

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of	ePUB	and	its	many
features	varies	across	reading	devices	and	applications.	Use	your	device	or	app	settings	to	customize
the	presentation	to	your	liking.	Settings	that	you	can	customize	often	include	font,	font	size,	single	or
double	column,	landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or	app,	visit	the	device
manufacturer ’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the	presentation	of

these	elements,	view	the	eBook	in	single-column,	landscape	mode	and	adjust	the	font	size	to	the
smallest	setting.	In	addition	to	presenting	code	and	configurations	in	the	reflowable	text	format,	we
have	included	images	of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,
where	the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you	will	see	a
“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to
the	previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Mastering	iOS	Frameworks
Beyond	the	Basics,	Second	Edition

Kyle	Richter
Joe	Keeley

Hoboken,	NJ	•	Boston	•	Indianapolis	•	San	Francisco
New	York	•	Toronto	•	Montreal	•	London	•	Munich	•	Paris	•	Madrid

Cape	Town	•	Sydney	•	Tokyo	•	Singapore	•	Mexico	City

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed
as	trademarks.	Where	those	designations	appear	in	this	book,	and	the	publisher	was	aware	of	a
trademark	claim,	the	designations	have	been	printed	with	initial	capital	letters	or	in	all	capitals.

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no	expressed	or
implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or	omissions.	No	liability	is
assumed	for	incidental	or	consequential	damages	in	connection	with	or	arising	out	of	the	use	of	the
information	or	programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities	(which
may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to	your	business,
training	goals,	marketing	focus,	or	branding	interests),	please	contact	our	corporate	sales	department
at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2015932706

Copyright	©	2015	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected	by
copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,
storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	To	obtain	permission	to	use	material	from	this	work,	please
submit	a	written	request	to	Pearson	Education,	Inc.,	Permissions	Department,	200	Old	Tappan	Road,
Old	Tappan,	New	Jersey	07675,	or	you	may	fax	your	request	to	(201)	236-3290.

AirPlay,	AirPort,	AirPrint,	AirTunes,	App	Store,	Apple,	the	Apple	logo,	Apple	TV,	Aqua,	Bonjour,
the	Bonjour	logo,	Cocoa,	Cocoa	Touch,	Cover	Flow,	Dashcode,	Finder,	FireWire,	iMac,	Instruments,
Interface	Builder,	iOS,	iPad,	iPhone,	iPod,	iPod	touch,	iTunes,	the	iTunes	logo,	Leopard,	Mac,	Mac
logo,	Macintosh,	Multi-Touch,	Objective-C,	Quartz,	QuickTime,	QuickTime	logo,	Safari,	Mountain
Lion,	Yosemite,	Spotlight,	and	Xcode	are	trademarks	of	Apple,	Inc.,	registered	in	the	U.S.	and	other
countries.	OpenGL,	or	OpenGL	Logo,:	OpenGL	is	a	registered	trademark	of	Silicon	Graphics,	Inc.

ISBN-13:	978-0-134-05249-6
ISBN-10:	0-134-05249-8	Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley	in
Crawfordsville,	Indiana.
First	printing:	April	2015

Editor-in-Chief
Mark	Taub

Senior	Acquisitions	Editor
Trina	MacDonald

Development	Editor
Sheri	Replin

Managing	Editor
Kristy	Hart

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

Project	Editor
Elaine	Wiley

Copy	Editor
Cheri	Clark

Indexer
Ken	Johnson

Proofreader
Kathy	Ruiz

Technical	Reviewers
Niklas	Saers
Justin	Williams

Editorial	Assistant
Olivia	Basegio

Cover	Designer
Chuti	Prasertsith

Senior	Compositor
Gloria	Schurick

I	would	like	to	dedicate	this	book	to	my	co-workers	who
continually	drive	me	to	never	accept	the	first	solution.

—Kyle	Richter

I	dedicate	this	book	to	my	wife,	Irene,	and	two	daughters,
Audrey	and	Scarlett.	Your	boundless	energy	and	love

inspire	me	daily.
—Joe	Keeley

Table	of	Contents

1	UIKit	Dynamics
The	Sample	App
Introduction	to	UIKit	Dynamics
Implementing	UIKit	Dynamics
Gravity
Collisions
Attachments
Springs
Snap
Push	Forces
Item	Properties

In-Depth	UIDynamicAnimator	and	UIDynamicAnimatorDelegate
Summary

2	Core	Location,	MapKit,	and	Geofencing
The	Sample	App
Obtaining	User	Location
Requirements	and	Permissions
Checking	for	Services
Starting	Location	Request
Parsing	and	Understanding	Location	Data
Significant	Change	Notifications
Using	GPX	Files	to	Test	Specific	Locations

Displaying	Maps
Understanding	the	Coordinate	Systems
MKMapKit	Configuration	and	Customization
Responding	to	User	Interactions

Map	Annotations	and	Overlays
Adding	Annotations
Displaying	Standard	and	Custom	Annotation	Views
Draggable	Annotation	Views
Working	with	Map	Overlays

Geocoding	and	Reverse-Geocoding
Geocoding	an	Address
Reverse-Geocoding	a	Location

Geofencing

Checking	for	Regional	Monitoring	Capability
Defining	Boundaries
Monitoring	Changes

Getting	Directions
Summary

3	Leaderboards
The	Sample	App
Spawning	a	Cactus
Cactus	Interaction
Displaying	Life	and	Score
Pausing	and	Resuming
Final	Thoughts	on	Whack-a-Cac

iTunes	Connect
Game	Center	Manager
Authenticating
Common	Authentication	Errors
iOS	6	and	Newer	Authentication

Submitting	Scores
Adding	Scores	to	Whack-a-Cac
Presenting	Leaderboards
Score	Challenges
Going	Further	with	Leaderboards

Summary

4	Achievements
iTunes	Connect
Displaying	Achievement	Progress
Game	Center	Manager	and	Authentication
The	Achievement	Cache
Reporting	Achievements
Adding	Achievement	Hooks
Completion	Banners
Achievement	Challenges
Adding	Achievements	into	Whack-a-Cac
Earned	or	Unearned	Achievements
Partially	Earned	Achievements
Multiple	Session	Achievements
Piggybacked	Achievements	and	Storing	Achievement	Precision

Timer-Based	Achievements
Resetting	Achievements
Going	Further	with	Achievements
Summary

5	Getting	Started	with	Address	Book
Why	Address	Book	Support	Is	Important
Limitations	of	Address	Book	Programming
The	Sample	App
Getting	Address	Book	Up	and	Running
Reading	Data	from	the	Address	Book
Reading	Multivalues	from	the	Address	Book
Understanding	Address	Book	Labels
Working	with	Addresses

Address	Book	Graphical	User	Interface
People	Picker

Programmatically	Creating	Contacts
Summary

6	Working	with	Music	Libraries
The	Sample	App
Building	a	Playback	Engine
Registering	for	Playback	Notifications
User	Controls
Handling	State	Changes
Duration	and	Timers
Shuffle	and	Repeat

Media	Picker
Programmatic	Picker
Playing	a	Random	Song
Predicate	Song	Matching

Summary

7	Implementing	HealthKit
Introduction	to	HealthKit
Introduction	to	Health.app
The	Sample	App
Adding	HealthKit	to	a	Project
Requesting	Permission	for	Health	Data

Reading	Characteristic	HealthKit	Data
Reading	and	Writing	Basic	HealthKit	Data
Reading	and	Writing	Complex	HealthKit	Data
Summary

8	Implementing	HomeKit
The	Sample	App
Introduction	to	HomeKit
Setting	Up	HomeKit	Components
Developer	Account	Setup
Enabling	HomeKit	Capability
Home	Manager
Home
Rooms	and	Zones
Accessories
Services	and	Service	Groups
Actions	and	Action	Sets

Testing	with	the	HomeKit	Accessory	Simulator
Scheduling	Actions	with	Triggers
Summary

9	Working	with	and	Parsing	JSON
JSON
Benefits	of	Using	JSON
JSON	Resources

The	Sample	App
Accessing	the	Server
Getting	JSON	from	the	Server
Building	the	Request
Inspecting	the	Response
Parsing	JSON
Displaying	the	Data

Posting	a	Message
Encoding	JSON
Sending	JSON	to	the	Server

Summary

10	Notifications
Differences	Between	Local	and	Push	Notifications

The	Sample	App
App	Setup
Creating	Development	Push	SSL	Certificate
Development	Provisioning	Profile
Custom	Sound	Preparation
Registering	for	Notifications
Scheduling	Local	Notifications
Receiving	Notifications
Push	Notification	Server
Sending	the	Push	Notifications
Handling	APNs	Feedback
Summary

11	Cloud	Persistence	with	CloudKit
CloudKit	Basics
The	Sample	App
Setting	Up	a	CloudKit	Project
Account	Setup
Enabling	iCloud	Capabilities

CloudKit	Concepts
Containers
Databases
Records
Record	Zones
Record	Identifiers
Assets

CloudKit	Basic	Operations
Fetching	Records
Create	and	Save	a	Record
Update	and	Save	a	Record

Subscriptions	and	Push
Push	Setup
Subscribing	to	Data	Changes

User	Discovery	and	Management
Managing	Data	in	the	Dashboard
Summary

12	Extensions
Types	of	Extensions

Today
Share
Action
Photo	Editing
Document	Provider
Custom	Keyboard

Understanding	Extensions
API	Limitations
Creating	Extensions
Today	Extension
Sharing	Code	and	Information	between	Host	App	and	Extension
Apple	Watch	Extension
Summary

13	Handoff
The	Sample	App
Handoff	Basics
Implementing	Handoff
Creating	the	User	Activity
Continuing	an	Activity

Implementing	Handoff	in	Document-Based	Apps
Summary

14	AirPrint
AirPrint	Printers
Testing	for	AirPrint
Printing	Text
Print	Info
Setting	Page	Range
UISimpleTextPrintFormatter
Error	Handling
Starting	the	Print	Job
Printer	Simulator	Feedback

Print	Center
UIPrintInteractionControllerDelegate

Printing	Rendered	HTML
Printing	PDFs
Summary

15	Getting	Up	and	Running	with	Core	Data
Deciding	on	Core	Data
Sample	App
Starting	a	Core	Data	Project
Core	Data	Environment

Building	Your	Managed	Object	Model
Creating	an	Entity
Adding	Attributes
Establishing	Relationships
Custom	Managed	Object	Subclasses

Setting	Up	Default	Data
Inserting	New	Managed	Objects
Other	Default	Data	Setup	Techniques

Displaying	Your	Managed	Objects
Creating	Your	Fetch	Request
Fetching	by	Object	ID
Displaying	Your	Object	Data
Using	Predicates

Introducing	the	Fetched	Results	Controller
Preparing	the	Fetched	Results	Controller
Integrating	Table	View	and	Fetched	Results	Controller
Responding	to	Core	Data	Changes

Adding,	Editing,	and	Removing	Managed	Objects
Inserting	a	New	Managed	Object
Removing	a	Managed	Object
Editing	an	Existing	Managed	Object
Saving	and	Rolling	Back	Your	Changes

Summary

16	Integrating	Twitter	and	Facebook	Using	Social	Framework
The	Sample	App
Logging	In
Using	SLComposeViewController
Posting	with	a	Custom	Interface
Posting	to	Twitter
Posting	to	Facebook
Creating	a	Facebook	App

Accessing	User	Timelines

Twitter
Facebook

Summary

17	Working	with	Background	Tasks
The	Sample	App
Checking	for	Background	Availability
Finishing	a	Task	in	the	Background
Background	Task	Identifier
Expiration	Handler
Completing	the	Background	Task

Implementing	Background	Activities
Types	of	Background	Activities
Playing	Music	in	the	Background

Summary

18	Grand	Central	Dispatch	for	Performance
The	Sample	App
Introduction	to	Queues
Running	on	the	Main	Thread
Running	in	the	Background
Running	in	an	Operation	Queue
Concurrent	Operations
Serial	Operations
Canceling	Operations
Custom	Operations

Running	in	a	Dispatch	Queue
Concurrent	Dispatch	Queues
Serial	Dispatch	Queues

Summary

19	Using	Keychain	and	Touch	ID	to	Secure	and	Access	Data
The	Sample	App
Setting	Up	and	Using	Keychain
Setting	Up	a	New	KeychainItemWrapper
Storing	and	Retrieving	the	PIN
Keychain	Attribute	Keys
Securing	a	Dictionary
Resetting	a	Keychain	Item

Sharing	a	Keychain	Between	Apps
Keychain	Error	Codes

Implementing	Touch	ID
Summary

20	Working	with	Images	and	Filters
The	Sample	App
Basic	Image	Data	and	Display
Instantiating	an	Image
Displaying	an	Image
Using	the	Image	Picker
Resizing	an	Image

Core	Image	Filters
Filter	Categories	and	Filters
Filter	Attributes
Initializing	an	Image
Rendering	a	Filtered	Image
Chaining	Filters

Feature	Detection
Setting	Up	a	Face	Detector
Processing	Face	Features

Summary

21	Collection	Views
The	Sample	App
Introducing	Collection	Views
Setting	Up	a	Collection	View
Implementing	the	Collection	View	Data	Source	Methods
Implementing	the	Collection	View	Delegate	Methods

Customizing	Collection	View	and	Flow	Layout
Basic	Customizations
Decoration	Views

Creating	Custom	Layouts
Collection	View	Animations
Collection	View	Layout	Changes
Collection	View	Layout	Animations
Collection	View	Change	Animations

Summary

22	Introduction	to	TextKit

The	Sample	App
Introducing	NSLayoutManager
Detecting	Links	Dynamically
Detecting	Hits
Exclusion	Paths
Content	Specific	Highlighting
Changing	Font	Settings	with	Dynamic	Type
Summary

23	Gesture	Recognizers
Types	of	Gesture	Recognizers
Basic	Gesture	Recognizer	Usage
Introduction	to	the	Sample	App
Tap	Recognizer	in	Action
Pinch	Recognizer	in	Action

Multiple	Recognizers	for	a	View
Gesture	Recognizers:	Under	the	Hood
Multiple	Recognizers	for	a	View:	Redux
Requiring	Gesture	Recognizer	Failures

Custom	UIGestureRecognizer	Subclasses
Summary

24	Accessing	the	Photo	Library
The	Sample	App
The	Photos	Framework
Using	Asset	Collections	and	Assets
Permissions
Asset	Collections
Assets

Changes	in	the	Photo	Library
Asset	Collection	Changes
Asset	Changes

Dealing	with	Photo	Stream
Summary

25	Passbook	and	PassKit
The	Sample	App
Designing	the	Pass
Pass	Types

Pass	Layout—Boarding	Pass
Pass	Layout—Coupon
Pass	Layout—Event
Pass	Layout—Generic
Pass	Layout—Store	Card
Pass	Presentation

Building	the	Pass
Basic	Pass	Identification
Pass	Relevance	Information
Barcode	Identification
Pass	Visual	Appearance	Information
Pass	Fields

Signing	and	Packaging	the	Pass
Creating	the	Pass	Type	ID
Creating	the	Pass	Signing	Certificate
Creating	the	Manifest
Signing	and	Packaging	the	Pass
Testing	the	Pass
Interacting	with	Passes	in	an	App

Updating	Passes	Automatically
Summary

26	Debugging	and	Instruments
Introduction	to	Debugging
The	First	Computer	Bug
Debugging	Basics	with	Xcode

Breakpoints
Customizing	Breakpoints
Symbolic	and	Exception	Breakpoints
Breakpoint	Scope

Working	with	the	Debugger
Instruments
The	Instruments	Interface
Exploring	Instruments:	The	Time	Profiler
Exploring	Instruments:	Leaks
Going	Further	with	Instruments

Summary

Index

Foreword

I	have	been	working	with	the	iPhone	SDK	(now	iOS	SDK)	since	the	first	beta	released	in	2008.	At	the
time,	I	was	focused	on	writing	desktop	apps	for	the	Mac	and	hadn’t	thought	much	about	mobile	app
development.
If	you	chose	to	be	an	early	adopter,	you	were	on	your	own.	In	typical	Apple	fashion,	the
documentation	was	sparse,	and	since	access	to	the	SDK	required	an	NDA—and,	apparently,	a	secret
decoder	ring—you	were	on	your	own.	You	couldn’t	search	Google	or	turn	to	StackOverflow	for
help,	and	there	sure	as	hell	weren’t	any	books	out	yet	on	the	SDK.
In	the	seven	years	(yes,	it	really	has	been	only	seven	years)	since	Apple	unleashed	the	original	iPhone
on	the	world,	we’ve	come	a	long	way.	The	iPhone	SDK	is	now	the	iOS	SDK.	There	are	dozens	of
books	and	blogs	and	podcasts	and	conferences	on	iOS	development.	And	ever	since	2009,	WWDC
has	been	practically	impossible	to	get	into,	making	it	even	harder	for	developers—old	and	new—to
learn	about	the	latest	features	coming	to	the	platform.	For	iOS	developers,	there	is	so	much	more	to
learn.
One	of	the	biggest	challenges	I	have	as	an	iOS	developer	is	keeping	on	top	of	all	the	components	and
frameworks	available	in	the	kit.	The	iOS	HIG	should	help	us	with	that,	but	it	doesn’t	go	far	enough—
deep	enough.	Sure,	now	I	can	find	some	answers	by	searching	Google	or	combing	through
StackOverflow;	but,	more	often	than	not,	those	answers	only	explain	the	how	and	rarely	the	why,	and
they	never	provide	the	details	you	really	need.
And	this	is	what	Kyle	and	Joe	have	done	with	this	book—they’re	providing	the	detail	needed	so	you
can	fully	understand	the	key	frameworks	that	make	up	the	iOS	SDK.
I’ve	had	the	pleasure	of	knowing	Kyle	and	Joe	for	a	number	of	years.	They	are	two	of	the	brightest
developers	I	have	ever	met.	They	have	each	written	some	amazing	apps	over	the	years,	and	they
continuously	contribute	to	the	iOS	development	community	by	sharing	their	knowledge—speaking	at
conferences	and	writing	other	books	on	iOS	development.	If	you	have	a	question	about	how	to	do
something	in	iOS,	chances	are	good	that	Kyle	and	Joe	have	the	answer	for	you.
But	what	makes	these	guys	so	awesome	is	not	just	their	encyclopedic	knowledge	of	iOS,	but	their
willingness	to	share	what	they	know	with	everyone	they	meet.	Kyle	and	Joe	don’t	have	competitors,
they	have	friends.
Kyle	and	Joe’s	in-depth	knowledge	of	the	iOS	SDK	comes	through	in	this	book.	It’s	one	of	the	things
I	like	about	this	book.	It	dives	into	the	details	for	each	component	covered	at	a	level	that	you	won’t
always	find	when	searching	online.
I	also	like	the	way	the	book	is	structured.	This	is	not	something	that	you’ll	read	cover	to	cover.
Instead,	you’ll	pick	up	the	book	because	you	need	to	learn	how	to	implement	a	collection	view	or	sort
out	some	aspect	of	running	a	task	in	a	background	thread	that	you	can’t	quite	wrangle.	You’ll	pick	up
the	book	when	you	need	it,	find	the	solution,	implement	it	in	your	own	code,	and	then	toss	the	book
back	on	the	floor	until	you	need	it	again.	This	is	what	makes	Mastering	iOS	Frameworks	an	essential
resource	for	any	iOS	developer—regardless	of	your	experience	level.	You	might	think	you’re	a
master	with	Core	Location	and	MapKit,	but	I	reckon	you’ll	find	something	here	that	you	never	knew
before.
Kyle	and	Joe	don’t	come	with	egos.	They	don’t	brag.	And	they	sure	don’t	act	like	they	are	better	than
any	other	developer	in	the	room.	They	instill	the	very	spirit	that	has	made	the	Mac	and	iOS	developer
community	one	of	the	friendliest,	most	helpful	in	our	industry,	and	this	book	is	another	example	of

their	eagerness	to	share	their	knowledge.
This	book,	just	like	the	seminal	works	from	Mark	and	LaMarche	or	Sadun,	will	always	be	within
arm’s	reach	of	my	desk.	This	is	the	book	I	wish	I	had	when	I	first	started	developing	iOS	apps	in	2008.
Lucky	you,	it’s	here	now.
—Kirby	Turner
Chief	Code	Monkey	at	White	Peak	Software,	author	of	Learning	iPad	Programming:	A	Hands-On
Guide	to	Building	iPad	Apps,	Second	Edition	(Addison-Wesley	Professional),	and	Cocoa	developer
community	organizer	and	conference	junkie

Preface

Welcome	to	Mastering	iOS	Frameworks:	Beyond	the	Basics!
There	are	hundreds	of	“getting	started	with	iOS”	books	available	to	choose	from,	and	there	are
dozens	of	advanced	books	in	specific	topics,	such	as	Core	Data	or	Security.	There	was,	however,	a
disturbing	lack	of	books	that	would	bridge	the	gap	between	beginner	and	advanced	niche	topics.
This	publication	aims	to	provide	development	information	on	the	intermediate-to-advanced	topics
that	are	otherwise	not	worthy	of	standalone	books.	It’s	not	that	the	topics	are	uninteresting	or
lackluster;	it’s	that	they	are	not	large	enough	topics.	From	topics	such	as	working	with	JSON	to
accessing	photo	libraries,	these	are	frameworks	that	professional	iOS	developers	use	every	day	but
are	not	typically	covered	elsewhere.
Additionally,	several	advanced	topics	are	covered	to	the	level	that	many	developers	need	in	order	to
just	get	started.	Picking	up	a	500-page	Core	Data	book	is	intimidating,	whereas	Chapter	15	of	this
book	provides	a	very	quick	and	easy	way	to	get	started	with	Core	Data.	Additional	introductory
chapters	are	provided	for	debugging	and	instruments,	TextKit,	HomeKit,	HealthKit,	and	CloudKit.
Topics	such	as	Game	Center	leaderboards	and	achievements,	AirPrint,	music	libraries,	Address
Book,	and	Passbook	are	covered	in	their	entirety.	Whether	you	just	finished	your	first	iOS	project	or
you	are	an	experienced	developer,	this	book	has	something	for	you.
The	chapters	have	all	been	updated	to	work	with	iOS	8.	Please	let	us	know	if	you	encounter	issues	and
we	will	release	updates	and	corrections.
If	you	have	suggestions,	bug	fixes,	corrections,	or	anything	else	you’d	like	to	contribute	to	a	future
edition,	please	contact	us	at	mastering.ios.frameworks@gmail.com.	We	are	always	interested	in
hearing	what	would	make	this	book	better	and	are	very	excited	to	continue	refining	it.
—Kyle	Richter	and	Joe	Keeley

Prerequisites
Every	effort	has	been	made	to	keep	the	examples	and	explanations	simple	and	easy	to	digest;
however,	this	is	to	be	considered	an	intermediate	to	advanced	book.	To	be	successful	with	it,	you
should	have	a	basic	understanding	of	iOS	development,	Objective-C,	and	C.	Familiarity	with	the	tools
such	as	Xcode,	Developer	Portal,	iTunes	Connect,	and	Instruments	is	also	assumed.	Refer	to
Programming	in	Objective-C,	by	Stephen	G.	Kochan,	and	Learning	iOS	Development,	by	Maurice
Sharp,	Rod	Strougo,	and	Erica	Sadun,	for	basic	Objective-C	and	iOS	skills.

What	You’ll	Need
Although	you	can	develop	iOS	apps	in	the	iOS	simulator,	it	is	recommended	that	you	have	at	least	one
iOS	device	available	for	testing:

	Apple	iOS	Developer	Account:	The	latest	version	of	the	iOS	developer	tools	including	Xcode
and	the	iOS	SDKs	can	be	downloaded	from	Apple’s	Developer	Portal
(http://developer.apple.com/ios).	To	ship	an	app	to	the	App	Store	or	to	install	and	test	on	a
personal	device,	you	will	also	need	a	paid	developer	account	at	$99	per	year.
	Macintosh	Computer:	To	develop	for	iOS	and	run	Xcode,	you	will	need	a	modern	Mac
computer	capable	of	running	the	latest	release	of	OS	X.
	Internet	Connection:	Many	features	of	iOS	development	require	a	constant	Internet	connection

mailto:mastering.ios.frameworks@gmail.com
http://developer.apple.com/ios

for	your	Mac	as	well	as	for	the	device	you	are	building	against.

How	This	Book	Is	Organized
With	few	exceptions	(Game	Center	and	Core	Data),	each	chapter	stands	on	its	own.	The	book	can	be
read	cover	to	cover	but	any	topic	can	be	skipped	to	when	you	find	a	need	for	that	technology;	we
wrote	it	with	the	goal	of	being	a	quick	reference	for	many	common	iOS	development	tasks.
Here	is	a	brief	overview	of	the	chapters	you	will	encounter:

	Chapter	1,	“UIKit	Dynamics”:	iOS	7	introduced	UI	Kit	Dynamics	to	add	physics-like
animation	and	behaviors	to	UIViews.	You	will	learn	how	to	add	dynamic	animations,	physical
properties,	and	behaviors	to	standard	objects.	Seven	types	of	behaviors	are	demonstrated	in
increasing	difficulty	from	gravity	to	item	properties.
	Chapter	2,	“Core	Location,	MapKit,	and	Geofencing”:	iOS	6	introduced	new,	Apple-
provided	maps	and	map	data.	This	chapter	covers	how	to	interact	with	Core	Location	to
determine	the	device’s	location,	how	to	display	maps	in	an	app,	and	how	to	customize	the	map
display	with	annotations,	overlays,	and	callouts.	It	also	covers	how	to	set	up	regional
monitoring	(or	geofencing)	to	notify	the	app	when	the	device	has	entered	or	exited	a	region.
	Chapter	3,	“Leaderboards”:	Game	Center	leaderboards	provide	an	easy	way	to	add	social
aspects	to	your	iOS	game	or	app.	This	chapter	introduces	a	fully	featured	iPad	game	called
Whack-a-Cac,	which	walks	the	reader	through	adding	leaderboard	support.	Users	will	learn	all
the	required	steps	necessary	for	implementing	Game	Center	leaderboards,	as	well	as	get	a	head
start	on	implementing	leaderboards	with	a	custom	interface.
	Chapter	4,	“Achievements”:	This	chapter	continues	on	the	Whack-a-Cac	game	introduced	in
Chapter	3.	You	will	learn	how	to	implement	Game	Center	achievements	in	a	fully	featured	iPad
game.	From	working	with	iTunes	Connect	to	displaying	achievement	progress,	this	chapter
provides	all	the	information	you	need	to	quickly	get	up	and	running	with	achievements.
	Chapter	5,	“Getting	Started	with	Address	Book”:	Integrating	a	user ’s	contact	information	is
a	critical	step	for	many	modern	projects.	Address	Book	framework	is	one	of	the	oldest
available	on	iOS;	in	this	chapter	you’ll	learn	how	to	interact	with	that	framework.	You	will	learn
how	to	use	the	people	picker,	how	to	access	the	raw	address	book	data,	and	how	to	modify	and
save	that	data.
	Chapter	6,	“Working	with	Music	Libraries”:	This	chapter	covers	how	to	access	the	user ’s
music	collection	from	a	custom	app,	including	how	to	see	informational	data	about	the	music	in
the	collection,	and	how	to	select	and	play	music	from	the	collection.
	Chapter	7,	“Implementing	HealthKit”:	HealthKit	provides	a	centralized	location	for	health
information	that	can	be	shared	among	apps.	This	chapter	explains	how	to	get	started	with
HealthKit,	how	to	access	information	available	in	HealthKit,	and	how	to	read	and	write	various
types	of	health	data.
	Chapter	8,	“Implementing	HomeKit”:	This	chapter	explains	how	to	get	started	using
HomeKit,	which	enables	iOS	devices	to	communicate	with	home	automation	technology.	It
explains	how	to	set	up	a	home	in	HomeKit,	and	how	to	discover,	set	up,	and	interact	with	home
automation	devices	such	as	lights,	locks,	and	garage	door	openers.
	Chapter	9,	“Working	with	and	Parsing	JSON”:	JSON,	or	JavaScript	Object	Notation,	is	a
lightweight	way	to	pass	data	back	and	forth	between	different	computing	platforms	and
architectures.	As	such,	it	has	become	the	preferred	way	for	iOS	client	apps	to	communicate

complex	sets	of	data	with	servers.	This	chapter	describes	how	to	create	JSON	from	existing
objects,	and	how	to	parse	JSON	into	iOS	objects.
	Chapter	10,	“Notifications”:	Two	types	of	notifications	are	supported	by	iOS:	local
notifications,	which	function	on	the	device	with	no	network	required,	and	remote	notifications,
which	require	a	server	to	send	a	push	notification	through	Apple’s	Push	Notification	Service	to
the	device	over	the	network.	This	chapter	explains	the	differences	between	the	two	types	of
notifications,	and	demonstrates	how	to	set	them	up	and	get	notifications	working	in	an	app.
	Chapter	11,	“Cloud	Persistence	with	CloudKit”:	CloudKit	offers	public	and	private	remote
data	storage,	with	notifications	for	changes	in	data.	This	chapter	explains	the	basic	CloudKit
concepts,	and	illustrates	how	to	build	an	app	that	uses	CloudKit	for	storing	and	syncing	both
private	and	public	data	remotely.
	Chapter	12,	“Extensions”:	Extensions	provide	a	way	to	access	an	app’s	functionality	outside
the	app’s	sandbox.	This	chapter	explains	the	different	types	of	extensions	that	are	available,	and
illustrates	how	to	create	a	Today	extension	and	an	Apple	Watch	extension.
	Chapter	13,	“Handoff”:	Handoff	is	one	of	the	Continuity	features	introduced	with	iOS	8	and
Yosemite.	It	enables	the	user	to	switch	between	devices	and	have	an	activity	seamlessly	move
from	one	device	to	another.	This	chapter	explains	the	basic	Handoff	mechanisms,	and	how	to
implement	Handoff	for	developer-defined	activities	and	document-based	activities.
	Chapter	14,	“AirPrint”:	An	often-underappreciated	feature	of	the	iOS,	AirPrint	enables	the
user	to	print	documents	and	media	to	any	wireless-enabled	AirPrint-compatible	printer.	Learn
how	to	quickly	and	effortlessly	add	AirPrint	support	to	your	apps.	By	the	end	of	this	chapter	you
will	be	fully	equipped	to	enable	users	to	print	views,	images,	PDFs,	and	even	rendered	HTML.
	Chapter	15,	“Getting	Up	and	Running	with	Core	Data”:	This	chapter	demonstrates	how	to
set	up	an	app	to	use	Core	Data,	how	to	set	up	a	Core	Data	data	model,	and	how	to	implement
many	of	the	most	commonly	used	Core	Data	tools	in	an	app.	If	you	want	to	start	using	Core
Data	without	digging	through	a	500-page	book,	this	chapter	is	for	you.
	Chapter	16,	“Integrating	Twitter	and	Facebook	Using	Social	Framework”:	Social
integration	is	the	future	of	computing,	and	it	is	accepted	that	all	apps	have	social	features	built
in.	This	chapter	walks	you	through	adding	support	for	Facebook	and	Twitter	to	your	app	using
the	Social	Framework.	You	will	learn	how	to	use	the	built-in	composer	to	create	new	Twitter
and	Facebook	posts.	You	will	also	learn	how	to	pull	down	feed	information	from	both	services
and	how	to	parse	and	interact	with	that	data.	Finally,	using	the	frameworks	to	send	messages
from	custom	user	interfaces	is	covered.	By	the	end	of	this	chapter,	you	will	have	a	strong
background	in	Social	Framework	as	well	as	working	with	Twitter	and	Facebook	to	add	social
aspects	to	your	apps.
	Chapter	17,	“Working	with	Background	Tasks”:	Being	able	to	perform	tasks	when	the	app	is
not	the	foreground	app	was	a	big	new	feature	introduced	in	iOS	4,	and	more	capabilities	have
been	added	since.	This	chapter	explains	how	to	perform	tasks	in	the	background	after	an	app	has
moved	from	the	foreground,	and	how	to	perform	specific	background	activities	allowed	by
iOS.
	Chapter	18,	“Grand	Central	Dispatch	for	Performance”:	Performing	resource-intensive
activities	on	the	main	thread	can	make	an	app’s	performance	suffer	with	stutters	and	lags.	This
chapter	explains	several	techniques	provided	by	Grand	Central	Dispatch	for	doing	the	heavy
lifting	concurrently	without	affecting	the	performance	of	the	main	thread.

	Chapter	19,	“Using	Keychain	and	TouchID	to	Secure	and	Access	Data”:	Securing	user	data
is	important	and	an	often-overlooked	stage	of	app	development.	Even	large	public	companies
have	been	called	out	in	the	news	over	the	past	few	years	for	storing	user	credit	card	info	and
passwords	in	plain	text.	This	chapter	provides	an	introduction	to	not	only	using	the	Keychain	to
secure	user	data	but	developmental	security	as	a	whole.	By	the	end	of	the	chapter,	you	will	be
able	to	use	Keychain	to	secure	any	type	of	small	data	on	users’	devices	and	provide	them	with
peace	of	mind.
	Chapter	20,	“Working	with	Images	and	Filters”:	This	chapter	covers	some	basic	image-
handling	techniques,	and	then	dives	into	some	advanced	Core	Image	techniques	to	apply	filters
to	images.	The	sample	app	provides	a	way	to	explore	all	the	options	that	Core	Image	provides
and	build	filter	chains	interactively	in	real	time.
	Chapter	21,	“Collection	Views”:	Collection	views,	a	powerful	new	API	introduced	in	iOS	6,
give	the	developer	flexible	tools	for	laying	out	scrollable,	cell-based	content.	In	addition	to	new
content	layout	options,	collection	views	provide	exciting	new	animation	capabilities,	both	for
animating	content	in	and	out	of	a	collection	view	and	for	switching	between	collection	view
layouts.	The	sample	app	demonstrates	setting	up	a	basic	collection	view,	a	customized	flow
layout	collection	view,	and	a	highly	custom,	nonlinear	collection	view	layout.
	Chapter	22,	“Introduction	to	TextKit”:	iOS	7	introduced	TextKit	as	an	easier-to-use	and
greatly	expanded	update	to	Core	Text.	TextKit	enables	developers	to	provide	rich	and
interactive	text	formatting	to	their	apps.	Although	TextKit	is	a	very	large	subject,	this	chapter
provides	the	basic	groundwork	to	accomplish	several	common	tasks,	from	adding	text
wrapping	around	an	image	to	inline	custom	font	attributes.	By	the	end	of	this	chapter,	you	will
have	a	strong	background	in	TextKit	and	have	the	groundwork	laid	to	explore	it	more	in	depth.
	Chapter	23,	“Gesture	Recognizers”:	This	chapter	explains	how	to	make	use	of	gesture
recognizers	in	an	app.	Rather	than	dealing	with	and	interpreting	touch	data	directly,	gesture
recognizers	provide	a	simple	and	clean	way	to	recognize	common	gestures	and	respond	to
them.	In	addition,	custom	gestures	can	be	defined	and	recognized	using	gesture	recognizers.
	Chapter	24,	“Accessing	the	Photo	Library”:	The	iPhone	has	actually	become	a	very	popular
camera,	as	evidenced	by	the	number	of	photos	that	people	upload	to	sites	such	as	Flickr.	This
chapter	explains	how	to	access	the	user ’s	photo	library,	and	handle	photos	and	videos	in	a
custom	app.	The	sample	app	demonstrates	building	some	of	the	concepts	from	the	iOS	8
version	of	Photos.app.
	Chapter	25,	“Passbook	and	PassKit”:	With	iOS	6,	Apple	introduced	Passbook,	a	standalone
app	that	can	store	“passes,”	or	such	things	as	plane	tickets,	coupons,	loyalty	cards,	or	concert
tickets.	This	chapter	explains	how	to	set	up	passes,	how	to	create	and	distribute	them,	and	how	to
interact	with	them	in	an	app.
	Chapter	26,	“Debugging	and	Instruments”:	One	of	the	most	important	aspects	of
development	is	to	be	able	to	debug	and	profile	your	software.	Rarely	is	this	topic	covered	even
in	a	cursory	fashion.	This	chapter	introduces	you	to	debugging	in	Xcode	and	performance
analysis	using	Instruments.	Starting	with	a	brief	history	of	computer	bugs,	the	chapter	walks	you
through	common	debugging	tips	and	tricks.	Topics	of	breakpoints	and	debugger	commands	are
briefly	covered,	and	the	chapter	concludes	with	a	look	into	profiling	apps	using	the	Time
Profiler	and	memory	analysis	using	Leaks.	By	the	end	of	this	chapter,	you	will	have	a	clear
foundation	on	how	to	troubleshoot	and	debug	iOS	apps	on	both	the	simulator	and	the	device.

About	the	Sample	Code
Each	chapter	of	this	book	is	designed	to	stand	by	itself;	therefore,	each	chapter	with	the	exception	of
Chapter	26,	“Debugging	and	Instruments,”	has	its	own	sample	project.	Chapter	3,	“Leaderboards,”
and	Chapter	4,	“Achievements,”	share	a	base	sample	project,	but	each	expands	on	that	base	project	in
unique	ways.	Each	chapter	provides	a	brief	introduction	to	the	sample	project	and	walks	the	reader
through	any	complex	sections	of	the	sample	project	not	relating	directly	to	the	material	in	the	chapter.
Every	effort	has	been	made	to	create	simple-to-understand	sample	code,	which	often	results	in	code
that	is	otherwise	not	well	optimized	or	not	specifically	the	best	way	of	approaching	a	problem.	In
these	circumstances	the	chapter	denotes	where	things	are	being	done	inappropriately	for	a	real-world
app.	The	sample	projects	are	not	designed	to	be	standalone	or	finished	apps;	they	are	designed	to
demonstrate	the	functionality	being	discussed	in	the	chapter.	The	sample	projects	are	generic	with
intention;	the	reader	should	be	able	to	focus	on	the	material	in	the	chapter	and	not	the	unrelated
sample	code	materials.	A	considerable	amount	of	work	has	been	put	into	removing	unnecessary
components	from	the	sample	code	and	condensing	subjects	into	as	few	lines	as	possible.
Many	readers	will	be	surprised	to	see	that	the	sample	code	in	the	projects	is	built	with	Objective-C
instead	of	Swift;	this	is	by	design	as	well.	Since	all	the	APIs	illustrated	are	built	with	Objective-C,	it	is
easier	to	interact	with	them	using	Objective-C,	rather	than	add	an	additional	layer	of	complexity	by
using	Swift.	The	concepts	illustrated	are	easily	portable	to	Swift	after	the	reader	is	comfortable	with
developing	in	Swift.	The	sample	code	is	prefixed	with	“ICF”	and	most,	but	not	all,	sample	projects	are
named	after	the	chapter	title.
When	you’re	working	with	the	Game	Center	chapters,	the	bundle	ID	is	linked	to	a	real	app,	which	is
in	our	personal	Apple	account;	this	ensures	that	examples	continue	to	work.	It	also	has	the	small
additional	benefit	of	populating	multiple	users’	data	as	developers	interact	with	the	sample	project.
For	chapters	dealing	with	iCloud,	Push	Notifications,	and	Passbook,	the	setup	required	for	the	apps	is
thoroughly	described	in	the	chapter,	and	must	be	completed	using	a	new	App	ID	in	the	reader ’s
developer	account	in	order	to	work.

Getting	the	Sample	Code
You	will	be	able	to	find	the	most	up-to-date	version	of	the	source	code	at	any	moment	at
https://github.com/dfsw/icf,	in	the	Mastering	folder.	The	code	is	publicly	available	and	open	source.
Each	chapter	is	broken	down	into	its	own	zip	file	containing	an	Xcode	project;	there	are	no	chapters
with	multiple	projects.	We	encourage	readers	to	provide	feedback	on	the	source	code	and	make
recommendations	so	that	we	can	continue	to	refine	and	improve	it	long	after	this	book	has	gone	to
print.

Installing	Git	and	Working	with	GitHub
Git	is	a	version	control	system	that	has	been	growing	in	popularity	for	several	years.	To	clone	and
work	with	the	code	on	GitHub,	you	will	want	to	first	install	Git	on	your	Mac.	A	command-line
version	Git	is	included	in	the	Xcode	command-line	tool	installation,	or	a	current	installer	for	Git	can
be	found	at	http://git-scm.com/downloads.	Additionally,	there	are	several	GUI	front	ends	for	Git,	even
one	written	by	GitHub,	which	might	be	more	appealing	to	developers	who	avoid	command-line
interfaces.	If	you	do	not	want	to	install	Git,	GitHub	also	allows	for	downloading	the	source	files	as	a
zip.
GitHub	enables	users	to	sign	up	for	a	free	account	at	https://github.com/signup/free.	After	Git	has
been	installed,	from	the	terminal’s	command	line	$git	clone

https://github.com/dfsw/icf
http://git-scm.com/downloads
https://github.com/signup/free

git@github.com:dfsw/icf.git	will	download	a	copy	of	the	source	code	into	the	current
working	directory.	The	sample	code	for	this	version	of	the	book	is	in	the	Mastering	folder.	You	are
welcome	to	fork	and	open	pull	requests	with	the	sample	code	projects.

Contacting	the	Authors
If	you	have	any	comments	or	questions	about	this	book,	please	drop	us	an	e-mail	message	at
mastering.ios.frameworks@gmail.com,	or	on	Twitter	at	@kylerichter	and	@jwkeeley.

mailto:mastering.ios.frameworks@gmail.com

Acknowledgments

This	book	could	not	have	existed	without	a	great	deal	of	effort	from	far	too	many	behind-the-scenes
people;	although	there	are	only	two	authors	on	the	cover,	dozens	of	people	were	responsible	for
bringing	this	book	to	completion.	We	would	like	to	thank	Trina	MacDonald	first	and	foremost;
without	her	leadership	and	her	driving	us	to	meet	deadlines,	we	would	never	have	been	able	to	finish.
The	editors	at	Pearson	have	been	exceptionally	helpful;	their	continual	efforts	show	on	every	page,
from	catching	our	typos	to	pointing	out	technical	concerns.	The	dedicated	work	of	Niklas	Saers,
Olivia	Basegio,	Justin	Williams,	Sheri	Replin,	Elaine	Wiley,	Cheri	Clark,	Chuti	Prasertsith,	and
Gloria	Shurick	made	the	following	pages	possible.
We	would	also	like	to	thank	Jordan	Langille	of	Langille	Design	(http://jordanlangille.com)	for
providing	the	designs	for	the	Whack-a-Cac	game	featured	in	Chapters	3	and	4.	His	efforts	have	made
the	Game	Center	sample	projects	much	more	compelling.
The	considerable	amount	of	time	spent	working	on	this	book	was	shouldered	not	only	by	us	but	also
by	our	families	and	co-workers.	We	would	like	to	thank	everyone	who	surrounds	us	in	our	daily	lives
for	taking	a	considerable	amount	of	work	off	of	our	plates,	as	well	as	understanding	the	demands	that
a	project	like	this	brings.
Finally,	we	would	like	to	thank	the	community	at	large.	All	too	often	we	consulted	developer	forums,
blog	posts,	and	associates	to	ask	questions	or	provide	feedback.	Without	the	hard	efforts	of	everyone
involved	in	the	iOS	community,	this	book	would	not	be	nearly	as	complete.

http://jordanlangille.com

About	the	Authors

Kyle	Richter	is	the	Chief	Executive	Officer	at	MartianCraft,	an	award-winning	Mobile	Development
Studio.	Kyle	began	developing	software	in	the	early	1990s	and	has	always	been	dedicated	to	the	Apple
ecosystem.	He	has	authored	and	coauthored	several	books	on	iOS	development,	including	Beginning
iOS	Game	Center	Development,	Beginning	Social	Game	Development,	and	iOS	Components	and
Frameworks.	Between	running	day-to-day	operations	at	MartianCraft,	Kyle	travels	the	world	speaking
on	development	and	entrepreneurship.	He	currently	calls	the	Florida	Keys	home,	where	he	spends	his
time	with	his	border	collie.	He	can	be	found	on	Twitter	at	@kylerichter.
Joe	Keeley	is	a	Partner	and	Lead	Engineer	at	MartianCraft.	Joe	provides	technical	leadership	on	iOS
projects	for	clients,	and	has	led	a	number	of	successful	client	projects	to	completion.	He	has	liked
writing	code	since	first	keying	on	an	Apple	II,	and	has	worked	on	a	wide	variety	of	technology	and
systems	projects	in	his	career.	Joe	has	presented	several	technical	topics	at	iOS	and	Mac	conferences
around	the	U.S.	Joe	lives	in	Denver,	Colorado,	with	his	wife	and	two	daughters,	and	hopes	to	get	back
into	competitive	fencing	again	in	his	spare	time.	He	can	be	reached	on	Twitter	at	@jwkeeley.

1.	UIKit	Dynamics

Apple	introduced	UIKit	Dynamics	with	iOS	7,	which	enables	developers	to	easily	provide	realistic
physics	simulations	that	can	be	applied	to	UIViews.	For	many	years,	developers	have	incorporated
realistic-feeling	effects	into	sections	of	their	apps,	such	as	swipeable	cells	and	pull-to-refresh
animations.	Apple	has	taken	a	big	steps	in	iOS	7	and	iOS	8	to	bring	these	animations	into	the	core	OS,
as	well	as	to	encourage	developers	to	implement	them	at	an	aggressive	rate.
The	UIDynamicItem	protocol,	along	with	the	dynamic	items	that	support	it,	is	a	giant	leap	forward
in	user	experience.	It	is	incredibly	easy	to	add	effects	such	as	gravity,	collisions,	springs,	and	snaps	to
interfaces	to	provide	a	polished	feel	to	an	app.	The	APIs	introduced	for	dynamic	items	are	simple	and
easy	to	implement,	providing	very	low-hanging	fruit	to	increase	the	user	experience	of	an	app.

The	Sample	App
The	sample	app	(shown	in	Figure	1.1)	is	a	basic	table	demoing	the	various	functions	of	UIKit
Dynamics.	Seven	demos	are	presented	in	the	app,	from	gravity	to	properties.	Each	demo	is	covered	in
order	with	a	dedicated	section.	Besides	the	table	view	and	basic	navigation,	the	sample	app	does	not
contain	any	functionality	not	specific	to	UIKit	Dynamics.

Figure	1.1	First	glance	at	the	sample	app	for	UIKit	Dynamics	showing	the	list	of	demos	available.

Although	the	sample	app	will	run	and	perform	in	the	iOS	Simulator	running	iOS	8,	the	best
performance	is	seen	on	physical	devices.	It	is	recommended	that	UIKit	Dynamic	code	be	thoroughly
tested	on	physical	devices	before	shipping.

Note
Having	UIKit	Dynamics	and	autolayout	enabled	on	the	same	view	can	cause	layout	issues.
Often	this	is	presented	as	autolayout	and	UIKit	Dynamics	fighting	over	the	correct
position	of	a	view	and	causing	it	to	jump	around	wildly	and	unpredictably.	If	the	view	is
not	behaving	as	expected,	check	the	autolayout	settings	to	ensure	that	they	are	not	in
conflict.

Introduction	to	UIKit	Dynamics
UIKit	Dynamics	is	a	new	set	of	classes	and	methods	that	was	first	introduced	to	iDevices	starting	with
iOS	7.	In	short,	it	provides	an	easy-to-implement	method	to	improve	the	user	experience	of	apps	by
incorporating	real-world	behaviors	and	characteristics	attached	to	UIViews.	UIKit	Dynamics	is,	in	the
simplest	terms,	a	basic	physics	engine	for	UIKit;	however,	it	is	not	designed	for	game	development
like	most	traditional	physics	engines.	Apple	provides	several	game	frameworks,	such	as	SpriteKit,
that	include	a	build	in	the	physics	engine.
Dynamic	behavior	becomes	active	when	a	new	UIDynamicAnimator	is	created	and	added	to	a
UIView.	Each	animator	item	can	be	customized	with	various	properties	and	behaviors,	such	as
gravity,	collision	detection,	density,	friction,	and	additional	properties	detailed	in	the	following
sections.
There	are	six	additional	classes	that	support	the	customization	of	a	UIDynamicAnimator	item:
UIAttachmentBehavior,	UICollisionBehavior,	UIDynamicItemBehavior,
UIGravityBehavior,	UIPushBehavior,	and	UISnapBehavior.	Each	of	these	items	allows
for	specific	customization	and	will	result	in	realistic	behavior	and	animation	of	the	UIView	to	which
they	are	attached.

Implementing	UIKit	Dynamics
Creating	a	new	animation	and	attaching	it	to	a	view	is	accomplished	using	two	lines	of	code.	In	this
example	self.view	is	now	set	up	to	use	UIKit	Dynamic	behavior.	Each	specific	dynamic	item	must
be	added	to	the	animator	using	the	addBehavior:	method.
Click	here	to	view	code	image

UIDynamicAnimator	*animator	=	[[UIDynamicAnimator	alloc]
initWithReferenceView:self.view];

[animator	addBehavior:aDynamicBehavior];

Each	UIDynamicAnimator	is	independent	and	multiple	animators	can	be	run	at	the	same	time.	For
an	animator	to	continue	to	run,	a	reference	to	it	must	be	kept	valid.	When	all	items	associated	with	an
animator	are	at	rest,	the	animator	is	not	executing	any	calculations	and	will	pause;	however,	best
practices	recommend	removing	unused	animators.

Lessons	from	Game	Developers
Physics	simulations	are	something	that	game	developers	have	been	working	with	for	many
years,	and	some	hard	lessons	have	been	learned.	Now	that	physics	is	spreading	into	the
application	world,	there	are	some	basic	truths	every	developer	can	benefit	from.
When	adding	physics	to	a	game	or	an	app,	do	so	in	small	increments.	Writing	a	dozen
interacting	pieces	and	trying	to	figure	out	where	the	bug	lies	is	next	to	impossible.	The	smaller
the	steps	that	are	taken	toward	the	end	result,	the	easier	the	process	will	be	to	polish	and	debug.
In	the	physical	world	there	are	limits	and	boundaries	often	not	addressed	in	computer
simulations.	In	the	classic	computer	game	Carmageddon,	released	in	1997,	the	physics	were
based	on	an	uncapped	frame	rate.	When	computers	became	faster,	the	frame	rates	increased
significantly,	creating	variables	in	formulas	that	produced	unexpected	results.	When	applying
any	type	of	calculation	into	a	physics	engine,	ensure	that	both	min	and	max	values	are	enforced
and	tested.
Expect	the	unexpected;	when	dealing	with	collisions,	shoving	30	objects	into	an	overlapping
setup,	things	can	go	awry.	UIKit	Dynamics	has	some	great	catches	in	place	to	ensure	that	you
cannot	push	objects	through	boundaries	with	tremendous	applications	of	force,	and	collisions
are	handled	rather	gracefully.	However,	there	will	most	certainly	be	edge	cases	and	bugs	when
you’re	dealing	with	many	objects	with	complex	interactions.	The	more	that	is	going	on	with	a
physics	engine,	the	more	it	needs	to	be	tested	and	debugged;	expect	to	see	the	laws	of	the
universe	toyed	with	in	unexpected	and	unusual	fashions.

Gravity
Gravity	is	arguably	the	easiest	UIDynamicItem	to	implement,	as	well	as	one	of	the	most	practical.
Apple	makes	heavy	use	of	the	gravity	item	in	iOS	8,	and	a	user	does	not	need	to	go	further	than	the
lock	screen	to	interact	with	gravity.	Dragging	up	on	the	camera	icon	from	the	iOS	8	lock	screen	and
releasing	it	under	the	halfway	point	will	drop	the	home	screen	back	into	place	using
UIGravityBehavior.	This	functionality,	even	before	the	introduction	of	UIKit	Dynamics	in	iOS
7,	was	often	cloned	and	implemented	by	hand	using	timers	and	traditional	animations.
The	following	code	snippet	will	set	up	a	gravity	effect	on	frogImageView	that	is	a	subview	of
self.view.	First	a	new	UIDynamicAnimator	is	created	for	the	enclosing	view	that	the	animated
view	will	appear	in,	in	this	example	self.view.	A	new	UIGravityBehavior	object	is	created
and	initialized	with	an	array	of	views	that	should	have	the	gravity	effect	applied	to	them.	The	gravity
behavior	is	then	set;	the	example	will	apply	a	downward	y-axis	force	of	0.1.	When	the	behavior	is
configured,	it	is	added	to	the	UIDynamicAnimator	using	the	addBehavior:	method.
Click	here	to	view	code	image

animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UIGravityBehavior*	gravityBehavior	=	[[UIGravityBehavior	alloc]
initWithItems:@[frogImageView]];

[gravityBeahvior	setXComponent:0.0f	yComponent:0.1f];
[animator	addBehavior:gravityBehavior];

Note
The	dynamic	item	must	be	a	subview	of	the	reference	view;	if	the	item	is	not	a	subview,
the	animator	will	simply	not	provide	any	movement.

UIKit	Dynamics	uses	their	own	physics	system,	jokingly	referred	to	by	Apple	Engineers	as	UIKit
Newtons.	Although	there	is	no	direct	correlation	to	standard	formulas,	Apple	does	provide	a	close
approximation.	A	force	of	1.0	equals	roughly	9.80655	m/s2,	which	is	the	force	of	gravity	on	earth.	To
apply	gravity	roughly	one-tenth	of	that	found	on	earth,	0.1	would	be	used.	Gravity	in	UIKit	Dynamics
does	not	need	to	be	specified	as	only	a	downward	force;	if	a	negative	value	is	provided	for	the
yComponent,	gravity	will	pull	up.	Likewise,	gravity	can	be	specified	for	the	x-axis	in	the	same
fashion.	Items	also	have	a	density	property,	which	is	discussed	in	more	detail	in	the	“Item	Properties”
section.
Running	the	sample	code	for	gravity	results	in	the	imageView	simply	falling	at	roughly	one-tenth
the	rate	of	earth	gravity	(shown	in	Figure	1.2)	and	completely	sliding	off	the	screen.	Because	no
boundaries	or	collisions	are	set,	the	object	isn’t	aware	that	it	hit	something	that	should	cause	it	to	stop
falling,	so	it	falls	in	essence	forever.

Figure	1.2	An	image	view	with	the	force	of	gravity	applied	to	it	falling	down	the	screen	in	the
gravity	example	from	the	sample	app.

Collisions
In	the	preceding	section,	gravity	was	covered;	however,	the	object	that	the	gravity	was	applied	to	fell
through	the	bottom	of	the	screen	and	continued	on	its	way	into	infinity.	This	is	because	no	collision
points	were	defined	and	the	object	had	nothing	to	stop	its	descent.
The	previous	example	will	be	modified	to	add	collision	boundaries	to	the	enclosing	view,	as	well	as
adding	a	secondary	image	object.	The	collision	example	begins	the	same	way	as	gravity;	however,
two	image	views	are	now	used.
Creating	a	UICollisionBehavior	object	is	very	similar	to	creating	a	UIGravityBehavior
object.	The	object	is	initialized	with	the	UIViews	that	should	be	affected,	in	this	case	two
UIImageViews.	In	addition	to	the	views,	collision	behavior	also	needs	to	be	specified	with	one	of
three	possible	values.	UICollisionBehaviorModeItems	will	cause	the	items	to	collide	with
each	other.	UICollisionBehaviorModeBoundaries	will	cause	the	items	not	to	collide	with

each	other	but	to	collide	with	boundaries.	Finally,	UICollisionBehaviorModeEverything
will	cause	the	items	to	collide	both	with	each	other	and	with	the	boundaries.
For	objects	to	interact	with	boundaries,	those	boundaries	first	need	to	be	defined.	The	easiest
boundary	to	define	is	set	through	a	Boolean	property	on	the	UICollisionBehavior	object	called
translatesReferenceBoundsIntoBoundary.	In	the	example	this	will	use	the	bounds	of
self.view.	Boundaries	can	also	be	set	to	follow	an	NSBezierPath	using	the	method
addBoundaryWithIdentifier:forPath:	or	based	on	two	points	using
addBoundaryWithIdentifier:fromPoint:toPoint:.
Click	here	to	view	code	image

animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UIGravityBehavior*	gravityBehavior	=	[[UIGravityBehavior	alloc]
initWithItems:@[frogImageView,	dragonImageView]];

[gravityBehavior	setXComponent:0.0f	yComponent:1.0f];

UICollisionBehavior*	collisionBehavior	=	[[UICollisionBehavior	alloc]
initWithItems:@[frogImageView,	dragonImageView]];

[collisionBehavior	setCollisionMode:	UICollisionBehaviorModeBoundaries];

collisionBehavior.translatesReferenceBoundsIntoBoundary	=	YES;

[animator	addBehavior:gravityBehavior];
[animator	addBehavior:collisionBehavior];

UICollisionBehavior	also	provides	a	delegate	callback	that	conforms	to	the
UICollisionBehaviorDelegate	protocol.
Click	here	to	view	code	image

collisionBehavior.collisionDelegate	=	self;

The	UICollisionBehaviorDelegate	has	four	callback	methods,	two	for	beginning	collisions
and	two	for	ended	collisions.	Each	set	of	callbacks	has	one	method	that	will	identify	the	boundary	hit
and	one	that	will	not.	All	methods	provide	a	reference	to	the	object	that	has	caused	the	callback
method	to	fire.	The	collision	begun	methods	also	provide	a	CGPoint	to	reference	the	exact	area	of
contact.	The	sample	code	will	update	a	label	after	it	has	detected	that	an	object	has	been	hit.
Click	here	to	view	code	image

-(void)collisionBehavior:(UICollisionBehavior	*)behavior	beganContactForItem:
(id<UIDynamicItem>)item	withBoundaryIdentifier:(id<NSCopying>)identifier	atPoint:
(CGPoint)p
{
				if([item	isEqual:frogImageView])
								collisionOneLabel.text	=	@"Frog	Collided";
				if([item	isEqual:dragonImageView])
								collisionTwoLabel.text	=	@"Dragon	Collided";
}

-(void)collisionBehavior:(UICollisionBehavior	*)behavior	endedContactForItem:
(id<UIDynamicItem>)item	withBoundaryIdentifier:(id<NSCopying>)identifier
{

				NSLog(@"Collision	did	end");
}

Attachments
An	attachment	specifies	a	dynamic	connection	between	two	objects.	This	allows	for	the	behavior	and
movement	of	one	object	to	be	tied	to	the	movement	of	another	object.	By	default,
UIAttachmentBehaviors	are	fixed	to	the	center	of	an	object,	although	any	point	can	be	defined
as	the	attachment	point.
The	sample	app	builds	on	the	work	done	in	the	“Collisions”	section.	Once	again,	two	image	views	are
used.	A	boundary	collision	is	created	and	applied	to	the	UIDynamicAnimator.	A	new	CGPoint	is
created	and	set	to	the	reference	point	of	the	center	of	the	frog	image	view.	A	new
UIAttachmentBehavior	object	is	created	and	initialized	using
initWithItem:attachedToAnchor:.	There	are	also	additional	initialization	methods	on
UICollisionBehavior	that	allow	specification	of	points	or	other	objects.	The	collision	and	the
attachment	behavior	are	both	added	to	the	animator	object.
Click	here	to	view	code	image

animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UICollisionBehavior*	collisionBehavior	=	[[UICollisionBehavior	alloc]
initWithItems:@[dragonImageView,	frogImageView]];

[collisionBehavior	setCollisionMode:	UICollisionBehaviorModeBoundaries];

collisionBehavior.translatesReferenceBoundsIntoBoundary	=	YES;

CGPoint	frogCenter	=	CGPointMake(frogImageView.center.x,	frogImageView.center.y);

self.attachmentBehavior	=	[[UIAttachmentBehavior	alloc]	initWithItem:dragonImageView
attachedToAnchor:frogCenter];

[animator	addBehavior:collisionBehavior];
[animator	addBehavior:self.attachmentBehavior];

These	objects	are	now	bound	by	an	invisible	connector	the	length	equal	to	their	initial	distance.	If	the
frog	image	view	moves,	the	dragon	image	view	will	move	with	it	holding	onto	the	center	point.
However,	the	frog	image	view	has	no	capability	to	move;	to	solve	this,	the	sample	app	implements	a
simple	pan	gesture.	As	the	frog	image	view	is	moved	around	the	view,	the	center	point	is	updated	and
the	updated	anchor	point	is	set.
Click	here	to	view	code	image

-(IBAction)handleAttachmentGesture:(UIPanGestureRecognizer*)gesture
{
				CGPoint	gesturePoint	=	[gesture	locationInView:self.view];

				frogImageView.center	=	gesturePoint;
				[self.attachmentBehavior	setAnchorPoint:gesturePoint];
}

During	the	movement,	the	collision	boundaries	are	still	in	effect	and	override	the	desired	behavior	of
the	attachment.	This	can	be	demonstrated	by	pushing	the	dragon	image	into	the	boundaries	of	the
view.
It	is	also	possible	to	update	the	length	property	of	the	attachment	view	in	order	to	change	the	distance
the	attachment	gives	to	the	two	objects.	The	attachment	point	itself	does	not	need	to	be	the	center	of

the	attached	object	and	can	be	updated	to	any	offset	desired	using	the	setAnchorPoint	call.

Springs
Springs	(shown	in	Figure	1.3)	are	an	extension	of	the	behavior	of	attachments.	UIKit	Dynamics
allows	for	additional	properties	to	be	set	on	UIAttachmentBehavior,	frequency	and	damping.

Figure	1.3	A	spring	effect	attaching	the	dragon	image	to	the	frog,	which	demonstrates	using	the
effects	of	gravity	as	well	as	UIAttachmentBehavior	damping	and	frequency.

The	following	section	of	the	sample	app	adds	three	new	UIKit	Dynamic	properties	after	creating	the
UIAttachmentBehavior.	The	first,	setFrequency,	sets	the	oscillation	or	swing	for	the	object.
Next,	setDamping	evens	out	the	animation	peaks.	The	length	is	also	adjusted	for	this	example	from
its	initial	position.	To	better	demonstrate	these	behaviors,	gravity	is	added	to	this	example.
Click	here	to	view	code	image

animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UICollisionBehavior*	collisionBehavior	=	[[UICollisionBehavior	alloc]
initWithItems:@[dragonImageView,	frogImageView]];

UIGravityBehavior*	gravityBeahvior	=	[[UIGravityBehavior	alloc]
initWithItems:@[dragonImageView]];

CGPoint	frogCenter	=	CGPointMake(frogImageView.center.x,	frogImageView.center.y);

self.attachmentBehavior	=	[[UIAttachmentBehavior	alloc]	initWithItem:dragonImageView
attachedToAnchor:frogCenter];

[self.attachmentBehavior	setFrequency:1.0f];
[self.attachmentBehavior	setDamping:0.1f];
[self.attachmentBehavior	setLength:	100.0f];

[collisionBehavior	setCollisionMode:	UICollisionBehaviorModeBoundaries];

collisionBehavior.translatesReferenceBoundsIntoBoundary	=	YES;

[animator	addBehavior:gravityBeahvior];
[animator	addBehavior:collisionBehavior];
[animator	addBehavior:self.attachmentBehavior];

Moving	the	frog	around	the	screen	now	results	in	the	dragon	hanging	100	points	from	the	bottom	and
swinging	from	the	effect	of	the	attachment	and	gravity	combined.

Snap
An	item	can	be	dynamically	moved	to	another	point	in	a	view	with	a	snapping	motion.	Snapping	is	a
very	simple	behavior	to	implement.	In	the	sample	app	the	action	is	tied	to	a	tap	gesture,	and	tapping
anywhere	on	the	screen	causes	the	image	to	jump	to	that	spot.	Each	UISnapBehavior	is	linked	to	a
single	item	at	a	time,	and	during	initialization	an	end	point	where	the	item	should	end	up	is	specified.
A	damping	property	can	also	be	specified	to	affect	the	amount	of	bounce	in	the	snap.
Click	here	to	view	code	image

CGPoint	point	=	[gesture	locationInView:self.view];
animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UISnapBehavior*	snapBehavior	=	[[UISnapBehavior	alloc]	initWithItem:frogImageView
snapToPoint:point];

snapBehavior.damping	=	0.75f;
[animator	addBehavior:snapBehavior];

Push	Forces
UIKit	Dynamics	also	allows	for	the	application	of	force,	referred	to	as	pushing.	UIPushBehavior
is	slightly	more	complex	to	use	than	the	previously	covered	behaviors,	but	it	remains	fairly	easy
compared	to	other	physics	engines.	The	sample	also	uses	a	UICollisionBehavior	object	seen	in
the	previous	demos.	This	ensures	that	the	image	view	stays	on	the	screen	while	push	effects	are
applied.
A	new	UIPushBehavior	behavior	is	created	and	initialized	with	a	reference	to	an	image	view.	For
the	time	being,	the	properties	for	angle	and	magnitude	are	set	to	0.0.
The	sample	app	also	features	a	reference	in	the	form	of	a	small	black	square	in	the	center	of	the
screen.
Click	here	to	view	code	image

animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UICollisionBehavior*	collisionBehavior	=	[[UICollisionBehavior	alloc]
initWithItems:@[dragonImageView]];

collisionBehavior.translatesReferenceBoundsIntoBoundary	=	YES;
[animator	addBehavior:collisionBehavior];

UIPushBehavior	*pushBehavior	=	[[UIPushBehavior	alloc]	initWithItems:@[dragonImageView]
mode:UIPushBehaviorModeInstantaneous];

pushBehavior.angle	=	0.0;
pushBehavior.magnitude	=	0.0;

self.pushBehavior	=	pushBehavior;
[animator	addBehavior:self.pushBehavior];

If	the	project	were	to	be	run	now,	the	image	view	would	stay	fixed	on	the	screen	since	the	push	effect
has	no	values	associated	with	it.	A	new	pan	gesture	is	created	and	in	its	associated	action	a	new	value
for	magnitude	and	angle	are	calculated	and	applied.	In	the	example	an	angle	is	calculated	to	determine
where	the	push	force	is	coming	from.	This	is	based	on	the	angle	from	the	center	reference	point.	A
distance	is	also	calculated	to	apply	increasing	force.	The	result	is	that	tapping	outside	of	the	black
square	will	apply	an	amount	of	force	in	that	direction	to	the	image	view.	The	farther	away	from	the
square,	the	more	force	is	applied.
Click	here	to	view	code	image

CGPoint	point	=	[gesture	locationInView:self.view];

CGPoint	origin	=	CGPointMake(CGRectGetMidX(self.view.bounds),
CGRectGetMidY(self.view.bounds));

CGFloat	distance	=	sqrtf(powf(point.x-origin.x,	2.0)+powf(point.y-	origin.y,	2.0));

CGFloat	angle	=	atan2(point.y-origin.y,	point.x-origin.x);
distance	=	MIN(distance,	100.0f);

[self.pushBehavior	setMagnitude:distance	/	100.0];
[self.pushBehavior	setAngle:angle];

[self.pushBehavior	setActive:YES];

In	addition	to	setting	an	angle	and	a	magnitude	by	hand,	you	can	have	them	be	calculated	and	applied
automatically	by	using	setTargetPoint:forItem:	to	specify	a	target	point.	It	might	also
become	necessary	to	apply	force	to	a	part	of	the	view	that	is	not	the	center,	in	which	case
setXComponent:yComponent:	can	be	used	to	specify	a	CGPoint	to	which	the	focus	of	the
force	will	be	applied.
There	are	two	types	of	push	force	that	can	be	applied,	UIPushBehaviorModeContinuous	and
UIPushBehaviorModeInstantaneous.	With	continuous	push	the	object	accelerates	under	the
force,	whereas	with	instantaneous	the	force	is	immediately	applied.

Item	Properties
Dynamic	items	have	a	number	of	default	properties	preset	on,	and	these	properties	can	be	heavily
configured	to	customize	their	reactions	to	the	physics	engine.	The	sample	app	(shown	in	Figure	1.4)
demonstrates	modifying	these	properties	for	one	image	view	while	leaving	the	defaults	in	place	for
the	other	image	view.

Figure	1.4	Modifying	properties	on	dynamic	items	to	create	a	unique	physics	reaction	applied
under	identical	forces.

To	modify	the	properties	on	an	object,	create	a	new	UIDynamicItemBehavior	initialized	with	the
views	that	the	properties	should	be	applied	to.	The	result	is	that	one	object	acts	like	a	rubber	ball	and
becomes	much	more	prone	to	bounce	when	gravity	and	collisions	are	applied	to	it.	The	properties
and	their	descriptions	are	presented	in	Table	1.1.
Click	here	to	view	code	image

animator	=	[[UIDynamicAnimator	alloc]	initWithReferenceView:self.view];

UIGravityBehavior*	gravityBeahvior	=	[[UIGravityBehavior	alloc]
initWithItems:@[dragonImageView,	frogImageView]];

UICollisionBehavior*	collisionBehavior	=	[[UICollisionBehavior	alloc]
initWithItems:@[dragonImageView,	frogImageView]];

collisionBehavior.translatesReferenceBoundsIntoBoundary	=	YES;

UIDynamicItemBehavior*	propertiesBehavior	=	[[UIDynamicItemBehavior	alloc]
initWithItems:@[frogImageView]];

propertiesBehavior.elasticity	=	1.0f;
propertiesBehavior.allowsRotation	=	NO;
propertiesBehavior.angularResistance	=	0.0f;
propertiesBehavior.density	=	3.0f;
propertiesBehavior.friction	=	0.5f;
propertiesBehavior.resistance	=	0.5f;

[animator	addBehavior:propertiesBehavior];
[animator	addBehavior:gravityBehavior];
[animator	addBehavior:collisionBehavior];

Table	1.1	UIDynamicItem	Properties	and	Their	Descriptions

In-Depth	UIDynamicAnimator	and	UIDynamicAnimatorDelegate
The	beginning	of	this	chapter	introduced	UIDynamicAnimator,	and	the	samples	have	all	used
addBehavior;	however,	this	class	has	much	more	power	that	can	be	leveraged.	In	addition	to
dynamic	effects	being	added,	they	can	also	be	removed	either	one	at	a	time	or	as	a	group	using
removeBehavior:	and	removeAllBehaviors.	To	get	a	list	of	all	behaviors	currently	attached
to	a	UIDynamicAnimator,	the	behaviors	property	can	be	used	to	return	an	array	of	behaviors.
It	is	also	possible	not	only	to	poll	whether	the	animator	is	running	using	the	running	property	but	also
to	determine	the	length	of	time	using	elapsedTime.	The	UIDynamicAnimator	also	has	an
associated	delegate,	UIDynamicAnimatorDelegate.	The	delegate	provides	two	methods	to
handle	pausing	and	resuming.	UIDynamicAnimator	cannot	be	explicitly	paused	by	the	developer.

The	animation	effects	are	automatically	paused	when	all	items	have	come	to	a	rest	and	are	no	longer
moving.	Any	new	effect	that	is	applied	will	cause	the	items	to	begin	moving	and	they	will	be	moved
back	into	the	active	state.
Click	here	to	view	code	image

-	(void)dynamicAnimatorDidPause:(UIDynamicAnimator	*)animator
{
				NSLog(@"Animator	did	pause");
}

-	(void)dynamicAnimatorWillResume:(UIDynamicAnimator	*)animator
{
				NSLog(@"Animator	will	resume");
}

Summary
UIKit	Dynamics	is	an	interesting	topic	not	only	from	a	development	standpoint	but	also	as	to	what	it
means	for	the	direction	of	iOS.	Apple	is	making	a	strong	push	to	bring	software	into	the	real	world.
Interacting	with	an	app	should	feel	like	interacting	with	the	physical	world.	Users	expect	to	see	apps
respond	in	the	same	way	the	world	around	them	does.	This	is	not	new	for	Apple;	one	of	the	main
selling	features	of	the	original	iPhone	was	momentum	scrolling,	and	they	are	now	giving	the	tools	to
add	that	type	of	functionality	to	developers.
This	chapter	covered	the	basics	of	UIKit	Dynamics	and	its	basic	components;	however,	the	real	power
of	these	methods	will	be	in	what	developers	create	with	them.	There	are	endless	possibilities	and
combinations	for	the	effects	that	have	been	described,	and	what	developers	will	create	with	these	tools
will	surprise	even	Apple.	The	one	definite	in	the	redefined	mobile	user	experience	world,	though,	is
that	realistic	physical	reactions	in	software	are	no	longer	optional,	and	users	will	be	expecting	them.

2.	Core	Location,	MapKit,	and	Geofencing

Maps	and	location	information	are	some	of	the	most	useful	features	of	iOS.	They	give	apps	the
capability	to	help	users	find	their	way	with	relevant,	local	information.	Apps	exist	today	to	help	users
find	locations	for	very	specific	needs,	find	roads	and	directions,	and	use	specialized	transportation
services,	and	even	to	bring	an	element	of	fun	to	visiting	the	same	locations	over	and	over.	With	the
addition	of	Apple’s	new	maps,	some	powerful	new	features	have	been	added	that	developers	can	take
advantage	of	to	take	their	apps	to	the	next	level.
iOS	offers	two	frameworks	to	assist	with	locations	and	maps.	The	Core	Location	framework
provides	classes	that	help	the	device	determine	its	location	and	heading,	and	work	with	location-based
information.	The	MapKit	framework	provides	the	user	interface	aspect	of	location	awareness.	It
includes	Apple	Maps,	which	provides	map	views,	satellite	views,	and	hybrid	views	in	normal	2D	and
a	new	3D	view.	MapKit	offers	the	capability	to	manage	map	annotations	like	pins,	and	map	overlays
for	highlighting	locations,	routes,	or	other	features	on	a	map.

The	Sample	App
The	sample	app	for	this	chapter	is	called	FavoritePlaces.	It	enables	users	to	collect	favorite	places	and
view	them	on	a	map,	along	with	the	device’s	current	location.	Users	can	use	Core	Location	to
geocode,	or	find	the	latitude	and	longitude,	for	an	address.	In	addition,	it	can	notify	users	when	they
go	within	a	radius	that	they	set	around	a	favorite	location.	The	app	also	provides	a	special	location
(signified	with	a	green	arrow)	that	can	be	dragged	around	the	map	to	pinpoint	a	desired	next
destination;	when	that	arrow	is	dropped	at	a	location,	it	will	automatically	reverse-geocode	the
location	to	display	the	name	and	address	of	the	location.

Obtaining	User	Location
To	use	Core	Location	to	obtain	the	current	location,	several	steps	need	to	take	place.	The	app	must
obtain	permission	from	the	user	to	access	the	current	location.	In	addition,	the	app	needs	to	ensure
that	location	services	are	enabled	for	the	device	before	attempting	to	acquire	a	location.	After	those
requirements	are	met,	the	app	can	start	a	location	request	and	parse	the	result	for	usage	after	the
location	has	been	provided	by	Core	Location.	This	section	describes	all	these	steps	in	detail.

Requirements	and	Permissions
To	use	Core	Location	in	an	app,	import	CoreLocation	as	needed:

@import	CoreLocation;

To	use	MapKit	in	an	app,	import	MapKit	in	any	classes	that	need	it:
@import	MapKit;

Core	Location	respects	the	privacy	of	the	user,	and	requires	the	user	to	provide	permission	to	have
access	to	the	current	location	of	the	device.	Location	Services	can	be	turned	on	or	off	for	all	apps	on
the	device	in	the	Settings	app	under	the	Privacy	section,	and	can	be	set	to	Always,	While	Using,	or
Never	for	each	app	individually,	as	shown	in	Figure	2.1.

Figure	2.1	Settings	app,	Location	Services	privacy	settings.

Always	indicates	that	the	app	is	allowed	access	to	the	user ’s	location	even	when	the	app	is	not	active.
While	Using	indicates	that	the	app	is	allowed	access	to	the	user ’s	location	only	while	the	app	is	active
in	the	foreground.	“Never”	means	that	no	access	to	the	user ’s	location	is	granted	to	the	app.	To
request	permission	to	use	Location	Services,	the	app	needs	to	ask	CLLocationManager	for	the
correct	type	of	permission	(either	While	Using	or	Always).	For	the	sample	app,	the	location	is	needed
while	the	app	is	active	and	for	geofencing,	so	Always	is	requested:
Click	here	to	view	code	image

[appLocationManager.locationManager	requestAlwaysAuthorization];

If	Location	Services	are	turned	off	for	the	device,	Core	Location	will	prompt	the	user	to	turn	on
Location	Services	in	Settings.app	to	allow	the	app	to	access	the	current	location,	as	shown	in	Figure
2.2.

Figure	2.2	FavoritePlaces	sample	app	location	services	disabled	alert.

If	the	location	manager	has	not	requested	permission	previously	to	get	the	device’s	location,	it	will

present	an	alert	view	to	ask	the	user ’s	permission,	as	shown	in	Figure	2.3.	Note	that	you	must	add	an
entry	in	the	.plist	file	for	the	app	with	some	text	explaining	to	the	user	what	the	app	will	do	with
the	user ’s	location.	Use	the	key	NSLocationWhenInUseUsageDescription	or
NSLocationAlwaysUsageDescription.	If	the	key	for	the	permission	type	is	not	found,	the
permission	dialog	will	not	be	presented	by	the	call.

Figure	2.3	FavoritePlaces	sample	app	location	permission	request	alert.

If	the	user	taps	Allow,	permission	will	be	granted	and	the	location	manager	will	be	able	to	acquire	the
current	location.	If	the	user	taps	Don’t	Allow,	permission	for	the	current	location	will	be	denied,	and
the	CLLocationManager’s	delegate	method	for	authorization	status	changes	will	be	called	in
ICFLocationManager.
Click	here	to	view	code	image

-	(void)locationManager:(CLLocationManager	*)manager	didChangeAuthorizationStatus:
(CLAuthorizationStatus)status
{
				if	(status	==	kCLAuthorizationStatusDenied)
				{
								[self.locationManager	stopUpdatingLocation];

								NSString	*errorMessage	=	@"Location	Services	Permission	Denied	for	this	app.";

								NSDictionary	*errorInfo	=	@{NSLocalizedDescriptionKey	:	errorMessage};

								NSError	*deniedError	=	[NSError	errorWithDomain:@"ICFLocationErrorDomain"
																														code:1
																										userInfo:errorInfo];

								[self	setLocationError:deniedError];
								[self	getLocationWithCompletionBlock:nil];
				}
				if	(status	==	kCLAuthorizationStatusAuthorizedWhenInUse)
				{
								[self.locationManager	startUpdatingLocation];
								[self	setLocationError:nil];
				}
}

The	sample	app’s	ICFLocationManager	class	uses	completion	blocks	for	location	requests	from
the	rest	of	the	app	to	be	able	to	easily	handle	multiple	requests	for	the	current	location.	The

getLocationWithCompletionBlock:	method	will	process	any	completion	blocks	after	a
location	is	available	or	an	error	has	occurred	so	that	the	calling	logic	can	use	the	location	or	handle
the	error	as	appropriate	in	the	local	context.	In	this	case,	the	caller	will	present	an	alert	view	to	display
the	location	permission-denied	error,	as	shown	in	Figure	2.4.

Figure	2.4	FavoritePlaces	sample	app	location	permission	denied	alert.

If	the	user	later	changes	the	authorization	status	for	location	services,	either	for	the	app	specifically
or	for	the	device	overall	(refer	to	Figure	2.1),	that	same	delegate	method	will	be	called	and	can
respond	appropriately.	In	ICFLocationManager	the	delegate	method	is	implemented	to	display	an
error	alert	if	the	permission	is	denied,	or	to	restart	updating	the	current	location	and	clear	the	last
error	if	permission	is	granted.

Checking	for	Services
To	directly	determine	whether	location	services	are	enabled	for	the	device,	there	is	a	class	method
available	on	the	CLLocationManager	called	locationServicesEnabled.
Click	here	to	view	code	image

if	([CLLocationManager	locationServicesEnabled])
{
				ICFLocationManager	*appLocationManager	=	[ICFLocationManager	sharedLocationManager];

				[appLocationManager.locationManager	startUpdatingLocation];
}
else
{
				NSLog(@"Location	Services	disabled.");
}

This	can	be	used	to	customize	how	the	app	deals	with	having	or	not	having	the	current	location
available.	An	app	that	deals	with	locations	should	gracefully	handle	when	the	user	does	not	grant
access	to	the	current	location,	and	give	the	user	clear	instructions	for	enabling	access	to	the	current
location	if	desired.

Starting	Location	Request
When	permission	for	location	services	has	been	granted,	an	instance	of	CLLocationManager	can
be	used	to	find	the	current	location.	In	the	sample	app,	ICFLocationManager	provides	a	central
class	to	manage	location	functionality,	so	it	manages	one	instance	of	CLLocationManager	for	the
app.	In	the	init	method	of	ICFLocationManager,	a	CLLocationManager	is	created	and
customized	for	the	desired	location-searching	approach.
Click	here	to	view	code	image

[self	setLocationManager:[[CLLocationManager	alloc]	init]];

[self.locationManager	setDesiredAccuracy:kCLLocationAccuracyBest];

[self.locationManager	setDistanceFilter:100.0f];
[self.locationManager	setDelegate:self];

A	CLLocationManager	has	several	parameters	that	can	be	set	to	dictate	how	it	manages	the
current	location.	By	specifying	the	desired	accuracy	parameter,	the	app	can	tell	the
CLLocationManager	whether	it	is	worthwhile	to	achieve	the	best	accuracy	possible	at	the	expense
of	the	battery,	or	whether	a	lower-level	accuracy	is	preferred	to	preserve	battery	life.	Using	lower
accuracy	also	reduces	the	amount	of	time	necessary	to	acquire	a	location.	Setting	the	distance	filter
indicates	to	the	CLLocationManager	how	much	distance	must	be	traveled	before	new	location
events	are	generated;	this	is	useful	to	fine-tune	functionality	based	on	changing	locations.	Lastly,
setting	the	delegate	for	the	CLLocationManager	provides	a	place	for	custom	functionality	in
response	to	location	events	and	permission	changes.	When	the	app	is	ready	to	get	a	location,	it	asks
the	location	manager	to	start	updating	the	location.
Click	here	to	view	code	image

ICFLocationManager	*appLocationManager	=	[ICFLocationManager	sharedLocationManager];

[appLocationManager.locationManager	startUpdatingLocation];

The	CLLocationManager	will	engage	the	GPS	and/or	Wi-Fi	as	needed	to	determine	the	current
location	according	to	the	parameters	specified.	There	are	two	delegate	methods	that	should	be
implemented	to	handle	when	the	location	manager	has	updated	the	current	location	or	has	failed	to
update	the	current	location.	When	a	location	is	acquired,	the
locationManager:didUpdateLocations:	method	will	be	called.
Click	here	to	view	code	image

-	(void)locationManager:(CLLocationManager	*)manager	didUpdateLocations:(NSArray
*)locations
{
				//Filter	out	inaccurate	points
				CLLocation	*lastLocation	=	[locations	lastObject];
				if(lastLocation.horizontalAccuracy	<	0)
				{
								return;
				}

				[self	setLocation:lastLocation];
				[self	setHasLocation:YES];
				[self	setLocationError:nil];

				[self	getLocationWithCompletionBlock:nil];
}

The	location	manager	can	deliver	multiple	locations	in	the	array	of	locations	provided.	The	last
object	in	the	array	is	the	most	recently	updated	location.	The	location	manager	can	also	return	the	last
location	the	GPS	was	aware	of	very	quickly	before	actually	starting	to	acquire	a	location;	in	that	case,
if	the	GPS	has	been	off	and	the	device	has	moved,	the	location	might	be	very	inaccurate.	The	method
will	check	the	accuracy	of	the	location	and	ignore	it	if	the	value	is	negative.	If	a	reasonably	accurate
location	has	been	found,	the	method	will	store	it	and	execute	completion	blocks.	Note	that	the	location
manager	might	call	this	method	multiple	times	as	the	location	is	refined,	and	any	logic	here	should
work	with	that	in	mind.
Click	here	to	view	code	image

-	(void)locationManager:(CLLocationManager	*)manager	didFailWithError:(NSError	*)error
{
				[self.locationManager	stopUpdatingLocation];
				[self	setLocationError:error];
				[self	getLocationWithCompletionBlock:nil];
}

If	the	location	manager	failed	to	acquire	a	location,	it	will	call	the
locationManager:didFailWithError:	method.	The	error	might	be	due	to	lack	of
authorization,	or	might	be	due	to	GPS	or	Wi-Fi	not	being	available	(in	Airplane	Mode,	for	example).
The	sample	app	implementation	will	tell	the	location	manager	to	stop	updating	the	current	location	if
an	error	is	encountered,	will	capture	the	location	error,	and	will	execute	the	completion	blocks	so	that
the	code	requesting	the	current	location	can	handle	the	error	appropriately.
A	location	manager	delegate	can	monitor	for	course	changes.	This	could	be	useful,	for	example,	to
update	a	map	indicator	to	display	what	direction	the	user	is	going	relative	to	the	direction	of	the	map.
To	receive	course	or	heading	information,	the	location	manager	needs	to	start	monitoring	for	it.	A
filter	can	optionally	be	set	to	prevent	getting	updates	when	changes	are	smaller	than	the	number	of
degrees	provided.
Click	here	to	view	code	image

CLLocationDegrees	degreesFilter	=	2.0;
if	([CLLocationManager	headingAvailable])
{
				[self.locationManager	setHeadingFilter:degreesFilter];
				[self.locationManager	startUpdatingHeading];
}

Heading	change	events	are	then	delivered	to	the	locationManager:didUpdateHeading:
delegate	method.
Click	here	to	view	code	image

-	(void)locationManager:(CLLocationManager	*)managerdidUpdateHeading:(CLHeading
*)newHeading
{
				NSLog(@"New	heading,	magnetic:	%f",
				newHeading.magneticHeading);

				NSLog(@"New	heading,	true:	%f",newHeading.trueHeading);
				NSLog(@"Accuracy:	%f",newHeading.headingAccuracy);
				NSLog(@"Timestamp:	%@",newHeading.timestamp);
}

The	new	heading	provides	several	pieces	of	useful	information.	It	includes	both	a	magnetic	and	a	true
heading,	expressed	in	degrees	from	north.	It	provides	an	accuracy	reading,	expressed	as	the	number
of	degrees	by	which	the	magnetic	heading	might	be	off.	A	lower,	positive	value	indicates	a	more
accurate	heading,	and	a	negative	number	means	that	the	heading	is	invalid	and	there	might	be
magnetic	interference	preventing	a	reading.	The	time	stamp	reflects	when	the	reading	was	taken,	and
should	be	checked	to	prevent	using	an	old	heading.

Parsing	and	Understanding	Location	Data
When	the	location	manager	returns	a	location,	it	will	be	an	instance	of	CLLocation.	The
CLLocation	contains	several	pieces	of	useful	information	about	the	location.	First	is	the	latitude
and	longitude,	expressed	as	a	CLLocationCoordinate2D.

Click	here	to	view	code	image

CLLocationCoordinate2D	coord	=	lastLocation.coordinate;

NSLog(@"Location	lat/long:	%f,%f",coord.latitude,	coord.longitude);

Latitude	is	represented	as	a	number	of	degrees	north	or	south	of	the	equator,	where	the	equator	is
zero	degrees,	the	North	Pole	is	90	degrees,	and	South	Pole	is	–90	degrees.	Longitude	is	represented
as	a	number	of	degrees	east	or	west	of	the	prime	meridian,	which	is	an	imaginary	line	(or	meridian)
running	from	the	North	Pole	to	the	South	Pole,	going	through	the	Royal	Observatory	in	Greenwich,
England.	Going	west	from	the	prime	meridian	gives	negative	longitude	values	to	–180	degrees,
whereas	going	east	gives	positive	longitude	values	up	to	180	degrees.
Complementary	to	the	coordinate	is	a	horizontal	accuracy.	The	accuracy	is	expressed	as	a
CLLocationDistance,	or	meters.	The	horizontal	accuracy	means	that	the	actual	location	is	within
the	number	of	meters	specified	from	the	coordinate.
Click	here	to	view	code	image

CLLocationAccuracy	horizontalAccuracy	=	lastLocation.horizontalAccuracy;

NSLog(@"Horizontal	accuracy:	%f	meters",horizontalAccuracy);

The	location	also	provides	the	altitude	of	the	current	location	and	vertical	accuracy	in	meters,	if	the
device	has	a	GPS	capability.	If	the	device	does	not	have	GPS,	the	altitude	is	returned	as	the	value	zero
and	the	accuracy	will	be	–1.
Click	here	to	view	code	image

CLLocationDistance	altitude	=	lastLocation.altitude;	NSLog(@"Location	altitude:	%f
meters",altitude);

CLLocationAccuracy	verticalAccuracy	=
lastLocation.verticalAccuracy;

NSLog(@"Vertical	accuracy:	%f	meters",verticalAccuracy);

The	location	contains	a	time	stamp	that	indicates	when	the	location	was	determined	by	the	location
manager.	This	can	be	useful	to	determine	whether	the	location	is	old	and	should	be	ignored,	or	for
comparing	time	stamps	between	location	checks.
Click	here	to	view	code	image

NSDate	*timestamp	=	lastLocation.timestamp;
NSLog(@"Timestamp:	%@",timestamp);

Lastly,	the	location	provides	the	speed,	expressed	in	meters	per	second,	and	course,	expressed	in
degrees	from	true	north.
Click	here	to	view	code	image

CLLocationSpeed	speed	=	lastLocation.speed;
NSLog(@"Speed:	%f	meters	per	second",speed);

CLLocationDirection	direction	=	lastLocation.course;
NSLog(@"Course:	%f	degrees	from	true	north",direction);

Significant	Change	Notifications
After	a	location	has	been	acquired	by	the	app,	Apple	strongly	recommends	stopping	location	updates
to	preserve	battery	life.	If	the	app	does	not	require	a	constant,	accurate	location,	monitoring	for
significant	location	changes	can	provide	an	efficient	way	of	informing	the	app	when	the	device	has
moved	without	consuming	a	lot	of	power	to	keep	the	GPS	and	Wi-Fi	monitoring	the	current	location.
Click	here	to	view	code	image

[self.locationManager	startMonitoringSignificantLocationChanges];

Typically,	a	notification	is	generated	when	the	device	has	moved	at	least	500	meters,	or	has	changed
cell	towers.	Notifications	are	not	sent	unless	at	least	five	minutes	has	elapsed	since	the	last
notification.	Location	update	events	are	delivered	to	the
locationManager:didUpdateLocations:	delegate	method.

Using	GPX	Files	to	Test	Specific	Locations
Testing	location-based	apps	can	be	daunting,	especially	when	specific	locations	need	to	be	tested	that
are	not	convenient	to	test	from.	Fortunately,	there	is	robust	support	for	testing	locations	provided	by
Xcode	using	GPX	files.	A	GPX	file	is	a	GPS	Exchange	Format	document,	which	can	be	used	to
communicate	GPS	information	between	devices	using	XML.	In	debugging	mode,	Xcode	can	use	a
“waypoint”	defined	in	a	GPX	file	to	set	the	current	location	for	the	iOS	Simulator	or	device.
In	the	sample	app,	the	current	location	is	set	with	the	file	DMNS.gpx,	or	the	location	of	the	Denver
Museum	of	Nature	and	Science.
Click	here	to	view	code	image

<?xml	version="1.0"?>
<gpx	version="1.1"	creator="Xcode">

				<wpt	lat="39.748039"	lon="-104.94000">
									<name>Denver	Museum	of	Nature	and	Science</name>
				</wpt>

</gpx>

To	tell	Xcode	to	use	a	GPX	file	in	debugging,	select	Edit	Scheme	from	the	Scheme	selection	drop-
down	in	the	upper-left	corner	of	a	project	window,	select	the	Options	tab,	and	check	the	Allow
Location	Simulation	check	box,	as	shown	in	Figure	2.5.	When	this	is	checked,	a	location	can	be
selected	from	the	drop-down	next	to	Default	Location.	This	drop-down	includes	some	built-in
locations,	and	any	GPX	files	that	have	been	added	to	the	project.

Figure	2.5	Xcode	FavoritePlaces	scheme.

When	the	app	is	run	in	debug	mode,	Core	Location	will	return	the	location	specified	in	the	GPX	file
as	the	current	location	of	the	device	or	simulator.	To	change	the	location	while	debugging,	select
Debug,	Simulate	Location	from	the	menu	in	Xcode	and	select	a	location	(as	shown	in	Figure	2.6).
Core	Location	will	change	the	location	to	the	selected	location	and	will	fire	the
locationManager:didUpdateLocations:	delegate	method.

Figure	2.6	Xcode	Product,	Debug,	Simulate	Location.

Displaying	Maps
MapKit	provides	mapping	user-interface	capabilities	for	iOS.	The	base	class	used	is	an	MKMapView,
which	displays	a	map,	handles	user	interactions	with	the	map,	and	manages	annotations	(like	pins)	and
overlays	(like	routing	graphics	or	region	highlights).	To	better	understand	how	maps	in	iOS	work,	it
is	important	to	understand	the	coordinate	systems	at	work.

Understanding	the	Coordinate	Systems
There	are	two	coordinate	systems	at	work	in	MapKit:	the	coordinate	system	for	the	map,	and	the
coordinate	system	for	the	view.	The	map	uses	a	Mercator	Projection,	which	takes	the	3D	map	of	the
world	and	flattens	it	into	a	2D	coordinate	system.	Coordinates	can	be	specified	using	latitude	and
longitude.	The	map	view	represents	the	portion	of	the	map	displayed	on	the	screen	using	standard
UIKit	view	coordinates.	The	map	view	then	determines	where	in	the	view	to	display	points	determined
by	map	coordinates.

MKMapKit	Configuration	and	Customization
In	ICFMainViewController	in	the	sample	app,	the	map	view	is	configured	in	Interface	Builder
to	default	to	the	standard	map	type,	to	display	the	user	location	on	the	map,	and	to	allow	scrolling	and
zooming.	ICFMainViewController	has	a	segmented	control	to	enable	the	user	to	adjust	the	type
of	map	displayed.
Click	here	to	view	code	image

-	(IBAction)mapTypeSelectionChanged:(id)sender
{
				UISegmentedControl	*mapSelection	=	(UISegmentedControl	*)sender;

				switch	(mapSelection.selectedSegmentIndex)
				{
								case	0:
												[self.mapView	setMapType:MKMapTypeStandard];
												break;
								case	1:
												[self.mapView	setMapType:MKMapTypeSatellite];
												break;
								case	2:
												[self.mapView	setMapType:MKMapTypeHybrid];
												break;

								default:
												break;
				}
}

Beyond	setting	the	map	type,	another	common	customization	is	to	set	the	region	displayed	by	the
map.	In	ICFMainViewController,	a	method	called	zoomMapToFitAnnotations	will
examine	the	current	favorite	places,	and	will	size	and	center	the	map	to	fit	them	all.	The	method	starts
by	setting	default	maximum	and	minimum	coordinates.
Click	here	to	view	code	image

CLLocationCoordinate2D	maxCoordinate	=	CLLocationCoordinate2DMake(-90.0,	-180.0);

CLLocationCoordinate2D	minCoordinate	=	CLLocationCoordinate2DMake(90.0,	180.0);

Looking	at	the	existing	annotations	on	the	map	(described	in	more	detail	in	the	next	main	section,
“Map	Annotations	and	Overlays”),	the	method	calculates	the	maximum	and	minimum	latitude	and
longitude	values	for	all	the	coordinates	represented	in	the	annotations.
Click	here	to	view	code	image

NSArray	*currentPlaces	=	[self.mapView	annotations];

maxCoordinate.latitude	=	[[currentPlaces	valueForKeyPath:@"@max.latitude"]	doubleValue];

minCoordinate.latitude	=	[[currentPlaces	valueForKeyPath:@"@min.latitude"]	doubleValue];

maxCoordinate.longitude	=	[[currentPlaces	valueForKeyPath:@"@max.longitude"]
doubleValue];

minCoordinate.longitude	=	[[currentPlaces	valueForKeyPath:@"@min.longitude"]
doubleValue];

The	method	then	calculates	the	center	coordinate	from	the	maximum	and	minimum	latitude	and
longitude	coordinates.
Click	here	to	view	code	image

CLLocationCoordinate2D	centerCoordinate;

centerCoordinate.longitude	=	(minCoordinate.longitude	+	maxCoordinate.longitude)	/	2.0;

centerCoordinate.latitude	=	(minCoordinate.latitude	+	maxCoordinate.latitude)	/	2.0;

Next,	the	method	calculates	the	span	needed	to	display	all	the	coordinates	from	the	calculated	center
coordinate.	The	calculated	span	for	each	dimension	is	multiplied	by	1.2	to	create	a	margin	between

the	farthest-out	points	and	the	edge	of	the	view.
Click	here	to	view	code	image

MKCoordinateSpan	span;

span.longitudeDelta	=	(maxCoordinate.longitude	-	minCoordinate.longitude)	*	1.2;

span.latitudeDelta	=	(maxCoordinate.latitude	-	minCoordinate.latitude)	*	1.2;

After	the	center	point	and	span	have	been	calculated,	a	map	region	can	be	created	and	used	to	set	the
map	view’s	displayed	region.
Click	here	to	view	code	image

MKCoordinateRegion	newRegion	=	MKCoordinateRegionMake(centerCoordinate,	span);

[self.mapView	setRegion:newRegion
															animated:YES];

Setting	animated:	to	YES	will	zoom	the	map	in	as	if	the	user	had	zoomed	to	it;	setting	it	to	NO	will
instantaneously	change	the	region	with	no	animation.

Responding	to	User	Interactions
An	MKMapViewDelegate	can	be	specified	to	react	to	user	interactions	with	the	map.	Typical	user
interactions	with	a	map	include	responding	to	panning	and	zooming,	handling	draggable	annotations,
and	responding	when	the	user	taps	a	callout.
When	the	map	is	being	panned	and	zoomed,	the	mapView:regionWillChangeAnimated:	and
mapView:regionDidChangeAnimated:	delegate	methods	are	called.	In	the	sample	app	no
additional	action	is	required	for	the	map	to	resize	and	adjust	the	annotations;	however,	in	an	app	with
a	large	number	of	potential	items	to	display	on	the	map	or	an	app	that	shows	different	information	at
different	zoom	levels,	these	delegate	methods	are	useful	for	removing	map	annotations	that	are	no
longer	visible	and	for	adding	annotations	that	are	newly	visible.	The	delegate	method	in	the	sample
app	demonstrates	how	one	would	get	the	newly	displayed	map	region,	which	could	be	used	to	query
items	for	display	on	the	map.
Click	here	to	view	code	image

-	(void)mapView:(MKMapView	*)mapView	regionDidChangeAnimated:(BOOL)animated
{
				MKCoordinateRegion	newRegion	=	[mapView	region];
				CLLocationCoordinate2D	center	=	newRegion.center;
				MKCoordinateSpan	span	=	newRegion.span;

				NSLog(@"New	map	region	center:	<%f/%f>,	span:	<%f/%f>",
center.latitude,center.longitude,span.latitudeDelta,	span.longitudeDelta);
}

Handling	draggable	annotations	and	callout	taps	is	described	in	the	next	section.

Map	Annotations	and	Overlays
A	map	view	(MKMapView)	is	a	scroll	view	that	behaves	specially;	adding	a	subview	to	it	in	the
standard	way	will	not	add	the	subview	to	the	scrollable	part	of	the	map	view,	but	rather	the	subview
will	remain	static	relative	to	the	frame	of	the	map	view.	Although	that	might	be	a	feature	for	items
like	hovering	buttons	or	labels,	being	able	to	identify	and	mark	points	and	details	on	the	map	is	a	key
feature.	Map	annotations	and	overlays	are	a	way	to	mark	items	or	areas	of	interest	in	a	map	view.
Annotations	and	overlays	maintain	their	position	on	a	map	as	the	map	is	scrolled	and	zoomed.	Map
annotations	are	defined	by	a	single	coordinate	point	on	the	map,	and	map	overlays	can	be	lines,
polygons,	or	complex	shapes.	MapKit	draws	a	distinction	between	the	logical	annotation	or	overlay
and	the	associated	view.	Annotations	and	overlays	are	data	that	represent	where	on	the	map	they
should	be	displayed,	and	are	added	to	the	map	view	directly.	The	map	view	will	then	request	a	view
for	an	annotation	or	overlay	when	it	needs	to	be	displayed,	much	like	a	table	view	will	request	cells
for	index	paths	as	needed.

Adding	Annotations
Any	object	can	be	an	annotation	in	a	map	view.	To	become	an	annotation,	the	object	needs	to
implement	the	MKAnnotation	protocol.	Apple	recommends	that	the	annotation	objects	should	be
lightweight,	since	the	map	view	will	keep	a	reference	to	all	the	annotations	added	to	it,	and	map
scrolling	and	zooming	performance	can	suffer	if	there	are	too	many	annotations.	If	the	requirements
for	the	annotation	are	very	simple	and	basic,	an	MKPointAnnotation	can	be	used.	In	the	sample
app	the	ICFFavoritePlace	class,	which	implements	the	MKAnnotation	protocol,	is	a	subclass
of	NSManagedObject	so	that	it	can	be	persisted	using	Core	Data.	Refer	to	Chapter	15,	“Getting	Up
and	Running	with	Core	Data,”	for	more	information	on	using	Core	Data	and	NSManagedObject
subclasses.
To	implement	the	MKAnnotation	protocol,	a	class	must	implement	the	coordinate	property.
This	is	used	by	the	map	view	to	determine	where	the	annotation	should	be	placed	on	the	map.	The
coordinate	needs	to	be	returned	as	a	CLLocationCoordinate2D.
Click	here	to	view	code	image

-	(CLLocationCoordinate2D)coordinate
{
				CLLocationDegrees	lat	=	[[self	valueForKeyPath:@"latitude"]	doubleValue];

				CLLocationDegrees	lon	=	[[self	valueForKeyPath:@"longitude"]	doubleValue];

				CLLocationCoordinate2D	coord	=	CLLocationCoordinate2DMake(lat,	lon);

				return	coord;
}

Because	the	ICFFavoritePlace	class	stores	the	latitude	and	longitude	for	the	place	individually,
the	coordinate	property	method	creates	a	CLLocationCoordinate2D	from	the	latitude	and
longitude	using	the	CLLocationCoordinate2DMake	function	provided	by	Core	Location.
ICFFavoritePlace	will	break	apart	a	CLLocationCoordinate2D	in	the	setter	method	for	the
coordinate	property	to	store	the	latitude	and	longitude.
Click	here	to	view	code	image

-	(void)setCoordinate:(CLLocationCoordinate2D)newCoordinate
{

				[self	setValue:@(newCoordinate.latitude)
								forKeyPath:@"latitude"];

				[self	setValue:@(newCoordinate.longitude)
								forKeyPath:@"longitude"];
}

Two	other	properties	for	the	MKAnnotation	protocol	can	optionally	be	implemented:	title	and
subtitle.	These	are	used	by	the	map	view	to	display	the	callout	when	the	user	taps	an	annotation
view,	as	shown	in	Figure	2.7.

Figure	2.7	FavoritePlaces	sample	app:	displaying	map	annotation	view	callout.

The	title	property	is	used	for	the	top	line	of	the	callout,	and	the	subtitle	property	is	used	for
the	bottom	line	of	the	callout.
Click	here	to	view	code	image

-	(NSString	*)title
{
				return	[self	valueForKeyPath:@"placeName"];
}

-	(NSString	*)subtitle
{
				NSString	*subtitleString	=	@"";

				NSString	*addressString	=	[self	valueForKeyPath:@"placeStreetAddress"];

				if	([addressString	length]	>	0)
				{
								NSString	*addr	=	[self	valueForKeyPath:@"placeStreetAddress"];

								NSString	*city	=	[self	valueForKeyPath:@"placeCity"];
								NSString	*state	=	[self	valueForKeyPath:@"placeState"];
								NSString	*zip	=	[self	valueForKeyPath:@"placePostal"];

								subtitleString	=	[NSString	stringWithFormat:@"%@,	%@,	%@	%@",
addr,city,state,zip];
				}
				return	subtitleString;
}

In	ICFMainViewController,	the	updateMapAnnotations	method	is	called	from
viewDidLoad:	to	populate	the	map	annotations	initially,	and	again	after	the	favorite	place	detail
editing	view	is	dismissed.	The	method	starts	by	removing	all	the	annotations	from	the	map	view.
Although	this	approach	works	fine	for	a	small	number	of	annotations,	with	more	annotations	a	more
intelligent	approach	should	be	developed	to	efficiently	remove	unneeded	annotations	and	add	new
ones.
Click	here	to	view	code	image

[self.mapView	removeAnnotations:self.mapView.annotations];

Next,	the	method	performs	a	Core	Data	fetch	request	to	get	an	NSArray	of	the	stored	favorite	places,
and	adds	that	array	to	the	map	view’s	annotations.
Click	here	to	view	code	image

NSFetchRequest	*placesRequest	=	[[NSFetchRequest	alloc]
initWithEntityName:@"FavoritePlace"];

NSManagedObjectContext	*moc	=	kAppDelegate.managedObjectContext;

NSError	*error	=	nil;

NSArray	*places	=	[moc	executeFetchRequest:placesRequest
																																					error:&error];

if	(error)
{
				NSLog(@"Core	Data	fetch	error	%@,	%@",	error,	[error	userInfo]);
}
[self.mapView	addAnnotations:places];

The	map	view	will	then	manage	displaying	the	added	annotations	on	the	map.

Displaying	Standard	and	Custom	Annotation	Views
An	annotation	view	is	the	representation	of	the	annotation	on	the	map.	Two	types	of	standard
annotation	views	are	provided	with	MapKit,	the	pin	for	searched	locations	and	the	pulsing	blue	dot
for	the	current	location.	Annotation	views	can	be	customized	with	a	static	image,	or	can	be
completely	customized	with	a	subclass	of	MKAnnotationView.	The	sample	app	uses	standard	pins
for	favorite	places,	the	standard	blue	dot	for	the	current	location,	and	a	green	arrow	for	a	draggable
annotation	example,	as	shown	in	Figure	2.8.

Figure	2.8	FavoritePlaces	sample	app:	displaying	map	annotation	views.

To	allow	a	map	view	to	display	annotation	views	for	annotations,	the	map	view	delegate	needs	to
implement	the	mapView:viewForAnnotation	method.	In	the	sample	app,	the
mapView:viewForAnnotation	method	is	implemented	in	the	ICFMainViewController.
The	method	first	checks	whether	the	annotation	is	the	current	location.
Click	here	to	view	code	image

if	(annotation	==	mapView.userLocation)
{
				return	nil;
}

For	the	current	location,	returning	nil	for	an	annotation	view	will	tell	the	map	view	to	use	the
standard	blue	dot.	The	method	then	examines	the	ICFFavoritePlace	annotation	to	determine	what
type	of	annotation	it	is.	If	the	annotation	represents	the	“going	next”	location,	then	a	custom
annotation	view	will	be	returned;	otherwise,	a	standard	pin	annotation	view	will	be	returned.
Click	here	to	view	code	image

MKAnnotationView	*view	=	nil;

ICFFavoritePlace	*place	=	(ICFFavoritePlace	*)annotation;

if	([[place	valueForKeyPath:@"goingNext"]	boolValue])
{
				...
}
else
{
				...
}

return	view;

To	return	a	standard	pin	annotation	view,	the	method	first	attempts	to	dequeue	an	existing,	but	no
longer	used,	annotation	view.	If	one	is	not	available,	the	method	will	create	an	instance	of
MKPinAnnotationView.
Click	here	to	view	code	image

MKPinAnnotationView	*pinView	=	(MKPinAnnotationView	*)	[mapView
dequeueReusableAnnotationViewWithIdentifier:@"pin"];

if	(pinView	==	nil)
{
				pinView	=	[[MKPinAnnotationView	alloc]	initWithAnnotation:annotation
reuseIdentifier:@"pin"];
}

After	the	pin	annotation	is	created,	it	can	be	customized	by	setting	the	pin	color	(choices	are	red,
green,	and	purple),	indicating	whether	the	callout	can	be	displayed	when	the	user	taps	the	annotation
view,	and	indicating	whether	the	annotation	view	can	be	dragged.
Click	here	to	view	code	image

[pinView	setPinColor:MKPinAnnotationColorRed];
[pinView	setCanShowCallout:YES];
[pinView	setDraggable:NO];

The	callout	view	that	appears	when	the	annotation	view	is	tapped	has	left	and	right	accessory	views
that	can	be	customized.	The	left	accessory	view	is	set	to	a	custom	image,	and	the	right	accessory	view

is	set	to	a	standard	detail	disclosure	button.	If	the	left	or	right	accessory	views	are	customized	with
objects	that	descend	from	UIControl,	the	delegate	method
mapView:annotationView:calloutAccessoryControlTapped:	will	be	called	when
they	are	tapped.	Otherwise,	the	objects	should	be	configured	by	the	developer	to	handle	the	tap	as
desired.	Note	that	Apple	states	that	the	maximum	height	for	the	accessory	views	is	32	pixels.
Click	here	to	view	code	image

UIImageView	*leftView	=	[[UIImageView	alloc]	initWithImage:[UIImage
imageNamed:@"annotation_view_star"]];

[pinView	setLeftCalloutAccessoryView:leftView];

UIButton*	rightButton	=	[UIButton	buttonWithType:	UIButtonTypeDetailDisclosure];

[pinView	setRightCalloutAccessoryView:rightButton];
view	=	pinView;

To	return	a	custom	pin	annotation	view,	the	method	will	attempt	to	dequeue	an	existing	but	no	longer
used	annotation	view	by	a	string	identifier.	If	one	is	not	available,	the	method	will	create	an	instance
of	MKAnnotationView.
Click	here	to	view	code	image

view	=	(MKAnnotationView	*)	[mapView
dequeueReusableAnnotationViewWithIdentifier:@"arrow"];

if	(view	==	nil)
{
				view	=	[[MKAnnotationView	alloc]	initWithAnnotation:annotation
reuseIdentifier:@"arrow"];
}

The	annotation	can	be	customized	much	like	a	standard	pin	annotation,	indicating	whether	the	callout
can	be	displayed	when	the	user	taps	the	annotation	view,	and	indicating	whether	the	annotation	view
can	be	dragged.	The	main	difference	is	that	the	image	for	the	annotation	can	be	set	directly	using	the
setImage:	method.
Click	here	to	view	code	image

[view	setCanShowCallout:YES];
[view	setDraggable:YES];

[view	setImage:[UIImage	imageNamed:@"next_arrow"]];

UIImageView	*leftView	=	[[UIImageView	alloc]	initWithImage:[UIImage
imageNamed:@"annotation_view_arrow"]];

[view	setLeftCalloutAccessoryView:leftView];
[view	setRightCalloutAccessoryView:nil];

The	annotation	view	will	display	with	a	green	arrow	instead	of	a	standard	pin,	as	shown	previously	in
Figure	2.8.

Draggable	Annotation	Views
Draggable	annotation	views	can	be	useful	to	enable	the	user	to	mark	a	place	on	a	map.	In	the	sample
app,	there	is	one	special	favorite	place	to	indicate	where	the	user	is	going	next,	represented	by	a	green
arrow.	An	annotation	view	can	be	made	draggable	by	setting	the	draggable	property	when	the
annotation	view	is	being	configured	for	presentation.

[view	setDraggable:YES];

The	user	can	then	drag	the	annotation	view	anywhere	on	the	map.	To	get	more	information	about	the
dragging	performed	on	an	annotation	view,	the	map	view	delegate	implements	the
mapView:annotationView:didChangeDragState:fromOldState:	method.	That
method	will	fire	anytime	the	dragging	state	changes	for	a	draggable	annotation	view,	and	indicates
whether	the	dragging	state	is	none,	starting,	dragging,	canceling,	or	ending.	By	examining	the	new
dragging	state	and	old	dragging	state,	custom	logic	can	handle	a	number	of	different	use	cases
presented	by	dragging.
When	the	user	stops	dragging	the	arrow	in	the	sample	app,	it	will	reverse-geocode	the	new	location
indicated	by	the	arrow	(described	in	more	detail	in	the	later	section	“Geocoding	and	Reverse-
Geocoding”)	to	get	the	name	and	address	of	the	new	location.	To	do	this,	the	method	needs	to	check
whether	dragging	is	completed.
Click	here	to	view	code	image

if	(newState	==	MKAnnotationViewDragStateEnding)
{
			
}

If	dragging	is	complete,	the	method	will	get	the	annotation	associated	with	the	annotation	view	to
figure	out	the	new	coordinates	that	need	to	be	reverse-geocoded.
Click	here	to	view	code	image

ICFFavoritePlace	*draggedPlace	=	(ICFFavoritePlace	*)[annotationView	annotation];

The	method	adds	a	standard	spinner	to	the	callout	view	so	that	the	user	knows	it	is	being	updated,	and
then	calls	the	method	to	reverse-geocode	the	new	place,	described	later	in	the	chapter	in	the
geocoding	section.
Click	here	to	view	code	image

UIActivityIndicatorViewStyle	whiteStyle	=	UIActivityIndicatorViewStyleWhite;

UIActivityIndicatorView	*activityView	=	[[UIActivityIndicatorView	alloc]
initWithActivityIndicatorStyle:whiteStyle];

[activityView	startAnimating];
[annotationView	setLeftCalloutAccessoryView:activityView];

[self	reverseGeocodeDraggedAnnotation:draggedPlace
																				forAnnotationView:annotationView];

Working	with	Map	Overlays
Map	overlays	are	similar	to	map	annotations,	in	that	any	object	can	implement	the	MKOverlay
protocol,	and	the	map	view	delegate	is	asked	to	provide	the	associated	view	for	a	map	overlay.	Map
overlays	are	different	from	annotations	in	that	they	can	represent	more	than	just	a	point.	They	can
represent	lines	and	shapes,	so	they	are	very	useful	for	representing	routes	or	areas	of	interest	on	a
map.	To	demonstrate	map	overlays,	the	sample	app	provides	a	feature	to	add	a	geofence	(described	in
detail	later	in	the	section	“Geofencing”)	with	a	user-defined	radius	for	a	favorite	place.	When	a
geofence	is	added	for	a	favorite	place,	the	user ’s	selected	radius	will	be	displayed	on	the	map	with	a
circle	around	the	place’s	coordinate,	as	shown	in	Figure	2.9.

Figure	2.9	FavoritePlaces	sample	app:	displaying	map	overlay	view.

As	mentioned	previously	in	the	“Adding	Annotations”	section,	the	updateMapAnnotations
method	adds	annotations	to	the	map.	This	method	also	adds	overlays	to	the	map	at	the	same	time.	The
method	starts	by	clearing	all	existing	overlays	from	the	map	view.
Click	here	to	view	code	image

[self.mapView	removeOverlays:self.mapView.overlays];

Since	overlays	are	displayed	only	for	places	that	have	the	geofence	feature	enabled,	the	method
iterates	over	the	places,	and	adds	an	overlay	to	the	map	only	for	those	places.
Click	here	to	view	code	image

for	(ICFFavoritePlace	*favPlace	in	places)
{

				BOOL	displayOverlay	=	[[favPlace	valueForKeyPath:@"displayProximity"]	boolValue];

				if	(displayOverlay)
				{
								[self.mapView	addOverlay:favPlace];
								...
				}
}

When	the	map	needs	to	display	a	map	overlay,	the	map	view	will	call	the	delegate	method
mapView:viewForOverlay.	This	method	will	create	an	overlay	view	for	the	map	to	display.
Three	options	are	provided	by	MapKit:	circle,	polygon,	and	polyline;	custom	shapes	and	overlays	can
also	be	created	if	the	MapKit	options	are	insufficient.	The	sample	app	creates	a	circle	around	the
location,	using	the	radius	and	map	coordinate	from	the	favorite	place.
Click	here	to	view	code	image

ICFFavoritePlace	*place	=	(ICFFavoritePlace	*)overlay;

CLLocationDistance	radius	=	[[place	valueForKeyPath:@"displayRadius"]	floatValue];

MKCircle	*circle	=	[MKCircle	circleWithCenterCoordinate:[overlay	coordinate]
																																radius:radius];

After	the	map	kit	circle	is	ready,	the	method	creates	a	map	kit	circle	view,	and	customizes	the	stroke
and	fill	colors	and	the	line	width.	This	circle	view	is	then	returned,	and	the	map	will	display	it.
Click	here	to	view	code	image

MKCircleRenderer	*circleView	=	[[MKCircleRenderer	alloc]	initWithCircle:circle];

circleView.fillColor	=	[[UIColor	redColor]	colorWithAlphaComponent:0.2];

circleView.strokeColor	=	[[UIColor	redColor]	colorWithAlphaComponent:0.7];

circleView.lineWidth	=	3;

return	circleView;

Geocoding	and	Reverse-Geocoding
Geocoding	is	the	process	of	finding	latitude	and	longitude	coordinates	from	a	human-readable
address.	Reverse-geocoding	is	the	process	of	finding	a	human	readable	address	from	coordinates.	As
of	iOS	5.0,	Core	Location	supports	both,	with	no	special	terms	or	limitations	(as	with	MapKit	in	iOS
5.1	and	earlier).

Geocoding	an	Address
The	sample	app	enables	the	user	to	add	a	new	favorite	place	by	entering	an	address	in
ICFFavoritePlaceViewController.	The	user	can	tap	Geocode	Location	Now	to	get	the
latitude	and	longitude,	as	shown	in	Figure	2.10.

Figure	2.10	FavoritePlaces	sample	app:	adding	a	new	favorite	place.

When	the	user	taps	the	Geocode	Location	Now	button,	the	geocodeLocationTouched:	method
is	called.	That	method	begins	by	concatenating	the	address	information	provided	by	the	user	into	a

single	string,	like	2100	York	St,	Denver,	CO	80205,	to	provide	to	the	geocoder.
Click	here	to	view	code	image

NSString	*geocodeString	=	@"";
if	([self.addressTextField.text	length]	>	0)
{
				geocodeString	=	self.addressTextField.text;
}
if	([self.cityTextField.text	length]	>	0)
{
				if	([geocodeString	length]	>	0)
				{

								geocodeString	=	[geocodeString	stringByAppendingFormat:@",	%@",
self.cityTextField.text];

				}
				else
				{
								geocodeString	=	self.cityTextField.text;
				}
}
if	([self.stateTextField.text	length]	>	0)
				{
				if	([geocodeString	length]	>	0)
				{

								geocodeString	=	[geocodeString	stringByAppendingFormat:@",	%@",
self.stateTextField.text];

				}
				else
				{
								geocodeString	=	self.stateTextField.text;
				}
}
if	([self.postalTextField.text	length]	>	0)
				{
				if	([geocodeString	length]	>	0)
				{

								geocodeString	=	[geocodeString	stringByAppendingFormat:@"	%@",
self.postalTextField.text];

				}
				else
				{
								geocodeString	=	self.postalTextField.text;
				}
}

The	method	will	then	disable	the	Geocode	Location	Now	button	to	prevent	additional	requests	from
getting	started	by	multiple	taps.	Apple	explicitly	states	that	the	geocoder	should	process	only	one
request	at	a	time.	The	method	also	updates	the	fields	and	button	to	indicate	that	geocoding	is	in
process.
Click	here	to	view	code	image

[self.latitudeTextField	setText:@"Geocoding..."];
[self.longitudeTextField	setText:@"Geocoding..."];

[self.geocodeNowButton	setTitle:@"Geocoding	now..."

																							forState:UIControlStateDisabled];

[self.geocodeNowButton	setEnabled:NO];

The	method	gets	a	reference	to	an	instance	of	CLGeocoder.
Click	here	to	view	code	image

CLGeocoder	*geocoder	=	[[ICFLocationManager	sharedLocationManager]	geocoder];

The	geocoder	is	then	asked	to	geocode	the	address	string,	with	a	completion	handler	block,	which
is	called	on	the	main	queue.	The	completion	handler	will	first	reenable	the	button	so	that	it	can	be
tapped	again,	and	will	then	check	to	see	whether	an	error	was	encountered	with	geocoding	or
whether	the	geocoder	completed	successfully.
Click	here	to	view	code	image

[geocoder	geocodeAddressString:geocodeString	completionHandler:^(NSArray	*placemarks,
NSError	*error)	{

				[self.geocodeNowButton	setEnabled:YES];
				if	(error)
				{
								...
				}
				else
				{
								...
				}
}];

If	the	geocoder	encountered	an	error,	the	latitude	and	longitude	fields	are	populated	with	Not
found	and	an	alert	view	is	presented	with	the	localized	description	of	the	error.	The	geocoder	will
fail	without	an	Internet	connection,	or	if	the	address	is	not	well	formed	or	cannot	be	found.
Click	here	to	view	code	image

[self.latitudeTextField	setText:@"Not	found"];
[self.longitudeTextField	setText:@"Not	found"];

UIAlertController	*alertController	=	[UIAlertController
alertControllerWithTitle:@"Geocoding	Error"
																																						message:error.localizedDescription
																															preferredStyle:UIAlertControllerStyleAlert];

[alertController	addAction:	[UIAlertAction	actionWithTitle:@"OK"
																											style:UIAlertActionStyleCancel
																									handler:nil]];

[self	presentViewController:alertController
																			animated:YES
																	completion:nil];

If	geocoding	succeeded,	an	array	called	placemarks	will	be	provided	to	the	completion	handler.
This	array	will	contain	instances	of	CLPlacemark,	which	each	contain	information	about	a
potential	match.	A	placemark	has	a	latitude/longitude	coordinate	and	address	information.
Click	here	to	view	code	image

if	([placemarks	count]	>	0)
{
				CLPlacemark	*placemark	=	[placemarks	lastObject];

				NSString	*latString	=	[NSString	stringWithFormat:@"%f",
placemark.location.coordinate.latitude];

				[self.latitudeTextField	setText:latString];

				NSString	*longString	=	[NSString	stringWithFormat:@"%f",
placemark.location.coordinate.longitude];

				[self.longitudeTextField	setText:longString];
}

If	more	than	one	placemark	is	returned,	the	user	interface	could	allow	the	user	to	select	the	one	that
most	closely	matches	his	intention	(Maps.app	uses	this	approach).	For	simplicity	the	sample	app
selects	the	last	placemark	in	the	array	and	updates	the	user	interface	with	the	coordinate	information.

Reverse-Geocoding	a	Location
The	sample	app	enables	users	to	drag	the	green	arrow	to	indicate	where	they	would	like	to	go	next,	as
shown	in	Figure	2.11.

Figure	2.11	FavoritePlaces	sample	app:	Where	I	Am	Going	Next.

When	the	user	drags	the	green	arrow,	the	map	view	delegate	method
mapView:annotationView:didChangeDragState:fromOldState:	in
ICFMainViewController	gets	called.	That	method	checks	the	drag	state	as	described	earlier	in
the	“Draggable	Annotation	Views”	section,	and,	if	the	green	arrow	has	stopped	being	dragged,
updates	the	callout	view	with	a	spinner	and	starts	the	reverse-geocoding.
Click	here	to	view	code	image

ICFFavoritePlace	*draggedPlace	=	(ICFFavoritePlace	*)[annotationView	annotation];

UIActivityIndicatorViewStyle	whiteStyle	=	UIActivityIndicatorViewStyleWhite;

UIActivityIndicatorView	*activityView	=	[[UIActivityIndicatorView	alloc]
initWithActivityIndicatorStyle:whiteStyle];

[activityView	startAnimating];
[annotationView	setLeftCalloutAccessoryView:activityView];

[self	reverseGeocodeDraggedAnnotation:draggedPlace
																				forAnnotationView:annotationView];

The	reverseGeocodeDraggedAnnotation:forAnnotationView:	method	gets	a
reference	to	an	instance	of	CLGeocoder.
Click	here	to	view	code	image

CLGeocoder	*geocoder	=	[[ICFLocationManager	sharedLocationManager]	geocoder];

An	instance	of	CLLocation	is	created	for	use	by	the	geocoder	from	the	coordinate	of	the	moved
arrow.

Click	here	to	view	code	image

CLLocationCoordinate2D	draggedCoord	=	[place	coordinate];

CLLocation	*draggedLocation	=	[[CLLocation	alloc]	initWithLatitude:draggedCoord.latitude
																													longitude:draggedCoord.longitude];

The	geocoder	is	then	asked	to	reverse-geocode	the	location	from	which	the	annotation	has	been
dragged	with	a	completion	handler	block,	which	is	called	on	the	main	queue.	The	completion	handler
will	replace	the	spinner	in	the	callout	with	the	green	arrow,	and	will	then	check	to	see	whether	an
error	was	encountered	with	geocoding	or	whether	the	geocoder	completed	successfully.
Click	here	to	view	code	image

[geocoder	reverseGeocodeLocation:draggedLocation	completionHandler:^(NSArray	*placemarks,
NSError	*error)	{

				UIImage	*arrowImage	=	[UIImage	imageNamed:@"annotation_view_arrow"];

				UIImageView	*leftView	=	[[UIImageView	alloc]	initWithImage:arrowImage];

				[annotationView	setLeftCalloutAccessoryView:leftView];

				if	(error)
				{
								...
				}
				else
				{
								...
				}
}];

If	the	geocoder	encountered	an	error,	an	alert	view	is	presented	with	the	localized	description	of	the
error.	The	geocoder	will	fail	without	an	Internet	connection.
Click	here	to	view	code	image

UIAlertController	*alertController	=	[UIAlertController
alertControllerWithTitle:@"Geocoding	Error"
																																						message:error.localizedDescription
																															preferredStyle:UIAlertControllerStyleAlert];

[alertController	addAction:	[UIAlertAction	actionWithTitle:@"OK"
																											style:UIAlertActionStyleCancel
																									handler:nil]];

[self	presentViewController:alertController
																			animated:YES
																	completion:nil];

If	the	reverse-geocoding	process	completes	successfully,	an	array	of	CLPlacemark	instances	will
be	passed	to	the	completion	handler.	The	sample	app	will	use	the	last	placemark	to	update	the	name
and	address	of	the	next	place.
Click	here	to	view	code	image

if	([placemarks	count]	>	0)
{
				CLPlacemark	*placemark	=	[placemarks	lastObject];
				[self	updateFavoritePlace:place	withPlacemark:placemark];
}

The	placemark	contains	detailed	location	information	with	internationalized	terms.	For	example,	a
street	address	is	represented	by	the	number	(or	subThoroughfare)	and	a	street	(or
thoroughfare),	and	the	city	and	state	are	subAdministrativeArea	and
administrativeArea.
Click	here	to	view	code	image

[kAppDelegate.managedObjectContext	performBlock:^{
				NSString	*newName	=	[NSString	stringWithFormat:@"Next:	%@",placemark.name];

				[place	setValue:newName	forKey:@"placeName"];

				NSString	*newStreetAddress	=	[NSString	stringWithFormat:@"%@	%@",
placemark.subThoroughfare,	placemark.thoroughfare];

				[place	setValue:newStreetAddress
													forKey:@"placeStreetAddress"];

				[place	setValue:placemark.subAdministrativeArea
													forKey:@"placeCity"];

				[place	setValue:placemark.postalCode
													forKey:@"placePostal"];

				[place	setValue:placemark.administrativeArea
													forKey:@"placeState"];

				NSError	*saveError	=	nil;
				[kAppDelegate.managedObjectContext	save:&saveError];
				if	(saveError)	{
								NSLog(@"Save	Error:	%@",saveError.localizedDescription);
				}
}];

Tip
CLPlacemark	instances	provided	by	the	geocoder	include	an	addressDictionary
property,	which	is	formatted	for	easy	insertion	into	the	Address	Book	(see	Chapter	5,
“Getting	Started	with	Address	Book,”	for	more	information).

The	place	is	then	saved	using	Core	Data	so	that	it	will	survive	app	restarts.	Now	when	the	user	taps	the
green	arrow	annotation	view,	it	will	reflect	the	name	and	address	of	the	location	it	was	dragged	to,	as
shown	in	Figure	2.12.

Figure	2.12	FavoritePlaces	sample	app:	Where	I	Am	Going	Next	after	reverse-geocode.

Geofencing
Geofencing,	also	called	regional	monitoring,	is	the	capability	to	track	when	a	device	enters	or	exits	a
specified	map	region.	iOS	uses	this	to	great	effect	with	Siri	to	accomplish	things	like,	“Remind	me	to
pick	up	bread	when	I	leave	the	office,”	or,	“Remind	me	to	put	the	roast	in	the	oven	when	I	get	home.”
iOS	also	uses	geofencing	in	Passbook,	to	help	users	see	the	passes	that	are	relevant	to	them	on	the
home	screen	(see	Chapter	25,	“Passbook	and	PassKit,”	for	more	details).

Checking	for	Regional	Monitoring	Capability
The	Core	Location	location	manager	has	a	class	method	that	indicates	whether	regional	monitoring	is
available	for	the	device.	This	can	be	used	to	customize	whether	an	app	performs	regional	monitoring
tasks.	For	example,	the	sample	app	will	conditionally	display	a	switch	to	enable	geofencing	for	a
favorite	location	in	the	ICFFavoritePlaceViewController.
Click	here	to	view	code	image

BOOL	hideGeofence	=	![CLLocationManager	isMonitoringAvailableForClass:[CLRegion	class]];

[self.displayProximitySwitch	setHidden:hideGeofence];

if	(hideGeofence)
{
				[self.geofenceLabel	setText:@"Geofence	N/A"];
}

Defining	Boundaries
Core	Location’s	location	manager	(CLLocationManager)	keeps	a	set	of	regions	being	monitored
for	an	app.	In	ICFMainViewController,	the	updateMapAnnotations:	method	clears	out
the	set	of	monitored	regions	when	a	change	has	been	made.
Click	here	to	view	code	image

CLLocationManager	*locManager	=	[[ICFLocationManager	sharedLocationManager]
locationManager];

NSSet	*monitoredRegions	=	[locManager	monitoredRegions];

for	(CLRegion	*region	in	monitoredRegions)
{
				[locManager	stopMonitoringForRegion:region];
}

Next,	the	method	iterates	over	the	user ’s	list	of	favorite	places	to	determine	which	places	the	user	has
set	to	geofence.	For	each	such	place,	the	method	will	add	the	overlay	view	as	described	in	the
previous	section,	and	will	then	tell	the	location	manager	to	start	monitoring	that	region.	A	region	to
be	monitored	needs	a	center	coordinate,	a	radius,	and	an	identifier	so	that	the	region	can	be	tracked	in
the	app.	The	sample	app	uses	the	Core	Data	universal	resource	ID	representation	as	an	identifier	for
the	region	so	that	the	same	place	can	be	quickly	retrieved	when	a	regional	monitoring	event	is
generated	for	the	region.
Click	here	to	view	code	image

NSString	*placeObjectID	=	[[[favPlace	objectID]	URIRepresentation]	absoluteString];

CLLocationDistance	monitorRadius	=	[[favPlace	valueForKeyPath:@"displayRadius"]
floatValue];

CLCircularRegion	*region	=	[[CLCircularRegion	alloc]	initWithCenter:[favPlace	coordinate]
																																		radius:monitorRadius
																														identifier:placeObjectID];

[locManager	startMonitoringForRegion:region];

Note	that	currently	only	circular	regions	are	supported	for	regional	monitoring.

Monitoring	Changes
When	the	device	either	enters	or	exits	a	monitored	region,	the	location	manager	will	inform	its
delegate	of	the	event	by	calling	either	the	locationManager:didEnterRegion:	or	the
locationManager:didExitRegion:	method.
In	locationManager:didEnterRegion:	the	method	first	gets	the	identifier	associated	with	the
monitored	region.	This	identifier	was	assigned	when	the	location	manager	was	told	to	monitor	the
region,	and	is	the	Core	Data	URI	of	the	saved	favorite	place.	This	URI	is	used	to	get	the	managed
object	ID,	which	is	used	to	retrieve	the	favorite	place	from	the	managed	object	context.
Click	here	to	view	code	image

NSString	*placeIdentifier	=	[region	identifier];
NSURL	*placeIDURL	=	[NSURL	URLWithString:placeIdentifier];

NSManagedObjectID	*placeObjectID	=	[kAppDelegate.persistentStoreCoordinator
managedObjectIDForURIRepresentation:placeIDURL];

The	method	gets	details	from	the	favorite	place	and	presents	them	in	an	alert	to	the	user.
Click	here	to	view	code	image

[kAppDelegate.managedObjectContext	performBlock:^{

				ICFFavoritePlace	*place	=	(ICFFavoritePlace	*)[kAppDelegate.managedObjectContext
objectWithID:placeObjectID];

				NSNumber	*distance	=	[place	valueForKey:@"displayRadius"];
				NSString	*placeName	=	[place	valueForKey:@"placeName"];

				NSString	*baseMessage	=	@"Favorite	Place	%@	nearby	-	within	%@	meters.";

				NSString	*proximityMessage	=	[NSString
stringWithFormat:baseMessage,placeName,distance];

				UIAlertController	*nearbyAlertController	=	[UIAlertController
alertControllerWithTitle:@"Favorite	Nearby!"
																																										message:proximityMessage
																																			preferredStyle:UIAlertControllerStyleAlert];

				[nearbyAlertController	addAction:	[UIAlertAction	actionWithTitle:@"OK"
																																style:UIAlertActionStyleCancel
																														handler:nil]];

				ICFAppDelegate	*appDelegate	=	(ICFAppDelegate	*)[[UIApplication	sharedApplication]
delegate];

				[appDelegate.window.rootViewController	presentViewController:nearbyAlertController
																																																								animated:YES
																																																						completion:nil];
}];

To	test	this	using	the	sample	app,	start	the	app	in	debug	mode	using	the	included	GPX	file	for	the
Denver	Museum	of	Nature	and	Science	(DMNS),	as	described	previously	in	the	chapter	in	the	section
“Using	GPX	Files	to	Test	Specific	Locations.”	Ensure	that	the	Denver	Art	Museum	is	set	to	Geofence,
as	shown	in	Figure	2.9	in	the	section	“Working	with	Map	Overlays.”	After	the	app	is	running,	use
Xcode	to	change	the	location	using	the	debug	location	menu	from	DMNS	(as	shown	in	Figure	2.6)	to
the	Denver	Art	Museum.	This	should	trigger	the	geofence	and	display	the	alert	as	shown	in	Figure
2.13.

Figure	2.13	FavoritePlaces	sample	app:	favorite	place	nearby	alert.

The	locationManager:didExitRegion:	method	also	gets	the	Core	Data	identifier	from	the
region,	uses	Core	Data	to	get	the	managed	object	ID,	looks	up	the	favorite	place,	and	presents	an	alert
when	the	user	exits	the	region.	To	test	this	using	the	sample	app,	start	from	the	Favorite	Nearby	alert
just	shown	in	Figure	2.13.	Tap	the	OK	button,	and	then	select	Debug,	Location,	Apple	from	the	iOS
Simulator	menu.	After	a	few	seconds,	the	simulator	will	change	locations	and	present	the	user	with	an
alert,	as	shown	in	Figure	2.14.

Figure	2.14	FavoritePlaces	sample	app:	favorite	place	geofence	exited	alert.

The	location	manager	intentionally	delays	calling	the	delegate	methods	until	a	cushion	distance	has

been	crossed	for	at	least	20	seconds	to	prevent	spurious	messages	when	the	device	is	close	to	the
boundary	of	a	region.

Getting	Directions
As	of	iOS	6,	the	standard	Maps.app	was	enhanced	to	provide	turn-by-turn	navigation	in	addition	to
directions.	Maps.app	was	also	enhanced	to	allow	other	apps	to	open	it	with	specific	instructions	on
what	to	display.	Apps	can	request	that	Maps.app	display	an	array	of	map	items,	provide	directions
between	two	locations,	or	provide	directions	from	the	current	location.	Maps.app	can	be	configured
with	a	center	point	and	span,	and	a	type	of	map	(standard,	satellite,	or	hybrid).	As	of	iOS	7,	MapKit
offers	a	directions	request,	which	can	provide	directions	to	be	used	directly	in	an	app.	The	directions
request	can	return	an	array	of	polylines	representing	route	options,	with	accompanying	route	steps
that	can	be	presented	in	a	table	view.	Both	approaches	are	demonstrated	in	the	sample	app.
To	open	Maps.app,	the	class	method	openMapsWithItems:launchOptions:	on	the
MKMapItem	class	can	be	used,	or	the	instance	method	openInMapsWithlaunchOptions:.	In
the	sample	app,	there	is	a	button	on	ICFFavoritePlaceViewController	to	get	directions	to	a
favorite	place.	When	that	button	is	tapped,	the	getDirectionsButtonTouched:	method	is
called.	In	that	method,	an	instance	of	MKMapItem	is	created	for	the	favorite	place.
Click	here	to	view	code	image

CLLocationCoordinate2D	destination	=	[self.favoritePlace	coordinate];

MKPlacemark	*destinationPlacemark	=	[[MKPlacemark	alloc]	initWithCoordinate:destination
																								addressDictionary:nil];

MKMapItem	*destinationItem	=	[[MKMapItem	alloc]	initWithPlacemark:destinationPlacemark];

destinationItem.name	=	[self.favoritePlace	valueForKey:@"placeName"];

A	dictionary	of	launch	options	is	set	up	to	instruct	Maps.app	how	to	configure	itself	when	opened.
Click	here	to	view	code	image

NSDictionary	*launchOptions	=	@{
				MKLaunchOptionsDirectionsModeKey	:
				MKLaunchOptionsDirectionsModeDriving,
				MKLaunchOptionsMapTypeKey	:
				[NSNumber	numberWithInt:MKMapTypeStandard]
};

Then,	an	array	of	map	items	is	created	with	the	favorite	place	to	pass	to	Maps.app	with	the	dictionary
of	launch	options.	If	two	map	items	are	passed	in	the	array	with	a	directions	launch	option,	the	map
will	provide	directions	from	the	first	item	to	the	second	item.
Click	here	to	view	code	image

NSArray	*mapItems	=	@[destinationItem];

BOOL	success	=	[MKMapItem	openMapsWithItems:mapItems
																														launchOptions:launchOptions];

if	(!success)
{
				NSLog(@"Failed	to	open	Maps.app.");
}

Maps.app	will	be	opened	and	will	provide	directions	to	the	favorite	place.	If	an	error	is	encountered,

the	openMapsWithItems:launchOptions:	will	return	NO.
To	request	directions	to	be	displayed	in	the	app,	instantiate	an	MKDirections	object	with	an
MKDirectionsRequest	instance,	specifying	a	source	(or	starting	point)	and	destination	map	item
expressed	as	MKMapItem	instances.
Click	here	to	view	code	image

CLLocationCoordinate2D	destination	=	[self.favoritePlace	coordinate];

MKPlacemark	*destinationPlacemark	=	[[MKPlacemark	alloc]	initWithCoordinate:destination
																								addressDictionary:nil];

MKMapItem	*destinationItem	=	[[MKMapItem	alloc]	initWithPlacemark:destinationPlacemark];

MKMapItem	*currentMapItem	=	[self.delegate	currentLocationMapItem];

MKDirectionsRequest	*directionsRequest	=	[[MKDirectionsRequest	alloc]	init];

[directionsRequest	setDestination:destinationItem];
[directionsRequest	setSource:currentMapItem];

MKDirections	*directions	=	[[MKDirections	alloc]	initWithRequest:directionsRequest];

Then	call	the	calculateDirectionsWithCompletionHandler:	method,	specifying	a
completion	block.	The	completion	block	should	handle	any	errors,	and	inspect	the
MKDirectionsResponse	provided.	For	this	example	the	method	ensures	that	at	least	one	route
(which	is	an	instance	of	MKRoute)	was	returned,	and	then	performs	actions	with	the	first	route.	The
method	iterates	over	the	steps	property	of	the	first	route,	which	contains	instances	of
MKRouteStep,	and	logs	strings	to	display	the	distance	and	instructions	for	each	route	step.	Then	the
method	calls	the	delegate	to	add	the	route	to	the	map.
Click	here	to	view	code	image

	[directions	calculateDirectionsWithCompletionHandler:	^(MKDirectionsResponse	*response,
NSError	*error){
				if	(error)	{

								NSString	*dirMessage	=	[NSString	stringWithFormat:@"Failed	to	get	directions:
%@",	error.localizedDescription];

								UIAlertController	*dirAlertController	=	[UIAlertController
alertControllerWithTitle:@"Directions	Error"
																																													message:dirMessage
																																						preferredStyle:UIAlertControllerStyleAlert];

								[dirAlertController	addAction:	[UIAlertAction	actionWithTitle:@"OK"
																																			style:UIAlertActionStyleCancel
																																	handler:nil]];

								[self	presentViewController:dirAlertController
																											animated:YES
																									completion:nil];
				}
				else
				{
								if	([response.routes	count]	>	0)	{
												MKRoute	*firstRoute	=	response.routes[0];
												NSLog(@"Directions	received.		Steps	for	route	1	are:	");
												NSInteger	stepNumber	=	1;
												for	(MKRouteStep	*step	in	firstRoute.steps)	{

																NSLog(@"Step	%d,	%f	meters:	%@",stepNumber,
step.distance,step.instructions);

																stepNumber++;
												}
												[self.delegate	displayDirectionsForRoute:firstRoute];
								}
								else
								{
												NSString	*dirMessage	=	@"No	directions	available";

												UIAlertController	*dirAlertController	=	[UIAlertController
alertControllerWithTitle:@"No	Directions"
																																																		message:dirMessage
																																											preferredStyle:UIAlertControllerStyleAlert];

												[dirAlertController	addAction:[UIAlertAction	actionWithTitle:@"OK"
																																							style:UIAlertActionStyleCancel
																																					handler:nil]];

												[self	presentViewController:dirAlertController
																															animated:YES
																													completion:nil];
								}
				}
}];

In	the	delegate	method,	the	polyline	for	the	route	is	added	to	the	map’s	overlays,	and	the	dialog	is
dismissed.
Click	here	to	view	code	image

-	(void)displayDirectionsForRoute:(MKRoute	*)route
{
				[self.mapView	addOverlay:route.polyline];

				if	(self.favoritePlacePopoverController)
				{
								[self.favoritePlacePopoverController	dismissPopoverAnimated:YES];

								self.favoritePlacePopoverController	=	nil;
				}	else
				{
								[self	dismissViewControllerAnimated:YES
																																	completion:nil];
				}
}

Since	the	polyline	has	been	added	as	an	overlay,	the	map	delegate	method	to	return	overlay	views
must	now	handle	polylines	instead	of	just	the	custom	geofence	radius	overlays.
Click	here	to	view	code	image

-	(MKOverlayRenderer	*)mapView:(MKMapView	*)mapView
																viewForOverlay:(id	<	MKOverlay	>)overlay
{
				MKOverlayRenderer	*returnView	=	nil;

				if	([overlay	isKindOfClass:[ICFFavoritePlace	class]])	{
								...
				}
				if	([overlay	isKindOfClass:[MKPolyline	class]])	{
								MKPolyline	*line	=	(MKPolyline	*)overlay;

								MKPolylineRenderer	*polylineRenderer	=	[[MKPolylineRenderer	alloc]
initWithPolyline:line];

								[polylineRenderer	setLineWidth:3.0];
								[polylineRenderer	setFillColor:[UIColor	blueColor]];
								[polylineRenderer	setStrokeColor:[UIColor	blueColor]];
								returnView	=	polylineRenderer;
				}

				return	returnView;
}

The	mapView:viewForOverlay:	method	will	now	check	which	class	the	overlay	belongs	to,	and
build	the	correct	type	of	view	for	it.	For	the	polyline,	the	method	will	create	an	instance	of
MKPolylineRenderer	using	the	polyline	from	the	overlay,	and	customize	it	with	a	line	width	and
blue	fill	and	stroke	color,	which	will	show	a	directions	line	on	the	map	between	the	starting	location
and	the	destination	location,	as	shown	in	Figure	2.15.

Figure	2.15	FavoritePlaces	sample	app:	displaying	a	direction	polyline	on	the	map.

Summary
This	chapter	covered	Core	Location	and	MapKit.	It	described	how	to	set	up	Core	Location,	how	to
check	for	available	services,	how	to	deal	with	user	permissions,	and	how	to	acquire	the	device’s
current	location.
Next,	this	chapter	explained	how	to	use	MapKit	to	display	locations	on	a	map	using	standard	and
custom	annotations.	The	chapter	covered	how	to	display	more	detail	about	an	annotation	in	a	callout,
and	how	to	respond	to	the	user	tapping	the	callout	or	dragging	the	annotation	on	the	map.	It	also
explained	how	to	add	overlays	to	a	map	to	highlight	map	features.
This	chapter	then	described	how	to	use	the	geocoder	to	get	latitude	and	longitude	information	from	a
street	address,	or	to	get	address	information	from	a	latitude	and	longitude	coordinate.
Geofencing,	or	regional	monitoring,	was	demonstrated.	The	sample	app	showed	how	to	specify	and
monitor	when	the	user	enters	or	exits	map	regions.
Finally,	this	chapter	demonstrated	two	techniques	for	providing	directions	to	a	favorite	place:	using
Maps.app	to	provide	directions	and	using	a	directions	request	to	get	information	to	display	directly	in

the	user	interface.

3.	Leaderboards

Leaderboards	have	become	an	important	component	of	nearly	every	mobile	game,	as	well	as	having
numerous	applications	outside	of	gaming.	Leveraging	Game	Center	to	add	leaderboards	makes	it
easier	than	ever	to	include	them	in	an	iOS	app.	Although	leaderboards	have	been	around	almost	as
long	as	video	games	themselves—the	first	high-score	list	appeared	in	1976—they	have	more	recently
become	critical	parts	of	a	social	gaming	experience.	In	this	chapter,	you’ll	learn	how	to	add	a	full-
featured	leaderboard	to	a	real-world	game,	from	setting	up	the	required	information	in	iTunes
Connect	to	displaying	the	leaderboard	using	GKLeaderboardViewController.

The	Sample	App
In	both	this	chapter	and	Chapter	4,	“Achievements,”	the	same	sample	app	is	used.	It	is	important	to	be
familiar	with	the	game	itself	so	that	you	can	remove	the	complexity	of	it	from	the	process	of
integrating	Game	Center.	Whack-a-Cac	was	designed	to	use	minimal	code	and	be	simple	to	learn,	so
the	game	can	act	as	a	generic	placeholder	for	whatever	app	you	are	integrating	Game	Center	into.	If
you	already	have	an	app	that	you	are	ready	to	work	with,	skip	this	section	and	follow	along	with	your
existing	project.
Whack-a-Cac,	as	shown	in	Figure	3.1,	is	a	simple	Whack-a-Mole	style	game.	Cacti	will	pop	up	and
the	user	must	tap	them	before	the	timer	fires	and	they	disappear	behind	the	sand	dunes.	As	the	game
progresses,	it	continues	to	get	more	difficult;	after	you	have	missed	five	cacti,	the	game	ends	and	you
are	left	with	a	score.	The	gameplay	behavior	itself	is	controlled	through	the
ICFGameViewController	class.	Cacti	can	appear	anywhere	along	the	x-axis	and	on	one	of	three
possible	rows	on	the	y-axis.	The	player	will	have	two	seconds	from	the	time	a	cactus	appears	to	tap	it
before	it	goes	back	down	and	the	player	is	deducted	a	life	point.	Up	until	a	score	of	50,	every	ten	cacti
that	are	hit	will	increase	the	maximum	number	shown	at	one	time	by	one.	The	game	also	supports
pausing	and	resuming	during	gameplay.

Figure	3.1	A	first	look	at	Whack-a-Cac,	the	game	that	is	used	for	both	of	the	Game	Center	chapters.

Before	we	dig	into	the	game-specific	code,	attention	must	first	be	paid	to	the	home	screen	menu	of	the
game.	IFCViewController.m	will	not	only	handle	launching	the	gameplay	but	also	enable	the
user	to	access	the	leaderboards	and	achievements,	which	are	covered	in	Chapter	4.	The	Game	Center–
specific	functionality	of	this	class	is	discussed	in	detail	later	in	this	chapter,	but	for	the	time	being	the
focus	should	be	on	the	play:	method.	When	a	new	game	is	created,	IFCViewController	simply
calls	alloc	and	init	on	IFCGameViewController	and	pushes	it	onto	the	navigation	stack.	The
remainder	of	the	game	will	be	handled	by	that	class.
Whack-a-Cac	is	a	simplified	example	of	an	iOS	game.	It	is	based	on	a	state	engine	containing	three
states:	playing,	paused,	and	game	over.	While	the	game	is	in	the	playing	state,	the	engine	will	continue
to	spawn	cacti	until	the	user	runs	out	of	life	and	enters	the	game-over	state.	The	user	can	pause	the
game	at	any	time	by	tapping	the	pause	button	in	the	upper-left	corner	of	the	screen.	To	begin	to
understand	the	engine,	direct	your	attention	to	the	viewDidLoad:	method.
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[[ICFGameCenterManager	sharedManager]	setDelegate:	self];

				score	=	0;
				life	=	5;
				gameOver	=	NO;
				paused	=	NO;

				[super	viewDidLoad];

				[self	updateLife];

				[self	spawnCactus];
				[self	performSelector:@selector(spawnCactus)	withObject:nil	afterDelay:1.0];
}

On	the	first	line,	the	ICFGameCenterManager	has	its	delegate	set	to	self,	which	is	covered	in
depth	later	in	this	section.	During	the	viewDidLoad	execution,	a	few	state	variables	need	to	be	set.
First	the	score	is	reset	to	zero	along	with	the	life	integer	being	set	to	five.	The	next	requirement	is
setting	two	Booleans	that	represent	the	current	state	of	the	game;	since	the	game	starts	with	gameplay
on	launch,	both	gameOver	and	paused	are	set	to	NO.	A	method	named	updateLife	is	then	called.
Although	this	method	is	discussed	later	in	this	section,	for	now	just	note	that	it	handles	rendering	the
player ’s	lives	to	the	upper	right	of	the	screen,	as	shown	in	Figure	3.1.	The	final	initialization	step	is	to
spawn	two	cacti	at	the	start	of	the	game.	One	is	spawned	instantly	and	the	other	is	spawned	after	a
delay	of	one	second.

Spawning	a	Cactus
One	of	the	more	important	functions	in	IFCGameViewController	is	spawning	the	actual	cacti	to
the	screen.	In	the	viewDidLoad	method	spawnCactus	was	called	twice;	turn	your	attention	to	that
method	now.	In	a	state-based	game	the	first	thing	that	should	be	done	is	to	check	to	make	sure	you	are
in	the	correct	state.	The	first	test	that	is	run	is	a	gameOver	check;	if	the	game	has	ended,	the	cactus
should	stop	spawning.	The	next	check	is	a	pause	test;	if	the	game	is	paused,	you	don’t	want	to	spawn	a
new	cactus	either,	but	when	the	game	is	resumed,	you	want	to	start	spawning	again.	The	test
performed	on	the	paused	state	will	retry	spawning	every	second	until	the	game	is	resumed	or	quit.
Click	here	to	view	code	image

if(gameOver)
{
				return;
}

if(paused)
{
				[self	performSelector:@selector(spawnCactus)	withObject:nil	afterDelay:1];

				return;
}

If	the	method	has	passed	both	of	the	state	checks,	it	is	time	to	spawn	a	new	cactus.	First	the	game	must
determine	where	to	randomly	place	the	object.	To	randomly	place	the	cactus	in	the	game,	two	random
numbers	are	generated,	the	first	for	the	row	to	be	spawned	in,	followed	by	the	x-axis	location.
Click	here	to	view	code	image

NSInteger	rowToSpawnIn	=	arc4random()%3;
NSInteger	horizontalLocation	=	arc4random()%1024;

To	create	a	more	interesting	gaming	experience,	there	are	three	different	images	for	the	cactus.	With
each	new	cactus	spawned,	one	image	is	randomly	selected	through	the	following	code	snippet:
Click	here	to	view	code	image

NSInteger	cactusSize	=	arc4random()%3;
UIImage	*cactusImage	=	nil;

switch	(cactusSize)

{
								case	0:
												cactusImage	=	[UIImage	imageNamed:
												@"CactusLarge.png"];
												break;
								case	1:
												cactusImage	=	[UIImage	imageNamed:	@"CactusMedium.png"];
												break;
								case	2:
												cactusImage	=	[UIImage	imageNamed:
												@"CactusSmall.png"];
												break;
								default:
												break;
}

A	simple	check	is	performed	next	to	make	sure	that	the	cactus	is	not	being	drawn	off	the	right	side	of
the	view.	Because	the	x-axis	is	calculated	randomly	and	the	widths	of	the	cacti	are	variable,	a	simple
if	statement	tests	to	see	whether	the	image	is	being	drawn	too	far	right	and	if	so	moves	it	back	to	the
edge.
Click	here	to	view	code	image

if(horizontalLocation	>	1024	-	cactusImage.size.width)
						horizontalLocation	=	1024	-	cactusImage.size.width;

Whack-a-Cac	is	a	depth-	and	layer-based	game.	There	are	three	dunes,	and	a	cactus	should	appear
behind	the	dune	for	the	row	it	is	spawned	in	but	in	front	of	dunes	that	fall	behind	it.	The	first	step	in
making	this	work	is	to	determine	which	view	the	new	cactus	needs	to	fall	behind.	This	is	done	using
the	following	code	snippet:
Click	here	to	view	code	image

UIImageView	*duneToSpawnBehind	=	nil;

switch	(rowToSpawnIn)
{
				case	0:
								duneToSpawnBehind	=	duneOne;
								break;
				case	1:
								duneToSpawnBehind	=	duneTwo;
								break;
				case	2:
								duneToSpawnBehind	=	duneThree;
								break;
				default:
								break;
}

Now	that	the	game	knows	where	it	needs	to	layer	the	new	cactus,	a	couple	of	convenience	variables
are	created	to	increase	the	readability	of	the	code.
Click	here	to	view	code	image

CGFloat	cactusHeight	=	cactusImage.size.height;
CGFloat	cactusWidth	=	cactusImage.size.width;

All	the	important	groundwork	has	now	been	laid,	and	a	new	cactus	can	finally	be	placed	into	the	game
view.	Since	the	cactus	will	act	as	a	touchable	item,	it	makes	sense	to	create	it	as	a	type	of	UIButton.
The	frame	variables	are	inserted,	which	cause	the	cactus	to	be	inserted	behind	the	dune	and	thus	be

invisible.	An	action	is	added	to	the	cactus	that	calls	the	method	cactusHit:,	which	is	discussed	later
in	this	section.
Click	here	to	view	code	image

UIButton	*cactus	=	[[UIButton	alloc]	initWithFrame:CGRectMake(horizontalLocation,
(duneToSpawnBehind.frame.origin.y),	cactusWidth,	cactusHeight)];

[cactus	setImage:cactusImage	forState:	UIControlStateNormal];

[cactus	addTarget:self	action:@selector(cactusHit:)
forControlEvents:UIControlEventTouchDown];

[self.view	insertSubview:cactus	belowSubview:duneToSpawnBehind];

Now	that	a	cactus	has	been	spawned,	it	is	ready	to	be	animated	up	from	behind	the	dunes	and	have	its
timer	started	to	inform	the	game	when	the	user	has	failed	to	hit	it	within	the	two-second	window.	The
cactus	will	slide	up	from	behind	the	dune	in	a	one-fourth-second	animation	using	information	about
the	height	of	the	cactus	to	make	sure	that	it	ends	up	in	the	proper	spot.	A	two-second	timer	is	also
begun	that	will	fire	cactusMissed:,	which	is	discussed	in	the	“Cactus	Interaction”	section.
Click	here	to	view	code	image

[UIView	beginAnimations:	@"slideInCactus"	context:nil];
[UIView	setAnimationCurve:	UIViewAnimationCurveEaseInOut];
[UIView	setAnimationDuration:	0.25];

cactus.frame	=	CGRectMake(horizontalLocation,	(duneToSpawnBehind.frame.origin.y)-
cactusHeight/2,	cactusWidth,	cactusHeight);

[UIView	commitAnimations];

[self	performSelector:@selector(cactusMissed:)	withObject:cactus	afterDelay:2.0];

[UIView	animateWithDuration:0.25f
																						delay:0.f
																				options:UIViewAnimationOptionCurveEaseInOut
																	animations:^{
																					cactus.frame	=	CGRectMake(horizontalLocation,
																																			(duneToSpawnBehind.frame.origin.y)-cactusHeight/2.f,
cactusWidth,	cactusHeight);
																	}	completion:nil];

Cactus	Interaction
There	are	two	possible	outcomes	of	a	cactus	spawning:	Either	the	user	has	hit	the	cactus	within	the
two-second	limit	or	the	user	has	failed	to	hit	it.	In	the	first	scenario	cactusHit:	is	called	in
response	to	a	UIControlEventTouchDown	on	the	cactus	button.	When	this	happens,	the	cactus	is
quickly	faded	off	the	screen	and	then	removed	from	the	superView.	Using	the	option
UIViewAnimationOptionsBeginFromCurrentState	will	ensure	that	any	existing
animations	on	this	cactus	are	cancelled.	The	score	is	incremented	by	one	and	displayNewScore:
is	called	to	update	the	score	on	the	screen;	more	on	score	updating	later	in	this	section.	After	a	cactus
has	been	hit,	a	key	step	is	spawning	the	next	cactus.	This	is	done	in	the	same	fashion	as	in
viewDidLoad	but	with	a	randomized	time	to	create	a	more	engaging	experience.
Click	here	to	view	code	image

-	(IBAction)cactusHit:(id)sender;
{

				[UIView	animateWithDuration:0.1f
																										delay:0.0f
																								options:	UIViewAnimationCurveLinear	|
																								UIViewAnimationOptionBeginFromCurrentState
																					animations:^
									{
																[sender	setAlpha:	0];
								}
								completion:^(BOOL	finished)
								{
																	[sender	removeFromSuperview];
				}];

				score++;

				[self	displayNewScore:	score];

				[self	performSelector:@selector(spawnCactus)	withObject:nil	afterDelay:
(arc4random()%3)	+	.5f];
}

Two	seconds	after	any	cacti	are	spawned,	the	cactusMissed:	method	will	be	called,	even	on	cacti
that	have	been	hit.	Since	this	method	is	called	regardless	of	whether	it	has	been	hit	already,	it	is
important	to	provide	a	state	check.	The	cactus	was	removed	from	the	superView	when	it	was	hit,
and	therefore	it	will	no	longer	have	a	superView.	A	simple	nil	check	and	a	quick	return	prevent
the	user	from	losing	points	for	cacti	that	were	successfully	hit.
You	also	don’t	want	to	penalize	the	player	for	pausing	the	game,	so	while	the	game	is	in	the	pause
state,	the	user	should	not	lose	any	life.	If	the	method	has	gotten	this	far	without	returning,	you	know
that	the	user	has	missed	a	cactus	and	needs	to	be	penalized.	As	with	the	cactusHit:	method,	the
game	still	needs	to	remove	this	missed	cactus	from	the	superView	and	start	a	timer	to	spawn	a
replacement.	In	addition,	instead	of	incrementing	the	score,	you	need	to	decrement	the	user ’s	life,	and
a	call	to	updateLife	is	performed	to	update	the	display.

Note
The	pause-state	approach	here	creates	an	interesting	usability	bug.	If	you	pause	the	game,
the	cactus	that	would	have	disappeared	while	paused	will	remain	on	the	screen	forever.
Although	there	are	ways	to	resolve	this	bug,	for	the	sake	of	example	simplicity,	this
weakened	experience	was	left	in	the	game.

Click	here	to	view	code	image

-	(void)cactusMissed:(UIButton	*)sender;
{
				if([sender	superview]	==	nil)
				{
								return;
				}

				if(paused)
				{
								return;
				}

				CGRect	frame	=	sender.frame;
				frame.origin.y	+=	sender.frame.size.height;

				[UIView	animateWithDuration:0.1f
																										delay:0.0f
																								options:	UIViewAnimationCurveLinear	|
																							UIViewAnimationOptionBeginFromCurrentState
																					animations:^
					{
									sender.frame	=	frame;
					}
									completion:^(BOOL	finished)
					{
												[sender	removeFromSuperview];
												[self	performSelector:@selector(spawnCactus)
												withObject:nil	afterDelay:(arc4random()%3)	+	.5f];

												life--;
												[self	updateLife];
					}];
}

Displaying	Life	and	Score
What	fun	would	Whack-a-Cac	be	with	no	penalties	for	missing	and	no	way	to	keep	track	of	how	well
you	are	doing?	Displaying	the	user ’s	score	and	life	are	crucial	game-play	elements	in	the	sample
game,	and	both	methods	have	been	called	from	methods	that	have	been	looked	at	earlier	in	this
section.
Turn	your	focus	now	to	displayNewScore:	in	IFCGameViewController.m.	Anytime	the
score	is	updated,	a	call	to	displayNewScore:	is	necessary	to	update	the	score	display	in	the	game.
In	addition	to	displaying	the	score,	every	time	the	score	reaches	a	multiple	of	10	while	less	than	or
equal	to	50,	a	new	cactus	is	spawned.	This	new	cactus	spawning	has	the	effect	of	increasing	the
difficulty	of	the	game	as	the	player	progresses.
Click	here	to	view	code	image

-	(void)displayNewScore:(CGFloat)updatedScore;
{
				NSInteger	scoreInt	=	score;

				if(scoreInt	%	10	==	0	&&	score	<=	50)
				{
								[self	spawnCactus];
				}

				scoreLabel.text	=	[NSString	stringWithFormat:	@"%06.0f",
				updatedScore];
}

Displaying	life	is	similar	to	displaying	the	user ’s	score	but	with	some	minor	additional	complexity.
Instead	of	a	text	field	being	used	to	display	a	score,	the	user ’s	life	is	represented	with	images.	After	a
UIImage	is	created	to	represent	each	life,	the	first	thing	that	must	be	done	is	to	remove	the	existing
life	icons	off	the	view.	This	is	done	with	a	simple	tag	search	among	the	subviews.	Next,	a	loop	is
performed	for	the	number	of	lives	the	user	has	left,	and	each	life	icon	is	drawn	in	a	row	in	the	upper
right	of	the	game	view.	Finally,	the	game	needs	to	check	that	the	user	still	has	some	life	left.	If	the	user
has	reached	zero	life,	a	UIAlert	informs	him	that	the	game	has	ended	and	what	his	final	score	was.
Click	here	to	view	code	image

-(void)updateLife
{

				UIImage	*lifeImage	=	[UIImage	imageNamed:@"heart.png"];

				for(UIView	*view	in	[self.view	subviews])
				{
								if(view.tag	==	kLifeImageTag)
								{
												[view	removeFromSuperview];
								}
				}

				for	(int	x	=	0;	x	<	life;	x++)
				{
								UIImageView	*lifeImageView	=	[[UIImageView	alloc]
								initWithImage:	lifeImage];

								lifeImageView.tag	=	kLifeImageTag;

								CGRect	frame	=	lifeImageView.frame;
								frame.origin.x	=	985	-	(x	*	30);
								frame.origin.y	=	20;
								lifeImageView.frame	=	frame;

								[self.view	addSubview:	lifeImageView];
				}

				if(life	==	0)
				{
								gameOver	=	YES;
								UIAlertView	*alert	=	[[UIAlertView	alloc]
																initWithTitle:@"Game	Over!"
																						message:	[NSString	stringWithFormat:	@"You	scored	%0.0f	points!",
score]
																					delegate:self
												cancelButtonTitle:@"Dismiss"
												otherButtonTitles:nil];

									alert.tag	=	kGameOverAlert;
									[alert	show];
				}
}

Pausing	and	Resuming
Whack-a-Cac	enables	the	user	to	pause	and	resume	the	game	using	the	pause	button	in	the	upper-left
corner	of	the	game	view.	Tapping	that	button	calls	the	pause:	action.	This	method	is	very	simple:
The	state	variable	for	paused	is	set	to	YES	and	an	alert	asking	the	user	to	exit	or	resume	is
presented.
Click	here	to	view	code	image

-	(IBAction)pause:(id)sender
{
				paused	=	YES;

				UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@""
								message:@"Game	Paused!"
								delegate:self
								cancelButtonTitle:@"Exit"
								otherButtonTitles:@"Resume",	nil];

				alert.tag	=	kPauseAlert;
				[alert	show];

}

Game	over	and	pause	both	use	a	UIAlert	to	handle	user	responses.	In	the	event	of	game	over	or	the
exit	option	in	pause,	the	navigation	stack	is	popped	back	to	the	menu	screen.	If	the	user	has	resumed
the	game,	all	that	needs	to	be	done	is	to	set	the	pause	state	back	to	NO.
Click	here	to	view	code	image

-	(void)alertView:(UIAlertView	*)alertView	clickedButtonAtIndex:(NSInteger)buttonIndex
{
				if(alertView.tag	==	kGameOverAlert)
				{
								[self.navigationController	popViewControllerAnimated:	YES];
				}

				else	if	(alertView.tag	==	kPauseAlert)
				{
								if(buttonIndex	==	0)
								{
												[self.navigationController	popViewControllerAnimated:	YES];
								}
								else
								{
													paused	=	NO;
								}
				}
}

Final	Thoughts	on	Whack-a-Cac
You	should	now	be	familiar	and	confident	with	the	gameplay	and	functionality	of	the	Whack-a-Cac
sample	game.	However,	some	additional	cleanup	methods	might	warrant	a	look	in	the	source	code.	In
the	following	sections,	you	will	learn	how	to	add	leaderboards	into	Whack-a-Cac.

iTunes	Connect
Leaderboard	data	is	stored	on	Apple’s	Game	Center	servers.	To	configure	your	app	to	interact	with
leaderboards,	you	must	first	properly	configure	Game	Center	in	iTunes	Connect.	Using	the	iTunes
Connect	Portal	(http://itunesconnect.apple.com),	create	a	new	app	as	you	would	when	submitting	an
app	for	sale.	If	you	already	have	an	existing	app,	you	can	substitute	that	as	well.	After	you	populate	the
basic	information,	your	app	page	should	look	similar	to	the	one	shown	in	Figure	3.2.

http://itunesconnect.apple.com

Figure	3.2	A	basic	app	page	as	seen	through	iTunes	Connect.

Warning
From	the	time	that	you	create	a	new	app	in	iTunes	Connect,	you	have	90	days	to	submit	it
for	approval.	This	policy	was	enacted	to	prevent	people	from	name	squatting	app	names.
Although	you	can	work	around	this	by	creating	fake	test	apps	to	hook	the	Game	Center	to
for	testing,	it	is	an	important	limitation	to	keep	in	mind.

Direct	your	attention	to	the	upper-right	corner	of	the	app	page,	where	you	will	find	a	button	called
Manage	Game	Center.	This	is	where	you	will	configure	all	the	Game	Center	behavior	for	your	app.
Inside	the	Game	Center	configuration	page,	the	first	thing	you	will	notice	is	a	slider	to	enable	Game
Center,	as	shown	in	Figure	3.3.	Additionally,	there	is	the	option	of	using	shared	leaderboards	across
multiple	apps,	such	as	free	and	paid	versions.	To	set	up	shared	group	leaderboards,	you	will	need	to
create	a	reference	name	that	then	can	be	shared	across	multiple	apps	associated	with	your	iTunes
Connect	account.	This	configuration	is	done	under	the	Move	to	Group	option	after	a	leaderboard	has
been	created.

Figure	3.3	Enabling	Game	Center	behavior	in	your	app.

After	you	have	enabled	Game	Center	functionality	for	your	app,	you	will	need	to	set	up	the	first
leaderboard,	as	shown	in	Figure	3.4.	It	is	important	to	note	that	after	an	app	has	been	approved	and
becomes	live	on	the	App	Store,	you	cannot	delete	a	leaderboard.	Apple	has	also	recently	provided	an
option	to	delete	test	data	for	your	leaderboards.	It	is	recommended	to	wipe	your	test	data	that	was
generated	during	testing	before	shipping	your	app.

Figure	3.4	Setting	up	a	new	leaderboard.

After	you	have	selected	Add	Leaderboard	from	the	portal,	you	will	be	presented	with	two	options.
The	first,	Single	Leaderboard,	is	for	a	standalone	leaderboard,	like	the	type	used	in	Whack-a-Cac.
The	Single	Leaderboard	will	store	a	set	of	scores	for	your	app	or	a	game	mode	within	your	app.	The
second	option	is	for	a	Combined	Leaderboard;	this	option	enables	you	to	combine	two	or	more
Single	Leaderboards	to	create	an	ultimate	combined	style	high-score	list.	For	example,	if	you	have	a
leaderboard	for	each	level	of	your	game,	you	can	create	a	combined	leaderboard	to	see	the	top	score
across	all	levels	at	once.	For	the	purpose	of	this	chapter,	you	will	be	working	only	with	a	Single
Leaderboard.

Note
Apple	currently	limits	the	number	of	leaderboards	allowed	per	app	to	500	as	of	iOS	7.
This	represents	a	significant	increase	from	the	previous	limit	of	25.

When	setting	up	a	leaderboard,	you	will	be	required	to	enter	several	fields	of	information,	as	shown
in	Figure	3.5.	The	first	entry	is	the	Leaderboard	Reference	Name.	This	field	is	entirely	used	by	you
within	iTunes	Connect	to	be	able	to	quickly	locate	and	identify	the	leaderboard.	Leaderboard	ID	is	the
attribute	that	will	be	used	to	query	the	leaderboard	within	the	actual	project.	Apple	recommends	using
a	reverse	DNS	system.	The	Leaderboard	ID	used	for	Whack-a-Cac	was
com.dragonforged.whackacac.leaderboard;	if	you	are	working	with	your	own	app,	be
sure	to	substitute	whatever	entry	you	have	here	in	all	following	code	examples	as	well.

Figure	3.5	Configuring	a	standard	single	leaderboard	in	iTunes	Connect	for	Whack-a-Cac.

Apple	has	provided	several	preset	options	for	formatting	the	score	data	in	the	leaderboard	list.	Table
3.1	provides	examples	for	each	type	of	formatting.

Table	3.1	Detailed	Breakdown	of	Available	Score	Formatting	Options	and	Associated	Sample
Output

Note
If	your	score	doesn’t	conform	to	one	of	the	formats	shown	in	Table	3.1,	all	is	not	lost;
however,	you	will	be	required	to	work	with	custom	leaderboard	presentation.	Retrieving
raw	score	values	is	discussed	in	the	section	“Going	Further	with	Leaderboards.”

The	sort-order	option	controls	whether	Game	Center	shows	the	highest	score	at	the	top	of	the	chart	or
the	lowest	score.	Additionally,	you	can	specify	a	score	range	that	will	automatically	drop	scores	that
are	too	high	or	too	low	from	being	accepted	by	Game	Center.
The	final	step	when	creating	a	new	leaderboard	is	to	add	the	localization	information.	This	is
required	information,	and	you	will	want	to	provide	at	a	minimum	localized	data	for	the	app’s	primary
language;	however,	you	can	also	provide	information	for	additional	languages	that	you	would	like	to
support.	In	addition	to	the	localized	name,	you	have	the	option	to	fine-tune	the	score	format,	associate
an	image	with	this	leaderboard,	and	enter	the	suffix	to	be	used.	When	you’re	entering	the	score	suffix,
it	is	important	to	note	that	you	might	need	a	space	before	the	entry	because	Game	Center	will	print
whatever	is	here	directly	after	the	score.	For	example,	if	you	enter	“Points”	your	score	output	will
look	like	“123Points”	instead	of	“123	Points.”
After	you	finish	entering	all	the	required	data,	you	will	need	to	tap	the	Save	button	for	the	changes	to
take	effect.	Even	after	you	save,	it	might	take	several	hours	for	the	leaderboard	information	to
become	available	for	use	on	Apple’s	servers.	Now	that	you	have	a	properly	configured	Game	Center
leaderboard,	you	can	return	to	your	Xcode	project	and	begin	to	set	up	the	required	code	to	interact
with	it.

Game	Center	Manager
When	you	are	working	with	Game	Center,	it	is	very	likely	that	you	will	have	multiple	classes	that
need	to	directly	interact	with	a	single	shared	manager.	In	addition	to	the	benefits	of	isolating	Game
Center	into	its	own	manager	class,	it	makes	it	very	easy	to	drop	all	the	required	Game	Center	support
into	new	projects	to	quickly	get	up	and	running.	In	the	Whack-a-Cac	project	turn	your	attention	to	the
IFCGameCenterManager	class.	The	first	thing	you	might	notice	in	this	class	is	that	it	is	formed
around	a	singleton;	this	means	that	you	will	have	only	one	instance	of	it	in	your	app	at	any	given	time.
The	first	thing	that	needs	to	be	done	is	to	create	the	foundation	of	the	Game	Center	manager	that	you
will	be	building	on	top	of.	The	Game	Center	manager	will	handle	all	the	direct	Game	Center
interaction	and	will	use	a	protocol	to	send	the	delegate	information	regarding	the	successes	and
failures	of	these	calls.	Since	Game	Center	calls	are	not	background	thread	safe,	the	manager	will	need
to	direct	all	delegate	callbacks	onto	the	main	thread.	To	accomplish	this,	you	have	two	new	methods.
The	first	method	will	ensure	that	it	is	using	the	main	thread	to	create	callbacks	with.
Click	here	to	view	code	image

-	(void)callDelegateOnMainThread:(SEL)selector	withArg:(id)arg	error:(NSError*)error
{
						dispatch_async(dispatch_get_main_queue(),	^(void)
				{
								[self	callDelegate:	selector	withArg:	arg	error:	error];
				});
}

The	callDelegateOnMainThread:	method	will	pass	along	all	arguments	and	errors	into	the
callDelegate:	method.	The	first	thing	the	callDelegate	method	does	is	ensure	that	it	is	being

called	from	the	main	thread,	which	it	will	be	if	it	is	never	called	directly.	Since	the	callDelegate
method	does	not	function	correctly	without	a	delegate	being	set,	this	is	the	next	check	that	is
performed.	At	this	point	it	is	clear	that	we	are	on	the	main	thread	and	have	a	delegate.	Using
respondsToSelector:	you	can	test	whether	the	proper	delegate	method	has	been	implemented;
if	it	has	not,	some	helpful	information	is	logged	as	shown	in	this	example:
Click	here	to	view	code	image

2012-07-28	17:12:41.816	WhackACac[10121:c07]	Unable	to	find	delegate	method
'gameCenterLoggedIn:'	in	class	ICFViewController

When	all	the	safety	and	sanity	tests	have	been	performed,	the	delegate	method	is	called	with	the
required	arguments	and	error	information.	Now	that	a	basic	delegate	callback	system	is	in	place,	you
can	begin	working	with	actual	Game	Center	functionality.
Click	here	to	view	code	image

-	(void)callDelegate:	(SEL)selector	withArg:	(id)arg	error:(NSError*)error
{
				assert([NSThread	isMainThread]);

				if(delegate	==	nil)
				{
								NSLog(@"Game	Center	Manager	Delegate	has	not	been	set");
								return;
				}

				if([delegate	respondsToSelector:	selector])
				{
								if(arg	!=	NULL)
								{
												[delegate	performSelector:	selector	withObject:
												arg	withObject:	error];
								}

								else
								{
												[delegate	performSelector:	selector	withObject:
												error];
								}
				}

				else
				{
								NSLog(@"Unable	to	find	delegate	method	'%s'	in	class	%@",	sel_getName(selector),
[delegate	class]);
				}
}

Authenticating
Game	Center	is	an	authenticated	service,	which	means	that	you	cannot	successfully	do	anything
besides	authenticate	when	you	are	not	currently	logged	in.	With	this	in	mind	you	must	first
authenticate	before	being	able	to	proceed	with	any	of	the	leaderboard	relevant	code.	Authenticating
with	Game	Center	is	handled	mostly	by	iOS	for	you.	The	following	code	will	present	a	UIAlert
enabling	the	user	to	log	in	to	Game	Center	or	create	a	new	Game	Center	account.

Note
Do	not	forget	to	include	the	GameKit.framework	and	import
GameKit/GameKit.h	whenever	you	are	working	with	Game	Center.

Click	here	to	view	code	image

-	(void)	authenticateLocalUser
{
				if([GKLocalPlayer	localPlayer].authenticated	==	NO)
				{
								[[GKLocalPlayer	localPlayer]	authenticateWithCompletionHandler:	^(NSError	*error)
								{
												if(error	!=	nil)
												{
																NSLog(@"An	error	occurred:	%@",	[error	localizedDescription]);

																return;
													}

													[self	callDelegateOnMainThread:	@selector(gameCenterLoggedIn:)	withArg:	NULL
error:	error];
									}];
				}
}

In	the	event	that	an	error	occurs	it	is	logged	to	the	console.	If	the	login	completes	without	error,	a
delegate	method	is	called.	You	can	see	how	these	delegate	methods	are	set	up	in	the
ICFGameCenterManager.h	file.

Common	Authentication	Errors
There	are	several	common	cases	that	can	be	helpful	to	catch	when	dealing	with	authentication	errors.
The	following	method	is	a	modified	version	of	authenticateLocalUser	with	additional	error
handling	built	in.

Note
If	you	are	receiving	an	alert	that	says	your	game	is	not	recognized	by	Game	Center,
check	to	make	sure	that	the	bundle	ID	of	your	app	matches	the	one	configured	in	iTunes
Connect.	A	new	app	might	take	a	few	hours	to	have	Game	Center	fully	enabled.	A	lot	of
Game	Center	problems	can	be	resolved	by	waiting	a	little	while	and	retrying.

Click	here	to	view	code	image

-	(void)	authenticateLocalUser
{
				if([GKLocalPlayer	localPlayer].authenticated	==	NO)
				{
									[[GKLocalPlayer	localPlayer]	authenticateWithCompletionHandler:^(NSError	*error)
									{
													if(error	!=	nil)
													{
																	if([error	code]	==	GKErrorNotSupported)
																	{
																						UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"
message:@"This	device	does	not	support	Game	Center"	delegate:nil

cancelButtonTitle:@"Dismiss"	otherButtonTitles:nil];

																						[alert	show];
																	}

																	else	if([error	code]	==	GKErrorCancelled)
																	{
																					UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"
message:@"This	device	has	failed	login	too	many	times	from	the	app;	you	will	need	to	log
in	from	the	Game	Center.app"	delegate:nil	cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];

																					[alert	show];
																		}

																		else
																		{
																						UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"
message:	[error	localizedDescription]	delegate:nil	cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];

																						[alert	show];
																		}

																		return;
														}

									[self	callDelegateOnMainThread:	@selector(gameCenterLoggedIn:)	withArg:	NULL
error:	error];
									}];
						}
}

In	the	preceding	example,	three	additional	error	cases	are	handled.	The	first	error	that	is	caught	is
when	a	device	does	not	support	Game	Center	for	any	reason.	In	this	event	a	UIAlert	is	presented	to
the	user	informing	her	that	she	is	unable	to	access	Game	Center.	The	second	error	rarely	appears	in
shipping	apps	but	can	be	a	real	headache	when	debugging;	if	your	app	has	failed	to	log	in	to	Game
Center	three	times	in	a	row,	Apple	disables	its	capability	to	log	in.	In	this	case,	you	must	log	in	from
the	Game	Center	app.	The	third	error	case	is	a	catchall	for	any	additional	errors	to	provide
information	to	the	user.
Upon	successful	login,	your	user	is	shown	a	login	message	from	Game	Center.	This	message	will
also	inform	you	of	whether	you	are	currently	in	a	Sandbox	environment,	as	shown	in	Figure	3.6.

Figure	3.6	A	successful	login	to	Game	Center	from	the	Whack-a-Cac	sample	game.

Note
Any	non-shipping	app	will	be	in	the	Sandbox	environment.	After	your	app	is	downloaded
from	the	App	Store,	it	will	be	in	a	normal	production	environment.	There	is	no	way	to
test	an	app	outside	of	the	Sandbox	without	first	shipping	it	to	the	App	Store.

iOS	6	and	Newer	Authentication
Although	the	preceding	method	of	authentication	continues	to	work	on	iOS	8,	Apple	has	introduced	a
new	streamlined	approach	to	handling	authentication	on	apps	that	do	not	need	to	support	iOS	5	or
older.
With	the	new	approach,	an	authenticateHandler	block	is	now	used.	Errors	are	captured	in	the
same	manner	as	in	the	previous	examples,	but	now	a	viewController	can	be	passed	back	to	your
application	by	Game	Center.	In	the	case	in	which	the	viewController	parameter	of	the
authenticateHandler	block	is	not	nil,	you	are	expected	to	display	the	viewController	to
the	user.
The	first	time	a	new	authenticateHandler	is	set,	the	app	will	automatically	authenticate.
Additionally,	the	app	will	automatically	reauthenticate	on	return	to	the	foreground.	If	you	do	need	to

call	authenticate	manually,	you	can	use	the	authenticate	method.
Click	here	to	view	code	image

-(void)authenticateLocalUseriOSSix
{
				if([GKLocalPlayer	localPlayer].authenticateHandler	==	nil)
				{
									[[GKLocalPlayer	localPlayer]	setAuthenticateHandler:^(UIViewController
*viewController,	NSError	*error)
								{
												if(error	!=	nil)
												{
																if([error	code]	==	GKErrorNotSupported)
																{
																				UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"
message:@"This	device	does	not	support	Game	Center"	delegate:nil
cancelButtonTitle:@"Dismiss"	otherButtonTitles:nil];

																				[alert	show];
																}

																else	if([error	code]	==	GKErrorCancelled)
																{
																					UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"
message:@"This	device	has	failed	login	too	many	times	from	the	app;	you	will	need	to	log
in	from	the	Game	Center.app"	delegate:nil	cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];

																				[alert	show];
																}

																else
																{
																					UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"
message:[error	localizedDescription]	delegate:nil	cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];

																				[alert	show];
																}
												}

												else
												{
																if(viewController	!=	nil)
																{
																					[(UIViewController	*)delegate	presentViewController:viewController
animated:YES	completion:	nil];
																}
												}
								}];
				}

				else
				{
								[[GKLocalPlayer	localPlayer]	authenticate];
				}
}

Submitting	Scores
When	authenticated	with	Game	Center,	you	are	ready	to	begin	submitting	scores.	In	the
IFCGameCenterManager	class	there	is	a	method	called	reportScore:forCategory.	This
enables	you	to	post	a	new	score	for	the	Leaderboard	ID	that	was	configured	in	iTunes	Connect.	All
new	scores	are	submitted	by	creating	a	new	GKScore	object;	this	object	holds	onto	several	values
such	as	the	score	value,	playerID,	date,	rank,	formattedValue,	category,	and	context.
When	a	new	score	is	submitted,	most	of	this	data	is	automatically	populated.	The	value	and	category
are	the	only	two	required	fields.	An	optional	context	can	be	provided	that	is	an	arbitrary	64-bit
unsigned	integer	(int64_t).	A	context	can	be	used	to	store	additional	information	about	the	score,
such	as	game	settings	or	flags	that	were	on	when	the	score	was	achieved;	it	can	be	set	and	retrieved
using	the	context	property.	The	date,	playerID,	formattedValue,	and	rank	are	read-only	and
are	populated	automatically	when	the	GKScore	object	is	created	or	retrieved.

Note
Leaderboards	support	default	categories	when	being	set	in	iTunes	Connect.	If	a	score	is
being	submitted	to	a	default	leaderboard,	the	category	parameter	can	be	left	blank.	It	is
best	practice	to	always	include	a	category	argument	to	prevent	hard-to-track-down	bugs.

After	a	new	GKScore	object	has	been	created	using	the	specified	category	for	the	leaderboard,	you
can	assign	a	raw	score	value.	When	you’re	dealing	with	integers	or	floats,	the	score	is	simply	the
number	of	the	score.	When	you’re	dealing	with	elapsed	time,	however,	the	value	should	be	submitted
in	seconds	or	seconds	with	decimal	places	if	tracking	that	level	of	accuracy.
When	a	score	has	been	successfully	submitted,	it	will	call	gameCenterScoreReported:	on	the
GameCenterManager	delegate.	This	is	discussed	in	more	detail	in	the	next	section,	“Adding
Scores	to	Whack-a-Cac.”
Click	here	to	view	code	image

-	(void)reportScore:(int64_t)score	forCategory:(NSString*)category
{
				GKScore	*scoreReporter	=	[[GKScore	alloc]
				initWithCategory:category];

				scoreReporter.value	=	score;

				[scoreReporter	reportScoreWithCompletionHandler:	^(NSError	*error)
				{
									if	(error	!=	nil)
									{
														NSData*	savedScoreData	=	[NSKeyedArchiver
archivedDataWithRootObject:scoreReporter];

													[self	storeScoreForLater:	savedScoreData];
									}

									[self	callDelegateOnMainThread:@selector	(gameCenterScoreReported:)	withArg:
NULL	error:	error];
				}];
}

It	is	important	to	look	at	the	failure	block	of	reportScoreWithCompletionHandler.	If	a	score
fails	to	successfully	transmit	to	Game	Center,	it	is	your	responsibility	as	the	developer	to	attempt	to

resubmit	this	score	later.	There	are	few	things	more	frustrating	to	a	user	than	losing	a	high	score	due
to	a	bug	or	network	failure.	In	the	preceding	code	example,	when	a	score	has	failed,
NSKeyedArchiver	is	used	to	create	a	copy	of	the	object	as	NSData	and	passed	to
storeScoreForLater:.	It	is	critical	that	the	GKScore	object	itself	is	used,	and	not	just	the	score
value.	Game	Center	ranks	scores	by	date	if	the	scores	match;	since	the	date	is	populated	automatically
when	a	new	GKScore	is	created,	the	only	way	to	not	lose	the	player ’s	info	is	to	archive	the	entire
GKScore	object.
When	the	score	data	is	being	saved,	the	sample	app	uses	the	NSUserDefaults;	this	data	could	also
be	easily	stored	into	Core	Data	or	any	other	storage	system.	After	the	score	is	saved,	it	is	important	to
retry	sending	that	data	when	possible.	A	good	time	to	do	this	is	when	Game	Center	successfully
authenticates.
Click	here	to	view	code	image

-	(void)storeScoreForLater:(NSData	*)scoreData;
{
				NSMutableArray	*savedScoresArray	=	[[NSMutableArray	alloc]	initWithArray:
[[NSUserDefaults	standardUserDefaults]
				objectForKey:@"savedScores"]];

				[savedScoresArray	addObject:	scoreData];

				[[NSUserDefaults	standardUserDefaults]	setObject:savedScoresArray
forKey:@"savedScores"];
}

The	attempt	to	resubmit	the	saved	scores	is	no	different	than	submitting	a	score	initially.	First	the
scores	need	to	be	retrieved	from	the	NSUserDefaults,	and	since	the	object	was	stored	in	NSData,
that	data	needs	to	be	converted	back	into	a	GKScore	object.	Once	again,	it	is	important	to	catch	failed
submissions	and	try	them	again	later.
Click	here	to	view	code	image

-(void)submitAllSavedScores
{
				NSMutableArray	*savedScoreArray	=	[[NSMutableArray	alloc]	initWithArray:
[[NSUserDefaults	standardUserDefaults]	objectForKey:@"savedScores"]];

				[[NSUserDefaults	standardUserDefaults]	removeObjectForKey:	@"savedScores"];

				for(NSData	*scoreData	in	savedScoreArray)
				{
								GKScore	*scoreReporter	=	[NSKeyedUnarchiver	unarchiveObjectWithData:	scoreData];

								[scoreReporter	reportScoreWithCompletionHandler:	^(NSError	*error)
								{
													if	(error	!=	nil)
													{
																	NSData*	savedScoreData	=	[NSKeyedArchiver	archivedDataWithRootObject:
scoreReporter];

																	[self	storeScoreForLater:	savedScoreData];
													}

															else
															{
																			NSLog(@"Successfully	submitted	scores	that	were	pending	submission");

																			[self	callDelegateOnMainThread:	@selector(gameCenterScroreReported:)

withArg:NULL	error:error];
															}
										}];
					}
}

Tip
If	a	score	does	fail	to	submit,	it	is	always	a	good	idea	to	inform	the	user	that	the	app	will
try	to	submit	again	later;	otherwise,	it	might	seem	as	though	the	app	has	failed	to	submit
the	score	and	lost	the	data	for	the	user.

Adding	Scores	to	Whack-a-Cac
In	the	preceding	section	the	Game	Center	Manager	component	of	adding	scores	to	an	app	was
explored.	In	this	section	you	will	learn	how	to	put	these	additions	into	practice	in	Whack-a-Cac.
Before	proceeding,	Game	Center	must	first	authenticate	a	user	and	specify	a	delegate.	Modify	the
viewDidLoad	method	of	IFCViewController.m	to	complete	this	process.
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[super	viewDidLoad];

				[[ICFGameCenterManager	sharedManager]	setDelegate:	self];
				[[ICFGameCenterManager	sharedManager]	authenticateLocalUser];
}

IFCViewController	will	also	need	to	respond	to	the	GameCenterManagerDelegate.	The
first	delegate	method	that	needs	to	be	handled	is	gameCenterLoggedIn:.	Since	the
GameCenterManager	is	handling	all	the	UIAlerts	associated	with	informing	the	user	of
failures,	any	errors	here	are	simply	logged	for	debugging	purposes.
Click	here	to	view	code	image

-	(void)gameCenterLoggedIn:(NSError*)error
{
				if(error	!=	nil)
				{
									NSLog(@"An	error	occurred	trying	to	log	into	Game	Center:	%@",	[error
localizedDescription]);
				}

				else
				{
								NSLog(@"Successfully	logged	into	Game	Center!");
				}
}

After	the	user	has	decided	to	begin	a	new	game	of	Whack-a-Cac,	it	is	important	to	update	the
GameCenterManager’s	delegate	to	the	IFCGameViewController	class.	In	Whack-a-Cac	the
delegate	will	always	be	set	to	the	front-most	view	to	simplify	providing	user	feedback	and	errors.
This	is	done	by	adding	the	following	line	of	code	to	the	viewDidLoad:	method	of
IFCGameViewController.	Don’t	forget	to	declare	this	class	as	conforming	to
GameCenterManagerDelegate.
Click	here	to	view	code	image

[[ICFGameCenterManager	sharedManager]	setDelegate:	self];

The	game	will	need	to	submit	a	score	under	two	scenarios:	when	the	user	loses	a	game,	and	when	the
user	quits	from	the	pause	menu.	Using	the	IFCGameCenterManager,	submitting	a	score	is	very
easy.	Add	the	following	line	of	code	to	both	the	test	for	zero	life	in	the	updateLife	method	and	the
exit	button	action	on	the	pause	UIAlert:
Click	here	to	view	code	image

[[ICFGameCenterManager	sharedManager]reportScore:	(int64_t)scoreforCategory:
@"com.dragonforged.whackacac.leaderboard"];

Note
The	category	ID	you	set	for	your	leaderboard	might	differ	from	the	one	used	in	these
examples.	Be	sure	that	the	one	used	matches	the	ID	that	appears	in	iTunes	Connect.

Although	the	GameCenterManager	reportScore:	method	will	handle	submitting	the	scores
and	all	error	recovery,	it	is	important	to	add	the	delegate	method	gameCenterScoreReported:
to	watch	for	potential	errors	and	successes.
Click	here	to	view	code	image

-(void)gameCenterScoreReported:(NSError	*)error;
{
				if(error	!=	nil)
				{
								NSLog(@"An	error	occurred	trying	to	report	a	score	to	Game	Center:	%@",	[error
localizedDescription]);
				}

				else
				{
								NSLog(@"Successfully	submitted	score");
				}
}

Note
Scores	should	be	submitted	only	when	finalized;	sending	scores	to	Game	Center	at	every
increment	can	create	a	poor	user	experience.

When	a	user	is	exiting	the	game,	the	delegate	for	GameCenterManager	will	disappear	while	the
network	operations	for	submitting	the	score	are	still	taking	place.	It	is	important	to	have
IFCViewController	reset	the	GameCenterManagerDelegate	to	SELF	and	implement	the
gameCenterScoreReported:	delegate	as	well.

Presenting	Leaderboards
A	new	high	score	is	not	of	much	use	to	your	users	if	they	are	unable	to	view	their	high	scores.	In	this
section	you	will	learn	how	to	use	Apple’s	built-in	view	controllers	to	present	the	leaderboards.	The
leaderboard	view	controllers	saw	significant	improvements	with	the	introduction	of	iOS	6	and
maintained	through	iOS	8,	as	shown	in	Figure	3.7.	In	previous	versions	of	iOS,	leaderboards	and
achievements	were	handled	by	two	separate	view	controllers;	these	have	now	been	combined.	In
addition,	a	new	section	for	Game	Center	challenges	and	Facebook	liking	have	been	added.

Figure	3.7	The	GKLeaderboardViewController	saw	major	improvements	and	changes	in
iOS	6.

In	ICFViewController,	there	is	a	method	called	leaderboards:	that	handles	presenting	the
leaderboard	view	controllers.	When	a	new	GKLeaderboardViewController	is	being	created,
there	are	a	couple	of	properties	that	need	to	be	addressed.	First	set	the	category.	This	is	the	same
category	that	is	used	for	submitting	scores	and	refers	to	which	leaderboard	should	be	presented	to	the
user.	A	timeScope	can	also	be	provided,	which	will	default	the	user	onto	the	correct	tab,	as	shown
in	Figure	3.7.	In	the	following	example,	the	time	scope	for	all	time	is	supplied.	Additionally,	a
required	leaderboardDelegate	must	be	provided;	this	delegate	will	handle	dismissing	the
leaderboard	modal.
Click	here	to	view	code	image

-	(IBAction)leaderboards:(id)sender
{
				GKLeaderboardViewController	*leaderboardViewController	=
				[[GKLeaderboardViewController	alloc]	init];

				if(leaderboardViewController	==	nil)
				{
								NSLog(@"Unable	to	create	leaderboard	view	controller");
								return;

				}

					leaderboardViewController.category	=	@"com.dragonforged.whackacac.leaderboard";

					leaderboardViewController.timeScope	=	GKLeaderboardTimeScopeAllTime;

					leaderboardViewController.leaderboardDelegate	=	self;

				[self	presentViewController:leaderboardViewController	animated:YES	completion:	nil];

				[leaderboardViewController	release];
}

For	a	GKLeaderboardViewController	to	be	fully	functional,	a	delegate	method	must	also	be
provided.	When	this	method	is	invoked,	it	is	required	that	the	view	controller	be	dismissed,	as	shown
in	this	code	snippet:
Click	here	to	view	code	image

-	(void)leaderboardViewControllerDidFinish:(GKLeaderboardViewController	*)	viewController
{
				[self	dismissModalViewControllerAnimated:	YES	completion:	nil];
}

There	is	also	a	new	delegate	method	to	be	used	with	this	view	controller.	It	is	implemented	in	the
following	fashion:
Click	here	to	view	code	image

-	(void)gameCenterViewControllerDidFinish:(GKGameCenterViewController
*)gameCenterViewController
{
				[self	dismissModalViewControllerAnimated:	YES	completion:	nil];
}

It	is	also	possible	to	work	with	the	raw	leaderboard	data	and	create	customized	leaderboards.	For
more	information	on	this,	see	the	later	section	“Going	Further	with	Leaderboards.”

Score	Challenges
Game	Center	Challenges	enable	your	users	to	dare	their	Game	Center	friends	to	beat	their	high
scores	or	achievements.	They	provide	a	great	avenue	for	your	users	to	socially	spread	your	game	to
their	friends.	All	the	work	with	Challenges	is	handled	for	you	by	Game	Center	using	the	new
GameCenterViewController,	as	shown	in	the	previous	example	and	Figure	3.8.	However,	it	is
also	possible	to	create	challenges	in	code.	Calling
issueChallengeToPlayers:withMessage:	on	a	GKScore	object	will	initiate	the	challenge.
When	a	player	beats	a	challenge,	it	automatically	rechallenges	the	person	who	initiated	the	original
challenge.

Figure	3.8	Challenging	a	friend	to	beat	a	score	using	the	built-in	Game	Center	challenges.
Click	here	to	view	code	image

[(GKScore	*)score	issueChallengeToPlayers:	(NSArray	*)players	message:@"Can	you	beat
me?"];

It	is	also	possible	to	retrieve	an	array	of	all	pending	GKChallenges	for	the	authenticated	user	by
implementing	the	following	code:
Click	here	to	view	code	image

[GKChallenge	loadReceivedChallengesWithCompletionHandler:^(NSArray	*challenges,	NSError
*error)
{
				if	(error	!=	nil)
				{
								NSLog(@"An	error	occurred:	%@",	[error	localizedDescription]);
				}

					else
					{
										NSLog(@"Challenges:	%@",	challenges);
					}
}];

A	challenge	exists	in	one	of	four	states:	invalid,	pending,	completed,	and	declined.

Click	here	to	view	code	image

if(challenge.state	==	GKChallengeStateCompleted)
				NSLog(@"Challenge	Completed");

Finally,	it	is	possible	to	decline	an	incoming	challenge	by	simply	calling	decline	on	it	as	shown
here:

[challenge	decline];

Challenges	create	a	great	opportunity	to	have	your	users	do	your	marketing	for	you.	If	a	user
challenges	someone	who	has	not	yet	downloaded	your	game,	that	person	will	be	prompted	to	buy	it.
Challenges	are	provided	for	you	for	no	effort	by	Game	Center	using	the	default	GUI,	and	using	the
earlier	examples,	it	is	fairly	easy	to	implement	your	own	challenge	system.

Note
Whack-a-Cac	does	not	implement	or	demonstrate	code-based	challenges.

Going	Further	with	Leaderboards
The	focus	of	this	chapter	has	been	implementing	leaderboards	using	Apple’s	standard	Game	Center
GUI;	however,	it	is	entirely	possible	to	implement	a	customized	leaderboard	system	within	your	app.
In	this	section,	a	brief	introduction	is	given	to	working	with	raw	GKScore	values,	as	well	as
retrieving	specific	information	from	the	Game	Center	servers.
The	following	method	can	be	added	to	the	ICFGameCenterManager.	This	method	accepts	four
different	arguments.	The	first,	category,	is	the	leaderboard	ID	set	in	iTunes	Connect	for	the
leaderboard	that	this	request	will	pertain	to.	This	is	followed	by	withPlayerScore:,	which
accepts	GKLeaderboardPlayerScopeGlobal	or
GKLeaderboardPlayerScopeFriendsOnly.	TimeScope	will	retrieve	scores	for	today,	this
week,	or	all	time.	The	last	argument	required	is	for	range.	Here	you	can	specify	receiving	scores	that
match	a	certain	range.	For	example,	NSMakeRange(1,	50)	will	retrieve	the	top	50	scores.
Click	here	to	view	code	image

-	(void)retrieveScoresForCategory:(NSString	*)category	withPlayerScope:
(GKLeaderboardPlayerScope)playerScope	timeScope:(GKLeaderboardTimeScope)timeScope
withRange:(NSRange)range
{
				GKLeaderboard	*leaderboardRequest	=	[[GKLeaderboard	alloc]	init];

				leaderboardRequest.playerScope	=	playerScope;
				leaderboardRequest.timeScope	=	timeScope;
				leaderboardRequest.range	=	range;
				leaderboardRequest.category	=	category;

				[leaderboardRequest	loadScoresWithCompletionHandler:	^(NSArray	*scores,NSError
*error)
				{
								[self	callDelegateOnMainThread:@selector
								(scoreDataUpdated:error:)	withArg:scores	error:	error];
				}];
}

There	will	also	be	a	newly	associated	delegate	callback	for	this	request	called
scoreDataUpdated:error:.

Click	here	to	view	code	image

-(void)scoreDataUpdated:(NSArray	*)scores	error:(NSError	*)error
{
				if(error	!=	nil)
				{
								NSLog(@"An	error	occurred:	%@",	[error	localizedDescription]);
				}
				else
				{
								NSLog(@"The	following	scores	were	retrieved:	%@",	scores);
				}
}

If	this	example	were	to	be	introduced	into	Whack-a-Cac,	it	could	look	like	the	following:
Click	here	to	view	code	image

-(void)fetchScore
{
				[[ICFGameCenterManager	sharedManager]
				retrieveScoresForCategory:	@"com.dragonforged.whackacac.leaderboard"
withPlayerScope:GKLeaderboardPlayerScopeGlobal	timeScope:GKLeaderboardTimeScopeAllTime
withRange:NSMakeRange(1,	50)];
}

The	delegate	method	will	print	something	similar	to	the	following:
Click	here	to	view	code	image

2012-07-29	14:38:03.874	WhackACac[14437:c07]	The	following	scores	were	retrieved:	(

"<GKScore:	0x83c5010>player:G:94768768	rank:1	date:2012-07-28	23:54:19	+0000	value:201
formattedValue:201	Points	context:0x0"
)

Tip
To	find	the	displayName	for	the	GKPlayer	associated	with	a	GKScore,	use
[(GKPlayer	*)player	displayName].	Don’t	forget	to	cache	this	data	because	it
requires	a	network	call.

Summary
Game	Center	leaderboards	are	an	easy	and	fun	way	to	increase	the	social	factor	of	your	game	or	app.
Users	love	to	compete,	and	with	Game	Center	Challenge	system	it	is	easier	than	ever	for	users	to
share	apps	that	they	love.	In	this	chapter,	you	learned	how	to	fully	integrate	Game	Center ’s
leaderboards	into	your	game	or	app.	You	should	now	have	a	strong	understanding	of	not	only	Game
Center	authenticating	but	also	submitting	scores	and	error	recovery.	Chapter	4	continues	to	expand	on
the	capabilities	of	Game	Center	by	adding	social	achievements	to	the	Whack-a-Cac	game.

4.	Achievements

Like	leaderboards,	achievements	are	quickly	becoming	a	vital	component	of	modern	gaming.
Although	the	history	of	achievements	isn’t	as	clearly	cemented	into	gaming	history	as	that	of
leaderboards,	today	it	could	be	argued	that	they	are	even	more	important	to	the	social	success	of	a
game.
An	achievement	is,	in	short,	an	unlockable	accomplishment	that,	although	not	necessary	to	the
completion	of	a	game,	tracks	the	user ’s	competition	of	additional	aspects	of	the	game.	Commonly,
achievements	are	issued	for	additional	side	tasks	or	extended	play,	such	as	beating	a	game	on	hard
difficulty,	exploring	areas,	or	collecting	items.	One	of	the	core	features	of	Game	Center	is	the
achievement	system,	which	makes	adding	your	own	achievements	to	your	game	much	simpler	than	it
had	previously	been.
Unlike	most	other	chapters,	this	chapter	shares	its	sample	app,	Whack-a-Cac,	with	Chapter	3,
“Leaderboards.”	Although	it	is	not	necessary	to	complete	that	chapter	before	beginning	this	one,	there
are	several	instances	of	overlap.	For	the	sake	of	the	environment	and	trees,	that	information	is	not
reprinted	here;	it	is	recommended	that	you	read	the	“The	Sample	App,”	“iTunes	Connect,”	“Game
Center	Manager,”	and	“Authenticating”	sections	of	Chapter	3	before	proceeding	with	this	chapter.
These	sections	provide	the	background	required	to	interact	with	the	sample	app	as	well	as	the	basic
task	of	setting	up	Game	Center	and	authenticating	the	local	user.	This	chapter	also	expands	on	the
already	existing	Game	Center	Manager	sample	code	provided	in	Chapter	3.

iTunes	Connect
Before	beginning	writing	code	within	Xcode	for	achievements,	first	visit	iTunes	Connect
(http://itunesconnect.apple.com)	to	set	up	the	achievements.	For	an	introduction	to	working	with	Game
Center	in	iTunes	Connect,	see	the	“iTunes	Connect”	section	of	Chapter	3.
When	you	are	entering	the	Manage	Game	Center	section	of	iTunes	Connect,	there	are	two
configuration	options:	one	to	set	up	leaderboards	and	the	other	to	set	up	achievements.	In	the	sample
app,	Whack-a-Cac,	there	will	be	six	demonstrated	achievements.
To	create	a	new	achievement,	click	the	Add	Achievement	button,	as	shown	in	Figure	4.1.

Figure	4.1	A	view	of	the	Achievements	section	before	any	achievements	have	been	added	in	iTunes
Connect.

As	with	the	leaderboards	from	Chapter	3,	several	fields	are	required	to	set	up	a	new	achievement,	as
shown	in	Figure	4.2.	The	Achievement	Reference	Name	is	simply	a	reference	to	your	achievement	in

http://itunesconnect.apple.com

iTunes	Connect;	it	is	not	seen	anywhere	outside	of	the	Web	portal.	Achievement	ID,	on	the	other	hand,
is	what	will	be	referenced	from	the	code	in	order	to	interact	with	the	achievement.	Apple	recommends
the	use	of	a	reverse	DNS	type	of	system	for	the	Achievement	ID,	such	as
com.dragonforged.whackacac.100whacks.

Figure	4.2	Adding	a	new	achievement	in	iTunes	Connect.

The	Point	Value	attribute	is	unique	to	achievements	in	Game	Center.	Achievements	can	have	an
assigned	point	value	from	1	to	100.	Each	app	can	have	a	maximum	of	1,000	achievement	points.
Points	can	be	used	to	denote	difficulty	or	value	of	an	achievement.	Achievement	points	are	not
required,	nor	are	they	required	to	add	up	to	exactly	1,000.
Also	unique	to	achievements	is	the	Hidden	property,	which	keeps	the	achievement	hidden	from	the
user	until	it	has	been	achieved	or	the	user	has	made	any	progress	toward	achieving	it.	The	Achievable
More	Than	Once	setting	allows	the	user	to	accept	Game	Center	challenges	based	on	achievements	that
they	have	previously	earned.
As	with	leaderboards,	at	least	one	localized	description	needs	to	be	set	up	for	each	achievement.	This
information	consists	of	four	attributes.	The	title	will	appear	above	the	achievement	description.	Each
achievement	will	have	two	descriptions,	one	that	will	be	displayed	before	the	user	unlocks	it	and	one
that	is	displayed	after	it	has	been	completed.	Additionally,	an	image	will	need	to	be	supplied	for	each
achievement;	the	image	must	be	at	least	512×512	in	size.	To	see	how	this	information	is	laid	out,	see
Figure	4.3.

Figure	4.3	The	new	combined	Game	Center	View	Controller,	launching	to	the	Achievement
section.

Note
As	with	leaderboards,	after	an	achievement	has	gone	live	in	a	shipping	app,	it	cannot	be
removed.

See	the	section	“Adding	Achievements	into	Whack-a-Cac”	for	a	walk-through	of	adding	several
achievements	into	the	sample	game.

Displaying	Achievement	Progress
If	you	can’t	display	the	current	progress	of	achievements	to	the	user,	they	are	next	to	useless.	If
required	to	present	a	custom	interface	for	achievements,	refer	to	the	section	“Going	Further	with
Achievements.”	The	following	method	launches	the	combined	Game	Center	View,	as	shown	in	Figure
4.3:
Click	here	to	view	code	image

-	(void)showAchievements
{
				[[GKGameCenterViewController	sharedController]	setDelegate:self];

[[GKGameCenterViewController	sharedController]
setViewState:GKGameCenterViewControllerStateAchievements];

				[self	presentViewController:[GKGameCenterViewController	sharedController]
animated:YES	completion:	nil];
}

In	the	preceding	method,	used	to	launch	the	Game	Center	View	Controller,	you	will	notice	that	a
delegate	was	set.	There	is	also	a	new	required	delegate	method	to	be	used	with	this	view	controller,
and	it	is	implemented	in	the	following	fashion:
Click	here	to	view	code	image

-	(void)gameCenterViewControllerDidFinish:(GKGameCenterViewController
*)gameCenterViewController
{
				[self	dismissModalViewControllerAnimated:	YES	completion:	nil];
}

Game	Center	Manager	and	Authentication
In	Chapter	3,	a	new	reusable	class	called	Game	Center	Manager	was	introduced.	This	class	provides
the	groundwork	for	quickly	implementing	Game	Center	into	your	apps.	That	information	is	not
reprinted	in	this	chapter.	Reference	the	sections	“Game	Center	Manager”	and	“Authenticating”	in
Chapter	3	before	continuing	the	material	in	this	chapter.

The	Achievement	Cache
When	a	score	is	being	submitted	to	Game	Center,	it’s	simply	a	matter	of	sending	in	the	score	and
having	Game	Center	determine	its	value	compared	to	previously	submitted	scores.	However,
achievements	are	a	bit	tricky;	all	achievements	have	a	percentage	complete	value,	and	users	can	work
toward	completing	an	achievement	over	many	days	or	even	months.	It	is	important	to	make	sure	that
users	don’t	lose	the	progress	they	have	already	earned	and	that	they	continue	to	make	steady	progress
toward	their	goals.	This	is	solved	by	using	an	achievement	cache	to	store	all	the	cloud	achievement
data	locally	and	refresh	it	with	each	new	session.
A	new	convenience	method	will	need	to	be	added	to	the	ICFGameCenterManager	class,	as	well	as
a	new	classwide	NSMutableDictionary,	which	will	be	called	achievementDictionary.	The
first	thing	that	is	done	in	this	method	is	to	post	an	alert	if	it	is	being	run	after	an	achievement	cache
has	already	been	established.	Although	you	should	not	attempt	to	populate	the	cache	more	than	once,
it	will	not	cause	anything	to	stop	functioning	as	expected.	If	the	achievementDictionary	does
not	yet	exist,	a	new	NSMutableDictionary	will	need	to	be	allocated	and	initialized.
After	the	achievementDictionary	is	created,	it	can	be	populated	with	the	data	from	the	Game
Center	servers.	This	is	accomplished	by	calling	the	loadAchievementsWithCompletion-
Handler	class	method	on	GKAchievement.	The	resulting	block	will	return	the	user ’s	progress
for	all	achievements.	If	no	errors	are	returned,	an	array	of	GKAchievements	will	be	returned.
These	are	then	inserted	into	the	achievementDictionary	using	the	achievement	identifier	as	the
key.

Note
The	loadAchievementsWithCompletionHandler	method	does	not	return
GKAchievement	objects	for	achievements	that	do	not	have	progress	stored	on	them
yet.

Click	here	to	view	code	image

-(void)populateAchievementCache
{
				if(achievementDictionary	!=	nil)
				{
								NSLog(@"Repopulating	achievement	cache:	%@",
								achievementDictionary);
				}

				else
				{
								achievementDictionary	=	[[NSMutableDictionary	alloc]	init];
				}

				[GKAchievement	loadAchievementsWithCompletionHandler:^(NSArray	*achievements,	NSError
*error)
				{

									if(error	!=	nil)
									{
													NSLog(@"An	error	occurred	while	populating	the	achievement	cache:	%@",
[error	localizedDescription]);
									}

									else
									{
													for(GKAchievement	*achievement	in	achievements)
													{
																	[achievementDictionary	setObject:achievement	forKey:[achievement
identifier]];
													}
									}
					}];
}

Note
You	cannot	make	any	Game	Center	calls	until	a	local	user	has	been	successfully
authenticated.

Reporting	Achievements
After	an	achievement	cache	has	been	implemented,	it	is	safe	to	submit	progress	on	an	achievement.	A
new	method	reportAchievement:withPercentageComplete:	will	need	to	be	added	to	the
ICFGameManager	class	to	accomplish	this	task.	When	this	method	is	called,	the	achievement	ID	and
percentage	complete	are	used	as	arguments.	For	information	on	how	to	determine	the	current
percentage	of	an	achievement,	see	the	section	“Adding	Achievement	Hooks.”
When	you’re	submitting	achievement	progress,	the	first	thing	you	need	to	do	is	make	sure	that	the
achievementDictionary	has	already	been	populated.	Making	sure	to	check	Game	Center	for	the

current	progress	of	any	achievements	prevents	users	from	losing	progress	when	switching	devices	or
reinstalling	the	app.	In	this	example	the	app	will	fail	out	with	a	log	message	if
achievementDictionary	is	nil;	however,	a	more	complex	system	of	initializing	and
populating	the	achievement	cache	and	retrying	can	be	implemented	as	well.
After	it	has	been	determined	that	the	achievementDictionary	is	initialized,	a	new
GKAchievement	object	is	created.	When	created,	the	GKAchievement	object	is	stored	in	the
achievementDictionary	using	the	achievement	identifier.	If	this	achievement	has	not	yet	been
progressed,	it	will	not	appear	in	the	achievementDictionary	and	the	achievement	object	will	be
nil.	In	this	case	a	new	instance	of	GKAchievement	is	allocated	and	initialized	using	the
achievement	identifier.
If	the	achievement	object	is	non-nil,	it	can	be	assumed	that	the	achievement	has	previously	had	some
sort	of	progress	made.	A	safety	check	is	performed	to	make	sure	that	the	percentage	complete	that	is
being	submitted	isn’t	lower	than	the	percentage	complete	that	was	found	on	Game	Center.
Additionally,	a	check	is	performed	to	make	sure	that	the	achievement	isn’t	already	fully	completed.	In
either	case,	an	NSLog	is	printed	to	the	console	and	the	method	returns.

Note
It	is	possible	to	submit	a	lower	percentage	complete	on	an	achievement	and	decrease	the
user ’s	progressed	value.

At	this	point,	a	valid	GKAchievement	object	has	been	created	or	retrieved	and	the	percentage
complete	is	greater	than	the	one	that	is	in	the	cache.	A	call	on	the	achievement	object	with
setPercentComplete:	is	used	to	update	the	percentage-complete	value.	At	this	point	the
achievement	object	is	also	stored	back	into	the	achievementDictionary	so	that	the	local
achievement	cache	is	up-to-date.
To	report	the	actual	achievement	value	to	Game	Center,
reportAchievementWithCompletionHandler:	is	called	on	the	achievement	object.	When	it
is	finished	checking	for	errors,	a	new	delegate	callback	is	used	to	inform	the
GameCenterManager	delegate	of	the	success	or	failure.
Click	here	to	view	code	image

-(void)reportAchievement:(NSString	*)identifier
	withPercentageComplete:(double)percentComplete
{
				if(achievementDictionary	==	nil)
				{
												NSLog(@"An	achievement	cache	must	be	populated	before	submitting	achievement
progress");

												return;
				}

				GKAchievement	*achievement	=	[achievementDictionary	objectForKey:	identifier];

				if(achievement	==	nil)
				{
								achievement	=	[[GKAchievement	alloc]	initWithIdentifier:	identifier];

								[achievement	setPercentComplete:	percentComplete];

								[achievementDictionary	setObject:	achievement	forKey:identifier];
				}

				else
				{
								if([achievement	percentComplete]	>=	100.0	||	[achievement	percentComplete]	>=
percentComplete)
								{
												NSLog(@"Attempting	to	update	achievement	%@	which	is	either	already	completed
or	is	decreasing	percentage	complete	(%f)",	identifier,	percentComplete);

											return;
								}

												[achievement	setPercentComplete:	percentComplete];

												[achievementDictionary	setObject:	achievement	forKey:identifier];
				}

				[achievement	reportAchievementWithCompletionHandler:^(NSError	*error)
				{
												if(error	!=	nil)
												{
																NSLog(@"There	was	an	error	submitting	achievement	%@:%@",	identifier,
[error	localizedDescription]);
												}

												[self	callDelegateOnMainThread:	@selector	(gameCenterAchievementReported:)
withArg:	NULL	error:error];
				}];
}

Note
Achievements,	like	leaderboards	in	Chapter	3,	will	not	attempt	to	resubmit	if	they	fail	to
successfully	reach	the	Game	Center	servers.	The	developer	is	solely	responsible	for
catching	errors	and	resubmitting	achievements	later.	However,	unlike	with	leaderboards,
there	is	no	stored	date	property	so	it	isn’t	necessary	to	store	the	actual	GKAchievement
object.

Adding	Achievement	Hooks
Arguably,	the	most	difficult	aspect	of	incorporating	achievements	into	your	iOS	game	is	hooking
them	into	the	workflow.	For	example,	the	player	might	earn	an	achievement	after	collecting	100	coins
in	a	role-playing	game.	Every	time	a	coin	is	collected,	the	app	will	need	to	update	the	achievement
value.
A	more	difficult	example	is	an	achievement	such	as	play	one	match	a	week	for	six	months.	This
requires	a	number	of	hooks	and	checks	to	make	sure	that	the	user	is	meeting	the	requirements	of	the
achievement.	Although	attempting	to	document	every	single	possible	hook	is	a	bit	ambitious,	the
section	“Adding	Achievements	into	Whack-a-Cac”	has	several	common	types	of	hooks	that	will	be
demonstrated.
Before	an	achievement	can	be	progressed,	first	your	app	must	determine	its	current	progress.
Because	Game	Center	achievements	don’t	take	progressive	arguments	(for	example,	add	1%
completion	to	existing	completion),	this	legwork	is	left	up	to	the	developer.	Following	is	a
convenience	for	quickly	getting	back	a	GKAchievement	object	for	any	identifier.	After	a

GKAchievement	object	has	been	returned,	a	query	to	percentageComplete	can	be	made	to
determine	the	current	progress.
Click	here	to	view	code	image

-(GKAchievement	*)achievementForIdentifier:(NSString	*)identifier
{
				GKAchievement	*achievement	=	nil;

				achievement	=	[achievementDictionary	objectForKey:identifier];

				if(achievement	==	nil)
				{
								achievement	=	[[GKAchievement	alloc]	initWithIdentifier:identifier];

								[achievementDictionary	setObject:	achievement	forKey:identifier];
				}

				return	achievement;
}

If	the	achievement	requires	more	precision	than	1%,	the	true	completion	value	cannot	be	retrieved
from	Game	Center.	Game	Center	will	return	and	accept	only	whole	numbers	for	percentage	complete.
In	this	case	you	have	two	possible	options.	The	easy	path	is	to	round	off	to	the	nearest	percentage.	A
slightly	more	difficult	approach	would	be	to	store	the	true	value	locally	and	use	that	to	calculate	the
percentage.	Keep	in	mind	that	a	player	might	be	using	more	than	one	device,	and	storing	a	true
achievement	progress	locally	can	be	problematic	in	these	cases;	see	Chapter	11,	“Cloud	Persistence
with	CloudKit,”	for	additional	solutions.

Completion	Banners
Game	Center	has	the	capability	to	use	an	automatic	message	to	let	the	user	know	that	an	achievement
has	been	successfully	earned.	Alternatively,	you	can	also	implement	a	custom	system	to	display
nonstandard	notifications.	There	is	no	functional	requirement	to	inform	users	that	they	have
completed	an	achievement	beyond	providing	a	good	user	experience.
To	automatically	show	achievement	completion,	set	the	showsCompletionBanner	property	to
YES	before	submitting	the	achievement	to	Game	Center,	as	shown	in	Figure	4.4.	A	good	place	to	add
this	line	of	code	is	in	the	reportAchievement:	withPercentageComplete:	method.
Click	here	to	view	code	image

achievement.showsCompletionBanner	=	YES;

Figure	4.4	A	Game	Center	automatic	achievement	completion	banner	shown	on	an	iPad	with	the
achievement	title	and	earned	description.

Achievement	Challenges
Game	Center	supports	Achievement	Challenges	similar	to	those	found	with	scores,	in	which	users	can
challenge	a	Game	Center	friend	to	beat	their	score	or	match	their	achievements,	as	shown	in	Figure
4.5.

Figure	4.5	Challenging	a	friend	to	complete	an	achievement	that	is	still	being	progressed.

Note
Game	Center	allows	the	user	to	challenge	a	friend	to	beat	an	unearned	achievement	as
long	as	it	is	visible	to	the	user.

Click	here	to	view	code	image

-	(void)showChallenges
{
				[[GKGameCenterViewController	sharedController]setDelegate:self];

					[[GKGameCenterViewController	sharedController]	setViewState:
GKGameCenterViewControllerStateAchievements];

				[self	presentViewController:[GKGameCenterViewController	sharedController]
animated:YES	completion:	nil];
}

The	gameCenterViewControllerDidFinish	delegate	method	will	also	need	to	be
implemented	if	that	was	not	already	done	for	the	previous	examples	in	this	chapter.
Click	here	to	view	code	image

-	(void)gameCenterViewControllerDidFinish:(GKGameCenterViewController
*)gameCenterViewController
{
				[self	dismissModalViewControllerAnimated:	YES	completion:	nil];
}

Note
If	users	need	to	be	able	to	accept	achievement	challenges	for	achievements	that	they	have
already	earned,	you	will	need	to	select	the	Achievable	More	Than	Once	option	when
creating	the	achievement	in	iTunes	Connect.

A	challenge	can	also	be	created	pragmatically	using	the	following	approach:
Click	here	to	view	code	image

[(GKAchievement	*)achievement	issueChallengeToPlayers:	(NSArray	*)players	message:@"I
earned	this	achievement,	can	you?"];

If	it	is	required	to	get	a	list	of	users	that	can	receive	an	achievement	challenge	for	a	particular
achievement	(if	you	do	not	have	the	Achievable	More	Than	Once	property	set	to	on),	use	the
following	snippet	to	get	a	list	of	those	users:
Click	here	to	view	code	image

[achievement	selectChallengeablePlayerIDs:arrayOfPlayersToCheck
withCompletionHandler:^(NSArray	*challengeablePlayerIDs,	NSError	*error)
{
						if(error	!=	nil)
						{
												NSLog(@"An	error	occurred	while	retrieving	a	list	of	challengeable	players:
%@",	[error	localizedDescription]);
						}

						NSLog(@"The	following	players	can	be	challenged:	%@",
						challengeablePlayerIDs);
}];

It	is	also	possible	to	retrieve	an	array	of	all	pending	GKChallenges	for	the	authenticated	user	by
implementing	the	following	code:
Click	here	to	view	code	image

[GKChallenge	loadReceivedChallengesWithCompletionHandler:^(NSArray	*challenges,	NSError
*error)
{
						if	(error	!=	nil)
						{
												NSLog(@"An	error	occurred:	%@",	[error	localizedDescription]);
						}

						else
						{
												NSLog(@"Challenges:	%@",	challenges);
						}

}];

Challenges	have	states	associated	with	them	that	can	be	queried	on	the	current	state	of	the	challenge.
The	SDK	provides	the	states	invalid,	pending,	completed,	and	declined.
Click	here	to	view	code	image

if(challenge.state	==	GKChallengeStateCompleted)
						NSLog(@"Challenge	Completed");

Finally,	it	is	possible	to	decline	an	incoming	challenge	by	simply	calling	decline	on	it,	as	shown
here:

[challenge	decline];

By	leveraging	challenges	and	encouraging	users	to	challenge	their	friends,	you	will	increase	the
retention	rates	and	play	times	of	the	game.	If	using	the	built-in	GUI	for	Game	Center,	you	don’t	even
have	to	write	any	additional	code	to	support	challenges.

Note
Whack-a-Cac	does	not	contain	sample	code	for	creating	programmatic	achievement
challenges.

Adding	Achievements	into	Whack-a-Cac
Whack-a-Cac	will	be	using	six	different	achievements	using	various	hook	methods.	Table	4.1
describes	the	achievements	that	will	be	implemented.

Table	4.1	Achievements	Used	in	Whack-a-Cac	with	Details	on	Required	Objectives	to	Earn

Assuming	that	all	the	ICFGameCenterManager	changes	detailed	earlier	in	this	chapter	have	been
implemented	already,	you	can	begin	adding	in	the	hooks	for	the	achievements.	You	will	need	to	add
the	delegate	callback	method	for	achievements	into	ICFGameViewController.	This	will	allow
the	delegate	to	receive	success	messages	as	well	as	any	errors	that	are	encountered.
Click	here	to	view	code	image

-(void)gameCenterAchievementReported:(NSError	*)error;
{
				if(error	!=	nil)
				{
								NSLog(@"An	error	occurred	trying	to	report	an	achievement	to	Game	Center:	%@",
[error	localizedDescription]);
				}

				else
				{
								NSLog(@"Achievement	successfully	updated");
				}
}

Note
In	Whack-a-Cac	the	populateAchievementCache	method	is	called	as	soon	as	the
local	user	is	successfully	authenticated.

Earned	or	Unearned	Achievements
The	easiest	achievement	from	Table	4.1	to	implement	is	the
com.dragonforged.whackacac.killone	achievement.	Whenever	you’re	working	with
adding	a	hook	for	an	achievement,	the	first	step	is	to	retrieve	a	copy	of	the	GKAchievement	that
will	be	incremented.	Use	the	method	discussed	in	the	section	“Adding	Achievement	Hooks”	to	grab	an
up-to-date	copy	of	the	achievement.
Click	here	to	view	code	image

GKAchievement	*killOneAchievement	=	[[ICFGameCenterManager	sharedManager]
achievementForIdentifier:	@"com.dragonforged.whackacac.killone"];

Next,	a	query	is	performed	to	see	whether	this	achievement	has	already	been	completed.	If	it	has,	there
is	no	need	to	update	it	again.
Click	here	to	view	code	image

if(![killOneAchievement	isCompleted])

Because	the	Kill	One	achievement	cannot	be	partially	achieved	because	it	is	impossible	to	kill	less
than	one	cactus,	it	is	incremented	to	100%	at	once.	This	is	done	using	the
reportAchievement:withPercentageComplete:	method	that	was	added	to	the
ICFGameCenterManager	class	earlier	in	this	chapter.
Click	here	to	view	code	image

[[ICFGameCenterManager	sharedManager]
reportAchievement:@"com.dragonforged.whackacac.killone"	withPercentageComplete:100.00];

Because	this	achievement	is	tested	and	submitted	when	a	cactus	is	whacked,	an	appropriate	place	for	it
is	within	the	cactusHit:	method.	The	updated	cactusHit:	method	is	presented	for	clarity.
Click	here	to	view	code	image

-	(IBAction)cactusHit:(id)sender;
{
					[UIView	animateWithDuration:0.1
																										delay:0.0
																								options:	UIViewAnimationCurveLinear	|
UIViewAnimationOptionBeginFromCurrentState
																					animations:^
																					{
																								[sender	setAlpha:	0];
																					}
																					completion:^(BOOL	finished)
																					{
																									[sender	removeFromSuperview];

																					}];

				score++;

				[self	displayNewScore:	score];

				GKAchievement	*killOneAchievement	=	[[ICFGameCenterManager	sharedManager]
achievementForIdentifier:	@"com.dragonforged.whackacac.killone"];

				if(![killOneAchievement	isCompleted])
				{
								[[ICFGameCenterManager	sharedManager]	reportAchievement:
@"com.dragonforged.whackacac.killone"	withPercentageComplete:100.00];
				}

				[self	performSelector:@selector(spawnCactus)	withObject:nil	afterDelay:
(arc4random()%3)	+	.5];
}

Partially	Earned	Achievements
In	the	preceding	example,	the	achievement	was	either	fully	earned	or	not	earned	at	all.	The	next
achievement	that	will	be	implemented	into	Whack-a-Cac	is
com.dragonforged.whackacac.score100.	Unlike	the	Kill	One	achievement,	this	one	can	be
partially	progressed,	although	it	is	nonstackable	between	games.	The	user	is	required	to	score	100
points	in	a	single	game.	The	process	begins	the	same	way	as	the	preceding	example,	in	that	a
reference	to	the	GKAchievement	object	is	created.
Click	here	to	view	code	image

GKAchievement	*score100Achievement	=	[[ICFGameCenterManager
sharedManager]	achievementForIdentifier:
@"com.dragonforged.whackacac.score100"];

A	quick	test	is	performed	to	ensure	that	the	achievement	is	not	already	completed.
Click	here	to	view	code	image

if(![score100Achievement	isCompleted])

After	the	achievement	has	been	verified	as	not	yet	completed,	it	can	be	incremented	by	the	appropriate
amount.	Because	this	achievement	is	completed	at	100%	and	is	for	100	points	tied	to	the	score,	there
is	a	1%–to–1	point	ratio.	The	score	can	be	used	to	substitute	for	a	percentage	complete	when	this
achievement	is	populated.
Click	here	to	view	code	image

[[ICFGameCenterManager	sharedManager]
reportAchievement:@"com.dragonforged.whackacac.score100"
withPercentageComplete:score];

Although	this	hook	could	be	placed	into	the	cactusHit:	method	again,	it	makes	more	sense	to
place	it	into	the	displayNewScore:	method	since	it	is	dealing	with	the	score.	The	entire	updated
displayNewScore:	method	with	the	new	achievement	hook	follows	for	clarity.
Click	here	to	view	code	image

-	(void)displayNewScore:(float)updatedScore;
{
				int	scoreInt	=	score;

				if(scoreInt	%	10	==	0	&&	score	<=	50)

				{
								[self	spawnCactus];
				}

				scoreLabel.text	=	[NSString	stringWithFormat:	@"%06.0f",	updatedScore];

				GKAchievement	*score100Achievement	=	[[ICFGameCenterManager	sharedManager]
achievementForIdentifier:	@"com.dragonforged.whackacac.score100"];

				if(![score100Achievement	isCompleted])
				{
								[[ICFGameCenterManager	sharedManager]	reportAchievement:
@"com.dragonforged.whackacac.score100"	withPercentageComplete:score];
				}
}

Because	the	Score	100	achievement	is	hidden,	it	will	not	appear	to	the	user	until	the	user	has
completed	progress	toward	it	(at	least	one	point).	At	any	time	after	beginning	to	work	on	this
achievement,	the	user	can	see	the	progress	in	the	Game	Center	View	Controllers,	as	shown	in	Figure
4.6.

Figure	4.6	Viewing	the	partially	progressed	Score	100	achievement	after	scoring	43	points	in	a
game;	note	the	completion	of	the	Kill	One	achievement.

Multiple	Session	Achievements
In	the	preceding	example,	the	Score	100	achievement	required	the	player	to	earn	the	entire	100	points
while	in	a	single	match.	However,	there	often	will	be	times	when	it	will	be	required	to	track	a	user
across	multiple	matches	and	even	app	launches	as	they	progress	toward	an	achievement.	The	first	of
the	multiple	session	achievements	that	will	be	implemented	is	the
com.dragonforged.whackacac.play5	achievement.
Each	time	the	player	completes	a	round	of	game	play,	the
com.dragonforged.whackacac.play5	achievement	will	be	progressed.	Because	the
achievement	is	completed	at	five	games	played,	each	game	increments	the	progress	by	20%.	This
hook	will	be	added	to	the	viewWillDisappear	method	of	ICFGameViewController.	As	with
the	previous	examples,	first	a	reference	to	the	GKAchievement	object	is	created.	After	making	sure
that	the	achievement	isn’t	already	completed,	it	can	be	incremented.	A	new	variable	is	created	to
determine	the	number	of	matches	played,	which	is	the	percentage	complete	divided	by	20.	The
matchesPlayed	is	then	incremented	by	1,	and	submitted	using
reportAchievement:withPercentageComplete:	by	multiplying	matchesPlayed	by	20.
Click	here	to	view	code	image

-(void)viewWillDisappear:(BOOL)animated
{
				GKAchievement	*play5MatchesAchievement	=	[[ICFGameCenterManager	sharedManager]
achievementForIdentifier:	@"com.dragonforged.whackacac.play5"];

				if(![play5MatchesAchievement	isCompleted])
				{
								double	matchesPlayed	=	[play5MatchesAchievement	percentComplete]/20.0f;

								matchesPlayed++;

								[[ICFGameCenterManager	sharedManager]	reportAchievement:
@"com.dragonforged.whackacac.play5"	withPercentageComplete:	matchesPlayed*20.0f];
				}

				[super	viewWillDisappear:	animated];
}

Piggybacked	Achievements	and	Storing	Achievement	Precision
Sometimes,	it	is	possible	to	piggyback	two	achievements	off	of	each	other,	such	as	the	next	case	when
dealing	with	the	Whack	100	and	Whack	1000	achievements.	Because	both	of	these	achievements	are
tracking	the	same	type	of	objective	(whacks),	a	more	streamlined	approach	can	be	taken.
As	with	the	other	achievement	hooks	that	have	been	implemented	in	this	chapter,	the	first	thing	to	do
is	to	create	a	reference	to	a	GKAchievement.	In	the	following	example,	a	reference	to	the	larger	of
the	two	achievements	is	used.	Since	the	largest	achievement	has	more	objectives	to	complete	than	it
does	percentage,	it	will	be	rounded	down	to	the	nearest	multiple	of	10.	To	help	combat	this	problem,	a
localKills	variable	is	populated	from	NSUserDefaults.	This	system	falls	apart	when	the
achievement	exists	on	two	different	devices,	but	can	be	further	polished	using	iCloud	to	store	the	data
(see	Chapter	11).
A	calculation	is	also	made	to	determine	how	many	kills	Game	Center	reports	(with	loss	of	accuracy).
If	remoteKills	is	greater	than	localKills,	we	know	that	the	player	either	has	reinstalled	the
game	or	has	progressed	it	on	another	device.	In	this	event	the	system	will	default	to	the	Game

Center ’s	values	as	to	not	progress	the	user	backward;	otherwise,	the	local	information	is	used.
This	code	example	can	be	placed	inside	the	cactusHit:	method	following	the	Kill	One
achievement	from	earlier	in	this	section.	After	each	hit,	the	localKills	value	is	increased	by	one.
Two	checks	are	performed	to	make	sure	that	each	achievement	is	not	already	completed.	Because
references	to	both	GKAchievements	are	not	available	here,	a	check	of	the	kills	number	can	be	used
to	substitute	the	standard	isComplete	check.	After	the	achievements	are	submitted,	the	new	local
value	is	stored	into	the	NSUserDefaults	for	future	reference.
Click	here	to	view	code	image

GKAchievement	*killOneThousandAchievement	=	[[ICFGameCenterManager	sharedManager]
achievementForIdentifier:	@"com.dragonforged.whackacac.1000whacks"];

double	localKills	=	[[[NSUserDefaults	standardUserDefaults]	objectForKey:@"kills"]
doubleValue];

double	remoteKills	=	[killOneThousandAchievement	percentComplete]	*	10.0;

if(remoteKills	>	localKills)
{
				localKills	=	remoteKills;
}

localKills++;

if(localKills	<=	1000)
{
						if(localKills	<=	100)
						{
										[[ICFGameCenterManager	sharedManager]	reportAchievement:
@"com.dragonforged.whackacac.100whacks"	withPercentageComplete:localKills];
						}

						[[ICFGameCenterManager	sharedManager]
reportAchievement:@"com.dragonforged.whackacac.1000whacks"	withPercentageComplete:
(localKills/10.0)];
}

[[NSUserDefaults	standardUserDefaults]	setObject:[NSNumber	numberWithDouble:	localKills]
forKey:@"kills"];

Timer-Based	Achievements
One	of	the	most	popular	achievements	in	iOS	gaming	is	to	play	for	a	certain	amount	of	time.	In
Whack-a-Cac,	com.dragonforged.whackacac.play5Mins	is	used	to	track	the	user ’s
progress	toward	five	minutes	of	total	gameplay.	This	particular	example	exists	for	the	loss-of-
accuracy	problem	that	was	faced	in	the	Whack	1000	example	from	earlier	in	this	section,	and	it	can	be
overcome	in	the	same	manner.
To	track	time,	an	NSTimer	will	be	created.	To	determine	how	often	the	timer	should	fire,	you	will
need	to	determine	what	1%	of	five	minutes	is.
Click	here	to	view	code	image

play5MinTimer	=	[NSTimer	scheduledTimerWithTimeInterval:3.0	target:self
selector:@selector(play5MinTick)	userInfo:nil	repeats:YES];

When	the	timer	fires,	a	new	call	to	a	new	play5MinTick	method	is	called.	If	the	game	is	paused	or
in	a	gameOver	state,	the	achievement	progress	is	ignored	and	the	method	returns.	As	with	the	other

examples,	a	reference	to	the	GKAchievement	object	is	created,	and	a	check	is	performed	to	see
whether	it	has	completed.	If	this	achievement	is	completed,	the	timer	is	invalidated	to	prevent	wasted
CPU	time.	Otherwise,	since	the	timer	is	firing	every	three	seconds	(1%	of	five	minutes),	the
achievement	is	progressed	by	1%.
Click	here	to	view	code	image

-	(void)play5MinTick;
{
				if(paused	||	gameOver)
				{
								return;
				}

				GKAchievement	*play5MinAchievement	=	[[ICFGameCenterManager	sharedManager]
achievementForIdentifier:	@"com.dragonforged.whackacac.play5Mins"];

				if([play5MinAchievement	isCompleted])
				{
								[play5MinTimer	invalidate];
								play5MinTimer	=	nil;
								return;
				}

				double	percentageComplete	=				play5MinAchievement.percentComplete	+	1.0;

				[[ICFGameCenterManager	sharedManager]	reportAchievement:
@"com.dragonforged.whackacac.play5Mins"	withPercentageComplete:	percentageComplete];
}

Resetting	Achievements
There	is	often	a	need	to	reset	all	achievement	progress	for	a	user,	more	so	in	development	than	in
production.	Sometimes,	it	is	helpful	to	provide	users	with	a	chance	to	take	a	fresh	run	at	a	game	or
even	some	sort	of	prestige	mode	that	starts	everything	over,	but	at	a	harder	difficulty.	Resetting
achievement	progress	is	simple;	the	following	code	snippet	can	be	added	into	the
IFCGameCenterManager	class	to	completely	reset	all	achievements	to	the	unearned	state.	If	you
are	providing	this	functionality	to	users,	it	is	a	good	idea	to	have	several	steps	of	confirmation	to
prevent	accidental	resetting.
Click	here	to	view	code	image

-	(void)resetAchievements
{
						[achievementDictionary	removeAllObjects];

							[GKAchievement	resetAchievementsWithCompletionHandler:
						^(NSError	*error)
							{
													if(error	==	nil)
													{
																		NSLog(@"All	achievements	have	been	successfully	reset");
													}

													else
													{
																	NSLog(@"Unable	to	reset	achievements:	%@",	[error
localizedDescription]);
													}
							}];
}

Tip
While	the	app	is	in	development	and	during	debugging,	it	can	be	helpful	to	keep	a	call	to
reset	achievements	in	the	authentication	successfully	completed	block	of	the
ICFGameCenterManager	class	that	can	easily	be	commented	out	to	assist	with	testing
and	implementing	achievements.

Going	Further	with	Achievements
Apple	provides	a	lot	for	free	in	regard	to	displaying	and	progressing	achievements.	However,	Apple
does	not	allow	the	customization	of	the	provided	interface	for	viewing	achievements.	The	look	and
feel	of	Apple’s	achievement	view	controllers	might	simply	not	fit	into	the	app’s	design.	In	cases	like
this,	the	raw	achievement	information	can	be	accessed	for	display	in	a	customized	interface.	Although
fully	setting	up	custom	achievements	is	beyond	the	scope	of	this	chapter,	this	section	contains
information	that	will	assist	you.
Earlier,	you	learned	about	creating	a	local	cache	of	GKAchievements.	However,
GKAchievement	objects	are	missing	critical	data	that	will	be	needed	in	order	to	display
achievement	data	to	the	user,	such	as	the	description,	title,	name,	and	number	of	points	it	is	worth.
Additionally,	when	the	achievement	cache	is	used,	if	an	achievement	has	not	been	progressed,	it	will
not	appear	in	the	cache.	To	retrieve	all	achievements	and	the	required	information	needed	to	present
them	to	the	user,	a	new	class	is	required.
Using	the	GKAchievementDescription	class	and	the	class	method
loadAchievementDescriptionsWithCompletionHandler:,	you	can	gain	access	to	an
array	of	GKAchievementDescriptions.	A	GKAchievementDescription	object	contains
properties	for	the	titles,	descriptions,	images,	and	other	critical	information.	However,	the
GKAchievementDescription	does	not	contain	any	information	about	the	current	progress	of
the	achievement	for	the	local	user;	in	order	to	determine	progress,	the	identifier	will	need	to	be
compared	to	the	local	achievement	cache.
Click	here	to	view	code	image

[GKAchievementDescription	loadAchievementDescriptionsWithCompletionHandler:^(NSArray
*descriptions,	NSError	*error)
{
						if(error	!=	nil)
						{
										NSLog(@"An	error	occurred	loading	achievement	descriptions:	%@",	[error
localizedDescription]);
						}

						for(GKAchievementDescription	*achievementDescription	in	descriptions)
						{
										NSLog(@"%@\n",	achievementDescription);
						}

}];

When	the	preceding	code	is	executed	on	Whack-a-Cac,	the	console	will	display	the	following
information:
Click	here	to	view	code	image

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185f810>id:	com.dragonforged.whackacac.100whacks	Whack	100	Cacti

visible	Good	job!	You	whacked	100	of	them!

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185f980>id:	com.dragonforged.whackacac.1000whacks	Whack	1000!
visible	You	are	a	master	at	killing	those	cacti.

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185f820>id:	com.dragonforged.whackacac.play5	Play	5	Matches	visible
Your	dedication	to	cactus	whacking	is	unmatched.

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185eae0>id:	com.dragonforged.whackacac.score100	Score	100	hidden
Good	work	on	getting	100	cacti	in	one	match!

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185eaf0>id:	com.dragonforged.whackacac.killone	Kill	One		hidden	You
have	started	on	your	cactus	killing	path;	there	is	no	turning	back	now.

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185eb30>id:	com.dragonforged.whackacac.play5Mins	Play	for	5	Minutes
visible	Good	work!	Your	dedication	continues	to	impress	your	peers.

WhackACac[48552:c07]	<GKAchievementDescription:
0x1185eb40>id:	com.dragonforged.whackacac.hit5Fast	Hit	5	Quick	hidden
You	are	truly	a	quick	gun.

A	list	of	all	the	achievements	has	now	been	retrieved	and	can	be	compared	to	the	local	achievement
cache	to	determine	percentages	completed.	You	have	everything	that	is	needed	to	create	a	customized
GUI	for	presenting	the	achievement	data	to	the	user.

Summary
In	this	chapter,	you	learned	about	integrating	Game	Center	Achievements	into	an	iOS	project.	You
continued	to	build	up	the	sample	game	Whack-a-Cac	that	was	introduced	in	Chapter	3.	This	chapter
also	continued	to	expand	on	the	reusable	Game	Center	Manager	class.
You	should	now	have	a	firm	understanding	of	how	to	create	achievements,	set	up	your	app	to	interact
with	them,	post	and	show	progress,	and	reset	all	achievement	progress.	Additionally,	a	brief	look	at
going	beyond	the	standard	behavior	was	provided.	With	the	knowledge	gained	in	this	chapter,	you
now	have	the	ability	to	fully	integrate	achievements	into	any	app.

5.	Getting	Started	with	Address	Book

The	iOS	Address	Book	frameworks	have	existed	largely	unchanged	from	their	introduction	in	iOS
2.0	(then	called	iPhone	OS	2.0).	These	frameworks	were	largely	ported	unchanged	from	their	OS	X
counterparts,	which	have	existed	since	OS	X	10.2,	making	Address	Book	one	of	the	oldest
frameworks	available	on	iOS.	This	legacy	will	become	evident	as	you	begin	working	with	Address
Book	technology.	It	is	largely	seated	on	Core	Foundation	framework,	which	might	seem	unfamiliar
to	developers	who	have	come	over	to	Objective-C	and	Cocoa	development	after	the	introduction	of
the	iPhone	SDKs.

Why	Address	Book	Support	Is	Important
When	developing	iOS	software,	you	are	running	in	an	environment	alongside	your	user ’s	mobile
life.	Users	carry	their	mobile	devices	everywhere,	and	with	these	devices	a	considerable	amount	of
their	personal	lives	is	intertwined	with	each	device,	from	their	daily	calendar	to	personal	photo
albums.	Paramount	to	this	mobile	life	is	the	user ’s	contact	information.	This	data	has	been	collected
over	long	periods,	often	on	several	devices,	by	a	user	and	contains	information	about	the	user ’s
family,	business,	and	social	life.
An	app	can	use	a	contact	database	to	determine	whether	the	user	already	has	friends	signed	up	for	a
service	by	parsing	through	a	list	of	their	email	addresses	or	phone	numbers	to	automatically	add
them	as	friends.	Your	app	can	also	use	a	contact	list	for	autopopulating	emails	or	phone	numbers	or
allow	users	to	share	their	contact	info	with	friends	over	Bluetooth.	The	reasons	an	app	might	need
access	to	the	user ’s	contacts	are	virtually	endless.

Note
It	is	important	to	access	the	contact	database	only	if	your	app	has	a	legitimate	reason	to
do	so;	nothing	will	turn	a	user	off	from	your	app	more	quickly	than	a	breach	of	privacy.

Limitations	of	Address	Book	Programming
Although	the	Address	Book	frameworks	remain	fairly	open,	there	are	some	important	limitations	to
consider.	The	most	notable,	especially	for	those	coming	from	the	Mac	development	world,	is	that
there’s	no	“me”	card.	Essentially,	there	is	no	way	to	identify	your	user	in	the	list	of	contacts.	Although
there	are	some	hacks	that	attempt	to	do	this,	nothing	developed	so	far	has	proven	to	be	reliable	or	is
sanctioned	by	Apple.
A	newer	and	welcome	limitation—especially	by	privacy-concerned	users—is	the	addition	of	Core
Location–type	authorization	to	access	the	contact	database.	This	means	that	a	user	will	be	prompted	to
allow	an	app	to	access	his	contacts	before	being	able	to	do	so.	When	writing	Address	Book	software,
make	an	effort	to	ensure	that	your	software	continues	to	function	even	if	a	user	has	declined	to	let	the
app	access	his	contact	information.
Starting	with	iOS	6,	a	new	privacy	section	exists	in	the	Settings.app.	From	here,	users	are	able	to
toggle	on	and	off	permissions	to	access	Contacts,	Locations,	Calendars,	Reminders,	Photos,	and
Bluetooth.

The	Sample	App
The	sample	app	for	this	chapter	is	a	simple	address	book	viewer	and	editor.	When	launched,	it	will
retrieve	and	display	a	list	of	all	the	contacts	on	your	device.	There	is	a	plus	button	in	the	navigation
bar	for	adding	a	new	contact	via	the	built-in	interface,	as	well	as	a	toggle	button	to	change	between
showing	either	phone	numbers	or	street	addresses	in	the	list.	Additionally,	the	app	has	the	capability	to
add	a	new	contact	programmatically	and	an	example	of	using	the	built-in	people	picker.
Because	the	sample	app,	shown	in	Figure	5.1,	is	merely	a	base	navigation	controller	project	and	does
not	have	any	overhead	that	is	unrelated	to	Address	Book	programming,	it	is	prudent	to	dive	right	into
the	functional	code	in	the	next	section.

Figure	5.1	A	first	look	at	the	sample	app.

Getting	Address	Book	Up	and	Running
The	first	thing	you	need	to	do	before	working	with	the	Address	Book	frameworks	is	to	link	both
frameworks	in	your	project.	You	need	to	be	concerned	with	two	frameworks:
AddressBookUI.framework	and	AddressBook.framework.	The	first	of	these	frameworks
handles	the	graphical	user	interface	for	picking,	editing,	or	displaying	contacts,	and	the	second
handles	all	the	interaction	layers	to	work	with	that	data.	You	need	to	import	two	headers,	as	shown
here:
Click	here	to	view	code	image

#import	<AddressBook/AddressBook.h>
#import	<AddressBookUI/AddressBookUI.h>

In	the	sample	app,	the	headers	are	imported	in	RootViewController.h	because	the	class	will
need	to	conform	to	several	delegates,	which	is	discussed	later.	You	will	also	want	to	create	a
classwide	instance	of	ABAddressBookRef,	which	in	the	sample	app	is	called	addressBook.	The
sample	app	also	has	an	NSArray	that	will	be	used	to	store	an	array	of	the	contact	entries.	It	is	a	fairly
expensive	operation	to	copy	the	address	book	into	memory,	so	you	will	want	to	minimize	the	number
of	times	you	will	need	to	run	that	operation.
Click	here	to	view	code	image

ABAddressBookRef	addressBook;
NSArray	*addressBookEntryArray;

To	populate	this	new	NSArray,	you	need	to	call	ABAddressBookCreate.	This	will	create	a	new
instance	of	the	address	book	data	based	on	the	current	global	address	book	database.	In	the	sample
app,	this	is	done	as	part	of	the	viewDidLoad	method.
Click	here	to	view	code	image

if(addressBook	==	NULL)
{
				NSLog(@"Error	loading	address	book:	%@",		CFErrorCopyDescription(creationError));
}

ABAddressBookRequestAccessWithCompletion(addressBook,	^(bool	granted,	CFErrorRef	error)
{
				if(!granted)
				{
								NSLog(@"No	permission!");
				}
});

You	will	also	want	to	catch	the	event	if	our	address	book	has	no	contacts,	which	will	be	the	default
behavior	on	the	iOS	Simulator.	The	sample	app	displays	a	UIAlert	in	this	situation	to	let	the	user
know	that	the	app	isn’t	broken,	but	that	it	has	no	data	available	to	it.	You	can	query	the	size	of	an
ABAddressBookRef	with	the	function	ABAddressBookGetPersonCount.
Click	here	to	view	code	image

if(ABAddressBookGetPersonCount(addressBook)	==	0)
{
						UIAlertView	*alertView	=	[[UIAlertView	alloc]initWithTitle:@""
						message:@"Address	book	is	empty!"
						delegate:nil
						cancelButtonTitle:@"Dismiss"
						otherButtonTitles:	nil];

					[alertView	show];
}

Now	you	have	a	reference	to	the	address	book,	but	you	will	want	to	translate	that	into	a	more
manageable	dataset.	The	sample	app	copies	these	objects	into	an	NSArray	since	it	will	be	using	the
data	to	populate	a	table	view.
You	have	access	to	three	functions	for	copying	the	address	book	data	that	will	return	a
CFArrayRef:

	ABAddressBookCopyArrayOfAllPeople	will	return	an	array	of	all	people	in	the
referenced	address	book	(this	method	is	shown	in	the	next	code	snippet).
	ABAddressBookCopyArrayOfAllPeopleInSource	will	return	all	the	address	book
items	that	are	found	in	a	particular	source.
	ABAddressBookCopyArrayOfAllPeopleInSourceWithSortOrdering	will	allow
you	to	sort	the	list	of	address	book	entries	while	retrieving	it.

The	sample	app	does	not	need	to	worry	about	sorting	right	now,	so	it	simply	retrieves	the	contacts
with	a	call	to	ABAddressBookCopyArrayOfAllPeople.	Since	a	CFArrayRef	is	a	toll-free
bridge	to	NSArray,	it	can	be	typecast	and	left	with	an	NSArray.	Now	that	you	have	an	array	of	all
the	address	book	entries,	it	is	just	a	simple	task	to	get	them	displayed	in	a	table.
Click	here	to	view	code	image

addressBookEntryArray	=	(NSArray	*)	ABAddressBookCopyArrayOfAllPeople(addressBook);

Note
Sources	in	this	context	amount	to	where	the	contact	was	retrieved	from;	possible	values
can	be	kABSourceTypeLocal,	kABSourceTypeExchange,
kABSourceTypeMobileMe,	and	kABSourceTypeCardDAV.	To	get	a	list	of	all	the
sources	found	within	the	referenced	address	book,	use
ABAddressBookCopyArrayOfAllSources(addressBook).	From	there,	you	can
query	the	sources	that	are	of	interest	to	your	app.

Reading	Data	from	the	Address	Book
The	preceding	section	demonstrated	how	to	populate	an	NSArray	with	entries	from	the	user ’s
address	book—each	of	these	objects	is	an	ABRecordRef.	This	section	covers	pulling	information
back	out	of	an	ABRecordRef.
The	sample	app	will	be	displaying	the	user	data	through	a	UITableView.	There	will	be	two	types	of
values	contained	within	the	ABRecordRef:	The	first	type	is	a	single	value	used	for	objects	for	which
there	can	be	only	one,	such	as	a	first	and	last	name,	and	the	second	type	is	a	multivalue	used	when
dealing	with	values	that	a	user	might	have	more	than	one	of,	such	as	a	phone	number	or	a	street
address.
The	following	code	snippet	pulls	an	ABRecordRef	from	the	address	book	array	that	was	created	in
the	preceding	section	and	then	retrieves	the	contact’s	first	and	last	name	and	sets	NSString	values
accordingly.	A	full	listing	of	available	properties	is	shown	in	Table	5.1.
Click	here	to	view	code	image

ABRecordRef	record	=	[addressBookEntryArrayobjectAtIndex:indexPath.row];

NSString	*firstName	=	(NSString	*)ABRecordCopyValue(record,	kABPersonFirstNameProperty);

NSString	*lastName	=	(NSString	*)ABRecordCopyValue(record,	kABPersonLastNameProperty);

//...

				if(firstName)
								CFRelease(firstName);
				if(lastName)
								CFRelease(lastName);

Table	5.1	Complete	Listing	of	All	Available	Single-Value	Constants	in	an	ABRecordRef

Note
NARC	(New,	Alloc,	Retain,	Copy)	is	how	I	was	taught	memory	management	in	the	early
days	of	Mac	OS	X	programming,	and	the	same	holds	true	today	for	manual	memory
management.	New	advancements	to	memory	management	such	as	ARC	are	forever
changing	the	way	we	handle	manual	memory	management.	However,	Core	Foundation	is
not	compliant	with	ARC.	When	you	perform	operations	on	Address	Book	with	“copy”	in
the	name,	you	must	release	that	memory	using	a	CFRelease()	call.

Reading	Multivalues	from	the	Address	Book
Often,	you	will	encounter	Address	Book	objects	that	can	store	multiple	values,	such	as	phone
numbers,	email	addresses,	or	street	addresses.	These	are	all	accessed	using	ABMultiValueRefs.
The	process	is	similar	to	that	for	single	values	with	one	additional	level	of	complexity.
The	first	thing	you	need	to	do	when	working	with	multivalues,	such	as	phone	numbers,	is	copy	the
value	of	the	multivalue	property.	In	the	following	code	example,	use	kABPersonPhoneProperty
from	the	record	that	was	set	in	the	previous	section.	This	provides	you	with	an	ABMultiValueRef
called	phoneNumbers.
A	check	is	then	needed	to	make	sure	that	the	contact	has	at	least	one	phone	number	using	the
ABMultiValueGetCount	function.	Here,	you	can	either	loop	through	all	the	phone	numbers	or
pull	the	first	one	you	find	(as	in	the	example).	Additionally,	you	will	want	to	handle	the	“no	phone
number	found”	case.	From	here,	you	need	to	create	a	new	string	and	store	the	value	of	the	phone
number	into	it.	This	is	done	using	the	ABMultiValueCopyValueAtIndex	call,	the	first
parameter	of	the	ABMultiValueRef	followed	by	the	index	number.
Click	here	to	view	code	image

ABMultiValueRef	phoneNumbers	=	ABRecordCopyValue(record,	kABPersonPhoneProperty);

if	(ABMultiValueGetCount(phoneNumbers)	>	0)
{
				CFStringRef	phoneNumber	=	ABMultiValueCopyValueAtIndex(phoneNumbers,	0);

				NSLog(@"Phone	Number:	%@",	phoneNumber);

				CFRelease(phoneNumber);
}

CFRelease(phoneNumbers);

Understanding	Address	Book	Labels
In	the	preceding	section,	you	retrieved	a	phone	number	from	the	contact	database;	however,	you
know	it	only	by	its	index	number.	Although	this	is	helpful	to	developers,	it	is	next	to	useless	for	users.
You	will	want	to	retrieve	the	label	that	was	used	in	the	contact	database.	In	the	next	code	snippet,	the
example	from	the	preceding	section	is	expanded	on.
The	first	step	to	obtaining	a	label	for	a	multivalue	reference	is	to	call
ABMultiValueCopyLabelAtIndex.	Call	this	function	with	the	same	parameters	you	used	to	get
the	value	of	the	multivalue	object.	This	function	will	return	a	nonlocalized	string,	such	as	"_$!
<Mobile>!$_".	Although	this	is	much	more	helpful	than	a	raw	index	number,	it	is	still	not	ready
for	user	presentation.
You	will	need	to	run	the	returned	label	through	a	localizer	to	get	a	human-readable	string.	Do	so
using	the	ABAddressBookCopyLocalizedLabel	using	the	raw	value	CFStringRef	that	was
just	set.	In	the	example	this	will	now	return	Mobile	or	the	appropriate	value	for	the	device’s	selected
language.
Click	here	to	view	code	image

ABMultiValueRef	phoneNumbers	=	ABRecordCopyValue(record,	kABPersonPhoneProperty);

if	(ABMultiValueGetCount(phoneNumbers)	>	0)
{

						CFStringRef	phoneNumber	=	ABMultiValueCopyValueAtIndex(phoneNumbers,	0);

						CFStringRef	phoneTypeRawString	=	ABMultiValueCopyLabelAtIndex(phoneNumbers,	0);

						NSString	*localizedPhoneTypeString	=		(NSString
*)ABAddressBookCopyLocalizedLabel(phoneTypeRawString);

						NSLog(@"Phone	%@	[%@]",	phoneNumber,	localizedPhoneTypeString);

						CFRelease(phoneNumber);
						CFRelease(phoneTypeRawString);
						CFRelease(localizedPhoneTypeString);
}

Look	back	at	the	example	in	Figure	5.1—you	now	have	the	skill	set	to	fully	implement	this
functionality.

Working	with	Addresses
In	the	preceding	two	sections,	you	saw	how	to	access	single-value	information	and	then	how	to	access
multivalue	data.	In	this	section,	you	will	work	with	a	bit	of	both	as	you	learn	how	to	handle	street
addresses	that	you	encounter	in	the	contact	database.	If	you	launch	the	sample	app	and	tap	the	toggle
button	in	the	navigation	bar,	you	will	see	that	the	addresses	are	now	shown	instead	of	phone	numbers
in	the	table	cells	(see	Figure	5.2).

Figure	5.2	The	sample	app	showing	addresses	pulled	from	the	contact	database.

You	will	begin	working	with	addresses	in	the	same	manner	as	you	did	for	the	phone	multivalues.	First
obtain	an	ABMultiValueRef	for	the	kABPersonAddressProperty.	Then	you	will	need	to
make	sure	that	at	least	one	valid	address	was	found.	When	you	query	the	multivalue	object	with	an
index	value,	instead	of	getting	back	a	single	CFStringRef,	you	are	returned	a	dictionary	containing
the	address	components.	After	you	have	the	dictionary,	you	can	pull	out	specific	information	using
the	address	constants	shown	in	Table	5.2.
Click	here	to	view	code	image

ABMultiValueRef	streetAddresses	=	ABRecordCopyValue(record,
kABPersonAddressProperty);

if	(ABMultiValueGetCount(streetAddresses)	>	0)
{
						NSDictionary	*streetAddressDictionary	=	(NSDictionary
*)ABMultiValueCopyValueAtIndex(streetAddresses,	0);

						NSString	*street	=	[streetAddressDictionary	objectForKey:	(NSString

*)kABPersonAddressStreetKey];

						NSString	*city	=	[streetAddressDictionary	objectForKey:	NSString
*)kABPersonAddressCityKey];

						NSString	*state	=	[streetAddressDictionary	objectForKey:	(NSString
*)kABPersonAddressStateKey];

						NSString	*zip	=	[streetAddressDictionary	objectForKey:	(NSString
*)kABPersonAddressZIPKey];

						NSLog(@"Address:	%@	%@,	%@	%@",	street,	city,	state,	zip);

						CFRelease(streetAddressDictionary);
}

Table	5.2	Address	Components

Address	Book	Graphical	User	Interface
A	standard	user	interface	is	provided	as	part	of	the	Address	Book	framework.	This	section	looks	at
those	interfaces	and	how	they	can	save	an	incredible	amount	of	implementation	time.	Whether	it	is
editing	an	existing	contact,	creating	a	new	contact,	or	allowing	your	user	to	pick	a	contact	from	a	list,
Apple	has	you	covered.

People	Picker
You	will	undoubtedly	want	your	user	to	be	able	to	simply	select	a	contact	from	a	list.	For	example,
let’s	say	you	are	writing	an	app	that	enables	you	to	send	a	vCard	over	Bluetooth	to	another	user;	you
will	need	to	let	your	user	select	which	contact	card	she	wants	to	send.	This	task	is	easily	accomplished
using	ABPeoplePickerNavigationController.	You	can	turn	on	this	functionality	in	the
sample	app	by	uncommenting	line	63	([self	showPicker:	nil];)	in	the
RootViewController.m	class.
Your	class	will	first	need	to	implement	ABPeoplePickerNavigationControllerDelegate.
You	can	then	create	a	new	picker	controller	using	the	following	code	snippet:
Click	here	to	view	code	image

ABPeoplePickerNavigationController	*picker	=
[[ABPeoplePickerNavigationController	alloc]	init];

picker.peoplePickerDelegate	=	self;	[self	presentViewController:picker	animated:YES
completion:nil];

This	displays	a	people	picker	to	the	user	(see	Figure	5.3).

Figure	5.3	The	built-in	people	picker.

You	will	also	need	to	implement	three	delegate	methods	to	handle	callbacks	from	the	user	interacting
with	the	people	picker.	The	first	method	you	need	handles	the	Cancel	button	being	tapped	by	a	user;	if
you	do	not	dismiss	the	modal	in	this	method,	the	user	has	no	way	to	dismiss	the	view.
Click	here	to	view	code	image

-	(void)peoplePickerNavigationControllerDidCancel:(ABPeoplePickerNavigationController
*)peoplePicker
{
				[self	dismissViewControllerAnimated:YES	completion:nil];
}

When	you	are	picking	people,	there	are	two	sets	of	data	you	might	be	concerned	with.	The	first	is	the
contact	itself,	and	by	extension	all	the	contact	information.	The	second	is	a	specific	property,	such	as	a
specific	phone	number	or	email	address	from	a	contact.	You	can	handle	both	of	these	cases.	The	first
step	will	look	at	selecting	the	entirety	of	a	person’s	contact	information.

Click	here	to	view	code	image

-	(BOOL)peoplePickerNavigationController:	(ABPeoplePickerNavigationController
*)peoplePicker	shouldContinueAfterSelectingPerson:	(ABRecordRef)person
{
				NSLog(@"You	have	selected:	%@",	person);

				[self	dismissViewControllerAnimated:YES	completion:nil];

				return	NO;
}

In	this	code	snippet,	NO	is	returned	for
peoplePickerNavigationController:shouldContinueAfterSelectingPerson:.
This	informs	the	picker	that	you	do	not	intend	to	drill	deeper	into	the	contact	and	you	only	want	to
select	an	ABRecordRef	for	a	person.	As	with	the	previous	example,	you	must	dismiss	the	modal
view	controller	when	you	are	done	with	it.	If	you	do	want	to	dive	deeper,	you	will	need	to	return	YES
here	and	implement	the	following	delegate	method.	Do	not	forget	to	remove	the
dismissModalViewControllerAnimated:completion	call	from	the	previous	method	if
you	intend	to	drill	deeper.
Click	here	to	view	code	image

-	(BOOL)peoplePickerNavigationController:	(ABPeoplePickerNavigationController
*)peoplePicker	shouldContinueAfterSelectingPerson:(ABRecordRef)person	property:
(ABPropertyID)property	identifier:(ABMultiValueIdentifier)identifier
{

				NSLog(@"Person:	%@\nProperty:%i\nIdentifier:%i",	person,property,	identifier);

				[self	dismissViewControllerAnimated:YES	completion:nil];

				return	NO;
}

Customizing	the	People	Picker
There	might	be	times	when	you	want	to	allow	the	picker	to	choose	only	from	phone	numbers	or
street	addresses	and	ignore	the	other	information.	You	can	do	so	by	modifying	the	previous	method
of	creating	the	people	picker	to	match	the	following	example,	which	will	show	only	phone	numbers:
Click	here	to	view	code	image

ABPeoplePickerNavigationController	*picker	=	[[ABPeoplePickerNavigationController	alloc]
init];

picker.displayedProperties	=	[NSArray	arrayWithObject:[NSNumber
numberWithInt:kABPersonPhoneProperty]];

picker.peoplePickerDelegate	=	self;
[self	presentViewController:picker	animated:YES	completion:nil];

You	also	can	specify	an	address	book	for	the	picker	using	the	addressBook	property.	If	you	do	not
set	this,	a	new	address	book	is	created	for	you	when	the	people	picker	is	presented.

Editing	and	Viewing	Existing	Contacts	Using	ABPersonViewController
Most	of	the	time,	you	will	want	to	simply	display	or	edit	an	existing	contact	using	the	built-in	Address
Book	user	interfaces.	In	the	sample	app,	this	is	the	default	action	when	a	table	cell	is	selected.	You	first
create	a	new	instance	of	ABPersonViewController	and	set	the	delegate	and	the	person	to	be
displayed,	which	is	an	instance	of	ABRecordRef.	This	approach	will	display	the	contact,	as	shown
in	Figure	5.4.
Click	here	to	view	code	image

ABPersonViewController	*personViewController	=	[[ABPersonViewController	alloc]	init];

personViewController.personViewDelegate	=	self;

personViewController.displayedPerson	=	personToDisplay;

[self.navigationController	pushViewController:personViewController	animated:YES];

Figure	5.4	The	built-in	contact	viewer.

If	you	want	to	allow	editing	of	the	contact,	you	simply	add	another	property	to	the	code	snippet.
Click	here	to	view	code	image

personViewController.allowsEditing	=	YES;

If	you	want	to	allow	actions	in	the	contact,	such	as	Send	Text	Message	or	FaceTime	buttons,	you	can
add	an	additional	allowsActions	property.
Click	here	to	view	code	image

personViewController.allowsActions	=	YES;

In	addition	to	the	steps	you	have	already	implemented,	you	need	to	be	aware	of	one	required	delegate
method,
personViewController:shouldPerformDefaultActionForPerson:property:identifier
This	is	called	when	the	user	taps	on	a	row	such	as	a	street	address	or	a	phone	number.	If	you	would
like	the	app	to	perform	the	default	action,	such	as	call	or	open	Maps.app,	return	YES;	if	you	would
like	to	override	these	behaviors,	return	NO.
Click	here	to	view	code	image

-	(BOOL)personViewController:(ABPersonViewController	*)personViewController
shouldPerformDefaultActionForPerson:(ABRecordRef)person	property:(ABPropertyID)property
identifier:(ABMultiValueIdentifier)identifierForValue
{

				return	YES;
}

Creating	New	Contacts	Using	ABNewPersonViewController
When	you	want	to	create	a	new	contact,	the	sample	app	has	a	plus	button	in	the	navigation	bar	that
enables	you	to	create	a	new	contact	using	the	built-in	user	interfaces,	shown	in	Figure	5.5.	The	next
code	snippet	is	straightforward	with	one	caveat:	The	ABNewPersonViewController	must	be
wrapped	inside	of	a	UINavigationController	to	function	properly.
Click	here	to	view	code	image

ABNewPersonViewController	*newPersonViewController	=	[[ABNewPersonViewController	alloc]
init];

UINavigationController	*newPersonNavigationController	=	[[UINavigationController	alloc]
initWithRootViewController:newPersonViewController];

[newPersonViewController	setNewPersonViewDelegate:	self];

[self	presentViewController:newPersonNavigationController	animated:YES	completion:nil];

Figure	5.5	The	built-in	new-person	view	controller.

There	is	also	a	single	delegate	method	that	is	called	when	the	user	saves	the	contact.	After	you	verify
that	you	have	a	valid	person	object	being	returned,	you	need	to	call	ABAddressBookAddRecord
with	the	address	book	you	want	to	add	the	person	into,	followed	by	ABAddressBookSave.	If	you
have	an	array	populated	with	the	address	book	entries	like	the	sample	app,	you	will	need	to	repopulate
that	array	to	see	the	changes.
Click	here	to	view	code	image

-	(void)newPersonViewController:(ABNewPersonViewController	*)newPersonViewController
didCompleteWithNewPerson:(ABRecordRef)person
{
						if(person)
						{
										CFErrorRef	error	=	NULL;

										ABAddressBookAddRecord(addressBook,	person,	&error);
										ABAddressBookSave(addressBook,	&error);
										if	(error	!=	NULL)

										{
														NSLog(@"An	error	occurred");
										}
						}

						[self	dismissViewControllerAnimated:YES	completion:nil];

}

Programmatically	Creating	Contacts
What	if	you	want	to	programmatically	create	a	new	contact	instead	of	using	the	built-in	graphical
interface?	Think	about	a	contact-sharing	app	again.	You	don’t	want	to	have	to	put	the	user	through	an
interface	when	you	can	have	the	contact	information	entered	programmatically.
In	the	sample	project,	uncomment	line	66	([self	programmaticallyCreatePerson];)	of
the	RootViewController.m	and	run	it;	you	will	notice	that	a	new	person	appears	in	the	contact
list.	The	first	step	you	will	need	to	take	in	creating	a	new	person	is	to	generate	a	new	empty
ABRecordRef.	You	do	this	with	the	ABPersonCreate()	method.	You	will	also	want	to	create	a
new	NULL	pointed	CFErrorRef.
Click	here	to	view	code	image

ABRecordRef	newPersonRecord	=	ABPersonCreate();

CFErrorRef	error	=	NULL;

Setting	single-value	properties	is	very	straightforward,	achieved	by	calling	ABRecordSetValue
with	the	new	ABRecordRef	as	the	first	parameter,	followed	by	the	property	constant,	then	the	value,
followed	by	the	address	of	the	CFErrorRef.
Click	here	to	view	code	image

ABRecordSetValue(newPersonRecord,	kABPersonFirstNameProperty,	@"Tyler",	&error);

ABRecordSetValue(newPersonRecord,	kABPersonLastNameProperty,	@"Durden",	&error);

ABRecordSetValue(newPersonRecord,	kABPersonOrganizationProperty,	@"Paperstreet	Soap
Company",	&error);

ABRecordSetValue(newPersonRecord,	kABPersonJobTitleProperty,	@"Salesman",	&error);

Setting	the	phone	number	multivalue	is	slightly	more	complex	than	with	a	single-value	object.	You
first	need	to	create	a	new	ABMutableMultiValueRef	using	the
ABMultiValueCreateMutable()	method	with	the	type	of	multivalue	property	you	are	creating,
in	this	instance,	the	phone	property.
In	the	sample	app,	three	different	phone	numbers	are	created,	each	with	a	different	label	property.
After	you	finish	adding	new	phone	number	values,	you	need	to	call	ABRecordSetValue	with	the
new	person	record,	the	multivalue	constant	you	are	setting,	and	the	mutable	multivalue	reference	you
just	populated.	Don’t	forget	to	release	the	Core	Foundation	memory	when	done.
Click	here	to	view	code	image

ABMutableMultiValueRef	multiPhoneRef	=
ABMultiValueCreateMutable(kABMultiStringPropertyType);

ABMultiValueAddValueAndLabel(multiPhoneRef,	@"1-800-555-5555",	kABPersonPhoneMainLabel,
NULL);

ABMultiValueAddValueAndLabel(multiPhoneRef,	@"1-203-426-1234",	kABPersonPhoneMobileLabel,
NULL);

ABMultiValueAddValueAndLabel(multiPhoneRef,	@"1-555-555-0123",	kABPersonPhoneIPhoneLabel,
NULL);

ABRecordSetValue(newPersonRecord,	kABPersonPhoneProperty,	multiPhoneRef,	nil);

CFRelease(multiPhoneRef);

Email	addresses	are	handled	in	the	same	manner	as	phone	numbers.	An	example	of	an	email	entry	is
shown	in	the	sample	app.	Street	addresses	are	handled	slightly	differently,	however.
You	will	still	create	a	new	mutable	multivalue	reference,	but	in	this	step,	you	also	create	a	new
mutable	NSDictionary.	Set	an	object	for	each	key	of	the	address	that	you	want	to	set	(refer	to
Table	5.2	for	a	complete	list	of	values).	Next,	you	need	to	add	a	label	for	this	street	address.	In	the
code	sample	that	follows,	kABWorkLabel	is	used.	When	done,	save	the	data	in	the	same	fashion	as
the	phone	or	email	entry.
Click	here	to	view	code	image

ABMutableMultiValueRef	multiAddressRef	=
ABMultiValueCreateMutable(kABMultiDictionaryPropertyType);

NSMutableDictionary	*addressDictionary	=	[[NSMutableDictionary	alloc]	init];

[addressDictionary	setObject:@"152	Paper	Street"	forKey:(NSString	*)
kABPersonAddressStreetKey];

[addressDictionary	setObject:@"Delaware"	forKey:(NSString	*)kABPersonAddressCityKey];

[addressDictionary	setObject:@"MD"	forKey:(NSString	*)kABPersonAddressStateKey];

[addressDictionary	setObject:@"19963"	forKey:(NSString	*)kABPersonAddressZIPKey];

ABMultiValueAddValueAndLabel(multiAddressRef,	addressDictionary,	kABWorkLabel,	NULL);

ABRecordSetValue(newPersonRecord,	kABPersonAddressProperty,	multiAddressRef,	&error);

CFRelease(multiAddressRef);

After	you	set	up	the	new	contact	with	all	the	information	you	want	to	enter,	you	need	to	save	it	and
check	for	any	errors	that	occurred	during	the	process.	In	the	sample	app,	the	array	and	the	table	are
reloaded	to	display	the	new	entry.
Click	here	to	view	code	image

ABAddressBookAddRecord(addressBook,	newPersonRecord,	&error);
ABAddressBookSave(addressBook,	&error);

if(error	!=	NULL)
{
				NSLog(@"An	error	occurred");
}

Summary
This	chapter	covered	the	Address	Book	frameworks	and	how	to	leverage	them	into	your	iOS	apps.
You	learned	about	the	limitations	and	privacy	concerns	of	the	Address	Book,	as	well	as	the
importance	of	implementing	it	into	appropriate	apps.
Exploring	the	included	sample	app,	you	gained	insightful	and	practical	knowledge	on	how	to	get	the

Address	Book	frameworks	quickly	up	and	running.	Additionally,	you	learned	how	to	work	with	both
retrieving	and	inserting	new	data	into	an	address	book	both	using	Apple’s	provided	graphical	user
interface	and	programmatically.	You	should	now	have	a	strong	understanding	of	the	Address	Book
frameworks	and	be	comfortable	adding	them	into	your	iOS	apps.

6.	Working	with	Music	Libraries

When	Steve	Jobs	first	introduced	the	iPhone	onstage	at	Macworld	in	2007,	it	was	touted	as	a	phone,	an
iPod,	and	a	revolutionary	Internet	communicator.	Several	years	later,	and	partially	due	to	a	lot	of	hard
work	by	third-party	developers,	the	iPhone	has	grown	into	something	much	more	than	those	three
core	concepts.	That	original	marketing	message	has	not	changed,	however;	the	iPhone	itself	remains
primarily	a	phone,	an	iPod,	and	an	Internet	communication	device.	Users	did	not	add	an	iPhone	to
their	collection	of	devices	they	already	carried	every	day;	they	replaced	their	existing	phones	and
iPods	with	a	single	device.
Music	is	what	gave	the	iPhone	its	humble	start	when	Apple	began	planning	the	device	in	2004;	the
iPhone	was	always	an	evolutionary	step	forward	from	an	iPod.	Music	inspired	the	iPod,	which,	it
could	be	argued,	brought	the	company	back	from	the	brink.	Music	is	universally	loved.	It	brings
people	together	and	it	enables	them	to	express	themselves.	Although	day-to-day	iPhone	users	might
not	even	think	of	their	iPhone	as	a	music	playback	device,	most	of	them	will	use	it	almost
absentmindedly	to	listen	to	their	favorite	songs.
This	chapter	discusses	how	to	add	access	to	the	user ’s	music	library	inside	of	an	iOS	app.	Whether
building	a	full-featured	music	player	or	enabling	users	to	play	their	music	as	the	soundtrack	to	a
game,	this	chapter	demonstrates	how	to	provide	music	playback	from	the	user ’s	own	library.

The	Sample	App
The	sample	app	for	this	chapter	is	simply	called	Player	(see	Figure	6.1).	The	sample	app	is	a	full-
featured	music	player	for	the	iPhone.	It	enables	the	user	to	pick	songs	to	be	played	via	the	Media
Picker,	play	random	songs,	or	play	artist-specific	songs.	In	addition,	it	features	functionality	for
pause,	resume,	previous,	next,	volume,	playback	counter,	and	plus	or	minus	30	seconds	to	the
playhead.	The	app	also	displays	the	album	art	for	the	current	track	being	played,	if	it	is	available.

Figure	6.1	A	first	look	at	the	sample	app,	Player,	a	fully	functional	music	player	running	on	an
iPod.

Because	the	iOS	Simulator	that	comes	bundled	with	Xcode	does	not	include	a	copy	of	the	Music.app,
nor	does	it	have	an	easy	method	of	transferring	music	into	its	file	system,	the	app	can	be	run	only	on
actual	devices.	When	the	app	is	launched	on	a	simulator,	a	number	of	errors	will	appear.
Click	here	to	view	code	image

player[80633:c07]	MPMusicPlayer:	Unable	to	launch	iPod	music	player	server:	application
not	found
player[80633:c07]	MPMusicPlayer:	Unable	to	launch	iPod	music	player	server:	application
not	found
player[80633:c07]	MPMusicPlayer:	Unable	to	launch	iPod	music	player	server:	application
not	found

Any	attempt	to	access	the	media	library	will	result	in	a	crash	on	the	simulator	with	the	following
error:
Click	here	to	view	code	image

***	Terminating	app	due	to	uncaught	exception	'NSInternalInconsistencyException',	reason:
'Unable	to	load	iPodUI.framework'

Building	a	Playback	Engine
Before	it	makes	sense	to	pull	in	any	audio	data,	an	in-depth	understanding	of	the	playback	controls	is
required.	To	play	music	from	within	an	app,	a	new	instance	of	MPMusicPlayerController
needs	to	first	be	created.	This	is	done	in	the	header	file	ICFViewController.h,	and	the	new
object	is	called	player.	The	MPMusicPlayerController	will	be	referenced	throughout	this
chapter	to	control	the	playback	as	well	as	retrieve	information	about	the	items	being	played.
Click	here	to	view	code	image

@interface	ICFViewController	:	UIViewController
{
				MPMusicPlayerController	*player;
}

Inside	the	viewDidLoad	method,	the	MPMusicPlayerController	player	can	be	initialized
using	a	MPMusicPlayerController	class	method.	There	are	two	possible	options	when	a	new
MPMusicPlayerController	is	created.	In	the	first	option,	an	applicationMusicPlayer
will	play	music	within	an	app;	it	will	not	affect	the	iPod	state	and	will	end	playback	when	the	app	is
exited.	The	second	option,	iPodMusicPlayer,	will	control	the	iPod	app	itself.	It	will	pick	up	where
the	user	has	left	the	iPod	playhead	and	track	selection,	and	will	continue	to	play	after	the	app	has
entered	the	background.	The	sample	app	uses	applicationMusicPlayer;	however,	this	can
easily	be	changed	without	the	need	to	change	any	other	code	or	behavior.
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[super	viewDidLoad];

				player	=	[MPMusicPlayerController	applicationMusicPlayer];
}

Registering	for	Playback	Notifications
To	efficiently	work	with	music	playback,	it	is	important	to	be	aware	of	the	state	of	the	music	player.
When	you	are	dealing	with	the	music	player,	there	are	two	notifications	to	watch.	The	“now	playing”
item	has	changed	and	the	playback	state	has	changed.	These	states	can	be	monitored	by	using
NSNotificationCenter	to	subscribe	to	the	aforementioned	events.	The	sample	app	uses	a	new
convenience	method,	registerMediaPlayerNotifications,	to	keep	the	sample	app’s	code
clean	and	readable.	After	the	new	observers	have	been	added	to	NSNotificationCenter,	the
beginGeneratingPlaybackNotifications	needs	to	be	invoked	on	the	player	object.
Click	here	to	view	code	image

-	(void)registerMediaPlayerNotifications
{
				NSNotificationCenter	*notificationCenter	=		[NSNotificationCenter	defaultCenter];

				[notificationCenter	addObserver:	self
																											selector:	@selector
																														(nowPlayingItemChanged:)
																															name:
MPMusicPlayerControllerNowPlayingItemDidChangeNotification

																													object:	player];

				[notificationCenter	addObserver:	self
																											selector:	@selector
																														(playbackStateChanged:)
																															name:
MPMusicPlayerControllerPlaybackStateDidChangeNotification
																													object:	player];

				[player	beginGeneratingPlaybackNotifications];
}

When	registering	for	notifications,	it	is	important	to	make	sure	that	they	are	properly	deregistered
during	memory	and	view	cleanup;	failing	to	do	so	can	cause	crashes	and	other	unexpected	behavior.
A	call	to	endGeneratingPlaybackNotifications	is	also	performed	during	the
viewDidUnload	routine.
Click	here	to	view	code	image

-(void)viewWillDisappear:(BOOL)animated
{
				[[NSNotificationCenter	defaultCenter]	removeObserver:	self
																																																				name:
MPMusicPlayerControllerNowPlayingItemDidChangeNotification
																																																		object:	player];

				[[NSNotificationCenter	defaultCenter]	removeObserver:	self
																																																				name:
MPMusicPlayerControllerPlaybackStateDidChangeNotification
																																																		object:	player];

				[player	endGeneratingPlaybackNotifications];

				[super	viewWillDisappear:	animated];
}

In	addition	to	registering	for	callbacks	from	the	music	player,	a	new	NSTimer	will	be	created	to
handle	updating	the	playback	progress	and	playhead	time	label.	In	the	sample	app,	the	NSTimer	is
simply	called	playbackTimer.	For	the	time	being,	the	notification	callback	selectors	and	the
NSTimer	behavior	will	be	left	uncompleted.	These	are	discussed	in	the	section	“Handling	State
Changes.”

User	Controls
The	sample	app	provides	the	user	with	several	buttons	designed	to	enable	them	to	interact	with	the
music,	such	as	play,	pause,	skip,	and	previous,	as	well	as	jumping	forward	and	backward	by	30
seconds.	The	first	action	that	needs	to	be	implemented	is	the	play	and	pause	method.	The	button
functions	as	a	simple	toggle:	If	the	music	is	already	playing,	it	is	paused;	if	it	is	paused	or	stopped,	it
resumes	playing.	The	code	to	update	the	text	of	the	button	from	play	to	pause	and	vice	versa	is
discussed	as	part	of	the	state	change	notification	callback	in	the	section	“Handling	State	Changes.”
Click	here	to	view	code	image

-	(IBAction)playButtonAction:(id)sender
{
				if	([player	playbackState]	==	MPMusicPlaybackStatePlaying)
				{
								[player	pause];
				}

				else
				{
								[player	play];
				}
}

The	user	should	also	have	the	ability	to	skip	to	the	previous	or	next	track	while	listening	to	music.
This	is	done	through	two	additional	calls	on	the	player	object.
Click	here	to	view	code	image

-	(IBAction)previousButtonAction:(id)sender
{
				[player	skipToPreviousItem];
}

-	(IBAction)nextButtonAction:(id)sender
{
				[player	skipToNextItem];
}

Users	can	also	be	provided	with	actions	that	enable	them	to	skip	30	seconds	forward	or	backward	in	a
song.	If	the	user	hits	the	end	of	the	track,	the	following	code	will	skip	to	the	next	track;	likewise,	if
they	hit	further	than	the	start	of	a	song,	the	audio	track	will	start	over.	Both	of	these	methods	make	use
of	the	currentPlaybackTime	property	of	the	player	object.	This	property	can	be	used	to	change
the	current	playhead,	as	well	as	determine	what	the	current	playback	time	is.
Click	here	to	view	code	image

-	(IBAction)skipBack30Seconds:(id)sender
{
				int	newPlayHead	=	player.currentPlaybackTime	-	30;

				if(newPlayHead	<	0)
				{
								newPlayHead	=	0;
				}

				player.currentPlaybackTime	=	newPlayHead;
}

-	(IBAction)skipForward30Seconds:(id)sender
{
				int	newPlayHead	=	player.currentPlaybackTime	+	30;

				if(newPlayHead	>	currentSongDuration)
				{
								[player	skipToNextItem];
				}

				else
				{
								player.currentPlaybackTime	=	newPlayHead;
				}
}

In	addition	to	these	standard	controls	to	give	the	user	control	over	the	item	playing,	the	sample	app
enables	the	user	to	change	the	volume	of	the	audio.	An	MPVolumeView	is	created	to	control	the
playback	volume.	The	MPVolumeView	will	provide	a	slider	to	control	the	volume	and	will	also
display	the	Airplay	controls	when	appropriate.

Click	here	to	view	code	image

-(void)	createAndDisplayMPVolumeViews
{
				UIView	*volumeHolder	=	[[UIView	alloc]	initWithFrame:	CGRectMake(125,	115,	185,	20)];
				[volumeHolder	setBackgroundColor:	[UIColor	clearColor]];
				[self.view	addSubview:	volumeHolder];

				MPVolumeView	*myVolumeView	=	[[MPVolumeView	alloc]	initWithFrame:
volumeHolder.bounds]
				[volumeHolder	addSubview:	myVolumeView];
}

Handling	State	Changes
Earlier	in	this	section,	three	notifications	were	registered	to	receive	callbacks.	These	notifications
allow	the	app	to	determine	the	current	state	and	behavior	of	the	MPMusicPlayerController.
The	first	method	that	is	being	watched	will	be	called	whenever	the	currently	playing	item	changes.
This	method	contains	two	parts.	The	first	part	updates	the	album	artwork,	and	the	second	updates	the
labels	that	indicate	the	artist,	song	title,	and	album	being	played.
Every	audio	or	video	item	being	played	through	the	MPMusicPlayerController	is	represented
by	an	MPMediaItem	object.	This	object	can	be	retrieved	by	invoking	the	method	nowPlaying-
Item	on	an	instance	of	MPMusicPlayerController.	This	functionality	is	seen	in	the
nowPlayingItemChanged	method.
A	new	UIImage	is	created	to	represent	the	album	artwork	and	is	initially	set	to	a	placeholder	that
will	be	used	in	the	event	that	the	user	does	not	have	album	artwork	for	the	MPMediaItem.
MPMediaItem	uses	key	value	properties	for	stored	data;	a	full	list	is	shown	in	Table	6.1.	A	new
MPMediaItemArtwork	is	created	and	set	with	the	artwork	data.	Although	the	documentation
specifies	that	if	no	artwork	is	available	this	will	return	nil,	in	practice	this	is	not	the	case	as	of	iOS	8.
A	workaround	is	to	load	the	artwork	into	a	UIImage	and	check	the	resulting	value.	If	it	is	nil,	the
assumption	is	that	there	is	no	album	artwork	and	the	placeholder	is	loaded.	The	code	used	in	the
sample	app	will	continue	to	function	in	the	event	that	MPMediaItemArtwork	begins	returning	nil
when	no	album	artwork	is	available.

Table	6.1	Available	MPMediaItem	Constants

The	second	part	of	the	nowPlayingItemChanged:	method	handles	updating	the	song	title,	artist
info,	and	album	name,	as	shown	earlier	in	Figure	6.1.	In	the	event	that	any	of	these	properties	returns
nil,	a	placeholder	string	is	set.	A	complete	list	of	accessible	properties	on	an	MPMediaItem	can	be
found	in	Table	6.1.	When	referencing	the	table,	note	that	if	the	media	item	is	a	podcast,	additional	keys
will	be	available,	which	are	available	in	Apple’s	documentation	for	MPMediaItem.	Also	indicated	is
whether	the	key	can	be	used	for	predicate	searching	when	programmatically	finding
MPMediaItems.

Click	here	to	view	code	image

-	(void)	nowPlayingItemChanged:	(id)	notification
{
				MPMediaItem	*currentItem	=	[player	nowPlayingItem];

				UIImage	*artworkImage	=	[UIImage	imageNamed:@"noArt.png"];

				MPMediaItemArtwork	*artwork	=	[currentItem	valueForProperty:
MPMediaItemPropertyArtwork];

				if	(artwork)
				{
								artworkImage	=	[artwork	imageWithSize:	CGSizeMake	(120,120)];

								if(artworkImage	==	nil)
								{
												artworkImage	=	[UIImage	imageNamed:@"noArt.png"];
								}
				}

				[albumImageView	setImage:artworkImage];

				NSString	*titleString	=	[currentItem	valueForProperty:MPMediaItemPropertyTitle];

				if	(titleString)
				{
								songLabel.text	=	titleString;
				}

				else
				{
								songLabel.text	=	@"Unknown	Song";
				}

				NSString	*artistString	=	[currentItem	valueForProperty:MPMediaItemPropertyArtist];

				if	(artistString)
				{
												artistLabel.text	=	artistString;

				}

				else
				{
								artistLabel.text	=	@"Unknown	artist";
				}

				NSString	*albumString	=	[currentItem	valueForProperty:MPMediaItemPropertyAlbumTitle];

				if	(albumString)
				{
										recordLabel.text	=	albumString;
				}

				else
				{
								recordLabel.text	=	@"Unknown	Record";
				}
}

Monitoring	the	state	of	the	music	player	is	a	crucial	step,	especially	since	this	value	can	be	affected	by
input	outside	the	control	of	the	app.	In	the	event	that	the	state	is	updated,	the

playbackStateChanged:	method	is	fired.	A	new	variable	playbackState	is	created	to	hold
onto	the	current	state	of	the	player.	This	method	performs	several	important	tasks,	the	first	of	which	is
updating	the	text	on	the	play/pause	button	to	reflect	the	current	state.	In	addition,	the	NSTimer	that
was	mentioned	in	the	“Registering	for	Playback	Notifications”	section	is	both	created	and	torn	down.
While	the	app	is	playing	audio,	the	timer	is	set	to	fire	every	0.3	seconds;	this	is	used	to	update	the
playback	duration	labels	as	well	as	the	UIProgressIndicator	that	informs	the	user	of	the
placement	of	the	playhead.	The	method	that	the	timer	fires,	updateCurrentPlaybackTime,	is
discussed	in	the	next	subsection.
In	addition	to	the	states	that	are	shown	in	the	sample	app,	there	are	three	additional	states.	The	first,
MPMusicPlaybackStateInterrupted,	is	used	whenever	the	audio	is	being	interrupted,	such	as
by	an	incoming	phone	call.	The	other	two	states,	MPMusicPlaybackStateSeekingForward
and	MPMusicPlaybackStateSeekingBackward,	are	used	to	indicate	that	the	music	player	is
seeking	either	forward	or	backward.
Click	here	to	view	code	image

-	(void)	playbackStateChanged:	(id)	notification
{
				MPMusicPlaybackState	playbackState	=	[player	playbackState];

				if	(playbackState	==	MPMusicPlaybackStatePaused)
				{
												[playButton	setTitle:@"Play"	forState:UIControlStateNormal];

						if([playbackTimer	isValid])
						{
												[playbackTimer	invalidate];
						}
				}

				else	if	(playbackState	==	MPMusicPlaybackStatePlaying)
				{
													[playButton	setTitle:@"Pause"	forState:UIControlStateNormal];

												playbackTimer	=	[NSTimer
												scheduledTimerWithTimeInterval:0.3
												target:self
												selector:@selector(updateCurrentPlaybackTime)
												userInfo:nil
												repeats:YES];
				}

				else	if	(playbackState	==	MPMusicPlaybackStateStopped)
				{
												[playButton	setTitle:@"Play"	forState:UIControlStateNormal];

												[player	stop];

												if([playbackTimer	isValid])
												{
																	[playbackTimer	invalidate];
												}
				}
}

In	the	event	that	the	volume	has	changed,	it	is	also	important	to	reflect	that	change	on	the	volume
slider	found	in	the	app.	This	is	done	by	watching	for	the	volumeChanged:	notification	callback.

From	inside	this	method	the	current	volume	of	the	player	can	be	polled	and	the	volumeSlider	can
be	set	accordingly.
Click	here	to	view	code	image

-	(void)	volumeChanged:	(id)	notification
{
				[volumeSlider	setValue:[player	volume]];
}

Duration	and	Timers
Under	most	circumstances,	users	will	want	to	have	information	available	to	them	about	the	current
status	of	their	song,	such	as	how	much	time	has	been	played	and	how	much	time	is	left	in	the	track.
The	sample	app	features	two	methods	for	generating	this	data.	The	first	updateSongDuration	is
called	whenever	the	song	changes	or	when	the	app	is	launched.	A	reference	to	the	current	track	being
played	is	created,	and	the	song	duration	expressed	in	seconds	is	retrieved	through	the	key
playbackDuration.	The	total	hours,	minutes,	and	seconds	are	derived	from	this	data,	and	the
song	duration	is	displayed	in	a	label	next	to	the	UIProgressIndicator.
Click	here	to	view	code	image

-(void)updateSongDuration;
{
				currentSongPlaybackTime	=	0;

				currentSongDuration	=	[[[player	nowPlayingItem]	valueForProperty:
@"playbackDuration"]	floatValue];

				NSInteger	tHours	=	(currentSongDuration	/	3600);
				NSInteger	tMins	=	((currentSongDuration	/	60)	-	tHours*60);
				NSInteger	tSecs	=	(currentSongDuration)	-	(tMins*60)	-	(tHours	*3600);

				songDurationLabel.text	=	[NSString	stringWithFormat:@"%zd:	%02d:%02d",	tHours,	tMins,
tSecs];

				currentTimeLabel.text	=	@"0:00:00";
}

The	second	method,	updateCurrentPlaybackTime,	is	called	every	0.3	seconds	via	an
NSTimer	that	is	controlled	from	the	playbackStateChanged:	method	discussed	in	the
“Handling	State	Changes”	section.	The	same	math	is	used	to	derive	the	hours,	minutes,	and	seconds	as
in	the	updateSongDuration	method.	A	percentagePlayed	is	also	calculated	based	on	the
previously	determined	song	duration	and	is	used	to	update	the	playbackProgressIndicator.
Because	the	currentPlaybackTime	is	accurate	only	to	one	second,	this	method	does	not	need	to
be	called	more	often.	However,	the	more	regularly	it	is	called,	the	better	precision	to	the	actual
second	it	will	be.
Click	here	to	view	code	image

-(void)updateCurrentPlaybackTime;
{
				currentSongPlaybackTime	=	player.currentPlaybackTime;

				int	tHours	=	(currentSongPlaybackTime	/	3600);
				int	tMins	=	((currentSongPlaybackTime	/	60)	-	tHours*60);
				int	tSecs	=	(currentSongPlaybackTime)	-	(tMins*60)	-	(tHours*3600);

				currentTimeLabel.text	=	[NSString	stringWithFormat:@"%zd:	%02d:%02d",	tHours,	tMins,

tSecs];

				float	percentagePlayed	=	currentSongPlaybackTime/
				currentSongDuration;

				[playbackProgressIndicator	setProgress:percentagePlayed];
}

Shuffle	and	Repeat
In	addition	to	the	properties	and	controls	mentioned	previously,	an	MPMusicPlayerController
also	enables	the	user	to	specify	the	repeat	and	shuffle	properties.	Although	the	sample	app	does	not
implement	functionality	for	these	two	properties,	they	are	fairly	easy	to	implement.
Click	here	to	view	code	image

player.repeatMode	=	MPMusicRepeatModeAll;
player.shuffleMode	=	MPMusicShuffleModeSongs;

The	available	repeat	modes	are	MPMusicRepeatModeDefault,	which	is	the	user ’s	predefined
preference,	MPMusicRepeatModeNone,	MPMusicRepeatModeOne,	and
MPMusicRepeatModeAll.	The	available	modes	for	shuffle	are
MPMusicShuffleModeDefault,	MPMusicShuffleModeOff,
MPMusicShuffleModeSongs,	and	MPMusicShuffleModeAlbums,	where	the
MPMusicShuffleModeDefault	mode	represents	the	user ’s	predefined	preference.

Media	Picker
The	simplest	way	to	enable	a	user	to	specify	which	song	he	wants	to	hear	is	to	provide	him	access	to
an	MPMediaPickerController,	as	shown	in	Figure	6.2.	The	MPMediaPickerController
enables	the	user	to	browse	his	artists,	songs,	playlists,	and	albums	to	specify	one	or	more	songs	that
should	be	considered	for	playback.	To	use	an	MPMediaPickerController,	the	class	first	needs
to	specify	that	it	handles	the	delegate	MPMediaPickerControllerDelegate,	which	has	two
required	methods.	The	first	media-Picker:didPickMediaItems:	is	called	when	the	user	has
completed	selecting	the	songs	she	would	like	to	hear.	Those	songs	are	returned	as	an
MPMediaItemCollection	object,	and	the	MPMusicPlayerController	can	directly	take	this
object	as	a	parameter	of	setQueueWithItemCollection:.	After	a	new	queue	has	been	set	for
the	MPMusicPlayerController,	it	can	begin	playing	the	new	items.	The
MPMediaPickerController	does	not	dismiss	itself	after	completing	a	selection	and	requires
explicit	use	of	dismissViewControllerAnimated:completion:.
Click	here	to	view	code	image

-	(void)	mediaPicker:	(MPMediaPickerController	*)	mediaPicker	didPickMediaItems:
(MPMediaItemCollection	*)	mediaItemCollection
{
				if	(mediaItemCollection)
				{
								[player	setQueueWithItemCollection:	mediaItemCollection];
								[player	play];
				}

				[self	dismissViewControllerAnimated:YES	completion:nil];
}

Figure	6.2	Selecting	songs	using	the	MPMediaPickerController	in	iOS	8.

In	the	event	that	the	user	cancels	or	dismisses	the	MPMediaPickerController	without	making	a
selection,	the	delegate	method	mediaPickerDidCancel:	is	called.	The	developer	is	required	to
dismiss	the	MPMediaPickerController	as	part	of	this	method.
Click	here	to	view	code	image

-	(void)	mediaPickerDidCancel:	(MPMediaPickerController	*)	mediaPicker
{
				[self	dismissViewControllerAnimated:YES	completion:nil];
}

After	the	delegate	methods	have	been	implemented,	an	instance	of	MPMediaPickerController
can	be	created.	During	allocation	and	initialization	of	a	MPMediaPickerController,	a
parameter	for	supported	media	types	is	required.	A	full	list	of	the	available	options	is	shown	in	Table
6.2.	Note	that	each	media	item	can	be	associated	with	multiple	media	types.	Additional	optional
parameters	for	the	MPMediaPickerController	include	specifying	the	selection	of	multiple

items,	and	a	prompt	to	be	shown	during	selection,	shown	in	Figure	6.2.	An	additional	Boolean
property	also	exists	for	setting	whether	iCloud	items	are	shown;	this	is	defaulted	to	YES.
Click	here	to	view	code	image

-	(IBAction)mediaPickerButtonAction:(id)sender
{
				MPMediaPickerController	*mediaPicker	=	[[MPMediaPickerController	alloc]
initWithMediaTypes:	MPMediaTypeAny];

				mediaPicker.delegate	=	self;
				mediaPicker.allowsPickingMultipleItems	=	YES;
				mediaPicker.prompt	=	@"Select	songs	to	play";

				[self	presentViewController:mediaPicker	animated:YES	completion:	nil];
}

Table	6.2	Available	Constant	Accepted	During	the	Specification	of	Media	Types	When	a	New
MPMediaPickerController	Is	Created

These	are	all	the	steps	required	to	enable	a	user	to	pick	songs	for	playback	using	the
MPMediaPickerController;	however,	in	many	circumstances	it	might	be	necessary	to	provide	a
custom	user	interface	or	select	songs	with	no	interface	at	all.	The	next	section	covers	these	topics.

Programmatic	Picker
Often,	it	might	be	required	to	provide	a	more	customized	music	selection	option	to	a	user.	This	might
include	creating	a	custom	music	selection	interface	or	automatically	searching	for	an	artist	or	album.
In	this	section	the	steps	necessary	to	provide	programmatic	music	selection	are	discussed.
To	retrieve	songs	without	using	the	MPMediaPickerController,	a	new	instance	of
MPMediaQuery	needs	to	be	allocated	and	initialized.	The	MPMediaQuery	functions	as	a	store	that
references	a	number	of	MPMediaItems,	each	of	which	represents	a	single	song	or	audio	track	to	be

played.
The	sample	app	provides	two	methods	that	implement	an	MPMediaQuery.	The	first	method,
playRandomSongAction:,	will	find	a	single	random	track	from	the	user ’s	music	library	and
play	it	using	the	existing	MPMusicPlayerController.	Finding	music	programmatically	begins
by	allocating	and	initializing	a	new	instance	of	MPMediaQuery.

Playing	a	Random	Song
Without	providing	any	predicate	parameters,	the	MPMediaQuery	will	contain	all	the	items	found
within	the	music	library.	A	new	NSArray	is	created	to	hold	onto	these	items,	which	are	retrieved
using	the	item’s	method	on	the	MPMediaQuery.	Each	item	is	represented	by	an	MPMediaItem.	The
random	song	functionality	of	the	sample	app	will	play	a	single	song	at	a	time.	If	no	songs	were	found
in	the	query,	a	UIAlert	is	presented	to	the	user;	however,	if	multiple	songs	are	found,	a	single	one
is	randomly	selected.
After	a	single	(or	multiple)	MPMediaItem	has	been	found,	a	new	MPMediaItemCollection	is
created	by	passing	an	array	of	MPMediaItems	into	it.	This	collection	will	serve	as	a	playlist	for	the
MPMusicPlayerController.	After	the	collection	has	been	created,	it	is	passed	to	the	player
object	using	setQueueWithItemCollection.	At	this	point	the	player	now	knows	which	songs
the	user	intends	to	listen	to,	and	a	call	of	play	on	the	player	object	will	begin	playing	the
MPMediaItemCollection	in	the	order	of	the	array	that	was	used	to	create	the
MPMediaItemCollection.
Click	here	to	view	code	image

-	(IBAction)playRandomSongAction:(id)sender
{
				MPMediaItem	*itemToPlay	=	nil;
				MPMediaQuery	*allSongQuery	=	[MPMediaQuery	songsQuery];
				NSArray	*allTracks	=	[allSongQuery	items];

				if([allTracks	count]	==	0)
				{
								UIAlertView	*alert	=	[[UIAlertView	alloc]
												initWithTitle:@"Error"
																		message:@"No	music	found!"
																	delegate:nil
								cancelButtonTitle:@"Dismiss"
								otherButtonTitles:nil];

								[alert	show];
								return;
				}

				if	([allTracks	count]	==	1)
				{
								itemToPlay	=	[allTracks	lastObject];
				}

				int	trackNumber	=	arc4random()	%	[allTracks	count];
				itemToPlay	=	[allTracks	objectAtIndex:trackNumber];

				MPMediaItemCollection	*	collection	=	[[MPMediaItemCollection
				alloc]	initWithItems:[NSArray	arrayWithObject:itemToPlay]];

				[player	setQueueWithItemCollection:collection];
				[player	play];

				[self	updateSongDuration];
				[self	updateCurrentPlaybackTime];
}

Note
arc4random()	is	a	member	of	the	standard	C	library	and	can	be	used	to	generate	a
random	number	in	Objective-C	projects.	Unlike	most	random-number-generation
functions,	arc4random	is	seeded	automatically	the	first	time	it	is	called.

Predicate	Song	Matching
Often,	an	app	won’t	just	want	to	play	random	tracks	and	will	want	to	perform	a	more	advanced
search.	This	is	done	using	predicates.	The	following	example	uses	a	predicate	to	find	music	library
items	that	have	an	artist	property	equal	to	"Bob	Dylan",	as	shown	in	Figure	6.3.	This	method
functions	very	similarly	to	the	previous	random	song	example,	except	that	addFilterPredicate
is	used	to	add	the	filter	to	the	MPMediaQuery.	In	addition,	the	results	are	not	filtered	down	to	a
single	item,	and	the	player	is	passed	an	array	of	all	the	matching	songs.	For	a	complete	list	of
available	predicate	constants,	refer	to	the	second	column	of	Table	6.1	in	the	“Handling	State	Changes”
section.	Multiple	predicates	can	be	used	with	supplemental	calls	to	addFilterPredicate	on	the
MPMediaQuery.
Click	here	to	view	code	image

-	(IBAction)playDylan:(id)sender
{
				MPMediaPropertyPredicate	*artistNamePredicate	=
				[MPMediaPropertyPredicate	predicateWithValue:	@"Bob	Dylan"
																																					forProperty:
																			MPMediaItemPropertyArtist];

				MPMediaQuery	*artistQuery	=	[[MPMediaQuery	alloc]	init];

				[artistQuery	addFilterPredicate:	artistNamePredicate];

				NSArray	*tracks	=	[artistQuery	items];

				if([tracks	count]	==	0)
				{
									UIAlertView	*alert	=	[[UIAlertView	alloc]
									initWithTitle:@"Error"
									message:@"No	music	found!"
									delegate:nil
									cancelButtonTitle:@"Dismiss"
									otherButtonTitles:nil];

								[alert	show];
								return;
				}

				MPMediaItemCollection	*	collection	=	[[MPMediaItemCollection	alloc]
initWithItems:tracks];

				[player	setQueueWithItemCollection:collection];

				[player	play];

				[self	updateSongDuration];
				[self	updateCurrentPlaybackTime];
}

Figure	6.3	Using	a	predicate	search	to	play	tracks	by	the	artist	Bob	Dylan.

Summary
This	chapter	covered	accessing	and	working	with	a	user ’s	music	library.	The	first	topic	covered	was
building	a	playback	engine	to	enable	a	user	to	interact	with	the	song	playback,	such	as	pausing,
resuming,	controlling	the	volume,	and	skipping.	The	next	two	sections	covered	accessing	and
selecting	songs	from	the	library.	The	media	picker	demonstrated	using	the	built-in	GUI	to	enable	the
user	to	select	a	song	or	group	of	songs,	and	the	“Programmatic	Picker”	section	dealt	with	finding	and
searching	for	songs	using	predicates.
The	sample	app	demonstrated	how	to	build	a	fully	functional	albeit	simplified	music	player	for	iOS.
The	knowledge	demonstrated	in	this	chapter	can	be	applied	to	creating	a	fully	featured	music	player
or	adding	a	user ’s	music	library	as	background	audio	into	any	app.

7.	Implementing	HealthKit

People	all	over	the	world	are	becoming	increasingly	interested	and	concerned	about	their	personal
health,	and	they	are	leveraging	technology	to	gain	valuable	insight.	The	rise	of	smartphones	enabled
common	consumers	to	carry	a	computer	with	them	wherever	they	went,	and	it	wasn’t	long	before	a
rush	of	third-party	fitness	and	health	apps	followed.
Health-focused	mobile	apps	were	a	$2.4	billion	industry	in	2013,	and	this	is	projected	to	grow	to
more	than	$20	billion	by	2017.	Each	quarter	more	than	100,000	new	health	apps	are	published	to	the
iTunes	App	Store,	and	until	HealthKit	it	was	complete	chaos.	Due	to	the	sandboxing	nature	of	the	iOS
platform,	these	apps	haven’t	been	able	to	share	data	with	other	third-party	apps.	This	does	not	allow	a
user ’s	sleep-tracking	app	to	monitor	his	weight	loss	or	exercise	routines,	or	even	allow	his	running
app	to	track	his	nutritional	intake.
HealthKit	fixes	this	problem	by	providing	a	secure	centralized	location	for	the	user ’s	health
information,	from	body	measurements	to	workout	data,	and	even	food	intake.	This	not	only	allows
third-party	apps	to	share	data	with	each	other,	but,	more	important,	makes	it	easy	for	a	user	to	switch
apps.	Up	until	now,	users	were	easily	locked	into	a	particular	app	since	their	data	was	all	stored	there;
now	they	are	free	to	switch	to	new	and	better	solutions	without	the	risk	of	losing	their	historical
records.	This	is	fantastic	news	for	developers,	because	it	removes	a	giant	barrier	to	entry	that	was
preventing	new	fitness	and	health	apps	to	flourish.

Introduction	to	HealthKit
HealthKit	was	introduced	with	the	rest	of	iOS	8	at	Apple’s	WWDC	2014.	At	its	core,	HealthKit	is	a
framework	that	allows	apps	to	share	and	access	health	and	fitness	data.	HealthKit	also	provides	a
system	app	that	will	be	bundled	with	all	new	iOS	8	devices.	This	new	Health	app	allows	a	user	to	see	a
consolidated	dataset	of	all	their	health	data	taken	from	all	compliant	apps.
Specially	designed	HealthKit	hardware	devices	also	allow	the	direct	storage	of	biometric	data	as	well
as	directly	interacting	with	newer	iOS	devices,	which	feature	the	M7	motion	coprocessor	chip.	These
hardware	interactions	are	outside	of	the	scope	of	this	chapter;	however,	more	information	can	be
found	in	the	HealthKit	framework	guide	located	at
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html#//apple_ref/doc/uid/TP40014707
It	is	important	to	remember	that	when	working	with	HealthKit,	the	developer	has	access	to	personal
and	private	information	about	the	user.	HealthKit	is	a	permission-based	service,	and	the	user	will	need
to	grant	the	app	permission	to	access	each	requested	piece	of	information.	After	the	app	has	access	to
the	information,	it	is	the	developer ’s	responsibility	to	treat	that	information	as	highly	confidential	and
sensitive.	A	good	guideline	is	to	treat	any	health	data	as	you	would	someone’s	credit	card	or	Social
Security	information.

https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html#//apple_ref/doc/uid/TP40014707

Introduction	to	Health.app
Before	you	can	write	a	HealthKit-enabled	app,	you	must	first	understand	Health.app	(see	Figure	7.1),
which	comes	bundled	with	iOS	8.	Health.app	provides	the	centralized	access	point	to	all	the	user ’s
health	data.	Users	are	able	to	configure	their	Dashboard	to	see	the	metrics	that	they	are	interested	in;
for	example,	in	Figure	7.1,	the	user	is	viewing	steps,	walking	and	running	distance,	and	sleep	analysis.
The	Health	Data	section	further	allows	the	users	to	see	the	individual	stored	data	for	every	point	of
entry	as	well	as	letting	them	delete	entries	they	no	longer	want	to	retain.	The	Sources	tab	allows	users
to	configure	which	apps	have	access	to	which	data,	which	is	covered	in	the	section	“Requesting
Permission	for	Health	Data.”	Finally,	the	Medical	ID	tab	allows	the	user	to	enter	information	that
might	be	useful	to	first	responders,	such	as	allergies,	emergency	contact	info,	blood	type,	and
medications.	This	Medical	ID	information	is	accessible	from	the	lock	screen	without	the	user ’s
passcode.

Figure	7.1	Dashboard	section	of	the	iOS	Health.app.

The	Sample	App
The	sample	app	that	accompanies	this	chapter	is	called	ICFFever.	ICFFever	is	a	simple	HealthKit	app
that	demonstrates	the	storage	and	retrieval	of	basic	user	info,	such	as	age,	height,	and	weight	(see
Figure	7.2).	Additionally,	the	app	showcases	storing,	retrieving,	sorting,	and	working	with	body
temperature	data	(see	Figure	7.3).	Although	the	functionality	of	the	app	has	been	kept	simple	to	avoid
overcomplication,	it	will	showcase	all	the	required	key	functionality	of	interacting	with	HealthKit
data.

Figure	7.2	ICFFever	Profile	information	entry	screen.

Figure	7.3	ICFFever	entering	and	viewing	body	temperature	information.

Adding	HealthKit	to	a	Project
HealthKit	is	a	standalone	framework,	and	a	new	project	must	first	be	configured	to	work	with
HealthKit.	This	includes	adding	the	proper	entitlements,	adding	a	key	in	your	info	plist	to	flag	the	app
as	HealthKit	enabled,	and	linking	to	the	HealthKit	framework.	Apple	makes	it	easy	to	correctly	enable
all	the	proper	settings	in	Xcode	6.	While	your	project	is	open,	select	the	project	icon	item	from	the
project	navigator	and	then	navigate	to	the	Capabilities	section.	Toggling	the	switch	next	to	the
HealthKit	item	will	automatically	configure	your	project.
In	each	class	that	will	be	working	with	HealthKit,	the	proper	header	will	need	to	be	first	imported.

@import	HealthKit;

HealthKit	is	a	permission-based	service;	before	the	app	can	access	or	write	any	information,	the	user
will	need	to	grant	his	permission.	To	help	facilitate	this	process,	a	single	instance	of	an
HKHealthStore	is	created	in	the	sample	app’s	app	delegate.	Each	view	controller	will	reference

back	to	this	object.
Click	here	to	view	code	image

@property	(nonatomic)	HKHealthStore	*healthStore;

ICFFever	is	a	tab	bar-based	app	and	each	tab	will	need	to	have	access	to	the	HKHealthStore.	Inside
the	app	delegate	a	method	is	provided	which	will	populate	that	shared	object	to	each	of	the	view
controllers.	Depending	on	the	nature	and	setup	of	each	unique	app,	approaches	to	this	might	vary.
Each	view	controller	will	need	to	create	its	own	property	for	healthStore,	which	is	demonstrated
in	the	sample	app.
Click	here	to	view	code	image

	(BOOL)application:(UIApplication	*)application	didFinishLaunchingWithOptions:
(NSDictionary	*)launchOptions
{
														self.healthStore	=	[[HKHealthStore	alloc]	init];

														UITabBarController	*tabBarController	=	(UITabBarController	*)	[self.window
rootViewController];

																	for	(UINavigationController	*navigationController	in
tabBarController.viewControllers)
																	{
																					id	viewController	=	navigationController;

																				if	([viewController	respondsToSelector:@	selector(setHealthStore:)])
																				{
																								[viewController	setHealthStore:self.healthStore];
																				}
																	}

																	return	YES;
}

Requesting	Permission	for	Health	Data
After	the	groundwork	has	been	laid	to	begin	working	with	HealthKit,	the	app	can	request	permission
to	access	specific	health	data.	This	is	a	multiple-stage	process,	beginning	with	a	simple	check	to	make
sure	that	HealthKit	is	available	on	the	current	device.
Click	here	to	view	code	image

if	([HKHealthStore	isHealthDataAvailable])

The	next	step	is	to	generate	a	list	of	all	the	datasets	the	app	will	need	to	read	and	write	to.	Each	point
of	information	must	be	specifically	requested	and	the	user	can	opt	to	approve	some	but	not	all	the	data
points.	The	sample	app	breaks	this	list	generation	into	two	convenience	methods	that	will	each	return
an	NSSet.
Click	here	to	view	code	image

//	Returns	the	types	of	data	that	the	app	wants	to	write	to	HealthKit.
-	(NSSet	*)dataTypesToWrite
{
								HKQuantityType	*heightType	=	[HKObjectType
quantityTypeForIdentifier:HKQuantityTypeIdentifierHeight];

								HKQuantityType	*weightType	=	[HKObjectType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyMass];

								HKQuantityType	*tempType	=	[HKObjectType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyTemperature];

								return	[NSSet	setWithObjects:tempType,	heightType,	weightType,	nil];
}

//	Returns	the	types	of	data	that	the	app	wants	wishes	to	read	from	HealthKit.
-	(NSSet	*)dataTypesToRead
{
				HKQuantityType	*heightType	=	[HKObjectType
quantityTypeForIdentifier:HKQuantityTypeIdentifierHeight];

				HKQuantityType	*weightType	=	[HKObjectType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyMass];

				HKQuantityType	*tempType	=	[HKObjectType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyTemperature];

				HKCharacteristicType	*birthdayType	=	[HKObjectType
characteristicTypeForIdentifier:HKCharacteristicTypeIdentifierDateOfBirth];

				return	[NSSet	setWithObjects:heightType,	weightType,	birthdayType,	tempType,	nil];
}

ICFFever	will	request	permission	to	write	height,	weight,	and	body	temperature	data.	It	will	also	be
asking	for	permission	to	read	height,	weight,	body	temperature,	and	birthdate	information.	Keep	in
mind	that	it	is	possible	for	the	app	to	be	allowed	to	write	data	it	doesn’t	have	access	to	read,	and	to
read	data	it	doesn’t	have	access	to	write.

Note
HealthKit	contains	a	type	of	data	point	called	a	characteristic
(HKCharacteristicType);	these	characteristics	include	gender,	blood	type,	and
birthday.	HealthKit	does	not	allow	a	third-party	app	to	enter	changes	to	these	data	points;
changes	and	initial	entry	to	them	must	be	made	within	the	Health.app,	although	third-party
apps	may	read	the	data	with	the	user ’s	permission.

More	than	70	types	of	data	are	currently	available	from	HealthKit,	ranging	from	items	as	common	as
weight	to	more	detailed	items	such	as	inhaler	usage	and	oxygen	saturation.	These	items	are	readily
available	in	the	HealthKit	documentation	and	in	an	effort	to	save	trees	(or	bytes	for	e-books);	they	are
not	listed	in	this	chapter.
After	the	app	has	built	two	NSSets,	one	for	reading	data	and	one	for	writing,	the	app	is	ready	to
prompt	the	user	for	permission.	The	user	is	presented	with	a	HealthKit	permission	request	screen	(see
Figure	7.4)	and	will	then	select	the	permission	set	the	user	wants	to	grant.	A	user	can	make	further
changes	to	these	permissions	from	within	the	Health.app	at	any	time.
Click	here	to	view	code	image

if	([HKHealthStore	isHealthDataAvailable])
{
								NSSet	*writeDataTypes	=	[self	dataTypesToWrite];
								NSSet	*readDataTypes	=	[self	dataTypesToRead];

							[self.healthStore	requestAuthorizationToShareTypes:writeDataTypes
readTypes:readDataTypes	completion:^(BOOL	success,	NSError	*error)	{
												if	(!success)
												{

																NSLog(@"HealthKit	was	not	properly	authorized	to	be	added,	check
entitlements	and	permissions.	Error:	%@",	error);

																return;
												}
							}];
}

Figure	7.4	A	HealthKit	permission	request	for	writing	body	temperature,	height,	and	weight,	as
well	as	reading	body	temperature,	date	of	birth,	height,	and	weight.

Reading	Characteristic	HealthKit	Data
Assuming	that	the	user	has	granted	permission	to	read	the	data	from	the	Health.app,	the	app	can	now
begin	to	work	with	data	that	is	already	stored.	The	first	tab	of	the	sample	app	shows	the	user	basic
profile	information.	Because	the	date	of	birth	cannot	be	modified	from	within	a	third-party	app,	that	is
a	logical	place	to	start	with	simple	data	reading.	A	new	method	called	updateAge	is	created	in	the
sample	app.	HealthKit	provides	a	convenience	method	for	quickly	retrieving	the	user ’s	date	of	birth
named	dateOfBirthWithError.	Likewise,	methods	for	the	other	characteristics	data	gender	and
blood	type	exist.	The	method	follows	basic	error	checking	flow	and,	if	no	entry	is	found,	lets	the	user
know	to	enter	her	birthdate	into	the	Health.app.	After	the	data	is	retrieved	as	an	NSDate,	the	year	is
stripped	out	of	it	and	displayed	to	the	user.
Click	here	to	view	code	image

-	(void)updateAge
{
				NSError	*error	=	nil;
				NSDate	*dateOfBirth	=	[self.healthStore	dateOfBirthWithError:&error];

				if	(!dateOfBirth)
				{
								NSLog(@"No	age	was	found");
								dispatch_async(dispatch_get_main_queue(),	^{
																		self.ageTextField.placeholder	=	@"Enter	in	HealthKit	App";
								});
				}

				else
				{
								NSDate	*now	=	[NSDate	date];

								NSDateComponents	*ageComponents	=	[[NSCalendar	currentCalendar]
								components:NSCalendarUnitYear	fromDate:dateOfBirth	toDate:now
								options:NSCalendarWrapComponents];

								NSUInteger	usersAge	=	[ageComponents	year];

								self.ageTextField.text	=	[NSNumberFormatter	localizedStringFromNumber:
@(usersAge)	numberStyle:NSNumberFormatterNoStyle];
				}
}

Reading	and	Writing	Basic	HealthKit	Data
The	sample	app	also	enables	the	user	to	not	only	read	in	height	and	weight	data	but	also	provide
updates	to	that	data	from	within	the	app	itself.	ICFFever	breaks	this	down	into	two	separate	steps;	the
first	step	is	reading	the	data	and	the	second	is	writing	new	data.	To	retrieve	a	new	data	point,	first	an
HKQuanyityType	object	is	created	using	the	data	point	that	will	be	retrieved,	in	the	following
example	HKQuantityTypeIdentifierBodyMass.
Apple	has	graciously	provided	a	convenience	method	for	retrieving	the	most	recent	sample	of	an
entry	type;	this	method	is	included	in	the	class	HKHealthStore+AAPLExtensions.m.	Assuming
that	there	is	weight	data	in	the	HealthKit	data	store,	an	HKQuantity	object	will	be	returned.	The
sample	app	specifies	the	units	it	would	like	to	display.	Here	an	HKUnit	for	a	poundUnit	is	created,
though	the	data	could	also	be	returned	in	grams,	ounces,	stones,	or	even	molar	mass.	A	double	value
is	taken	from	the	HKQuantity	object	after	it	has	been	specified	what	the	data	should	be	in	pounds.

That	data	is	then	displayed	through	a	main	thread	dispatch,	since	HealthKit	runs	on	a	background
thread.
Click	here	to	view	code	image

-	(void)updateWeight
{
									HKQuantityType	*weightType	=	[HKQuantityType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyMass];

									[self.healthStore	aapl_mostRecentQuantitySampleOfType:weightType	predicate:nil
completion:^(HKQuantity	*mostRecentQuantity,	NSError	*error)
								{
																if	(!mostRecentQuantity)
																{
																								NSLog(@"No	weight	was	found");

																								dispatch_async(dispatch_get_main_queue(),	^{
																															self.weightTextField.placeholder	=	@"Enter	in	lbs";
																								});
																}
								else
								{
																HKUnit	*weightUnit	=	[HKUnit	poundUnit];
																double	usersWeight	=	[mostRecentQuantity	doubleValueForUnit:weightUnit];

																dispatch_async(dispatch_get_main_queue(),	^{
																				self.weightTextField.text	=	[NSNumberFormatter
localizedStringFromNumber:@(usersWeight)	numberStyle:NSNumberFormatterNoStyle];
																});
								}
				}];
}

It	is	likely	that	the	user	does	not	have	data	saved	for	his	weight	yet;	the	ICFFever	app	also	enables	the
user	to	save	new	weight	data.	Saving	data	is	very	similar	to	retrieving	data;	first	an	HKUnit	needs	to
be	defined	to	indicate	what	type	of	unit	the	data	is	being	saved	in.	In	the	sample	app	the	user	will	enter
his	weight	in	pounds.
A	new	HKQuantity	is	created	with	the	type	of	unit	and	the	value	that	is	being	saved.	Next	an
HKQuanityType	is	created	specifying	which	type	of	data	point	is	being	stored.	Since	the	data	is	a
type	of	weight,	the	HKQuantityTypeIdentifierBodyMass	constant	is	used.	Each	data	point	is
saved	with	a	time	stamp	so	that	information	can	be	charted	and	compared	in	the	future;	the	assumption
with	the	ICFFever	app	is	that	entered	weight	and	height	data	is	current.	A	new	HKQuantitySample
is	created	using	the	type,	quantity,	and	date	range.	The	health	store	object	then	calls	saveObject	and
specifies	a	completion	block.	The	method	then	can	call	the	earlier	method	to	display	the	newly
entered	weight.
Click	here	to	view	code	image

								(void)saveWeightIntoHealthStore:(double)weight
{
																HKUnit	*poundUnit	=	[HKUnit	poundUnit];

																HKQuantity	*weightQuantity	=	[HKQuantity	quantityWithUnit:poundUnit
doubleValue:weight];

																HKQuantityType	*weightType	=	[HKQuantityType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyMass];

																NSDate	*now	=	[NSDate	date];

																		HKQuantitySample	*weightSample	=	[HKQuantitySample
quantitySampleWithType:weightType	quantity:weightQuantity	startDate:now	endDate:now];

																	[self.healthStore	saveObject:weightSample	withCompletion:	^(BOOL
success,	NSError	*error)
																	{
																								if	(!success)
																								{
																													NSLog(@"An	error	occurred	saving	weight	(%@):	%@.",
weightSample,	error);
																								}

																								[self	updateWeight];
																}];
}

The	profile	screen	also	enables	the	user	to	save	and	retrieve	height	information.	The	process	is
almost	identical	to	the	approach	for	weight,	with	a	few	differences.	For	height	the	app	specifies	an
inch	unit	instead	of	a	pound	unit,	and	the	HKQuantity	type	is
HKQuantityTypeIdentifierHeight	instead	of
HKQuantityTypeIdentifierBodyMass.

Reading	and	Writing	Complex	HealthKit	Data
The	preceding	section	discussed	reading	and	writing	very	basic	profile	data	such	as	height	and	weight
information	from	or	to	HealthKit.	This	section	dives	deeper	into	data	types	and	working	with	a	more
complex	dataset,	body	temperature.	The	second	tab	of	the	ICFFever	app	enables	the	user	to	store
current	body	temperature	in	either	Celsius	or	Fahrenheit.	The	app	will	output	not	only	the	most	recent
body	temperature	but	also	the	highest,	lowest,	and	average	over	the	past	seven	days.
HealthKit	provides	three	unit	types	for	working	with	body	temperature,	Kelvin,	Fahrenheit,	and
Celsius.	Since	the	app	will	be	switching	between	Celsius	and	Fahrenheit,	the	data	will	be	stored	in
Kelvin	and	then	converted	to	the	user ’s	selection	to	display.	Specifying	a	new	data	type	each	time	the
information	is	stored	or	retrieved	can	also	solve	this	problem.	There	are	merits	to	either	system	but
working	in	a	single	unit	should	be	less	confusing	when	this	new	technology	is	being	learned.	A	new
method	is	provided	to	allow	for	quickly	converting	units	from	Kelvin	for	display.
Click	here	to	view	code	image

-(double)convertUnitsFromKelvin:(double)kelvinUnits
{
				double	adjustedTemp	=	0;

				//Kelvin	to	F
				if([self.unitSegmentedController	selectedSegmentIndex]	==	0)
				{
								adjustedTemp	=	((kelvinUnits-273.15)*1.8)+32;
				}

				//Kelvin	to	C
				if([self.unitSegmentedController	selectedSegmentIndex]	==	1)
				{
								adjustedTemp	=	kelvinUnits-273.15;
				}

				return	adjustedTemp;
}

The	first	method	will	save	the	most	recent	temperature	data;	it	is	very	similar	to	the	methods	that	were
used	to	save	height	and	weight	information.	The	method	starts	with	converting	the	entered
temperature	from	whatever	units	the	user	has	selected	to	Kelvin.	A	new	HKUnit	is	specified	and	set
to	kelvinUnit.	The	HKQuantity	is	created	with	the	Kelvin	temperature	value,	and	the	type	is	set
to	HKQuantityTypeIdentifierBodyTemperature.	The	current	time	is	once	again	used	for
the	data	entry	and	the	data	is	then	saved	into	HealthKit.
Click	here	to	view	code	image

-(void)updateMostRecentTemp:(double)temp
{
									double	adjustedTemp	=	0;

								//F	to	Kelvin
								if([self.unitSegmentedController	selectedSegmentIndex]	==	0)
								{
												adjustedTemp	=	((temp-32)/1.8)+273.15;
								}

								//C	to	Kelvin
								if([self.unitSegmentedController	selectedSegmentIndex]	==	1)
								{
												adjustedTemp	=	temp+273.15;
								}

								//	Save	the	user's	height	into	HealthKit.
								HKUnit	*kelvinUnit	=	[HKUnit	kelvinUnit];

								HKQuantity	*tempQuainity	=	[HKQuantity	quantityWithUnit:kelvinUnit
								doubleValue:adjustedTemp];

								HKQuantityType	*tempType	=	[HKQuantityType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyTemperature];

								NSDate	*now	=	[NSDate	date];

								HKQuantitySample	*tempSample	=	[HKQuantitySample	quantitySampleWithType:tempType

								quantity:tempQuainity	startDate:now	endDate:now];

							[self.healthStore	saveObject:tempSample	withCompletion:	^(BOOL	success,	NSError
*error)
								{
															if	(!success)
															{
																								NSLog(@"An	error	occurred	saving	temp	(%@):	%@.",	tempSample,
error);
																}

																	[self	updateTemp];
					}];

}

Note
When	a	HKQuantitySample	is	being	created,	the	option	to	attach	metadata	is	also
provided	via	the	call
quantitySampleWithType:quantity:startDate:endDate:metadata:.
This	metadata	conforms	to	a	number	of	predefined	keys	such	as
HKMetadataKeyTimeZone,	HKMetadataKeyWasTakenInLab,
HKMetadataKeyBodyTemperatureSensorLocation,	or	almost	20	other
options.	Custom	keys	can	also	be	created	that	are	specific	to	the	need	of	each	unique	app.

Although	the	app	allows	for	storing	only	the	current	body	temperature,	it	also	provides	the	user	with
insight	into	historical	body	temperatures.	This	process	starts	in	the	updateTemp	method,	which
begins	in	the	same	fashion	as	retrieving	height	and	weight	information	from	the	preceding	section.	A
new	HKQuantityType	is	created	and	set	to
HKQuantityTypeIdentifierBodyTemperature.	Apple’s	convenience	method	for	returning
the	most	recent	entry	item	is	used	again.	If	the	call	returns	data,	it	is	converted	from	Kelvin	into	the
user ’s	selected	preference	and	displayed	to	the	interface.
Click	here	to	view	code	image

-(void)updateTemp
{
				HKQuantityType	*recentTempType	=	[HKQuantityType
quantityTypeForIdentifier:HKQuantityTypeIdentifierBodyTemperature];

				[self.healthStore	aapl_mostRecentQuantitySampleOfType:recentTempType	predicate:nil
completion:^(HKQuantity	*mostRecentQuantity,	NSError	*error)
								{
																if	(!mostRecentQuantity)
																{
																								NSLog(@"No	temp	was	found");

																								dispatch_async(dispatch_get_main_queue(),	^{
																															self.recentTempLabel.text	=	@"Most	Recent	Temp:	None
Found";
																								});
																}

																	else
																{
																								HKUnit	*kelvinUnit	=	[HKUnit	kelvinUnit];
																								double	temp	=	[mostRecentQuantity	doubleValueForUnit:kelvinUnit];

																								dispatch_async(dispatch_get_main_queue(),	^{
																								self.recentTempLabel.text	=	[NSString	stringWithFormat:	@"Most
Recent	Temp:	%0.2f",	[self	convertUnitsFromKelvin:temp]];
																								});
																}
								}];

This	result,	however,	provides	only	a	single	entry	for	the	most	recent	temperature;	the	app	will	need
access	to	all	the	temperature	data	in	order	to	compile	the	average	as	well	as	the	lowest	and	highest
entry	points.	To	do	this,	a	new	method	is	created	and	added	to	the	Apple	extensions	file.	The	heart	of
this	new	method	is	the	HKSampleQuery.	A	new	query	is	created	with	the	passed-in
quantityType.	The	limit	is	set	to	0,	which	indicates	that	all	records	for	the	specified	type	should

be	returned.	The	results	will	not	be	sorted	since	no	sort	descriptor	is	passed	in;	in	addition,	no
predicate	is	supplied	so	items	will	not	be	filtered	down.	The	result	will	return	an	NSArray	of
HKQuantitySample	objects,	each	representing	a	body	temperature	entry.
Click	here	to	view	code	image

-(void)allQuantitySampleOfType:(HKQuantityType	*)quantityType	predicate:(NSPredicate
*)predicate	completion:	(void	(^)(NSArray	*,	NSError	*))completion
{
				HKSampleQuery	*query	=	[[HKSampleQuery	alloc]	initWithSampleType:quantityType
predicate:nil	limit:0	sortDescriptors:nil	resultsHandler:^(HKSampleQuery	*query,	NSArray
*results,	NSError	*error)	{

if	(!results)
								{
												if	(completion)
												{
																completion(nil,	error);
												}

												return;
							}

							if	(completion)
							{
												completion(results,	error);
							}
			}];

						[self	executeQuery:query];
}

The	existing	updateTemp	method	can	now	be	expanded.	Since	all	the	results	will	be	in	Kelvin,	a
new	HKUnit	is	set	up	specifying	that	unit	type.	Some	variables	are	also	created	to	store	values	for
max,	min,	item	count,	sum,	and	the	average	temperature.	The	method	then	loops	through	the	entire
result	entry	array.	Each	HKQuantitySample	object	contains	a	start	date,	an	end	date,	and	a	quantity.
These	are	compared	for	min	and	max	against	the	other	items	and	each	value	is	stored.	Additionally,
all	entries	that	occurred	within	the	past	604,800	seconds	(7	days)	are	summed	and	later	averaged.
After	all	the	data	is	processed,	the	labels	are	updated	on	the	main	thread.
Click	here	to	view	code	image

[self.healthStore	allQuantitySampleOfType:recentTempType	predicate:nil
completion:^(NSArray	*results,	NSError	*error)
{
								if	(!results)
								{
																NSLog(@"No	temp	was	found");
								}

								else
								{
																HKUnit	*kelvinUnit	=	[HKUnit	kelvinUnit];

																double	max	=	0;
																double	min	=	1000;

																double	sum		=	0;
																int	numberOfSamples	=	0;
																double	averageTemp	=	0;

																for(int	x	=	0;	x	<	[results	count];	x++)
																{
																										HKQuantitySample	*sample	=	[results	objectAtIndex:	x];

																										if([[sample	quantity]	doubleValueForUnit:kelvinUnit]	>	max)
																							{
																															max	=	[[sample	quantity]	doubleValueForUnit:kelvinUnit];
																								}

																								if([[sample	quantity]	doubleValueForUnit:kelvinUnit]	<	min)
																								{
																																min	=	[[sample	quantity]	doubleValueForUnit:kelvinUnit];
																							}

																							//7	days'	worth	of	seconds
																							if	([[sample	startDate]	timeIntervalSinceNow]	<	604800.0)
																							{
																																sum	+=	[[sample	quantity]	doubleValueForUnit:kelvinUnit];
																																numberOfSamples++;
																								}

																}

																averageTemp	=	sum/numberOfSamples;

																	dispatch_async(dispatch_get_main_queue(),	^{
																						self.highestTempLabel.text	=	[NSString	stringWithFormat:	@"Highest
Temp:	%0.2f",	[self	convertUnitsFromKelvin:max]];

																						self.lowestTempLabel.text	=	[NSString	stringWithFormat:	@"Lowest
Temp:	%0.2f",	[self	convertUnitsFromKelvin:min]];

																						self.avgTempLabel.text	=	[NSString	stringWithFormat:	@"Average	Temp
(7	Days):	%0.2f",	[self	convertUnitsFromKelvin:	averageTemp]];

													});
									}
					}];

Summary
HealthKit	is	a	fairly	large	topic,	which	can	encompass	a	tremendous	amount	of	data;	however,	the
basic	principles	described	in	this	chapter,	such	as	reading	and	writing,	hold	true	for	even	the	most
complex	use	cases.	Despite	the	possibility	of	dozens	of	apps	storing	hundreds	of	data	points	into
HealthKit	each	day,	that	data	can	be	easy	to	parse	and	work	with.
There	are	more	than	70	unique	data	types	in	HealthKit	today,	and	it	is	likely	those	will	continue	to
expand	with	each	major	iOS	revision.	There	is	already	a	large	amount	of	public	outcry	that	certain
data	is	not	standard	yet.	The	information	provided	in	this	chapter,	as	in	the	rest	of	this	book,	is
designed	to	provide	you	with	a	kick	start	to	development.	Although	this	is	not	a	definitive	guide	to
HealthKit,	it	should	be	more	than	enough	to	get	traction	with	the	technology	to	create	new	apps	that
far	exceed	anything	Apple	had	in	mind	when	they	created	this	technology.

8.	Implementing	HomeKit

HomeKit,	introduced	with	iOS	8,	offers	a	consistent	way	for	apps	to	integrate	with	home	automation
technology.	Instead	of	needing	a	separate	app	to	interact	with	each	type	of	home	automation	hardware,
HomeKit-certified	devices	(even	from	different	manufacturers,	using	different	communication
standards)	can	all	be	managed	from	a	HomeKit	app.	In	addition,	HomeKit	information	set	up	on	an
iOS	device	in	one	app	can	be	used	by	any	other	HomeKit	app	on	the	same	device.	That	way,	the	user
has	to	set	up	information	about	the	home	and	home	automation	devices	only	once,	and	the
information	is	available	in	a	consistent	way.
HomeKit	offers	remote	access	so	that	the	user	can	interact	with	home	automation	technology	from
any	connected	location,	with	secure	communication	between	the	app	and	the	home	automation
devices.
HomeKit	also	offers	advanced	techniques	for	organizing	and	managing	home	automation	devices.
For	example,	rooms	can	be	organized	into	zones	(like	Upstairs	Rooms	and	Downstairs	Rooms),	and
then	operations	can	be	performed	on	all	the	accessories	in	a	zone	(like,	Turn	On	Lights	in	the
Upstairs	Rooms).	In	addition,	HomeKit	offers	triggers.	Triggers	can	fire	a	set	of	actions	at	a	set	time
or	on	a	repeatable	schedule.
HomeKit	interactions	can	take	place	only	in	the	foreground,	except	for	triggers	that	are	managed	by
iOS.	This	way,	the	user	experience	is	preserved	by	ensuring	that	home	automation	actions	are	not
taking	place	by	competing	background	apps	with	potentially	unexpected	results.

The	Sample	App
The	sample	app	for	this	chapter	is	called	HomeNav.	It	supports	adding	homes	to	HomeKit,	adding
rooms	to	homes,	adding	accessories	to	homes,	and	associating	accessories	to	rooms.	Accessories	can
be	inspected	to	see	what	services	they	offer,	what	characteristics	are	available	for	each	service,	and
the	values	for	each	characteristic.	HomeNav	can	also	update	characteristics	for	power	settings	and
lock	status,	to	turn	devices	on	or	off	and	to	lock	or	unlock	a	door.

Introduction	to	HomeKit
HomeKit	offers	a	consistent	API	for	apps	to	set	up	and	communicate	with	home	automation	devices.	It
bears	repeating	that	the	data	which	HomeKit	stores	about	a	home	and	associated	devices	is
independent	of	any	individual	app;	rather,	it	is	available	to	all	apps	that	use	HomeKit.	HomeKit	APIs
can	be	accessed	only	while	an	app	is	in	the	foreground,	which	prevents	potential	errors	that	could
come	from	multiple	apps	updating	HomeKit	simultaneously	in	the	background.
HomeKit	provides	access	to	home	information	through	the	HMHomeManager	class.	Through	this
class,	an	app	can	get	access	to	information	about	home	data	available	(instances	of	HMHome),	and	can
be	notified	when	homes	are	added	or	removed	via	delegate	methods.
Homes	in	HomeKit	can	contain	rooms	(instances	of	HMRoom),	which	can	then	be	organized	into
zones	(HMZone).	Rooms	can	belong	to	more	than	one	zone;	for	example,	a	bathroom	could	belong
to	the	Upstairs	Rooms	zone	and	the	Bathrooms	zone.
Home	automation	devices	are	represented	by	accessories	(instances	of	HMAccessory),	which	must
be	discovered	through	an	HMAccessoryBrowser.	The	browser	can	search	locally	for	Wi-Fi	and
Bluetooth-capable	devices	that	HomeKit	can	interact	with,	and	return	a	list	of	accessories	for	display

and	selection.	After	an	accessory	has	been	added	to	a	house,	an	app	can	inspect	and	update	it.
Accessories	provide	services	(HMService),	which	are	made	up	of	characteristics
(HMCharacteristic).	For	example,	a	coffeemaker	accessory	might	have	a	coffeemaking	service,
a	light	service,	and	a	clock	service.	The	coffeemaker	service	might	have	a	read-only	characteristic
that	includes	whether	it	is	currently	brewing,	not	brewing	with	heater	on,	or	not	brewing	with	heater
off.	It	might	then	have	a	readable	and	writable	characteristic	that	includes	the	desired	state	of	the
coffeemaker	that	an	app	can	write	in	order	to	change	the	state	of	the	coffeemaker.
Changes	to	characteristics	can	be	grouped	into	action	sets	(HMActionSet),	which	can	be	executed
all	at	once,	or	can	be	scheduled	on	a	timer	(HMTimerTrigger).	Scheduled	updates	are	the	one
exception	to	the	rule	that	all	HomeKit	APIs	must	be	called	by	a	foreground	app;	because	the	schedule
is	maintained	and	executed	by	iOS,	the	app	does	not	need	to	be	in	the	foreground	for	scheduled
updates	to	happen.
When	a	HomeKit-enabled	app	accesses	HomeKit	for	the	first	time	(meaning	there	is	no	home
information	set	up	in	HomeKit	currently),	the	app	should	be	able	to	walk	a	user	through	the	home
setup	process.	This	means	that	the	app	should	prompt	the	user	to	set	up	a	home,	add	rooms,	and	add
accessories	to	rooms.	The	sample	app	takes	a	minimal	approach	to	this	by	just	prompting	the	user	to
add	a	home	or	room	when	none	exists;	an	app	in	the	store	should	walk	the	user	through	the	process
and	make	it	simple	and	clear.

Setting	Up	HomeKit	Components
To	set	up	an	app	to	use	HomeKit,	first	enable	the	HomeKit	capability	in	the	project.	Enabling	the
HomeKit	capability	requires	a	valid,	paid	developer	account	so	that	the	needed	entitlement	can	be
added	to	the	app	identifier.

Developer	Account	Setup
Xcode	needs	iOS	developer	account	information	in	order	to	connect	to	the	Member	Center	and
perform	all	the	setup	necessary	for	HomeKit	on	the	developer ’s	behalf.	Select	Xcode,	Preferences
from	the	Xcode	menu,	and	then	select	the	Accounts	tab.	To	add	a	new	account,	click	the	plus	sign	in
the	lower	left	of	the	Accounts	tab	and	select	Apple	ID.	Enter	the	account	credentials	in	the	dialog
shown	in	Figure	8.1	and	click	the	Add	button.

Figure	8.1	Xcode	Accounts	tab.

Xcode	will	validate	the	credentials	and	gather	account	information	if	valid.	After	a	valid	developer
account	is	configured,	Xcode	will	be	able	to	perform	the	HomeKit	capability	setup	steps.

Enabling	HomeKit	Capability
To	set	up	the	HomeKit	capability,	view	the	HomeNav	Target	in	Xcode,	click	the	Capabilities	tab,	and
find	the	HomeKit	section.	Change	the	HomeKit	switch	to	On,	and	Xcode	will	automatically	create	an
entitlements	file	for	the	project	and	will	configure	the	app	identifier	with	the	HomeKit	entitlement,	as
shown	in	Figure	8.2.	(Note	that	the	app	identifier	will	need	to	be	changed	from	the	sample	app’s	app
identifier	to	something	unique	before	this	will	work.)

Figure	8.2	Xcode	target	capabilities—HomeKit.

After	the	HomeKit	capability	is	enabled,	Xcode	will	present	a	link	to	download	the	HomeKit
Simulator,	and	will	note	the	steps	that	were	completed	to	enable	the	HomeKit	capability.	The	HomeKit
Simulator	will	be	explained	in	the	section	“Testing	with	HomeKit	Accessory	Simulator,”	later	in	this
chapter.
After	the	HomeKit	capability	is	enabled,	and	there	are	checkmarks	by	all	the	listed	steps,	the	app	is
ready	to	use	HomeKit.

Home	Manager
The	Home	Manager	(instance	of	HMHomeManager)	is	the	only	way	to	get	and	update	home
information	in	HomeKit.	An	instance	of	HMHomeManager	is	needed	to	get	the	current	homes	that
have	been	set	up,	to	add	a	new	home,	or	to	remove	an	existing	home.	In	addition,	the
HMHomeManagerDelegate	protocol	should	be	implemented	when	home	information	has	been
updated	in	HomeKit.	In	the	sample	app,	this	is	done	in	ICFHomeTableViewController,	in	the
viewDidLoad	method.

Click	here	to	view	code	image

self.homeManager	=	[[HMHomeManager	alloc]	init];
[self.homeManager	setDelegate:self];

The	home	manager	will	update	the	list	of	available	homes,	and	call	the	delegate	method
homeManagerDidUpdateHomes:	when	the	list	of	homes	is	available.	The	sample	app	will	reload
the	table	view	to	display	the	most	up-to-date	home	information.	If	no	homes	are	set	up,	the	sample	app
will	prompt	the	user	to	create	a	new	home.
Click	here	to	view	code	image

-	(void)homeManagerDidUpdateHomes:(HMHomeManager	*)manager	{
				[self.tableView	reloadData];

				if	([manager.homes	count]	==	0)
				{
								[self	addHomeButtonTapped:nil];
				}
}

If	the	home	manager	has	been	called	for	the	first	time	on	the	device,	it	will	trigger	a	permission
check,	as	shown	in	Figure	8.3.

Figure	8.3	Sample	app	HomeKit	permissions	request.

Specifying	Don’t	Allow	will	prevent	HomeKit	from	providing	any	information	to	the	app.	This
setting	can	be	changed	in	Settings.app	in	the	Privacy,	HomeKit	section.
If	the	user	is	signed	into	an	iCloud	account	on	the	device	but	has	not	turned	on	iCloud	Keychain,
HomeKit	will	prompt	the	user	to	turn	on	iCloud	Keychain	to	allow	access	to	HomeKit	from	all	the
user ’s	iOS	devices,	as	shown	in	Figure	8.4.	If	iCloud	Keychain	is	not	enabled,	HomeKit	will	not
function	correctly	and	will	receive	an	error	for	any	HomeKit	operations.

Figure	8.4	Sample	app	HomeKit	Setup	alert	for	iCloud	Keychain.

Tip
In	case	other	errors	are	encountered	with	HomeKit,	the	HomeKit	Constants	Reference	on
Apple’s	Developer	Web	site	is	available	with	a	bit	more	detail	about	each	error	code.

Home
The	sample	app	will	prompt	the	user	to	add	a	home,	as	shown	in	Figure	8.5,	if	no	homes	have	been	set
up	in	HomeKit.	The	user	can	also	tap	the	Add	(+)	button	at	any	time	to	add	a	new	home.

Figure	8.5	Sample	app	Add	Home	dialog.

Tapping	Add	Home	will	grab	the	home	name	text	from	the	text	field,	and	request	that	the	home
manager	add	a	new	home	with	the	name	provided.	The	home	name	must	be	unique.
Click	here	to	view	code	image

UITextField	*homeNameTextField	=	addHomeAlertController.textFields.firstObject;
NSString	*newHomeName	=	homeNameTextField.text;
__weak	ICFHomeTableViewController	*weakSelf	=	self;
[self.homeManager	addHomeWithName:newHomeName
																completionHandler:^(HMHome	*home,	NSError	*error)
{
				if	(error)
				{
								NSLog(@"Error	adding	home:	%@",error.localizedDescription);
				}	else
				{
								NSInteger	rowForAddedHome	=	[weakSelf.homeManager.homes	indexOfObject:home];

								NSIndexPath	*indexPathForAddedHome	=	[NSIndexPath	indexPathForRow:rowForAddedHome

inSection:0];

								[weakSelf.tableView	insertRowsAtIndexPaths:@[indexPathForAddedHome]
																																		withRowAnimation:UITableViewRowAnimationAutomatic];
				}
}];

The	home	manager	will	call	the	completion	handler	with	either	an	error	or	a	new	instance	of
HMHome.	The	logic	will	determine	an	index	path	for	the	new	home,	and	animate	it	into	the	table	view.
The	home	can	now	be	used	to	set	up	rooms	and	accessories.
If	the	user	has	set	up	a	home	by	mistake	or	does	not	want	to	maintain	the	home	any	longer,	the	user
can	delete	the	home	from	the	table	view.	The	table	view	is	set	up	to	allow	editing	mode.	When	a	delete
edit	action	is	received	in	the	tableView:commitEditingStyle:forRowAtIndexPath:
method,	the	home	corresponding	to	the	row	will	be	deleted	using	the
removeHome:completionHandler:	method	on	the	homeManager.
Click	here	to	view	code	image

HMHome	*homeToRemove	=	[self.homeManager.homes	objectAtIndex:indexPath.row];
__weak	ICFHomeTableViewController	*weakSelf	=	self;

[self.homeManager	removeHome:homeToRemove	completionHandler:^(NSError	*error)	{

				[weakSelf.tableView	deleteRowsAtIndexPaths:@[indexPath]
																														withRowAnimation:UITableViewRowAnimationAutomatic];

}];

After	the	home	has	been	deleted,	the	completion	handler	block	is	used	to	delete	the	corresponding
row	from	the	table	view.	Note	that	deleting	a	home	will	delete	all	other	related	HomeKit	objects,	such
as	rooms	and	accessories	tied	to	the	home.

Rooms	and	Zones
Rooms	in	HomeKit	(instances	of	HMRoom)	represent	a	physical	room	in	a	home,	such	as	kitchen,
master	bedroom,	or	living	room.	Rooms	are	also	used	to	organize	accessories;	for	example,	the
“front	door	lock”	accessory	might	be	in	the	foyer.	To	edit	rooms	for	a	home,	the	user	can	tap	on	the
row	for	the	home	in	the	sample	app.	If	the	user	is	visiting	the	rooms	view	and	no	rooms	have	been	set
up	for	the	home,	the	user	will	be	prompted	to	add	a	room.	The	user	will	need	to	provide	a	room	name
that	is	unique	within	the	home,	and	the	method	will	add	the	room	to	the	home	using	the
addRoomWithName:completionHandler:	method.
Click	here	to	view	code	image

__weak	ICFRoomTableViewController	*weakSelf	=	self;
[self.home	addRoomWithName:newRoomName	completionHandler:	^(HMRoom	*room,	NSError	*error)
{
				if	(error)
				{
								NSLog(@"Error	adding	home:	%@",error.localizedDescription);
				}	else
				{
								NSInteger	row	=	[weakSelf.home.rooms	indexOfObject:room];

								NSIndexPath	*addedRoomIndexPath	=	[NSIndexPath	indexPathForRow:(row	+	1)
inSection:0];

								[weakSelf.tableView	insertRowsAtIndexPaths:@[addedRoomIndexPath]

withRowAnimation:UITableViewRowAnimationAutomatic];
				}
}];

After	the	room	has	been	added,	the	completion	handler	will	insert	a	new	row	in	the	table	to	display	it.
The	table	view	will	use	the	rooms	property	on	the	self.home	instance	to	determine	how	many
rows	are	in	the	table	(an	extra	row	is	added	for	the	“Tap	to	add	new	room”	row):
Click	here	to	view	code	image

-	(NSInteger)tableView:(UITableView	*)tableView	numberOfRowsInSection:(NSInteger)section
{
				return	[self.home.rooms	count]	+	1;
}

The	rooms	property	is	an	array	of	HMRoom	instances.	The	table	view	will	get	the	associated	HMRoom
instance	for	each	row,	and	display	the	name	property	for	it	in	the	table	cell.
Click	here	to	view	code	image

-	(UITableViewCell	*)tableView:(UITableView	*)tableView
									cellForRowAtIndexPath:(NSIndexPath	*)indexPath	{

				UITableViewCell	*cell	=	[tableView	dequeueReusableCellWithIdentifier:@"roomNameCell"
																																					forIndexPath:indexPath];

				if	(indexPath.row	==	0)
				{
								[cell.textLabel	setText:@"Tap	to	add	new	room"];
				}	else
				{
								NSInteger	row	=	indexPath.row	-	1;
								HMRoom	*room	=	[self.home.rooms	objectAtIndex:row];
								[cell.textLabel	setText:room.name];
				}
				return	cell;
}

To	remove	a	room,	the	user	can	tap	the	Edit	button	to	change	the	table	view	to	editing	mode,	and	tap
the	delete	control	for	any	existing	room.	In	the
tableView:commitEditingStyle:forRowAtIndexPath:	method	the	selected	room	will
be	removed	from	the	home:
Click	here	to	view	code	image

HMRoom	*roomToDelete	=	[self.home.rooms	objectAtIndex:(indexPath.row	-	1)];
[self.home	removeRoom:roomToDelete	completionHandler:^(NSError	*error)	{
				[tableView	deleteRowsAtIndexPaths:@[indexPath]
																					withRowAnimation:UITableViewRowAnimationAutomatic];
}];

Zones	(instances	of	HMZone)	are	logical	groupings	of	rooms;	no	physical	relationship	is	necessary
between	rooms	in	a	zone.	A	zone	can	be	used	to	organize	rooms	for	convenient	handling;	for
example,	a	zone	might	be	“upstairs”	or	“downstairs,”	or	a	zone	might	be	“bedrooms”	or
“bathrooms.”	The	zone	can	be	used	to	interact	with	all	the	rooms	and	accessories	in	the	zone	together,
such	as	“turn	off	the	lights	downstairs.”
Zones	are	maintained	on	a	home	in	much	the	same	way	that	rooms	are;	they	can	be	added	to	and
removed	from	a	home,	and	there	is	a	zones	property	on	an	HMHome	instance.	An	HMZone	instance
will	have	a	rooms	property	that	is	an	array	of	HMRooms;	there	are	methods	on	HMZone	to	add	and

remove	an	HMRoom.

Accessories
An	accessory	is	a	physical	device	that	provides	services.	Examples	include	lights,	switch	controls,
coffeemakers,	door	locks,	security	system	components	such	as	motion	sensors	and	door	sensors,	and
more.	Accessory	providers	must	complete	a	certification	process	for	their	devices	with	Apple	to
work	with	HomeKit.

Note
In	addition	to	individual	devices,	there	is	a	special	type	of	device	in	HomeKit	called	a
bridge.	A	bridge	is	a	HomeKit-compliant	controller	for	other	devices	that	are	not
HomeKit-compliant.	HomeKit	can	communicate	with	the	bridge	to	find	out	what	devices
are	offered	by	the	bridge,	and	then	can	use	the	bridge	to	communicate	with	those	devices
in	a	way	that	looks	seamless	to	the	user.

To	add	accessories	to	a	home,	an	instance	of	HMAccessoryBrowser	needs	to	be	used	to	scan	the
local	environment	for	HomeKit-compliant	accessories	that	have	not	been	added.	In	the	sample	app,
the	user	can	tap	on	a	home,	and	then	tap	on	accessories	to	see	the	list	of	accessories	currently
associated	with	the	home.	To	search	for	new	accessories,	the	user	can	tap	Edit,	then	Search	for	New
Accessories,	which	will	present	an	instance	of
ICFAccessoryBrowserTableViewController.	This	view	controller	will	create	an	empty
array	to	be	populated	with	accessories,	and	will	instantiate	an	HMAccessoryBrowser.
Click	here	to	view	code	image

self.accessoriesList	=	[[NSMutableArray	alloc]	init];
[self.tableView	reloadData];

self.accessoryBrowser	=	[[HMAccessoryBrowser	alloc]	init];
[self.accessoryBrowser	setDelegate:self];
[self.accessoryBrowser	startSearchingForNewAccessories];

The	accessoryBrowser’s	delegate	is	set	to	handle	when	the	accessory	browser	finds	new
accessories:
Click	here	to	view	code	image

-	(void)accessoryBrowser:(HMAccessoryBrowser	*)browser
					didFindNewAccessory:(HMAccessory	*)accessory	{

				[self.accessoriesList	addObject:accessory];
				NSInteger	rowAdded	=	[self.accessoriesList	indexOfObject:accessory];
				NSIndexPath	*addedIndexPath	=	[NSIndexPath	indexPathForRow:rowAdded	inSection:0];

				[self.tableView	insertRowsAtIndexPaths:@[addedIndexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];
}

Each	new	accessory	found	by	the	browser	is	added	to	the	accessoriesList	array,	and	then
inserted	into	the	table	view	for	display,	as	shown	in	Figure	8.6.

Figure	8.6	Sample	app:	list	of	accessories	found	by	the	accessory	browser.

When	the	user	taps	on	one	of	the	accessories,	an	alert	controller	will	be	presented	to	request	a	name
for	the	accessory	that	is	meaningful	to	the	user.	For	example,	the	user	might	want	to	add	the	Door
Lock	accessory,	and	give	it	a	more	specific	name,	such	as	Front	Door	Lock,	as	shown	in	Figure	8.7.

Figure	8.7	Sample	app:	adding	an	accessory.

When	the	user	has	provided	a	name,	the	action	block	for	the	alert	controller	will	attempt	to	add	the
accessory	to	the	home.
Click	here	to	view	code	image

UITextField	*accNameTextField	=	addAccAlertController.textFields.firstObject;
NSString	*newAccName	=	accNameTextField.text;
[self.home	addAccessory:selectedAccessory	completionHandler:^(NSError	*error)	{
				...
}];

When	the	addAccessory:	method	is	called	on	self.home,	the	pairing	process	will	be	initiated
by	HomeKit.	HomeKit	will	present	another	alert	controller	to	request	the	pairing	code	from	the	user,
as	shown	in	Figure	8.8.

Figure	8.8	Sample	app:	HomeKit	accessory	pairing.

If	the	pairing	code	provided	by	the	user	matches	the	pairing	code	for	the	device,	the	accessory	will	be
added	to	the	home	(see	the	section	“Testing	with	HomeKit	Accessory	Simulator,”	later	in	the	chapter,
for	more	information	on	the	pairing	code).	If	not,	or	if	the	user	cancels	the	pairing	request,	an
instance	of	NSError	will	be	returned	in	the	completion	handler	for	the	addAccessory:	method.
If	the	accessory	was	successfully	added	to	the	home,	it	will	be	renamed	using	the	name	provided	by
the	user	for	the	accessory	(from	Figure	8.7)	in	the	completion	handler	for	adding	the	accessory.
Click	here	to	view	code	image

if	(!error)	{
				[selectedAccessory	updateName:newAccName	completionHandler:^(NSError	*error)	{
								if	(error)	{
												NSLog(@"Error	updating	name	for	selected	accessory");
								}
				}];
}	else	{
				NSLog(@"Error	adding	selected	accessory");
}

After	an	accessory	has	been	added	to	a	home,	it	should	also	be	added	to	a	room	in	the	home.	By
default,	it	is	added	to	a	room	for	the	whole	home;	in	the	sample	app,	the	user	can	tap	the	accessory
that	was	just	added	in	the	accessory	list	to	view	the	detail	for	it,	as	shown	in	Figure	8.9.

Figure	8.9	Sample	app:	accessory	detail.

The	user	can	then	tap	the	room	to	select	another	room,	as	shown	in	Figure	8.10.

Figure	8.10	Sample	app:	select	a	room	for	the	accessory.

When	the	user	selects	a	room	from	the	choices,	the	tableView:didSelectRowAtIndexPath:
method	will	assign	the	accessory	to	the	selected	room	on	self.home.	The	selected	room	can	be
either	a	room	in	the	rooms	property	for	self.home	or	the	roomForEntireHome.
Click	here	to	view	code	image

HMRoom	*selectedRoom	=	nil;
if	(indexPath.row	<	[self.home.rooms	count])
{
				selectedRoom	=	[self.home.rooms	objectAtIndex:indexPath.row];
}	else
{
				selectedRoom	=	[self.home	roomForEntireHome];
}

[self.home	assignAccessory:self.accessory
																				toRoom:selectedRoom
									completionHandler:^(NSError	*error)	{
				if	(error)

				{
								NSLog(@"Error	assigning	accessory	to	room:	%@",	error.localizedDescription);
				}
}];

Services	and	Service	Groups
Services	are	the	functions	that	accessories	perform.	Services	(instances	of	HMService)	have	a
name,	a	service	type,	a	reference	to	the	containing	accessory,	and	a	list	of	characteristics	that	fulfill
the	service.	Accessories	typically	have	an	information	service	that	describes	the	accessory,	and	then	at
least	one	functional	service	that	reports	the	status	of	the	service	and	allows	interaction	with	the
service.
Characteristics	are	individual	data	points	about	a	service.	Characteristics	(instances	of
HMCharacteristic)	have	a	characteristic	type,	a	reference	to	the	containing	service,	an	array	of
properties,	and	metadata.
The	characteristicType,	represented	by	a	string	constant,	indicates	the	specific	type	of	data	for
a	characteristic	and	the	meaning	of	that	data.	For	example,	a	power	state	characteristic	type
(HMCharacteristicTypePowerState)	means	that	the	data	for	the	characteristic	is	a	BOOL
value	representing	a	power	state	of	on	or	off.	Alternatively,	a	characteristic	type	of
HMCharacteristicTypeCurrentTemperature	is	a	float	value	representing	the	current
temperature	reported	by	the	accessory.	There	are	characteristic	types	represented	by	several	data
types	appropriate	to	the	characteristic.
The	properties	array	indicates	whether	the	characteristic	is	readable,	writable,	or	support	event
notification.	A	characteristic	might	support	a	combination	of	properties;	for	example,	a	brightness
setting	for	a	light	bulb	might	be	readable,	be	writable,	and	support	event	notification,	whereas	the
model	name	of	the	light	bulb	might	only	be	readable.	A	special	case	to	be	aware	of	is	the	Identify
characteristic	that	is	commonly	available	on	accessories.	Identify	is	typically	a	write-only
characteristic;	it	can	be	used	to	instruct	the	accessory	to	identify	itself	using	an	appropriate	method
like	flashing	a	light	or	making	a	noise.	This	is	much	better	for	users	attempting	to	sort	out	similar
accessories	than	having	to	read	and	compare	serial	numbers.
When	the	user	selects	an	accessory	that	has	already	been	added	to	a	home	in	the	sample	app,	the
accessory	detail	view	(ICFAccessoryDetailTableViewController)	displays	a	section	for
the	room	that	the	accessory	is	assigned	to,	and	then	a	section	for	each	service	that	the	accessory
contains.	The	name	of	the	service	is	displayed	in	the	section	header,	and	then	information	about	the
characteristics	making	up	the	service	is	displayed	in	the	rows	for	the	section,	as	shown	in	Figure	8.11.

Figure	8.11	Sample	app:	accessory	services	and	characteristics.

To	change	the	value	of	a	characteristic,	the	user	can	tap	on	a	supported	table	cell.	As	shown	in	Figure
8.12,	the	user	has	tapped	on	the	Power	State	cell	to	turn	off	the	light	bulb.

Figure	8.12	Sample	app:	Operate	Light.

To	turn	on	the	light	bulb,	the	action	block	for	the	alert	controller	will	use	the
writeValue:completionHandler:	method	on	the	characteristic:
Click	here	to	view	code	image

[characteristic	writeValue:[NSNumber	numberWithBool:targetState]
									completionHandler:^(NSError	*error)	{
													if	(error)	{
																	NSLog(@"Error	changing	state:	%@",error.localizedDescription);
													}	else	{
																	[self.tableView	reloadRowsAtIndexPaths:@[indexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];
													}
}];

The	writeValue:completionHandler:	method	can	accept	any	id	value,	but	will	work	only	if
the	value	passed	is	appropriate	for	the	characteristic.	The	sample	app	approaches	this	simply	by
checking	the	characteristic	type	and	using	separate	methods	to	handle	different	characteristic	types;

but	any	approach	that	ensures	the	correct	value	for	a	characteristic	type	will	work.
A	service	group	(instance	of	HMServiceGroup)	provides	a	way	to	group	services	across
accessories	for	easy	management.	A	service	group	contains	a	name	and	an	array	of	services
(instances	of	HMService).	Services	can	be	added	to	or	removed	from	a	service	group	using	the
addService:completionHandler:	and	removeService:completionHandler:
methods.	Then	a	service	group	can	be	added	to	an	HMHome	instance	and	managed	from	there.

Actions	and	Action	Sets
Actions	and	action	sets	currently	provide	a	quick	way	to	update	characteristics	on	a	group	of
accessories.	This	can	be	used	to	turn	off	all	the	light	bulbs	in	the	kitchen,	or	lock	all	the	doors	in	the
home.
HMAction	is	an	abstract	class	with	just	one	concrete	implementation,
HMCharacteristicWriteAction.	Instances	of	HMCharacteristicWriteAction	can	be
created	using	the	initWithCharacteristic:targetValue:	method,	and	then	added	to	an
instance	of	HMActionSet.
An	instance	of	HMActionSet	contains	a	name,	an	array	of	actions	(instances	of	HMAction),	and	a
property	called	executing.	Actions	can	be	added	to	or	removed	from	an	action	set	using	the
addAction:completionHandler	and	removeAction:completionHandler:	methods.
An	action	set	is	created	by	adding	to	an	HMHome.
Click	here	to	view	code	image

[self.home	addActionSetWithName:@"Turn	On	Lights"
														completionHandler:^(HMActionSet	*actionSet,	NSError	*error)	{
				if	(!error)	{

								HMCharacteristicWriteAction	*writeAction	=	[[HMCharacteristicWriteAction	alloc]
initWithCharacteristic:characteristic	targetValue:[NSNumber	numberWithBool:YES]];

								[actionSet	addAction:writeAction	completionHandler:^(NSError	*error)	{
												if	(error)	{
																NSLog(@"Error	adding	action	to	actionSet:	%@",
error.localizedDescription);
												}
								}];
				}
}];

An	action	set	can	then	be	added	to	a	trigger	to	be	executed	on	a	schedule,	or	executed	immediately
with	the	executeActionSet:	method	on	HMHome.

Testing	with	the	HomeKit	Accessory	Simulator
At	the	time	of	writing,	no	HomeKit-compliant	devices	had	been	announced	or	were	available.	So	a
valid	question	is,	how	can	a	developer	build	and	test	a	HomeKit	app	without	any	devices?	Fortunately,
Apple	anticipated	this	issue	and	offers	a	solution:	the	HomeKit	Accessory	Simulator.	The	HomeKit
Accessory	Simulator	is	a	Mac	OS	X	app	that	enables	a	developer	to	set	up	any	kind	of	HomeKit
accessory	virtually,	and	then	interact	with	that	accessory	as	if	it	were	the	real	thing.	The	simulator
advertises	accessories	over	the	network	just	as	if	they	were	the	real	thing,	and	enables	HomeKit	apps
to	connect	to	and	communicate	with	the	accessories.
To	get	the	HomeKit	Accessory	Simulator,	visit	the	Capabilities	tab	for	the	target	in	Xcode	(as	shown

in	Figure	8.2	earlier	in	the	chapter).	If	the	HomeKit	capability	has	been	enabled,	there	will	be	a	button
titled	Download	HomeKit	Simulator	in	the	HomeKit	capability	information.	Tapping	that	button	will
navigate	to	the	“Downloads	for	Apple	Developers”	section	in	the	Apple	developer	Web	site
(registration	required).	Find	and	download	the	“Hardware	IO	Tools	for	Xcode”	item,	which	includes
the	HomeKit	Accessory	Simulator.	After	it	has	downloaded,	extract	the	simulator	and	install	in
/Applications.
When	the	HomeKit	Accessory	Simulator	is	first	launched,	there	will	be	no	data	in	it.	To	use	the
simulator,	a	new	accessory	(or	bridge)	must	be	added.	To	add	an	accessory,	tap	the	plus	(+)	button	in
the	lower-left	corner	of	the	app	and	select	New	Accessory.	HomeKit	will	present	an	action	sheet	with
information	needed	for	a	new	accessory,	as	shown	in	Figure	8.13.

Figure	8.13	HomeKit	Accessory	Simulator:	new	accessory.

Provide	an	accessory	name	and	a	manufacturer	name	for	the	accessory,	and	click	Finish	(note	that	the
simulator	will	provide	a	model	and	serial	number).	The	simulator	will	add	the	accessory,	which	will
then	be	visible	in	the	list	of	accessories	in	the	left	section.	Select	the	accessory	and	note	the	accessory
information	service	visible	with	information	about	the	accessory.	Click	Add	Service	to	add	a	service
to	the	accessory,	and	select	a	type	of	service	to	add	when	prompted.	The	simulator	will	add	the	service
and	standard	characteristics	to	the	accessory,	as	shown	in	Figure	8.14.

Figure	8.14	HomeKit	Accessory	Simulator:	Accessory	Information.

Characteristic	information	can	be	edited	directly,	and	will	be	reflected	in	the	HMCharacteristic
information	available	to	an	app.	The	accessory	can	be	turned	on	and	off	with	the	switch	in	the	upper-
right	corner;	when	the	accessory	is	on,	it	will	be	discoverable	in	the	HMAccessoryBrowser.	The
Setup	Code,	shown	just	below	the	accessory	name,	is	used	to	pair	the	accessory	to	the	app	when
HomeKit	requests	a	code	for	the	accessory	(refer	to	Figure	8.8).
When	characteristic	values	are	changed	in	an	app	that	has	paired	with	accessories	from	the	HomeKit
Accessory	Simulator,	those	changes	will	be	visible	immediately	in	the	simulator.

Scheduling	Actions	with	Triggers
Triggers	provide	a	way	to	kick	off	HomeKit-related	actions	when	criteria	are	met.	Currently,
HomeKit	supports	a	timer	trigger	(HMTimerTrigger),	which	can	fire	at	a	specified	time	and	date,
or	with	a	recurrence	interval	from	a	time	and	date.	This	type	of	trigger	is	the	only	way	to	update
HomeKit	without	an	app	being	active	in	the	foreground	responding	to	user	activity.	HomeKit	timer
triggers	are	managed	by	iOS.
Triggers	are	based	on	action	sets,	as	described	previously	in	“Actions	and	Action	Sets.”	To

implement	a	trigger,	first	create	actions	and	action	sets	as	desired	that	should	be	executed	by	the
trigger.	Then	initialize	a	trigger	using	the
initWithName:fireDate:timeZone:recurrence:recurrenceCalendar:	method.
Add	action	sets	to	the	trigger	using	the	addActionSet:completionHandler:	method.	When
the	trigger	is	ready,	call	the	enable:completionHandler:	method	to	enable	the	trigger.	When
the	trigger	is	enabled,	it	will	fire	on	the	specified	fire	date	(and	at	each	recurrence	interval)	and
execute	the	attached	action	sets.
Scheduled	triggers	can	be	a	great	way	to	perform	actions	on	a	schedule,	like	turning	holiday	lights	on
in	the	evening	and	off	in	the	morning,	ensuring	that	home	and	garage	doors	are	closed	and	locked
after	leaving	for	work,	or	even	running	a	sprinkler	system	or	fish	feeding	system	while	on	vacation.
Because	the	triggers	are	maintained	by	iOS,	the	app	does	not	need	to	be	running	in	order	for	the
triggered	actions	to	occur.

Summary
This	chapter	looked	at	using	HomeKit	in	an	app.	It	covered	the	basic	concepts	of	HomeKit	and	how	to
set	up	a	project	to	use	HomeKit.	This	chapter	described	all	the	components	of	HomeKit,	how	to	set
each	of	them	up	in	an	app,	and	how	to	maintain	them.	It	explained	how	to	set	up	and	use	the	HomeKit
Accessory	Simulator	to	test	a	HomeKit-enabled	app,	and	how	to	use	triggers	to	schedule	actions	that
run	independently	of	a	HomeKit	app.

9.	Working	with	and	Parsing	JSON

JSON	is	a	great	way	to	send	data	back	and	forth	between	servers,	Web	sites,	and	iOS	apps.	It	is	lighter
and	easier	to	handle	than	XML,	and	with	iOS’s	built-in	support	for	JSON,	it	is	easy	to	integrate	into	an
iOS	project.	Many	popular	Web	sites,	including	Flickr,	Twitter,	and	Google,	offer	APIs	that	provide
results	in	JSON	format,	and	many	languages	offer	JSON	support.	This	chapter	demonstrates	how	to
parse	and	present	JSON	from	a	sample	message-board	server	in	an	app,	and	encode	a	new	message
entry	in	JSON	to	send	to	the	server.

JSON
JavaScript	Object	Notation	(JSON)	is	a	lightweight	format	for	sharing	data.	It	is	technically	a	part	of
the	language	JavaScript	and	provides	a	way	to	serialize	JavaScript	objects;	however,	practically,	it	is
supported	in	a	wide	variety	of	programming	languages,	making	it	a	great	candidate	for	sharing	data
between	different	platforms.	JSON	also	has	the	benefit	of	being	human-readable.
JSON	has	a	simple	and	intuitive	syntax.	At	its	most	basic	level,	a	JSON	document	can	contain	objects,
which	are	essentially	key-value	dictionaries	like	what	Objective-C	programmers	are	familiar	with,	or
arrays.	JSON	can	contain	arrays	of	objects	and	arrays	of	values,	and	can	nest	arrays	and	objects.
Values	stored	in	JSON,	either	in	arrays	or	associated	with	a	key,	can	be	other	JSON	objects,	strings,
numbers,	or	arrays,	or	true,	false,	or	null.

Benefits	of	Using	JSON
There	are	many	reasons	to	use	JSON	in	an	iOS	app:

	Server	Support:	Communicating	information	to	and	from	a	remote	server	is	a	common	use
case	for	iOS	apps.	Since	so	many	server	languages	have	built-in	support	for	JSON,	it	is	a
natural	choice	as	a	data	format.
	Lightweight:	JSON	has	little	formatting	overhead	when	compared	to	XML	and	can	present	a
significant	savings	in	the	amount	of	bandwidth	needed	to	transmit	data	between	a	server	and	a
device.
	iOS	Support:	JSON	is	now	fully	supported	as	of	iOS	5	with	the	addition	of	the
NSJSONSerialization	class.	This	class	can	conveniently	provide	an	NSDictionary	or
NSArray	(or	even	mutable	varieties)	from	JSON	data	or	can	encode	an	NSDictionary	or
NSArray	into	JSON.
	Presentation	and	Native	Handling:	The	simplest	method	to	get	data	from	a	server	to	an	iOS
device	is	just	to	use	a	UIWebView	and	display	a	Web	page;	however,	this	approach	has
drawbacks	in	terms	of	performance	and	presentation.	In	many	cases	it	is	much	better	to	just	pull
the	data	from	the	server,	and	present	it	on	the	device	using	native	tools	like	UITableView.
Performance	can	be	much	better,	and	presentation	can	be	optimized	to	work	on	iOS	screen	sizes
and	take	advantage	of	available	retina	displays.

JSON	Resources
For	more	information	on	JSON,	visit	http://json.org.	That	site	has	a	formal	definition	of	JSON,	with
specific	information	on	format	and	syntax.

http://json.org

The	Sample	App
The	sample	app	for	this	chapter	is	Message	Board,	including	a	Ruby	on	Rails	server	and	an	iOS	app.
The	Ruby	on	Rails	server	consists	of	just	one	object:	the	message.	It	has	been	set	up	to	support
sending	a	list	of	messages	in	JSON,	and	to	accept	new	messages	in	JSON	format.	The	server	also
supports	Web-based	interactions.
The	iOS	app	will	pull	messages	from	the	server	and	display	them	in	a	standard	table	view	and	will	be
able	to	post	new	messages	to	the	server	in	JSON	format.

Accessing	the	Server
To	view	the	Message	Board	Ruby	on	Rails	server,	visit	http://freezing-cloud-6077.herokuapp.com/.
The	Messages	home	screen	will	be	visible,	as	shown	in	Figure	9.1.

Figure	9.1	Messages	home	screen.

The	messages	server	has	been	set	up	to	handle	creating	and	displaying	messages	on	the	Web	and	with
JSON.

Getting	JSON	from	the	Server
To	update	the	sample	iOS	app	to	handle	JSON,	the	first	thing	to	address	is	pulling	the	message	list
from	the	server	and	displaying	it.

Building	the	Request
First,	set	up	the	URL	so	that	the	app	can	make	calls	to	the	right	location:
Click	here	to	view	code	image

NSString	*const	kMessageBoardURLString	=	@"http://freezing-cloud-
6077.herokuapp.com/messages.json";

In	the	ICFViewController.m	implementation,	look	at	the	viewWillAppear:	method.	This
code	will	initiate	the	request	to	the	server:

http://freezing-cloud-6077.herokuapp.com/

Click	here	to	view	code	image

NSURL	*msgURL	=	[NSURL	URLWithString:kMessageBoardURLString];
NSURLSession	*session	=	[NSURLSession	sharedSession];

NSURLSessionTask	*messageTask	=	[session	dataTaskWithURL:msgURL
completionHandler:^(NSData	*data,	NSURLResponse	*response,	NSError	*error)	{
	...
}];
[messageTask	resume];

This	creates	and	initiates	a	network	request	to	the	messages.json	resource	at	the	server	URL.	The
network	request	will	run	asynchronously,	and	when	data	comes	back	the	completion	handler	block
will	be	called.	The	important	thing	to	note	is	that	nothing	special	is	required	here	for	JSON;	this	is	a
standard	network	call.	The	only	difference	is	that	the	.json	extension	used	in	the	URL	tells	the
server	that	the	response	should	be	in	JSON	format.	Other	servers	might	use	a	Content-Type
and/or	Accept	HTTP	header	that	specifies	application/json	as	the	mime-type	to	indicate	that	a
JSON	response	is	desired.

Note
Using	the	.json	extension	is	not	required	for	servers	to	return	JSON	format	data;	that	is
just	how	the	sample	server	was	set	up.	It	is	a	common	approach	but	is	not	required.

Inspecting	the	Response
When	the	network	request	has	returned,	the	completion	handler	will	be	called.	In	the	sample	app,	the
data	is	converted	into	a	UTF-8	string	so	that	it	can	be	logged	to	the	console.	This	should	not	be	done
for	every	request	in	a	production	app;	it	is	done	here	to	demonstrate	how	to	see	the	response	for
debugging	when	a	problem	parsing	JSON	is	encountered.
Click	here	to	view	code	image

NSString	*retString	=	[NSString	stringWithUTF8String:[data	bytes]];

NSLog(@"json	returned:	%@",	retString);

The	log	message	will	display	on	the	console	the	data	received:
Click	here	to	view	code	image

json	returned:	[{"message":{"created_at":"2012-04-29T21:59:28Z",
"id":3,	"message":"JSON	is	fun!",	"message_date":"2012-04-29",
"name":"Joe","updated_at":"2012-04-29T21:59:28Z"}},
{"message":{"created_at":"2012-04-29T21:58:50Z","id":2,
"message":"Learning	about	JSON",	"message_date":"2012-04-
29","name":"Joe",	"updated_at":"2012-04-29T21:59:38Z"}},
{"message":{"created_at":"2012-04-29T22:00:00Z","id":4,
"message":"Wow,	JSON	is	easy.",	"message_date":"2012-04-
29","name":"Kyle",	"updated_at":"2012-04-29T22:00:00Z"}},
{"message":{"created_at":"2012-04-29T22:46:18Z","id":5,
"message":"Trying	a	new	message.",	"message_date":"2012-04-
29","name":"Joe",	"updated_at":"2012-04-29T22:46:18Z"}}]

Parsing	JSON
Now	that	JSON	has	been	received	from	the	server,	it	is	just	a	simple	step	to	parse	it.	In	the	case	of	the
sample	app,	an	array	of	messages	is	expected,	so	parse	the	JSON	into	an	NSArray:

Click	here	to	view	code	image

NSError	*parseError	=	nil;
NSArray	*jsonArray	=	[NSJSONSerialization	JSONObjectWithData:data
																																		options:0
																																				error:&parseError];

if	(!parseError)	{
				[self	setMessageArray:jsonArray];
				NSLog(@"json	array	is	%@",	jsonArray);
}	else	{
				NSString	*err	=	[parseError	localizedDescription];
				NSLog(@"Encountered	error	parsing:	%@",	err);
}

NSJSONSerialization’s	method	JSONObjectWithData:options:error:	expects	as
parameters	the	data	to	be	serialized,	any	desired	options	(for	example,	returning	a	mutable	array
instead	of	a	regular	array),	and	a	reference	to	an	NSError	in	case	there	are	any	parsing	errors.
In	this	example,	a	local	instance	variable	has	been	updated	to	the	just-parsed	array,	the	table	view	has
been	told	to	reload	data	now	that	there	is	data	to	display,	and	the	activity	view	has	been	hidden.	Note
that	the	completion	handler	will	most	likely	be	called	on	a	background	queue,	so	if	the	user	interface
will	be	updated,	it	will	be	necessary	to	switch	to	the	main	queue.
Click	here	to	view	code	image

dispatch_async(dispatch_get_main_queue(),	^{
				[self.messageTable	reloadData];
				[self.activityView	setHidden:YES];
				[self.activityIndicator	stopAnimating];
});

Displaying	the	Data
Now	that	the	JSON	has	been	parsed	into	an	NSArray,	it	can	be	displayed	in	a	UITableView.	The
magic	here	is	that	there	is	no	magic;	the	JSON	received	from	the	server	is	now	just	an	array	of
NSDictionary	instances.	Each	NSDictionary	contains	information	for	a	message	from	the
server,	with	attribute	names	and	values.	To	display	this	in	a	table,	just	access	the	array	and	dictionaries
as	if	they	had	been	created	locally.
Click	here	to	view	code	image

-	(UITableViewCell	*)tableView:(UITableView	*)tableView
									cellForRowAtIndexPath:(NSIndexPath	*)indexPath
{
				UITableViewCell	*cell	=	[tableView	dequeueReusableCellWithIdentifier:@"MsgCell"];

				if	(cell	==	nil)	{
								cell	=	[[UITableViewCell	alloc]	initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:@"MsgCell"];

								cell.selectionStyle	=	UITableViewCellSelectionStyleNone;
				}
				NSDictionary	*message	=	(NSDictionary	*)[[self.messageArray
objectAtIndex:indexPath.row]	objectForKey:@"message"];

				NSString	*byLabel	=	[NSString	stringWithFormat:@"by	%@	on	%@",	[message
objectForKey:@"name"],	[message	objectForKey:@"message_date"]];

				cell.textLabel.text	=	[message	objectForKey:@"message"];
				cell.detailTextLabel.text	=	byLabel;

				return	cell;
}

-	(NSInteger)tableView:(UITableView	*)tableView
	numberOfRowsInSection:(NSInteger)section
{
				return	[[self	messageArray]	count];
}

The	parsed	JSON	data	will	be	visible	in	a	standard	table	view,	as	shown	in	Figure	9.2.

Figure	9.2	Sample	app	message	table	view.

Tip
When	a	null	value	is	in	the	JSON	source	data,	it	will	be	parsed	into	an	[NSNull
null].	This	can	be	a	problem	if	nil	is	expected	in	a	check	or	comparison,	because
[NSNull	null]	will	return	YES	whereas	nil	will	return	NO.	It	is	wise	to	specifically
handle	[NSNull	null]	when	converting	to	a	model	object	or	presenting	parsed
JSON.

Posting	a	Message
The	sample	app	includes	ICFNewMessageViewController	to	post	new	messages	to	the	server.
There	are	two	fields	on	that	controller:	one	for	a	name	and	one	for	a	message	(see	Figure	9.3).	After
the	user	enters	that	information	and	hits	Save,	it	will	be	encoded	in	JSON	and	sent	to	the	server.

Figure	9.3	Sample	app	new	message	view.

Encoding	JSON
An	important	detail	for	sending	JSON	to	a	Ruby	on	Rails	server	is	to	encode	the	data	so	that	it
mirrors	what	the	Rails	server	provides.	When	a	new	message	is	sent	to	the	server,	it	should	have	the
same	structure	as	an	individual	message	received	in	the	message	list.	To	do	this,	a	dictionary	with	the
attribute	names	and	values	for	the	message	is	needed,	and	then	a	wrapper	dictionary	with	the	key
“message”	pointing	to	the	attribute	dictionary.	This	will	exactly	mirror	what	the	server	sends	for	a
message.	In	the	saveButtonTouched:	method,	set	up	this	dictionary,	like	so:
Click	here	to	view	code	image

NSMutableDictionary	*messageDictionary	=	[NSMutableDictionary	dictionaryWithCapacity:1];

[messageDictionary	setObject:[nameTextField	text]
																						forKey:@"name"];

[messageDictionary	setObject:[messageTextView	text]
																						forKey:@"message"];

NSDate	*today	=	[NSDate	date];

NSDateFormatter	*dateFormatter	=	[[NSDateFormatter	alloc]	init];

NSString	*dateFmt	=	@"yyyy'-'MM'-'dd'T'HH':'mm':'ss'Z'";
[dateFormatter	setDateFormat:dateFmt];
[messageDictionary	setObject:[dateFormatter	stringFromDate:today]
																						forKey:@"message_date"];

NSDictionary	*postDictionary	=	@{@"message"	:	messageDictionary};

Note	that	NSJSONSerialization	accepts	only	instances	of	NSDictionary,	NSArray,
NSString,	NSNumber,	or	NSNull.	For	dates	or	other	data	types	not	directly	supported	by
NSJSONSerialization,	they	will	need	to	be	converted	to	a	supported	format.	For	example,	in
this	example	the	date	was	converted	to	a	string	in	a	format	expected	by	the	server.	Now	that	there	is	a
dictionary,	it	is	a	simple	step	to	encode	it	in	JSON:
Click	here	to	view	code	image

NSError	*jsonSerializationError	=	nil;
NSData	*jsonData	=	[NSJSONSerialization	dataWithJSONObject:postDictionary
options:NSJSONWritingPrettyPrinted	error:&jsonSerializationError];

if	(!jsonSerializationError)
{
				NSString	*serJSON	=
				[[NSString	alloc]	initWithData:jsonData
																										encoding:NSUTF8StringEncoding];

				NSLog(@"serialized	json:	%@",	serJSON);
								...
}	else
{
				NSLog(@"JSON	Encoding	failed:	%@",	[jsonSerializationError	localizedDescription]);
}

NSJSONSerialization	expects	three	parameters:
1.	An	NSDictionary	or	NSArray	with	the	data	to	be	encoded.
2.	Serialization	options	(in	our	case,	we	specified	NSJSONWritingPrettyPrinted	so	that
it’s	easy	to	read;	otherwise,	the	JSON	is	produced	with	no	whitespace	for	compactness).

3.	A	reference	to	an	NSError.
If	there	are	no	errors	encoding	the	JSON,	it	will	look	like	this:
Click	here	to	view	code	image

serialized	json:	{
		"message"	:	{
				"message"	:	"Six	Test	Messages",
				"name"	:	"Joe",
				"message_date"	:	"2012-04-01T14:31:11Z"
		}
}

Sending	JSON	to	the	Server
After	the	JSON	is	encoded,	it	is	ready	to	be	sent	to	the	server.	First,	an	instance	of
NSMutableURLRequest	is	needed.	The	request	will	be	created	with	the	URL	for	the	server,	and
then	will	be	customized	with	the	HTTP	method	("POST")	and	HTTP	headers	to	indicate	that	the
uploaded	content	data	is	in	JSON	format.
Click	here	to	view	code	image

NSURL	*messageBoardURL	=	[NSURL	URLWithString:kMessageBoardURLString];

NSMutableURLRequest	*request	=	[NSMutableURLRequest
																																requestWithURL:messageBoardURL
																								cachePolicy:NSURLRequestUseProtocolCachePolicy
																				timeoutInterval:30.0];

[request	setHTTPMethod:@"POST"];

[request	setValue:@"application/json"
forHTTPHeaderField:@"Accept"];

[request	setValue:@"application/json"
forHTTPHeaderField:@"Content-Type"];

When	the	request	is	completed,	an	NSURLSessionUploadTask	can	be	created.	The	task	requires
the	request,	the	JSON	data,	and	a	completion	handler.	The	completion	handler	will	be	called	on	a
background	thread,	so	any	user	interface	updates	must	be	dispatched	to	the	main	queue.
Click	here	to	view	code	image

NSURLSession	*session	=	[NSURLSession	sharedSession];

NSURLSessionUploadTask	*uploadTask	=
[session	uploadTaskWithRequest:uploadRequest	fromData:jsonData	completionHandler:^(NSData
*data,	NSURLResponse	*response,	NSError	*error)	{

				NSHTTPURLResponse	*httpResponse	=	(NSHTTPURLResponse	*)response;
				BOOL	displayError	=	(error	||	httpResponse.statusCode	!=	200);

				dispatch_async(dispatch_get_main_queue(),	^{
								[self.activityView	setHidden:YES];
								[self.activityIndicator	stopAnimating];
								if	(displayError)	{
												NSString	*errorMessage	=	error.localizedDescription;
												if	(!errorMessage)	{
																errorMessage	=	[NSString	stringWithFormat:@"Error	uploading	-	http
status:	%i",	httpResponse.statusCode];
												}

												UIAlertController	*postErrorAlertController	=	[UIAlertController
alertControllerWithTitle:@"Post	Error"
																																																	message:errorMessage
																																										preferredStyle:UIAlertControllerStyleAlert];

												[postErrorAlertController	addAction:	[UIAlertAction	actionWithTitle:@"Cancel"
																																							style:UIAlertActionStyleCancel
																																					handler:nil]];

												[self	presentViewController:postErrorAlertController
																															animated:YES
																													completion:nil];
								}	else	{

												[self.presentingViewController	dismissViewControllerAnimated:YES
																																																														completion:nil];
								}
				});

}];
[uploadTask	resume];

When	resume	is	called	on	the	uploadTask,	the	request	will	be	made	to	the	server,	and	the
completion	handler	will	be	called	when	it	is	complete.	Both	the	error	returned	in	the	completion
handler	and	the	response	should	be	checked	for	errors;	an	error	will	be	returned	if	there	is	a
problem	connecting	(for	example,	the	device	is	in	airplane	mode),	or	an	HTTP	status	code	might
indicate	a	different	problem	if	there	is	an	issue	on	the	server	(for	example,	if	the	URL	is	not	found,	or
if	the	server	cannot	process	the	data	sent	to	it).	If	the	request	completes	with	no	errors,	the	view
controller	will	be	dismissed	and	message	board	will	be	refreshed.

Summary
This	chapter	introduced	JavaScript	Object	Notation	(JSON).	It	explained	how	to	request	JSON	data
from	a	server	in	an	iOS	app,	parse	it,	and	display	it	in	a	table.	The	chapter	also	described	how	to
encode	an	NSDictionary	or	NSArray	into	JSON,	and	send	it	over	the	network	to	a	server.

10.	Notifications

Notifications	are	Apple’s	method	of	keeping	the	user	informed	of	important	iOS	app-related	events
when	the	user	is	not	actively	using	an	app.	Because	only	one	iOS	app	can	be	active	and	in	the
foreground	at	a	time,	notifications	provide	a	mechanism	to	have	inactive	apps	receive	important	and
time-sensitive	information	and	notify	the	user.	This	chapter	guides	you	through	how	to	set	up	your
app	to	receive	local	and	remote	push	notifications,	and	how	to	customize	what	happens	when	the	user
receives	a	notification	with	an	app	badge,	a	sound,	and	a	message.

Differences	Between	Local	and	Push	Notifications
Two	types	of	notifications	are	supported	by	iOS:	local	notifications	and	remote,	or	push,
notifications.	Local	notifications	do	not	use	or	require	any	external	infrastructure;	they	happen
entirely	on	the	device.	That	means	that	the	device	does	not	require	any	connectivity—besides	being
“on”—to	present	a	local	notification.	Push	notifications,	however,	require	connectivity	and	a	server
infrastructure	of	some	kind	to	send	the	notification	through	the	Apple	Push	Notification	service
(APNs)	to	the	intended	device.	It	is	important	to	note	that	push	notification	delivery	is	not	guaranteed,
so	it	is	not	appropriate	to	assume	that	every	notification	gets	to	its	intended	target.	Do	not	make	your
application	depend	on	push	notifications.
To	understand	why	push	notification	delivery	is	not	guaranteed,	you	need	to	understand	how	push
notifications	get	to	a	device.	The	APNs	first	will	try	to	use	the	cellular	network	to	communicate	with
an	iOS	device	if	it	is	available,	and	then	will	attempt	over	Wi-Fi.	Some	devices	need	to	be	in	an	active
state	(on	fourth-generation	iPod	touches,	for	example,	the	screen	actually	has	to	be	visible)	in	order
to	receive	Wi-Fi	communication.	Other	devices,	like	iPads,	can	be	asleep	and	maintain	a	connection
to	a	Wi-Fi	network.
The	process	that	each	type	of	notification	goes	through	is	also	different.	For	local	notifications,	these
are	the	steps:

1.	Create	a	local	notification	object,	and	specify	options	such	as	schedule	time	and	date,	message,
sound,	and	badge	update.

2.	Schedule	the	local	notification.
3.	iOS	presents	the	notification,	plays	a	sound,	and	updates	the	badge.
4.	Receive	the	local	notification	in	the	application	delegate.

For	push	notifications,	this	is	the	process:
1.	Register	the	application	for	push	notifications	and	receive	a	token.
2.	Notify	your	server	that	the	device	(identified	by	a	token)	would	like	to	receive	push
notifications.

3.	Create	a	push	notification	on	your	server	and	communicate	to	APNs.
4.	APNs	delivers	the	notification	to	the	device.
5.	iOS	presents	the	notification,	plays	a	sound,	and	updates	the	badge.
6.	Receive	the	notification	in	the	application’s	delegate.

With	these	differences,	it	is	clear	that	there	are	different	use	cases	in	which	local	and	push
notifications	make	sense.	If	no	information	from	outside	the	device	is	required,	use	a	local
notification.	If	information	not	available	to	the	device	is	required,	use	a	push	notification.

The	Sample	App
The	sample	app	for	this	chapter	is	called	ShoutOut.	It	enables	the	user	to	prepare	a	test	push	message
to	the	user ’s	device	and	to	add	reminders	to	Shout	Out.	The	sample	app	will	illustrate	setting	up
reminders	as	local	notifications,	as	well	as	covering	all	the	steps	necessary	to	set	up	an	app	to	receive
push	notifications,	what	information	should	be	communicated	to	a	push	server,	and	how	to	have	the
server	send	push	notifications	via	the	APNs.

App	Setup
There	are	several	steps	to	prepare	the	app	for	remote	push	notifications.	To	begin,	set	up	an	App	ID	in
the	iOS	Provisioning	Portal.	Visit	the	iOS	Dev	Center
(https://developer.apple.com/devcenter/ios/index.action),	log	in,	and	choose	Certificates,	Identifiers	&
Profiles	in	the	menu	titled	iOS	Developer	Program	on	the	right	side	of	the	screen	(you	must	be
logged	in	to	see	this	menu).	Choose	Identifiers	from	the	menu	on	the	left	side	of	the	screen.	Then,
click	the	button	with	a	plus	sign	in	the	upper-right	corner	to	create	a	new	App	ID,	as	shown	in	Figure
10.1.

Figure	10.1	iOS	Provisioning	Portal:	registering	an	App	ID,	App	ID	Description,	and	App	ID
Prefix.

Specify	an	App	ID	Description.	The	Description	will	be	used	to	display	the	app	throughout	the	iOS
Provisioning	Portal.	Select	an	App	ID	Prefix	(previously	called	the	Bundle	Seed	ID).	Scroll	down	to
specify	the	App	ID	Suffix,	as	shown	in	Figure	10.2.

https://developer.apple.com/devcenter/ios/index.action

Figure	10.2	iOS	Provisioning	Portal:	registering	an	App	ID,	App	ID	Suffix.

Push	notifications	require	an	explicit	App	ID,	so	select	that	option	and	specify	the	same	string	as	the
Bundle	ID	for	your	app.	Scroll	down	to	select	App	Services,	as	shown	in	Figure	10.3.

Figure	10.3	iOS	Provisioning	Portal:	registering	an	App	ID,	App	Services.

Select	the	check	box	for	Push	Notifications	in	the	list	of	App	Services	to	indicate	that	push
notifications	should	be	enabled	for	the	App	ID.	Click	Continue	to	save	the	new	App	ID,	and	it	will	be
visible	in	the	list	of	App	IDs.	Click	on	the	App	ID	to	expand	it	and	view	the	status	of	services	for	the
App	ID,	as	shown	in	Figure	10.4.

Figure	10.4	iOS	Provisioning	Portal:	App	ID	in	list.

Now	that	the	App	ID	is	prepared,	it	needs	to	be	configured	for	push	notifications.	Click	Settings	at	the
bottom	of	the	App	ID	detail	list,	and	scroll	to	the	bottom	to	view	the	push	notifications	(see	Figure
10.5).

Figure	10.5	iOS	Provisioning	Portal:	App	ID	Push	Notifications	settings.

Make	sure	that	Enabled	for	Apple	Push	Notification	service	is	checked.	If	so,	the	App	ID	is	ready	and
push	certificates	can	be	created.

Creating	Development	Push	SSL	Certificate
A	Development	Push	SSL	Certificate	is	what	the	push	server	uses	to	identify	and	authorize	a	specific
account	to	APNs	when	connecting	to	APNs	to	send	push	notifications.	To	start	the	process	of	creating
a	certificate,	click	the	Create	Certificate	button	on	the	Development	line	(refer	to	Figure	10.5).
Instructions	are	presented	to	help	generate	a	certificate	signing	request,	as	shown	in	Figure	10.6.

Figure	10.6	iOS	Provisioning	Portal:	About	Creating	a	Certificate	Signing	Request	(CSR).

Leave	the	Add	iOS	Certificate	page	open	in	the	browser,	and	open	Keychain	Access	(in	Applications,
Utilities).	Select	Keychain	Access,	Certificate	Assistant,	Request	a	Certificate	from	a	Certificate
Authority	from	the	application	menu.	A	certificate	request	form	will	be	presented,	as	shown	in	Figure
10.7.

Figure	10.7	Keychain	Access	Certificate	Assistant.

Enter	an	email	address	and	a	common	name	(typically	a	company	name	or	an	entity	name—it	is	safe
to	use	your	Apple	Developer	account	name),	and	then	select	Saved	to	Disk.	Click	Continue,	and
specify	where	to	save	the	request.	When	that	step	is	complete,	return	to	the	iOS	Provisioning	Portal
and	click	Continue.	Select	the	saved	request,	as	shown	in	Figure	10.8.

Figure	10.8	iOS	Provisioning	Portal:	Add	iOS	Certificate:	Generate	Your	Certificate.

After	selecting	it,	click	Generate.	The	development	SSL	Certificate	will	be	generated,	as	shown	in
Figure	10.9.

Figure	10.9	iOS	Provisioning	Portal:	Add	iOS	Certificate:	Your	Certificate	Is	Ready.

After	the	certificate	has	been	created,	click	the	Download	button	to	download	the	certificate	so	that	the
certificate	can	be	installed	on	the	notification	server.
Double-click	the	downloaded	certificate	file,	and	it	will	automatically	be	installed	in	Keychain	Access.
It	should	be	visible	in	the	list	of	certificates,	as	shown	in	Figure	10.10.	Click	the	triangle	to	confirm
that	the	private	key	was	matched	with	the	certificate.

Figure	10.10	Keychain	Access:	Apple	Development	iOS	Push	Services	SSL	Certificate	and	private
key.

Note	that	this	procedure	needs	to	be	repeated	to	create	Ad-Hoc	and	Production	SSL	Certificates	when
it	is	time	to	beta	test	and	submit	the	application	to	the	App	Store.
The	sample	app	includes	a	simple	PHP	file	that	can	be	executed	from	the	command	line	to
communicate	with	the	APNs	and	send	a	test	push	notification.	For	that	file	to	work,	the	certificate	just
generated	needs	to	be	converted	into	a	format	that	can	be	included	with	an	APNs	request.	This	same
conversion	procedure	will	need	to	be	performed	for	any	server	that	communicates	with	APN.	To
convert	the	certificate,	open	Keychain	Access	and	locate	the	certificate	and	key	illustrated	in	Figure
10.10.	Select	them	both,	and	choose	File,	Export	Items.	Save	them	as	shoutout.p12	(any	filename
can	be	used	with	the	p12	files).	For	communication	with	APNs,	the	certificate	and	key	need	to	be	in

PEM	format,	so	issue	the	following	openssl	command	to	convert	them:
Click	here	to	view	code	image

$	openssl	pkcs12	-in	shoutout.p12	–out	shoutout.pem	-nodes	-clcerts

Copy	the	shoutout.pem	file	to	the	Xcode	project	Push	Server	group,	and	the	sample	app	will	be
ready	to	send	push	notifications.

Development	Provisioning	Profile
For	many	apps,	it	is	sufficient	to	use	the	team	development	provisioning	profile	automatically
generated	by	Xcode	to	test	on	a	device.	To	test	push	notifications,	however,	you	need	to	create	and	use
a	development	provisioning	profile	specific	to	the	app	to	allow	it	to	receive	push	notifications.	To	do
this,	click	Provisioning	Profiles	in	the	left	menu	in	the	iOS	Provisioning	Portal.

Note
This	presumes	that	a	development	certificate	(under	Certificates,	Development)	has
already	been	created;	if	not,	you	should	create	one	first.	The	procedure	is	well
documented	in	the	portal	and	similar	to	creating	the	SSL	Certificate.	This	also	presumes
that	you	have	set	up	at	least	one	device	for	development	in	the	portal;	if	not,	you	will
need	to	do	that	as	well	(under	Devices).

You	are	presented	with	a	list	of	development	provisioning	profiles.	To	create	a	new	one,	click	the
button	with	the	plus	sign	just	above	and	to	the	right	of	the	list.	Select	which	type	of	provisioning
profile	to	create	(in	this	case,	iOS	App	Development)	and	click	Continue,	as	shown	in	Figure	10.11.

Figure	10.11	iOS	Provisioning	Profile:	Add	iOS	Provisioning	Profile.

Select	the	App	ID	just	created,	as	shown	in	Figure	10.12,	and	click	Continue.

Figure	10.12	iOS	Provisioning	Profile:	Add	iOS	Provisioning	Profile:	Select	App	ID.

Next,	select	the	Development	Certificate(s)	to	be	used	when	signing	the	app	with	this	provisioning
profile,	as	shown	in	Figure	10.13,	and	click	Continue.

Figure	10.13	iOS	Provisioning	Profile:	Add	iOS	Provisioning	Profile:	Select	Certificates.

Select	the	devices	that	can	be	used	to	run	the	app	using	this	provisioning	profile,	as	shown	in	Figure
10.14.	It	is	generally	a	good	practice	to	select	all	available	devices	to	prevent	having	to	regenerate	the
provisioning	profile	when	it	is	discovered	that	a	team	member	was	not	added	the	first	time	around.

Figure	10.14	iOS	Provisioning	Profile:	Add	iOS	Provisioning	Profile:	Select	Devices.

Finally,	provide	a	name	for	the	provisioning	profile,	and	review	the	summary	presented	for	the
provisioning	profile,	as	shown	in	Figure	10.15.	If	the	profile	looks	correct,	click	Generate	to	create	it.

Figure	10.15	iOS	Provisioning	Profile:	Add	iOS	Provisioning	Profile:	Name	This	Profile	and
Generate.

Note
Be	descriptive	with	your	provisioning	profile	name;	these	names	tend	to	get	confusing	in
Xcode	when	you	have	a	lot	of	them.	One	approach	is	to	use	the	app	name	and
environment	in	the	name,	such	as	“ICF	Shout	Out	Development.”

When	the	provisioning	profile	has	been	created,	a	download	page	will	be	presented,	as	shown	in
Figure	10.16.

Figure	10.16	iOS	Provisioning	Profile:	Your	Provisioning	Profile	Is	Ready.

Click	Download	to	get	a	copy	of	the	provisioning	profile.	Double-click	the	profile	after	it	is
downloaded	and	it	will	be	automatically	installed	and	available	in	Xcode.	One	last	step	remains	to
make	sure	that	the	app	is	using	the	new	provisioning	profile.	In	Xcode,	edit	the	Build	Settings	for
your	project	(not	the	target).	Find	the	section	titled	Code	Signing,	specifically	Code	Signing	Identity.
For	Debug,	choose	iOS	Developer	under	the	Automatic	section,	as	shown	in	Figure	10.17.	To
confirm	that	the	provisioning	profile	is	installed	correctly	on	your	system,	check	the	Provisioning
Profile	section	under	the	Code	Signing	Identity	item	and	ensure	that	the	provisioning	profile	is
present	in	the	list.	Alternatively,	select	Preferences	from	the	Xcode	menu,	and	select	Accounts.	If	your
account	information	is	not	set	up	there,	set	it	up.	Select	your	account	name	and	then	View	Details	to
see	the	provisioning	profiles	installed.	Provisioning	profiles	can	be	refreshed	directly	from	here
rather	than	downloading	directly	from	the	portal;	but	provisioning	profiles	for	individual	apps	must
be	created	in	the	portal.

Figure	10.17	Xcode	Project	Build	Settings:	Code	Signing	Identity.

When	that	step	is	complete,	you	have	completed	all	the	configuration	steps	necessary	on	the	app	side
to	receive	push	notifications.	Now	you	are	ready	to	write	some	code.

Custom	Sound	Preparation
One	detail	that	can	really	distinguish	receipt	of	your	push	notification	is	a	custom	sound.	iOS	will
play	any	specified	sound	less	than	30	seconds	in	length	if	it	is	available	in	your	app	bundle.	You	can
create	a	custom	sound	in	GarageBand,	for	example	(or	any	other	audio	app	that	can	create	sounds),
and	export	the	sound.	It	is	worth	exporting	under	each	of	the	compression	options	to	see	what	sounds
good	while	meeting	your	size	requirements	(see	Figure	10.18).

Figure	10.18	GarageBand:	export	song	settings.

Now	that	you	have	a	sound	file,	it	will	need	to	be	converted	to	Core	Audio	format	in	order	for	your
app	to	use	it.	Apple	provides	a	command-line	tool	called	afconvert	that	is	up	to	the	job.	Open	a
Terminal	session,	navigate	to	the	directory	where	the	audio	file	is,	and	issue	this	command	to	convert
your	audio	file	to	Core	Audio	format:
Click	here	to	view	code	image

$	afconvert	-f	-caff	-d	ima4	shout_out.m4a	shout_out.caf

This	command	will	convert	the	shout_out.m4a	file	to	ima4	format	(which	is	a	compressed	format
that	works	well	on	the	device)	and	package	it	in	a	Core	Audio–formatted	sound	file.	When	that
process	is	complete,	copy	your	new	Core	Audio	format	sound	file	into	your	Xcode	project,	and	when
it	is	specified	in	a	notification,	it	will	play.

Registering	for	Notifications
To	enable	the	ShoutOut	app	to	receive	remote	notifications,	the	app	needs	to	register	with	the	APNs	to
receive	push	notifications.	In	addition,	the	app	needs	to	register	settings	for	user	notifications	in	order
to	update	the	badge,	display	a	banner	or	an	alert,	or	play	a	sound	for	both	a	local	and	remote
notification.	The	app	can	be	customized	to	register	for	push	notifications	at	any	point	that	makes
sense,	when	the	user	has	a	good	idea	what	value	push	notifications	will	provide	from	the	app.	For	this
example,	however,	the	sample	app	will	register	with	the	APNs	right	away	in	the	app	delegate,	in	the
application:didFinishLaunchingWithOptions:	method:
Click	here	to	view	code	image

-	(BOOL)application:(UIApplication	*)application
didFinishLaunchingWithOptions:(NSDictionary	*)launchOptions
{
				[[UIApplication	sharedApplication]	registerForRemoteNotifications];

				UIUserNotificationSettings	*notifSettings	=	[UIUserNotificationSettings
settingsForTypes:UIUserNotificationTypeAlert	|	UIUserNotificationTypeBadge	|
UIUserNotificationTypeSound	categories:nil];

				[[UIApplication	sharedApplication]	registerUserNotificationSettings:notifSettings];

				return	YES;
}

UIUserNotificationSettings	specify	how	the	user	can	be	alerted	when	a	notification	is
received,	including	updating	the	application	badge,	presenting	an	alert,	and	playing	a	sound.	The
registerForRemoteNotifications:	method	will	call	the	APNs	and	get	a	token	to	identify
the	device.	Two	delegate	methods	need	to	be	implemented	to	handle	receipt	of	that	token,	or	an	error
in	registering	with	APNs:
Click	here	to	view	code	image

-	(void)application:(UIApplication	*)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData	*)deviceToken	{

				NSString	*formattedTokenString	=	[deviceToken	description];

				NSString	*removedSpacesTokenString	=	[formattedTokenString
stringByReplacingOccurrencesOfString:@"	"
																																																					withString:@""];

				NSString	*trimmedTokenString	=	[removedSpacesTokenString
stringByTrimmingCharactersInSet:	[NSCharacterSet	characterSetWithCharactersInString:@"
<>"]];

				[self	setPushTokenString:trimmedTokenString];
}

-	(void)application:(UIApplication	*)application
didFailToRegisterForRemoteNotificationsWithError:(NSError	*)error	{
				NSLog(@"Error	in	push	registration:	%@",	error.localizedDescription);
}

If	the	registration	is	successful,	the	token	will	be	returned	to	the	app	in	NSData	format.	For
ShoutOut,	the	method	will	format	a	string	by	removing	spaces	and	extra	characters	from	the	string
representation	provided	by	NSData,	and	store	the	string	token	so	that	it	is	available	to	create	the
command	for	sending	test	pushes.	For	typical	apps,	the	device	token	might	need	to	be	sent	to	the	push
server	for	a	user ’s	account	to	facilitate	sending	pushes.	Apple	recommends	that	you	perform	this
registration	every	time	the	app	is	launched,	since	the	user	might	have	switched	devices	or	upgraded
her	version	of	iOS,	which	will	require	a	new	token.	If	there	are	specific	failure	actions	that	need	to
take	place,	they	can	be	specified	in	the
didFailToRegiterForRemoteNotificationsWithError:	method.	For	the	purposes	of
the	sample	app,	just	log	the	failure.
At	this	point,	ShoutOut	is	ready	to	receive	remote	push	notifications	and	display	local	notifications.

Scheduling	Local	Notifications
For	local	notifications,	no	additional	setup	is	required	for	the	app.	In	ShoutOut,	a	local	notification
will	be	used	to	schedule	a	reminder.	In	ICFMainViewController,	there	is	a	method	that	gets
called	when	the	user	hits	the	Set	Reminder	button:
Click	here	to	view	code	image

-	(IBAction)setReminder:(id)sender
{
				NSDate	*now	=	[NSDate	date];
				UILocalNotification	*reminderNotification	=	[[UILocalNotification	alloc]	init];
				[reminderNotification	setFireDate:[now	dateByAddingTimeInterval:15]];
				[reminderNotification	setTimeZone:[NSTimeZone	defaultTimeZone]];
				[reminderNotification	setAlertBody:@"Don't	forget	to	Shout	Out!"];
				[reminderNotification	setAlertAction:@"Shout	Now"];
				[reminderNotification	setSoundName:UILocalNotificationDefaultSoundName];
				[reminderNotification	setApplicationIconBadgeNumber:1];

				[[UIApplication	sharedApplication]	scheduleLocalNotification:reminderNotification];

				UIAlertController	*alert	=	[UIAlertController	alertControllerWithTitle:@"Reminder"
																																									message:@"Your	Reminder	has	been	Scheduled"
																																		preferredStyle:UIAlertControllerStyleAlert];

				UIAlertAction	*dismissAction	=	[UIAlertAction	actionWithTitle:@"OK	Thanks!"
																														style:UIAlertActionStyleCancel
																												handler:^(UIAlertAction	*action){
																																[self	dismissViewControllerAnimated:YES
																																																									completion:nil];
																												}];

				[alert	addAction:dismissAction];

				[self	presentViewController:alert	animated:YES	completion:nil];
}

To	create	a	local	notification,	create	an	instance	of	UILocalNotification.	Specify	the	fire	date
for	the	notification.	It	also	is	generally	a	good	idea	to	specify	a	time	zone	so	that	if	the	user	is
traveling,	he	will	receive	the	reminder	at	the	correct	time.	To	make	it	easy	to	see,	just	set	the	fire	date
to	15	seconds	from	now.	Then	set	how	the	user	will	receive	the	notification,	including	specifying	alert
text,	setting	whether	a	sound	(or	a	specific	sound)	should	be	played,	and	updating	the	application
badge.	Finally,	schedule	the	local	notification.	To	see	it	in	action,	run	the	app,	hit	Set	Reminder,	and

then	close	the	app.	In	15	seconds,	an	alert	will	appear	with	the	custom	text,	sound,	and	alert	badge.
In	addition	to	scheduling	local	notifications	by	date	and	time,	local	notifications	can	be	scheduled	for
a	region.	When	the	device	enters	the	region,	the	notification	will	fire.	Refer	to	the	“Geofencing”
section	in	Chapter	2,	“Core	Location,	MapKit,	and	Geofencing,”	for	more	information	on	how	to	set
up	a	CLRegion	to	assign	to	the	region	property	on	a	local	notification.

Note
Local	notifications	can	be	tested	in	the	simulator,	but	remote	push	notifications	cannot.

Receiving	Notifications
When	a	device	receives	a	notification,	either	local	or	remote,	the	device	will	check	whether	the	app
associated	with	the	notification	is	currently	active	and	in	the	foreground.	If	not,	the	parameters
included	guide	the	device	to	play	a	sound,	display	an	alert,	or	update	the	badge	on	the	app	icon.	If	an
alert	is	displayed,	the	user	will	have	the	opportunity	to	dismiss	the	alert	or	to	follow	the	alert	into	the
app.
If	the	user	chooses	to	go	into	the	app,	then	either	the	app	delegate’s
appDidFinishLaunchingWithOptions:	method	is	called	if	the	app	is	in	a	terminated	state
and	is	launching,	or	a	delegate	method	will	be	called	when	the	app	is	brought	to	the	foreground.	The
same	delegate	method	will	be	called	if	the	app	happens	to	be	in	the	foreground	when	the	notification
is	received.
If	the	app	was	launched	as	a	result	of	tapping	on	a	notification,	the	notification	payload	will	be	present
in	the	launch	options	passed	to	the	appDidFinishLaunchingWithOptions:	method,	and	can
be	used	to	drive	any	desired	custom	functionality,	like	navigating	to	a	view	specific	to	the	notification
or	displaying	a	message.
Click	here	to	view	code	image

NSDictionary	*notif	=	[launchOptions
objectForKey:UIApplicationLaunchOptionsRemoteNotificationKey];

if	(notif)	{
				//custom	logic	here	using	notification	info	dictionary
}

If	the	notification	is	received	while	the	app	is	active	or	in	the	background,	there	are	two	delegate
methods	for	receiving	notifications,	one	for	local	and	one	for	remote:
Click	here	to	view	code	image

-	(void)application:(UIApplication	*)application
didReceiveRemoteNotification:(NSDictionary	*)userInfo	{
				NSString	*message	=
				[[[userInfo	objectForKey:@"aps"]	objectForKey:@"alert"]	objectForKey:@"body"];

				NSString	*appState	=	([application	applicationState]	==	UIApplicationStateActive)	?
@"app	Active"	:	@"app	in	Background";

				[self	presentAlertWithMessage:
					[NSString	stringWithFormat:@"Received	remote	push	for	app	state	%@:	%@",	appState,
message]];
}

-	(void)application:(UIApplication	*)application	didReceiveLocalNotification:

(UILocalNotification	*)notification	{
				NSString	*message	=	[notification	alertBody];

				NSString	*appState	=	([application	applicationState]	==	UIApplicationStateActive)	?
@"app	Active"	:	@"app	in	Background";

				[self	presentAlertWithMessage:	[NSString	stringWithFormat:@"Received	local
notification	for	app	state	%@:	%@",	appState,	message]];
}

The	local	notification	delegate	method	receives	the	local	notification,	and	the	remote	notification
delegate	receives	a	dictionary	with	the	notification	information.	That	information	can	be	inspected
and	acted	upon.	In	this	example	an	alert	is	displayed	to	the	user,	but	other	apps	can	use	the	information
to	navigate	to	a	view	in	the	app	that	is	directly	relevant	to	the	notification.	In	both	cases	the
application	parameter	can	be	inspected	to	determine	the	state	of	the	app	when	the	notification	was
received.	Then	the	response	to	the	notification	can	be	customized	depending	on	whether	the	app	is
currently	active	or	whether	the	app	was	awakened	from	the	background.

Push	Notification	Server
After	the	app	is	prepared	to	receive	notifications,	a	server	needs	to	be	set	up	to	send	push
notifications.	Push	notifications	can	be	sent	via	the	APNs	from	any	type	of	server	that	can
communicate	over	a	secure	TCP	socket	connection	(an	SSL	stack	is	required).	Apple	requires	that	the
server	maintain	a	persistent	connection	while	sending	push	notification	requests	to	APNs	to	avoid	the
overhead	of	establishing	connections.	Many	open	source	libraries	support	APNs	for	several	different
platforms,	and	third-party	providers	provide	API	access	for	push	notifications.	For	the	sample	app,	a
simple	PHP	command-line	utility	is	included	to	send	test	push	messages	through	the	sandbox	APNs.
At	a	minimum,	the	server	will	need	to	know	the	device	token	in	order	to	send	a	push	to	a	device.	For
“data	available”	type	notifications,	this	might	be	all	that	is	required	to	inform	the	app	to	download
new	data.	For	other	requirements,	the	server	might	need	to	specify	a	message,	a	sound	to	play,	a
number	to	set	the	badge	on	the	app,	or	a	custom	hash	of	data	to	assist	the	app	in	navigating	to	relevant
information.
The	push	server	will	create	a	message	payload	that	contains	the	information	to	be	sent	to	the	device.
This	payload	is	in	JSON	format,	and	must	contain	a	hash	for	the	key	aps:
Click	here	to	view	code	image

{"aps":{"alert":"Hello	Joe","sound":"shout_out.caf"}}

If	the	destination	app	has	been	localized,	the	server	can	include	a	hash	for	the	alert	item	instead	of	just
providing	an	alert	string:
Click	here	to	view	code	image

{"aps":{"alert":	{"loc-key":	"push-msg-key",	"action-loc-key":	"see-push-key"},
"sound":"shout_out.caf"}}

Alternatively,	the	device	can	pass	up	locale	information	to	the	server	when	registering	the	device
token,	and	the	server	can	localize	the	message	before	sending	through	APNs.	The	action-loc-
key	item	can	be	specified	to	customize	the	title	of	the	button	presented	with	the	notification.

Note
For	more	detail	on	communication	with	APNs,	look	at	Apple’s	documentation	at
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-
CH100-SW9.

Sending	the	Push	Notifications
To	send	a	test	push	using	the	sample	app,	run	the	app	on	a	device.	Enter	some	text	in	the	text	field
presented,	and	tap	the	Shout	button.	The	sample	app	will	use	that	text	to	create	a	command	that	can	be
copied	and	then	executed	from	a	terminal	session	via	the	installed	version	of	PHP.	It	requires	a
message	parameter	and	device	parameter	to	function	correctly.
Click	here	to	view	code	image

php	shout.php	"testing1..2..3"
"f1313af4d5af93d53ba595fdd9a9dc8799bcf10c3e7b3e2cb53662816d5bcc89"

To	execute	the	command,	right-click	on	the	shout.php	file	in	the	Push	Server	group	in	the	sample
app	in	Xcode,	and	select	Show	in	Finder.	Open	a	Terminal	session,	and	navigate	to	the	same	directory
where	the	shout.php	file	is.	Ensure	that	the	certificate	has	been	created	(as	shown	in	Figure	10.10),
has	been	exported	to	pem	format,	and	is	present	in	the	same	directory	as	shout.php.	The	code
currently	assumes	that	no	passphrase	was	set	for	the	certificate;	however,	if	you	set	a	passphrase	you
can	uncomment	the	passphrase	line	in	shout.php	and	add	your	passphrase	there.	Copy	and	paste	the
command	from	the	Xcode	console	to	the	Terminal	window	and	execute	it.	The	script	will	create	a
push	message	in	JSON	using	the	provided	message	and	device	ID,	and	will	send	it	to	the	APNs.	Note
that	this	version	will	send	only	one	push	per	connection	and	is	suitable	only	for	very	light	testing	in
the	sandbox;	any	volume	testing	should	use	a	more	robust	version	that	will	maintain	a	persistent
connection	with	the	APNs.
After	the	script	has	been	executed,	the	notification	will	appear	quickly	on	your	device	(see	Figure
10.19).	Visit	Settings.app	(under	Notifications,	ShoutOut)	to	change	whether	the	notification	is
displayed	alert	style	or	banner	style,	and	see	how	each	looks	on	your	device.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9

Figure	10.19	ShoutOut	notification	received	and	displayed	on	the	home	screen.

Handling	APNs	Feedback
APNs	can	provide	feedback	to	each	server	that	connects	to	it	and	sends	notifications.	If	any	of	the
device	tokens	specified	in	the	messages	have	errors	(for	example,	if	the	user	has	deleted	the	app	from
her	device),	the	server	should	prevent	sending	future	notifications	to	the	disabled	devices.	Many	APNs
libraries	have	facilities	built	in	to	communicate	with	the	feedback	endpoint,	which	can	be	scheduled	to
run	periodically.	After	the	feedback	has	been	obtained,	stored	device	tokens	on	the	server	should	be
updated	or	removed	to	prevent	sending	additional	notifications	to	them.

Summary
This	chapter	introduced	you	to	Apple’s	method	of	communicating	with	apps	that	are	not	active	and	in
the	foreground:	notifications.	It	explained	the	differences	between	local	and	remote	push	notifications.
It	showed	how	to	set	up	an	app	to	receive	remote	push	notifications,	and	how	to	schedule	local
notifications.	This	chapter	guided	you	through	how	to	use	the	utility	push	script	to	send	test	push
notifications	to	your	app	via	the	Apple	Push	Notification	service.

11.	Cloud	Persistence	with	CloudKit

iCloud	is	a	set	of	cloud-based	services	provided	by	Apple.	It	was	introduced	with	iOS	5	as	a
replacement	for	MobileMe,	and	generally	provides	cloud	storage	and	automatic	syncing	among	iOS
devices,	OS	X	devices,	and	the	Web.	iCloud	includes	email,	address	book,	notes,	reminders,	and
calendar	syncing;	automated	iOS	device	backup	and	restore;	a	Find	My	iPhone	feature	to	locate
and/or	disable	a	lost	device;	a	Find	My	Friends	feature	to	share	locations	with	family	or	friends;
Photo	Stream,	which	automatically	syncs	photos	to	other	devices;	Back	to	My	Mac,	which	allows	for
configurationless	access	to	a	user ’s	Mac	over	the	Internet;	iTunes	Match,	which	provides	access	to	a
user ’s	music	library	without	uploading	and	syncing;	iCloud	Keychain,	which	syncs	passwords;	and
iCloud	Drive,	which	allows	for	storing	files	and	documents	in	the	cloud.	In	addition,	iCloud	provides
the	ability	for	apps	to	store	app-specific	data	in	the	cloud	and	automatically	sync	between	devices.	At
the	time	of	this	writing,	iCloud	provides	5GB	of	storage	free,	and	offers	paid	plans	for	additional
storage.
For	app-specific	storage	and	syncing,	iCloud	supports	four	different	approaches:	document-based
storage	and	syncing	(based	on	NSDocument	or	UIDocument),	key-value	storage	and	syncing
(similar	to	NSUserDefaults),	remote	structured	data	storage	with	CloudKit,	and	Core	Data
syncing.	This	chapter	explains	how	to	set	up	an	app	to	use	remote	structured	data	storage	with
CloudKit.

CloudKit	Basics
CloudKit	was	introduced	with	iOS	8.	CloudKit	offers	remote	data	storage,	data	syncing	between	the
local	device	and	remote	storage,	and	push	notification-based	subscriptions	for	data	changes	for	users
with	iCloud	accounts.	Apple	provides	CloudKit	free	of	charge	up	to	certain	storage	and	data	transfer
limits,	based	on	the	number	of	users	in	the	app.	If	the	limits	are	exceeded,	Apple	charges	for
CloudKit,	but	pricing	has	not	been	disclosed	at	the	time	of	writing.
CloudKit	includes	a	Web	interface	for	setting	up	and	managing	the	database	schema	and	public	data,
and	CloudKit	includes	an	API	for	accessing,	retrieving,	and	maintaining	data	from	an	iOS	(or	OS	X)
client.	Note	that	CloudKit	does	not	offer	any	mechanism	for	local	data	storage,	so	it	is	up	to	the	app
developer	to	select	and	implement	a	local	storage	approach,	and	integrate	that	local	storage	with
CloudKit.	See	Chapter	15,	“Getting	Up	and	Running	with	Core	Data,”	for	more	discussion	on
selecting	a	local	storage	mechanism.	In	addition,	CloudKit	does	not	offer	a	way	to	implement	any
logic	on	the	server,	so	any	application	logic	related	to	the	data	must	be	performed	on	the	client.

The	Sample	App
The	sample	app	for	this	chapter	is	called	CloudTracker,	which	is	a	basic	data-tracking	app	for	races
and	practice	runs	that	stores	data	using	CloudKit.	CloudTracker	takes	advantage	of	the	public	database
to	store	race	results	and	the	private	database	to	store	practice	run	results.	CloudTracker	illustrates
iCloud	user	discovery	to	get	and	display	information	about	the	current	user.	In	addition,
CloudTracker	uses	a	CloudKit	subscription	to	be	notified	when	new	race	data	is	available.

Setting	Up	a	CloudKit	Project
To	set	up	an	app	to	use	iCloud,	several	steps	used	to	be	required.	Entitlements	for	the	app	needed	to	be
set	up,	and	the	app	needed	to	be	configured	in	the	iOS	Provisioning	Portal	for	iCloud	support.	Some
iCloud	functions	can	be	tested	only	on	the	device,	so	the	provisioning	profile	work	needed	to	be
completed	in	order	for	an	iCloud	app	to	work.	Since	Xcode	5,	this	process	has	been	significantly
streamlined	and	can	be	done	entirely	within	Xcode.

Account	Setup
Xcode	needs	iOS	developer	account	information	in	order	to	connect	to	the	Member	Center	and
perform	all	the	setup	necessary	for	iCloud	on	the	developer ’s	behalf.	Select	Xcode,	Preferences	from
the	Xcode	menu,	and	then	select	the	Accounts	tab,	as	shown	in	Figure	11.1.

Figure	11.1	Xcode	Accounts	tab.

To	add	a	new	account,	click	the	plus	sign	in	the	lower	left	of	the	Accounts	tab,	and	select	Apple	ID.
Enter	the	account	credentials	and	click	the	Add	button.	Xcode	validates	the	credentials	and	gathers
account	information	if	valid.	Click	the	View	Details	button	to	see	what	certificates	and	provisioning
profiles	are	currently	configured	for	an	account,	as	shown	in	Figure	11.2.

Figure	11.2	Xcode	Accounts	detail	view.

Enabling	iCloud	Capabilities
After	Xcode	has	account	credentials,	it	can	configure	apps	with	capabilities	on	behalf	of	the	account.
It	can	set	up	App	IDs,	entitlements,	and	provisioning	profiles	as	needed.	To	set	up	the	iCloud
capability,	view	the	CloudTracker	Target	in	Xcode,	click	the	Capabilities	tab,	and	find	the	iCloud
section.	Change	the	iCloud	switch	to	On,	and	Xcode	will	automatically	create	an	entitlements	file	for
the	project.	Check	the	CloudKit	checkbox	to	enable	CloudKit	for	the	app.	Xcode	will	automatically
populate	an	entry	with	the	project’s	bundle	ID	in	the	Ubiquity	Containers	table.	For	the	sample	app,
this	is	all	that	is	needed;	for	a	more	complex	app	that	shares	with	a	Mac	OS	X	application	and	that
would	need	to	support	more	than	one	ubiquity	container	name,	additional	ubiquity	container	names
can	be	added	here.	Xcode	will	check	with	the	developer	portal	to	see	whether	the	App	ID	is
configured	correctly	for	iCloud.	If	not,	Xcode	will	display	the	issue,	as	shown	in	Figure	11.3.	Tap	the
Fix	Issues	button,	and	Xcode	will	communicate	with	the	developer	portal	and	fix	any	issues	with	the
app	setup.

Figure	11.3	Xcode	Target	Capabilities—iCloud.

After	the	iCloud	capability	is	enabled,	and	there	are	check	marks	by	CloudKit	and	all	the	listed	steps,
the	app	is	ready	to	use	CloudKit.

CloudKit	Concepts
CloudKit	introduces	several	concepts	to	consider	when	developing	a	CloudKit	app.

Containers
The	container	object,	CKContainer,	represents	the	iCloud	container	where	all	the	CloudKit
information	is	stored.	iCloud	uses	a	special	directory	in	the	iOS	file	system	called	the	ubiquity
container	to	manage	data	syncing	between	the	app	and	iCloud.	A	container	is	identified	with	a
container	identifier,	which	can	be	either	the	default	container	identifier	(which	is	the	same	as	the
bundle	ID),	or	a	custom	container	identifier.	The	CKContainer	object	has	class	methods	to	get
references	to	the	default	container	or	a	custom	container	by	ID	(defaultContainer	and
containerWithIdentifier:).	A	reference	to	the	container	is	needed	in	order	to	access	the
CloudKit	databases.

Databases
CloudKit	supports	both	a	publicly	accessible	database	and	a	private	database.	Each	database	can	store
data	defined	by	record	types.	The	public	database	can	be	read	by	any	user	(even	a	user	without	an
iCloud	account),	but	can	be	written	to	only	by	an	iCloud	user.	The	public	database	is	theoretically
accessible	by	any	user,	but	access	to	it	is	limited	by	the	design	of	the	app	in	practice.	Records	stored	in
the	public	database	count	against	the	app’s	CloudKit	storage	quota.	To	access	the	public	database,	use
the	publicCloudDatabase	method	on	the	container:
Click	here	to	view	code	image

CKDatabase	*publicDatabase	=	[[CKContainer	defaultContainer]	publicCloudDatabase];

The	private	database	is	specific	to	an	iCloud	user	for	the	app.	Data	in	the	private	database	can	be	read
and	updated	only	by	the	user;	even	the	app	administrator	cannot	see	or	update	data	in	the	private
database.	Records	stored	in	the	private	database	count	against	the	iCloud	user ’s	storage	quota.	To
access	the	private	database,	use	the	privateCloudDatabase	method	on	the	container:

Click	here	to	view	code	image

CKDatabase	*privateDatabase	=	[[CKContainer	defaultContainer]	privateCloudDatabase];

Records
CloudKit	stores	structured	data	in	records,	or	instances	of	CKRecord.	Records	are	defined	by	record
types	(similar	to	an	“entity”	or	“table”	in	relational	database	terminology),	which	can	be	set	up	either
in	the	CloudKit	dashboard	or	just	by	saving	a	new	record	while	operating	in	the	development
environment.	The	server	will	return	an	error	when	attempting	to	save	unknown	record	types	or
unknown	attributes	for	record	types	in	the	production	environment.
CKRecord	instances	can	function	much	like	instances	of	NSMutableDictionary,	in	that	the
attribute	or	object	values	can	be	set	for	keys,	or	attribute	names.	Records	support	several	attribute
types,	as	shown	in	Table	11.1.	CloudKit	has	special	support	for	querying	by	CLLocation,	and
supports	relationships	with	other	records	using	a	CKReference.	In	addition,	records	can	use	a
CKAsset	to	store	data	(see	the	“Assets”	section).

Table	11.1	CloudKit-Supported	Data	Types

Users	represent	a	special	type	of	CKRecord.	User	records	cannot	be	queried;	rather,	a	user	record
has	to	be	fetched	directly	using	the	record	ID,	or	the	user	record	needs	to	be	accessed	through	the
user	discovery	process,	which	will	find	users	that	exist	in	the	iCloud	user ’s	list	of	contacts	(by	email
address).	See	the	section	“User	Discovery	and	Management”	for	more	details.

Record	Zones
Record	zones	(CKRecordZone)	are	a	way	to	organize	related	record	types	together.	A	record	zone
functions	as	a	container	for	related	record	types.	In	the	public	database	for	an	app,	there	is	only	one
record	zone,	which	is	called	the	default	zone.	Customized	record	zones	can	be	created	for	the	private
database.	Note	that	changes	to	records	in	the	same	record	zone	can	be	committed	or	rolled	back
together.	References	between	records	can	exist	only	within	a	record	zone.

Record	Identifiers
Each	instance	of	CKRecord	by	default	is	given	a	unique	identifier	by	CloudKit	when	it	is	initialized,
which	is	an	instance	of	CKRecordID.	This	record	identifier	will	be	based	on	a	UUID	and	is
guaranteed	to	be	unique,	is	safe	to	store	locally,	and	can	be	used	to	fetch	instances	of	CKRecord
when	they	are	needed.

CloudKit	can	also	support	custom	record	identifiers.	Record	identifiers	can	be	supplied	when	a
record	is	created,	and	must	be	unique	to	the	database	the	record	will	be	saved	to.	Custom	record
identifiers	must	be	used	when	saving	records	outside	the	default	zone	for	a	database.

Assets
A	CKAsset	can	be	used	to	store	attribute	data	in	a	file,	rather	than	directly	in	an	attribute	for	a
record.	This	approach	is	appropriate	for	images,	sounds,	or	any	other	relatively	large	pieces	of	data.
Remember	that	a	CKRecord	can	have	a	maximum	of	1MB	of	data,	and	an	asset	can	store	up	to
250MB.
When	the	related	CKRecord	is	fetched,	the	CKAsset	will	also	be	downloaded.	The	data	for	the
CKAsset	can	be	loaded	from	the	fileURL	of	the	CKAsset.
If	the	data	for	the	asset	should	be	available	locally	while	offline,	it	should	be	copied	from	the
CKAsset	to	a	locally	accessible	file	URL.

CloudKit	Basic	Operations
CloudKit	offers	two	different	approaches	to	working	with	data:	robust	NSOperation-based	tools
and	block-based	convenience	methods	from	the	CKDatabase	object.	This	chapter	illustrates
working	with	CloudKit	using	the	block-based	approaches	in	order	to	be	easier	to	follow;	but	be
advised	that	the	NSOperation-based	approaches	provide	some	additional	power	that	the
convenience	methods	do	not,	such	as	the	ability	to	save	multiple	records	simultaneously	or	get
progress	updates	on	larger	operations.

Fetching	Records
To	fetch	records	from	a	CloudKit	database,	a	query	is	needed.	In	the	sample	app,	both	the	races	view
and	the	practice	runs	view	use	a	query	to	pull	records	from	CloudKit,	and	then	display	those	records
in	a	table	view.	Because	the	races	view	pulls	race	information	from	the	public	database,	a	reference	to
the	public	database	is	needed:
Click	here	to	view	code	image

CKDatabase	*publicDatabase	=	[[CKContainer	defaultContainer]	publicCloudDatabase];

Queries	in	CloudKit	leverage	the	power	of	NSPredicate.	To	query	records	from	CloudKit,	build
an	NSPredicate	that	expresses	the	conditions	to	be	satisfied,	using	the	attribute	names	for	the
record	in	the	selection	criteria	(see	the	“Using	Predicates”	section	in	Chapter	15,	“Getting	Up	and
Running	with	Core	Data,”	for	more	information	on	building	predicates).	If	all	records	are	desired,	a
predicate	is	still	needed	for	the	query.	In	this	case,	there	is	a	special	way	to	declare	a	predicate	for
everything:
Click	here	to	view	code	image

NSPredicate	*predicate	=	[NSPredicate	predicateWithFormat:@"TRUEPREDICATE"];

After	a	predicate	has	been	created,	a	CKQuery	instance	can	be	created,	specifying	the	record	type	and
the	predicate.
Click	here	to	view	code	image

CKQuery	*query	=	[[CKQuery	alloc]	initWithRecordType:@"Race"	predicate:predicate];

Then	a	convenience	method	on	the	database	can	be	used	to	execute	the	query.	The	convenience

method	either	will	return	matching	records	in	an	instance	of	NSArray,	or	will	return	an	error	in	an
instance	of	NSError.	Note	that	passing	a	zone	ID	of	nil,	as	shown	in	the	example,	will	execute	the
query	in	the	default	zone.
Click	here	to	view	code	image

__weak	ICFRaceListTableViewController	*weakSelf	=	self;

[publicDatabase	performQuery:query
																inZoneWithID:nil
											completionHandler:^(NSArray	*results,	NSError	*error)	{
															dispatch_async(dispatch_get_main_queue(),	^{
																			weakSelf.raceList	=	[[NSMutableArray	alloc]	initWithArray:results];
																			[weakSelf.tableView	reloadData];
															});
											}];

The	completion	handler	will	be	executed	on	an	arbitrary	queue.	It	is	not	likely	to	be	executed	on	the
main	queue,	so	it	is	absolutely	necessary	to	dispatch	to	the	main	queue	to	handle	the	results	if	there
will	be	any	user	interface	updates	as	a	result.	Dispatching	asynchronously	reduces	the	likelihood	of	a
deadlock.
In	this	example,	the	view	controller	stores	the	results	array	in	a	property,	and	then	informs	the	table
view	that	it	should	reload	to	display	the	data	from	the	stored	results,	so	dispatching	to	the	main	queue
is	a	requirement.	The	races	in	the	public	database	will	be	displayed,	as	shown	in	Figure	11.4.

Figure	11.4	CloudTracker	Sample	App—race	list.

Create	and	Save	a	Record
To	create	a	new	record	in	the	sample	app,	tap	the	plus	sign	in	the	upper-right	corner	of	the	race	view
(as	shown	in	Figure	11.4).	The	app	will	present	a	form	that	will	accept	data	for	a	new	race	record.
When	the	user	has	filled	out	the	form	and	tapped	the	Save	button,	the	view	controller	will	present	an
activity	indicator	since	the	save	operation	will	likely	take	a	noticeable	amount	of	time.	A	reference	to
the	public	database	will	be	established,	and	then	an	instance	of	CKRecord	will	be	initialized	for	the
record	type	“Race.”
Click	here	to	view	code	image

if	(!self.raceData)
{
				self.raceData	=	[[CKRecord	alloc]	initWithRecordType:@"Race"];
}

The	race	record	will	be	updated	with	data	from	the	user	interface.	First,	the	racer,	or	user	who	is

entering	the	record,	will	be	pulled	from	the	app	delegate	and	set	up	as	a	reference	to	the	user	record
using	a	CKReference.	See	the	“User	Discovery	and	Management”	section	later	in	this	chapter	for
more	information	on	how	the	user	record	was	populated.	The	racer ’s	name	will	be	pulled	from	the
user	record	and	stored	for	convenience	on	the	race	record.
Click	here	to	view	code	image

if	(![self.raceData	objectForKey:@"racer"])
{

				AppDelegate	*appDelegate	=	(AppDelegate	*)[[UIApplication	sharedApplication]
delegate];

				CKRecord	*userRecord	=	appDelegate.myUserRecord;

				if	(userRecord)
				{
								CKReference	*racerReference	=	[[CKReference	alloc]	initWithRecord:userRecord
																																						action:CKReferenceActionNone];

								self.raceData[@"racer"]	=	racerReference;
								self.raceData[@"racerName"]	=	userRecord[@"name"];
				}
}

Next	each	attribute	will	be	given	a	value	from	the	associated	form	object.
Click	here	to	view	code	image

self.raceData[@"raceName"]	=	self.raceName.text;
self.raceData[@"location"]	=	self.location.text;
self.raceData[@"distance"]	=	[NSNumber	numberWithFloat:[self.distance.text	floatValue]];
self.raceData[@"distanceUnits"]	=	[self	selectedDistanceUnits];
self.raceData[@"hours"]	=	[NSNumber	numberWithInteger:[self.hours.text	integerValue]];
self.raceData[@"minutes"]	=	[NSNumber	numberWithInteger:[self.minutes.text
integerValue]];
self.raceData[@"seconds"]	=	[NSNumber	numberWithInteger:[self.seconds.text
integerValue]];
self.raceData[@"raceDate"]	=	[self.datePicker	date];

Finally,	the	race	record	will	be	saved,	using	a	convenience	method	on	the	database.	The	save	method
requires	a	CKRecord	parameter	and	completion	handler.
Click	here	to	view	code	image

__weak	ICFRaceDetailViewController	*weakSelf	=	self;
[publicDatabase	saveRecord:self.raceData
									completionHandler:^(CKRecord	*record,	NSError	*error)	{
													dispatch_async(dispatch_get_main_queue(),	^{
																	[weakSelf.saveRaceActivityIndicator	setHidden:YES];
																	if	(weakSelf.indexPathForRace)	{
																					[weakSelf.raceDataDelegate	raceUpdated:record
forIndexPath:weakSelf.indexPathForRace];
																	}	else	{
																					[weakSelf.raceDataDelegate	raceAdded:record];
																	}

																	[weakSelf.navigationController	popViewControllerAnimated:YES];
													});
									}];

Again,	note	that	the	completion	handler	will	be	called	on	an	arbitrary	queue,	so	if	the	user	interface
will	be	updated,	it	is	necessary	to	dispatch	to	the	main	queue.	The	completion	handler	will	hide	the

activity	indicator,	tell	the	race	list	view	controller	to	either	update	the	saved	record	or	handle	adding	a
new	race	record,	and	then	dismiss	the	detail	view	controller.

Update	and	Save	a	Record
To	update	a	race	record,	tap	on	a	race	row	in	the	race	list	in	the	sample	app.	The	CKRecord	for	the
race	associated	with	the	view	will	be	passed	to	the	detail	view	controller	in	the
prepareForSegue:sender:	method.	The	index	path	will	also	be	passed	to	the	detail	view
controller	so	that	when	the	update	is	complete,	only	the	affected	row	will	need	to	be	refreshed.
Click	here	to	view	code	image

if	([segue.identifier	isEqualToString:@"updateRaceDetail"])
{
				NSIndexPath	*tappedRowIndexPath	=	[self.tableView	indexPathForSelectedRow];
				CKRecord	*raceData	=	[self.raceList	objectAtIndex:tappedRowIndexPath.row];
				[detail	setIndexPathForRace:tappedRowIndexPath];
				[detail	setRaceData:raceData];
				[detail	setConnectedToiCloud:self.connectedToiCloud];
}

The	user	interface	for	the	detail	view	will	be	populated	from	the	passed-in	race	record.
Click	here	to	view	code	image

if	(!race)
{
				return;
}
[self.raceName	setText:race[@"raceName"]];
[self.location	setText:race[@"location"]];
[self.distance	setText:[race[@"distance"]	stringValue]];

[self.distanceUnit	setSelectedSegmentIndex:
	[self	segmentForDistanceUnitString:race[@"distanceUnits"]]];

[self.hours	setText:[race[@"hours"]	stringValue]];
[self.minutes	setText:[race[@"minutes"]	stringValue]];
[self.seconds	setText:[race[@"seconds"]	stringValue]];
[self.datePicker	setDate:race[@"raceDate"]];

After	the	information	has	been	updated	and	the	user	has	tapped	the	Save	button,	the	race	record	will	be
saved	using	the	same	logic	as	a	new	record	(as	illustrated	in	the	preceding	section).

Subscriptions	and	Push
CloudKit	offers	the	capability	to	subscribe	to,	or	listen	for,	data	changes,	and	then	receive
notifications	when	relevant	data	has	changed.	This	enables	an	application	to	be	very	responsive	to
data	changes	without	expensive	polling,	and	even	enables	an	application	to	keep	up-to-date	when	it	is
not	actively	being	used.	CloudKit	leverages	push	notifications	(refer	to	Chapter	10,	“Notifications,”
for	more	details,	and	recall	that	push	notification	delivery	is	not	guaranteed)	and	predicates	to	enable
this	powerful	feature.

Push	Setup
For	the	app	to	receive	push	notifications	related	to	subscriptions,	some	setup	is	required.	First,	the	app
needs	to	register	for	remote	notifications	and	receive	a	device	token	in	order	for	CloudKit	to	be	able
to	send	pushes	to	the	device.	Note	that	a	push	certificate	does	not	need	to	be	set	up	for	CloudKit
notifications;	CloudKit	manages	the	notifications	internally.
The	sample	app	registers	for	push	notifications	in	the
application:didFinishLaunchingWithOptions:	method	in	the	app	delegate.	It	will
frequently	be	better	to	place	the	push	registration	logic	in	a	different	context	in	the	app	so	that	the	user
understands	what	benefits	push	notifications	will	provide	and	will	be	more	likely	to	accept	them.	First,
the	sample	app	registers	for	remote	notifications:
Click	here	to	view	code	image

[application	registerForRemoteNotifications];

Then	the	sample	app	registers	the	desired	user	notification	settings,	which	can	be	customized.
Click	here	to	view	code	image

UIUserNotificationSettings	*notifSettings	=
[UIUserNotificationSettings	settingsForTypes:UIUserNotificationTypeAlert	|
	UIUserNotificationTypeBadge	|	UIUserNotificationTypeSound	categories:nil];

[application	registerUserNotificationSettings:notifSettings];

After	the	two	registrations	are	complete,	the	app	is	ready	to	receive	push	notifications	from	CloudKit.

Subscribing	to	Data	Changes
The	sample	app	sets	up	a	subscription	for	race	data	after	the	registration	for	remote	notifications	is
complete	(in	the
application:didRegisterForRemoteNotificationsWithDeviceToken:	method	in
the	app	delegate).	In	a	real	app	it	is	more	likely	that	a	subscription	would	be	set	up	in	a	different
context	in	the	app.	The	sample	app	subscription	will	receive	notifications	for	any	new	or	updated	race
records.	The	subscription	(an	instance	of	CKSubscription)	requires	a	record	type,	a	predicate,	a
unique	identifier,	and	some	options.	One	good	option	for	a	unique	identifier	is	to	use	the	vendor
identifier,	since	it	will	be	unique	to	the	device	and	app	combination.	It	can	be	augmented	with
additional	information	to	make	it	specific	to	a	record	type	or	predicate	just	by	appending	data	to	it.
The	unique	identifier	is	necessary	to	remove	the	subscription,	so	it	needs	to	either	be	stored	when
created,	or	be	reproducible	in	some	other	way.	The	subscription	options	indicate	under	what
circumstances	the	notification	should	fire	(creates,	updates,	deletes),	and	can	be	specified	in	any
combination	desired.	Multiple	subscriptions	can	be	registered	to	handle	different	situations.
Click	here	to	view	code	image

CKDatabase	*publicDatabase	=	[[CKContainer	defaultContainer]	publicCloudDatabase];
NSPredicate	*allRacesPredicate	=	[NSPredicate	predicateWithFormat:@"TRUEPREDICATE"];
NSString	*subscriptionIdentifier	=	[[[UIDevice	currentDevice]	identifierForVendor]
UUIDString];

CKSubscription	*raceSubscription	=
[[CKSubscription	alloc]	initWithRecordType:@"Race"	predicate:allRacesPredicate
subscriptionID:subscriptionIdentifier	options:CKSubscriptionOptionsFiresOnRecordCreation
|	CKSubscriptionOptionsFiresOnRecordUpdate];

After	the	subscription	is	instantiated,	notification	preferences	need	to	be	set	for	it.	The	sample	app

will	just	use	an	alert,	but	badging	and	sounds	can	also	be	used.	Note	that	the	alert	message	can	be
customized	to	use	replacement	variables	as	well.
Click	here	to	view	code	image

CKNotificationInfo	*notificationInfo	=	[[CKNotificationInfo	alloc]	init];
[notificationInfo	setAlertBody:@"New	race	info	available!"];
[raceSubscription	setNotificationInfo:notificationInfo];

The	subscription	then	needs	to	be	saved	to	the	database	to	become	active.
Click	here	to	view	code	image

[publicDatabase	saveSubscription:raceSubscription
															completionHandler:^(CKSubscription	*subscription,	NSError	*error)	{
				if	(error)
				{
								NSLog(@"Could	not	subscribe	for	notifications:	%@",	error.localizedDescription);
				}	else
				{
								NSLog(@"Subscribed	for	notifications");
				}
}];

The	completion	handler	will	be	called	on	an	arbitrary	queue,	and	will	contain	the	subscription	if	it
was	saved	successfully,	or	an	error	if	not.	After	the	subscription	is	saved,	the	app	will	receive
notifications	any	time	the	criteria	for	the	subscription	are	met,	as	shown	in	Figure	11.5.

Figure	11.5	CloudTracker	sample	app—new	data	notification.

User	Discovery	and	Management
To	fully	use	CloudKit	in	an	app,	the	user	must	have	an	iCloud	account.	For	non-iCloud	users,
CloudKit	will	allow	read-only	access	to	the	public	database;	in	order	to	write	to	the	public	database	or
have	any	access	to	a	private	database,	an	iCloud	account	is	required.	At	the	same	time,	Apple	requires
that	apps	using	CloudKit	not	require	an	iCloud	account,	so	a	CloudKit	app	must	know	whether	an
iCloud	account	is	present,	and	adjust	the	user	interface	accordingly.

Tip
Although	the	simulator	can	be	used	to	test	with	an	iCloud	account	(just	sign	into	iCloud
in	the	simulator	just	as	on	the	device),	testing	without	an	iCloud	account	on	the	simulator
does	not	work	in	all	cases.	For	non-iCloud	account	testing,	use	a	device	to	be	certain
everything	works.

In	the	sample	app,	the	race	list	is	the	only	view	that	can	function	correctly	without	an	iCloud	account.
A	non-iCloud	user	should	be	able	to	view	the	race	list	but	not	add	or	update	races.	The	race	list	view
controller	will	use	the	accountStatusWithCompletionHandler:	method	on	the	CloudKit
container	to	determine	the	current	iCloud	account	status	of	the	device:

Click	here	to	view	code	image

[[CKContainer	defaultContainer]	accountStatusWithCompletionHandler:	^(CKAccountStatus
accountStatus,	NSError	*error)	{
				dispatch_async(dispatch_get_main_queue(),	^{
								self.connectedToiCloud	=	(accountStatus	==	CKAccountStatusAvailable);
								[self.addRaceButton	setEnabled:self.connectedToiCloud];
				});
}];

The	completion	handler	will	store	the	information	as	to	whether	there	is	a	current	iCloud	account	so
that	the	detail	screen	can	be	updated	accordingly	when	a	row	is	tapped,	and	will	update	the	Add	Race
button	to	be	enabled	only	when	an	iCloud	account	is	available.
In	CloudKit,	the	user	record	is	a	special	case	of	CKRecord.	The	user	record	always	exists	in	the
public	database	with	no	custom	attributes,	and	custom	attributes	can	be	added	to	it.	Information	about
the	current	user	cannot	be	queried	directly;	rather,	the	app	has	to	go	through	the	user	discovery
process	to	see	what	users	are	visible	to	the	iCloud	account,	using	email	addresses	in	the	user ’s
address	book.	After	that	process	is	complete,	the	current	user ’s	information	will	be	accessible	to	the
app.	That	user	information	can	be	used	to	update	the	user	record.
The	My	Info	view	will	perform	the	user	discovery	task,	beginning	with	the	permissions	check.
Click	here	to	view	code	image

[[CKContainer	defaultContainer]	requestApplicationPermission:
CKApplicationPermissionUserDiscoverability
completionHandler:^(CKApplicationPermissionStatus	applicationPermissionStatus,	NSError
*error)	{
				if	(error)
				{
								NSLog(@"Uh	oh	-	error	requesting	discoverability	permission:
%@",error.localizedDescription);
				}	else
				{
								if	(applicationPermissionStatus	==	CKApplicationPermissionStatusGranted)
								{
												[self	lookUpUserInfo];
								}
				}
}];

The	app	will	present	an	alert	to	request	the	user ’s	permission	to	perform	the	user	discovery	process.
The	dialog	will	be	presented	only	once.	Assuming	that	the	user	grants	permission,	the	next	step	is	to
fetch	the	recordID	of	the	current	user,	which	will	be	used	to	determine	which	user	information
belongs	to	the	current	user:
Click	here	to	view	code	image

[[CKContainer	defaultContainer]	fetchUserRecordIDWithCompletionHandler:	^(CKRecordID
*recordID,	NSError	*error)	{
					if	(error)
					{
									NSLog(@"Error	fetching	user	record	ID:	%@",error.localizedDescription);
					}	else
					{
									[self	discoverUserInfoForRecordID:recordID];
					}
}];

After	the	recordID	is	available,	the	user	discovery	process	will	be	performed	with	a	call	to	the

discoverAllContactUserInfosWithCompletionHandler:	method	on	the	container:
Click	here	to	view	code	image

[[CKContainer	defaultContainer]	discoverAllContactUserInfosWithCompletionHandler:
^(NSArray	*userInfos,	NSError	*error)	{
					if	(error)
					{
									NSLog(@"Error	discovering	contacts:	%@",error.localizedDescription);
					}	else
					{
									NSLog(@"Got	info:	%@",	userInfos);

									for	(CKDiscoveredUserInfo	*info	in	userInfos)	{
													if	([info.userRecordID.recordName	isEqualToString:recordID.recordName])	{
																	//this	is	the	current	user's	record
																	dispatch_async(dispatch_get_main_queue(),	^{
																					NSString	*myName	=	[NSString	stringWithFormat:
																																									@"%@	%@",info.firstName,	info.lastName];

																					[self.name	setText:myName];
																					self.myUserRecordName	=	info.userRecordID.recordName;

																					self.currentUserInfo	=	@{@"name":myName,
																																														@"location":self.location.text,
																																														@"recordName":
info.userRecordID.recordName};

																					NSUserDefaults	*defaults	=	[NSUserDefaults	standardUserDefaults];

																					[defaults	setObject:self.currentUserInfo
																																		forKey:@"currentUserInfo"];

																					[defaults	synchronize];

																					[self	fetchMyUserRecord];
																	});
													}
									}
					}
}];

If	the	user	discovery	process	is	successful,	it	will	return	an	array	of	CKDiscoveredUserInfo
instances.	The	logic	will	iterate	over	that	array,	and	compare	the	CKDiscoveredUserInfo’s
userRecordID	to	the	recordID	of	the	current	user.	If	they	are	the	same,	the	first	and	last	name
will	be	pulled	from	the	CKDiscoveredUserInfo	and	put	into	the	name	text	field.	A	dictionary	of
information	about	the	current	user,	including	the	name,	provided	location,	and	record	name,	will	be
created	and	stored	in	NSUserDefaults	so	that	it	will	persist	across	launches	without	the	need	to
refetch.
With	the	record	name	of	the	current	user	saved,	the	current	user	record	can	be	fetched.
Click	here	to	view	code	image

CKRecordID	*myUserRecordID	=	[[CKRecordID	alloc]
initWithRecordName:self.myUserRecordName];

CKDatabase	*publicDatabase	=	[[CKContainer	defaultContainer]	publicCloudDatabase];
[publicDatabase	fetchRecordWithID:myUserRecordID
																	completionHandler:^(CKRecord	*record,	NSError	*error)	{
				if	(error)
				{

								NSLog(@"Error	fetching	user	record:	%@",	error.localizedDescription);
								[self	setMyUserRecord:nil];
				}	else
				{
								AppDelegate	*appDelegate	=	(AppDelegate	*)[[UIApplication	sharedApplication]
delegate];

								[appDelegate	setMyUserRecord:record];
								[self	setMyUserRecord:record];
				}
}];

If	the	fetch	is	successful,	the	CKRecord	representing	the	current	user	will	be	stored	on	the	app
delegate	so	that	it	will	be	easily	accessible	to	the	race	detail	view	controller	that	will	use	it	when
saving	new	races.
If	the	user	updates	the	name	and	location	and	taps	the	Save	button,	the	changes	will	be	saved	to	the
user	record.
Click	here	to	view	code	image

if	(self.myUserRecord)	{
				self.myUserRecord[@"location"]	=	self.location.text;
				self.myUserRecord[@"name"]	=	self.name.text;
				CKDatabase	*publicDatabase	=	[[CKContainer	defaultContainer]	publicCloudDatabase];
				[publicDatabase	saveRecord:self.myUserRecord
													completionHandler:^(CKRecord	*record,	NSError	*error)	{
								if	(error)	{
												NSLog(@"Error	saving	my	user	record:	%@",	error.localizedDescription);
								}
				}];
}

Note
Any	CloudKit	app	that	stores	data	locally	specific	to	an	iCloud	account	should	also	listen
for	the	NSUbiquityIdentityDidChangeNotification,	which	will	identify
when	the	iCloud	account	status	has	changed,	and	then	be	able	to	handle	the	use	case	in
which	the	user	has	logged	out,	or	in	which	a	different	iCloud	user	has	logged	in.

Managing	Data	in	the	Dashboard
In	addition	to	the	iOS	SDK,	CloudKit	provides	a	Web-based	dashboard	to	manage	the	server	portion
of	CloudKit.	To	access	the	dashboard,	click	the	CloudKit	Dashboard	button	from	the	iCloud
Capabilities	tab,	as	shown	in	Figure	11.6.

Figure	11.6	Xcode	Target	Capabilities—iCloud.

The	CloudKit	dashboard	will	open	in	the	default	Web	browser,	and	will	request	authentication.
Provide	developer	account	credentials	to	access	the	dashboard.	The	dashboard	will	display	several
categories	of	information	about	the	server	in	the	left	panel.	Selecting	a	category	will	display	more
detailed	information	or	additional	choices	in	the	middle	panel.	Selecting	a	choice	in	the	middle	panel
will	present	detailed	information	or	editing	capabilities	in	the	right	panel.
Record	types	can	be	edited	by	selecting	the	Record	Types	item	under	the	Schema	header,	as	shown	in
Figure	11.7.	A	record	type	can	be	added	or	deleted	by	the	icons	at	the	top	of	the	right	panel,	and
attributes	and	index	settings	for	a	selected	record	type	can	be	managed	in	the	lower	part	of	the	right
panel.

Figure	11.7	CloudKit	Dashboard—Record	Types.

Data	in	the	public	database	can	also	be	viewed	and	managed	through	the	dashboard.	Users	can	be
viewed	by	selecting	the	User	Records	item	under	the	Public	Data	header.	Data	can	be	viewed	by
selecting	the	Default	Zone	header	under	the	Public	Data	header.	After	the	Default	Zone	is	selected,
data	for	record	types	can	be	viewed	and	edited	by	selecting	a	record	type	in	the	upper	part	of	the

middle	panel,	as	shown	in	Figure	11.8.	Sorting	can	be	adjusted,	and	records	can	be	searched.
Individual	records	can	be	viewed,	added,	edited,	or	deleted.

Figure	11.8	CloudKit	Dashboard—Public	Data,	Default	Zone.

Private	data	is	visible	only	to	the	individual	iCloud	user.	Selecting	Default	Zone	under	the	Private
Data	heading	will	display	data	only	for	the	currently	logged-in	iCloud	user	in	the	dashboard.
In	the	Deployment	section	under	the	Admin	heading	(as	shown	in	Figure	11.9),	there	are	options	to
reset	the	development	environment	or	to	deploy	to	production.	Resetting	the	development
environment	is	the	“nuclear	option”—it	will	change	all	the	record	types	back	to	match	the	production
environment,	and	will	delete	all	the	data	in	the	development	environment.

Figure	11.9	CloudKit	Dashboard:	Deployment.

Summary
This	chapter	discussed	using	CloudKit	in	an	app.	It	covered	setting	up	the	app	to	use	CloudKit,	some
of	the	basic	CloudKit	concepts,	and	how	to	perform	basic	CloudKit	operations,	such	as	querying
records,	displaying	data	from	records,	and	creating,	updating,	and	saving	records.	The	chapter	then
explained	how	to	set	up	a	subscription	to	receive	data	update	notifications	via	push.	It	showed	how	to
customize	user	records	and	how	to	perform	user	discovery.	Finally,	this	chapter	explained	managing
CloudKit	using	the	CloudKit	dashboard.

12.	Extensions

Since	the	dawn	of	the	iOS	platform,	apps	have	been	sandboxed.	Third-party	apps	could	not	influence
any	other	app	with	the	exception	of	some	simple	URL	scheming.	With	the	introduction	of	iOS	8,
Apple	has	given	developers	the	ability	to	run	code	from	their	apps	outside	of	the	sandbox	for	the	first
time.	Although	extensions	are	limited	in	functionality,	they	add	a	great	amount	of	flexibility	to	the
developer ’s	tool	belt.	Six	types	of	extensions	are	available	on	the	iOS	platform	(Finder	Sync	is
uniquely	OS	X),	each	with	its	own	specific	function.	This	doesn’t	include	Apple’s	choice	to	use
extensions	to	power	WatchKit,	which	is	discussed	in	the	“Apple	Watch	Extension”	section	of	this
chapter.
This	chapter	covers	two	of	the	most	popular	extensions.	The	first	is	a	Today	widget,	which	enables
the	app	to	post	quick	at-a-glance	information	in	the	Notification	Center.	The	second	extension	is	an
Apple	Watch	Extension,	which	enables	an	iOS	app	to	post	information	and	receive	feedback	to	the
Apple	Watch.

Types	of	Extensions
Apple	has	broken	out	extensions	into	seven	unique	types	(six	of	which	are	available	on	iOS).	Each
extension	is	limited	and	restricted	to	protect	the	user	from	malicious	activity	and	provides	a	unique
type	of	functionality.	It	is	possible	for	a	single	app	to	provide	more	than	one	type	of	extension.	The
types	of	extensions	are	detailed	in	this	section.

Today
Today	Extensions,	often	simply	referred	to	as	widgets,	appear	in	the	Notification	Center	of	an	iOS
device.	They	are	called	Today	Extensions	because	the	section	of	the	Notification	Center	they	appear	in
is	the	Today	area.	These	widgets	are	designed	to	provide	quick	at-a-glance	information	or	accept	a
quick	action	like	a	button	press.
Some	developers	are	already	pushing	the	limits	of	what	Apple	intended	with	Today	Extensions.	When
the	popular	calculator	app	PCCalc	added	a	full	calculator	to	the	Notification	Center	through	a	Today
Extension,	Apple	initially	rejected	the	app,	only	later	reversing	their	decision	due	to	public	outcry.

Share
The	Share	Extension	gives	the	user	an	easy	and	convenient	method	to	share	content	with	other
services	or	Web	sites.	The	extension	will	add	functionality	to	the	built-in	share	dialog	on	iOS.	For
example,	if	developers	were	to	create	a	new	service	that	competed	with	Twitter,	they	could	write	an
extension	into	their	native	iOS	app.	That	extension	would	allow	other	apps	to	share	content	through
the	extension	directly	with	their	service	by	appearing	directly	in	the	sharing	sheet.

Action
An	Action	Extension	helps	users	view	or	transform	content	from	the	originating	app.	For	example,	if
you	have	an	app	that	enables	the	user	to	edit	a	selection	of	text,	a	new	Action	Extension	can	be	created
to	bring	in	text	from	other	apps.	For	example,	a	developer	could	write	an	extension	that	translated
Spanish	text	into	English.	An	Action	Extension	must	specify	the	type	of	data	that	it	is	designed	to	work
with	such	as	text,	video,	or	PDFs.

Photo	Editing
The	Photo	Editing	Extension	enables	the	user	to	edit	a	photo	or	video	within	Photos.app.	In	a	sense,
this	creates	a	custom	modification	plug-in	that	the	user	can	then	access	from	the	standard	Photo	app.
For	example,	a	developer	could	create	a	Photo	Editing	Extension	that	applies	a	set	of	custom	filters
that	would	become	available	to	the	user	on	his	photo	library.	As	with	any	other	changes	to	images	in
Photos.app,	the	original	is	always	saved	so	that	the	user	can	easily	revert	any	changes.

Document	Provider
The	Document	Provider	Extension	enables	a	developer	to	share	a	custom	type	of	file	across	multiple
apps.	The	Document	Provider	Extension	stores	all	these	associated	files	in	a	shared	location.	For
example,	Adobe	could	release	a	Photoshop	Document	Extension,	which	would	enable	apps	to	work
with	and	share	PSD	documents.

Custom	Keyboard
One	of	the	most	requested	features	from	iOS	users	before	iOS	8	was	to	be	able	to	install	custom
keyboards.	The	Custom	Keyboard	Extension	does	exactly	this,	and	enables	users	to	install	third-party
keyboards	with	varying	purposes	into	the	system	keyboard	selector.	The	Keyboard	Extension	is
limited	to	inputting	data	into	the	user ’s	selected	text	field	or	other	text	input	area.

Understanding	Extensions
There	are	many	types	of	extensions;	however,	they	all	share	something	in	common:	They	allow	the
execution	of	functionality	inside	an	app	that	might	not	be	created	by	the	same	developer	who	made	the
extension.	This	is	a	radical	shift	from	the	first	six	years	of	iOS	development.
Previously,	to	get	functionality	like	extensions,	the	user	was	required	to	be	running	a	jailbroken
device.	Apple	has	made	tremendous	efforts	to	ensure	that	extensions	do	not	cross	the	line	into
malware,	and	in	doing	so	has	placed	various	limitations	on	developing	extensions.	To	work
effectively	with	extensions,	you	need	to	first	understand	how	they	function.
Extensions	are	not	standalone	apps;	they	are	attached	to	another	app,	called	the	host	app,	through
which	the	user	installs	and	activates	the	extension.	If	the	user	uninstalls	the	host	app,	the	extension	is
removed	along	with	it.	Because	the	extension	isn’t	a	standalone	app,	it	isn’t	constantly	running	in	the
background;	the	extension	remains	unlaunched	until	the	user	chooses	it	from	an	app’s	interface	or
from	a	presented	activity	view	controller.	The	host	app	defines	the	parameters	of	the	extension	and
waits	for	the	user	to	activate	it.	After	the	extension	is	activated,	it	performs	its	duty	and	then
terminates.	Extensions	are	not	designed	to	continue	running	in	the	background	and	performing	long
processes.
While	an	extension	is	running,	there	is	no	direct	communication	between	the	extension	and	the
containing	app.	The	containing	app	will	pass	any	information	required	for	the	extension	to	perform
its	duties	upon	launch	and	then	wait	for	the	extension	to	terminate.

Note
An	app	extension	can	be	run	only	at	the	request	of	a	user;	there	is	no	way	to	auto-launch
or	auto-execute	an	extension	based	on	the	state	of	the	app.

API	Limitations
App	extensions	have	limitations	that	are	unique	when	dealing	with	iOS	development.	Many	APIs
cannot	be	accessed	from	within	an	extension	due	to	security	or	other	concerns:

	Extensions	cannot	access	sharedApplication	or	any	of	the	associated	methods	such	as
openURL,	delegate,	applicationState,	or	accessing	push	or	local	notification	settings.
	Apple	has	also	marked	certain	APIs	with	the	NS_EXTENSION_UNAVAILABLE	macro,	which
will	restrict	use	within	an	extension.	Examples	of	these	APIs	include	calendar	events	and
HealthKit	interaction.
	An	extension	might	not	activate	or	work	directly	with	the	camera	or	microphone.
	Extensions	might	not	perform	long-running	background	tasks	and	are	subject	to	app	store
rejection	or	runtime	termination	for	processes	that	take	too	long	to	run	in	the	background.
	AirDrop	is	not	accessible	from	within	the	extension;	however,	the	extension	can	access	data
sending	through	AirDrop	via	the	UIActivityViewController.

Extensions	are	brand-new	technology	from	both	a	code	standpoint	and	a	user-interaction	standpoint.
Apple	has	been	known	to	adapt	the	rules	for	their	developer	technologies	on	the	fly	to	ensure	the	best
possible	user	experience.

Creating	Extensions
Because	extensions	are	a	separate	target	that	belongs	to	a	host	app,	that	new	host	app	must	first	be
created.	Extensions	can	be	added	to	any	normal	iOS	project.	To	create	a	new	extension	in	Xcode	6,
select	File,	New,	Target.	This	opens	a	new	window	(see	Figure	12.1);	select	Application	Extension
from	the	list	on	the	left.	The	six	types	of	iOS	extensions	will	be	presented,	so	select	the	type	of
extension	that	will	be	added	to	your	project.

Figure	12.1	Adding	a	new	extension	to	a	project.

Upon	creation	of	the	extension,	a	new	group	will	be	created	in	the	project	with	the	extension’s	name.
This	group	will	contain	a	class	file	and	an	associated	storyboard.	If	a	Today	Extension	was	chosen,
running	the	project	now	will	display	a	Hello	World	widget	to	the	Notification	Center	(see	Figure
12.2).	Each	extension	has	default	properties	and	will	show	up	differently	when	testing.

Figure	12.2	A	Hello	World	Today	Extension	running	on	the	iOS	Simulator.

When	an	extension	is	being	run,	it	is	important	that	the	simulator	already	be	running	and	that	your
host	app	has	been	installed.	Failing	to	do	so	might	result	in	an	error,	as	shown	in	Figure	12.3.	If	an
extension	fails	to	load	or	compiles	new	source,	try	cleaning	the	project	and	rebuilding	the	host	app
and	then	the	extension	again.

Figure	12.3	An	unable-to-launch-extension	error	due	to	the	iOS	Simulator	not	being	launched.

Today	Extension
The	first	of	two	sample	apps	for	this	chapter	will	create	a	Today	Extension.	ICFToday	will	be	the	host
app	but	has	no	specific	functionality	itself	other	than	hosting	the	extension.	As	for	the	extension,	it
will	use	Yahoo’s	Finance	API	to	pull	down	the	most	recent	ask	price	for	Apple’s	Stock	and	display	it
to	the	Notification	Center.	A	refresh	button	is	also	provided	to	demonstrate	user	action	from	the
Today	Extension.
Following	the	directions	from	the	preceding	section,	a	new	project	is	created	and	a	new	Today
Extension	is	added	to	it.	The	extension	storyboard	is	set	up	with	a	single	label	to	reflect	the	price	of
the	stock	and	a	single	button	to	force	a	refresh	of	the	price.
A	new	method	is	created	by	default,	widgetPerformUpdateWithCompletionHandler.	This
method	will	be	called	when	the	Today	Extension	or	Widget	is	ready	to	be	updated.	This	usually
occurs	when	the	Notification	Center	is	presented	for	display.	Setting	a	breakpoint	on	this	method	will
cause	it	to	fire	every	time	Notification	Center	refreshes	or	is	reloaded.	The	first	thing	that	needs	to	be
done	is	to	set	the	dimensions	that	will	be	used	for	the	extension;	since	this	is	a	very	small	extension	it
needs	a	height	of	only	20	points.	The	second	line	of	this	method	performs	a	call	to	refresh	the	stock
price.
Click	here	to	view	code	image

-	(void)widgetPerformUpdateWithCompletionHandler:	(void	(^)
(NCUpdateResult))completionHandler
{
										self.preferredContentSize	=	CGSizeMake(0,	20);
									[self	refreshAction:	nil];

									completionHandler(NCUpdateResultNewData);
}

Yahoo	provides	a	simple	API	to	fetch	the	stock	price	of	any	listed	company.	The	URL	provided	in	the
following	method	simply	requests	the	current	ask	price	of	the	AAPL	stock.	The	results	are	delivered
in	a	CSV	file;	however,	with	only	one	line	item	in	that	file,	it	can	be	treated	as	plain	text.
Click	here	to	view	code	image

-(NSString	*)getStockPrice
{
									NSURL	*url	=	[NSURL	URLWithString:	@"http://finance.yahoo.com/d/quotes.csv?
s=AAPL&f=a"];

									NSError	*error	=	nil;

									NSString	*quote	=	[NSString	stringWithContentsOfURL:url

encoding:NSASCIIStringEncoding	error:&error];

								return	quote;
}

Running	the	extension	target	will	now	launch	into	the	Notification	Center	and	display	the	current
asking	price	for	AAPL,	as	shown	in	Figure	12.4.

Figure	12.4	Viewing	a	Today	Extension	that	shows	the	current	stock	price	for	AAPL.

Sharing	Code	and	Information	between	Host	App	and	Extension
An	extension	cannot	directly	communicate	with	its	host	app,	nor	can	it	share	code	in	the	typical	sense.
In	the	real	world,	both	of	these	requirements	are	often	necessary.	To	share	code	between	the	extension
and	the	host	app,	an	embedded	framework	can	be	created.	The	embedded	framework	can	then	be
referenced	from	both	targets	and	code	can	effectively	be	shared	between	the	host	app	and	the
extension.
To	create	a	new	framework,	select	the	project	in	the	Project	Navigator	and	add	a	new	target	by

selecting	Editor,	Add	Target.	Select	iOS,	Framework	&	Library,	and	then	Cocoa	Touch	Framework
from	the	prompt	window.	The	Framework	can	now	be	added	to	both	targets,	and	class	files	can	be
shared	between	the	extension	and	the	host	app.
Often,	an	extension	needs	to	be	able	to	share	data	between	itself	and	the	host	app.	Because	both	targets
do	not	share	the	same	sandbox,	they	cannot	directly	interact	with	each	other.	However,	with	the
leveraging	of	another	iOS	8	technology,	simple	data	sharing	becomes	possible.
Apple	allows	for	App	Groups	that	allow	a	set	of	apps	from	the	same	developer	to	share	limited	data.
The	same	technology	can	be	used	to	share	data	between	an	extension	and	an	app.	App	Groups	can	be
turned	on	through	the	capabilities	section	of	the	project	editor.	Sharing	NSUserDefaults	through
App	Groups	after	it’s	enabled	is	as	easy	as	working	with	NSUserDefaults	on	older	versions	of
iOS.	A	new	instance	of	NSUserDefaults	is	created	and	stored	using	the	group	identifier	that	was
created	in	the	App	Groups	project	settings.
Click	here	to	view	code	image

[[NSUserDefaults	alloc]	initWithSuiteName:@"<group	identifier>"];

Note
When	you	are	using	App	Groups	and	NSUserDefaults,	it	is	important	to	remember
that	NSUserDefaults	for	both	targets	still	exist	and	this	is	different	than	referencing
the	shared	groups	NSUserDefaults.	Items	saved	into	each	target’s	defaults	do	not
automatically	become	available	in	the	shared	defaults.

Apple	Watch	Extension
The	Apple	Watch	was	announced	at	a	special	Apple	event	on	September	9,	2014.	There	had	been
rumors	of	an	Apple-branded	watch	for	several	years	before	the	release.	Those	rumors	were	put	to
bed	when	Tim	Cook	showed	the	first	device	onstage.	Apple	has	had	a	history	of	revolutionizing
industries,	from	the	personal	computer	to	MP3	player,	smartphones,	and	tablet	computing.	Whether
the	Apple	Watch	will	be	the	next	great	technology	revolution	ushered	in	by	Apple	remains	to	be	seen.
Apple	has	promised	two	software	development	rollouts	for	the	Apple	Watch.	The	first	WatchKit	is
available	in	Xcode	6.2	or	newer;	the	second,	a	true	native	SDK,	is	expected	sometime	in	2015.	This
first	phase	of	Apple	rolling	out	Apple	Watch	app	development	centers	on	extensions.	The	current
WatchKit	development	package	works	much	like	a	Today	Extension,	covered	earlier	in	this	chapter.

Note
Apple	WatchKit	Development	requires	Xcode	6.2	Beta	3	or	newer.

To	create	a	new	WatchKit	project,	a	host	app	needs	to	be	first	created.	Apple	has	not	allowed	for
standalone	apps	on	the	Apple	Watch	yet.	Every	third-party	app	currently	allowed	on	the	Apple	Watch
must	be	hosted	on	another	external	iOS	device.	The	process	for	adding	a	WatchKit	component	to	an
existing	app	is	the	same	as	for	the	Today	Extension,	with	the	difference	of	selecting	Apple	Watch
from	the	template	target	menu	(see	Figure	12.5).

Figure	12.5	Creating	a	new	WatchKit	app.

Creating	the	new	WatchKit	app	target	will	also	generate	several	new	files,	an
InterfaceController	and	NotificationController,	as	well	as	supporting	files	such	as
info.plist	and	asset	catalogs.	Unlike	with	a	Today	Extension,	no	WatchKit	storyboard	is	created.
Running	the	WatchKit	app	will	produce	a	blank	AppleWatch	interface	(see	Figure	12.6).	The	interface
contains	just	a	clock	and	power	indicator.	Create	a	new	storyboard	from	the	Add	File	menu,	and	select
a	WatchKit	storyboard	from	the	available	options.

Figure	12.6	A	WatchKit	Extension	running	on	the	iOS	Simulator.

The	WatchKit	storyboard	contains	a	whole	different	set	of	controls	than	standard	iOS	development.

Although	there	are	many	familiar	items	to	a	veteran	iOS	developer,	there	is	a	significant	amount	of
difference	in	their	appearance	and	behavior.	Familiar	controls	such	as	labels,	tables,	and	standard
controls	are	available.	Some	customized	controls	such	as	steppers,	date	display,	and	date	pickers	are
made	available	as	well.
When	you	are	working	with	the	storyboard	file,	it	will	quickly	become	apparent	not	only	that	items
snap	into	position	unlike	iOS	but	also	that	there	are	no	standard	autolayout	controls.	However,	this
might	certainly	change	as	Xcode	6.2	progresses	through	betas	and	WatchKit	is	refined.	Instead,
WatchKit	uses	several	positioning	controls	(see	Figure	12.7).

Figure	12.7	Positioning	controls	on	WatchKit	differ	from	the	standard	autolayout	approach	found
on	iOS.

Hooking	up	controls	like	outlets	and	actions	is	identical	to	standard	iOS	development	practices.	In	the
sample	app,	a	new	label	and	button	are	created.	The	only	difference	is	that	UILabel	is	called
WKInterfaceLabel	on	the	Apple	Watch.	The	WatchKit	simulator	has	significant	lag	between
interactions	and	responses.	Whether	this	will	carry	over	to	physical	devices	or	is	a	symptom	of	the
simulator	is	currently	unknown.	However,	since	WatchKit	is	functioning	as	an	extension	that	runs	on
another	device,	some	lag	would	be	expected.
This	simple	WatchKit	app	should	provide	the	groundwork	required	to	expand	on	the	interface	and
functionality	with	existing	iOS	development	knowledge.	The	platform,	though	in	its	infancy,	already
provides	a	lot	of	functionality	and	options.

Note
Apple	WatchKit	Development	has	been	rapidly	changing	since	introduction.	The
materials	in	this	chapter	were	written	while	WatchKit	was	in	early	stages	of	beta.	A
number	of	bugs	are	being	worked	out	in	each	release,	and	the	material	in	this	section	was
kept	as	simple	as	possible	in	the	hopes	that	it	will	remain	functional	through	future
releases.

Summary
Extensions	are	a	new	and	exciting	shift	in	thinking	on	iOS.	Extensions	are	expected	to	continue	to	be
refined	and	adapted	in	the	future.	The	basic	initial	functionality	of	extensions	allows	for	a	great
amount	of	flexibility	and	features	that	were	not	previously	available	in	iOS	development.	The	use	of
extension-like	behavior	for	the	Apple	Watch	shows	that	Apple	is	behind	this	technology	and	that	they
are	taking	the	slow	and	proper	approach	to	allowing	cross-app	interaction.	Security,	stability,	and
user	safety	have	always	been	of	the	utmost	importance	for	Apple,	and	extensions	enable	them	to
maintain	that	focus	while	giving	developers	functionality	that	has	been	requested	since	the	initial	iOS
release.
Although	extensions	are	a	fairly	large	topic	covering	various	types	of	interactions,	the	material
provided	in	this	chapter	should	provide	a	comfort	level	enabling	a	developer	to	dig	into	and	begin
working	with	and	exploring	the	power	of	app	extensions.	There	have	been	only	a	handful	of	times	in
the	evolution	of	the	iOS	developer	platform	when	a	new	technology	allows	for	a	radical	change	in	the
flexibility	of	the	developer.	Extensions	are	one	of	these	few	giant	leaps	forward.	No	one,	including
Apple,	has	any	idea	what	developers	will	do	with	this	technology,	and	that	always	makes	for	a	very
interesting	development	platform.

13.	Handoff

Handoff	is	one	of	several	features	introduced	with	iOS	8	and	OS	X	Yosemite	to	support	Continuity.
Given	the	proliferation	of	devices	including	desktop	computers,	laptop	computers,	iPhones,	iPads,
and	iPod	touches,	Continuity	is	intended	to	help	those	devices	work	together	seamlessly.	Continuity
includes	features	that	leverage	proximity	of	devices	and	special	features	that	devices	support,	such	as
placing	a	call	or	sending	a	text	message	from	a	laptop	or	an	iPad	using	a	nearby	iPhone,	or	having	an
Internet	hotspot	connection	instantly	available	for	another	device	that	does	not	have	a	cellular	Internet
capability.	Handoff	provides	the	capability	for	an	app	or	application	to	advertise	what	user	activity	it
is	currently	performing	so	that	the	activity	can	be	picked	up	and	continued	on	another	device.

The	Sample	App
The	sample	app	for	this	chapter	is	called	HandoffNotes,	which	is	a	basic	note	app	built	to	demonstrate
the	basics	of	Handoff.	The	app	enables	a	user	to	keep	a	list	of	notes	using	two	different	storage
approaches:	iCloud	key-value	storage	and	iCloud	document	storage.	Each	note	includes	a	title,	note
text,	and	a	date	when	the	note	was	created.	The	Handoff	capability	will	be	advertised	when	a	user	is
editing	a	note	in	either	approach.	Note	that	the	sample	app	requires	the	device	to	be	logged	in	to	a
valid	iCloud	account	to	work	correctly.

Handoff	Basics
Handoff	requires	two	devices	running	either	iOS	8	or	higher	or	OS	X	Yosemite	or	higher.	Each
device	must	be	logged	in	to	the	same	iCloud	account,	and	each	device	must	support	Bluetooth	version
4.0	(also	known	as	BTLE	or	Bluetooth	Low	Energy).	This	setup	will	allow	iOS	and	OS	X	to	perform
automatic	device	pairing	and	enable	Handoff.
When	a	user	is	engaging	in	a	Handoff-capable	activity	on	a	device,	the	Handoff	activity	will	be
advertised	to	other	nearby	devices.	For	example,	if	a	user	is	viewing	a	Web	page	in	Safari	on	an	iOS
device	and	then	opens	her	laptop	nearby,	OS	X	will	show	that	an	activity	is	available	for	Handoff	in
the	Dock,	as	shown	in	Figure	13.1.

Figure	13.1	Handoff	advertisement	shown	in	OS	X	Dock.

Similarly,	if	a	user	is	editing	a	note	in	HandoffNotes	and	opens	another	iOS	device	nearby,	the	lock
screen	will	show	that	HandoffNotes	has	an	activity	available	for	Handoff	in	the	lower-left	portion	of
the	screen,	by	displaying	the	HandoffNotes	app	icon	next	to	the	Slide	to	Unlock	view,	as	shown	in
Figure	13.2.

Figure	13.2	Handoff	advertisement	shown	on	the	iOS	lock	screen.

In	either	case,	if	the	user	taps	the	advertisement	in	the	Dock	in	OS	X,	or	slides	up	the	icon	on	the	lock
screen	in	iOS,	the	target	app	will	be	displayed.	In	the	Safari	example	the	Web	page	that	the	user	was
browsing	will	be	displayed,	and	in	the	HandoffNotes	example	the	app	will	navigate	to	the	note	the
user	was	editing,	and	include	any	in-progress	updates	to	the	note.
Handoff	utilizes	a	simple	mechanism	to	facilitate	advertisement	and	continuation:
NSUserActivity.	In	iOS,	many	UIKit	classes	(including	UIResponder)	have	an
NSUserActivity	property	so	that	a	user	activity	can	be	set	and	propagate	through	the	responder
chain.	This	enables	the	developer	to	determine	the	best	representation	of	a	user	activity,	whether	that
is	viewing	some	content,	editing	some	text,	or	performing	some	other	activity,	and	tie	a	Handoff
activity	to	that	directly	in	the	user	interface.	In	addition,	UIDocument	has	support	for
NSUserActivity	that	makes	supporting	Handoff	in	document-based	apps	simple.
An	instance	of	NSUserActivity	contains	two	critical	pieces	of	information:	an	activityType
that	identifies	what	the	user	is	doing,	and	a	userInfo	dictionary	that	contains	specific	information
about	the	user	activity.	An	activityType	should	be	a	reverse	DNS	string	identifier	that	uniquely
identifies	an	activity.	When	a	user	activity	is	set,	iOS	will	be	able	to	advertise	it,	as	shown	in	Figures
13.1	and	13.2.	When	the	user	continues	the	activity	on	another	device,	the	activity	will	be	passed	to	the
destination	app,	and	then	the	activityType	and	userInfo	can	be	used	by	the	destination	device

to	navigate	to	the	right	place	in	the	app	and	pick	up	the	activity	where	it	left	off.	Note	that	the
userInfo	dictionary	is	not	intended	to	be	a	data	transport	mechanism.	Apple	recommends	that	the
userInfo	dictionary	contain	the	minimum	of	information	required	to	restart	the	user	activity	on
another	device,	and	that	other	transport	mechanisms	such	as	iCloud	be	used	to	move	the	actual	data.
NSUserActivity	does	provide	a	capability	to	establish	a	data	stream	between	devices	to	move	data
between	them	if	other	transport	mechanisms	are	not	sufficient.

Tip
Before	attempting	Handoff	in	an	app,	be	sure	that	Handoff	works	with	test	devices	using
Apple’s	apps	that	support	Handoff	(like	Safari,	Keynote,	or	Pages,	for	example).	This
will	ensure	that	the	test	devices	are	properly	configured	to	meet	all	the	Handoff
requirements,	like	having	Bluetooth	4.0–enabled	and	matching	iCloud	accounts.	Without
this	step,	it	is	easy	to	spend	a	lot	of	time	investigating	Handoff	issues	in	the	wrong	place.

Implementing	Handoff
For	apps	that	are	not	document	based,	Handoff	can	be	implemented	directly.	The	developer	must
determine	what	activity	or	activities	the	app	should	advertise,	and	how	the	Handoff	should	occur.	A
Handoff	will	frequently	require	navigation	to	the	right	place	in	an	app,	and	potentially	some	data
transfer	of	in-progress	updates.
To	get	started,	the	app	needs	to	declare	what	activity	types	are	supported.	In	the	Info.plist	for	the
target,	there	needs	to	be	an	entry	called	NSUserActivityTypes.	That	entry	should	contain	an
array	of	activity	type	strings,	each	of	which	represents	a	reverse	DNS	identifier	for	an	activity	type
that	the	app	supports,	as	shown	in	Figure	13.3.

Figure	13.3	NSUserActivityTypes	entry	for	manual	NSUserActivity.

After	the	app	info	is	configured,	it	can	be	customized	to	advertise	a	user	activity	and	continue	a	user
activity.

Creating	the	User	Activity
The	sample	app	uses	the	iCloud	key-value	store	as	a	trivial	storage	and	transport	mechanism	to
illustrate	the	manual	approach	to	Handoff;	production	apps	will	likely	have	a	more	complex	and
robust	approach	to	storage	and	data	transport.	The	sample	app	maintains	a	list	of	notes	in	an	array	in
the	key-value	store,	and	ensures	that	the	key-value	store	is	consistent	across	devices.	To	communicate
which	note	is	being	edited,	the	sample	app	just	needs	to	know	the	index	of	the	note	in	the	note	array.	In
addition,	the	sample	app	will	capture	in-progress	updates	to	the	note	to	communicate	as	well.
When	the	user	is	editing	a	note	in	ICFManualNoteViewController,	an	instance	of
NSUserActivity	will	be	created	and	configured	with	an	activity	type.	The	activity	type	string	must
match	the	string	declared	in	the	Info.plist	file.	The	sample	app	configures	the	user	activity	in	the
viewWillAppear:	method,	but	other	apps	should	take	a	close	look	at	what	the	user	is	doing	to
determine	the	right	timing	for	setting	up	the	user	activity.
Click	here	to	view	code	image

NSUserActivity	*noteActivity	=	[[NSUserActivity	alloc]
initWithActivityType:@"com.explore-systems.handoffnotes.manual.editing"];

noteActivity.userInfo	=	@{@"noteIndex":@(self.noteIndex),
																										@"noteTitle":self.note[@"title"],
																										@"noteText":self.note[@"note"]};

[noteActivity	setDelegate:self];
	self.userActivity	=	noteActivity;

The	user	activity	is	configured	with	a	userInfo	dictionary	containing	information	about	the	current
activity,	is	assigned	the	current	view	controller	as	the	delegate,	and	then	is	assigned	to	the	current
view	controller ’s	userActivity	property.	After	that	is	done,	the	app	will	automatically	start
advertising	the	user	activity	to	other	devices.
As	the	user	is	performing	an	activity,	the	userActivity	should	be	kept	up-to-date	to	correctly
reflect	the	state	of	the	activity.	In	the	sample	app,	as	the	user	updates	the	text	and	title	of	the	note,	the
userActivity	will	be	updated.	To	efficiently	update	the	userActivity,	the	sample	app
indicates	that	something	has	happened	that	requires	the	userActivity	to	be	updated.	In	this	case
when	the	user	changes	the	text	in	either	the	note	text	view	or	the	title	text	label,	the	setNeedsSave:
method	will	be	called.
Click	here	to	view	code	image

-	(BOOL)textField:(UITextField	*)textField	shouldChangeCharactersInRange:(NSRange)range
replacementString:(NSString	*)string	{

				[self.userActivity	setNeedsSave:YES];
				return	YES;
}
-	(void)textViewDidChange:(UITextView	*)textView	{
				[self.userActivity	setNeedsSave:YES];
}

Then,	the	delegate	method	called	updateUserActivityState:	can	be	implemented	to	the
update	the	user	activity.
Click	here	to	view	code	image

-	(void)updateUserActivityState:(NSUserActivity	*)activity	{
				activity.userInfo	=	@{@"noteIndex":@(self.noteIndex),

																										@"noteTitle":self.noteTitle.text,
																										@"noteText":self.noteDetail.text};
				NSLog(@"user	info	is:	%@",activity.userInfo);
}

The	delegate	method	will	be	called	periodically	and	will	keep	the	user	activity	up-to-date.	As	the	user
activity	is	advertised,	it	will	be	visible	on	other	devices,	as	shown	in	Figure	13.2.	When	the	user
leaves	the	editing	view,	the	user	activity	will	be	automatically	invalided	and	the	advertisement	will
stop.	If	a	user	activity	should	be	ended	independently	of	a	view	controller,	the	invalidate	method
can	be	called.

Continuing	an	Activity
When	a	user	swipes	up	the	icon	as	shown	in	Figure	13.2	to	continue	an	activity,	the	app	delegate	will
be	notified	that	the	user	would	like	to	continue	an	activity.	First,	the
application:willContinueUserActivityWithType:	method	will	be	called	to	determine
whether	the	app	can	continue	the	activity.	This	method	should	return	a	YES	or	NO	to	indicate	whether
the	activity	will	be	continued,	and	any	custom	logic	required	to	determine	whether	an	activity	will	be
continued	can	be	implemented	there.	In	addition,	this	is	a	good	opportunity	to	update	the	user
interface	to	notify	the	user	that	an	activity	will	be	continued,	in	case	the	continuation	is	not
instantaneous.
Next,	the	application:continueUserActivity:restorationHandler:	method	will	be
called	to	perform	the	continuation.	This	method	should	check	the	activityType	of	the	passed-in
userActivity,	and	do	any	necessary	setup	or	navigation	to	get	the	app	to	the	right	place	to
continue	the	activity.	After	the	setup	is	complete,	the	restorationHandler	can	be	called	with	an
array	of	view	controllers	that	should	perform	additional	configuration	to	restore	the	activity.	In	the
sample	app,	the	method	will	synchronize	the	iCloud	key-value	store	to	ensure	that	state	is	the	same
across	devices.	Then,	it	will	navigate	to	the	manual	note	list,	and	call	the	restoration	handler	passing
the	manual	note	list	view	controller	to	perform	the	rest	of	the	navigation	and	setup.
Click	here	to	view	code	image

UIStoryboard	*storyboard	=	[UIStoryboard	storyboardWithName:@"Main"
																																																					bundle:[NSBundle	mainBundle]];

ICFManualNoteTableViewController	*manualListVC	=	[storyboard
instantiateViewControllerWithIdentifier:	@"ICFManualNoteTableViewController"];

[navController	pushViewController:manualListVC	animated:NO];

restorationHandler(@[manualListVC]);

When	the	restorationHandler	block	is	called,	it	will	call	the	restoreUserActivity-
State:	method	on	each	view	controller	included	in	the	array	parameter.	In	the	sample	app,	the
method	will	navigate	to	the	right	note	for	the	index	included	in	the	userInfo	of	the	user	activity.
Click	here	to	view	code	image

if	([activity.userInfo	objectForKey:@"noteIndex"])	{
				NSNumber	*resumeNoteIndex	=	[[activity	userInfo]	objectForKey:@"noteIndex"];

				NSIndexPath	*resumeIndexPath	=	[NSIndexPath	indexPathForRow:[resumeNoteIndex
integerValue]
																									inSection:0];
				[self.tableView	selectRowAtIndexPath:resumeIndexPath

																																animated:NO
																										scrollPosition:UITableViewScrollPositionNone];

				[self	performSegueWithIdentifier:@"showNoteDetail"	sender:activity];
}

The	method	passes	the	user	activity	as	a	parameter	when	performing	the	segue	to	the	detail	screen;
this	enables	the	segue	to	customize	the	note	with	in-progress	information.
Click	here	to	view	code	image

if	([segue.identifier	isEqualToString:@"showNoteDetail"])	{

				ICFManualNoteViewController	*noteVC	=	(ICFManualNoteViewController
*)segue.destinationViewController;

				NSUInteger	selectedIndex	=	[[self.tableView	indexPathForSelectedRow]	row];
				NSDictionary	*note	=	[self.noteList	objectAtIndex:selectedIndex];

				if	([sender	isKindOfClass:[NSUserActivity	class]])	{
								NSUserActivity	*activity	=	(NSUserActivity	*)sender;
								note	=	@{@"title":activity.userInfo[@"noteTitle"],
																	@"note":activity.userInfo[@"noteText"],
																	@"date":note[@"date"]};
				}
				[noteVC	setNote:note];
				[noteVC	setNoteIndex:selectedIndex];
}

After	the	segue	is	complete,	the	note	detail	screen	reflects	the	state	of	the	note	on	the	originating
device.	Because	the	originating	user	activity	has	been	successfully	continued,	it	should	stop
advertising	to	other	devices.	To	do	that,	the	note	detail	view	controller	implements	the	user-
ActivityWasContinued:	method,	which	calls	the	invalidate	method	on	the
userActivity	so	that	it	stops	advertising	from	the	originating	device.
Click	here	to	view	code	image

-	(void)userActivityWasContinued:(NSUserActivity	*)userActivity	{
				[self.userActivity	invalidate];
}

Now	that	the	app	has	communicated	the	state	of	a	user	activity	from	one	device	to	another,	the	user
can	pick	up	on	the	new	device	where	he	left	off	the	originating	device	with	minimal	effort.

Implementing	Handoff	in	Document-Based	Apps
Instances	of	UIDocument	have	an	NSUserActivity	property	that	is	automatically	set	up,	called
userActivity.	If	the	document	is	saved	in	iCloud,	the	file	URL	of	the	document	will	be	included	in
the	userInfo	of	the	userActivity	so	that	the	receiving	device	can	access	the	document.	In	the
sample	app,	the	document	notes	demonstrate	this	approach.	To	see	it	in	action,	tap	UIDocument	from
the	top	menu,	and	tap	an	existing	note.	When	the	document	has	been	opened	in	the	viewDidLoad
method	of	ICFDocumentNoteViewController,	an	NSUserActivity	is	created	and	assigned
to	the	document	automatically,	with	no	custom	code	required.
Click	here	to	view	code	image

self.noteDocument	=
[[ICFNoteDocument	alloc]	initWithFileURL:[self	noteURL]];

[self.noteDocument	openWithCompletionHandler:^(BOOL	success)	{

				[self.noteTitle	setText:[self.noteDocument	noteTitle]];
				[self.noteDetail	setText:[self.noteDocument	noteText]];

				UIDocumentState	state	=	self.noteDocument.documentState;

				if	(state	==	UIDocumentStateNormal)	{
								[self.noteTitle	becomeFirstResponder];
								NSLog(@"opened	and	first	responder.");
				}
}];

In	order	for	the	NSUserActivity	instance	to	be	created	automatically	for	the	UIDocument
instance,	some	additional	set	up	in	the	project	is	required.	For	each	document	type	supported	by	an
app,	an	NSUbiquitousDocumentUserActivityType	entry	needs	to	be	included	in	the
CFBundleDocumentTypes	entry	in	the	Info.plist	file	as	shown	in	Figure	13.4.

Figure	13.4	NSUbiquitousDocumentUserActivityType	entry	for	automatic
NSUserActivity	on	UIDocument.

In	addition,	a	Uniform	Type	Indicator	(UTI)	needs	to	be	declared	for	the	document	in	the
Info.plist	file	as	shown	in	Figure	13.5.

Figure	13.5	Uniform	Type	Indicator	(UTI)	entry	for	UIDocument	file	type.

When	the	activity	is	continued	on	another	device,	the
application:continueUserActivity:restorationHandler:	method	in	the	app	on	the
receiving	device	will	check	the	activity	type,	and	then	will	navigate	to	the	document	note	list	screen
and	call	the	restorationHandler.
Click	here	to	view	code	image

UINavigationController	*navController	=	(UINavigationController
*)self.window.rootViewController;

[navController	popToRootViewControllerAnimated:NO];

UIStoryboard	*storyboard	=	[UIStoryboard	storyboardWithName:@"Main"	bundle:[NSBundle
mainBundle]];

ICFDocumentNoteTableViewController	*documentListVC	=	[storyboard
instantiateViewControllerWithIdentifier:	@"ICFDocumentNoteTableViewController"];

[navController	pushViewController:documentListVC	animated:NO];
restorationHandler(@[documentListVC]);

The	restorationHandler	will	call	the	restoreUserActivityState:	method	in	the
document	note	table	view	controller,	which	will	get	the	file	URL	for	the	document	in	the	userInfo
of	the	userActivity	passed	in,	using	the	key	NSUserActivityDocumentURLKey.
Click	here	to	view	code	image

if	([activity.userInfo	objectForKey:NSUserActivityDocumentURLKey])	{

				self.navigateToURL	=	[activity.userInfo	objectForKey:NSUserActivityDocumentURLKey];

				[self	performSegueWithIdentifier:@"showDocNoteDetail"
																														sender:activity];
}

The	document	note	detail	screen	will	be	displayed,	the	document	for	the	file	URL	in	the	activity	will
be	loaded,	and	the	user	can	pick	up	on	the	new	device	where	she	left	off	the	originating	device.

Summary
This	chapter	looked	at	using	Handoff	to	continue	a	user ’s	activity	between	devices	in	an	app.	It
covered	the	basic	requirements	of	Handoff,	such	as	having	Bluetooth	4.0–enabled	devices	running
either	OS	X	Yosemite	or	iOS	8.0	or	higher	on	the	same	iCloud	account.	It	explained	how	to	set	up	a
user	activity	so	that	it	will	be	advertised	to	other	devices,	and	how	to	continue	a	user	activity	from
another	device.	This	chapter	also	explained	how	to	support	automatic	user	activity	creation	and
handling	with	UIDocument.

14.	AirPrint

Without	a	doubt,	printing	is	going	the	way	of	the	dodo	bird	and	the	Tasmanian	tiger,	but	it	will	not
happen	overnight.	Plenty	of	solid	autumn	years	remain	for	physical	printing.	Print	will	most	likely
cling	to	life	for	a	long	time,	along	with	the	fax.	Apple	has	provided	an	SDK	feature,	aptly	named
AirPrint,	since	iOS	4,	which	allows	for	physical	printing	to	compatible	wireless	printers.
With	the	expansion	and	trust	of	mobile	software	into	more	established	traditional	fields	over	the	past
few	years,	AirPrint	is	becoming	more	popular.	Point-of-sales	apps	and	medical-processing	apps	both
have	a	strong	need	for	being	able	to	print	physical	documents.

AirPrint	Printers
There	is	a	limited	selection	of	AirPrint-enabled	printers,	even	more	than	four	years	after	the	release
of	AirPrint.	Most	major	printer	manufacturers	now	have	at	least	a	few	models	that	support	AirPrint.
Apple	also	maintains	a	list	of	compatible	printers	through	a	tech	note
(http://support.apple.com/kb/HT4356).	In	addition,	some	third-party	Mac	applications	enable	AirPrint
for	any	existing	printer,	such	as	Printopia	($19.95	at	www.ecamm.com/mac/printopia).
Since	the	release	of	AirPrint,	there	have	been	numerous	blogs,	articles,	and	how-tos	written	on	testing
AirPrint.	Apple	seems	to	have	taken	notice	of	the	need	and	has	started	to	bundle	an	app	with	the
developer	tools	called	Printer	Simulator
(Developer/Platforms/iPhoneOS.platform/Developer/Applications),	as	shown
in	Figure	14.1.	Printer	Simulator	enables	your	Mac	to	host	several	printer	configurations	for	the	iOS
Simulator	to	print	to;	using	this	tool,	you	can	test	a	wide	range	of	compatibility.

Figure	14.1	The	Printer	Simulator	tool.

The	sample	app	for	this	chapter	is	a	simple	iPhone	app	that	provides	the	user	with	two	views,	as
shown	in	Figure	14.2.	The	first	view	is	a	simple	text	editor,	which	will	demo	how	to	position	pages
and	text.	The	second	view	is	a	Web	browser,	which	will	demo	how	to	print	rendered	HTML	as	well	as
PDF	screen	grabs.

http://support.apple.com/kb/HT4356
http://www.ecamm.com/mac/printopia

Figure	14.2	Print,	the	sample	app	for	AirPrint.

The	Print	app	is	simple	and	does	not	contain	a	significant	amount	of	overhead	code.	It	is	based	on	the
Apple	TabBarController	default	project,	containing	two	tabs.	The	text	editor	contains	a	UITextView
as	well	as	two	buttons:	one	to	hide	the	keyboard,	the	other	to	begin	the	print	process.	The	Web
browser	view	contains	a	Print	button	but	also	needs	a	URL	entry	text	field.

Testing	for	AirPrint
It	is	important	to	test	for	AirPrint	support	in	your	software	before	enabling	the	functionality	to	users,
because	some	of	your	users	might	be	running	an	iOS	version	that	does	not	support	AirPrint.	In	the
sample	app,	this	is	performed	as	part	of	the
application:didFinishLaunchingWithOptions:	method	using	the	following	code
snippet:
Click	here	to	view	code	image

if	(![UIPrintInteractionController	isPrintingAvailable])
{

						UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Error"	message:@"This
device	does	not	support	printing!"	delegate:nil	cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];

						[alert	show];
}

Note
AirPrint	is	defined	as	part	of	UIKit	so	there	are	no	additional	headers	or	frameworks
that	need	to	be	imported.

Printing	Text
Printing	text	is	probably	the	most	common	use	case	for	not	just	AirPrint	but	any	kind	of	print	job.
Using	AirPrint	to	print	text	can	be	complex	if	you	aren’t	familiar	with	printing	terminology.	The
following	code	is	from	the	ICFFirstViewController.m	class	of	the	sample	app.	Look	at	it	as	a
whole	first;	later	in	this	section,	it	will	be	broken	down	by	each	line	and	discussed.
Click	here	to	view	code	image

-	(IBAction)print:(id)sender
{
				UIPrintInteractionController	*print	=	[UIPrintInteractionController
sharedPrintController];

				print.delegate	=	self;

				UIPrintInfo	*printInfo	=	[UIPrintInfo	printInfo];
				printInfo.outputType	=	UIPrintInfoOutputGeneral;
				printInfo.jobName	=	@"Print	for	iOS";
				printInfo.duplex	=	UIPrintInfoDuplexLongEdge;
				print.printInfo	=	printInfo;

				print.showsPageRange	=	YES;

				UISimpleTextPrintFormatter	*textFormatter	=	[[UISimpleTextPrintFormatter	alloc]
initWithText:[theTextView	text]];

				textFormatter.startPage	=	0;

				textFormatter.contentInsets	=	UIEdgeInsetsMake(36.0,	36.0,36.0,	36.0);

				textFormatter.maximumContentWidth	=	540;

				print.printFormatter	=	textFormatter
}

The	preceding	code	takes	the	contents	of	a	text	view	and	prints	it	formatted	for	8	1/2-	by	11-inch
paper	with	1/2-inch	margins	on	all	sides.	The	first	thing	you	need	to	do	whenever	you	want	to	prepare
for	a	print	operation	is	create	a	reference	to	the	sharedPrintController	using	the	following
code	snippet:
Click	here	to	view	code	image

UIPrintInteractionController	*print	=	[UIPrintInteractionController
sharedPrintController];

In	the	next	line	of	the	sample	app,	a	delegate	is	set.	The	delegate	methods	for	printing	are	defined	in
the	upcoming	section	“UIPrintInteractionControllerDelegate.”

Print	Info
The	next	step	is	to	configure	the	print	info.	This	specifies	a	number	of	controls	and	modifiers	for
how	the	print	job	is	set	up.	You	can	obtain	a	new	default	UIPrintInfo	object	using	the	provided
UIPrintInfo	singleton.
The	first	property	that	is	set	on	the	print	info	in	the	sample	app	is	outputType.	In	the	example,	the
output	is	set	as	UIPrintInfoOutputGeneral.	This	specifies	that	the	print	job	can	be	a	mix	of
text,	graphics,	and	images,	as	well	as	setting	the	default	paper	size	to	letter.	Other	options	for
outputType	include	UIPrintInfoOutputPhoto	and	UIPrintInfoOutputGrayscale.
The	next	property	that	is	set	is	the	jobName.	This	is	an	optional	field	that	is	used	to	identify	the	print
job	in	the	print	center	app.	If	you	do	not	set	a	jobName,	it	is	defaulted	to	the	app’s	name.
Duplexing	in	the	printer	world	refers	to	how	the	printer	handles	double-sided	printing.	If	the	printer
does	not	support	double-sided	printing,	these	properties	are	ignored.	You	can	supply
UIPrintInfoDuplexNone	if	you	would	like	to	prevent	double-sided	printing.	To	use	double-
sided	printing,	you	have	two	options:	UIPrintInfoDuplexLongEdge,	which	will	flip	the	back
page	along	the	long	edge	of	the	paper,	and	UIPrintInfoDuplexShortEdge,	which,	as	the	name
implies,	flips	the	back	page	along	the	short	side	of	the	paper.
In	addition	to	the	printInfo	properties	that	are	used	in	the	sample	code,	there	are	two	additional
properties.	The	first,	orientation,	enables	you	to	specify	printing	in	either	landscape	or	portrait.
The	second	is	printerID,	which	enables	you	to	specify	a	hint	on	which	printer	to	use.	PrinterID
is	often	used	to	automatically	select	the	last	used	printer,	which	can	be	obtained	using	the
UIPrintInteractionControllerDelegate.
After	you	configure	the	printInfo	for	the	print	job,	you	need	to	set	the	associated	property	on	the
UIPrintInteractionController.	An	example	is	shown	in	the	next	code	snippet:

print.printInfo	=	printInfo;

Setting	Page	Range
In	many	cases,	a	print	job	will	consist	of	multiple	pages,	and	occasionally	you	will	want	to	provide
the	user	with	the	option	of	selecting	which	of	those	pages	is	printed.	You	can	do	this	through	the
showsPageRange	property.	When	set	to	YES,	it	will	allow	the	user	to	select	pages	during	the
printer	selection	stage.

print.showsPageRange	=	YES;

UISimpleTextPrintFormatter

After	configuring	the	printInfo,	the	UIPrintInteractionController	has	a	good	idea	of
what	type	of	print	job	is	coming	but	doesn’t	yet	have	any	information	on	what	to	print.	This	data	is	set
using	a	print	formatter;	this	section	discusses	the	print	formatter	for	text.	In	following	sections,
additional	print	formatters	are	discussed	in	depth.
Click	here	to	view	code	image

UISimpleTextPrintFormatter	*textFormatter	=	[[UISimpleTextPrintFormatter	alloc]
initWithText:[theTextView	text]];

textFormatter.startPage	=	0;

textFormatter.contentInsets	=	UIEdgeInsetsMake(36.0,	36.0,	36.0,	36.0);

textFormatter.maximumContentWidth	=	540;

print.printFormatter	=	textFormatter;

When	you	create	a	new	instance	of	the	UISimpleTextPrintFormatter,	it	is	allocated	and
initialized	with	the	text	you	will	be	printing.	The	sample	app	will	print	any	text	that	appears	in	the
UITextView.
The	first	property	that	is	set	in	the	sample	app	is	for	the	startPage.	This	is	a	zero-based	index	of
the	first	page	to	be	printed.	The	sample	app	will	begin	printing	from	page	one	(index	0).
On	the	following	line	contentInserts	are	set.	A	value	of	72.0	equals	one	inch	on	printed	paper.
The	sample	app	will	be	providing	half-inch	values	on	all	sides;	this	will	print	the	text	with	half-inch
margins	on	the	top,	bottom,	left,	and	right.	Additionally,	the	maximum	width	is	set	to	504,	which
specifies	a	7	1/2-inch	printing	width	(72.0×7.0).
There	are	two	additional	properties	that	were	not	used	in	the	sample	app.	The	font	property	enables
you	to	specify	a	UIFont	that	the	text	is	to	be	printed	in.	font	is	an	optional	property;	if	you	do	not
specify	a	font,	the	system	font	at	12-point	is	used.	You	can	also	specify	a	text	color	using	the	color
property.	If	you	do	not	provide	a	color,	[UIColor	blackColor]	is	used.
When	you	finish	configuring	the	textFormatter,	you	will	need	to	set	it	to	the
printFormatter	property	of	the	UIPrintInteractionController	object.

Error	Handling
It	is	always	important	to	gracefully	handle	errors,	even	more	so	while	printing.	With	printing,	there
are	any	number	of	things	that	can	go	wrong	outside	of	the	developer ’s	control,	from	out-of-paper
issues	to	the	printer	not	even	being	on.
The	sample	app	defines	a	new	block	called	completionHandler.	This	is	used	to	handle	any
errors	that	are	returned	from	the	print	job.	In	the	next	section,	you	will	begin	a	new	print	job	with	the
completionHandler	block	as	one	of	the	arguments.
Click	here	to	view	code	image

void	(^completionHandler)(UIPrintInteractionController	*,BOOL,	NSError	*)	=
^(UIPrintInteractionController	*print,BOOL	completed,	NSError	*error)
{
				if	(!completed	&&	error)
				{
									NSLog(@"Error!");
				}
};

Starting	the	Print	Job
After	you	have	created	a	new	UIPrintInteractionController,	specified	the	printInfo
and	the	printFormatter,	and	created	a	block	to	handle	any	errors	that	are	returned,	you	can
finally	print	something.	Call	the	method	presentAnimated:completionHandler:	on	the
UIPrintInteractionController	object	using	the	completion	block	that	was	created	in	the
preceding	section.	This	will	present	the	user	with	the	Printer	Options	view,	as	shown	in	Figure	14.3.
Click	here	to	view	code	image

[print	presentAnimated:YES	completionHandler:completionHandler];

Figure	14.3	Print	options	for	printing	text	with	multiple	pages	on	a	printer	that	supports	double-
sided	printing.

Depending	on	the	selected	printer	and	the	amount	of	text	being	printed,	the	options	will	vary.	For
example,	if	the	print	job	is	only	one	page,	the	user	will	not	be	presented	with	a	range	option;	likewise,
if	the	printer	does	not	support	double-sided	printing,	this	option	will	be	disabled.

Printer	Simulator	Feedback
If	you	printed	to	the	Printer	Simulator	app	as	discussed	in	the	“AirPrint	Printers”	section,	after	the
print	job	is	finished,	a	new	page	will	be	opened	in	preview	(or	your	default	PDF	viewing	application)
showing	how	the	final	page	will	look.	An	example	using	the	print	info	and	print	formatter
information	from	this	section	is	shown	in	Figure	14.4.

Figure	14.4	A	print	preview	shown	when	the	Printer	Simulator	is	used;	notice	the	highlighted
margins.

Print	Center
Just	as	on	desktop	computers,	iOS	provides	users	a	way	to	interact	with	the	current	print	queue.
Although	any	print	job	is	active	on	an	iOS	device,	a	new	app	appears	in	the	active	app	area.	The	Print
Center	app	itself	is	shown	in	Figure	14.5.	The	Print	Center	was	removed	in	iOS	7	and	printing
feedback	is	now	handled	during	the	print	process.

Figure	14.5	Print	Center	app	provides	information	about	the	current	print	job.

UIPrintInteractionControllerDelegate

As	shown	earlier	in	the	“Printing	Text”	section,	you	can	optionally	provide	a	delegate	for	a
UIPrintInteractionController	object.	The	possible	delegate	callbacks	are	used	in	both
views	of	the	sample	app.	Table	14.1	describes	these	delegate	methods.

Table	14.1	Available	UIPrintInteractionControllerDelegate	Methods

Printing	Rendered	HTML
Printing	rendered	HTML	is	handled	automatically	through	a	print	formatter	in	an	almost	identical
manner	as	printing	plain	text.	The	following	method	handles	printing	an	HTML	string,	which	is
retrieved	from	the	UIWebView	in	the	sample	app.	You	might	notice	that	this	is	similar	to	how	text
was	printed	in	the	previous	example.	Take	a	look	at	the	method	as	a	whole;	it	is	discussed	in	detail
later	in	this	section.
Click	here	to	view	code	image

-	(IBAction)print:(id)sender
{
				UIPrintInteractionController	*print	=	[UIPrintInteractionController
sharedPrintController];

				print.delegate	=	self;

				UIPrintInfo	*printInfo	=	[UIPrintInfo	printInfo];
				printInfo.outputType	=	UIPrintInfoOutputGeneral;
				printInfo.jobName	=	@"Print	for	iOS";
				printInfo.duplex	=	UIPrintInfoDuplexLongEdge;
				print.printInfo	=	printInfo;

				print.showsPageRange	=	YES;

				NSURL	*requestURL	=	[[theWebView	request]	URL];
				NSError	*error;

				NSString	*contentHTML	=	[NSString
				stringWithContentsOfURL:requestURL
				encoding:NSASCIIStringEncoding
				error:&error];

				UIMarkupTextPrintFormatter	*textFormatter	=	[[UIMarkupTextPrintFormatter	alloc]
initWithMarkupText:contentHTML];

				textFormatter.startPage	=	0;

				textFormatter.contentInsets	=	UIEdgeInsetsMake(36.0,	36.0,	36.0,	36.0);

				textFormatter.maximumContentWidth	=	540;
				print.printFormatter	=	textFormatter;

				void	(^completionHandler)(UIPrintInteractionController	*,BOOL,	NSError	*)	=
^(UIPrintInteractionController	*print,BOOL	completed,	NSError	*error)
				{
								if	(!completed	&&	error)
								{
												NSLog(@"Error!");
								}
				};

				[print	presentAnimated:YES	completionHandler:completionHandler];
}

The	first	thing	that	needs	to	be	done	as	it	was	in	the	text	printing	is	to	create	a	new	reference	to	a
UIPrintInteractionController.	The	next	step	is	to	set	the	printInfo	for	the	upcoming
print	job.	Nothing	in	this	code	block	dealing	with	printing	differs	from	the	printing	text	example;
refer	to	that	section	for	details	on	these	properties.

Printing	PDFs
AirPrint	has	built-in	support	for	printing	PDF	files.	PDF	is	arguably	the	easiest	type	of	file	to	print
when	you	have	the	PDF	data.	Before	a	PDF	file	can	be	printed,	first	the
UIPrintInteractionController	and	associated	UIPrintInfo	need	to	be	set	up.	This	setup
is	done	exactly	the	same	as	in	the	preceding	example	in	the	section	“Printing	Rendered	HTML.”	In	the
sample	app,	the	PDF	is	generated	from	the	UIWebView	from	the	preceding	section;	however,	you
can	specify	any	source	for	the	PDF	data.	After	the	data	has	been	created	using	the
renderInContext	method,	you	can	assign	that	image	value	to	printingItem.	This	method	can
also	be	used	to	print	any	UIImage	data.

Note
The	sample	app	does	not	currently	have	an	action	hooked	up	to	the	print	PDF	method.
You	will	have	to	assign	a	button	to	that	method	in	order	to	use	it.

Click	here	to	view	code	image

-	(IBAction)printPDF:(id)sender
{
				UIPrintInteractionController	*print	=
				[UIPrintInteractionController	sharedPrintController];

				print.delegate	=	self;
				UIPrintInfo	*printInfo	=	[UIPrintInfo	printInfo];
				printInfo.outputType	=	UIPrintInfoOutputGeneral;
				printInfo.jobName	=	@"Print	for	iOS";
				printInfo.duplex	=	UIPrintInfoDuplexLongEdge;
				print.printInfo	=	printInfo;

				print.showsPageRange	=	YES;

				UIGraphicsBeginImageContext(theWebView.bounds.size);

				[theWebView.layer

				renderInContext:UIGraphicsGetCurrentContext()];

				UIImage	*image	=	UIGraphicsGetImageFromCurrentImageContext();
				UIGraphicsEndImageContext();

				print.printingItem	=	image;

				void	(^completionHandler)(UIPrintInteractionController	*,BOOL,	NSError	*)	=
^(UIPrintInteractionController	*print,BOOL	completed,NSError	*error)
				{
								if	(!completed	&&	error)
								{
												NSLog(@"Error!");
								}
				};

				[print	presentAnimated:YES	completionHandler:completionHandler];
}

Summary
In	this	chapter,	you	learned	how	to	print	documents,	images,	and	HTML	from	an	iOS	device	using
AirPrint.	You	should	have	a	firm	grasp	of	the	knowledge	required	to	create	new	print	jobs,	provide
the	materials	to	be	printed,	format	the	output,	handle	errors,	and	interact	with	various	printers.	The
sample	app	provided	for	this	chapter	walked	you	through	the	process	of	printing	plain	text,	HTML,
and	PDF	data.	You	should	feel	confident	adding	AirPrint	support	into	any	of	your	existing	or	future
iOS	projects.

15.	Getting	Up	and	Running	with	Core	Data

For	many	apps,	being	able	to	locally	store	and	retrieve	data	that	persists	beyond	a	single	session	is	a
requirement.	Since	iOS	3.0,	Core	Data	has	been	available	to	address	this	need.	Core	Data	is	a
powerful	object	database;	it	provides	robust	data	storage	and	management	capabilities.
Core	Data	has	its	roots	in	NeXT’s	Enterprise	Object	Framework	(EOF),	which	was	capable	of
mapping	objects	to	relational	databases.	There	are	great	advantages	to	writing	business	logic	to
objects,	and	to	not	having	to	build	database	or	persistence-specific	logic.	Mainly,	there	is	a	lot	less
code	to	write,	and	that	code	tends	to	be	focused	on	the	needs	of	the	app	rather	than	the	needs	of	the
database.	EOF	could	support	several	brands	of	relational	databases.	Since	Core	Data	was	built	to
support	single-user	applications	in	Mac	OS	X,	Core	Data	supports	storing	data	in	an	embedded
relational	database	called	SQLite,	which	provides	the	benefits	of	an	SQL	database	without	the	hassle
and	overhead	of	maintaining	a	database	server.
Some	features	of	Core	Data	include	the	following:

	Modeling	data	objects	with	a	visual	model	editor
	Automatic	and	manual	migration	tools	to	handle	when	object	schema	changes
	Establishing	relationships	between	objects	(one-to-one,	one-to-many,	many-to-many)
	Storing	data	in	separate	files	and	different	file	formats
	Validation	of	object	attributes
	Querying	and	sorting	data
	Lazy-loading	data
	Interacting	closely	with	iOS	table	views	and	collection	views
	Managing	related	object	changes	with	commit	and	undo	capabilities

At	first	glance,	Core	Data	can	look	difficult	and	overwhelming.	Several	books	are	devoted	solely	to
Core	Data,	and	the	official	Apple	documentation	is	lengthy	and	challenging	to	get	through	since	it
covers	the	entire	breadth	and	depth	of	the	topic.	However,	most	apps	do	not	require	all	the	features
that	Core	Data	has	to	offer.	The	goal	of	this	chapter	is	to	get	you	up	and	running	with	the	most
common	Core	Data	features	that	apps	need.
This	chapter	describes	how	to	set	up	a	project	to	use	Core	Data,	and	illustrates	how	to	implement
several	common	use	cases	with	the	sample	app.	It	covers	how	to	set	up	your	data	model,	how	to
populate	some	starting	data,	and	how	to	display	data	in	a	table	using	a	fetched	results	controller.	This
chapter	also	demonstrates	how	to	add,	edit,	and	delete	data,	how	to	fetch	data,	and	how	to	use
predicates	to	fetch	specific	data.	With	this	knowledge,	you	will	have	a	good	foundation	for
implementing	Core	Data	quickly	in	your	apps.

Deciding	on	Core	Data
Before	we	dive	into	Core	Data,	it	is	generally	worthwhile	to	take	a	look	at	the	persistence
requirements	of	an	app	and	compare	those	to	the	available	persistence	options.	If	the	app’s
requirements	can	be	met	without	implementing	Core	Data,	that	can	save	some	development	effort	and
reduce	the	overall	complexity	of	the	app,	making	it	easier	to	maintain	in	the	long	run.	A	few	options
are	available	to	iOS	developers	who	want	to	use	persistent	data:

	NSUserDefaults:	This	method	is	typically	used	to	save	app	preferences.

NSUserDefaults	functions	very	much	like	an	NSDictionary	with	key-value	storage,	and
supports	storing	values	that	can	be	expressed	as	NSNumber,	NSString,	NSDate,	NSData,
NSDictionary,	NSArray,	or	any	object	that	conforms	to	the	NSCoding	protocol.	If	an
app’s	persistence	needs	can	be	satisfied	using	key-value	pairs,	dictionaries,	and	arrays,	then
NSUserDefaults	is	a	viable	option.
	iCloud	Key-Value	Storage:	This	method	works	just	like	NSUserDefaults,	except	that	it	is
supported	by	iCloud	and	can	sync	data	across	devices.	There	are	fairly	strict	limits	on	how
much	data	can	be	stored	and	synced.	If	an	app’s	persistence	needs	can	be	satisfied	using	key-
value	pairs,	dictionaries,	and	arrays,	and	syncing	between	devices	is	desired,	then	iCloud	key-
value	storage	is	a	viable	option.
	Property	List	(plist):	NSDictionary	and	NSArray	each	support	reading	from	and	saving
to	a	user-specified	property	list	file,	which	is	an	XML	file	format	supporting	NSNumber,
NSString,	NSDate,	NSData,	NSDictionary,	and	NSArray.	If	an	app’s	persistence	needs
can	be	satisfied	using	a	dictionary	or	an	array,	a	property	list	file	is	a	viable	option.
	Coders	and	Keyed	Archives:	NSCoder	and	NSKeyedArchiver	support	saving	an	arbitrary
object	graph	into	a	binary	file.	These	options	require	implementing	NSCoder	methods	in	each
custom	object	to	be	saved,	and	require	the	developer	to	manage	saving	and	loading.	If	an	app’s
persistence	needs	can	be	satisfied	with	a	handful	of	custom	objects,	the	coder/archiver	approach
is	a	viable	option.
	Structured	Text	Files	(JSON,	CSV,	etc.):	Structured	text	files	such	as	CSV	or	JSON	can	be
used	to	store	data.	JSON	in	particular	can	take	advantage	of	built-in	serialization	and
deserialization	support	(see	Chapter	9,	“Working	with	and	Parsing	JSON,”	for	more	details);
but	any	structured	text	method	will	require	building	additional	support	for	custom	model
objects	and	any	searching	and	filtering	requirements.	If	an	app’s	persistence	needs	can	be
satisfied	with	a	handful	of	custom	objects,	or	a	dictionary	or	an	array,	then	using	structured	text
files	can	be	a	viable	option.
	Direct	SQLite:	Using	the	C	library	libsqlite,	apps	can	interact	with	SQLite	databases
directly.	SQLite	is	an	embedded	relational	database	that	does	not	need	a	server;	it	supports	most
of	the	standard	SQL	language	as	described	by	SQL92.	Any	data	persistence	logic	that	can	be
built	using	SQL	can	likely	be	built	into	an	iOS	app	utilizing	SQLite,	including	defining	database
tables	and	relationships,	inserting	data,	querying	data,	and	updating	and	deleting	data.	The
drawback	of	this	approach	is	that	the	app	needs	to	map	data	between	application	objects	and	SQL
files,	requires	writing	SQL	queries	to	retrieve	and	save	data,	and	requires	code	to	track	which
objects	need	to	be	saved.
	Core	Data:	This	provides	most	of	the	flexibility	of	working	with	SQLite	directly,	while
insulating	the	app	from	the	mechanics	of	working	with	the	database.	If	the	app	requires	more
than	a	handful	of	data,	needs	to	maintain	relationships	between	different	objects,	or	needs	to	be
able	to	access	specific	objects	or	groups	of	objects	quickly	and	easily,	Core	Data	might	be	a
good	candidate.

One	feature	that	really	makes	Core	Data	stand	out	as	an	exceptional	persistence	approach	is	called	the
NSFetchedResultsController.	With	an	NSFetchedResultsController,	a	table	view	or
a	collection	view	can	be	easily	tied	to	data,	and	can	be	informed	when	the	underlying	data	changes.
Both	table	views	and	collection	views	have	methods	built	in	to	allow	for	animation	of	cell	insertions,
deletions,	and	moves,	which	are	provided	when	the	NSFetchedResultsController	detects

changes	to	the	relevant	data.	This	feature	can	be	used	to	great	effect	when	an	app	needs	to	pull	data
from	a	server	and	store	it	locally,	and	then	update	a	table	or	collection	on	the	screen	with	the	new
data.	This	chapter	explains	how	to	implement	an	NSFetchedResultsController	in	an	app.

Sample	App
The	sample	app	for	this	chapter	is	called	MyMovies.	It	is	a	Core	Data–based	app	that	will	keep	track
of	all	your	physical	media	movies	and,	if	you	have	loaned	a	movie	to	someone,	who	you	loaned	it	to
and	when	(as	shown	in	Figure	15.1).

Figure	15.1	Sample	App:	Movies	tab.

The	sample	app	has	three	tabs:	Movies,	Friends,	and	Shared	Movies.	The	Movies	tab	shows	the	whole
list	of	movies	that	the	user	has	added	and	tracked	in	a	table	view.	There	are	two	sections	in	the	table
view	demonstrating	how	data	can	be	segregated	with	a	fetched	results	controller.	Users	can	add	new
movies	from	this	tab,	and	can	edit	existing	movies.	The	Friends	tab	lists	the	friends	set	up	to	share
movies	with,	shows	which	friends	have	borrowed	movies,	and	enables	the	user	to	add	and	edit
friends.	The	Shared	Movies	tab	displays	which	movies	have	currently	been	shared	with	friends.

Starting	a	Core	Data	Project
To	start	a	new	Core	Data	project,	open	Xcode	and	select	File	from	the	menu,	New,	and	then	Project.
Xcode	will	present	some	project	template	options	to	get	you	started	(see	Figure	15.2).

Figure	15.2	Xcode	new	project	template	choices.

The	quickest	method	to	start	a	Core	Data	project	is	to	select	the	Master-Detail	template.	Click	Next	to
specify	options	for	your	new	project,	and	then	make	sure	that	Use	Core	Data	is	selected	(see	Figure
15.3).	This	ensures	that	your	project	has	the	Core	Data	plumbing	built	in.

Figure	15.3	Xcode	new	project	options.

When	Next	is	clicked,	Xcode	creates	the	project	template.	The	project	template	includes	a	“master”
view	controller,	which	includes	a	table	view	populated	by	an	NSFetchedResultsController,	a
specialized	controller	that	makes	pairing	Core	Data	with	a	table	view	a	snap.	The	project	template

includes	a	“detail”	view	to	display	a	single	data	record.	In	the	sample	app,	the	master	and	detail	views
have	been	renamed	to	fit	the	project.

Note
To	add	Core	Data	to	an	existing	project	quickly,	create	an	empty	template	project	with
Core	Data	support	as	described,	and	then	copy	the	elements	described	in	the	following
section,	“Core	Data	Environment,”	into	the	existing	project.	Add	a	new	managed	object
model	file	to	the	project,	and	be	sure	to	add	the	Core	Data	framework	to	the	existing
project	as	well.

Core	Data	Environment
The	project	template	sets	up	the	Core	Data	environment	for	the	project	in	the	class	that	implements	the
UIApplicationDelegate	protocol;	in	the	sample	app	this	is	ICFAppDelegate.	The	project
template	uses	a	lazy-loading	pattern	for	each	of	the	properties	needed	in	the	Core	Data	environment,
so	each	is	loaded	when	needed.
The	process	of	loading	the	Core	Data	environment	is	kicked	off	the	first	time	the	managed	object
context	is	referenced	in	the	app.	The	managed	object	context	(NSManagedObjectContext)	is	a
working	area	for	managed	objects.	To	create	a	new	object,	delete	an	object,	or	query	existing	objects,
the	app	interacts	with	the	managed	object	context.	In	addition,	the	managed	object	context	can	manage
related	changes.	For	example,	the	app	could	insert	a	few	objects,	update	some	objects,	delete	an
object,	and	then	save	all	those	changes	together	or	even	roll	them	back	if	they	are	not	needed.
More	than	one	managed	object	context	can	be	used	at	the	same	time	to	separate	or	confine	work.
Imagine	that	an	app	needs	to	display	a	set	of	data	while	it	is	importing	some	new	data	from	a	Web
service.	In	that	case,	one	managed	object	context	would	be	used	in	the	main	thread	to	query	and
display	existing	data.	Another	managed	object	context	could	be	created	as	a	child	of	the	main	context,
which	would	then	be	used	in	a	background	thread	to	import	the	data	from	the	Web	service.	When	the
app	is	done	importing	data,	it	can	quickly	and	automatically	merge	the	two	managed	object	contexts
together	and	dispose	of	the	background	context.	Core	Data	is	powerful	enough	to	handle	cases	in
which	the	same	object	is	updated	in	both	contexts,	and	can	merge	the	changes.
Note	that	one	change	to	the	template	setup	is	needed	as	of	this	writing:	Instead	of	a	normal	alloc	/
init	for	the	managed	object	context,	the	initWithConcurrencyType:	method	should	be	used.
As	of	iOS	8,	the	thread	confinement	approach	for	Core	Data	(in	which	the	developer	is	responsible
for	managing	which	thread	Core	Data	operations	run	on)	has	been	deprecated.	Instead,	for	basic	apps
with	relatively	small	data	requirements,	use	the	main	queue	concurrency	type,	which	requires
performing	Core	Data	operations	in	a	block.	This	approach	ensures	that	all	the	Core	Data	access	takes
place	on	the	correct	thread,	and	avoids	potentially	challenging	threading	and	debugging	issues.	For
more	complex	apps	in	which	data	updates	need	to	take	place	on	background	threads,	more	advanced
Core	Data	stacks	can	be	established	with	parent/child	relationships	to	handle	background	operations
and	efficient	merging	with	the	main	queue	managed	object	context.
The	managed	object	context	accessor	method	will	check	to	see	whether	the	managed	object	context
instance	variable	has	a	reference.	If	not,	it	will	get	the	persistent	store	coordinator	and	instantiate	a
new	managed	object	context	with	it,	assign	the	new	instance	to	the	instance	variable,	and	return	the
instance	variable.
Click	here	to	view	code	image

-	(NSManagedObjectContext	*)managedObjectContext
{
		if	(__managedObjectContext	!=	nil)
		{
				return	__managedObjectContext;
		}

		NSPersistentStoreCoordinator	*coordinator	=	[self	persistentStoreCoordinator];

		if	(coordinator	!=	nil)
		{
				__managedObjectContext	=	[[NSManagedObjectContext	alloc]
initWithConcurrencyType:NSMainQueueConcurrencyType];

				[__managedObjectContext	setPersistentStoreCoordinator:coordinator];
		}
		return	__managedObjectContext;
}

The	persistent	store	coordinator	is	the	class	that	Core	Data	uses	to	manage	the	persistent	stores	(or
files)	where	the	data	for	the	app	is	stored.	To	instantiate	it,	an	instance	of
NSManagedObjectModel	is	needed	so	that	the	persistent	store	coordinator	knows	what	object
model	the	persistent	stores	are	implementing.	The	persistent	store	coordinator	also	needs	a	URL	for
each	persistent	store	to	be	added;	if	the	file	does	not	exist,	Core	Data	will	create	it.	If	the	persistent
store	doesn’t	match	the	managed	object	model	(Core	Data	uses	a	hash	of	the	managed	object	model	to
uniquely	identify	it,	which	is	kept	for	comparison	in	the	persistent	store),	then	the	template	logic	will
log	an	error	and	abort.	In	a	shipping	application,	logic	would	be	added	to	properly	handle	errors	with
a	migration	from	the	old	data	model	to	the	new	one;	in	development	having	the	app	abort	can	be	a
useful	reminder	when	the	model	changes	to	retest	with	a	clean	installation	of	the	app.
Click	here	to	view	code	image

-	(NSPersistentStoreCoordinator	*)persistentStoreCoordinator
{
		if	(__persistentStoreCoordinator	!=	nil)
		{
				return	__persistentStoreCoordinator;
		}

		NSURL	*storeURL	=	[[self	applicationDocumentsDirectory]
URLByAppendingPathComponent:@"MyMovies.sqlite"];

		NSError	*error	=	nil;
		__persistentStoreCoordinator	=	[[NSPersistentStoreCoordinator	alloc]
initWithManagedObjectModel:[self	managedObjectModel]];

		if	(![__persistentStoreCoordinator	addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil	URL:storeURL	options:nil	error:&error])
		{
				NSLog(@"Unresolved	error	%@,	%@",	error,
							[error	userInfo]);

				abort();
		}

		return	__persistentStoreCoordinator;
}

The	managed	object	model	is	loaded	from	the	app’s	main	bundle.	Xcode	will	give	the	managed	object
model	the	same	name	as	your	project.

Click	here	to	view	code	image

-	(NSManagedObjectModel	*)managedObjectModel
{
		if	(__managedObjectModel	!=	nil)
		{
				return	__managedObjectModel;
		}

		NSURL	*modelURL	=	[[NSBundle	mainBundle]	URLForResource:@"MyMovies"
																												withExtension:@"momd"];

		__managedObjectModel	=	[[NSManagedObjectModel	alloc]
			initWithContentsOfURL:modelURL];

		return	__managedObjectModel;
}

Building	Your	Managed	Object	Model
With	the	project	template,	Xcode	will	create	a	data	model	file	with	the	same	name	as	your	project.	In
the	sample	project	this	file	is	called	MyMovies.xdatamodeld.	To	edit	your	data	model,	click	the
data	model	file,	and	Xcode	will	present	the	data	model	editor	(see	Figure	15.4).

Figure	15.4	Xcode	data	model	editor,	Table	style.

Xcode	has	two	styles	for	the	data	model	editor:	Table	and	Graph.	The	Table	style	presents	the	entities
in	your	data	model	in	a	list	on	the	left.	Selecting	an	entity	will	display	and	enable	you	to	edit	the
attributes,	relationships,	and	fetched	properties	for	that	entity.

To	change	to	Graph	style,	click	the	Editor	Style	Graph	button	in	the	lower-right	corner	of	the	data
model	editor	(see	Figure	15.5).	There	will	still	be	a	list	of	entities	on	the	left	of	the	data	model	editor,
but	the	main	portion	of	the	editor	will	present	an	entity	relationship	diagram	of	your	data	model.	Each
box	presented	in	the	diagram	represents	an	entity,	with	the	name	of	the	entity	at	the	top,	the	attributes
listed	in	the	middle,	and	any	relationships	listed	in	the	bottom.	The	graph	will	have	arrows	connecting
entities	that	have	relationships	established,	with	arrows	indicating	the	cardinality	of	the	relationship.

Figure	15.5	Xcode	data	model	editor,	Graph	style.

When	you	are	working	with	your	data	model,	it	is	often	convenient	to	have	more	working	space
available	and	to	have	access	to	additional	detail	for	selected	items.	Use	Xcode’s	View	options	in	the
upper-right	corner	of	the	window	to	hide	the	Navigator	panel	and	display	the	Utilities	panel	(see
Figure	15.5).

Creating	an	Entity
To	create	an	entity,	click	the	Add	Entity	button.	A	new	entity	will	be	added	to	the	list	of	entities,	and	if
the	editor	is	in	Graph	style,	a	new	entity	box	will	be	added	to	the	view.	Xcode	will	highlight	the	name
of	the	entity	and	enable	you	to	type	in	the	desired	name	for	the	entity.	The	name	of	the	entity	can	be
changed	at	any	time	by	just	clicking	twice	on	the	entity	name	in	the	list	of	entities,	or	by	selecting	the
desired	entity	and	editing	the	entity	name	in	the	Utilities	panel.
Core	Data	supports	entity	inheritance.	For	any	entity,	you	can	specify	a	parent	entity	from	which	your
entity	will	inherit	attributes,	relationships,	validations,	and	custom	methods.	To	do	that,	ensure	that	the
entity	to	be	inherited	from	has	been	created,	and	then	select	the	child	entity	and	choose	the	desired
parent	entity	in	the	Utilities	panel.

Note
If	you	are	using	SQLite	as	your	persistent	store,	Core	Data	implements	entity	inheritance
by	creating	one	table	for	the	parent	entity	and	all	child	entities,	with	a	superset	of	all	their
attributes.	This	can	obviously	have	unintended	performance	consequences	if	you	have	a
lot	of	data	in	the	entities,	so	use	this	feature	wisely.

Adding	Attributes
To	add	attributes	to	an	entity,	first	select	the	entity	in	either	the	graph	or	the	list	of	entities.	Then	click
the	Add	Attribute	button	in	the	lower	part	of	the	editor,	just	to	the	left	of	the	Editor	Style	buttons.
Xcode	will	add	an	attribute	called	attribute	to	the	entity.	Select	a	Type	for	the	attribute.	(See	Table
15.1	for	supported	data	types.)	Note	that	Core	Data	treats	all	attributes	as	Objective-C	objects,	so	if
Integer	32	is	the	selected	data	type,	for	example,	Core	Data	will	treat	the	attribute	as	an	NSNumber.

Table	15.1	Core	Data	Supported	Data	Types

One	thing	to	note	is	that	Core	Data	will	automatically	give	each	instance	a	unique	object	ID,	called
objectID,	which	it	uses	internally	to	manage	storage	and	relationships.	You	can	also	add	a	unique
ID	or	another	candidate	key	to	the	entity	and	add	an	index	to	it	for	quick	access,	but	note	that	Core
Data	will	manage	relationships	with	the	generated	object	ID.
NSManagedObject	instances	also	have	a	method	called	description;	if	you	want	to	have	a
description	attribute,	modify	the	name	slightly	to	avoid	conflicts.	In	the	sample	app,	for	example,
the	Movie	entity	has	a	movieDescription	attribute.

Establishing	Relationships
Having	relationships	between	objects	can	be	a	powerful	technique	to	model	the	real	world	in	an	app.
Core	Data	supports	one-to-one	and	one-to-many	relationships.	In	the	sample	app,	a	one-to-many
relationship	between	friends	and	movies	is	established.	Since	a	friend	might	borrow	more	than	one
movie	at	a	time,	that	side	of	the	relationship	is	“many,”	but	a	movie	can	be	lent	to	only	one	friend	at	a
time,	so	that	side	of	the	relationship	is	“one.”

To	add	a	relationship	between	entities,	select	one	of	the	entities,	and	then	Ctrl-click	and	drag	to	the
destination	entity.	Alternatively,	click	and	hold	the	Add	Attribute	button,	and	select	Add	Relationship
from	the	menu	that	appears.	Xcode	will	create	a	relationship	to	the	destination	entity	and	will	call	it
“relationship.”	In	the	Utilities	panel,	select	the	Data	Model	inspector,	and	change	the	name	of	the
relationship.	In	the	Data	Model	inspector,	you	can	do	the	following:

	Indicate	whether	the	relationship	is	transient.
	Specify	whether	the	relationship	is	optional	or	required	with	the	Optional	check	box.
	Specify	whether	the	relationship	is	ordered.
	Establish	an	inverse	relationship.	To	do	this,	create	and	name	the	inverse	relationship	first,	and
then	select	it	from	the	drop-down.	The	inverse	relationship	allows	the	“to”	object	to	have	a
reference	to	the	“from”	object,	in	addition	to	the	original	relationship.
	Specify	the	cardinality	of	the	relationship	by	checking	or	unchecking	the	Plural	check	box.	If
checked,	it	indicates	a	to-many	relationship.
	Specify	minimum	and	maximum	counts	for	a	relationship.
	Set	up	the	rule	for	Core	Data	to	follow	for	the	relationship	when	the	object	is	deleted.	Choices
are	No	Action	(no	additional	action	taken	on	delete),	Nullify	(relationship	set	to	nil),	Cascade
(objects	on	the	other	side	of	the	relationship	are	deleted	too),	and	Deny	(error	issued	if
relationships	exist).

Custom	Managed	Object	Subclasses
A	custom	NSManagedObject	subclass	can	be	useful	if	you	have	custom	logic	for	your	model
object,	or	if	you	would	like	to	be	able	to	use	dot	syntax	for	your	model	object	properties	and	have	the
compiler	validate	them.
Xcode	has	a	menu	option	to	automatically	create	a	subclass	for	you.	To	use	it,	ensure	that	you	have
completed	setup	of	your	entity	in	the	data	model	editor.	Select	your	entity	(or	multiple	entities)	in	the
data	model	editor,	select	Editor	from	the	Xcode	menu,	and	then	select	Create	NSManagedObject
Subclass.	Xcode	will	ask	where	you	want	to	save	the	generated	class	files.	Specify	a	location	and	click
Create,	and	Xcode	will	generate	the	header	and	implementation	files	for	each	entity	you	specified.
Xcode	will	name	each	class	with	the	class	prefix	specified	for	your	project	concatenated	with	the
name	of	the	entity.
In	the	generated	header	file,	Xcode	will	create	a	property	for	each	attribute	in	the	entity.	Note	that
Xcode	will	also	create	a	property	for	each	relationship	specified	for	the	entity.	If	the	relationship	is
to-one,	Xcode	will	create	an	NSManagedObject	property	(or	NSManagedObject	subclass	if	the
destination	entity	is	a	custom	subclass).	If	the	relationship	is	to-many,	Xcode	will	create	an	NSSet
property.
In	the	generated	implementation	file,	Xcode	will	create	@dynamic	instructions	for	each	entity,	rather
than	@synthesize.	This	is	because	Core	Data	dynamically	handles	accessors	for	Core	Data
managed	attributes,	and	does	not	need	the	compiler	to	build	the	accessor	methods.

Note
A	project	called	mogenerator	will	generate	two	classes	per	entity:	one	for	the	attribute
accessors	and	one	for	custom	logic.	That	way,	you	can	regenerate	classes	easily	when
making	model	changes	without	overwriting	your	custom	logic.	Mogenerator	is	available
at	http://rentzsch.github.com/mogenerator/.

Setting	Up	Default	Data
When	a	Core	Data	project	is	first	set	up,	there	is	no	data	in	it.	Although	this	might	work	for	some	use
cases,	frequently	it	is	a	requirement	to	have	some	data	prepopulated	in	the	app	for	the	first	run.	In	the
sample	app	there	is	a	custom	data	setup	class	called	ICFDataStarter,	which	illustrates	one
method	to	populate	Core	Data	with	some	initial	data.	A	#define	variable	is	set	up	in	MyMovies-
Prefix.pch	called	FIRSTRUN,	which	can	be	uncommented	to	have	the	app	run	the	logic	in
ICFDataStarter.

Inserting	New	Managed	Objects
To	create	a	new	instance	of	a	managed	object	for	data	that	does	not	yet	exist	in	your	model,	a
reference	to	the	managed	object	context	is	needed.	The	sample	app	passes	the	managed	object	context
property	from	the	ICFAppDelegate	to	the	setupStarterDataWithMOC:	method	in
ICFDataStarter:
Click	here	to	view	code	image

[ICFDataStarter	setupStarterDataWithMOC:[self	managedObjectContext]];

To	prevent	threading	errors,	all	activities	against	Core	Data	objects	should	take	place	in	a	block
performed	by	the	managed	object	context.	There	are	two	options:	performBlock:	and
performBlockAndWait:.	The	first	option	will	submit	the	block	to	the	managed	object	context’s
queue	asynchronously,	and	then	will	continue	executing	code	in	the	current	scope.	The	second
approach	will	submit	the	block	to	the	managed	object	context’s	queue	asynchronously,	and	then	wait
until	all	the	operations	are	completed	before	continuing	to	execute	code	in	the	current	scope.	When
there	are	no	dependencies	in	the	current	scope,	use	perform-Block:	to	avoid	deadlocks	and
waiting;	if	there	are	dependencies,	use	performBlockAndWait:.	In	this	case,	because	the
managed	object	context	is	on	the	main	queue	and	the	code	is	executing	on	the	main	queue,	using
performBlockAndWait:	ensures	that	everything	executes	in	the	sequence	shown	in	the	code	and
prevents	any	confusion	from	items	potentially	executing	out	of	sequence.

[moc	performBlockAndWait:^{

To	insert	data,	Core	Data	needs	to	know	what	entity	the	new	data	is	for.	Core	Data	has	a	class	called
NSEntityDescription	that	provides	information	about	entities.	Create	a	new	instance	using
NSEntityDescription’s	class	method:
Click	here	to	view	code	image

NSManagedObject	*newMovie1	=	[NSEntityDescription
insertNewObjectForEntityForName:@"Movie"
																															inManagedObjectContext:moc];

After	an	instance	is	available,	populate	the	attributes	with	data:

http://rentzsch.github.com/mogenerator/

Click	here	to	view	code	image

[newMovie1	setValue:@"The	Matrix"	forKey:@"title"];
[newMovie1	setValue:@"1999"	forKey:@"year"];

[newMovie1	setValue:@"Take	the	blue	pill."
													forKey:@"movieDescription"];

[newMovie1	setValue:@NO	forKey:@"lent"];
[newMovie1	setValue:nil	forKey:@"lentOn"];
[newMovie1	setValue:@20	forKey:@"timesWatched"];

Core	Data	uses	key-value	coding	to	handle	setting	attributes.	If	an	attribute	name	is	incorrect,	it	will
fail	at	runtime.	To	get	compile-time	checking	of	attribute	assignments,	create	a	custom
NSManagedObject	subclass	and	use	the	property	accessors	for	each	attribute	directly.
The	managed	object	context	acts	as	a	working	area	for	changes,	so	the	sample	app	sets	up	more	initial
data:
Click	here	to	view	code	image

NSManagedObject	*newFriend1	=	[NSEntityDescription
insertNewObjectForEntityForName:@"Friend"
																															inManagedObjectContext:moc];

[newFriend1	setValue:@"Joe"	forKey:@"friendName"];
[newFriend1	setValue:@"joe@dragonforged.com"	forKey:@"email"];

The	last	step	after	setting	up	all	the	initial	data	is	to	save	the	managed	object	context,	and	close	the
block.
Click	here	to	view	code	image

				NSError	*mocSaveError	=	nil;

				if	([moc	save:&mocSaveError])
				{
								NSLog(@"Save	completed	successfully.");
				}	else
				{
								NSLog(@"Save	did	not	complete	successfully.	Error:	%@",	[mocSaveError
localizedDescription]);
				}
}];

After	the	managed	object	context	is	saved,	Core	Data	will	persist	the	data	in	the	data	store.	For	this
instance	of	the	app,	the	data	will	continue	to	be	available	through	shutdowns	and	restarts.	If	the	app	is
removed	from	the	simulator	or	device,	the	data	will	no	longer	be	available.	One	technique	to	populate
data	for	first	run	is	to	copy	the	data	store	from	the	app’s	storage	directory	back	into	the	app	bundle.
This	will	ensure	that	the	default	set	of	data	is	copied	into	the	app’s	directory	on	first	launch	and	is
available	to	the	app.

Other	Default	Data	Setup	Techniques
Two	other	default	data	setup	techniques	are	commonly	used:	data	model	version	migrations	and
loading	data	from	a	Web	service	or	an	API.
Core	Data	managed	object	models	are	versioned.	Core	Data	understands	the	relationship	between	the
managed	object	model	and	the	current	data	store.	If	the	managed	object	model	changes	and	is	no
longer	compatible	with	the	data	store	(for	example,	if	an	attribute	is	added	to	an	entity),	Core	Data

will	not	be	able	to	initiate	the	persistent	store	object	using	the	existing	data	store	and	new	managed
object	model.	In	that	case,	a	migration	is	required	to	update	the	existing	data	store	to	match	the
updated	managed	object	model.	In	many	cases	Core	Data	can	perform	the	migration	automatically	by
passing	a	dictionary	of	options	when	instantiating	the	persistent	store;	in	some	cases,	additional	steps
need	to	be	taken	to	perform	the	migration.	Migrations	are	beyond	the	scope	of	this	chapter,	but	be
aware	that	migrations	can	be	used	and	are	recommended	by	Apple	to	do	data	setup.
The	other	approach	is	to	pull	data	from	a	Web	service	or	an	API.	This	approach	is	most	applicable
when	an	app	needs	to	maintain	a	local	copy	of	a	subset	of	data	on	a	Web	server,	and	Web	calls	need	to
be	written	for	the	app	to	pull	data	from	the	API	in	the	course	of	normal	operation.	To	set	up	the	app’s
initial	data,	the	Web	calls	can	be	run	in	a	special	state	to	pull	all	needed	initial	data	and	save	it	in	Core
Data.

Displaying	Your	Managed	Objects
To	display	or	use	existing	entity	data	in	an	app,	managed	objects	need	to	be	fetched	from	the	managed
object	context.	Fetching	is	analogous	to	running	a	query	in	a	relational	database,	in	that	you	can
specify	what	entity	you	want	to	fetch,	what	criteria	you	want	your	results	to	match,	and	how	you	want
your	results	sorted.

Creating	Your	Fetch	Request
The	object	used	to	fetch	managed	objects	in	Core	Data	is	called	NSFetchRequest.	Refer	to
ICFFriendChooserViewController	in	the	sample	app.	This	view	controller	displays	the
friends	set	up	in	Core	Data	and	enables	the	user	to	select	a	friend	to	lend	a	movie	to	(see	Figure	15.6).

Figure	15.6	Sample	App:	friend	chooser.

To	get	the	list	of	friends	to	display,	the	view	controller	performs	a	standard	fetch	request	when	the

view	controller	has	loaded.	The	first	step	is	to	create	an	instance	of	NSFetchRequest	and	associate
the	entity	to	be	fetched	with	the	fetch	request:
Click	here	to	view	code	image

NSManagedObjectContext	*moc	=	kAppDelegate.managedObjectContext;

[moc	performBlockAndWait:^{
				NSFetchRequest	*fetchReq	=	[[NSFetchRequest	alloc]	init];

				NSEntityDescription	*entity	=	[NSEntityDescription	entityForName:@"Friend"
																		inManagedObjectContext:moc];

				[fetchReq	setEntity:entity];

The	next	step	is	to	tell	the	fetch	request	how	to	sort	the	resulting	managed	objects.	To	do	this,	we
associate	a	sort	descriptor	with	the	fetch	request,	specifying	the	attribute	name	to	sort	by:
Click	here	to	view	code	image

NSSortDescriptor	*sortDescriptor	=	[[NSSortDescriptor	alloc]	initWithKey:@"friendName"
																														ascending:YES];

NSArray	*sortDescriptors	=	@[sortDescriptor];

[fetchReq	setSortDescriptors:sortDescriptors];

Because	the	friend	chooser	should	show	all	the	available	friends	to	choose	from,	it	is	not	necessary	to
specify	any	matching	criteria.	All	that	remains	is	to	execute	the	fetch:
Click	here	to	view	code	image

NSError	*error	=	nil;

self.friendList	=	[moc	executeFetchRequest:fetchReq
																																					error:&error];

	if	(error)
{
		NSString	*errorDesc	=	[error	localizedDescription];

				UIAlertController	*alertController	=	[UIAlertController
alertControllerWithTitle:@"Error	fetching	friends"
																																									message:errorDesc
																																		preferredStyle:UIAlertControllerStyleAlert];

				[alertController	addAction:	[UIAlertAction	actionWithTitle:@"OK"
																														style:UIAlertActionStyleCancel
																												handler:nil]];

				[self	presentViewController:alertController
																							animated:YES
																					completion:nil];
}

To	execute	a	fetch,	create	an	instance	of	NSError	and	set	it	to	nil.	Then	have	the	managed	object
context	execute	the	fetch	request	that	has	just	been	constructed.	If	an	error	is	encountered,	the
managed	object	context	will	return	the	error	to	the	instance	you	just	created.	The	sample	app	will
display	the	error	in	an	instance	of	UIAlertController.	If	no	error	is	encountered,	the	results	will
be	returned	as	an	NSArray	of	NSManagedObjects.	The	view	controller	will	store	those	results	in
an	instance	variable	to	be	displayed	in	a	table	view.

Fetching	by	Object	ID
When	only	one	specific	managed	object	needs	to	be	fetched,	Core	Data	provides	a	way	to	quickly
retrieve	that	managed	object	without	constructing	a	fetch	request.	To	use	this	method,	you	must	have
the	NSManagedObjectID	for	the	managed	object.
To	get	the	NSManagedObjectID	for	a	managed	object,	you	must	already	have	fetched	or	created
the	managed	object.	Refer	to	ICFMovieListViewController	in	the	sample	app,	in	the
prepareForSegue:sender:	method.	In	this	case,	the	user	has	selected	a	movie	from	the	list,	and
the	view	controller	is	about	to	segue	from	the	list	to	the	detail	view	for	the	selected	movie.	To	inform
the	detail	view	controller	which	movie	to	display,	the	objectID	for	the	selected	movie	is	set	as	a
property	on	the	ICFMovieDisplayViewController:
Click	here	to	view	code	image

if	([[segue	identifier]	isEqualToString:@"showDetail"])
{

		NSIndexPath	*indexPath	=	[self.tableView	indexPathForSelectedRow];

		ICFMovie	*movie	=	[[self	fetchedResultsController]	objectAtIndexPath:indexPath];

		ICFMovieDisplayViewController	*movieDispVC	=	(ICFMovieDisplayViewController	*)	[segue
destinationViewController];

		[movieDispVC	setMovieDetailID:[movie	objectID]];
}

When	the	ICFMovieDisplayViewController	is	loaded,	it	uses	a	method	on	the	managed
object	context	to	load	a	managed	object	using	the	objectID:
Click	here	to	view	code	image

[kAppDelegate.managedObjectContext	performBlockAndWait:^{
				ICFMovie	*movie	=	(ICFMovie	*)[kAppDelegate.managedObjectContext
objectWithID:self.movieDetailID];

				[self	configureViewForMovie:movie];
}];

When	this	is	loaded,	the	movie	is	available	to	the	view	controller	to	configure	the	view	using	the
movie	data	(see	Figure	15.7).

Figure	15.7	Sample	App:	movie	display	view.

It	is	certainly	possible	to	just	pass	the	managed	object	from	one	view	controller	to	the	next	with	no
problems,	instead	of	passing	the	objectID	and	loading	the	managed	object	in	the	destination	view
controller.	However,	there	are	cases	when	using	the	objectID	is	highly	preferable	to	using	the
managed	object:

	If	the	managed	object	has	been	fetched	or	created	on	a	different	thread	than	the	destination	view
controller	will	use	to	process	and	display	the	managed	object—this	approach	must	be	used	since
managed	objects	are	not	thread	safe!
	If	a	background	thread	might	update	the	managed	object	in	another	managed	object	context
between	fetching	and	displaying—this	will	avoid	possible	issues	with	displaying	the	most	up-to-
date	changes.

Displaying	Your	Object	Data
After	managed	objects	have	been	fetched,	accessing	and	displaying	data	from	them	is	straightforward.
For	any	managed	object,	using	the	key-value	approach	will	work	to	retrieve	attribute	values.	As	an
example,	refer	to	the	configureCell:atIndexPath	method	in
ICFFriendsViewController	in	the	sample	app.	This	code	will	populate	the	table	cell’s	text
label	and	detail	text	label.
Click	here	to	view	code	image

NSManagedObject	*object	=	[self.fetchedResultsController	objectAtIndexPath:indexPath];

cell.textLabel.text	=	[object	valueForKey:@"friendName"];

NSInteger	numShares	=	[[object	valueForKey:@"lentMovies"]	count];

NSString	*subtitle	=	@"";

switch	(numShares)
{
		case	0:
				subtitle	=	@"Not	borrowing	any	movies.";
				break;

		case	1:
				subtitle	=	@"Borrowing	1	movie.";
				break;

		default:
				subtitle	=	[NSString	stringWithFormat:@"Borrowing	%d	movies.",	numShares];

				break;
}

cell.detailTextLabel.text	=	subtitle;

To	get	the	attribute	values	from	the	managed	object,	call	valueForKey:	and	specify	the	attribute
name.	If	the	attribute	name	is	specified	incorrectly,	the	app	will	fail	at	runtime.
For	managed	object	subclasses,	the	attribute	values	are	also	accessible	by	calling	the	property	on	the
managed	object	subclass	with	the	attribute	name.	Refer	to	the	configureViewForMovie:	method
in	ICFMovieDisplayViewController	in	the	sample	app.
Click	here	to	view	code	image

-	(void)configureViewForMovie:(ICFMovie	*)movie

{
		NSString	*movieTitleYear	=	[movie	yearAndTitle];

		[self.movieTitleAndYearLabel	setText:movieTitleYear];

		[self.movieDescription	setText:[movie	movieDescription]];

		BOOL	movieLent	=	[[movie	lent]	boolValue];

		NSString	*movieShared	=	@"Not	Shared";
		if	(movieLent)
		{
				NSManagedObject	*friend	=	[movie	valueForKey:@"lentToFriend"];

				NSDateFormatter	*dateFormatter	=	[[NSDateFormatter	alloc]	init];

				[dateFormatter	setDateStyle:NSDateFormatterMediumStyle];

				NSString	*sharedDateTxt	=	[dateFormatter	stringFromDate:[movie	lentOn]];

				movieShared	=	[NSString	stringWithFormat:@"Shared	with	%@	on	%@",	[friend
valueForKey:@"friendName"],sharedDateTxt];
		}

		[self.movieSharedInfoLabel	setText:movieShared];
}

If	the	property-based	approach	to	get	attribute	values	from	managed	object	subclasses	is	used,	errors
will	be	caught	at	compile	time.

Using	Predicates
Predicates	can	be	used	to	narrow	down	your	fetch	results	to	data	that	match	your	specific	criteria.
They	are	analogous	to	a	where	clause	in	an	SQL	statement,	but	they	can	be	used	to	filter	elements
from	a	collection	(like	an	NSArray)	as	well	as	a	fetch	request	from	Core	Data.	To	see	how	a
predicate	is	applied	to	a	fetch	request,	refer	to	method	fetchedResultsController	in
ICFSharedMoviesViewController.	This	method	lazy-loads	and	sets	up	an
NSFetchedResultsController,	which	helps	a	table	view	interact	with	the	results	of	a	fetch
request	(this	is	described	in	detail	in	the	next	section).	Setting	up	a	predicate	is	simple;	for	example:
Click	here	to	view	code	image

NSPredicate	*predicate	=	[NSPredicate	predicateWithFormat:@"lent	==	%@",@YES];

In	the	format	string,	predicates	can	be	constructed	with	attribute	names,	comparison	operators,
Boolean	operators,	aggregate	operators,	and	substitution	expressions.	A	comma-separated	list	of
expressions	will	be	substituted	in	the	order	of	the	substitution	expressions	in	the	format	string.	Dot
notation	can	be	used	to	specify	relationships	in	the	predicate	format	string.	Predicates	support	a	large
variety	of	operators	and	arguments,	as	shown	in	Table	15.2.

Table	15.2	Core	Data	Predicate-Supported	Operators	and	Arguments

Tell	the	fetch	request	to	use	the	predicate:
Click	here	to	view	code	image

[fetchRequest	setPredicate:predicate];

Now	the	fetch	request	will	narrow	the	returned	result	set	of	managed	objects	to	match	the	criteria
specified	in	the	predicate	(see	Figure	15.8).

Figure	15.8	Sample	App:	Shared	Movies	tab.

Introducing	the	Fetched	Results	Controller
A	fetched	results	controller	(NSFetchedResultsController)	is	a	very	effective	liaison
between	Core	Data	and	a	UITableView	or	UICollectionView.	The	fetched	results	controller
provides	a	way	to	set	up	a	fetch	request	so	that	the	results	are	returned	in	sections	and	rows,	accessible
by	index	paths.	In	addition,	the	fetched	results	controller	can	listen	to	changes	in	Core	Data	and	update
the	table	accordingly	using	delegate	methods.
In	the	sample	app,	refer	to	ICFMovieListViewController	for	a	detailed	example	of	a	fetched
results	controller	in	action	(see	Figure	15.9).

Figure	15.9	Sample	App:	movie	list	view	controller.

Preparing	the	Fetched	Results	Controller
When	the	“master”	view	controller	is	set	up	using	Xcode’s	Master	Detail	template,	Xcode	creates	a
property	for	the	fetched	results	controller,	and	overrides	the	accessor	method
(fetchedResultsController)	to	lazy-load	or	initialize	the	fetched	results	controller	the	first
time	it	is	requested.	First	the	method	checks	to	see	whether	the	fetched	results	controller	has	already
been	initialized:
Click	here	to	view	code	image

if	(__fetchedResultsController	!=	nil)
{
		return	__fetchedResultsController;
}

If	the	fetched	results	controller	is	already	set	up,	it	is	returned.	Otherwise,	a	new	fetched	results
controller	is	set	up,	starting	with	a	fetch	request:
Click	here	to	view	code	image

NSFetchRequest	*fetchRequest	=	[[NSFetchRequest	alloc]	init];

The	fetch	request	needs	to	be	associated	with	an	entity	from	the	managed	object	model,	and	a
managed	object	context:
Click	here	to	view	code	image

NSManagedObjectContext	*moc	=	kAppDelegate.managedObjectContext;

NSEntityDescription	*entity	=	[NSEntityDescription	entityForName:@"Movie"
														inManagedObjectContext:moc];

[fetchRequest	setEntity:entity];

A	batch	size	can	be	set	up	to	prevent	the	fetch	request	from	fetching	too	many	records	at	once:
Click	here	to	view	code	image

[fetchRequest	setFetchBatchSize:20];

Next,	the	sort	order	is	established	for	the	fetch	request	using	NSSortDescriptor	instances.	An
important	point	to	note	is	that	the	attribute	used	for	sections	needs	to	be	the	first	in	the	sort	order	so
that	the	records	can	be	correctly	divided	into	sections.	The	sort	order	is	determined	by	the	order	of
the	sort	descriptors	in	the	array	of	sort	descriptors	attached	to	the	fetch	request.
Click	here	to	view	code	image

NSSortDescriptor	*sortDescriptor	=	[[NSSortDescriptor	alloc]	initWithKey:@"title"
ascending:YES];

NSSortDescriptor	*sharedSortDescriptor	=	[[NSSortDescriptor	alloc]	initWithKey:@"lent"
ascending:NO];

NSArray	*sortDescriptors	=	@[sharedSortDescriptor,sortDescriptor];

[fetchRequest	setSortDescriptors:sortDescriptors];

After	the	fetch	request	is	ready,	the	fetched	results	controller	can	be	initialized.	It	requires	a	fetch
request,	a	managed	object	context,	a	key	path	or	an	attribute	name	to	be	used	for	the	table	view
sections,	and	a	name	for	a	cache	(if	nil	is	passed,	no	caching	is	done).	The	fetched	results	controller
can	specify	a	delegate	that	will	respond	to	any	Core	Data	changes.	When	this	is	complete,	the	fetched
results	controller	is	assigned	to	the	view	controller ’s	property:
Click	here	to	view	code	image

NSFetchedResultsController	*aFetchedResultsController	=	[[NSFetchedResultsController
alloc]	initWithFetchRequest:fetchRequest	managedObjectContext:moc
sectionNameKeyPath:@"lent"	cacheName:nil];

aFetchedResultsController.delegate	=	self;
self.fetchedResultsController	=	aFetchedResultsController;

Now	that	the	fetched	results	controller	has	been	prepared,	the	fetch	can	be	executed	to	obtain	a	result
set	the	table	view	can	display,	and	the	fetched	results	controller	can	be	returned	to	the	caller:
Click	here	to	view	code	image

NSError	*error	=	nil;
if	(![self.fetchedResultsController	performFetch:&error])
{
		NSLog(@"Unresolved	error	%@,	%@",	error,	[error	userInfo]);
		abort();
}

return	__fetchedResultsController;

Integrating	Table	View	and	Fetched	Results	Controller
Integrating	the	table	view	and	fetched	results	controller	is	just	a	matter	of	updating	the	table	view’s
datasource	and	delegate	methods	to	use	information	from	the	fetched	results	controller.	In
ICFMovieListViewController,	the	fetched	results	controller	tells	the	table	view	how	many
sections	it	has:
Click	here	to	view	code	image

-	(NSInteger)numberOfSectionsInTableView:(UITableView	*)tableView
{
		return	[[self.fetchedResultsController	sections]	count];
}

The	fetched	results	controller	tells	the	table	view	how	many	rows	are	in	each	section,	using	the
NSFetchedResultsSectionInfo	protocol:
Click	here	to	view	code	image

-	(NSInteger)tableView:(UITableView	*)tableView	numberOfRowsInSection:(NSInteger)section
{
		id	<NSFetchedResultsSectionInfo>	sectionInfo	=	[[self.fetchedResultsController
sections]	objectAtIndex:section];

		return	[sectionInfo	numberOfObjects];
}

The	fetched	results	controller	provides	section	titles,	which	are	the	values	of	the	attribute	specified	as
the	section	name.	Since	the	sample	app	is	using	a	Boolean	attribute	for	the	sections,	the	values	that	the
fetched	results	controller	returns	for	section	titles	are	not	user-friendly	titles:	0	and	1.	The	sample
app	looks	at	the	titles	from	the	fetched	results	controller	and	returns	more	helpful	titles:	Shared
instead	of	1	and	Not	Shared	instead	of	0.
Click	here	to	view	code	image

-	(NSString	*)tableView:(UITableView	*)tableView	titleForHeaderInSection:
(NSInteger)section
{
		id	<NSFetchedResultsSectionInfo>	sectionInfo	=	[[self.fetchedResultsController
sections]	objectAtIndex:section];

		if	([[sectionInfo	indexTitle]	isEqualToString:@"1"])
		{
				return	@"Shared";
		}
		else
		{
				return	@"Not	Shared";
		}
}

To	populate	the	table	cells,	the	sample	app	dequeues	a	reusable	cell,	and	then	calls	the
configureView:	method,	passing	the	indexPath	for	the	cell:
Click	here	to	view	code	image

-	(UITableViewCell	*)tableView:(UITableView	*)tableView	cellForRowAtIndexPath:
(NSIndexPath	*)indexPath
{
		UITableViewCell	*cell	=	[tableView	dequeueReusableCellWithIdentifier:@"Cell"];

		[self	configureCell:cell	atIndexPath:indexPath];

		return	cell;
}

The	fetched	results	controller	knows	which	movie	should	be	displayed	at	each	index	path,	so	the
sample	app	can	get	the	correct	movie	to	display	by	calling	the	objectAtIndexPath:	method	on
the	fetched	results	controller.	Then,	it	is	simple	to	update	the	cell	with	data	from	the	movie	instance.
Click	here	to	view	code	image

-	(void)configureCell:(UITableViewCell	*)cell	atIndexPath:(NSIndexPath	*)indexPath
{
		ICFMovie	*movie	=	[self.fetchedResultsController	objectAtIndexPath:indexPath];

		cell.textLabel.text	=	[movie	cellTitle];

		cell.detailTextLabel.text	=	[movie	movieDescription];
}

The	last	table-view	integration	detail	would	typically	be	handling	table	cell	selection	in	the
tableView:didSelectRowAtIndexPath:	method.	In	this	case,	no	integration	in	that	method
is	needed	since	selection	is	handled	by	storyboard	segue.	In	the	prepareForSegue:sender:
method,	selection	of	a	table	cell	is	handled	with	an	identifier	called	showDetail:
Click	here	to	view	code	image

if	([[segue	identifier]	isEqualToString:@"showDetail"])
{
NSIndexPath	*indexPath	=	[self.tableView	indexPathForSelectedRow];

				ICFMovie	*movie	=	[[self	fetchedResultsController]	objectAtIndexPath:indexPath];

				ICFMovieDisplayViewController	*movieDisplayVC	=	(ICFMovieDisplayViewController	*)
[segue	destinationViewController];

				[movieDisplayVC	setMovieDetailID:[movie	objectID]];
}

This	method	gets	the	index	path	of	the	selected	row	from	the	table	view,	and	then	gets	the	movie
instance	from	the	fetched	results	controller	using	the	index	path.	The	method	then	sets	the
movieDetailID	of	the	ICFMovieDisplayViewController	instance	with	the	movie
instance’s	objectID.

Responding	to	Core	Data	Changes
For	the	fetched	results	controller	to	respond	to	Core	Data	changes	and	update	the	table	view,	methods
from	the	NSFetchedResultsControllerDelegate	protocol	need	to	be	implemented.	First	the
view	controller	needs	to	declare	that	it	will	implement	the	delegate	methods:
Click	here	to	view	code	image

@interface	ICFMovieListViewController	:	UITableViewController
<NSFetchedResultsControllerDelegate>

The	fetched	results	controller	delegate	will	be	notified	when	content	will	be	changed,	giving	the
delegate	the	opportunity	to	animate	the	changes	in	the	table	view.	Calling	the	beginUpdates
method	on	the	table	view	tells	it	that	all	updates	until	endUpdates	is	called	should	be	animated
simultaneously.
Click	here	to	view	code	image

-	(void)controllerWillChangeContent:	(NSFetchedResultsController	*)controller
{
		[self.tableView	beginUpdates];
}

There	are	two	delegate	methods	that	might	be	called	based	on	data	changes.	One	method	will	tell	the
delegate	that	changes	occurred	that	affect	the	table-view	sections;	the	other	will	tell	the	delegate	that
the	changes	affect	objects	at	specified	index	paths,	so	the	table	view	will	need	to	update	the	associated

rows.	Because	the	data	changes	are	expressed	by	type,	the	delegate	will	be	notified	if	the	change	is	an
insert,	a	delete,	a	move,	or	an	update,	so	a	typical	pattern	is	to	build	a	switch	statement	to	perform
the	correct	action	by	change	type.	For	sections,	the	sample	app	will	only	make	changes	that	can	insert
or	delete	a	section	(if	a	section	name	is	changed,	that	might	trigger	a	case	in	which	a	section	might
move	and	be	updated	as	well).
Click	here	to	view	code	image

-	(void)controller:(NSFetchedResultsController	*)controller	didChangeSection:(id
<NSFetchedResultsSectionInfo>)sectionInfo	atIndex:(NSUInteger)sectionIndex	forChangeType:
(NSFetchedResultsChangeType)type
{
		switch(type)
		{
				case	NSFetchedResultsChangeInsert:
						...
						break;

				case	NSFetchedResultsChangeDelete:
						...
						break;
		}
}

Table	views	have	a	convenient	method	to	insert	new	sections,	and	the	delegate	method	receives	all	the
necessary	information	to	insert	new	sections:
Click	here	to	view	code	image

[self.tableView	insertSections:[NSIndexSet	indexSetWithIndex:sectionIndex]
withRowAnimation:UITableViewRowAnimationFade];

Removing	sections	is	just	as	convenient:
Click	here	to	view	code	image

[self.tableView	deleteSections:[NSIndexSet	indexSetWithIndex:sectionIndex]
withRowAnimation:UITableViewRowAnimationFade];

For	object	changes,	the	delegate	will	be	informed	of	the	change	type,	the	object	that	changed,	the
current	index	path	for	the	object,	and	a	“new”	index	path	if	the	object	is	being	inserted	or	moved.
Using	switch	logic	to	respond	by	change	type	works	for	this	method	as	well.
Click	here	to	view	code	image

-	(void)controller:(NSFetchedResultsController	*)controller	didChangeObject:(id)anObject
atIndexPath:(NSIndexPath	*)indexPath	forChangeType:(NSFetchedResultsChangeType)type
newIndexPath:(NSIndexPath	*)newIndexPath
{
		UITableView	*tableView	=	self.tableView;

		switch(type)
		{
				case	NSFetchedResultsChangeInsert:
						...
						break;

				case	NSFetchedResultsChangeDelete:
						...
						break;

				case	NSFetchedResultsChangeUpdate:
						...

						break;

				case	NSFetchedResultsChangeMove:
						...
						break;
		}
}

Table	views	have	convenience	methods	to	insert	rows	by	index	path.	Note	that	the	newIndex-Path
is	the	correct	index	path	to	use	when	inserting	a	row	for	an	inserted	object.
Click	here	to	view	code	image

[tableView	insertRowsAtIndexPaths:[NSArray	arrayWithObject:newIndexPath]
withRowAnimation:UITableViewRowAnimationFade];

To	delete	a	row,	use	the	indexPath	passed	to	the	delegate	method.
Click	here	to	view	code	image

[tableView	deleteRowsAtIndexPaths:[NSArray	arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade];

To	update	a	row,	call	the	configureCell:atIndexPath:	method	for	the	current	indexPath.
This	is	the	same	configure	method	called	from	the	table	view	delegate’s
tableView:cellForRowAtIndexPath:	method.
Click	here	to	view	code	image

[self	configureCell:[tableView	cellForRowAtIndexPath:indexPath]	atIndexPath:indexPath];

To	move	a	row,	delete	the	row	for	the	current	indexPath	and	insert	a	row	for	the
newIndexPath.
Click	here	to	view	code	image

[tableView	deleteRowsAtIndexPaths:[NSArray	arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade];

[tableView	insertRowsAtIndexPaths:[NSArray	arrayWithObject:newIndexPath]
withRowAnimation:UITableViewRowAnimationFade];

The	fetched	results	controller	delegate	will	be	notified	when	the	content	changes	are	complete,	so	the
delegate	can	tell	the	table	view	there	will	be	no	more	animated	changes	by	calling	the	endUpdates
method.	After	that	method	is	called,	the	table	view	will	animate	the	accumulated	changes	in	the	user
interface.
Click	here	to	view	code	image

-	(void)controllerDidChangeContent:	(NSFetchedResultsController	*)controller
{
		[self.tableView	endUpdates];
}

Adding,	Editing,	and	Removing	Managed	Objects
Although	it	is	useful	to	be	able	to	fetch	and	display	data,	apps	often	need	to	add	new	data,	edit	existing
data,	and	remove	unneeded	data	at	the	user ’s	request.

Inserting	a	New	Managed	Object
In	the	sample	app,	view	the	Movies	tab.	To	insert	a	new	movie,	the	user	can	tap	the	Add	button	in	the
navigation	bar.	The	Add	button	is	wired	to	perform	a	segue	to	the
ICFMovieEditViewController.	In	the	segue	logic,	a	new	movie	managed	object	is	inserted
into	Core	Data,	and	the	new	movie’s	object	ID	is	passed	to	the	edit	movie	view	controller.	This
approach	is	used	in	the	sample	app	to	prevent	having	logic	in	the	edit	view	controller	to	handle	both
creating	new	managed	objects	and	editing	existing	managed	objects;	however,	it	would	be	perfectly
acceptable	to	create	the	new	movie	managed	object	in	the	edit	view	controller	if	that	makes	more
sense	in	a	different	app.
To	create	a	new	instance	of	a	movie	managed	object,	a	reference	to	the	managed	object	context	is
needed.
Click	here	to	view	code	image

NSManagedObjectContext	*moc	=	[kAppDelegate	managedObjectContext];

Set	up	a	variable	to	capture	the	managed	object	ID	of	the	new	movie	in	block	storage	so	that	it	can	be
used	to	pass	along	in	the	segue.
Click	here	to	view	code	image

__block	NSManagedObjectID	*newMovieID	=	nil;

Again,	use	the	performBlockAndWait:	technique	to	isolate	core	data	changes	to	the	managed
object	context’s	thread:

[moc	performBlockAndWait:^{

To	insert	data,	Core	Data	needs	to	know	what	entity	the	new	data	is	for.	Core	Data	has	a	class	called
NSEntityDescription	that	provides	information	about	entities.	Create	a	new	instance	using
NSEntityDescription’s	class	method:
Click	here	to	view	code	image

ICFMovie	*newMovie	=	[NSEntityDescription	insertNewObjectForEntityForName:@"Movie"
inManagedObjectContext:moc];

Populate	the	new	movie	managed	object’s	attributes	with	data:
Click	here	to	view	code	image

[newMovie	setTitle:@"New	Movie"];
[newMovie	setYear:@"2014"];
[newMovie	setMovieDescription:@"New	movie	description."];
[newMovie	setLent:@NO];
[newMovie	setLentOn:nil];
[newMovie	setTimesWatched:@0];

Prepare	an	NSError	variable	to	capture	any	potential	errors,	save	the	managed	object	context,	and
close	the	perform	block.
Click	here	to	view	code	image

NSError	*mocSaveError	=	nil;

if	(![moc	save:&mocSaveError])
{
		NSLog(@"Save	did	not	complete	successfully.	Error:	%@",	[mocSaveError
localizedDescription]);
}

After	the	managed	object	context	has	been	successfully	saved,	the	fetched	results	controller	will	be
notified	if	the	save	affects	the	results	of	the	controller ’s	fetch,	and	the	delegate	methods	described
earlier	in	this	chapter	will	be	called.

Removing	a	Managed	Object
On	the	Movies	tab	in	the	sample	app,	the	user	can	swipe	on	the	right	side	of	a	table	cell,	or	can	tap	the
Edit	button	to	reveal	the	delete	controls	for	each	table	cell.	When	Delete	is	tapped	on	a	cell,	the	table
view	delegate	method	tableView:commitEditingStyle:forRowAtIndexPath:	is	called.
That	method	checks	whether	the	editingStyle	is	equal	to
UITableViewCellEditingStyleDelete.	If	so,	that	indicates	the	user	has	tapped	the	Delete
button	for	the	table	cell,	so	the	method	prepares	to	delete	the	corresponding	movie	by	getting	a
reference	to	the	managed	object	context	from	the	fetched	results	controller.	The	fetched	results
controller	keeps	a	reference	to	the	managed	object	context	it	was	initialized	with,	which	is	needed	to
delete	the	object.
Click	here	to	view	code	image

NSManagedObjectContext	*context	=	[self.fetchedResultsController	managedObjectContext];

The	method	determines	which	managed	object	should	be	deleted,	by	asking	the	fetched	results
controller	for	the	managed	object	at	the	specified	index	path.
Click	here	to	view	code	image

[context	performBlockAndWait:^{	NSManagedObject	*objectToBeDeleted	=
[self.fetchedResultsController	objectAtIndexPath:indexPath];

To	delete	the	managed	object,	the	method	tells	the	managed	object	context	to	delete	it.
Click	here	to	view	code	image

[context	deleteObject:objectToBeDeleted];

The	deletion	is	not	permanent	until	the	managed	object	context	is	saved.	After	it	is	saved,	the	delegate
methods	described	earlier	in	the	chapter	will	be	called	and	the	table	will	be	updated.
Click	here	to	view	code	image

NSError	*error	=	nil;
if	(![context	save:&error])
{
		NSLog(@"Error	deleting	movie,	%@",	[error	userInfo]);
}

Editing	an	Existing	Managed	Object
On	the	Movies	tab	in	the	sample	app,	the	user	can	tap	a	movie	to	see	more	detail	about	it.	To	change
any	of	the	information	about	the	movie,	tap	the	Edit	button	in	the	navigation	bar,	which	will	present	an
instance	of	ICFMovieEditViewController.	When	the	view	is	loaded,	it	will	load	an	instance	of
ICFMovie	using	the	objectID	passed	in	from	the	display	view	or	list	view,	will	save	that	instance
into	the	property	editMovie,	and	will	configure	the	view	using	information	from	the	movie
managed	object.
If	the	user	decides	to	edit	the	year	of	the	movie,	for	example,	another	view	controller	will	be
presented	with	a	UIPickerView	for	the	user	to	select	a	new	year.	The
ICFMovieEditViewController	is	set	up	as	a	delegate	for	the	year	chooser,	so	when	the	user

has	selected	a	new	year	and	taps	Save,	the	delegate	method	chooserSelectedYear:	is	called.	In
that	method,	the	editMovie	is	updated	with	the	new	date	and	the	display	is	updated.
Click	here	to	view	code	image

-	(void)chooserSelectedYear:(NSString	*)year
{
				[self.editMovie	setYear:year];
				[self.movieYearLabel	setText:year];
}

Note	that	the	managed	object	context	was	not	saved	after	editMovie	was	updated.	The	managed
object	editMovie	can	keep	updates	temporarily	until	the	user	makes	a	decision	about	whether	to
make	the	changes	permanent,	indicated	by	tapping	the	Save	or	Cancel	button.

Saving	and	Rolling	Back	Your	Changes
If	the	user	taps	the	Save	button,	he	has	indicated	his	intention	to	keep	the	changes	made	to	the
editMovie.	In	the	saveButtonTouched:	method,	the	fields	not	updated	with	delegate	methods
are	saved	to	the	editMovie	property:
Click	here	to	view	code	image

[kAppDelegate.managedObjectContext	performBlockAndWait:^{
				NSString	*movieTitle	=	[self.movieTitle	text];
				[self.editMovie	setTitle:movieTitle];

				NSString	*movieDesc	=	[self.movieDescription	text];
				[self.editMovie	setMovieDescription:movieDesc];

				BOOL	sharedBool	=	[self.sharedSwitch	isOn];
				NSNumber	*shared	=	[NSNumber	numberWithBool:sharedBool];
				[self.editMovie	setLent:shared];

Then	the	managed	object	context	is	saved,	making	the	changes	permanent.
Click	here	to	view	code	image

NSError	*saveError	=	nil;
[kAppDelegate.managedObjectContext	save:&saveError];
if	(saveError)
{
				UIAlertController	*alertController	=	[UIAlertController
alertControllerWithTitle:@"Error	saving	movie"	message:[saveError	localizedDescription]
preferredStyle:UIAlertControllerStyleAlert];

				[alertController	addAction:	[UIAlertAction	actionWithTitle:@"OK"
																														style:UIAlertActionStyleCancel
																												handler:nil]];

				[self	presentViewController:alertController
																							animated:YES
																					completion:nil];
}
else
{
				NSLog(@"Changes	to	movie	saved.");
}

If	the	user	decides	that	the	changes	should	be	thrown	away	and	not	be	made	permanent,	the	user	will
tap	the	Cancel	button,	which	calls	the	cancelButtonTouched:	method.	That	method	will	first

check	whether	the	managed	object	context	has	any	unsaved	changes.	If	so,	the	method	will	instruct	the
managed	object	context	to	roll	back	or	throw	away	the	unsaved	changes.	After	that	is	completed,	the
managed	object	context	will	be	back	to	the	state	it	was	in	before	any	of	the	changes	were	made.	Rather
than	the	user	interface	being	updated	to	reflect	throwing	away	the	changes,	the	view	is	dismissed.
Click	here	to	view	code	image

if	([kAppDelegate.managedObjectContext	hasChanges])
{
		[kAppDelegate.managedObjectContext	rollback];
		NSLog(@"Rolled	back	changes.");
}

[self.navigationController.presentingViewController
dismissModalViewControllerAnimated:YES];

The	managed	object	context	can	be	saved	at	any	time	while	making	updates;	be	advised	that	saving
large	numbers	of	changes	with	a	main	queue	managed	object	context	tied	to	the	persistent	store	can
result	in	a	noticeable	delay	and	potentially	affect	the	user	interface.	It	is	generally	advisable	to	keep
saves	relatively	small	and	related;	if	saves	must	be	large	(for	example,	when	pulling	a	lot	of
information	from	a	Web	API),	then	it	is	worth	considering	a	more	complex	Core	Data	stack	with
multiple	contexts	in	a	parent/child	relationship	to	prevent	writing	to	the	persistent	store	on	the	main
queue.

Summary
This	chapter	described	how	to	set	up	a	new	project	to	use	Core	Data	and	how	to	set	up	all	the	Core
Data	environment	pieces.	The	chapter	detailed	how	to	create	a	managed	object	model,	including	how
to	add	a	new	entity,	add	attributes	to	an	entity,	and	set	up	relationships	between	entities.	It	also
described	why	an	NSManagedObject	subclass	is	useful	and	how	to	create	one.
This	chapter	explained	how	to	set	up	some	initial	data	for	the	project,	and	demonstrated	how	to	insert
new	managed	objects.	Alternative	techniques	for	initial	data	setup	were	discussed.
This	chapter	then	detailed	how	to	create	a	fetch	request	to	get	saved	managed	objects,	and	how	to
fetch	individual	managed	objects	using	an	objectID.	It	described	how	to	display	data	from
managed	objects	in	the	user	interface	of	an	app.	It	explained	how	to	use	predicates	to	fetch	managed
objects	that	match	specific	criteria.
This	chapter	introduced	the	fetched	results	controller,	a	powerful	tool	for	integrating	Core	Data	with
the	UITableView;	described	how	to	set	up	a	UITableView	with	a	fetched	results	controller;	and
explained	how	to	set	up	a	fetched	results	controller	delegate	to	automatically	update	a	table	view	from
Core	Data	changes.
Finally,	this	chapter	explained	how	to	add,	edit,	and	delete	managed	objects,	and	how	to	save	changes
or	roll	back	unwanted	changes.
With	all	these	tools,	you	should	now	have	a	good	foundation	for	using	Core	Data	effectively	in	your
apps.

16.	Integrating	Twitter	and	Facebook	Using	Social	Framework

Social	networking	is	here	to	stay,	and	users	want	to	be	able	to	access	their	social	media	accounts	on
everything	from	the	newest	iOS	game	to	their	refrigerators	(Samsung	Model	RF4289HARS).	Before
iOS	5,	adding	Twitter	and	Facebook	to	an	app	was	a	frustrating	and	challenging	endeavor;	third-party
libraries	written	by	people	who	didn’t	understand	the	platform	were	rampant,	often	not	even
compiling.	Starting	with	iOS	5,	Apple	introduced	Social	Framework,	which	enabled	developers	to
directly	integrate	Twitter	services	into	their	apps	with	little	effort.	With	iOS	6,	Apple	expanded	the
Social	Framework	functionality	to	include	Facebook	and	Sina	Weibo	(China’s	leading	social
network).
Not	only	are	users	craving	social	integration	in	just	about	everything	with	a	screen,	but	social
integration	can	be	highly	beneficial	to	the	app	developer	as	well.	When	a	user	tweets	a	high	score
from	a	game	or	shares	a	Facebook	message	about	an	app,	it	will	reach	a	market	that	a	developer
would	not	be	able	to	penetrate.	Not	only	is	the	app	reaching	new	customers,	but	it	also	is	getting	a
personalized	endorsement	from	a	potential	new	customer ’s	friends.	There	are	few	apps	that	could	not
benefit	from	the	inclusion	of	social	media,	and	with	iOS	8	it	has	become	easier	than	ever	to	add	this
functionality.

The	Sample	App
The	sample	app	for	this	chapter	is	called	SocialNetworking	(see	Figure	16.1).	The	app	features	a
single	text	view	with	a	character-count	label	and	a	button	to	attach	an	image.	There	are	two	buttons	on
the	title	bar	as	well	that	enable	the	user	to	access	Twitter	and	Facebook	functionality.	The	sample	app
enforces	a	140-character	count	on	Facebook	posts	and	Twitter;	in	reality,	Facebook	supports	much
longer	text	posts.

Figure	16.1	A	first	look	at	the	sample	app,	SocialNetworking,	for	this	chapter.

Tapping	the	buttons	for	each	of	the	services	brings	up	three	options:	composer,	auto-post,	and
timeline.	The	composer	option	will	take	you	to	the	built-in	SLComposeViewController	and	is
the	easiest	and	fastest	way	to	post	a	message	to	a	social	service.	The	auto-post	option	will	post	the	text
and	optional	image	from	the	main	screen	without	the	user	needing	to	take	any	additional	steps;	this
step	can	also	be	considered	programmatic	posting.	The	timeline	option	will	bring	up	the	user ’s
Twitter	timeline	or	Facebook	feed.	The	sample	app	does	not	include	functionality	for	Sina	Weibo,
although	this	service	can	be	adapted	with	relative	ease.

Logging	In
The	Social	Framework	uses	a	centralized	login	system	for	Facebook	and	Twitter,	which	can	be	found
under	the	Settings.app,	as	shown	in	Figure	16.2.

Figure	16.2	Logging	in	to	a	social	service	on	iOS	requires	the	user	to	leave	the	app	and	visit	the
Settings	app.

In	the	event	that	a	user	is	not	currently	logged	in	to	Twitter	or	Facebook	and	attempts	to	access
Twitter	and	Facebook	functionality,	the	user	will	be	prompted	to	set	up	a	new	account,	as	shown	in
Figure	16.3.	This	system	works	only	when	the	SLComposeViewController	is	being	used;
otherwise,	a	simple	access-denied	message	is	presented	if	no	accounts	are	configured.	In	addition	to
the	no-accounts	message,	you	might	occasionally	see	an	“Error	6”	returned	if	the	accounts	in

Settings.app	are	not	properly	configured.	This	is	typically	caused	by	an	account	set	with	incorrect
credentials.

Figure	16.3	The	user	being	prompted	to	configure	a	Twitter	account	for	the	device.

Note
There	is	currently	no	Apple-approved	method	of	loading	the	user	directly	into	the
configure	screen	for	Twitter	and	Facebook	outside	of	the
SLComposeViewController	built-in	message.

Using	SLComposeViewController
The	easiest	way	to	post	a	new	message	to	Twitter	or	Facebook	is	to	use	the
SLComposeViewController.	It	requires	no	fiddling	with	permissions	and,	if	the	user	has	not	set
up	an	account,	it	prompts	him	to	configure	one.	The	downside	of	SLComposeViewController	is
that	there	is	no	way	to	customize	the	appearance	of	the	view	that	the	user	is	presented	with,	as	shown
in	Figure	16.4.

Figure	16.4	Posting	a	new	tweet	with	an	image	using	the	SLComposeViewController.

Before	your	app	can	interact	with	SLComposeViewController,	the	Social.framework	must	first
be	imported	into	the	project.	In	addition,	the	header	file	"Social"	will	need	to	be	imported;	note	the
capitalization	of	the	header	files.
The	following	code	is	the	most	effortless	method	of	presenting	an	SLComposeViewController
for	Twitter.	The	first	step	is	a	call	to	isAvailableForServiceType;	in	the	event	that	the	device
is	not	capable	of	posting	to	Twitter,	it	will	gracefully	exit.	A	new	SLComposeViewController	is
created	and	a	new	block	is	made	to	handle	the	results	of	the	action.	The	completion	handler	for	the

SLComposeViewController	is	set	to	the	newly	created	block	and	it	is	presented	with
presentViewController.	These	are	the	bare	minimum	steps	that	need	to	be	completed	in	order
to	post	from	an	iOS	app	to	Twitter.	This	option	is	demonstrated	in	the	sample	app	as	the	Composer
option	under	the	Twitter	menu.
Click	here	to	view	code	image

if([SLComposeViewController	isAvailableForServiceType:SLServiceTypeTwitter])
{

						SLComposeViewController	*controller	=	[SLComposeViewController
composeViewControllerForServiceType:	SLServiceTypeTwitter];

						SLComposeViewControllerCompletionHandler	myBlock	=
						^(SLComposeViewControllerResult	result){
												if	(result	==	SLComposeViewControllerResultCancelled)
												{
																		NSLog(@"Cancelled");
												}

												else
												{
																		NSLog(@"Done");
												}

												[controller	dismissViewControllerAnimated:YES	completion:nil];
						};

						controller.completionHandler	=	myBlock;

						[self	presentViewController:controller	animated:YES	completion:nil];
}

else
{
						NSLog(@"Twitter	Composer	is	not	available.");
}

You	can	also	customize	an	SLComposeViewController	by	setting	the	initial	text,	images,	and
URLs.
Click	here	to	view	code	image

[controller	setInitialText:@"Check	out	my	app:"];
[controller	addImage:[UIImage	imageNamed:@"Kitten.jpg"]];
[controller	addURL:[NSURL	URLWithString:@"http://amzn.to/Um85L0"]];

Multiple	attachments	can	also	be	added	by	stacking	addImage	or	addURL	calls.
Click	here	to	view	code	image

[controller	addImage:[UIImage	imageNamed:@"Kitten1.jpg"]];
[controller	addImage:[UIImage	imageNamed:@"Kitten2.jpg"]];

In	the	event	that	it	is	necessary	to	remove	URLs	or	images	from	the	SLComposeViewController
after	they	have	been	added,	it	can	be	done	with	a	single	method	call.
Click	here	to	view	code	image

[controller	removeAllImages];
[controller	removeAllURLs];

The	approach	for	SLComposeViewController	with	Facebook	is	identical	to	that	for	Twitter	with

one	exception:	Both	uses	of	SLServiceTypeTwitter	should	be	replaced	with
SLServiceTypeFacebook.

Posting	with	a	Custom	Interface
It	might	become	necessary	to	move	beyond	the	capabilities	of	the	SLComposeViewController
and	implement	a	ground-up	solution.	Luckily,	Social	Framework	fully	supports	this	kind	of
customization.	When	SLComposeViewController	was	used	in	the	preceding	example,	the
differences	between	posting	to	Facebook	and	posting	to	Twitter	were	minor,	but	this	will	no	longer	be
the	case	when	you’re	dealing	with	customized	interfaces.	Twitter	and	Facebook	implementations
when	working	at	a	lower	level	are	almost	entirely	different.	This	section	is	broken	into	two
subsections:	one	for	Twitter	and	one	for	Facebook.	Twitter	support	is	the	simpler	of	the	two,	so	that	is
covered	first.

Posting	to	Twitter
In	addition	to	importing	the	Social.framework	and	importing	the	"Social/Social.h"
header	from	the	SLComposeViewController,	the	"Accounts/Accounts.h"	header	will
also	need	to	be	imported.	To	begin	working	with	more	direct	access	to	Twitter ’s	APIs,	two	new
objects	first	need	to	be	created.
Click	here	to	view	code	image

ACAccountStore	*account	=	[[ACAccountStore	alloc]	init];
ACAccountType	*accountType	=	[account	accountTypeWithAccountTypeIdentifier:
ACAccountTypeIdentifierTwitter];

The	ACAccountStore	will	allow	the	code	base	to	access	the	Twitter	account	that	has	been
configured	in	the	Settings.app,	and	the	ACAccountType	contains	the	information	needed	for	a
particular	type	of	account.	The	accountType	object	can	be	queried	to	see	whether	access	has
already	been	granted	to	the	user.
Click	here	to	view	code	image

if(accountType.accessGranted)
{
				NSLog(@"User	has	already	granted	access	to	this	service");
}

To	prompt	the	user	to	grant	access	to	the	Twitter	account	information,	a	call	on	the
ACAccountStore	for	requestAccessToAccountsWithType:options:completion:	is
required.	If	the	account	has	already	been	authorized,	the	completion	block	will	return	YES	for
granted	without	prompting	the	user	again.
Click	here	to	view	code	image

[account	requestAccessToAccountsWithType:accountType	options:nil	completion:^(BOOL
granted,	NSError	*error)

If	the	user	grants	access	or	if	access	has	already	been	granted,	a	list	of	the	user ’s	Twitter	accounts	will
need	to	be	retrieved.	A	user	can	add	multiple	Twitter	accounts	to	his	device	and	you	cannot	determine
which	one	he	will	want	to	post	from.	In	the	event	that	multiple	accounts	are	found,	the	user	should	be
prompted	to	specify	which	account	he	would	like	to	use.
Click	here	to	view	code	image

if	(granted	==	YES)
{
				NSArray	*arrayOfAccounts	=	[account	accountsWithAccountType:	accountType];
}

In	the	sample	app,	for	the	sake	of	simplicity,	if	multiple	accounts	are	found,	the	last	one	is
automatically	selected.	In	an	App	Store	app,	it	will	be	important	to	present	the	user	with	an	option	to
select	which	account	she	would	like	to	use	if	more	than	one	is	found.
Click	here	to	view	code	image

if	([arrayOfAccounts	count]	>	0)
{
				ACAccount	*twitterAccount	=	[arrayOfAccounts	lastObject];
}

After	a	reference	to	the	account	is	created	and	stored	in	an	ACAccount	object,	the	post	data	can	be
configured.	Depending	on	whether	the	post	will	include	an	image	or	other	media,	a	different	post
URL	needs	to	be	used.
Click	here	to	view	code	image

NSURL	*requestURL	=	nil;

if(hasAttachmentedImage)
{
				requestURL	=	[NSURL	URLWithString:	@"https://upload.twitter.com/1.1/statuses/
update_with_media.json"];
}

else
{
				requestURL	=	[NSURL	URLWithString:
@"http://api.twitter.com/1.1/statuses/update.json"];
}

Warning
Posting	a	tweet	to	the	improper	URL	will	result	in	its	failing	to	be	processed.	You	cannot
post	an	image	tweet	to	the	update.json	endpoint,	and	you	cannot	post	a	non-image
tweet	to	the	update_with_media.json	endpoint.

After	the	endpoint	URL	has	been	determined,	a	new	SLRequest	object	is	created.	The	SLRequest
is	the	object	that	will	contain	all	the	information	needed	to	post	the	full	tweet	details	to	Twitter ’s	API.
Click	here	to	view	code	image

SLRequest	*postRequest	=	[SLRequest	requestForServiceType:SLServiceTypeTwitter
requestMethod:SLRequestMethodPOST	URL:requestURL	parameters:nil];

After	the	SLRequest	has	been	created,	an	account	must	be	defined	for	it.	Using	the	account	that	was
previously	determined,	the	account	property	is	then	set.
Click	here	to	view	code	image

postRequest.account	=	twitterAccount;

To	add	text	to	this	tweet,	a	call	on	the	postRequest	to
addMultipartData:withName:type:filename:	is	used.	The	text	is	a	simple	string	with
NSUTF8StringEncoding.	The	name	used	here	correlates	to	the	Twitter	API	documentation;	for

text	it	is	status.	For	type,	multipart/form-data	is	used	in	accordance	with	the	Twitter	API.
No	filename	is	required	for	text.
Click	here	to	view	code	image

[postRequest	addMultipartData:[socialTextView.text	dataUsingEncoding:
NSUTF8StringEncoding]	withName:@"status"	type:@"multipart/form-data"filename:nil];

Note
For	more	information	on	Twitter ’s	API	and	where	these	constants	are	pulled	from,	visit
https://dev.twitter.com/docs.

If	the	tweet	has	an	image	associated	with	it,	add	it	next.	A	UIImage	first	needs	to	be	converted	to
NSData	using	UIImageJPEGRepresentation.	This	example	is	similar	to	the	preceding	text-
based	example	except	that	a	filename	is	specified.
Click	here	to	view	code	image

NSData	*imageData	=	UIImageJPEGRepresentation(self.attachmentImage,	1.0);

[postRequest	addMultipartData:imageData	withName:@"media"
type:@"image/jpeg"	filename:@"Image.jpg"];

Note
Multiple	images	can	be	added	with	repetitive	calls	to
addMultipartData:withName:type:filename:.

After	the	postRequest	has	been	fully	populated	with	all	the	information	that	should	appear	in	the
tweet,	it	is	time	to	post	it	to	Twitter ’s	servers.	This	is	done	with	a	call	to
performRequestWithHandler:.	A	URLResponse	code	of	200	indicates	a	success;	every
other	response	code	indicates	a	type	of	failure.	A	successful	post	from	the	sample	is	shown	in	Figure
16.5.

https://dev.twitter.com/docs

Figure	16.5	A	successful	tweet	to	Twitter	using	a	custom	interface	as	shown	in	the	sample	app.

Note
It	is	important	to	remember	that	UIAlertViews	cannot	be	shown	from	within	a
completion	block,	because	the	completion	block	will	not	necessarily	be	executed	on	the
main	thread.	In	the	sample	app,	error	messages	are	passed	to	a	main	thread	method	to
display	alerts.

Click	here	to	view	code	image

[postRequest	performRequestWithHandler:^(NSData	*responseData,	NSHTTPURLResponse
*urlResponse,	NSError	*error)
{
						if(error	!=	nil)
						{
										[self	performSelectorOnMainThread:	@selector(reportSuccessOrError:)	withObject:
[error	localizedDescription]	waitUntilDone:NO];
						}

						if([urlResponse	statusCode]	==	200)
						{
										[self	performSelectorOnMainThread:	@selector(reportSuccessOrError:)
withObject:@"Your	message	has	been	posted	to	Twitter"	waitUntilDone:NO];
						}

}];

This	concludes	all	the	required	steps	to	post	a	string	and	an	image	to	Twitter	using	a	custom	interface.
In	the	following	subsection,	Facebook	posting	will	be	fully	explored.

Tip
Inside	of	the	sample	app,	the	process	of	posting	to	Twitter	is	fully	laid	out	in	the	method
twitterPost.

Posting	to	Facebook
The	same	basic	principles	apply	when	you	are	working	with	a	Facebook	post	as	with	Twitter;
however,	multiple	additional	are	steps	required	to	deal	with	a	number	of	authentication	and
permission	requirements.	Unlike	Twitter,	Facebook	has	various	levels	of	permissions.	If	users
authorize	an	app	to	access	their	feed,	they	might	not	want	the	app	to	be	able	to	publish	to	their	feeds.
To	make	matters	more	complex,	permissions	have	to	be	requested	in	certain	orders,	and	requests	for
read	and	write	permission	cannot	be	made	at	the	same	time.

Creating	a	Facebook	App
To	post	or	interact	with	Facebook	from	a	mobile	app,	a	Facebook	App	that	corresponds	to	the	mobile
app	must	first	be	created.
Log	in	to	https://developers.facebook.com/apps	using	a	Facebook	account	that	you	want	to	have
ownership	of	the	app.
Click	the	button	+	Create	New	App,	as	shown	in	Figure	16.6.	Enter	values	for	App	Name	and	App
Namespace.	Clicking	the	question	mark	icon	next	to	any	field	will	provide	additional	details.

https://developers.facebook.com/apps

Figure	16.6	Creating	a	new	Facebook	App	ID	from	the	Developers	Portal	on	Facebook’s	Web	site.

After	a	new	Facebook	App	has	been	created	(see	Figure	16.7),	copy	down	the	App	ID	number.	Browse
through	all	the	pages	for	the	new	app	and	ensure	that	it	is	configured	to	suit	the	needs	of	the	iOS	app.
By	default,	there	are	no	options	you	need	to	change	to	continue	working	through	this	section.

Figure	16.7	A	newly	created	Facebook	App.	The	App	ID	will	be	needed	to	make	any	Facebook	calls
from	within	an	iOS	app.

Basic	Facebook	Permissions
The	first	group	of	permissions	that	every	Facebook-enabled	app	needs	to	request	(except	if	you	are
using	only	the	SLComposeViewController)	is	basic	profile	access.	You	do	this	by	requesting
any	of	the	following	attributes:	id,	name,	first_name,	last_name,	link,	username,
gender,	or	locale.	Requesting	any	of	these	items	grants	access	to	all	the	remaining	basic	profile
items.
If	the	app	has	not	yet	been	set	up	according	to	the	instructions	from	the	preceding	section	for	Twitter,
the	proper	headers	and	frameworks	need	to	be	first	imported.	Basic	permission	is	requested	upon	app
launch	or	entering	into	the	section	of	the	app	that	requires	Facebook	interaction.	It	is	not
recommended	to	access	basic	permissions	after	the	user	has	already	attempted	to	make	a	post;	this
will	create	a	chain	of	pop-up	alerts	that	a	user	will	have	trouble	understanding.	The	following	code	is
part	of	the	viewDidLoad:	method	of	ICFViewController.m	in	the	sample	app:

Click	here	to	view	code	image

ACAccountStore	*accountStore	=	[[ACAccountStore	alloc]	init];
ACAccountType	*facebookAccountType	=	[accountStore	accountTypeWithAccountTypeIdentifier:
ACAccountTypeIdentifierFacebook];

NSDictionary	*options	=	@{
ACFacebookAudienceKey	:	ACFacebookAudienceEveryone,
ACFacebookAppIdKey	:	@"363120920441086",
ACFacebookPermissionsKey	:	@[@"email"]};

[accountStore	requestAccessToAccountsWithType:facebookAccountType	options:options
completion:^(BOOL	granted,	NSError	*error)
{
						if	(granted)
						{
												NSLog(@"Basic	access	granted");
						}

						else
						{
												NSLog(@"Basic	access	denied");
						}
}];

The	ACAccountStore	and	ACAccountType	are	configured	in	the	same	fashion	as	for	Twitter,	as
described	in	the	preceding	section.	A	new	dictionary	called	options	is	created;	this	will	be	used	to
supply	the	API	parameters	for	whatever	call	is	to	be	made.	For	basic	permissions
ACFacebookAudienceEveryone	is	passed	for	ACFacebookAudienceKey.	The
ACFacebookAppIdKey	is	the	App	ID	that	was	created	in	the	section	“Creating	a	Facebook	App.”
Since	any	of	the	basic	permissions	can	be	used	to	request	access	to	all	basic	permissions,	the	email
attribute	is	used	for	the	ACFacebookPermissionsKey.	A	call	of	requestAccess-
ToAccountWithType:options:completion:	is	made	on	the	accountStore.	The	user	will
be	presented	with	a	dialog	similar	to	the	one	shown	in	Figure	16.8.	The	result	of	the	user	granting	or
denying	permissions	is	logged.

Figure	16.8	A	user	being	prompted	to	allow	the	sample	app	SocialNetworking	to	access	basic
profile	information.

Publishing	to	Stream	Permissions
Before	an	app	can	post	to	a	user ’s	stream,	it	first	needs	to	request	write	permissions.	This	step	must	be
done	after	basic	permissions	have	been	authorized.	Requesting	publish	permissions	is	nearly	identical
to	requesting	permissions	to	the	basic	profile	information.	Instead	of	requesting	access	to	email	for
ACFacebookPermissionsKey,	permission	is	requested	for	publish_stream.	The	user	will
be	prompted	to	grant	access	to	publish	a	new	post	on	behalf	of	the	user.	After	a	user	has	granted
permission,	he	will	not	be	prompted	again	unless	he	removes	the	app’s	permissions	from	within
Facebook.
Click	here	to	view	code	image

ACAccountStore	*accountStore	=	[[ACAccountStore	alloc]	init];
ACAccountType	*facebookAccountType	=	[accountStore
accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierFacebook];

NSDictionarvy	*options	=	@{
ACFacebookAudienceKey	:	ACFacebookAudienceEveryone,
ACFacebookAppIdKey	:	@"363120920441086",
ACFacebookPermissionsKey	:	@[@"publish_stream"]};

[accountStore	requestAccessToAccountsWithType:facebookAccountType	options:options
completion:^(BOOL	granted,	NSError	*error)
{
						if	(granted)
						{
												NSLog(@"Publish	permission	granted");
						}

						else
						{
												NSLog(@"Publish	permission	denied");
						}
}];

Note
Important:	Do	not	forget	to	change	the	ACFacebookAppIdKey	to	match	the	ID	of	the
Facebook	App	that	you	will	be	publishing	under.

Posting	to	the	Facebook	Stream
After	the	user	has	granted	permission	to	publish	to	her	timeline	on	her	behalf,	the	app	is	ready	to
create	a	new	post.	The	first	step	to	creating	a	new	Facebook	post	is	to	create	an	NSDictionary	that
will	store	a	single	object	under	the	key	@"message".	This	key/value	pair	will	hold	the	text	that	will
appear	in	the	post.
Click	here	to	view	code	image

NSDictionary	*parameters	=	[NSDictionary	dictionaryWithObject:socialTextView.text
forKey:@"message"];

If	the	post	does	not	contain	any	media	such	as	images,	the	message	is	posted	to
https://graph.facebook.com/me/feed;	however,	if	the	new	post	will	contain	photos	or	media,	it	will
need	to	be	posted	to	https://graph.facebook.com/me/photos.	These	URLs	cannot	be	mixed;	for
example,	posting	a	feed	item	with	no	image	to	https://graph.facebook.com/me/photos	will	result	in	a
failure.	The	sample	app	performs	a	simple	check	to	determine	which	endpoint	to	use.
Click	here	to	view	code	image

if(self.attachmentImage)
{
				feedURL	=	[NSURL	URLWithString:	@"https://graph.facebook.com/me/photos"];
}

else
{
				feedURL	=	[NSURL	URLWithString:	@"https://graph.facebook.com/me/feed"];
}

After	the	proper	URL	for	posting	has	been	determined,	a	new	SLRequest	object	is	created
specifying	the	URL	and	the	parameters.
Click	here	to	view	code	image

SLRequest	*feedRequest	=	[SLRequest

https://graph.facebook.com/me/feed
https://graph.facebook.com/me/photos
https://graph.facebook.com/me/photos

requestForServiceType:SLServiceTypeFacebook
																														requestMethod:SLRequestMethodPOST
																														URL:feedURL
																														parameters:parameters];

In	the	event	that	the	post	contains	an	image,	that	data	needs	to	be	added	to	the	feedRequest.	This	is
done	using	the	addMultipartData:withName:type:filename:	method.
Click	here	to	view	code	image

if(self.attachmentImage)
{
						NSData	*imageData	=	UIImagePNGRepresentation(self.attachmentImage);	[feedRequest
addMultipartData:imageData	withName:@"source"	type:@"multipart/form-data"
filename:@"Image"];
}

After	the	optional	image	data	is	added,	a	performRequestWithHandler:	is	called	in	the	same
fashion	as	Twitter.	Facebook	will	return	a	urlResponse	code	of	200	if	the	post	was	successful.
Click	here	to	view	code	image

[feedRequest	performRequestWithHandler:^(NSData	*responseData,	NSHTTPURLResponse
*urlResponse,	NSError	*error)
{
						NSLog(@"Facebook	post	statusCode:	%d",	[urlResponse	statusCode]);

						if([urlResponse	statusCode]	==	200)
						{
									[self	performSelectorOnMainThread:@selector(reportSuccessOrError:)
withObject:@"Your	message	has	been	posted	to	Facebook"	waitUntilDone:NO];
						}

						else	if(error	!=	nil)
						{
										[self	performSelectorOnMainThread:@selector(faceBookError:)	withObject:error
waitUntilDone:NO];
					}
}];

Additional	information	about	formatting	posts	and	embedding	media	for	Facebook	can	be	found
through	the	documentation	at	http://developers.facebook.com.

Accessing	User	Timelines
There	might	be	times	when	posting	a	status	update	is	not	enough	to	satisfy	an	app’s	social	interaction
requirements.	Accessing	a	timeline	on	Twitter	or	Facebook	is	complex,	and	there	is	an	abundance	of
tricky	edge	cases	and	data	types	to	support,	from	Twitter ’s	retweets	to	Facebook	embedded	data.	This
section	takes	a	cursory	look	at	accessing	the	raw	data	from	a	timeline	and	displaying	it	to	a
tableView.	It	has	been	left	simple	because	the	subject	of	timelines	is	a	rabbit	hole	that	can	very	well
occupy	a	book	in	and	of	itself.

Twitter
As	shown	in	previous	sections,	Twitter	has	been	easier	to	interact	with	than	the	more	complex
Facebook	APIs,	due	mainly	to	the	multiple	permission	hierarchy	implemented	with	Facebook.
Accessing	a	user ’s	Twitter	timeline	begins	in	the	same	fashion	as	posting	new	a	tweet;	references	to
ACAccountStore	and	ACAccountType	are	created.

http://developers.facebook.com

Click	here	to	view	code	image

ACAccountStore	*account	=	[[ACAccountStore	alloc]	init];

ACAccountType	*accountType	=	[account	accountTypeWithAccountTypeIdentifier:
ACAccountTypeIdentifierTwitter];

Continuing	in	the	same	fashion	as	posting	a	new	tweet,	a	call	to	requestAccessTo-
AccountWithType:	is	performed	on	the	account	object.	Basic	error	handling	is	also	set	up	here.
Click	here	to	view	code	image

[account	requestAccessToAccountsWithType:accountType	options:nil	completion:^(BOOL
granted,	NSError	*error)
{
						if(error	!=	nil)
						{
													[self
						performSelectorOnMainThread:@selector(reportSuccessOrError:)	withObject:[error
localizedDescription]	waitUntilDone:NO];
						}

	}];

If	no	errors	are	returned	and	access	is	granted,	a	copy	of	the	ACAccount	object	for	the	user	is
obtained.	The	sample	app,	once	again,	just	uses	the	last	object	in	the	account	array;	however,	it	is
important	to	keep	in	mind	that	some	users	might	be	logged	in	to	several	Twitter	accounts	at	once	and
should	be	given	the	option	of	selecting	which	account	they	want	to	use.	The	request	URL	used	to
retrieve	a	copy	of	the	user ’s	timeline	is	http://api.twitter.com/1.1/statuses/home_timeline.json.	A
number	of	options	will	also	need	to	be	specified.	The	first	option,	count,	specifies	the	number	of
tweets	that	will	be	retrieved	per	call.	The	second	option	is	a	Boolean	value	used	to	specify	whether
tweet	entities	should	be	included.	A	tweet	entity	will	include	additional	details	such	as	users
mentioned,	hashtags,	URLs,	and	media.
After	it	has	been	created,	the	SLRequest	is	submitted	in	the	same	fashion	used	when	posting	to	a
new	status	update.	The	performRequestWithHandler	success	block	will	contain	the
responseData	that	can	then	be	displayed.	The	following	code	is	part	of	the	twitterTimeline
method	of	ICFViewController.m:
Click	here	to	view	code	image

if	(granted	==	YES)
{
						NSArray	*arrayOfAccounts	=	[account	accountsWithAccountType:accountType];

						if	([arrayOfAccounts	count]	>	0)
						{
										ACAccount	*twitterAccount	=	[arrayOfAccounts	lastObject];

										NSURL	*requestURL	=	[NSURL	URLWithString:
										@"http://api.twitter.com/1.1/statuses/home_timeline.json"];

										NSDictionary	*options	=	@{
										@"count"	:	@"20",
										@"include_entities"	:	@"1"};

										SLRequest	*postRequest	=	[SLRequest	requestForServiceType:SLServiceTypeTwitter
requestMethod:SLRequestMethodGET	URL:requestURL	parameters:options];

										postRequest.account	=	twitterAccount;

http://api.twitter.com/1.1/statuses/home_timeline.json

										[postRequest	performRequestWithHandler:^(NSData	*responseData,
NSHTTPURLResponse	*urlResponse,	NSError	*error)
										{
														if(error	!=	nil)
														{
																		[self	performSelectorOnMainThread:@selector(reportSuccessOrError:)
withObject:[errorlocalizedDescription]	waitUntilDone:NO];
														}

															[self	performSelectorOnMainThread:	@selector(presentTimeline:)	withObject:
[NSJSONSerialization	JSONObjectWithData:responseData	options:NSJSONReadingMutableLeaves
error:&error]	waitUntilDone:NO];
										}];
						}
}

Provided	is	a	sample	of	the	responseData	with	tweet	entities	enabled	from	a	typical	Twitter
timeline	fetch;	in	addition,	a	sample	of	how	this	tweet	shows	up	on	the	Twitter	Web	site	is	shown	in
Figure	16.9.	As	shown	in	the	following	console	output,	Twitter	provides	a	considerable	amount	of
information	to	which	the	developer	has	access.	For	more	information	on	working	with	JSON	data,
refer	to	Chapter	9,	“Working	with	and	Parsing	JSON.”

Figure	16.9	A	fully	rendered	tweet	as	seen	on	the	Twitter	Web	site.	The	data	that	makes	up	this	tweet
can	be	seen	in	the	log	statements	earlier	in	this	section.

Click	here	to	view	code	image

2013-02-27	21:50:54.562	SocialNetworking[28672:4207]	(
								{
								contributors	=	"<null>";
								coordinates	=	"<null>";
								"created_at"	=	"Thu	Feb	28	02:50:41	+0000	2013";
								entities	=									{
												hashtags	=													(
																																{
																				indices	=																					(
																								63,
																								76
);
																				text	=	bluesjamtime;
																}
);
												media	=													(
																																{
																				"display_url"	=	"pic.twitter.com/CwoYlbWaQJ";
																				"expanded_url"	=
"http://twitter.com/neror/status/306959580582248448/photo/1";
																				id	=	306959580586442753;
																				"id_str"	=	306959580586442753;
																				indices	=																					(
																								77,
																								99
);
																				"media_url"	=	"http://pbs.twimg.com/media/BEKKHLlCAAEUQ6x.jpg";
																				"media_url_https"	=

"https://pbs.twimg.com/media/BEKKHLlCAAEUQ6x.jpg";
																				sizes	=																					{
																								large	=																									{
																												h	=	768;
																												resize	=	fit;
																												w	=	1024;
																								};
																								medium	=																									{
																												h	=	450;
																												resize	=	fit;
																												w	=	600;
																								};
																								small	=																									{
																												h	=	255;
																												resize	=	fit;
																												w	=	340;
																								};
																								thumb	=																									{
																												h	=	150;
																												resize	=	crop;
																												w	=	150;
																								};
																				};
																				type	=	photo;
																				url	=	"http://t.co/CwoYlbWaQJ";
																}
);
												urls	=													(
);
												"user_mentions"	=													(
);
								};
								favorited	=	0;
								geo	=	"<null>";
								id	=	306959580582248448;
								"id_str"	=	306959580582248448;
								"in_reply_to_screen_name"	=	"<null>";
								"in_reply_to_status_id"	=	"<null>";
								"in_reply_to_status_id_str"	=	"<null>";
								"in_reply_to_user_id"	=	"<null>";
								"in_reply_to_user_id_str"	=	"<null>";
								place	=									{
												attributes	=													{
												};
												"bounding_box"	=													{
																coordinates	=																	(
																																								(
																																																(
																												"-95.90998500000001",
																												"29.537034"
),
																																																(
																												"-95.01449599999999",
																												"29.537034"
),
																																																(
																												"-95.01449599999999",
																												"30.110792"
),
																																																(
																												"-95.90998500000001",
																												"30.110732"
)

)
);
																type	=	Polygon;
												};
												country	=	"United	States";
												"country_code"	=	US;
												"full_name"	=	"Houston,	TX";
												id	=	1c69a67ad480e1b1;
												name	=	Houston;
												"place_type"	=	city;
												url	=	"http://api.twitter.com/1/geo/id/1c69a67ad480e1b1.json";
								};
								"possibly_sensitive"	=	0;
								"retweet_count"	=	0;
								retweeted	=	0;
								source	=	"<a	href=\http://tapbots.com/software/tweetbot/mac\
rel=\"nofollow\">Tweetbot	for	Mac";
								text	=	"Playing	my	strat	always	gets	the	creative	coding	juices	going.
#bluesjamtime	http://t.co/CwoYlbWaQJ";
								truncated	=	0;
								user	=									{
												"contributors_enabled"	=	0;
												"created_at"	=	"Mon	Sep	04	02:05:35	+0000	2006";
												"default_profile"	=	0;
												"default_profile_image"	=	0;
												description	=	"Dad,	iOS	&	Mac	game	and	app	developer,	Founder	of	Free	Time
Studios,	Texan";
												"favourites_count"	=	391;
												"follow_request_sent"	=	"<null>";
												"followers_count"	=	2254;
												following	=	1;
												"friends_count"	=	865;
												"geo_enabled"	=	1;
												id	=	5250;
												"id_str"	=	5250;
												"is_translator"	=	0;
												lang	=	en;
												"listed_count"	=	182;
												location	=	"Houston,	Texas";
												name	=	"Nathan	Eror";
												notifications	=	"<null>";
												"profile_background_color"	=	1A1B1F;
												"profile_background_image_url"	=
"http://a0.twimg.com/images/themes/theme9/bg.gif";
												"profile_background_image_url_https"	=
"https://si0.twimg.com/images/themes/theme9/bg.gif";
												"profile_background_tile"	=	0;
												"profile_image_url"	=
"http://a0.twimg.com/profile_images/1902659692/36A2FDF8-72F4-485E-B574-
892C1FF16534_normal";
												"profile_image_url_https"	=
"https://si0.twimg.com/profile_images/1902659692/36A2FDF8-72F4-485E-B574-
892C1FF16534_normal";
												"profile_link_color"	=	2FC2EF;
												"profile_sidebar_border_color"	=	181A1E;
												"profile_sidebar_fill_color"	=	252429;
												"profile_text_color"	=	666666;
												"profile_use_background_image"	=	1;
												protected	=	0;
												"screen_name"	=	neror;
												"statuses_count"	=	5091;
												"time_zone"	=	"Central	Time	(US	&	Canada)";
												url	=	"http://www.freetimestudios.com";

												"utc_offset"	=	"-21600";
												verified	=	0;
								};
				}
)

Facebook
Retrieving	a	Facebook	timeline	is	done	through	the	endpoint	https://graph.facebook.com/me/feed.	To
begin,	a	new	NSURL	is	created	and	then	used	to	generate	a	new	SLRequest.	The	following	example
assumes	that	the	app	has	previously	authenticated	the	user ’s	permissions	and	that	request	was	granted.
See	the	earlier	section	“Basic	Facebook	Permissions”	for	more	details.
Click	here	to	view	code	image

NSURL	*feedURL	=	[NSURL	URLWithString:	@"https://graph.facebook.com/me/feed"];

SLRequest	*feedRequest	=	[SLRequest

requestForServiceType:SLServiceTypeFacebook
																														requestMethod:SLRequestMethodGET
																														URL:feedURL
																														parameters:nil];

feedRequest.account	=	self.facebookAccount;

After	the	SLRequest	has	been	set	up,	a	call	to	performRequestWithHandler:	is	invoked	on
the	feedRequest	object.	In	the	event	of	a	success,	Facebook	will	return	a	urlResponse	status
code	of	200;	any	other	status	code	indicates	a	failure.
Click	here	to	view	code	image

[feedRequest	performRequestWithHandler:^(NSData	*responseData,	NSHTTPURLResponse
*urlResponse,	NSError	*error)
{
						NSLog(@"Facebook	post	statusCode:	%d",	[urlResponse	statusCode]);

						if([urlResponse	statusCode]	==	200)
						{
										NSLog(@"%@",	[[NSJSONSerialization	JSONObjectWithData:responseData
options:NSJSONReadingMutableLeaves	error:&error]	objectForKey:@"data"]);

										[self	performSelectorOnMainThread:	@selector(presentTimeline:)	withObject:
[[NSJSONSerialization	JSONObjectWithData:responseData	options:NSJSONReadingMutableLeaves
error:&error]	objectForKey:@"data"]	waitUntilDone:NO];
						}

						else	if(error	!=	nil)
						{
										[self	performSelectorOnMainThread:	@selector(faceBookError:)	withObject:error
waitUntilDone:NO];
						}
}];

Facebook	supports	many	types	of	post	updates,	from	likes,	comments,	and	new	friends	to	wall
updates.	Many	of	these	dictionaries	use	different	key	sets	for	the	information	that	is	typically
displayed.	The	sample	app	will	handle	the	most	common	types	of	Facebook	posts.	Following	are
three	standard	post	types	with	all	the	accompanying	data.	The	first	is	a	message	indicating	that	a	new
Facebook	friend	has	been	connected.	The	second	item	in	the	array	represents	a	post	in	which	the	user
likes	a	link.	The	final	example	shows	the	user	adding	a	comment	to	a	post	by	another	user.	It	is

https://graph.facebook.com/me/feed

important	to	thoroughly	test	any	use	of	Facebook	timeline	parsing	on	a	wide	selection	of	Facebook
events	to	ensure	proper	compatibility.	More	information	on	the	formatting	and	behavior	of	Facebook
posts	can	be	found	at	http://developers.facebook.com.	For	more	information	on	working	with	JSON
data,	refer	to	Chapter	9.
Click	here	to	view	code	image

(
								{
								actions	=									(
																								{
																link	=	"http://www.facebook.com/1674990377/posts/4011976152528";
																name	=	Comment;
												},
																								{
																link	=	"http://www.facebook.com/1674990377/posts/4011976152528";
																name	=	Like;
												}
);
								comments	=									{
												count	=	0;
								};
								"created_time"	=	"2013-02-10T18:26:44+0000";
								from	=									{
												id	=	1674990377;
												name	=	"Kyle	Richter";
								};
								id	=	"1674990377_4011976152528";
								privacy	=									{
												value	=	"";
								};
								"status_type"	=	"approved_friend";
								story	=	"Kyle	Richter	and	Kirby	Turner	are	now	friends.";
								"story_tags"	=									{
												0	=													(
																																{
																				id	=	1674990377;
																				length	=	12;
																				name	=	"Kyle	Richter";
																				offset	=	0;
																				type	=	user;
																}
);
												17	=													(
																																{
																				id	=	827919293;
																				length	=	12;
																				name	=	"Kirby	Turner";
																				offset	=	17;
																				type	=	user;
																}
);
								};
								type	=	status;
								"updated_time"	=	"2013-02-10T18:26:44+0000";
				},
								{
								comments	=									{
												count	=	0;
								};
								"created_time"	=	"2013-01-03T00:58:41+0000";
								from	=									{
												id	=	1674990377;

http://developers.facebook.com

												name	=	"Kyle	Richter";
								};
								id	=	"1674990377_3785554092118";
								privacy	=									{
												value	=	"";
								};
								story	=	"Kyle	Richter	likes	a	link.";
								"story_tags"	=									{
												0	=													(
																																{
																				id	=	1674990377;
																				length	=	12;
																				name	=	"Kyle	Richter";
																				offset	=	0;
																				type	=	user;
																}
);
								};
								type	=	status;
								"updated_time"	=	"2013-01-03T00:58:41+0000";
				},
								{
								application	=									{
												id	=	6628568379;
												name	=	"Facebook	for	iPhone";
												namespace	=	fbiphone;
								};
								comments	=									{
												count	=	0;
								};
								"created_time"	=	"2013-01-02T19:20:59+0000";
								from	=									{
												id	=	1674990377;
												name	=	"Kyle	Richter";
								};
								id	=	"1674990377_3784462784836";
								privacy	=									{
												value	=	"";
								};
								story	=	"\"Congrats!\"	on	Dan	Burcaw's	link.";
								"story_tags"	=									{
												15	=													(
																																{
																				id	=	10220084;
																				length	=	10;
																				name	=	"Dan	Burcaw";
																				offset	=	15;
																				type	=	user;
																}
);
								};
								type	=	status;
								"updated_time"	=	"2013-01-02T19:20:59+0000";
				})

Summary
This	chapter	covered	the	basics	of	integrating	both	Twitter	and	Facebook	into	an	iOS	app.	Topics
ranged	from	working	with	the	built-in	composer	to	writing	highly	customized	posting	engines.	In
addition,	readers	learned	how	to	pull	down	the	timeline	and	feed	data	and	display	it	for	consumption.
Social	media	integration	has	never	been	an	easy	topic,	but	with	the	enhancements	made	to	Social

Framework	as	well	as	Apple’s	commitment	to	bring	social	intergeneration	to	more	third-party	apps,
it	continues	to	get	easier.	The	skills	required	to	build	a	rich	social	app	that	includes	Twitter	and
Facebook	interaction	should	now	be	much	clearer.

17.	Working	with	Background	Tasks

When	iOS	was	first	introduced	in	2008,	only	one	third-party	app	at	a	time	could	be	active—the
foreground	app.	This	meant	that	any	tasks	that	the	app	needed	to	complete	had	to	finish	while	the	app
was	in	the	foreground	being	actively	used,	or	those	tasks	had	to	be	paused	and	resumed	the	next	time
the	app	was	started.	With	the	introduction	of	iOS	4,	background	capabilities	were	added	for	third-
party	apps.	Since	iOS	devices	have	limited	system	resources	and	battery	preservation	is	a	priority,
background	processing	has	some	limitations	to	prevent	interference	with	the	foreground	app	and	to
prevent	using	too	much	power.	An	app	can	accomplish	a	lot	with	correct	usage	of	backgrounding
capabilities.	This	chapter	explains	what	options	are	available	and	how	to	use	them.
Two	approaches	to	background-task	processing	are	supported	by	iOS:

	The	first	approach	is	finishing	a	long-running	task	in	the	background.	This	method	is
appropriate	for	completing	things	like	large	downloads	or	data	updates	that	stretch	beyond	the
time	the	user	spends	interacting	with	the	app.
	The	second	approach	is	supporting	specific	types	of	background	activities	allowed	by	iOS,	such
as	playing	music,	interacting	with	Bluetooth	devices,	fetching	newly	available	app	content,
monitoring	the	GPS	for	large	changes,	or	maintaining	a	persistent	network	connection	to	allow
VoIP-type	apps	to	work.

Note
The	term	“background	task”	is	frequently	used	interchangeably	for	two	different
meanings:	a	task	executed	when	the	app	is	not	in	the	foreground	(described	in	this
chapter),	and	a	task	executed	asynchronously	off	the	main	thread	(described	in	Chapter
18,	“Grand	Central	Dispatch	for	Performance”).	In	addition,	NSURLSession	provides
the	capability	to	upload	and	download	files	while	the	app	is	terminated,	and	can	restart	the
app	when	an	upload	or	download	is	complete.

The	Sample	App
The	sample	app	for	this	chapter	is	called	BackgroundTasks.	This	app	demonstrates	the	two
backgrounding	approaches:	completing	a	long-running	task	while	the	app	is	in	the	background,	and
playing	audio	continuously	while	the	app	is	in	the	background.	The	user	interface	is	simple—it
presents	a	button	to	start	and	stop	background	music	and	a	button	to	start	the	background	task	(see
Figure	17.1).

Figure	17.1	BackgroundTasks	sample	app.

Checking	for	Background	Availability
All	devices	capable	of	running	iOS	5	or	higher	support	performing	activities	in	the	background,
referred	to	as	multitasking	in	Apple’s	documentation.	If	the	target	app	needs	to	support	iOS	4	(or
potentially	a	new	device	released	in	the	future),	note	that	a	few	devices	do	not	support	multitasking.
Any	code	written	to	take	advantage	of	multitasking	should	check	to	ensure	that	multitasking	is
supported	by	the	device.	When	the	user	taps	the	Start	Background	Task	button	in	the	sample	app,	the
startBackgroundTaskTouched:	method	in	ICFViewController	will	be	called	to	check
for	multitasking	support.
Click	here	to	view	code	image

-	(IBAction)startBackgroundTaskTouched:(id)sender
{
				UIDevice*	device	=	[UIDevice	currentDevice];

				if	(!	[device	isMultitaskingSupported])

				{
								NSLog(@"Multitasking	not	supported	on	this	device.");
								return;
				}

				[self.backgroundButton	setEnabled:NO];
				NSString	*buttonTitle	=@"Background	Task	Running";

				[self.backgroundButton	setTitle:buttonTitle
																											forState:UIControlStateNormal];

				dispatch_queue_t	background	=
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,	0);

				dispatch_async(background,	^{
								[self	performBackgroundTask];
				});

}

To	check	for	multitasking	availability,	use	the	class	method	currentDevice	on	UIDevice	to	get
information	about	the	current	device.	Then,	call	the	isMultitaskingSupported	method	to
determine	whether	multitasking	is	supported.	If	multitasking	is	supported,	the	user	interface	is	updated
and	the	performBackgroundTask	method	is	called	asynchronously	to	start	the	background	task
(see	Chapter	18	for	more	info	on	executing	tasks	asynchronously).

Finishing	a	Task	in	the	Background
To	execute	a	long-running	task	in	the	background,	the	application	needs	to	be	informed	that	the	task
should	be	capable	of	running	in	the	background.	Consideration	should	also	be	given	to	the	amount	of
memory	needed	for	the	task,	and	the	total	amount	of	time	needed	to	complete	the	task.	If	the	task	will
be	longer	than	10	to	15	minutes,	it	is	likely	that	the	app	will	be	terminated	before	the	task	can
complete.	The	task	logic	should	be	able	to	handle	a	quick	termination,	and	be	capable	of	being
restarted	when	the	app	is	relaunched.	Apps	are	given	a	set	amount	of	time	to	complete	their
background	tasks,	and	can	be	terminated	earlier	than	the	given	amount	of	time	if	the	operating	system
detects	that	resources	are	needed.
To	see	the	background	task	in	action,	start	the	sample	app,	as	shown	in	Figure	17.1,	from	Xcode.	Tap
the	Start	Background	Task	button,	and	then	tap	the	Home	button	to	exit	the	app.	Observe	the	console	in
Xcode	to	see	log	statements	generated	by	the	app;	this	will	confirm	that	the	app	is	running	in	the
background.
Click	here	to	view	code	image

Background	task	starting,	task	ID	is	1.
Background	Processed	0.	Still	in	foreground.
Background	Processed	1.	Still	in	foreground.
Background	Processed	2.	Still	in	foreground.
Background	Processed	3.	Still	in	foreground.
Background	Processed	4.	Still	in	foreground.
Background	Processed	5.	Still	in	foreground.
Background	Processed	6.	Time	remaining	is:	599.579052
Background	Processed	7.	Time	remaining	is:	598.423525
Background	Processed	8.	Time	remaining	is:	597.374849
Background	Processed	9.	Time	remaining	is:	596.326780
Background	Processed	10.	Time	remaining	is:	595.308253

The	general	process	to	execute	a	background	task	is	as	follows:

1.	Request	a	background	task	identifier	from	the	application,	specifying	a	block	as	an	expiration
handler.	The	expiration	handler	will	get	called	only	if	the	app	runs	out	of	background	time	or	if
the	system	determines	that	resource	usage	is	too	high	and	the	app	should	be	terminated.

2.	Perform	the	background	task	logic.	Any	code	between	the	request	for	background	task
identifier	and	the	background	task	end	will	be	included.

3.	Tell	the	application	to	end	the	background	task,	and	invalidate	the	background	task	identifier.

Background	Task	Identifier
To	start	a	task	that	can	complete	running	in	the	background,	a	background	task	identifier	needs	to	be
obtained	from	the	application.	The	background	task	identifier	helps	the	application	keep	track	of
which	tasks	are	running	and	which	are	complete.	The	background	task	identifier	is	needed	to	tell	the
application	that	a	task	is	complete	and	background	processing	is	no	longer	required.	The
performBackgroundTask	method	in	ICFViewController	obtains	the	background	task
identifier	before	beginning	the	work	to	be	done	in	the	background.
Click	here	to	view	code	image

__block	UIBackgroundTaskIdentifier	bTask	=	[[UIApplication	sharedApplication]
beginBackgroundTaskWithExpirationHandler:	^{
				...
}];

When	a	background	task	is	being	obtained,	an	expiration	handler	block	should	be	specified.	The
reason	the	__block	modifier	is	used	when	the	background	task	identifier	is	declared	is	that	the
background	task	identifier	is	needed	in	the	expiration	handler	block,	and	needs	to	be	modified	in	the
expiration	handler	block.

Expiration	Handler
The	expiration	handler	for	a	background	task	will	get	called	if	the	operating	system	decides	the	app
has	run	out	of	time	and/or	resources	and	needs	to	be	shut	down.	The	expiration	handler	will	get	called
on	the	main	thread	before	the	app	is	about	to	be	shut	down.	Not	much	time	is	provided	(at	most	it	is	a
few	seconds),	so	the	handler	should	do	a	minimal	amount	of	work.
Click	here	to	view	code	image

__block	UIBackgroundTaskIdentifier	bTask	=	[[UIApplication	sharedApplication]
beginBackgroundTaskWithExpirationHandler:	^{
				NSLog(@"Background	Expiration	Handler	called.");
				NSLog(@"Counter	is:	%d,	task	ID	is	%u.",counter,bTask);

				[[UIApplication	sharedApplication]	endBackgroundTask:bTask];

				bTask	=	UIBackgroundTaskInvalid;
}];

The	minimum	that	the	expiration	handler	should	do	is	to	tell	the	application	that	the	background	task
has	ended	by	calling	the	endBackgroundTask:	method	on	the	shared	application	instance,	and
invalidate	the	background	task	ID	by	setting	the	bTask	variable	to	UIBackgroundTaskInvalid
so	that	it	will	not	inadvertently	be	used	again.
Click	here	to	view	code	image

Background	Processed	570.	Time	remaining	is:	11.482063
Background	Processed	571.	Time	remaining	is:	10.436456

Background	Processed	572.	Time	remaining	is:	9.394706
Background	Processed	573.	Time	remaining	is:	8.346616
Background	Processed	574.	Time	remaining	is:	7.308527
Background	Processed	575.	Time	remaining	is:	6.260324
Background	Processed	576.	Time	remaining	is:	5.212251
Background	Expiration	Handler	called.
Counter	is:	577,	task	ID	is	1.

Completing	the	Background	Task
After	a	background	task	ID	has	been	obtained,	the	actual	work	to	be	done	in	the	background	can
commence.	In	the	performBackgroundTask	method	some	variables	are	set	up	to	know	where	to
start	counting,	to	keep	count	of	iterations,	and	to	know	when	to	stop.	A	reference	to
NSUserDefaults	standardUserDefaults	is	established	to	retrieve	the	last	counter	used,	and
store	the	last	counter	with	each	iteration.
Click	here	to	view	code	image

NSInteger	counter	=	0;

NSUserDefaults	*userDefaults	=	[NSUserDefaults	standardUserDefaults];

NSInteger	startCounter	=	[userDefaults	integerForKey:kLastCounterKey];

NSInteger	twentyMins	=	20	*	60;

The	background	task	for	the	sample	app	is	trivial—it	puts	the	thread	to	sleep	for	a	second	in	a	loop	to
simulate	lots	of	long-running	iterations.	It	stores	the	current	counter	for	the	iteration	in
NSUserDefaults	so	that	it	will	be	easy	to	keep	track	of	where	it	left	off	if	the	background	task
expires.	This	logic	could	be	modified	to	handle	keeping	track	of	any	repetitive	background	task.
Click	here	to	view	code	image

NSLog(@"Background	task	starting,	task	ID	is	%u.",bTask);
for	(counter	=	startCounter;	counter<=twentyMins;	counter++)
{
				[NSThread	sleepForTimeInterval:1];
				[userDefaults	setInteger:counter
																						forKey:kLastCounterKey];

				[userDefaults	synchronize];

				NSTimeInterval	remainingTime	=	[[UIApplication	sharedApplication]
backgroundTimeRemaining];

				NSLog(@"Background	Processed	%d.	Time	remaining	is:	%f",	counter,remainingTime);
}

When	each	iteration	is	complete,	the	time	remaining	for	the	background	task	is	obtained	from	the
application.	This	can	be	used	to	determine	whether	additional	iterations	of	a	background	task	should
be	started.

Note
The	background	task	is	typically	expired	when	there	are	a	few	seconds	remaining,	to
give	it	time	to	wrap	up,	so	any	decision	to	start	a	new	iteration	should	take	that	into
consideration.

After	the	background	task	work	is	done,	the	last	counter	is	updated	in	NSUserDefaults	so	that	it
can	start	over	correctly,	and	the	UI	is	updated	to	enable	the	user	to	start	the	background	task	again.
Click	here	to	view	code	image

NSLog(@"Background	Completed	tasks");

[userDefaults	setInteger:0
																		forKey:kLastCounterKey];

[userDefaults	synchronize];

dispatch_sync(dispatch_get_main_queue(),	^{
				[self.backgroundButton	setEnabled:YES];
				[self.backgroundButton	setTitle:@"Start	Background	Task"
																											forState:UIControlStateNormal];
});

Finally,	two	key	items	need	to	take	place	to	finish	the	background	task:	tell	the	application	to	end	the
background	task,	and	invalidate	the	background	task	identifier.	Every	line	of	code	between	obtaining
the	background	task	ID	and	ending	it	will	execute	in	the	background.
Click	here	to	view	code	image

[[UIApplication	sharedApplication]	endBackgroundTask:self.backgroundTask];

self.backgroundTask	=	UIBackgroundTaskInvalid;

Implementing	Background	Activities
iOS	supports	a	specific	set	of	background	activities	that	can	continue	processing	without	the
limitations	of	the	background	task	identifier	approach.	These	activities	can	continue	running	or	being
available	without	a	time	limit,	and	need	to	avoid	using	too	many	system	resources	to	keep	the	app
from	getting	terminated.

Types	of	Background	Activities
These	are	the	background	activities:

	Playing	background	audio
	Tracking	device	location
	Supporting	a	Voice	over	IP	app
	Downloading	new	Newsstand	app	content
	Communicating	with	an	external	or	Bluetooth	accessory
	Fetching	content	in	the	background
	Initiating	a	background	download	with	a	push	notification

To	support	any	of	these	background	activities,	the	app	needs	to	declare	which	background	activities	it
supports	in	the	Info.plist	file.	To	do	this,	select	the	app	target	in	Xcode,	and	select	the
Capabilities	tab.	Turn	Background	Modes	to	On,	and	then	check	the	desired	modes	to	support.	Xcode
will	add	the	entries	to	the	Info.plist	file	for	you.	Or	edit	the	Info.plist	file	directly	by
selecting	the	app	target	in	Xcode,	and	then	select	the	Info	tab.	Look	for	the	Required	Background
Modes	entry	in	the	list;	if	it	is	not	present,	hover	over	an	existing	entry	and	click	the	plus	sign	to	add	a
new	entry,	and	then	select	Required	Background	Modes.	An	array	entry	will	be	added	with	one	empty
NSString	item.	Select	the	desired	background	mode,	as	shown	in	Figure	17.2.

Figure	17.2	Xcode’s	Info	editor	showing	required	background	modes.

After	the	Required	Background	Modes	entry	is	established,	activity-specific	logic	can	be	built	into	the
app	and	it	will	function	when	the	app	is	in	the	background.

Playing	Music	in	the	Background
To	play	music	in	the	background,	the	first	step	is	to	adjust	the	audio	session	settings	for	the	app.	By
default,	an	app	uses	the	AVAudioSessionCategorySoloAmbient	audio	session	category.	This
ensures	that	other	audio	is	turned	off	when	the	app	is	started,	and	that	the	app	audio	is	silenced	when
the	screen	is	locked	or	the	ring/silent	switch	on	the	device	is	set	to	silent.	This	session	will	not	work,
since	audio	will	be	silenced	when	the	screen	is	locked	or	when	another	app	is	brought	to	the
foreground.	The	viewDidLoad	method	in	ICFViewController	adjusts	the	audio	session
category	to	AVAudioSessionCategoryPlayback,	which	will	ensure	that	the	audio	will
continue	playing	when	the	app	is	in	the	background	or	the	ring/silent	switch	is	set	to	silent.
Click	here	to	view	code	image

AVAudioSession	*session	=	[AVAudioSession	sharedInstance];

NSError	*activeError	=	nil;
if	(![session	setActive:YES	error:&activeError])
{
				NSLog(@"Failed	to	set	active	audio	session!");
}

NSError	*categoryError	=	nil;
if	(![session	setCategory:AVAudioSessionCategoryPlayback
																			error:&categoryError])
{
				NSLog(@"Failed	to	set	audio	category!");
}

The	next	step	in	playing	audio	is	to	initialize	an	audio	player.	This	is	also	done	in	the	view-
DidLoad	method	so	that	the	audio	player	is	ready	whenever	the	user	indicates	that	audio	should	be
played.
Click	here	to	view	code	image

NSError	*playerInitError	=	nil;

NSString	*audioPath	=	[[NSBundle	mainBundle]	pathForResource:@"background_audio"
																																	ofType:@"mp3"];

NSURL	*audioURL	=	[NSURL	fileURLWithPath:audioPath];

self.audioPlayer	=	[[AVAudioPlayer	alloc]	initWithContentsOfURL:audioURL
error:&playerInitError];

The	Play	Background	Music	button	is	wired	to	the	playBackgroundMusicTouched:	method.
When	the	user	taps	that	button,	the	logic	checks	to	see	whether	audio	is	currently	playing.	If	audio	is
currently	playing,	the	method	stops	the	audio	and	updates	the	title	of	the	button.
Click	here	to	view	code	image

if	([self.audioPlayer	isPlaying])
{
				[self.audioPlayer	stop];

				[self.audioButton	setTitle:@"Play	Background	Music"
																						forState:UIControlStateNormal];

}
else
{	...
}

If	music	is	not	currently	playing,	the	method	starts	the	audio	and	changes	the	title	of	the	button.
Click	here	to	view	code	image

[self.audioPlayer	play];

[self.audioButton	setTitle:@"Stop	Background	Music"
																		forState:UIControlStateNormal];

While	the	audio	is	playing,	the	user	can	press	the	lock	button	on	the	device	or	the	home	button	to	send
the	app	to	the	background,	and	the	audio	will	continue	playing.	A	really	nice	feature	when	audio	is
playing	and	the	screen	is	locked	is	to	display	the	currently	playing	information	on	the	lock	screen.	To
do	this,	first	set	up	a	dictionary	with	information	about	the	playing	media.
Click	here	to	view	code	image

UIImage	*lockImage	=	[UIImage	imageNamed:@"book_cover"];

MPMediaItemArtwork	*artwork	=	[[MPMediaItemArtwork	alloc]	initWithImage:lockImage];

NSDictionary	*mediaDict	=	@{
				MPMediaItemPropertyTitle:	@"BackgroundTask	Audio",
				MPMediaItemPropertyMediaType:	@(MPMediaTypeAnyAudio),
				MPMediaItemPropertyPlaybackDuration:
				@(self.audioPlayer.duration),
				MPNowPlayingInfoPropertyPlaybackRate:	@1.0,
				MPNowPlayingInfoPropertyElapsedPlaybackTime:
				@(self.audioPlayer.currentTime),
				MPMediaItemPropertyAlbumArtist:	@"Some	User",
				MPMediaItemPropertyArtist:	@"Some	User",
				MPMediaItemPropertyArtwork:	artwork	};

Various	options	can	be	set.	Note	that	a	title	and	an	image	are	specified;	these	will	be	displayed	on	the
lock	screen.	The	duration	and	current	time	are	provided	and	can	be	displayed	at	the	media	player ’s
discretion,	depending	on	the	state	of	the	device	and	the	context	in	which	it	will	be	displayed.	After	the

media	information	is	established,	the	method	starts	the	audio	player,	and	then	informs	the	media
player ’s	MPNowPlayingInfoCenter	about	the	playing	media	item	info.	It	sets	self	to	be	the
first	responder,	since	the	media	player ’s	info	center	requires	the	view	or	view	controller	playing
audio	to	be	the	first	responder	in	order	to	work	correctly.	It	tells	the	app	to	start	responding	to
“remote	control”	events,	which	will	allow	the	lock	screen	controls	to	control	the	audio	in	the	app	with
delegate	methods	implemented.
Click	here	to	view	code	image

[[MPNowPlayingInfoCenter	defaultCenter]	setNowPlayingInfo:mediaDict];

[self	becomeFirstResponder];

[[UIApplication	sharedApplication]	beginReceivingRemoteControlEvents];

Now	when	the	audio	is	playing	in	the	background,	the	lock	screen	will	display	information	about	it,
as	shown	in	Figure	17.3.

Figure	17.3	Lock	screen	showing	sample	app	playing	background	audio.

In	addition,	the	Control	Center	will	display	information	about	the	audio,	as	shown	in	Figure	17.4.

Figure	17.4	Lock	screen	Control	Center	showing	sample	app	playing	background	audio.

Summary
This	chapter	illuminated	two	approaches	to	executing	tasks	while	the	app	is	in	the	background,	or
while	it	is	not	the	current	app	that	the	user	is	interacting	with.
The	first	approach	to	background	task	processing	described	was	finishing	a	long-running	task	in	the
background.	The	sample	app	demonstrated	how	to	check	whether	the	device	is	capable	of	running	a
background	task,	showed	how	to	set	up	and	execute	a	background	task,	and	explained	how	to	handle
the	case	when	iOS	terminates	the	app	and	notifies	the	background	task	that	it	will	be	ended	(or
expired).
The	second	approach	to	background	tasks	described	was	supporting	very	specific	types	of
background	activities	allowed	by	iOS,	such	as	playing	music,	interacting	with	Bluetooth	devices,
monitoring	the	GPS	for	large	changes,	and	maintaining	a	persistent	network	connection	to	enable
VoIP-type	apps	to	work.	The	chapter	explained	how	to	configure	an	Xcode	project	to	enable	a

background	activity	to	take	place,	and	then	the	sample	app	demonstrated	how	to	play	audio	in	the
background	while	displaying	information	about	the	audio	on	the	lock	screen.

18.	Grand	Central	Dispatch	for	Performance

Many	apps	have	challenging	performance	requirements,	involving	multiple	processor-intensive	and
high-latency	tasks	that	need	to	take	place	simultaneously.	This	chapter	demonstrates	the	negative
effects	of	blocking	the	main	queue,	which	makes	the	user	interface	slow	or	completely	unusable—not
at	all	desirable	for	a	good	user	experience.	It	then	examines	tools	supported	by	iOS	that	enable	the
programmer	to	perform	tasks	“in	the	background,”	meaning	that	a	processing	task	will	take	place	and
not	directly	delay	updating	the	user	interface.	Apple	provides	several	tools	with	varying	degrees	of
control	over	how	background	tasks	are	accomplished.
Concurrent	programming	is	frequently	done	using	threads.	It	can	be	challenging	to	get	the	desired
performance	improvements	from	a	multicore	device	by	managing	threads	directly	in	an	app,	because
effective	thread	management	requires	real-time	monitoring	and	management	of	system	resources	and
usage.	To	address	this	problem,	Apple	introduced	Grand	Central	Dispatch	(GCD).	GCD	manages
queues,	which	are	an	abstracted	level	above	threads.	Queues	can	operate	concurrently	or	serially,	and
can	automatically	handle	thread	management	and	optimization	at	a	system	level.
This	chapter	introduces	several	approaches	to	background	processing	of	long-running	tasks	and
highlights	the	benefits	and	drawbacks	of	each.

The	Sample	App
The	sample	app	is	called	LongRunningTasks.	It	will	demonstrate	a	trivial	long-running	task	on	the
main	thread,	and	then	several	techniques	for	handling	the	same	long-running	task	off	the	main	thread.
The	trivial	long-running	tasks	are	five	loops	to	add	ten	items	each	with	a	time	delay	to	an	array,
which	can	then	be	displayed	in	a	table	view.	The	sample	app	has	a	table	view,	which	will	present	a	list
of	the	available	approaches.	Selecting	an	approach	will	present	a	table	view	for	the	approach.	The
table	view	has	five	starting	items,	so	it	is	clear	when	attempting	to	scroll	whether	the	main	thread	is
being	interrupted	by	the	long-running	task.	The	long-running	tasks	will	then	create	50	more	items	in
batches	of	ten	to	display	in	the	table	view.	The	table	view	will	be	notified	upon	completion	to	update
the	UI	on	the	main	thread,	and	the	new	items	will	appear.
The	sample	app	(as	shown	in	Figure	18.1)	illustrates	the	following	techniques:

	performSelectorInBackground:withObject:	This	is	the	simplest	approach	to
running	code	off	the	main	thread,	and	it	works	well	when	the	task	has	simple	and
straightforward	requirements.	The	system	does	not	undertake	any	additional	management	of
tasks	performed	this	way,	so	this	is	best	suited	to	nonrepetitive	tasks.
	NSOperationQueue:	This	is	a	slightly	more	complex	method	for	running	code	off	the	main
thread,	and	it	provides	some	additional	control	capabilities,	such	as	running	serially,
concurrently,	or	with	dependencies	between	tasks.	Operation	queues	are	implemented	with	and
are	a	higher	level	of	abstraction	of	GCD	queues.	Operation	queues	are	best	suited	to	repetitive,
well-defined	asynchronous	tasks,	for	example,	network	calls	or	parsing.
	GCD	Queues:	This	is	the	most	“low-level”	approach	to	running	code	off	the	main	thread,	and	it
provides	the	most	flexibility.	The	sample	app	will	demonstrate	running	tasks	serially	and
concurrently	using	GCD	queues.	GCD	can	be	used	for	anything	from	just	communicating
between	the	background	and	the	main	queue	to	quickly	performing	a	block	of	code	for	each
item	in	a	list,	to	processing	large,	repetitive	asynchronous	tasks.

Figure	18.1	Sample	app,	long-running	task	approach	list.

Introduction	to	Queues
Some	of	the	terminology	related	to	concurrent	processing	can	be	a	bit	confusing.	Thread	is	a
commonly	used	term;	in	the	context	of	an	iOS	app,	a	thread	is	a	standard	POSIX	thread.	Technically,	a
thread	is	just	a	set	of	instructions	that	can	be	handled	independently	within	a	process	(an	app	is	a
process),	and	multiple	threads	can	exist	within	a	process,	sharing	memory	and	resources.	Since
threads	function	independently,	work	can	be	split	across	threads	to	get	it	done	more	quickly.	It	is	also
possible	to	run	into	problems	when	multiple	threads	need	access	to	the	same	resource	or	data.	All	iOS
apps	have	a	main	thread	that	handles	the	run	loop	and	updating	the	UI.	For	an	app	to	remain
responsive	to	user	interaction,	the	main	thread	must	be	given	only	tasks	that	can	be	completed	in	less
than	1/60	of	a	second.
Queue	is	a	term	that	Apple	uses	to	describe	the	contexts	provided	by	Grand	Central	Dispatch.	A	queue
is	managed	by	GCD	as	a	group	of	tasks	to	be	executed.	Depending	on	the	current	system	utilization,
GCD	will	dynamically	determine	the	right	number	of	threads	to	use	to	process	the	tasks	in	a	queue.
The	main	queue	is	a	special	queue	managed	by	GCD	that	is	associated	with	the	main	thread.	So	when
you	run	a	task	on	the	main	queue,	GCD	executes	that	task	on	the	main	thread.
People	frequently	toss	around	the	terms	thread	and	queue	interchangeably;	just	remember	that	a	queue
is	really	just	a	managed	set	of	threads,	and	main	is	just	referring	to	the	thread	that	handles	the	main
run	loop	and	UI.

Running	on	the	Main	Thread
Run	the	sample	app	and	select	the	row	called	Main	Thread.	Notice	that	the	five	initial	items	in	the	table
view	are	initially	visible,	but	they	cannot	be	scrolled	and	the	UI	is	completely	unresponsive	while	the
additional	items	are	being	added.	There	is	logging	to	demonstrate	that	the	additional	items	are	being
added	while	the	UI	is	frozen—view	the	debugging	console	while	running	the	app	to	see	the	logging.
The	frozen	UI	is	obviously	not	a	desirable	user	experience,	and	it	is	unfortunately	easy	to	get	a
situation	like	this	to	happen	in	an	app.	To	see	why	this	is	happening,	take	a	look	at	the
ICFMainThreadLongRunningTaskViewController	class.	First,	the	array	to	store	display
data	is	set	up	and	given	an	initial	set	of	data:
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[super	viewDidLoad];

				self.displayItems	=	[[NSMutableArray	alloc]	initWithCapacity:45];

				[self.displayItems	addObject:@[@"Item	Initial-1",	@"Item	Initial-2",@"Item	Initial-
3",	@"Item	Initial-4",@"Item	Initial-5"]];
}

After	the	initial	data	is	set	up	and	the	view	is	visible,	the	long-running	task	is	started:
Click	here	to	view	code	image

-	(void)viewDidAppear:(BOOL)animated
{
				[super	viewDidAppear:animated];

				for	(int	i=1;	i<=5;	i++)
				{
								NSNumber	*iteration	=	[NSNumber	numberWithInt:i];
								[self	performLongRunningTaskForIteration:iteration];
				}
}

The	app	is	calling	the	performLongRunningTaskForIteration:	method	five	times	to	set	up
additional	table	data.	This	does	not	appear	to	be	doing	anything	that	would	slow	down	the	main
thread.	Examine	the	performLongRunningTaskForIteration:	method	to	see	what	is
hanging	the	main	thread.	The	intention	is	for	the	long-running	task	to	add	ten	items	to	an	array,	which
will	then	be	added	to	the	displayItems	array,	which	is	the	data	source	for	the	table	view.
Click	here	to	view	code	image

-	(void)performLongRunningTaskForIteration:(NSNumber	*)iterationNumber
{
				NSMutableArray	*newArray	=	[[NSMutableArray	alloc]	initWithCapacity:10];

				for	(int	i=1;	i<=10;	i++)
				{

								[newArray	addObject:
								[NSString	stringWithFormat:@"Item	%@-%d",	iterationNumber,i]];

								[NSThread	sleepForTimeInterval:.1];

								NSLog(@"Main	Added	%@-%d",iterationNumber,i);
				}

				[self.displayItems	addObject:newArray];
				[self.tableView	reloadData];
}

Because	the	main	thread	is	responsible	for	keeping	the	user	interface	updated,	any	activity	that	takes
longer	than	1/60	of	a	second	can	result	in	noticeable	delays.	In	this	case,	notice	that	the	method	is
calling	sleepForTimeInterval:	on	NSThread	for	every	iteration.	Obviously,	this	is	not
something	that	would	make	sense	to	do	in	a	typical	app,	but	it	clearly	illustrates	the	point	that	a	single
method	call	that	takes	a	little	bit	of	time	and	blocks	the	main	thread	can	cause	severe	performance
issues.

Note
Finding	the	method	calls	that	take	up	an	appreciable	amount	of	time	is	rarely	as	clear	as
in	this	example.	See	Chapter	26,	“Debugging	and	Instruments,”	for	techniques	to	discover
where	performance	issues	are	taking	place.

In	this	case,	the	sleepForTimeInterval:	method	call	is	quickly	and	frequently	blocking	the
main	thread,	so	even	after	the	for	loop	is	complete,	the	main	thread	does	not	have	enough	time	to
update	the	UI	until	all	the	calls	to	performLongRunningTaskForIteration:	are	complete.

Running	in	the	Background
Run	the	sample	app,	and	select	the	row	called	Perform	Background.	Notice	that	the	five	initial	items
in	the	table	view	are	initially	visible,	and	they	are	scrollable	while	the	long-running	tasks	are	being
processed	(view	the	debugging	console	to	confirm	that	they	are	being	processed	while	scrolling	the
table	view).	After	the	tasks	are	completed,	the	additional	rows	become	visible.
This	approach	sets	up	the	initial	data	in	exactly	the	same	way	as	the	Main	Thread	approach.	View
ICFPerformBackgroundViewController	in	the	sample	app	source	code	to	see	how	it	is	set
up.	After	the	initial	data	is	set	up	and	the	view	is	visible,	the	long-running	task	is	started;	this	is	where
performing	the	task	in	the	background	is	specified.
Click	here	to	view	code	image

-	(void)viewDidAppear:(BOOL)animated
{
				[super	viewDidAppear:animated];

				SEL	taskSelector	=	@selector(performLongRunningTaskForIteration:);

				for	(int	i=1;	i<=5;	i++)
				{

								NSNumber	*iteration	=	@(i);

								[self	performSelectorInBackground:taskSelector
																															withObject:iteration];
				}
}

A	selector	is	set	up;	this	is	just	the	name	of	the	method	to	perform	in	the	background.	NSObject
defines	the	method	performSelectorInBackground:withObject:,	which	requires	an
Objective-C	object	to	be	passed	as	the	parameter	withObject:.	This	method	will	spawn	a	new
thread,	execute	the	method	with	the	passed	parameter	in	that	new	thread,	and	return	to	the	calling

thread	immediately.	This	new	thread	is	the	developer ’s	responsibility	to	manage,	so	it	is	entirely
possible	to	create	too	many	new	threads	by	calling	this	method	frequently	and	overwhelm	the	system.
If	testing	indicates	that	this	is	a	problem,	an	operation	queue	or	dispatch	queue	(both	described	later	in
the	chapter)	can	be	used	to	provide	more	precise	control	over	the	execution	of	the	tasks	and	better
management	of	system	resources.
The	method	performLongRunningTaskForIteration:	performs	exactly	the	same	task	as	in
the	Main	Thread	approach;	however,	instead	of	adding	the	newArray	to	the	displayItems	array
directly,	the	method	calls	the	updateTableData:	method	using	NSObject’s	method
performSelectorOnMainThread:withObject:waitUntilDone:.	Using	that	approach	is
necessary	for	two	reasons.	First,	UIKit	objects,	including	our	table	view,	will	update	the	UI	only	if
they	are	updated	on	the	main	thread.	Second,	the	property	displayItems	is	declared	as
nonatomic,	meaning	that	the	getter	and	setter	methods	generated	are	not	thread-safe.	To	“fix”	this,
the	displayItems	property	could	be	declared	atomic,	but	that	would	add	some	performance
overhead	to	lock	the	array	before	updating	it.	If	the	property	is	updated	on	the	main	thread,	locking	is
not	required.
Click	here	to	view	code	image

-	(void)performLongRunningTaskForIteration:(NSNumber	*)iterationNumber
{
				NSMutableArray	*newArray	=
				[[NSMutableArray	alloc]	initWithCapacity:10];

				for	(int	i=1;	i<=10;	i++)
				{

								[newArray	addObject:	[NSString	stringWithFormat:@"Item	%@-%d",
iterationNumber,i]];

								[NSThread	sleepForTimeInterval:.1];

								NSLog(@"Background	Added	%@-%d",iterationNumber,i);
				}

				[self	performSelectorOnMainThread:@selector(updateTableData:)
																											withObject:newArray
																								waitUntilDone:NO];
}

The	updateTableData:	method	simply	adds	the	newly	created	items	to	the	displayItems
array	and	informs	the	table	view	to	reload	and	update	the	UI.
An	interesting	side	effect	is	that	the	order	in	which	the	additional	rows	are	added	is	not	deterministic
—it	will	potentially	be	different	every	time	the	app	is	run.
Click	here	to	view	code	image

10:51:09.324	LongRunningTasks[29382:15903]	Background	Added	3-1
10:51:09.324	LongRunningTasks[29382:16303]	Background	Added	5-1
10:51:09.324	LongRunningTasks[29382:15207]	Background	Added	1-1
10:51:09.324	LongRunningTasks[29382:15e03]	Background	Added	4-1
10:51:09.324	LongRunningTasks[29382:15107]	Background	Added	2-1
10:51:09.430	LongRunningTasks[29382:15207]	Background	Added	1-2
10:51:09.430	LongRunningTasks[29382:16303]	Background	Added	5-2
10:51:09.430	LongRunningTasks[29382:15e03]	Background	Added	4-2
10:51:09.430	LongRunningTasks[29382:15107]	Background	Added	2-2
10:51:09.430	LongRunningTasks[29382:15903]	Background	Added	3-2
...

This	is	a	symptom	of	the	fact	that	using	this	technique	makes	no	promises	about	when	a	task	will	be
completed	or	in	what	order	it	will	be	processed,	since	the	tasks	are	all	performed	on	different	threads.
If	the	order	of	operation	is	not	important,	this	technique	can	be	just	fine;	if	order	matters,	an
operation	queue	or	dispatch	queue	is	needed	to	process	the	tasks	serially	(both	described	later,	in	the
sections	“Serial	Operations”	and	“Serial	Dispatch	Queues”).

Running	in	an	Operation	Queue
Operation	queues	(NSOperationQueue)	are	available	to	manage	a	set	of	tasks	or	operations
(NSOperation).	An	operation	queue	can	specify	how	many	operations	can	run	concurrently,	can	be
suspended	and	restarted,	and	can	cancel	all	pending	operations.	Operations	can	be	a	simple	method
invocation,	a	block,	or	a	custom	operation	class.	Operations	can	have	dependencies	established	to
make	them	run	serially.	Operations	and	operation	queues	are	actually	managed	by	Grand	Central
Dispatch,	and	are	implemented	with	dispatch	queues.
The	sample	app	illustrates	three	approaches	using	an	operation	queue:	concurrent	operations,	serial
operations	with	dependencies,	and	custom	operations	to	support	cancellation.

Concurrent	Operations
Run	the	sample	app,	and	select	the	row	called	Operation	Queue-Concurrent.	The	five	initial	items	in
the	table	view	are	visible,	and	they	are	scrollable	while	the	long-running	tasks	are	being	processed
(view	the	debugging	console	to	confirm	that	they	are	being	processed	while	scrolling	the	table	view).
After	the	tasks	are	completed,	the	additional	rows	become	visible.
Examine	the	ICFOperationQueueConcurrentViewController	in	the	sample	app	source
code	to	see	how	this	approach	is	set	up.	Before	operations	are	added,	the	operation	queue	needs	to	be
set	up	in	the	viewDidLoad:	method:
Click	here	to	view	code	image

self.processingQueue	=	[[NSOperationQueue	alloc]	init];

This	approach	sets	up	the	initial	data	in	exactly	the	same	way	as	the	Main	Thread	approach.	After	the
initial	data	is	set	up	and	the	view	is	visible,	the	long-running	tasks	are	added	to	the	operation	queue	as
instances	of	NSInvocationOperation:
Click	here	to	view	code	image

-	(void)viewDidAppear:(BOOL)animated
{
				[super	viewDidAppear:animated];

				SEL	taskSelector	=	@selector(performLongRunningTaskForIteration:);

				for	(int	i=1;	i<=5;	i++)
				{

								NSNumber	*iteration	=	@(i);

								NSInvocationOperation	*operation	=	[[NSInvocationOperation	alloc]
initWithTarget:self	selector:taskSelector	object:iteration];

								[operation	setCompletionBlock:^{
												NSLog(@"Operation	#%d	completed.",i);
								}];

								[self.processingQueue	addOperation:operation];

				}
}

Each	operation	is	assigned	a	completion	block	that	will	run	when	the	operation	is	finished	processing.
The	method	performLongRunningTaskForIteration:	performs	exactly	the	same	task	as	in
the	Perform	Background	approach;	in	fact,	the	method	is	not	changed	in	this	approach.	The
updateTableData:	method	is	also	not	changed.	The	results	will	be	similar	to	the	Perform
Background	approach	in	that	the	items	will	not	be	added	in	a	deterministic	order.
Click	here	to	view	code	image

21:00:16.165	LongRunningTasks[31009]	OpQ	Concurrent	Added	1-1
21:00:16.165	LongRunningTasks[31009]	OpQ	Concurrent	Added	3-1
21:00:16.165	LongRunningTasks[31009]	OpQ	Concurrent	Added	4-1
21:00:16.165	LongRunningTasks[31009]	OpQ	Concurrent	Added	2-1
21:00:16.165	LongRunningTasks[31009]	OpQ	Concurrent	Added	5-1
...
21:00:17.107	LongRunningTasks[31009]	Operation	#4	completed.
21:00:17.108	LongRunningTasks[31009]	Operation	#2	completed.
21:00:17.107	LongRunningTasks[31009]	Operation	#5	completed.
21:00:17.108	LongRunningTasks[31009]	Operation	#3	completed.
21:00:17.109	LongRunningTasks[31009]	Operation	#1	completed.

The	main	difference	here	is	that	the	NSOperationQueue	is	managing	the	threads,	and	will	process
only	up	to	the	default	maximum	concurrent	operations	for	the	queue.	This	can	be	very	important
when	your	app	has	many	different	competing	tasks	that	need	to	happen	concurrently	and	need	to	be
managed	to	avoid	overloading	the	system.

Note
The	default	maximum	concurrent	operations	for	an	operation	queue	is	a	dynamic
number	determined	in	real	time	by	the	system.	It	can	vary	based	on	the	current	system
load.	The	maximum	number	of	operations	can	also	be	specified	for	an	operation	queue,
in	which	case	the	queue	will	process	only	up	to	the	specified	number	of	operations
simultaneously.

Serial	Operations
Visit	the	sample	app	and	select	the	row	called	Operation	Queue-Serial.	The	five	initial	items	in	the
table	view	are	visible,	and	they	are	scrollable	while	the	long-running	tasks	are	being	processed	(view
the	debugging	console	to	confirm	that	they	are	being	processed	while	scrolling	the	table	view).	After
the	tasks	are	completed,	the	additional	rows	become	visible.
The	setups	of	the	initial	data	and	operation	queue	are	identical	to	the	Operation	Queue-Concurrent
approach.	To	have	the	operations	process	serially	in	the	correct	order,	they	need	to	be	set	up	with
dependencies.	To	accomplish	this	task,	the	viewDidAppear:	method	adds	an	array	to	store	the
operations	as	they	are	created,	and	an	NSInvocationOperation	(prev-Operation)	to	track
the	previous	operation	created.
Click	here	to	view	code	image

NSMutableArray	*operationsToAdd	=	[[NSMutableArray	alloc]	init];

NSInvocationOperation	*prevOperation	=	nil;

While	the	operations	are	being	created,	the	method	keeps	track	of	the	previously	created	operation.

The	newly	created	operation	adds	a	dependency	to	the	previous	operation	so	that	it	cannot	run	until
the	previous	operation	completes.	The	new	operation	is	added	to	the	array	of	operations	to	add	to	the
queue.
Click	here	to	view	code	image

for	(int	i=1;	i<=5;	i++)
{

				NSNumber	*iteration	=	@(i);

				NSInvocationOperation	*operation	=	[[NSInvocationOperation	alloc]	initWithTarget:self
selector:taskSelector	object:iteration];

				if	(prevOperation)
				{
								[operation	addDependency:prevOperation];
				}

				[operationsToAdd	addObject:operation];

				prevOperation	=	operation;
}

After	all	the	operations	are	created	and	added	to	the	array,	they	are	added	to	the	queue.	Because	an
operation	will	start	executing	as	soon	as	it	is	added	to	an	operation	queue,	the	operations	need	to	be
added	all	at	once	to	ensure	that	the	queue	can	respect	the	dependencies.
Click	here	to	view	code	image

for	(NSInvocationOperation	*operation	in	operationsToAdd)
{
				[self.processingQueue	addOperation:operation];
}

The	operation	queue	will	analyze	the	added	operations	and	dependencies,	and	determine	the	optimum
order	in	which	to	execute	them.	Observe	the	debugging	console	to	see	that	the	operations	execute	in
the	correct	order	serially.
Click	here	to	view	code	image

16:51:45.216	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-1
16:51:45.318	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-2
16:51:45.420	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-3
16:51:45.522	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-4
16:51:45.625	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-5
16:51:45.728	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-6
16:51:45.830	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-7
16:51:45.931	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-8
16:51:46.034	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-9
16:51:46.137	LongRunningTasks[29554:15507]	OpQ	Serial	Added	1-10
16:51:46.246	LongRunningTasks[29554:14e0b]	OpQ	Serial	Added	2-1
16:51:46.349	LongRunningTasks[29554:14e0b]	OpQ	Serial	Added	2-2
16:51:46.452	LongRunningTasks[29554:14e0b]	OpQ	Serial	Added	2-3
16:51:46.554	LongRunningTasks[29554:14e0b]	OpQ	Serial	Added	2-4
16:51:46.657	LongRunningTasks[29554:14e0b]	OpQ	Serial	Added	2-5
16:51:46.765	LongRunningTasks[29554:14e0b]	OpQ	Serial	Added	2-6
...

The	serial	approach	increases	the	total	amount	of	time	needed	to	complete	all	the	tasks,	but
successfully	ensures	that	the	tasks	execute	in	the	correct	order.

Canceling	Operations
Back	in	the	sample	app,	select	the	row	called	Operation	Queue-Concurrent.	Quickly	tap	the	Cancel
button	at	the	top	of	the	table	while	the	operations	are	running.	Notice	that	nothing	appears	to	happen
after	the	Cancel	button	has	been	tapped,	and	the	operations	will	finish.	When	the	Cancel	button	is
touched,	the	operation	queue	is	instructed	to	cancel	all	outstanding	operations:
Click	here	to	view	code	image

-	(IBAction)cancelButtonTouched:(id)sender
{
				[self.processingQueue	cancelAllOperations];
}

This	does	not	work	as	expected	because	Cancelled	is	just	a	flag	on	an	operation	object—the	logic
of	the	operation	must	dictate	how	the	operation	behaves	when	it	is	canceled.	The	call	to
cancelAllOperations:	dutifully	sets	the	flag	on	all	the	outstanding	operations,	and	since	they
are	not	checking	their	own	cancellation	status	while	running,	they	proceed	until	they	complete	their
tasks.
To	properly	handle	cancellation,	a	subclass	of	NSOperation	must	be	created,	or	a	weak	reference
to	an	instance	of	NSBlockOperation	must	be	checked	like	so:
Click	here	to	view	code	image

NSBlockOperation	*blockOperation	=	[[NSBlockOperation	alloc]	init];

__weak	NSBlockOperation	*blockOperationRef	=	blockOperation;
[blockOperation	addExecutionBlock:^{
				if	(![blockOperationRef	isCancelled])
				{
								NSLog(@"...not	canceled,	execute	logic	here");
				}
}];

In	the	next	section,	creating	a	custom	NSOperation	subclass	with	cancellation	handling	is
discussed.

Custom	Operations
Return	to	the	sample	app,	and	select	the	row	called	Operation	Queue-Custom.	The	five	initial	items	in
the	table	view	are	visible,	and	they	are	scrollable	while	the	long-running	tasks	are	being	processed
(view	the	debugging	console	to	confirm	that	they	are	being	processed	while	scrolling	the	table	view).
Quickly	hit	the	Cancel	button	at	the	top	of	the	table	before	the	operations	complete.	Notice	that	this
time	the	tasks	stop	immediately.
The	setups	of	the	initial	data	and	operation	queue	are	nearly	identical	to	the	Operation	Queue-Serial
approach.	The	only	difference	is	the	use	of	a	custom	NSOperation	subclass	called
ICFCustomOperation:
Click	here	to	view	code	image

-	(void)viewDidAppear:(BOOL)animated
{
				[super	viewDidAppear:animated];

				NSMutableArray	*operationsToAdd	=	[[NSMutableArray	alloc]	init];

				ICFCustomOperation	*prevOperation	=	nil;

				for	(int	i=1;	i<=5;	i++)
				{

								NSNumber	*iteration	=	[NSNumber	numberWithInt:i];

								ICFCustomOperation	*operation	=	[[ICFCustomOperation	alloc]
initWithIteration:iteration
																																											andDelegate:self];

								if	(prevOperation)
								{
												[operation	addDependency:prevOperation];
								}

								[operationsToAdd	addObject:operation];

								prevOperation	=	operation;
				}

				for	(ICFCustomOperation	*operation	in	operationsToAdd)
				{
								[self.processingQueue	addOperation:operation];
				}
}

ICFCustomOperation	is	declared	as	a	subclass	of	NSOperation,	and	declares	a	protocol	so
that	it	can	inform	a	delegate	that	processing	is	complete	and	pass	back	the	results:
Click	here	to	view	code	image

@protocol	ICFCustomOperationDelegate	<NSObject>

-	(void)updateTableWithData:(NSArray	*)moreData;

@end

An	NSOperation	subclass	needs	to	implement	the	main	method.	This	is	where	the	processing
logic	for	the	operation	should	go:
Click	here	to	view	code	image

-	(void)main
{
				NSMutableArray	*newArray	=	[[NSMutableArray	alloc]	initWithCapacity:10];

				for	(int	i=1;	i<=10;	i++)
				{

								if	([self	isCancelled])
								{
												break;
								}

								[newArray	addObject:	[NSString	stringWithFormat:@"Item	%@-%d",
self.iteration,i]];

								[NSThread	sleepForTimeInterval:.1];
								NSLog(@"OpQ	Custom	Added	%@-%d",self.iteration,i);
				}

				[self.delegate	updateTableWithData:newArray];
}

At	the	beginning	of	the	for	loop,	the	cancellation	status	is	checked:

if	([self	isCancelled])
{
				break;
}

This	check	enables	the	operation	to	respond	immediately	to	a	cancellation	request.	When	designing	a
custom	operation,	give	careful	consideration	to	how	cancellations	should	be	processed,	and	whether
any	rollback	logic	is	required.
Properly	handling	cancellations	is	not	the	only	benefit	to	creating	a	custom	operation	subclass;	it	is	a
very	effective	way	to	encapsulate	complex	logic	in	a	way	that	can	be	run	in	an	operation	queue.

Running	in	a	Dispatch	Queue
Dispatch	queues	are	provided	by	Grand	Central	Dispatch	to	execute	blocks	of	code	in	a	managed
environment.	GCD	is	designed	to	maximize	concurrency	and	take	full	advantage	of	multicore
processing	power	by	managing	the	number	of	threads	allocated	to	a	queue	dynamically	based	on	the
status	of	the	system.
GCD	offers	three	types	of	queues:	the	main	queue,	concurrent	queues,	and	serial	queues.	The	main
queue	is	a	special	queue	created	by	the	system,	which	is	tied	to	the	application’s	main	thread.	In	iOS,
several	global	concurrent	queues	are	available:	the	high-,	normal-,	low-,	and	background-priority
queues.	Private	concurrent	and	serial	queues	can	be	created	by	the	application	and	must	be	managed
like	any	other	application	resource.	The	sample	app	demonstrates	using	concurrent	and	serial	GCD
queues,	and	how	to	interact	with	the	main	queue	from	those	queues.

Note
As	of	iOS	6,	created	dispatch	queues	are	managed	by	ARC,	and	they	do	not	need	to	be
retained	or	released.

Concurrent	Dispatch	Queues
Open	the	sample	app,	and	select	the	row	called	Dispatch	Queue-Concurrent.	The	five	initial	items	in
the	table	view	are	visible,	and	they	are	scrollable	while	the	long-running	tasks	are	being	processed
(view	the	debugging	console	to	confirm	that	they	are	being	processed	while	scrolling	the	table	view).
After	the	tasks	are	completed,	the	additional	rows	become	visible.	Notice	that	this	approach	completes
significantly	faster	than	any	of	the	previous	approaches.
To	start	the	long-running	tasks	in	the	viewDidAppear:	method,	the	app	gets	a	reference	to	the
high-priority	concurrent	dispatch	queue:
Click	here	to	view	code	image

dispatch_queue_t	workQueue	=	dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH,	0);

Using	dispatch_get_global_queue	provides	access	to	the	three	global,	system-maintained
concurrent	dispatch	queues.	References	to	these	queues	do	not	need	to	be	retained	or	released.	After	a
reference	to	the	queue	is	available,	logic	can	be	submitted	to	it	for	execution	inside	a	block:
Click	here	to	view	code	image

for	(int	i=1;	i<=5;	i++)
{

				NSNumber	*iteration	=	@(i);

				dispatch_async(workQueue,	^{
								[self	performLongRunningTaskForIteration:iteration];
				});
}

The	use	of	dispatch_async	indicates	that	the	logic	should	be	performed	asynchronously.	In	that
case,	the	work	in	the	block	will	be	submitted	to	the	queue,	and	the	call	to	do	that	will	return
immediately	without	blocking	the	main	thread.	Blocks	can	also	be	submitted	to	the	queue
synchronously	using	dispatch_sync,	which	will	cause	the	calling	thread	to	wait	until	the	block
has	completed	processing.
In	the	performLongRunningTaskForIteration:	method,	there	are	a	few	differences	from
previous	approaches	that	need	to	be	highlighted.	The	newArray	used	to	keep	track	of	created	items
needs	a	__block	modifier	so	that	the	block	can	update	it.
Click	here	to	view	code	image

__block	NSMutableArray	*newArray	=	[[NSMutableArray	alloc]	initWithCapacity:10];

The	method	then	gets	a	reference	to	the	low-priority	concurrent	dispatch	queue.
Click	here	to	view	code	image

dispatch_queue_t	detailQueue	=	dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW,	0);

The	low-priority	dispatch	queue	is	then	used	for	a	powerful	GCD	technique:	processing	an	entire
enumeration	simultaneously.
Click	here	to	view	code	image

dispatch_apply(10,	detailQueue,	^(size_t	i)
{
				[NSThread	sleepForTimeInterval:.1];

				[newArray	addObject:[NSString	stringWithFormat:	@"Item	%@-%zu",iterationNumber,i+1]];

				NSLog(@"Dispatch	Q	Added	%@-%zu",iterationNumber,i+1);
});

With	dispatch_apply,	all	that	is	needed	is	a	number	of	iterations,	a	reference	to	a	dispatch	queue,
a	variable	to	express	which	iteration	is	being	processed	(it	must	be	size_t),	and	a	block	to	be
processed	for	each	iteration.	GCD	will	fill	the	queue	with	all	the	possible	iterations,	and	they	will	be
processed	as	close	to	simultaneously	as	possible,	within	the	constraints	of	the	system.	This	technique
enables	this	approach	to	process	so	much	more	quickly	than	the	other	approaches,	and	it	can	be
effective	if	the	task	order	is	not	important.

Note
Methods	on	collection	classes	can	achieve	a	similar	effect	at	a	higher	level	of	abstraction.
For	example,	NSArray	has	a	method	called
enumerateObjectsWithOptions:usingBlock:.	This	method	can	enumerate	the
objects	in	an	array	serially,	serially	in	reverse,	or	concurrently.

After	the	iterations	are	complete	and	the	array	of	new	items	has	been	created,	the	method	needs	to
inform	the	UI	to	update	the	table	view.
Click	here	to	view	code	image

dispatch_async(dispatch_get_main_queue(),	^{
				[self	updateTableData:newArray];
});

This	dispatch_async	call	uses	the	function	dispatch_get_main_queue	to	access	the	main
queue.	Note	that	this	technique	can	be	used	from	anywhere	to	get	to	the	main	queue,	and	can	be	a	very
handy	way	to	update	the	UI	to	report	status	on	long-running	tasks.

Serial	Dispatch	Queues
Run	the	sample	app,	and	select	the	row	called	Dispatch	Queue-Serial.	The	five	initial	items	in	the	table
view	are	visible,	and	they	are	scrollable	while	the	long-running	tasks	are	being	processed	(view	the
debugging	console	to	confirm	that	they	are	being	processed	while	scrolling	the	table	view).	After	the
tasks	are	completed,	the	additional	rows	become	visible.	This	approach	is	not	as	fast	as	the	concurrent
dispatch	queue	approach,	but	it	will	process	the	items	in	the	order	in	which	they	are	added	to	the
queue.
To	start	the	long-running	tasks	in	the	viewDidAppear:	method,	the	app	creates	a	serial	dispatch
queue:
Click	here	to	view	code	image

dispatch_queue_t	workQueue	=	dispatch_queue_create("com.icf.serialqueue",	NULL);

Blocks	of	work	can	be	added	to	the	serial	queue	asynchronously:
Click	here	to	view	code	image

for	(int	i=1;	i<=5;	i++)
{

				NSNumber	*iteration	=	@(i);

				dispatch_async(workQueue,	^{
								[self	performLongRunningTaskForIteration:iteration];
				});
}

The	method	performLongRunningTaskForIteration:	performs	exactly	the	same	task	as	in
the	main	thread,	perform	background,	and	concurrent	operation	queue	approaches;	however,	the
method	calls	the	updateTableData:	method	using	dispatch_async	to	the	main	queue.
Click	here	to	view	code	image

-	(void)performLongRunningTaskForIteration:(id)iteration
{
					NSNumber	*iterationNumber	=	(NSNumber	*)iteration;

					NSMutableArray	*newArray	=	[[NSMutableArray	alloc]	initWithCapacity:10];

				for	(int	i=1;	i<=10;	i++)
				{

								[newArray	addObject:[NSString	stringWithFormat:	@"Item	%@-
%d",iterationNumber,i]];

								[NSThread	sleepForTimeInterval:.1];
								NSLog(@"DispQ	Serial	Added	%@-%d",iterationNumber,i);
				}

				dispatch_async(dispatch_get_main_queue(),	^{

								[self	updateTableData:newArray];
				});
}

The	serial	dispatch	queue	will	execute	the	long-running	tasks	in	the	order	in	which	they	are	added	to
the	queue,	first	in,	first	out.	The	debugging	console	will	show	that	the	operations	execute	in	the
correct	order.
Click	here	to	view	code	image

20:41:00.340	LongRunningTasks[30650:]	DispQ	Serial	Added	1-1
20:41:00.444	LongRunningTasks[30650:]	DispQ	Serial	Added	1-2
20:41:00.546	LongRunningTasks[30650:]	DispQ	Serial	Added	1-3
20:41:00.648	LongRunningTasks[30650:]	DispQ	Serial	Added	1-4
20:41:00.751	LongRunningTasks[30650:]	DispQ	Serial	Added	1-5
20:41:00.852	LongRunningTasks[30650:]	DispQ	Serial	Added	1-6
20:41:00.955	LongRunningTasks[30650:]	DispQ	Serial	Added	1-7
20:41:01.056	LongRunningTasks[30650:]	DispQ	Serial	Added	1-8
20:41:01.158	LongRunningTasks[30650:]	DispQ	Serial	Added	1-9
20:41:01.261	LongRunningTasks[30650:]	DispQ	Serial	Added	1-10
20:41:01.363	LongRunningTasks[30650:]	DispQ	Serial	Added	2-1
20:41:01.465	LongRunningTasks[30650:]	DispQ	Serial	Added	2-2
20:41:01.568	LongRunningTasks[30650:]	DispQ	Serial	Added	2-3
20:41:01.671	LongRunningTasks[30650:]	DispQ	Serial	Added	2-4
20:41:01.772	LongRunningTasks[30650:]	DispQ	Serial	Added	2-5
...

Again,	the	serial	approach	increases	the	total	amount	of	time	needed	to	complete	all	the	tasks,	but
successfully	ensures	that	the	tasks	execute	in	the	correct	order.	Using	a	dispatch	queue	to	process	tasks
serially	is	simpler	than	managing	dependencies	in	an	operation	queue,	but	does	not	offer	the	same
high-level	management	options.

Summary
This	chapter	introduced	several	techniques	to	process	long-running	tasks	without	interfering	with	the
UI,	including	performSelectorInBackground:withObject:,	operation	queues,	and	GCD
queues.
Using	the	performSelectorInBackground:withObject:	method	on	NSObject	to	execute
a	task	in	the	background	is	the	simplest	approach,	but	provides	the	least	support	and	management.
Operation	queues	can	process	tasks	concurrently	or	serially,	using	a	method	call,	a	block,	or	a
custom	operation	class.	Operation	queues	can	be	managed	by	specifying	a	maximum	number	of
concurrent	operations,	they	can	be	suspended	and	resumed,	and	all	the	outstanding	operations	can	be
canceled.	Operation	queues	can	handle	custom	operation	classes.	Operation	queues	are	implemented
by	GCD.
Dispatch	queues	can	also	process	tasks	concurrently	or	serially.	There	are	three	global	concurrent
queues,	and	applications	can	create	their	own	serial	queues.	Dispatch	queues	accept	blocks	to	be
executed,	and	can	execute	blocks	synchronously	or	asynchronously.
No	technique	is	described	as	“the	best,”	because	each	technique	has	pros	and	cons	relative	to	the
requirements	of	an	application,	and	testing	should	be	done	to	understand	which	technique	is	most
appropriate.

19.	Using	Keychain	and	Touch	ID	to	Secure	and	Access	Data

Securing	sensitive	user	data	is	a	critical	and	often-overlooked	step	of	mobile	development.	The
technology	press	is	constantly	plagued	by	stories	of	large	companies	storing	password	or	credit-card
information	in	plain	text.	Users	put	their	trust	in	developers	to	treat	sensitive	information	with	the
care	and	respect	it	deserves.	This	includes	encrypting	remote	and	local	copies	of	that	information	to
prevent	unauthorized	access.	It	is	the	duty	of	every	developer	to	treat	users’	data	as	they	would	like
their	own	confidential	information	to	be	handled.
Apple	has	long	provided	a	security	framework	called	Keychain	to	store	encrypted	information	on	an
iOS	device.	The	Keychain	also	has	several	additional	benefits	beyond	standard	application	and	data
security.	Information	stored	in	the	Keychain	persists	even	after	an	app	has	been	deleted	from	the
device,	and	Keychain	information	can	even	be	shared	among	multiple	apps	by	the	same	developer.
This	chapter	demonstrates	the	use	of	Apple’s	KeychainItemWrapper	class	(version	1.2)	to	secure
and	retrieve	sensitive	information.	Although	it	is	completely	acceptable	and	occasionally	required	to
write	a	Keychain	wrapper	from	the	ground	up,	leveraging	Apple’s	libraries	can	be	a	tremendous
time-saver	and	will	often	provide	all	the	functionality	required.	This	chapter	does	not	cover	creating	a
custom	Keychain	wrapper	class	but	leverages	Apple’s	provided	code	to	quickly	add	Keychains	to	an
iOS	app.	Keychain	interaction	can	be	complex,	and	small	mistakes	might	cause	the	data	to	not	truly	be
secure,	but	using	Apple’s	class	minimizes	these	risk.

Tip
The	most	up-to-date	version	of	Apple’s	KeychainItemWrapper	class	can	be	found	at
http://developer.apple.com/library/ios/#samplecode/GenericKeychain/Listings/Classes_KeychainItemWrapper_m.html

It	is	important	to	remember	that	while	securing	information	on	disk,	it	is	only	a	small	part	of
complete	app	security;	other	factors,	such	as	transmitting	data	over	a	network,	remote	storage,	and
password	enforcement,	are	just	as	critical	in	providing	a	well-rounded	secure	app.

The	Sample	App
The	Keychain	sample	app	is	a	single-view	app	that	will	secure	a	credit	card	number	along	with
relevant	user	information,	such	as	name	and	expiration	date.	To	access	the	information,	the	user	sets	a
PIN	on	first	launch.	Both	the	PIN	and	the	credit	card	information	are	secured	using	the	Keychain.

Note
The	Keychain	does	not	work	on	the	iOS	simulator	as	of	iOS	8.	The	wrapper	class
provided	by	Apple	and	used	in	this	chapter	does	make	considerable	efforts	to	properly
simulate	the	Keychain	behaviors.	In	addition,	since	code	being	executed	on	the	simulator
is	not	code	signed,	it	is	important	to	keep	in	mind	that	there	are	no	restrictions	on	which
apps	can	access	Keychain	items.	It	is	highly	recommended	that	Keychain	development	be
thoroughly	debugged	on	the	device	after	it’s	working	correctly	on	the	simulator.

The	sample	app	itself	is	simple.	It	consists	of	four	text	fields	and	a	button.	The	majority	of	the	sample
code	not	directly	relating	to	the	Keychain	handles	laying	out	information.

http://developer.apple.com/library/ios/#samplecode/GenericKeychain/Listings/Classes_KeychainItemWrapper_m.html

Note
Deleting	the	app	from	a	device	does	not	remove	the	Keychain	for	that	app,	which	can
make	debugging	considerably	more	difficult.	The	simulator	does	have	a	Reset	Contents
and	Settings	option,	which	will	wipe	the	Keychain.	It	is	highly	recommended	that	a
Keychain	app	not	be	debugged	on	a	device	until	it	is	functional	on	the	simulator	due	to
the	hassle	of	returning	to	a	clean	state.

Setting	Up	and	Using	Keychain
Keychain	is	part	of	the	Security.framework	and	has	been	available	for	iOS	starting	with	the	initial
SDK	release.	Keychain	has	its	roots	in	Mac	OS	X	development,	where	it	was	first	introduced	with	OS
X	10.2.	However,	Keychain’s	history	predates	even	OS	X	with	roots	back	into	OS	8.6.	Keychain	was
initially	developed	for	Apple’s	email	system	called	PowerTalk.	This	makes	Keychain	one	of	the
oldest	available	frameworks	on	iOS.
Keychain	can	be	used	to	secure	small	amounts	of	data	such	as	passwords,	keys,	certificates,	and	notes.
However,	if	an	app	is	securing	large	amounts	of	information	such	as	encoded	images	or	videos,
implementing	a	third-party	encryption	library	is	usually	a	better	fit	than	Keychain.	Core	data	also
provides	encryption	capabilities,	and	is	worth	exploring	if	the	app	will	be	Core	Data–based.
Before	work	can	be	done	with	Keychain,	the	Security.framework	must	be	added	to	the	project	and
<Security/Security.h>	needs	to	be	imported	to	any	classes	directly	accessing	Keychain
methods	and	functions.

Setting	Up	a	New	KeychainItemWrapper
iOS	Keychains	are	unlocked	based	on	the	code	signing	of	the	app	that	is	requesting	it.	Since	there	is
no	systemwide	password	as	seen	on	OS	X,	there	needs	to	be	an	additional	step	to	secure	data.	Since
the	app	controls	which	Keychain	data	can	be	accessed	to	truly	secure	information,	the	app	itself
should	be	password	protected.	This	is	done	through	the	sample	app	using	a	PIN	entry	system.
When	the	app	is	launched	for	the	first	time,	it	will	prompt	the	user	to	enter	a	new	PIN	and	repeat	it.	To
securely	store	the	PIN,	a	new	KeychainItemWrapper	is	created.
Click	here	to	view	code	image

pinWrapper	=	[[KeychainItemWrapper	alloc]initWithIdentifier:@"com.ICF.Keychain.pin"
accessGroup:nil];

Creating	a	new	KeychainItemWrapper	is	done	using	two	attributes.	The	first	attribute	is	an
identifier	for	that	Keychain	item.	It	is	recommended	that	a	reverse	DNS	approach	be	used	here,	such
as	com.company.app.id.	accessGroup	is	set	to	nil	in	this	example,	and	the	accessGroup
parameter	is	used	for	sharing	Keychains	across	multiple	apps.	Refer	to	the	section	“Sharing	a
Keychain	Between	Apps”	for	more	information	on	accessGroups.
The	next	attribute	that	needs	be	set	on	the	new	KeychainItemWrapper	is	the	kSecAttr-
Accessible.	This	controls	when	the	data	will	be	unlocked.	In	the	sample	app	the	data	becomes
available	when	the	device	is	unlocked,	securing	the	data	for	a	locked	device.	There	are	several
possible	options	for	this	parameter,	as	detailed	in	Table	19.1.
Click	here	to	view	code	image

[pinWrapper	setObject:kSecAttrAccessibleWhenUnlocked	forKey:	(id)kSecAttrAccessible];

Table	19.1	All	Possible	Constants	and	Associated	Descriptions	to	Be	Supplied	to
kSecAttrAccessible

The	app	now	knows	the	identifier	for	the	Keychain	as	well	the	security	level	that	is	required.
However,	an	additional	parameter	needs	to	be	set	before	data	can	begin	to	be	stored.	The
kSecAttrService	is	used	to	store	a	username	for	the	password	pair	that	will	be	used	for	the	PIN.
A	PIN	does	not	have	an	associated	password;	for	the	purposes	of	the	sample	app,	pinIdentifer	is
used	here.	Although	Keychains	will	often	work	while	the	kSecAttr-Service	is	omitted,	having	a
value	set	here	corrects	many	hard-to-reproduce	failures,	and	is	recommended.
Click	here	to	view	code	image

[pinWrapper	setObject:@"pinIdentifer"	forKey:	(id)kSecAttrAccount];

Storing	and	Retrieving	the	PIN
After	a	new	KeychainItemWrapper	has	been	configured	in	the	manner	described	in	the
preceding	section,	data	can	be	stored	into	it.	Storing	information	in	a	Keychain	is	similar	to	storing
data	in	a	dictionary.	The	sample	app	first	checks	to	make	sure	that	both	of	the	PIN	text	fields	match;
then	it	calls	setObject:	on	the	pinWrapper	that	was	created	in	the	preceding	section.	For	the	key
identifier	kSecValueData	is	used.	This	item	is	covered	more	in	depth	in	the	section	“Keychain
Attribute	Keys”;	for	now,	however,	it	is	important	to	use	this	constant.
Click	here	to	view	code	image

if([pinField.text	isEqualToString:	pinFieldRepeat.text])
{
				[pinWrapper	setObject:[pinField	text]	forKey:kSecValueData];
}

After	a	new	value	has	been	stored	into	the	Keychain,	it	can	be	retrieved	in	the	same	fashion.	To	test
whether	the	user	has	entered	the	correct	PIN	in	the	sample	app,	the	following	code	is	used:
Click	here	to	view	code	image

if([pinField.text	isEqualToString:	[pinWrapper	objectForKey:kSecValueData]])

After	the	PIN	number	being	entered	has	been	confirmed	as	the	PIN	number	stored	in	the	Keychain,	the
user	is	allowed	to	access	the	next	section	of	the	app,	described	in	the	section	“Securing	a	Dictionary.”

Keychain	Attribute	Keys
Keychain	items	are	stored	similar	to	NSDictionaries;	however,	they	have	very	specific	keys	that	can
be	associated	with	them.	Unlike	an	NSDictionary,	a	Keychain	cannot	use	any	random	string	for	a	key
value.	Each	Keychain	is	associated	with	a	Keychain	class;	if	using	Apple’s
KeychainItemWrapper,	it	defaults	to	using	CFTypeRef	kSecClassGenericPassword.
However,	other	options	exist	for	kSecClassInternetPassword,	kSecClassCertificate,
kSecClassKey,	and	kSecClassIdentity.	Each	class	has	different	associated	values	attached	to
it.	For	the	purposes	of	this	chapter	as	well	as	for	the	KeychainItemWrapper,	the	focus	will	be	on
kSecClassGenericPassword.
kSecClassGenericPassword	contains	14	possible	keys	for	storing	and	accessing	data,	as
described	in	Table	19.2.	It	is	important	to	keep	in	mind	that	these	keys	are	optional	and	are	not
required	to	be	populated	in	order	to	function	correctly.

Table	19.2	Keychain	Attribute	Keys	Available	When	Working	with
kSecClassGenericPassword

Securing	a	Dictionary
Securing	a	more	complex	data	type	such	as	a	dictionary	follows	the	same	approach	taken	to	secure
the	PIN	in	earlier	sections.	The	Keychain	wrapper	allows	for	the	storage	only	of	strings;	to	secure	a
dictionary,	it	is	first	turned	into	a	string.	The	approach	chosen	for	the	sample	code	is	to	first	save	the
dictionary	to	a	JSON	string	using	the	NSJSONSerialization	class.	(See	Chapter	9,	“Working
with	and	Parsing	JSON,”	for	more	info.)
Click	here	to	view	code	image

NSMutableDictionary	*secureDataDict	=	[[[NSMutableDictionary	alloc]	init]	autorelease];

NSError	*error	=	nil;

if(numberTextField.text)
				[secureDataDict	setObject:numberTextField.text	forKey:@"numberTextField"];

if(expDateTextField.text)
				[secureDataDict	setObject:expDateTextField.text	forKey:@"expDateTextField"];

if(CV2CodeTextField.text)
				[secureDataDict	setObject:CV2CodeTextField.text	forKey:@"CV2CodeTextField"];

if(nameTextField.text)
				[secureDataDict	setObject:nameTextField.text	forKey:@"nameTextField"];

NSData	*rawData	=	[NSJSONSerialization	dataWithJSONObject:secureDataDict
													options:0
															error:&error];

if(error	!=	nil)
{
				NSLog(@"An	error	occurred:	%@",	[error	localizedDescription]);
}

NSString	*dataString	=	[[NSString	alloc]	initWithData:rawData
encoding:NSUTF8StringEncoding];

After	the	value	of	the	dictionary	has	been	converted	into	a	string	representation	of	the	dictionary	data,
it	can	be	added	to	the	Keychain	in	the	same	fashion	as	previously	discussed.
Click	here	to	view	code	image

KeychainItemWrapper	*secureDataKeychain	=	[[KeychainItemWrapper	alloc]
initWithIdentifier:@"com.ICF.keychain.securedData"	accessGroup:nil];

[secureDataKeychain	setObject:@"secureDataIdentifer"	forKey:	(id)kSecAttrAccount];

[secureDataKeychain	setObject:kSecAttrAccessibleWhenUnlocked	forKey:
(id)kSecAttrAccessible];

[secureDataKeychain	setObject:dataString	forKey:kSecValueData];

To	retrieve	the	data	in	the	form	of	a	dictionary,	the	steps	must	be	followed	in	reverse.	Starting	with	an
NSString	from	the	Keychain,	it	is	turned	into	an	NSData	value.	The	NSData	is	used	with
NSJSONSerialization	to	retrieve	the	original	dictionary	value.	After	the	dictionary	is	re-
created,	the	text	fields	that	display	the	user ’s	credit	card	information	are	populated.
Click	here	to	view	code	image

KeychainItemWrapper	*secureDataKeychain	=	[[KeychainItemWrapper	alloc]
initWithIdentifier:@"com.ICF.keychain.securedData"	accessGroup:nil];

NSString	*secureDataString	=	[secureDataKeychain	objectForKey:kSecValueData];

if([secureDataString	length]	!=	0)
{
				NSData*	data	=	[secureDataString	dataUsingEncoding:NSUTF8StringEncoding];

				NSError	*error	=	nil;

				NSDictionary	*secureDataDictionary	=	[NSJSONSerialization	JSONObjectWithData:data
options:NSJSONReadingMutableContainers	error:&error];

				if(error	!=	nil)
				{
									NSLog(@"An	error	occurred:	%@",	[error	localizedDescription]);
				}

				numberTextField.text	=	[secureDataDictionary	objectForKey:@"numberTextField"];

				expDateTextField.text	=	[secureDataDictionary	objectForKey:@"expDateTextField"];

				CV2CodeTextField.text	=	[secureDataDictionary	objectForKey:@"CV2CodeTextField"];

				nameTextField.text	=	[secureDataDictionary	objectForKey:@"nameTextField"];
}

else
{
				NSLog(@"No	Keychain	data	stored	yet");
}

Resetting	a	Keychain	Item
At	times,	it	might	be	necessary	to	wipe	out	the	data	in	a	Keychain	while	not	replacing	it	with	another
set	of	user	data.	This	can	be	done	using	Apple’s	library	by	invoking	the	reset-KeyChainItem
method	on	the	Keychain	wrapper	that	needs	to	be	reset.

[pinWrapper	resetKeychainItem];

Sharing	a	Keychain	Between	Apps
A	Keychain	can	be	shared	across	multiple	iOS	apps	if	they	are	published	by	the	same	developer	and
under	specific	conditions.	The	most	important	requirement	for	sharing	Keychain	data	between	two
apps	is	that	both	apps	must	have	the	same	bundle	seed.	For	example,	consider	two	apps	with	the
bundle	identifiers	659823F3DC53.com.ICF.firstapp	and	659823F3DC53.com.ICF.secondapp.	These
apps	would	be	able	to	access	and	modify	each	other ’s	Keychain	data.	Keychain	sharing	with	a
wildcard	ID	does	not	seem	to	work,	although	the	official	documentation	remains	quiet	on	this
situation.	Bundle	seeds	can	be	configured	from	the	developer	portal	when	new	apps	are	created.
When	you	have	two	apps	that	share	the	same	bundle	seed,	each	app	will	need	to	have	its	entitlements
configured	to	allow	for	a	Keychain	access	group.	Keychain	groups	are	configured	from	the	summary
tab	of	the	target,	as	shown	in	Figure	19.1.

Figure	19.1	Setting	up	a	new	Keychain	group	using	Xcode	6.

For	the	shared	Keychain	to	be	accessed,	the	Keychain	group	first	needs	to	be	set.	With	a	modification
of	the	PIN	example	from	earlier	in	the	chapter,	it	would	look	like	the	following	code	snippet:
Click	here	to	view	code	image

[pinWrapper	setObject:@"659823F3DC53.com.ICF.appgroup"	forKey:(id)kSecAttrAccessGroup];

Note
Remember	that	when	setting	the	access	group	in	Xcode,	you	do	not	need	to	specify	the
bundle	seed.	However,	when	you	are	setting	the	kSecAttrAccessGroup	property,	the
bundle	seed	needs	to	be	specified	and	the	bundle	seeds	of	both	apps	must	match.

After	an	access	group	has	been	set	on	a	KeychainItemWrapper,	it	can	be	created,	modified,	and
deleted	in	the	typical	fashion	discussed	throughout	this	chapter.

Keychain	Error	Codes
The	Keychain	can	return	several	specialized	error	codes	depending	on	any	issues	encountered	at
runtime.	These	errors	are	described	in	Table	19.3.

Table	19.3	Keychain	Error	Codes

Implementing	Touch	ID
The	iPhone	5s	was	the	first	iOS	device	to	feature	hardware-level	fingerprint	recognition.	This
technology,	collectively	referred	to	as	Touch	ID,	enables	the	user	to	authenticate	and	make	purchases
using	only	their	fingerprint.	Third-party	developers	can	implement	Touch	ID	to	authenticate	a	user.	It
is	important	to	know	that	the	fingerprint	data	itself	is	stored	on	the	A7	chip	and	cannot	be	accessed
outside	of	Touch	ID.	Whenever	you	are	working	with	Touch	ID,	it	is	important	to	realize	that	not	all
users	will	have	a	device	capable	of	using	fingerprint	authentication,	nor	will	everyone	who	is	capable
opt	into	using	the	technology.
Touch	ID	enables	the	user	to	authenticate	with	a	fingerprint,	enter	her	password,	or	cancel	the
authentication	action.	If	a	user	chooses	not	to	authenticate	with	her	fingerprint,	the	app	must	supply	a
fallback	method	to	conform	to	Apple’s	Review	Guidelines.	To	begin	using	Touch	ID	in	your	app,
first	add	the	Local	Authentication	Framework.	The
<LocalAuthentication/LocalAuthentication.h>	header	must	also	be	imported.
A	new	local	Authentication	Context	is	created.
Click	here	to	view	code	image

LAContext	*myContext	=	[[LAContext	alloc]	init];

The	app	then	needs	to	check	to	make	sure	that	Touch	ID	exists	and	is	enabled	for	the	device.	This	is
done	using	the	canEvaluatePolicy:	method.	If	the	app	allows	for	Touch	ID	authentication,
evaluatePolicy:	can	be	called;	otherwise,	the	app	should	fall	back	to	alternative	authentication
methods.
Click	here	to	view	code	image

NSError	*authError	=	nil;
NSString	*myReasonString	=	@"Human	readable	string	for	reason	access	is	being	requested";

if	([myContext	canEvaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics
error:&authError])
{
				[myContext	evaluatePolicy:LAPolicyDeviceOwnerAuthenticationWithBiometrics

localizedReason:myReasonString	reply:^(BOOL	succes,	NSError	*error)
{
								if	(success)
								{
																//	Authenticated	successfully
								}
								else
								{
																//	Authenticate	failed
								}
				}];
}
else
{
				//	Could	not	evaluate	policy;	check	authError
}

The	LAContext	can	return	several	possible	errors	on	failure;	they	are	detailed	in	Table	19.4.

Table	19.4	Touch	ID	Error	Codes

Summary
This	chapter	covered	using	Keychain	to	secure	small	amounts	of	app	data.	The	sample	app	covered
setting	and	checking	a	PIN	number	for	access	to	an	app	on	launch.	It	also	covered	the	storage	and
retrieval	of	multiple	fields	of	credit	card	data.	The	chapter	also	introduced	Touch	ID,	which	is
supported	on	the	iPhone	5s	and	newer	to	enable	the	user	to	use	his	fingerprint	to	authenticate.
Keychain	and	data	security	is	a	large	topic,	and	this	chapter	merely	touches	the	tip	of	the	iceberg.	The
development	community	is	also	seeking	security	professionals,	especially	in	the	mobile	marketplace.
Keychain	is	an	exciting	and	vast	topic	that	should	now	be	much	less	intimidating.	Hopefully,	this
introduction	to	securing	data	with	Keychain	will	set	you	as	a	developer	down	a	path	of	conscious
computer	security	and	prevent	yet	another	story	in	the	news	about	the	loss	of	confidential	information
by	a	careless	developer.

20.	Working	with	Images	and	Filters

Images	and	image	handling	are	central	to	many	iOS	apps.	At	a	basic	level,	images	are	a	necessary
part	of	customizing	the	user	interface,	from	custom	view	backgrounds	to	custom	buttons	and	view
elements.	Beyond	that,	iOS	6	added	sophisticated	support	for	customizing	user-provided	images	with
the	Core	Image	library.	Previous	to	iOS	6,	doing	image	manipulations	required	custom	image-
handling	code	using	Quartz	or	custom	C	libraries.	With	the	addition	of	Core	Image,	many	complex
image-editing	functions	demonstrated	by	successful	apps,	like	Instagram,	can	now	be	handled	by	iOS
with	minimal	effort.
This	chapter	describes	basic	image	handling:	how	to	load	and	display	an	image,	how	to	handle
images	on	devices	with	different	capabilities,	and	some	basic	image	display	techniques.	It	also
describes	how	to	acquire	an	image	from	the	device’s	image	library	or	camera.	In	addition,	this
chapter	demonstrates	and	describes	how	to	use	the	Core	Image	library	to	apply	effects	to	user-
provided	images.

The	Sample	App
The	sample	app	for	this	chapter	is	called	ImagePlayground.	It	demonstrates	selecting	an	image	from
the	device’s	photo	library	or	acquiring	an	image	from	the	camera	to	be	used	as	a	source	image,
which	the	app	then	resizes	to	a	smaller	size.	The	user	can	select	and	chain	filters	to	apply	to	the	source
image	to	alter	how	it	looks,	with	the	effect	of	each	filter	displayed	in	a	table	alongside	the	name	of
each	selected	filter.	The	filter	selection	process	demonstrates	how	Core	Image	filters	are	organized
into	categories,	and	enables	the	user	to	customize	a	selected	filter	and	preview	its	effect.

Basic	Image	Data	and	Display
Some	basic	image-handling	techniques	are	required	to	support	the	images	displayed	in	the	sample
app.	This	section	describes	different	techniques	for	displaying	images	in	a	view	and	for	handling
stretchable	images	that	can	be	used	in	buttons	of	different	sizes,	and	it	explains	the	basic	approach
needed	to	acquire	an	image	from	the	user ’s	photo	library	or	camera.

Instantiating	an	Image
To	use	an	image	in	an	app,	iOS	provides	a	class	called	UIImage.	This	class	supports	many	image
formats:

	Portable	Network	Graphics	(PNG):	.png
	Tagged	Image	File	Format	(TIFF):	.tiff,	.tif
	Joint	Photographic	Experts	Group	(JPEG):	.jpeg,	.jpg
	Graphics	Interchange	Format	(GIF):	.gif
	Windows	Bitmap	Format	(DIB):	.bmp,	.BMPf
	Windows	Icon	Format:	.ico
	Windows	Cursor:	.cur
	X	BitMap:	.xbm

When	images	are	used	for	backgrounds,	buttons,	or	other	elements	in	the	user	interface,	Apple
recommends	using	the	PNG	format.	UIImage	has	a	class	method	called	imageNamed:	that	can	be

used	to	instantiate	an	image.	This	method	provides	a	number	of	advantages:
	Looks	for	and	loads	the	image	from	the	app’s	main	bundle	without	needing	to	specify	the	path
to	the	main	bundle.
	Automatically	loads	a	PNG	image	with	no	file	extension.	So	specifying	myImage	will	load
myImage.png	if	that	exists	in	the	app’s	main	bundle.
	Takes	into	consideration	the	scale	of	the	screen	when	loading	the	image,	and	@2x	or	@3x	is
automatically	appended	to	the	image	name	if	the	scale	of	the	screen	is	greater	than	1.0.	In
addition,	it	will	check	for	~ipad	and	~iphone	versions	of	the	images	and	use	those	if
available.
	Supports	in-memory	caching.	If	the	same	image	has	already	been	loaded	and	is	requested	again,
it	will	return	the	already-loaded	image	and	not	reload	it.	This	is	useful	when	the	same	image	is
used	multiple	times	in	the	user	interface.

For	images	that	are	not	present	in	the	app’s	main	bundle,	when	the	imageNamed:	method	is	not
appropriate,	there	are	several	other	approaches	to	instantiate	images.	A	UIImage	can	be	instantiated
from	a	file,	as	in	this	code	example,	which	will	load	myImage.png	from	the	app’s	Documents
directory:
Click	here	to	view	code	image

NSArray	*pathForDocuments	=	NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
																																					NSUserDomainMask,	YES);

NSString	*imagePath	=	[[pathForDocuments	lastObject]
stringByAppendingPathComponent:@"myImage.png"];

UIImage	*myImage	=	[UIImage	imageWithContentsOfFile:imagePath];

A	UIImage	can	be	instantiated	from	NSData,	as	in	the	next	code	example.	NSData	can	be	from	any
source;	typically,	it	is	from	a	file	or	from	data	pulled	from	a	network	connection.
Click	here	to	view	code	image

NSData	*imageData	=	[NSData	dataWithContentsOfFile:imagePath];

UIImage	*myImage2	=	[UIImage	imageWithData:imageData];

A	UIImage	can	be	created	from	Core	Graphics	images,	as	in	this	code	example,	which	uses	Core
Graphics	to	take	a	sample	rectangle	from	an	existing	image.	A	Core	Graphics	image	(CGImage	or
CGImageRef)	represents	the	Core	Graphics	image	data.
Click	here	to	view	code	image

CGImageRef	myImage2CGImage	=	[myImage2	CGImage];
CGRect	subRect	=	CGRectMake(20,	20,	120,	120);

CGImageRef	cgCrop	=	CGImageCreateWithImageInRect(myImage2CGImage,	subRect);

UIImage	*imageCrop	=	[UIImage	imageWithCGImage:cgCrop];

A	UIImage	can	be	created	from	Core	Image	images,	as	described	in	detail	later	in	“Core	Image
Filters,”	in	the	subsection	“Rendering	a	Filtered	Image.”

Displaying	an	Image
After	an	instance	of	UIImage	is	available,	there	are	a	few	ways	to	display	it	in	the	user	interface.	The
first	is	UIImageView.	When	an	instance	of	UIImageView	is	available,	it	has	a	property	called
image	that	can	be	set:
Click	here	to	view	code	image

[self.sourceImageView	setImage:scaleImage];

UIImageView	can	also	be	instantiated	with	an	image,	which	will	set	the	bounds	to	the	size	of	the
image:
Click	here	to	view	code	image

UIImageView	*newImageView	=	[[UIImageView	alloc]	initWithImage:myImage];

For	images	displayed	in	a	UIImageView,	setting	the	contentMode	can	have	interesting	and	useful
effects	on	how	the	image	is	displayed,	as	shown	in	Figure	20.1.

Figure	20.1	Sample	app:	content	mode	effects.

The	content	mode	setting	tells	the	view	how	to	display	its	contents.	Aspect	fit	and	fill	modes	will
preserve	the	aspect	ratio	of	the	image,	whereas	scale	to	fill	mode	will	skew	the	image	to	fit	the	view.
Modes	such	as	center,	top,	bottom,	left,	and	right	will	preserve	the	dimensions	of	the	image	while
positioning	it	in	the	view.
Several	other	UIKit	items	support	or	use	images,	for	example,	UIButton.	A	useful	technique	for
buttons	or	especially	other	resizable	user	interface	elements	is	to	utilize	the	resizable	image	capability
provided	by	the	UIImage	class.	This	can	be	used	to	provide	the	same	style	for	buttons	of	different
sizes	without	warping	or	distorting	the	edges	of	the	button	image,	as	shown	in	Figure	20.2.	Resizing
images	this	way	is	optimized	in	UIKit	and	is	quick	and	efficient;	it	can	greatly	reduce	the	number	and
size	of	assets	needed	in	an	app.

Figure	20.2	Sample	app:	custom	button	using	resizable	background	image.

The	source	image	for	the	button	is	only	28	pixels	by	28	pixels.	The	resizable	image	used	in	the
background	is	created	from	the	original	image;	edge	insets	are	specified	to	indicate	which	parts	of
the	image	should	be	kept	static,	and	which	parts	can	be	stretched	or	tiled	to	fill	in	the	additional	space.
Click	here	to	view	code	image

UIImage	*startImage	=	[UIImage	imageNamed:@"ch_20_stretch_button"];

CGFloat	topInset	=	10.0f;
CGFloat	bottomInset	=	10.0f;
CGFloat	leftInset	=	10.0f;
CGFloat	rightInset	=	10.0f;

UIEdgeInsets	edgeInsets	=	UIEdgeInsetsMake(topInset,	leftInset,	bottomInset,	rightInset);

UIImage	*stretchImage	=	[startImage	resizableImageWithCapInsets:edgeInsets];

[self.selectImageButton	setBackgroundImage:stretchImage
																																		forState:UIControlStateNormal];

[self.selectImageButton	setBackgroundImage:stretchImage
																																		forState:UIControlStateSelected];

[self.selectImageButton	setBackgroundImage:stretchImage
																																		forState:UIControlStateHighlighted];

[self.selectImageButton	setBackgroundImage:stretchImage
																																		forState:UIControlStateDisabled];

Tip
Update	old	projects	in	Xcode	5	and	later	to	use	the	Asset	Catalog,	which	can
automatically	support	resizable	images	with	no	code.	The	Asset	Catalog	includes	a	visual
editor	to	establish	the	image	slicing,	and	calling	imageNamed:	for	a	sliced	asset	name
will	return	a	resizable	image.

Using	the	Image	Picker
It	is	common	for	apps	to	make	use	of	images	provided	by	the	user.	To	allow	an	app	access	to	the
user ’s	photos	in	the	camera	roll	and	photo	albums,	iOS	provides	two	approaches:	the
UIImagePickerController	and	the	asset	library.	The	UIImagePickerController
provides	a	modal	user	interface	to	navigate	through	the	user ’s	albums	and	photos,	so	it	is	appropriate
to	use	when	Apple’s	provided	styling	works	for	the	app	and	there	are	no	special	requirements	for
photo	browsing	and	selection.	The	photo	library	provides	full	access	to	the	photos	and	albums,	so	it
is	appropriate	to	use	when	there	are	specific	user-interface	and	styling	requirements	for	navigating
and	selecting	images.	The	photo	library	is	fully	described	in	Chapter	24,	“Accessing	the	Photo
Library.”
To	see	how	to	use	a	UIImagePickerController,	refer	to	the	selectImageTouched:
method	in	ICFViewController	in	the	sample	app.	The	method	starts	by	allocating	and	initializing
an	instance	of	UIImagePickerController.
Click	here	to	view	code	image

UIImagePickerController	*imagePicker	=	[[UIImagePickerController	alloc]	init];

The	method	then	customizes	the	picker.	The	UIImagePickerController	can	be	customized	to
acquire	images	or	videos	from	the	camera,	from	the	photo	library,	or	from	the	saved	photos	album.
In	this	case,	the	photo	library	is	specified.
Click	here	to	view	code	image

[imagePicker	setSourceType:	UIImagePickerControllerSourceTypePhotoLibrary];

A	UIImagePickerController	can	be	customized	to	select	images,	videos,	or	both,	by
specifying	an	array	of	media	types.	Note	that	the	media	types	which	can	be	specified	are	constants	that
are	defined	in	the	MobileCoreServices	framework,	so	it	is	necessary	to	add	that	framework	to	the
project	and	import	it	in	the	view	controller.	For	the	sample	app,	only	photos	are	desired,	so	the
kUTTypeImage	constant	is	used.
Click	here	to	view	code	image

[imagePicker	setMediaTypes:@[(NSString*)kUTTypeImage]];

The	picker	can	be	customized	to	allow	or	prevent	editing	of	the	selected	image.	If	editing	is	allowed,
the	user	will	be	able	to	pinch	and	pan	the	image	to	crop	it	within	a	square	provided	in	the	user
interface.
Click	here	to	view	code	image

[imagePicker	setAllowsEditing:YES];

Lastly,	the	picker	receives	a	delegate.	The	delegate	is	informed	when	the	user	has	selected	an	image
or	has	cancelled	image	selection	according	to	the	UIImagePickerControllerDelegate
protocol.	The	delegate	is	responsible	for	dismissing	the	image	picker	view	controller.
Click	here	to	view	code	image

[imagePicker	setDelegate:self];

In	the	sample	app,	the	image	picker	is	presented	in	a	popover	view	controller	using	the	source	image
container	view	as	its	anchor	view.
Click	here	to	view	code	image

self.imagePopoverController	=	[[UIPopoverController	alloc]
initWithContentViewController:imagePicker];

[self.imagePopoverController	presentPopoverFromRect:self.sourceImageContainer.frame
inView:self.view	permittedArrowDirections:UIPopoverArrowDirectionAny	animated:YES];

When	the	user	has	selected	an	image	and	cropped	it,	the	delegate	method	is	called.
Click	here	to	view	code	image

-	(void)imagePickerController:(UIImagePickerController	*)picker
didFinishPickingMediaWithInfo:(NSDictionary	*)info
{
...
}

The	delegate	is	provided	with	a	dictionary	of	information	about	the	selected	media.	If	editing
occurred	during	the	selection	process,	information	about	the	editing	that	the	user	performed	is
included	in	the	dictionary.	The	keys	and	information	contained	in	the	info	dictionary	are	described	in
Table	20.1.

Table	20.1	UIImagePickerControllerDelegate	Media	Info	Dictionary

In	the	sample	app,	the	selected	image	is	resized	to	200px	by	200px	so	that	it	will	be	easy	to	work	with
and	will	fit	nicely	in	the	display.	First,	a	reference	to	the	editing	image	is	acquired.

Click	here	to	view	code	image

UIImage	*selectedImage	=	[info	objectForKey:UIImagePickerControllerEditedImage];

Then	a	CGSize	is	created	to	indicate	the	desired	size,	and	a	scale	method	in	a	category	set	up	for
UIImage	is	called	to	resize	the	image.	The	resized	image	is	then	set	as	the	image	to	display	in	the
user	interface.
Click	here	to	view	code	image

CGSize	scaleSize	=	CGSizeMake(200.0f,	200.0f);

UIImage	*scaleImage	=	[selectedImage	scaleImageToSize:scaleSize];

[self.sourceImageView	setImage:scaleImage];

After	the	image	is	set,	the	popover	with	the	image	picker	is	dismissed.

Resizing	an	Image
When	images	are	being	displayed,	it	is	advisable	to	work	with	the	smallest	image	possible	while	still
maintaining	a	beautiful	user	interface.	Although	the	sample	app	certainly	could	use	the	full-size
selected	image,	performance	will	be	affected	if	a	larger	image	is	used	and	there	will	be	increased
memory	requirements	to	handle	a	larger	image.	Therefore,	the	sample	app	will	resize	a	selected
image	to	work	with	the	image	at	the	exact	size	needed	for	the	user	interface	and	no	larger.	To	scale	an
image	in	iOS,	the	method	will	need	to	use	Core	Graphics.	The	sample	app	includes	a	category	called
Scaling	on	UIImage	(in	UIImage+Scaling),	with	a	method	called	scaleImageToSize:.
The	method	accepts	a	CGSize	parameter,	which	is	a	width	and	a	height.
The	first	step	in	resizing	an	image	is	to	create	a	Core	Graphics	context,	which	is	a	working	area	for
images.
Click	here	to	view	code	image

UIGraphicsBeginImageContextWithOptions(newSize,	NO,	0.0f);

UIKit	provides	the	convenience	function	UIGraphicsBeginImageContextWithOption,
which	will	create	a	Core	Graphics	context	with	the	options	provided.	The	first	parameter	passed	in	is
a	CGSize,	which	specifies	the	size	of	the	context;	in	this	case,	the	method	uses	the	size	passed	in
from	the	caller.	The	second	parameter	is	a	BOOL,	which	tells	Core	Graphics	whether	the	context	and
resulting	image	should	be	treated	as	opaque	(YES)	or	should	include	an	alpha	channel	for
transparency	(NO).	The	final	parameter	is	the	scale	of	the	image,	where	1.0f	is	nonretina	and	2.0f
is	retina.	Passing	in	0.0f	will	tell	the	function	to	use	the	scale	of	the	current	device’s	screen.	After	a
context	is	available,	the	method	draws	the	image	into	the	context	using	the	drawInRect:	method.
Click	here	to	view	code	image

CGFloat	originX	=	0.0f;
CGFloat	originY	=	0.0f;

CGRect	destinationRect	=	CGRectMake(originX,	originY,	newSize.width,	newSize.height);

[self	drawInRect:destinationRect];

The	drawInRect:	method	will	draw	the	content	of	the	image	into	the	Core	Graphics	context,	using
the	position	and	dimensions	specified	in	the	destination	rectangle.	If	the	width	and	height	of	the	source
image	are	different	from	the	new	dimensions,	the	drawInRect:	method	will	resize	the	image	to	fit

in	the	new	dimensions.
Note	that	it	is	important	to	take	the	aspect	ratios	of	the	source	image	and	destination	into
consideration	when	doing	this.	The	aspect	ratio	is	the	ratio	of	the	width	to	the	height	of	the	image.	If
the	aspect	ratios	are	different,	the	drawInRect:	method	will	stretch	or	compress	the	image	as
needed	to	fit	into	the	destination	context,	and	the	resulting	image	will	appear	distorted.
Next,	the	method	creates	a	new	UIImage	from	the	context,	ends	the	context	since	it	is	no	longer
required,	and	returns	the	newly	resized	image.
Click	here	to	view	code	image

UIImage	*newImage	=	UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
return	newImage;

Core	Image	Filters
The	sample	app	enables	the	user	to	select	a	starting	image,	and	select	a	sequence	of	filters	to	apply	to
that	image	to	arrive	at	a	final	image.	As	a	general	rule,	Core	Image	filters	require	an	input	image
(except	in	cases	in	which	the	filter	generates	an	image)	and	some	parameters	to	customize	the
behavior	of	the	filter.	When	requested,	Core	Image	will	process	the	filter	against	the	input	image	to
provide	an	output	image.	Core	Image	is	efficient	in	the	application	of	filters.	A	list	of	filters	will	be
applied	only	when	the	final	output	image	is	requested,	not	when	each	filter	is	specified.	In	addition,
Core	Image	will	combine	the	filters	mathematically	wherever	possible	so	that	a	minimum	of
calculations	are	performed	to	process	the	filters.

Note
To	use	Core	Image	in	a	project,	add	the	Core	Image	framework	to	the	project	and
@import	CoreImage;	in	each	class	that	requires	it.

Filter	Categories	and	Filters
Core	Image	filters	are	organized	into	categories	internally.	A	filter	can	belong	to	more	than	one
category;	for	example,	a	color	effect	filter	like	Sepia	Tone	belongs	to	six	categories,	including
CICategoryColorEffect,	CICategoryVideo,	CICategoryInterlaced,
CICategoryNonSquarePixels,	CICategoryStillImage,	and	CICategoryBuiltIn.
These	categories	are	useful	to	the	developer	to	determine	what	Core	Image	filters	are	available	for	a
desired	task,	and	can	be	used	as	in	the	sample	app	to	enable	the	user	to	browse	and	select	available
filters.
In	the	sample	app,	when	a	user	taps	the	Add	Filter	button,	a	popover	segue	is	initiated.	This	segue	will
initialize	a	UIPopoverController,	a	UINavigationController,	and	an	instance	of
ICFFilterCategoriesViewController	as	the	top	root	view	controller	in	the	navigation
controller.	The	instance	of	ICFViewController	implements
ICFFilterProcessingDelegate	and	is	set	as	the	delegate	so	that	it	will	be	notified	when	a
filter	is	selected	or	when	the	selection	process	is	cancelled.	The	instance	of
ICFFilterCategoriesViewController	sets	up	a	dictionary	of	user-readable	category	names
in	the	viewDidLoad	method	to	correspond	with	some	of	Core	Image’s	category	keys	for
presentation	in	a	table.
Click	here	to	view	code	image

self.categoryList	=	@{
				@"Blur"	:	kCICategoryBlur,
				@"Color	Adjustment"	:	kCICategoryColorAdjustment,
				@"Color	Effect"	:	kCICategoryColorEffect,
				@"Composite"	:	kCICategoryCompositeOperation,
				@"Distortion"	:	kCICategoryDistortionEffect,
				@"Generator"	:	kCICategoryGenerator,
				@"Geometry	Adjustment"	:	kCICategoryGeometryAdjustment,
				@"Gradient"	:	kCICategoryGradient,
				@"Halftone	Effect"	:	kCICategoryHalftoneEffect,
				@"Sharpen"	:	kCICategorySharpen,
				@"Stylize"	:	kCICategoryStylize,
				@"Tile"	:	kCICategoryTileEffect,
				@"Transition"	:	kCICategoryTransition
};
self.categoryKeys	=	[self.categoryList	allKeys];

The	table	looks	as	shown	in	Figure	20.3.

Figure	20.3	Sample	app:	Add	Filter,	Category	selection.

When	the	user	selects	a	category,	a	segue	is	initiated.	In	the	prepareForSegue:sender:	method
the	destination	instance	of	ICFFiltersViewController	is	updated	with	the	Core	Image	constant
for	the	selected	category,	and	is	assigned	the	ICFFilterProcessingDelegate	delegate.	In	the
viewDidLoad	method,	the	ICFFiltersViewController	will	get	a	list	of	available	filters	for
the	filter	category.
Click	here	to	view	code	image

self.filterNameArray	=	[CIFilter	filterNamesInCategory:self.selectedCategory];

The	filters	are	displayed	in	a	table	as	shown	in	Figure	20.4.

Figure	20.4	Sample	app:	Add	Filter,	Filter	selection.

Core	Image	filters	can	be	instantiated	by	name,	so	the	tableView:cellForRowAtIndexPath:
method	instantiates	a	CIFilter,	and	examines	the	filter ’s	attributes	to	get	the	display	name	of	the
filter.
Click	here	to	view	code	image

NSString	*filterName	=	[self.filterNameArray	objectAtIndex:indexPath.row];

CIFilter	*filter	=	[CIFilter	filterWithName:filterName];
NSDictionary	*filterAttributes	=	[filter	attributes];

NSString	*categoryName	=	[filterAttributes	valueForKey:kCIAttributeFilterDisplayName];

[cell.textLabel	setText:categoryName];

When	the	user	selects	a	filter,	a	segue	is	initiated.	In	the	prepareForSegue:sender:	method	the
destination	instance	of	ICFFilterViewController	is	updated	with	an	instance	of	CIFilter
for	the	selected	filter,	and	is	assigned	the	ICFFilterProcessingDelegate	delegate.	When	the
ICFFilterViewController	instance	appears,	it	will	display	the	customizable	attributes	for	the
selected	filter.

Filter	Attributes
Core	Image	filters	have	a	flexible	approach	to	customization.	All	instances	of	CIFilter	have	a
dictionary	property	called	attributes	that	contains	information	about	the	filter	and	all	the
customizations	to	the	filter.	Instances	of	CIFilter	have	a	property	called	inputKeys,	which	lists
the	keys	of	each	customizable	input	item,	and	a	property	called	outputKeys,	which	lists	the	output
items	from	the	filter.

The	sample	app	has	specialized	table	cells	to	enable	the	user	to	see	what	attributes	are	available	for	a
selected	filter,	adjust	those	attributes,	and	preview	the	image	based	on	the	current	attribute	parameters,
as	shown	in	Figure	20.5.

Figure	20.5	Sample	app:	Add	Color	Monochrome	Filter,	Filter	Attributes.

Each	attribute	has	information	that	can	be	used	to	determine	how	to	display	and	edit	the	attribute	in	the
user	interface.	In	ICFFilterViewController	the	tableView:cellForRowAt-
IndexPath:	method	determines	which	attribute	to	look	at	based	on	the	index	path.
Click	here	to	view	code	image

NSString	*attributeName	=	[[self.selectedFilter	inputKeys]	objectAtIndex:indexPath.row];

Using	the	attribute	name	from	the	filter ’s	inputKeys	property,	the	method	can	then	get	an
NSDictionary	of	info	about	the	attribute.
Click	here	to	view	code	image

NSDictionary	*attributeInfo	=	[[self.selectedFilter	attributes]
valueForKey:attributeName];

With	the	attribute	info	available,	the	method	can	inspect	what	type	the	attribute	is	and	what	class	the
filter	expects	the	attribute	information	to	be	expressed	in.	With	that	info	the	method	can	dequeue	the
correct	type	of	custom	cell	to	use	to	edit	the	attribute.	ICFInputInfoCell	is	a	superclass	with
several	subclasses	to	handle	images,	colors,	numbers,	vectors,	and	transforms.
Click	here	to	view	code	image

NSString	*cellIdentifier	=	[self	getCellIdentifierForAttributeType:attributeInfo];

ICFInputInfoCell	*cell	=	(ICFInputInfoCell	*)	[tableView
dequeueReusableCellWithIdentifier:cellIdentifier
																																	forIndexPath:indexPath];

The	custom	getCellIdentifierForAttributeType:	method	uses	the	attribute	type	and	class
to	determine	what	type	of	cell	to	return.	Note	that	the	filters	are	not	completely	consistent	with
attribute	types	and	classes;	one	filter	might	specify	an	attribute	type	of	kCIAttribute-
TypeColor,	whereas	another	might	specify	an	attribute	class	of	CIColor.	The	method	corrects	for
this	by	allowing	either	approach.
Click	here	to	view	code	image

NSString	*attributeType	=	@"";
if	([attributeInfo	objectForKey:kCIAttributeType])
{
				attributeType	=	[attributeInfo	objectForKey:kCIAttributeType];
}

NSString	*attributeClass	=	[attributeInfo	objectForKey:kCIAttributeClass];

NSString	*cellIdentifier	=	@"";

if	([attributeType	isEqualToString:kCIAttributeTypeColor]	||	[attributeClass
isEqualToString:@"CIColor"])
{
				cellIdentifier	=	kICSInputColorCellIdentifier;
}

if	([attributeType	isEqualToString:kCIAttributeTypeImage]	||	[attributeClass
isEqualToString:@"CIImage"])
{
				cellIdentifier	=	kICSInputImageCellIdentifier;
}

if	([attributeType	isEqualToString:kCIAttributeTypeScalar]	||	[attributeType
isEqualToString:kCIAttributeTypeDistance]	||	[attributeType
isEqualToString:kCIAttributeTypeAngle]	||	[attributeType
isEqualToString:kCIAttributeTypeTime])
{
				cellIdentifier	=	kICSInputNumberCellIdentifier;
}

if	([attributeType	isEqualToString:kCIAttributeTypePosition]	||	[attributeType
isEqualToString:kCIAttributeTypeOffset]	||	[attributeType
isEqualToString:kCIAttributeTypeRectangle])
{
				cellIdentifier	=	kICSInputVectorCellIdentifier;
}

if	([attributeClass	isEqualToString:@"NSValue"])
{
				cellIdentifier	=	kICSInputTransformCellIdentifier;
}

return	cellIdentifier;

Each	of	the	cell	subclasses	can	accept	the	attribute	dictionary,	configure	the	cell	display	with	provided
or	default	values,	manage	editing	of	the	parameter	values,	and	then	return	an	instance	of	the	expected
class	when	requested.

Initializing	an	Image
To	apply	a	filter	to	an	image,	Core	Image	requires	an	image	to	be	an	instance	of	CIImage.	To	get	an
instance	of	CIImage	from	a	UIImage,	a	conversion	to	CGImage	and	then	to	CIImage	is	needed.
If	the	UIImage	has	image	data	already	in	memory,	these	conversions	are	quick;	otherwise,	the	image
data	must	be	loaded	into	memory	before	they	can	occur.
In	ICFFilterViewController,	the	tableView:cellForRowAtIndexPath:	method
handles	the	inputImage	by	checking	with	the	filter	delegate	to	get	either	the	starting	image	or	the
image	from	the	previous	filter.	The	filter	delegate	keeps	an	array	of	UIImages,	which	it	will	use	to
return	the	last	image	from	the	imageWithLastFilterApplied	method.
If	the	starting	image	is	provided,	it	is	converted	to	CGImage	and	then	used	to	create	a	CIImage.	If
the	input	image	is	from	another	filter,	it	is	safe	to	assume	that	UIImage	has	an	associated	CIImage
(asking	a	UIImage	for	a	CIImage	works	only	when	the	UIImage	has	been	created	from	a
CIImage;	otherwise,	it	returns	nil).
Click	here	to	view	code	image

if	([attributeName	isEqualToString:@"inputImage"])
{
				UIImage	*sourceImage	=	[self.filterDelegate	imageWithLastFilterApplied];

				[[(ICFInputImageTableCell	*)cell	inputImageView]	setImage:sourceImage];

				CIImage	*inputImage	=	nil;
				if	([sourceImage	CIImage])
				{
								inputImage	=	[sourceImage	CIImage];
				}
				else
				{
								CGImageRef	inputImageRef	=	[sourceImage	CGImage];
								inputImage	=	[CIImage	imageWithCGImage:inputImageRef];
				}

				[self.selectedFilter	setValue:inputImage
																											forKey:attributeName];
}

Rendering	a	Filtered	Image
To	render	a	filtered	image,	all	that	is	required	is	to	request	the	outputImage	from	the	filter ’s
attributes,	and	to	call	one	of	the	available	methods	to	render	it	to	a	context,	an	image,	a	bitmap,	or	a
pixel	buffer.	At	that	point	the	filter	operations	will	be	applied	to	the	inputImage	and	the
outputImage	will	be	produced.	In	the	sample	app,	this	occurs	in	two	instances:	if	the	user	taps
Preview	in	the	filter	view	controller	(as	shown	in	Figure	20.5),	or	if	the	user	taps	Add	Filter.	When	the
user	taps	the	Preview	button	in	ICFFilterViewController,	the	preview-ButtonTouched:
method	is	called.	This	method	begins	by	initializing	a	Core	Image	context	(note	that	the	context	can	be
initialized	once	as	a	property,	but	is	done	here	to	illustrate	it	all	in	one	place).
Click	here	to	view	code	image

CIContext	*context	=	[CIContext	contextWithOptions:nil];

The	method	then	gets	a	reference	to	the	outputImage	from	the	filter,	and	sets	up	a	rectangle	that
will	be	used	to	tell	the	context	what	part	of	the	image	to	render.	In	this	case	the	rectangle	is	the	same

size	as	the	image	and	might	seem	superfluous;	however,	note	that	there	are	some	filters	that	generate
infinitely	sized	output	images	(see	the	Generator	category	of	filters),	so	it	is	prudent	to	specify
desired	dimensions.
Click	here	to	view	code	image

CIFilter	*filter	=	self.selectedFilter;
CIImage	*resultImage	=	[filter	valueForKey:kCIOutputImageKey];
CGRect	imageRect	=	CGRectMake(0.0f,	0.0f,	200.0f,	200.0f);

The	method	then	asks	the	context	to	create	a	Core	Graphics	image	using	the	outputImage	and	the
rectangle.
Click	here	to	view	code	image

CGImageRef	resultCGImage	=	[context	createCGImage:resultImage	fromRect:imageRect];

The	Core	Graphics	result	image	can	then	be	used	to	create	a	UIImage	to	display	on	the	screen.
Click	here	to	view	code	image

UIImage	*resultUIImage	=
[UIImage	imageWithCGImage:resultCGImage];

[self.previewImageView	setImage:resultUIImage];

The	preview	image	is	displayed	in	the	lower-right	corner	of	the	filter	view,	as	shown	in	Figure	20.5.

Chaining	Filters
Chaining	filters	is	the	process	of	applying	more	than	one	filter	to	a	source	image.	With	the
combination	of	filters	applied	to	a	source	image,	interesting	effects	can	be	produced,	as	shown	in
Figure	20.6.

Figure	20.6	Sample	app:	filter	list.

When	a	user	taps	Add	Filter	(refer	to	Figure	20.5),	the	addFilter:	method	of	the
ICFFilterProcessing	protocol	gets	called	in	ICFViewController.	The	method	checks	to
see	whether	the	filter	to	be	added	is	the	first	filter,	in	which	case	it	leaves	the	source	image	as	the
inputImage	for	the	filter.	If	it	is	not	the	first	filter,	the	method	uses	the	outputImage	of	the	last
filter	as	the	inputImage	for	the	filter	to	be	added.
Click	here	to	view	code	image

CIFilter	*lastFilter	=	[self.filterArray	lastObject];

if	(lastFilter)
{

				if	([[filter	inputKeys]	containsObject:@"inputImage"])
				{
								[filter	setValue:[lastFilter	outputImage]
																		forKey:@"inputImage"];
				}
}

[self.filterArray	addObject:filter];

Using	this	technique,	any	number	of	filters	can	be	chained	together.	With	the	last	filter,	the	method
renders	the	final	image.
Click	here	to	view	code	image

CIContext	*context	=	[CIContext	contextWithOptions:nil];
CIImage	*resultImage	=	[filter	valueForKey:kCIOutputImageKey];

CGImageRef	resultCGImage	=	[context	createCGImage:resultImage
															fromRect:CGRectMake(0.0f,	0.0f,	200.0f,	200.0f)];

UIImage	*resultUIImage	=	[UIImage	imageWithCGImage:resultCGImage];

The	final	image	is	added	to	the	list	of	images,	and	the	filter	list	table	is	reloaded	to	display	the	images
for	each	filter	step.
Click	here	to	view	code	image

[self.resultImageView	setImage:resultUIImage];

[self.filteredImageArray	addObject:self.resultImageView.image];
[self.filterList	reloadData];

[self.filterPopoverController	dismissPopoverAnimated:YES];

Core	Image	will	automatically	optimize	the	filter	chain	to	minimize	the	number	of	calculations
necessary;	in	other	words,	Core	Image	will	not	process	each	step	in	the	filter	individually;	rather,	it
will	combine	the	math	operations	indicated	by	the	filters	and	perform	the	filter	operation	in	one	step.

Feature	Detection
Core	Image	provides	the	capability	to	detect	features,	including	faces,	and	facial	features	as	of	iOS	7,
and	QR	codes	and	rectangles	as	of	iOS	8,	in	an	image	or	a	video.	Feature	detection	can	be	used	for	a
number	of	useful	things;	for	example,	the	standard	Camera	app	can	highlight	faces	in	the	viewfinder.
Face	locations	and	dimensions	can	be	used	in	filters	to	make	faces	anonymous	or	highlight	faces	in	a
number	of	engaging	ways.	Rectangle	dimensions	can	be	used	similarly	to	apply	filters	to	specific
portions	of	an	image,	opening	a	wide	potential	for	creative	application	of	filters	to	images.	The
sample	app	contains	functionality	to	detect	and	highlight	faces	and	face	features	in	the	source	image;
the	same	techniques	can	be	used	for	QR	codes	and	rectangles.

Setting	Up	a	Face	Detector
To	use	a	face	detector,	Core	Image	needs	an	instance	of	CIImage	as	a	source	image	to	analyze.	In
the	detectFacesTouched:	method	in	ICFViewController,	an	instance	of	CIImage	is
created	from	the	source	image	displayed.
Click	here	to	view	code	image

UIImage	*detectUIImage	=	[self.sourceImageView	image];
CGImageRef	detectCGImageRef	=	[detectUIImage	CGImage];

CIImage	*detectImage	=	[CIImage	imageWithCGImage:detectCGImageRef];

Face	detection	in	Core	Image	is	provided	by	the	CIDetector	class.	The	class	method	to	create	a
detector	accepts	a	dictionary	of	options;	in	this	case,	a	face	detector	can	use	either	a	high-	or	low-
accuracy	setting.	The	high-accuracy	setting	is	more	accurate	but	takes	more	time	to	complete,	so	it	is
appropriate	for	cases	in	which	performance	is	not	the	primary	consideration.	The	low-accuracy
setting	is	appropriate	for	cases	like	a	real-time	video	feed	in	which	performance	is	more	important
than	precision.	A	Core	Image	context	can	be	provided	but	is	not	required.
Click	here	to	view	code	image

NSDictionary	*options	=	@{CIDetectorAccuracy	:	CIDetectorAccuracyHigh};

CIDetector	*faceDetector	=	[CIDetector	detectorOfType:CIDetectorTypeFace
																				context:nil
																				options:options];

After	the	detector	is	created,	calling	the	featuresInImage:	method	will	provide	an	array	of
features	detected	in	the	source	image.
Click	here	to	view	code	image

NSArray	*features	=	[faceDetector	featuresInImage:detectImage];

Features	discovered	will	be	returned	as	instances	of	CIFaceFeature,	which	is	a	subclass	of
CIFeature.	Instances	of	CIFeature	have	a	bounds	property,	which	is	a	rectangle	outlining	the
feature’s	relative	position	inside	the	source	image.

Processing	Face	Features
The	detectFacesTouched:	method	in	ICFViewController	will	iterate	over	the	found	faces,
and	will	visually	highlight	them	in	the	source	image,	as	shown	in	Figure	20.7.	The	method	will	also
log	detailed	information	about	each	face	feature	to	a	text	view	in	the	display.

Figure	20.7	Sample	app:	detect	faces.

For	each	face,	the	method	first	gets	a	rectangle	to	position	the	red	square	around	the	face.
Click	here	to	view	code	image

CGRect	faceRect	=	[self	adjustCoordinateSpaceForMarker:face.bounds
																												andHeight:detectImage.extent.size.height];

To	determine	where	to	draw	the	rectangle	for	a	face,	the	method	needs	to	adjust	the	positions
provided	by	Core	Image,	which	uses	a	different	coordinate	system	than	UIKit.	Core	Image’s
coordinate	system	is	flipped	in	the	Y	or	vertical	direction	so	that	position	zero	is	at	the	bottom	of	an
image	instead	of	the	top.	The	adjustCoordinateSpaceForMarker:andHeight:	method
will	adjust	a	marker	rectangle	by	shifting	the	marker	by	the	height	of	the	image	and	flipping	it,	so	the
new	coordinates	are	expressed	the	same	way	as	in	UIKit’s	coordinate	system.
Click	here	to	view	code	image

CGAffineTransform	scale	=	CGAffineTransformMakeScale(1,	-1);

CGAffineTransform	flip	=	CGAffineTransformTranslate(scale,	0,	-height);

CGRect	flippedRect	=	CGRectApplyAffineTransform(marker,	flip);
return	flippedRect;

With	the	correct	coordinates,	the	method	will	add	a	basic	view	with	a	red	border	to	the	source	image
view	to	highlight	the	face.
Click	here	to	view	code	image

UIView	*faceMarker	=	[[UIView	alloc]	initWithFrame:faceRect];
faceMarker.layer.borderWidth	=	2;
faceMarker.layer.borderColor	=	[[UIColor	redColor]	CGColor];
[self.sourceImageView	addSubview:faceMarker];

The	CIFaceFeature	class	has	methods	to	indicate	whether	a	face	has	detected	a	left	eye,	a	right
eye,	and	a	mouth.	As	of	iOS	7,	it	has	methods	to	indicate	whether	a	detected	face	is	smiling
(hasSmile),	or	whether	either	of	the	eyes	is	blinking	(leftEyeClosed	and	rightEyeClosed).
Click	here	to	view	code	image

if	(face.hasLeftEyePosition)
{
...
}

If	an	eye	or	a	mouth	has	been	detected,	a	position	will	be	available	for	that	face	feature	expressed	as	a
CGPoint.	Since	only	a	position	is	provided	for	each	face	feature	(and	not	dimensions),	the	method
uses	a	default	width	and	height	for	the	rectangles	to	indicate	the	location	of	a	face	feature.
Click	here	to	view	code	image

CGFloat	leftEyeXPos	=	face.leftEyePosition.x	-	eyeMarkerWidth/2;
CGFloat	leftEyeYPos	=	face.leftEyePosition.y	-	eyeMarkerWidth/2;

CGRect	leftEyeRect	=	CGRectMake(leftEyeXPos,	leftEyeYPos,	eyeMarkerWidth,
eyeMarkerWidth);

CGRect	flippedLeftEyeRect	=	[self	adjustCoordinateSpaceForMarker:leftEyeRect
andHeight:self.sourceImageView.bounds.size.height];

With	the	calculated	and	adjusted	rectangle,	the	method	adds	a	yellow	square	to	the	source	image	view
to	highlight	the	left	eye.
Click	here	to	view	code	image

UIView	*leftEyeMarker	=	[[UIView	alloc]	initWithFrame:flippedLeftEyeRect];

leftEyeMarker.layer.borderWidth	=	2;

leftEyeMarker.layer.borderColor	=	[[UIColor	yellowColor]	CGColor];

[self.sourceImageView	addSubview:leftEyeMarker];

The	same	approach	is	repeated	for	the	right	eye	and	the	mouth.

Summary
This	chapter	described	basic	image	handling,	including	how	to	load	and	display	an	image,	how	to
specify	a	content	mode	to	adjust	how	an	image	is	displayed,	and	how	to	create	a	stretchable	image	to
reuse	a	source	image	for	elements	of	different	sizes.	It	demonstrated	how	to	get	an	image	from	the
user ’s	photo	library	or	from	the	camera,	and	how	to	customize	the	image	picker	with	options,	such	as
which	albums	to	use	and	whether	to	allow	cropping	of	the	selected	image.	It	also	explained	how	to
resize	an	image.
Then,	this	chapter	explained	how	to	make	use	of	Core	Image	filters,	including	how	to	get	information
about	the	available	filters	and	filter	categories,	how	to	apply	a	filter	to	an	image,	and	how	to	chain
filters	together	to	achieve	interesting	effects.	Finally,	this	chapter	described	how	to	utilize	Core
Image’s	face	detection.

21.	Collection	Views

Collection	views	were	added	in	iOS	6	to	provide	a	convenient	new	way	to	display	scrollable	cell-
based	information	in	a	view	with	arbitrary	layouts.	Consider	the	iOS	6+	versions	of	Photos.app,
which	present	thumbnails	of	images	in	a	scrollable	grid.	Before	iOS	6,	implementing	a	grid	view
would	require	setting	up	a	table	view	with	logic	to	calculate	which	thumbnail	(or	cell)	should	go	in
each	position	in	each	table	row,	or	would	require	custom	logic	to	place	thumbnails	in	a	scroll	view
and	manage	them	all	as	scrolling	occurs.	Both	approaches	are	challenging,	time-consuming,	and
error	prone	to	implement.	Collection	views	address	this	situation	by	providing	a	cell-management
architecture	that	is	similar	to	row	management	in	a	table	view,	while	abstracting	the	layout	of	cells.
There	is	a	default	collection	view	layout	called	flow	layout,	which	can	be	used	to	quickly	and	easily
implement	many	common	grid-style	layouts	for	both	horizontal	and	vertical	scrolling.	Custom
layouts	can	be	created	to	implement	specialized	grids	or	any	nongrid	layout	that	can	be	visualized	and
calculated	at	runtime.
Collection	views	can	be	organized	into	sections,	with	section	header	and	section	footer	views	that
depend	on	section	data.	In	addition,	decoration	views	not	related	to	content	data	can	be	specified	to
enhance	the	look	of	the	collection	view.
Last	but	not	least,	collection	views	support	lots	of	types	of	animation,	including	custom	states	while
cells	are	scrolling,	animations	for	inserting	or	removing	cells,	and	transitioning	between	layouts.

The	Sample	App
The	sample	app	for	this	chapter	is	called	PhotoGallery.	The	app	demonstrates	presenting	the	user ’s
photo	library	in	a	few	different	implementations	of	a	collection	view:

	The	first	implementation	is	a	basic	collection	view	of	thumbnails,	organized	by	album,	which
can	be	scrolled	vertically.	It	has	section	headers	displaying	album	names,	and	can	be	created
with	a	minimum	of	custom	code.
	The	second	implementation	uses	a	custom	subclass	of	the	flow	layout	so	that	it	can	display
decoration	views.
	The	third	implementation	uses	a	custom	layout	to	present	items	in	a	nongrid	layout,	and
includes	the	capability	to	change	to	another	layout	with	a	pinch	gesture.

Introducing	Collection	Views
A	collection	view	needs	a	few	different	classes	in	order	to	work.	The	base	class	is	called
UICollectionView	and	is	a	subclass	of	UIScrollView.	It	will	manage	the	presentation	of	cells
provided	by	the	datasource	(which	can	be	any	class	implementing	the
UICollectionViewDataSource	protocol),	according	to	the	layout	referenced	by	the	collection
view,	which	will	be	an	instance	of	UICollectionViewLayout.	A	delegate	conforming	to	the
UICollectionViewDelegate	protocol	can	be	specified	to	manage	selection	and	highlighting	of
cells.
The	class	that	conforms	to	the	UICollectionViewDataSource	protocol	will	return	configured
cells	to	the	collection	view,	which	will	be	instances	of	UICollectionViewCell.	If	the	collection
view	is	configured	to	use	section	headers	and/or	section	footers,	the	data	source	will	return
configured	instances	of	UICollectionReusableView.

In	the	sample	app,	refer	to	the	Basic	Flow	Layout	to	see	these	classes	all	working	together,	as	shown
in	Figure	21.1.

Figure	21.1	Sample	app:	Basic	Flow	Layout.

Setting	Up	a	Collection	View
The	Basic	Flow	Layout	example	in	the	sample	app	demonstrates	setting	up	a	collection	view	with	a
minimum	of	customization,	to	show	how	quickly	and	easily	a	collection	view	can	be	created.	Instead
of	using	a	basic	UIViewController	subclass,	the	basic	flow	used	a
UICollectionViewController	subclass	called	PHGBasicFlowViewController,	which
conforms	to	the	UICollectionViewDataSource	and	UICollectionViewDelegate
protocols.	This	approach	is	not	required;	it	is	convenient	when	the	collection	view	is	all	that	is	being
displayed	for	a	view	controller.	A	collection	view	can	be	used	with	a	standard	view	controller	with	no
issues:

1.	In	the	MainStoryboard,	examine	the	Basic	Flow	View	Controller–Basic	Scene.
2.	Expand	the	scene	to	see	the	collection	view	controller,	as	shown	in	Figure	21.2.

Figure	21.2	Xcode	storyboard:	specify	custom	class	for	collection	view	controller.

3.	With	the	collection	view	controller	selected,	note	the	custom	class	specified	in	the	identity
inspector.

This	ensures	that	the	collection	view	controller	will	use	the	custom	subclass
PHGBasicFlowViewController.
UICollectionViewController	instances	have	a	property	called	collectionView,	which	is
represented	in	Interface	Builder	as	the	collection	view	object.	With	the	collection	view	object	selected,
note	that	several	settings	can	be	configured:	the	type	of	layout,	the	scrolling	direction,	and	whether	a
section	header	and/or	section	footer	should	be	used,	as	shown	in	Figure	21.3.

Figure	21.3	Xcode	storyboard:	custom	collection	view	settings.

Interface	Builder	will	present	objects	for	the	section	header,	collection	view	cell,	and	section	footer
that	can	be	customized	as	well.	For	each	of	these,	a	custom	subclass	has	been	set	up	to	simplify
managing	the	subviews	that	need	to	be	configured	at	runtime.	This	is	not	required;	the
UICollectionViewCell	and	UICollectionReusableView	classes	can	be	used	directly	if
preferred.
The	collection	view	cell	subclass	is	called	PHGThumbCell,	and	has	one	property	called	thumb-
ImageView,	which	will	be	used	to	display	the	thumbnail	image.	The	collection	view	object	in
Interface	Builder	is	configured	to	use	the	custom	subclass	in	the	identity	inspector,	and	references	a
UIImageView	object	for	the	thumbImageView	property.	The	key	item	to	set	up	for	the	collection
view	cell	is	the	identifier,	as	shown	in	Figure	21.4;	this	is	how	the	data	source	method	will	identify	the
type	of	cell	to	be	configured	and	displayed.

Figure	21.4	Xcode	storyboard:	collection	view	cell	identifier.

The	collection	view	section	header	subclass	is	called	PHGSectionHeader,	and	the	section	footer
subclass	is	called	PHGSectionFooter.	Each	subclass	has	a	property	for	a	label	that	will	be	used	to
display	the	header	or	footer	title	for	the	section.	Both	objects	in	Interface	Builder	are	configured	to
use	their	respective	custom	subclasses	in	the	identity	inspector,	and	reference	UILabel	objects	for
their	title	properties.	Just	as	the	collection	view	cell	“identifier”	was	specified	for	the	collection	view
cell,	separate	identifiers	are	specified	for	the	section	header	and	section	footer.

Implementing	the	Collection	View	Data	Source	Methods
After	all	the	objects	are	configured	in	Interface	Builder,	the	data	source	methods	need	to	be
implemented	for	the	collection	view	to	work.	Confirm	that	the	collection	view	object	in	the
storyboard	has	the	data	source	set	to	the	basic	flow	view	controller,	as	shown	in	Figure	21.5.

Figure	21.5	Xcode	storyboard:	collection	view	data	source	setting.

The	sample	app	is	a	gallery	app	that	displays	photos	from	the	user ’s	photo	library	organized	by	photo
album,	so	there	is	logic	implemented	in	the	viewDidLoad	method	that	builds	an	array	of	image
asset	fetch	results	by	album	and	a	fetch	request	of	photo	albums.	See	Chapter	24,	“Accessing	the
Photo	Library,”	for	more	details	on	that	process.
The	collection	view	needs	to	know	how	many	sections	to	present,	which	is	returned	in	the
numberOfSectionsInCollectionView:	method.	The	method	is	set	up	to	return	the	count	of
albums	(or	groups)	from	the	array	of	asset	groups	built	in	viewDidLoad.

Click	here	to	view	code	image

-	(NSInteger)numberOfSectionsInCollectionView:(UICollectionView	*)collectionView
{
				return	[self.albumsResult	count];
}

Next	the	collection	view	needs	to	know	how	many	cells	to	present	in	each	section.	This	method	is
called	collectionView:numberOfItemsInSection:.	The	method	has	been	built	to	find	the
correct	asset	array	for	the	section	index,	and	then	return	the	count	of	assets	in	that	array.
Click	here	to	view	code	image

-	(NSInteger)collectionView:(UICollectionView	*)view
					numberOfItemsInSection:(NSInteger)section;
{
				PHFetchResult	*albumAssets	=	self.albumAssetsResults[section];
				return	[albumAssets	count];
}

After	the	collection	view	has	the	counts	of	sections	and	items,	it	can	determine	how	to	lay	out	the
view.	Depending	on	where	in	the	scrollable	bounds	the	current	view	is,	the	collection	view	will
request	section	headers,	footers,	and	cells	for	the	visible	area	of	the	view.	Section	headers	and	footers
are	requested	from	the
collectionView:viewForSupplementaryElementOfKind:atIndexPath:	method.
Section	headers	and	footers	both	need	to	be	instances	(or	subclasses)	of
UICollectionReusableView.	The	method	declares	a	nil	instance	of
UICollectionReusableView,	which	will	be	populated	with	either	a	configured	section	header
or	a	section	footer.	In	addition,	the	method	gets	information	about	the	photo	album	and	assets	in	the
album	to	display	in	the	header	or	footer.
Click	here	to	view	code	image

UICollectionReusableView	*supplementaryView	=	nil;
PHAssetCollection	*album	=	[self.albumsResult	objectAtIndex:indexPath.section];
PHFetchResult	*albumAssets	=	[self.albumAssetsResults	objectAtIndex:indexPath.section];

The	logic	in	the	method	must	check	the	value	of	the	kind	parameter	(which	will	be	either
UICollectionElementKindSectionHeader	or
UICollectionElementKindSectionFooter)	to	determine	whether	to	return	a	section	header
or	section	footer.
Click	here	to	view	code	image

if	([kind	isEqualToString:UICollectionElementKindSectionHeader])	{

				PHGSectionHeader	*sectionHeader	=	[collectionView
dequeueReusableSupplementaryViewOfKind:kind	withReuseIdentifier:kSectionHeader
forIndexPath:indexPath];

				[sectionHeader.headerLabel	setText:[NSString	stringWithFormat:@"%@	-
%lu",album.localizedTitle,	(unsigned	long)albumAssets.count]];

				supplementaryView	=	sectionHeader;
}

To	get	an	instance	of	the	custom	PHGSectionHeader,	the	collection	view	is	asked	to	provide	a
supplementary	view	for	the	specified	index	path,	using	the	dequeue	with	reuse	identifier	method.	Note
that	the	reuse	identifier	must	be	the	same	as	specified	in	Interface	Builder	previously	for	the	section

header.	This	method	will	either	instantiate	a	new	view	or	reuse	an	existing	view	that	is	no	longer
being	displayed.	Then	the	title	of	the	section	is	looked	up	in	the	group	array,	and	put	in	the	header ’s
title	label.
For	cells,	the	collectionView:cellForItematIndexPath:	method	is	called.	In	this
method,	a	cell	is	dequeued	for	the	reuse	identifier	specified	(this	must	match	the	reuse	identifier
specified	for	the	cell	in	Interface	Builder).
Click	here	to	view	code	image

PHGThumbCell	*cell	=
[cv	dequeueReusableCellWithReuseIdentifier:kThumbCell
																														forIndexPath:indexPath];

The	cell	is	then	configured	to	display	the	thumbnail	image	for	the	asset	at	the	indexPath	and
returned	for	display.
Click	here	to	view	code	image

PHFetchResult	*albumAssets	=	self.albumAssetsResults[indexPath.section];
PHAsset	*asset	=	albumAssets[indexPath.row];

PHImageManager	*imageManager	=	[PHImageManager	defaultManager];
[imageManager	requestImageForAsset:asset
																								targetSize:CGSizeMake(50,	50)
																							contentMode:PHImageContentModeAspectFill
																											options:nil
																					resultHandler:^(UIImage	*result,	NSDictionary	*info){
																									[cell.thumbImageView	setImage:result];
																									[cell	setNeedsLayout];
																					}];

return	cell;

If	setting	up	the	cells	and	section	header/footer	object	in	a	storyboard	is	not	the	preferred	approach,
they	can	be	set	up	in	nibs	or	in	code.	In	that	case,	it	is	necessary	to	register	the	class	or	nib	for	the
reuse	identifier	for	cells	using	either	the	registerClass:forCellWithReuse-
Identifier:	method	or	the	registerNib:forCellWithReuseIdentifier:	method.	For
section	headers	and	footers	the	methods
registerClass:forSupplementaryViewOfKind:withReuseIdentifier:	or
registerNib:forSupplementaryViewOfKind:withReuse-Identifier:	can	be	used.

Implementing	the	Collection	View	Delegate	Methods
The	collection	view	delegate	can	manage	selection	and	highlighting	of	cells,	can	track	removal	of
cells	or	sections,	and	can	be	used	to	display	the	Edit	menu	for	items	and	perform	actions	from	the
Edit	menu.	The	basic	flow	in	the	sample	app	demonstrates	cell	selection	and	highlighting.	Confirm
that	the	delegate	for	the	collection	view	object	is	set	to	the	basic	flow	view	controller,	as	shown	in
Figure	21.5.
Collection	view	cells	are	designed	to	be	able	to	change	visually	when	they	are	selected	or	highlighted.
A	collection	view	cell	has	a	subview	called	contentView	where	any	content	to	be	displayed	for	the
cell	should	go.	It	has	a	backgroundView,	which	can	be	customized	and	which	is	always	displayed
behind	the	contentView.	In	addition,	it	has	a	selectedBackgroundView,	which	will	be	placed
behind	the	contentView	and	in	front	of	the	backgroundView	when	the	cell	is	highlighted	or
selected.

For	the	custom	PHGThumbCell	class,	the	selectedBackgroundView	is	instantiated	and
customized	in	the	cell’s	initWithCoder:	method,	since	the	cell	is	instantiated	from	the
storyboard.	Be	sure	to	use	the	appropriate	init	method	to	customize	the	backgroundView	and
selectedBackgroundView	depending	on	how	your	cells	will	be	initialized.
Click	here	to	view	code	image

-	(instancetype)initWithCoder:(NSCoder	*)aDecoder
{
				self	=	[super	initWithCoder:aDecoder];
				if	(self)	{

								self.selectedBackgroundView	=	[[UIView	alloc]	initWithFrame:CGRectZero];

								[self.selectedBackgroundView	setBackgroundColor:[UIColor	redColor]];
				}
				return	self;
}

By	default,	collection	views	support	single	selection.	To	enable	a	collection	view	to	support	multiple
selection,	use	the	following:
Click	here	to	view	code	image

[self.collectionView	setAllowsMultipleSelection:YES];

For	cell	selection,	there	are	four	delegate	methods	that	can	be	implemented.	Two	methods	indicate
whether	a	cell	should	be	selected	or	deselected,	and	two	methods	indicate	whether	a	cell	was	selected
or	deselected.	For	this	example	only	the	methods	indicating	whether	a	cell	was	selected	or	deselected
are	implemented.
Click	here	to	view	code	image

-	(void)collectionView:(UICollectionView	*)collectionView	didSelectItemAtIndexPath:
(NSIndexPath	*)indexPath
{
				NSLog(@"Item	selected	at	indexPath:	%@",indexPath);
}

-	(void)collectionView:(UICollectionView	*)collectionView	didDeselectItemAtIndexPath:
(NSIndexPath	*)indexPath
{
				NSLog(@"Item	deselected	at	indexPath:	%@",indexPath);
}

Note	that	there	is	no	logic	in	either	method	to	actually	manage	the	list	of	items	selected—this	is
handled	by	the	collection	view.	The	selection	delegate	methods	are	then	needed	only	for	any
customizations	to	manage	when	cells	are	selected,	or	to	respond	to	a	selection	or	deselection.	The
collection	view	maintains	an	array	of	index	paths	for	selected	cells,	which	can	be	used	for	any	custom
logic.	The	sample	demonstrates	tapping	an	action	button	in	the	navigation	bar	to	display	how	many
cells	are	selected,	as	shown	in	Figure	21.6;	this	could	easily	be	enhanced	to	display	an	activity	view
for	the	selected	cells.

Figure	21.6	Sample	app:	basic	flow	demonstrating	cell	selection.

Customizing	Collection	View	and	Flow	Layout
Various	customizations	are	possible	for	a	flow	layout	collection	view.	The	size	of	each	cell	can	be
customized	individually,	as	well	as	the	size	of	each	section	header	and	section	footer.	Guidelines	can
be	provided	to	ensure	that	a	minimum	amount	of	spacing	is	respected	between	cells,	as	well	as
between	cells,	section	headers	and	footers,	and	section	boundaries.	In	addition,	decoration	views,
which	are	views	that	enhance	the	collection	view	aesthetically	but	are	not	directly	related	to	the
collection	view’s	data,	can	be	placed	anywhere	in	the	collection	view.

Basic	Customizations
The	flow	layout	provided	in	the	SDK	can	be	customized	to	provide	a	wide	variety	of	grid-based
layouts.	The	flow	layout	has	logic	built	in	to	calculate,	based	on	scrolling	direction	and	all	the
parameters	set	for	cell	size,	spacing	and	sections,	how	many	cells	should	be	presented	per	row,	and
then	how	big	the	scroll	view	should	be.	When	these	parameters	are	manipulated,	collection	views	can
be	created	that	display	one	cell	per	row	(or	even	per	screen),	multiple	cells	packed	tightly	together	in
a	row	(as	in	iOS7’s	Photos.app),	or	anything	in	between.	These	parameters	are	illustrated	in	Figure
21.7.

Figure	21.7	Collection	view	customizable	parameters.

There	are	a	few	approaches	to	performing	basic	customizations	on	a	flow	layout	collection	view.	The
simplest	approach	is	to	set	the	defaults	for	the	collection	view	in	Interface	Builder,	by	selecting	the
collection	view	object	(or	collection	view	flow	layout	object)	and	using	the	Size	Inspector,	as	shown
in	Figure	21.8.	Note	that	adjustments	to	these	values	affect	the	flow	layout	object	associated	with	the
collection	view.

Figure	21.8	Xcode	Interface	Builder:	Size	Inspector	for	the	collection	view	object.

Another	approach	is	to	update	the	items	in	code,	in	an	instance	or	a	subclass	of
UICollectionViewFlowLayout.	In	PHGCustomFlowLayout,	the	attributes	for	the	custom

flow	layout	are	set	in	the	init	method.
Click	here	to	view	code	image

self.scrollDirection	=	UICollectionViewScrollDirectionVertical;

self.itemSize	=	CGSizeMake(60,	60);
self.sectionInset	=	UIEdgeInsetsMake(10,	26,	10,	26);
self.headerReferenceSize	=	CGSizeMake(300,	50);
self.minimumLineSpacing	=	20;
self.minimumInteritemSpacing	=	40;

Finally,	the	collection	view’s	delegate	can	implement	methods	from	the
UICollectionViewDelegateFlowLayout	protocol.	These	methods	can	be	used	to	customize
dimensions	for	individual	cells	based	on	data,	or	individual	section	headers	or	footers	based	on	data.
For	example,	photos	with	a	higher	user	rating	could	be	made	bigger,	or	a	section	header	or	footer
could	be	expanded	as	needed	to	accommodate	an	extra	row	of	text	for	a	long	title.

Note
As	of	iOS	8,	collection	views	using	flow	layout	can	automatically	resize	their	cells	based
on	the	intrinsic	content	size	of	the	UI	elements	in	the	cell.	To	get	this	behavior,	set	up	the
cells	using	Auto	Layout	constraints	that	will	allow	one	or	more	UI	elements	to	expand	in
the	scroll	direction	of	the	layout	(vertical	or	horizontal).	Then,	in	code	set	the	estimated
item	size	on	the	flow	layout	for	the	collection	view.	After	that	is	set,	the	collection	view
will	use	the	estimated	item	size	to	initially	lay	out	the	collection	view,	and	will	then	ask
each	cell	for	an	actual	size	based	on	the	Auto	Layout	constraints	and	content.

Decoration	Views
Decoration	views	can	be	used	to	enhance	the	visual	look	of	the	collection	view,	independently	of	cells
and	section	headers	and	footers.	They	are	intended	to	be	independent	of	collection	view	data,	and	as
such	are	not	handled	by	the	collection	view’s	data	source	or	delegate.	Since	decoration	views	can	be
placed	anywhere	in	a	collection	view,	logic	must	be	provided	to	tell	the	collection	view	where	the
decoration	views	should	go.	This	necessitates	creating	a	subclass	of
UICollectionViewFlowLayout	to	calculate	locations	for	decoration	views	and	to	place	them	in
the	collection	view	when	they	should	be	visible	in	the	currently	displayed	area.
In	the	sample	app,	tap	the	Custom	Flow	Layout	option	from	the	top	menu	to	view	an	example	that	uses
decoration	views.	The	tilted	shelf	with	a	shadow	below	each	row	of	photos	is	a	decoration	view,	as
shown	in	Figure	21.9.

Figure	21.9	Sample	app:	Custom	Flow	Layout	example.

The	first	step	in	using	a	decoration	view	is	to	register	a	class	or	nib	that	can	be	used	for	decoration
view.	In	PHGCCustomFlowLayout,	a	subclass	of	UICollectionReusableView	called
PHGRowDecorationView	is	registered	in	the	init	method.
Click	here	to	view	code	image

[self	registerClass:[PHGRowDecorationView	class]	forDecorationViewOfKind:
[PHGRowDecorationView	kind]];

The	PHGCCustomFlowLayout	class	has	custom	drawing	logic	to	draw	the	shelf	and	shadow.	Note
that	multiple	types	of	decoration	views	can	be	registered	for	a	collection	view	if	desired;	they	can	be
distinguished	using	the	kind	parameter.	After	a	decoration	view	class	or	nib	is	registered,	the	layout
needs	to	calculate	where	the	decoration	views	should	be	placed.	To	do	this,	the	custom	layout
overrides	the	prepareLayout	method,	which	gets	called	every	time	the	layout	needs	to	be	updated.
The	method	will	calculate	frame	rects	for	each	needed	decoration	view	and	store	them	in	a	property
so	that	they	can	be	pulled	as	needed.
In	the	prepareLayout	method,	[super	prepareLayout]	is	called	first	to	get	the	base	layout.
Then	some	calculations	are	performed	to	determine	how	many	cells	can	fit	in	each	row,	presuming
that	they	are	uniform	in	size.
Click	here	to	view	code	image

[super	prepareLayout];

NSInteger	sections	=	[self.collectionView	numberOfSections];

CGFloat	availableWidth	=	self.collectionViewContentSize.width	-	(self.sectionInset.left	+
self.sectionInset.right);

NSInteger	cellsPerRow	=	floorf((availableWidth	+	self.minimumInteritemSpacing)	/
(self.itemSize.width	+	self.minimumInteritemSpacing));

A	mutable	dictionary	to	store	the	calculated	frames	for	each	decoration	is	created,	and	a	float	to	track
the	current	y	position	in	the	layout	while	performing	calculations	is	created.
Click	here	to	view	code	image

NSMutableDictionary	*rowDecorationWork	=	[[NSMutableDictionary	alloc]	init];

CGFloat	yPosition	=	0;

With	that	established,	the	method	will	iterate	over	the	sections	to	find	rows	needing	decoration	views.
Click	here	to	view	code	image

for	(NSInteger	sectionIndex	=	0;	sectionIndex	<	sections;	sectionIndex++)
{
...
}

Within	each	section,	the	method	will	calculate	how	much	space	the	section	header	takes	up,	and	how
much	space	is	needed	between	the	section	and	the	top	of	the	cells	in	the	first	row.	Then	the	method
will	calculate	how	many	rows	there	will	be	in	the	section	based	on	the	number	of	cells.
Click	here	to	view	code	image

yPosition	+=	self.headerReferenceSize.height;
yPosition	+=	self.sectionInset.top;

NSInteger	cellCount	=	[self.collectionView	numberOfItemsInSection:sectionIndex];

NSInteger	rows	=	ceilf(cellCount/(CGFloat)cellsPerRow);

Then	the	method	will	iterate	over	each	row,	calculate	the	frame	for	the	decoration	view	for	that	row,
create	an	index	path	for	the	row	and	section,	store	the	frame	rectangle	in	the	work	dictionary	using
the	index	path	as	the	key,	and	adjust	the	current	y	position	to	account	for	minimum	line	spacing	unless
it	is	the	final	row	of	the	section.
Click	here	to	view	code	image

for	(int	row	=	0;	row	<	rows;	row++)
{
				yPosition	+=	self.itemSize.height;

				CGRect	decorationFrame	=	CGRectMake(0,	yPosition-kDecorationYAdjustment,
self.collectionViewContentSize.width,	kDecorationHeight);

				NSIndexPath	*decIndexPath	=	[NSIndexPath	indexPathForRow:row	inSection:sectionIndex];

				rowDecorationWork[decIndexPath]	=	[NSValue	valueWithCGRect:decorationFrame];

				if	(row	<	rows	-	1)
								yPosition	+=	self.minimumLineSpacing;
}

Note
The	index	path	for	the	decoration	item	does	not	need	to	be	strictly	correct	because	the
layout	uses	it	only	for	a	unique	identifier	for	the	decoration	view.	The	developer	can	use
any	scheme	that	makes	sense	for	the	decoration	view’s	index	path,	and	is	unique	for	the
decoration	views	of	the	same	type	in	the	collection	view.	Non-unique	index	paths	will
generate	an	assertion	failure.

The	method	will	then	adjust	for	any	space	required	at	the	end	of	the	section,	including	the	section
inset	and	footer.
Click	here	to	view	code	image

yPosition	+=	self.sectionInset.bottom;
yPosition	+=	self.footerReferenceSize.height;

After	all	the	sections	have	been	iterated,	the	dictionary	of	decoration	view	frames	will	be	stored	in	the
layout’s	property	for	use	during	layout.
Click	here	to	view	code	image

self.rowDecorationRects	=	[NSDictionary	dictionaryWithDictionary:rowDecorationWork];

Now	that	the	decoration	view	frames	have	been	calculated,	the	layout	can	use	them	when	the
collection	view	asks	for	layout	attributes	for	the	visible	bounds	in	the	overridden	layout-
AttributesForElementsInRect:	method.	First	the	method	gets	the	attributes	for	the	cells	and
section	headers	from	the	superclass,	and	then	it	will	update	those	attributes	to	ensure	that	the	cells	are
presented	in	front	of	the	decoration	views.
Click	here	to	view	code	image

NSArray	*layoutAttributes	=	[super	layoutAttributesForElementsInRect:rect];

for	(UICollectionViewLayoutAttributes	*attributes	in	layoutAttributes)
{
				attributes.zIndex	=	1;
}

The	method	will	set	up	a	mutable	copy	of	the	attributes	so	that	it	can	add	the	attributes	needed	for	the
decoration	views.	It	will	then	iterate	over	the	dictionary	of	the	calculated	decoration	view	frames,	and
check	to	see	which	frames	are	in	the	collection	view’s	visible	bounds.	Layout	attributes	will	be	created
for	those	decoration	views,	and	adjusted	to	ensure	that	they	are	presented	behind	the	cell	views.	The
updated	array	of	attributes	will	be	returned.
Click	here	to	view	code	image

NSMutableArray	*newLayoutAttributes	=	[layoutAttributes	mutableCopy];

[self.rowDecorationRects	enumerateKeysAndObjectsUsingBlock:
	^(NSIndexPath	*indexPath,	NSValue	*rowRectValue,	BOOL	*stop)	{

				if	(CGRectIntersectsRect([rowRectValue	CGRectValue],	rect))
				{
								UICollectionViewLayoutAttributes	*attributes	=	[UICollectionViewLayoutAttributes
layoutAttributesForDecorationViewOfKind:	[PHGRowDecorationView	kind]
withIndexPath:indexPath];

								attributes.frame	=	[rowRectValue	CGRectValue];
								attributes.zIndex	=	0;

								[newLayoutAttributes	addObject:attributes];
				}
}];

layoutAttributes	=	[NSArray	arrayWithArray:newLayoutAttributes];

return	layoutAttributes;

With	the	attributes	for	the	decoration	views	being	included	in	the	whole	set	of	layout	attributes,	the
collection	view	will	display	the	decoration	views,	as	shown	in	Figure	21.9.

Creating	Custom	Layouts
Custom	layouts	can	be	created	for	collection	views	that	do	not	fit	well	into	a	grid	format.	In	the
sample	app	tap	Custom	Layout	from	the	main	menu	to	see	an	example	of	a	layout	that	is	more
complex	than	a	grid	format.	This	layout	presents	images	from	the	photo	library	in	a	continuous	sine
curve,	even	between	section	breaks,	as	shown	in	Figure	21.10.

Figure	21.10	Sample	app:	custom	layout	example	with	sine	curve	layout.

To	create	a	subclass	of	UICollectionViewLayout,	several	methods	need	to	be	implemented:
	The	collectionViewContentSize	method	tells	the	collection	view	how	to	size	the	scroll
view.
	The	layoutAttributesForElementsInRect:	method	tells	the	collection	view	all	the

layout	attributes	necessary	for	cells,	section	headers	and	footers,	and	decoration	views	in	the
rectangle	specified.
	The	layoutAttributesForItemAtIndexPath:	method	returns	the	layout	attributes	for
a	cell	at	an	index	path.
	The	layoutAttributesForSupplementaryViewOfKind:atIndexPath:	method
returns	the	layout	attributes	for	a	section	header	or	footer	at	the	index	path.	Does	not	need	to	be
implemented	if	section	headers	or	footers	are	not	used	in	the	collection	view.
	The	layoutAttributesForDecorationViewOfKind:atIndexPath:	method
returns	the	layout	attributes	for	a	decoration	view	at	the	index	path.	Does	not	need	to	be
implemented	if	decoration	views	are	not	used	in	the	collection	view.
	The	shouldInvalidateLayoutForBoundsChange:	method	is	used	for	animation	of
items	in	the	layout.	If	this	method	returns	yes,	the	collection	view	will	recalculate	all	the	layout
attributes	for	the	visible	bounds.	This	will	allow	layout	attributes	to	change	based	on	their
position	on	the	screen.
	The	prepareLayout	method,	though	optional,	is	a	good	place	to	calculate	the	layout	since	it
gets	called	every	time	the	layout	needs	to	be	updated.

In	PHGCustomLayout,	the	prepareLayout	method	begins	by	determining	the	number	of
sections	to	be	displayed,	creates	a	float	variable	to	track	the	current	y	position	during	the	calculations,
creates	a	dictionary	to	store	the	center	points	of	the	cells,	and	creates	an	array	to	store	the	frames	of
the	section	headers.
Click	here	to	view	code	image

NSInteger	numSections	=	[self.collectionView	numberOfSections];

CGFloat	currentYPosition	=	0.0;
self.centerPointsForCells	=	[[NSMutableDictionary	alloc]	init];
self.rectsForSectionHeaders	=	[[NSMutableArray	alloc]	init];

The	method	then	iterates	over	the	sections.	For	each	section	it	will	calculate	and	store	the	frame	for
the	section	header,	and	then	update	the	current	y	position	from	the	top	of	the	calculated	section	header
to	the	vertical	center	of	the	first	cell	to	be	displayed.	It	will	then	determine	the	number	of	cells	to	be
presented	for	the	section.
Click	here	to	view	code	image

for	(NSInteger	sectionIndex	=	0;	sectionIndex	<	numSections;
					sectionIndex++)
{
				CGRect	rectForNextSection	=	CGRectMake(0,	currentYPosition,
self.collectionView.bounds.size.width,	kSectionHeight);

				self.rectsForSectionHeaders[sectionIndex]	=	[NSValue
valueWithCGRect:rectForNextSection];

				currentYPosition	+=	kSectionHeight	+	kVerticalSpace	+	kCellSize	/	2;

				NSInteger	numCellsForSection	=	[self.collectionView
numberOfItemsInSection:sectionIndex];
				...
}

Next	the	method	will	iterate	over	the	cells.	It	will	calculate	the	horizontal	center	of	the	cell	using	the
sine	function,	and	store	the	center	point	in	the	dictionary	with	the	index	path	for	the	cell	as	the	key.

The	method	will	update	the	current	vertical	position	and	continue.
Click	here	to	view	code	image

for	(NSInteger	cellIndex	=	0;	cellIndex	<	numCellsForSection;
					cellIndex++)
{
				CGFloat	xPosition	=	[self	calculateSineXPositionForY:currentYPosition];

				CGPoint	cellCenterPoint	=	CGPointMake(xPosition,	currentYPosition);

				NSIndexPath	*cellIndexPath	=	[NSIndexPath	indexPathForItem:cellIndex
inSection:sectionIndex];

				self.centerPointsForCells[cellIndexPath]	=	[NSValue
valueWithCGPoint:cellCenterPoint];

				currentYPosition	+=	kCellSize	+	kVerticalSpace;
}

After	all	the	section	header	frames	and	cell	center	points	have	been	calculated	and	stored,	the	method
will	calculate	and	store	the	content	size	of	the	collection	view	in	a	property	so	that	it	can	be	returned
from	the	collectionViewContentSize	method.
Click	here	to	view	code	image

self.contentSize	=	CGSizeMake(self.collectionView.bounds.size.width,	currentYPosition	+
kVerticalSpace);

When	the	collection	view	is	displayed,	the	layoutAttributesForElementsInRect:	method
will	be	called	for	the	visible	bounds	of	the	collection	view.	That	method	will	create	a	mutable	array	to
store	the	attributes	to	be	returned,	and	will	iterate	over	the	section	frame	array	to	determine	which
section	headers	should	be	displayed.	It	will	call	the	layoutAttributesFor-
SupplementaryViewOfKind:atIndexPath:	method	for	each	section	header	to	be	displayed
to	get	the	attributes	for	the	section	headers,	and	store	the	attributes	in	the	work	array.
Click	here	to	view	code	image

NSMutableArray	*attributes	=	[NSMutableArray	array];
for	(NSValue	*sectionRect	in	self.rectsForSectionHeaders)
{
				if	(CGRectIntersectsRect(rect,	sectionRect.CGRectValue))
				{
								NSInteger	sectionIndex	=	[self.rectsForSectionHeaders	indexOfObject:sectionRect];

								NSIndexPath	*secIndexPath	=	[NSIndexPath	indexPathForItem:0
inSection:sectionIndex];

								[attributes	addObject:	[self	layoutAttributesForSupplementaryViewOfKind:
UICollectionElementKindSectionHeader	atIndexPath:secIndexPath]];
				}
}

The	method	will	then	iterate	over	the	dictionary	containing	index	paths	and	cell	center	points	to
determine	which	cells	should	be	displayed,	will	fetch	the	necessary	cell	attributes	from	the
layoutAttributesForItemAtIndexPath:	method,	and	will	store	the	attributes	in	the	work
array.
Click	here	to	view	code	image

[self.centerPointsForCells	enumerateKeysAndObjectsUsingBlock:	^(NSIndexPath	*indexPath,
NSValue	*centerPoint,	BOOL	*stop)	{

				CGPoint	center	=	[centerPoint	CGPointValue];

				CGRect	cellRect	=	CGRectMake(center.x	-	kCellSize/2,	center.y	-	kCellSize/2,
kCellSize,	kCellSize);

				if	(CGRectIntersectsRect(rect,	cellRect))	{
								[attributes	addObject:	[self	layoutAttributesForItemAtIndexPath:indexPath]];
				}
}];

To	determine	the	layout	attributes	for	each	section	header,	the	layoutAttributesFor-
SupplementaryViewOfKind:atIndexPath:	method	will	begin	by	getting	a	default	set	of
attributes	for	the	section	header	by	calling	the	UICollectionViewLayoutAttributes	class
method	layoutAttributesForSupplementaryViewOfKind:withIndexPath:.	Then	the
method	will	update	the	size	and	center	point	of	the	section	header	using	the	frame	calculated	in	the
prepareLayout	method	earlier,	and	return	the	attributes.
Click	here	to	view	code	image

UICollectionViewLayoutAttributes	*attributes	=	[UICollectionViewLayoutAttributes
layoutAttributesForSupplementaryViewOfKind:	UICollectionElementKindSectionHeader
withIndexPath:indexPath];

CGRect	sectionRect	=	[self.rectsForSectionHeaders[indexPath.section]	CGRectValue];

attributes.size	=	CGSizeMake(sectionRect.size.width,	sectionRect.size.height);

attributes.center	=	CGPointMake(CGRectGetMidX(sectionRect),	CGRectGetMidY(sectionRect));

return	attributes;

To	determine	the	layout	attributes	for	each	cell,	the
layoutAttributesForItemWithIndexPath:	method	will	get	a	default	set	of	attributes	for
the	cell	by	calling	the	UICollectionViewLayoutAttributes	class	method
layoutAttributesForCellWithIndexPath:.	Then	the	method	will	update	the	size	and
center	point	of	the	cell	using	the	point	calculated	in	the	prepareLayout	method	earlier,	and	return
the	attributes.
Click	here	to	view	code	image

UICollectionViewLayoutAttributes	*attributes	=	[UICollectionViewLayoutAttributes
layoutAttributesForCellWithIndexPath:path];

attributes.size	=	CGSizeMake(kCellSize,	kCellSize);

NSValue	*centerPointValue	=	self.centerPointsForCells[path];

attributes.center	=	[centerPointValue	CGPointValue];
return	attributes;

With	all	those	methods	implemented,	the	collection	view	is	able	to	calculate	the	positions	for	all	the
items	in	the	view,	and	properly	retrieve	the	positioning	information	as	needed	to	display	the	custom
layout	shown	in	Figure	21.10.

Collection	View	Animations
Collection	views	have	extensive	built-in	support	for	animations.	A	collection	view	can	change
layouts,	and	animate	all	the	cells	from	the	positions	in	the	first	layout	to	the	positions	in	the	new
layout.	Within	a	layout,	collection	views	can	animate	each	cell	individually	by	adjusting	the	layout
attributes	as	scrolling	occurs.	Changes	to	the	cells	in	the	layout,	including	insertions	and	deletions,
can	all	be	animated.

Collection	View	Layout	Changes
In	the	sample	app,	tap	the	Custom	Flow	item	in	the	menu.	Perform	a	pinch-out	gesture	on	any	image
in	the	view,	and	observe	the	layout	changing	to	a	new	layout	with	animations.	The	cells	will	all	move
from	their	original	positions	to	the	new	positions,	and	the	collection	view	will	be	scrolled	to	display
the	pinched	cell	in	the	center	of	the	view.	The	logic	to	do	this	is	set	up	in	the
PHGCustomLayoutViewController.	When	the	view	controller	is	loaded,	two	pinch	gesture
recognizers	are	created	and	stored	in	properties.	The	gesture	recognizer	for	a	pinch	out	is	added	to
the	collection	view.	For	more	information	on	gesture	recognizers,	see	Chapter	23,	“Gesture
Recognizers.”
Click	here	to	view	code	image

self.pinchIn	=	[[UIPinchGestureRecognizer	alloc]
																initWithTarget:self
																action:@selector(pinchInReceived:)];

self.pinchOut	=	[[UIPinchGestureRecognizer	alloc]
																	initWithTarget:self
																	action:@selector(pinchOutReceived:)];

[self.collectionView	addGestureRecognizer:self.pinchOut];

When	a	pinch	out	is	received,	the	pinchOutReceived:	method	is	called.	That	method	will	check
the	state	of	the	gesture	to	determine	the	correct	course	of	action.	If	the	state	is
UIGestureRecognizerStateBegan,	the	method	will	determine	which	cell	the	user	has	pinched
over	and	will	store	that	in	order	to	navigate	to	it	after	the	transition	has	occurred.
Click	here	to	view	code	image

if	(pinchRecognizer.state	==	UIGestureRecognizerStateBegan)
{
				CGPoint	pinchPoint	=	[pinchRecognizer	locationInView:self.collectionView];

				self.pinchedIndexPath	=	[self.collectionView	indexPathForItemAtPoint:pinchPoint];
}

When	the	pinch	gesture	is	completed,	the	method	will	be	called	again,	and	the	method	will	check
whether	the	state	is	ended.	If	so,	the	method	will	remove	the	pinch	recognizer	from	the	view	to
prevent	any	additional	pinches	from	accidentally	occurring	during	the	transition,	and	will	then	create
the	new	layout	and	initiate	the	animated	transition.	The	method	defines	a	completion	block	to	execute
when	the	transition	to	the	new	layout	is	complete.	This	completion	block	will	add	the	pinch-in	gesture
recognizer	so	that	the	user	can	pinch	and	return	to	the	previous	view,	and	will	perform	the	animated
navigation	to	the	cell	that	the	user	pinched	over.
Click	here	to	view	code	image

[self.collectionView	removeGestureRecognizer:self.pinchOut];

UICollectionViewFlowLayout	*individualLayout	=	[[PHGAnimatingFlowLayout	alloc]	init];

__weak	UICollectionView	*weakCollectionView	=	self.collectionView;
__weak	UIPinchGestureRecognizer	*weakPinchIn	=	self.pinchIn;
__weak	NSIndexPath	*weakPinchedIndexPath	=	self.pinchedIndexPath;
void	(^finishedBlock)(BOOL)	=	^(BOOL	finished)	{

				[weakCollectionView	scrollToItemAtIndexPath:weakPinchedIndexPath
atScrollPosition:UICollectionViewScrollPositionCenteredVertically	animated:YES];

				[weakCollectionView	addGestureRecognizer:weakPinchIn];
};
[self.collectionView	setCollectionViewLayout:individualLayout
																																				animated:YES
																																		completion:finishedBlock];

Note
All	the	animations	are	handled	by	the	collection	view.	No	custom	logic	was	required	to
perform	any	calculations	for	the	animations.

Collection	View	Layout	Animations
After	a	pinch	out	has	occurred	on	the	custom	layout,	the	newly	presented	layout	has	a	unique	feature.
The	cells	in	each	row	are	larger	the	closer	they	are	to	the	center	of	the	view	along	the	y	axis,	as
shown	in	Figure	21.11.

Figure	21.11	Sample	app:	custom	layout	example	with	animations.

As	the	user	scrolls,	the	size	of	the	cells	will	change	dynamically	depending	on	their	proximity	to	the
center	of	the	view.	To	achieve	this	effect,	some	custom	logic	is	implemented	in	the

PHGAnimatingFlowLayout	class.	The	first	piece	is	required	to	tell	the	layout	that	it	should
recalculate	the	layout	attributes	of	each	cell	when	scrolling	occurs.	This	is	done	by	returning	YES
from	the	shouldInvalidateLayoutForBoundsChange:	method.
Click	here	to	view	code	image

-	(BOOL)shouldInvalidateLayoutForBoundsChange:(CGRect)oldBounds
{
				return	YES;
}

When	the	flow	layout	has	invalidated	the	layout	during	a	scroll,	it	will	call	the	layout-
AttributesForElementsInRect:	method	to	get	new	layout	attributes	for	each	visible	cell.
This	method	will	determine	which	layout	attributes	are	for	cells	in	the	visible	rect	so	that	they	can
be	modified.
Click	here	to	view	code	image

NSArray	*layoutAttributes	=	[super	layoutAttributesForElementsInRect:rect];

CGRect	visibleRect;
visibleRect.origin	=	self.collectionView.contentOffset;
visibleRect.size	=	self.collectionView.bounds.size;

for	(UICollectionViewLayoutAttributes	*attributes	in	layoutAttributes)
{
				if	(attributes.representedElementCategory	==	UICollectionElementCategoryCell	&&
CGRectIntersectsRect(attributes.frame,	rect))
				{
								...
				}
}

For	each	cell,	the	method	will	calculate	how	far	away	from	the	center	of	the	view	the	cell	is	along	the
y	axis.	The	method	will	then	calculate	how	much	to	scale	up	the	cell	based	on	how	far	away	from	the
center	it	is.	The	layout	attributes	are	updated	with	the	3D	transform	and	returned.
Click	here	to	view	code	image

CGFloat	distanceFromCenter	=	CGRectGetMidY(visibleRect)	-	attributes.center.y;

CGFloat	distancePercentFromCenter	=	distanceFromCenter	/	kZoomDistance;

if	(ABS(distanceFromCenter)	<	kZoomDistance)	{
				CGFloat	zoom	=	1	+	kZoomAmount	*	(1	-	ABS(distancePercentFromCenter));

				attributes.transform3D	=	CATransform3DMakeScale(zoom,	zoom,	1.0);
}
else
{
				attributes.transform3D	=	CATransform3DIdentity;
}

Collection	View	Change	Animations
Collection	views	offer	support	for	animations	when	items	are	being	inserted	or	deleted.	This
animation	is	not	demonstrated	in	the	sample	app,	but	can	be	covered	with	some	discussion.	To	build
support	for	animating	insertions	and	deletions,	there	are	a	few	methods	in	the	collection	view	layout
subclass	to	implement.	First	is	the	prepareForCollectionViewUpdates:	method,	which	can
be	used	for	any	preparation	needed	before	animations	occur.	That	method	receives	an	array	of
updates	that	can	be	inspected	so	that	the	method	can	be	customized	to	perform	preparations	by
individual	items	and	by	type	of	update.
For	insertions,	the	initialLayoutAttributesForAppearingItemAtIndexPath:	method
can	be	implemented.	This	method	can	be	used	to	tell	the	layout	where	to	display	the	item	before
putting	it	in	the	calculated	position	in	the	layout	with	animation.	In	addition,	any	other	initial	attributes
assigned	to	the	item	will	animate	to	the	final	layout	attributes,	meaning	that	an	item	can	be	scaled,	can
be	rotated,	or	can	make	any	other	change	as	it	flies	in.
For	deletions,	the	finalLayoutAttributesForDisappearingItemAtIndexPath:
method	can	be	implemented.	This	method	can	be	used	to	tell	the	layout	where	the	final	position	for	an
item	should	be	as	it	is	pulled	out	of	the	layout	with	animation.	Again,	any	other	final	attributes	can	be
assigned	to	the	item	for	additional	animation.
Finally,	the	finalizeCollectionViewUpdates	method	can	be	implemented.	This	method	will
be	executed	when	all	the	inserts	and	deletes	have	completed,	so	it	can	be	used	to	clean	up	any	state
saved	during	the	preparations.

Summary
This	chapter	covered	collection	views.	It	described	how	to	implement	a	basic	collection	view	with
minimal	custom	code,	and	then	explored	some	more	advanced	customizations	to	collection	views,
including	customizations	to	the	flow	layout,	decoration	views,	and	completely	custom	layouts.	This
chapter	discussed	what	animation	options	are	supported	by	collection	views,	and	how	to	implement
animations	while	changing	layouts,	while	scrolling	through	a	collection	view,	and	while	inserting	or
deleting	items.

22.	Introduction	to	TextKit

Both	the	iPhone	and,	later,	the	iPad	have	supported	numerous	text	presentation	elements	from	their
inception.	Text	fields,	labels,	text	views,	and	Web	views	have	been	with	the	OS	since	its	release.	Over
time	these	classes	have	been	expanded	and	improved	with	the	goal	of	giving	developers	more
flexibility	and	power	with	regard	to	text	rendering.
In	the	early	days	of	iOS	(then	called	iPhone	OS),	the	only	practical	way	to	display	attributed	text	was
to	use	a	UIWebView	and	use	HTML	to	render	custom	attributes;	however,	this	was	difficult	to
implement	and	carried	with	it	terrible	performance.	iOS	3.2	introduced	Core	Text,	which	brought	the
full	power	of	NSAttributedString	to	the	mobile	platform	from	the	Mac.	Core	Text,	however,
was	complex	and	unwieldy	and	was	largely	shunned	by	developers	who	were	not	coming	from	the
Mac	or	did	not	have	an	abundance	of	time	to	invest	in	text	rendering	for	their	apps.
Enter	TextKit.	First	announced	as	part	of	iOS	7,	TextKit	is	not	a	framework	in	the	traditional	sense.
Instead,	TextKit	is	the	nomenclature	for	a	set	of	enhancements	to	existing	text-displaying	objects	to
easily	render	and	work	with	attributed	strings.	Although	TextKit	adds	several	new	features	and
functionalities	beyond	what	Core	Text	offered,	a	lot	of	that	functionality	is	re-created	in	TextKit,
albeit	in	a	much	simpler-to-work-with	fashion.	Existing	Core	Text	code	likewise	is	easily	portable	to
TextKit,	often	needing	no	changes	or	only	very	minor	changes	through	the	use	of	toll-free	bridges.
An	introduction	to	TextKit	is	laid	out	over	the	following	pages.	It	will	demonstrate	some	of	the	basic
principles	of	text	handling	on	iOS	7;	however,	working	with	text	on	modern	devices	is	a	vast	topic,
worthy	of	its	own	publication.	Apple	has	put	considerable	time	and	effort	into	making	advanced	text
layout	and	rendering	easier	than	it	has	ever	been	in	the	past.	The	techniques	and	tools	described	will
provide	a	stepping-stone	into	a	world	of	virtually	limitless	text	presentation.

The	Sample	App
The	sample	app	(shown	in	Figure	22.1)	is	a	simple	table	view–based	app	that	will	enable	the	user	to
explore	four	popular	features	of	TextKit.	There	is	little	overhead	for	the	sample	app	not	directly
related	to	working	with	the	new	TextKit	functionality.	It	consists	of	a	main	view	built	on	a
UINavigationController	and	a	table	view	that	offers	the	selection	of	one	of	four	items.	The
sample	app	provides	demos	for	Dynamic	Link	Detection,	which	will	automatically	detect	and
highlight	various	data	types;	Hit	Detection,	which	enables	the	user	to	select	a	word	from	a
UITextView;	and	Content	Specific	Highlighting,	which	demos	TextKit’s	capability	to	work	with
attributed	strings.	Lastly,	the	sample	app	exhibits	Exclusion	Paths,	which	offers	the	capability	to	wrap
text	around	objects	or	Bézier	paths.

Figure	22.1	A	look	at	the	sample	app	showing	a	table	view	with	options	for	different	TextKit
functionalities.

Introducing	NSLayoutManager
NSLayoutManager	was	first	introduced	as	part	of	the	TextKit	additions	in	iOS	7.	It	can	be	used	to
coordinate	the	layout	and	display	of	characters	held	in	an	NSTextStore,	which	is	covered	in	the
following	section.	NSLayoutManager	can	be	used	to	render	multiple	NSTextViews	together	to
create	a	complex	text	layout.	NSLayoutManager	contains	numerous	classes	for	adding,	removing,
aligning,	and	otherwise	working	with	NSTextContainer,	which	are	covered	more	in	depth	in	a
later	section.

NSTextStore

Each	NSLayoutManager	has	an	associated	NSTextStorage	that	acts	as	a	subclass	of
NSMutableAttributedString.	Readers	familiar	with	Core	Text	or	Mac	OS	X	text	rendering
might	be	familiar	with	an	attributed	string,	which	is	used	for	storage	of	stylized	text.	An
NSTextStorage	provides	an	easy-to-interact-with	wrapper	for	easily	adding	and	removing
attributes	from	text.
NSTextStorage	can	be	used	with	setAttributes:range:	to	add	new	attributes	to	a	string;
for	a	list	of	attributes	see	Table	22.1.	Polling	the	text	for	currently	enabled	attributes	can	be	done
using	attributesAtIndex:effectiveRange:.

Table	22.1	Available	Text	Attributes

NSLayoutManagerDelegate

NSLayoutManager	also	has	an	associated	delegate	that	can	be	used	to	handle	how	the	text	is
rendered.	One	of	the	most	useful	sets	of	methods	deals	with	the	handling	of	line	fragments	that	can	be
used	to	specify	exactly	how	the	line	and	paragraphs	break.	Additionally,	methods	are	available	when
the	text	has	finished	rendering.

NSTextContainer

The	NSTextContainer	is	another	important	new	addition	to	iOS	7’s	TextKit.	An
NSTextContainer	defines	a	region	in	which	text	is	laid	out;	NSLayoutManagers	discussed	in
the	preceding	section	can	control	multiple	NSTextContainers.	NSTextContainers	have
support	for	number	of	lines,	text	wrapping,	and	resizing	in	a	text	view.	Additional	support	for
exclusion	paths	is	discussed	later	in	the	section	“Exclusion	Paths.”

Detecting	Links	Dynamically
Dynamic	Link	Detection	is	extremely	easy	to	implement	and	provides	a	great	user	experience	if	the
user	is	working	with	addresses,	URLs,	phone	numbers,	or	dates	in	a	text	view.	The	easiest	way	to	turn
on	these	properties	is	through	Interface	Builder	(shown	in	Figure	22.2).

Figure	22.2	Dynamic	Link	Detection	controls	in	Xcode	6.

These	properties	can	also	be	toggled	on	and	off	using	code.
Click	here	to	view	code	image

[textView	setDataDetectorTypes:	UIDataDetectorTypePhoneNumber	|	UIDataDetectorTypeLink	|
UIDataDetectorTypeAddress	|	UIDataDetectorTypeCalendarEvent];

TexKit	added	a	new	delegate	method	as	part	of	UITextViewDelegate	to	intercept	the	launching
of	events.	The	following	example	detects	the	launch	URL	event	on	a	URL	and	provides	an	alert	to	the
user:
Click	here	to	view	code	image

-	(BOOL)textView:(UITextView	*)textView	shouldInteractWithURL:(NSURL	*)URL	inRange:
(NSRange)characterRange
{
				toBeLaunchedURL	=	URL;

				if([[URL	absoluteString]	hasPrefix:@"http://"])
				{
								UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"URL	Launching"	message:
[NSString	stringWithFormat:@"About	to	launch	%@",	[URL	absoluteString]]	delegate:self
cancelButtonTitle:@"Cancel"	otherButtonTitles:@"Launch",	nil];

								[alert	show];
								return	NO;
				}

				return	YES;
}

Detecting	Hits
Hit	detection	has	traditionally	been	complex	to	implement	and	often	required	for	elaborate	text-driven
apps.	TextKit	added	support	for	per-character	hit	detection.	To	support	this	functionality,	a	subclassed
UITextView	is	created,	called	ICFCustomTextView	in	the	sample	project.	The	UITextView
implements	a	touchesBegan:	event	method.
When	a	touch	begins,	the	location	in	the	view	is	captured	and	it	is	adjusted	down	the	y	axis	by	ten	to
line	up	with	the	text	elements.	A	method	is	invoked	on	the	layoutManager	that	is	a	property	of	the
text	view,	characterIndexForPoint:	inTextContainer:
fractionOfDistanceBetweenInsertionPoints:.	This	returns	the	index	of	the	character
that	was	selected.
After	the	character	index	has	been	determined,	the	beginning	and	end	of	the	word	that	it	is	contained
within	are	calculated	by	searching	forward	and	backward	for	the	next	whitespace	character.	The	full
word	is	then	displayed	in	a	UIAlertView	to	the	user.
Click	here	to	view	code	image

-	(void)touchesBegan:(NSSet	*)touches	withEvent:(UIEvent	*)event
{
				UITouch	*touch	=	[touches	anyObject];
				CGPoint	touchPoint	=	[touch	locationInView:self];

				touchPoint.y	-=	10;

				NSInteger	characterIndex	=	[self.layoutManager	characterIndexForPoint:touchPoint
inTextContainer:self.textContainer	fractionOfDistanceBetweenInsertionPoints:0];

				if(characterIndex	!=	0)
				{
								NSRange	start	=	[self.text	rangeOfCharacterFromSet:[NSCharacterSet
whitespaceAndNewlineCharacterSet]	options:NSBackwardsSearch
range:NSMakeRange(0,characterIndex)];

								NSRange	stop	=	[self.text	rangeOfCharacterFromSet:	[NSCharacterSet
whitespaceAndNewlineCharacterSet]	options:NSCaseInsensitiveSearch
range:NSMakeRange(characterIndex,self.text.length-	characterIndex)];

								int	length	=		stop.location	-	start.location;

								NSString	*fullWord	=	[self.text	substringWithRange:NSMakeRange	(start.location,
length)];

								UIAlertView	*alert	=	[[UIAlertView	alloc]	initWithTitle:@"Selected	Word"
message:fullWord	delegate:nil	cancelButtonTitle:@"Dismiss"	otherButtonTitles:	nil];

								[alert	show];
				}

				[super	touchesBegan:	touches	withEvent:	event];
}

Exclusion	Paths
Exclusion	Paths	(shown	in	Figure	22.3)	enable	text	to	wrap	around	images	or	other	objects	that
appear	inline.	TextKit	added	a	simple	property	in	order	to	add	an	exclusion	path	to	any	text	container.

Figure	22.3	Text	wrapping	around	a	UIImage	using	iOS	7’s	exclusion	paths.

To	specify	an	exclusion	path,	a	UIBezierPath	representing	the	area	to	be	excluded	is	first	created.
To	set	an	exclusion	path,	an	array	of	the	avoided	areas	is	passed	to	the	exclusionPaths	property
of	a	textContainer.	The	text	container	can	be	found	as	a	property	of	the	UITextView.
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[super	viewDidLoad];

				UIBezierPath	*circle	=	[UIBezierPath	bezierPathWithOvalInRect:CGRectMake(110,	100,
100,	102)];

				UIImageView	*imageView	=	[[UIImageView	alloc]	initWithFrame:CGRectMake(110,	110,	100,

102)];

				[imageView	setImage:	[UIImage	imageNamed:	@"DF.png"]];
				[imageView	setContentMode:UIViewContentModeScaleToFill];
				[self.myTextView	addSubview:	imageView];

				self.myTextView.textContainer.exclusionPaths	=	@[circle];
}

Content	Specific	Highlighting
One	of	the	most	interesting	features	of	TextKit	is	Content	Specific	Highlighting.	Before	iOS	7,	using
CoreText	to	modify	the	appearance	of	specific	strings	inside	of	a	text	view	was	elaborate	and
cumbersome.	TextKit	brings	many	improvements	to	rich	text	rendering	and	definition.
To	work	with	custom	attributed	text,	a	subclass	of	an	NSTextStorage	is	created,	called
ICFDynamicTextStorage	in	the	sample	project.	This	approach	will	enable	the	developer	to	set
tokens	for	different	attributed	strings	to	be	rendered	per	string	encountered.	A	classwide
NSMutableAttributedString	is	created,	which	will	hold	on	to	all	the	associated	attributes	for
the	displayed	text.
Click	here	to	view	code	image

-	(id)init
{
				self	=	[super	init];

				if	(self)
				{
								backingStore	=	[[NSMutableAttributedString	alloc]	init];
				}

				return	self;
}

A	convenience	method	for	returning	the	string	is	also	created,	as	well	as	one	for	returning	the
attributes	at	an	index.
Click	here	to	view	code	image

-	(NSString	*)string
{
				return	[backingStore	string];
}

-	(NSDictionary	*)attributesAtIndex:(NSUInteger)location	effectiveRange:
(NSRangePointer)range
{
				return	[backingStore	attributesAtIndex:location	effectiveRange:range];
}

The	next	four	methods	deal	with	the	actual	inputting	and	setting	of	attributes,	from	replacing	the
characters	to	making	sure	that	text	is	being	properly	updated.
Click	here	to	view	code	image

-	(void)replaceCharactersInRange:(NSRange)range	withString:(NSString	*)str
{
				[self	beginEditing];
				[backingStore	replaceCharactersInRange:range	withString:str];

				[self	edited:NSTextStorageEditedCharacters|	NSTextStorageEditedAttributes	range:range

changeInLength:str.length	-	range.length];

				textNeedsUpdate	=	YES;
				[self	endEditing];
}

-	(void)setAttributes:(NSDictionary	*)attrs	range:(NSRange)range
{
				[self	beginEditing];
				[backingStore	setAttributes:attrs	range:range];

				[self	edited:NSTextStorageEditedAttributes	range:range	changeInLength:0];

				[self	endEditing];
}

-	(void)performReplacementsForCharacterChangeInRange:	(NSRange)changedRange
{
				NSRange	extendedRange	=	NSUnionRange(changedRange,	[[self	string]
lineRangeForRange:NSMakeRange(changedRange.location,	0)]);

				extendedRange	=	NSUnionRange(changedRange,	[[self	string]
lineRangeForRange:NSMakeRange(NSMaxRange(changedRange),	0)]);

				[self	applyTokenAttributesToRange:extendedRange];
}

-(void)processEditing
{
				if(textNeedsUpdate)
				{
								textNeedsUpdate	=	NO;
								[self	performReplacementsForCharacterChangeInRange:[self	editedRange]];
				}

				[super	processEditing];
}

The	last	method	in	the	subclassed	NSTextStore	applies	the	actual	tokens	that	will	be	set	using	a
property	on	the	NSTextStore	to	the	string.	The	tokens	are	passed	as	an	NSDictionary,	which
defines	the	substring	they	should	be	applied	for.	When	the	substring	is	detected	using	the
enumerateSubstringsInRange:	method,	the	attribute	is	applied	using	the	previous
addAttribute:range:	method.	This	system	also	allows	for	default	tokens	to	be	set	when	a
specific	attribute	has	not	been	set.
Click	here	to	view	code	image

-	(void)applyTokenAttributesToRange:(NSRange)searchRange
{
				NSDictionary	*defaultAttributes	=	[self.tokens	objectForKey:defaultTokenName];

				[[self	string]	enumerateSubstringsInRange:searchRange
options:NSStringEnumerationByWords	usingBlock:^(NSString	*substring,	NSRange
substringRange,	NSRange	enclosingRange,	BOOL	*stop)
				{
								NSDictionary	*attributesForToken	=	[self.tokens	objectForKey:substring];

								if(!attributesForToken)
								{
												attributesForToken	=	defaultAttributes;
								}

								[self	addAttributes:attributesForToken	range:substringRange];

				}];
}

After	the	subclass	of	NSTextStore	is	created,	modifying	text	itself	becomes	fairly	trivial,	the
results	of	which	are	shown	in	Figure	22.4.	A	new	instance	of	the	customized	text	store	is	allocated	and
initialized,	followed	by	a	new	instance	of	NSLayoutManager,	and	lastly	an	NSTextContainer
is	created.	The	text	container	is	set	to	share	its	frame	and	bounds	with	the	text	view,	and	is	then	added
to	the	layoutManager.	The	text	store	then	adds	the	layout	manager.

Figure	22.4	Content	Specific	Highlighting	showing	updated	attributes	for	several	keywords.

A	new	NSTextView	is	created	and	set	to	the	frame	of	the	view,	and	its	text	container	is	set	to	the
previously	created	one.	Next,	the	auto-resizing	mask	for	the	text	view	is	configured	to	be	scalable	for
screen	sizes	and	other	adjustments.	Finally,	scrolling	and	keyboard	behavior	for	the	text	view	are
configured,	and	the	text	view	is	added	as	a	subview	of	the	main	view.
The	tokens	property	of	the	customized	text	field	is	used	to	set	a	dictionary	of	dictionaries	for	the

attributes	to	be	assigned	to	each	substring	encountered.	The	first	example,	Mary,	will	set	the
NSForegroundColorAttributeName	attribute	to	red.	A	complete	list	of	attributes	was	given
earlier,	in	Table	22.1.	The	sample	demonstrates	multiple	types	of	attributes	on	various	keywords.	The
example	for	was	shows	how	to	add	multiple	attributes	together	using	a	custom	font,	color,	and
underlining	the	text.	A	default	token	is	also	set	that	specifies	how	text	not	specifically	assigned	will	be
displayed.
After	the	attributes	have	been	set,	some	static	text	is	added	to	the	text	view	in	the	form	of	the	poem
“Mary	Had	a	Little	Lamb”;	the	resulting	attributed	text	appears	in	Figure	22.4.	Typing	into	the	text
view	will	update	the	attributes	in	real	time	and	can	be	seen	by	typing	out	any	of	the	substrings	in
which	special	attributes	were	configured.
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[super	viewDidLoad];

				ICFDynamicTextStorage	*textStorage	=	[[ICFDynamicTextStorage	alloc]	init];

				NSLayoutManager	*layoutManager	=	[[NSLayoutManager	alloc]	init];

				NSTextContainer	*container	=	[[NSTextContainer	alloc]
initWithSize:CGSizeMake(myTextView.frame.size.width,	CGFLOAT_MAX)];

				container.widthTracksTextView	=	YES;
				[layoutManager	addTextContainer:container];
				[textStorage	addLayoutManager:layoutManager];

				myTextView	=	[[UITextView	alloc]	initWithFrame:self.view.frame
textContainer:container];

				myTextView.autoresizingMask	=	UIViewAutoresizingFlexibleHeight	|
UIViewAutoresizingFlexibleWidth;

				myTextView.scrollEnabled	=	YES;

				myTextView.keyboardDismissMode	=
				UIScrollViewKeyboardDismissModeOnDrag;

				[self.view	addSubview:myTextView];

				textStorage.tokens	=	@{	@"Mary":@{	NSForegroundColorAttributeName:	[UIColor
redColor]},	@"lamb":@{	NSForegroundColorAttributeName:[UIColor	blueColor]},
@"everywhere":@{	NSUnderlineStyleAttributeName:@1},
@"that":@{NSBackgroundColorAttributeName	:	[UIColor	yellowColor]},
@"fleece":@{NSFontAttributeName:[UIFont	fontWithName:@"Chalkduster"	size:14.0f]},
@"school":@{NSStrikethroughStyleAttributeName:@1},
@"white":@{NSStrokeWidthAttributeName:@5},	@"was":@{NSFontAttributeName:[UIFont
fontWithName:@"Palatino-Bold"	size:10.0f],	NSForegroundColorAttributeName:[UIColor
purpleColor],	NSUnderlineStyleAttributeName:@1},	defaultTokenName:@{
NSForegroundColorAttributeName	:	[UIColor	blackColor],	NSFontAttributeName:	[UIFont
systemFontOfSize:14.0f],	NSUnderlineStyleAttributeName	:	@0,
NSBackgroundColorAttributeName	:	[UIColor	whiteColor],	NSStrikethroughStyleAttributeName
:	@0,	NSStrokeWidthAttributeName	:	@0}};

				NSString	*maryText	=	@"Mary	had	a	little	lamb\nwhose	fleece	was	white	as	snow.\nAnd
everywhere	that	Mary	went,\nthe	lamb	was	sure	to	go.\nIt	followed	her	to	school	one
day\nwhich	was	against	the	rule.\nIt	made	the	children	laugh	and	play,\nto	see	a	lamb	at
school.";

				[myTextView	setText:[NSString	stringWithFormat:@"%@\n\n%@\n\n%@",	maryText,	maryText,
maryText]];
}

Changing	Font	Settings	with	Dynamic	Type
TextKit	brings	support	for	Dynamic	Type,	which	enables	the	user	to	specify	a	font	size	at	an	OS	level.
Users	can	access	the	Dynamic	Type	controls	under	the	General	section	of	iOS	8’s	Settings.app	(shown
in	Figure	22.5).	When	the	user	changes	the	preferred	font	size,	the	app	will	receive	a	notification
named	UIContentSizeCategoryDidChangeNotification.	This	notification	should	be
monitored	to	handle	updating	the	font	size.

Figure	22.5	Changing	the	systemwide	font	size	using	Dynamic	Type	settings	in	iOS	7’s	Settings
app.

Click	here	to	view	code	image

[[NSNotificationCenter	defaultCenter]	addObserver:self
selector:@selector(preferredSizeDidChange:)
name:UIContentSizeCategoryDidChangeNotification	object:nil];

To	display	text	at	the	user ’s	preferred	font	settings,	the	font	should	be	set	using	one	of	the	attributes
from	Font	Text	Styles,	which	are	described	in	Table	22.2.
Click	here	to	view	code	image

self.textLabel.font	=	[UIFont	preferredFontForTextStyle:UIFontTextStyleBody];

Table	22.2	Font	Text	Styles	as	Defined	in	iOS	7

This	returns	a	properly	sized	font	based	on	the	user	settings.

Summary
Text	rendering	on	iOS	is	a	deep	and	complex	topic	made	vastly	easier	with	the	introduction	of
TextKit.	This	chapter	merely	broke	the	surface	of	what	is	possible	with	TextKit	and	text	rendering	on
the	iOS	platform	in	general.	Hopefully,	it	has	created	a	topic	not	nearly	as	intimidating	as	text	render
has	been	in	the	past.
Several	examples	were	explored	in	this	chapter,	from	hit	detection	to	working	with	attributed	strings.
In	addition,	the	building	blocks	that	make	up	text	rendering	objects	should	now	be	much	clearer.
Although	text	rendering	is	a	vast	topic,	worthy	of	its	own	dedicated	book,	the	information	in	this
chapter	should	provide	a	strong	foot	forward.

23.	Gesture	Recognizers

What	if	an	app	needed	a	quick	and	easy	way	to	handle	taps,	swipes,	pinches,	and	rotations?	Back	in	the
Dark	Ages	(before	the	iPad	was	released),	a	developer	had	to	subclass	UIView,	implement	the
touchesBegan:/touchesMoved:/touchesEnded:	methods,	and	write	custom	logic	to
determine	when	any	of	these	actions	was	taking	place.	It	could	take	all	day!
Apple	introduced	gesture	recognizers	to	address	this	need	with	iOS	3.2	when	the	original	iPad	was
released.	UIGestureRecognizer	is	an	abstract	class	that	puts	a	common	architecture	around
handling	gestures.	There	are	several	concrete	implementations	to	handle	the	everyday	gestures	that
are	commonly	used,	and	even	subclassing	guidelines	to	create	your	own	gestures	using	the	same
architecture.	With	these	new	classes,	complex	gesture	handling	can	be	implemented	much	more
quickly	than	in	the	past.

Types	of	Gesture	Recognizers
Gesture	recognizers	fall	into	two	general	categories,	as	defined	by	Apple:

	Discrete:	Discrete	gesture	recognizers	are	intended	to	handle	cases	in	which	the	interaction	is
quick	and	simple,	like	a	tap.	In	that	case,	the	app	really	needs	to	know	only	that	the	tap	occurred,
and	then	can	complete	the	desired	action.
	Continuous:	Continuous	gesture	recognizers	handle	cases	in	which	the	interaction	needs	to
keep	getting	information	as	the	gesture	proceeds,	as	in	a	pinch	or	rotation.	In	those	cases,	the
app	will	likely	require	information	during	the	interaction	to	handle	UI	changes.	For	example,	it
might	need	to	know	how	far	a	user	has	pinched	so	that	it	can	resize	a	view	accordingly,	or	it
might	want	to	know	how	far	a	user	has	rotated	her	fingers	and	rotate	a	view	to	match.

Six	predefined	gesture	recognizers	are	available,	as	listed	in	Table	23.1.	They	are	versatile	and	can
handle	all	the	standard	touch	interactions	that	are	familiar	in	iOS.

Table	23.1	List	of	Built-In	UIGestureRecognizer	Subclasses

Basic	Gesture	Recognizer	Usage
A	basic	gesture	recognizer	is	simple	to	set	up.	Typically,	a	gesture	recognizer	would	be	set	up	in	a
view	controller	where	there	is	visibility	to	the	view	of	interest,	and	a	logical	place	to	put	a	method	that
can	accomplish	what	is	wanted.	All	that	needs	to	be	determined	is	what	view	the	tap	recognizer	should
belong	to,	and	what	method	should	be	called	for	the	recognizer.
Click	here	to	view	code	image

UITapGestureRecognizer	*tapRecognizer	=	[[UITapGestureRecognizer	alloc]

initWithTarget:self	action:@selector(myGestureViewTapped:)];

[myGestureView	addGestureRecognizer:tapRecognizer];

Some	gesture	recognizers	will	accept	more	parameters	to	refine	how	they	act,	but	for	the	most	part,
only	a	view	and	a	method	are	needed	to	get	going.	When	the	gesture	has	been	recognized	in	the
specified	view,	the	method	will	get	called	with	a	reference	to	the	gesture	recognizer	if	desired.
Gesture	recognizers	can	also	be	set	up	easily	in	a	storyboard.	To	add	a	gesture	recognizer,	first	find
the	desired	recognizer	type	in	the	Object	Library	while	viewing	the	storyboard.	Drag	the	recognizer
to	the	view	that	should	receive	and	interpret	touches	for	the	gesture	recognizer.	When	the	recognizer
is	added	to	that	view,	it	will	appear	in	the	bar	for	the	view	controller ’s	scene.	The	gesture	recognizer
can	then	be	configured	like	any	other	view	in	a	storyboard,	as	shown	in	Figure	23.1.	It	can	be
assigned	to	a	property,	it	can	be	assigned	an	action	selector	to	call,	or	it	can	even	be	set	up	to	trigger	a
segue.

Figure	23.1	Example	of	a	configured	Tap	Gesture	Recognizer	in	a	storyboard.

Introduction	to	the	Sample	App
The	sample	app	for	this	chapter	is	called	Gesture	Playground.	It	has	only	one	view,	called
myGestureView	(shown	in	Figure	23.2),	which	will	be	manipulated	by	the	gestures	as	they	are
introduced	in	the	chapter.	Tap	the	related	button	to	configure	the	gesture	recognizers	for	each
example.	Note	that	the	sample	project	uses	a	storyboard	with	AutoLayout	disabled;	this	is	to	make	the
examples	simple	and	easy	to	understand	and	avoid	any	potential	issues	with	layout	changes	to
illustrate	responding	to	gestures.	To	get	started,	open	the	project	in	Xcode.

Figure	23.2	View	of	Gesture	Playground’s	view	controller	in	a	storyboard.

Tap	Recognizer	in	Action
The	code	to	set	up	the	tap	gesture	recognizer	is	in	the	setUpTapGestureRecognizer:	method
in	the	sample	app’s	view	controller.	To	execute	that	code,	run	the	app	and	tap	the	button	titled	Set	Up
Tap.	The	method	will	first	clear	all	gesture	recognizers	from	the	main	view	and	myGestureView.
Then	a	tap	recognizer	will	be	set	up	to	call	the	myGestureTapped:	method	when	a	tap	is
recognized.
Click	here	to	view	code	image

[self	clearAllGestureRecognizers];

UITapGestureRecognizer	*tapRecognizer	=	[[UITapGestureRecognizer	alloc]
initWithTarget:self
																																									action:@selector(myGestureViewTapped:)];

[self.myGestureView	addGestureRecognizer:tapRecognizer];

Because	the	tap	gesture	is	a	discrete	gesture,	the	myGestureViewTapped:	method	will	get	called
only	after	the	gesture	has	been	recognized.	It	will	then	present	an	alert:
Click	here	to	view	code	image

-	(void)myGestureViewTapped:(UIGestureRecognizer	*)tapGestureRecognizer	{

				UIAlertController	*alert	=	[UIAlertController	alertControllerWithTitle:@"Tap
Received"
																																									message:@"Received	tap	in	myGestureView"
																																		preferredStyle:UIAlertControllerStyleAlert];

				UIAlertAction	*dismissAction	=	[UIAlertAction	actionWithTitle:@"OK,	Thanks"
																														style:UIAlertActionStyleCancel
																												handler:^(UIAlertAction	*action){
								[self	dismissViewControllerAnimated:YES	completion:nil];
				}];

				[alert	addAction:dismissAction];

				[self	presentViewController:alert	animated:YES	completion:nil];
}

Run	the	project	and	tap	anywhere	inside	the	red	view.	An	alert	view	will	be	presented,	as	shown	in
Figure	23.3.

Figure	23.3	Single	tap	received.

Try	tapping	around	the	outside	of	the	view.	Notice	that	the	alert	view	does	not	get	displayed	unless	a
tap	actually	occurs	in	the	view.

Tap	Recognizer	Versus	Button
So	why	couldn’t	a	button	be	used	for	that?	It’s	quicker	and	easier,	and	could	be	set	up	in
Interface	Builder	with	no	code!	True.	In	a	lot	of	cases,	using	a	UIButton	is	the	best	approach.
However,	there	are	times	when	a	tap	recognizer	is	ideal.	One	example	is	when	there	are	several
input	text	fields	that	need	to	slide	up	and	down	with	the	keyboard,	and	you	want	to	be	able	to	tap
anywhere	to	dismiss	the	keyboard.	If	you	place	all	the	fields	in	a	UIView,	a	tap	recognizer	can
be	added	to	that	view	to	easily	dismiss	the	keyboard.

Pinch	Recognizer	in	Action
A	pinch	recognizer	can	be	used	to	handle	the	case	in	which	the	user	puts	two	fingers	on	the	screen	and
moves	them	closer	together	or	farther	apart.	The	change	of	distance	between	the	fingers	can	then	be
used,	for	example,	to	adjust	the	size	of	a	view	or	an	image.	In	the	sample	app,	tap	Set	Up	Pinch	on
myGestureView	to	add	a	pinch	gesture	recognizer	to	the	view.	The	method	called	will	clear	any
existing	gesture	recognizers,	and	will	then	add	a	pinch	gesture	recognizer	to	myGestureView,	and
associate	the	myGestureViewSoloPinched:	method	as	the	target	action	for	the	gesture.
Click	here	to	view	code	image

UIPinchGestureRecognizer	*soloPinchRecognizer	=	[[UIPinchGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewSoloPinched:)];

[myGestureView	addGestureRecognizer:soloPinchRecognizer];

The	method	will	have	to	inspect	the	pinch	gesture	recognizer	to	know	how	far	a	user	has	pinched.
Happily,	iOS	will	pass	a	reference	to	the	gesture	recognizer	to	the	method,	so	an	instance	variable	or
property	is	not	needed	to	store	it.	UIPinchGestureRecognizer	instances	also	have	a	method
called	scale,	which	turns	out	to	be	perfect	for	setting	up	a	scale	affine	transform	on	a	view:
Click	here	to	view	code	image

-	(void)myGestureViewSoloPinched:(UIPinchGestureRecognizer	*)	pinchGesture	{
				CGFloat	pinchScale	=	[pinchGesture	scale];

				CGAffineTransform	scaleTransform	=	CGAffineTransformMakeScale(pinchScale,
pinchScale);

				[myGestureView	setTransform:scaleTransform];
}

Run	the	project,	pinch	in	and	out	over	the	view,	and	note	that	it	resizes	with	the	pinch.

Note
To	perform	a	two-finger	pinch	in	the	iOS	Simulator,	hold	down	the	Option	key	and
notice	that	two	circles	appear,	which	represent	fingers.	As	the	mouse	pointer	is	moved,
the	fingers	will	get	closer	or	farther	apart.	The	center	point	between	the	fingers	will	be
the	center	of	the	app’s	view.	In	Gesture	Playground,	this	is	a	little	inconvenient,	because
myGestureView	is	near	the	bottom	of	the	screen.	To	reposition	the	center	point,	just
hold	down	the	Shift	key	while	still	holding	the	Option	key	and	move	the	mouse	pointer.

What	if	the	view	is	small	and	hard	to	pinch?	Add	the	gesture	recognizer	to	the	parent	view,	and	it	will
pick	up	the	pinch	anywhere	in	that	view.	To	see	that	approach	working,	tap	the	Set	Up	Pinch	on	main
View	button.	That	will	clear	all	existing	gesture	recognizers,	and	will	add	the	pinch	gesture
recognizer	to	the	view	controller ’s	view	so	that	pinches	anywhere	in	the	view	will	get	picked	up:
Click	here	to	view	code	image

UIPinchGestureRecognizer	*soloPinchRecognizer	=	[[UIPinchGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewSoloPinched:)];

[[self	view]	addGestureRecognizer:soloPinchRecognizer];

Run	the	project	and	notice	that	pinches	anywhere	in	the	app	will	scale	myGestureView.	That	is	one
of	gesture	recognizer ’s	underrated	features:	the	capability	to	easily	decouple	the	touch	action	from

the	view	to	be	affected.	A	touch	can	be	detected	anywhere	in	the	app,	and	the	touch	data	can	be	used	or
transformed	to	affect	other	views.	To	be	more	precise	with	this	method,	the	touch	location	for	the
gestures	can	be	examined	using	the	locationInView:	method,	to	determine	whether	it	is	close
enough	to	the	view	to	process.

Multiple	Recognizers	for	a	View
There	are	times	when	more	than	one	recognizer	will	be	needed	on	a	view,	for	example,	if	the	user
wants	to	be	able	to	scale	and	rotate	myGestureView	at	the	same	time.	To	illustrate	this,	the	sample
app	adds	a	rotation	gesture	recognizer	to	see	how	it	interacts	with	a	pinch	gesture	recognizer.	Tap	the
Set	Up	Pinch	and	Rotate	button,	which	will	clear	all	existing	gesture	recognizers	and	then	set	up	both
the	pinch	recognizer	and	the	rotation	gesture	recognizer:
Click	here	to	view	code	image

UIPinchGestureRecognizer	*pinchRecognizer	=	[[UIPinchGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewPinched:)];

[myGestureView	addGestureRecognizer:pinchRecognizer];

UIRotationGestureRecognizer	*rotateRecognizer	=	[[UIRotationGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewRotated:)];

[myGestureView	addGestureRecognizer:rotateRecognizer];

Now,	to	handle	both	rotation	and	scaling	at	the	same	time,	a	new	approach	to	build	a	concatenated
affine	transform	to	apply	to	myGestureView	is	needed.	For	that	method	to	work,	the	last	and
current	scale	and	rotation	factors	will	need	to	be	stored	so	that	nothing	is	lost	between	gestures.
Notice	that	these	properties	have	been	established	in	the	view	controller.
Click	here	to	view	code	image

@property	(nonatomic,	assign)	CGFloat	scaleFactor;
@property	(nonatomic,	assign)	CGFloat	rotationFactor;
@property	(nonatomic,	assign)	CGFloat	currentScaleDelta;
@property	(nonatomic,	assign)	CGFloat	currentRotationDelta;

The	setUpPinchAndRotationGestureRecognizers:	method	will	initialize	the
scaleFactor	and	rotationFactor	to	prevent	flickering	when	the	view	is	initially	resized.
Click	here	to	view	code	image

[self	setScaleFactor:1.0];
[self	setRotationFactor:0.0];

The	myGestureViewRotated:	method	will	handle	the	rotation	recognizer,	which	conveniently
has	a	property	called	rotation	to	let	you	know	how	far	the	user	has	rotated	his	fingers:
Click	here	to	view	code	image

-	(void)myGestureViewRotated:(UIRotationGestureRecognizer	*)	rotateGesture	{
				CGFloat	newRotateRadians	=	[rotateGesture	rotation];

				[self	updateViewTransformWithScaleDelta:0.0	andRotationDelta:newRotateRadians];
				if	([rotateGesture	state]	==	UIGestureRecognizerStateEnded)	{
									CGFloat	saveRotation	=	[selfrotationFactor]	+	newRotateRadians;
									[self	setRotationFactor:saveRotation];
									[self	setCurrentRotationDelta:0.0];
				}
}

This	method	will	get	the	amount	of	rotation	from	the	gesture	recognizer,	expressed	in	radians.	It	will
then	call	a	custom	method	to	create	a	scale	and	rotate	affine	transformation	to	apply	to	the	view.	If	the
touch	is	ended,	the	method	will	calculate	the	last	rotation	amount	based	on	the	current	state	and	new
rotation	amount,	and	save	it	in	the	rotation	factor	property.	Then	the	method	will	clear	the	calculated
rotation	delta	amount,	which	is	used	to	keep	the	rotation	transformation	from	getting	out	of	whack
between	touches.	The	method	to	create	the	scale	and	rotate	transformation	looks	like	this:
Click	here	to	view	code	image

-	(void)updateViewTransformWithScaleDelta:(CGFloat)scaleDelta	andRotationDelta:
(CGFloat)rotationDelta;
{
				if	(rotationDelta	!=	0)	{
								[self	setCurrentRotationDelta:rotationDelta];
				}
				if	(scaleDelta	!=	0)	{
								[self	setCurrentScaleDelta:scaleDelta];
				}
				CGFloat	scaleAmount	=	[self	scaleFactor]+[self	currentScaleDelta];

				CGAffineTransform	scaleTransform	=	CGAffineTransformMakeScale(scaleAmount,
scaleAmount);

				CGFloat	rotationAmount	=	[self	rotationFactor]+[self	currentRotationDelta];

				CGAffineTransform	rotateTransform	=	CGAffineTransformMakeRotation(rotationAmount);

				CGAffineTransform	newTransform	=	CGAffineTransformConcat(scaleTransform,
rotateTransform);

				[myGestureView	setTransform:newTransform];
}

This	method	will	properly	account	for	scale	changes	and	rotation	changes	from	touches.	The	method
will	check	to	see	whether	the	amount	of	scale	or	rotation	change	is	not	equal	to	zero,	since	the	gesture
recognizer	will	return	the	scale	or	rotation	as	the	amount	of	change	from	where	the	touch	began.	That
amount	is	called	the	delta.	Since	the	view	should	maintain	its	current	state	when	a	touch	begins,	the
method	cannot	immediately	apply	the	reported	touch	delta;	rather,	it	must	add	the	delta	to	the	current
state	to	prevent	the	view	from	jumping	around.
Run	Gesture	Playground,	touch	with	two	fingers	and	rotate,	and	watch	how	the	view	turns.	Also	note
that	pinching	still	works,	but	that	pinching	and	rotating	at	the	same	time	does	not.	This	is	explained
later	in	the	chapter.	First	a	bit	more	about	how	gesture	recognizers	handle	touches.

Gesture	Recognizers:	Under	the	Hood
Now	that	basic	gesture	recognizers	have	been	demonstrated	in	action	and	the	first	issue	has	been
encountered	with	them,	it	is	a	good	time	to	walk	through,	in	a	little	more	detail,	how	gesture
recognizers	work.
The	first	thing	to	understand	is	that	gesture	recognizers	operate	outside	the	normal	view	responder
chain.	The	UIWindow	will	send	touch	events	to	gesture	recognizers	first,	and	they	must	indicate	that
they	cannot	handle	the	event	in	order	for	touches	to	get	forwarded	to	the	view	responder	chain	by
default.
Next,	it	is	important	to	understand	the	basic	sequence	of	events	that	takes	place	when	an	app	is	trying
to	determine	whether	a	gesture	has	been	recognized:

1.	The	window	will	send	touch	events	to	the	gesture	recognizer(s).
2.	The	gesture	recognizer	will	enter	the	UIGestureRecognizerStatePossible	state.
3.	For	discrete	gestures,	the	gesture	recognizer	will	determine	whether	the	gesture	is
UIGestureRecognizerStateRecognized	or
UIGestureRecognizerStateFailed.

4.	If	it	is	UIGestureRecognizerStateRecognized,	the	gesture	recognizer	consumes	that
touch	event	and	calls	the	delegate	method	specified.

5.	If	it	is	UIGestureRecognizerStateFailed,	the	gesture	recognizer	forwards	the	touch
event	back	to	the	responder	chain.

6.	For	continuous	gestures,	the	gesture	recognizer	will	determine	whether	the	gesture	is
UIGestureRecognizerStateBegan	or	UIGestureRecognizerStateFailed.

7.	If	the	gesture	is	UIGestureRecognizerStateBegan,	the	gesture	recognizer	consumes
the	touch	events	and	calls	the	delegate	method	specified.	It	will	then	update	to
UIGestureRecognizerStateChanged	every	time	there	is	a	change	in	the	gesture	and
keep	calling	the	delegate	method	until	the	last	touch	ends,	at	which	point	it	will	become
UIGestureRecognizerStateEnded.	If	the	touch	pattern	no	longer	matches	the	expected
gesture,	it	can	change	to	UIGestureRecognizerStateCancelled.

8.	If	it	is	UIGestureRecognizerStateFailed,	the	gesture	recognizer	forwards	the	touch
event(s)	back	to	the	responder	chain.

Note	that	the	time	elapsed	between	UIGestureRecognizerStatePossible	and
UIGestureRecognizerStateFailed	states	can	be	significant	and	noticeable.	If	there	is	a
gesture	recognizer	in	the	user	interface	that	is	experiencing	an	unexplained	slowdown	with	touches,
that	is	a	good	place	to	look.	The	best	approach	is	to	add	logging	into	the	gesture	handling	methods—
log	the	method	and	state	each	time	the	method	is	called.	Then,	there	will	be	a	clear	picture	of	the	state
transitions	with	time	stamps	from	the	logging	so	that	it	is	clear	where	any	delays	are	taking	place.

Multiple	Recognizers	for	a	View:	Redux
Now	that	the	chapter	has	explained	how	the	gesture	recognizers	receive	and	handle	touches,	it	is	clear
that	only	one	of	the	gesture	recognizers	is	receiving	and	handling	touches	at	a	time.	To	get	them	both
to	handle	touches	simultaneously,	there	is	a	UIGestureRecognizerDelegate	protocol	that	can
be	implemented	to	have	a	little	more	control	over	how	touches	are	delivered	to	gesture	recognizers.
This	protocol	specifies	three	methods:

	(BOOL)gestureRecognizerShouldBegin:(UIGestureRecognizer
*)gestureRecognizer:	Use	this	method	to	indicate	whether	the	gesture	recognizer	should
transition	from	UIGestureRecognizerStatePossible	to
UIGestureRecognizerStateBegan,	depending	on	the	state	of	the	application.	If	YES	is
returned,	the	gesture	recognizer	will	proceed;	otherwise,	it	will	transition	to
UIGestureRecognizerStateFailed.
	(BOOL)gestureRecognizer:(UIGestureRecognizer	*)gestureRecognizer
shouldReceiveTouch:(UITouch	*)touch:	Use	this	method	to	indicate	whether	the
gesture	recognizer	should	receive	a	touch.	This	provides	the	opportunity	to	prevent	a	gesture
recognizer	from	receiving	a	touch	based	on	developer-defined	criteria.

	(BOOL)gestureRecognizer:(UIGestureRecognizer	*)gestureRecognizer
shouldRecognizeSimultaneouslyWithGestureRecognizer:

(UIGestureRecognizer	*)otherGestureRecognizer:	Use	this	method	when	there
is	more	than	one	gesture	recognizer	that	should	simultaneously	receive	touches.	Return	YES	to
have	everything	operate	simultaneously,	or	test	the	incoming	gesture	recognizers	to	decide
whether	they	meet	criteria	for	simultaneous	handling.

The	sample	app	implements	the
shouldRecognizeSimultaneouslyWithGestureRecognizer:	method	to	enable	the	pinch
and	rotation	gestures	to	be	handled	simultaneously:
Click	here	to	view	code	image

-	(BOOL)gestureRecognizer:(UIGestureRecognizer	*)gestureRecognizer
shouldRecognizeSimultaneouslyWithGestureRecognizer:
(UIGestureRecognizer	*)otherGestureRecognizer
{
				return	YES;
}

To	see	this	working,	tap	the	Set	Up	Pinch	and	Rotate	with	Delegate	button	in	the	sample	app.	That
method	will	set	up	the	pinch	and	rotate	gesture	recognizers	just	as	before,	but	will	also	set	the
delegates	on	them	so	that	the	shouldRecognizeSimultaneouslyWithGesture-
Recognizer:	method	will	get	called.
Click	here	to	view	code	image

UIPinchGestureRecognizer	*pinchRecognizer	=	[[UIPinchGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewPinched:)];

[pinchRecognizer	setDelegate:self];
[[self	view]	addGestureRecognizer:pinchRecognizer];

UIRotationGestureRecognizer	*rotateRecognizer	=	[[UIRotationGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewRotated:)];

[rotateRecognizer	setDelegate:self];
[[self	view]	addGestureRecognizer:rotateRecognizer];

Run	Gesture	Playground	and	touch	with	two	fingers	to	pinch	and	rotate.	The	view	will	now	resize	and
rotate	smoothly	(see	Figure	23.4).

Figure	23.4	Simultaneously	rotating	and	scaling.

Requiring	Gesture	Recognizer	Failures
In	some	cases,	a	gesture	recognizer	needs	to	fail	in	order	to	meet	an	app’s	requirements.	A	great
example	is	when	a	tap	and	a	double	tap	need	to	work	on	the	same	view.	By	default,	if	a	single-tap
gesture	recognizer	and	a	double-tap	gesture	recognizer	are	attached	to	the	same	view,	the	single-tap
recognizer	will	fire	even	if	a	double	tap	occurs—so	both	the	single-tap	and	the	double-tap	target
methods	will	get	called.	To	see	this	in	action	in	the	sample	app,	tap	the	Set	Up	Single	and	Double	Tap
button.	The	called	method	will	clear	all	existing	gesture	recognizers,	and	will	set	up	and	configure
two	tap	gesture	recognizers	attached	to	myGestureView.
Click	here	to	view	code	image

UITapGestureRecognizer	*doubleTapRecognizer	=	[[UITapGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewDoubleTapped:)];

[doubleTapRecognizer	setNumberOfTapsRequired:2];
[myGestureView	addGestureRecognizer:doubleTapRecognizer];

UITapGestureRecognizer	*singleTapRecognizer	=	[[UITapGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewTapped:)];

[myGestureView	addGestureRecognizer:singleTapRecognizer];

Note	that	the	handling	methods	now	being	called	in	the	project	are	using	NSLog	statements	for
illustration	instead	of	UIAlertView,	which	will	block	the	user	interface	and	prevent	the	double	tap
from	working.
Click	here	to	view	code	image

-	(void)myGestureViewSingleTapped:(UIGestureRecognizer	*)	tapGestureRecognizer	{
				NSLog(@"Single	Tap	Received");
}

-	(void)myGestureViewDoubleTapped:(UIGestureRecognizer	*)	doubleTapGestureRecognizer	{
				NSLog(@"Double	Tap	Received");
}

Both	the	single-tap	and	the	double-tap	methods	get	called	with	a	double	tap:
Click	here	to	view	code	image

2014-08-04	14:00:45.299	GesturePlayground[38536:2398989]	Single	Tap	Received
2014-08-04	14:00:45.476	GesturePlayground[38536:2398989]	Double	Tap	Received

If	that	is	not	desired,	the	double-tap	recognizer	would	need	to	fail	before	calling	the	single-tap	target
method.	There	is	a	method	on	UIGestureRecognizer	called	requireGesture-
RecognizerToFail.	To	prevent	both	from	firing,	carry	out	these	steps:

1.	Set	up	the	double-tap	recognizer.
2.	Set	up	the	single-tap	recognizer.
3.	Call	requireGestureRecognizerToFail:	from	the	single-tap	recognizer,	passing	the
double-tap	recognizer	as	the	parameter.

To	see	this	in	action,	tap	the	Set	Up	Single	and	Double	Tap	with	Fail	button	in	the	sample	app.	That
will	set	up	the	single-	and	double-tap	gesture	recognizers	as	before,	but	will	also	include	the
requireGestureRecognizerToFail:	call	for	the	single-tap	gesture	recognizer.
Click	here	to	view	code	image

UITapGestureRecognizer	*doubleTapRecognizer	=	[[UITapGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewDoubleTapped:)];

[doubleTapRecognizer	setNumberOfTapsRequired:2];
[myGestureView	addGestureRecognizer:doubleTapRecognizer];

UITapGestureRecognizer	*singleTapRecognizer	=	[[UITapGestureRecognizer	alloc]
initWithTarget:self	action:@selector(myGestureViewTapped:)];

[singleTapRecognizer	requireGestureRecognizerToFail:doubleTapRecognizer];

[myGestureView	addGestureRecognizer:singleTapRecognizer];

Try	it	with	a	double	tap	first,	and	the	single-tap	method	no	longer	fires	on	a	double	tap.
Click	here	to	view	code	image

2014-08-04	14:03:39.137	GesturePlayground[38536:2398989]	Double	Tap	Received

Custom	UIGestureRecognizer	Subclasses
When	an	app	needs	to	recognize	a	gesture	that	falls	outside	of	the	standard	gestures	provided	by
Apple,	UIGestureRecognizer	needs	to	be	subclassed.	The	first	decision	to	be	made	is	whether
the	custom	recognizer	should	follow	the	discrete	or	continuous	pattern.	With	that	in	mind,	the
subclass	will	need	to	implement	the	following	methods:
Click	here	to	view	code	image

-	(void)reset;
-	(void)touchesBegan:(NSSet	*)touches	withEvent:(UIEvent	*)event;
-	(void)touchesMoved:(NSSet	*)touches	withEvent:(UIEvent	*)event;
-	(void)touchesEnded:(NSSet	*)touches	withEvent:(UIEvent	*)event;
-	(void)touchesCancelled:(NSSet	*)touches	withEvent:(UIEvent	*)event;

In	the	subclass,	build	logic	in	the	touchesBegan:/touchesMoved:/touchesEnded:
methods	that	recognize	the	gesture,	and	then	update	the	subclass	to	the	right	state	as	the	touches
proceed.	Remember	to	set	the	state	to	UIGestureRecognizerStateFailed	as	soon	as	possible
to	avoid	UI	delays,	and	to	check	the	state	in	those	methods	to	avoid	doing	any	unnecessary	logic.	For
example,	if	two	touches	are	needed	for	the	gesture,	immediately	fail	in	touchesBegan:	if	there	are
more	or	fewer	touches.	If	the	state	is	already	UIGestureRecognizerStateFailed,	return
immediately	from	touchesMoved:	and	touchesEnded:.
In	the	reset	method,	update	any	instance	variables	used	to	track	the	gesture	to	their	initial	state	so	that
the	recognizer	is	ready	to	go	with	the	next	touch.

Note
For	more	detail	on	creating	UIGestureRecognizer	subclasses,	check	out	Apple’s
Event	Handling	Guide	for	iOS:	Gesture	Recognizers	at
https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/GestureRecognizer_basics/GestureRecognizer_basics.html#//apple_ref/doc/uid/TP40009541-
CH2-SW2.	It	has	all	the	detail	needed,	and	links	to	the	relevant	class	references	as	well.

Summary
In	this	chapter,	gesture	recognizers	were	introduced,	including	the	difference	between	a	discrete	and	a
continuous	gesture	recognizer,	as	were	the	six	gesture	recognizers	that	are	available	in	iOS.	This
chapter	walked	through	basic	usage	of	a	gesture	recognizer,	and	then	dived	into	some	more	advanced
use	cases	with	multiple	gesture	recognizers.	Lastly,	the	concept	of	a	custom	gesture	recognizer	was
introduced.
At	this	point,	the	reader	should	be	comfortable	creating	and	using	the	built-in	gesture	recognizers,
and	exploring	some	of	the	features	that	were	not	discussed	(for	example,	how	to	handle	a	three-finger
swipe).	The	reader	should	also	understand	the	basics	of	how	gesture	recognizers	work	under	the
hood,	and	should	be	ready	to	attempt	a	custom	subclass.

https://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/GestureRecognizer_basics/GestureRecognizer_basics.html#//apple_ref/doc/uid/TP40009541-CH2-SW2

24.	Accessing	the	Photo	Library

All	current	iOS	devices	come	with	at	least	one	camera	capable	of	taking	photos	and	videos.	In
addition,	all	iOS	devices	can	sync	photos	from	iTunes	on	a	computer	to	the	Photos	app	and	organize
them	in	albums.	Before	iOS	4,	the	only	method	for	developers	to	access	user	photos	was
UIImagePickerController.	This	approach	has	some	drawbacks;	namely,	only	one	photo	can
be	selected	at	a	time,	and	the	developer	has	no	control	over	the	appearance	of	the	UI.	With	the	addition
of	the	AssetsLibrary	classes	in	iOS	4,	Apple	provided	much	more	robust	access	to	the	user ’s
photos,	videos,	albums,	and	events	in	an	app.	Although	the	AssetsLibrary	classes	were	a	big
improvement	over	the	UIImagePickerController,	it	was	still	difficult	to	navigate	a	large
number	of	assets	or	get	arbitrarily	sized	images	with	good	performance.	In	addition,	it	was	not
simple	(or	in	some	cases	possible)	to	manipulate	the	user ’s	albums	and	maintain	the	images	within	an
album.
To	address	these	and	other	issues,	Apple	introduced	the	Photos	framework	with	iOS	8.	The	Photos
framework	provides	a	robust,	thread-safe	way	to	access	and	administer	the	user ’s	photo	library.	The
Photos	framework	provides	a	method	to	retrieve	arbitrarily	sized	versions	of	the	images	in	the	photo
library,	and	provides	a	callback	mechanism	to	notify	a	delegate	when	changes	to	the	photo	library
have	occurred.	The	Photos	framework	makes	accessing	photos	in	iCloud	seamless	as	well;	the	same
operations	for	accessing	and	updating	the	library	work	regardless	of	whether	the	photo	is	available
locally	on	the	device	or	remotely	in	iCloud.

The	Sample	App
The	sample	app,	PhotoLibrary,	is	a	minimal	reproduction	of	some	key	parts	of	the	iOS	Photos	app.	It
provides	a	tab	bar	to	select	between	Photos	and	Albums.	The	Photos	tab	will	display	a	collection	view
of	all	the	images	on	the	device,	organized	by	moments.	Tapping	on	a	thumbnail	will	display	a	larger
representation	of	the	photo,	and	provide	the	opportunity	to	delete	the	photo	from	the	device.
The	Albums	tab	will	display	a	table	of	the	user-created	albums	available	on	the	device,	including	the
album	name,	number	of	photos,	and	a	representative	image.	The	user	can	add	or	remove	albums	from
this	view.	Tapping	an	album	will	show	thumbnails	of	all	the	photos	in	the	album.	Tapping	a	thumbnail
will	show	a	large	representation	of	the	photo.
Before	running	the	sample	app,	prepare	a	test	device	by	syncing	some	photos	to	it	and	taking	some
photos.	That	way,	there	will	be	photos	in	albums	and	the	camera	roll.	If	you	use	iCloud,	turn	on	My
Photo	Stream	as	well.

Note
To	use	the	Photos	framework	in	an	app,	include	@import	Photos;	in	classes	that
need	to	access	the	Photos	framework	classes.	This	will	automatically	add	the	Photos
framework	to	the	project,	and	import	the	classes	as	needed.

The	Photos	Framework
The	Photos	framework	consists	of	a	group	of	classes	to	navigate	and	manage	the	collections,	photos,
and	videos	on	the	device.	Here	are	some	highlights:

	PHPhotoLibrary:	This	represents	all	the	collections	and	assets	on	the	device	and	iCloud.	A

shared	instance	([PHPhotoLibrary	sharedPhotoLibrary])	can	be	used	to	manage
changes	in	a	thread-safe	way	to	the	photo	library,	such	as	adding	a	new	asset	or	album,	or
changing	or	removing	an	existing	asset	or	album.	In	addition,	the	shared	instance	can	be	used	to
register	an	object	as	a	listener	for	changes	to	the	photo	library,	which	can	be	used	to	keep	the
user	interface	in	sync	with	asynchronous	changes	to	the	library.
	PHAssetCollection:	This	represents	a	group	of	photos	and	videos.	It	can	be	created
locally	on	the	device,	can	be	synced	from	a	photo	album	in	iPhoto,	can	be	the	user ’s	Camera
Roll	or	Saved	Photos	album,	or	can	be	a	smart	album	containing	all	photos	that	match	a	certain
criteria	(panoramas,	for	example).	It	provides	methods	for	accessing	assets	in	the	group	and
getting	information	about	the	group.	Asset	collections	can	be	organized	in	collection	lists
(PHCollectionList).
	PHAsset:	This	represents	the	metadata	for	a	photo	or	video.	It	provides	class	methods	to
return	fetch	results	to	get	assets	with	similar	criteria,	and	provides	instance	methods	with
information	about	the	asset,	such	as	date,	location,	type,	and	orientation.
	PHFetchResult:	This	is	a	lightweight	object	that	represents	an	array	of	assets	or	asset
collections.	When	requesting	assets	or	asset	collections	that	match	a	given	criteria,	the	class
methods	will	return	a	fetch	result.	The	fetch	result	will	manage	loading	what	is	needed	as
requested	instead	of	loading	everything	into	memory	at	once,	so	it	works	very	well	for	large
collections	of	assets.	The	fetch	result	is	also	thread-safe,	meaning	that	the	count	of	objects	will
not	change	if	changes	to	the	underlying	data	occur.	A	class	can	register	to	be	notified	of	changes
to	the	photo	library;	and	those	changes,	delivered	in	an	instance	of
PHFetchResultChangeDetails,	can	be	used	to	update	a	fetch	result	and	any
corresponding	user	interface.
	PHImageManager:	The	image	manager	handles	asynchronously	fetching	and	caching	image
data	for	an	asset.	This	is	especially	useful	for	getting	images	that	match	a	specific	size,	or	for
managing	access	to	image	data	from	iCloud.	In	addition,	the	photo	library	offers
PHCachingImageManager	to	improve	scrolling	performance	when	viewing	large	numbers
of	assets	in	a	table	or	collection	view.

Using	Asset	Collections	and	Assets
Photos.app	displays	photos	on	the	device	organized	by	“moments”—or	photos	that	took	place	on	the
same	date	in	the	same	location.	A	moment	is	represented	in	the	photo	library	by	an	instance	of
PHAssetCollection.	Each	image	displayed	for	a	moment	is	represented	by	an	instance	of
PHAsset.	User	albums	in	Photos.app	are	also	instances	of	PHAssetCollection,	with	images
represented	by	PHAsset.	Before	accessing	the	asset	collections	and	assets,	an	app	needs	to	get	the
user ’s	permission	to	access	the	photo	library.

Permissions
The	first	time	an	app	tries	to	access	the	photo	library,	the	device	asks	the	user	for	permission	(as
shown	in	Figure	24.1).

Figure	24.1	Access	permission	alert	in	the	PhotoLibrary	sample	app.

To	request	permission,	the	app	uses	the	requestAuthorization:	class	method	on
PHPhotoLibrary:
Click	here	to	view	code	image

[PHPhotoLibrary	requestAuthorization:^(PHAuthorizationStatus	status)	{
				if	(status	==	PHAuthorizationStatusAuthorized)	{
								[self	loadAssetCollectionsForDisplay];
				}	else	{
								...
				}
}];

That	method	checks	to	see	whether	authorization	has	already	been	requested	by	the	app.	If	not,	it
presents	an	alert	to	the	user	requesting	permission	to	the	photo	library.	After	the	user	makes	a
selection,	the	user	alert	will	occur	only	once	every	24-hour	period	even	if	the	app	is	deleted	and
reinstalled.	To	test	responding	to	the	user	alert	more	than	once	a	day,	visit	General,	Reset	in
Settings.app,	and	select	Reset	Location	&	Privacy.	That	erases	the	system’s	memory	of	all	location

and	privacy	settings	and	requires	responding	to	the	user	alert	for	all	apps	on	the	device.
If	the	user	has	already	granted	or	denied	permission,	the	alert	will	not	be	displayed	again,	and	the
user ’s	selection	will	be	returned.	After	the	authorization	status	is	known,	the	method	calls	the	status
handler	block,	passing	in	the	current	status.	Note	that	the	status	handler	can	be	called	on	a	background
thread,	so	be	sure	to	switch	to	the	main	queue	before	updating	the	user	interface.
If	the	user	denies	permission	to	access	the	photo	library,	the	alert	view	presented	explains	to	the	user
how	to	restore	permission	later	if	desired.	To	restore	permissions,	the	user	needs	to	navigate	to	the
right	spot	in	Settings.app	(see	Figure	24.2).

Figure	24.2	Settings.app:	photo	privacy.

When	the	user	changes	the	setting,	iOS	kills	the	sample	app	so	that	it	will	launch	again	rather	than
coming	out	of	the	background	and	requiring	an	adjustment	to	the	new	privacy	setting.

Asset	Collections
When	permission	is	granted,	the	app	can	now	access	the	photo	library	to	display	moments,	albums,
and	images.	On	the	Photos	tab	in	the	sample	app,	the	ICFPhotosCollectionViewController
will	get	a	list	of	the	moments	represented	on	the	device	with	an	instance	of	PHFetchResult	in	the
loadAssetCollectionsForDisplay	method:
Click	here	to	view	code	image

PHFetchOptions	*options	=	[[PHFetchOptions	alloc]	init];
options.sortDescriptors	=	@[[NSSortDescriptor	sortDescriptorWithKey:@"startDate"
																																																										ascending:YES]];

self.collectionResult	=	[PHAssetCollection
fetchAssetCollectionsWithType:PHAssetCollectionTypeMoment
																																										subtype:PHAssetCollectionSubtypeAny
																																										options:options];

PHFetchResult	can	be	used	for	both	asset	collections	and	assets.	It	acts	like	an	NSArray,
exposing	methods	such	as	objectAtIndex:	and	indexOfObject:,	but	it	is	smart	enough	to
pull	information	about	the	results	only	when	necessary.	The	method	will	then	iterate	over	the
moments	from	the	fetch	request,	and	store	a	fetch	result	instance	in	the	property
collectionAssetResults	to	get	access	to	the	assets	in	each	moment.
Click	here	to	view	code	image

self.collectionAssetResults	=
[[NSMutableArray	alloc]	initWithCapacity:self.collectionResult.count];

for	(PHAssetCollection	*collection	in	self.collectionResult)	{
				PHFetchResult	*result	=	[PHAsset	fetchAssetsInAssetCollection:collection
																																																										options:nil];
				[self.collectionAssetResults	insertObject:result	atIndex:[self.collectionResult
indexOfObject:collection]];
}

With	the	information	available	about	the	moments	and	assets,	the	view	controller	can	now	populate	a
collection	view,	showing	a	section	header	for	each	moment,	and	associated	images	in	each	section.
For	more	information	on	collection	views,	refer	to	Chapter	21,	“Collection	Views.”	Determining	the
number	of	sections	in	the	collection	view	is	simple;	the	answer	is	just	the	count	from	the	instance	of
PHFetchResult	representing	moments:
Click	here	to	view	code	image

-	(NSInteger)numberOfSectionsInCollectionView:(UICollectionView	*)collectionView	{
				return	self.collectionResult.count;
}

Determining	the	number	of	items	in	a	section	requires	looking	up	the	fetch	request	for	the	assets	in
that	section,	and	getting	the	count	of	results	from	it.
Click	here	to	view	code	image

-	(NSInteger)collectionView:(UICollectionView	*)collectionView
					numberOfItemsInSection:(NSInteger)section	{

				PHFetchResult	*result	=	(PHFetchResult	*)[self.collectionAssetResults
objectAtIndex:section];

				return	result.count;
}

To	display	the	dates	and	location	information	in	the	section	header	for	a	moment,	the
collectionView:viewForSupplementaryElementOfKind:atIndexPath:	method	gets
the	instance	of	PHAssetCollection	representing	the	moment	for	the	section	indicated	by	the
provided	index	path:
Click	here	to	view	code	image

PHAssetCollection	*moment	=	[self.collectionResult	objectAtIndex:indexPath.section];

[headerView.titleLabel	setText:	[NSString	stringWithFormat:@"%@	-	%@",
[self.momentDateFormatter	stringFromDate:moment.startDate],	[self.momentDateFormatter
stringFromDate:moment.endDate]]];

[headerView.subTitleLabel	setText:moment.localizedTitle];

The	method	can	then	update	the	section	header	using	the	startDate,	endDate,	and
localizedTitle	properties	from	the	PHAssetCollection	instance	to	display	the	date	range
of	the	moment	and	the	location	of	the	moment	(see	Figure	24.3).

Figure	24.3	Moment	Asset	Collections	in	the	PhotoLibrary	sample	app.

The	Albums	tab	in	the	sample	app	displays	any	custom	albums	the	user	has	added	to	the	photo	library
in	a	table	view,	as	shown	in	Figure	24.4.	The	list	of	albums	is	retrieved	with	a	fetch	result:
Click	here	to	view	code	image

self.albumsFetchResult	=	[PHAssetCollection
fetchAssetCollectionsWithType:PHAssetCollectionTypeAlbum
																																										subtype:PHAssetCollectionSubtypeAny
																																										options:nil];

Figure	24.4	Albums	in	the	PhotoLibrary	sample	app.

For	each	album	in	the	table	view,	the	localizedTitle	is	used	to	display	the	album	name,	and	the
count	of	assets	in	the	album	is	determined	using	the	estimatedAssetCount	from	the	asset
collection.
Click	here	to	view	code	image

PHAssetCollection	*album	=	[self.albumsFetchResult	objectAtIndex:indexPath.row];

[cell.textLabel	setText:album.localizedTitle];

if	(album.estimatedAssetCount	!=	NSNotFound)
{
				NSString	*albumPlural	=	album.estimatedAssetCount	>	1	?	@"s"	:	@"";

				NSString	*subTitle	=	[NSString	stringWithFormat:@"%lu	Photo%@",	(unsigned
long)album.estimatedAssetCount,	albumPlural];

				[cell.detailTextLabel	setText:subTitle];

}	else
{
				[cell.detailTextLabel	setText:@"--	empty	--"];
}

When	the	user	touches	an	album,	the	sample	app	will	display	all	the	assets	for	that	album.	Because	the
sample	project	uses	storyboarding	for	navigation,	a	segue	is	set	up	from	the	table	cell	to	the
ICFAlbumCollectionViewController.	The	segue	is	named	showAlbum.	In
ICFAlbumCollectionViewController,	the	prepareForSegue:sender:	method	sets	up
the	destination	view	controller.
Click	here	to	view	code	image

-	(void)prepareForSegue:(UIStoryboardSegue	*)segue	sender:(id)sender	{
				if	([segue.identifier	isEqualToString:@"showAlbum"])
				{

								ICFAlbumCollectionViewController	*controller	=	(ICFAlbumCollectionViewController
*)segue.destinationViewController;

								NSIndexPath	*tappedPath	=	[self.tableView	indexPathForSelectedRow];

								PHAssetCollection	*tappedCollection	=	[self.albumsFetchResult
objectAtIndex:tappedPath.row];

								[controller	setSelectedCollection:tappedCollection];
				}
}

The	prepareForSegue:sender:	method	first	checks	that	the	segue’s	identifier	is	equal	to
showAlbum,	since	this	method	will	be	called	for	any	segue	set	up	for
ICFAlbumCollectionViewController.	Then,	it	determines	the	index	path	for	the	tapped	row
in	the	table,	and	uses	the	row	to	get	the	associated	asset	collection	from	the	fetch	result.	It	sets	the
selected	asset	collection	in	the	destination	view	controller,	which	will	be	used	to	display	the	assets	in
the	collection.

Assets
In	the	ICFPhotosCollectionViewController	an	asset	needs	to	be	accessed	for	each	cell	in
the	collection	view	in	order	to	display	the	asset’s	image.	In
collectionView:cellForItemAtIndexPath:	the	method	will	use	the	section	of	the
indexPath	to	determine	which	fetch	result	to	look	in	for	the	asset,	and	then	the	row	of	the
indexPath	to	get	the	specific	asset.
Click	here	to	view	code	image

PHFetchResult	*result	=	self.collectionAssetResults[indexPath.section];
PHAsset	*asset	=	result[indexPath.row];

The	asset	is	metadata	describing	the	image.	An	image	representing	the	asset	in	a	desired	size	can	be
requested	from	the	photo	library.	Since	an	image	of	the	right	size	to	display	might	not	be	available
immediately,	it	might	be	necessary	to	resize	a	local	version	or	download	a	version	from	iCloud.
PHImageManager	is	designed	to	meet	this	need,	and	provide	an	image	asynchronously	to	match
what	is	needed	for	display.	To	request	an	image,	provide	a	target	size,	a	content	mode	(see	Chapter
20,	“Working	with	Images	and	Filters,”	for	more	information	on	content	modes),	options	for	the
image	fetching	(PHImageRequestOptions),	and	a	result	handler	block.	The	method	will	return	a

PHImageRequestID,	which	can	be	used	to	cancel	the	request.
Click	here	to	view	code	image

__weak	ICFPhotosCollectionViewCell	*weakCell	=	cell;
PHImageManager	*imageManager	=	[PHImageManager	defaultManager];

PHImageRequestID	requestID	=
[imageManager	requestImageForAsset:asset
																								targetSize:CGSizeMake(50,	50)
																							contentMode:PHImageContentModeAspectFill
																											options:nil
																					resultHandler:^(UIImage	*result,	NSDictionary	*info){
																									[weakCell.assetImageView	setImage:result];
																									[weakCell	setNeedsLayout];
																					}];

cell.requestID	=	requestID;

The	image	manager	will	return	a	low-quality	approximation	of	the	image	right	away	to	the
resultHandler	block	if	a	local	version	is	not	available	to	the	result	handler	(and	will	note	that	the
image	is	low	quality	by	including	the	PHImageResultIsDegradedKey	in	the	info	dictionary),
and	will	call	the	result	handler	again	with	a	higher-quality	image	when	it	is	available.	The	result
handler	will	be	executed	on	the	same	queue	that	it	was	called	on,	so	it	is	safe	to	update	the	user
interface	without	switching	to	the	main	queue	if	the	request	is	made	from	the	main	queue.	If	the
request	is	issued	from	a	background	queue,	the	synchronous	property	of
PHImageRequestOptions	can	be	set	to	YES	to	block	the	background	queue	until	the	request
returns.
If	the	cell	is	scrolled	off	the	screen	before	the	image	request	can	be	fulfilled,	the	request	can	be
cancelled	in	the	prepareForReuse	method	of	the	cell:
Click	here	to	view	code	image

-	(void)prepareForReuse	{
				self.assetImageView.image	=	nil;

				PHImageManager	*imageManager	=	[PHImageManager	defaultManager];
				[imageManager	cancelImageRequest:self.requestID];
}

PHAsset	instances	are	thread-safe,	and	can	be	passed	around	as	needed.	If	the	user	taps	a	cell,	a
segue	will	fire	to	present	a	full-screen	view	of	the	asset.
Click	here	to	view	code	image

-	(void)prepareForSegue:(UIStoryboardSegue	*)segue	sender:(id)sender	{
				if	([segue.identifier	isEqualToString:@"showImage"])	{

								ICFAssetViewController	*controller	=	(ICFAssetViewController
*)segue.destinationViewController;

								NSIndexPath	*indexPath	=	[self.collectionView	indexPathsForSelectedItems][0];
								PHFetchResult	*result	=	self.collectionAssetResults[indexPath.section];
								controller.asset	=	result[indexPath.row];
				}
}

Then,	the	detail	view	(ICFAssetViewController)	can	request	a	full-screen	image	from	the
PHImageManager	for	display.

Click	here	to	view	code	image

PHImageManager	*imageManager	=	[PHImageManager	defaultManager];
[imageManager	requestImageForAsset:self.asset
																								targetSize:self.assetImageView.bounds.size
																							contentMode:PHImageContentModeAspectFit
																											options:nil
																					resultHandler:^(UIImage	*result,	NSDictionary	*info){
																									[self.assetImageView	setImage:result];
																									[self.assetImageView	setNeedsLayout];
																					}];

Changes	in	the	Photo	Library
The	photo	library	supports	making	changes	to	assets,	asset	collections,	and	collection	lists	in	a
robust,	thread-safe	manner.	This	includes	adding,	changing,	or	removing	objects	in	the	photo	library.
For	assets,	this	can	include	not	just	adding	a	new	asset	or	removing	an	existing	asset,	but	also
applying	edits	and	filters	to	existing	changes.	The	sample	app	illustrates	adding	and	removing	asset
collections	and	assets;	the	same	general	approach	applies	to	all	photo	library	changes.	To	make	a
change	to	the	photo	library,	an	app	needs	to	have	the	photo	library	object	perform	a	change	request,
and	then	provide	a	listener	to	handle	the	changes	after	they	are	completed.

Asset	Collection	Changes
In	the	Albums	tab,	there	is	an	add	(+)	button	in	the	navigation	bar.	Tapping	the	add	button	will	ask	the
user	for	the	name	of	a	new	album,	as	shown	in	Figure	24.5.

Figure	24.5	Add	Album	in	the	PhotoLibrary	sample	app.

If	the	user	selects	Add	Album,	the	action	handler	attempts	to	create	an	album	with	the	name	provided
in	the	alert	view.
Click	here	to	view	code	image

UITextField	*albumNameTextField	=	addAlbumAlertController.textFields.firstObject;
NSString	*newAlbumName	=	albumNameTextField.text;
[[PHPhotoLibrary	sharedPhotoLibrary]	performChanges:^{
				[PHAssetCollectionChangeRequest

creationRequestForAssetCollectionWithTitle:newAlbumName];
}	completionHandler:^(BOOL	success,	NSError	*error)	{
				if	(!success)	{
								NSLog(@"Error	encountered	adding	album:	%@",error.localizedDescription);
				}
}];

To	add	a	new	album,	a	change	request	is	needed.	There	are	change	requests	to	handle	creating	new
albums,	changing	existing	albums,	and	deleting	albums.	The	change	request	is	passed	to	the	photo
library	in	a	performChanges	block,	which	will	then	respond	with	a	completionHandler
indicating	whether	the	changes	were	successfully	made	to	the	library.	Similarly,	the	Edit	button	will
enable	the	user	to	delete	an	album	from	the	list	of	albums	shown	in	the	table	view.	In	the
tableView:commitEditingStyle:forRowAtIndexPath:	method,	the	album	for	the
selected	row	will	be	deleted.
Click	here	to	view	code	image

if	(editingStyle	==	UITableViewCellEditingStyleDelete)	{

				PHAssetCollection	*albumToBeDeleted	=	[self.albumsFetchResult
objectAtIndex:indexPath.row];

				[[PHPhotoLibrary	sharedPhotoLibrary]	performChanges:^{
								[PHAssetCollectionChangeRequest	deleteAssetCollections:@[albumToBeDeleted]];
				}	completionHandler:^(BOOL	success,	NSError	*error)	{
								if	(!success)	{
												NSLog(@"Error	encountered	adding	album:	%@",error.localizedDescription);
								}
				}];
}

Note	that	the	completion	handler	does	not	provide	any	information	about	the	actual	changes
completed;	for	that	information,	a	view	controller	needs	to	register	as	an	observer	for	the
PHPhotoLibraryChangeObserver	protocol.
Click	here	to	view	code	image

[[PHPhotoLibrary	sharedPhotoLibrary]	registerChangeObserver:self];

Then,	the	photoLibraryDidChange	method	needs	to	be	implemented.	That	method	will	receive
an	instance	of	PHChange,	which	can	tell	whether	there	are	changes	that	affect	any	given	fetch	result,
and	if	so	can	provide	all	the	specific	changes.	For	the	album	view,	the	method	checks	to	see	whether
any	of	the	albums	in	the	fetch	result	are	affected.
Click	here	to	view	code	image

PHFetchResultChangeDetails	*changesToFetchResult	=	[changeInstance
changeDetailsForFetchResult:self.albumsFetchResult];

If	the	fetch	results	were	affected,	they	need	to	be	updated	to	reflect	the	new	state	of	the	photo	library.
PHFetchResultChangeDetails	has	a	simple	way	to	accomplish	this	task;	it	provides	both	the
before	and	the	after	views	of	the	fetch	result.
Click	here	to	view	code	image

self.albumsFetchResult	=	[changesToFetchResult	fetchResultAfterChanges];

Now	that	the	fetch	result	is	up-to-date,	the	change	details	can	be	used	to	update	the	table	view	so	that	it
matches	the	fetch	result.	All	the	details	needed	to	easily	update	a	table	view	or	collection	view	are
provided.

Click	here	to	view	code	image

if	([changesToFetchResult	hasIncrementalChanges])
{
				[self.tableView	beginUpdates];

				[[changesToFetchResult	removedIndexes]	enumerateIndexesUsingBlock:^(NSUInteger	idx,
BOOL	*stop)	{

								NSIndexPath	*indexPathToRemove	=	[NSIndexPath	indexPathForRow:idx	inSection:0];

								[self.tableView	deleteRowsAtIndexPaths:@[indexPathToRemove]
																														withRowAnimation:UITableViewRowAnimationAutomatic];
				}];

				[[changesToFetchResult	insertedIndexes]	enumerateIndexesUsingBlock:^(NSUInteger	idx,
BOOL	*stop)	{

								NSIndexPath	*indexPathToInsert	=	[NSIndexPath	indexPathForRow:idx	inSection:0];

								[self.tableView	insertRowsAtIndexPaths:@[indexPathToInsert]
																														withRowAnimation:UITableViewRowAnimationAutomatic];
				}];

				[self.tableView	endUpdates];
}

The	method	checks	to	see	whether	the	change	details	include	incremental	changes.	If	so,	the	method
iterates	over	the	removed	indexes,	creates	an	index	path	for	each	removed	index,	and	deletes	it	from
the	table	view	with	animation.	Next,	the	method	iterates	over	the	inserted	indexes,	creates	an	index
path	for	each	added	row,	and	inserts	them	into	the	table	view	with	animation.	The	indexes	are
provided	in	the	change	details	to	support	this	pattern;	note	that	the	row	deletions	must	take	place	first,
or	the	indexes	for	additions	and	changes	will	not	be	correct.	After	the	changes	are	complete,	the	table
view	animates	all	the	changes	and	reflects	the	new	state	of	the	photo	library.

Asset	Changes
In	the	Albums	tab	in	the	sample	app,	select	an	album	to	view	the	assets	in	that	album.	The	add	button	in
the	navigation	bar	will	initiate	the	process	of	adding	an	image	to	the	photo	library,	and	adding	that
new	image	to	the	selected	album.	Tapping	the	add	button	will	present	a
UIImagePickerController	for	the	camera,	so	the	sample	app	must	be	run	on	a	device	to	test
this	feature.	Note	that	an	image	can	be	added	to	the	photo	library	from	any	external	source;	the	image
picker	is	just	a	convenient	way	to	demonstrate	the	capability.
When	the	user	takes	a	picture	from	the	camera,	the	image	is	delivered	to	the	picker ’s	delegate	method.
Click	here	to	view	code	image

UIImage	*selectedImage	=	[info	objectForKey:UIImagePickerControllerOriginalImage];

To	add	the	image	to	the	photo	library,	a	change	request	needs	to	be	passed	to	the	photo	library	in	the
performChanges	block:
Click	here	to	view	code	image

[[PHPhotoLibrary	sharedPhotoLibrary]	performChanges:^{

				PHAssetChangeRequest	*addImageRequest	=	[PHAssetChangeRequest
creationRequestForAssetFromImage:selectedImage];

				...
}	completionHandler:^(BOOL	success,	NSError	*error)	{
				if	(!success)	{
								NSLog(@"Error	creating	new	asset:	%@",	error.localizedDescription);
				}
}];

Because	the	PHAsset	representing	the	newly	added	image	will	not	be	available	until	the
photoLibraryDidChange:	method	is	called,	how	can	the	new	image	be	added	to	the	album?	The
answer	is	a	placeholder	object.	The	photo	library	can	provide	a	placeholder	object	for	new	objects
created	in	a	change	request	so	that	those	new	objects	can	be	used	in	the	same	change	request.
Click	here	to	view	code	image

PHObjectPlaceholder	*addedImagePlaceholder	=	[addImageRequest
placeholderForCreatedAsset];

The	placeholder	object	can	then	be	used	to	add	the	asset	that	is	going	to	be	created	to	the	album:
Click	here	to	view	code	image

PHAssetCollectionChangeRequest	*addImageToAlbum	=	[PHAssetCollectionChangeRequest
changeRequestForAssetCollection:self.selectedCollection];

[addImageToAlbum	addAssets:@[addedImagePlaceholder]];

When	the	photo	library	has	completed	the	changes,	it	calls	the	photoLibraryDidChange:
delegate	method	on	an	arbitrary	queue.	After	switching	to	the	main	queue,	the	method	will	check
whether	there	are	changes	to	the	fetch	result	for	the	assets	in	the	album.
Click	here	to	view	code	image

PHFetchResultChangeDetails	*changesToFetchResult	=	[changeInstance
changeDetailsForFetchResult:self.assetResult];

If	there	are	changes,	the	method	updates	the	fetch	result	and	the	table	view:
Click	here	to	view	code	image

if	(changesToFetchResult)
{
				self.assetResult	=	[changesToFetchResult	fetchResultAfterChanges];

				if	([changesToFetchResult	hasIncrementalChanges])	{
								NSMutableArray	*indexPathsToInsert	=	[[NSMutableArray	alloc]	init];

								[[changesToFetchResult	insertedIndexes]	enumerateIndexesUsingBlock:^(NSUInteger
idx,	BOOL	*stop)	{

												NSIndexPath	*indexPathToInsert	=	[NSIndexPath	indexPathForRow:idx
inSection:0];

												[indexPathsToInsert	addObject:indexPathToInsert];

								}];

								[self.collectionView	insertItemsAtIndexPaths:indexPathsToInsert];
				}
}

The	new	cell	in	the	collection	view	will	be	added	with	animation,	and	the	new	image	will	be
displayed.
When	the	user	taps	on	an	image	in	the	album	view	or	in	the	moments	view,	the	image	will	be

displayed	in	a	full-screen	format	in	the	ICFAssetViewController.	There	is	a	delete	button	in
that	view	that	allows	the	user	to	delete	an	asset	from	the	photo	library.
Click	here	to	view	code	image

	[[PHPhotoLibrary	sharedPhotoLibrary]	performChanges:^{
				[PHAssetChangeRequest	deleteAssets:@[self.asset]];
}	completionHandler:^(BOOL	success,	NSError	*error)	{
				if	(success)	{
								[self.navigationController	popViewControllerAnimated:YES];
				}	else	{
								NSLog(@"Error	deleting	asset:	%@",error.localizedDescription);
				}
}];

When	the	user	taps	the	Delete	button	and	the	delete	asset	change	request	is	performed,	the	photo
library	will	present	a	confirmation	alert,	as	shown	in	Figure	24.6.	If	the	user	selects	Don’t	Allow,	no
action	will	be	taken.	If	the	user	selects	Delete,	the	asset	will	be	deleted	from	the	photo	library,	and	any
registered	listeners	will	be	notified.

Figure	24.6	Deleting	a	photo	in	the	PhotoLibrary	sample	app.

Dealing	with	Photo	Stream
Photo	Stream	is	a	photo-syncing	feature	that	is	part	of	Apple’s	iCloud	service.	When	an	iCloud	user
adds	a	photo	to	a	Photo	Stream–enabled	device,	that	photo	is	instantly	synced	to	all	the	user ’s	other
Photo	Stream–enabled	devices.	For	example,	if	the	user	has	an	iPhone,	an	iPad,	and	a	Mac,	and	takes	a
photo	on	the	iPhone,	the	photo	will	be	visible	immediately	on	the	iPad	(in	the	Photos	app)	and	the	Mac
(in	iPhoto	or	Aperture)	with	no	additional	effort	required.
To	use	Photo	Stream,	the	user	needs	to	have	an	iCloud	account.	An	iCloud	account	can	be	created	free
on	an	iOS	device.	Visit	Settings,	iCloud.	Create	a	new	account	or	enter	iCloud	account	information.
After	the	iCloud	account	information	is	entered	on	the	device,	Photo	Stream	can	be	turned	on	(see
Figure	24.7).

Figure	24.7	Settings:	iCloud	Photos.

When	Photo	Stream	is	enabled,	moments	are	synced	across	devices	automatically.	No	additional	code
is	required	in	the	sample	app	to	display	or	handle	moments	from	other	devices.	When	requesting
images	for	display	from	PHImageManager,	options	can	be	specified	to	either	explicitly	allow	or
prevent	network	access	as	desired.

Summary
This	chapter	explained	how	to	access	the	photo	library	using	the	Photos	framework	introduced	in	iOS
8.	It	detailed	the	classes	available	to	access	the	photo	library,	and	showed	how	to	handle	permissions
for	the	photo	library.	It	covered	how	to	work	with	the	Photos	framework	classes	to	display	images
using	the	same	organizational	structures	that	Photos.app	uses.	This	chapter	discussed	getting	properly
sized	images	asynchronously	and	over	the	network.	Next,	the	chapter	explored	details	of	changing	the
photo	library,	including	adding	and	deleting	asset	collections,	and	adding	and	deleting	assets.	Finally,
this	chapter	explained	how	to	enable	iCloud	Photo	Stream	to	include	remote	photos	in	the	photo
library.

25.	Passbook	and	PassKit

With	iOS	6,	Apple	introduced	a	new	standard	app	called	Passbook,	which	is	a	place	to	keep	and	have
easy	access	to	a	user ’s	event	tickets,	traveling	tickets,	coupons,	and	store	cards	(like	gift	cards,
prepaid	cards,	or	rewards	cards).	Passbook	is	currently	available	only	on	iPhone	and	iPod	touch
devices,	not	on	iPad	devices.
Passbook	has	special	access	to	the	lock	screen.	If	a	user	is	within	a	geofence,	defined	by	a	location	or
set	of	locations	listed	in	the	pass,	on	a	relevant	date	specified	in	a	pass,	the	pass	will	be	displayed	on
the	lock	screen	so	that	the	user	can	slide	and	open	it	directly	in	the	Passbook	app.
The	Passbook	app	displays	passes	like	a	stack	so	that	the	user	can	see	the	top	part	of	each	pass.	The
top	section	contains	a	logo	and	colored	background,	and	can	contain	some	custom	information.
When	a	user	taps	on	the	top	part	of	a	pass,	the	pass	will	expand	to	display	the	entire	pass,	which	can
contain	several	areas	of	custom	fields,	a	background	graphic,	and	a	barcode.	The	user	can	delete	a
pass	when	it	is	no	longer	needed.	The	Passbook	app	has	support	built	in	to	leverage	a	Web	service	and
push	notifications	to	handle	seamless	updates	to	a	pass	already	in	Passbook.
Using	Passbook	requires	building	a	“pass”	in	a	prescribed	format	and	delivering	the	pass	to	a	user.
The	pass	needs	to	be	built	somewhere	other	than	the	user ’s	device,	typically	on	a	server,	since	it	is	a
signed	archive	of	files	including	icons	and	logos	for	display,	a	file	with	information	about	the	pass,	a
signature	file,	and	a	manifest.
There	are	a	few	options	available	to	deliver	the	pass	to	the	user.	Mail.app	and	Safari.app	can
recognize	a	pass	and	import	it	into	Passbook,	or	a	custom	app	can	utilize	PassKit	to	add	a	new	pass	or
update	an	existing	pass.	For	testing	passes,	the	iOS	Simulator	can	display	a	pass	when	it	is	dropped
onto	it.
PassKit	is	part	of	the	iOS	SDK	that	can	be	used	by	custom	apps	to	import	or	update	a	pass	in
Passbook,	check	whether	a	pass	is	new	or	updated,	and	display	some	information	about	existing
passes.
This	chapter	describes	the	design	considerations	relevant	to	different	pass	types,	and	how	to	build	and
test	passes	for	Passbook.	It	demonstrates	how	to	use	PassKit	to	interact	with	passes	from	an	app.
Finally,	it	describes	how	Passbook	can	handle	updates	from	a	Web	service.

The	Sample	App
The	sample	app	is	called	Pass	Test.	It	includes	pre-signed	sample	passes	for	each	pass	type	(see
Figure	25.1).	The	user	can	add	a	new	pass	to	Passbook	in	the	app	using	PassKit,	can	simulate	updating
an	existing	pass	with	new	information,	can	view	the	pass	directly	in	Passbook,	and	can	remove	the
pass	from	Passbook	all	from	the	app.	The	sample	app	is	covered	in	more	detail	in	the	section
“Interacting	with	Passes	in	an	App.”

Figure	25.1	Pass	Test	sample	app.

Designing	the	Pass
Before	a	pass	can	be	sent	to	any	users,	the	pass	needs	to	be	designed	and	configured.	The	pass
provider	needs	to	determine	what	type	of	pass	should	be	used	and	how	the	pass	should	look.	This
includes	figuring	out	what	fields	of	information	should	be	presented	on	the	pass,	where	the	fields
should	be	placed,	whether	a	barcode	should	be	used,	and	what	information	will	be	provided	to
determine	whether	the	pass	should	be	displayed	on	the	lock	screen.	An	individual	pass	is	actually	a
signed	bundle	of	files,	including	some	images,	a	JSON	file	called	pass.json	with	information
about	the	pass	and	display	information,	and	a	signature	and	manifest.

Pass	Types
Apple	has	provided	several	standard	pass	types,	each	of	which	can	be	customized:

	Boarding	Pass:	A	boarding	pass	is	intended	to	cover	travel	situations,	such	as	an	airline
boarding	pass,	a	train	ticket,	a	bus	pass,	a	shuttle	voucher,	or	any	other	ticket	required	to	board	a
conveyance	with	a	defined	departure	location	and	destination.
	Coupon:	A	coupon	is	a	pass	that	handles	a	discount	for	a	vendor.	The	coupon	is	designed	to	be
flexible	enough	to	handle	a	wide	variety	of	permutations,	such	as	percentage	or	dollar-off
discounts,	or	discounts	specific	to	a	product	or	group	of	products,	or	no	product	at	all,	at	a

specific	location,	a	group	of	locations,	or	any	location	for	a	vendor.
	Event:	An	event	pass	is	a	ticket	for	entry	to	any	event,	such	as	a	theater	production,	movie,
sporting	event,	or	special	museum	event—anything	with	limited	access	granted	by	a	ticket.
	Store	Card:	A	store	card	pass	is	similar	to	a	gift	card,	in	that	the	user	can	buy	a	preset	amount
of	money	on	the	pass,	display	the	pass	to	the	vendor	for	payment,	and	have	the	payment	amount
decremented	from	the	pass.	The	vendor	might	allow	refilling	the	pass	or	might	require	the
purchase	of	a	new	pass	when	the	amount	has	been	fully	depleted.	Store	cards	can	also	be	used	as
reward	or	loyalty	cards,	in	which	points	are	collected	with	each	purchase	until	a	threshold	is
reached	and	a	reward	is	given.
	Generic:	A	generic	pass	can	be	used	for	anything	that	does	not	fit	into	the	prebuilt	pass	types,	or
where	the	prebuilt	pass	types	are	not	sufficient.	Generic	passes	include	a	thumbnail	image	so
that	they	can	be	used	for	an	organization-specific	ID	card	like	a	gym	membership	card.

Each	pass	type	has	a	specialized	layout	to	be	considered	when	the	pass	is	being	designed.	Passes	are
divided	into	sections	where	fields	of	data	can	be	presented:	header,	primary,	secondary,	auxiliary,	and
back.	Passes	can	also	use	custom	images	in	some	instances.	The	following	sections	describe	the
layouts	for	each	pass	type.

Pass	Layout—Boarding	Pass
A	boarding	pass	has	the	layout	shown	in	Figure	25.2.

Figure	25.2	Boarding	pass	layout.

For	a	boarding	pass,	the	departure	location	and	destination	are	typically	specified	as	the	primary
fields	(a	boarding	pass	can	have	up	to	two	primary	fields).	Secondary	and	auxiliary	fields	are	laid	out
beneath	the	primary	fields.	The	footer	image	is	optional.

Pass	Layout—Coupon
A	coupon	pass	has	the	layout	shown	in	Figure	25.3.

Figure	25.3	Coupon	pass	layout.

A	coupon	can	have	only	one	primary	field,	and	can	optionally	display	a	strip	image	behind	the
primary	field.	A	coupon	can	have	up	to	four	total	secondary	and	auxiliary	fields.

Pass	Layout—Event
An	event	pass	has	the	layout	shown	in	Figure	25.4.

Figure	25.4	Event	pass	layout.

An	event	pass	can	have	only	one	primary	field,	and	can	optionally	display	a	background	image
behind	all	the	fields	and	the	barcode.	If	provided,	the	background	image	is	automatically	cropped	and
blurred.	An	event	can	also	optionally	display	a	thumbnail	image	to	the	right	of	the	primary	and

secondary	fields.

Pass	Layout—Generic
A	generic	pass	has	the	layout	shown	in	Figure	25.5.

Figure	25.5	Generic	pass	layout.

A	generic	pass	can	have	only	one	primary	field,	and	can	optionally	display	a	thumbnail	image	to	the
right	of	the	primary	field.	Secondary	and	auxiliary	fields	are	presented	below	the	primary	field.

Pass	Layout—Store	Card
A	store	card	pass	has	the	layout	shown	in	Figure	25.6.

Figure	25.6	Store	card	pass	layout.

A	store	card	can	have	only	one	primary	field,	and	can	optionally	display	a	strip	image	behind	the
primary	field.	A	store	card	can	have	up	to	four	total	secondary	and	auxiliary	fields,	presented	below
the	primary	field.

Pass	Presentation
Passes	are	presented	to	users	in	several	situations	outside	Passbook,	and	it	is	important	to	understand
which	parts	of	the	pass	can	be	customized	to	handle	that	presentation.	When	a	pass	is	distributed	to	a
user	via	email,	it	looks	like	the	screenshot	displayed	in	Figure	25.7.

Figure	25.7	Passes	distributed	in	email.

The	image	presented	is	icon.png	from	the	pass	bundle.	The	top	line	of	text	in	blue	is	derived
automatically	from	the	type	of	pass	as	specified	in	the	pass.json	file,	and	the	bottom	line	of	text	is
the	organization	name	specified	in	the	pass.json	file.
When	the	device	is	near	a	relevant	location	specified	in	the	pass,	or	the	date	is	a	relevant	date
specified	in	the	pass,	the	pass	is	visible	on	the	device’s	lock	screen	much	like	a	push	notification,	as
shown	in	Figure	25.8.	More	information	about	this	is	available	in	the	section	“Building	the	Pass,”	in
the	“Pass	Relevance	Information”	subsection.

Figure	25.8	Pass	displayed	on	the	lock	screen.

The	icon	image	presented	on	the	left	of	the	notification	is	icon.png	in	the	pass	bundle.	The	top	line
of	text	is	the	organization	name	specified	in	the	pass.json	file,	and	the	bottom	line	of	text	is	the
relevantText	specified	in	the	pass.json	file,	with	the	relevant	locations.

Building	the	Pass
A	pass	will	typically	be	built	by	an	automated	server.	This	section	and	the	next	section	of	the	chapter
describe	building	a	pass	manually	so	that	the	steps	necessary	are	clear;	automating	the	process	would
depend	on	the	choice	of	server	environment	and	is	left	as	an	exercise	for	the	reader.
Several	steps	are	required	to	build	a	pass.	Apple	recommends	creating	a	folder	to	hold	all	the	files
required	for	an	individual	pass,	for	example,	a	folder	called	Boarding	Pass.raw.
Place	all	the	required	and	desired	images	in	the	pass	folder.	Passes	support	retina	and	nonretina
versions	of	images	using	standard	“@2x”	and	“@3x”	naming	syntax.	The	images	that	need	to	be
provided	are	these:

	icon.png	(required):	A	29×29-pixel	PNG	image	(and	retina	versions)	will	be	displayed	in
any	PassKit-capable	app	(such	as	Mail.app	or	Safari.app)	when	the	app	has	detected	a	pass	and	is
displaying	the	pass	as	something	that	can	be	used.	The	image	is	also	displayed	for	the	pass	on
the	lock	screen.	The	icon	is	automatically	given	rounded	edges	and	a	shine	effect	like	an	app
icon.
	logo.png	(required):	A	logo	PNG	image,	with	maximum	dimensions	of	160×50	pixels	(and
retina	versions),	is	placed	on	the	header	of	the	pass	in	Passbook.	Apple	recommends	using	only
an	image	in	the	logo,	and	recommends	avoiding	any	stylized	text	in	the	logo.	When	the	logo	is
presented,	it	will	be	presented	with	the	standardized	header	(with	customizable	text)	that	will
look	uniform	in	Passbook.app.
	background.png	(optional,	available	only	for	event	passes):	A	PNG	image	with	maximum
dimensions	of	180×220	pixels	(and	retina	versions)	can	be	specified	for	the	entire	background
of	the	front	of	the	pass.	This	image	is	automatically	cropped	and	blurred.
	strip.png	(optional,	available	only	for	coupon,	event,	and	store	card	passes):	A	PNG
image	(and	retina	versions)	can	be	specified	to	go	behind	the	primary	fields	on	the	pass.	The
strip	image	has	shine	applied	by	default,	which	can	be	turned	off.	Maximum	dimensions	are
312×84	pixels	for	Event	passes,	312×110	pixels	for	Coupons	and	Store	Card	passes	with	a
square	barcode,	and	312×123	pixels	for	Coupons	and	Store	Cards	with	a	rectangular	barcode.
	thumbnail.png	(optional,	available	only	on	event	and	generic	passes):	A	PNG	image	(and
retina	versions)	can	be	displayed	on	the	front	of	the	pass.	Apple	recommends	this	for	a	person’s
image	for	a	membership	card,	but	it	could	also	be	used	as	a	membership	level	indicator	or
graphical	way	of	presenting	pass	data.
	footer.png	(optional,	available	only	for	boarding	passes):	A	PNG	image	(and	retina
versions)	can	be	specified	to	go	just	above	the	barcode	on	the	pass.

The	majority	of	work	building	an	individual	pass	is	in	creating	the	pass.json	file.	This	file	defines
all	the	information	for	the	pass,	including	unique	identification	of	the	pass,	type	of	pass,	relevance
information,	and	layout	and	visual	customizations	for	the	pass	in	a	JSON	hash.	Create	a	plain	text	file
called	pass.json	in	the	pass	folder,	and	prepare	it	with	all	the	desired	information	for	a	pass.

Note
Refer	to	Chapter	9,	“Working	with	and	Parsing	JSON,”	for	more	information	on
building	a	JSON	hash.	Note	that	you	can	unzip	any	existing	pass	and	examine	its
pass.json	file	for	a	starting	point.

Basic	Pass	Identification
The	pass	requires	several	fields	to	identify	it,	as	shown	in	the	following	example	from	a	pass:
Click	here	to	view	code	image

"description"	:	"Event	Ticket",
"formatVersion"	:	1,
"passTypeIdentifier"	:	"pass.explore-systems.icfpasstest.event",
"serialNumber"	:	"12345",
"teamIdentifier"	:	"59Q54EHA9F",
"organizationName"	:	"ICF	Concerts",

These	are	the	required	fields:

	description	(required):	A	localizable	string	used	by	iOS	accessibility	to	describe	the	pass.
	formatVersion	(required):	The	Passbook	format	version,	which	must	be	the	number	1
currently.
	passTypeIdentifier	(required):	An	identifier,	provided	by	Apple,	for	the	pass	type.	See
the	section	“Signing	and	Packaging	the	Pass,”	specifically	the	subsection	“Creating	the	Pass
Type	ID,”	for	more	info	on	how	to	obtain	a	Pass	Type	ID.
	serialNumber	(required):	A	unique	identifier	for	the	Pass	Type	ID.	The	combination	of	Pass
Type	ID	and	serial	number	makes	an	individual	pass	unique.
	teamIdentifier	(required):	A	team	identifier	provided	by	Apple	for	the	organization.	It
can	be	found	in	the	Developer	Member	Center,	under	Organization	Profile,	in
Company/Organization	ID.
	organizationName	(required):	A	localizable	string	for	the	name	of	the	organization
providing	the	pass.	This	is	displayed	when	the	pass	is	presented	in	Mail.app	on	an	iOS	6	or
higher	device,	and	when	the	pass	is	displayed	on	the	lock	screen	as	being	relevant.

Pass	Relevance	Information
A	pass	can	optionally	supply	relevance	information,	including	locations	that	are	relevant	to	the	pass,
and	a	date	that	is	relevant	to	the	pass	as	shown	in	this	example:
Click	here	to	view	code	image

"locations"	:	[
		{
				"latitude"	:	39.749484,
				"longitude"	:	-104.917513,
				"relevantText"	:	"...is	nearby,	stop	by	for	20%	off	a	coffee!"
		}
],
"relevantDate"	:	"2014h-10-20T19:30:00-08:00"

The	relevance	fields	that	can	be	used	are	these:
	locations	(optional):	An	array	of	relevant	location	information.	A	location	can	have
latitude,	longitude,	altitude,	and	relevantText.	The	relevantText	will	be
displayed	on	the	lock	screen	when	the	device	is	in	proximity	to	a	relevant	location.	The	size	of
the	radius	used	for	the	proximity	check	depends	on	the	pass	type.
	relevantDate	(optional):	An	ISO	8601	date	expressed	as	a	string.

Different	rules	are	applied	depending	on	the	pass	type:
	Boarding	pass:	Uses	a	wide	radius	for	the	location	check.	Relevant	if	a	location	or	date
matches.
	Coupon:	Uses	a	small	radius	for	the	location	check	and	ignores	the	relevant	date.
	Event:	Uses	a	wide	radius	for	the	location	check.	Relevant	if	a	location	and	date	match.
	Generic:	Uses	a	small	radius	for	the	location	check.	Relevant	if	a	location	and	date	match,	or	if
a	location	matches	and	no	date	is	provided.
	Store	card:	Uses	a	small	radius	for	the	location	check	and	ignores	the	relevant	date.

Barcode	Identification
To	display	a	barcode	on	the	pass,	provide	a	message,	a	barcode	format,	and	a	message	encoding
parameter.	Optionally,	provide	an	alternative	text	parameter	that	will	display	a	human-readable
version	of	the	message.
Click	here	to	view	code	image

"barcode"	:	{
		"message"	:	"123456789",
		"format"	:	"PKBarcodeFormatQR",
		"messageEncoding"	:	"iso-8859-1"
		"altText"	:	"123456789",
},

The	following	fields	are	used	to	display	a	barcode:
	format	(required):	A	string	representing	a	PassKit	constant	specifying	the	barcode	format	the
barcode	should	be	displayed	in.	Passbook	currently	supports	QR	(PKBarcodeFormatQR),
PDF	417	(PKBarcodeFormatPDF417),	and	Aztec	(PKBarcodeFormatAztec).	PDF	417
is	a	rectangular	barcode	format,	whereas	QR	and	Aztec	present	square	barcodes.
	message	(required):	A	string	message	that	will	be	encoded	into	a	barcode.
	messageEncoding	(required):	A	string	representing	the	IANA	character	set	used	to	convert
the	message	from	a	string	to	data.	Typically,	iso-8859-1.
	altText	(optional):	Human-readable	representation	of	the	message	encoded,	which	will	be
displayed	near	the	barcode.

Pass	Visual	Appearance	Information
A	pass	can	customize	the	colors	of	the	background,	field	values,	and	field	labels,	as	well	as	the	text
displayed	with	the	logo.
Click	here	to	view	code	image

"logoText"	:	"ICF	Concerts",
"foregroundColor"	:	"rgb(79,	16,	1)",
"backgroundColor"	:	"rgb(199,	80,	18)",
"labelColor"	:	"rgb(0,0,0)",

These	are	the	fields	that	can	be	used	to	customize	the	appearance	of	the	pass:
	logoText	(optional):	A	localizable	string,	displayed	in	the	header	to	the	right	of	the	logo
image.
	foregroundColor	(optional):	A	string	specifying	a	CSS-style	RGB	color	to	be	used	for	the
field	values	on	the	pass.
	backgroundColor	(optional):	A	string	specifying	a	CSS-style	RGB	color	to	be	used	for	the
background	of	the	pass.	Ignored	on	an	Event	pass	on	which	a	background	image	is	specified.
	labelColor	(optional):	A	string	specifying	a	CSS-style	RGB	color	to	be	used	for	the	field
labels	on	the	pass.	Apple	recommends	using	white	to	give	passes	a	degree	of	uniformity.
	suppressStripShine	(optional):	A	Boolean	(true	or	false)	indicating	whether	to
suppress	applying	shine	effects	to	a	strip	image	(available	only	for	a	couple,	event,	or	store
pass).	The	default	value	is	false,	meaning	shine	effects	are	applied.

Pass	Fields
Pass	fields	are	specified	in	an	element	with	a	key	indicating	the	type	or	style	of	pass;	options	are
boardingPass,	coupon,	eventTicket,	generic,	and	storeCard.	Inside	that	element	are
additional	elements	that	organize	the	fields	on	the	pass.
Click	here	to	view	code	image

"boardingPass"	:	{
		"transitType"	:	"PKTransitTypeAir",
		"headerFields"	:	[
						...
],
		"primaryFields"	:	[
						...
],
		"secondaryFields"	:	[
						...
],
		"auxiliaryFields"	:	[
						...
],
		"backFields"	:	[
						...
]
}

The	fields	that	can	convey	pass-specific	information	are	the	following:
	transitType	(required	for	boarding	pass,	not	allowed	for	other	passes):	Identifies	the
type	of	transit	for	a	boarding	pass,	using	a	string	representing	a	pass	kit	constant.	Choices	are
PKTransitTypeAir,	PKTransitTypeTrain,	PKTransitTypeBus,
PKTransitTypeBoat,	and	PKTransitTypeGeneric.	The	pass	will	display	an	icon
specific	to	the	transit	type.
	headerFields	(optional):	Header	fields	are	displayed	on	the	front	of	the	pass	at	the	very	top.
This	section	is	also	visible	when	the	pass	is	in	a	stack,	so	it	is	important	to	be	picky	about	what
is	shown	here.
	primaryFields	(optional):	Primary	fields	are	displayed	on	the	front	of	the	pass	just	below
the	header,	and	typically	in	a	larger,	more	prominent	font.
	secondaryFields	(optional):	Secondary	fields	are	displayed	on	the	front	of	the	pass	just
below	the	primary	fields,	and	typically	in	a	normal	font	size.
	auxiliaryFields	(optional):	Auxiliary	fields	are	displayed	on	the	front	of	the	pass	just
below	the	secondary	fields,	and	typically	in	a	smaller,	less	prominent	font.
	backFields	(optional)	Back	fields	are	displayed	on	the	back	of	the	pass.

Inside	each	of	the	fields	elements	is	an	array	of	fields.	A	field	at	minimum	requires	a	key,	value,	and
label.
Click	here	to	view	code	image

{
		"key"	:	"seat",
		"label"	:	"Seat",
		"value"	:	"23B",
		"textAlignment"	:	"PKTextAlignmentRight"
}

For	each	field,	the	following	information	can	be	provided:
	key	(required):	The	key	must	be	a	string	identifying	a	field	that	is	unique	within	the	pass,	for
example,	"seat".
	value	(required):	The	value	of	the	field,	for	example,	"23B".	The	value	can	be	a	localizable
string,	a	number,	or	a	date	in	ISO	8601	format.
	label	(optional):	A	localizable	string	label	for	the	field.
	textAlignment	(optional):	A	string	representing	a	pass	kit	text	alignment	constant.	Choices
are	PKTextAlignmentLeft,	PKTextAlignmentCenter,	PKTextAlignmentRight,
PKTextAlignmentJustified,	and	PKTextAlignmentNatural.
	changeMessage	(optional):	A	message	describing	the	change	to	a	field,	for	example,
"Changed	to	%@",	where	%@	is	replaced	with	the	new	value.	This	is	described	in	more	detail
later	in	the	chapter,	in	“Interacting	with	Passes	in	an	App,”	in	the	subsection	“Simulating
Updating	a	Pass.”

For	a	date	and/or	time	field,	a	date	style	and	time	style	can	be	specified.	Both	the	date	and	the	time
style	must	be	specified	in	order	to	display	a	date	or	time.
Click	here	to	view	code	image

{
		"key"	:	"departuretime",
		"label"	:	"Depart",
		"value"	:	"2012-10-7T13:42:00-07:00",
		"dateStyle"	:	"PKDateStyleShort",
		"timeStyle"	:	"PKDateStyleShort",
		"isRelative"	:	false
},

The	fields	needed	to	specify	a	date	and	time	are	these:
	dateStyle	(optional):	Choices	are	PKDateStyleNone	(corresponding	to
NSDateFormatterNoStyle),	PKDateStyleShort	(corresponding	to
NSDateFormatterShortStyle),	PKDateStyleMedium	(corresponding	to
NSDateFormatterMediumStyle),	PKDateStyleLong	(corresponding	to
NSDateFormatterLongStyle),	and	PKDateStyleFull	(corresponding	to
NSDateFormatterFullStyle).
	timeStyle	(optional):	Choices	are	PKDateStyleNone	(corresponding	to
NSDateFormatterNoStyle),	PKDateStyleShort	(corresponding	to
NSDateFormatterShortStyle),	PKDateStyleMedium	(corresponding	to
NSDateFormatterMediumStyle),	PKDateStyleLong	(corresponding	to
NSDateFormatterLongStyle),	and	PKDateStyleFull	(corresponding	to
NSDateFormatterFullStyle).
	isRelative	(optional):	true	displays	as	a	relative	date,	false	as	an	absolute	date.

For	a	number,	a	currency	code	or	number	style	can	be	specified.
{
		"key"	:	"maxValue",
		"label"	:	"Max	Value",
		"value"	:	1.50,
		"currencyCode"	:	"USD"
}

These	are	the	fields	that	specify	a	number	or	currency	style:
	currencyCode	(optional):	An	ISO	4217	currency	code,	which	will	display	the	number	as	the
currency	represented	by	the	code.
	numberStyle	(optional):	Choices	are	PKNumberStyleDecimal,
PKNumberStylePercent,	PKNumberStyleScientific,	and
PKNumberStyleSpellOut.

Tip
When	constructing	a	pass.json	file	during	development,	test	the	JSON	to	confirm	that
it	is	valid.	This	can	prevent	lots	of	trial-and-error	testing	and	frustration.	Visit
www.jslint.com	and	paste	the	JSON	into	the	source	area.	Click	the	JSLint	button	and	the
site	will	validate	the	pasted	JSON	and	highlight	any	errors.	If	it	says,	“JSON:	good,”	the
JSON	is	valid;	otherwise,	an	error	message	will	be	presented.

After	the	pass.json	file	is	ready	and	the	other	graphics	are	available,	the	pass	can	be	signed	and
packaged	for	distribution.

Signing	and	Packaging	the	Pass
Passbook	requires	that	passes	be	cryptographically	signed	to	ensure	that	a	pass	was	built	by	the
provider	and	has	not	been	modified	in	any	way.	To	sign	a	pass,	a	Pass	Type	ID	needs	to	be	established
in	the	iOS	Provisioning	Portal,	and	a	pass	signing	certificate	specific	to	the	Pass	Type	ID	needs	to	be
generated.	After	the	Pass	Type	ID	and	certificate	are	available,	passes	can	be	signed.	For	each	unique
pass	instance	a	manifest	file	with	checksums	for	each	file	in	the	pass	needs	to	be	built	so	that
Passbook	can	verify	each	file.

Creating	the	Pass	Type	ID
The	Pass	Type	ID	identifies	the	type	or	class	of	pass	that	a	provider	wants	to	distribute.	For	example,
if	a	provider	wants	to	distribute	a	coupon	and	a	rewards	card,	the	provider	would	create	two	Pass
Type	IDs,	one	for	the	coupon	and	one	for	the	rewards	card.	To	create	a	Pass	Type	ID,	visit	the	iOS
Dev	Center	(https://developer.apple.com/devcenter/ios/index.action),	and	choose	Certificates,
Identifiers	&	Profiles	in	the	menu	titled	iOS	Developer	Program	on	the	right	side	of	the	screen.	Click
Identifiers	and	then	the	Pass	Type	IDs	item	in	the	left	menu	(see	Figure	25.9).

http://www.jslint.com
https://developer.apple.com/devcenter/ios/index.action

Figure	25.9	iOS	Provisioning	Portal:	Pass	Type	IDs.

To	register	a	new	Pass	Type	ID,	click	the	button	with	the	plus	sign	in	the	upper-right	corner.	A	form
to	register	a	new	Pass	Type	ID	will	be	presented	(see	Figure	25.10).

Figure	25.10	iOS	Provisioning	Portal:	register	a	Pass	Type	ID.

Specify	a	description	and	an	identifier	for	the	Pass	Type	ID.	Apple	recommends	using	a	reverse	DNS
naming	style	for	Pass	Type	IDs,	and	Apple	requires	that	the	Pass	Type	ID	begin	with	the	string
"pass".	Click	the	Continue	button,	and	a	confirmation	screen	will	be	presented,	as	shown	in	Figure
25.11.

Figure	25.11	iOS	Provisioning	Portal:	confirm	Pass	Type	ID.

Click	the	Register	button	to	confirm	the	pass	type	settings	and	register	the	Pass	Type	ID.	After	the
Pass	Type	ID	has	been	registered,	a	certificate	must	be	generated	in	order	to	sign	passes	with	the	new
ID.

Creating	the	Pass	Signing	Certificate
To	see	whether	a	Pass	Type	ID	has	a	certificate	configured,	click	on	the	Pass	Type	ID	in	the	list,	and
then	click	the	Edit	button.	If	a	certificate	has	been	created	for	the	Pass	Type	ID,	it	will	be	displayed	in
the	Production	Certificates	section.	There	will	also	be	an	option	to	create	a	new	certificate	for	the
Pass	Type	ID,	as	shown	in	Figure	25.12.

Figure	25.12	iOS	Provisioning	Portal:	Pass	Type	ID	list.

Click	the	Create	Certificate	button	to	start	the	certificate	generation	process.	The	iOS	Provisioning
Portal	will	present	instructions	to	generate	the	certificate	request	(see	Figure	25.13).

Figure	25.13	iOS	Provisioning	Portal:	Pass	Certificate	Assistant,	generating	a	Certificate	Signing
Request.

To	generate	a	certificate	request,	leave	the	Pass	Certificate	Assistant	open	in	your	browser,	and	open
Keychain	Access	(in	Applications,	Utilities).	Select	Keychain	Access,	Certificate	Assistant,	Request	a
Certificate	from	a	Certificate	Authority	from	the	application	menu.	You	will	see	the	form	shown	in
Figure	25.14.

Figure	25.14	Keychain	Access	Certificate	Assistant.

Enter	your	email	address	and	common	name	(typically	your	company	name	or	entity	name—it’s	safe
to	use	whatever	name	you	use	for	your	Apple	Developer	account),	and	then	select	Saved	to	Disk.
Click	Continue,	and	specify	where	you	would	like	the	request	saved.	After	that	step	is	complete,	return
to	the	iOS	Provisioning	Portal	and	click	Continue.	The	assistant	will	ask	you	to	select	the	request	that
you	just	saved,	as	shown	in	Figure	25.15.

Figure	25.15	iOS	Provisioning	Portal:	Pass	Certificate	Assistant,	submitting	a	Certificate	Signing
Request.

After	you	have	selected	your	saved	request,	click	Generate	and	your	SSL	certificate	will	be	generated,
as	shown	in	Figure	25.16.

Figure	25.16	iOS	Provisioning	Portal:	Pass	Certificate	Assistant,	generating	your	pass	certificate.

After	your	certificate	has	been	generated,	you	need	to	download	it	so	that	you	can	use	it	to	sign
passes.	Click	the	Download	button	to	download	your	certificate.	After	it	has	successfully	downloaded,
you	can	click	the	Done	button	to	dismiss	the	Certificate	Assistant.	Double-click	the	downloaded
certificate	file,	and	it	will	automatically	be	installed	in	Keychain	Access.	It	should	be	visible	in	your
list	of	certificates	in	Keychain	Access,	as	shown	in	Figure	25.17.	Click	the	triangle	to	confirm	that
your	private	key	was	delivered	with	the	certificate.

Figure	25.17	Keychain	Access:	pass	certificate	and	private	key.

To	use	the	certificate	for	signing	from	the	command	line,	it	must	be	exported	and	converted	to	PEM
format.	Note	that	the	certificate	as	displayed	in	Keychain	Access	actually	contains	a	private	key	and	a
public	key.	The	private	key	is	what	is	used	for	signing	the	pass,	and	must	be	kept	secret	to	prevent
fraudulent	signatures.	The	public	key	is	used	for	external	verification	of	the	signature.	To	export	the

certificate,	highlight	it,	right-click,	and	select	Export;	then	select	a	destination	for	the	file.	Keychain
Access	will	prompt	for	a	password	to	protect	the	file—if	it	is	to	be	used	locally	and	deleted	when
done,	it	is	acceptable	to	skip	the	password.	If	the	file	will	be	distributed	at	all,	it	is	highly
recommended	to	protect	it	with	a	strong	password.	Keychain	Access	will	then	export	the	private	and
public	key	into	a	file	with	a	.p12	extension.	Execute	the	following	command	to	extract	the	public	key
and	save	it	in	PEM	format:
Click	here	to	view	code	image

$	openssl	pkcs12	-in	BoardingPassCerts.p12	-clcerts	-nokeys	-out	boardcert.pem	-passin
pass:

Execute	this	command	to	extract	the	private	key	and	save	it	in	PEM	format.	Select	a	password	to
replace	mykeypassword.
Click	here	to	view	code	image

$	openssl	pkcs12	-in	BoardingPassCerts.p12	-nocerts	-out	boardkey.pem	-passin	pass:	-
passout	pass:mykeypassword

The	last	item	needed	to	sign	is	the	Apple	Worldwide	Developer	Relations	Certification	Authority
certificate.	The	certificate	will	already	be	available	in	Keychain	Access	(under	Certificates)	if	Xcode
has	been	used	to	build	and	deploy	an	app	to	a	device	(see	Figure	25.18).

Figure	25.18	Keychain	Access:	Apple	Worldwide	Developer	Relations	Certification	Authority
certificate.

If	that	certificate	is	not	visible	in	Keychain	Access,	download	it	from
www.apple.com/certificateauthority/	and	install	it	in	Keychain	Access.	Right-click	the	certificate	and
select	Export.	Give	the	certificate	a	short	name	(like	AppleWWDRCert),	select	PEM	format,	and	save
the	certificate.

Creating	the	Manifest
A	manifest	file	must	be	created	for	each	individual	pass.	The	manifest	is	a	JSON	file	called
manifest.json.	It	contains	an	entry	for	each	file	that	makes	up	a	pass	with	a	corresponding	SHA1
checksum.	To	create	the	manifest,	create	a	new	file	in	a	text	editor.	Since	the	file	represents	a	JSON
array,	it	should	start	with	an	open	bracket	and	end	with	a	close	bracket.	For	each	file,	put	the	file	in
quotation	marks,	add	a	colon,	put	the	SHA1	checksum	in	quotation	marks,	and	separate	items	with	a
comma.	To	get	the	SHA1	checksum	for	a	file,	perform	the	following	command	in	a	terminal	window
from	the	directory	where	the	pass	files	exist:
Click	here	to	view	code	image

$	openssl	sha1	pass.json
SHA1(pass.json)=	b636f7d021372a87ff2c130be752da49402d0d7f

http://www.apple.com/certificateauthority/

The	manifest	file	should	look	like	this	example	when	complete:
Click	here	to	view	code	image

{
		"pass.json"	:	"09040451676851048cf65bcf2e299505f9eef89d",
		"icon.png"	:	"153cb22e12ac4b2b7e40d52a0665c7f6cda75bed",
		"icon@2x.png"	:	"7288a510b5b8354cff36752c0a8db6289aa7cbb3",
		"logo.png"	:	"8b1f3334c0afb2e973e815895033b266ab521af9",
		"logo@2x.png"	:	"dbbdb5dca9bc6f997e010ab5b73c63e485f22dae"
}

Signing	and	Packaging	the	Pass
The	manifest	file	must	be	signed	so	that	Passbook	can	validate	the	contents	of	the	pass.	To	sign	the
manifest,	use	openssl	from	a	terminal	prompt.	Specify	the	certfile	as	the	Apple	Worldwide
Developer	Relations	certificate,	the	PEM	version	of	the	certificate	created	earlier	as	the	signer,	the
PEM	version	of	the	key	created	earlier	as	the	key,	and	the	password	set	for	the	private	key	in	place	of
mykeypassword.
Click	here	to	view	code	image

$	openssl	smime	-binary	-sign	-certfile	../AppleWWDRCert.pem	-signer	../boardcert.pem	-
inkey	../boardkey.pem	-in	manifest.json	-out	signature	-outform	DER	-passin
pass:mykeypassword

A	file	called	signature	will	be	created	(-out	signature).	Any	changes	to	any	of	the	files	listed
in	the	manifest	require	updating	the	SSA	signature	for	that	file	in	the	manifest	and	re-signing	the
manifest.
To	package	the	pass,	use	the	zip	command	from	a	terminal	prompt,	from	the	raw	directory	of	pass
files.	Specify	the	destination	file	for	the	pass,	and	list	the	files	to	be	included	in	the	pass.
Click	here	to	view	code	image

$	zip	-r	../boarding_pass.pkpass	manifest.json	pass.json	signature	icon.png	icon@2x.png
logo.png	logo@2x.png	footer.png	footer@2x.png

That	will	zip	up	all	the	files	listed	in	an	archive	called	boarding_pass.pkpass	in	the	parent
directory.

Note
Apple	provides	a	tool	called	signpass	with	the	Passbook	information	in	the	iOS
Developer	Portal.	It	comes	in	an	Xcode	project—just	build	the	project	and	put	the	build
product	where	it	can	be	found	in	the	terminal	path.	Then	execute	signpass,	providing	a
pass	directory,	and	it	will	automatically	create	and	sign	the	manifest	and	package	the	pass
in	one	step.	It	will	utilize	your	keychain	for	all	the	needed	certificates,	so	the	steps	to
export	all	those	are	not	needed	during	development.	For	example,	$./signpass	-p
Event.raw	will	produce	Event.pkpass.

Testing	the	Pass
To	test	the	pass,	drag	and	drop	the	file	called	boarding_pass.pkpass	into	the	running
Simulator.	The	Simulator	will	attempt	to	load	the	pass	in	Safari.	If	there	is	a	problem	with	the	pass,
Safari	will	present	an	error	message,	as	shown	in	Figure	25.19.

Figure	25.19	Safari	in	iOS	Simulator:	error	loading	pass.

Safari	will	log	any	problems	with	the	pass	to	the	console.	To	find	out	what	is	wrong	with	the	pass,
open	Applications,	Utilities,	Console	and	look	for	an	error	message,	as	shown	in	Figure	25.20.

Figure	25.20	Console:	displaying	a	pass	error.

In	this	example,	the	error	indicates	that	the	pass	must	contain	a	key	called	transitType.	This	key	is
required	for	boarding	passes,	and	is	not	allowed	for	any	other	types	of	passes.	Ensure	that	there	is	a
key	called	transitType	inside	the	boardingPass	section	of	pass.json,	re-sign	the	pass,	and
drop	it	into	the	Simulator	again	to	determine	whether	the	error	is	fixed.
Be	certain	to	tap	Add	to	add	the	pass	to	Passbook	in	the	Simulator,	because	not	all	pass	errors	are
caught	by	just	displaying	the	pass.	There	will	be	an	animation	when	Add	is	tapped	indicating	that	the
pass	has	been	added	to	Passbook.	If	that	animation	does	not	occur	and	the	pass	just	fades	away,	there

was	an	error	with	the	pass	and	it	will	not	be	added	to	Passbook.	Check	the	console	for	any	additional
errors.

Interacting	with	Passes	in	an	App
Passes	can	exist	completely	outside	the	confines	of	an	app—in	fact,	a	custom	app	is	not	needed	at	all
for	the	life	cycle	of	a	Pass.	However,	there	are	use	cases	in	which	a	custom	app	is	appropriate	for
getting	new	passes,	handling	updates	to	existing	passes,	and	removing	existing	passes.	The	sample
app	demonstrates	how	to	perform	all	these	tasks.

Preparing	the	App
Several	steps	need	to	be	completed	to	prepare	the	app	to	interact	with	Passbook.	First	ensure	that
PassKit.framework	has	been	added	to	the	project,	and	@import	PassKit;	has	been	added	in
any	classes	that	need	to	use	the	PassKit	classes.
Next,	return	to	the	iOS	Provisioning	Portal	and	click	the	App	IDs	item	in	the	left	menu.	Click	the
button	with	a	plus	sign	to	create	a	new	App	ID,	as	shown	in	Figure	25.21.

Figure	25.21	iOS	Provisioning	Portal:	creating	a	new	App	ID.

The	new	app	can	be	set	to	enable	Passbook	while	it	is	being	created,	or	can	be	updated	to	enable
Passbook	after	it	has	been	created.	To	enable	Passbook	for	an	existing	App	ID,	click	on	the	App	ID	on
the	list,	and	click	the	Edit	button.	Check	the	Enable	Passes	option.	The	iOS	Provisioning	Portal	will
present	a	dialog	warning	that	any	existing	provisioning	profiles	created	for	the	App	ID	must	be
regenerated	in	order	to	be	enabled	for	passes,	as	shown	in	Figure	25.22.

Figure	25.22	iOS	Provisioning	Portal:	App	ID	enabled	for	passes.

In	Xcode,	select	the	project,	then	the	target,	and	then	the	Capabilities	tab,	as	shown	in	Figure	25.23.
Setting	Passbook	to	On	makes	Xcode	check	that	the	PassKit	framework	is	linked	to	the	project,	that
the	entitlements	needed	are	configured	correctly,	and	that	the	needed	provisioning	profiles	are	set	up
correctly.

Figure	25.23	Xcode	showing	the	Passbook	section	on	the	Capabilities	tab.

Note
These	steps	to	prepare	the	app	are	required	only	for	running	the	app	on	a	device.
Interacting	with	Passbook	works	fine	in	the	Simulator	without	these	steps	having	been
completed.

Now	the	app	is	set	up	to	access	passes	in	Passbook.	The	sample	app	includes	samples	of	each	type	of
pass	in	the	main	bundle	for	demonstration.	Passes	would	typically	not	be	distributed	this	way;	rather,	a
pass	would	more	likely	be	downloaded	from	a	server	after	some	information	was	provided	about	the
pass	recipient.	To	see	how	to	programmatically	interact	with	Passbook,	start	the	sample	app	and	tap
any	pass	type	(this	example	demonstrates	the	boarding	pass).	The	app	will	check	how	many	passes	it

can	see	in	Passbook,	and	will	determine	whether	the	selected	pass	is	already	in	Passbook	(see	Figure
25.24).

Figure	25.24	Pass	Test	sample	app:	boarding	pass.

To	get	this	information,	the	view	controller	needs	to	communicate	with	the	pass	library.	For
convenience,	a	property	is	set	up	to	keep	an	instance	of	PKPassLibrary,	which	is	instantiated	in	the
viewDidLoad	method.
Click	here	to	view	code	image

-	(void)viewDidLoad
{
				[super	viewDidLoad];

				self.passLibrary	=	[[PKPassLibrary	alloc]	init];
				[self	refreshPassStatusView];
}

In	the	refreshPassStatusView	method,	the	view	controller	first	checks	whether	the	pass	library
is	available.
Click	here	to	view	code	image

if	(![PKPassLibrary	isPassLibraryAvailable])
{
				[self.passInLabel	setText:@"Pass	Library	not	available."];

				[self.numPassesLabel	setText:@""];
				[self.addButton	setHidden:YES];
				[self.updateButton	setHidden:YES];
				[self.showButton	setHidden:YES];
				[self.deleteButton	setHidden:YES];
				return;
}

If	the	pass	library	is	not	available,	no	further	action	can	be	taken,	so	the	method	updates	the	UI	and
hides	all	the	buttons.	If	the	pass	library	is	available,	the	method	gets	the	information	from	the
passLibrary	to	update	the	UI.	To	determine	how	many	passes	are	in	the	library,	access	the
passes	property	on	the	passLibrary.
Click	here	to	view	code	image

NSArray	*passes	=	[self.passLibrary	passes];

NSString	*numPassesString	=	[NSString	stringWithFormat:	@"There	are	%d	passes	in
Passbook.",[passes	count]];

[self.numPassesLabel	setText:numPassesString];

The	passLibrary	provides	a	method	to	access	a	specific	pass	using	a	pass	type	identifier	and	a
pass	serial	number.	This	can	be	used	to	determine	whether	a	specific	pass	is	in	the	pass	library.
Click	here	to	view	code	image

PKPass	*currentBoardingPass	=	[self.passLibrary
passWithPassTypeIdentifier:self.passIdentifier
																																	serialNumber:self.passSerialNum];

If	the	pass	is	present	in	the	library,	currentBoardingPass	will	be	a	valid	instance	of	PKPass;
otherwise,	it	will	be	nil.	The	refreshPassStatusView	method	will	check	that	and	update	the	UI
accordingly.

Adding	a	Pass
Tap	the	Add	Boarding	Pass	to	Passbook	button,	which	will	call	the	addPassTouched:	method.
This	method	will	first	load	the	pass	from	the	main	bundle	(again,	this	would	typically	be	loaded	from
an	external	source).
Click	here	to	view	code	image

NSString	*passPath	=	[[NSBundle	mainBundle]	pathForResource:self.passFileName
																																	ofType:@"pkpass"];

NSData	*passData	=	[NSData	dataWithContentsOfFile:passPath];

NSError	*passError	=	nil;
PKPass	*newPass	=	[[PKPass	alloc]	initWithData:passData	error:&passError];

PassKit	will	evaluate	the	pass	data	and	return	an	error	in	passError	if	there	is	anything	wrong	with
the	pass.	If	the	pass	is	valid	and	does	not	already	exist	in	the	pass	library,	the	method	will	present	a
PKAddPassesViewController,	which	will	display	the	pass	as	it	will	appear	in	Passbook,	and
manage	adding	it	to	the	library	based	on	whether	the	user	chooses	Add	or	Cancel	(see	Figure	25.25).
Otherwise,	the	method	will	display	an	alert	view	with	an	appropriate	error	message.
Click	here	to	view	code	image

if	(!passError	&&	![self.passLibrary	containsPass:newPass])

{
				PKAddPassesViewController	*newPassVC	=	[[PKAddPassesViewController	alloc]
initWithPass:newPass];

				[newPassVC	setDelegate:self];

				[self	presentViewController:newPassVC
																							animated:YES
																					completion:^(){}];

}
else
{
				NSString	*passUpdateMessage	=	@"";

				if	(passError)
				{

								passUpdateMessage	=	[NSString	stringWithFormat:@"Pass	Error:	%@",	[passError
localizedDescription]];

				}
				else
				{
								passUpdateMessage	=	[NSString	stringWithFormat:	@"Your	%@	has	already	been
added.",	self.passTypeName];
				}

				UIAlertController	*alertController	=	[UIAlertController
alertControllerWithTitle:@"Pass	Not	Added"
																																									message:passUpdateMessage
																																		preferredStyle:UIAlertControllerStyleAlert];

				[alertController	addAction:	[UIAlertAction	actionWithTitle:@"Dismiss"
																													style:UIAlertActionStyleCancel
																											handler:nil]];

				[self	presentViewController:alertController
																							animated:YES
																					completion:nil];
}

Figure	25.25	Sample	app	displaying	PassKit	Add	Passes	View	Controller.

After	the	user	has	chosen	to	add	the	pass,	the	PKAddPassesViewController	will	call	the
delegate	method	if	a	delegate	is	set.
Click	here	to	view	code	image

-(void)addPassesViewControllerDidFinish:	(PKAddPassesViewController	*)controller
{
				[self	dismissViewControllerAnimated:YES	completion:^{
								[self	refreshPassStatusView];
				}];
}

The	delegate	is	responsible	for	dismissing	the	PKAddPassesViewController.	After	it	is
dismissed,	the	UI	is	updated	to	reflect	the	addition	of	the	pass,	as	shown	in	Figure	25.26.

Figure	25.26	Pass	Test	sample	app:	boarding	pass	in	the	pass	library.

Note
If	there	is	a	mismatch	between	your	app’s	bundle	ID	and	the	pass	ID	(for	example,
com.myorg.mybundleid	and	pass.myorg.someotherid),	the	pass	library	will	not	be	able	to
see	the	associated	passes	in	the	pass	library,	and	will	report	there	are	zero	passes
available	after	a	pass	has	been	added	(refer	to	Figure	25.24).	If	this	is	the	case,	in	the
Capabilities	tab,	select	Allow	Subset	of	Pass	Types	and	check	the	passes	that	the	app
should	be	able	to	interact	with.

Simulating	Updating	a	Pass
Tap	the	Simulate	Updating	Boarding	Pass	button,	which	will	call	the	updatePassTouched	method.
This	method	will	first	load	the	updated	pass	data	from	the	main	bundle	(this	is	simulated	in	that	the
updated	pass	would	typically	be	loaded	from	a	server	in	response	to	a	change),	and	then	instantiate	a
PKPass	object.

Click	here	to	view	code	image

NSString	*passName	=	[NSString	stringWithFormat:@"%@-Update",self.passFileName];

NSString	*passPath	=	[[NSBundle	mainBundle]	pathForResource:passName	ofType:@"pkpass"];

NSData	*passData	=	[NSData	dataWithContentsOfFile:passPath];

NSError	*passError	=	nil;

PKPass	*updatedPass	=	[[PKPass	alloc]	initWithData:passData
																																													error:&passError];

The	method	will	check	whether	there	are	any	errors	instantiating	the	pass,	and	whether	the	pass
library	already	contains	the	pass.	If	there	are	no	errors	and	the	pass	exists,	it	will	replace	the	existing
pass	with	the	updated	pass.
Click	here	to	view	code	image

if	(!passError	&&	[self.passLibrary	containsPass:updatedPass])
{

				BOOL	updated	=	[self.passLibrary	replacePassWithPass:updatedPass];

				if	(updated)
				{
								passUpdateMessage	=	[NSString	stringWithFormat:	@"Your	%@	has	been
updated.",self.passTypeName];

								passAlertTitle	=	@"Pass	Updated";
				}
				else
				{
								passUpdateMessage	=	[NSString	stringWithFormat:	@"Your	%@	could	not	be
updated.",self.passTypeName];

								passAlertTitle	=	@"Pass	Not	Updated";
				}

				UIAlertController	*alertController	=	[UIAlertController
alertControllerWithTitle:passAlertTitle
																																									message:passUpdateMessage
																																		preferredStyle:UIAlertControllerStyleAlert];

				[alertController	addAction:	[UIAlertAction	actionWithTitle:@"Dismiss"
																														style:UIAlertActionStyleCancel
																												handler:nil]];

				[self	presentViewController:alertController
																							animated:YES
																					completion:nil];
}

The	replacePassWithPass:	method	will	indicate	whether	the	pass	was	successfully	updated,	and
an	appropriate	alert	will	be	displayed	to	the	user.
If	the	update	is	time	sensitive	and	conveys	critical	information	for	the	user	to	be	aware	of
immediately,	a	changeMessage	can	be	specified	in	the	pass.json	of	the	updated	pass.
Click	here	to	view	code	image

"headerFields"	:	[
		{
				"key"	:	"seat",

				"label"	:	"Seat",
				"value"	:	"14C",
				"textAlignment"	:	"PKTextAlignmentRight",
				"changeMessage"	:	"New	Seat:	%@"
		}
],

When	a	change	message	is	specified,	Passbook	will	display	a	notification	to	the	user	when	the	pass
has	been	updated	(as	shown	in	Figure	25.27).	The	notification	will	display	the	icon	included	in	the
pass,	the	organization	name	specified	in	the	pass,	and	a	message.	If	%@	is	specified	in	the
changeMessage,	then	the	changeMessage	specified	will	be	presented	in	the	notification	to	the
user,	and	%@	will	be	replaced	with	the	new	value	of	the	field.	If	%@	is	not	in	the	changeMessage,	a
generic	message	like	"Boarding	Pass	changed"	will	be	presented.

Figure	25.27	Pass	change	notification.

That	notification	will	also	remain	in	Notification	Center	until	removed	by	the	user.

Showing	a	Pass
To	show	an	existing	pass,	tap	on	the	Show	Boarding	Pass	in	Passbook	button,	which	will	call	the
showPassTouched	method.	Since	PassKit	does	not	support	displaying	a	pass	inside	an	app,	the
method	needs	to	get	the	pass’s	public	URL,	and	ask	the	application	to	open	it.	That	will	open	the
desired	pass	directly	in	Passbook.
Click	here	to	view	code	image

PKPass	*currentBoardingPass	=	[self.passLibrary
passWithPassTypeIdentifier:self.passIdentifier
																																	serialNumber:self.passSerialNum];

if	(currentBoardingPass)
{
				[[UIApplication	sharedApplication]	openURL:[currentBoardingPass	passURL]];
}

Removing	a	Pass
To	remove	a	pass	directly	from	the	app,	tap	on	the	Remove	Boarding	Pass	button,	which	will	call	the
deletePassTouched	method.	The	method	will	get	the	pass	using	the	pass	identifier	and	serial
number,	and	remove	it	from	Passbook.
Click	here	to	view	code	image

PKPass	*currentBoardingPass	=	[self.passLibrary
passWithPassTypeIdentifier:self.passIdentifier
																																	serialNumber:self.passSerialNum];

if	(currentBoardingPass)
{
				[self.passLibrary	removePass:currentBoardingPass];

				[self	refreshPassStatusView];

				NSString	*passUpdateMessage	=	[NSString	stringWithFormat:@"Your	%@	has	been
removed.",	self.passTypeName];	UIAlertController	*alertController	=
				[UIAlertController	alertControllerWithTitle:@"Pass	Removed"
																																									message:passUpdateMessage
																																		preferredStyle:UIAlertControllerStyleAlert];

				[alertController	addAction:	[UIAlertAction	actionWithTitle:@"Dismiss"
																														style:UIAlertActionStyleCancel
																												handler:nil]];

				[self	presentViewController:alertController
																							animated:YES
																					completion:nil];
}

Updating	Passes	Automatically
One	of	the	key	features	of	Passbook	is	the	capability	to	automatically	update	passes	without	the	use	of
an	app.	This	is	an	overview	of	the	feature,	since	implementing	it	requires	a	server	capable	of	building
and	updating	passes	and	is	beyond	the	scope	of	this	chapter	to	fully	illustrate.
If	updating	a	pass	will	be	supported,	the	pass.json	needs	to	specify	a	webServiceURL	and	an
authenticationToken.	When	the	pass	is	first	added,	Passbook	will	call	the	webServiceURL	to
register	the	device	and	pass	with	the	server,	and	will	provide	a	push	token	for	use	in	the	next	step.

When	information	related	to	a	pass	is	updated	on	the	server,	the	server	needs	to	notify	the	device	with
the	pass	that	an	update	is	available.	To	do	this,	the	server	sends	a	push	notification	utilizing	the	push
token	received	in	the	registration	step	to	the	device	with	the	pass,	and	includes	the	pass	type	ID	in	the
push.

Note
Refer	to	Chapter	10,	“Notifications,”	for	more	information	on	sending	push
notifications.

After	the	device	receives	the	push	notification,	Passbook	will	request	a	list	of	passes	that	have	been
changed	from	the	server	for	the	specified	pass	type	ID	and	last	updated	tag.	The	server	will	respond
with	a	list	of	serial	numbers	and	a	new	last-updated	tag.
The	device	will	then	iterate	through	the	serial	numbers,	and	request	updated	versions	of	passes	from
the	server	for	each	serial	number.	If	the	updated	pass	includes	a	changeMessage	(described	in
more	detail	in	the	earlier	section	“Simulating	Updating	a	Pass”),	then	Passbook	will	display	a
notification	to	the	user	for	it.
Using	this	mechanism,	a	user ’s	passes	can	be	kept	up-to-date	with	the	latest	information,	and	users	can
selectively	be	notified	when	critical,	time-sensitive	information	is	changed.

Summary
This	chapter	provided	an	in-depth	look	at	Passbook.	It	covered	what	Passbook	is	and	what	types	of
passes	are	supported	by	Passbook.	It	explained	how	to	design	and	build	a	pass,	and	the	steps	needed	to
sign	and	package	an	individual	pass.	The	chapter	demonstrated	how	to	interact	with	passes	and
Passbook	using	PassKit	from	an	app,	and	discussed	how	to	use	a	Web	server	to	keep	passes	up-to-
date.

26.	Debugging	and	Instruments

Unlike	most	of	the	other	chapters	in	this	book,	this	chapter	has	no	associated	sample	code	and	no
project.	Throughout	this	book,	the	target	has	been	implementing	advanced	features	and	functionality
of	the	iOS	SDKs.	This	chapter	focuses	on	what	to	do	when	everything	goes	wrong.	Debugging	and
performance	tuning	of	any	piece	of	software	is	a	vital	and	sometimes	overlooked	step	of
development.	Users	expect	an	app	to	perform	quickly,	smoothly,	consistently,	and	without	errors	or
crashes.	Regardless	of	the	skill	level	of	a	developer,	bugs	will	happen,	crashes	will	be	introduced,	and
performance	won’t	be	everything	it	can	be.	The	material	covered	here	will	assist	in	developing
software	that	gets	the	most	out	of	the	system	and	performs	to	the	highest	possible	standards.

Introduction	to	Debugging
“If	debugging	is	the	process	of	removing	bugs,	then	programming	must	be	the	process	of

putting	them	in.”
Edsger	W.	Dijkstra

Computers	are	complex—so	complex	that	few,	if	any,	people	understand	how	they	work	on	all	levels.
Very	few	developers	understand	programming	in	binary	or	assembly,	even	though	that	is	what	the
machine	itself	understands.	This	complexity	means	that	things	will	go	wrong	even	if	everything	is
seemingly	done	correctly.	Bugs	relating	to	issues,	such	as	race	conditions	and	thread	safety,	are	hard
to	plan	for	and	can	be	even	harder	to	troubleshoot.
When	we	leverage	the	technology	provided	by	the	debugger,	the	difficulty	of	debugging	software
becomes	drastically	easier.	From	using	custom	breakpoints	to	parameters	such	as	NSZombies,	most
of	the	hard	work	of	debugging	can	be	turned	into	a	quick	task.	Debugging,	like	any	other	discipline,
takes	time	and	practice;	always	try	to	figure	out	the	solution	yourself	before	turning	for	help.	The
difference	between	solving	a	problem	and	looking	up	a	solution	makes	all	the	difference	for	growing
as	a	developer.

The	First	Computer	Bug
In	1947,	the	first	computers	were	making	their	rounds	through	large	corporations,	universities,	and
government	institutes.	Grace	Murray	Hopper	was	working	on	one	of	these	early	systems	at	Harvard
University,	a	Mark	II	Aiken	Relay	Calculator.	On	September	9,	1947,	the	machine	began	to	exhibit
problems	and	the	engineers	investigated.	What	they	found	was	surprising	but	not	entirely	unexpected
when	computers	were	large	machines	taking	up	entire	rooms.	A	simple	household	moth	had	become
trapped	between	the	points	of	Relay	#70	in	Panel	F	of	the	Mark	II	Aiken	Relay	Calculator.	The	moth
was	preventing	the	relay	from	functioning	as	expected,	and	the	machine	was	quite	literally	debugged.
The	engineers	knew	they	had	a	piece	of	history	and	they	preserved	the	moth	with	a	piece	of	tape	and
the	handwritten	note,	“First	actual	case	of	bug	being	found”	(see	Figure	26.1).	Today,	the	first
computer	bug	can	be	found	at	the	Naval	Surface	Warfare	Center	Computer	Museum	at	Dahlgren,
Virginia.

Figure	26.1	The	first	ever	computer	bug	removed	from	a	Mark	II	Aiken	Relay	Calculator	in	1947.

Debugging	Basics	with	Xcode
Like	most	modern	IDEs,	Xcode	has	a	debugger	built	into	it,	LLDB.	Computers	execute	code	very
quickly,	so	quickly	that	it	is	nearly	impossible	to	see	all	the	steps	as	they	are	happening.	This	is	where
a	debugger	comes	in	handy;	it	enables	the	developer	to	slow	down	the	execution	of	code	and	inspect
elements	as	they	change.	The	debug	view	might	initially	be	hidden,	but	it	can	be	accessed	with	the
center	view	button,	as	shown	in	Figure	26.2.	The	debugger	is	available	only	when	an	app	is	being
executed	from	within	Xcode.

Figure	26.2	Accessing	the	debugger	area	in	Xcode	is	done	through	the	lower	view	area.

The	debug	area	(see	Figure	26.3)	consists	of	three	primary	parts.	On	the	left	side	is	the	variable	view,
which	is	used	to	inspect	detail	information	about	the	objects	currently	within	the	scope	of	memory.
The	right	side	is	composed	of	the	console,	which	also	contains	the	debugger	prompt.	On	the	top	of
the	view	lies	the	debugging	command	bar	for	interacting	with	the	debugger.

Figure	26.3	The	debug	area.

The	debugger	will,	by	default,	automatically	show	whenever	an	exception	is	encountered.	The

developer	can	pause	the	current	execution	and	bring	up	the	debugger	via	the	Pause	button	in	the
debugging	toolbar.
It	is	often	possible,	if	the	debugger	has	stopped	at	an	exception,	to	be	able	to	continue	past	the
exception.	This	can	be	achieved	by	using	the	Resume	button	in	the	toolbar.	The	toolbar	also	affords
several	other	useful	commands.	On	the	toolbar,	from	left	to	right,	the	Step	Over	command	will	move
to	the	next	line	of	execution	while	remaining	paused.	The	Step	Into	command	will	move	into	a	new
method	or	function	that	the	debugger	is	currently	stopped	on.	Likewise,	the	Step	Out	Of	button	will
move	back	outside	of	the	current	method	or	function.
Additionally,	from	the	debugger	toolbar	each	thread	in	execution	can	be	inspected,	showing	the	stack
trace.	The	stack	trace	will	provide	the	sequence	of	events	leading	up	to	the	current	point	in	execution.
This	same	information	can	be	accessed	with	the	Debug	Navigator,	which	can	be	accessed	from	the
leftmost	pane	of	the	Xcode	window,	shown	in	Figure	26.4.

Figure	26.4	The	Debug	Navigator	showing	a	backtrace	across	several	threads.

Breakpoints
Most	developers	begin	their	adventures	into	debugging	by	printing	log	statements	to	the	console	to
get	an	insight	into	how	the	code	is	executing	or	behaving.	This	is	likely	because	printing	to	the
console	is	part	of	the	initial	Hello	World	program	for	many	languages.	Log	statements	are	very
useful	but	they	are	very	limited	in	their	functionality.	Breakpoints	inform	the	debugger	that	the	code
being	executed	should	be	halted	to	allow	for	more	thorough	debugging	and	inspection.	To	create	a
new	breakpoint,	click	the	line	number	where	the	code	should	pause.	A	blue	indicator	will	appear,
representing	a	new	breakpoint;	to	remove	the	breakpoint,	drag	the	blue	indicator	off	the	line	number
bar.	To	temporarily	disable	a	breakpoint,	toggle	it	off	by	clicking	on	it,	and	the	breakpoint	will
become	a	light	transparent	blue.
After	a	breakpoint	has	been	tripped,	the	execution	of	code	will	pause.	The	variable	view	will	populate
with	all	the	in-scope	variables	and	the	stack	trace	will	show	the	path	of	methods	and	calls	that	lead	to
the	breakpoint.	Calls	that	are	in	code	written	by	the	developer	will	appear	in	black,	and	system	calls
appear	in	a	lighter	gray.	The	developer	can	click	through	the	stack	trace	to	show	the	line	of	code	that
was	responsible	for	calling	the	following	item	(see	Figure	26.5).

Figure	26.5	A	common	stack	trace.	The	code	is	frozen	at	item	0	in	the	method
generateQuestion:.	The	events	that	lead	to	this	method	can	also	be	seen,	from

viewDidLoad	to	newGame	to	newRound.	The	lighter	gray	methods	are	system	calls.

Customizing	Breakpoints
Breakpoints	can	be	customized	to	change	the	conditions	under	which	they	are	triggered.	Right-
clicking	a	breakpoint	will	reveal	the	edit	view	shown	in	Figure	26.6.	The	first	property	that	can	be
customized	is	adding	a	condition	for	the	breakpoint,	such	as	x	==	0.	This	can	be	useful	when	the
breakpoint	should	be	fired	only	under	certain	circumstances,	such	as	x	being	equal	to	0.

Figure	26.6	Customizing	a	breakpoint.

The	developer	might	also	have	a	need	to	ignore	the	breakpoint	the	first	several	times	it	is	hit.	For
example,	a	bug	might	present	itself	only	after	a	line	of	code	is	executed	a	certain	number	of	times,
and	this	can	remove	the	need	for	continuously	clicking	the	Continue	button.
Breakpoints	can	also	have	actions	attached	to	them,	such	as	running	an	AppleScript,	executing	a
debugger	command,	performing	a	shell	command,	logging	a	message,	or	even	playing	a	sound.
Playing	a	sound	can	be	particularly	useful	as	an	audio	indicator	of	an	event	happening,	such	as	a
network	call	or	a	Core	Data	merge.	Under	certain	conditions,	such	as	playing	audio,	the	developer
might	not	want	to	pause	the	code	execution	during	the	breakpoint.	If	the	preferred	action	is	to	log	a
message	or	play	a	sound	without	pausing,	the	Automatically	Continue	after	Evaluating	Actions	option
can	be	enabled.

Symbolic	and	Exception	Breakpoints
In	addition	to	user-set	breakpoints,	there	are	two	types	of	breakpoints	that	can	be	enabled.	These	are
done	through	the	Breakpoint	Navigator	found	in	the	left	pane	of	the	Xcode	window.
Symbolic	breakpoints	can	be	used	to	catch	all	instances	of	a	method	or	a	function	being	run.	For
example,	to	log	every	instance	of	imageNamed:	being	called,	a	new	symbolic	breakpoint	can	be
created	for	the	symbol	+[UIImage	imageNamed:].	Figure	26.7	shows	a	symbolic	breakpoint	that
will	log	each	use	of	imageNamed:	by	playing	a	sound.

Figure	26.7	A	symbolic	breakpoint	that	will	play	a	sound	and	continue	every	time	a	new	image	is
created	using	the	method	imageNamed:.

Exception	breakpoints	work	very	much	like	symbolic	breakpoints	except	that	they	are	thrown
whenever	any	exception	occurs.	Often,	setting	a	global	exception	breakpoint	will	provide	a	better
stack	trace	than	is	typically	provided	by	a	crash.	This	is	because	the	stack	trace	is	provided	based	on
the	breakpoint,	whereas	a	crash	can	be	a	result	of	an	exception	but	does	not	necessarily	point	back	to

the	root	cause.	It	is	considered	by	many	developers	to	be	best	practice	to	always	keep	a	global
exception	breakpoint	on	while	debugging.

Breakpoint	Scope
You	can	also	set	the	scope	of	a	breakpoint	(see	Figure	26.8)	by	right-clicking	on	a	breakpoint	in	the
Breakpoint	Navigator.	The	available	scope	options	are	project,	workspace,	and	user.	In	addition	to
specifying	a	scope,	the	user	also	has	the	option	of	creating	a	shared	breakpoint.	A	shared	breakpoint
is	helpful	when	working	on	a	project	with	multiple	developers	across	a	version	control	system	in
which	it	is	important	that	breakpoints	are	turned	on	for	all	users.	Additionally,	users	can	enable
breakpoints	as	user	breakpoints	that	will	be	active	on	all	new	projects	they	create.

Figure	26.8	Setting	up	various	breakpoints’	scope,	including	user	and	shared	breakpoints,	in
Xcode.

Working	with	the	Debugger
Xcode	features	a	modern	robust	debugger,	LLDB.	The	debugger	can	be	accessed	anytime	code
execution	is	currently	paused.	An	lldb	prompt	will	appear	at	the	bottom	of	the	console	window.
Although	the	debugger	is	a	very	large	and	complex	system,	there	are	several	commands	that	are
relevant	for	the	iOS	developer.
The	first	command	to	turn	to	when	in	doubt	is	the	help	or	h	command.	The	help	command	will
print	a	root-level	help	menu,	and	help	followed	by	any	command	will	print	information	specific	to
that	command.
The	most	common	debugger	commands	that	will	be	required	by	an	iOS	developer	are	p	or	print
and	po	or	print	object.	The	print	command	will	print	the	value	of	a	scalar	expression,	such	as
x	+	y,	or	structs,	such	as	CGRect.	With	the	print	command,	it	is	also	possible	to	change	the	value
of	variables	while	in	the	debugger.
Click	here	to	view	code	image

(lldb)	p	scaleStage2
(float)	$0	=	0.600019991
(lldb)	p	scaleStage2	=	5.25
(float)	$1	=	5.25
(lldb)	p	scaleStage2
(float)	$2	=	5.25

The	print	object	(po)	command	will	ask	an	objective-C	object	to	print	its	description.	For
example,	to	see	the	contents	of	a	memory	address,	you	can	type	the	following	command	into	the
lldb	prompt:
Click	here	to	view	code	image

(lldb)	po	0x7c025990
<UIImageView:	0x7c025990;	frame	=	(0	0;	320	480);	opaque	=	NO;	autoresize	=	RM+BM;
userInteractionEnabled	=	NO;	layer	=	<CALayer:	0x7c025ad0>>

Alternatively,	an	object	name	can	be	used,	such	as	this:
Click	here	to	view	code	image

(lldb)	po	backgroundView
<UIImageView:	0x7c025990;	frame	=	(0	0;	320	480);	opaque	=	NO;	autoresize	=	RM+BM;
userInteractionEnabled	=	NO;	layer	=	<CALayer:	0x7c025ad0>>

The	list	command	can	be	helpful	as	well.	list	will	print	the	code	surrounding	the	current
breakpoint	line.	In	addition,	list	takes	the	parameter	of	+/-	X	to	specify	lines	before	or	after	the
breakpoint	in	which	to	display.
There	are	times	when	it	is	required	for	a	developer	in	the	process	of	debugging	a	method	or	function
to	override	the	return	value	or	provide	an	early	return.	This	can	be	done	using	the	return	x
command.	For	example,	typing	return	0	followed	by	continuing	will	simulate	the	code
returning	successfully	at	the	breakpoint.
The	backtrace	command,	or	bt,	can	be	used	to	print	the	current	backtrace	to	the	console.
Although	this	can	be	helpful	for	debugging,	this	information	is	typically	available	in	a	user-friendlier
format	in	the	Debug	Navigator.
In	addition	to	these	commands,	the	basic	toolbar	commands	can	be	executed	from	the	debugger
prompt,	which	is	often	easier	than	navigating	to	the	very	small	button	in	the	toolbar.	step	or	S	will
move	to	the	next	line	of	code	in	execution.	continue	or	C	will	continue	past	the	breakpoint	and
resume	executing	code.	fin	will	continue	until	the	end	of	the	method,	a	useful	command	that	does	not
have	a	toolbar	equivalent.	Finally,	kill	will	terminate	the	program.
LLDB	is	a	powerful	tool	that	can	provide	a	tremendous	amount	of	power	and	flexibility	to
debugging.	To	read	more	about	what	can	be	done	in	LLDB,	see	the	official	documentation	at
http://llvm.org/docs/.

Instruments
“Instruments”	collectively	refers	to	the	dozens	of	profiling	and	analyzing	tools	that	come	bundled
with	Xcode.	Table	26.1	shows	a	list	of	instrument	bundles.	Although	the	exact	details	and	behaviors	of
these	instruments	warrant	a	book	in	and	of	itself,	the	basics	of	how	to	read	and	interact	with
instruments	is	enough	to	cover	the	vast	majority	of	what	will	be	needed	by	the	ordinary	iOS
developer.

http://llvm.org/docs/

Table	26.1	Instruments	Provided	in	Xcode	and	Their	Functionality

Note
It	is	important	to	realize	that	not	all	instruments	are	available	under	certain
circumstances.	For	example,	the	Core	Data	instrument	is	available	only	when	running	on
the	simulator,	and	the	Network	instrument	is	available	only	while	running	on	a	physical
device.

The	Instruments	Interface
To	access	the	instruments	interface	in	Xcode,	select	the	build	target,	either	a	simulator	or	a	device,
and	select	the	Profile	option	from	the	Product	menu.	A	new	window	(see	Figure	26.9)	will	appear,
enabling	the	user	to	select	the	type	of	instrument	he	would	like	to	run.	After	an	option	is	selected,
additional	items	can	be	added	to	it	from	the	library	(see	Figure	26.10).

Figure	26.9	Selecting	instruments	to	run	after	running	an	app	in	profile	mode.

Figure	26.10	The	basic	instruments	interface,	shown	running	the	Allocations	tool.

The	instruments	interface	itself	consists	of	several	sections	that	will	vary	depending	on	the	exact
instrument	you	are	running.

On	the	top	toolbar	of	the	Instruments	window,	various	controls	are	present,	such	as	those	to	pause,
record,	and	restart	the	execution	of	the	current	target.	Additionally,	new	targets	can	be	selected	from
all	running	processes.	The	user	also	has	control	of	setting	an	inspection	range	of	any	instrument	that
will	filter	items	that	do	not	occur	between	the	left	and	right	markers.
The	instruments	app	will	also	save	each	run	of	the	app	so	that	changes	to	performance	can	quickly	be
compared	to	each	other.	The	user	can	also	add	new	instruments	from	the	library	in	order	to	combine
multiple	tests.	The	left	view,	which	can	be	toggled	from	the	view	menu,	contains	settings	specific	to
the	selected	instrument.	The	bottom	view	will	contain	detailed	information	about	the	test	being	run,
such	as	the	Call	Tree	or	Statistics;	these	also	vary	depending	on	the	instrument	selected.	The	last	view
is	the	right	extended	information	view;	this	view	will	often	contain	the	backtrace	for	the	selected	item
in	the	center	view.
Most	base-level	objects	found	in	the	center	or	right	view	can	be	double-clicked	to	provide	additional
information,	such	as	the	referencing	section	of	code.
In	the	following	sections,	two	of	the	most	common	instruments	are	examined.	The	first,	Time
Profiler,	is	used	by	developers	to	determine	which	code	within	an	app	is	taking	the	most	time	to
execute.	By	analyzing	the	time	each	line	of	code	takes	to	run,	the	developer	is	able	to	provide
optimizations	and	enhancements	to	that	code	to	increase	the	overall	speed	and	performance	of	the
app.	The	second	instrument	set	that	is	examined	consists	of	the	Leaks	and	Allocation	toolsets.	These
enable	developers	to	analyze	how	memory	is	being	used	in	their	app,	as	well	as	easily	find	memory
leaks	and	overreleases.

Exploring	Instruments:	The	Time	Profiler
The	Time	Profiler	provides	line-level	information	about	the	speed	at	which	code	is	being	executed.
There	are	many	bottlenecks	that	can	cause	an	app	to	perform	slowly,	from	waiting	for	a	network	call
to	finish	to	reading	and	writing	from	storage	too	often.	However,	a	very	common	cause	of
performance	issues	and	one	of	the	easiest	to	address	is	the	overuse	of	the	CPU.	Time	Profile	provides
the	developer	with	information	about	the	execution	time	resulting	from	various	calls,	which	in	turn
enables	the	developer	to	focus	on	problem	areas	of	the	app	and	provide	performance	improvements.
Time	Profiler	can	be	selected	from	the	list	of	instrument	templates	and	can	be	run	on	either	the
simulator	or	the	device.	When	you	are	profiling	CPU	usage,	it	is	important	to	remember	that	the
device	is	typically	much	slower	than	the	simulator,	and	users	will	not	be	running	software	on	the
simulator.
Time	Profiler	being	run	on	an	app	with	high	CPU	usage	is	shown	in	Figure	26.11.	The	top	section	in
purple	represents	percentage	of	CPU	used;	dragging	the	cursor	over	the	time	bar	will	reveal	the	exact
CPU	usage	percentage.	The	call	tree	reports	that	99.6%	of	the	process	time	is	spent	in	Main	Thread,
and	if	that	information	is	expanded/dropped,	99.1%	of	the	time	is	spent	in	main()	itself.	This
information	is	not	entirely	helpful	on	the	surface,	because	an	Objective-C	app	should	be	spending	a
considerable	amount	of	its	time	in	main(),	but	it	does	let	the	developer	know	that	there	is	very	high
CPU	usage,	at	some	points	at	100%.

Figure	26.11	Running	the	Time	Profiler	instrument	on	an	app	with	high	CPU	usage.

To	retrieve	more	useful	information	from	the	Time	Profiler,	the	first	thing	that	should	be	done	is
inverting	the	call	tree,	which	is	a	check	box	in	the	Time	Profiler	settings	(see	Figure	26.11,	right	side).
Instead	of	grouping	time	spent	from	the	top	down,	it	will	group	from	the	base	functions	up.	In
addition	to	inverting	the	call	tree,	it	can	be	helpful	to	check	off	the	box	for	Hide	System	Libraries.
Although	system	library	calls	might	be	taking	up	a	considerable	amount	of	processing	time,	they	can
often	be	traced	back	to	the	developer ’s	code	itself.	Viewing	system	calls	can	also	be	helpful	for
troubleshooting	more	difficult	issues.	Depending	on	whether	the	code	base	is	using	Objective-C	only,
it	might	also	be	helpful	to	use	the	Show	Obj-C	Only	option.
After	the	proper	configurations	have	been	made,	what	is	left	is	a	list	of	calls	that	the	developer	has
specifically	made	and	the	amount	of	CPU	time	they	are	taking	up.	The	best-practice	approach	is	to
optimize	from	the	largest	usage	to	the	least,	because	often	fixing	a	larger	issue	will	cascade	and	fix	a
number	of	the	smaller	issues	as	well.	To	get	more	information	on	the	code	in	question,	double-click
on	the	item	that	will	be	investigated	in	the	call	tree.	This	will	reveal	a	code	inspector	that	is	broken
down	by	line	with	annotations	indicating	the	amount	of	processor	time	used	relative	to	the	method,	as
shown	in	Figure	26.12.

Figure	26.12	Inspecting	Time	Profiler	information	at	a	line-by-line	level.

Note
The	code	cannot	be	edited	using	the	instruments	code	inspector;	however,	clicking	on	the
Xcode	icon	(shown	in	Figure	26.12)	will	open	the	code	in	Xcode.

Although	Time	Profiler	is	not	smart	enough	to	make	recommendations	on	how	to	optimize	the	code
that	is	running	slowly,	it	will	point	the	developer	in	the	right	direction.	Not	every	piece	of	code	can	be
optimized,	but	equipped	with	the	line	numbers	and	the	exact	overhead	required	to	run	them,	the
challenge	is	greatly	reduced.

Tip
Using	the	inspection	range	settings	in	instruments	is	useful	for	pinpointing	exact	spikes
or	sections	of	time	to	be	investigated.	The	controls	are	used	to	mark	the	beginning	and
end	of	the	inspect	range	on	a	timeline.

Exploring	Instruments:	Leaks
The	Leaks	instrument,	and	by	close	association	the	Allocations	instrument,	gives	the	developer	a
tremendous	amount	of	insight	into	finding	and	resolving	memory-related	issues.	It	can	assist	in
finding	overuse	of	memory,	leaks,	retain	cycles,	and	other	memory-related	issues.	With	the
popularization	of	Automatic	Reference	Counting	(ARC),	the	Leaks	and	Allocation	tools	are	slowly
falling	from	their	previous	grace;	however,	they	can	still	offer	tremendous	benefits	to	the	developer.
Additionally,	when	ARC	does	fail	to	properly	handle	a	memory	issue,	Instruments	is	the	first	place	to
look	for	the	problem.
The	Leaks	instrument	can	be	launched	from	the	Instrument	Selector	window	in	the	same	fashion	as
the	Time	Profiler.	When	Leaks	is	launched,	it	will	automatically	also	include	the	Allocations
instrument,	both	of	which	can	be	run	on	the	device	and	the	simulator.	In	Figure	26.13,	a	poorly
performing	app	is	profiled,	resulting	in	an	increasing	memory	footprint,	as	indicated	by	the	growing
graph	under	the	Allocations	section.	Additionally,	several	leaks	have	been	detected,	as	indicated	by	the
red	bars	in	the	Leaks	section.	Given	enough	time,	these	issues	will	likely	result	in	the	app	running	out
of	memory	and	crashing.

Figure	26.13	Running	the	Leaks	and	Allocation	instruments	against	a	project	with	memory	leaks.

Although	memory	issues	can	also	be	debugged	using	the	call	tree	grouping	as	shown	in	the	section
“Exploring	Instruments:	The	Time	Profiler,”	it	is	sometimes	more	useful	to	look	at	the	Statistics	or
Leaks	presentation	of	information.	To	see	the	leaks,	which	are	often	the	cause	of	increasing	memory
usage,	select	the	Leaks	instruments	from	the	upper	left.	In	this	sample	project	shown	in	Figure	26.14,
there	are	numerous	leaks	of	a	UIImage	object.

Figure	26.14	Investigating	a	large	number	of	UIImage	leaks	from	a	sample	project	with	a
growing	memory	footprint.

Instruments	will	attempt	to	group	leaks	into	identical	backtraces;	however,	the	system	is	not	perfect
and	leaks	being	caused	by	the	same	problem	might	appear	more	than	once	in	the	list.	Best	practice
calls	for	resolving	the	highest	number	of	leaks	first	and	then	running	the	profiler	again.	To	trace	the
leak	back	to	a	section	of	code,	the	left	view	needs	to	be	exposed.	This	is	done	with	the	view	controller
in	the	title	bar	of	the	Instruments	window.	Selecting	a	leak	will	reveal	the	backtrace	to	that	event.
Double-clicking	the	nonsystem-responsible	call	(typically	shown	in	black	text)	will	reveal	the	code	in
which	the	leak	has	occurred.
There	might	be	times	when	the	memory	footprint	of	an	app	grows	to	unacceptable	levels	but	no	leaks
are	present.	This	is	caused	by	the	app	using	more	memory	than	is	available.	To	troubleshoot	this
information,	select	the	Allocations	instrument	and	view	the	call	tree.	The	same	approach	to	inverting
the	call	tree,	hiding	system	libraries,	and	showing	only	Obj-C	from	the	Time	Profiler	section	might
be	helpful	here.	In	Figure	26.15,	19.30MB	of	memory	is	being	allocated	in
cellForRowAtIndexPath:,	which	causes	the	app	to	run	poorly.	Double-clicking	this	object	will
reveal	a	code	inspector	that	will	pinpoint	which	lines	are	using	the	most	memory,	which	will	provide
guidance	in	the	areas	to	troubleshoot.

Figure	26.15	Investigating	an	Allocations	call	tree	that	shows	a	very	large	amount	of	memory
being	used	in	cellForRowAtIndexPath:.

Going	Further	with	Instruments
Instruments	is	a	highly	explorable	tool.	After	a	developer	has	an	understanding	of	the	basic
functionality	and	controls,	the	majority	of	instruments	become	very	easy	to	deduce.	Apple	continues
to	aggressively	improve	on	and	push	for	developers	to	leverage	instruments.	At	this	point,	there	are
tools	to	troubleshoot	just	about	everything	an	app	does,	from	Core	Data	to	battery	statistics,	and	there
are	even	tools	to	help	optimize	animations	in	both	Core	Animation	and	OpenGL	ES.	To	learn	more
about	a	particular	instrument,	visit	Apple’s	online	documentation	at
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html

http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html

Summary
This	chapter,	unlike	most	of	the	other	chapters	in	this	book,	did	not	cover	a	sample	project	or
demonstrate	the	proper	usage	of	a	new	framework.	Instead,	it	provided	something	more	valuable,	an
introduction	to	debugging	and	code	optimization.	Debugging,	in	and	of	itself,	is	a	huge	topic	that	is
worthy	of	not	just	one	book	but	several	books.	We	hope	that	this	chapter	has	provided	a	jumping-off
point	for	a	lifelong	passion	of	squeezing	the	most	out	of	code	and	hunting	down	those	tricky	bugs.	A
developer	who	can	troubleshoot,	optimize,	and	debug	quickly	and	effectually	is	a	developer	who
never	has	to	worry	about	finding	work	or	being	of	value	to	a	team.
Instruments	and	the	Xcode	IDE	are	Apple’s	gift	to	developers.	Not	too	long	ago,	IDEs	cost	thousands
of	dollars	and	were	hard	to	work	with,	and	tools	like	Instruments	were	nonexistent.	When	Apple
provided	Xcode	to	everyone	free,	it	was	groundbreaking.	Over	the	years,	they	have	continued	to
improve	the	tools	that	developers	use	to	create	software	on	their	platforms.	They	do	this	because	they
care	about	the	quality	of	software	that	third-party	developers	are	writing.	It	has	become	the	obligation
of	all	iOS	developers	to	ensure	that	they	are	using	the	tools	and	providing	the	best	possible	software
they	can.

Index

A
Accessories	(HomeKit)
Accessory	Simulator	tests,	179-180
configuring,	171-175
discovering,	162
first	time	setups,	162

achievements	(games),	85,	87,	107
Achievement	Challenges,	94-97
achievement	precision,	storing,	102-103
authenticating,	88
caching,	89-90
completion	banners,	93
creating,	85-86
customizing,	105-107
earned/unearned	achievements,	98-99
Hidden	property,	87
hooks,	92-93
iTunes	Connect,	adding	achievements	to,	86
localization	information,	87
multiple	session	achievements,	101-102
partially	earned	achievements,	99-100
piggybacked	achievements,	102-103
Point	Value	attribute,	87
progress,	displaying,	87-88
reporting,	90-92
resetting,	104-105
timer-based	achievements,	103-104
Whack-a-Cac	sample	app,	97-98

Action	Extensions,	238
action	sets	(HomeKit),	162,	178-179
actions	(HomeKit),	178-179
scheduling,	181
triggers,	181

Address	Book,	109,	111-113,	126
GUI.	See	People	Picker	(Address	Book)
labels,	115-116
limitations	of,	110
memory	management,	113-114
People	Picker,	118-120

creating	contacts,	122-125
customizing,	120
editing	contacts,	120-121
viewing	contacts,	120-121

privacy	and	authorization,	110
reading
data	from	Address	Book,	113-114
multivalues	from	Address	Book,	114-115

sample	app,	110
street	addresses,	handling,	116-117
support,	importance	of,	109

AirPrint,	259,	270
error	handling,	264
PDF,	printing,	269-270
Print	Center	app,	266-267
print	jobs,	starting,	264-265
Print	sample	app,	260
printer	compatibility,	259
Printer	Simulator	tool,	259,	265
Printopia,	259
rendered	HTML,	printing,	268-269
testing,	259,	261
text,	printing,	261-262
configuring	print	info,	262-263
duplexing,	262-263
error	handling,	264
page	ranges,	263-264

UIPrintInteractionControllerDelegate,	267
animations
collection	views,	395,	413
change	animations,	416-417
layout	animations,	414-416
layout	changes,	413-414

UIKit	Dynamics,	1,	14
attachments,	7-8
classes	of,	2
collisions,	3-6
dynamic	behavior,	2
gravity,	3-4
introduction	to,	2
item	properties,	11-13
push	forces,	10-11

sample	app,	1
snaps,	9
springs,	8-9
UIAttachmentBehavior	class,	2
UICollisionBehavior	class,	2
UIDynamicAnimator,	2-3,	13
UIDynamicAnimatorDelegate,	13
UIDynamicItem	protocol,	1,	12
UIDynamicItemBehavior	class,	2
UIGravityBehavior	class,	2
UIPushBehavior	class,	2
UISnapBehavior	class,	2

annotations	in	Map	apps,	28
adding,	28-31
custom	views,	31-33
displaying,	31-33
draggable	views,	34
standard	views,	31-33

API	(Application	Programmer	Interface)	extension	limitations,	239
APN	(Apple	Push	Notifications),	195-196,	216
Apple	documentation,	214
Development	Push	SSL	Certificates,	200
feedback,	215

App	ID	and	push	notifications,	196-199
Apple	Maps,	15
Apple	Watch	Extensions,	244-247
asset	collections	(photo	library),	453-457
assets
asset	collections	(photo	library),	459-461
CloudKit,	222
photo	library,	457-458,	462-464

attachments	(physics	simulations),	UIKit	Dynamics,	7-8
attributes,	adding	to	managed	object	models	in	Core	Data,	280
authenticating
achievements	in	Game	Center,	88
leaderboards	in	Game	Center,	68-69
common	errors,	69-71
iOS	6	and	newer	authentication,	71-73

automation	(home).	See	HomeKit

B
background-task	processing,	333,	339,	344

background	availability,	checking	for,	334-335
BackgroundTasks	sample	app,	334
expiration	handlers,	337
GCD	and	performance,	349-351
identifiers,	336
LongRunningTasks	sample	app,	349-351
multitasking	availability,	checking	for,	335
music,	playing	in	a	background,	340-342
tasks
completing,	337-339
executing,	335-336

types	of	background	activities,	339-340
boarding	passes	(Passbook),	469
body	temperature	data,	reading/writing	in	HealthKit,	155-160
breakpoints	(debugging),	506
customizing,	507-508
exception	breakpoints,	508
scope	of,	508-509
symbolic	breakpoints,	508

C
caching	achievements	(games),	89-90
Carmageddon,	3
CloudKit,	217-218,	220,	222,	235
account	setup,	217-219
assets,	222
CloudTracker	sample	app,	218,	228
containers,	220
dashboard	and	data	management,	233-235
databases,	221
iCloud	capabilities,	enabling,	220
push	notifications,	227
record	identifiers,	222
record	zones,	222
records,	221-222
creating,	224-226
fetching,	223
saving,	224-226
updating,	226

subscriptions	to	data	changes,	227-228
user	discovery/management,	229-233

CloudTracker	sample	app,	218,	228

coders/keyed	archives	and	persistent	data,	272
collection	views,	395-396,	417
animations,	395,	413
change	animations,	416-417
layout	animations,	414-416
layout	changes,	413-414

custom	layouts,	creating,	408-413
data	source	methods,	398-401
delegate	methods,	401-402
flow	layouts,	395-396,	403-408
organizing,	395
PhotoGallery	sample	app,	395-396
setup,	397-398

collisions	(physics	simulations)	and	UIKit	Dynamics,	3-6
Combined	Leaderboards,	64
completion	banners	(achievements),	93
concurrent	operations,	running,	351-352
configuring
Handoff,	251-252
HomeKit,	162-179
leaderboards,	64

contacts	(Address	Book)
creating,	122-125
customizing,	120
editing,	120-121
viewing,	120-121

containers	(CloudKit),	220
content	specific	highlighting	and	TextKit,	427-431
Continuity	and	Handoff,	249,	257
advertisements,	249-251
configuring,	251-252
continuation,	250-251
document-based	apps,	implementing	in,	255-257
HandOffNotes	sample	app,	249
implementing,	251-257
introduction	to,	249-251
testing,	251
user	activity
continuing,	253-255
creating,	252-253

continuous	gesture	recognizers,	435
Cook,	Tim,	244

coordinate	systems	in	Map	apps,	25
Core	Data,	271-273,	303
default	data	setup,	282
data	model	version	migrations,	284
inserting	new	managed	objects,	282-284
loading	data	from	Web	services/API,	284

environment	of,	275-278
EOF	and,	271
features	of,	271
fetched	results	controller,	292,	298-299
deleting	rows,	298
inserting	new	sections,	297
inserting	rows,	298
integrating	table	view	with,	294-296
moving	rows,	298
preparations	for,	292-294
removing	rows,	298
removing	sections,	297-298
responding	to	content	changes,	296-299
updating	rows,	298

managed	object	models,	building,	278-279
adding	attributes	to,	280
creating	entities,	280
customized	subclasses,	282
establishing	relationships,	281

managed	objects,	299
adding,	299-300
creating	fetch	requests,	285-287
displaying,	285-291
displaying	object	data,	288-290
editing,	301
fetching	by	object	ID,	287
predicates,	290-291
removing,	300-301
rolling	back	changes,	301-303
saving	changes,	301-303

MyMovies	sample	app,	273
displaying	object	data,	288-290
friend	chooser,	285-287
movie	display	view,	287
movie	list	view	controller,	292-299
predicates,	290-291

Shared	Movies	tab,	291
projects,	starting,	274-278
SQLite,	271
table	view,	integrating	with	fetched	results	controller,	294-296

Core	Image	filters,	383,	394
face	detector,	391
processing	facial	features,	392-394
setup,	391-392

filters
attributes	of,	386-388
categories	of,	383-386
chaining,	390-391

images
initializing,	388-389
rendering	filtered	images,	389-390

Core	Location,	15
FavoritePlaces	sample	app
purpose	of,	15
user	location	requests,	16-24

geofencing	(regional	monitoring),	43
boundary	definitions,	44-45
monitoring	changes,	45-46
regional	monitoring	capability	checks,	43-44

importing,	16
user	location	requests,	16
location	services	checks,	19
parsing	location	data,	22-23
permissions,	16-19
requirements,	16-19
significant	location	change	notifications,	23
starting	requests,	19-22
testing	locations,	23-24
understanding	data,	22-23

Core	Text,	419
coupons	(Passbook),	469-471
CSV	(Comma	Separated	Values)	and	persistent	data,	273
Custom	Keyboard	Extensions,	238
customizing
achievements	(games),	105-107
breakpoints	(debugging),	507-508
flow	layouts	(collection	views),	403
basic	customizations,	403-404

decoration	views,	405-408
leaderboards,	81-82
People	Picker	(Address	Book),	120

D
dashboard	(CloudKit)	and	data	manager,	233-235
data	security.	See	security
databases
CloudKit,	221
object	databases.	See	Core	Data

debugging,	503,	519-520
breakpoints,	506
customizing,	507-508
exception	breakpoints,	508
scope	of,	508-509
symbolic	breakpoints,	508

first	computer	bug,	504
Instruments,	510-511,	519
interface	of,	511-514
Leaks	instrument,	516-518
Time	Profiler	instrument,	514-516

introduction	to,	503-504
Xcode,	504-505,	509-519

decoration	views	(collection	views),	405-408
developers	(game)	and	physics	simulations,	3
development	provisioning	profiles	and	push	notification	tests,	203-207
Development	Push	SSL	Certificates,	200-203
dictionaries	(Keystone	sample	app),	securing,	368-370
Dijkstra,	Edsger	W.,	503
Direct	SQLite	and	persistent	data,	273
directions,	getting	via	Maps.app,	47-51
discrete	gesture	recognizers,	435
dispatch	queues	and	GCD	(Grand	Central	Dispatch),	357,	361
concurrent	dispatch	queues,	357-359
serial	dispatch	queues,	359-361

Document	Provider	Extensions,	238
duplexing	(printing),	262-263
Dylan,	Bob,	143
dynamic	behavior	and	UIKit	Dynamics,	2
Dynamic	Link	Detection	and	TextKit,	423-424
Dynamic	Type	and	TextKit,	432

E
earned/unearned	achievements	(games),	98-99
embedded	frameworks	(extensions),	creating,	243-244
entities,	creating	for	managed	object	models	in	Core	Data,	280
EOF	(Enterprise	Object	Framework)	and	Core	Data,	271
error	codes	(Keychain	sample	app),	372
error	handling	when	printing,	264
events	(Passbooks),	469,	471
exception	breakpoints	(debugging),	508
exclusion	paths	and	TextKit,	425-426
expiration	handlers	and	background-task	processing,	337
extensions,	237,	247
Action	Extensions,	238
API	limitations,	239
Apple	Watch	Extensions,	244-247
creating,	240-241
Custom	Keyboard	Extensions,	238
Document	Provider	Extensions,	238
embedded	frameworks,	creating,	243-244
functionality	of,	238-239
host	apps,	sharing	information	with,	243-244
Photo	Editing	Extensions,	238
Share	Extensions,	238
Today	Extensions,	237,	240,	242
WatchKit,	244-247

F
face	detector	(Core	Image	filters),	391
processing	facial	features,	392-394
setup,	391-392

Facebook	and	Social	Framework,	305,	331
Facebook	app,	creating,	315-316
logins,	306-308
permissions
basic	Facebook	permissions,	317-318
publishing	to	stream	permissions,	319-320

posting	to
Facebook,	311,	315
streams,	320-321

SLComposeViewController,	308-310
SocialNetworking	sample	app,	305-306
user	timelines,	accessing,	322,	327-331

FavoritePlaces	sample	app
annotations,	28
adding,	28-31
custom	views,	31-33
displaying,	31-33
draggable	views,	34
standard	views,	31-33

displaying	maps,	25
coordinate	systems,	25
Mercator	Projection,	25

geocoding	addresses,	36-40
geofencing	(regional	monitoring),	43
boundary	definitions,	44-45
monitoring	changes,	45-46
regional	monitoring	capability	checks,	43-44

map	view,	28
MKMapKit,	configuring/customizing,	25-26
overlays,	28,	35-36
purpose	of,	15
reverse-geocoding	addresses,	36,	40-43
user	interactions,	responding	to,	27-28
user	location	requests,	16
location	services	checks,	19
parsing	location	data,	22-23
permissions,	16-19
requirements,	16-19
significant	location	change	notifications,	23
starting	requests,	19-22
testing	locations,	23-24
understanding	data,	22-23

fetched	results	controller	(Core	Data),	292
filters	(Core	Image	filters),	383
attributes	of,	386-388
categories	of,	383-386
chaining,	390-391
rendering	filtered	images,	389-390

fitness/health	apps.	See	HealthKit
flow	layouts	(collection	views),	395-396
customizing,	403-404
decoration	views,	405-408

font	settings	(text),	changing	in	TextKit,	432
foreground	app,	333

formatting	scores	in	Whack-a-Cac	sample	app,	65-66
frameworks	(embedded),	creating	for	extensions	and	host	apps,	243-244

G
Game	Center
achievements,	85,	87,	107
Achievement	Challenges,	94-97
adding	to	iTunes	Connect,	86
authenticating,	88
caching,	89-90
completion	banners,	93
creating,	85-86
customizing,	105-107
displaying	achievements,	87-88
earned/unearned	achievements,	98-99
Hidden	property,	87
hooks,	92-93
localization	information,	87
multiple	session	achievements,	101-102
partially	earned	achievements,	99-100
piggybacked	achievements,	102-103
Point	Value	attribute,	87
reporting,	90-92
resetting,	104-105
storing	achievement	precision,	102-103
timer-based	achievements,	103-104
Whack-a-Cac	sample	app,	97-104

Game	Center	Manager,	66-68,	88
iTunes	Connect
adding	achievements	to,	86
configuring	Game	Center	behavior	in,	63-64

leaderboards,	53,	83
Apple’s	limit	on	number	of	leaderboards,	65
authenticating,	68-73
Combined	Leaderboards,	64
configuring,	64-65
configuring	behavior	in	iTunes	Connect,	63-64
customizing	leaderboard	systems,	81-82
deleting,	64
formatting	scores,	65-66
localization	information,	66
presenting,	77-79

Single	Leaderboards,	64
sort-order	option,	66

scores
Game	Center	Challenges,	79-81
submitting,	73-76

sort-order	option,	66
Whack-a-Cac	sample	app,	53-55,	63
achievement	hooks,	92-93
achievements,	97-104
configuring	leaderboards,	65
displaying	life,	60-61
displaying	score,	60
Game	Center	Manager	and,	66-68
hooks	(achievements),	92-93
interacting	with	cacti	(cactus),	58-60
pausing	games,	62
resuming	games,	62
spawning	cacti	(cactus),	55-58

game	developers	and	physics	simulations,	3
GarageBand,	custom	sound	and	notifications,	208-209
GCD	(Grand	Central	Dispatch)	and	performance,	345,	361
dispatch	queues,	357,	361
concurrent	dispatch	queues,	357-359
serial	dispatch	queues,	359-361

LongRunningTasks	sample	app,	345-346
background-task	processing,	349-351
running	in	operation	queues,	351-357
running	main	threads,	347-349

operation	queues,	running	in,	361
cancelling	operations,	354-355
concurrent	operations,	351-352
custom	operations,	355-357
serial	operations,	353-354

queues,	347
generic	passes	(Passbooks),	469,	471-472
geocoding	addresses	in	Map	apps,	36-40.	See	also	reverse-geocoding	in	Map	apps
geofencing	(regional	monitoring),	43
boundaries,	defining,	44-45
monitoring
changes,	45-46
regional	monitoring	capability	checks,	43-44

gesture	recognizers,	435,	448

basic	usage,	436
continuous	gesture	recognizers,	435
custom	UIGestureRecognizer	subclasses,	448
discrete	gesture	recognizers,	435
event	sequence	of	a	recognizer,	443-444
failures,	requiring,	446-447
Gesture	Playground	sample	app,	437
pinch	gesture	recognizers,	440-441
tap	gesture	recognizers,	438-440

multiple	recognizers,	using	per	view,	441-445
pinch	gesture	recognizers,	440-441
tap	gesture	recognizers,	436,	438-440
types	of,	435

GPS	(Global	Positioning	System)	in	Map	apps,	22
GPX	(GPS	Exchange	Format)	files,	testing	locations	in	Map	apps,	23-24
graphics.	See	image	handling;	photo	library
gravity	(physics	simulations),	3-4

H
Handoff,	249,	257
advertisements,	249-251
configuring,	251-252
continuation,	250-251
document-based	apps,	implementing	in,	255-257
HandOffNotes	sample	app,	249
implementing
configurations,	251-252
continuing	user	activity,	253-255
creating	user	activity,	252-253
document-based	apps,	255-257

introduction	to,	249-251
testing,	251
user	activity
continuing,	253-255
creating,	252-253

Harvard	University,	504
Health.app
Dashboard,	146
introduction	to,	146
reading	characteristic	data,	152

HealthKit,	145,	160
framework	guide	website,	145

ICFFever	sample	app,	147
adding	HealthKit	to,	148-149
permission	requests,	150
reading/writing	data,	152-154

introduction	to,	145-146
new	projects,	adding	to,	148-149
permission	requests,	149-151
privacy,	145-146
reading/writing	data
basic	data,	152-154
body	temperature	data,	155-160
characteristic	data,	152
complex	data,	155-160

WWDC	2014,	145
Hidden	property	(achievements),	87
highlighting	(content	specific)	and	TextKit,	427-431
hit	detection	and	TextKit,	424-425
HomeKit,	161,	181
Accessories
Accessory	Simulator	tests,	179-180
configuring,	170-175
discovering,	162
first	time	setups,	162

action	sets,	162,	178-179
actions,	178-179
scheduling,	181
triggers,	181

capability	setup,	163-164
configuring,	162-179
data	access,	162
developer	account	setup,	163
enabling,	162
Home	Manager,	164-168
HomeNav	sample	app,	161
Accessory	configuration,	171-175
adding	homes	to,	166-168

iCloud	setup,	165-166
introduction	to,	162
Rooms,	162,	168-169
Service	Groups,	176-178
Services,	176-178
triggers,	181

Zones,	169-170
hooks	(achievements),	92-93
Hopper,	Grace	Murray,	504
horizontal	accuracy	in	Map	apps,	22
HTML	(rendered),	printing,	268-269

I
ICFFever	sample	app,	147
adding	HealthKit	to,	148-149
permission	requests,	150
reading/writing	data
basic	data,	152-154
body	temperature	data,	155-160
complex	data,	155-160

iCloud
CloudKit,	217-218,	220,	222,	235
account	setup,	217-219
assets,	222
containers,	220
creating	records,	224-226
dashboard	and	data	management,	233-235
databases,	221
enabling	iCloud	capabilities,	220
fetching	records,	223
push	notifications,	227
record	identifiers,	222
record	zones,	222
records,	221-222
saving	records,	224-226
subscriptions	to	data	changes,	227-228
updating	records,	226
user	discovery/management,	229-233

CloudTracker	sample	app,	218,	228
components	of,	217
HandOffNotes	sample	app,	249
HomeKit	setup,	165-166
Key-Value	Storage,	272
Photo	Stream,	464

image	handling,	375-376,	394
Core	Image	filters,	383,	394
chaining	filters,	390-391
face	detector,	391-394

filter	attributes,	386-388
filter	categories,	383-386
initializing	images,	388-389
rendering	filtered	images,	389-390

Image	Picker,	379-382
ImagePlayground	sample	app,	375
images
displaying,	377-379
initializing	(Core	Image	Filters),	388-389
instantiating,	376-377
rendering	filtered	images	(Core	Image	Filters),	389-390
resizing,	382-383

photo	library,	449
PhotoLibrary	sample	app,	449-450
Photos	framework,	449-450

Instruments	(Xcode),	510-511,	519
interface	of,	511-514
Leaks	instrument,	516-518
Time	Profiler	instrument,	514-516

iOS
background-task	processing,	333
Continuity,	249
foreground	app,	333
Handoff,	249
Message	Board	sample	app,	184-189
provisioning	profiles	and	push	notification	tests,	203-207

iPhones	and	music	libraries,	127
item	properties	(physics	simulations)	and	UIKit	Dynamics,	11-13
iTunes	Connect
achievements,	adding	to,	86
Game	Center,	configuring	behavior	in,	63-64
new	apps,	submitting	to,	63

J
Jobs,	Steve,	127
JSON	(JavaScript	Object	Notation),	183,	193
benefits	of,	183-184
Message	Board	sample	app,	184
messages,	posting,	189-191
parsing,	186-187
persistent	data	and,	273
servers,	getting	JSON	from,	185

building	requests,	185-186
displaying	data,	187-189
inspecting	responses,	186
parsing	JSON,	186-187

servers,	sending	JSON	to,	191-193
website,	184

K
keyboards	and	Custom	Keyboard	Extensions,	238
Keychain	sample	app,	363-364,	374
apps,	sharing	between,	370-371
attribute	keys,	367
dictionaries,	securing,	368-370
error	codes,	372
items,	resetting,	370
PIN,	storing/retrieving,	366-367
setup,	365-366
updating,	363

keyed	archives/coders	and	persistent	data,	272

L
labels	(Address	Book),	115-116
latitude	and	longitude	in	Map	apps,	22
geocoding	addresses,	36-40
reverse-geocoding	addresses,	36,	40-43

leaderboards,	53,	83
Apple’s	limit	on	number	of	leaderboards,	65
authenticating,	68-73
Combined	Leaderboards,	64
configuring,	64
deleting,	64
Game	Center
authenticating	leaderboards,	68-73
configuring	behavior	in	iTunes	Connect,	63-64
presenting	leaderboards	in,	77-79
score	challenges,	79-81
submitting	scores	to,	73-76

leaderboard	systems,	customizing,	81-82
localization	information,	66
scores
formatting,	65-66
score	challenges,	79-81

submitting	to	Game	Center,	73-76
Single	Leaderboards,	64-65
sorting,	66

Leaks	instrument,	516-518
life,	displaying	in	Whack-a-Cac	sample	app,	60-61
links,	Dynamic	Link	Detection	and	TextKit,	423-424
local	notifications,	195-196,	216
custom	sound	setup,	208-209
scheduling,	211-212
testing,	212

localization	information
achievements,	87
leaderboards,	66

locations	(maps),	15
annotations,	28
adding,	28-31
custom	views,	31-33
displaying,	31-33
draggable	views,	34
standard	views,	31-33

Apple	Maps,	15
Core	Location,	15
importing,	16
user	location	requests,	16-24

geocoding	addresses,	36-40
geofencing	(regional	monitoring),	43
boundary	definitions,	44-45
monitoring	changes,	45-46
regional	monitoring	capability	checks,	43-44

GPS,	22
horizontal	accuracy,	22
latitude	and	longitude,	22
map	view,	28
MapKit,	15
displaying	maps,	25-28
importing,	16

Maps.app,	getting	directions,	47-51
overlays,	28,	35-36
reverse-geocoding	addresses,	36,	40-43
testing,	23-24

logging	into	Social	Framework,	306-308
longitude	and	latitude	in	Map	apps,	22

geocoding	addresses,	36-40
reverse-geocoding	addresses,	36,	40-43

LongRunningTasks	sample	app,	345-346
background-task	processing,	349-351
custom	operations,	355-357
main	thread,	running,	347-349
operation	queues,	running	in,	351
cancelling	operations,	354-355
concurrent	operations,	351-352
serial	operations,	353-354

M
manifests	(passes),	488
MapKit,	15
annotations,	28
adding,	28-31
custom	views,	31-33
displaying,	31-33
draggable	views,	34
standard	views,	31-33

displaying	maps,	25
coordinate	systems,	25
Mercator	Projection,	25

geocoding	addresses,	36-40
importing,	16
map	view,	28
MKMapKit,	configuring/customizing,	25-26
overlays,	28,	35-36
reverse-geocoding	addresses,	36,	40-43
user	interactions,	responding	to,	27-28

maps,	15
annotations,	28
adding,	28-31
custom	views,	31-33
displaying,	31-33
draggable	views,	34
standard	views,	31-33

Apple	Maps,	15
Core	Location,	15
importing,	16
user	location	requests,	16-24

geocoding	addresses,	36-40

geofencing	(regional	monitoring),	43
boundary	definitions,	44-45
monitoring	changes,	45-46
regional	monitoring	capability	checks,	43-44

GPS,	22
horizontal	accuracy,	22
latitude	and	longitude,	22
map	view,	28
MapKit
displaying	maps,	25-28
importing,	16

Maps.app,	getting	directions,	47-51
overlays,	28,	35-36
reverse-geocoding	addresses,	36,	40-43
testing	locations,	23-24

Mark	II	Aiken	Relay	Calculator,	504
Media	Picker	feature	(music	libraries),	138-141
memory	management	and	NARC	(New,	Allow,	Retain,	Copy),	113-114
Mercator	Projection	in	Map	apps,	25
Message	Board	sample	app,	184
MobileMe,	217
multiple	session	achievements	(games),	101-102
multitasking	and	background-task	processing,	335
music,	playing	in	a	background,	340-342
music	libraries,	127,	144
Media	Picker,	138-141
playback	engines,	129
handling	state	changes,	132-137
playback	duration,	137-138
registering	notifications,	129-130
repeat	feature,	138
shuffle	feature,	138
timers,	137-138
user	controls,	131-132

Player	sample	app,	127-128
handling	state	changes,	132-137
playback	duration,	137-138
repeat	feature,	138
shuffle	feature,	138
timers,	137-138
user	controls,	131-132

Programmatic	Picker,	141

playing	random	songs,	141-142
predicate	song	matching,	142-143

MyMovies	sample	app,	273
displaying	object	data,	288-290
friend	chooser,	285-287
movie	display	view,	287
movie	list	view	controller,	292-299
predicates,	290-291
Shared	Movies	tab,	291

N
NARC	(New,	Allow,	Retain,	Copy)	and	memory	management,	113-114
NeXT	EOF	(Enterprise	Object	Framework)	and	Core	Data,	271
notifications,	195
APN,	195-196,	216
Apple	documentation,	214
feedback,	215

CloudTracker	sample	app,	228
custom	sound	setup,	208-209
local	notifications,	195-196,	216
custom	sound	setup,	208-209
scheduling,	211-212
testing,	212

push	notifications,	195-196,	216
APN,	195-196,	200,	214
App	ID,	196-199
app	setup,	196-199
CloudKit,	227
custom	sound	setup,	208-209
development	provisioning	profiles,	203-207
Development	Push	SSL	Certificates,	200-203
iOS	provisioning	profiles,	203-207
sending,	214-215
servers,	213-214
testing,	203-207,	212

receiving,	212-213
registering	for,	209-211
ShoutOut	sample	app,	196
receiving	push	notifications,	215
registering	for	notifications,	209-211

NSDictionaries,	367
NSLayoutManager	(TextKit),	420-421

NSLayoutManagerDelegate,	423
NSTextContainer,	423
NSTextStore,	421

NSUserDefaults	and	persistent	data,	272

O
object	databases.	See	Core	Data
operation	queues	and	GCD	(Grand	Central	Dispatch),	351,	361
cancelling	operations,	354-355
concurrent	operations,	running,	351-352
custom	operations,	355-357
serial	operations,	353-354

OS	X	Yosemite
Continuity,	249
Handoff,	249-250

overlays	in	Map	apps,	28,	35-36

P
page	ranges,	setting	for	printing,	263-264
parsing	JSON,	186-187
partially	earned	achievements	(games),	99-100
Passbook,	467,	502
Pass	Test	sample	app,	468
passes
adding,	494-497
app	interactions,	491-494
barcode	information,	477
boarding	passes,	469
building,	474-481
coupons,	469-471
customizing	appearance	of,	468-478
designing,	468-474
events,	469,	471
fields,	478-481
generic	passes,	469,	471-472
identification,	476
manifests,	488
packaging,	489
Pass	Type	ID,	481-483
presenting,	473-474
removing,	500-501
relevance,	476-477

showing,	499
signing,	489
signing	certificates,	483-488
simulating	updates,	497-499
store	cards,	469,	472-473
testing,	489-490
types	of,	469
updating,	497-499,	501

PassKit,	467,	502
password	security.	See	security
pausing	games,	Whack-a-Cac	sample	app,	62
PDF	(Portable	Document	Format),	printing,	269-270
People	Picker	(Address	Book),	118-120
contacts
creating,	122-125
editing,	120-121
viewing,	120-121

customizing,	120
performance	and	GCD	(Grand	Central	Dispatch),	345,	361
dispatch	queues,	357,	361
concurrent	dispatch	queues,	357-359
serial	dispatch	queues,	359-361

LongRunningTasks	sample	app,	345-346
running	in	operation	queues,	351-357
running	main	threads,	347-349

operation	queues,	running	in,	361
cancelling	operations,	354-355
concurrent	operations,	351-352
custom	operations,	355-357
serial	operations,	353-354

queues,	347
permissions
HealthKit	permission	requests,	150
photo	library,	451-453

persistent	data
coders/keyed	archives,	272
Core	Data,	271-273,	299,	303
adding	managed	objects,	299-300
building	managed	object	models,	278-282
default	data	setup,	282-284
displaying	managed	objects,	285-291
editing	managed	objects,	301

environment	of,	275-278
EOF	and,	271
features	of,	271
fetched	results	controller,	292-299
MyMovies	sample	app,	273
removing	managed	objects,	300-301
rolling	back	changes	to	managed	objects,	301-303
saving	changes	to	managed	objects,	301-303
SQLite,	271
starting	projects,	274-278

CSV,	273
Direct	SQLite,	273
iCloud	Key-Value	Storage,	272
JSON,	273
MyMovies	sample	app,	273
displaying	object	data,	288-290
friend	chooser,	285-287
movie	display	view,	287
movie	list	view	controller,	292-299
predicates,	290-291
Shared	Movies	tab,	291

NSUserDefaults,	272
plist	(Property	List),	272
structured	text	files,	273

Photo	Editing	Extensions,	238
photo	library,	449,	451,	459,	465
asset	collections,	453-457,	459-461
assets,	457-458,	462-464
permissions,	451-453
Photo	Stream,	464
PhotoLibrary	sample	app,	449-450
Photos	framework,	449-450
PHAsset,	450
PHAssetCollection,	450
PHFetchResult,	450
PHImageManager,	450
PHPhotoLibrary,	450

PhotoGallery	sample	app,	395-396
physics	simulators	and	UIKit	Dynamics,	1,	3,	14
attachments,	7-8
classes	of,	2
collisions,	3-6

dynamic	behavior,	2
gravity,	3-4
introduction	to,	2
item	properties,	11-13
push	forces,	10-11
sample	app,	1
snaps,	9
springs,	8-9
UIAttachmentBehavior	class,	2
UICollisionBehavior	class,	2
UIDynamicAnimator,	2-3,	13
UIDynamicAnimatorDelegate,	13
UIDynamicItem	protocol,	1,	12
UIDynamicItemBehavior	class,	2
UIGravityBehavior	class,	2
UIPushBehavior	class,	2
UISnapBehavior	class,	2

pictures.	See	image	handling;	photo	library
piggybacked	achievements	(games),	102-103
pinch	gesture	recognizers,	440-441
playback	engines
playback	duration,	137-138
repeat	feature,	138
shuffle	feature,	138
state	changes,	handling,	132-137
timers,	137-138
user	controls,	131-132

playback	engines	(music	libraries),	129-130
Player	sample	app	(music	libraries),	127-128
playback	duration,	137-138
repeat	feature,	138
shuffle	feature,	138
state	changes,	handling,	132-137
timers,	137-138
user	controls,	131-132

plist	(Property	List)	and	persistent	data,	272
Point	Value	attribute	(achievements),	87
predicates,	displaying	managed	objects	in	Core	Data,	290-291
printing
AirPrint,	259,	270
error	handling,	264
page	ranges,	263-264

Print	Center	app,	266-267
printer	compatibility,	259
Printer	Simulator	tool,	259,	265
printing	PDF,	269-270
printing	rendered	HTML,	268-269
printing	text,	261-265
starting	jobs,	264-265
testing,	259,	261
UIPrintInteractionController-Delegate,	267

duplexing,	262-263
Print	Center	app,	266-267
Print	sample	app,	260
Printopia,	259

privacy
Address	Book,	110
HealthKit,	145-146

Programmatic	Picker	feature	(music	libraries),	141,	144
predicate	song	matching,	142-143
random	songs,	playing,	141-142

properties	of	items	(physics	simulations)	and	UIKit	Dynamics,	11-13
Property	List	(plist)	and	persistent	data,	272
protecting	data
Keychain	sample	app,	363-364,	374
attribute	keys,	367
error	codes,	372
resetting	items,	370
securing	dictionaries,	368-370
setup,	365-366
sharing	between	apps,	370-371
storing/retrieving	PIN,	366-367
updating,	363

Touch	ID,	374
error	codes,	373
implementing,	372-373

push	forces	(physics	simulations)	and	UIKit	Dynamics,	10-11
push	notifications,	195-196,	216
APN,	195-196
Apple	documentation,	214
Development	Push	SSL	Certificates,	200

App	ID,	196-199
app	setup,	196-199
CloudKit,	227

custom	sound	setup,	208-209
development	provisioning	profiles,	203-207
Development	Push	SSL	Certificates,	200-203
iOS	provisioning	profiles,	203-207
sending,	214-215
servers,	213-214
testing,	203-207,	212

Q
queues	and	GCD	(Grand	Central	Dispatch),	347
dispatch	queues,	357,	361
concurrent	dispatch	queues,	357-359
serial	dispatch	queues,	359-361

operation	queues,	running	in,	351,	361

R
receiving	notifications,	212-213
record	identifiers	(CloudKit),	222
record	zones	(CloudKit),	222
records	(CloudKit),	221-222
creating,	224-226
fetching,	223
saving,	224-226
updating,	226

regional	monitoring.	See	geofencing
relationships,	establishing	in	managed	object	models	in	Core	Data,	281
remote	notifications.	See	push	notifications
rendered	HTML,	printing,	268-269
repeat	feature	(playback	engines),	138
reporting	achievements	(games),	90-92
resetting	achievements	(games),	104-105
resizing	images,	382-383
resuming	(pausing)	games,	Whack-a-Cac	sample	app,	62
reverse-geocoding	addresses	in	Map	apps,	36,	40-43.	See	also	geocoding	addresses	in	Map	apps
Rooms	(HomeKit),	162,	168-169
Ruby	on	Rails	and	Message	Board	sample	app,	184
JSON,	encoding,	189-191
server	access,	184

S
saving	records	(CloudKit),	224-226
scheduling

actions	(HomeKit),	181
local	notifications,	211-212

scores
Game	Center
customizing	leaderboard	systems,	81-82
score	challenges,	79-81
submitting	to,	73-76

Whack-a-Cac	sample	app
adding	scores	to,	76-77
displaying,	60
formatting,	65-66

security
Keychain	sample	app,	363-364,	374
attribute	keys,	367
error	codes,	372
resetting	items,	370
securing	dictionaries,	368-370
setup,	365-366
sharing	between	apps,	370-371
storing/retrieving	PIN,	366-367
updating,	363

Touch	ID,	374
error	codes,	373
implementing,	372-373

serial	operations,	running,	353-354
Service	Groups	(HomeKit),	176-178
Services	(HomeKit),	176-178
Share	Extensions,	238
Shared	Movies	tab	(MyMovies	sample	app),	291
sharing	information	betwen	host	apps	and	extensions,	243-244
ShoutOut	sample	app,	196
notifications,	registering	for,	209-211
push	notifications,	receiving,	215

shuffle	feature	(playback	engines),	138
Sina	Weibo	and	Social	Framework,	305
Single	Leaderboards,	64-65
sizing	images,	382-383
SLComposeViewController,	308-310
snaps	(physics	simulations)	and	UIKit	Dynamics,	9
Social	Framework,	305,	331
logins,	306-308
posting	to

Facebook,	311,	315-321
Twitter,	311

SLComposeViewController,	308-310
SocialNetworking	sample	app,	305-306
user	timelines,	accessing
Facebook	timelines,	322,	327-331
Twitter	timelines,	322-327

songs	in	Programmatic	Picker	(music	libraries)
predicate	song	matching,	142-143
random	songs,	playing,	141-142

sort-order	option	(Game	Center),	66
sound	(custom)	and	notifications,	208-209
springs	(physics	simulations)	and	UIKit	Dynamics,	8-9
SpriteKit,	2
SQLite
Core	Data	and,	271
Direct	SQLite	and	persistent	data,	273

SSL	(Secure	Socket	Layer)	and	Development	Push	SSL	Certificates,	200-203
store	cards	(Passbooks),	469,	472-473
storing
achievement	precision	(games),	102-103
iCloud	Key-Value	Storage	and	persistent	data,	272
PIN	in	Keychain	sample	app,	366-367

street	addresses,	handling	in	Address	Book,	116-117
structured	text	files	and	persistent	data,	273
subclasses,	customized	in	managed	object	models	in	Core	Data,	282
submitting
new	apps	to	iTunes	Connect,	63
scores	to	Game	Center,	73-76

subscribing	to	data	changes	in	CloudKit,	227-228
symbolic	breakpoints	(debugging),	508

T
tap	gesture	recognizers,	436,	438-440
temperature	(body),	reading/writing	data	in	HealthKit,	155-160
testing
Accessory	Simulator	tests	(HomeKit),	179-180
AirPrint,	259,	261
Handoff,	251
local	notifications,	212
passes	(Passbook),	489-490
push	notifications,	203-207

text
AirPrint,	printing	text	via,	261-262
configuring	print	info,	262-263
duplexing,	262-263
error	handling,	264
page	ranges,	263-264
Printer	Simulator	tool,	265
starting	print	jobs,	264-265

Core	Text,	419
TextKit,	419,	433
changing	font	settings	(text),	432
content	specific	highlighting,	427-431
Dynamic	Link	Detection,	423-424
Dynamic	Type,	432
exclusion	paths,	425-426
hit	detection,	424-425
NSLayoutManager,	420-423
sample	app,	420

Time	Profiler	instrument,	514-516
timers
playback	engines,	137-138
timer-based	achievements	(games),	103-104

Today	Extensions,	237,	240,	242
Touch	ID,	374
error	codes,	373
implementing,	372-373

triggers	(HomeKit),	181
Twitter	and	Social	Framework,	305,	331
logins,	306-308
posting	to	Twitter,	311-315
SLComposeViewController,	308-310
SocialNetworking	sample	app,	305-306
user	timelines,	accessing,	322-327

U
UIAttachmentBehavior	class,	2
UICollisionBehavior	class,	2
UIDynamicAnimator,	2,	13
creating,	3
multiple	instances	of,	3

UIDynamicAnimatorDelegate,	13
UIDynamicItem	protocol,	1,	12

UIDynamicItemBehavior	class,	2
UIGravityBehavior	class,	2
UIKit	Dynamics,	1,	14
attachments,	7-8
classes	of,	2
collisions,	3-6
dynamic	behavior,	2
gravity,	3-4
introduction	to,	2
item	properties,	11-13
push	forces,	10-11
sample	app,	1
snaps,	9
springs,	8-9
UIAttachmentBehavior	class,	2
UICollisionBehavior	class,	2
UIDynamicAnimator,	2,	13
creating,	3
multiple	instances	of,	3

UIDynamicAnimatorDelegate,	13
UIDynamicItem	protocol,	1,	12
UIDynamicItemBehavior	class,	2
UIGravityBehavior	class,	2
UIPushBehavior	class,	2
UISnapBehavior	class,	2

UIPrintInteractionControllerDelegate,	267
UIPushBehavior	class,	2
UISnapBehavior	class,	2
unearned/earned	achievements	(games),	98-99
updating
passes	(Passbook),	497-499,	501
records	(CloudKit),	226

UTI	(Uniform	Type	Indicators),	Handoff	and	document-based	app	implementations,	256

V	-	W
WatchKit,	244-247
Whack-a-Cac	sample	app,	53-55,	63
achievements,	97-98
earned/unearned	achievements,	98-99
hooks,	92-93
multiple	session	achievements,	101-102
partially	earned	achievements,	99-100

piggybacked	achievements,	102-103
storing	achievement	precision,	102-103
timer-based	achievements,	103-104

cacti	(cactus)
interaction	with,	58-60
spawning,	55-58

Game	Center	Manager	and,	66-68
leaderboards,	configuring,	65
life,	displaying,	60-61
pausing	games,	62
resuming	games,	62
score,	displaying,	60
scores,	submitting,	76-77

WWDC	2014	and	HealthKit,	145

X
Xcode
background-task	processing
executing	tasks,	335-336
types	of	background	activities,	339-340

CloudKit
account	setup,	217-219
enabling	iCloud	capabilities,	220

Core	Data
building	managed	object	models,	278-282
fetched	results	controller,	292-299
starting	projects,	274-278

debugging,	504-505,	509-520
HomeKit
capability	setup,	163-164
developer	account	setup,	163

Instruments,	510-511,	519
interface	of,	511-514
Leaks	instrument,	516-518
Time	Profiler	instrument,	514-516

testing	locations	in	Map	apps,	23-24

Y
Yosemite	(OS	X)
Continuity,	249
Handoff,	249-250

Z
Zones	(HomeKit),	169-170

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Dedication Page
	Table of Contents
	Foreword
	Preface
	Prerequisites
	What You’ll Need
	How This Book Is Organized
	About the Sample Code
	Getting the Sample Code
	Installing Git and Working with GitHub
	Contacting the Authors

	Acknowledgments
	About the Authors
	1. UIKit Dynamics
	The Sample App
	Introduction to UIKit Dynamics
	Implementing UIKit Dynamics
	Gravity
	Collisions
	Attachments
	Springs
	Snap
	Push Forces
	Item Properties

	In-Depth UIDynamicAnimator and UIDynamicAnimatorDelegate
	Summary

	2. Core Location, MapKit, and Geofencing
	The Sample App
	Obtaining User Location
	Requirements and Permissions
	Checking for Services
	Starting Location Request
	Parsing and Understanding Location Data
	Significant Change Notifications
	Using GPX Files to Test Specific Locations

	Displaying Maps
	Understanding the Coordinate Systems
	MKMapKit Configuration and Customization
	Responding to User Interactions

	Map Annotations and Overlays
	Adding Annotations
	Displaying Standard and Custom Annotation Views
	Draggable Annotation Views
	Working with Map Overlays

	Geocoding and Reverse-Geocoding
	Geocoding an Address
	Reverse-Geocoding a Location

	Geofencing
	Checking for Regional Monitoring Capability
	Defining Boundaries
	Monitoring Changes

	Getting Directions
	Summary

	3. Leaderboards
	The Sample App
	Spawning a Cactus
	Cactus Interaction
	Displaying Life and Score
	Pausing and Resuming
	Final Thoughts on Whack-a-Cac

	iTunes Connect
	Game Center Manager
	Authenticating
	Common Authentication Errors
	iOS 6 and Newer Authentication

	Submitting Scores
	Adding Scores to Whack-a-Cac
	Presenting Leaderboards
	Score Challenges
	Going Further with Leaderboards

	Summary

	4. Achievements
	iTunes Connect
	Displaying Achievement Progress
	Game Center Manager and Authentication
	The Achievement Cache
	Reporting Achievements
	Adding Achievement Hooks
	Completion Banners
	Achievement Challenges
	Adding Achievements into Whack-a-Cac
	Earned or Unearned Achievements
	Partially Earned Achievements
	Multiple Session Achievements
	Piggybacked Achievements and Storing Achievement Precision
	Timer-Based Achievements

	Resetting Achievements
	Going Further with Achievements
	Summary

	5. Getting Started with Address Book
	Why Address Book Support Is Important
	Limitations of Address Book Programming
	The Sample App
	Getting Address Book Up and Running
	Reading Data from the Address Book
	Reading Multivalues from the Address Book
	Understanding Address Book Labels
	Working with Addresses

	Address Book Graphical User Interface
	People Picker

	Programmatically Creating Contacts
	Summary

	6. Working with Music Libraries
	The Sample App
	Building a Playback Engine
	Registering for Playback Notifications
	User Controls
	Handling State Changes
	Duration and Timers
	Shuffle and Repeat

	Media Picker
	Programmatic Picker
	Playing a Random Song
	Predicate Song Matching

	Summary

	7. Implementing HealthKit
	Introduction to HealthKit
	Introduction to Health.app
	The Sample App
	Adding HealthKit to a Project
	Requesting Permission for Health Data
	Reading Characteristic HealthKit Data
	Reading and Writing Basic HealthKit Data
	Reading and Writing Complex HealthKit Data
	Summary

	8. Implementing HomeKit
	The Sample App
	Introduction to HomeKit
	Setting Up HomeKit Components
	Developer Account Setup
	Enabling HomeKit Capability
	Home Manager
	Home
	Rooms and Zones
	Accessories
	Services and Service Groups
	Actions and Action Sets

	Testing with the HomeKit Accessory Simulator
	Scheduling Actions with Triggers
	Summary

	9. Working with and Parsing JSON
	JSON
	Benefits of Using JSON
	JSON Resources

	The Sample App
	Accessing the Server
	Getting JSON from the Server
	Building the Request
	Inspecting the Response
	Parsing JSON
	Displaying the Data

	Posting a Message
	Encoding JSON
	Sending JSON to the Server

	Summary

	10. Notifications
	Differences Between Local and Push Notifications
	The Sample App
	App Setup
	Creating Development Push SSL Certificate
	Development Provisioning Profile
	Custom Sound Preparation
	Registering for Notifications
	Scheduling Local Notifications
	Receiving Notifications
	Push Notification Server
	Sending the Push Notifications
	Handling APNs Feedback
	Summary

	11. Cloud Persistence with CloudKit
	CloudKit Basics
	The Sample App
	Setting Up a CloudKit Project
	Account Setup
	Enabling iCloud Capabilities

	CloudKit Concepts
	Containers
	Databases
	Records
	Record Zones
	Record Identifiers
	Assets

	CloudKit Basic Operations
	Fetching Records
	Create and Save a Record
	Update and Save a Record

	Subscriptions and Push
	Push Setup
	Subscribing to Data Changes

	User Discovery and Management
	Managing Data in the Dashboard
	Summary

	12. Extensions
	Types of Extensions
	Today
	Share
	Action
	Photo Editing
	Document Provider
	Custom Keyboard

	Understanding Extensions
	API Limitations
	Creating Extensions
	Today Extension
	Sharing Code and Information between Host App and Extension
	Apple Watch Extension
	Summary

	13. Handoff
	The Sample App
	Handoff Basics
	Implementing Handoff
	Creating the User Activity
	Continuing an Activity

	Implementing Handoff in Document-Based Apps
	Summary

	14. AirPrint
	AirPrint Printers
	Testing for AirPrint
	Printing Text
	Print Info
	Setting Page Range
	UISimpleTextPrintFormatter
	Error Handling
	Starting the Print Job
	Printer Simulator Feedback

	Print Center
	UIPrintInteractionControllerDelegate

	Printing Rendered HTML
	Printing PDFs
	Summary

	15. Getting Up and Running with Core Data
	Deciding on Core Data
	Sample App
	Starting a Core Data Project
	Core Data Environment

	Building Your Managed Object Model
	Creating an Entity
	Adding Attributes
	Establishing Relationships
	Custom Managed Object Subclasses

	Setting Up Default Data
	Inserting New Managed Objects
	Other Default Data Setup Techniques

	Displaying Your Managed Objects
	Creating Your Fetch Request
	Fetching by Object ID
	Displaying Your Object Data
	Using Predicates

	Introducing the Fetched Results Controller
	Preparing the Fetched Results Controller
	Integrating Table View and Fetched Results Controller
	Responding to Core Data Changes

	Adding, Editing, and Removing Managed Objects
	Inserting a New Managed Object
	Removing a Managed Object
	Editing an Existing Managed Object
	Saving and Rolling Back Your Changes

	Summary

	16. Integrating Twitter and Facebook Using Social Framework
	The Sample App
	Logging In
	Using SLComposeViewController
	Posting with a Custom Interface
	Posting to Twitter
	Posting to Facebook
	Creating a Facebook App

	Accessing User Timelines
	Twitter
	Facebook

	Summary

	17. Working with Background Tasks
	The Sample App
	Checking for Background Availability
	Finishing a Task in the Background
	Background Task Identifier
	Expiration Handler
	Completing the Background Task

	Implementing Background Activities
	Types of Background Activities
	Playing Music in the Background

	Summary

	18. Grand Central Dispatch for Performance
	The Sample App
	Introduction to Queues
	Running on the Main Thread
	Running in the Background
	Running in an Operation Queue
	Concurrent Operations
	Serial Operations
	Canceling Operations
	Custom Operations

	Running in a Dispatch Queue
	Concurrent Dispatch Queues
	Serial Dispatch Queues

	Summary

	19. Using Keychain and Touch ID to Secure and Access Data
	The Sample App
	Setting Up and Using Keychain
	Setting Up a New KeychainItemWrapper
	Storing and Retrieving the PIN
	Keychain Attribute Keys
	Securing a Dictionary
	Resetting a Keychain Item
	Sharing a Keychain Between Apps
	Keychain Error Codes

	Implementing Touch ID
	Summary

	20. Working with Images and Filters
	The Sample App
	Basic Image Data and Display
	Instantiating an Image
	Displaying an Image
	Using the Image Picker
	Resizing an Image

	Core Image Filters
	Filter Categories and Filters
	Filter Attributes
	Initializing an Image
	Rendering a Filtered Image
	Chaining Filters

	Feature Detection
	Setting Up a Face Detector
	Processing Face Features

	Summary

	21. Collection Views
	The Sample App
	Introducing Collection Views
	Setting Up a Collection View
	Implementing the Collection View Data Source Methods
	Implementing the Collection View Delegate Methods

	Customizing Collection View and Flow Layout
	Basic Customizations
	Decoration Views

	Creating Custom Layouts
	Collection View Animations
	Collection View Layout Changes
	Collection View Layout Animations
	Collection View Change Animations

	Summary

	22. Introduction to TextKit
	The Sample App
	Introducing NSLayoutManager
	Detecting Links Dynamically
	Detecting Hits
	Exclusion Paths
	Content Specific Highlighting
	Changing Font Settings with Dynamic Type
	Summary

	23. Gesture Recognizers
	Types of Gesture Recognizers
	Basic Gesture Recognizer Usage
	Introduction to the Sample App
	Tap Recognizer in Action
	Pinch Recognizer in Action

	Multiple Recognizers for a View
	Gesture Recognizers: Under the Hood
	Multiple Recognizers for a View: Redux
	Requiring Gesture Recognizer Failures

	Custom UIGestureRecognizer Subclasses
	Summary

	24. Accessing the Photo Library
	The Sample App
	The Photos Framework
	Using Asset Collections and Assets
	Permissions
	Asset Collections
	Assets

	Changes in the Photo Library
	Asset Collection Changes
	Asset Changes

	Dealing with Photo Stream
	Summary

	25. Passbook and PassKit
	The Sample App
	Designing the Pass
	Pass Types
	Pass Layout—Boarding Pass
	Pass Layout—Coupon
	Pass Layout—Event
	Pass Layout—Generic
	Pass Layout—Store Card
	Pass Presentation

	Building the Pass
	Basic Pass Identification
	Pass Relevance Information
	Barcode Identification
	Pass Visual Appearance Information
	Pass Fields

	Signing and Packaging the Pass
	Creating the Pass Type ID
	Creating the Pass Signing Certificate
	Creating the Manifest
	Signing and Packaging the Pass
	Testing the Pass
	Interacting with Passes in an App

	Updating Passes Automatically
	Summary

	26. Debugging and Instruments
	Introduction to Debugging
	The First Computer Bug
	Debugging Basics with Xcode

	Breakpoints
	Customizing Breakpoints
	Symbolic and Exception Breakpoints
	Breakpoint Scope

	Working with the Debugger
	Instruments
	The Instruments Interface
	Exploring Instruments: The Time Profiler
	Exploring Instruments: Leaks
	Going Further with Instruments

	Summary

	Index
	Code Snippets

