
incremented again. The downside is that it may take some time for your staff to rid
themselves of old habits, and you may need to rewrite your current code to work in a
functional environment. Every time you see variables on both the left and right side of
an assignment operator, you’ll have to modify your code.

 When you port your imperative code, you’ll need to refactor algorithms and
remove all mutable variables used within for loops. This means that instead of using
counters that increment or decrement variables in for loops, you must use a “for each
item” type function. 

 Another way to convert your code is to introduce new variable names when you’re
referencing a variable multiple times in the same block of code. By doing this, you can
build up calculations that nest references on the right side of assignment statements. 

10.4.4 Removing loops and conditionals

One of the first things imperative programmers do when they enter the world of func-
tional programs is try to bring their programming constructs with them. This includes
the use of loops, conditionals, and calls to object methods.

 These techniques don’t transfer to the functional programming world. If you’re
new to functional programming and in your functions you see complex loops with lay-
ers of nested if/then/else statements, this tells you it’s time to refactor your code.
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 The focus of a functional programmer is to rethink the loops and conditionals in
terms of small, isolated transforms of data. The results are services that know what
functions to call based on what data is presented to the inputs. 

10.4.5 The new cognitive style: 
from capturing state to isolated transforms

Imperative programming has a consistent problem-solving (or cognitive) style that
requires a developer to look at the world around them and capture the state of the
world. Once the initial state of the world has been precisely captured in memory or
object state, developers write carefully orchestrated methods to update the state of
interacting objects.

 The cognitive styles used in functional programming are radically different.
Instead of capturing state, the functional programmer views the world as a series of
transformations of data from the initial raw form to other forms that do useful work.
Transforms might convert raw data to forms used in indexes, convert raw data to
HTML formats for display in a web page, or generate aggregate values (counts, sums,
averages, and others) used in a data warehouse. 

 Both object-oriented and functional programming do share one similar goal—
how to structure libraries that reuse code to make the software easier to use and main-
tain. With object orientation, the primary way you reuse code is to use an inheritance
hierarchy. You move common data and methods up to superclasses, where they can be
reused by other object classes. With functional programming, the goal is to create
reusable transformation functions that build hierarchies where each component in
the hierarchy is regenerated when the dependent element’s data changes.

 The key consequence of what style you choose is scalability. When you choose the
functional programming approach, your transforms will scale to run on large clusters
with hundreds or thousands of nodes. If you choose the imperative programming
route, you must carefully maintain the state of a complex network of objects when
there are many threads accessing these objects at the same time. Inevitably you’ll run
into the same scalability problems you saw with graph stores in chapter 6 on big data.
Large object networks might not fit within RAM, locking systems will consume more
and more CPU cycles, and caching won’t be used effectively. You’ll be spending most
of your CPU cycles moving data around and managing locks. 

10.4.6 Quality, validation, and consistent unit testing

Regardless of whether imperative or functional programming is used, there’s one
observation that won’t change. The most reliable programs are those that have been
adequately tested. Too often, we see good test-driven imperative programmers leap
into the world of functional programming and become so disoriented that they forget
everything that they learned about good test-driven development.

 Functional programs seem to be inherently more reliable. They don’t have to deal
with which objects need to deallocate memory and when the memory can be released.
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Their focus is on messaging rather than memory locks. Once a transform is complete,
the only artifact is the output document. All intermediate values are easily removed
and the lack of side effects makes testing functions an atomic process.

 Functional programming languages also may have type checking for input and
output parameters, and validation functions that execute on incoming items. This
makes it easier to do compile-time checking and produces accurate runtime checks
that can quickly help developers to isolate problems.

 Yet all these safeguards won’t replace a robust and consistent unit-testing process.
To avoid sending corrupt, inconsistent, and missing data to your functions, a compre-
hensive and complete testing plan should be part of all projects. 

10.4.7 Concurrency in functional programming

Functional programming systems are popular when multiple processes need to reli-
ably share information either locally or over networks. In the imperative world, shar-
ing information between processes involves multiple processes reading and writing
shared memory and setting other memory locations called locks to determine who has
exclusive rights to modify memory. The complexities about who can read and write
shared memory values are referred to as concurrency problems. Let’s take a look at some
of the problems that can occur when you try to share memory: 

 Programs may fail to lock a resource properly before they use it.
 Programs may lock a resource and neglect to unlock it, preventing other

threads from using a resource.
 Programs may lock a resource for a long time and prevent others from using it

for extended periods.
 Deadlocks occur where two or more threads are blocked forever, waiting for

each other to be unlocked.

These problems aren’t new, nor are they exclusive to traditional systems. Traditional
as well as NoSQL systems have challenges locking resources on distributed systems
that run over unreliable networks. Our next case study looks at an alternative
approach to managing concurrency in distributed systems. 

10.5 Case study: building NoSQL systems with Erlang
Erlang is a functional programming language optimized for highly available distrib-
uted systems. As we mentioned before, Erlang has been used to build several popular
NoSQL systems including CouchDB, Couchbase, Riak, and Amazon’s SimpleDB. But
Erlang is used for writing more than distributed databases that need high availability.
The popular distributed messaging system RabbitMQ is also written in Erlang. It’s no
coincidence that these systems have excellent reputations for high availability and
scalability. In this case study, we’ll look at why Erlang has been so popular and how
these NoSQL systems have benefited from Erlang’s focus on concurrency and mes-
sage-passing architecture.
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 We’ve already discussed how difficult it is to maintain consistent memory state on
multithreaded and parallel systems. Whenever you have multiple threads executing
on systems, you need to consider the consequences of what happens when two threads
are both trying to update shared resources. There are several ways that computer sys-
tems share memory-resident variables. The most common way is to create stringent
rules requiring all shared memory to be controlled by locking and unlocking func-
tions. Any thread that wants to access global values must set a lock, make a change,
and then unset the lock. Locks are difficult to reset if there are errors. Locking in dis-
tributed systems has been called one of the most difficult problems in all of computer
science. Erlang solves this problem by avoiding locking altogether.

 Erlang uses a different pattern called actor, illustrated in figure 10.14.
 The actor model is similar to the way that people work together to solve problems.

When people work together on tasks, our brains don’t need to share neurons or
access shared memory. We work together by talking, chatting, or sending email—all
forms of message passing. Erlang actors work in the same way. When you program in
Erlang, you don’t worry about setting locks on shared memory. You write actors that
communicate with the rest of the world through message passing. Each actor has a
queue of messages that it reads to perform work. When it needs to communicate with
other actors, it sends them messages. Actors can also create new actors.

 By using this actor model, Erlang programs work well on a single processor, and
they also have the ability to scale their tasks over many processing nodes by sending
messages to processors on remote nodes. This single messaging model provides many
benefits for including high availability and the ability to recover gracefully from both
network and hardware errors. 

 Erlang also provides a large library of modules called OTP that make distributed
computing problems much easier.

Message queueActor Message queueActor

Message queueActor Message queueActor

Figure 10.14 Erlang uses an actor model, where each process has agents 
that can only read messages, write messages, and create new processes. 
When you use the Erlang actor model, your software can run on a single 
processor or thousands of servers without any change to your code.
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Together, Erlang and the OTP modules provide the following features to application
developers:

 Isolation—An error in one part of the system will have minimum impact on
other parts of the system. You won’t have errors like Java NullPointerExceptions
(NPEs) that crash your JVM.

 Redundancy and automatic failover (supervision)—If one component fails, another
component can step in to replace its role in the system.

 Failure detection—The system can quickly detect failures and take action when
errors are detected. This includes advanced alerting and notification tools.

 Fault identification—Erlang has tools to identify where faults occur and inte-
grated tools to look for root causes of the fault.

 Live software updates—Erlang has methods for software updates without shutting
down a system. This is like a version of the Java OSGi framework to enable
remote installation, startup, stopping, updating, and uninstalling of new mod-
ules and functions without a reboot. This is a key feature missing from many
NoSQL systems that need to run nonstop.

 Redundant storage—Although not part of the standard OTP modules, Erlang can
be configured to use additional modules to store data on multiple locations if
hard drives fail.

Because it’s based around the actor model and messaging, Erlang has inherent scale-
out properties that come for free. As a result, these features don’t need to be added to
your code. You get high availability and scalability just by using the Erlang infrastruc-
ture. Figure 10.15 shows how Erlang components fit together. 

 Erlang puts the agent model at the core of its own virtual machine. In order to have
consistent and scalable properties, all Erlang libraries need to be built on this

What is OTP?
OTP is a large collection of open source function modules used by Erlang applica-
tions. OTP originally stood for Open Telecom Platform, which tells you that Erlang was
designed for running high-availability telephone switches that needed to run without
interruption. Today OTP is used for many applications outside the telephone industry,
so the letters OTP are used without reference to the telecommunications industry. 

Erlang applicationsC or other language

server
WebSNMP

agentsSASLMnesia
DBMS

OTP modules

Erlang runtime system

Operating system

Figure 10.15 The Erlang application runs on a 
series of services such as the Mnesia 
database, Standard Authentication and 
Security Layer (SASL) components, monitoring 
agents, and web servers. These services make 
calls to standardized OTP libraries that call the 
Erlang runtime system. Programs written in 
other languages don’t have the same support 
that Erlang applications have.
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infrastructure. The downside is that because Erlang depends on the actor model, it
becomes difficult to integrate imperative systems like Java libraries and still benefit
from its high availability and integrated scale-out features. Imperative functions that
perform consistent transforms can be used, but object frameworks that need to manage
external state will need careful wrapping. Because Erlang is based on Prolog, its syntax
may seem unusual for people familiar with C and Java, so it takes some getting used to. 

 Erlang is a proven way to get high availability and scale out of your distributed
applications. If your team can overcome the steep learning curve, there can be great
benefits down the road. 

10.6 Apply your knowledge
Sally is working on a business analytics dashboard project that assembles web pages
that are composed of many small subviews. Most subviews have tables and charts that
are generated from the previous week’s sales data. Each Sunday morning, the data is
refreshed in the data warehouse. Ninety-five percent of the users will see the same
tables and charts for the previous week’s sales, but some receive a customized view for
their projects.

 The database that’s currently being used is an RDBMS server that’s overloaded and
slow during peak daytime hours. During this time, reports can take more than 10 min-
utes to generate. Susan, who is Sally’s boss, is concerned about performance issues.
Susan tells Sally that one of the key goals of the project is to help people make better
decisions through interactive monitoring and discovery. Susan lets Sally know in no
uncertain terms that she feels users won’t take the time to run reports that take more
than 5 minutes to produce a result.

 Sally gets two different proposals from different contractors. The architectures of
both systems are shown in figure 10.16. 
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Without cache layer
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JDBC
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chart
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RDBMS

HTML
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With cache layer

Transform

Bar
chart

Transform

REST Data service

SQLCache

RDBMS

Two views
of the
same data
in a report.

Two queries for
the same data.

All views of the same
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from the cache.

The transformation results
are also stored in the cache.

A single query
is made to the
database for all
views of a report.

Proposal A Proposal B

Figure 10.16 Two business intelligence dashboard architectures. The left panel shows 
that each table and chart will need to generate multiple SQL statements, slowing the 
database down. The right panel shows that all views that use the same data can simply 
create new transforms directly from the cache, which lowers load on the database and 
increases performance.
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Proposal A uses Java programs that call a SQL database and generate the appropriate
HTML and bitmapped images for the tables and charts of each dashboard every time a
widget is viewed. In this scenario, two views of the same data, a bar chart in one view
and an HTML table in another view, will rerun the exact same SQL code on the data
warehouse. There’s no caching layer.

 Proposal B has a functional programming REST layer system that first generates an
XML response from the SQL SELECT for each user interface widget and then caches
this data. It then transforms the data in the cache into multiple views such as tables
and charts. The system looks at the last-modified dates in the database to know if any
of the data in the cache should be regenerated.

 Proposal B also has tools that prepopulate the cache with frequent reports after
the data in the warehouse changes. The system is 25% more expensive, but the vendor
claims that their solution will be less expensive to operate due to lower demand on the
database server. The vendor behind proposal B claims the average dashboard widget
generates a view in under 50 milliseconds if the data is in cache. The vendor also
claims that if Sally uses SVG vector charts, not the larger bitmapped images, then the
cached SVG charts will only occupy less than 30 KB in cache, and less than 3 KB if
they’re compressed.

 Sally looks at both proposals and selects proposal B, despite its higher initial cost.
She also makes sure the application servers are upgraded from 16 GB to 32 GB of RAM
to provide more memory for the caches. According to her calculations, this should be
enough to store around 10 million compressed SVG charts in the RAM cache. Sally
also runs a script on Sunday night that prepopulates the cache with the most common
reports, so that when users come in on Monday morning, the most frequent reports
are already available from the cache. There’s almost no load on the database server
after the reports are in the cache. When the project rolls out, the average page load
times, even with 10 charts per page, are well under 3 seconds. Susan is happy and gives
Sally a bonus at the end of the year.

 You should notice that in this example, the additional REST caching layer in a soft-
ware application isn’t dependent on your using a NoSQL database. Since most
NoSQL databases provide REST interfaces that provide cache-friendly results, they
provide additional ways your applications can use a cache to lower the number of calls
to your database.

10.7 Summary
In this chapter, you’ve learned about functional programming and how it’s different
from imperative programming. You learned how functional programming is the pre-
ferred method for distributing isolated transformations of data over distributed sys-
tems, and how systems are more scalable and reliable when functional programming
is used.

 Understanding the power of functional programming will help you in several ways.
It’ll help you understand that state management systems are difficult to scale and that
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to really benefit from horizontal scale-out, your team is going to have to make some
paradigm shifts. Second, you should start to see that systems that are designed with
both concurrency and high availability in mind tend to be easier to scale.

 This doesn’t mean you need to write all your business applications in Erlang func-
tions. Some companies are doing this, but they tend to be people writing the NoSQL
databases and high-availability messaging systems, not true business applications.
Algorithms such as MapReduce and languages such as HIVE and PIG share some of
the same low-level concepts that you see in functional languages. You should be able
to use these languages and still get many of the benefits of horizontal scalability and
high availability that functional languages offer.

 In our next chapter, we’ll leave the abstract world of cognitive styles and the theo-
ries of computational energy minimization and move on to a concrete subject: secu-
rity. You’ll see how NoSQL systems can keep your data from being viewed or modified
by unauthorized users. 
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Security: protecting data
in your NoSQL systems
Security is always excessive until it’s not enough.
—Robbie Sinclair

If you’re using a NoSQL database to power a single application, strong security at
the database level probably isn’t necessary. But as the NoSQL database becomes
popular and is used by multiple projects, you’ll cross departmental trust boundar-
ies and should consider adding database-level security.

 Organizations must comply with governmental regulations that dictate systems,
and applications need detailed audit records anytime someone reads or changes
data. For example, US health care records, governed by the Health Information
Privacy Accountability Act (HIPAA) and Health Information Technology for Economic and

This chapter covers
 NoSQL database security model

 Security architecture

 Dimensions of security

 Application versus database-layer security 
trade-off analysis
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Clinical Health Act (HITECH Act) regulations, require audits of anyone who has accessed
personally identifiable patient data.

 Many organizations need fine-grained controls over what fields can be viewed by
different classes of users. You might store employee salary information in your data-
base, but want to restrict access to that information to the individual employee and a
specific role in HR. Relational database vendors have spent decades building security
rules into their databases to grant individuals and groups of users access to their tabu-
lar data at the column and row level. As we go through this chapter, you’ll see how
NoSQL systems can provide enterprise-class security at scale.

 NoSQL systems are, by and large, a new generation of databases that focus on
scale-out issues first and use the application layer to implement security features. In
this chapter, we’ll talk about the dimensions of database security you need in a proj-
ect. We’ll also look at tools to help you determine whether security features should be
included in the database.

 Generally, RDBMSs don’t provide REST services as they are part of a multitier archi-
tecture with multiple security gates. NoSQL databases do provide REST interfaces, and
don't have the same level of protection, so it’s important to carefully consider security
features for these databases.

11.1 A security model for NoSQL databases
When you begin a database selection pro-
cess, you start by sitting down with your
business users to define the overall secu-
rity requirements for the system. Using a
concentric ring model, as shown in
figure 11.1, we’ll start with some terminol-
ogy to help you understand how to build a
basic security model to protect your data. 

 This model is ideal for getting started
with a single application and a single
data collection. It’s a simplified model
that categorizes users based on their
access type and role within an organiza-
tion. Your job as a database architect is to
select a NoSQL system that supports the
security requirements of the organiza-
tion. As you’ll see, the number of appli-
cations that you run within your
database, your data classification, report-
ing tools, and the number of roles within
your organization will dictate what secu-
rity features your NoSQL database
should have.

General public

Intranet users

Authenticated
users

Database
administrators

Figure 11.1 One of the best ways to visualize a 
database security system is to think of a series of 
concentric rings that act as walls around your 
data. The outermost ring consists of users who 
access your public website. Your company’s 
internal employees might consist of everyone on 
your company intranet who has already been 
validated by your company local area network. 
Within that group, there might be a subset of 
users to whom you’ve granted special access; 
for example, a login and password to a database 
account. Within your database you might have 
structures that grant specific users special 
privileges. A special class of users, database 
administrators, is granted all rights within the 
system.
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If your concentric ring model stays simple, most NoSQL databases will meet your
needs, and security can be handled at the application level. But large organizations
with complex security requirements that have hundreds of overlapping circles for doz-
ens of roles and multiple versions of these maps will find that only a few NoSQL sys-
tems satisfy these requirements. As we discussed in chapter 3, most RDBMSs have
mature security systems with fine-grained permission control at the column and row
level associated with the database. In addition, data warehouse OLAP tools allow you
to add rules that protect individual cell-based reports. Figure 11.2 shows how report-
ing tools typically need direct access to the entire database.

 There are ways you can protect subsections of your data, and most reporting tools
can be customized to access specific parts of your NoSQL database. Unfortunately, not
all organizations have the ability to customize reporting tools or to limit the subsets of
data that reporting tools can access. To function well, tools such as MapReduce also
need to be aware of your security policy. As the use of the database grows within an
organization, the need to access data crosses organizational trust boundaries. Eventu-
ally, the need for in-database security will transition from “Not required” to “Nice to
have” and finally to “Must have.” Figure 11.3 is an illustration of this process.

 Next, we’ll look at two methods that organizations can used to mitigate the need
for in-database security models. 

Internet Firewall App server

Reporting
tools

Database

Firewalls and application servers
protect databases from
unauthorized access.

Reporting tools run directly on a
database so the database may

need its own security layer.

Figure 11.2 If your database sits 
behind an application server, the 
application server can protect the 
database from unauthorized access. If 
you have many applications, including 
reporting tools, you should consider 
some database-level security controls.

Enterprise rollout timeline

Need for in-
database
security

Must have

Not required

Nice to have

Enterprise-wide

Regulated

Multidivision reporting

Role-based access control
Single project

Multiple projects

Figure 11.3 As the number of projects that use a database grows, the need for in-
database security increases. The tipping point occurs when an organization needs 
integrated real-time reports for operational data in multiple collections.
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11.1.1 Using services to mitigate the need for in-database security

One of the most time-consuming and expensive transitions organizations make is con-
verting standalone applications running on siloed databases with their own security
model to run in a centralized enterprise-wide database with a different security model.
But if an organization splits its application into a series of reusable data services, they
could avoid or delay this costly endeavor. By separating the data that each service pro-
vides from other database components, the service can continue to run on a stand-
alone database.

 Recall that in section 2.2 we talked about the concept of application layers. We
compared the way functionality is distributed in an RDBMS to how a NoSQL system
could address those same concerns by adding a layer of services. You can use this same
approach to create service-based applications that run on separate lightweight NoSQL
databases with independent in-database security models.

 To continue this service-driven strategy, you might need to provide more than sim-
ple request-response services that take inputs and return outputs. This service-driven
strategy works well for search or lookup services, but what if you have data that must
be merged or joined with other large datasets? To meet these requirements, you must
provide dumps of data as well as incremental updates to users for new and changing
data. In some cases, these services can be used directly within ad hoc reporting tools.

 How long will the service-oriented strategy work? It starts to fail when the data vol-
ume and synchronization complexity becomes too costly. 

11.1.2 Using data warehouses and OLAP 
to mitigate the need for in-database security

The need for security reporting tools is one of the primary reasons enterprises require
security within the database, rather than at the application level. Let’s look at why this
is sometimes not a relevant requirement.

 Let’s say the data in your standalone NoSQL database is needed to generate ad hoc
reports using a centralized data warehouse. The key to keeping NoSQL systems inde-
pendent is to have a process that replicates the NoSQL database information into
your data warehouse. As you may recall from chapter 3, we reviewed the process of
how data can be extracted from operational systems and stored in fact and dimension
tables within a data warehouse.

 This moves the burden of providing security away from standalone performance-
driven NoSQL services to the OLAP tools. OLAP tools have many options for protect-
ing data, even at the cell level. Policies can be set up so that reports will only be gener-
ated if there’s a minimum number of responses so that an individual can’t be
identified or their private data viewed. For example, a report that shows the average
math test score for third graders by race will only display if there are more than 10 stu-
dents in a particular category.

 The process of moving data from NoSQL systems into an OLAP cube is similar to
the process of moving from a RDBMS; the difference comes in the tools used. Instead
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of running overnight ETL jobs, your NoSQL database might use MapReduce pro-
cesses to extract nightly data feeds on new and updated data. Document stores can
run reports using XQuery or another query language. Graph stores can use SPARQL
or graph query reporting tools that extract new operational data and load it into a
central staging area that’s then loaded into OLAP cube structures. Though these archi-
tectural changes might not be available to all organizations, they show that the needs
of specialized data stores for specific performance and scale-out can still be integrated
into an overall enterprise architecture that satisfies both security and ad hoc reporting
requirements. 

 Now that we’ve looked at ways to keep security at the application level, we’ll sum-
marize the benefits of each approach. 

11.1.3 Summary of application versus database-layer security benefits

Each organization that builds a database can choose to put security at either the appli-
cation or the database level. But like everything else, there are benefits and trade-offs
that should be considered. As you review your organization’s requirements, you’ll be
able to determine which method and benefits are the best fit. 

Benefits of application-level security:
 Faster database performance—Your database doesn’t have to slow down to check

whether a user has permission on a data collection or an item.
 Lower disk usage—Your database doesn’t have to store access-control lists or visi-

bility rules within the database. In most cases, the disk space used by access con-
trol lists is negligible. There are some databases that store access within each
key, and for these systems, the space used for storing security information must
be taken into account.

 Additional control using restricted APIs—Your database might not be configured to
support multiple types of ad hoc reports that consume your CPU resources.
Although NoSQL systems leverage many CPUs, you still might want to limit
reports that users can execute. By restricting access to reporting tools for some
roles, these users can only run reports that you provide within an application.

Benefits of database-level security:
 Consistency of security policy—You don’t have to put individualized security poli-

cies within each application and limit the ability of ad hoc reporting tools.
 Ability to perform ad hoc reporting—Often users don’t know exactly what types of

information they need. They create initial reports that show them only enough
information to know they need to dig deeper. Putting security within the data-
base allows users to perform their own ad hoc reporting and doesn’t require
your application to limit the number of reports that users can run.

 Centralized audit—Organizations that run in heavily regulated industries such as
health care need centralized audit. For these organizations, database-level secu-
rity might be the only option.
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Now that you know how a NoSQL system can fit into your enterprise, let’s look at how
you can qualify a NoSQL database by looking at its ability to handle authentication,
authorization, audit, and encryption requirements. Taking a structured approach to
comparing NoSQL databases against these components will increase your organiza-
tion’s confidence that a NoSQL database can satisfy security concerns. 

11.2 Gathering your security requirements 
Selecting the right NoSQL system will depend on how complex your security require-
ments are and how mature the security model is within your NoSQL database. Before
embarking on a NoSQL pilot project, it’s a good idea to spend some time understand-
ing your organization’s security requirements. We encourage our customers to group
security requirements into four areas, as outlined in figure 11.4. 

The remainder of this chapter will focus on a review of authentication, authorization,
audit, and encryption processes followed by three case studies that apply a security
policy to a NoSQL database. Let’s begin by looking at the authentication process to
see how it can be structured within your security requirements.

11.2.1 Authentication

Authenticating users is the first step in protecting your data. Authentication is the pro-
cess of validating the identity of a specific individual or a service request. Figure 11.5
shows a typical authentication process. 

 As you’ll see, there are many ways to verify the identity of users, which is why many
organizations opt to use an external service for the verification process. The good
news is that many modern databases are used for web-only access, which allows them
to use web standards and protocols outside of the database to verify a user. With this
model, only validated users will ever connect with the database and the user’s ID can
then be placed directly in an HTTP header. From there the database can look up the
groups and roles for each user from an internal or external source.

Authentication Authorization

Audit Encryption

Are users and requests from
the people they claim to be?

Can you track who read or
updated data and when they did it?

Can you convert data to a form that
can’t be used by unauthorized viewers?

Do users have read and/or write
access to the appropriate data?

Figure 11.4 The four questions of a secure database. You want to make sure that 
only the right people have access to the appropriate data in your database. You also 
want to track their access and transmit data securely in and out of the database.
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In large companies, a database may need to communicate with a centralized company
service that validates a user’s credentials. Generally, this service is designed to be used
by all company databases and is called a single sign-on, or SSO, system. If the company
doesn’t provide an SSO interface, your database will have to validate users using a
directory access API. The most common version is called the Lightweight Directory Access
Protocol (LDAP).

 There are six types of authentication: basic access, digest access, public key, multi-
factor, Kerberos, and Simple Authentication and Security Layer (SASL), as we’ll see
next. 

BASIC ACCESS AUTHENTICATION

This is the simplest level of authenticating a database user. The login and password
are put into the HTTP header in a clear plain-text format. This type of authentication
should always be used with Secure Sockets Layer (SSL) or Transport Layer Security (TLS) over
a public network; it can also be adequate for an internal test system. It doesn’t require
web browser cookies or additional handshakes. 

DIGEST ACCESS AUTHENTICATION

Digest access authentication is more complicated and requires a few additional hand-
shakes between the client and the database. It can be used over an unencrypted non-
SSL/TLS connection in low-stakes situations. Because digest authentication uses a
standard MD5 hash function, it’s not considered a highly secure authentication
method unless other steps have been implemented. Using digest access authentica-
tion over SSL/TLS is a good way to increase password security. 

Log in Return error

Deny access

Database
request

Get/put
data

Return
result

Look up
groups or

roles

Id in
header?

Login
ok

Yes Yes

YesNo

No

Role
has access

to data?

No

Authentication Authorization

Company
directory Database

Figure 11.5 The typical steps to validate a web-based query before it executes within 
your database. The initial step checks for an identifier in the HTTP header. If the header is 
present, the authentication is done as shown on the left side of the figure. If the user ID 
isn’t in the HTTP header, the user is asked to log in and their ID and password are verified 
against a company-wide directory. The authorization phase shown on the right side of the 
figure will look up roles for a user and get a list of roles associated with that user. If any 
role has the rights, the query will execute and the results are returned to the user.
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PUBLIC KEY AUTHENTICATION

Public key authentication uses what’s known as asymmetric cryptography, where a user
has a pair of two mutually dependent keys. What’s encrypted with one of these keys
can only be decrypted with the other. Typically, a user makes one of these keys public,
but keeps the other key completely private (never giving it out to anyone). For
authentication, the user encrypts a small piece of data with their private key and the
receiver verifies it using the user’s public key. This is the same type of authentication
used with the secure shell (SSH) command. The drawback of this method is that if a
hacker breaks into your local computer and takes your private key, they could gain
access to the database. Your database is only as secure as the private keys. 

MULTIFACTOR AUTHENTICATION

Multifactor authentication relies on two or more forms of authentication. For exam-
ple, one factor might be something you have, such as a smart card, as well as some-
thing you know, like a PIN number. To gain access you must have both forms. One of
the most common methods is a secure hardware token that displays a new six-digit
number every 30 seconds. The sequences of passwords are synced to the database
using accurate clocks that are resynchronized each time they’re used. The user types
in their password and the PIN from the token to gain access to the database. If either
the password or the PIN is incorrect, access is denied.

 As an additional security measure, you can restrict database access to a range of IP
addresses. The problem with this method is that the IP address assignments can
change frequently for remote users, and IP addresses can be “faked” using sophisti-
cated software. These types of filters are usually placed within firewalls that are in
front of your database. Most cloud hosting services allow these rules to be updated via
a web page. 

KERBEROS PROTOCOL AUTHENTICATION

If you need to communicate in a secure way with other computers over an insecure
network, the Kerberos system should be considered. Kerberos uses cryptography and
trusted third-party services to authenticate a user’s request. Once a trust network has
been set up, your database must forward the information to a server to validate the
user’s credentials. This allows a central authority to control the access policy for each
session. 

SIMPLE AUTHENTICATION AND SECURITY LAYER

Simple Authentication and Security Layer (SASL) is a standardized framework for
authentication in communication protocols. SASL defines a series of challenges and
responses that can be used by any NoSQL database to authenticate incoming network
requests. SASL decouples the intent of validating a network request from the underly-
ing mechanism for validating the request. Many NoSQL systems simply define a SASL
layer to indicate that at this layer a valid request has entered the database. 
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11.2.2 Authorization

Once you’ve verified the identity of your users (or their agents), you’re ready to grant
them access to some or all of the database. The authorization process is shown in figure
11.5. Unlike authentication, which occurs once per session or query request, authori-
zation is a more complex process since it involves applying a complex, enterprise-wide,
access-control policy to many data items. If not implemented carefully, authorization
can negatively impact the performance of large queries. A second requirement to con-
sider is the issue of security granularity and its impact on performance, as illustrated in
figure 11.6.

 As you leave the authentication step and move toward the authorization phase of
a query, you’ll usually have an identifier that indicates which user is making the
request. You can use this identifier to look up information about each user; for exam-
ple, what department, groups, and projects they’re associated with and which roles
they’ve been assigned. Inside NoSQL databases, you think of this information as an
individual’s smart-card badge and your database as a series of rooms in a building
with security checkpoints at each door. But most user interfaces use folder icons that
contain other folders. Here, each folder corresponds to a directory (or collection)
and document within the database. In other systems, this same folder concept uses
buckets to describe a collection of documents. Figure 11.7 is an example of this
folder/collection concept.

 You use the information about a user and their groups to determine whether they
have access to a folder and what actions they can perform. This implies that if you
want to read a file, you’ll need read access to the directories that contain the file as
well as all the ancestor folders up to the root folder of the database. As you can see,
the deeper you go into a directory, the more checks you need to perform. So the
checks need to be fast if you have many folders within folders.

 In most large database systems, the authorization process will first look up addi-
tional information about each user. The most typical information might be what orga-
nization you work for in the company, what projects or groups you’re associated with,
and what roles you’ve been assigned. You can use the user identifier directly against

Database

Collection

Document

Element

Fine-grained access control
   – large performance impact

Coarse-grained access control
   – little performance impact

Figure 11.6 Before you create 
a NoSQL application, you must 
consider the granularity of 
security your applications 
needs. A course grain allows 
access control at the entire 
database or collection level. 
Finer-grained controls allow you 
to control access to a collection, 
an individual document, or an 
element within a document. But 
fine-grain may have performance 
impacts on your system.
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your database, but keeping track of each user and their permission gets complicated
quickly, even for a small number of users and records using a UNIX permission model. 

THE UNIX PERMISSION MODEL

First let’s look at a simple model for protecting resources, the one used in UNIX,
POSIX, Hadoop, and the eXist native XML database. We use the term resource in this
context as either a directory or a file.

 In the UNIX model, when you create any resource, you associate a user and group
as the owner of that resource. You then associate three bits with the owner, three bits
with the user, and three bits for everyone that’s outside the group. This model is
shown in figure 11.8. 

 One positive aspect of a UNIX filesystem permission model is that they’re efficient,
since you only need to calculate the impact of nine bits on your operations. But the
problem with this model is that it doesn’t scale, because each resource (a folder or
file) is typically owned by one group, and granting folder rights to multiple groups
isn’t permitted. This prevents organizations from applying detailed access-control

Database

Database root collection

Department collection

Application collection

Document

Element

Figure 11.7 A document store is like a collection of folders, each with its own 
lock. To get to a specific element within a document, you need to access all the 
containers that hold the element, including the document and the ancestor folders.

owner group others
RWX RWX RWX
110 110 100

The permissions for
anyone outside your

group are
read=true, write=false,

and execute=false.

The letters RWX
are for read, write, and
execute permissions.

Your own
permissions

Your group's
permissions Everyone else

Figure 11.8 UNIX, POSIX, Hadoop, and eXist-db all share a simple approach to 
security that uses only nine bits per resource. Checks are simple and fast, and 
won’t degrade performance even when large queries are done on many collections 
of many documents.
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policies at the database level. Next, we’ll look at an alternative model, role-based
access control, which is scalable for large organizations with many departments,
groups, projects, and roles. 

USING ROLES TO CALCULATE ACCESS CONTROL

An alternative authorization model that associates permissions with roles that has
turned out to be scalable and the predominant choice for large organizations is called 
role-based access control (RBAC), shown in a simplified form in figure 11.9. 

 Using a role-based, access-control model requires each organization to define a set
of roles associated with each set of data. Typically, applications are used to control col-
lections of data, so each application may have a set of roles that can be configured.
Once roles have been identified, each user is assigned one or more roles. The applica-
tion will then look up all the roles for each user and apply them against a set of per-
missions at the application level to determine whether a user has access.

 It’s clear that most large organizations can’t manage a detailed access-control pol-
icy using a simple nine-bit structure like UNIX. One of the most difficult questions for
an application architect is whether access can be controlled at the application level,
instead of the database level.

 Note that some applications need to support more than simple read and write
access control. For example, content management systems can restrict who can
update, delete, search, copy, or include various document components when new doc-
uments are generated. These fine-grained actions on data collections are generally
controlled within the application level. 

11.2.3 Audit and logging

Knowing who accessed or updated what records and when they took these actions is
the job of the auditing component of your database. Good auditing systems allow for a
detailed reconstruction and examination of a sequence of events if there are security
breaches or system failures. A key component of auditing is to make sure that the

Resources are associated
with a permission for each role.

Each user has one or
more roles in the database.

Roles are associated with
one or more permissions.

User Role Resource
(collection, document)

Permission
(read, write)

Figure 11.9 This figure shows a simplified role-based access control (RBAC) model 
that associates one or more roles with each user. The roles are then bound to each 
resource through a permission code such as read, write, update, delete, and so on. The 
RBAC model allows a security policy to be more maintainable when users aren’t tied 
to particular resources.
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right level of detail is logged before you need it. It’s always a problem to say “Yes, we
should’ve been logging these events” after the events have occurred.

 Auditing can be thought of as event logging and analysis. Most programming lan-
guages have functions that add events to a log file, so almost all custom applications
can be configured to add data to event logs at the application layer. There are some
exceptions to this rule, for example, when you’re using third-party applications where
source code can’t be modified. In these situations database triggers can be used to add
logging information.

 Most mature databases come with an extensive set of auditing reports that show
detailed activity of security-related transactions, such as

 Web page requests—What web pages were requested, by what users (or IP
addresses), and when they were accessed. Additional data, such as the response
time, can also be added to the log files. This function is typically done by differ-
ent web servers and merged into central access logs.

 Last logins—The last user to log in to the database sorted with the most recent
logins at the top of the report.

 Last updates—The last user to make updates to the database. These reports can
have options for sorting by date or collections modified.

 Failed login attempts—The prior login attempts to the database that failed.
 Password reset requests—A list of the most recent password reset requests.
 Import/upload activity—A list of the most recent database imports or bulk loads.
 Delete activity—A list of the most recent records removed from the database.
 Search—A list of the most recent searches performed on the database. These

reports can also include the most frequent queries over given periods of time.
 Backup activity—When data was backed up or restored from backup.

In addition to these standard audit reports, there may be specialized reports that are
dependent on the security model you implement. For example, if you’re using role-
based access control, you might want a detailed accounting of which user was assigned
a role and when.

 Applications might also require special audit information be added to log files,
such as actions that have high impact on the organization. This information can be
added at the application level, and if you have control of all applications, this method
is appropriate. There’s some additional logging that should be done at the database
layer. In RDBMSs, triggers can be written to log data when an insert, update, or delete
operation occurs. In NoSQL databases that use collections, triggers can be added to
collections as well. Trigger-based logging is ideal when there are many applications
that can change your data. 

11.2.4 Encryption and digital signatures

The final concern of NoSQL security is how a database encrypts and digitally signs
documents to verify they haven’t been modified. These processes can be done at the
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application level as well as the database level; NoSQL databases aren’t required to
have built-in libraries to perform these functions. Yet for some applications, knowing
the database hasn’t been modified by unauthorized users can be critical for regulatory
compliance.

 Encryption processes use tools similar to the hash functions we described in chap-
ter 2. The difference is that private and public keys are used in combination with cer-
tificates to encrypt and decrypt documents. Your job as architects is to determine
whether encryption should be done at the application or database layer.

 By adding these functions in the database layer, you have centralized control over
the methods that store and access the data. Adding the functions at the application
layer requires each application to control the quality of the cryptographic library. The
key issue with any encryption tool isn’t the algorithm itself, but the process of ensur-
ing the cryptographic algorithm hasn’t been tampered with by an unauthorized party.

 Some NoSQL databases, especially those used in high-stakes security projects, are
required to have their cryptographic algorithms certified by an independent auditor.
The US National Institute of Standards and Technology (NIST) has published Federal
Information Processing Standard (FIPS) Publication 140-2 that specifies multiple levels of
certification for cryptographic libraries. If your database holds data that must be
securely encrypted before it’s transmitted, then these standards might be required in
your database.

XML SIGNATURES

The World Wide Web consortium has defined a standard method of digitally signing
any part of an XML file using an XML Signature. XML Signatures allow you to verify
the authenticity of any XML document, any part of an XML document, or any resource
represented in a URI with a cryptographic hash function. An XML Signature allows
you to specify exactly what part of a large XML document should be signed and how
that digital signature is included in the XML document.

 One of the most challenging problems in digitally signing an entire XML docu-
ment is that there are multiple ways a document might be represented in a single
string. In order for digital signatures to be verified, both the sender and receiver must
agree on a consistent way to represent XML. For example, you might agree that ele-
ments shouldn’t be on separate lines or have indented spaces, attributes should be in
alphabetical order, and characters should be represented using UTF-8 encoding. Digi-
tal signatures can avoid these problems by only signing the data within XML elements,
not the element and attribute names that contain the values.

 As an example, US federal law requires that all transmissions of a doctor’s prescrip-
tions of controlled substances be digitally signed before they’re transmitted between
computer systems. But the entire prescription doesn’t need to be verified. Only the
critical elements such as the doctor prescribing the drug, the drug name, and the
drug quantity need to be digitally signed and verified. An example of this is shown in
listing 11.1, which shows how the rules of extracting part of the text within a docu-
ment are specified before they’re signed. In the example, the prescriber (Drug
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Enforcement Agency ID Number), drug description, quantity, and date are digitally
signed, but other parts of the document aren’t included in the final string to be
signed.

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm="xmldsig#rsa-sha256"/>

<ds:Reference>
<ds:Transforms>

<ds:Transform
             Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

<ds:XPath> concat ( Message/Body/*/Prescriber/Identification/
                  DEANumber/text(),

Message/Body/*/MedicationPrescribed/DrugDescription/text(),
 Message/Body/*/MedicationPrescribed/Quantity/Value/text(),
 Message/Body/*/MedicationPrescribed/WrittenDate/text() )

</ds:XPath>
</ds:Transform>

</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/

            xmldsig#sha256"/>
 <ds:DigestValue>UjBsR09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi
 </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>XjQsL09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi
   </ds:SignatureValue>
 <ds:KeyInfo> ...
  </ds:KeyInfo>
</ds:Signature>

One useful rule in digital signatures is to “only sign what the users see.” To get consis-
tent digital signatures of XML prescriptions and avoid the problems with changing ele-
ment names and canonicalization, XPath expressions can be used to extract only the
values from XML elements and exclude all the element names and paths from the
string that’s signed. As long as both the transmitter and receiver use the same XPath
expressions, the digital signature will match. The DigSig standard allows you to specify
precisely the path expressions that you used to sign the documents. 

11.2.5 Protecting pubic websites from denial of service 
and injection attacks 

Databases with public interfaces are vulnerable to two special types of threats: 
denial of service (DOS) and injection attacks.

 A DOS attack occurs when a malicious party attempts to shut down your servers by
repeatedly sending queries to your website with the intention of overwhelming it and
preventing access by valid users. The best way to prevent DOS attacks is by looking for
repeated rapid requests from the same IP address.

Listing 11.1 Adding a digital signature to a document

Use SHA-256 
hash 
algorithm

Rules to get
text within

the document
you sign
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 An injection attack occurs when a malicious user adds code to an input field in a
web form to directly control your database. For example, a SQL injection attack might
run a SQL query within a search field string to get a listing of all users of the system.
Protecting NoSQL systems is no different; all input fields that have public access, such
as search forms, should be filtered to remove invalid query strings before processing.
Each public interface must have filters that remove any invalid queries to your system.

 Preventing these types of attacks isn’t usually the job of your database. This kind of
task is the responsibility of your front-end application or firewall. But the libraries and
code samples for each database should have examples to show you how to prevent
these types of attacks.

 This concludes our discussion on security requirements. Now we’ll look at three
case studies: security in practice for one key-value store, one column family store, and
one document store. 

11.3 Case Study: access controls on key-value store—
Amazon S3
Amazon Simple Storage Service (S3) is a web-based service that lets you store your
data in the cloud. From time to time our customers ask, “Aren’t you worried about
security in the cloud? How can you make sure your data is secure?” 

 Authentication mechanisms are important to make sure your data is secure from
unwanted access. Industries such as health insurance, government agencies, or regula-
tions (like HIPAA) require you to keep your customer’s data private and secure, or
face repercussions. 

 In S3, data such as images, files, or documents (known as objects) is securely stored
in buckets, and only bucket/object owners are allowed access. In order to access an
object, you must use the Amazon API with the appropriate call and credentials to
retrieve an object. 

 To access an object, you must first build a signature string with the date, GET
request, bucket name, and object name (see the following listing).

let $nl := "&#10;" (: the newline character :)
let $date := aws-utils:http-date()
let $string-to-sign := concat('GET', $nl, $nl, $nl, $nl,

'x-amz-date:', $date, $nl, '/', $bucket, '/', $object)

Once the signature string is built, the signature and your S3 secret key are encrypted,
as shown in the following listing.

let $signature := crypto:hmac($string-to-sign, $s3-secret-key,
  "SHA-1", "base64")

Listing 11.2 XQuery code for creating a string to sign using your AWS credentials

Listing 11.3 XQuery for signing a string with AWS secret key and hmac()
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Finally, the headers are constructed and the call to retrieve the object is made. As you
can see in listing 11.4, the encrypted signature is combined in the header with your S3
access key and the call is made.

let $headers :=
<headers>

<header name="Authorization" value="AWS {$s3-access-key}:{$signature}"/>
<header name="x-amz-date" value="{$date}"/>

</headers>
let $url := concat($amazon-s3:endpoint, $bucket, '/', $object)
let $results := httpclient:get($url, false(), $headers)

In addition to the security for retrieving objects, S3 provides additional access-control
mechanisms (ACMs) that allow others to view, download, and update your buckets and
objects. For example: 

 Identity and Access Management (IAM)
 Access-control lists (ACLs)
 Bucket policies 

11.3.1 Identity and Access Management (IAM)

IAM systems allow you to have multiple users within an AWS account, assign creden-
tials to each user, and manage their permissions. Generally, IAM systems are found in
organizations where there’s a desire to grant multiple employees access to a single
AWS account. To do this, permissions are managed using a set of IAM policies that are
attached to specific users.

 For example, you can allow a user dan to have permission to add and delete images
from your web-site-images bucket. 

11.3.2 Access-control lists (ACL)

Access-control lists can be used to grant access to either buckets or individual objects.
Like IAM systems, they only grant permissions and are unable to deny or restrict at an
account level. In other words, you can only grant other AWS accounts access to your
Amazon S3 resources.

 Each access-control list can have up to 100 grants, which can be either individual
account holders or one of Amazon’s predefined groups:

 Authenticated Users group—Consists of all AWS accounts
 All Users group—Consists of anyone, and the request can be signed or unsigned

When using ACLs, a grantee can be an AWS account or one of the predefined Amazon
S3 groups. But the grantee can’t be an IAM User. 

Listing 11.4 XQuery for REST HTTP GET with the AWS security credentials
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11.3.3 Bucket policies

Bucket policies are the most flexible method of security control, because they can
grant as well as deny access to some or all objects within a specified bucket at both
account and user levels. 

 Though you can use bucket policies in conjunction with IAM policies, bucket poli-
cies can be used on their own and achieve the same result. For example, figure 11.10
demonstrates how two users (Ann and Dan) have been granted authority to put
objects into a bucket called bucket_kma. 

 Perhaps you’re wondering when to use a bucket policy versus an ACL. The answer
is that it depends on what you’re trying to accomplish. Access-control lists provide a
coarse-grained approach to granting access to your buckets/objects. Bucket policies
have a finer-grained approach. There are times when using both bucket policies and
ACLs make sense, such as

 You want to grant a wide variety of permissions to objects but you only have a
bucket policy. 

 Your bucket policy is greater than 20 KB in size. The maximum size for a bucket
policy is 20 KB. If you have a large number of objects and users, you can grant
additional permissions using an ACL. 

There are a few things to keep in mind when combining bucket policies and ACLs:

 If you use ACLs with bucket policies, S3 will use both to determine whether the
account has permissions to access an object. 

 If an account has access to an object through an ACL, it’ll be able to access the
requested bucket/object.

Ann Dan

...is the same as...

IAM policy...

...bucket policy

Allow

Actions:
PutObject

Resource
Aws:s3:::bucket_kma/*

Allow Who
Ann
Dan

Actions:
PutObject

Resource
Aws:s3:::bucket_kma/*

Figure 11.10 You can 
use a bucket policy to 
grant users access to your 
AWS S3 objects without 
using IAM policies. On the 
left, the IAM policy allows 
the PutObject action for 
bucket_kma in an AWS 
account, and then gives 
the users Ann and Dan 
permission to access that 
account/action. On the 
right, the bucket policy is 
attached to bucket_kma
and like the IAM gives Ann 
and Dan permission to 
access PutObject on 
the bucket.
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 When using a bucket policy, a deny statement overrides a grant statement and
will restrict an account’s ability to access a bucket/object, essentially making the
bucket policy a superset of the permissions you grant an ACL.

As you can see, S3 offers multiple mechanisms for keeping your data safe in the cloud.
With that in mind, is it possible to grant fine-grained security on your tabular data
without impacting performance? Let’s look at how Apache Accumulo uses roles to
control user access to the confidential information stored in your database. 

11.4 Case study: using key visibility with Apache Accumulo
The Apache Accumulo project is similar to other column family architectures, but with
a twist. Accumulo has an innovative way of granting fine-grained security to tabular
data that’s flexible and doesn’t have a negative performance impact for large datasets.

 Accumulo’s method of protecting fine-grained data in the database layer is to
place role, permissions, or access list information directly in the key of a key-value
store. Since organizations can have many different models of access control, this
could make the size of keys unwieldy and take considerable disk space. Instead of put-
ting multiple security models into multiple fields of a key, Accumulo adds a single gen-
eral field, called Visibility, that’s evaluated for each query and returns true or false each
time the key is accessed. This is illustrated in figure 11.11.

 The format of the Visibility field isn’t restricted to a single user, group, or role.
Because you can place any Boolean expression in this field, you can use a variety of
different access-control mechanisms.

 Every time you access Accumulo, your query context has a set of Boolean authori-
zation tokens that are associated with your session. For example, your username, role,
and project might be set as authorization tokens. The visibility of each key-value is cal-
culated by evaluating the Boolean AND (&) and OR (|) combinations of authorization
strings that must return true for a user to view the value of a key-value pair.

 For example, if you add the expression (admin|system)&audit, you’d need either
admin OR system authorization AND the audit to be able to read this record. 

 Although putting the actual logic of evaluation within the key itself is unusual, it
allows many different security models to be implemented within the same database.

Column

VisibilityQualifierFamily

Key

TimestampRow ID Value

Figure 11.11 Apache Accumulo adds a Visibility field to the column portion of each 
key. The Visibility field contains a Boolean expression composed of authorization tokens 
that each return true or false. When a user tries to access a key, the Visibility 
expression is evaluated, and if it returns true, the value is returned. By restricting the 
Visibility expression to be only Boolean values, there’s a minimal performance penalty 
even for large datasets.
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As long as the logic is restricted to evaluating simple Boolean expressions, there’s a
minimal impact on performance.

 In our last case study, we’ll look at how to use MarkLogic’s role-based, access-
control security model for secure publishing. 

11.5 Case study: using MarkLogic’s RBAC model 
in secure publishing
In this case study, we’ll look at how role-based access control (RBAC) can protect
highly sensitive documents within a large organization and still allow for fine-grained
status reporting. Our example will allow a distributed team of authors, editors, and
reviewers to create and manage confidential documents and yet prevent unauthorized
users from accessing the text of the confidential documents.

 Let’s assume you’re a book publisher and you have a contract to create a new book
on a hot, new NoSQL database that’s being launched in a few months. The problem is
that the company developing the database wants assurances that only a small list of
people will be able to access the book’s content during its development. Your contract
specifically states that no employees other than the few listed in the contract can have
access to the text of the documents. Your payments are contingent on the contents of
the book staying private. The contract only allows high-level reports of book metrics to
be viewed outside the small authoring team.

 Your publishing system has four roles defined: Author, Editor, Publisher, and
Reviewer. Authors and Editors can change content, but only users with the Publisher
role can make a document available to reviewers. Reviewers have collections config-
ured so that they can add comments in a comment log, but they can’t change the
main document content. 

11.5.1 Using the MarkLogic RBAC security model to protect documents

MarkLogic has built-in, database-layer support for role-based access control, as
described in “Using roles to calculate access control” in section 11.2.2. The MarkLogic
security model uses many of these same RBAC concepts as well as implements some
enhanced functionality.

 MarkLogic applies its security policy at the collection and the document levels and
allows users to create functions that have elevated permissions. This feature enables
element-level control of selected documents without compromising performance.

 This case study will first review the MarkLogic security model and then show how it
can be applied in a secure publishing example. Finally, we’ll review the business bene-
fits of this model.

 A logical diagram of how MarkLogic security models work is shown in figure 11.12.
Here are some of the interesting points of the MarkLogic RBAC security model: 

 Role hierarchy—Roles are configured in a hierarchy, so a lower-level role will
automatically inherit the permissions of any parent roles.
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 Default permissions—Users and roles can each be configured to provide default
permissions for both documents and collections.

 Elevated security functions—Functions can run at an elevated security level. The
elevated security only applies within the context of a function. When the func-
tion finishes, the security level is lowered again.

 Compartments—An additional layer of security beyond RBAC is available with an
optional license. Compartmentalized security allows complex Boolean AND/OR
business rules to be associated with a security policy. 

11.5.2 Using MarkLogic in secure publishing

To enforce the contract rules, create a new role for the project called secret-nosql-
book using the web-based role administration tools and associate the new role with the
collection that contains all of the book’s documents including text, images, and
reviewer feedback. Then configure that collection to include the role of secret-
nosql-book to have read and update access to that collection. Also remove all read
access for people not within this group from the collection permissions. Make sure
that all new documents and subcollections created within this collection use the cor-
rect default permission setting. Finally, add the role of secret-nosql-book to only the
users assigned to the project.

 The project also needs to provide a book progress report that an external project
manager can run on demand. This report counts the total number of chapters, sec-
tions, words, and figures in the book to estimate chapter-by-chapter percentage com-
pletion status. To implement this, give the report elevated rights to access the content
using functions that use amplified permission (AMP) settings. External project

Roles exist in a hierarchy
and lower roles inherit

permissions from
upper roles.

Users and roles
both have default
permissions for
documents and

collections.

Multiple roles can be
associated with special
privileges on functions,

queries, and URIs.

Each permission record, stored with
a document or collection, associates

a single capability (read, write, update,
or execute) with a single role.

Each document
and collection is

associated
with a URI and
permissions.

User Role Permission

Collection

Document

URI privilege

Execute privilege

Amplified permission (AMP)

Figure 11.12 The MarkLogic security model is based on the role-based access control 
(RBAC) model with extensions to allow elevated permissions for executing specific 
functions and queries. Documents and collections each have a set of permissions that 
consist of role-capability pairs.
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managers don’t need access to the content of the book, since the functions that use the
amplified permissions will only gather metrics and not return any text within the book. 

 Note that in this example, application-level security wouldn’t work. If you used
application-level security, anyone who has access to the reporting tools would be able
to run queries on your confidential documents. 

11.5.3 Benefits of the MarkLogic security model

The key benefit of the RBAC model combined with elevated security functions is that
access control can be driven from a consistent central control point and can’t be cir-
cumvented by reporting tools. Element-level reports can still be executed on secure
collections for specialized tasks. This implementation allows flexibility with minimal
performance impact—something that’s critical for large document collections.

 MarkLogic has many customers in US federal systems and enterprise publishing.
These industries have stringent requirements for database security and auditing. As a
result, MarkLogic has one of the most robust, yet flexible, security models of any
NoSQL database.

 The MarkLogic security model may seem complex at first. But once you under-
stand how roles drive security policy, you’ll find you can keep documents secure and
still allow reporting tools full access to the database layer.

 Experienced MarkLogic developers feel that the security model should be
designed at an early stage of a project to ensure that the correct access controls are
granted to the right users. Careful definition of roles within each project is required
to ensure that security policies are correctly enforced. Once the semantics of roles has
been clearly defined, implementing the policy is a straightforward process.

 In addition to the RBAC security model supported by MarkLogic, there are also
specialized versions of MarkLogic that allow the creation of collections of highly sensi-
tive containers. These containers have additional security features that allow for the
storage and auditing of classified documents.

 MarkLogic also integrates auditing reports with their security model. Auditors can
view reports every time elevated security functions are executed by a user or roles are
changed. A detailed history of every role change can be generated for each project.
These reports show how security policy has been enforced and which users had access
to collection content and when.

 The RBAC security model isn’t the only feature that MarkLogic has implemented
to meet the security demands of its customers. Other security-related features include
tamper-resistance of cryptography and network libraries, extensive auditing tools and
reports, and third-party auditing of security libraries. Each of these features becomes
more important as your NoSQL database is used by a larger community of security
conscious users. 

11.6 Summary
In this chapter, you’ve learned that, for simple applications, NoSQL databases have
minimal security requirements. As the complexity of your applications increases, your
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security requirements grow until you reach the need for enterprise-grade security
within your NoSQL database.

 You’ve also learned that by using a service-oriented architecture, you can mini-
mize the need for in-database security. Service-driven NoSQL databases have lower in-
database security requirements and provide specialized data services that can be
reused at the application level.

 Early implementations of NoSQL databases focused on new architectures that had
strong scale-out performance. Security wasn’t a primary concern. In the case studies,
we’ve shown that there are now several NoSQL databases that have flexible security
models for key-value stores, column family stores, and document stores. We’re confi-
dent that other NoSQL databases will include additional security features as they
mature.

 So far, we’ve covered many concepts. We’ve given you visuals, examples, and case
studies to enhance learning. In our last chapter, we’ll pull it all together to see how
these concepts can be applied in a database selection process. 

11.7 Further reading
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Selecting the right
NoSQL solution
Marry your architecture in haste, and you can repent in leisure. 
—Barry Boehm

(from Evaluating Software Architectures:
Methods and Case Studies, by Clements et al.)

If you’ve ever shopped for a car, you know it’s a struggle to decide which car is right
for you. You want a car that’s not too expensive, has great acceleration, can seat
four people (plus camping gear), and gets great gas mileage. You realize that no
one car has it all and each car has things you like and don’t like. It’s your job to

This chapter covers
 Team dynamics in database architecture selection

 The architectural trade-off process

 Analysis through decomposition

 Communicating results

 Quality trees 

 The Goldilocks pilot
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figure out which features you really want and how to weigh each feature to help you
make the final decision. To find the best car for you, it’s important to first understand
which features are the most important to you. Once you know that, you can prioritize
your requirements, check the car’s specifications, and objectively balance trade-offs.

 Selecting the right database architecture for your business problem is similar to
purchasing a car. You must first understand the requirements and then rank how
important each requirement is to the project. Next, you’ll look at the available data-
base options and objectively measure how each of your requirements will perform in
each database option. Once you’ve scored how each database performs, you can tally
the results and weigh the most important criteria accordingly. Seems simple, right? 

 Unfortunately, things aren’t as straightforward as they seem; there are usually com-
plications. First, all team stakeholders might not agree on project priorities or their
relative importance. Next, the team assigned to scoring each NoSQL database might
not have hands-on experience with a particular database; they might only be familiar
with RDBMSs. To complicate matters, there are often multiple ways to recombine com-
ponents to build a solution. The ability to move functions between the application
layer and the database layer make comparing alternatives even more challenging. 

 Despite the challenges, the fate of many projects and companies can depend on
the right architectural decision. If you pick a solution that’s a good fit for the prob-
lem, your project can be easier to implement and your company can gain a competi-
tive advantage in the market. You need an objective process to make the right
decision.

 In this chapter, we’ll use a structured process called architecture trade-off analysis to
find the right database architecture for your project. We’ll walk through the process
of collecting the right information and creating an objective architecture-ranking sys-
tem. After reading this chapter, you’ll understand the basic steps used to objectively
analyze the benefits of various database architectures and how to build quality trees
and present your results to project stakeholders.

12.1 What is architecture trade-off analysis?
Architecture trade-off analysis is the process of objectively selecting a database archi-
tecture that’s the best fit for a business problem. A high-level description of this pro-
cess is shown in figure 12.1. 

 The qualities of software applications are driven by many factors. Clear require-
ments, trained developers, good user interfaces, and detailed testing (both functional
and stress testing) will continue to be critical to successful software projects. Unfortu-
nately, none of that will matter if your underlying database architecture is the wrong
architecture. You can add more staff to the testing and development teams, but chang-
ing an architecture once the project is underway can be costly and result in significant
delays.

 For many organizations, selecting the right database architecture can result in mil-
lions of dollars in cost savings. For other organizations, selecting the wrong database
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architecture could mean they’ll no longer be in business in a few years. Today, busi-
ness stakes are high, and as the number of new data sources increases, the stakes will
increase proportionately.

 Some people think of architecture trade-off analysis as an insurance package. If
they have strong exposure to many NoSQL databases, senior architects on a selection
team may have an intuitive sense of what the right database architecture might be for
a new application. But doing your analysis homework will not only create assurance
that the team is right, it’ll help everyone understand why the fit is good. 

 An architecture trade-off analysis process can be completed in a few weeks and
should be done at the beginning of your project. The artifacts created by the process
will be reused in later phases of the project. The overall costs are low and the benefits
of a good architectural match are high.

 Selecting the right architecture should be done before you start looking at various
products, vendors, and hosting models. Each product, be it open source or commer-
cial license, will add an additional layer of complexity as it introduces the variables of
price, long-term viability of the vendor, and hosting costs. The top database architec-
tures will be around for a long time, and this work won’t need to be redone in the
short term. We think that selecting an architecture before introducing products and
vendors is the best approach. 

 There are many benefits to doing a formal architecture trade-off analysis. Some of
the most commonly cited benefits are

 Better understanding of requirements and priorities
 Better documentation on requirements and use cases
 Better understanding of project goals, trade-offs, and risks
 Better communication among project stakeholders and shared understanding

of concerns of other stakeholders
 Higher credibility of team decisions

These benefits go beyond the decision of what product and what hosting model an
organization will use. The documentation produced during this process can be used

Find
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Figure 12.1 The database architecture selection process. This diagram shows the 
process flow of selecting the right database for your business problem. Start by 
gathering business requirements and isolating the architecturally significant items. 
Then test the amount of effort required for each of the top alternative architectures. 
From this you can derive an objective ranking for the total effort of each architecture.
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throughout the project lifecycle. Not only will your team have a detailed list of critical
success factors, but these items will be logically categorized and prioritized.

 Many government agencies are required by law to get multiple bids on software sys-
tems that exceed a specific cost amount. The processes outlined in this chapter can be
used to create a formal request for proposal (RFP) which can be sent to potential vendors
and integrators. Vendors that respond to RFPs in writing are legally obligated to state
whether they satisfy requirements. This gives the buyer control of many aspects of a
purchase that they wouldn’t normally have.

 Let’s now review the composition and structure of a NoSQL database architecture
selection team. 

12.2 Team dynamics of database architecture selection
Your goal in an architecture selection project is to select the database architecture
that best fits your business problem. To do this, you should use a process that’s objec-
tive, fair, and has a high degree of credibility. It would also be ideal if, in the process,
you can build consensus with all stakeholders so that when the project is complete,
everyone will support the decision and work hard to make the project successful. To
achieve this, it’s important to take multiple perspectives into account and weigh the
requirements appropriately; see figure 12.2. 

Provide a long-term
competitive advantage.

Business unit

Architecture selection
team

Make it easy to
use and extend.

Make it easy to
monitor and scale.

Make it easy to
create and maintain

code.

Marketing

Developers

Operations

Figure 12.2 The architecture selection team should take into account many different 
perspectives. The business unit wants a system that’s easy to use and to extend. 
Developers want a system that’s easy to build and maintain. Operations wants a 
database that can be easily monitored and scaled by adding new nodes to a cluster. 
Marketing staff want to have a system that gives them a long-term competitive 
advantage over other companies.
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12.2.1 Selecting the right team

One of the most important things to consider before you begin your analysis is who
will be involved in making the decision. It’s important to have the right people and
keep the size of the team to a minimum. A team of more than five people is unwieldy,
and scheduling a meeting with too many calendars is a nightmare. The key is that the
team should fairly represent the concerns of each stakeholder and weigh those con-
cerns appropriately. If you have a formal voting process to rank feature priorities, it’s
good to have an odd number of people on the team or have one person designated as
the tie-breaker vote.

 Here’s a short list of the key questions to ask about the team makeup:

 Will the team fairly represent all the diverse groups of stakeholders?
 Are the team members familiar with the architecture trade-off process?
 Does each member have adequate background, time, and interest to do a 

good job?
 Are team members committed to an objective analysis process? Will they put

the goals of the project ahead of their own personal goals?
 Do the team members have the skills to communicate the results to each of the

stakeholders?

If the architecture selection process is new to some team members, you’ll want to take
some time initially to get everyone up to speed. If done well, this can be a positive
shared learning experience for new members of the selection team. These steps are
also the initial phase of agreeing, not only on the critical success factors of the project,
but the relative priority of each feature of the system. Building consensus in the early
phases of a project is key to getting buy-in from the diverse community of people that
will fund and support ongoing project operations.

 Getting your architecture selection team in alignment and even creating enthusias-
tic support about your decision involve more than technical decisions. Experience has
shown that the early success of a project is part organizational psychology, part com-
munication, and part architectural analysis. Securing executive support, a senior proj-
ect manager, and open-minded head of operations are all factors that will contribute
to the ultimate success of the pilot project. 

 One of the worst possible outcomes in a selection process is selecting a database
that one set of stakeholders likes but another group hates. A well-run selection pro-
cess and good communication can help everyone realize there’s no single solution
that meets everyone’s needs. Compromises must be made, risks identified, and plans
put in place to mitigate risk. Project managers need to determine whether team mem-
bers are truly committed or using passive-aggressive behavior to undermine the proj-
ect. Adopting new technologies is difficult even when all team members are
committed to the decision. If there’s division, the process will only be more difficult.

 Keeping your database selection objective is one of the most difficult parts of any
database selection process. As you’ll see, there are some things, such as experience
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bias and using outside consultants, that impact the process. But if you keep these in
mind, you can make adjustments and still make the selection process neutral. 

12.2.2 Accounting for experience bias

When you perform an architecture trade-off analysis, you must bear in mind that each
person involved has their own set of interests and biases. If members of your project
team have experience with a particular technology, they’ll naturally attempt to map
the current problem to a solution they’re familiar with. New problems will be applied
to the existing pattern-matching circuits in their brains without conscious thought.
This doesn’t mean the individual is putting self-interest above the goals of the project;
it’s human nature. 

 If you have people who are good at what they do and have been doing it for a long
time, they’ll attempt to use the skills and experience they’ve used in previous projects.
People with these attributes may be most comfortable with existing technologies and
have a difficult time objectively matching the current business problems to an unfa-
miliar technology. To have a credible recommendation, all team members must com-
mit to putting their personal skills and perspectives in the context of the needs of the
organization. 

 This doesn’t imply that existing staff or current technologies shouldn’t be consid-
ered. People on your architecture trade-off team must create evaluations that will be
weighted in ways that put the needs of the organization before their personal skills
and experience. 

12.2.3 Using outside consultants

Something each architecture selection team should consider is whether the team
should include external consultants. If so, what role should they play? Consultants
who specialize in database architecture selection may be familiar with the strengths
and weaknesses of multiple database architectures. But there’s a good chance they
won’t be familiar with your industry, your organization, or your internal systems. The
cost-effectiveness of these consultants is driven by how quickly they can understand
requirements.

 External consultants can come up to speed quickly if you have well-written detailed
requirements. Having well-written system requirements and a good glossary of busi-
ness terms that explain internal terminology, usage, and acronyms can lower database
selection costs and increase the objectivity of database selection. This brings an addi-
tional level of assurance for your stakeholders.

 High-quality written requirements not only allow new team members to come up
to speed, they can also be used downstream when building the application. In the
end, you need someone on the team who knows how each of these architectures
works. If your internal staff lacks this experience, then an outside consultant should
be considered. With your team in place, you’re ready to start looking at the trade-off
analysis process. 
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12.3 Steps in architectural trade-off analysis
Now that you’ve assembled an architectural selection team who’ll be objective and
represent the perspectives of various stakeholders, you’re ready to begin the formal
architectural trade-off process. Here are the typical steps used in this process:

1 Introduce the process—To begin, it’s important to provide each team member with
a clear explanation of the architecture trade-off analysis process and why the
group is using it. From there the team should agree on the makeup of the team,
the decision-making process, and the outcomes. The team should know that
the method has been around for a long time and has a proven track record of
positive results if done correctly.

2 Gather requirements—Next, gather as many requirements as is practical and put
them in a central structure that can be searched and reported on. Require-
ments are a classic example of semistructured data, since they contain both
structured fields and narrative text. Organizations that don’t use a require-
ments database usually put their requirements into MS Word or Excel spread-
sheets, which makes them difficult to manage.

3 Select architecturally significant requirements—After requirements are gathered, you
should review them and choose a subset of the requirements that will drive the
architecture. The process of filtering out the essential requirements that drive
an architecture is somewhat complex and should be done by team members
who have experience with the process. Sometimes a small requirement can
require a big change in architecture. The exact number of architecturally sig-
nificant requirements used depends on the project, but a good guideline is at
least 10 and not more than 20.

4 Select NoSQL architectures—Select the NoSQL architectures you want to consider.
The most likely candidates would include a standard RDBMS, an OLAP system, a
key-value store, a column family store, a graph database, and a document data-
base. At this point, it’s important not to dive into specific products or imple-
mentations, but rather to understand the architectural fit with the current
problem. In many cases, you’ll find that some obvious architectures aren’t
appropriate and can be eliminated. For example, you can eliminate an OLAP
implementation if you need to perform transaction updates. You can also elimi-
nate a key-value store if you need to perform queries on the values of a key-
value pair. This doesn’t mean you can’t include these architectures in hybrid
systems; it means that they can’t solve the problem on their own.

5 Create use cases for key requirements—Use cases are narrative documents that
describe how people or agents will interact with your system. They’re written by
subject matter experts or business analysts who understand the business context.
Use cases should provide enough detail so that an effort analysis can be deter-
mined. They can be simple statements or multipage documents, depending on
the size of the project and detail necessary. Many use cases are structured
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around the lifecycle of your data. You might have one use case for adding new
records, one for listing records, one for searching, and one for exporting data,
for example.

6 Estimate effort level for each use case for each architecture—For each use case, you’ll
determine a rough estimate of the level of effort that’s required and apply a
scoring system, such as 1 for difficult and 5 for easy. As you determine your
effort, you’ll place the appropriate number for each use case into a spread-
sheet, as shown in figure 12.3. 

7 Use weighted scores to rank each architecture—In this stage, you’ll combine the effort
level with some type of weight to create a single score for each architecture.
Items that are critical to the success of the project and that are easy to imple-
ment will get the highest scores. Items that are lower in priority and not easy to
implement will get lower scores. By adding up the weighted scores, as shown in
figure 12.4, you’ll generate a composite score that can be used to compare each
architecture.

In the first pass at weighting, effort and estimation may be rough. You can
start with a simple scale of High, Medium, and Low. As you become more com-
fortable with the results, you can add a finer scale of 1–5, using a higher num-
ber for lower effort.

How each use case is weighted against the others should also help your
group build consensus on the relative importance of each feature. Use cases
can also be used to understand risk factors of the project. Features marked
as critical will need special attention by project managers doing project risk
assessment.

8 Document results—Each step in the architecture trade-off process creates a set of
documents that can be combined into a report and distributed to your stake-
holders. The report will contain starting points for the information you need to
communicate to your stakeholders. These documents can be shared in many
forms, such as a report-driven website, MS Word documents, spreadsheets and

Figure 12.3 A sample architecture trade-off score card for a specific project with categorized 
use cases. For simplicity, all of the use cases have the same weighted value.
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slide presentations, colorful wall-sized posters, and quality trees, which we’ll
review later in this chapter.

9 Communicate results—Once you have your documentation in order, it’s time to
present the results. This needs to be done in a way that will focus on building
credibility for your process team. Sending a 100-page report as an email attach-
ment isn’t going to generate excitement. But if you present your case in an
interactive method, you can create a sense of urgency using vocabulary the
audience understands.

The communication job isn’t done until you’ve ensured that the stakehold-
ers understand the key points you want to communicate. Creating an online
quiz will usually turn people off. You want to create two-way dialogs that verify
the information has been transmitted and understood so the stakeholders can
move on to the next stage of the project.

An example of a weighted scorecard is shown in figure 12.4. 
 We want to make it clear that we think that selecting an architecture before select-

ing a specific NoSQL product is the preferred method. We’ve been involved in situa-
tions where a team is trying to decide between two products that use different
architectures. The team must then combine both architectural decisions and vendor-
specific issues in one session. This prevents the team from understanding the real
underlying architectural fit issues.

 It might be interesting to compare the steps in the trade-off analysis process with a
similar process developed by the Software Engineering Institute (SEI) at Carnegie

Figure 12.4 A weighted scorecard for a software selection process for a statute 
management system. The grid shows the ease of performing a task for four 
alternative architectures. A score of 0–4 is used, with a 4 indicating the lowest 
effort. The most critical features have the highest weight in the total score.
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Mellon. A high-level description of the Architecture Trade-off Analysis Method
(ATAM) process developed by Carnegie Mellon is shown in figure 12.5. 

 Originally, the ATAM process was designed to analyze the strengths and weaknesses
of a single architecture and highlight project risk. It does this by identifying the high-
level requirements of a system and determining how easily the critical requirements fit
into a given architecture. We’ll slightly modify the ATAM process to compare different
NoSQL architectures. 

12.4 Analysis through decomposition: quality trees
The heart of an objective evaluation is to break a large application into smaller discrete
processes and determine the level of effort each architecture demands to meet the sys-
tem requirements. This is a standard divide-and-conquer decomposition analysis pro-
cess. To use decomposition, you continue to break large pieces of functionality into
smaller components until you understand and can communicate the relative strengths
and weaknesses of each architecture for the critical areas of your application.

 Although there are several ways you can use decomposition, the best practice is to
break up the overall functionality of an application into small stories that describe
how a user will interact with the system. We call these the system’s scenarios or use cases.
Each process is documented in a story that describes how actors will interact with a sys-
tem. This can be as simple as “loading data” or as complex as “upgrading software with
new releases.” For each process, you’ll compare how easy or difficult it is to perform
this task on each of the systems under consideration. Using a simple category (easy,
medium, hard) or 1–5 ranking is a good way to get started. 

Business
drivers

Architecture
plan

Quality
attributes

Architectural
approaches

User
stories

Architectural
decisions

Sensitivity
points

Analysis

Distilled info

Impacts

Tradeoffs

Non-risks

RisksRisk themes

Figure 12.5 High-level information flow for the SEI ATAM process. 
Although this process isn’t specifically targeted at NoSQL database 
selection, it shares many of the same processes that we recommend in 
this chapter. Business requirements (driven by marketing) and 
architectural alternatives (driven by your knowledge of the NoSQL 
options available) have separate paths into the analysis process. The 
outcome of this analysis is a set of documents that shows the strengths 
and weakness of one architecture.
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 One of the keys to objective comparison is to group requirements into logical hier-
archies. Each upper node within a hierarchy will have a label. Your goal is to create a
hierarchy that has no more than 10 top-tier branches with meaningful labels.

 Once you’ve selected an architecture, you’re ready to build a quality tree. Quality
trees are hierarchies of quality attributes that determine how well your specific situa-
tion fits with the system you’re selecting. These are sometimes called the -ilities as a
shorthand for properties such as scalability, searchability, availability, agility, maintain-
ability, portability, and supportability that we’ve discussed. 

12.4.1 Sample quality attributes

Now that you have an idea of what quality trees are and how they’re used to classify sys-
tem requirements, let’s take a look at some sample qualities that you might consider
in your NoSQL database selection.

 Scalability—Will you get incremental performance gain when you add addi-
tional nodes to a cluster? Some people call this linear or horizontal scalability.
How difficult is it to add or remove nodes? What’s the operational overhead
when you add or remove nodes from a cluster? Note that read and write scal-
ability can have different answers to this question.

We try to avoid using the word performance in our architectural quality trees,
as it means different things to different people. Performance can mean a num-
ber of transactions per second in an RDBMS, the number of reads or writes per
second in a key-value store, or the time to display a total count in an OLAP sys-
tem. Performance is usually tied to a specific test with a specific benchmark.
You’re free to use it as a top-level category as long as you’re absolutely clear that
everyone on the team will use the same definition. When in doubt, use the most
specific word you can find.

One good example of how difficult it is to measure performance is the
degree that data will be kept in a caching layer of a NoSQL database. A bench-
mark that selects distinct data may run slowly on one system, but it may not rep-
resent the real-world query distribution of your application.

We covered many issues related to horizontal scale-out in chapter 6 on big
data and the issues of referential transparency and caching in chapter 10.

 Availability—Will the system keep running if one or more components fail?
Some groups call this attribute reliability, but we prefer availability. We covered
high availability in chapter 8, including the subtleties of measuring perfor-
mance and the pros and cons of different distribution models.

In chapter 2 and in other case studies, we also discussed that when network
errors occur, many NoSQL systems allow you to make intelligent choices about
how services should deal with partition tolerance.

 Supportability—Can your data center staff monitor the performance of the sys-
tem and proactively fix problems before they impact a customer? Are there
high-quality monitoring tools that show the status of resources like RAM cache,
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input and output queries, and faults on each of the nodes in a cluster? Are
there data feeds that provide information that conforms to monitoring stan-
dards such as SNMP?

Note that supportability is related to both scalability and availability. A system
that automatically rebalances data in a cluster when a node fails will get a
higher score for both scalability and availability as well as supportability.

 Portability—Can you write code for one platform and port it to another plat-
form without significant change? This is one area where many NoSQL systems
don’t perform well. Many NoSQL databases have interfaces and query lan-
guages that are unique to their product, and porting applications can be diffi-
cult. This is one area where SQL databases have an advantage over NoSQL
systems that require database developers to use proprietary interfaces.

One method you can use to gain portability is to build database-independent
wrapper libraries around your database-access functions. Porting to a new data-
base could be done by implementing a new version of your wrapper library for
each database. As we discussed in chapter 4, building wrappers can be easy
when the APIs are simple, such as GET, PUT, and DELETE. Adding a wrapper
layer for increased portability becomes more expensive when there are many
complex API calls to the database.

 Sustainability—Will the developers and vendors continue to support this prod-
uct or this version of the product in the future? Is the data model shared by
other NoSQL systems? How viable are the organizations supporting the soft-
ware? If the software is open source, can you hire developers to fix bugs or cre-
ate extensions?

The way that document fragments are addressed using path expression is a
universal data-access pattern common in all document stores. Path expressions
will be around for a long time. In contrast, there are many new key-value stores
that store structures within values and have their own way of accessing this data
that’s unique to that system. It’s difficult to predict whether these will become
future standards, so there’s higher risk in these areas.

Note that the issues of portability and sustainability are tied together. If your
application uses a standard query language, it’ll be more portable, so the con-
cerns of sustainability are lower. If your NoSQL solution locks you into a query
language that’s unique to that solution, you’ll be locked in to a single solution.

 Security—Can you provide the appropriate access controls so that only autho-
rized users can view the appropriate elements? What level of granularity does
the database support? 

The key element we considered is whether security should be placed within
the database layer itself or whether there are methods of keeping security at the
application layer.

 Searchability—Can you quickly find the items you’re looking for in your data-
base? If you have large amounts of full text, can you search by using a keyword
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or phrase? Can you rank search results according to how closely a record
matches your keyword search? This topic was covered in chapter 7.

 Agility—How quickly can the software be modified to meet changing business
requirements? We prefer the term agility over modifiability, since agility is associ-
ated more closely with a business objective, but we’ve seen both terms in use.
This topic was covered in chapter 9.

12.4.2 Evaluating hybrid and cloud architectures

It’s usually the case that no single database product will meet all the needs of your
application. Even full NoSQL solutions that leverage other tools such as search and
indexing libraries may have gaps in functionality. For items like image management
and read-mostly BLOB storage, you might want to blend a key-value store with another
database. This frequently requires the architectural assessment team to carefully parti-
tion the business problem into areas of concern that need to be grouped together.

 One of the major themes of this book has been the role of simple, modular, data-
base components that can snap together like Lego blocks. This modular architecture
makes it easier to customize service levels for specific parts of your application. But
it also makes it difficult to do an apples-to-apples comparison. Running a single

Beware of vendor-funded performance benchmarks 
and claims of high availability
Several years ago, one of us was working on a database selection project when a
team member produced a report which claimed that vendor A had a tenfold perfor-
mance advantage over the other vendors. It took our team several days of research
to find that the benchmark was created by an “independent” company that was paid
by vendor A. This so-called independent company selected samples and tuned the
configuration of the funding vendor to be optimized. No other databases were tuned
for the benchmark. Most external database performance benchmarks are targeting
generic read, write, or search metrics. They won’t be tuned to the needs of a specific
project and as such aren’t useful for making valid comparisons.

We avoid using external benchmarks in comparing performance. If you’re going to do
performance bake-offs, you must make sure that each database is configured appro-
priately and that experts from each vendor are given ample time to tune both the hard-
ware and software to your workload. Make sure the performance benchmark will
precisely match the data types you’ll use and use your predicted peak loads for
reads, writes, updates, and deletes. Also make sure that your benchmark includes
repeated read queries so that the impact of caching can be accounted for.

Vendor claims of high availability should also be backed up by visits to other custom-
ers’ sites that can document service levels. If something sounds too good to be true,
it probably is. Any vendor with astounding claims should back up the claims with
astounding evidence. 
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database cluster might be operationally more efficient than running one cluster for
data, one cluster for search, and one cluster for key-value stores.

 This is why in many of our evaluations we include a separate column for a hybrid
solution that uses different components for different aspects of an application. Sup-
porting multiple clusters can allow the team to use specialized databases that will be
tuned for different tasks. Tuning each cluster needs its own operational budget
extending out over multiple years.

 A best practice is to use cloud-based services whenever possible. These services can
reduce your overhead operational costs and, in some cases, make them more predict-
able. Predicting the costs of cloud-based NoSQL services can be complicated, since
the services chart is based on many factors, such as disk spaced used, the number of
bytes of input and output, and the number of transactions.

 There are times when cloud computing shouldn’t be used—say, if your business
problem requires data to be constantly moved between a private data center and the
cloud. Storing all static resources on a public cloud works well when your users are
based on the internet. This means that the I/O of users hitting your local site will be
much lower. Since I/O is sometimes a key limitation for a website, removing static data
from the site can be a great way to lower overall cost.

 As you complete your analysis, you begin thinking about the best way to communi-
cate your findings and recommendations to your team and stakeholders and move
forward with the project. 

12.5 Communicating the results to stakeholders
To move your NoSQL pilot project forward, you need to present a compelling argu-
ment to your stakeholders. Frequently, those who make this important decision are
also the least technical people in the organization. To receive serious consideration,
you must communicate your results and findings clearly, concisely, and in a way every-
one understands. Drawing detailed architecture diagrams will only be valuable if your
intended audience understands the meaning of all the boxes and lines in the diagram. 

 Many projects do select the best match of a business problem to the right NoSQL
architecture, yet they fail to communicate the details of why a decision was made to
the right people and so the endeavor fails. The architecture trade-off analysis process
should be integrated with the project communication plan. To create a successful out-
come, you need to trade your analyst hat for a marketing hat. 

12.5.1 Using quality trees as navigational maps

A goal of this book is to create a vocabulary and a set of tools for helping everyone,
including nontechnical staff, to understand the key issues of database selection.

 One of the most difficult parts of presenting results to your stakeholders is creating
a shared navigational map that helps everyone orient themselves to the results of the
evaluation. Navigational maps help stakeholders determine whether their concerns
have been addressed and how well the solution meets their concerns.
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 For example, if a group of stakeholders has expressed concerns about using roles
to grant users access to data, they should be able to guess that roles are listed in your
map in the area labeled Security. From within that part of the map, they will see how
role-based access is listed under the authorization area. Although there are multiple
ways to display these topic maps, one of the most popular is a tree-like diagram that
places the highest category of concern (the -ilities) on the left side of a tree, and then
presents increasing levels of detail as you move to the right. We call these structures
quality trees. An example of a quality tree is shown in figure 12.6. 

 This example uses a three-level structure to break down the concerns of the proj-
ect. Each of the seven qualities can be further broken down into subfeatures. A typical
single-page quality tree will usually stop at the third level of detail because of the limi-
tations of reading small fonts on a single page. Software tools can allow interactive
sites to drill further down to a requirements database and view use cases for each
requirement.
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Figure 12.6 Sample quality tree—how various qualities (-ilities) are grouped together 
and then scored. High-level categories on the left are broken down into lower-level 
categories. A short text describing the quality is followed by letter codes to show how 
important a feature is (C=Critical, VH=Very High, H=High, M=Medium, L=Low) and how 
well the proposed solution meets the requirement.
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Quality trees are one method of using graphical presentations to quickly explain the
process and findings of your project to stakeholders. Sometimes the right image or
metaphor will make all the difference. Let’s see how finding the right metaphor can
make all the difference in the adoption of new technologies. 

12.5.2 Apply your knowledge

Sally is working on a team that has looked at two options to scale out their database.
The company provides data services for approximately 100 large corporate customers
who run reports on only their own data. Only a small number of internal reports span
multiple customers’ files. The team is charged with coming up with an architecture
that can scale out and allow the customer base to continue to grow without impacting
database performance.

 The team agrees on two options for distributing the customer data over a cluster of
servers. Option A puts all customer data on a single server. This architecture allows for
scale-out and new database servers can be added as the customer base grows. When
new servers are added, they’ll use the first letter of the customer’s name to divide the
data between the servers. Option B distributes customer records evenly across multi-
ple servers using hashing. Any single customer will have their data on every node in
the cluster and replicated three times for high availability.

 Sally’s team is concerned that some stakeholders might not understand the trade-
offs and believe that storing all customer data on a single node with replication might
be a better option. But if they implement option A, half of the nodes in the cluster will
be idle and only in use when a failure occurs. 

 The team wants to show everyone how evenly distributing the queries over the clus-
ter will return faster results even if queries are running on each node in the cluster.
Yet, after a long discussion, the team can’t convince their stakeholders of the advan-
tages of their plan. One of the team members has to leave early. He has to catch a
plane and is worried about the long lines at the airport. Suddenly, Sally has an idea.

 At their next meeting Sally presents the drawings in figure 12.7. 
 The next time the group meets, Sally uses her airport metaphor to describe how

most of the nodes in the cluster would remain idle, even when a customer is waiting
many hours for long reports to run. By evenly distributing the data over the cluster,
the load will be evenly distributed and reports will run on every node until the report
finishes. No long lines!

 Sally’s metaphor works and everyone on the project understands the consequences
of uneven distribution of data in a cluster and how costs can be lower and perfor-
mance improved if the right architecture is used. Though you can create a detailed
report of why one scale-out architecture works better than another using bulleted lists,
graphics, models, or charts, using a metaphor everyone understands gets to the heart
of matter quickly and drives the decision-making process. 

 Like buying a car, there will seldom be a perfect match for all your needs. Every
year the number of specialized databases seems to grow. Not many free and stan-
dards-compliant open source software systems scale well and store all data types
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automatically without the need for programmers and operations staff. If they did, we
would already be using them. In the real world, we need to make hard choices. 

12.5.3 Using quality trees to communicate project risks

As we mentioned, the architectural trade-off process creates documentation that can
be used in subsequent phases of the project. A good example of this is how you can
use a quality tree to identify and communicate potential project risks. Let’s see how
you might use this to communicate risk in your project.

 A quality tree contains a hierarchy of your requirements grouped into logical
branches. Each branch has a high-level label that allows you to drill down into more
detailed requirements. Each leaf of the tree has a written requirement and two scores.
The first score is how important the feature is to the overall project. The second is
how well the architecture or product will implement this feature.

 Risk analysis is the process of identifying and analyzing the gaps between how
important a feature is and how well an architecture implements the feature. The
greater the gap, the greater the project risk. If a database doesn’t implement a feature
that’s a low priority to your project, it may not be a risk. But if a feature is critical to
project success and the architecture doesn’t support it, then you have a gap in your
architecture. Gaps equal project risk, and communicating potential risks and their
impact to stakeholders is necessary and important, as shown in figure 12.8. 

This is like the situation
when many people are

forced to go to the longest
line, even when other
agents are not busy.

This customer is running a report that takes a long time
to run on a single system. With a NoSQL solution,
the report would be evenly distributed on all servers
and run in half the time.

CPU utilization
Airline check-in

Customer A Customer B Customer C

Figure 12.7 Rather than only creating a report that describes how one option 
provides better distribution of load over a cluster, use graphs and metaphors to 
describe the key differences. While many people have seen CPU utilization charts, 
waiting in line at the airport is a metaphor they’ve most likely experienced.
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12.6 Finding the right proof-of-architecture pilot project
After you’ve finished your architecture trade-off analysis and have chosen an architec-
ture, you’re ready for the next stage: a proof-of-architecture (POA) pilot project sometimes
called a proof-of-concept project. Selecting the right POA project isn’t always easy, and
selecting the wrong project can prevent new technologies from gaining acceptance in
an organization.

 The most critical factor in selecting a NoSQL pilot project is to identify a project
with the right properties. In the same way Goldilocks waited to find the item that was
“just right,” you want to select a pilot project that’s a good fit for the NoSQL technol-
ogy you’re recommending.

 A good POA project looks at

1 Project duration—Pilot projects should be of a medium duration. If the project
can be completed in less than a week, it might be discarded as trivial. If the proj-
ect duration is many months, it becomes a target for those opposed to change
and new technology. To be effective, the project should be visible long enough
to achieve strategic victories without being vulnerable to constantly changing
budgets and shifts in strategic direction.
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Figure 12.8 An example of using a quality tree to communicate risk-gap analysis. You 
can use color, patterns, and symbols to show how gaps in lower-level features will 
contribute to overall project risk. The way we do this is by having each branch in our tree 
inherit the highest level of risks from a subelement.
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Though this may sound like an overly cautious tone, introducing new tech-
nology into an organization can be a battle between old and new ideas. If you
assume that enemies of change are everywhere, you can adjust plans to ensure
victory.

2 Technology transfer—Using an external consultant to build your pilot project
without interaction with your staff prevents internal staff from understanding
how the systems work and getting some exposure to the new technology. It pre-
vents your team from finding allies and building bridges of understanding. The
best approach is to create teams that will pair experienced NoSQL developers
with internal staff who will support and extend the databases.

3 The right types of data—Each NoSQL project has different types of data. It may be
binaries, flat files, or document-oriented. You must make sure the pilot project
data fits the NoSQL solution you’re evaluating.

4 Meaningful and quality data—Some NoSQL projects are used in pilot projects
because there’s high-variability data. This is the right reason to move from a
SQL database. But the data still needs to have strong semantics and data quality.
NoSQL isn’t a magic bullet that will make bad data good. There are many ways
that schema-less systems can ingest and run statistical analysis on data and inte-
grate machine learning to analyze data.

5 Clear requirements and success criteria—We’ve already covered the importance of
understandable, written requirements in NoSQL projects. A NoSQL pilot proj-
ect should also have clearly defined written success criteria associated with mea-
surable outcomes that the team agrees to. 

Finding the right pilot project to introduce a new NoSQL database is critical for a
project’s successful adoption. A NoSQL pilot project that fails, even if the reason for
failure isn’t associated with architectural fit, will dampen an organization’s willingness
to adopt new database technologies in the future. Projects that lack strong executive
support and leadership can be difficult, if not impossible, to move forward when prob-
lems arise that aren’t related to the new architecture.

 Our experience is that getting high-quality data into a new system is sometimes the
biggest problem in getting users to adopt new systems. This is often not the fault of
the architecture, but rather a symptom of the organization’s ability to validate, clean,
and manage metadata.

 Before you proceed from the architecture selection phase to the pilot phase, you
want to stop and think carefully. Sometimes a team is highly motivated to get off of
older architectures and will take on impossible tasks to prove that new architectures
are better. Sometimes the urge to start coding immediately overrides common sense.
Our advice is to not accept the first project that’s suggested, but to find the right fit
before you proceed. Sometimes waiting is the fastest way to success. 
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12.7 Summary
In this chapter, we’ve looked at how a formal architecture trade-off process can be
used to select the right database architecture for a specific business project. When
architectures were few in number, the process was simple and could be done infor-
mally by a group of in-house experts. There was no need for a detailed explanation of
their decisions. But as the number of NoSQL database options increases, the selection
process becomes more complex. You need an objective ranking system that helps you
narrow down the options and then compares the trade-offs. 

 After reading the cases studies, we believe with certainty that the NoSQL move-
ment has and will continue to trigger dramatic cost reductions in building applica-
tions. But the number of new options makes the process of objectively selecting the
right database architecture more difficult. We hope that this book helps guide teams
through this important but sometimes complex process and helps save both time and
money, increasing your ability to adapt to changing business conditions.

 When Charles Darwin visited the Galapagos Islands, he collected different types
of birds from many of the islands. After returning to England, he discovered that a
single finch had evolved into roughly 15 different species. He noted that the size and
shape of the birds’ beaks had changed to allow the birds to feed on seeds, cacti, or
insects. Each island had different conditions, and in time the birds evolved to fit the
requirements.

Seeing this gradation and diversity of structure in one small, intimately
related group of birds, one might really fancy that from an original paucity of
birds in this archipelago, one species had been taken and modified for differ-
ent ends. (Charles Darwin, Voyage of the Beagle)

NoSQL databases are like Darwin’s finches. New species of NoSQL databases that
match the conditions of different types of data continue to evolve. Companies that try
to use a single database to process different types of data will in time go the way of the
dinosaur. Your task is to match the right types of data to the right NoSQL solutions. If
you do this well, you can build organizations that are healthy, insightful, and agile,
and that can take advantage of a changing business climate.

 For all the goodness that diversity brings, standards are still a must. Standards allow
you to reuse tools and training and to leverage prebuilt and preexisting solutions.
Metcalf’s Law, where the value of a standard grows exponentially as the number of
users increases, applies to NoSQL as well as to network protocols. The diversity-
standardization dilemma won’t go away; it’ll continue to play a role in databases for
decades to come.

 When we write reports for organizations considering NoSQL pilot projects, we
imagine Charles Darwin sitting on one side and Robert Metcalf sitting on the other—
two insightful individuals using the underlying patterns in our world to help organiza-
tions make the right decision. These decisions are critical; the future of many jobs
depends on making the right decisions.

 We hope this book will guide you to an enlightening and profitable future.
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 For up-to-date analysis of the current portfolio of SQL and NoSQL architectures,
please refer to http://manning.com/mccreary/, or go to http://danmccreary.com/
nosql. 

 Good luck!

12.8 Further reading
 Clements, Paul, et al. Evaluating Software Architectures: Methods and Case Studies. 2001, 

Addison-Wesley.
 “Darwin’s finches.” Wikipedia. http://mng.bz/2Zpa. 
 SEI. “Software Architecture: Architecture Tradeoff Analysis Method.” 

http://mng.bz/54je.

http://manning.com/mccreary/
http://danmccreary.com/nosql
http://danmccreary.com/nosql
http://mng.bz/2Zpa
http://mng.bz/54je
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