
www.allitebooks.com

http://www.allitebooks.org

Mastering OAuth 2.0

Create powerful applications to interact with popular
service providers such as Facebook, Google, Twitter,
and more by leveraging the OAuth 2.0 Authorization
Framework

Charles Bihis

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering OAuth 2.0

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1081215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-540-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Charles Bihis

Reviewers
Shubham Jindal

Oleg Mikheev

Commissioning Editor
Pramila Balan

Acquisition Editors
Richard Harvey

Aaron Lazar

Content Development Editor
Rohit Singh

Technical Editor
Siddhi Rane

Copy Editors
Janbal Dharmaraj

Kevin McGowan

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Charles Bihis is a scientist and engineer from Vancouver, Canada. Earning his
degree in computer science from the University of British Columbia, specializing
in software engineering, he enjoys exploring the boundaries of technology. He
believes that technology is the key to enriching the lives of everyone around us and
strives to solve problems people face every day. Reach out to him on his website,
www.whoischarles.com, and let's solve the world's problems together!

This work would not have been possible without the help of
my colleagues, friends, and family. A special thanks goes to my
teammates on the Identity Platform team at Adobe for the years
of guidance and tutelage. I'd also like to thank my friends for their
constant support and encouragement. And finally, I'd like to thank
my family, especially my wife, for their ceaseless confidence in all
that I do.

www.allitebooks.com

www.whoischarles.com
http://www.allitebooks.org

About the Reviewers

Shubham Jindal has an avid interest in programming and is currently pursuing
his degree in computer science and engineering from Indian Institute of Technology,
Delhi. Leaning towards JavaScript, he breathes computers and can be easily spotted
hacking around with things, scripting or inspecting elements on the Web. Being a
clinophile, he believes in doing smart work. Inclined towards music since childhood,
you can inevitably find him with his earphones plugged in.

He is always agog for new opportunities and is striving to establish his very
own start-up.

I would like to thank Dr. Karthikeyan Bhargavan—my INRIA's
internship mentor, parents, friends, and Vartika Garg—my partner
in crime, for their help in producing this book.

Oleg Mikheev is a computer science enthusiast with over 17 years background both
in industry and academia, holding a PhD from one of the top Russian universities.
He has completed numerous projects in industries where security is always a top
priority—finance, insurance, government.

The list of clients Oleg has worked for includes names such as UBS, CSFB and NYSE,
where he has applied a full stack of technologies, specifically IBM WebSphere.
Lately, Oleg is focused on start-up ventures, currently working in a financial
start-up, Personal Capital.

He has authored a number of articles for the Java World journal, contributed to open
source projects and reviewed a book on Struts 2.

I would like to thank Mary Alex for her exceptional work and would
like to wish her the best of luck with her married life.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To my wife, Stephanie, my mom, Purificacion, and my aunt, Elizabeth, the three
most important women in my life. Everything I do is possible because of you.

-Charles

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Why Should I Care About OAuth 2.0?	 1

Authentication versus authorization	 2
Authentication	 2
Authorization	 2

What problems does it solve?	 3
Federated identity	 3
Delegated authority	 4
Real-life examples of OAuth 2.0 in action	 4

How does OAuth 2.0 actually solve the problem?	 5
Without OAuth 2.0 – GoodApp wants to suggest contacts by looking
at your Facebook friends	 5
With OAuth 2.0 – GoodApp wants to suggest contacts by looking
at your Facebook friends	 7

Who uses OAuth 2.0?	 8
Introducing "The World's Most Interesting Infographic Generator"	 9
Summary	 9

Chapter 2: A Bird's Eye View of OAuth 2.0	 11
How does it work?	 11

User consent	 13
Two main flows for two main types of client	 16
Trusted versus untrusted clients	 17

First look at the client-side flow	 18
An untrusted client – GoodApp requests access for user's
Facebook friends using implicit grant	 19
The big picture	 21
When should this be used?	 22
Pros and cons of being an untrusted client	 22

Table of Contents

[ii]

Pros	 23
Cons	 23

First look at the server-side flow	 23
A trusted client – GoodApp requests access for user's Facebook
friends using authorization code grant	 24
The big picture	 26
When should this be used?	 28
Pros and cons of being a trusted client	 29

Pros	 29
Cons	 29

What are the differences?	 29
What about mobile?	 30
Summary	 31

Chapter 3: Four Easy Steps	 33
Let's get started	 33
Step 1 – Register your client application	 35

Different service providers, different registration process,
same OAuth 2.0 protocol	 36
Your client credentials	 38

Step 2 – Get your access token	 38
A closer look at access tokens	 39

Scope	 39
Duration of access	 41
Token revocation	 41

Sometimes a refresh token	 42
Step 3 – Use your access token	 42

An access token is an access token	 43
Step 4 – Refresh your access token	 43

What if I don't have a refresh token?	 43
Refresh tokens expire too	 43

Putting it all together	 44
Summary	 44

Chapter 4: Register Your Application	 45
Recap of registration process	 45
Registering your application with Facebook	 46

Creating your application	 46
Setting your redirection endpoint	 48

What is a redirection endpoint?	 48
Find your service provider's authorization and token endpoints	 53

Putting it all together!	 53
Summary	 54

Table of Contents

[iii]

Chapter 5: Get an Access Token with the Client-Side Flow	 55
Refresher on the implicit grant flow	 55
A closer look at the implicit grant flow	 57

Authorization request	 58
According to the specification	 58
In our application	 59

Access token response	 60
Success	 60
Error	 62

Let's build it!	 63
Build the base application	 64

Install Apache Maven	 64
Create the project	 66
Configure base project to fit our application	 67
Modify the hosts file	 68
Running it for the first time	 68

Make the authorization request	 71
Handle the access token response	 73

Summary	 77
Reference pages	 78

Authorization request	 79
Access token response	 80
Error response	 80

Chapter 6: Get an Access Token with the Server-Side Flow	 83
Refresher on the authorization code grant flow	 83
A closer look at the authorization code grant flow	 86

Authorization request	 86
According to the specification	 86
In our application	 87

Authorization response	 88
Success	 88
Error	 89

Access token request	 91
According to the specification	 91
In our application	 93

Access token response	 94
Success	 94
Error	 95

Let's build it!	 96
Build the base application	 96

Install Apache Maven	 96
Create the project	 97
Configure the base project to fit our application	 99
Modify the hosts file	 100

Table of Contents

[iv]

Running it for the first time	 100
Make the authorization request	 102
Handle the authorization response	 104
Make the access token request	 106
Handle the access token response	 108

Summary	 111
Reference pages	 112

An overview of the authorization code grant flow	 112
Authorization request	 113
Authorization response	 114
Error response	 114
Access token request	 115
Access token response	 116
Error response	 117

Chapter 7: Use Your Access Token	 119
Refresher on access tokens	 119
Use your access token to make an API call	 120

The authorization request header field	 120
The form-encoded body parameter	 121
The URI query parameter	 121

Let's build it!	 122
In our client-side application	 123

Send via the URI query parameter	 124
Send via the form-encoded body parameter	 125

In our server-side application	 126
Send via the URI query parameter	 126
Send via the HTTP authorization header	 128

Creating the world's most interesting infographic	 130
Summary	 130
Reference pages	 131

An overview of protected resource access	 131
The authorization request header field	 132
The form-encoded body parameter	 132
The URI query parameter	 133

Chapter 8: Refresh Your Access Token	 135
A closer look at the refresh token flow	 135

The refresh request	 136
According to the specification	 136

The access token response	 137
Success	 137
Error	 138

Table of Contents

[v]

What if I have no refresh token? Or my refresh token has expired?	 139
Comparison between the two methods	 140

The ideal workflow	 141
Summary	 142
Reference pages	 143

An overview of the refresh token flow	 143
The refresh request	 144
Access token response	 144
Error response	 145

Chapter 9: Security Considerations	 147
What's at stake?	 147
Security best practices	 148

Use TLS!	 148
Request minimal scopes	 149
When using the implicit grant flow, request read-only permissions	 149
Keep credentials and tokens out of reach of users	 150
Use the authorization code grant flow whenever possible	 150
Use the refresh token whenever possible	 151
Use native browsers instead of embedded browsers	 151
Do not use third-party scripts in the redirection endpoint	 153
Rotate your client credentials	 154

Common attacks	 154
Cross-site request forgery (CSRF)	 154

What's going on?	 156
Use the state param to combat CSRF	 156

Phishing	 158
Redirection URI manipulation	 160
Client and user impersonation	 162

Summary	 162
Chapter 10: What About Mobile?	 163

What is a mobile application?	 163
What flow should we use for mobile applications?	 164

Are mobile applications trusted or untrusted?	 164
What about mobile applications built on top of mobile platforms
with secure storage APIs?	 165

Not quite enough	 165
Hybrid architectures	 167

Implicit for mobile app, authorization code grant for backend server	 168
What is the benefit of this?	 169

Authorization via application instead of user-agent	 169
Summary	 171

Table of Contents

[vi]

Chapter 11: Tooling and Troubleshooting	 173
Tools	 173
Troubleshooting	 174

The implicit grant flow	 174
The authorization request	 174

The authorization code grant flow	 177
The authorization request	 177
The access token request	 178

The API call flow	 179
The authorization request header field	 179
The form-encoded body parameter	 180
The URI query parameter	 181

The refresh token flow	 182
Summary	 183

Chapter 12: Extensions to OAuth 2.0	 185
Extensions to the OAuth 2.0 framework	 185

Custom grant types	 185
A variety of token types	 186
Any authorization backend	 187

OpenID Connect	 187
Summary	 189

Appendix A: Resource Owner Password Credentials Grant	 191
When should you use it?	 191
Reference pages	 192

An overview of the resource owner password credentials grant	 192
Authorization request and response	 193
Access token request	 193
Access token response	 194
Error response	 194

Appendix B: Client Credentials Grant	 197
When should you use it?	 197
Reference pages	 198
Overview of the client credentials grant	 198

Authorization request and response	 198
Access token request	 198
Access token response	 199
Error response	 200

Table of Contents

[vii]

Appendix C: Reference Specifications	 201
The OAuth 2 Authorization Framework	 201
The OAuth 2 Authorization Framework: Bearer Token Usage	 201
OAuth 2.0 Token Revocation	 201
OAuth 2.0 Thread Model and Security Considerations	 202
Assertion Framework for OAuth 2.0 Client Authentication and
Authorization Grants	 202
Security Assertion Markup Language (SAML) 2.0 Profile
for OAuth 2.0 Client Authentication and Authorization Grants	 202
JSON Web Token (JWT)	 202
JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization Grants	 203
OpenID Connect Core 1.0	 203
HTTP Authentication: Basic and Digest Access Authentication	 203

Index	 205

[ix]

Preface
The Internet is a thriving and dynamic ecosystem. Living and playing within this
ecosystem are many world-class services, all offering world-class technologies.
Think about the massive social graph that Facebook hosts, the most up-to-date
mapping system proudly owned and operated by Google, or the ever-growing
professional network that is available from LinkedIn. All of these companies,
and more, are presenting their world-class technologies for the world to use!

Until recently, it was very difficult to access these technologies in your own
applications. Each company would create their own protocols for how to access and
leverage their respective technologies. You may have heard of Yahoo!'s BBAuth,
or Google's AuthSub. These are just a couple of examples of proprietary protocols
created to allow people to leverage these company's services. Unfortunately, the
trend of creating and using proprietary protocols just doesn't scale. Enter OAuth 2.0.

OAuth 2.0 is an open protocol for delegating authorization to such services, and
it has become the standard authorization protocol used by companies around the
world. It allows developers like you and I to access these world-class technologies
and use them in our own applications! It is a fascinating problem space with an
equally fascinating and elegant solution.

I've been lucky enough to work in the Identity space for the past 7 years, and during
this time, I've been able to witness the evolution and progression of this protocol.
Mastering OAuth 2.0 is an attempt at distilling the most important parts of the
protocol, including design and usage. With a hard focus on practicality and security,
this book focuses on the parts of integration that will give application developers like
you and I the most benefit and mileage.

As OAuth 2.0 continues to gain adoption, and more and more services become
available for developers to integrate with and leverage, I'm hoping that this book will
allow you to be able to comfortably dive in and start building the next generation of
world-class applications and technologies!

www.allitebooks.com

http://www.allitebooks.org

Preface

[x]

What this book covers
Chapter 1, Why Should I Care About OAuth 2.0?, introduces the OAuth 2.0 protocol,
and discusses its purpose, prevalence, and importance.

Chapter 2, A Bird's Eye View of OAuth 2.0, takes a high-level look at the OAuth 2.0
protocol and the different workflows it describes.

Chapter 3, Four Easy Steps, enumerates the simple steps necessary to integrate with a
service provider using the OAuth 2.0 protocol.

Chapter 4, Register Your Application, details the first of these four steps which covers
registering your application with the service provider.

Chapter 5, Get an Access Token with the Client-Side Flow, discusses the complicated
topic of gaining access to a protected resource from what we call an untrusted client.

Chapter 6, Get an Access Token with the Server-Side Flow, discusses the complicated
topic of gaining access to a protected resource from what we call a trusted client.

Chapter 7, Use Your Access Token, outlines the process for exercising access to a
resource once it has been granted to you.

Chapter 8, Refresh Your Access Token, talks about the process of refreshing your access
once it expires.

Chapter 9, Security Considerations, discusses the many important security
considerations to be made in your application. This is an important topic for any
application, but is especially important given the power that this protocol allows.

Chapter 10, What About Mobile?, is a chapter dedicated to the topic of mobile devices,
including phones and tablets, and all of the considerations that come with it.

Chapter 11, Tooling and Troubleshooting, talks about how to troubleshoot issues with
your integration as well as how to appropriately handle errors so as to minimize
user interaction.

Chapter 12, Extensions to OAuth 2.0, looks at the various ways OAuth 2.0 can be
extended to satisfy a multitude of use cases.

Appendix A, Resource Owner Password Credentials Grant, takes a look at one of the
supplemental supported flows in the book.

Appendix B, Client Credentials Grant, takes a look at another of the supplemental
supported flows in the book.

Appendix C, Reference Specifications, enumerates the various open specifications that
are referenced throughout the book.

Preface

[xi]

What you need for this book
To create the sample applications described in this book, you will need Java 8,
Apache Maven 3, a modern web browser (such as Google Chrome, Microsoft
Edge, or Mozilla Firefox), and a text editor of your choice. Several libraries
and command-line utilities will be utilized as well, including JQuery, Apache
HTTPClient, and cURL. A basic understanding of programming and OAuth
is recommended.

Who this book is for
This book is written for application developers, software architects, security
engineers, and casual programmers alike, looking to leverage the power of OAuth
2.0 in their own services and applications. It covers basic topics such as registering
your application and choosing an appropriate workflow, and advanced topics
such as security considerations and extensions to the specification. This book has
something for everyone.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Open up your favorite HTML editor and create a new file, index.html, place it
where index.jsp was."

A block of code is set as follows:

function makeRequest() {
 // Define properties
 var AUTH_ENDPOINT = "https://www.facebook.com/dialog/oauth";
 var RESPONSE_TYPE = "token";
 var CLIENT_ID = "wmiig-550106";
 var REDIRECT_URI = "http://wmiig.com/callback.html";
 var SCOPE = "public_profile user_posts";

Any command-line input or output is written as follows:

sudo mvn -Dmaven.tomcat.port=80 -Dmaven.tomcat.path=/ tomcat:run

Preface

[xii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Save the file, reload your page, and click on Go! again."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Why Should I Care
About OAuth 2.0?

As an application developer, you may have heard the term OAuth 2.0 thrown
around a lot. OAuth 2.0 has gained wide adoption by web service and software
companies around the world, and is integral to the way these companies interact
and share information. But what exactly is it? In a nutshell…

OAuth 2.0 is a protocol that allows distinct parties to share information and
resources in a secure and reliable manner.

This is the major tenet of the OAuth 2.0 protocol, which we will spend the rest of
the book learning about and utilizing. Also, in this chapter, we will introduce the
sample application that we will be building throughout this book, The World's
Most Interesting Infographic Generator.

What about OAuth 1.0?
Built with the same motivation, OAuth 1.0 was designed and ratified
in 2007. However, it was criticized for being overly complex and
also had issues with imprecise specifications, which led to insecure
implementations. All of these issues contributed to poor adoption for
OAuth 1.0, and eventually led to the design and creation of OAuth
2.0. OAuth 2.0 is the successor to OAuth 1.0.
It is also important to note that OAuth 2.0 is not backwards
compatible with OAuth 1.0, and so OAuth 2.0 applications cannot
integrate with OAuth 1.0 service providers.

Why Should I Care About OAuth 2.0?

[2]

Authentication versus authorization
Before we dive into our discussion of OAuth 2.0, it is important to first define some
terms. There are two terms in particular that are pivotal to our understanding of
OAuth 2.0 and its uses: authentication and authorization. These terms are often
conflated and sometimes interchanged, but they actually represent two distinct
concepts, and their distinction is important to understand before continuing our
discussion of OAuth 2.0.

Authentication
Authentication is the process of validating whether a person (or system) is
actually who they say they are.

An example of this is when you go to the bank to withdraw money, and you
provide your bank card and PIN to the teller. In some cases, the teller may ask
for additional identification, such as your driver's license, to verify your identity.
You may recognize this in other instances when you provide your username and
password to a website, say, to view a document.

Authorization
Authorization is the process of determining what actions you are allowed to
perform once you have been authenticated.

Referring to our previous bank example, once the teller has verified who you are,
they can then proceed to fulfill your request to withdraw money. In order to do this,
they must check whether you are allowed to withdraw money from the account that
you are requesting (that is, you are actually the owner of the account). Relating to
our website example, once you have authenticated by providing your username
and password, the website will then check to see whether you are indeed allowed
to see the document that you are requesting. This is usually done by looking up
your permissions in some access control list.

Now that we have established the distinction between these two important
concepts, we can look at what OAuth 2.0 actually is and the problems it solves.

Chapter 1

[3]

What problems does it solve?
Have you ever logged into a site using your Google account? Have you ever
posted to Pinterest and Instagram at the same time? Have you ever shared a link
to your wall from any application other than Facebook? These are all examples
of OAuth 2.0 in use!

At a high level, the OAuth 2.0 protocol allows two parties to exchange information
securely and reliably. In more practical terms, you'll find that the most common uses
of OAuth 2.0 involve two things:

•	 Allowing a user to log into an application with another account. For example,
Pinterest allowing users to log in with their Twitter accounts. This is known
as federated identity.

•	 Allowing one service to access resources on another service on behalf of the
user. For example, Adobe accessing your Facebook photos on your behalf.
This is known as delegated authority.

Both of these combine to allow the creation of powerful applications that can all
integrate with each other.

Both of the scenarios mentioned in the preceding list are actually really
the same scenario. In both, the user is accessing a protected resource
on behalf of another party. In the first example, the protected resource
is the user's account information, while in the second example the
protected resource is the user's Facebook photos. This will become
clearer as we explore the details of how the OAuth 2.0 protocol
handles these situations.

Federated identity
Federated identity is an important concept in identity management. It refers to the
concept that allows one service provider to allow authentication of a user using
their identity with another service provider. For instance, imagine a user that logs
into Foursquare and Amazon with their Facebook credentials. In this example,
the user only needs to maintain a single user account, their Facebook account,
which gives them access to several service providers; in this case, Facebook itself,
plus Foursquare, and Amazon. They don't need to create individual accounts
on Foursquare or Amazon, and therefore, don't need to maintain three separate
passwords. In this sense, the user's identities across these sites are federated,
as in, they are made to act as one.

Why Should I Care About OAuth 2.0?

[4]

The OAuth 2.0 Authorization Framework
Strictly speaking, the OAuth 2.0 protocol is actually an authorization
protocol and not an authentication protocol. Because of this, OAuth
2.0 alone cannot provide federated identity. However, when used
in a certain way, and in conjunction with other protocols, OAuth 2.0
can provide federated authentication, which is a key component to
federated identity systems.
See the OpenID Connect section in Chapter 12, Extensions to OAuth 2.0,
to see how the OAuth 2.0 protocol can be combined with OpenID to
provide an authentication layer on top of the authorization framework
described by the OAuth 2.0 specification.

Delegated authority
Delegated authority is another important concept in the identity space. It refers to the
ability for a service or application to gain access to a user's resources on their behalf.
Take, for instance, LinkedIn, which can suggest contacts for you to add by looking at
your Google contact list. In this example, LinkedIn will be able to view your Google
contact list on your behalf. Permission to access your Google contacts has been
delegated to LinkedIn.

Real-life examples of OAuth 2.0 in action
Now that we understand the basic principles of OAuth 2.0, let's take a look at
some everyday, real-life examples of OAuth 2.0 in action:

•	 StackOverflow allowing you to log in with your Google account
•	 Posting a status update from your phone using the Facebook

mobile application
•	 LinkedIn suggesting contacts for you to add by looking at your

Google contacts
•	 Pinterest allowing you to pin something from a WordPress blog
•	 Sharing an article to your Facebook feed from the article itself

As you can see, if you've ever done any of these things, or anything similar,
you have probably already used OAuth 2.0.

Chapter 1

[5]

How does OAuth 2.0 actually solve the
problem?
In order to see how OAuth 2.0 solves this problem of sharing resources, let's look
at how this problem was solved before OAuth 2.0 was created.

Without OAuth 2.0 – GoodApp wants
to suggest contacts by looking at your
Facebook friends
Imagine that you have just signed up for the service GoodApp. As a new user,
you don't have any contacts. GoodApp wants to suggest contacts for you to add
by looking at your Facebook friends. If any of your Facebook friends are on
GoodApp, it will suggest that you add them.

Before the creation of OAuth 2.0, this was solved in a very insecure way. GoodApp
would ask you for your username and password for Facebook. GoodApp would
then log into Facebook on your behalf to get your friends. This interaction can be
looked at like this:

www.allitebooks.com

http://www.allitebooks.org

Why Should I Care About OAuth 2.0?

[6]

Here is how it works:

1.	 You ask GoodApp to suggest contacts to you.
2.	 GoodApp responds by saying, "Sure! Just give me your Facebook

username and password please!"
3.	 You give GoodApp your username and password for your

Facebook account.
4.	 GoodApp then logs into Facebook using your credentials, effectively

impersonating you, to request your friend list.
5.	 Facebook happily obliges, giving GoodApp your friend list.
6.	 GoodApp then uses this information to tailor suggested contacts for you.

Why is this a bad idea? There are five key reasons:

•	 You have given GoodApp the power to do *anything* with your
account: This is known proverbially as giving it the "keys to the city". You
have essentially given GoodApp access to everything in your account,
as if they were you. Now imagine it wasn't GoodApp. Instead it was
NewUnknownApp. It's easy to see how this becomes very dangerous.

•	 GoodApp may save your password, and may do so insecurely: In order
for GoodApp to maintain access to your account, they would need to store
your credentials. The act of storing your password is an extremely bad
practice and should be avoided at all times. To make things worse, different
companies enforce different standards of security, some of which are
shockingly low.

•	 You are giving more chances for your password to get stolen: You are
sending your username and password across the Internet. The more times
you do this, the more risk there is for someone to steal it.

•	 You have to change your Facebook password if GoodApp ever gets hacked:
If GoodApp somehow got compromised, your Facebook credentials will also
have been compromised. You would then need to change your Facebook
password as a result of GoodApp getting owned.

•	 There is no way to revoke access: If GoodApp was acquired by EvilCorp
and started doing things that you didn't like, the only way to revoke access
would be to change your Facebook credentials.

Chapter 1

[7]

With OAuth 2.0 – GoodApp wants to suggest
contacts by looking at your Facebook friends
Now, let's take a look at that interaction, but this time utilizing the OAuth 2.0
protocol. In this scenario, GoodApp would "ask" Facebook for your friend list.
You give permission to this by logging into Facebook and approving the request.
Once the request is approved, GoodApp would then be able to fetch your friend
list from Facebook on your behalf.

Why Should I Care About OAuth 2.0?

[8]

Let's have a look at the flow:

1.	 You ask GoodApp to suggest contacts to you.
2.	 GoodApp says, "Sure! But you'll have to authorize me first. Go here…"
3.	 GoodApp sends you to Facebook to log in and authorize GoodApp.
4.	 Facebook asks you directly for authorization to see if GoodApp can

access your friend list on your behalf.
5.	 You say "yes".
6.	 Facebook happily obliges, giving GoodApp your friend list. GoodApp

then uses this information to tailor suggested contacts for you.

Why is this better? Five key reasons to contrast the five points in the
previous example:

•	 You aren't giving it the "keys to the city" anymore: Notice, in this example,
you aren't giving your Facebook username and password to GoodApp.
Instead, you are giving it directly to Facebook. Now, GoodApp doesn't
have to even worry about your Facebook credentials.

•	 Since you aren't giving your credentials, GoodApp no longer needs to
store them: With your authority delegated from Facebook, you don't need
to worry that GoodApp is storing, or even seeing, your Facebook password.

•	 You send your password across the Internet less frequently: If you
already had an active session with Facebook, you actually wouldn't need
to reauthenticate with them. If GoodApp has federated identities with
Facebook, you would have to send your password even less frequently.

•	 You don't have to change your Facebook password if GoodApp ever gets
hacked: This is because of the next point.

•	 There is a way to revoke access: OAuth 2.0 provides the ability for a
service provider to revoke access to a client. If GoodApp ever got
compromised, or got acquired by Evil Corp, you could go to Facebook
and revoke GoodApp's access.

Who uses OAuth 2.0?
In the previous section, we mentioned that OAuth 2.0 has become one of the most
important protocols for applications and service providers today. But how important
is it? Here is a short, non-exhaustive list of some of the biggest supporters of the
OAuth 2.0 protocol, along with some of the capabilities that they provide:

•	 Google: You can leverage a multitude of Google's services by interacting
with their APIs via OAuth 2.0

Chapter 1

[9]

•	 Facebook: Facebook's social graph is accessed via OAuth 2.0 and allows
users to do a tremendous amount of things, including posting to their wall
and sending messages

•	 Instagram: Instagram allows you to access a user's feed and post comments
and likes

•	 LinkedIn: Post comments, share links, and gather engagement statistics via
the LinkedIn APIs

•	 Spotify: Query Spotify's massive music catalog and manage user's playlists
using Spotify's APIs

•	 Foursquare: The Foursquare API lets you look up users and places from all
over the world

There are many, many more companies that use and support the OAuth 2.0 protocol.
This gives developers an enormous amount of power to create amazing applications
that can leverage all of these world-class services.

Introducing "The World's Most
Interesting Infographic Generator"
The best way to learn is simply by doing it. So, to learn the concepts of
OAuth 2.0, we will be building an application throughout this book that will
integrate with Facebook. It will be called The World's Most Interesting Infographic
Generator. It will allow a user to log in with their Facebook account, request their
profile data and a list of their most recent posts, and return interesting statistics
about their posting habits. You can see a working example of this application at
www.worldsmostinterestinginfographic.com, or www.wmiig.com for short.

Summary
In this chapter, we took an introductory look at what OAuth 2.0 is and how it is
used all around us. We discussed the benefits that this protocol gives us and even
looked at the kind of adoption that has taken place in the industry. It has become
one of the most, if not the most, used and adopted authorization protocols on the
Internet due, in large part, to the power that it gives application developers,
start-ups, and corporations alike, to share information.

In the next chapter, we will look at how OAuth 2.0 provides these benefits by
looking at how OAuth 2.0 actually works under the hood. Get ready!

www.worldsmostinterestinginfographic.com
www.wmiig.com

[11]

A Bird's Eye View
of OAuth 2.0

In the previous chapter, we talked about what OAuth 2.0 is and its importance in
today's technology industry. We established that the protocol is used to effectively
exchange information and resources between parties to serve a multitude of
purposes (remember federated identity and delegated authority?). But how
does it actually achieve these things? This is what we will explore next.

In this chapter, we will take a look at how OAuth 2.0 works at a high level. We will
use this knowledge to explore and understand the various ways in which it is used,
from websites to mobile devices to desktop applications, and the differences in each.

How does it work?
Let's revisit our example scenario. You have just signed up for the service GoodApp,
and now GoodApp would like to suggest contacts for you to add by looking at your
Facebook friends. In the last chapter, we looked at the old model, where GoodApp
would ask you for your username and password and use them to access your
Facebook friend list on your behalf. We then looked at the new, superior model
that uses OAuth 2.0 to achieve the same thing, but in a much more secure and
manageable way.

A Bird's Eye View of OAuth 2.0

[12]

The (simplified) workflow looks like this:

Chapter 2

[13]

Here are the steps:

1.	 You ask GoodApp to suggest you contacts.
2.	 GoodApp says, "Sure! But you'll have to authorize me first. Go here…"
3.	 GoodApp sends you to Facebook to log in and authorize GoodApp.
4.	 Facebook asks you directly for authorization to see if GoodApp can access

your friend list on your behalf.
5.	 You say "yes".
6.	 Facebook happily obliges, giving GoodApp your friend list. GoodApp then

uses this information to tailor suggested contacts for you.

The image and preceding workflow presents a rough idea for what this interaction
looks like using the OAuth 2.0 model. We will be curating this image and elaborating
on particular steps, and sequences of steps, in order to build an increasingly accurate
picture of the workflow as it works with OAuth 2.0. The first steps that we will
examine more closely are steps 3-5. In these steps, the service provider, Facebook, is
asking you, the user, whether or not you allow the client application, GoodApp, to
perform a particular action. This is known as user consent.

User consent
When a client application wants to perform a particular action relating to you or
resources you own, it must first ask you for permission. In this case, the client
application, GoodApp, wants to access your friend list on the service provider,
Facebook. In order for Facebook to allow this, they must ask you directly.

A Bird's Eye View of OAuth 2.0

[14]

You may be familiar with this process already if you've ever tried to access resources
on one service from another service. For example, the following is an example of a
user consent screen that is presented when you want to log into Pinterest using your
Facebook credentials.

Chapter 2

[15]

Incorporating this into our flowchart, we get a new sequence:

Here are the steps:

1.	 You ask GoodApp to suggest you contacts.
2.	 GoodApp says, "Sure! But you'll have to authorize me first. Go here…"
3.	 GoodApp sends you to Facebook. Here, Facebook asks you directly for

authorization for GoodApp to access your friend list on your behalf. It does
this by presenting the user consent form, which you can either accept or
deny. Let's assume you accept.

4.	 Facebook happily obliges, giving GoodApp your friend list. GoodApp then
uses this information to tailor suggested contacts for you.

A Bird's Eye View of OAuth 2.0

[16]

Notice how we've substituted the exchange of asking for consent with the process
of presenting the user consent form to the user. When you accept this user consent
form, you have agreed to allow GoodApp access to your Facebook friend list on your
behalf. That is, you have delegated read-only authority for your Facebook friend list
to GoodApp.

We can curate this workflow some more. There is a very important step in the
preceding process that warrants a larger discussion. It is step 4 where GoodApp and
Facebook finally exchange the information that has been requested. In the preceding
diagram, we present it as a single step where Facebook gives the information to
GoodApp. However, in reality, this is a much more complicated exchange that
occurs, which depends on many factors. It is this step, actually, where the bulk of the
book focuses since this secure and controlled exchange of information is at the crux
of what OAuth 2.0 does. Let's take a closer look.

Two main flows for two main types of client
After you have granted permission for GoodApp to access your friend list on
your behalf, an interaction must happen between GoodApp and Facebook to then
exchange information. However, this interaction differs depending on the client
application and its capabilities.

OAuth 2.0 supports the exchange of information in various ways through the use of
different workflows. In OAuth 2.0 terminology, these are called grant types. There
are two main grant types that OAuth 2.0 describes that facilitate the majority of
OAuth 2.0 use cases. They are:

•	 Authorization code grant
•	 Implicit grant

The authorization code grant is often referred to as the server-side workflow,
whereas the implicit grant is often referred to as the client-side workflow. To
understand the difference between these two workflows and their purposes,
we must understand the concept of trust.

Chapter 2

[17]

The OAuth 2.0 Authorization Framework
The OAuth 2.0 specification actually describes two additional grant
types: the resource owner password credentials grant and the client
credentials grant as well as the ability to create your own custom grants
to suit your needs. However, even with all of this flexibility, the
implicit grant and authorization code grant are the ones most commonly
used in practice in the consumer space, and so are the ones we will
focus on in this book.
For more information on the other grant types defined by the OAuth
2.0 specification, see Appendix A, Resource Owner Password Credentials
Grant, and Appendix B, Client Credentials Grant.

Trusted versus untrusted clients
When dealing with various OAuth 2.0 providers, there are only two levels of trust:
trusted and untrusted. The categorization of a client into either of these trust levels
is determined by two simple capabilities: the ability to securely store and transmit
information. These two levels can then be summarized as follows:

•	 A trusted client is an application that is capable of securely storing and
transmitting confidential information. Because of this, they can be trusted
to store their client credentials, tokens, or any other resources necessary for
their application.
An example of a trusted client may be a typical 3-tier client-server-database
application whereby the presence of a backend server often facilitates the
secure storage and transmission of any confidential information.

•	 An untrusted client is one which is incapable of securely storing or
transmitting confidential information. Because of this, they cannot be trusted
to store their client credentials, or any other confidential information.

An example of an untrusted client is a browser-based application, say, an
HTML/JavaScript application, where there is no server available for which
to securely store information. All information must be stored in the browser,
which is fully accessible to the users and should be considered public.

A Bird's Eye View of OAuth 2.0

[18]

The OAuth 2.0 Authorization Framework
In the OAuth 2.0 specification, the terms trusted and untrusted
are referred to as confidential and public, respectively.

Notice that in the untrusted example, there was no mention of the ability to securely
transmit the information. This is because such a browser-based application is
unable to even securely store the information, which already makes it untrusted.
Whether or not they are able to securely transmit the information is irrelevant at this
point. Clients must be able to support both capabilities, not just one, in order to be
considered trusted.

What about mobile?
Mobile devices are treated the same. Depending on the platform's
ability to securely store and transmit information as well as the client
developer's implementation, mobile devices can be treated as either
trusted or untrusted.
For more information, see Chapter 10, What About Mobile?

Now that we know the major distinction between the two types of clients, let's look
at the two different workflows that were designed for each: authorization code grant
for server-side (trusted) flows, and implicit grant for client-side (untrusted) flows.
We'll start with the implicit grant first because it is simpler.

First look at the client-side flow
Let's, once again, go back to our example of GoodApp wanting to suggest contacts
to you by looking at your Facebook friends. Imagine that the GoodApp client
application is actually a simple web application hosted in the browser. This is an
example of an untrusted client due to its inability to securely store information. The
implicit grant type is best suited for this type of client application. Let's look at how
the exchange of information (step 4 in the workflow image mentioned in the User
consent section) is achieved using the implicit grant type.

Chapter 2

[19]

An untrusted client – GoodApp requests
access for user's Facebook friends using
implicit grant
Since GoodApp, in this case, is an untrusted client, they cannot be trusted to store
or relay any confidential information. Specifically, they cannot store any client
credentials or tokens. Because of this, they have a very simple workflow. Here is
what the exchange looks like, picking up after GoodApp directs you to Facebook
for user consent:

Here are the steps performed in the preceding flow chart, picking up from step 3:

1.	 …
2.	 …
3.	 GoodApp sends you to Facebook. Here, Facebook asks you directly for

authorization for GoodApp to access your friend list on your behalf. It does
this by presenting the user consent form, which you can either accept or
deny. Let's assume you accept.

A Bird's Eye View of OAuth 2.0

[20]

4.	 Facebook then gives the GoodApp client application (in this case, an HTML/
JS web application running in a browser) a key that can be used to access
your Facebook friend list. Notice that Facebook doesn't actually give the
GoodApp web application the friend list itself.

5.	 The GoodApp web application then makes a request to Facebook for your
friend list, presenting with it the key that it just received.

6.	 Facebook validates this key, and upon successful validation happily obliges,
giving GoodApp your friend list. GoodApp then uses this information to
tailor suggested contacts for you.

Once you have authorized GoodApp to access your Facebook friends on your
behalf, Facebook sends GoodApp a key, which it can use to access your friend list. In
OAuth 2.0 terminology, this key is appropriately called an access token. This token
represents the access that is being granted for GoodApp to access your friend list on
your behalf.

Simply, this access token can be thought of as a key. This key only works on certain
doors. In this case, this key has the ability to access your friend list, and nothing
more. GoodApp cannot access anything else with your account, nor can they
access the friend list of any other user with this key.

Access token versus bearer token
An access token is a string value that represents the access you have to
a protected resource for a particular amount of time. You may also hear
reference to something called a bearer token. A bearer token is simply a
type of access token. There are other types of access tokens, but bearer is
the most commonly used token type.
It is known as a "bearer" token because the bearer of the token holds all
that is necessary to use it. No additional information is required. What
this translates to is, anyone who has this bearer token, say GoodApp,
will be able to use it and Facebook will happily return your friend list, no
questions asked. What this also means is that if GoodApp happens to leak
this token and it finds itself in the hands of a malicious user, they will also
be able to use it to get your friend list.
This is very similar to a physical key: the key always unlocks the lock, no
matter who is holding it.

Chapter 2

[21]

Now that GoodApp has this key, it makes a request to Facebook to access your
friend list, presenting with it the key that they just received. Facebook validates the
key and returns your friend list to GoodApp, as requested. GoodApp can now craft
their contact suggestions for you. Done!

The big picture
Here is the entire interaction between the user, GoodApp, and Facebook, using the
implicit grant type, now within context:

A Bird's Eye View of OAuth 2.0

[22]

This interaction is repeated every time GoodApp wants, or needs, to access
some protected resources on behalf of the user. It can be summarized in full
with these steps:

1.	 You ask GoodApp to suggest you contacts.
2.	 GoodApp says, "Sure! But you'll have to authorize me first. Go here…"
3.	 GoodApp sends you to Facebook. Here, Facebook asks you directly for

authorization for GoodApp to access your friend list on your behalf. It
does this by presenting the user consent form, which you can either
accept or deny. Let's assume you accept.

4.	 Facebook then gives the GoodApp client application (in this case, an
HTML/JS web application running in a browser) a key that can be used
to access your Facebook friend list. Notice that Facebook doesn't actually
give the GoodApp web application the friend list itself.

5.	 The GoodApp web application then makes a request to Facebook for your
friend list, presenting with it the key that it just received.

6.	 Facebook validates this key, and upon successful validation happily obliges,
giving GoodApp your friend list. GoodApp then uses this information to
tailor suggested contacts for you.

When should this be used?
The implicit grant type was designed for untrusted clients, and so it should
be used accordingly. These clients tend to be pure browser-based applications,
such as HTML/JavaScript applications, or Flash applications, which do not
require long-term access to the user's data.

Here are some examples of client applications that should use the client-side flow:

•	 An HTML/JavaScript application running in Safari on an iPhone
•	 A Flash application running in Chrome on an Android device
•	 A native iOS application that operates without a backend server
•	 An HTML/JavaScript application running in Firefox on the desktop

Pros and cons of being an untrusted client
As you can imagine, there are many advantages as well as disadvantages of being an
untrusted client.

Chapter 2

[23]

Pros
There is a convenient pro for being an untrusted client:

•	 Simplicity: Due to the straightforward design, this solution is very simple to
implement. Since all of the work happens in the browser, no backend servers
or data stores are required for such an application. (If they had these, they
could be considered trusted.)

Cons
However, here are the cons:

•	 Less security: The key must be relayed to the browser for the client
application to use. The browser is considered public and so this key may
easily fall into the hands of another user.

•	 Short-term access only: Since the client is untrusted, they cannot store keys
for long-term use. Because of this, the user will have to reauthenticate and
regrant access more often than with a trusted client.

Best practice
As an application developer, if you are developing an
application on an untrusted client using the implicit grant type,
it is best to restrict your requests to read-only permissions.
That way, if anyone were to steal the user's key, they would
only be able to read the user's data, not modify it. The data
may still be confidential, but at least you are minimizing the
potential damage that may occur in the case of a leak.

First look at the server-side flow
Imagine now that the GoodApp application is no longer a simple HTML/JavaScript
web application, but is now a full 3-tier client-server-database application. This
client application is now able to securely store confidential information thanks to
the server and database layer, and so is a perfect candidate for the authorization
code grant workflow.

A Bird's Eye View of OAuth 2.0

[24]

A trusted client – GoodApp requests
access for user's Facebook friends using
authorization code grant
Remember that a trusted client is able to securely store confidential information,
such as client credentials. So, during the registration process (which we will discuss
in Chapter 3, Four Easy Steps), trusted clients will be issued credentials to store.
Here is what that exchange looks like with a registered, trusted client using the
authorization code grant flow, once again, picking up after GoodApp directs you
to Facebook for user consent:

Chapter 2

[25]

Here are the steps performed in the preceding flow chart, picking up from step 3:

1.	 …
2.	 …
3.	 GoodApp sends you to Facebook. Here, Facebook asks you directly for

authorization for GoodApp to access your friend list on your behalf. It does
this by presenting the user consent form, which you can either accept or
deny. Let's assume you accept.

4.	 Facebook then gives the GoodApp server (not the client web application)
a tag that can be exchanged for a key that can access your Facebook friend
list. Notice that Facebook this time gives a tag and not a key. Also notice
that Facebook issues this to the server of GoodApp, not the client
web application.

5.	 GoodApp makes a request to Facebook to exchange the tag for a valid key to
access your Facebook friend list on your behalf.

6.	 Facebook validates this tag, and upon successful validation happily obliges,
giving the GoodApp server the requested key.

7.	 The GoodApp server then makes another request to Facebook, this time for
your friend list, presenting with it the key that it just received.

8.	 Facebook validates this key, and upon successful validation happily obliges,
giving GoodApp your friend list.

9.	 GoodApp then uses this information to tailor suggested contacts for you.

Once the user authorizes GoodApp to access their Facebook friends on their behalf,
Facebook sends GoodApp a tag. This tag is then exchanged for a key. This key will
have the permission to fetch your friend list.

www.allitebooks.com

http://www.allitebooks.org

A Bird's Eye View of OAuth 2.0

[26]

One important note about this exchange is that the tag used in the preceding
workflow can only be exchanged for a key once. After it has been used once, it can
no longer be reused to fetch another key. The tag is a one-time-use tag, and so is said
to be consumable.

A tag is "consumable"?
This can be thought of like a coat-check tag, where it can be
presented to the coat-check attendant and in exchange, you get
your coat. If you present the tag again, they will look and see
that your coat has already been claimed, and you get nothing.

In OAuth 2.0 terminology, this tag is known as an authorization code and it can be
exchanged for an access token, which can subsequently be used to request access
to the protected resource. After exchanging this authorization code for a token, the
workflow is identical to that of the implicit grant type flow: GoodApp requests the
user's friend list from Facebook, presenting with it the key (access token). Facebook
validates the key and returns to GoodApp the user's friend list as requested.

The important distinction between this flow and the untrusted flow (that is, implicit
grant flow) is that the access token is never sent to the browser! The access token is
exchanged directly between Facebook and the GoodApp server, so the access token
never gets sent to the GoodApp browser application. Because of this, the access
token has significantly less chance of being leaked or intercepted.

The big picture
Here is the entire interaction between the user, GoodApp, and Facebook,
now within context:

Chapter 2

[27]

A Bird's Eye View of OAuth 2.0

[28]

This workflow can be summarized in full with these steps:

1.	 You ask GoodApp to suggest you contacts.
2.	 GoodApp says, "Sure! But you'll have to authorize me first. Go here…"
3.	 GoodApp sends you to Facebook. Here, Facebook asks you directly for

authorization for GoodApp to access your friend list on your behalf. It does
this by presenting the user consent form, which you can either accept or
deny. Let's assume you accept.

4.	 Facebook then gives the GoodApp server (not the client web application)
a tag that can be exchanged for a key that can access your Facebook
friend list. Notice that Facebook this time gives a tag and not a key.
Also, notice that Facebook issues this to the server of GoodApp, not
the client web application.

5.	 GoodApp makes a request to Facebook to exchange the tag for a valid key to
access your Facebook friend list on your behalf.

6.	 Facebook validates this tag, and upon successful validation happily obliges,
giving the GoodApp server the requested key.

7.	 The GoodApp server then makes another request to Facebook for your friend
list, presenting with it the key that it just received.

8.	 Facebook validates this key, and upon successful validation happily obliges,
giving GoodApp your friend list.

9.	 GoodApp then uses this information to tailor suggested contacts for you.

When should this be used?
The authorization code grant type flow was designed for trusted clients, and so
should be used for any client applications that have the ability to securely store and
transmit information. These clients are typically client-server-based applications.
However, depending on the platform, and the design of the application itself, native
mobile applications can also be considered trusted as well.

Here are some examples of client applications that should use the server-side flow:

•	 Client/server application where the client is an HTML/JavaScript
application backed by a .NET backend attached to a SQL Server database

•	 A native iPhone application that is powered by a server-based backend that
it communicates with

•	 Client/server application where the client is an Android application and the
backend is a Java server with a Bigtable persistence layer

Chapter 2

[29]

Pros and cons of being a trusted client
As you can imagine, there are many advantages as well as disadvantages of being a
trusted client. Here are some of the main points (notice the contrast of pros and cons
as compared to an untrusted client):

Pros
There are two main advantages of being a trusted client:

•	 More security: The key is shared only between the service provider and
server-side of the client application. It never gets sent to the browser,
and so has much less of a chance of being intercepted.

•	 Long-term and offline access: Because the client is able to securely store
information, they can store the keys and properties necessary for long-term,
and even offline, access to a user's data.

Cons
Unfortunately, there is a disadvantage associated with this:

•	 More complexity: To achieve the added security features that make this
workflow so beneficial, a more complex infrastructure must be in place to
facilitate the more complex key exchange that this workflow utilizes

What are the differences?
The main differences between the server-side workflow and the client-side workflow
can be summarized in this table:

Simplicity Security Access duration
Server-side flow
(authorization
code grant flow)

More complex: In
order to facilitate
the secure storage
and transmission of
confidential data, a
backend server and
data store must be
maintained.

More secure: The
server-side flow
never exposes the
key to the browser,
and so has a
significantly smaller
chance of being
leaked.

Long-term: Because
an application using
the authorization
code grant flow
is trusted to store
confidential
information, it can
store properties
needed for long-term,
even offline, access.

A Bird's Eye View of OAuth 2.0

[30]

Simplicity Security Access duration
Client-side flow
(implicit grant
flow)

Less complex: Due
to the more relaxed
requirements
around security
for untrusted
applications, no
backend server
or data store is
required. Everything
can happen from the
browser.

Less secure: The key
is passed directly to
the browser and so
has a much larger
chance for this key
to be obtained by
unauthorized parties.

Short-term: Since
applications using
the implicit grant
flow are considered
untrusted, they
should only be given
short-lived tokens
due to the increased
likelihood of such
tokens being leaked.

What about mobile?
When it comes to which workflow to use for an application on a mobile device,
the same considerations are taken into account: can the application securely store
and transmit confidential data. This topic gets interesting when we start discussing
modern mobile platforms. Most modern mobile platforms provide APIs for
secure storage:

•	 iOS: iOS 4+ SDK utilizes Data Protection
•	 Android: Android 6+ SDK v23+ provides the Android Keystore system
•	 Windows Mobile: Windows Phone SDK 8+ provides the DPAPI (Data

Protection API)

This is not an exhaustive list of APIs for secure storage
for each platform. Most modern mobile platforms
actually provide many different methods for securely
storing your data. This is only a sampling.

Used in conjunction with secure transmission protocols, such as SSL or TLS, many
application developers consider these satisfactory for the requirements of secure
storage and transmission of confidential information, and therefore consider their
mobile applications trusted. This thinking, however, is flawed. Certainly, these
secure storage APIs are very secure, and are satisfactory for most practical situations.
However, for applications that require a higher level of security and scrutiny, they
should be considered untrusted. See the Are mobile applications trusted or untrusted?
section in Chapter 10, What About Mobile?, for a more detailed discussion of this topic.

Chapter 2

[31]

Summary
In this chapter, we took a deeper look at the inner workings of the OAuth 2.0
protocol in order to see how the concepts of federated identity and delegated
authority are achieved. We introduced user consent and gave an example of where
you may have already seen such a process. We also discussed the concept of trust
and how it relates to client applications and the workflows they use. In particular, we
explored the client-side flow for untrusted clients and the server-side flow for trusted
clients. This all culminates in the ability to determine the trust level for a client
application, and subsequently, the ability to choose an appropriate workflow for the
application to enable the exchange of information in as secure a manner as possible.

In the next chapter, we will look at the overall workflow from a developer's
perspective. There are really only four simple steps to explore. This will give
us a straightforward template that we can use when we start creating our own
application, The World's Most Interesting Infographic Generator, in Chapter 4,
Register Your Application.

[33]

Four Easy Steps
In this chapter, we will look at the entire process of becoming an OAuth 2.0 client.
There are four easy steps, each of which we will explore briefly. This will prepare
us for the next chapter where we will put this knowledge to use and actually start
building our first OAuth 2.0 client, The World's Most Interesting Infographic Generator!

Let's get started
Up to this point, we have been talking about what OAuth 2.0 is, how it works, and
how it is used around us. Now, we will finally be able to look at the process of
becoming, and creating, an OAuth 2.0 client. It's really quite simple. The process of
building our first OAuth 2.0 client can be broken down into these four easy steps:

1.	 Register your client application.
2.	 Get your access token.
3.	 Use your access token to access a protected resource.
4.	 If applicable, refresh your access token.

The ability to refresh your access token is only available for trusted
clients. In order for a client application to refresh its access token, it
must be able to securely store what is called a refresh token. This
capability is only available to trusted clients, and therefore, the ability
to refresh access tokens is restricted to trusted clients.
You may be wondering how untrusted clients renew their access. We
will explain this in the Step 4 – Refresh your access token section later on
in this chapter.

Four Easy Steps

[34]

This process can be visualized simply with this diagram:

Register your
client application

Get your access token

Use your access token

Refresh your access token

Step 1

Step 2

Step 3

Step 4

In terms of GoodApp, those steps would be:

1.	 Register the GoodApp application as a client for Facebook.
2.	 Using either the client-side flow or the server-side flow, get an access token.
3.	 Use this access token to get the user's friend list.
4.	 If we used the server-side flow and our access token has expired, use the

refresh token to get a new access token.

As you can see, there isn't much to it! Let's start looking at each step a little
more closely.

Chapter 3

[35]

Step 1 – Register your client application
Before you start making requests to an OAuth 2.0 service provider, the service
provider must first know who you are. This is what the registration process is for.
The registration process does a lot of things, but most importantly, it establishes a
trust relationship between your application and the service provider so that, once
established, your application can communicate effectively with the service provider.
This is a one-time process and must be done at the beginning of your integration.
Once you've registered, you won't have to repeat this step for the lifetime of your
application (although you may have to revisit the configurations you set up during
this step as your needs and settings may change as your application evolves). Here is
a brief list of what is accomplished during the registration process and why:

•	 You identify your client application: This can be as simple as a name, and is
used to distinguish your application from all of the others.

Why is this important?
Without identifying your application, the service provider wouldn't
know who is making requests, and, therefore, wouldn't know if your
application is allowed or not.
If a particular client starts acting inappropriately, the service provider
is able to revoke access to that client without impacting the service for
anyone else.

Let's look at an example. Consider signing up for a gym. Before being able
to use the facilities, the gym needs to know who you are so that they can
determine if you have access or not. Furthermore, if you start misbehaving,
the gym can revoke access for just your key card without impacting any
other gym members.

•	 You give necessary details about your client application: There are certain
properties of your client application that the service provider would need to
know in order to communicate effectively. For instance, in Chapter 2, A Bird's
Eye View of OAuth 2.0, we stated that the capabilities of your application
determine the workflow that will be used (authorization code grant versus
implicit grant).

Four Easy Steps

[36]

Why is this important?
If the service provider doesn't know how your application is set up,
it won't be able to communicate with it.

Let's now look at an example regarding communication. The gym would need to
know your contact details and contact preferences. Without this, the gym wouldn't
know how to send you information. Or worse yet, would send that information to
the wrong people.

Different service providers, different
registration process, same OAuth 2.0 protocol
When registering with different OAuth 2.0 service providers, you will notice that
each provider has a unique registration process, and often each requires different
pieces of information about your client. However, they are all powered by the same
OAuth 2.0 protocol. So, while there are definitely service-provider-specific properties
that differ with each provider, there is a base set of information that you should
be able to walk away with. This messy process can be visualized with the
following diagram:

Step 1: Register your client
application

- Can register with any 0Auth
2.0-compliant service provider

- Should come away with
same set of properties

Fa
ce

bo
ok

G
oo

gl
e

Li
nk

ed
In

Pi
nt

er
es

t

As you can see, the intake for each different service provider varies wildly,
depending on the company and how they choose to manage their applications.
However, in the end, you should expect a strict set of properties and endpoints
that will be necessary for you to start integrating. The set of properties that you
should have after registering your application includes the following:

•	 Client ID: This is your client application's unique identifier. Depending
on the provider, sometimes this will be generated for you, and other times,
you can specify it yourself.

Chapter 3

[37]

Don't get this confused with your client name, which is just the
human-readable name for your application and does not have to be
unique. Your client ID must be unique across the entire application
space of the service provider.

•	 Client secret: This is your secret key for your application and is used to
identify itself when making requests. This will always be issued to you
by the service provider.

Only for trusted clients
If you are using the implicit grant, you may not get a client secret
since untrusted clients aren't able to securely store this value.

•	 Redirection endpoint: This is an endpoint that the service provider will use
to send you responses (tokens or errors, usually). Most of the time, this will
be provided by you. But in certain cases, such as with installed desktop or
native mobile applications, this can be determined by the provider.

•	 Authorization endpoint: This is an endpoint that your client application
will use to initiate the authorization flow. This will be determined by the
service provider.

•	 Token endpoint: This is an endpoint that your client application will use to
initiate token flows. This will also be determined by the service provider.

Even though the registration process is different from service provider to service
provider, at the end of the process, you should walk away with these five properties.

Here is an example of what those properties may look like for our
GoodApp application:

•	 Client ID: goodapp-541106
•	 Client secret: 38D83HHFF873RASDPPEKJ1KHJZL
•	 Redirection endpoint: https://www.goodapp.com/callback
•	 Authorization endpoint: https://api.facebook.com/auth
•	 Token endpoint: https://api.facebook.com/token

With these five pieces of information, we have all that we need to proceed with
our integration.

https://www.goodapp.com/callback
https://api.facebook.com/auth
https://api.facebook.com/token

Four Easy Steps

[38]

Your client credentials
You will hear references to the term client credentials as we proceed with our
discussion of OAuth 2.0. Your client credentials are essentially your client ID and
client secret. Combined, these are used to identify your application to the service
provider. You can think of this as the equivalent of a username and password,
but for your application. This is to ensure that the service provider can know who
they are delegating authorization to, so that they don't give your friend list to the
wrong application.

If your credentials ever get leaked, it is important to change them immediately.
Otherwise, this would allow another application (or person) to masquerade as
your application, which can potentially have some very devastating results.

Best practice
Just as with your own personal credentials for various accounts
and websites, you should rotate your client credentials as well. Set
an interval, say, every 6 months, or every major release (depending
on the security needs of your application, this may be longer or
shorter) where you will request a new client secret and invalidate
your old one. This will minimize the impact in the case that your
client secret gets leaked.

Step 2 – Get your access token
After you have registered your application, you are ready to fetch an access token.
As we determined in Chapter 2, A Bird's Eye View of OAuth 2.0, the capabilities of
your application affect the workflow that you use in this step. Your application could
either be trusted, in which case it would use the authorization code grant flow. Or, it
could be untrusted, and it would use the implicit grant flow. You could also use any
of the other supported workflows described by the specification. This step would
then look like this:

Im
pl

ic
it

gr
an

t

Step 2: Get your access token
-Can use authorization code
grant or implicit grant, or any
other supported flow

Au
th

or
iz

at
io

n
co

de
 g

ra
nt

Chapter 3

[39]

The successful completion of a grant flow would result in the acquisition of an access
token. This access token can then be used to access a given protected resource. But
before we describe how to use an access token, let's first look at what an access
token really is.

A closer look at access tokens
Earlier in the book, we made the analogy of access tokens being like physical keys.
This is an appropriate analogy in many ways. For instance, keys are meant to protect
some resource, say, your house or car, from people or systems that shouldn't access
them. Only those holding the key have access.

Access tokens operate in much the same way. They are used by people and systems
to access a protected resource that others, otherwise, would be unable to access.
However, instead of protecting and accessing some physical resource, such as a
house or car, what is being protected and accessed with an access token is a digital
resource, for example, your Facebook friend list or the ability to post a status update.
The physical key analogy is appropriate in some basic ways, but inappropriate in
others. Access tokens are actually much more powerful than basic physical keys.
Let's see how.

In more technical terms, an access token is an encapsulation of an authorization
to a single protected resource, or set of protected resources, often with a specified
duration of access. This is usually represented as an opaque string given to the client.
The notions of an access token encapsulating access for a set of protected resources as
well as the ability to expire that access are what make access tokens more powerful
than traditional physical keys. These two properties of access tokens are known as
scope and duration of access respectively.

Scope
A scope of a token represents the set of protected resources that the token-holder
can access. This scope can cover a wide range of protected resources, such as the
ability to read and modify any data with a particular user's account, or it can be
as fine-grained as the ability to only fetch the first name of a given user. These
permissions are requested alongside the request for the access token itself.

In a typical workflow, a user or application would have a need to access a particular
protected resource. In GoodApp's case, GoodApp would like to access the given
logged-in user's Facebook friend list. So, when GoodApp makes a request for an
access token from Facebook, it would specify that the "scope" of access would be
for the user's friend list.

Four Easy Steps

[40]

If the user allows this (by accepting via the user consent screen), Facebook would
issue a particular access token to GoodApp, which is valid only for accessing that
particular user's Facebook friend list. If GoodApp would like to access another
protected resource, say, the user's profile details, they would need to request a
new access token with this new scope.

Further, the client can also stack scopes by requesting multiple scopes in a single
request. The resulting token would be different than the first two tokens, and would
be able to access all of the protected resources in the original request (provided they
were all allowed by the user).

This can be represented visually with the following diagram:

Chapter 3

[41]

Notice that scopes are requested via some specified string for a specified scope
(public_profile for profile data and user_posts for feed posts). These strings are
determined by the service provider. So, the user profile scope string for Facebook
may look different than the user profile scope string for LinkedIn. Further, some
service providers may not even provide such a scope, and others may require a
combination of scopes. For the appropriate scopes to request for your application,
refer to the service provider's documentation of their supported scopes.

Duration of access
Most tokens issued by service providers will have an expiry time, a time at which the
access associated with the token will no longer be valid. Some tokens, however, will
not have an expiry time. These tokens are known as perpetual tokens and are quite
rare. This is because the repercussions of a leaked perpetual token can be disastrous
compared to the leak of a token with an expiry time of, say, 1 hour. Certainly, an
equal amount of damage can be done with both tokens. However, the window of
opportunity for any potential attackers is significantly reduced with tokens that
have reasonable durations of access.

Most service providers issue tokens with durations of access on the order of minutes
or hours. A typical duration of access will be anywhere from 30 minutes to several
hours, depending on the scope(s) requested as well as the service provider itself.
Read-only scopes tend to have longer durations of access than more powerful
read/write scopes.

During this duration of access, a token can be used to access the allowed protected
resource as needed. However, after this duration of access has lapsed, a new access
token must be obtained.

Token revocation
Sometimes, it is necessary to terminate access for a token before its duration of
access has lapsed. This is known as token revocation. Some service providers
support this, and others don't. If the service provider you are dealing with supports
it, then you have the ability to revoke access for a particular token if you believe it
has been leaked or compromised. This is an important feature, and should be used
in any case where you think that your token may have fallen into the wrong hands.

Four Easy Steps

[42]

Sometimes a refresh token
If you have successfully completed an authorization code grant flow or implicit grant
flow, you should receive an access token. However, if you are using the authorization
code grant flow in particular, and the service provider you are integrating with
supports the refresh token flow, you can expect to receive in your response what is
appropriately called a refresh token in addition to your access token. This can be used
to refresh a session by requesting a new access token in the case that your current one
has expired. This is only returned to trusted clients, however, since this refresh token
must be stored and made available for use when the access token expires. Untrusted
clients do not have the capability to securely store such a property, and so refresh tokens
are not returned when using the implicit grant flow.

Step 3 – Use your access token
Once you have your access token, the hard part is done. You are now ready to start
making API calls! The APIs themselves will differ depending on the service, but the
ways you pass your access token will remain the same. Just as there are various ways
to obtain an access token (authorization code grant, implicit grant, and so on), there
are multiple ways to pass your access token with an API call. They are via:

•	 Authorization request header field
•	 Form-encoded body parameter
•	 URI query parameter

Au
th

or
iz

at
io

n
he

ad
er

Fo
rm

-e
nc

od
ed

bo
dy

 p
ar

am
s

Q
ue

ry
 p

ar
am

s

Step 3: Use your access token.

- Can use any of the three
supported methods for passing
your access token

The details of these different methods aren't important at this point. We will discuss
them in more detail in Chapter 7, Use Your Access Token, when we actually use these
methods to invoke API calls with Facebook for our sample application.

Referring back to our GoodApp example, we now have an access token and are now
able to make a request to Facebook for the user's Facebook friends. To do this, we
would make a call to the Facebook Graph API to get their list of friends who are also
on GoodApp, passing into this call our newly received access token. We can continue
to do this as long as our access token is valid, that is, it hasn't expired and hasn't been
revoked, and its scope of access allows this.

Chapter 3

[43]

An access token is an access token
It is important to note that it doesn't matter how we have attained our access token.
When it comes to using them, they are all treated the same by our client application
and by the service provider. That is, Facebook doesn't care if we received our access
token via the implicit grant flow or the authorization grant flow (or any of the other
supported flows that we don't discuss in the main body of this book). As long as
the access token has not expired and has not been revoked, it can be used to access
whatever privileged information or services that was originally granted to it.

Step 4 – Refresh your access token
The access tokens that you receive in Step 2 - Get your access token often aren't
perpetual. Most tokens issued to you will have an expiry time. This may differ
depending on the service provider you are integrating with as well as the properties
of your client, but this is usually on the order of minutes or hours. Once it expires, it
can no longer be used to access protected resources. To continue to access protected
resources, you have two options:

•	 Start the entire authentication process again. This may require your user
to log back in.

•	 Attempt to refresh the access token using the accompanying refresh token.
This can be done without any user interaction, and so should be used
whenever possible.

What if I don't have a refresh token?
As mentioned in the Sometimes a refresh token section earlier, refresh tokens are
only returned in the authorization code grant type flow, and only when the service
provider supports it. This is because this flow deals with trusted clients that are
capable of securely storing this token value. Implicit grant type clients are untrusted,
and so are incapable of storing this refresh token.

So, if you use the implicit grant type flow, you will be unable to refresh your access
tokens without reinitiating the auth flow.

Refresh tokens expire too
The refresh token, itself, also has an expiry time. If the refresh token happens to
expire and you are unable to refresh your access token, your only option at this
point is the same as if you never had a refresh token to begin with: reinitiate the
auth flow. There is no way to refresh a refresh token other than by doing this.

Four Easy Steps

[44]

Putting it all together
All of these steps together can be represented like this:

Step 1: Register your client application
- Can register with any 0Auth

2.0-compliant service provider
- Should end this step with:

- client ID
- client secret
- redirection endpoint
- authorization endpoint
- token endpoint

Step 2: Get your access token
- Can use any of the supported

grant flows
- Should end this step with:

- access token
- (optional) refresh token

Step 3: Use your access token
- Use any of the three methods to include

your access token with your API call
- Should end this step with a successful

request to access a particular
protected resource

Step 4: Refresh your access token
- If your refresh token is still valid

should end this step with a new
valid access token

Im
pl

ic
it

gr
an

t

Au
th

or
iz

at
io

n
co

de
 g

ra
nt

Fa
ce

bo
ok

G
oo

gl
e

Li
nk

ed
In

Pi
nt

er
es

t

Au
th

or
iz

at
io

n
he

ad
er

Fo
rm

-e
nc

od
ed

bo
dy

 p
ar

am
s

Q
ue

ry
 p

ar
am

s

Summary
In this chapter, we looked at the entire process for becoming an OAuth 2.0 client,
broken down into four simple steps: registering your client application, getting
your access token, using your access token to access a protected resource, and
refreshing your access token if required.

We now have all of the information we need to start creating our own
OAuth 2.0 client. In the next chapter, we will start building our own application,
The World's Most Interesting Infographic Generator, where we will start with the
registration process!

[45]

Register Your Application
In the previous three chapters, we introduced the concept of OAuth 2.0, discussed
its importance, and even gained a high-level, general understanding of the protocols
behind the specification. Now, it's time to start putting our knowledge to use and
start building our sample application. We will take a closer look at the process of
registering a client application with an OAuth 2.0 service provider by stepping
through the registration process with Facebook for our sample application, The
World's Most Interesting Infographic Generator! Let's begin!

Recap of registration process
You should recall from the previous chapter that client registration is a necessary,
and first, step for creating and becoming an OAuth 2.0 client. It identifies your
application as well as configures certain properties necessary for the setup and
operation of your application. All service providers differ in the way they handle
client registration, but as long as they abide by the OAuth 2.0 specification, they
will all share a common set of base properties. At the end of the client registration
process, the properties that should be known to you are:

•	 Client ID
•	 Client secret
•	 Redirection endpoint
•	 Authorization endpoint
•	 Token endpoint

Let's start this process with Facebook, and we will fill in those properties as they
become known.

Register Your Application

[46]

Registering your application with
Facebook
In order to register our client application with Facebook, we need to go to
the Facebook Developers page. At the time of this writing, this is located at
https://developers.facebook.com/.

From here, you can create your Facebook application and configure its settings.

Creating your application
Let's start by creating our application. The application creation page looks
something like this:

https://developers.facebook.com/

Chapter 4

[47]

Display name and namespace are not OAuth 2.0 properties. Rather,
these are good examples of Facebook-specific application properties
which they likely use for their own application management. Fill in
whatever values you wish.

Once you've created your application, you'll be presented with a configuration
screen that looks something like this:

Notice that at the top of the page near the application name, we are given an App ID
and App Secret. This is our client ID and client secret, respectively.

Register Your Application

[48]

In the real world
Different service providers will use different terminology when it comes
to their own particular application creation and development process.
Often, this includes different terminology for OAuth 2.0 properties. In
this particular example, Facebook calls the OAuth 2.0 client ID and client
secret the App ID and App Secret respectively. Google, alternatively,
refers to those properties using the more standard terms, client ID and
client secret. Be prepared for this when integrating with your respective
service provider.

Most service providers will provide an interface similar to this where you will
be able to configure the settings of your application. You can revisit this page at
any time to alter your settings, even after your application has been launched,
so don't worry if you feel like you have filled in incorrect information during the
registration step since you can change those properties at any time afterwards.

Setting your redirection endpoint
Now that our application is created, it's time to start refining our configurations.
For our particular application, The World's Most Interesting Infographic Generator,
the default settings are mostly correct for us. One configuration that we should alter
first, though, is our redirection endpoint. Before we do this, let's understand more
with what this property is about.

What is a redirection endpoint?
The redirection endpoint is a very important property of your application. It can be
thought of as a callback to your application: a way for the service provider to pass
control back to your application and even send you important information (such as
tokens or error messages). When you start the authorization process with OAuth
2.0, you direct your users to the service provider's authorization endpoint to log in
and authorize your application (that is, user consent). Once your users complete this
process, control must then be handed back to your application. This is done via the
redirection endpoint. After your users log in and authorize (or deny) authorization
for your application, Facebook will then send those users back to the redirection
endpoint along with any session information (or error messages, if appropriate).
It is then your responsibility as the application developer to create an endpoint to
receive this information and parse the response appropriately.

Referring to our workflow diagrams from Chapter 2, A Bird's Eye View of OAuth 2.0,
we can identify the use of the redirection endpoint as step 4 in both the trusted and
untrusted flow examples.

Chapter 4

[49]

The "key" (that is, access token) is passed back via the redirection endpoint in step 4

Register Your Application

[50]

The "tag" (that is, authorization code) is passed back via the redirection endpoint in step 4

Chapter 4

[51]

What about mobile?

For native mobile and desktop applications, the redirection endpoint may
be handled slightly differently. In the case of a web application, like the
one we are creating in this book, it makes sense to create an endpoint on
our service to handle this. However, in the context of native mobile and
desktop applications, the concept of an "endpoint" isn't as relevant. For
this reason, some service providers have different rules for the setting of
redirection endpoints for native applications. Some service providers may
even provide a particular redirection endpoint to use that your application
must detect.

For instance, at the time of this writing, the redirection "endpoint" for native
applications with Google must be one of urn:ietf:wg:oauth:2.0:oob
or urn:ietf:wg:oauth:2.0:oob:auto or a localhost endpoint.

What is important is that you can recognize the redirection endpoint from
your application and be able to extract the necessary values from the
response. This will become clearer when we discuss the process of getting
an access token in the next two chapters.

In many cases, when beginning your application development, you may not know
yet what your redirection endpoint will be. This is okay because you can always
revisit your application configuration settings and enter it when you know what
it will be. However, for The World's Most Interesting Infographic Generator, we can
make that decision now. We will create two redirection endpoints, one for our first
iteration of our sample application, and another for our second iteration. Those
endpoints will be /callback.html and /callback respectively.

Register Your Application

[52]

To configure this for our application with Facebook, it can be done through the
advanced configuration properties page. On the application page, hit the Settings
menu and select the Advanced tab and you can find it in the Client OAuth Settings
section (the interface for managing your applications on Facebook may have
changed by the time you are reading this, but this configuration is sure to exist).

Notice that we actually provided two redirection endpoints for our application:

•	 http://wmiig.com/callback.html

•	 http://wmiig.com/callback

Some service providers will allow you to add multiple redirection endpoints, as
we do for our application above with Facebook, and others will only allow you
to specify one. Some service providers may even allow you to specify a regular
expression or wildcard expression to define the whitelist of redirection endpoints
supported by your application. If the service provider you are integrating with
allows this, you should be careful with its usage as it can potentially open up some
dangerous security holes (see the Redirection URI manipulation section in Chapter 9,
Security Considerations).

http://wmiig.com/callback.html
http://wmiig.com/callback

Chapter 4

[53]

Find your service provider's authorization
and token endpoints
At this point, we have our client ID, client secret, and most recently, just set our
redirection endpoints. All that's left is to find our service provider's authorization
and token endpoints. These are determined by the service provider and can often
be found in their developer documentation. Some service providers, however,
encourage the use of libraries and SDKs to interact with their OAuth 2.0 service,
and so may hide these properties. Regardless, these endpoints must exist and will
be used to complete your authentication flow.

In the case of Facebook, at the time of this writing, their authorization and token
endpoints are:

•	 https://www.facebook.com/dialog/oauth

•	 https://graph.facebook.com/oauth/access_token

Putting it all together!
Looking back at our list of necessary properties, we're able to fill in all the
required fields:

•	 Client ID: wmiig-550106
•	 Client secret: DFIAJAO98SH9832HVMQI3
•	 Redirection endpoints: http://wmiig.com/callback.html,

 http://wmiig.com/callback
•	 Authorization endpoint: https://www.facebook.com/dialog/oauth
•	 Token endpoint: https://graph.facebook.com/oauth/access_token

We provide fake client credentials in the preceding list for obvious
reasons. However, you will get your own values when you register,
which you can plug into your own application.

We now have all of the information we need to move forward with our integration.
Let's start building our application!

https://www.facebook.com/dialog/oauth
https://graph.facebook.com/oauth/access_token
https://www.facebook.com/dialog/oauth
https://graph.facebook.com/oauth/access_token

Register Your Application

[54]

Summary
The registration process is the first step in creating your application. The process
will vary from provider to provider, as well as the terminology, but the underlying
properties and workflows are all the same. Upon completion of registration of your
application, make sure that you have the following five properties: client ID, client
secret, redirection endpoint, authorization endpoint, and token endpoint.

For our sample application, we were able to obtain each of these properties
during the registration process with Facebook. In the next few chapters, we will
start building our sample application, making use of all of these properties in
the process. Let's begin!

[55]

Get an Access Token with
the Client-Side Flow

In the previous chapter, we stepped through the registration process with our client
application. Now that our application is registered, we're ready to start talking to
Facebook! In this chapter, we will do this by creating a very simple HTML/JavaScript
application, which we will use to request an access token from Facebook using
the client-side flow (that is, the implicit grant flow). This is the simpler of the two
workflows, and so understanding this will prepare us for the next chapter where we
will build a more complex Java application which uses the server-side flow (that is,
the authorization code grant flow) to request an access token.

Refresher on the implicit grant flow
As you should recall from Chapter 2, A Bird's Eye View of OAuth 2.0, the implicit
grant flow is the OAuth 2.0 flow used for untrusted clients. These are typically
HTML/JavaScript web applications that do not have the ability to securely store
and transmit information, say, from a backend server. Because of this, they have a
simpler workflow than other applications using the alternative authorization code
grant flow.

Get an Access Token with the Client-Side Flow

[56]

Once again, the implicit grant flow looks like this:

Chapter 5

[57]

In the context of our application, WMIIG (World's Most Interesting Infographic
Generator), the sequence of steps are as follows:

1.	 The user visits WMIIG and initiates the process to see the world's most
interesting infographic.

2.	 WMIIG says, "Sure! But I'll need to access your profile and feed data to
do so, and for this, I'll need your authorization. Go here…"

3.	 WMIIG sends you to Facebook. Here, Facebook asks you directly for
authorization for WMIIG to access your profile and feed data on your
behalf. It does this by presenting the user consent form, which you can
either accept or deny. Let's assume you accept.

4.	 Facebook then gives the WMIIG client application (in this case, the
HTML/JavaScript application we are going to build) an access token
that can be used to access your Facebook profile and feed data.

5.	 WMIIG then makes a series of requests to Facebook asking for your profile
and feed data, presenting with it the access token that it just received.

6.	 Facebook validates this token, and upon successful validation happily
obliges, giving WMIIG your profile and feed data. WMIIG then uses this
information to generate the world's most interesting infographic!

This is only a high-level look at the process, just to get an understanding of what
is involved. Now that we have a rough idea of what our interaction with Facebook
looks like, let's dive in and take a deeper look and examine exactly what is required
for our requests and what we can expect in the responses.

A closer look at the implicit grant flow
Our application wants to view the profile and feed data of the user who is using the
application. In order to do this, WMIIG must first get authorization from the user. The
OAuth 2.0 specification outlines a very rigid, but straightforward, way in which this
transaction must occur. In short, WMIIG must send the user to the service provider's
authorization endpoint, passing along with it various properties describing the request,
including the redirection endpoint and desired scopes. Here, the user is presented
with the option of accepting or denying the request. As mentioned in Chapter 2, A
Bird's Eye View of OAuth 2.0, this is known as user consent and is represented by steps
1 to 3 in the previous workflow. Once the user either accepts or denies, the response
is sent back to WMIIG via the redirection endpoint. If the user accepts, the response
will contain an access token. Otherwise, an appropriate error message will be returned
instead. This is represented by step 4 in the previous workflow. Let's examine these
steps in more detail. We'll leave steps 5 and 6 for later (see Chapter 7, Use Your Access
Token if you'd like to read ahead).

Get an Access Token with the Client-Side Flow

[58]

Authorization request
This is the initial request to gain consent from the user. It is accomplished by
sending the user to the service provider's authorization endpoint, specifying with
it the details of the request. Let's look closer at this step by first examining what
the specification says, and then looking at what it takes to make it happen in
our application.

According to the specification
The authorization request endpoint is simply the service provider's authorization
endpoint with a set of parameters added to the query component of the URL. The
parameters must be encoded using the application/x-www-form-urlencoded
format. In general terms, the template for a valid authorization request URL is:

 GET /authorize?
 response_type=token&
 client_id=[CLIENT_ID]&
 redirect_uri=[REDIRECT_URI]&
 scope=[SCOPE]&
 state=[STATE] HTTP/1.1
 Host: server.example.com

The parameters that can be added to the preceding request URL are defined as:

•	 response_type: (Required) This must be set to token to signify that we
are utilizing the implicit grant flow.

•	 client_id: (Required) This is your application's unique client ID.
•	 redirect_uri: (Optional) The redirection endpoint used by the service

provider to return the response, whether that is an access token in the case
of a successful request, or an error message in the case of a failed request.

•	 scope: (Optional) This defines the scope of permissions that we are
requesting on behalf of the user.

•	 state: (Recommended) This parameter is optional, but recommended. It is
an opaque value that can be sent by the client, and received in the response,
to maintain state between the request and callback. It is recommended for
use in protection against cross-site request forgery (CSRF) attacks. See
the Use the state param to combat CSRF section in Chapter 9, Security
Considerations, for a more detailed description of the recommended
use of the state parameter.

Chapter 5

[59]

Reference pages
The OAuth 2.0 specification provides a very detailed and precise
description of what is required to make a well-formed authorization
request. See the end of the chapter to see a set of reference pages
adapted from the relevant specifications for your convenience.

In our application
Thanks to the work we did in the previous chapter, where we registered our
application with Facebook, we have all that we need to make this request. We
will be plugging in the following values as URL-encoded query parameters to
our authorization request, which we will be sending to our service provider's
authorization endpoint, which we discovered to be:

•	 response_type: token
•	 client_id: wmiig-550106
•	 redirect_uri: http://wmiig.com/callback.html
•	 scope: public_profile, user_posts

Notice we are specifying both public_profile and user_posts
as the set of scopes we are requesting. You might remember from the
Scope section in Chapter 3, Four Easy Steps, that scopes can be stacked
to request multiple at a time.

We are purposely omitting the state parameter. We are saving this for a more
detailed discussion in Chapter 9, Security Considerations.

Using the preceding values, our constructed authorization request URL looks
like this:

 https://www.facebook.com/dialog/oauth?
 response_type=token&
 client_id=wmiig-550106&
 redirect_uri=http%3A%2F%wmiig.com%2Fcallback.html&
 scope=public_profile%20user_posts

Get an Access Token with the Client-Side Flow

[60]

Don't forget to URL-encode your request parameters!
Notice that the scope and redirection endpoint we passed in as our
query parameters are URL-encoded. This is required as there are some
parameter values that may contain invalid characters when passed as
query parameters. If you forget to URL-encode your query parameters,
you will likely get an error response.

It is important to notice that this endpoint is hosted by the service provider directly,
in this case, Facebook. When the user logs in and authorizes the application, it is
done directly with Facebook and not through WMIIG. This way, WMIIG knows
nothing about the user's Facebook credentials. WMIIG never even sees them!
This is delegated authority in action!

Now that we have this authorization request URL, we can simply send our user
to this location to begin the authorization process.

See for yourself!
Since the authorization request is a simple GET request, you can see
the user consent screen yourself right now. Simply open up your
favorite browser and navigate to the authorization request URL that
you constructed earlier and you will see what our application will be
presenting to users. Make sure you plug in your own value for client
ID as it will differ from the example in this book.

Access token response
If you've constructed your authorization request URL correctly, your user will be
presented with the user consent screen where they can either accept or deny the
authorization request. If they accept, you can expect a success response, which will
contain an access token. If they deny, or some other error has occurred, you can
expect an error response instead. Let's look at both response structures now.

Success
For now, let's assume that you've constructed the authorization request URL
correctly, and the user accepts the requested authorization. In this case, an access
token will be returned to our application at the provided redirection endpoint
with all of the important information contained in the URL fragment. Given this,
the template for a valid authorization response is:

Chapter 5

[61]

 HTTP/1.1 302 Found
 Location: [REDIRECT_URI]#
 access_token=[ACCESS_TOKEN]&
 token_type=[TOKEN_TYPE]&
 expires_in=[EXPIRES_IN]&
 scope=[SCOPE]&
 state=[STATE]

The possible parameters that can be expected in the preceding response are:

•	 access_token: (Required) This is what we're after! The presence of this
value in the response is indicative of a successful authorization request.
And it is this token value that we will eventually use to access the user's
profile and feed data.

•	 token_type: (Required) Defines the type of token returned. This will almost
always be bearer.

•	 expires_in: (Optional) The lifetime of the token in seconds. For example, if
this value is 3600, that means that the access token will expire one hour from
the time the response message was generated. It is optional in that
the service provider may not always return this value.

•	 scope: (Conditionally required) If the granted scope is identical to what
was requested, this value may be omitted. However, if the granted scope
is different from the requested scope, it must be present.

•	 state: (Conditionally required) If a state parameter was present in the
request, then it must be returned in the response.

An example access token response for our application, given the values we sent in
the request, will be:

http://wmiig.com/callback.html#
 access_token=ey6XeGlAMHBpFi2LQ9JHyT6xwLbMxYRvyZAR&
 token_type=bearer&
 expires_in=3600

Don't forget to URL-decode your response parameters!
Just as you URL-encoded your request parameters, the response
parameters sent by the service provider to your application
will also be URL-encoded. Make sure to decode them in your
application before using them.

Get an Access Token with the Client-Side Flow

[62]

Given this response, we can extract the following properties. Our access token is of
the type bearer with a value of ey6XeGlAMHBpFi2LQ9JHyT6xwLbMxYRvyZAR and
expires in 1 hour (that is, 3600 seconds). Since no scope parameter was returned, we
can assume that the scope granted is equal to the scope that was requested (that is,
public_profile and user_posts).

Why return values in the response fragment instead of as query
parameters?
You may have noticed that the response properties are returned
in the URL fragment of the redirect URI. This is in contrast to the
request, where we put the required properties in the URL as query
parameters. This is because URL fragments are meant for browser
interpretation only and not meant to be sent to, or used by, a
server. Furthermore, values in URL fragments are not cached, so
there is no risk of accidentally having your precious access token
cached on some server or intermediary cache somewhere.

This is what a successful access token request looks like from our application's
perspective. However, what happens if the request gets rejected? For instance,
what happens if the user denies the permissions requested, or the request itself is
malformed, or the protected resource no longer exists? Let's take a look at that now.

Error
If the request gets rejected for some reason, an access token will not be returned.
Instead, an error response will be returned. The template for an error response is:

 HTTP/1.1 302 Found
 Location: [REDIRECT_URI]#
 error=[ERROR_CODE]&
 error_description=[ERROR_DESCRIPTION]&
 error_uri=[ERROR_URI]&
 state=[STATE]

The possible parameters that can be returned in this case are:

•	 error: (Required) This is a single code representing the error that caused
the request to fail. The value must be one of the following:

°° invalid_request: The request is malformed and could not
be processed.

Chapter 5

[63]

°° unauthorized_client: The client application isn't authorized
to make such a request.

°° access_denied: The user has denied the request.
°° unsupported_response_type: An invalid response type was

used. You might recall from earlier that for the implicit grant
type, this value must be set to token.

°° invalid_scope: The scope passed in is invalid.
°° server_error: An error happened on the server that prevented

a successful response from being generated.
°° temporarily_unavailable: The authorization server is

temporarily unavailable.

•	 error_description: (Optional) A human-readable message describing
what caused the error.

•	 error_uri: (Optional) A link to a web document containing more
information about the error.

•	 state: (Conditionally required) If a state parameter was present in the
request, then it must be returned in the response.

An example response for our application, given the values we sent in the request,
would be:

 http://wmiig.com/callback.html#
 error=access_denied&
 error_description=The%20user%20has%20denied
 %20your%20request

Here, we can see that the error is access_denied and the description (after
URL-decoding) is "The user has denied your request". It is clear from this response
what caused the error, and so you can react accordingly within your application.

Let's build it!
We have all the theory now. We know how to make the authorization request, and
we know the structure of the two types of responses we can expect (success or error).
Let's build it in our sample application!

Get an Access Token with the Client-Side Flow

[64]

Build the base application
Since we are using the implicit grant workflow, which is intended for client-side
usage, our application requirements are quite simple. We do not require a backend
server to facilitate the calls. So, for this version of WMIIG, we will build a simple
web application using HTML and JavaScript to make the calls and interpret the
responses. We will be using Apache Maven to facilitate the creation and running
of our application.

What is Apache Maven?
Maven is a build automation and software management tool for
Java projects. It can perform a variety of tasks, including execution
of goals to build, test, and package your application. In 2003, it was
voted on and accepted as a top-level project for the Apache Software
Foundation. Since then, it has been accepted as a standard tool
amongst Java developers.
In addition to build automation, Maven handles the non-trivial task of
dependency management. Based on the idea of a project object model
(POM), represented as a POM file (pom.xml), Maven can manage a
project's creation, build, documentation, testing, and deployment from
this central piece of information.
For the purposes of our sample applications, though, we will only
be using Maven to create our applications and run them in a web
container to view and test them.

Install Apache Maven
For both of the sample applications in this book (the client-side example, which we
are building now, and the server-side example we will build in the next chapter),
we will be using Apache Maven to create and run the projects. To download Maven,
go to the official Apache Maven website: https://maven.apache.org/.

Download the latest version and follow the instructions to install it on your
system. By the end of your installation, you should be able to execute the
following command in a terminal on your machine and get a similar result:

https://maven.apache.org/

Chapter 5

[65]

Maven is now installed on your machine! Now you're ready to start building the
base application.

No Maven? No problem!
If you don't know Maven, that's okay. You can simply install it and
follow along while focusing on the implementation of the workflow.
Or, if you prefer not to work with Maven entirely, you can deploy
the HTML and JS files to your own server for testing. Whichever
you prefer!

www.allitebooks.com

http://www.allitebooks.org

Get an Access Token with the Client-Side Flow

[66]

Create the project
Our base application will start with a simple HTML file. This is easy enough for you
to create on your own, but let's use Maven so that we can have a container to run and
test our application with. You can choose to deploy to your own server for testing if
you prefer, though. To create your project, open up a terminal, navigate to the folder
where you want your project to live, and execute the following Maven command on
your machine:

mvn archetype:generate
 -DgroupId=com.wmiig
 -DartifactId=wmiig
 -DarchetypeArtifactId=maven-archetype-webapp
 -DinteractiveMode=false

Maven will do a bunch of work, may even download some files and dependencies,
and at the end, will create a folder called wmiig.

Chapter 5

[67]

This wmiig folder is where all of your project files are located. The directory structure
of the files created are:

wmiig/
├── src/
│ └── main/
│ ├── resources/
│ └── webapp/
│ └── WEB-INF/
│ ├── web.xml
│ index.jsp
└── pom.xml

What did we just do?
Maven has the ability to create various types of projects based on
predefined project templates. We've done this with our preceding Maven
command by specifying the archetype:generate argument. The flag
of archetypeArtifactId=maven-archetype-webapp specifies the
type of template to use when creating the application, in this case, a basic
web application. The group ID and artifact ID simply name your project
and give it a namespace. Finally, interactiveMode=false indicates
to Maven that we want to create the project with default settings for
everything else. You can omit this final flag to see what other settings
can be configured during project creation.

Configure base project to fit our application
Since this application is using the client-side workflow, we won't be using any
server-side mechanisms. Because of this, we won't need the JSP file that was created
for us. Let's replace it with an HTML file that will serve as a starting point for our
application. First, delete index.jsp. Then, open up your favorite HTML editor and
create a new file, index.html, place it where index.jsp was, and put the following
contents inside:

<!DOCTYPE html>
<html>
 <head>
 <title>The World's Most Interesting Infographic</title>
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
 <script>
 $(document).ready(function() {
 $("#goButton").click(makeRequest);
 });

Get an Access Token with the Client-Side Flow

[68]

 function makeRequest() {
 // TODO: Make authorization request
 alert("Button clicked!");
 }
 </script>
 </head>
 <body>
 <button id="goButton" type="button">Go!</button>
 <div id="results"></div>
 </body>
</html>

This will be the starting point for our application. It is a basic index page with a
button and some JavaScript logic to detect when the button is pushed.

Modify the hosts file
In order to test our redirections properly, we need to be able to use proper hostnames
when referring to our application. localhost just won't cut it. To do this, make sure
you put the following entry into your hosts file:

127.0.0.1 wmiig.com

With this entry in place, you can now refer to localhost using the hostname
wmiig.com.

Since hosts files are maintained differently on different platforms,
the process of modifying your hosts file is omitted. Typically, this
is located at /etc/hosts for Linux/Unix-based systems, including
OSX. For Windows 8+ machines, it is located at C:\Windows\
System32\Drivers\etc\hosts.

Running it for the first time
Now that we have our base application created, let's test it. To see how this looks
in a browser, we will use Maven to host our (starter) web application in a basic
web server and refer to it with the hostname we just set up. To do this, execute
the following command in the same directory of your project:

sudo mvn -Dmaven.tomcat.port=80 -Dmaven.tomcat.path=/ tomcat:run

Chapter 5

[69]

If you are executing this on a Linux- or Unix-based operating system,
such as CentOS or Mac OS X, and want to bind to port 80 as we do
above, you will need to use the sudo command to do so. This is not
necessary on Windows.

You should see output similar to this:

Get an Access Token with the Client-Side Flow

[70]

Open up your favorite web browser, navigate to http://wmiig.com, and you should
see a page that looks like this:

Success! If you click the button, you will see an alert that announces Button
clicked! As we can see, our base application is a very simple HTML page with
some JavaScript to detect our button click. However, right now, when you click
on the button, it does nothing else other than to announce that it was clicked.
Now, it is time to replace that announcement with the actual request to Facebook.

http://wmiig.com

Chapter 5

[71]

Make the authorization request
As we established earlier in the chapter, we must send the user-agent to:

https://www.facebook.com/dialog/oauth?
 response_type=token&
 client_id=wmiig-550106&
 redirect_uri=http%3A%2F%wmiig.com%2Fcallback.html&
 scope=public_profile%20user_posts

Let's do this in our application by replacing our makeRequest() function with this:

function makeRequest() {
 // Define properties
 var AUTH_ENDPOINT = "https://www.facebook.com/dialog/oauth";
 var RESPONSE_TYPE = "token";
 var CLIENT_ID = "wmiig-550106";
 var REDIRECT_URI = "http://wmiig.com/callback.html";
 var SCOPE = "public_profile user_posts";

 // Build authorization request endpoint
 var requestEndpoint = AUTH_ENDPOINT + "?" +
 "response_type=" + encodeURIComponent(RESPONSE_TYPE) + "&" +
 "client_id=" + encodeURIComponent(CLIENT_ID) + "&" +
 "redirect_uri=" + encodeURIComponent(REDIRECT_URI) + "&" +
 "scope=" + encodeURIComponent(SCOPE);

 // Send to authorization request endpoint
 window.location.href = requestEndpoint;
}

Scopes are space-delimited!
Notice here that our SCOPE string is "public_profile
user_posts". As described by the OAuth 2.0 specification,
scopes are to be space-delimited and not comma-delimited like
many may assume. Many service providers accommodate both,
but it is important to note that the specification requires
space-delimited scopes.

Get an Access Token with the Client-Side Flow

[72]

With this new logic in our makeRequest() method, we are now sending the
user to Facebook's user consent page, which we've constructed according to the
specification. Save the file, reload your page, and click on Go! again. This time,
instead of getting the JavaScript alert, you'll be redirected to Facebook where you
will be asked to authorize permission for WMIIG to access your public profile and
feed data.

Chapter 5

[73]

If you weren't logged into Facebook before hitting the user consent
screen, you would have been asked to log in first. If you were logged
in, though, you'll notice that you weren't asked to re-log in. This
is known as SSO (Single Sign On) and is another benefit of using
OAuth 2.0. The fewer times you send your credentials across the
Internet, the smaller the chance of someone stealing them.

So far so good! If you accept or deny the request, you will see an error page. This is
because we specified our redirection endpoint as http://wmiig.com/callback.html,
but we haven't yet created that page yet. Let's do this now.

Handle the access token response
As we learned earlier, a response will get returned to our application via the
URL fragment in the redirect URI that we passed in in our request. We must
be prepared to handle this in our application. To do this, let's create another
file called callback.html and populate it with the following content (recall we
whitelisted this as a redirection endpoint for our application in the previous chapter):

<!DOCTYPE html>
<html>
 <head>
 <title>The World's Most Interesting Infographic</title>
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
 <script>
 $(document).ready(function() {
 // TODO: Handle access token response
 });
 </script>
 </head>
 <body>
 <div id="response"></div>
 </body>
</html>

The first thing we will want to do on our callback page is detect the presence of a
response. We can do this by detecting the presence of a non-empty URL fragment:

// Extract fragment from URL
var fragment = location.hash.replace('#', '');

http://wmiig.com/callback.html

Get an Access Token with the Client-Side Flow

[74]

Best practice
Some browsers return a hash ('#') in a call to location.hash, and
others don't. So, it is best practice to preemptively strip it.

Once we have extracted our hash value, we can react accordingly. If the hash is
empty (that is, no hash was detected), then we can conclude that no response was
passed to our callback (this can happen if people hit our callback URL directly).
Otherwise, if our hash is non-empty, we can conclude that a response was indeed
passed back to our endpoint for us to interpret. The basic logic for this, in JavaScript,
would look like this:

// Extract fragment from URL
var fragment = location.hash.replace('#', '');

// Detect presence of response by examining fragment
if (fragment !== "") {
 // Response detected!
} else {
 // No response detected:(
}

For the sake of simplicity in interpreting our response, we will simply isolate the
access token and write its value to the response div in the HTML body:

// Extract fragment from URL
var fragment = location.hash.replace('#', '');

// Detect presence of response by examining fragment
if (fragment !== "") {
 var responseProperties = fragment.split("&");
 // Isolate access token and write it to the "response" div
 var accessToken = "";
 for (var i = 0; i < responseProperties.length; i++) {
 if (responseProperties[i].indexOf("access_token=") === 0) {
 accessToken = responseProperties[i].split("=")[1];
 $("#response").html("Access token: " + accessToken);
 break;
 }

Chapter 5

[75]

 }

 // TODO: Request profile and feed data with access token
} else {
 $("#response").html("No response detected.");
}

Adding this back to our HTML code, we get:

<!DOCTYPE html>
<html>
 <head>
 <title>The World's Most Interesting Infographic</title>
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
 <script>
 $(document).ready(function() {

 // Extract fragment from URL
 var fragment = location.hash.replace('#', '');

 // Detect presence of response by examining fragment
 if (fragment !== "") {
 var responseProperties = fragment.split("&");
 // Isolate access token and write it to the "response" div
 var accessToken = "";
 for (var i = 0; i < responseProperties.length; i++) {
 if (responseProperties[i].indexOf("access_token=") === 0) {
 accessToken = responseProperties[i].split("=")[1];
 $("#response").html("Access token: " + accessToken);
 break;
 }
 }

 // TODO: Request profile and feed data with access token

 } else {
 $("#response").html("No response detected.");
 }
 });

Get an Access Token with the Client-Side Flow

[76]

 </script>
 </head>
 <body>
 <div id="response"></div>
 </body>
</html>

Place this file alongside your index.html file. Now, let's start the auth process again.
Navigate to http://wmiig.com again and click the button. Authorize the application
in the user consent screen (if you haven't done so already), and you should now see a
page that looks something like this:

Our response object has successfully been parsed! If an error occurred during your
request process, you will see so in the response URL where, hopefully, the error
code and message are enough for you to debug what failed during your request.
Otherwise, if everything is successful, you will see an access token, expiry duration,
and token type in the response.

http://wmiig.com

Chapter 5

[77]

In the real world
Facebook's current implementation of the OAuth 2.0 protocol does
not return the token_type property even though it is required
by the specification. It is assumed to be of type bearer. As you
work with more service providers, you will find that differences
in implementation, such as this, occur quite often. This happens
for a variety of reasons, for example, internal constraints, business
requirements, or development restrictions.

That's it! We've successfully requested and received an access token from Facebook
which we can now use to access the user's profile and feed data! Before we move on
to using this token to request that data, we'll first look at the more complex, but more
robust and secure workflow that uses the authorization code grant.

Summary
In this chapter, we took a detailed look at the protocol for the implicit grant flow,
noting the required and optional properties in the request as well as the required and
optional properties in the response. We put this knowledge to use and implemented
a real OAuth 2.0 flow using the implicit grant flow from an untrusted client that we
created. After all that, we ended up with a valid Facebook access token. The next step
is to then use this access token to make a request to Facebook to actually get the profile
and feed data for us to use. We will cover this in Chapter 7, Use Your Access Token. But
before we do that, we will first take a look at the same process of requesting an access
token, but using the slightly more complex, but more secure, authorization code grant
flow for server-side applications.

Get an Access Token with the Client-Side Flow

[78]

Reference pages
Use these pages as reference documentation when implementing the implicit grant
flow in your application. Adapted from The OAuth 2.0 Authorization Framework
specification [RFC 6749].

Overview of the implicit grant flow

Resource
Owner

Client

Authorization
Server

Web-Hosted
Client

Resource

Access Token

User-
Agent

(B)

(F)

Client Identifier
& Redirection URI

User authenticates

Redirection URI
with Access Token

in Fragment

Redirection URI
without Fragment

Script

(G)

(A)

(B)

()C

(D)

(E)

(A)

Figure 4 from RFC 6749

The steps are as follows:

•	 A: The client application initiates the flow by sending the user's user-agent
to the appropriate authorization endpoint.

•	 B: The authentication server of the service provider authenticates the
resource owner and attempts to gain consent by presenting the user
consent form.

•	 C: Assuming the user grants consent, the authorization server redirects the
user back to the client application via the redirection endpoint provided in
the authorization request. The redirection endpoint will include the access
token in the URI fragment.

Chapter 5

[79]

•	 D: The user-agent proceeds with the redirection, stripping the fragment
and retaining the properties locally.

•	 E: The client serves a web page that is capable of parsing the fragment
and extracting the access token.

•	 F: The user-agent executes a script provided by the web-hosted client
resource locally, which extracts the access token.

•	 G: The user-agent returns the access token to the client.

Authorization request
The client constructs the authorization request endpoint by appending the properties
below to the query component of the service provider’s authorization endpoint.
All property values must be encoded using the application/x-www-form-
urlencoded format as described in Appendix B of the specification:

•	 response_type: (Required) This value must be set to token.
•	 client_id: (Required) A unique string representing the client as was

provided during client registration.
•	 redirect_uri: (Optional) An absolute URI to be used to pass control back to

the client after the service provider has completed interacting with the user.
•	 scope: (Optional) A list of space-delimited, case-sensitive strings which

represent the scope of the access request.
•	 state: (Recommended) An opaque value used by the client to maintain

state between the request and callback. This parameter should be used for
the prevention of cross-site request forgery as described in Section 10.12
of the specification.

An example authorization request looks like this:

 GET /authorize?
 response_type=token&
 client_id=s6BhdRkqt3&
 state=xyz&
 redirect_uri=https%3A%2F%Eexample%2Ecom%2Fcallback HTTP/1.1
 Host: server.example.com

Get an Access Token with the Client-Side Flow

[80]

Access token response
If the user grants access to the protected resource to the client application, the
success response will be sent to the client application in the URL fragment of the
redirect URI with the following properties encoded using the application/x-www-
form-urlencoded format as described in Appendix B of the specification:

•	 access_token: (Required) The access token issued by the service provider.
•	 token_type: (Required) The type of the token issued. This value is

case-insensitive.
•	 expires_in: (Optional) The lifetime of the access token given in seconds.

If omitted, the service provider should communicate the expiration time
via other means.

•	 scope: (Conditionally required) A list of space-delimited, case-sensitive
strings which represent the scope of the access granted. Required only if
the scope granted is different from the scope requested.

•	 state: (Conditionally required) Required only if the state parameter was
present in the authorization request. Must be the same value as was received
by the client.

An example access token response looks like this:

 HTTP/1.1 302 Found
 Location: http://example.com/callback#
 access_token=2YotnFZFEjr1zCsicMWpAA&
 state=xyz&
 token_type=bearer&
 expires_in=3600

Error response
If the access request fails for any reason, the error response will be sent to the client
application in the URL fragment of the redirect URI with the following properties
encoded using the application/x-www-form-urlencoded format as described in
Appendix B of the specification:

•	 error: (Required) This is a single error code representing the condition that
caused the request to fail. The value must be one of the following:

°° invalid_request: The request is missing a required parameter,
includes an invalid parameter value, includes a parameter more
than once, or is otherwise malformed.

Chapter 5

[81]

°° unauthorized_client: The client is not authorized to use this
method to request an access token.

°° access_denied: The user or service provider denied the request.
°° unsupported_response_type: The service provider does

not support obtaining an access token using this method.
°° invalid_scope: The requested scope is invalid, unknown,

or malformed.
°° server_error: The service provider encountered an unexpected

error that prevented it from fulfilling the request. This error code is
necessary because an HTTP 500 (Internal Server Error) status code
cannot be returned to the client via an HTTP redirect.)

°° temporarily_unavailable: The authorization server is currently
unable to handle the request. This error code is necessary because
an HTTP 503 (Service Unavailable) status code cannot be returned
to the client via an HTTP redirect.

•	 error_description: (Optional) Human-readable ASCII message providing
additional information regarding the error.

•	 error_uri: (Optional) A URI identifying a human-readable web page
providing additional information regarding the error.

An example error response looks like this:

 HTTP/1.1 302 Found
 Location: https://example.com/callback#
 error=access_denied&
 state=xyz

[83]

Get an Access Token with
the Server-Side Flow

In the previous chapter, we looked at how to obtain an access token using the
client-side flow (that is, the implicit grant flow). We demonstrated this by creating
a very simple HTML/JavaScript application that requested an access token from
Facebook using the credentials we created in Chapter 4, Register Your Application.

In this chapter, we will take a closer look at the server-side flow for getting an access
token. Just as we did for the client-side flow in the previous chapter, we will look at
the request and response structure necessary to make successful calls to an OAuth
2.0 service provider. We will then create a simple Java application, and use our
knowledge to request an access token from the server side using the slightly more
complex, but more secure, server-side flow (that is, authorization code grant flow).

Refresher on the authorization code
grant flow
Recall from Chapter 2, A Bird's Eye View of OAuth 2.0, the authorization code
grant flow is the OAuth 2.0 flow used for trusted clients. These are typically web
applications powered by some sort of backend. For example, an HTML/JS frontend
powered by a Python server, or a Flash frontend powered by a Ruby on Rails
backend. For our sample application, WMIIG, we will be building an HTML/JS
frontend powered by a Java backend.

Get an Access Token with the Server-Side Flow

[84]

The addition of a server-side to the access token workflow makes the authorization
code grant flow more secure and more powerful than the client-side implicit grant
flow. We will see how as we proceed through this chapter. For now, recall that the
authorization code grant flow looks like this:

Chapter 6

[85]

In the context of our application, WMIIG (World's Most Interesting Infographic
Generator), the sequence of steps would be as follows:

1.	 The user visits WMIIG and initiates the process to see the world's most
interesting infographic.

2.	 WMIIG says: "Sure! But I'll need to access your profile and feed data to
do so, and for that, I'll need your authorization. Go here…"

3.	 WMIIG sends you to Facebook. Here, Facebook asks you directly for
authorization for WMIIG to access your profile and feed data on your
behalf. It does this by presenting the user consent form, which you can
either accept or deny. Let's assume you accept.

4.	 Facebook then gives the WMIIG server (not the HTML/JS application) an
authorization code that can be exchanged for an access token that can access
your Facebook profile and feed data. Notice that Facebook this time gives an
authorization code and not an access token. Also notice that Facebook issues
this to the server of WMIIG, not the HTML/JS client application.

5.	 WMIIG makes a request to Facebook to exchange the authorization code
for a valid access token to access your Facebook profile and feed data on
your behalf.

6.	 Facebook validates your authorization code, and upon successful validation
happily obliges, giving WMIIG server a valid access token.

7.	 WMIIG server then makes a series of requests to Facebook asking for your
profile and feed data, presenting with it the access token that it just received.

8.	 Facebook validates this access token, and upon successful validation happily
obliges, giving WMIIG your friend list.

9.	 WMIIG then uses this information to generate the world's most
interesting infographic!

An important difference
It is this added step of "exchanging" the authorization code for an access
token from the server side that differentiates the authorization code
grant flow from the implicit grant flow. In order for the server to do this,
it must securely maintain, and securely transmit, its client credentials
and tokens. An untrusted client is unable to securely store these
credentials (no, the browser is not considered secure), and therefore
is unable to use the trusted, authorization code grant flow.

This is a high-level look at the process. With this in mind, we can dive in and take a
closer look at the specific requests and responses involved in getting an access token
from the service provider using the authorization code grant flow.

Get an Access Token with the Server-Side Flow

[86]

A closer look at the authorization code
grant flow
Our server-side application would like to view the profile and feed data of the user
who is using the application. In order to do this, WMIIG must first get authorization
from the user by sending them to the service provider's authorization endpoint,
passing along with it various properties describing the request. This step is nearly
identical to how we did it for the implicit grant flow, with one important difference
which we will get to shortly.

Here, the user is presented with the user consent screen, where they have the option
of either accepting or denying the request. Once the user either accepts or denies,
the response is sent back to WMIIG via the redirection endpoint. If the user accepts,
the response will contain an authorization code, which can then be exchanged for
an access token. Otherwise, an appropriate error message will be returned instead.
This is represented by steps 4-6 in the preceding workflow. Let's examine these steps
in more detail. We'll leave steps 7-9 for the next chapter, Chapter 7, Use Your Access
Token, where we discuss how to actually use this access token to request access to a
protected resource.

Authorization request
The authorization request is the initial request to gain consent from the user. As we
mentioned earlier, it is nearly identical to the authorization request we made in the
previous chapter for the implicit grant flow, except for one important difference: the
value of the response_type parameter must be set to code instead of token. Making
this small change will indicate to the service provider that we are invoking the
authorization code grant flow instead of the implicit grant flow. Let's take a closer
look at this step for the authorization code grant flow.

According to the specification
The authorization request endpoint is simply the service provider's authorization
endpoint with a set of parameters added to the query component of the URL. The
parameters must be encoded using the application/x-www-form-urlencoded
format. In general terms, the template for a valid authorization request URL is:

 GET /authorize?
 response_type=code&
 client_id=[CLIENT_ID]&
 redirect_uri=[REDIRECT_URI]&
 scope=[SCOPE]&
 state=[STATE] HTTP/1.1
 Host: server.example.com

Chapter 6

[87]

The parameters that can be added to the preceding request URL are defined as:

•	 response_type: (Required) This must be set to code to signify that we
are utilizing the authorization code grant flow.

•	 client_id: (Required) This is your application's unique client ID.
•	 redirect_uri: (Optional) The redirection endpoint used by the service

provider to return the response, whether that is an access token in the case
of a successful request, or an error message in the case of a failed request.

•	 scope: (Optional) This defines the scope of permissions that we are
requesting on behalf of the user.

•	 state: (Recommended) This parameter is optional, but recommended. It is an
opaque value that can be sent by the client, and received in the response, to
maintain the state between the request and callback. It's use is recommended
for protecting against cross-site request forgery (CSRF) attacks. See the Use
the state param to combat CSRF section in Chapter 9, Security Considerations, for a
more detailed description of the recommended use of the state parameter.

I think I've seen this before…
Notice, this initial request to the service provider is nearly identical
to the one used in the implicit grant. The only difference is that
the response_type parameter must be set to code rather than
token to signify that we are indeed using a different workflow.

In our application
Just as we did in the previous chapter, we will be plugging in the values that we
obtained in Chapter 4, Register Your Application, to our authorization request:

•	 response_type: code
•	 client_id: wmiig-550106
•	 redirect_uri: http://wmiig.com/callback
•	 scope: public_profile, user_posts

Using the preceding values, our constructed authorization request URL looks
like this:

 https://www.facebook.com/dialog/oauth?
 response_type=code&
 client_id=wmiig-550106&
 redirect_uri=http%3A%2F%2Fwmiig.com%2Fcallback&
 scope=public_profile%20user_posts

Get an Access Token with the Server-Side Flow

[88]

Once here, the user will be asked to identify themselves by logging in (if they haven't
already). Once logged in, they are asked to authorize the permissions requested by
the application. This is the same user consent screen we described in the last chapter.

See for yourself!
Just as we did in the last chapter to test the authorization
request URL, we can do that here too. Navigate to the
preceding URL in your favorite browser to see what your
users will see. Don't forget to plug in your own value for
client ID as it will differ from the example in this book.

Authorization response
If you've constructed your authorization request URL correctly, your user will be
presented with the user consent screen, where they can either accept or deny the
authorization request. If they accept, you can expect a success response, which will
contain an authorization code, which you can then exchange for an access token. This
is represented as step 4 in the diagram of the Refresher on the authorization code grant
flow section. Note, this is different from the implicit grant flow where an access token
is returned directly. If the user denies the request, or some other error has occurred,
you can expect an error response instead. Let's look at both response structures now.

Success
For now, let's assume that you've constructed the request URL correctly, and the
user accepts the requested authorization. In this case, an authorization code will
be returned to our application at the provided redirection endpoint with all of the
important information contained in the URL query component. Given this, the
template for a valid authorization response is:

 HTTP/1.1 302 Found
 Location: [REDIRECT_URI]?
 code=[AUTHORIZATION_CODE]&
 state=[STATE]

Response values in the query component, not fragment
It is important to note that the response values are returned in the query
component of the redirection endpoint as opposed to the URL fragment,
as is done with the implicit code grant flow. Make sure to parse this
response accordingly. Otherwise, you will never properly detect the
presence of the authorization code (or error code) in the response.

Chapter 6

[89]

The possible parameters that can be expected in the preceding response are:

•	 code: (Required) This is the value of the authorization code that we use
to exchange for an access token

•	 state: (Conditionally required) If a state parameter was present in the
request, then it must be returned in the response

An example authorization response for our application looks like this:

http://wmiig.com/callback?
 code=ey6XeGlAMHBpFi2LQ9JHyT6xwLbMxYRvyZAR

Given this response, we can extract the authorization code from the query
component. Next, we must make another request to Facebook to exchange
this for a valid access token.

Important notes about the authorization code
Recall from Chapter 2, A Bird's Eye View of OAuth 2.0, the authorization
code that you receive here is consumable. That is, it can be exchanged
for an access token only once. Any requests to exchange the same
authorization code for a new access token will fail.
Also, these codes typically have a short expiry time. For security
purposes, they are meant to be used immediately after the client receives
it. In fact, the OAuth 2.0 specification recommends that service providers
limit the lifetime of their issued authorization codes to 10 minutes.

Error
If, however, the authorization response gets rejected for some reason, an error
response will be returned. The properties for this error response are identical to the
properties that can be returned for the implicit grant flow error response, except
this response will be returned in the query component instead of the fragment.
The template for this response is:

 HTTP/1.1 302 Found
 Location: [REDIRECT_URI]?
 error=[ERROR_CODE]&
 error_description=[ERROR_DESCRIPTION]&
 error_uri=[ERROR_URI]&
 state=[STATE]

Get an Access Token with the Server-Side Flow

[90]

The possible parameters that can be returned in this case are:

•	 error: (Required) This is a single code representing the error that caused
the request to fail. The value must be one of the following:

°° invalid_request: The request is malformed and could not
be processed.

°° unauthorized_client: The client application isn't authorized to
make such a request.

°° access_denied: The user has denied the request.
°° unsupported_response_type: An invalid response type was

used. Recall from earlier that for the authorization code grant
type, this value must be set to code.

°° invalid_scope: The scope passed in is invalid.
°° server_error: An error happened on the server that prevented

a successful response from being generated.
°° temporarily_unavailable: The authorization server is

temporarily unavailable.

•	 error_description: (Optional) A human-readable message describing
what caused the error.

•	 error_uri: (Optional) A link to a web document containing more
information about the error.

•	 state: (Conditionally required) If a state parameter was present in
the request, then it must be returned in the response.

An example response for our application, given the values we sent in the request,
would be:

http://wmiig.com/callback?
 error=invalid_request&
 error_description=Unrecognized%20redirect%20URI

Here we can see that the error is invalid_request and the description (after
URL-decoding) is "Unrecognized redirect URI". If you see something like this,
make sure to check that you've properly whitelisted your redirection endpoint
in your client configuration with the service provider.

Chapter 6

[91]

Access token request
At this point, we have an authorization code, but not yet an access token. We have
one more call to make to "exchange" our authorization code for an access token.
Let's take a look at this process now.

According to the specification
In order to exchange our authorization code for an access token, we must make a
POST request to the service provider's token endpoint, passing along a certain set of
parameters. The parameters must be encoded using the application/x-www-form-
urlencoded format. In general terms, the template for the access token request is:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic [ENCODED_CLIENT_CREDENTIALS]
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=[AUTHORIZATION_CODE]&
 redirect_uri=[REDIRECT_URI]&
 client_id=[CLIENT_ID]

The parameters that can be added to the preceding request body are defined as:

•	 grant_type: (Required) This must be set to authorization_code to signify
that we are requesting an access token in exchange for an authorization code

•	 code: (Required) This is the authorization code value that you received in
response to the authorization request we made earlier

•	 redirect_uri: (Conditionally required) If the redirection endpoint was
included in the authorization request, it must be included in the access
token request as well

•	 client_id: (Required) This is your application's unique client ID

In addition to passing in these parameters to the access token request, the client
application must also identify itself with the service provider. This is an added
layer of security only necessary for trusted clients and is known as client
authentication. It entails the secure transmission of the client credentials to
the service provider for validation.

Get an Access Token with the Server-Side Flow

[92]

Although the OAuth 2.0 specification doesn't mandate any particular authentication
scheme for client authentication, this is typically done using HTTP basic authentication
[RFC 2617]. This is represented by the Authorization header in the previous request
template. What follows is a string representing the type of scheme, in this case "Basic",
followed by the client credentials encoded according to the HTTP basic authentication
scheme. Simply put, it is the Base64-encoded value of your client credentials in
the form:

 [CLIENT_ID]:[CLIENT_SECRET]

The HTTP basic access authentication protocol
The basic access authentication protocol, otherwise known as "basic
auth" for short, is a means for an HTTP client to provide credentials
(for example, username and password, or in our case, client ID and
client secret) when making a request.
For a link to more information on the basic auth scheme, see RFC 2617
in Appendix C, Reference Specifications.

In the real world
Although this behavior is described and recommended by the OAuth
2.0 specification, there are many service providers that do not support
this. There are a variety of reasons for this, but perhaps the most
common is that many companies started integrating with OAuth 2.0
long before the specification was ratified. Because of this, there were
changes made to the specification that weren't (yet) implemented by
their respective development teams.
In the final specification, the client application identifies itself by
passing in an authorization header using the basic auth protocol,
containing its client ID and secret, as described earlier. However,
before this change was made, the client secret was passed as a query
parameter to the server itself, not making use of basic auth at all.
You will find mixed adoption of both of these mechanisms. Some
service providers will support the final version of the spec, and will
honor the authorization header. Others only support the legacy
mechanism and expect the client secret to be passed in explicitly in the
request. You will have to experiment with the service you are trying
to integrate with. Explore their documentation and experiment to see
which methods they support.

Chapter 6

[93]

For the sake of OAuth 2.0 service providers that don't support the latest recommended
auth scheme (that is, using basic auth and the authorization header), let's also take a
look at the legacy method. Knowing both of these should cover the majority of OAuth
2.0 service providers out there. In order to exchange an authorization code for an
access token using the legacy method, we still make a POST request to the server as
before. But this time, instead of passing in our client ID and client secret using the basic
auth protocol, we will pass them in as parameters in the request body instead. The
request structure for this now looks like:

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=[AUTHORIZATION_CODE]&
 redirect_uri=[REDIRECT_URI]&
 client_id=[CLIENT_ID]&
 client_secret=[CLIENT_SECRET]

Notice that there is no more authorization header in this request, and now the client
secret is passed in as a parameter in addition to the client ID in the request body. If
you find that the service provider you are integrating with does not support the
passing of your client credentials using basic auth, you may want to try this legacy
method instead.

In our application
To make the access token request as described earlier, let's form our POST request
accordingly. Given the description, our access token request will look like this:

 POST /oauth/access_token HTTP/1.1
 Host: graph.facebook.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=http%3A%2F%2Fwmiig.com%2Fcallback

For legacy clients that don't support the passing of client credentials via basic auth,
this same request would look like this:

 POST /oauth/access_token HTTP/1.1
 Host: graph.facebook.com

Get an Access Token with the Server-Side Flow

[94]

 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=http%3A%2F%2Fwmiig.com%2Fcallback
 client_id=wmiig-23432&client_secret=DFIAJAO98SH9832HVMQI3

Access token response
If we made our access token request correctly and our authorization code is valid,
we can expect an access token in our response. Otherwise, we will get an error
response instead.

Success
If our access token request was successful, the following parameters will be sent
back in the entity-body of the response:

•	 access_token: (Required) This is what we're after! The presence of this
value in the response is indicative of a successful authorization and access
token request. And it is this token value that we will eventually use to access
the user's profile and feed data.

•	 token_type: (Required) Defines the type of token returned. This will almost
always be bearer.

•	 expires_in: (Optional) The lifetime of the token in seconds. For example,
if this value is 3600, that means that the access token will expire one
hour from the time the response message was generated. It is optional in
that the service provider may not always return this value.

•	 refresh_token: (Optional) This token may be used to refresh your
access token in case it expires. Recall from the Sometimes a refresh token section
in Chapter 3, Four Easy Steps, that depending on your service provider, this
refresh token may or may not be returned. Refer to your service provider's
documentation to see if they support the refresh token workflow.

•	 scope: (Conditionally required) If the granted scope is identical to what
was requested, this value may be omitted. However, if the granted scope
is different from the requested scope, it must be present.

Chapter 6

[95]

An example access token response for our application may look like this:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 }

Notice in this example, the response parameters are returned in the JSON format.
However, your service provider may return it in other formats as well, such as XML
or even key-value pairs in plaintext. Refer to your service provider's documentation
for their supported access token response formats.

Error
If your access token request gets rejected for any reason, an access token will not be
returned. Instead, the server will respond with an HTTP 400 (Bad Request) status
code, including the following parameters in the body:

•	 error: (Required) This is a single code representing the error that caused
the request to fail. The value must be one of the following:

°° invalid_request: The request is malformed and could not
be processed

°° invalid_client: Client authentication failed
°° invalid_grant: The provided grant was invalid
°° unauthorized_client: The client application isn't authorized

to make such a request
°° unsupported_grant_type: The authorization grant type is

not supported
°° invalid_scope: The scope passed in is invalid

•	 error_description: (Optional) A human-readable message describing
what caused the error.

•	 error_uri: (Optional) A link to a web document containing more
information about the error.

Get an Access Token with the Server-Side Flow

[96]

An example response for our application might be:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_client"
 }

Here, we can see that we got an invalid_client error. If you get this error, you
may want to check that your client credentials have been passed correctly.

Let's build it!
We have all the theory now. We know how to make the authorization request and
the subsequent access token request, and we know the two types of responses we
can get (success or error) for each one. Let's build it in our sample application!

Build the base application
To demonstrate the authorization code grant flow, we will be building a basic Java
application. It will contain a simple HTML/JS frontend powered by a Java backend,
which we will use to make our requests and process the responses. As we did in the
previous chapter, we will also be using Apache Maven to facilitate the creation and
running of this sample application. Many of these beginning steps for setting up the
application are very similar to the steps we followed in the previous chapter. Some
are even identical. After we have built the base application, though, the steps become
quite different.

Install Apache Maven
If you haven't already installed Apache Maven for the sample application in the
previous chapter, you will want to install it now. To download Maven, go to the
official Apache Maven website, https://maven.apache.org/.

Download the latest version and follow the instructions to install it on your
particular system. By the end of your installation, you should be able to execute
the following command in a terminal on your machine and get a similar result:

https://maven.apache.org/

Chapter 6

[97]

Maven is now installed on your machine! Now, you're ready to start building the
base application.

Create the project
Our base application for our server-side example will start with a simple JSP page.
We can create this, along with the base application to house that JSP page, via Maven.
Simply open up a terminal, navigate to the folder in which you want your project to
live, and execute the following Maven command on your machine (note that this is
the same Maven command we used in the last chapter to create our starter project):

mvn archetype:generate
 -DgroupId=com.wmiig
 -DartifactId=wmiig
 -DarchetypeArtifactId=maven-archetype-webapp
 -DinteractiveMode=false

Get an Access Token with the Server-Side Flow

[98]

Maven will do a bunch of work (less this time if you already executed this in
the previous chapter), and at the end will create a folder called wmiig:

If you created the sample project from the previous chapter, you may
already have a wmiig folder. If so, you will either want to move the
client-side version out of the way by renaming it to something else.
Or, you could choose to rename this project folder instead. You can
do this by simply changing the artifactId value.

This is where all of your project files are located. The directory structure of the files
created is:

wmiig/
├── src/
│ └── main/
│ ├── resources/
│ └── webapp/
│ └── WEB-INF/
│ ├── web.xml
│ index.jsp
└── pom.xml

Chapter 6

[99]

Configure the base project to fit our application
The application that has been created is very near where we want to be for our base
application. We only have to make two simple changes.

First, let's replace the contents of index.jsp with:

<%@page language="java"
 contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html>
<html>
 <head>
 <title>The World's Most Interesting Infographic</title>
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
 <script>
 $(document).ready(function() {
 $("#goButton").click(makeRequest);
 });

 function makeRequest() {
 // TODO: Make authorization request
 alert("Button clicked!");
 }
 </script>
 </head>
 <body>
 <button id="goButton" type="button">Go!</button>
 <div id="results"></div>
 </body>
</html>

This is the same starter code we used in the implicit grant example, except as a JSP
page instead of an HTML page.

Get an Access Token with the Server-Side Flow

[100]

Second, we need to include the necessary libraries that we will be using in our
application. In this case, we will be including two dependencies: the Java Servlet
API to handle our servlet definitions and mappings, and the Apache HTTP Client
library to make our HTTP authorization and access token requests. To add these
dependencies, open up the pom.xml file located at the project root and add the
following snippets inside of the dependencies tag:

<dependencies>

 ...

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.5</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.5.1</version>
 </dependency>

 ...

</dependencies>

Modify the hosts file
This step is identical to the Modify hosts file step in the previous chapter, so if you've
already done it, then you can skip this step entirely. If not, open up your hosts file
on your machine and make sure the following entry is in place:

127.0.0.1 wmiig.com

With this entry in place, you can now refer to localhost using the hostname
wmiig.com.

Running it for the first time
This step is also identical to what we did in the previous chapter. To run our
server-side application for the first time, execute the following command in the
same directory of your project:

sudo mvn -Dmaven.tomcat.port=80 -Dmaven.tomcat.path=/ tomcat:run

Chapter 6

[101]

You should see the output similar to this:

Open up your favorite web browser, navigate to http://wmiig.com, and you should
see a page that looks like this:

http://wmiig.com

Get an Access Token with the Server-Side Flow

[102]

Success! If you click the button, you will see an alert that announces Button clicked!
As we can see, our base application is functionally the same as the base application
in the previous chapter. It is simply a basic JSP page containing an HTML button
that, when clicked, pops up an alert announcing the click. Now, it is time to replace
that alert with the actual authorization request to Facebook.

Make the authorization request
As we established earlier in the chapter, we must send the user-agent to:

 https://www.facebook.com/dialog/oauth?
 response_type=code&
 client_id=wmiig-550106&
 redirect_uri=http%3A%2F%wmiig.com%2Fcallback&
 scope=public_profile%20user_posts

Let's do this in our application by replacing our makeRequest() function with this:

function makeRequest() {
 // Define properties
 var AUTH_ENDPOINT = "https://www.facebook.com/dialog/oauth";
 var RESPONSE_TYPE = "code";
 var CLIENT_ID = "wmiig-550106";
 var REDIRECT_URI = "http://wmiig.com/callback";
 var SCOPE = "public_profile user_posts";

 // Build authorization request endpoint
 var requestEndpoint = AUTH_ENDPOINT + "?" +
 "response_type=" + encodeURIComponent(RESPONSE_TYPE) + "&" +
 "client_id=" + encodeURIComponent(CLIENT_ID) + "&" +
 "redirect_uri=" + encodeURIComponent(REDIRECT_URI) + "&" +
 "scope=" + encodeURIComponent(SCOPE);

 // Send to authorization request endpoint
 window.location.href = requestEndpoint;
}

Notice, only two things have changed in this function compared with our client-side
example: we changed the response_type value from token to code, and we are now
using a different redirection endpoint.

Save your changes, restart your server, and reload the page. Now when you click
"Go!", you will be taken to the user consent screen where you will be asked to
authorize permission for WMIIG to access your public profile and feed data.

Chapter 6

[103]

Going straight to an error page?
If you've already authorized the application in Facebook, say, in the
previous chapter, then you won't be presented with the user consent
screen again. Rather, Facebook will recognize that you've already
authorized the application and immediately return an authorization
code. You can verify this by inspecting the URL in your browser now.
If it is your redirection endpoint followed by a query component, it
means that you're on the right track. Just keep following along.
If, however, you would like to see the user consent screen again, you
will need to revoke the permissions that you have already granted to
your application. To do this, you will have to visit the Facebook App
Settings page (at the time of this writing, located at https://www.
facebook.com/settings?tab=applications) and remove your
application. Now, the next time you authorize within your application,
you will be presented with the user consent screen.

https://www.facebook.com/settings?tab=applications
https://www.facebook.com/settings?tab=applications

Get an Access Token with the Server-Side Flow

[104]

So far so good! If you accept or deny the request, you will see an error page. This is
because we specified our redirection endpoint as http://wmiig.com/callback,
but we haven't yet created that page yet. Let's do this now.

Handle the authorization response
Once the user accepts the permissions requested in the user consent screen, an
authorization code will be sent to the redirect URI of our server. We specified our
redirect URI as http://wmiig.com/callback. We must make sure that we have
that endpoint available on our server and "listening" for this response. To do this,
we will create a servlet to listen at that endpoint.

To create our callback servlet, let's create a new Java file called
OAuthCallbackListener.java and place it in the following location (you will need
to create the necessary folders on the way to creating the file): /src/main/java/com/
wmiig/servlet.

Fill the file with the following content:

package com.wmiig.servlet;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class OAuthCallbackListener extends HttpServlet {
 private static final long serialVersionUID = 1L;

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 // TODO: Detect presence of an authorization code
 }
}

Chapter 6

[105]

This class serves as the servlet definition. Now, we have to wire it up in our
application to have it listen at a particular endpoint, in our case /callback. To
do this, open up the web.xml file located at /src/main/webapp/WEB-INF and
place the following snippet somewhere between the web-app tags:

<web-app>

 ...

 <servlet>
 <servlet-name>OAuthCallbackListener</servlet-name>
 <servlet-class>
 com.wmiig.servlet.OAuthCallbackListener
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>OAuthCallbackListener</servlet-name>
 <url-pattern>/callback</url-pattern>
 </servlet-mapping>

 ...

</web-app>

Once we've done this, we should now have a servlet "listening" at this /callback
endpoint. But right now it doesn't do anything! Let's make it accept the response,
look for the authorization code, and if present, exchange it for an access token.
First, let's make it detect the presence of an authorization code.

Let's replace the empty doGet() method with:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 // Detect the presence of an authorization code
 String authorizationCode = request.getParameter("code");
 if (authorizationCode != null && authorizationCode.length() > 0) {
 // TODO: Exchange authorization code for access token
 } else {
 // Handle failure
 }

}

Get an Access Token with the Server-Side Flow

[106]

Good! Now, we can detect when we have an authorization code. Let's now exchange
it for an access token by making our access token request.

Make the access token request
Once the server has the authorization code, all that is left is to "exchange" this for
an access token. As we mentioned earlier in the chapter, this must be done with
a POST request to the service provider's token endpoint, passing a certain set of
parameters in the request body as well as an authorization header containing our
client credentials encoded using the basic auth protocol. Once again, the template
for such a request is:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic [ENCODED_CLIENT_CREDENTIALS]
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=[AUTHORIZATION_CODE]&
 redirect_uri=[REDIRECT_URI]&
 client_id=[CLIENT_ID]

We can make such a request using the Apache HTTP Client with the
following snippet:

import java.net.URLEncoder;
import java.nio.charset.StandardCharsets;

import org.apache.commons.codec.binary.Base64;
import org.apache.http.HttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;

...

final String TOKEN_ENDPOINT =
 "https://graph.facebook.com/oauth/access_token";
final String GRANT_TYPE = "authorization_code";
final String REDIRECT_URI = "http://wmiig.com/callback";
final String CLIENT_ID = "wmiig-550106";
final String CLIENT_SECRET = "DFIAJAO98SH9832HVMQI3";

// Generate POST request
HttpPost httpPost = new HttpPost(TOKEN_ENDPOINT +
 "?grant_type=" + URLEncoder.encode(GRANT_TYPE,
 StandardCharsets.UTF_8.name()) +
 "&code=" + URLEncoder.encode(authorizationCode,
 StandardCharsets.UTF_8.name()) +

Chapter 6

[107]

 "&redirect_uri=" + URLEncoder.encode(REDIRECT_URI,
 StandardCharsets.UTF_8.name()) +
 "&client_id=" + URLEncoder.encode(CLIENT_ID,
 StandardCharsets.UTF_8.name()));

// Add "Authorization" header with encoded client credentials
String clientCredentials = CLIENT_ID + ":" + CLIENT_SECRET;
String encodedClientCredentials =
 new String(Base64.encodeBase64(clientCredentials.getBytes()));
httpPost.setHeader("Authorization", "Basic " +
 encodedClientCredentials);

// Make the access token request
CloseableHttpClient httpClient = HttpClients.createDefault();
HttpResponse httpResponse = httpClient.execute(httpPost);

// TODO: Handle access token response

httpClient.close();

We will want to place this code where we have detected the presence of the
authorization code. Doing so, our new doGet() method now looks like this:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 // Detect the presence of an authorization code
 String authorizationCode = request.getParameter("code");
 if (authorizationCode != null && authorizationCode.length() > 0)
 {
 final String TOKEN_ENDPOINT =
 "https://graph.facebook.com/oauth/access_token";
 final String GRANT_TYPE = "authorization_code";
 final String REDIRECT_URI = "http://wmiig.com/callback";
 final String CLIENT_ID = "wmiig-550106";
 final String CLIENT_SECRET = "DFIAJAO98SH9832HVMQI3";

 // Generate POST request
 HttpPost httpPost = new HttpPost(TOKEN_ENDPOINT +
 "?grant_type=" + URLEncoder.encode(GRANT_TYPE,
 StandardCharsets.UTF_8.name()) +
 "&code=" + URLEncoder.encode(authorizationCode,
 StandardCharsets.UTF_8.name()) +
 "&redirect_uri=" + URLEncoder.encode(REDIRECT_URI,
 StandardCharsets.UTF_8.name()) +
 "&client_id=" + URLEncoder.encode(CLIENT_ID,
 StandardCharsets.UTF_8.name()));

Get an Access Token with the Server-Side Flow

[108]

 // Add "Authorization" header with encoded client credentials
 String clientCredentials = CLIENT_ID + ":" + CLIENT_SECRET;
 String encodedClientCredentials =
 new String(Base64.encodeBase64(clientCredentials.getBytes()));
 httpPost.setHeader("Authorization", "Basic " +
 encodedClientCredentials);

 // Make the access token request
 CloseableHttpClient httpClient = HttpClients.createDefault();
 HttpResponse httpResponse = httpClient.execute(httpPost);

 // TODO: Handle access token response

 httpClient.close();
 } else {
 // Handle failure
 }

}

Handle the access token response
We're almost there. At this point, we've made the authorization request, detected the
presence of an authorization code in the response, and now we're making the access
token request using the authorization code we received. Finally, we have to parse
the access token from the access token response. This is easy since we are using the
Apache HTTP Client. Once we've made the request, we can parse the access token
from the response with the following code:

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.Reader;

...

// Handle access token response
Reader reader = new
 InputStreamReader(httpResponse.getEntity().getContent());
BufferedReader bufferedReader = new BufferedReader(reader);
String line = bufferedReader.readLine();

// Isolate access token
String accessToken = null;
String[] responseProperties = line.split("&");
for (String responseProperty : responseProperties) {
 if (responseProperty.startsWith("access_token=")) {

Chapter 6

[109]

 accessToken = responseProperty.split("=")[1];
 break;
 }
}

// TODO: Request profile and feed data with access token
System.out.println("Access token: " + accessToken);

Your final OAuthCallbackListener.java class should now look like this:

package com.wmiig.servlet;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Reader;
import java.net.URLEncoder;
import java.nio.charset.StandardCharsets;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.codec.binary.Base64;
import org.apache.http.HttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;

public class OAuthCallbackListener extends HttpServlet {
 private static final long serialVersionUID = 1L;
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 // Detect the presence of an authorization code
 String authorizationCode = request.getParameter("code");
 if (authorizationCode != null && authorizationCode.length() > 0) {

 final String TOKEN_ENDPOINT =
 "https://graph.facebook.com/oauth/access_token";
 final String GRANT_TYPE = "authorization_code";
 final String REDIRECT_URI = "http://wmiig.com/callback";
 final String CLIENT_ID = "wmiig-550106";
 final String CLIENT_SECRET = "DFIAJAO98SH9832HVMQI3";

Get an Access Token with the Server-Side Flow

[110]

 // Generate POST request
 HttpPost httpPost = new HttpPost(TOKEN_ENDPOINT +
 "?grant_type=" + URLEncoder.encode(GRANT_TYPE,
 StandardCharsets.UTF_8.name()) +
 "&code=" + URLEncoder.encode(authorizationCode,
 StandardCharsets.UTF_8.name()) +
 "&redirect_uri=" + URLEncoder.encode(REDIRECT_URI,
 StandardCharsets.UTF_8.name()) +
 "&client_id=" + URLEncoder.encode(CLIENT_ID,
 StandardCharsets.UTF_8.name()));

 // Add "Authorization" header with encoded client credentials
 String clientCredentials = CLIENT_ID + ":" + CLIENT_SECRET;
 String encodedClientCredentials =
 new String(Base64.encodeBase64
 (clientCredentials.getBytes()));
 httpPost.setHeader("Authorization", "Basic " +
 encodedClientCredentials);

 // Make the access token request
 CloseableHttpClient httpClient =
 HttpClients.createDefault();
 HttpResponse httpResponse = httpClient.execute(httpPost);

 // Handle access token response
 Reader reader = new InputStreamReader
 (httpResponse.getEntity().getContent());
 BufferedReader bufferedReader = new BufferedReader(reader);
 String line = bufferedReader.readLine();

 // Isolate access token
 String accessToken = null;
 String[] responseProperties = line.split("&");
 for (String responseProperty : responseProperties) {
 if (responseProperty.startsWith("access_token=")) {
 accessToken = responseProperty.split("=")[1];
 break;
 }
 }

 // TODO: Request profile and feed data with access token
 System.out.println("Access token: " + accessToken);

 httpClient.close();
 } else {
 // Handle failure
 }
 }
}

Chapter 6

[111]

Save your changes, restart your server, and reload the page once again. This time,
when you click on Go!, the application will make the access token request and, if
successful, print it to your console:

That's it! We now have an access token! In the next chapter, we move on to actually
using this access token to request permission to access a protected resource.

Summary
We accomplished a lot in this chapter. We explored the authorization code grant flow,
noting differences with the implicit grant flow, which we demonstrated in the previous
chapter. During this detailed exploration of the protocol, we discussed the traits of
the flow that make it more secure and the preferred authorization flow for OAuth 2.0
clients. We also saw how some service providers may not necessarily abide by the final
version of the OAuth 2.0 specification. To remedy this, we explored some alternative
methods for gaining authorization and fetching tokens that were supported in
previous versions of the specification. It all culminated when we created a simple Java
application to request an access token from Facebook for our sample application, The
World's Most Interesting Infographic Generator. Next, we will be looking at how to use
this newly obtained access token to request access to our user's profile and feed data.

Get an Access Token with the Server-Side Flow

[112]

Reference pages
Use these pages as reference documentation when implementing the authorization
code grant flow in your application. Adapted from The OAuth 2.0 Authorization
Framework specification [RFC 6749].

An overview of the authorization code
grant flow

Figure 3 from RFC 6749

Chapter 6

[113]

The steps are as follows:

•	 A: The client application initiates the flow by sending the user's user-agent
to the appropriate authorization endpoint.

•	 B: The authentication server of the service provider authenticates the
resource owner and attempts to gain consent by presenting the user
consent form.

•	 C: Assuming the user grants consent, the authorization server redirects the
user back to the client application via the redirection endpoint provided
in the authorization request. The redirection endpoint will include an
authorization code and any state provided by the client.

•	 D: The client requests an access token from the service provider's token
endpoint by including the authorization code received in the previous step.
When making this request, the client also authenticates with the service
provider by passing its client credentials with the request.

•	 E: The service provider authenticates the client, validates the authorization
code, and ensures that the redirection URI received matches the URI used
to redirect the client in step (C). If valid, the authorization server responds
with an access token and, optionally, a refresh token.

Authorization request
The client constructs the authorization request endpoint by appending the following
properties to the query component of the service provider's authorization endpoint.
All property values must be encoded using the application/x-www-form-
urlencoded format, as described in Appendix B of the specification:

•	 response_type: (Required) Value must be set to code.
•	 client_id: (Required) A unique string representing the client as was

provided during client registration.
•	 redirect_uri: (Optional) An absolute URI to be used to pass control back to

the client after the service provider has completed interacting with the user.
•	 scope: (Optional) A list of space-delimited, case-sensitive strings which

represent the scope of the access request.
•	 state: (Recommended) An opaque value used by the client to maintain

state between the request and callback. This parameter should be used for
the prevention of cross-site request forgery, as described in Section 10.12 of
the specification.

Get an Access Token with the Server-Side Flow

[114]

An example authorization request looks like this:

 GET /authorize?
 response_type=code&
 client_id=s6BhdRkqt3&state=xyz&
 redirect_uri=https%3A%2F%Eexample%2Ecom%2Fcallback HTTP/1.1
 Host: server.example.com

Authorization response
If the user grants access for the protected resource to the client application, the
success response will be sent to the client application in the query component
of the redirect URI with the following properties encoded using the application
/x-www-form-urlencoded format as described in Appendix B of the specification:

•	 code: (Required) The authorization code generated by the authorization
server. This value must have a short lifetime, recommended as 10 minutes
by the specification. Further, this code is restricted for a single use only.
Any requests using the same code must be denied.

•	 state: (Conditionally required) An opaque value used by the client to
maintain state between the request and callback. This parameter should be
used for the prevention of cross-site request forgery, as described in Section
10.12 of the specification.

An example authorization response looks like this:

 HTTP/1.1 302 Found
 Location: https://example.com/callback?
 code=SplxlOBeZQQYbYS6WxSbIA&
 state=xyz

Error response
If the access request fails for any reason, the error response will be sent to the client
application in the query component of the redirect URI with the following properties
encoded using the application/x-www-form-urlencoded format as described in
Appendix B of the specification:

•	 error: (Required) This is a single error code representing the condition that
caused the request to fail. The value must be one of the following:

°° invalid_request: The request is missing a required parameter,
includes an invalid parameter value, includes a parameter more
than once, or is otherwise malformed.

Chapter 6

[115]

°° unauthorized_client: The client is not authorized to request an
access token using this method.

°° access_denied: The user or service provider denied the request.
°° unsupported_response_type: The service provider does not

support obtaining an access token using this method.
°° invalid_scope: The requested scope is invalid, unknown, or

malformed.
°° server_error: The service provider encountered an unexpected

error that prevented it from fulfilling the request. This error code is
necessary because an HTTP 500 (Internal Server Error) status code
cannot be returned to the client via an HTTP redirect.

°° temporarily_unavailable: The authorization server is currently
unable to handle the request. This error code is necessary because
an HTTP 503 (Service Unavailable) status code cannot be returned
to the client via an HTTP redirect.

•	 error_description: (Optional) Human-readable ASCII message providing
additional information regarding the error.

•	 error_uri: (Optional) A URI identifying a human-readable web page
providing additional information regarding the error.

•	 state: (Conditionally required) Required only if the state parameter
was present in the authorization request. Must be the same value as was
received by the client.

An example error response looks like this:

 HTTP/1.1 302 Found
 Location: https://example.com/callback?
 error=access_denied&
 state=xyz

Access token request
The client makes a POST request to the service provider's token endpoint, passing in
the following parameters encoded using the application/x-www-form-urlencoded
format, as described in Appendix B of the specification:

•	 grant_type: (Required) This value must be set to authorization_code
•	 code: (Required) The authorization code received from the service provider

Get an Access Token with the Server-Side Flow

[116]

•	 redirect_uri: (Conditionally required) Required only if the redirect_uri
parameter was included in the authorization request, and their values must
be identical

•	 client_id: (Conditionally required) Required only if the client is not
authenticating with the authorization server, as described in Section 3.2.1
of the specification

As part of this request, the client application must also authenticate with the
service provider. This is typically done using the HTTP basic authentication
scheme [RFC 2617], but other authentication schemes may be supported by the
service provider as well, such as HTTP digest authentication or public/private
key authentication.

An example access token request using HTTP basic authentication looks like this:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=SplxlOBeZQQYbYS6WxSbIA&
 redirect_uri=https%3A%2F%2Fexample%2Ecom%2Fcallback

Access token response
If the access token request is valid and authorized, the response will contain an access
token, optional refresh token, and other parameters, as described here:

•	 access_token: (Required) The access token issued by the service provider.
•	 token_type: (Required) The type of the token issued. This value is

case-insensitive.
•	 expires_in: (Optional) The lifetime of the access token given in seconds.

If omitted, the service provider should communicate the expiration time
via other means.

•	 refresh_token: (Optional) A refresh token, which can be used to obtain
new access tokens using the refresh token workflow.

•	 scope: (Conditionally required) A list of space-delimited, case-sensitive
strings which represent the scope of the access granted. Required only if
the scope granted is different from the scope requested.

Chapter 6

[117]

An example access token response looks like this:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

Error response
If the access token request fails for any reason, the server will respond with an
HTTP 400 (Bad Request) status code including the following properties:

•	 error: (Required) This is a single error code representing the condition that
caused the request to fail. The value must be one of the following:

°° invalid_request: The request is missing a required parameter,
includes an unsupported parameter value (other than grant
type), repeats a parameter, includes multiple credentials, utilizes
more than one mechanism for authenticating the client, or is
otherwise malformed

°° invalid_client: Client authentication failed for some reason
(for example, unknown client, no client authentication included,
or unsupported authentication method)

°° invalid_grant: The provided authorization grant or refresh token
is invalid, expired, revoked, does not match the redirection URI used
in the authorization request, or was issued to another client

°° unauthorized_client: The authenticated client is not authorized
to use this authorization grant type

°° unsupported_grant_type: The authorization grant type is not
supported by the authorization server

°° invalid_scope: The requested scope is invalid, unknown,
malformed, or exceeds the scope granted by the user

Get an Access Token with the Server-Side Flow

[118]

•	 error_description: (Optional) Human-readable ASCII message providing
additional information regarding the error.

•	 error_uri: (Optional) A URI identifying a human-readable web page
providing additional information regarding the error.

An example error response looks like this:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache
 {
 "error":"invalid_request"
 }

[119]

Use Your Access Token
Up until this point in the book, we have spent all of our energy trying to obtain an
access token. In the previous two chapters, we were able to obtain access tokens
using both the implicit grant flow for our client-side example, and the authorization
code grant flow for our server-side example.

In this chapter, we will finally use the access token we've been working so hard
to obtain. We will do so by requesting access to protected resources on the service
provider. In particular, we will use this access token to make API calls to Facebook's
Graph API to get data that we can use to build our infographic.

Refresher on access tokens
Recall from the A closer look at access tokens section in Chapter 3, Four Easy Steps, an
access token is an opaque string given to clients that provides temporary access
to a protected resource. More specifically, they represent a specific scope of
permissions and duration of access for a particular client application to use, all of
which are enforced by the service provider. This can be thought of simply as an
encapsulation of the user's authorization to access or modify a particular scope
of their resources.

Use Your Access Token

[120]

Use your access token to make an
API call
Now that we have the ability to fetch access tokens from the service provider using
either the implicit grant flow or the authorization code grant flow, let's finally utilize
these tokens to access protected resources. This is done via API calls to the service
provider, in our case, Facebook. When making an API call to request access to a
protected resource, the respective access token must be provided as well. This
allows the service provider to validate the token by ensuring that the token has not
expired or been revoked and that its associated scope covers the requested resource.

There are three prescribed methods for passing the access token in an API call.
Those methods are:

•	 Authorization request header field
•	 Form-encoded body parameter
•	 URI query parameter

Only for bearer tokens!
These three methods are only for tokens of the type bearer, which
is the only type of token we have dealt with in this book. However,
there are other token types that can be used. For instance, mac tokens,
and even proprietary tokens. For these types of tokens, you may
need to use different methods for passing the access token to the
service provider. You will need to refer to the documentation for the
particular token type for more information on its usage.

These various methods allow the client to transmit the access token to the service
provider for validation when requesting access to a resource. Each one has its own
benefits and drawbacks. Also, certain service providers may only support a subset
of these methods, so it is important to know each of them, and when it is appropriate
to use them. Let's take a closer look at these methods.

The authorization request header field
This method for passing your access token to the service provider makes use of the
Authorization header in your HTTP request. The value for this header is the token
type followed by the token value. An example of this type of request looks like this:

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

Chapter 7

[121]

Note that the syntax of this authentication scheme is similar to the basic
authentication scheme we used in the previous chapter for the access token
request, except that the authentication scheme is denoted by the term Bearer
instead of Basic.

This method for passing your access token is preferred by the OAuth 2.0
specification. However, since this method requires HTTP header manipulation,
it often isn't the easiest method to use during development and while debugging.
Fortunately, other methods are available for this purpose.

The form-encoded body parameter
Another method for sending your access token to the service provider involves
including and modifying different HTTP header fields other than the Authorization
header field described in the previous section. For this method, we will make use of
form-encoded body parameters. An example of this type of request looks like this:

 POST /resource HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 access_token=mF_9.B5f-4.1JqM

Note that this request is a POST request, not a GET request. Because we include the
access token in the request body, some additional restrictions are in place to use
this method:

•	 The Content-Type header must be present and set to application/x-www-
form-urlencoded

•	 The request body must be URL-encoded using the application/x-www-
form-urlencoded format

It is advisable that this method is used only when the authorization request header
method is unavailable.

The URI query parameter
This final method for passing your access token to the service provider involves
including it as a query parameter to your request URI. An example of this request
would look like this:

 GET /resource?access_token=mF_9.B5f-4.1JqM HTTP/1.1
 Host: server.example.com

Use Your Access Token

[122]

This is a very simple approach and offers particular advantages for application
developers. Namely, this approach doesn't require the manipulation of HTTP
request headers, nor does it require the request method to be a POST. Because of
these reasons, the URI query parameter method offers a very easy way to test and
debug your application and access tokens. Rather than generating new requests
programmatically, you can simply test your API calls directly by attaching your
access token to the API endpoint.

However, this simplistic approach does have some important security implications.
For instance, passing your access token via the URI has the high likelihood that the
URI, along with your access token, will get logged at some point. Because of this
significant security weakness associated with this method, it is typically only used
for debugging purposes and should not be used for real production clients.

In the real world
You will typically use this method during development while
debugging your applications. It is a quick and easy way to check your
access tokens and API calls. You can simply enter your target URL
directly in the browser and examine the results. However, once you
move out of development, you should abandon this usage in your
application and replace it with one of the previously mentioned, more
secure methods.

Let's build it!
Now that we know more about access tokens, and the various ways to pass them
along to the service provider during an API call, let's incorporate this into our
application! Currently, we have two versions of our sample application: the client-
side example and the server-side example. We will make API calls in both versions
of the application, and we will look at utilizing all three methods of passing the
access token. Let's begin!

The Facebook Graph API
For our sample application, we will be making API calls to Facebook's
Graph API. This is the API that Facebook offers developers who
want to integrate with their services. Protected and accessed using
OAuth 2.0, this makes for an ideal setting to demonstrate our usage
of the protocol. Find more information on the Facebook Graph API at
https://developers.facebook.com/docs/graph-api.

https://developers.facebook.com/docs/graph-api

Chapter 7

[123]

In our client-side application
In Chapter 5, Get an Access Token with the Client-Side Flow, we built an HTML/JS
webpage capable of requesting an access token from Facebook using the implicit
grant flow via JavaScript. Now that we know how to fetch an access token, let's make
an API call to Facebook's Graph API to request the user's profile information for us
to use in our application.

Picking up where we last left our client-side application, we had just implemented the
logic to make an authorization request using the implicit grant and receive an access
token. The code to parse the response and extract the access token looks like this:

// Isolate access token and write it to the "response" div
var accessToken = "";
for (var i = 0; i < responseProperties.length; i++) {
 if (responseProperties[i].indexOf("access_token=") === 0) {
 accessToken = responseProperties[i].split("=")[1];
 $("#response").html("Access token: " + accessToken);
 break;
 }
}

// TODO: Request profile and feed data with access token

Now, instead of simply appending the access token to the response tag, let's
actually make an API call to retrieve the user's profile data.

Referring to the API documentation provided by Facebook to fetch user information,
we will want to use the user API. This can be accessed by hitting the following
endpoint with a basic GET request at https://graph.facebook.com/[API_
VERSION]/me.

This will return the profile data for the user who was granted access for the
particular access token used in this request. We can include additional parameters to
further restrict this call. For instance, rather than returning all of the default profile
data, we're really only interested in the user's name (for now—you may want to use
other data in the user profile). To restrict this, we will add the fields parameter,
specifying only name as the profile field we're interested in: https://graph.
facebook.com/[API_VERSION]/me?fields=name.

Now that we know the protected resource endpoint and the associated parameters
we want to pass in, let's look at making this call to actually retrieve some
profile data.

https://graph.facebook.com/[API_VERSION]/me
https://graph.facebook.com/[API_VERSION]/me
https://graph.facebook.com/[API_VERSION]/me?fields=name
https://graph.facebook.com/[API_VERSION]/me?fields=name

Use Your Access Token

[124]

Send via the URI query parameter
Before we start coding the API call into our application, let's first test our API call
assumptions. As we discussed earlier, we can easily test our API call and access
token by using the URI query parameter method for passing the access token.
Given the description of the user API and our knowledge of the URI query
parameter method, the endpoint we will want to hit is (assuming v2.5 of the
Facebook Graph API):

https://graph.facebook.com/v2.5/me?
 fields=name&
 access_token=[ACCESS_TOKEN_VALUE]

We can easily test this by plugging in an access token value that we've received in
our client-side application and simply hitting this endpoint directly in a browser. If
we did this correctly, and our access token was still valid, we should see something
like this:

As you can see, the simplicity of this method for passing in your access token
provides a lot of convenience for application developers when testing their
applications. Now that we have confirmed the behavior of the user API,
let's actually make a proper request in our client-side application.

Chapter 7

[125]

Send via the form-encoded body parameter
For the implementation of this user API call in our client-side application, let's
use the form-encoded body parameter method. We can use the HTTP authorization
header method but, just so we get the opportunity to explore each of the methods,
let's save that for the server-side example which comes next.

For this request, we will be making a POST request to the user API, rather than
a GET request, providing the fields parameter to restrict the fields returned.
Instead of passing in the access token as a query parameter as we did for our
preceding test request, this time we will add it to the request body as described
by the form-encoded body parameter method. We can do this easily with jQuery
using the following snippet:

// Request profile data with access token
$.ajax({ type: "POST",
 url: "https://graph.facebook.com/v2.5/me?fields=name",
 headers: {"Content-Type": "application/x-www-form-urlencoded"},
 data: {
 access_token: encodeURIComponent(accessToken),
 method: "get"
 },
 contentType: "application/x-www-form-urlencoded",
 success: function(data) {
 $("#response").html("Hello, " + data.name + "!");
 }
});

Notice that in the success handler, we handle the response and display a custom
greeting message to our user. Let's see what that looks like.

www.allitebooks.com

http://www.allitebooks.org

Use Your Access Token

[126]

That's it! We've made our first successful API call using OAuth 2.0 in our application!
Congratulations!

Check your work on GitHub!
All of the sample code used in this book is available for your
reference on our public GitHub account! If you’d like to check your
work, feel free to visit the GitHub page for this particular sample
project, located at https://github.com/mastering-oauth-2/
client-side-example.

In our server-side application
Now that we've seen how to use our access token to request profile data in our
client-side application, let's take a look at how to do something similar in our
server-side application. In the previous example, we invoked the user API to get
the profile data for the logged-in user. This time, let's make a request to fetch the
feed data for that user. We can then combine these two API calls to make the
world's most interesting infographic!

Referring once again to the API documentation for the Facebook Graph API, in order
to fetch the feed data for a user, we must invoke the user feed API. The endpoint
for this resource is https://graph.facebook.com/[API_VERSION]/me/feed.

Just as we can pass in additional parameters to the user resource, we can do so
with the feed resource too. This time, let's limit the number of posts to return by
adding the limit parameter: https://graph.facebook.com/[API_VERSION]/me/
feed?limit=25.

This restricts the response set to include only the user's most recent 25 posts.
We can use the data from this result to glean all sorts of interesting insights that
we can share with the user. Let's build it!

Send via the URI query parameter
As we did with our client-side example, let's look at how to make this API call using
the URI query parameter method for the purpose of testing. The first thing we need
to do is construct our request URL. Based on the documentation for the resource and
our knowledge of the URI query parameter method, the endpoint we want to hit is
(again, assuming v2.5 of the Facebook Graph API):

https://graph.facebook.com/v2.5/me/feed?
 limit=25&
 access_token=[ACCESS_TOKEN]

https://github.com/mastering-oauth-2/client-side-example
https://github.com/mastering-oauth-2/client-side-example
https://graph.facebook.com/[API_VERSION]/me/feed
https://graph.facebook.com/[API_VERSION]/me/feed?limit=25
https://graph.facebook.com/[API_VERSION]/me/feed?limit=25

Chapter 7

[127]

Instead of hitting this in a browser directly like we did in the previous section,
let's use the cURL command instead (see the Tools section in Chapter 11, Tooling and
Troubleshooting for more information on the cURL utility). To make the previous
GET request, we simply issue the following command:

curl https://graph.facebook.com/v2.5/me/feed?limit=25&access_
token=[ACCESS_TOKEN]

Doing so, you should get the following result:

Note that all of the feed data has been returned right in the terminal window for us
to inspect immediately. cURL can also make POST requests, add headers, modify
entity-body data, everything you need to test your OAuth 2.0 workflows! We will
discuss this very useful tool in more depth in Chapter 11, Tooling and Troubleshooting.

Now we have two convenient ways for testing our API calls and access tokens (via
the browser, and via cURL), both of which use the URI query parameter method for
passing the access token. Knowing these two methods will help you greatly when
debugging your application!

Only for testing!
It is worth mentioning again that this method for passing in your
access token should only be used for testing purposes. If you utilize
the URI query parameter method for passing your access token in
your production applications, you will risk exposing your precious
access tokens to unauthorized parties.

Use Your Access Token

[128]

Send via the HTTP authorization header
We used the form-encoded body parameter method for our client-side example. For
our server-side example, let's now use the authorization request header field. Making
API calls by sending the access token via the HTTP authorization header is the most
secure and preferred way of making API calls. As we mentioned earlier, all we have
to do is add an authorization header and use as its value the token type followed by
the token value. We can do this in our application using the Apache HTTP Client
library with the following code:

import java.util.ArrayList;
import java.util.List;

import org.apache.http.NameValuePair;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.message.BasicNameValuePair;

...

// Request feed data with access token
String requestUrl =
 "https://graph.facebook.com/v2.5/me/feed?limit=25";
httpClient = HttpClients.createDefault();
httpPost = new HttpPost(requestUrl);
httpPost.addHeader("Authorization", "Bearer " + accessToken);
List<NameValuePair> urlParameters = new
 ArrayList<NameValuePair>();
urlParameters.add(new BasicNameValuePair("method", "get"));
httpPost.setEntity(new UrlEncodedFormEntity(urlParameters));
httpResponse = httpClient.execute(httpPost);

// Extract feed data from response
bufferedReader = new BufferedReader(
 new InputStreamReader(httpResponse.getEntity().getContent()));
String feedJson = bufferedReader.readLine();
System.out.println("Feed data: " + feedJson);

Chapter 7

[129]

Notice that after we make the request, we extract the content from the response and
print it to the console. If we have made our request correctly, our response should
contain our feed data:

That's it! Plug this into your application and we have now fully implemented an
OAuth 2.0 flow to, not only authenticate your user, but also make an API call to
access that user's feed data!

Check your work on GitHub!
The full implementation for our server-side example application is
available for viewing on our public GitHub account! See it at https://
github.com/mastering-oauth-2/server-side-example.

https://github.com/mastering-oauth-2/server-side-example
https://github.com/mastering-oauth-2/server-side-example

Use Your Access Token

[130]

Creating the world's most interesting
infographic
We've now concluded our exploration of the various methods for passing our access
token in an API call. We did this by demonstrating API calls to two of Facebook's
APIs: one to fetch the profile data of the user, and the other to fetch the feed data
of the user. You can now use this data in your application to generate all sorts of
interesting statistics about your users. We will leave this as an exercise for you.

You can see an example of what can be accomplished with this data. Simply visit the
following website:

www.worldsmostinterestinginfographic.com

This website is a production version of the server-side example that we've built in
this book. Let this be a very simple example of what can be accomplished in a short
amount of time using the OAuth 2.0 protocol to interface with a world-class service
provider like Facebook!

See it on GitHub!
The full implementation for this entire web application is available for
viewing on our public GitHub account too! See it at https://github.
com/mastering-oauth-2/worldsmostinterestinginfographic.
com. Let this be a simple example of what can be accomplished quite easily
with OAuth 2.0!

Summary
In this chapter, we were finally able to complete the OAuth 2.0 workflow we've
been learning about since the beginning of the book. We were able to utilize the
access token we fetched in the previous two chapters to request access to a protected
resource on the user's behalf. We examined three ways of doing this, each with their
own pros and cons and appropriate scenarios for usage. We should now be able to
integrate comfortably with the bulk of OAuth 2.0 service providers!

www.worldsmostinterestinginfographic.com
https://github.com/mastering-oauth-2/worldsmostinterestinginfographic.com
https://github.com/mastering-oauth-2/worldsmostinterestinginfographic.com
https://github.com/mastering-oauth-2/worldsmostinterestinginfographic.com

Chapter 7

[131]

Reference pages
Use these pages as reference documentation when requesting access to a protected
resource in your application. Adapted from The OAuth 2.0 Authorization Framework:
Bearer Token Usage specification [RFC 6750].

An overview of protected resource access

Figure 1 from RFC 6750

The workflow for accessing a protected resource is described by steps (E) and (F),
detailed as follows:

•	 E: The client requests the protected resource from the resource server and
authenticates by presenting the access token.

•	 F: The resource server validates the access token, and if valid, serves
the request.

Use Your Access Token

[132]

The authorization request header field
When sending the access token in a protected resource access request using the
authorization request header field method, an Authorization header must be added
with its value set as the token type, which is bearer, followed by the token value.

An example of a protected resource access request using this method is:

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

This is the preferred method for passing your access token to the service provider.
Use this whenever it is available.

The form-encoded body parameter
When sending the access token in a protected resource access request using the
form-encoded body parameter method, you must pass it in as a URL-encoded
parameter in a POST request.

An example of a protected resource access request using this method is:

 POST /resource HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 access_token=mF_9.B5f-4.1JqM

This can only be used if the following conditions have been met:

•	 The Content-Type header is included with its value set to application/x-
www-form-urlencoded

•	 The entity-body contains only ASCII characters and is URL-encoded
according to the application/x-www-form-urlencoded format

•	 The HTTP request body is single-part
•	 The HTTP request method has defined semantics for the request-body

(that is, cannot use GET)

This method should only be used if the authorization request header field method
is unavailable.

Chapter 7

[133]

The URI query parameter
When sending the access token in a protected resource access request using the
URI query parameter method, you must pass it in as a query parameter to the
request URI.

An example of a protected resource access request using this method is:

 GET /resource?access_token=mF_9.B5f-4.1JqM HTTP/1.1
 Host: server.example.com

Clients using this method should also send a Cache-Control header containing
the "no-store" option to prevent the caching of the access token in requests.

This method should only be used if both the authorization request header field
method and the form-encoded body parameter method are unavailable.

[135]

Refresh Your Access Token
In the previous three chapters, we worked on the full end-to-end process of fetching
an access token and using it to make an API call. We demonstrated this in a variety
of ways, using the two most common methods for requesting an access token, as well
as using the three methods for passing an access token in a protected resource access
request. This works great for a single API call. However, what happens when you
want to make multiple API calls over a longer period of time? Or, more specifically,
how do we deal with expired access tokens? This is what we will be exploring next.

In this chapter, we will look at the optional workflow for refreshing your access
token using what's called a refresh token. This workflow is described by the OAuth
2.0 specification, but is optional for service providers to support. So, in addition
to looking at how to refresh your access token using a refresh token, we will also
look at the alternative for refreshing your access token when your service provider
doesn't support the refresh token workflow. Let's begin!

A closer look at the refresh token flow
If you recall from our discussion on access tokens in Chapter 3, Four Easy Steps, access
tokens don't live forever. They have an expiry time which is often quite brief, usually
on the order of minutes or hours. When your access token finally expires, what do
you do? If your client is trusted, is using the authorization code grant flow, and the
service provider you are integrating with supports the refresh token flow, then you
can use a refresh token to fetch a new, valid access token.

Refresh Your Access Token

[136]

To find out whether or not your service provider supports the refresh token flow,
refer to their documentation. If so, you can expect to see a refresh_token value
returned alongside your access_token value in your access token response (only
with the authorization code grant flow). If you don't see this refresh token value
present, then your service provider probably doesn't support it. However, if they
do, you can make a refresh request, passing in this refresh token value, to gain a
new, valid access token, all without user intervention. Let's look at this process now.

The refresh request
This is the request used by the client to ask the service provider for a new,
valid access token. It is very similar to the access token request that you made in
Chapter 6, Get an Access Token with the Server-Side Flow, with only a few small, but
important, differences.

According to the specification
In order to request a new access token using the refresh token flow, we must make a
POST request to the service provider's token endpoint, passing along a certain set of
parameters, including the refresh token. The parameters must be encoded using the
application/x-www-form-urlencoded format. In general terms, the template for
the access token request is:

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic [ENCODED_CLIENT_CREDENTIALS]
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=[REFRESH_TOKEN]

The parameters that can be added to the preceding request body are defined as:

•	 grant_type: (Required) Must be set to refresh_token to signify that we are
requesting a new, valid access token, utilizing our refresh token.

•	 refresh_token: (Required) Our refresh token value.
•	 scope: (Optional) You may omit this from your request if you are requesting

an access token with identical scope to the one you want to refresh. You may
also request an access token with less scope than the one you wish to refresh.
You may not, however, request an access token with a larger scope than was
requested for the original access token. That is, your refreshed access token
must contain an equal, or lesser, scope than the original access token.

Chapter 8

[137]

In addition to passing in these parameters to the access token request, the client
application must also identify itself with the service provider. Just as we did for
the access token request in the server-side example application, we must pass an
Authorization header with the header value being our client credentials encoded
using the basic auth protocol. You'll notice that nearly everything about this refresh
request is the same as our access token request in the authorization code grant flow,
except for the parameters we pass in the request body.

Not in our application
Facebook, at the time of this writing, does not actually support
the refresh token workflow. Because of this, we cannot implement
this in our sample applications. This is a good example of a
service provider that chooses not to implement such a feature.
Instead, they provide alternative methods for long-lived sessions,
such as long-lived access tokens and offline access support. Make
sure you refer to your service provider's documentation to see
how they handle long-lived sessions.

The access token response
If we constructed our refresh request correctly, and our refresh token is still valid,
we can expect a new, valid access token to be returned to us. Otherwise, an error will
be returned. This response structure, both success and error, is actually identical to
the success and error responses to the access token request used in the authorization
code grant flow. Although it is identical, we are including the documentation here
again, for your convenience.

Success
If our refresh request was successful, the following parameters will be sent back in
the entity-body of the response:

•	 access_token: (Required) This is what we're after! The presence of this
value in the response is indicative of a successful refresh request.

•	 token_type: (Required) This defines the type of the token returned.
This value is case-insensitive.

•	 expires_in: (Optional) The lifetime of the token in seconds. For example,
if this value is 3600, that means that the access token will expire in one hour
from the time the response message was generated. It is optional in that the
service provider may not always return this value.

Refresh Your Access Token

[138]

•	 refresh_token: (Optional) In response to a successful refresh request,
a new refresh token may be issued back to you.

•	 scope: (Conditionally required) If the granted scope is identical to what
was requested, this value may be omitted. However, if the granted scope
is different from the requested scope, it must be present.

An example refresh token response for our application may look like:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"
 }

Error
If your refresh request gets rejected for any reason, an access token will not be
returned. Instead, the server will respond with an HTTP 400 (Bad Request) status
code, including the following parameters in the body:

•	 error: (Required) This is a single code representing the error that caused the
request to fail. The value must be one of the following:

°° invalid_request: The request is malformed and could not
be processed

°° invalid_client: Client authentication failed
°° invalid_grant: The provided grant was invalid
°° unauthorized_client: The client application isn't authorized to

make such a request
°° unsupported_grant_type: The authorization grant type is

not supported
°° invalid_scope: The scope passed in is invalid

Chapter 8

[139]

•	 error_description: (Optional) A human-readable message describing what
caused the error.

•	 error_uri: (Optional) A link to a web document containing more
information about the error.

An example response for our application would be:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_client"
 }

What if I have no refresh token? Or my
refresh token has expired?
As we mentioned earlier, some service providers simply don't support the refresh
token flow. Additionally, even if they do, refresh tokens also expire. Their lifetime
is usually much longer, on the order of days or weeks—compared to minutes or
hours with access tokens—but, nonetheless, they will expire eventually. So we must
be prepared to handle the case where we want to get a new access token, but lack a
valid refresh token to use to do so.

Our only alternative, in this case, would be to start the auth process again. To do this,
we will essentially log the user back in as if we have never seen them before, starting
the entire authorization request process, with whatever flow you like (implicit or
authorization code grant) all over again.

For some service providers, this will force them to re-login, and possibly re-authorize
your application. But, for many other service providers, they will resume the
user's session and issue an access token immediately, without requiring the user's
interaction. For such service providers, the user experience can be made to be nearly
seamless, practically the same as if the refresh token flow were supported.

Refresh Your Access Token

[140]

Comparison between the two methods
The following chart summarizes the differences between the two methods:

Method Pros Cons Notes
Refresh
token flow

•	 Can refresh the
access token
without user
intervention,
making for a
seamless user
experience

•	 Minimizes the
number of times
the user sends their
credentials across
the Internet

•	 Optional, and so
not supported
by all OAuth 2.0
implementers
and service
providers

•	 If
available,
this
method is
preferred
over the
"starting
over"
method

•	 Not
supported
when the
client is
untrusted
(that is,
using the
implicit
grant
flow)

Starting auth
process over
again

•	 Simple design,
essentially treating
the user as if they
are being seen for
the first time

•	 Depending on
how the service
provider handles
sessions, this
may require user
intervention to
get a new access
token (such as
re-login, re-
authorize, or
both)

Chapter 8

[141]

The ideal workflow
When designing your application, you will want to utilize all of the tools and
workflows at your disposal to achieve a user experience that is as seamless as
possible. Now, given all of the information we have presented in this book thus far,
we can create an optimal behavior workflow that our application can follow that
makes the best use of the available workflows to minimize any user interactions
that the user will have to do before your application can make API calls:

Refresh Your Access Token

[142]

In the preceding flow diagram, we start with an access token. We continue to make
API calls while the token is valid. Once the token becomes invalid (either because the
API calls return with an invalid_token error, or we calculated the time of expiry
in anticipation of its invalidation), we must fetch a new access token. If we have a
refresh token, we can use that. If that refresh request fails because the refresh token
has itself expired, or if we don't have a refresh token at all, then we must resort to
starting the auth process all over again.

Utilizing a workflow like this in your application will maximize your use of your
various tokens, using them for the duration of their lifetimes rather than requesting
new ones when they aren't yet needed. It will also minimize the number of times
your application will require user intervention.

Summary
In this chapter, we explored the various options for refreshing an access token. We
looked at refreshing an access token using the preferred refresh token flow. We also
looked at the always-available fallback plan of starting the entire auth process over
again. Both of these achieve the same result (getting a new, valid access token), but
with varying degrees of user interaction. Finally, we ended with a flow chart that
models an ideal workflow for gaining and using access tokens, which minimizes
user interaction.

This chapter concludes the part of the book in which we examine the different
OAuth 2.0 flows and capabilities. In the next chapter, and continuing until the end
of the book, we will be looking at the finer details of OAuth 2.0 to give you a more
advanced understanding of the protocol and how to utilize it in the most effective
and secure manner.

Chapter 8

[143]

Reference pages
Use these pages as reference documentation when implementing the implicit grant
flow in your application. Adapted from The OAuth 2.0 Authorization Framework
specification [RFC 6749].

An overview of the refresh token flow

Client
Authorization

Server

Refresh Token

Access Token
& Optional Refresh Token

Authorization Grant

Access Token
& Refresh Token

(A)

(B)

Resource
Server

Access Token

Protected Resource

Access Token

Invalid Token Error

()

(D)

(E)

(F)

C

(G)

(H)

Figure 2 from RFC 6749

The steps are as follows:

•	 A: The client requests an access token by authenticating with the service
provider and presenting an authorization grant.

•	 B: The authorization server of the service provider authenticates the client
and validates the authorization grant and, if valid, issues an access token and
optionally a refresh token.

•	 C: The client makes a protected resource request to the resource server by
presenting the access token.

•	 D: The resource server validates the access token and, if valid, serves
the request.

•	 E: Steps (C) and (D) repeat until the access token expires. If the client
application knows the access token has expired, or will expire shortly, it may
skip to step (G). Otherwise, the client application makes another protected
resource request.

Refresh Your Access Token

[144]

•	 F: Since the access token is invalid, the service provider returns an invalid
token error.

•	 G: The client requests a new access token by authenticating with the service
provider and presenting the refresh token.

•	 H: The authorization server authenticates the client, validates the refresh
token, and, if valid, issues a new access token and, optionally, a new
refresh token.

The refresh request
The client makes a POST request to the service provider's token endpoint, passing in
the following parameters encoded using the application/x-www-form-urlencoded
format as described in Appendix B of the specification:

•	 grant_type: (Required) Value must be set to refresh_token.
•	 refresh_token: (Required) The refresh token issued to the client.
•	 scope: (Optional) A list of space-delimited, case-sensitive strings which

represent the scope of the access granted. The requested scope must not
include any scope not originally granted by the user and, if omitted, is
treated as equal to the scope originally granted by the resource owner.

An example refresh request looks like:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&
 refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Access token response
If the refresh request is valid and authorized, the response will contain an access
token, optional refresh token, and other parameters described as follows:

•	 access_token: (Required) The access token issued by the service provider.
•	 token_type: (Required) The type of the token issued. This value is

case-insensitive.

Chapter 8

[145]

•	 expires_in: (Optional) The lifetime of the access token given in seconds.
If omitted, the service provider should communicate the expiration time
via other means.

•	 refresh_token: (Optional) A refresh token, which can be used to obtain new
access tokens using the refresh token workflow.

•	 scope: (Conditionally required) A list of space-delimited, case-sensitive
strings which represent the scope of the access granted. Required only if
the scope granted is different from the scope requested.

An example access token response looks like:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

Error response
If the refresh request fails for any reason, the server will respond with an HTTP 400
(Bad Request) status code including the following properties:

•	 error: (Required) This is a single error code representing the condition that
caused the request to fail. The value must be one of the following:

°° invalid_request: The request is missing a required parameter,
includes an unsupported parameter value (other than grant type),
repeats a parameter, includes multiple credentials, utilizes more than
one mechanism for authenticating the client, or is otherwise malformed

°° invalid_client: Client authentication failed for some reason
(for example, unknown client, no client authentication included,
or unsupported authentication method)

°° invalid_grant: The provided authorization grant or refresh token is
invalid, expired, revoked, does not match the redirection URI used in
the authorization request, or was issued to another client

Refresh Your Access Token

[146]

°° unauthorized_client: The authenticated client is not authorized to
use this authorization grant type

°° unsupported_grant_type: The authorization grant type is not
supported by the authorization server

°° invalid_scope: The requested scope is invalid, unknown,
malformed, or exceeds the scope granted by the user

•	 error_description: (Optional) A human-readable ASCII message
providing additional information regarding the error.

•	 error_uri: (Optional) A URI identifying a human-readable web page that
provides additional information regarding the error.

An example error response looks like:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_request"
 }

[147]

Security Considerations
Up until this point in the book, we have examined the OAuth 2.0 protocol in depth.
We have looked at why it is important, where it is used, and how it operates. We
have then used this knowledge to implement our own OAuth 2.0 client that interacts
with Facebook.

In this chapter, we cover a very important topic: security. We will discuss some
security best practices as well as look at some common attacks that you will want to
be aware of when creating your own client application. But, before we do, in order
to get an accurate idea of the importance of a secure client application that utilizes
OAuth 2.0, let's discuss what is at stake.

What's at stake?
Just as with any application, security should be a top priority. This is especially true
for applications that utilize the OAuth 2.0 protocol. In order to understand why
this is true, let's remember what OAuth 2.0 actually does for us. Recall that, in the
first chapter, we discussed how OAuth 2.0 provides us with federated identity as
well as delegated authority. If we aren't diligent with our security practices during
implementation, we can expose some very dangerous holes for attackers to exploit.
And, when dealing with federated identity and delegated authority, we must be
extra vigilant since these are very powerful practices that can provide attackers with
a lot of power.

If an attacker were somehow able to exploit your application to game either of these
concepts, they may be able to do the following:

•	 Impersonate users
•	 Impersonate client applications
•	 Grant themselves otherwise unauthorized permissions
•	 Gain access to protected data and resources

Security Considerations

[148]

In order to combat this, we must be extra careful with our implementation with
regard to the client integration with the service provider via OAuth 2.0. Let's start by
looking at some best practices that you can implement in your own application.

Security best practices
Security is a never-ending battle. There are countless ways that a given application
can be exploited. As engineers, our job is to minimize the attack vectors available
to attackers. We can never cover all of the holes, but it is still our duty to try. What
follows is a non-exhaustive list of security best practices that will help to keep your
application as secure as possible.

Use TLS!
This may seem like an obvious tip, but it is important enough to note. Use secure
communication channels! This applies for when your client application talks to service
providers, as well as when the service providers talk to your client application.

When your client application talks to the service provider, it does so by interacting
with their authorization and token endpoints. You must ensure that they utilize TLS
so that your communication with them is secure and encrypted.

Make sure the service provider uses TLS
Verify that the authorization and token endpoints that
your client application uses to talk to the service provider
both start with https.

Additionally, when the service provider talks back to your client application, it does
so via the redirect URI that you pass to it. You must make sure that this endpoint,
which you own, utilizes TLS as well.

Make sure your client application uses TLS
Verify that the redirect URI that you pass to the service
provider in requests starts with https.

Chapter 9

[149]

The OAuth 2.0 Authorization Framework
The OAuth 2.0 specification actually mandates the use of TLS
by the service provider. That is, the authorization and token
endpoints that your client application will be interacting with
should already use TLS.
However, the use of TLS by the client application is optional.
This decision was made to reduce the number of barriers for
developers to create OAuth 2.0-compliant client applications
due to the added complexity required for client developers
to implement (purchase and install SSL certificates). It was a
usability decision and not a security decision.
Because of this, many application developers will operate
without TLS during some portion of development. But when
approaching production, you should switch to using TLS.

Request minimal scopes
Recall that a scope is simply a permission that your client application is requesting
on behalf of the user. Make sure that you are requesting only what is needed by
your application, and no more. This may seem obvious, but as applications grow
and evolve, their functionality changes with it. This may change the scope of the
permissions that your application requires.

Keep track of what your application needs
Regularly audit your requested scopes to make sure they are
the minimal set required for your application to function. This
may change over time.

When using the implicit grant flow, request
read-only permissions
Recall, clients that utilize the implicit grant flow are untrusted clients. They are
considered untrusted because they do not have a backend server to facilitate secure
communication with the service provider. So, when the service provider sends
tokens to the client, it does so by attaching the token values to the URL fragment
of the redirect URI. Because of this, those token values are available to the user and
anyone else who has access to the user-agent. Additionally, the value may be cached
in some access logs or browser history for an attacker to find.

Security Considerations

[150]

Tokens granted to untrusted clients are inherently insecure for these reasons.
Keeping this in mind, you should only request read-only permissions when utilizing
the implicit grant flow from untrusted clients. This minimizes the risk in the case that
a token gets leaked.

Assume tokens granted to untrusted clients are available
to everyone
Request read-only permissions from clients using the
implicit grant flow to minimize the risk associated with
leaked tokens.

Keep credentials and tokens out of reach
of users
Your application's client credentials and the received tokens are sensitive properties.
You must keep these as secure as possible, making sure not to expose them to users. It
is assumed that, if a user can see them, an attacker can too. If an attacker can get hold
of your application's client credentials, they can impersonate your client. If an attacker
can get hold of a granted access token for a user, they can impersonate that user. It
is best to keep these out of reach of the users entirely. This is best done by using a
backend server to store and transmit these values, never exposing them to the client.

If a user can see it, so can an attacker
Store your client credentials and tokens on a backend server that
is not available to users. Communicate with the service provider
from this backend server as well. This further keeps those sensitive
properties out of the reach of clients, and attackers.

This leads well into our next point.

Use the authorization code grant flow
whenever possible
The authorization code grant flow is the most secure flow available for OAuth 2.0
integration. It utilizes a backend server to securely store and transmit sensitive
properties, such as client credentials and tokens, to and from the service provider.
Proper use of a server to facilitate these communications will completely abstract,
and hide, the flows from the end-user, as well as any attackers.

Chapter 9

[151]

The authorization code grant flow is the most secure
Because of the presence of a backend server for clients that
use the authorization code grant flow, these clients can make
secure communications to the service provider that aren't
visible to users and attackers, making this the most secure,
and preferred, grant flow to use.

If you cannot use a backend server for some reason, or choose not to for certain
use cases, refer to the previous When using the implicit grant flow, request read-only
permissions section.

Use the refresh token whenever possible
For clients using the authorization code grant flow, depending on the service
provider, a refresh token may be returned to the client. When an access token expires
for a user, rather than requiring them to authenticate again, the refresh token can
be used to request a new, valid access token. This is desirable from both a security
standpoint as well as a usability standpoint. In terms of security, the fewer times a
user has to authenticate means the fewer times a user has to send their username and
password across the Internet. This also means fewer opportunities for an attacker
to steal them. From a usability standpoint, this means that your application can
function for longer periods of time without having to ask your users to re-log in.

Refresh tokens reduce the number of times your users have
to re-authenticate
Making effective use of refresh tokens can minimize the
opportunities attackers have to steal user credentials, as
well as provide a better user experience by extending their
sessions with your client without intervention.

Use native browsers instead of embedded
browsers
The use of native external browsers over embedded browsers pertains particularly
to native applications (that is, desktop applications and mobile applications).
Often, when implementing a native application, you can choose to initiate the
authorization flow in either the native system browser or an embedded browser
within your application.

Security Considerations

[152]

For example, if you are developing an iPhone application and want to start the
authorization flow for a user, you can choose to do this through the native iPhone
Safari browser. Or, you can choose to use an embedded browser provided by the
SDK directly in your application. This choice has many important, but subtle,
consequences, relating to both security and usability.

Initially, you may want to use an embedded browser for your application. This will
provide a more seamless user experience since users can stay in your application
without having to bring the native system browser to the front momentarily for
authentication and authorization. However, there are some very good reasons
to use the native system browser.

The most important reason for using the native system browser is that you can
leverage the system chrome to display security information related to the target
service provider's authorization endpoint. For instance, native browsers will often
display warnings for sites with invalid or expired certificates, whereas embedded
browsers often do not. This makes phishing attacks easier. (Refer to Phishing in the
Common attacks section later in this chapter for more information.)

Native system browsers use a different cookie jar than embedded browsers. So, if
a user already has an active session in the system browser, they can piggyback on
this. Whereas, in an embedded browser, since sessions aren't shared with the native
browser, they will likely have to start a new session.

Additionally, native system browsers may have plugins available to it, like password
managers, which would not be available to embedded browsers.

The following chart displays a short summary of the pros and cons of native
browsers versus embedded browsers:

Native external system browser Embedded browser
Pros:

•	 Makes use of system chrome
which can display important
security information related to
the currently loaded page.

•	 Uses the system cookie store, so
it is able to take advantage of
already-active sessions.

•	 Plugins are available (for
example, password managers).

Pros:
•	 Provides a more seamless user experience

since the user can stay within the context
of the client application without having
to switch contexts to a system browser to
log in.

Chapter 9

[153]

Native external system browser Embedded browser
Cons:

•	 A less than ideal user experience
since it requires the system
browser to be brought to
the forefront for the user to
authenticate and authorize.

Cons:
•	 Does not often display the security

information related to the currently
loaded page. Makes phishing attacks easy
since it is hard for users to confirm the
validity of the page they are looking at.

•	 Uses a different cookie store from the
system browser. Users will most likely
have to log in since they won't have a
valid session with this browser.

•	 No plugins available.

Do not use third-party scripts in the
redirection endpoint
When constructing your redirection endpoint, make sure that you do not include
any third-party or externally loaded scripts. These scripts have access to your
redirection URI and the credentials it contains. It is possible that these scripts
can be compromised and, if loaded externally, could leak your access tokens or
authorization codes to attackers.

If you do choose to use third-party scripts, you must ensure that your scripts execute
first to both extract and remove the credentials from the URI before allowing any
other scripts to execute.

Ideally, your redirection endpoint will contain logic only to extract and remove the
credentials before redirecting the user-agent to another page, all without exposing
the credentials.

Third-party scripts should be untrusted
Your redirection endpoint should extract and remove any sensitive
credentials before allowing other scripts to execute.

Security Considerations

[154]

How did we do?
You may notice that, in the sample code for our client-side
example, we did not follow this best practice. We load the
jQuery library at our redirection endpoint and use it to make
our API call. We did this on purpose for the sake of clarity in our
example code. However, if http://code.jquery.com/ (the
site that hosts the library) ever got compromised, it is possible
that an attacker can replace the library with a malicious version
and poison our application and steal our tokens.

Rotate your client credentials
Just as you should for your own personal password, you should rotate your client
credentials. This minimizes the attack vectors available to attackers since, if you
rotate your credentials regularly, they will have a more limited time to utilize
them if they are leaked.

A good practice would be to rotate these credentials with every release (or major
release, depending on your security requirements and development cycle).

Common attacks
Now that we've looked at some security best practices to keep your application
secure, let's now take a look at some common attacks against OAuth 2.0 clients that
you should be aware of. We will also examine the mitigation techniques you can use
to protect your application from such attacks.

Cross-site request forgery (CSRF)
Cross-site request forgery is a powerful attack that has been gaining popularity
with attackers in recent years. It involves tricking users into following a malicious
link that performs an undesirable action on a trusted site without their knowledge,
making use of their pre-existing sessions with that site.

For instance, imagine a user has just logged into their bank in their favorite web
browser. Now, in another tab, they open an e-mail from a malicious user with a link
that says "See cats here!" which leads to http://www.catloversheaven.com/.

This site is owned by the attacker and, while the user is browsing cute cat pictures, in
the background, the website silently makes a call to https://www.bank.com/transf
er?to=37325283&amount=1000.

http://code.jquery.com/

Chapter 9

[155]

Since the user already has a valid session with their bank, this request will be
seen as valid. And so, while the user is enjoying the attacker-owned cat website,
they have also unwittingly transferred $1,000 out of their account and into the
attacker's account.

This can be done in many ways: a malicious link that they trick victims into clicking,
an iframe or image that automatically loads the malicious link, or even a redirection
from an attacker-controlled page.

Now that we understand what CSRF is at a high-level, let's look at how it is relevant
to an OAuth 2.0 client application. The following illustration demonstrates a typical
authorization workflow between a client application and a service provider in two
ways: first, in the normal fashion, and second, with a CSRF attack on the redirect URI
for the client application.

Security Considerations

[156]

What's going on?
Note that the first workflow is the typical authorization workflow that we are
used to. However, in the second workflow, we can see that there is another party,
namely, the attacker. In this scenario, the attacker sends a malicious authorization
code or access token directly to the client application's redirect URI. Since the client
application can't verify that the token is valid, it continues to use it to communicate
with the service provider. As the token is attacker-owned, this may result in the
attacker gaining access to the protected resources of the user.

This happens mainly because the client application has no way of verifying that the
authorization code or access token that has been issued to it is the result of a valid
request made by the application. To combat this, the client application must make
use of the state param.

Use the state param to combat CSRF
In order for your client application to protect against CSRF, your client application
must gain the ability to verify whether the authorization codes or access tokens
issued to it are valid (that is, they are the result of a valid authorization request
by the user from your client application). To do this, your client application must
generate a session-specific, unguessable value that it can pass along with its
authorization request. When an authorization code or access token is returned back
to the redirect URI, your application can validate that value to ensure that it was
indeed used as part of a valid authorization request initiated by the user, and not by
some attacker.

The following diagram demonstrates this process in action, showing
both a successful and valid authorization flow, followed by an invalid,
attacker-initiated flow:

Chapter 9

[157]

In the valid scenario, we can see that it is mostly the same as before. However,
notice that with the authorization request, the client is passing along that unique,
session-based, un-guessable state param value. In step 2, the user authenticates
and the service provider will return an authorization code or access token back to
the client application via the redirect URI, along with the state param value that
was passed in with the initial request.

Security Considerations

[158]

If a state param value is passed to a service provider,
the OAuth 2.0 specification mandates that it be returned
back to the client application untouched. This mechanism
is designed specifically to mitigate such CSRF attacks, and
should be used particularly for this reason.

There is an added step, step 3, where the client application takes the returned
state param and verifies that it is in fact a valid one. That is, it verifies that it was
generated by the client application and used in a valid authorization request initiated
by the user. If, and only if, this is true, will the application continue to interact with
the service provider with the given tokens.

Notice in the second workflow, the attacker does not know this state param
value since it is session-based and un-guessable. And so, when the attacker sends a
malicious authorization code or access token to the client application's redirect URI,
they will be unable to send along a valid state param. When the client application
receives this malicious token, it sees that it has an invalid state param value, or
none at all, and it halts the process right there. By simply generating and passing
along a state param value, and validating it at the redirect endpoint, we have
mitigated any CSRF attacks against the redirect endpoint.

Phishing
Phishing is an attack in which an attacker creates a page or application that looks
similar or identical to a target site with the intention that users will be unaware that
it is a duplicate and so will enter secret information, say a username and password,
only to be captured by the impostor site.

OAuth 2.0 client applications are vulnerable to phishing because they rely on
sending a user's user-agent to and from the service provider endpoints in order to
delegate authority. When developing your client application, you should consider
the security implications of how your users will interact with the service provider to
authenticate. A good rule of thumb is to follow the best practice mentioned earlier in
the Use native browsers instead of embedded browsers section.

Chapter 9

[159]

If you use native external browsers in your application, your users will have an
increased ability to verify the authenticity of the authorization endpoint that they
are seeing.

With native browsers, there are often more indicators of a site's validity (for example
the lock next to the URL in iPhone's mobile Safari). This isn't the case with embedded
browsers, which makes utilizing counterfeit pages much easier for attackers.

Security Considerations

[160]

Redirection URI manipulation
When your client application makes an authorization request for a user, it passes
along a redirect_uri parameter. If an attacker can manipulate the value of this
redirection URI, they may be able to cause the service provider to redirect the user's
user-agent to an endpoint that they control, along with the authorization code.

Furthermore, if your application allows users to own or create a webspace of some
sort that they control, say a homepage or a user profile page, they may be able to
leverage this as part of their attack.

For example, consider the scenario where the application GoodApp allows users
to create a homepage on their domain. The user Eve may have a homepage that
she controls at www.goodapp.com/users/eve. If the service provider that you are
interacting with allows you to register wildcard redirect URIs, like www.goodapp.
com/*, or doesn't require you to register your redirect URIs at all, then an attacker,
such as Eve, would be able to use this homepage to her advantage.

What Eve could do is set up a fake link to log into your application, or even a
counterfeit application entirely. When a user clicks on this link, they will be directed
to the authorization endpoint of the service provider just as would be done from
the real application. However, instead of passing the proper redirect URI, say www.
goodapp.com/callback, this link passes her own malicious redirect URI which
just happens to be her profile page, www.goodapp.com/users/eve. On this page,
she can then intercept any authorization codes and access tokens, and proceed to
impersonate your users and access their protected resources.

Chapter 9

[161]

Notice in the preceding image that all Eve needs to do is convince a user to follow
her malicious authorization link containing her attacker-controlled redirect URI.
From the user's perspective, the user experience would be mostly the same since all
that is different is the redirect URI (the attacker may choose to request additional
scopes too!).

Security Considerations

[162]

To mitigate this, make sure that you register your redirect URIs. If the service
provider that you are interacting with allows you to register wildcard redirect URIs,
use them sparingly. You should always prefer to register fully-qualified redirect
URIs over wildcard redirection endpoints. This is especially true if your service or
application allows users to create a webspace that they control, say a homepage or
profile page.

Client and user impersonation
A very basic attack that is often done is simple client or user impersonation. In
client impersonation, an attacker masquerades as your client application in order
to gain access to the user's protected resources. This can be achieved quite simply if
an attacker is able to get access to your client credentials (that is, your client ID and
client secret). With this, they would be able to impersonate your client to the service
provider and to end users.

In user impersonation, an attacker will masquerade as the end user. This can be done
if an attacker is able to gain access to an issued access token. With this, they would be
able to make requests to the service provider to access protected resources on behalf
of the user, just as your application does (recall what bearer in bearer token means
from Chapter 2, A Bird's Eye View of OAuth 2.0).

To mitigate both of these attacks, the solution is simple: protect your client
credentials, codes, and tokens from end users! If an attacker were able to see any of
those, they would be granted the ability to impersonate your client application or
your users, or both.

Summary
In this chapter, we discussed a lot of important topics relating to the security of
your application. We looked at several best practices that should be observed
when developing your application. It is important to be aware of all of these attack
vectors, and mitigate any opportunities that you can for attackers to infiltrate your
application. The best practices listed are good rules to follow, but they are not
exhaustive. You should try and implement them all in your application. If you don't,
at least have the understanding of the scenario so that you are prepared to deal with
any attacks that may follow. We also looked at some of the most common attack
scenarios on OAuth 2.0 clients, including methods to mitigate them. There are no
silver bullets when it comes to security. All that we can do is try our best to plug any
holes, and be vigilant in this effort as our application grows and evolves. In the next
chapter, we will take a dedicated look at mobile applications and how they differ
from traditional applications.

[163]

What About Mobile?
Application developers have a multitude of platforms to target and develop
for. Traditionally, the platforms to develop for were the desktop platforms, be it
Windows, Mac, or Linux/Unix. However, more recently, nothing has been growing
faster than the mobile platforms: iPhone, Android, and Windows Mobile. Mobile
platforms have become the largest platforms for the consumption of digital media
today, overtaking desktops in recent years, and still growing! Because of this, we
have dedicated an entire chapter to considerations for mobile application developers.
Here, we will discuss special details particular to developing applications for mobile
platforms. But first, let's take a step back and define what we consider a mobile
application to be in the first place.

What is a mobile application?
The term "mobile application" is used quite loosely these days. Typically, when
someone says "mobile application" they are referring to one of two types
of applications:

•	 Mobile-optimized web application
•	 Natively installed mobile application

The first type is simply a web application that runs in the browser, but is optimized
for the smaller screens typical in mobile devices like phones and tablets. This type
of application is no different from any other web application. It executes in the
browser, and so the same rules and considerations apply to it regardless of
whether it is a mobile browser or a desktop browser.

What About Mobile?

[164]

The second, however, is of more importance to us. This type of application represents
natively installed applications on mobile devices, an entirely new platform in recent
years. From here on, when we mention "mobile applications", we are referring to
this second category of applications, natively installed mobile applications, and not
mobile-optimized web applications.

What flow should we use for mobile
applications?
Just as developing any other type of client application, the type of flow to use should
be decided based on the capabilities of the platform. However, mobile platforms are
quite new and rich, and so added attention is required when making this decision.
The two main flows are still available to us—implicit grant and authorization code
grant. Recall that the implicit grant is designed for use in untrusted clients, while
the authorization code grant is designed for use with trusted clients. Further recall
that trusted clients are clients that are able to securely store and transmit their
confidential properties. So, the question then becomes, are mobile applications
considered trusted, or untrusted?

Are mobile applications trusted or untrusted?
In order for a mobile application to be considered trusted, it must be able to securely
store and transmit confidential information. This can really only be achieved in
one way, with the use of a backend server. If a mobile application has a backend
server that powers it, this server can also be used to securely store and transmit any
confidential information it needs to. In this case, yes, this particular type of mobile
application can be considered trusted, and should therefore use the authorization
code grant flow.

This is no different from desktop and web applications that are powered by a
backend server. The presence and correct use of this backend server prevents users,
and attackers alike, from gaining access to any confidential properties vital to your
application. In the absence of this backend server though, your application will
be unable to securely store and transmit confidential information, and cannot be
considered trusted. In this case, your mobile application should use the implicit
grant flow.

Chapter 10

[165]

What about mobile applications built on top of
mobile platforms with secure storage APIs?
Not all mobile applications are powered by a backend server. Some mobile
applications are standalone installations that interact with a service provider
directly. For such applications, developers must leverage secure storage APIs (APIs
designed for application developers to store application data securely on the device)
supported by the mobile platform they are developing on. Most of the major mobile
platforms today offer such secure storage APIs, each with their own unique names
and usages, but all achieving the same thing. Here is a quick summary of some of
the available secure storage APIs available for the three major mobile platforms at
the time of this writing:

Platform Secure storage APIs
iOS Data protection
Android Android keystore system
Windows Phone DPAPI (Data Protection API)

If you are developing an application on one of these platforms, you can make use of
these APIs to securely store your secrets. For the most part, this is enough for most
applications to be considered trusted. You can store your client credentials here and
communicate directly with the service provider through your application, accessing
these secrets via the APIs without the use of a backend server.

Not quite enough
Strictly speaking, though, such an application that makes use of secure storage
APIs to securely store their confidential properties is not considered trusted. It is
much more secure than a typical web browser application, since web browsers don't
have very reliable methods for securely storing confidential information. However,
in strict terms, it is still not enough to be considered fully trusted. In order to
understand why, let's look back at mobile applications that use a backend server.

What About Mobile?

[166]

The following is a diagram of a typical mobile application that uses a backend
server for securely storing and transmitting confidential data:

Notice how the application's secrets are stored and transmitted outside of the
available space of the user and any attackers. In particular, attackers are unable to
see the secret data in any form, encrypted or not encrypted, stored or in transit. In
this model, it is impossible for an attacker to gain access to the secret data. This is a
truly secure model and trusted client, fit for the authorization code grant flow.

Now, let's look at this same diagram, but this time with a mobile application that
uses secure storage APIs of the platform it is on:

Chapter 10

[167]

Notice, now, in this picture, all of the confidential data is stored on the device itself. It
uses the secure storage APIs of the platform, and so it is stored encrypted somewhere
on the device, but on the device nonetheless. Further, it is transmitted through the
user/attacker space to the service provider. Presumably, it is transmitted via secure
channels, but still, transmitted through the user/attacker space nonetheless.

In this model, the application developer is heavily relying on the security of the
platform's secure storage APIs as well as the security of the transport protocol used.
Now, these may well be extremely secure and difficult for attackers to break. But, in
strict terms, it is possible. And, in the world of security, "possible" should be assumed
probable, even certain. This is why mobile applications that don't have backend servers
but make use of the mobile platform's secure storage APIs should not be considered
trusted and should therefore not use the authorization code grant flow.

Maybe good enough after all

The preceding scenario paints a worst-case picture of security
in relation to your application. In practical terms, it is likely
sufficient for your application to make use of these secure
storage APIs and be fine. However, if your application deals
with extremely sensitive material, you will want to err on
the side of caution and make sure to create a truly trusted
application by making use of a backend server to facilitate
secure storage and transmission of your confidential data.

Hybrid architectures
Mobile applications come in many shapes and sizes. As such, the architecture
of your mobile application can be flexible as well. There is no reason why your
application has to use a single authorization workflow, as is described in the
preceding section. If you have a mobile application, and a backend server, you
can create a hybrid architecture to leverage the best of both worlds.

What About Mobile?

[168]

Implicit for mobile app, authorization code
grant for backend server
Most service providers support the idea of having a single client use multiple
authorization flows. For example, Facebook supports a single client application using
both the implicit grant flow and the authorization code grant flow. We can leverage
this capability and use the most appropriate flow for the given task. For instance, if
your application requires some non-sensitive data in a read-only manner, this can
be made directly from your native mobile application via the implicit grant flow.
Your application may also require some more sensitive data, or may need to write
some data or make changes to a property with the service provider. In this case, it is
appropriate to make this call from the server using the authorization code grant flow.
The following diagram illustrates a simple example of such a hybrid architecture:

Chapter 10

[169]

With the preceding architecture, the mobile application can request directly to the
service provider using the implicit grant flow. You must remember to follow the
best practices from the previous chapter regarding the use of the implicit grant
flow in the When using the implicit grant flow, request read-only permissions section.

When your application needs to perform more complex tasks, greater than simply
fetching read-only, insensitive data, you will want to do this from the server using
the authorization code grant flow. This allows you to still allow your application to
perform powerful tasks, while still keeping the confidentiality of your secrets.

What is the benefit of this?
Using a hybrid architecture, like the one described in the preceding section, allows
your application to optimize simple workflows from the mobile application, while
still allowing your application to perform complex, powerful tasks with the use of
the server. You are also able to maximize the performance of your application while
still maintaining a high level of security.

Authorization via application instead of
user-agent
With the typical OAuth 2.0 authorization flow, your application will direct your user's
user-agent to the service provider's authorization endpoint where they can log in and
authorize your application. However, in the world of mobile applications, certain
platforms and service providers support the ability to perform this authorization flow
within the service provider's mobile application and not with a user-agent.

What About Mobile?

[170]

For example, if you were to write a mobile application that integrates with Facebook,
typically, when your user goes to authenticate, your application will send their
user-agent to Facebook's authorization endpoint. However, Facebook on iOS allows
this operation to happen via the Facebook application itself. That is, instead of
sending the user's user-agent to Facebook in mobile Safari for them to log in and
authorize your application, your application can instead open up Facebook's
iPhone application and let the user perform the authorization from there:

Most major service providers allow you to integrate with their mobile applications
in this manner. Doing this provides a more seamless user experience. In addition,
this workflow makes use of the existing active session that your user has with that
service provider within their mobile application, removing one less request to log
in and authorize.

Chapter 10

[171]

Summary
In this chapter, we have taken a dedicated look at special considerations for
integrating with OAuth 2.0 service providers via native mobile applications.
We explored the appropriate flow to use from native mobile applications, as
well as alternatives that make use of certain platforms' capabilities. There are very
important, but subtle, security implications that are important for developers
to be aware of. We then discussed how to leverage both workflows in a hybrid
architecture to maximize performance and security. Finally, we looked at special
provisions that are allowed to mobile application developers integrating with certain
major service providers. In the next chapter, we will look at how to troubleshoot
your OAuth 2.0 application in an effective and efficient manner.

[173]

Tooling and Troubleshooting
At this point in the book, we have covered everything you need to know to integrate
with any OAuth 2.0-compliant service provider. But even under ideal conditions,
you're bound to run into some issues. This chapter is dedicated to helping you identify
and solve those issues. We will look at various tips and techniques you can use to
troubleshoot your application. We will also look at common tools that you should
familiarize yourself with to become proficient in dealing with OAuth 2.0 flows.

Tools
Before we dive into troubleshooting, it would be beneficial to explore the tools we
will be using. Fortunately for us, the toolset required for effectively troubleshooting
an OAuth 2.0 workflow is quite simple and widely available. We will primarily be
using two tools to troubleshoot our flows. They are:

•	 A modern web browser, such as Chrome, Firefox, or Edge
•	 cURL, the command-line utility

That's it! With these two tools in your arsenal, you are equipped to effectively
troubleshoot any OAuth 2.0 workflow.

What is cURL?
cURL (pronounced as it is spelled, "curl") is a command-line utility for
transferring data and making HTTP requests. It is provided natively in
most Linux/Unix-based operating systems, including Mac OS X. There is
support for it on Windows, but must be installed manually.
It is a great utility for testing OAuth 2.0 workflows as you can use it to
simulate many of the requests that your application will make, but you
can do so via simple command-line commands rather than programming
them into your application. Getting comfortable with cURL will benefit
you greatly as you work with the OAuth 2.0 protocol.

Tooling and Troubleshooting

[174]

Troubleshooting
As we've discovered throughout the book, the OAuth 2.0 protocol is simply a series
of structured HTTP requests and responses to facilitate the transfer of data. Because
of the straightforward nature of the protocol, we are able to troubleshoot issues with
basic tools. In fact, we can simulate the majority of our implemented OAuth 2.0 flows
with these tools alone, separate from our application. Here is the approach
we will take:

•	 If it's a POST request, we can simulate it with a cURL command
•	 If it's a GET request, we can simulate it directly within our browser, or with

a cURL command

With this approach in mind, we can now look at the various flows that we've
examined in the book, this time, simulating them with our tools instead of within our
application. Let's begin!

The implicit grant flow
The purpose of the implicit grant flow is to gain authorization from the user
in the form of an access token from the service provider. It begins with the
authorization request.

The authorization request
When operating without the presence of a backend server, simulating this flow
outside of our application is quite easy. Recall that the authorization request is
simply a GET request to the service provider's authorization endpoint, of the form:

 GET /authorize?
 response_type=token&
 client_id=[CLIENT_ID]&
 redirect_uri=[REDIRECT_URI]&
 scope=[SCOPE]&
 state=[STATE] HTTP/1.1
 Host: server.example.com

Chapter 11

[175]

To simulate this, simply construct your authorization request as outlined earlier,
and navigate to it directly in your web browser. If you've constructed this correctly,
you should see the user consent screen that will be presented to your users:

Tooling and Troubleshooting

[176]

From here, you can accept or deny the request. Doing this will redirect you back
to your redirection endpoint. If you have your application running, you can debug
directly into your callback handler. Otherwise, your page will error while attempting
to load your redirection endpoint. However, the endpoint will be available for you
to examine in the URL bar of your browser:

You can extract this response URL and examine it. It should either contain an access
token in the case of success, or an error otherwise.

Common issues
Common issues, and suggested troubleshooting approaches, are:

•	 The user consent screen is not displayed
It's possible that your authorization endpoint is incorrect. Verify that the
authorization endpoint for your service provider is correct.

Chapter 11

[177]

•	 Once your user authorizes, you get redirected back to the wrong redirect URI
You may be specifying your redirect URI incorrectly in your request.
Make sure your redirect URI is specified correctly in your initial request
by inspecting the redirect_uri parameter.

•	 Getting an authorization code instead of an access token

You've likely used the wrong response type for your authorization
request. Examine your initial authorization request and ensure that
your response_type parameter is set to token and not code.

The authorization code grant flow
Just as with the implicit grant flow, the purpose of the authorization code grant
flow is to obtain authorization from the user in the form of an access token from
the service provider. It begins with an authorization request for an authorization
code followed by an access token request for an access token.

The authorization request
Similar to the authorization request of the implicit grant flow, the authorization
request for the authorization code grant flow is simply a GET request to the service
provider's authorization endpoint, of the form:

 GET /authorize?
 response_type=code&
 client_id=[CLIENT_ID]&
 redirect_uri=[REDIRECT_URI]&
 scope=[SCOPE]&
 state=[STATE] HTTP/1.1
 Host: server.example.com

This can be simulated in the browser just as it was done with the authorization
request in the preceding implicit grant flow.

Common issues
Common issues, and suggested troubleshooting approaches, are:

•	 User consent screen doesn't display
It's possible that your authorization endpoint is incorrect. Verify that the
authorization endpoint for your service provider is correct.

Tooling and Troubleshooting

[178]

•	 Once your user authorizes, you get redirected back to the wrong redirect URI
You may be specifying your redirect URI incorrectly in your request. Make
sure your redirect URI is specified correctly in your initial request by
inspecting the redirect_uri parameter.

•	 Getting an access token instead of an authorization code

You've likely used the wrong response type for your authorization
request. Examine your initial authorization request and ensure that
your response_type parameter is set to code and not token.

The access token request
Once you've successfully made your authorization request, you should have
gained an authorization code (either via the redirection endpoint in your running
application, or pulled directly from the browser URL). Now, you must exchange
this for an access token. This is done with a POST request, of the form:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic [ENCODED_CLIENT_CREDENTIALS]
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=[AUTHORIZATION_CODE]&
 redirect_uri=[REDIRECT_URI]&
 client_id=[CLIENT_ID]

Since this is a POST request, we cannot simulate this easily in the browser. Rather,
we must defer to our cURL utility instead. This can be simulated with a cURL
command, like this:

curl --request POST
 –u [CLIENT_ID]:[CLIENT_SECRET]
 --data-urlencode "grant_type=authorization_code"
 --data-urlencode "code=[AUTHORIZATION_CODE]"
 --data-urlencode "redirect_uri=[REDIRECT_URI]"
 --data-urlencode "client_id=[CLIENT_ID]"
 [AUTH_ENDPOINT]

Chapter 11

[179]

Executing this cURL command with the authorization code that you received in
the previous step should give you output similar to this:

> curl –request POST
 -u wmiig-550106:DFIAJAO98SH9832HVMQI3
 --data-urlencode "grant_type=authorization_code"
 --data-urlencode "code=AQCbhXyIGf5TT3b7YmGMz"
 --data-urlencode "redirect_uri=http://wmiig.com/callback.html"
 --data-urlencode "client_id=wmiig-550106"
 https://graph.facebook.com/oauth/access_token
> access_token=CAAEvZCNK2AWsBZDZD&expires=5111724

Common issues
Common issues, and suggested troubleshooting approaches, are as follows:

•	 Unable to exchange authorization code for access token
Remember that authorization codes are consumable. Make sure that you
are not attempting to use an authorization code more than once to get an
access token.
Authorization codes also typically have a short lifetime. The OAuth 2.0
specification actually recommends the maximum lifetime for an authorization
code to be 10 minutes. If you've waited longer than 10 minutes to use your
authorization code, it is likely expired. Fetch a new one and try again.

The API call flow
At this point, you should have a valid access token and you would like to make an
API call to access a protected resource. Recall from Chapter 7, Use Your Access Token
that there are three methods available to use to pass your access token in an API call.
Let's look at how we can simulate all three of these methods for the purpose
of testing and debugging.

The authorization request header field
To pass your access token via the authorization request header field, you must
add the Authorization header to your GET request, like this:

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

Tooling and Troubleshooting

[180]

Since this requires the modification of request headers, this cannot be simulated in
the browser. However, this can easily be simulated via a simple cURL command:

curl -H "Authorization: Bearer [ACCESS_TOKEN]" http://www.example.com

Let's see what this command looks like when requesting access to the user resource
in the Facebook Graph API:

> curl -H "Authorization: Bearer CAAEvZCNK2AWsBZDZD"
 https://graph.facebook.com/v2.5/me?fields=name
> {"name":"John Smith","id":"1012877671"}

Common issues
Common issues, and suggested troubleshooting approaches, are as follows:

•	 Access denied

The scope for the access token you are using does not cover the protected
resource you are trying to access. Perhaps you are using an access token for
a scope other than the scope that was granted in your original authorization
request. Modify your scope in the initial authorization request and try again.

The form-encoded body parameter
To pass your access token via the form-encoded body parameter method, you must
make a POST request specifying the appropriate parameters within the request body
encoded according to the application/x-www-form-urlencoded format, like this:

 POST /resource HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 access_token=mF_9.B5f-4.1JqM

Since this is a POST request, we can simulate this with a cURL request:

curl --request POST
 --data-urlencode "access_token=[ACCESS_TOKEN]"
 --data-urlencode "method=get"
 http://www.example.com

Chapter 11

[181]

Once again, doing this with the user API, we get a result similar to this:

> curl --request POST
 --data-urlencode "access_token=CAAEvZCNK2wZDZD"
 --data-urlencode "method=get"
 https://graph.facebook.com/v2.5/me?fields=name
> {"name":"John Smith","id":"1012877671"}

Common issues
Common issues, and suggested troubleshooting approaches, are as follows:

•	 Getting a blank or "success" response without the actual data

Since we are making a POST request, some service providers respect RESTful
API architectures and take this to be an update request. They may require
you to specify the type of request explicitly as we have done above with the
parameter method=get. Refer to your service provider's documentation to
see if such a parameter is required for your API calls as well.

The URI query parameter
This final method for passing in your access token requires that you simply append
it as a parameter to the end of your access request:

GET /resource?access_token=mF_9.B5f-4.1JqM HTTP/1.1
Host: server.example.com

Since this is a GET request, we can simulate this very simply by plugging this directly
into a browser and observing the results:

Tooling and Troubleshooting

[182]

If you wish to do this with cURL as well, you can. Simply execute the command
using the form:

curl "https://server.example.com?access_token=[ACCESS_TOKEN]"

Executing this against the user API, we get output similar to the following:

> curl "https://graph.facebook.com/v2.5/me?fields=name&access_
token=CAAEvZCNK2A"

> {"name":"Charles Bihis","id":"1123581321345589"}

After demonstrating the simplicity of this method for passing your access token, it
is easy to see why this is the preferred method to use when testing and debugging
your application. You can easily test whether your API calls are well-formed, or
your access tokens are still valid, using this method. However, once you move to a
production setting, you should abandon this method and move to one of the other
two, more secure, methodologies.

The refresh token flow
The refresh token flow is used to gain a new, valid, access token in case your old one
has expired. Recall from Chapter 8, Refresh Your Access Token, this is done with a POST
request to the service provider's token endpoint, with the following form:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic [ENCODED_CLIENT_CREDENTIALS]
 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token&refresh_token=[REFRESH_TOKEN]

This is similar to the access token request in the authorization code grant flow,
and so the cURL command is similar as well:

curl --request POST
 –u [CLIENT_ID]:[CLIENT_SECRET]
 --data-urlencode "grant_type=refresh_token"
 --data-urlencode "refresh_token=[REFRESH_TOKEN]"
 [TOKEN_ENDPOINT]

Chapter 11

[183]

Executing this cURL command with a valid refresh token should give you an output
similar to this:

> curl –request POST
 -u wmiig-550106:DFIAJAO98SH9832HVMQI3
 --data-urlencode "grant_type=refresh_token"
 --data-urlencode "refresh_token=XyIGf5TAQCbhT3b7YmGMz"
 https://graph.facebook.com/oauth/access_token
> access_token=CAAEvZCNK2AWsBZDZD&expires=5111724

Just an example
Recall that Facebook doesn't support the refresh token flow. The
preceding example is simulated for demonstration purposes.

Common issues
Common issues, and suggested troubleshooting approaches, are as follows:

•	 No refresh token
Make sure you are using the authorization code grant flow. The ability to
refresh your access token is only available for this flow. Refresh tokens
aren't actually returned at all with implicit grant flows.

•	 An invalid token

Refresh tokens expire too! They likely have a longer expiry time than access
tokens, but they still expire too. If this happens, you must start the whole
authorization flow again, possibly requiring the user to re-authenticate.

Summary
We covered some important topics in this chapter. Particularly, we looked at the
two most common and useful tools that you, as an application developer, will
use to troubleshoot your OAuth 2.0 workflows: the web browser and the cURL
command-line utility. We then examined the various OAuth 2.0 flows that we've
discussed in the book, replicating their flows manually with the tools we introduced
earlier. Doing this outside of our application gives us great introspection into the
success (or failure) of our requests without confusing them with issues related to
our application. Following this template for validating your flows will help you
isolate issues with your OAuth 2.0 requests and will certainly make your integrations
less troublesome.

[185]

Extensions to OAuth 2.0
You finally made it! Welcome to the final chapter of the book. Up until this point, we
have discussed all that you need to know to integrate with practically any OAuth
2.0-compliant service provider out there. We examined the protocol, including the
process of registration, getting your access token, using your access token, and
refreshing your access token. We examined this in the context of an application
developer looking to integrate with an OAuth 2.0-compliant service provider via a
client-side workflow or server-side workflow, or both. However, OAuth 2.0 has the
ability to be extended in various ways, greatly increasing the power and range of
applications to which it can be applied.

Extensions to the OAuth 2.0 framework
Throughout the book, we discussed how to integrate with OAuth 2.0-compliant
service providers via either the implicit grant flow or the authorization code grant
flow. We invoked these flows to request, and subsequently use, access tokens. These
flows represent the majority of flows that application developers will encounter.
However, this is only a narrow view with regard to the broader range of capabilities
allowed by the framework. There are many extensions that can be added to the OAuth
2.0 Authorization Framework to facilitate many additional use cases. Let's take a look
at some.

Custom grant types
When your client application interacts with a service provider, such as Facebook, it
does so via a particular, predefined grant type. In the book, we discussed the two
most commonly used grant types:

•	 Authorization code grant
•	 Implicit grant

Extensions to OAuth 2.0

[186]

However, there are two additional grant types that are supported:

•	 Resource owner password credentials grant
•	 Client credentials grant

These are less commonly supported by consumer service providers, such as Google
and Facebook, and so we chose to omit detailed discussions of those within the main
content of the book. However, if you would like to learn more about these protocols,
you can read more about them in the appendices (Appendix A, Resource Owner
Password Credentials Grant and Appendix B, Client Credentials Grant).

In addition to natively supporting these four grant types, the OAuth 2.0 framework
allows for the specification of additional custom grant types. These will be
determined and implemented by the service provider. So, perhaps your workplace
decides to use OAuth 2.0 to restrict access to certain parts of your company's data,
but your IT team and security team do not want to use any of the four natively
supported grant flows. They can, instead, design and implement their own grant
type, which your client application will subsequently use to request access tokens
and access those protected resources.

A variety of token types
Once a grant type is decided, your client application will interact with a service
provider through the exchange of tokens. Once your user authenticates and
authorizes your application, they are given a bearer token, which your application
can then use to access a protected resource on their behalf. The properties of these
tokens are quite loosely defined, described by the specification simply as opaque
string values that encapsulate an authentication for a particular user. They can
simply be unique strings that match up with a set of permissions for a user. Many
service providers implement their tokens in this non-standard, custom way.
However, it is useful to know that there are two popular token formats that can
be used by service providers, if desired:

•	 JSON Web Tokens (JWT)
•	 SAML assertions

Both of these token formats describe a standard for the creation and use of
security tokens. These tokens are known as security tokens because they make
use of cryptography to facilitate features that would not normally be allowed via
simple opaque string values.

Chapter 12

[187]

JWTs are most commonly seen in the consumer space (they are used in the OpenID
Connect protocol, which we will explore later). Compared with SAML assertions,
JWTs can be considered a simpler version of security token than a SAML assertion,
with a simpler format and encoding syntax. SAML assertions, on the other hand,
employ a standard for security tokens that is more expressive and powerful than
JWTs, at the cost of added complexity. These will typically be seen in the enterprise
space where SAML integration for authentication is more prevalent.

Both of these formats can act as bearer tokens in the OAuth 2.0 protocol, as long as
they are supported by the service provider.

Any authorization backend
One of the major benefits of the OAuth 2.0 protocol is that it has the ability to
encapsulate and abstract away the authentication layer of a service, wrapping it
with a standard, uniform layer for client applications to consume. For instance, your
company may be using a Kerberos-based authentication system, say LDAP, for your
company's internal authentication. They may, at some point, choose to wrap this with
an OAuth 2.0 layer, which would effectively encapsulate their authentication layer
and present a uniform interface to any interested parties. Now, they can change their
internal authentication methodologies, say, to SAML, and clients would be largely
unaware (they may be presented a different user consent screen, but other than that,
behavior should be largely unaffected).

This is a very powerful concept. Abstracting away the authentication layer provides
a uniform interface for clients while maintaining flexibility for the underlying
protocols to change without affecting (that is, breaking) clients.

OpenID Connect
The OAuth 2.0 Authorization Framework describes a protocol for managing
authorization to protected resources for your service. It does not, however, describe
methods for authentication. OpenID Connect is a protocol built on top of the OAuth
2.0 protocol in order to provide a complete solution for both authentication and
authorization. In short, OpenID Connect provides an identity layer on top of the
authorization protocol described by OAuth 2.0. This allows client applications to
verify the identity of an end-user based on the authentication performed while gaining
user consent. Most importantly, this can all be done by the client application without
having to store or manage passwords.

Extensions to OAuth 2.0

[188]

You may recall from Chapter 1, Why Should I Care About OAuth 2.0? that we
introduced the concepts of federated identity and delegated authority and
mentioned that they are actually the same underlying concept. In one delegated
authority scenario, the user is delegating authority for a client application to access
some protected resource on their behalf, say, access to their Facebook friend list.
However, this protected resource can be anything. It can even be their profile
information as stored by Facebook. Delegating access to this resource gives the
client application the means of verifying the end-user's identity without ever
seeing their credentials.

Let's see how this is accomplished with OpenID Connect using a familiar OAuth 2.0
workflow. What follows is a modified version of the authorization code grant flow
that we explored in Chapter 6, Get an Access Token with the Server-Side Flow:

1.	 The client application initiates the authorization request using the
authorization code grant flow. However, in this authorization request,
a subset of the following OpenID Connect scopes is requested:

°° openid: (Required) This indicates to the service provider that
the client is making an OpenID Connect request

°° profile: (Optional) This requests access to the user's
profile information

°° email: (Optional) This requests access to the user's e-mail address
°° address: (Optional) This requests access to the user's

address information
°° phone: (Optional) This requests access to the user's phone number

2.	 The user is presented with the same user consent screen that we are
familiar with. If they accept, they are redirected back to the application
via the redirection endpoint, passing along with it the corresponding
authorization code.

3.	 The client application will take this authorization code and make a request
to the service provider's token endpoint to exchange it for an access token.

4.	 The response from this request will contain an access token (as the property
access_token). However, it will contain an additional token known as an ID
token (as the property id_token). This ID token is not a bearer token as the
access token is, but rather, it is a JSON Web Token.

5.	 The client application then validates the ID token and obtains the user's
profile information.

Chapter 12

[189]

As you can see, this flow is very similar to the authorization code grant flow we
learned earlier, except now we are able to verify the identity of the user, something
we were unable to do with OAuth 2.0 alone. A deeper discussion of OpenID
Connect is outside the scope of this book, but I encourage you to explore it on your
own as it is an elegant solution for providing a full end-to-end authentication and
authorization solution. And just like OAuth 2.0, it is quickly gaining adoption. You
can read more about OpenID Connect by visiting their website, currently located at
http://openid.net/connect/.

Summary
In this chapter, we concluded our discussion of the OAuth 2.0 protocol by looking
at the various ways it can be extended and customized to meet the needs of almost
any situation. With such extensibility, the protocol gains flexibility and robustness,
allowing it to be used in a multitude of scenarios. You will typically see it in a
consumer setting offered to third-party developers, such as yourselves, by service
providers such as Facebook, Google, and Instagram. In addition to exploring the
ways that OAuth 2.0 can be extended, we took a dedicated look at a particular
extension in OpenID Connect. We examined a basic OpenID Connect flow to gain
profile information about the user, and demonstrated that it is actually very similar
to the authorization code grant flow we explored in Chapter 6, Get an Access Token
with the Server-Side Flow.

Because of the amazing flexibility that OAuth 2.0 provides, many businesses and
enterprises are adopting it as an authorization layer internally, encapsulating their
internal enterprise systems. The prevalence of OAuth 2.0 is quite established, and
is only growing. Now, you have the tools to comfortably integrate with the most
common and powerful authorization framework in the world! Now, go and build
the next great application!

http://openid.net/connect/

[191]

Resource Owner Password
Credentials Grant

The resource owner password credentials grant is an additional grant type supported
by the OAuth 2.0 specification. It isn't commonly used or supported by service
providers due to its low level of security. In a nutshell, this grant type operates by
utilizing the user's actual credentials to gain an access token. This is in stark contrast
to the other grant types, where the client application is completely unaware of the
user's credentials. However, in this grant type, users send their credentials to the
client application to use on their behalf to access protected resources.

Once the client application has a user's credentials, it uses them to gain an access
token, just as in the other grant types. In this sense, risk is mitigated slightly,
compared to using the credentials directly, since tokens have limited scope
and duration (unlike passwords). However, the passing and delegation of user
credentials is highly undesirable due to the risk of leaking this important information.

When should you use it?
Due to the high level of risk associated with this grant type, it should only be used
when both the authorization code grant and implicit grant are unavailable. This grant
type is well-suited for migrating existing clients using direct authentication schemes
such as HTTP basic or digest authentication to an OAuth 2.0 flow since it makes use
of the same stored credentials that those legacy authentication methods use.

Resource Owner Password Credentials Grant

[192]

Reference pages
Use these pages as reference documentation when implementing the password
credentials grant flow in your application. Adapted from The OAuth 2.0 Authorization
Framework specification [RFC 6749].

An overview of the resource owner password
credentials grant

Client
Authorization

Server

Resource
Owner

Resource Owner
Password Credentials

Resource Owner
Password Credentials

Access Token
(w/ Optional Refresh Token)

(A)

(B)

()C

Figure 5 from RFC 6749

The steps are as follows:

•	 A: The user provides the client application with their username
and password.

•	 B: The client requests an access token from the service provider's token
endpoint using the credentials received from the user. During this step,
the client application authenticates with the service provider as well.

•	 C: The service provider authenticates the client and validates the user
credentials received, and if valid, issues an access token.

Appendix A

[193]

Authorization request and response
The method through which the client obtains the user's credentials is beyond the
scope of the specification. Once an access token has been obtained, these credentials
must then be discarded.

Access token request
The client makes a POST request to the service provider's token endpoint passing
in the following parameters encoded using the application/x-www-form-
urlencoded format as described in Appendix B of the specification:

•	 grant_type: (Required) This is the value that must be set to password
•	 username: (Required) This is the user's username
•	 password: (Required) This is the user's password
•	 scope: (Optional) A list of space-delimited, case-sensitive strings which

represent the scope of the access request

As part of this request, the client application must also authenticate with the
service provider. This is typically done using the HTTP basic authentication
scheme [RFC 2617], but other authentication schemes may be supported by the
service provider as well, such as HTTP digest authentication or public/private key
authentication

An example access token request using HTTP basic authentication looks like:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=password&username=johndoe&password=A3ddj3w

Resource Owner Password Credentials Grant

[194]

Access token response
If the access token request is valid and authorized, the response will contain an
access token, an optional refresh token, and other parameters, described as follows:

•	 access_token: (Required) The access token issued by the
service provider.

•	 token_type: (Required) The type of the token issued. This value is
case-insensitive.

•	 expires_in: (Optional) The lifetime of the access token given in seconds.
If omitted, the service provider should communicate the expiration time
via other means.

•	 refresh_token: (Optional) A refresh token, which can be used to
obtain new access tokens using the refresh token workflow.

•	 scope: (Conditionally required) A list of space-delimited, case-sensitive
strings which represent the scope of the access granted. Required only if
the scope granted is different from the scope requested.

An example access token response looks like this:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

Error response
If the access token request fails for any reason, the server will respond with an
HTTP 400 (Bad Request) status code including the following properties:

•	 error: (Required) This is a single error code representing the condition that
caused the request to fail. The value must be one of the following:

Appendix A

[195]

°° invalid_request: The request is missing a required parameter,
includes an unsupported parameter value (other than the grant
type), repeats a parameter, includes multiple credentials, utilizes
more than one mechanism for authenticating the client, or is
otherwise malformed.

°° invalid_client: The client authentication failed for some reason
(for example, an unknown client, no client authentication included,
or an unsupported authentication method).

°° invalid_grant: The provided authorization grant or the refresh
token is invalid, expired, revoked, does not match the redirection URI
used in the authorization request, or was issued to another client.

°° unauthorized_client: The authenticated client is not authorized to
use this authorization grant type.

°° unsupported_grant_type: The authorization grant type is not
supported by the authorization server.

°° invalid_scope: The requested scope is invalid, unknown,
malformed, or exceeds the scope granted by the user.

•	 error_description: (Optional) Human-readable ASCII message providing
additional information regarding the error.

•	 error_uri: (Optional) A URI identifying a human-readable web page
providing additional information regarding the error.

An example error response looks like this:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_request"
 }

[197]

Client Credentials Grant
The client credentials grant is an additional grant type supported by the OAuth
2.0 specification. This grant type is focused on gaining an access token on behalf
of the client application. This is unlike the other three workflows defined by the
specification (the authorization code grant, the implicit grant, and the resource
owner password credentials grant) in that those flows request access tokens on
behalf of a user.

When should you use it?
There may be occasions where your client application has resources with a service
provider that are owned and consumed by the client application itself, and not by
an end-user. For instance, you may be developing a client application that uses
Google Cloud SQL to persist its own application data (as opposed to a user's data).
In this case, the client credentials grant is ideal. With this workflow, your client
application can request an access token on its own behalf, and then subsequently
use that access token to access the protected resources it needs. In the case of
our example, the client application would use the client credentials grant flow
to authenticate its calls to the Google Cloud SQL APIs. No user intervention is
required, and no additional risk is exposed.

Client Credentials Grant

[198]

Reference pages
Use these pages as reference documentation when implementing the client
credentials grant flow in your application. Adapted from The OAuth 2.0
Authorization Framework specification [RFC 6749].

Overview of the client credentials grant

Client
Authorization

Server

Client Authentication

Access Token

(A)

(B)

Figure 6 from RFC 6749

The steps are as follows:

•	 A: The client authenticates with the service provider and requests an
access token from the service provider's token endpoint.

•	 B: The service provider authenticates the client, and if valid, issues an
access token.

Authorization request and response
Since the client is requesting on their own behalf, no further authorization is needed.

Access token request
The client makes a POST request to the service provider's token endpoint passing in
the following parameters encoded using the application/x-www-form-urlencoded
format, as described in Appendix B of the specification:

•	 grant_type: (Required) The value must be set to client_credentials
•	 scope: (Optional) A list of space-delimited, case-sensitive strings that

represent the scope of the access request

As part of this request, the client application must also authenticate with the
service provider. This is typically done using the HTTP basic authentication
scheme [RFC 2617], but other authentication schemes may be supported by the
service provider as well, such as HTTP digest authentication or public/private
key authentication.

Appendix B

[199]

An example access token request using HTTP basic authentication looks like:

 POST /token HTTP/1.1
 Host: server.example.com
 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

Access token response
If the access token request is valid and authorized, the response will contain an
access token, an optional refresh token, and other parameters, as described here:

•	 access_token: (Required) The access token issued by the service provider.
•	 token_type: (Required) The type of the token issued. This value is

case-insensitive.
•	 expires_in: (Optional) The lifetime of the access token given in seconds.

If omitted, the service provider should communicate the expiration time
via other means.

•	 refresh_token: (Optional) A refresh token, which can be used to obtain
new access tokens using the refresh token workflow.

•	 scope: (Conditionally required) A list of space-delimited, case-sensitive
strings that represent the scope of the access granted. Required only
if the scope granted is different from the scope requested.

An example access token response looks like this:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

Client Credentials Grant

[200]

Error response
If the access token request fails for any reason, the server will respond with an
HTTP 400 (Bad Request) status code including the following properties:

•	 error: (Required) This is a single error code representing the condition
that caused the request to fail. The value must be one of the following:

°° invalid_request: The request is missing a required parameter,
includes an unsupported parameter value (other than the grant
type), repeats a parameter, includes multiple credentials, utilizes
more than one mechanism for authenticating the client, or is
otherwise malformed.

°° invalid_client: Client authentication failed for some reason
(for example, unknown client, no client authentication included,
or unsupported authentication method).

°° invalid_grant: The provided authorization grant or refresh
token is invalid, expired, revoked, does not match the redirection
URI used in the authorization request, or was issued to another client.

°° unauthorized_client: The authenticated client is not authorized
to use this authorization grant type.

°° unsupported_grant_type: The authorization grant type is not
supported by the authorization server.

°° invalid_scope: The requested scope is invalid, unknown,
malformed, or exceeds the scope granted by the resource owner.

•	 error_description: (Optional) Human-readable ASCII message providing
additional information regarding the error.

•	 error_uri: (Optional) A URI identifying a human-readable web page
providing additional information regarding the error.

An example error response looks like this:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_request"
 }

[201]

Reference Specifications
The following is a list of important specifications relating to the OAuth 2.0 protocol.

The OAuth 2 Authorization Framework
https://tools.ietf.org/html/rfc6749
This is the specification for the OAuth 2.0 protocol that we have been working with
for the duration of the book. Refer to this for more information that was not covered
in the main body of the text.

The OAuth 2 Authorization Framework:
Bearer Token Usage
https://tools.ietf.org/html/rfc6750
This specification defines the usage protocol for the bearer tokens issued by service
providers and used by client applications.

OAuth 2.0 Token Revocation
https://tools.ietf.org/html/rfc7009
This document details the proposal for an additional endpoint for the purpose of
revoking previously issued tokens.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7009

Reference Specifications

[202]

OAuth 2.0 Thread Model and Security
Considerations
https://tools.ietf.org/html/rfc6819
This document presents a thorough threat model for the OAuth 2.0 protocol.

Assertion Framework for OAuth 2.0
Client Authentication and Authorization
Grants
http://tools.ietf.org/html/rfc7521
This specification documents the use of assertions with the OAuth 2.0 protocol in the
form of a new client authentication mechanism and a new authorization grant type.

Security Assertion Markup Language
(SAML) 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants
https://tools.ietf.org/html/rfc7522
This specification defines the use of a Security Assertion Markup Language (SAML)
2.0 assertion for client authentication, as well as for requesting an access token.

JSON Web Token (JWT)
http://tools.ietf.org/html/rfc7519
This document outlines the format for JSON Web Tokens (JWTs) as a means of
exchanging claims between parties.

https://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc7522
http://tools.ietf.org/html/rfc7519

Appendix C

[203]

JSON Web Token (JWT) Profile for
OAuth 2.0 Client Authentication and
Authorization Grants
http://tools.ietf.org/html/rfc7523
This specification describes the use of JSON Web Tokens (JWTs) as a means of client
authentication, as well as for requesting an access token.

OpenID Connect Core 1.0
http://openid.net/specs/openid-connect-core-1_0.html
This document outlines the OpenID Connect protocol, which is a protocol built
on top of the OAuth 2.0 protocol to provide a full end-to-end authentication and
authorization framework.

HTTP Authentication: Basic and Digest
Access Authentication
https://www.ietf.org/rfc/rfc2617
This specification outlines the authentication methods used for passing client
credentials and access tokens using the authorization request header field to the
service provider.

http://tools.ietf.org/html/rfc7523
http://openid.net/specs/openid-connect-core-1_0.html
https://www.ietf.org/rfc/rfc2617

[205]

Index
A
access token

about 20, 119
access duration 41
authorization request header

field, defining 120, 121
defining 39, 43
form-encoded body parameter, using 121
obtaining 38, 39
refreshing 43
scope 39-41
token revocation 41
URI query parameter, using 121, 122
used, for creating API call 120
using 42
versus bearer token 20

access token request
about 91
according, to specification 91-93
defining 198, 199
in application 93
making 106, 107

access token response
about 94, 137
defining 60, 199
error 62, 95, 138, 139
handling 73-77, 108, 111
parameters 61, 144
properties 80
success 60-62, 94, 95, 137, 138

Apache Maven
defining 64
installing 96, 97
URL 64

API call
creating, access token used 120

API call flow
about 179
authorization request header field 179
authorization request header

field, troubleshooting 180
common issues, with authorization request

header field 180
common issues, with form-encoded body

parameter 181
form-encoded body parameter 180
form-encoded body parameter,

troubleshooting 181
URI query parameter, using 181, 182

application
creating 46-48
redirection endpoint, setting 48
registering, with Facebook 46
service providers authorization, finding 53
token endpoints, finding 53

auth endpoint
URL 53

authentication
about 2
versus authorization 2

authorization
about 2
performing, via mobile application 169, 170
versus authentication 2

authorization code 26
authorization code grant flow

about 83-86, 177
access token request 91, 178, 179
access token request, troubleshooting 179

[206]

access token response 94
authorization request 86, 177
authorization request, troubleshooting 177
authorization response 88
common issues, with access

token request 179
common issues, with authorization

request 177
authorization endpoint

URL 37
authorization request

about 86
according, to specification 86
creating 71-73
defining 58
defining, according to specification 58
defining, in application 59, 60
example 79
in application 87
making 102-104
parameters 58

authorization request and response
defining 198

authorization response
about 88
error 89, 90
handling 104-106
success 88, 89

auth process
cons 140
pros 140

B
base application

Apache Maven, installing 64
base project, configuring 67, 68
building 64, 96
hosts file, modifying 68, 100
project, creating 66, 97, 98
running 68-70, 100-102

base project
configuring 99, 100

bearer token
versus access token 20

best practices, security
authorization code grant

flow, using 150, 151
client credentials, rotating 154
credentials and tokens, maintaining out of

reach of users 150
implicit grant flow, using 149, 150
minimal scopes, requesting 149
native browsers, using instead of embedded

browsers 151, 152
read-only permissions, requesting 149, 150
refresh token, using 151
third-party scripts, avoiding in redirection

endpoint 153, 154
TLS, using 148, 149

C
client application

client credentials 38
different registration process 36, 37
different service providers 36, 37
registering 35, 36
same OAuth 2.0 protocol 36, 37

client credentials grant
about 197
defining 198
reference 198
using 197

client-side application
API call, creating 123
form-encoded body parameter,

using 125, 126
GitHub, URL 126
URI query parameter, using 124

client-side flow
defining 18
implicit grant type, using 21, 22
untrusted client 19-21

common attacks
about 154
client and user impersonation 162
Cross-site request forgery (CSRF) 154, 155
phishing 158, 159
redirection URI manipulation 160-162

[207]

Cross-site request forgery (CSRF)
about 154, 155
state param used, for combating 156, 157

cURL 173
custom grant types

about 185, 186
authorization code grant 185
implicit grant 185

D
delegated authority 3, 4

E
embedded browser

versus native browser 152, 153
error, access token response

parameters 62
error response

defining 200
parameters 145
properties 200

expired refresh token
defining 43, 139

extensions, OAuth 2.0 framework
authorization backend 187
custom grant types 185, 186
token types 186, 187

F
Facebook

references 53
Facebook Graph API

about 122
URL 122

federated identity 3, 4

G
GoodApp application

defining 34
trusted, versus untrusted clients 17, 18
user consent 13-16
workflows, defining for clients 16, 17
working 11-13

H
hybrid architecture

about 167
authorization code grant, for backend

server 168, 169
benefits 169
implicit grant flow, for mobile app 168, 169

I
implicit grant flow

about 174
access token response 60
authorization request 58, 174-176
authorization request,

troubleshooting 176, 177
common issues, with authorization

request 176, 177
defining 55-57

implicit grant type
using 22

infographic
creating 130
URL 130

installation, Apache Maven 96, 97

J
jQuery library

URL 154
JSON Web Tokens (JWTs) 202

M
mobile

defining 18, 30, 51
mobile application

about 163
authorization, performing via 169, 170
considerations 164
flow type, deciding 164
security considerations 165-167
with secure storage APIs, on mobile

platforms 165

[208]

N
native browser

versus embedded browser 152, 153

O
OAuth 1.0 1
OAuth 2.0

about 1
authorization framework 17, 18
defining 33
delegated authority 4
examples, defining 4
federated identity 3, 4
trusted 18
untrusted 18
used, for solving problem 5
using 3, 8

OAuth 2.0 framework
extensions 185

OAuth 2.0 protocol
reference specifications 201-203

OpenID Connect
about 187
URL 189
using 188, 189

P
perpetual tokens 41
phishing 158, 159
problem solving

with OAuth 2.0 7, 8
without OAuth 2.0 5, 6

project object model (POM) 64

R
redirection endpoint

defining 48-52
references 52, 53
URL 37

reference pages
access token response 80, 144
defining 78, 143
error response 80, 81, 145

implicit grant flow 78
refresh request 144
refresh token flow 143, 144

refresh request
about 136
parameters 144
specification, defining 136, 137

refresh token
about 42, 135
defining 42
incapability 43

refresh token flow
about 182
access token response 137
common issues 183
cons 140
defining 135
pros 140
refresh request 136
troubleshooting 183
versus auth process 140

registration process
defining 45

resource owner password credentials grant
about 191
access token request, defining 193
access token response, defining 194
authorization request 193
authorization response 193
error response 194, 195
overview 192
reference 192
usage 191

S
sample application

building 96
scope and duration of access 39
security

best practices 148
defining 147

Security Assertion Markup Language
(SAML) 2.0 202

server-side application
API call, creating 126
GitHub, URL 129

[209]

HTTP authorization header, using 128, 129
URI query parameter, using 126, 127

server-side flow
defining 23
trusted client 24-26
using 28
workflow, defining 26-28

server-side workflow
and client-side workflow, comparing 29

SSO (Single Sign On) 73

T
token endpoint

URL 37
token revocation 41
token types

about 186, 187
JSON Web Tokens (JWT) 186
SAML assertions 186

tools
using 173

troubleshooting
about 174
API call flow 179
authorization code grant flow 177
implicit grant flow 174
refresh token flow 182

trust 16
trusted client

about 17
advantages 29
disadvantages 29

U
untrusted client

about 17, 22
advantages 23
disadvantages 23

user consent 13-16

W
WMIIG

about 57
URL 70

workflow
defining 141, 142

Thank you for buying
Mastering OAuth 2.0

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

OAuth 2.0 Identity and Access
Management Patterns
ISBN: 978-1-78328-559-4 Paperback: 128 pages

A practical hands-on guide to implementing secure
API authorization flow scenarios with OAuth 2.0

1.	 Build web, client-side, desktop, and
server-side secure OAuth 2.0 client applications
by utilizing the appropriate grant flow
for the given scenario.

2.	 Get to know the inner workings of OAuth
2.0 and learn how to handle and implement
various authorization flows.

3.	 Explore practical code examples that
are executable as standalone applications
running on top of Spring MVC.

Open Source Identity Management
Patterns and Practices Using
OpenAM 10.x
ISBN: 978-1-78216-682-5 Paperback: 116 pages

An intuitive guide to learning OpenAM access
management capabilities for web and
application servers

1.	 Learn patterns, practices, and the terminology
of Identity Management.

2.	 Learn how to install OpenAM 10.x.

3.	 Protect web and application servers
using policy agents.

Please check www.PacktPub.com for information on our titles

Oracle Identity and Access
Manager 11g for Administrators
ISBN: 978-1-84968-268-8 Paperback: 336 pages

Administer Oracle Identity and Access Management:
Installation configuration, and day-to-day tasks

1.	 Full of illustrations, diagrams, and tips
with clear step-by-step instructions and real
time examples.

2.	 Understand how to Integrate OIM/OAM
with E-Business Suite, Webcenter, Oracle
Internet Directory and Active Directory.

3.	 Learn various techniques for implementing
and managing OIM/OAM with illustrative
screenshots.

Windows Server 2012 Unified
Remote Access Planning
and Deployment
ISBN: 978-1-84968-828-4 Paperback: 328 pages

Discover how to seamlessly plan and deploy remote
access with Windows Server 2012's successor
to DirectAccess

1.	 The essential administrator's companion
for the successor to DirectAccess.

2.	 Get to grips with configuring, enabling,
and deploying Unified Remote Access.

3.	 A quick start guide to have you up and running
with Windows Server 2012 URA in no time.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why Should I Care
About OAuth 2.0?

	
Authentication versus authorization
	Authentication
	Authorization

	What problems does it solve?
	Federated identity
	Delegated authority
	Real-life examples of OAuth 2.0 in action

	How does OAuth 2.0 actually solve the problem?
	Without OAuth 2.0 – GoodApp wants to suggest contacts by looking at your Facebook friends
	With OAuth 2.0 – GoodApp wants to suggest contacts by looking at your Facebook friends

	Who uses OAuth 2.0?
	Introducing "The World's Most Interesting Infographic Generator"
	Summary

	Chapter 2:
A Bird's Eye View
of OAuth 2.0
	How does it work?
	User consent
	Two main flows for two main types of client
	Trusted versus untrusted clients

	First look at the client-side flow
	An untrusted client – GoodApp requests access for user's Facebook friends using implicit grant
	The big picture
	When should this be used?
	Pros and cons of being an untrusted client
	Pros
	Cons

	First look at the server-side flow
	A trusted client – GoodApp requests access for user's Facebook friends using authorization code grant
	The big picture
	When should this be used?
	Pros and cons of being a trusted client
	Pros
	Cons

	What are the differences?
	What about mobile?
	Summary

	Chapter 3:
Four Easy Steps
	Let's get started
	Step 1 – Register your client application
	Different service providers, different registration process, same OAuth 2.0 protocol
	Your client credentials

	Step 2 – Get your access token
	A closer look at access tokens
	Scope
	Duration of access
	Token revocation

	Sometimes a refresh token

	Step 3 – Use your access token
	An access token is an access token

	Step 4 – Refresh your access token
	What if I don't have a refresh token?
	Refresh tokens expire too

	Putting it all together
	Summary

	Chapter 4:
Register Your Application
	Recap of registration process
	Registering your application with Facebook
	Creating your application
	Setting your redirection endpoint
	What is a redirection endpoint?

	Find your service provider's authorization
and token endpoints

	Putting it all together!
	Summary

	Chapter 5:
Get an Access Token with
the Client-Side Flow
	Refresher on the implicit grant flow
	A closer look at the implicit grant flow
	Authorization request
	According to the specification
	In our application

	Access token response
	Success
	Error

	Let's build it!
	Build the base application
	Install Apache Maven
	Create the project
	Configure base project to fit our application
	Modify the hosts file
	Running it for the first time

	Make the authorization request
	Handle the access token response

	Summary
	Reference pages
	Authorization request
	Access token response
	Error response

	Chhapter 6:
Get an Access Token with
the Server-Side Flow
	Refresher on the authorization code
grant flow
	A closer look at the authorization code grant flow
	Authorization request
	According to the specification
	In our application

	Authorization response
	Success
	Error

	Access token request
	According to the specification
	In our application

	Access token response
	Success
	Error

	Let's build it!
	Build the base application
	Install Apache Maven
	Create the project
	Configure the base project to fit our application
	Modify the hosts file
	Running it for the first time

	Make the authorization request
	Handle the authorization response
	Make the access token request
	Handle the access token response

	Summary
	Reference pages
	An overview of the authorization code
grant flow
	Authorization request
	Authorization response
	Error response
	Access token request
	Access token response
	Error response

	Chapter 7: Use Your Access Token

	Refresher on access tokens
	Use your access token to make an
API call
	The authorization request header field
	The form-encoded body parameter
	The URI query parameter

	Let's build it!
	In our client-side application
	Send via the URI query parameter
	Send via the form-encoded body parameter

	In our server-side application
	Send via the URI query parameter
	Send via the HTTP authorization header

	Creating the world's most interesting infographic
	Summary
	Reference pages
	An overview of protected resource access
	The authorization request header field
	The form-encoded body parameter
	The URI query parameter

	Chapter 8: Refresh Your Access Token

	A closer look at the refresh token flow
	The refresh request
	According to the specification

	The access token response
	Success
	Error

	What if I have no refresh token? Or my refresh token has expired?
	Comparison between the two methods

	The ideal workflow
	Summary
	Reference pages
	An overview of the refresh token flow
	The refresh request
	Access token response
	Error response

	Chapter 9: Security Considerations

	What's at stake?
	Security best practices
	Use TLS!
	Request minimal scopes
	When using the implicit grant flow, request read-only permissions
	Keep credentials and tokens out of reach
of users
	Use the authorization code grant flow whenever possible
	Use the refresh token whenever possible
	Use native browsers instead of embedded browsers
	Do not use third-party scripts in the redirection endpoint
	Rotate your client credentials

	Common attacks
	Cross-site request forgery (CSRF)
	What's going on?
	Use the state param to combat CSRF

	Phishing
	Redirection URI manipulation
	Client and user impersonation

	Summary

	Chapter 10
: What About Mobile?
	What is a mobile application?
	What flow should we use for mobile applications?
	Are mobile applications trusted or untrusted?
	What about mobile applications built on top of mobile platforms with secure storage APIs?
	Not quite enough

	Hybrid architectures
	Implicit for mobile app, authorization code grant for backend server
	What is the benefit of this?

	Authorization via application instead of user-agent
	Summary

	Chapter 11:
Tooling and Troubleshooting
	Tools
	Troubleshooting
	The implicit grant flow
	The authorization request

	The authorization code grant flow
	The authorization request
	The access token request

	The API call flow
	The authorization request header field
	The form-encoded body parameter
	The URI query parameter

	The refresh token flow

	Summary

	Chapter 12:
Extensions to OAuth 2.0
	Extensions to the OAuth 2.0 framework
	Custom grant types
	A variety of token types
	Any authorization backend

	OpenID Connect
	Summary

	Appendix A: Resource Owner Password Credentials Grant

	When should you use it?
	Reference pages
	An overview of the resource owner password credentials grant
	Authorization request and response
	Access token request
	Access token response
	Error response

	Appendix B: Client Credentials Grant

	When should you use it?
	Reference pages
	Overview of the client credentials grant
	Authorization request and response
	Access token request
	Access token response
	Error response

	Appendix C: Reference Specifications

	The OAuth 2 Authorization Framework
	The OAuth 2 Authorization Framework: Bearer Token Usage
	OAuth 2.0 Token Revocation
	OAuth 2.0 Thread Model and Security Considerations
	Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants

	Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants
	JSON Web Token (JWT)
	JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
	OpenID Connect Core 1.0
	HTTP Authentication: Basic and DigestAccess Authentication

	Index

